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Condition monitoring is very important for critical assets such as gearboxes used in

the power and mining industries. Fluctuating operating conditions are inevitable for

wind turbines and mining machines such as bucket wheel excavators and draglines

due to the continuous fluctuating wind speeds and variations in ground properties,

respectively. Many of the classical condition monitoring techniques have proven to

be ineffective under fluctuating operating conditions and therefore more sophisticated

techniques have to be developed. However, many of the signal processing tools that

are appropriate for fluctuating operating conditions can be difficult to interpret, with

the presence of incipient damage easily being overlooked.

In this study, a cost-effective diagnostic methodology is developed, using machine learn-

ing techniques, to diagnose the condition of the machine in the presence of fluctuating

operating conditions when only an acceleration signal, generated from a gearbox dur-

ing normal operation, is available. The measured vibration signal is order tracked to

preserve the angle-cyclostationary properties of the data. A robust tacholess order

tracking methodology is proposed in this study using probabilistic approaches. The

measured vibration signal is order tracked with the tacholess order tracking method

(as opposed to computed order tracking), since this reduces the implementation and

the running cost of the diagnostic methodology.

Machine condition features, which are sensitive to changes in machine condition, are ex-

tracted from the order tracked vibration signal and processed. The machine condition

features can be sensitive to operating condition changes as well. This makes it difficult
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to ascertain whether the changes in the machine condition features are due to changes

in machine condition (i.e. a developing fault) or changes in operating conditions. This

necessitates incorporating operating condition information into the diagnostic meth-

odology to ensure that the inferred condition of the machine is not adversely affected

by the fluctuating operating conditions. The operating conditions are not measured

and therefore representative features are extracted and modelled with a hidden Markov

model. The operating condition machine learning model aims to infer the operating

condition state that was present during data acquisition from the operating condition

features at each angle increment. The operating condition state information is used

to optimise robust machine condition machine learning models, in the form of hidden

Markov models.

The information from the operating condition and machine condition models are com-

bined using a probabilistic approach to generate a discrepancy signal. This discrepancy

signal represents the deviation of the current features from the expected behaviour of

the features of a gearbox in a healthy condition. A second synchronous averaging

process, an automatic alarm threshold for fault detection, a gear-pinion discrepancy

distribution and a healthy-damaged decomposition of the discrepancy signal are pro-

posed to provide an intuitive and robust representation of the condition of the gearbox

under fluctuating operating conditions. This allows fault detection, localisation as well

as trending to be performed on a gearbox during fluctuating operation conditions.

The proposed tacholess order tracking method is validated on seven datasets and the

fault diagnostic methodology is validated on experimental as well as numerical data.

Very promising results are obtained by the proposed tacholess order tracking method

and by the diagnostic methodology.
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Chapter 1 Introduction

1.1 Background

Maintenance on machines and equipment is an unavoidable and an essential task in

industrial environments where expensive equipment is operated. Unexpected break-

downs due to a lack of maintenance and replacing equipment based on the time it was

used are inefficient and expensive for asset management. A more efficient alternative,

namely condition-based maintenance (CBM), is required when performing maintenance

on critical equipment that requires a high level of reliability (Jardine et al., 2006). CBM

is a maintenance strategy that uses the condition of the machine to determine which

components require maintenance and replacement and which are still in an acceptable

condition for operation. CBM consists of diagnostics which aims to detect, isolate and

characterise faults present in the system as well as prognostics, which predicts when a

fault or failure will occur (Jardine et al., 2006, Lee et al., 2014).

Gearboxes are used in the power (wind turbines), mining (draglines, continuous miners,

bucket wheel excavators, conveyor belts), aeronautical and automotive industries. The

gearbox within a wind turbine has the highest relative cost over a 20-year period of all

components and it contributes to 10.9% of the total wind turbine cost (Busby, 2012).

The gearboxes are subjected to harsh operating conditions and inherent fatigue cycles

due to the repetitive loading and unloading cycles of the gear teeth during meshing.

This can result in bending fatigue, surface fatigue etc. which can result in ultimate

failure of the gearbox and lead to production, financial etc. losses.

CBM of gearboxes remains a challenging task due to the inherent and unavoidable fluc-

tuating conditions in which the machines regularly operate. The fluctuating operating

conditions are induced by the continuously fluctuating wind speed for wind turbines

(Zimroz et al., 2014), non-homogeneous ground properties for bucket wheel excavat-

ors (Bartelmus and Zimroz, 2009b), changes in transported loads for draglines (Eggers

et al., 2007) and conveyor systems (Bartelmus et al., 2010). The fluctuating operat-

ing conditions manifest very similar to faults in a measured vibration signal (Randall,
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1981) and it results in additional complex phenomena such as varying signal-to-noise

ratios (Chaari et al., 2012). The assumption that any change in the measured vibra-

tion signal is only attributed to changes in the condition of the machine, is violated

in fluctuating operating conditions (Stander et al., 2002). Varying rotational speeds

also influence the order tracking process, since the transmission path from the impact,

produced by local damage, is different for a tachometer located at a shaft and a trans-

ducer located on a bearing housing. This results in phase distortion when performing

computed order tracking on the signal (Stander and Heyns, 2006). There is a need

for a cost-effective gearbox diagnostic methodology which is able to detect, locate and

characterise faults in fluctuating operating conditions.

1.2 Literature survey

A literature survey is performed on vibration-based condition monitoring approaches

for rotary machines with the focus placed on gearbox diagnostics. The first section

deals with vibration-based condition monitoring techniques. The second section deals

with techniques which learn the characteristics within the data and use this information

to infer the condition of the machine.

1.2.1 Vibration-based condition monitoring

Vibration measurements are regularly used in the rotating machine diagnostics field,

since changes in the condition of the machine are instantaneously reflected in the

vibration signal (Randall, 2011). However, changes in the machine condition (i.e.

developing faults) are usually concealed by dominant components within the vibration

signal, such as the gear mesh frequencies, changes in operating conditions and noise.

Sophisticated signal processing techniques are required to extract the characteristics

or machine condition features, that reflect the condition of the machine, from the

vibration signal.

An overview of the most common signal processing techniques applied to gearbox

condition monitoring is discussed in the succeeding sections.

1.2.1.1 Statistical time domain features

Statistical time domain metrics such as the root mean square (RMS), kurtosis and

crest factor can be used to infer changes in the condition of the machine due to a de-
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veloping fault. Tandon (1994) investigated statistical time domain metrics for bearing

fault detection and found that the RMS, vibration peak and power are sensitive to a

deteriorating bearing, while the crest factor is not in all cases. Even though the afore-

mentioned features are sensitive to damage in the rotary machine, they are sensitive to

changes in operating conditions as well (Lin and Zhao, 2014). This makes it difficult to

ascertain the cause of the changes within the features which make the time domain fea-

tures inappropriate for diagnostics in fluctuating operating conditions (Dowling et al.,

1993, Lin and Zhao, 2014).

However, it is possible to alleviate the problems associated with the aforementioned

statistical features by incorporating operating condition information into the fault de-

tection process. Zimroz et al. (2014) extracted the peak-to-peak and RMS of the

vibration signal from a wind turbine’s gearbox as diagnostic features. The features

have bimodal probability density functions due to the fluctuating operating conditions

during data acquisition. The relationship between the machine condition features and

the power generated by the wind turbine (i.e. operating condition information) is ob-

tained by linear regression analysis. The parameters or weights of the linear regression

model are sensitive to changes in the bearing condition in the presence of fluctuating

operating conditions.

1.2.1.2 Frequency domain analysis

The frequency domain representation of a vibration signal is obtained by means of a

discrete Fourier transform which makes the implicit assumption that the signal under

consideration is stationary and periodic. Sidebands are common in the spectrum of

the vibration signal due to modulation effects such as impacts produced by faults

(McFadden, 1985), but it is also produced by operating condition changes (Randall,

1981, 2011). The fluctuating rotational speeds result in spectral smearing to occur as

well, since the discrete Fourier transform is unable to handle fluctuating characteristic

frequencies. Hence, frequency domain analysis of a temporal signal is inappropriate

for fault detection in fluctuating operating conditions (Lin and Zhao, 2014). Order

tracking, discussed in section 1.2.1.3, and time-frequency analysis, discussed in section

1.2.1.8, overcome the requirement for constant rotational speed operation during data

acquisition.

1.2.1.3 Order tracking

The spectral smearing of rotary frequency components (i.e. shaft frequencies, gear

mesh frequencies etc.) is alleviated by representing the time domain signal in the angle
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domain instead. This is usually performed by using computed order tracking (COT)

which requires a transducer, such as an optical sensor or a proximity probe, and a shaft

encoder or a shaft key to generate a tachometer signal. This tachometer signal contains

the instantaneous phase of the shaft over time and is used to convert the time domain

vibration signal to the angle domain. However, the quality of the results from COT

depends on the accuracy of the measured arrival times of the shaft encoder or key,

the resampling or interpolation procedure, the number of pulses per revolution (Fyfe

and Munck, 1997) as well as the geometrical characteristics of the shaft encoder itself

(Resor et al., 2005). Resor et al. (2005) developed a geometry compensation technique

for incremental shaft encoders to reduce the errors in the tachometer signal in slightly

varying rotational speeds. Diamond et al. (2016) developed a geometric compensa-

tion technique which can be used in arbitrary varying shaft speeds by incorporating

Bayesian linear regression theory in the geometry estimation process.

Tacholess order tracking is actively investigated by the engineering community because,

(Gryllias and Antoniadis, 2013, Qi et al., 2015, Urbanek et al., 2013, Zhao et al., 2013):

• Tachometers and shaft encoders can be impractical or even impossible to install.

• It is critical to the success of COT to accurately measure the arrival times of the

increments on a shaft encoder and therefore high sampling frequencies are re-

quired. The high sampling frequencies lead to additional hardware requirements.

• The equipment required to perform order tracking raises the financial costs of

performing CBM.

• COT under varying rotational speeds are sensitive to transmission path effects.

In most tacholess order tracking approaches, the instantaneous phase (or frequency) of

a shaft is estimated from the measured vibration signal over time. This is subsequently

used to resample the signal in constant angular intervals. No additional equipment is

required to perform order tracking and the phase distortion, due to the transmission

path effects, is removed. Bonnardot et al. (2005) was the first to introduce a tacholess

order tracking procedure and Combet and Gelman (2007) improved the technique

by automating the harmonic selection process used in the methodology. Both the

aforementioned methods are limited to small speed fluctuations which are impractical

for gearboxes undergoing large rotational speed changes such as the gearboxes used

in draglines and wind turbines. Heyns, Heyns and Zimroz (2012) used a clustering

maxima tracking procedure to extract the instantaneous frequency (IF) from the time-

frequency spectrum. The low-pass filtered estimate of the IF is used to resample the

vibration signal into constant angular intervals.
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Urbanek et al. (2013) and Zhao et al. (2013) introduced tacholess order tracking pro-

cedures that are appropriate in applications where there are large rotational speed

variations. Urbanek et al. (2013) proposed performing maxima tracking on the short-

time Fourier transform (STFT) to extract an IF. The signal is sampled to the angle

domain so that conventional bandpass filtering can be performed on the signal. The sig-

nal is reverse resampled to obtain a mono-component signal in the time domain. Zhao

et al. (2013) used the Chirplet transform, due to its superior time-frequency resolution,

with maxima tracking. The Vold-Kalman filter, which is a bandpass filter with a time

varying centre frequency, is utilised and overcomes the need to use the conventional

bandpass filtering with reverse resampling as used by Urbanek et al. (2013). Urbanek

et al. (2013) and Zhao et al. (2013) extracted the instantaneous phase from the IF by

using the Hilbert transform on the mono-component signal. The instantaneous phase

is used to resample the signal at constant angular intervals. Vinson (2014) applied

a combination of the techniques proposed by Urbanek et al. (2013) and Zhao et al.

(2013) to perform tacholess order tracking.

Gryllias and Antoniadis (2013) used complex shifted Morlet wavelets to extract the

complex-valued wavelet coefficients from a vibration signal and used this to estimate

the instantaneous angular speed of a rotary machine. This technique performed well

and is not sensitive to the choice of wavelet hyperparameters. He et al. (2016) used the

discrete spectrum correction technique to order track the vibration signal. The energy

centrobaric correction method is used to estimate the instantaneous meshing frequency

of a wind turbine’s gearbox from the STFT. A three-point convolution was applied to

the spectrogram to improve the resolution of the peaks (i.e. meshing frequency com-

ponents etc.) and attenuate the background noise. The proposed method performed

well in estimating the rotational speed of the system as well as order tracking the

vibration signal.

1.2.1.4 Synchronous averaging

Time synchronous averaging, applied to a temporal signal with a constant rotational

speed, and synchronous or rotation domain averaging, applied to an order tracked

signal, are used to filter out components which are non-synchronous with the reference

shaft under consideration. The components which are periodic and a constant multiple

with respect to a reference shaft are retained in the averaging process (Randall, 2011).

McFadden (1985) applied synchronous averaging to a raw and a low-passed vibration

signal of a gearbox with a localised gear crack. The synchronous average of the low-

passed vibration signal clearly indicates the gear fault, since all frequencies exceeding

the gear mesh frequency and its sidebands, which dominate the vibration signal, are
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filtered out. This is similar to residual analysis, discussed in section 1.2.1.5, where the

dominant components which have little diagnostic information are removed from the

signal to highlight localised impulses.

Stander et al. (2002) proposed using a load demodulation normalisation procedure

to remove the amplitude modulation caused by fluctuating loads to ensure that the

synchronous average is more sensitive to localised faults. The filtered modulation

signal, due to the varying loads, is estimated and used to normalise the amplitude

modulated vibration signal. The synchronous average of the load normalised signal

highlights the presence of a fault which present itself with periodic impulses within the

signal. Stander and Heyns (2005) investigated the instantaneous angular speed (IAS)

for gear diagnostics in fluctuating operating conditions and found that cyclic stationary

loads (i.e. remains the same for each rotation) should be removed by using the load

demodulation normalisation technique developed by Stander et al. (2002). Modulation

due to non-cyclic stationary (i.e. changes between rotations) loads is attenuated by

using synchronous averaging. Stander and Heyns (2006) performed phase domain

averaging on the vibration signal to overcome the phase distortion in the order tracking

process due to the varying rotational speeds. Phase domain averaging is more effective

than synchronous averaging, since it requires significantly fewer averages to attenuate

the non-synchronous components.

1.2.1.5 Residual signal analysis

A residual signal represents the departure of the gearbox synchronous average sig-

nal from the tooth meshing vibration signal (McFadden, 1987). Dominant periodic

non-fault related frequency components, that dominate the synchronous average, are

removed so that concealed impulses due to localised faults are easily observed. The

residual signal is obtained by only removing the gear mesh characteristics, by remov-

ing the gear mesh sidebands as well or by using linear prediction techniques such as

autoregressive modelling (Randall, 2011). Heyns, Heyns and Zimroz (2012) invest-

igated artificial neural networks (ANN), discussed in section 1.2.2.3, to generate a

residual signal. McFadden (1987) found that the residual signal is significantly more

sensitive to incipient localised faults than the synchronous average, since this removes

the non-diagnostic information from the signal. The kurtosis of the residual signal is a

very powerful diagnostic tool as well (Randall, 2011).
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1.2.1.6 Cyclostationary analysis

Cyclostationary analysis was first introduced to analyse communication signals, but

it emerged as a powerful diagnostic technique for rotating machines (Antoni, 2009).

Cyclostationary signals have statistical properties that vary periodically in the time or

in the angle domain, where the latter describes signals generated by rotating machines

well (Antoni et al., 2004). Many of the cyclostationary analysis techniques have been

developed under specific operating condition requirements and these techniques have

to be modified to be applicable for data measured in arbitrarily varying operating con-

ditions (Abboud et al., 2017). Vibration signals that are measured during fluctuating

rotational speed conditions can only be cyclostationary if the random speed fluctuation

is periodic, stationary or cyclostationary (Antoni et al., 2004).

Fourier analysis is an appropriate analysis tool for first order cyclostationary signals

that contain a periodic mean. A second order cyclostationary signal has a periodic

autocorrelation function which indicates periodic amplitude and frequency modulation

are present within the signal (Antoni et al., 2004). Antoni et al. (2004) successfully

applied cyclostationary approaches to signals obtained from an internal combustion en-

gine, a gearbox with a damaged gear and a gearbox with a damaged bearing. Impulses

induced by bearing faults have random components due to slip etc. and by using

cyclostationary approaches the fault characteristics can be extracted (Antoni et al.,

2004). Antoni (2009) wrote an extensive tutorial on cyclostationary tools applied to

rotating machines and illustrated many of the concepts of cyclostationary analysis with

examples.

1.2.1.7 Envelope analysis

Mcfadden and Smith (1984) investigated the high-frequency resonance technique for

bearing fault detection. It is expected that the impulses caused by local damage excite

the resonance bands, which does not interfere with the low-frequency content of the

signal (i.e. shaft rotation frequencies etc.). The process requires the estimation of a

resonance band and the application of a bandpass filter, with a preselected bandwidth,

to retain the resonance frequency and its sidebands. The filtered signal is demodulated

to obtain an envelope signal or subsequently an envelope spectrum which contains the

frequencies at which the resonance band are excited. The deterministic components,

such as tooth meshing in gearboxes, also excite the resonance bands and therefore it

is difficult to discern between the many spurious components and the component of

interest (i.e. the fault frequency) in the envelope spectrum (Abboud et al., 2017).

Ocak and Loparo (2005) noted that the shortcomings for this technique are that the
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resonance band, the rotational speed and the specifications of the bearing should be

known beforehand. Bartelmus and Zimroz (2009b) used an envelope signal, obtained

from demodulation analysis, as an estimate of the external load applied to the gearbox

of a bucket wheel excavator. The vibration signal is more sensitive to varying loads in a

damaged condition as opposed to a healthy condition (Bartelmus and Zimroz, 2009b).

Wang et al. (2001) proposed a resonance demodulation technique where envelope ana-

lysis is performed on the residual signal to remove the strong influence of the determ-

inistic components in the envelope spectrum. The squared envelope signal is sensitive

to incipient faults as well as their location.

Abboud et al. (2017) noted that the squared envelope spectrum is one of the most

powerful techniques for analysing cyclostationary signals, but it is only applicable for

constant operating conditions. An envelope enhancing procedure, which attenuates the

source of spurious components in the squared envelope spectrum (the deterministic and

cyclo non-stationary components), is proposed. The generalised synchronous average

is able to reduce the deterministic components, while an additional filtering step is

required to remove the cyclo non-stationary components from the envelope spectrum.

This results in a robust fault sensitive squared envelope spectrum.

1.2.1.8 Time-frequency analysis

Time and frequency domain analyses are ill-suited for analysing non-stationary signals

when performed separately, but a simultaneous time-frequency analysis provides in-

valuable insight into the characteristics within a non-stationary signal (Jardine et al.,

2006). The short-time Fourier transform (STFT) aims to overcome the fault localisa-

tion inabilities of frequency domain analysis by windowing the vibration signal and

performing the discrete Fourier transform on each of the resulting vibration segments.

The STFT is developed with the assumption that the signal is quasi-stationary within

each windowed segment (Jardine et al., 2006). The STFT has a constant frequency and

time resolution which are inversely related to one another. This limited resolution is

problematic, especially when detecting characteristics at different frequencies and with

different lengths in the time domain. Hence, the use of the STFT for fault detection

in non-stationary operating conditions is limited (Chaari et al., 2012, Lin and Zhao,

2014, Peng and Chu, 2004).

Bartelmus and Zimroz (2009a) extracted the amplitudes of the gear mesh frequency

components from the short-time acceleration spectrum as machine condition features.

However, the extracted features were unable to separate a gearbox in a good condition

from a gearbox in a poor condition, because the features contain operating condition
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information as well. The gearboxes in the good and the poor condition were successfully

separated by incorporating operating condition information into the fault detection

process. The results of the investigation indicate that a damaged gearbox is more

susceptible to loads than a healthy gearbox, similarly to Bartelmus and Zimroz (2009b).

The Wigner-Ville distribution (WVD), is an alternative to the STFT, which obtains

a better time-frequency resolution, but it suffers from severe interference within the

spectrum (Jardine et al., 2006, Peng and Chu, 2004). This interference impedes the

fault detection process. Stander et al. (2002) used the pseudo-WVD, which overcomes

the interference terms of the WVD by applying a frequency smoothing window, to

perform gear fault detection. Stander and Heyns (2005) used the smooth pseudo-

WVD for gear fault localisation in conjunction with an amplitude ratio to trend the

gear fault severity. Baydar and Ball (2000) noted that the pseudo-WVD does not

remove all of the interference effects and these interference effects impede the fault

detection process, especially of incipient faults. Baydar and Ball (2000) developed the

instantaneous power spectrum to overcome the limitations of the bilinear transforms

(i.e. WVD). It is possible to detect localised gear faults under stationary and non-

stationary operating conditions with the proposed instantaneous power spectrum.

1.2.1.9 Wavelet analysis

Wavelet basis functions are short non-zero oscillations in the time domain that are

stretched (known as dilation) and translated. The wavelet transform is a time-scale

distribution obtained by convolving the stretched and translated wavelet functions

with the vibration signal of interest (Addison, 2002). The time-scale distribution is well

suited for non-stationary signal analysis, denoising and singularity detection (Peng and

Chu, 2004). Some of the popular basis functions for fault detection in rotary machines

are presented in figure 1.1.
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Figure 1.1: Some wavelet basis functions, where the scaling and wavelet function is the

low-pass and high-pass filter, respectively.
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Three different variations of the wavelet transform are discussed in this section, namely

the continuous wavelet transform (CWT), the discrete wavelet transform (DWT) and

the wavelet packet transform (WPT). The CWT makes no a priori assumption about

the resolution of the scales, which are inversely proportional to frequency, as opposed

to the DWT and the WPT. The continuous wavelet coefficients, denoted by W , are

obtained from the CWT, calculated from,

W (a1, a2) =
1
√
a1

∫ ∞
−∞

x(t)ψ∗
(
t− a2
a1

)
dt (1.1)

where a1 and a2 represent the dilation (or scale) and translation parameters, respect-

ively. The complex conjugate of the mother wavelet basis function and the investigated

signal are denoted by ψ∗ and x(t), respectively.

Staszewski and Tomlinson (1994) used the CWT for detecting gear damage, since

the damage presents itself as non-stationary, abrupt occurrences within the vibration

signal. It is difficult to detect small abrupt changes within the resulting wavelet distri-

bution by visual inspection and therefore a similarity analysis with the Mahalanobis

distance was conducted which enabled fault detection and severity estimation.

Wang and McFadden (1996) found that the CWT is capable of detecting different

gearbox faults simultaneously as opposed to the STFT due to STFT’s limited time-

frequency resolution. Lin and Qu (2000) used wavelet denoising to identify impulses

caused by local bearing and gear damage within noisy vibration signals. Dalpiaz et al.

(2000) detected localised gear faults with the CWT. Miao and Makis (2007) extracted

the wavelet modulus maxima as features, since it is sensitive to singularities generated

by damage on a gear. Wang et al. (2010) investigated incipient fault detection of gear-

boxes under varying loads. The authors proposed a fault growth parameter, operating

on the amplitude of the CWT, which is sensitive to incipient faults and insensitive to

varying loads.

The performance of the wavelet transform depends on the correlation between the

wavelet basis function and the characteristic of interest such as impulses due to faults

etc. and should therefore be selected carefully (Wang and McFadden, 1996). Rafiee

et al. (2010) investigated the optimal wavelet basis functions for gear and bearing fault

detection with the CWT. The central moment of the wavelet coefficients performs the

best for fault detection purposes and the Daubechies db44 is the most similar to bearing

and gear vibration signals from the 324 wavelet basis functions that are investigated.

However, the Haar wavelet basis function performed the best on bearing and gear

fault classification, while the Daubechies db44 performed the worst on the investigated

signals. Jedliński and Jonak (2015) investigated the CWT for early fault detection

of gearboxes utilising various wavelet basis functions. The Haar and the Meyer basis
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functions obtained the best fault classification accuracy, while the Daubechies db4 basis

function performed the worst in the investigation by Jedliński and Jonak (2015).

The DWT uses a Dyadic discretization scheme for the scaling and translation para-

meters (Addison, 2002, Lin and Qu, 2000). A signal is decomposed into approximation

(low-pass filtered signal) and detail (high-pass filtered signal) coefficients by using two

quadrature mirror filters. The low-pass and the high-pass filters are known as the

scaling and wavelet functions, with their impulse responses given in figure 1.1. The

orthogonal filters ensure that no redundant information (i.e. only unique information)

is contained within the coefficients and that the DWT can be efficiently implemented.

In the next step of the DWT, only the approximation coefficients are decomposed into

another set of detail and approximation coefficients, which increases the resolution as-

sociated with the coefficients containing low frequency information. Each set of detail

and approximation coefficients are associated with a specific band in the spectrum of

the signal. Sung et al. (2000) investigated the use of the DWT and STFT for localised

gearbox fault detection, where the DWT had superior fault localisation capabilities as

opposed to the STFT on the investigated data. The DWT has also been successful in

internal combustion fault detection (Wu and Liu, 2008) and detecting bearing faults

(Purushotham et al., 2005).

The WPT is very similar to the DWT, except that a finer frequency resolution is alloc-

ated to the higher frequencies by filtering the detail coefficients as well (Addison, 2002,

Theodoridis and Koutroumbas, 2009). This is more appropriate than the DWT for

cases where the wavelet coefficients need to be sensitive to changes in high-frequency

content (Theodoridis and Koutroumbas, 2009). The WPT has been successful in de-

tecting localised (Shao et al., 2014, Wan et al., 2016), distributed gear faults (Shao

et al., 2014), internal combustion engine faults (Wu and Liu, 2009) and gear, bearing

and shaft faults (Yen et al., 2000). See Addison (2002) for more details on wavelet

analysis.

1.2.2 Machine learning-based fault detection

The machine learning field emerged from computer science and aims to develop models

which recognise the underlying patterns within data and then uses this knowledge to

make intelligent predictions. Features are extracted from the measured data to separate

the characteristics of interest from the irrelevant characteristics. The models, optimised

on the extracted features located in high-dimensional spaces, are prone to problems

(i.e. performance, memory etc.) due to the curse of dimensionality (Bishop, 2006).

The features may contain redundant information which results in more hardware and
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software requirements (i.e. data storage, processing capabilities, computational time

etc.). The problems associated with large dimensional feature spaces are circumvented

with feature selection and dimensionality reduction techniques. The optimised model

is subsequently used to make predictions from features extracted from the new data.

1.2.2.1 Feature extraction

The measured data contain characteristics pertaining to the operating conditions, the

effects of damage and other phenomena that may not be of interest to the fault de-

tection process. It is important to extract features that capture the characteristics of

interest so that the optimised model is only sensitive to changes in those characteristics.

Common features for fault detection is obtained from time domain statistics like RMS

(Zimroz et al., 2014), spectral analysis (Gryllias and Antoniadis, 2012, Yiakopoulos

et al., 2011), short-time analysis techniques (Bartelmus and Zimroz, 2009a, Zimroz

and Bartkowiak, 2013), processing the wavelet transform coefficients (Qi et al., 2015,

Wan et al., 2016) and the intrinsic mode functions (IMF) obtained from the empirical

mode decomposition (EMD) or the ensemble EMD (EEMD) (Yang and Wu, 2015).

Operating condition information such as the power generated by wind turbines (Zimroz

et al., 2014), the envelope of the vibration signal (Bartelmus and Zimroz, 2009b), the

rotational speed of a gearbox shaft (Bartelmus and Zimroz, 2009a, Heyns, Heyns and

De Villiers, 2012) and smart feature selection techniques (Vinson, 2014) have been

incorporated into the fault detection process to make it more robust in fluctuating

operating conditions.

Linear scaling methods such as standardisation ensure that the features are of the same

order of magnitude and can be applied to data to alleviate potential model optimisation

problems (Bishop, 1995). Feature selection approaches to reduce the dimensionality of

the feature space by discarding features that do not improve the performance of the

model. This is done by selecting features that enhance the separation between the

classes (or machine conditions in the feature space) and by removing features which

contain redundant information. Class separability measures such as divergence, scatter

matrices and feature correlation measures are used as criteria for selecting or discarding

features in supervised learning problems (Theodoridis and Koutroumbas, 2009). It is

only possible to select features based on class separability measures if historical fault

data is available. In the next section, data-driven dimensionality reduction techniques

are investigated.

Page 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1.2.2.2 Dimensionality reduction techniques

Dimensionality reduction techniques transform the current feature space to a lower

dimensional feature space by retaining most of the information content of the signal

with respect to some criterion. The intrinsic dimension of the feature space can be

significantly lower than the apparent or raw dimension of the features. This has a

significant impact on the optimisation of the models used to describe the feature space

(Bishop, 1995). Principal component analysis is a popular dimensionality reduction

technique which transforms the features to its principal axes so that each dimension is

independent. This allows the removal of features that are highly correlated with little

loss in information content (Bishop, 2006).

Van Der Maaten et al. (2009) completed an extensive study on dimensionality reduc-

tion techniques on artificial as well as natural datasets. The non-linear dimensionality

reduction techniques such as the auto-encoder and the local tangent space analysis

performed well on highly non-linear artificial datasets distributed along complex man-

ifolds. In contrast, natural datasets rarely have these highly non-linear manifolds and

principal component analysis (PCA), a linear reduction procedure, outperforms all the

non-linear dimensionality reduction methods on the natural datasets.

Zimroz and Bartkowiak (2013) investigated multivariate statistics for gearbox dia-

gnostics under non-stationary operating conditions. PCA and conical discriminant

analysis are investigated on a bucket wheel excavator operating under non-stationary

conditions. The amplitudes of the gear mesh components are used as machine con-

dition features which resulted in a fifteen dimensional feature space with an intrinsic

dimensionality of two. The healthy and damaged gearbox are linearly separated in the

two dimensional principal component feature space.

Shao et al. (2014) investigated PCA and kernel-based PCA as dimensionality reduc-

tion procedures for WPT machine condition features to detect different gear faults

in constant operating conditions. The new dimension is chosen so that the retained

features consist of 95% of the original information content. The PCA does not have

linear separation in the feature space between the different machine conditions, but

kernel-based PCA does at the cost of selecting an optimal parameter.

Wan et al. (2016) performed an investigation on different dimensionality reduction

techniques (PCA, kernel-based PCA, Isomap, local linear embedding and Laplacian ei-

genmaps) on gear crack sensitive wavelet features, using the Daubechies db44 mother

wavelet, with different statistical models. PCA, a linear dimensionality reduction tech-

nique, does not require any hyperparameter optimisation, while an exhaustive grid

search is completed to obtain the optimal hyperparameters for the non-linear dimen-
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sionality reduction techniques. Statistical models such as the Naive-Bayes classifier,

linear and quadratic discriminant have the highest classification accuracy on the data

transformed with PCA as opposed to the non-linear methods.

If all of the historical fault data of all of the possible machine conditions are available,

then the parameters of the non-linear methods can be optimised to perform well on the

fault detection task. For novelty detection problems, where only data of one condition

is available, an optimal parameter for all possible conditions cannot be selected.

1.2.2.3 Machine learning methods

Machine learning methods are used in diagnostics to obtain a model that describes the

relationship between the extracted features and the condition of the machine etc. The

machine learning model is optimised in the training phase, tested with labelled data

not used during training in the validation phase and tested with new (unlabelled) data

(Theodoridis and Koutroumbas, 2009).

Three model training or optimisation philosophies are usually used namely, supervised,

unsupervised and novelty detection (Theodoridis and Koutroumbas, 2009). Supervised

learning makes the assumption that correctly labelled historical fault data of all the

possible conditions, that need to be classified, are available. This is an ineffective

method for practical diagnostic strategies, since it is expensive to acquire historical

fault data, especially for new machines. Unsupervised learning does not label any

of the data and hence it identifies clusters of data that have similar characteristics.

The labels are assigned manually by an expert if they are required. Finally, novelty

detection approaches only require labelled data of one class (or condition) and the

objective of the model is to identify whether new data is part of the labelled dataset

or not (Theodoridis and Koutroumbas, 2009).

Pimentel et al. (2014) performs a review of novelty detection approaches for vari-

ous applications and the following categories are identified: probabilistic-, distance-,

domain-, reconstruction- and information-based approaches. Some of these categories

are discussed in the subsequent sections.

Reconstruction-based approaches

Reconstruction-based approaches map the multidimensional feature space to an output

space which can be a set of class labels (classification problem) or an output function

(regression problem). Artificial neural networks (ANN) and radial-basis functions are

some examples of reconstruction-based approaches.
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An ANN is a mathematical model inspired by biological neural networks. The most

common implementation form is a feed-forward neural network that is optimised by

minimising the least squares error function (Bishop, 1995, 2006). An ANN can even be

used to fit likelihood functions if it is viewed from a probabilistic perspective (Bishop,

2006). ANNs are successfully implemented for internal combustion engine diagnostics

(Wu and Liu, 2008, 2009) and for bearing diagnostics (Samanta et al., 2003, Unal

et al., 2014). Unal et al. (2014) optimised the ANN with genetic algorithms (a global

optimisation algorithm), due to the non-convex optimisation space being prone to the

existence of many local minima. The ANN is able to accurately predict the condition

of the bearings from the features extracted from the result of envelope analysis.

Yang and Wu (2015) proposed a gear diagnostics procedure involving features ex-

tracted from the IMFs obtained from the EEMD and performing the Hilbert-Huang

transform. The dimensionality of the extracted features is reduced by utilising PCA

and subsequently optimising a neural network on the lower dimensional features.

Qi et al. (2015) compared the abilities of the ANN and radial-basis function to classify

misalignment faults using WPT features, and even though the features are non-linearly

separated, both obtained satisfactory results.

Heyns, Heyns and Zimroz (2012) investigated the use of residual and discrepancy ana-

lysis for gearbox fault detection under non-stationary operating conditions. A residual

signal is generated from autoregressive modelling and an ANN, respectively. A dis-

crepancy signal, which represents the deviation in the expected response of a healthy

system, is generated from the envelope of the residual signal and is treated further

in section 1.2.2.3. It was found that the autoregressive model is incapable of detect-

ing faults in non-stationary operating conditions, while the ANN is able to detect the

presence of localised faults.

Even though the neural network approaches provide sufficient flexibility to fit arbitrary

functions, neural networks have some drawbacks (Bishop, 1995):

• ANNs are computationally expensive to optimise and can easily be trapped in

local minima by utilising gradient-based optimisation approaches.

• The flexibility of the ANNs can easily result in overfitting.

• Multi-modal target functions lead to suboptimal results if the least squares error

function is used. Bishop (2006) proposed using mixture density networks instead

for modelling multi-modal target functions.
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Domain-based approaches

Domain-based approaches aim to model the boundary separating the classes (or condi-

tions) and then classify new data according to its position with respect to the bound-

aries. Support vector machines (SVM) are the most popular example of domain-based

approaches. Classes that are non-linearly separated in the original feature space, are

transformed with kernel functions into a high-dimensional feature space where the

classes are linearly separated. The kernel function and its parameters influence the

performance of the SVM (Bishop, 2006). Unlike the ANN, the SVM cost function is

convex.

Samanta et al. (2003) compared the capabilities of ANNs and SVMs for bearing dia-

gnostics utilising time domain features such as RMS and central moments. The SVM

outperformed the ANN in terms of classification results.

Jedliński and Jonak (2015) investigated the use of ANN and SVM for gearbox fault

detection with CWT coefficients. The ANN and SVM trained on the CWT features

outperformed the ANN and SVM trained on raw data, while the SVM outperformed

the ANN in each case.

Gryllias and Antoniadis (2012) noted that fault specific data is scarce and expensive to

acquire for industrial environments. A physics-based bearing diagnostic methodology

is developed where the measured data is tested on a model trained on simulated data.

A bearing model is used to generate the simulated bearing fault data. A two-stage

SVM approach is used, where the first stage determines whether a fault is present or

not and the second stage determines the characteristic of the fault. This performed

well on experimental as well as industrial data.

Fernández-Francos et al. (2013) investigated SVMs for bearing diagnostics with only

healthy data available (i.e. novelty detection). A one-class SVM is applied to features

extracted from the envelope spectrum of the vibration data during a bearing fatigue

test. It is possible to detect a novelty (or a deterioration in machine condition) early

with this approach.

Probabilistic approaches

Probabilistic approaches aim to create a parametric (a Gaussian distribution etc.) or

non-parametric (kernel density estimators etc.) model of the density that generated

the data. The flexibility of the parametric approaches is limited to the choice of the

model, while the non-parametric methods can provide arbitrary flexibility. However, a
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non-parametric approach requires the training data to be stored, it can be expensive to

evaluate the function, it requires extensive hyperparameter optimisation and it scales

poorly with an increase in feature space dimensionality in many cases (Bishop, 2006).

Parametric distributions are investigated in this study. A Gaussian distribution,

p(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.2)

is motivated from the central limit theorem and its convenient mathematical properties,

but it is limited to data with uni-modal distributions (Bishop, 2006). Features which

exhibit multi-modal behaviour are poorly modelled with a Gaussian distribution. The

mean µ and the covariance Σ of the data X, with dimensionality D, control the

form of the distribution. A single observation of the dataset X is denoted by x. A

mixture of weighted Gaussian distributions provide sufficient flexibility to model data

with multi-modal densities. Gaussian mixture models (GMM) have the capability to

model any distribution to arbitrary accuracy if a sufficient number of Gaussian mixture

components are used (Bishop, 2006).

Both the aforementioned distributions make the assumption that the data are identic-

ally and independently distributed (i.i.d) which ignores sequential patterns within the

data when optimising and evaluating the model. In the speech recognition field strong

sequential patterns exist within the data and Hidden Markov models (HMM) are reg-

ularly used to model the features extracted from audio signals (Bishop, 2006, Gales

and Young, 2008, Rabiner, 1989). A stochastic process follows a Markov process if the

current state only depends on a finite number of previous states. The only evidence

of the unobserved Markov process between the discrete hidden states in a HMM is the

noisy observations (or features). The graphical model in figure 1.2 represents a HMM

over three time steps.

zt−1

xt−1

p(xt−1|zt−1)

zt
p(zt|zt−1)

xt

p(xt|zt)

zt+1

p(zt+1|zt)

xt+1

p(xt+1|zt+1)

Figure 1.2: A graphical model of a HMM with the observed data and latent states

denoted by x and z respectively. The circles indicate a random variable, with a high-

lighted circle indicating that the outcome of the variable is observed.

The latent variable zt denotes which hidden state generated the observed data or

features xt at time increment t. The observation density for a specific hidden state can
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be a Gaussian distribution, a GMM etc. The likelihood function of a HMM does not

only take the coordinates of the features in the feature space into account, but also

the transition between the hidden states. Hence, the HMM is more powerful than the

GMM and the Gaussian distribution in the case of multi-modal data with sequential

characteristics.

In the case of novelty detection, the likelihood function of only one condition is available

and therefore it is impossible to use Bayes’ theorem to evaluate the posterior probability

of the condition or class. Bishop (1994) proposed a procedure for utilising neural

networks for novelty detection procedures. The ANN models the likelihood of the

known class, and then the probability density function of the novelty class is chosen

broad or uninformative. This information is used with Bayes theorem to determine

whether the new data are a novelty or not.

Marwala et al. (2006) investigated HMMs and GMMs for bearing fault diagnosis. The

time domain data are divided into small segments and then a box counting multi-scale

fractal dimension technique is applied from which a GMM and a HMM is trained

separately. Principal component analysis (PCA) is applied to the extracted features.

The HMM performs better than the GMM on the investigated data, but the GMM

requires less computational resources during the optimisation and evaluation phase.

Ocak and Loparo (2005) proposed a two-stage HMM bearing diagnostic methodology.

Quasi-stationary windows are extracted from an amplitude demodulated vibration sig-

nal in the first stage. The linear prediction coefficients are extracted from the afore-

mentioned signal. The linear prediction coefficients of a healthy gearbox are modelled

with a HMM and then new data are classified as healthy or damaged according to its

likelihood and a predetermined threshold. Wavelet packet coefficients are extracted in

the second stage and modelled with a separate HMM for each fault case using super-

vised learning. If the bearing is damaged according to the first stage, the second stage

determines which damage mode is present.

Purushotham et al. (2005) investigated a discrete observation HMM optimised on mel-

frequency cepstral coefficients for bearing diagnostics. The features are extracted from

the windowed time domain data and used to train a HMM for each bearing condition.

Miao and Makis (2007) proposed a two-stage fault detection process for gear dia-

gnostics. The first stage aims to determine whether the gearbox is damaged or not

and the second stage aims to determine the characteristic of the fault (i.e. cracked

gear tooth etc.). The likelihood of the parameters of the HMM can be compared to

a threshold which determines whether the gearbox is healthy or not. In the second

stage, the condition of the gearbox is inferred by selecting the condition which has the
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highest likelihood when evaluating its HMM. A parameter re-estimation procedure is

proposed to update the parameters of the HMM as the gearbox deteriorates.

Timusk et al. (2008) investigated gearbox diagnostics in the presence of fluctuating

operating conditions with different features and novelty detection algorithms. Timusk

et al. (2008) combined many classifiers for decision making which performed better

than using each classifier separately.

Heyns, Godsill, De Villiers and Heyns (2012) investigated an adaptive autoregressive

model to generate a residual signal for gear fault detection which is robust to fluctu-

ating operating conditions. An autoregressive model is implemented for an operating

condition state and the final prediction of the vibration signal is a weighted average

of all of the autoregressive models. The weights are determined by using Bayesian

statistics where the weights reflect the suitability of a specific autoregressive model to

predict the signal value given the current operating condition. Fault localisation and

trending are possible with numerical and experimental data.

Figueiredo et al. (2014) used a GMM to model the data acquired from a healthy bridge

during different weather conditions. The minimum Mahalanobis distance is trended

over time, where a sequence of outliers indicates that damage is present in the bridge

in the presence of various weather conditions.

The aim of discrepancy analysis is to detect a deviation in the expected behaviour

of a dataset according to an optimised machine condition model. The deviation is

attributed to a change in machine condition and by investigating the characteristics

of the discrepancy signal, the characteristic of a fault is inferred. The advantage of

discrepancy analysis is that only data of a gearbox in a healthy condition is required

to detect faults. Heyns, Heyns and Zimroz (2012) used an ANN for modelling the

vibration signal of a healthy gearbox. The discrepancy signal is generated from the

envelope of the error between the signal and the prediction of the ANN. Localised

faults are successfully detected by this approach.

Heyns, Heyns and De Villiers (2012) investigated the use of discrepancy analysis for

gearbox fault detection in fluctuating operating conditions. The authors implemented

a windowing scheme on an order tracked vibration signal to extract signal segments

which are used with operating features (the average speed) to train GMMs. A discrep-

ancy signal is generated from the data in the form of a negative log-likelihood (NLL)

signal. The authors incorporated operating condition information into the fault de-

tection process to increase the robustness of the discrepancy signal in non-stationary

operating conditions. The discrepancy signal, generated by only using the windowed

segments, is able to locate the faults and distinguish between different fault severities.
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Vinson (2014) proposed a gear fault diagnostic methodology using smart features and

machine learning technology. A HMM is optimised on operating condition sensitive

features from which a GMM is trained on machine condition features for each hid-

den state of the HMM. Hence for a specific window in time, the operating condition

state is classified first and then the appropriate GMM is selected to generate a discrep-

ancy measure. The purpose of this is to make the discrepancy signal more robust to

fluctuating operating conditions.

1.3 Scope of the research

Rotary machine diagnostics in the presence of fluctuating operating conditions remain

an important and challenging task. Bartelmus and Zimroz (2009a,b) and Zimroz et al.

(2014) developed fault detection methodologies for large machines, such as bucket wheel

excavators as well as wind turbines, in the presence of fluctuating operating conditions.

Even though the developed approaches perform well with the fault detection task and

are simple to implement, it is difficult to ascertain the location and the nature of the

damage (i.e. localised gear fault etc.). This information is invaluable for asset integrity

management since the remaining useful life of the machine depends on the component

that is damaged and the nature of the damage. Ultimately, this information provides

support for maintenance decision-making tasks such as planning downtime, component

procurement etc.

The outcomes of this study is to develop a fault diagnostic methodology that,

• Is able to detect, locate and trend (i.e. detecting progressing damage) localised

gear faults from vibration data measured in fluctuating operating conditions.

• Is cost-effective by not relying on equipment which increases the cost and restricts

its applicability (i.e. tachometers and shaft encoders).

• Only depends on data that are measured during normal operation. Historical

fault data are expensive to acquire, especially for new machines.

• Does not require experts to interpret the results.

Vibration transducers such as accelerometers are widely available, easily mounted on

rotary machines such as gearboxes and the measured vibration signal is rich with dia-

gnostic information. This motivates extracting diagnostic information from a vibration

signal, measured from an accelerometer.

Vibration signals measured from rotary machines such as gearboxes are inherently
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angle-cyclostationary which motivates processing the signals in the angle domain (Ant-

oni et al., 2004). However, converting from the time to the angle domain requires know-

ledge about the instantaneous phase of a reference shaft over time, which is usually

obtained from a tachometer signal. Single pulse per revolution signals (from a shaft

key and proximity probe) do not have sufficient resolution to measure large angular

acceleration. In contrast, shaft encoders provide sufficient resolution for measuring

large angular accelerations. However, digital shaft encoders are not easy to install and

are not durable in harsh conditions. Zebra tape shaft encoders are relatively easy to

install in most cases and its geometrical errors can be compensated for, but its perform-

ance may deteriorate in harsh conditions. The shaft encoders require large sampling

frequencies as well (Fyfe and Munck, 1997), which results in more hardware and stor-

age requirements. This motivates using tacholess order tracking methods to obtain a

cost-effective fault diagnostic methodology.

A computationally efficient tacholess order tracking method is proposed in this study

which is robust to noise and other unimportant frequency components. This procedure

is based on the methods by Urbanek et al. (2013), Zhao et al. (2013) and Vinson

(2014). The maxima tracking process is used to isolate an instantaneous frequency

of interest and is vital to the success of the tacholess order tracking method. The

maxima tracking process, that is used by Urbanek et al. (2013) and Vinson (2014), is

improved by using a probabilistic approach to incorporate acceleration information in

the process. This increases the robustness of the tacholess order tracking method in

the presence of noise and large angular accelerations. The two generations of the Vold-

Kalman filter are investigated and compared in this study as well. In the final results,

the second generation Vold-Kalman filter is used, since it seems slightly more robust

and also less prone to errors according to Blough (2003) and Pan and Lin (2006). The

first generation Vold-Kalman filter was investigated by Zhao et al. (2013) and Vinson

(2014). The proposed tacholess order tracking method is validated on seven datasets.

The results from the proposed maxima tracking method is compared to the maxima

tracking method proposed by Urbanek et al. (2013).

Bartelmus and Zimroz (2009a,b), Chaari et al. (2012) and Zimroz et al. (2014) have

emphasised that operating condition information must be incorporated into the fault

detection process to ensure that the cause of changes within the machine condition

features can be ascribed to a change in machine condition with confidence. How-

ever, Timusk et al. (2008) and Heyns, Heyns and De Villiers (2012) do not find an

improvement in their results by incorporating operating condition information in the

fault detection process. Timusk et al. (2008) attributes this to similarities between the

investigated operating condition modes. Stander and Heyns (2005) proves that syn-

chronous averaging attenuates the amplitude modulation generated from non-cyclic
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stationary loads. Heyns, Heyns and De Villiers (2012) performs synchronous averaging

on the discrepancy signal generated in non-cyclic stationary load conditions, which may

explain why the operation condition information did not improve the robustness of the

fault diagnostic methodology. Vinson (2014) is able to detect faults in the synchronous

average of the discrepancy signal, with only a correct operating condition classification

of 53%. It is concluded from this that the synchronous averaging process makes the

fault diagnostic methodology more robust to fluctuating operating conditions. How-

ever, operating condition information needs to be incorporated into the fault diagnostic

methodology, since:

• Operating condition information helps to determine how the machine condition

information or features are expected to react under those operating conditions.

It is expected that this becomes more important when machines like draglines,

which have large varying operating states, are monitored.

• The operating condition information helps to determine whether predictions can

be made from the current operating condition so that erroneous machine condi-

tion predictions are avoided.

In this study, a fault diagnostic methodology is investigated by using machine learning

techniques. The data are modelled so that the expected response of the system in a

specific machine condition can be determined. Incorporating prior knowledge (i.e. fault

historic data) to diagnose a machine condition arises naturally in machine learning mod-

els, which the classical methods such as residual, time-frequency, cyclostationary etc.

analysis cannot provide. Hence, it is possible to obtain a robust fault diagnostic meth-

odology by using expert knowledge, advanced processing techniques, large amounts of

data and machine learning models to infer the condition of the machine.

A novelty detection approach is considered in this study, since it does not constrain

the fault diagnostic methodology to only detect specific faults which are available in

the historical fault data. The physics of the system do not have to be modelled with

novelty detection approaches, which makes a novelty detection approach simpler to

implement than physics-based approaches.

Machine condition features, which are sensitive to machine condition changes within

the system, are extracted from the vibration signal. However, the machine condition

features can be sensitive to operating condition changes as well. This necessitates

incorporating operating condition information into the fault diagnostic methodology.

Since the operating conditions cannot be measured, it is extracted from representative

operating condition features. The operating condition features are modelled with a

HMM and the operating condition state is predicted from the aforementioned HMM
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on new data. The machine condition features, extracted at the same time step as the

operating condition features, receive the same operating condition state or label as the

respective operating condition features. The machine condition features labelled with a

specific operating condition state are modelled with a HMM machine condition model.

If the operating condition classification process is correct, the output of the machine

condition model is approximately operating condition independent. This emphasises

that the operating condition features must be insensitive to machine condition changes

to ensure that the operating condition classification is correct.

A probabilistic approach is used to combine the information from the different ma-

chine condition models and the operating condition model to generate a discrepancy

signal. The discrepancy signal is post-processed with a synchronous averaging process,

similarly to Heyns, Heyns and De Villiers (2012) and Vinson (2014), but additional

post-processing techniques are proposed in this study:

• A second averaging process is proposed between measurements which renders a

more robust diagnostic indicator.

• The condition of the machine and the location of the fault is inferred by using

statistical theory to generate an alarm threshold.

• A gear-pinion discrepancy distribution is proposed to evaluate the condition of a

two shaft gearbox.

• A healthy-damaged decomposition of the discrepancy signal is proposed for easy

fault trending.

The fault diagnostic methodology is validated on data from a numerical gearbox model

and data from experiments conducted in a laboratory.

1.4 Layout of document

The experimental setup and the numerical gearbox model, used to generate data in

this study, are presented and all of their characteristics are discussed in chapter 2.

The investigated operating conditions and damage modes, with the resulting vibration

signals, are presented in the chapter as well.

In chapter 3, the proposed tacholess order tracking method is introduced and investig-

ated on the vibration data presented in chapter 2 as well as additional datasets. The

proposed maxima tracking algorithm is critically compared to the benchmark maxima

tracking algorithm, proposed by Urbanek et al. (2013).
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In chapter 4, the fault diagnostic methodology is introduced and discussed in detail.

Chapter 4 starts with an overview of the fault diagnostic methodology whereafter each

aspect is discussed in detail and motivated if necessary. The experimental data in

chapter 2 is used to illustrate many of the concepts introduced in chapter 4.

The proposed fault diagnostic methodology, introduced in chapter 4, and the tacholess

order tracking method, introduced in chapter 3, are used to obtain a cost-effective

diagnostic methodology. The ability of the fault diagnostic methodology to perform

fault detection, localisation and fault trending is evaluated in chapter 5 on the numerical

and experimental datasets introduced in chapter 2.

The work is concluded in chapter 6 and recommendations are made for future work

in this field of study. Two appendices are included at the end of this dissertation.

Some auxiliary information are provided in chapter A for the experimental setup and

some auxiliary results, which support the statements in the dissertation, are included

in chapter B.
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Chapter 2 Gearbox vibration data

The performance of a diagnostic methodology needs to be tested on data generated in

an environment where the condition of the system is known and the required equipment

are available. Numerical and experimental data are used in this study to evaluate the

abilities of the proposed diagnostic methodology to detect, locate and trend damage

on the gear by only using vibration data.

A numerical gearbox model is simple and feasible to construct, computationally feas-

ible to solve and is created in a controlled environment. The aforementioned properties

make the numerical gearbox model ideal to use in the early stages of developing a dia-

gnostic methodology. There is no uncertainty pertaining to the instantaneous operating

conditions, machine condition (i.e. the degree of damage) and the properties of the

system (resonances etc.). The similarities of the numerical gearbox model and an ac-

tual gearbox depend on the modelling assumptions. The gearbox model, presented

in section 2.1, is only used to test the feasibility of the diagnostic methodology and

therefore many simplifications such as the gear mesh stiffness, damage progression etc.

are permissible. The characteristics of the model such as the gearbox type, the dimen-

sions, operating conditions etc. differ from the experiments, because it is only used as

another source of data.

The experimental setup and the measured data are presented in section 2.2. Two

accelerated life tests are performed experimentally in this study, with the focus placed

on gear failure due to localised faults. The experimental data provides insight on the

performance of the diagnostic methodology on data from a real machine.

2.1 Numerical gearbox model

The vibration data from a numerical gearbox is generated from an eight degree of

freedom lumped mass gearbox model used by Chaari et al. (2008, 2012). The model of

the gearbox in figure 2.1 contains a pinion and a gear that are connected through shafts
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to an electric motor and an external load or machine, respectively. The original articles

Figure 2.1: Eight degree of freedom lumped mass gearbox model (Chaari et al., 2012).

by Chaari et al. (2008, 2012) contains printing errors within the equations describing

the gearbox model. The printing errors are corrected in this study.

The vibration data from the model in figure 2.1 is obtained from solving the equation

of motion,

MŸ (t) +CẎ (t) +K(t)Y (t) = F (t) (2.1)

describing the dynamic response of the discrete system for the applied external loads

F . The mass, damping and stiffness characteristics of the system are described by the

matrices denoted byM , C andK(t), respectively. The stiffness matrix is a function of

time due to the varying gear mesh stiffness discussed later in the text. The displacement

degree of freedom of the system is,

Y (t) = {x1, y1, θ11, θ12 x2, y2, θ22, θ21} (2.2)

where xi, yi and θ are the horizontal, vertical and angular displacements of the different

blocks indicated in figure 2.1. The last two columns in equation (2.2) are interchanged

from the original article to make the subsequent corrections easier. The characteristics

of the spur gearbox with the notation in table 2.1 are the same values used by Chaari

et al. (2012). The mass matrix associated with the gearbox system only contains
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Table 2.1: Characteristics of the gearbox in the model, where i is p or g which denotes

whether the characteristic applies to the pinion or the gear.

Characteristic Symbol Pinion (p) Gear (g) Unit

Number of teeth Ni 20 40 −
Base circle radius rb i 28.19 56.38 mm

Pressure angle α 20o degrees

Contact ratio cCR 1.6 −

non-zero terms on the diagonal, where the diagonal elements are given by,

diag(M ) =
[
m1 m1 I11 I12 m2 m2 I22 I21

]
(2.3)

with each component described in table 2.2. The mass of block 1 (m1) and block 2

(m2) refer to the mass of the pinion-bearing and gear-bearing blocks, respectively.

Table 2.2: Mass characteristics of the gearbox model

Characteristic Symbol Value Unit

Mass of block 1 m1 1.8 kg

Mass of block 2 m2 2.5 kg

Moment of inertia of the motor I11 0.0043 kg.m2

Moment of inertia of the pinion I12 2.7× 10−4 kg.m2

Moment of inertia of the machine I22 0.0045 kg.m2

Moment of inertia of the gear I21 0.0027 kg.m2

Mass of the pinion mp 0.6 kg

Mass of the gear mg 1.5 kg

The bearings, the shafts and the gear teeth in contact during meshing are modelled as

springs. The stiffness matrix of the system, denoted byK(t), describes the relationship

between the displacements and the forces applied to the different degrees of freedom

of the system. The stiffness matrix contains a static and a dynamic contribution,

K(t) = Ks +Kt(t) (2.4)

where the static and the dynamic contribution are denoted by Ks and Kt(t) respect-

ively. The static contribution describes the time-invariant stiffness characteristics the
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system, like the bearings and the shafts, and is given by,

Ks =



kx1 0 0 0 0 0 0 0

0 ky1 0 0 0 0 0 0

0 0 kθ1 −kθ1 0 0 0 0

0 0 −kθ1 kθ1 0 0 0 0

0 0 0 0 kx2 0 0 0

0 0 0 0 0 ky2 0 0

0 0 0 0 0 0 kθ2 −kθ2
0 0 0 0 0 0 −kθ2 kθ2


(2.5)

where the components of the static stiffness matrix are given in table 2.3. Equation

(2.5) is corrected from the article which contains a negative definite stiffness matrix.

The dynamic contribution is attributed to the periodical varying gear mesh stiffness

Table 2.3: Stiffness characteristics of the gearbox model (Chaari et al., 2012)

Characteristic Symbol Value Units

Bearing translational stiffness kxi, kyi for i = 1, 2 108 N/m

Torsional stiffness of shafts kθi for i = 1, 2 105 N×m/rad

Gear-mesh stiffness

- Maximum max(kgm(t)) 2.1× 108 N.m

- Minimum min(kgm(t)) 0.81× 108 N.m

- Mean k̄gm 1.65× 108 N.m

as the teeth move in and out of mesh. The contact ratio in table 2.1 indicates that

for 60% of the meshing cycle two teeth are in contact, while only one tooth is in

contact during the remaining 40% of the cycle. The kinematic relationship between

the different degrees of freedom in equation (2.2), due to the meshing of the teeth, is

derived by considering the line of action,

δ(t) = (x1 − x2) sin(α) + (y1 − y2) cos(α) + θ12rb12 + θ21rb21 (2.6)

where α, xi, yi and θi denotes the pressure angle and the displacement in the horizontal,

vertical and angular directions, respectively. The displacement parallel to the contact

force (or line of action) is denoted by δ(t) and is decomposed into translational and

angular displacements. This is used to obtain the stiffness contribution of the dynamic

component, due to varying gear mesh stiffness, to the total stiffness matrix. The

dynamic component of the stiffness matrix is decomposed into two parts,

Kt(t) = kgm(t)S (2.7)
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where kgm(t) is the gear mesh stiffness at time t and S is a non-dimensional, time-

invariant matrix in the form of,

S =



s3 s5 0 s7 −s3 −s5 0 s9

s5 s4 0 s6 −s5 −s4 0 s8

0 0 0 0 0 0 0 0

s7 s6 0 s10 −s7 −s6 0 s12

−s3 −s5 0 −s7 s3 s5 0 −s9
−s5 −s4 0 −s6 s5 s4 0 −s8

0 0 0 0 0 0 0 0

s9 s8 0 s12 −s9 −s8 0 s11


(2.8)

which couples the force degrees of freedom to the displacement degrees of freedom due

to meshing. The components of equation (2.8) are given in table 2.4. The pressure

Table 2.4: Coefficients of matrix S in equation (2.8) which is associated with the

dynamic component of the total stiffness of the gearbox model.

s1 sin(α) s2 cos(α) s3 sin(α)2 s4 cos(α)2

s5 sin(α) cos(α) s6 rb12 cos(α) s7 rb12 sin(α) s8 rb21 cos(α)

s9 rb21 sin(α) s10 r2b12 s11 r2b21 s12 rb12rb21

angle of the two meshing gears are denoted by α, the radius of the base circle for

the gear and the pinion are denoted by rb21 and rb12 respectively. The values of these

characteristics are given in table 2.1. Even though equation (2.8) is in essence the same

as the original articles, it is different due to the new degrees of freedom in equation

(2.2). It was found that some of the components are incorrect in the original article

after deriving equation (2.8) and these mistakes are corrected in this study.

The gear mesh stiffness variations of a spur gear with damage are investigated by Chaari

et al. (2008, 2009). Chaari et al. (2009) modelled the gear mesh stiffness fluctuations

during meshing for an undamaged (healthy) gear and for damaged gears over time.

Good agreement is found between the analytical and the finite element approaches to

model tooth crack damage. The gear mesh stiffness has a similar shape in comparison to

a square wave, with the reduction in stiffness due to the investigated cracks affecting

more than one meshing period. The effect of the damage on the second meshing

period seems relatively small compared to the effect on the meshing period where the

broken tooth is primarily in contact. Chaari et al. (2009) found a linear relationship

between the reduction in gear mesh stiffness and crack depth. Chaari et al. (2012)

uses a square wave stiffness function to approximate the gear mesh stiffness with its

properties presented in table 2.3. This is a good approximation to the results found in

sophisticated analyses conducted by Chaari et al. (2009).
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In this study the gear mesh stiffness of the healthy gearbox is approximated the same

as done by Chaari et al. (2012) with the result in figure 2.2. The equation of motion

17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22

Normalised time [-]

0.1

0.15

0.2
S
ti
ff
n
es
s
[G

N
/
m
] Fault severity: 0

Fault severity: 0.025
Fault severity: 0.05

Figure 2.2: Gear mesh stiffness approximation in the presence of root crack faults with

different fault severities. The time is normalised with the gear mesh period.

(equation (2.1)) is solved in the time domain and therefore the gear mesh stiffness

period varies with a fluctuating rotational speed. The damage in figure 2.2 is induced

by approximating the results obtained by Chaari et al. (2009). Damage is simulated

by multiplying the gear mesh stiffness associated with the damaged tooth with a factor

between 0.0 and 1.0. A fault severity of 0.2 indicates that the new gear mesh stiffness

of the tooth is 0.8× kgm(t), where kgm(t) is the original gear mesh stiffness.

The damping characteristics in the system are approximated by proportional damping

and is calculated by,

C = cmM + ckK̄ (2.9)

where the proportionally constants that account for the mass and stiffness contributions

are cm = 0.05 and ck = 10−6 (Chaari et al., 2012). The mean stiffness matrix, denoted

by K̄ in equation (2.9), is calculated by,

K̄ = Ks + k̄gmS (2.10)

where k̄gm denotes the mean gear mesh stiffness given in table 2.3.

A four pole, three-phase, 50[Hz] ABB - MT 90 L electric motor is attached to the

pinion through a shaft in the model with the properties given in table 2.5. It is the

same electric motor used by Chaari et al. (2012). The relationship between the torque

and the speed of the motor is (Chaari et al., 2012),

TM(gn) =
Tb[

1 + (gb − gn)2
(
ca1
gn
− ca2 × g2n

)] (2.11)

where gb and Tb are the slip in the motor and the torque at break down, respectively.

The proportional drop in rotational speed by the motor, denoted by gn, is calculated
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Table 2.5: Characteristics of the electrical motor (Chaari et al., 2012)

Characteristics of motor Symbol Value Units

Rated power P 1.5 kW

Synchronous speed ωs 1500 rpm

Full load Tf 10 N.m

Starting torque Ts 27 N.m

Torque at break down Tb 32 N.m

Slip gb 0.315 −
Motor constant ca1 1.711 −
Motor constant ca2 1.316 −

from,

gn = 1− ωr
ωs

(2.12)

where the rotational and synchronous speed of the motor is ωr and ωs, respectively.

The relationship between the torque and the rotational speed in figure 2.3 is calculated

from equation (2.11) and the properties in table 2.5.

0 500 1000 1500

Rotational speed [rpm]

0

10

20

30

40

T
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q
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.m
]

Figure 2.3: The relationship between the torque and the speed of the electrical motor.

The external load vector,

F = [0 0 TM 0 0 0 TL 0] (2.13)

is used in equation (2.1). The load that is applied by the motor TM is calculated

from the rotational speed in the system and the motor model in equation (2.11). The

external load applied by the machine TL, in figure 2.1, is obtained from the relationship

corrected from the article by Chaari et al. (2012),

TM = −Np

Ng

TL (2.14)
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where Np and Ng are the number of teeth on the pinion and the gear, respectively.

All of the components that are required to solve the equation of motion (2.1) are

available. The natural frequencies of the system is used to evaluate the plausibility of

the model. The undamped natural frequencies are obtained by solving an eigenvalue

problem,(
K̄ − ξM

)
v = 0 (2.15)

where
√
ξ is an undamped natural frequency of the system with associated eigenvector

v. The mean stiffness matrix calculated from equation (2.10) is used in equation (2.15)

as opposed to the original article. The solution of the eigenvalue problem in table 2.6

indicates that only one rigid body mode is present, which is expected. This means

that the only free vibration mode in the system is associated with the shafts turning

proportionally to one another, which is the expected result.

Table 2.6: Undamped natural frequency number and the associated value in Hertz of

the gearbox model.

1 2 3 4 5 6 7 8

0.000 532.309 1006.584 1057.102 1186.271 1203.706 2067.666 5289.872

Now that all of the characteristics associated with the gearbox model are determ-

ined, the equation of motion can be solved. Equation (2.1) is solved with an implicit

Newmark integration scheme due to the highly non-linear behaviour of the gear mesh

stiffness. More information on this integration procedure is available in the textbook

by Zienkiewicz and Taylor (2005). The simulated operating conditions in figure 2.4a

has abrupt (non-smooth) changes during each duty cycle and are used in this study.

The presence of the abrupt operating condition changes are not physical, but it tests

the ability of the diagnostic methodology to detect faults in complicated operating

conditions. The resulting vibration signal is compared in figure 2.4b for the gearbox in

a good condition and the gearbox with local damage on the gear with a fault severity

of 0.1. The acceleration of the fifth degree of freedom, denoted by ẍ2 in figure 2.1, is

used in this study.

Severe amplitude modulation is present in the vibration signals presented in figure 2.4b

due to the applied operating conditions. This severe amplitude modulation emphasises

that the diagnostic technique should be robust to operating condition changes. There

are slight differences between the healthy (undamaged gear) and the damaged gearbox

vibration signals in figure 2.4b.
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Figure 2.4: The operating conditions at the motor-pinion shaft and the corresponding

vibration signal for the numerical gearbox model.

2.2 Experimental setup

An experimental setup was constructed based on the design of Dr. CJ Stander (Stander

and Heyns, 2005) to test the ability of the fault diagnostic methodology on real data.

The experimental setup is shown in figure 2.5 with the corresponding legend in table

2.7. The objective of the experiments was to evaluate whether it is possible to detect,

Figure 2.5: The experimental setup with its legend included in table 2.7.

localise and trend fault growth. This was performed in the form of an accelerated life

test by seeding small defects in the teeth of the gears. The defects progressed and

resulted in complete failure of the tooth as the gearbox was overloaded.

The electric motor supplies rotational energy to the system and is connected to a speed-

reduction gearbox which is connected to the monitored gearbox (indicated by (6)). The

monitored gearbox and the gearbox closest to the alternator increases the rotational

speed of the input shaft. The output shaft of the gearbox closest the alternator is

supported by a bearing and it provides the ability to attach a telemetry system for

strain measurements etc. The alternator is connected to a resistor bank and it removes

energy from the system by providing torsional resistance. The highest torque in the
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Table 2.7: The legend used for the experimental setup in figure 2.5.

Item number Description

1 5.5 kVA Mecc alte spa three-phase alternator

2 Support bearing

3 Siemens E68-A-100 helical gearbox

4 Accelerometer (500 [mV/g] sensitivity)

5 Proximity probe applied to key of shaft (1 pulse per revolution)

6 Siemens E38-A-100 helical gearbox (Monitored gearbox)

7 Accelerometer (500 [mV/g] sensitivity)

7∗ Tri-axial accelerometer (100[mV/g])

8 Zebra tape shaft encoder and optical probe

(88 pulses per revolution)

9 Siemens E68-A-100 helical gearbox

10 Weg 5,5 kW three-phase four-pole squirrel cage electrical motor

7∗ is mounted behind the accelerometer indicted by 7.

system is located at the input shaft of the monitored gearbox, which is indicated by 8

in figure 2.5. The rotational speed of the motor and the load applied by the alternator

are controlled through a personal computer with the i3 package, developed by Dr. JJA

Eksteen. The alternating voltage and current generated by the alternator is converted

to direct voltage and current before being measured at a rate of 1kHz with a National

instruments data acquisition card in the personal computer.

Two uni-axial accelerometers, a tri-axial accelerometer and two tachometers were used

during the experiments which resulted in seven data streams being measured simul-

taneously by an Oros OR35 data acquisition system. A lot of data were measured to

ensure that sufficient data are available for potential future work. The helical gearboxes

have strong axial excitations which contain a lot of diagnostic information, hence the

axial component of the tri-axial accelerometer is used in subsequent chapters of this

study.

The accelerometer signals were sampled at 25.6kHz and the tachometers (indicated

by 5 and 8 in figure 2.5) were sampled at 51.2kHz. The tachometer sampling fre-

quencies affect the zero crossing time errors, which need to be minimal for performing

order tracking successfully (Fyfe and Munck, 1997). Hence, the sampling frequencies

of the tachometers were the highest sampling frequencies that were possible without

any measurement problems. The zebra tape shaft encoder requires geometrical com-

pensation (see (Resor et al., 2005)) was performed with the technique developed by

Diamond et al. (2016) in this study. The instantaneous phase from the zebra tape shaft
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encoder is used to evaluate the performance of the tacholess order tracking methods

in chapter 3. A high sampling frequency was used for accelerometer signals to ensure

that all the relevant information can be extracted to perform fault diagnosis, tacholess

order tracking and future work on the data. The nature of tests only provide a single

opportunity for measurement and therefore high sampling frequencies were motivated

as well. Appendix A contains additional information pertaining to the experimental

setup and the data.

The operating conditions (i.e. load or torque and speed) in figure 2.6 are investigated

in this study and is present during data acquisition. The load and the rotational speed

of the input shaft of the monitored gearbox are presented, but it can easily be con-

verted to the operating conditions on other shafts by using the gear ratios included in

Appendix A. The operating conditions that are investigated in this study differ from
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Figure 2.6: The rotational speed in figure 2.6a and the estimated torque in figure 2.6b

at the input shaft of the monitored gearbox.

those found in wind turbines (He et al., 2016) and draglines (Eggers et al., 2007), but

it provides sufficient complexity to critically evaluate the performance of the tacholess

order tracking method as well as the diagnostic methodology. The duty cycle of the op-

erating conditions was 10 seconds with a period of 10 - 20 minutes between consecutive

measurements.

Experiments were firstly performed with a healthy gear and after sufficient data were

measured, the experiments were stopped. The monitored gearbox was removed from

the setup and the monitored gearbox was disassembled so that its gear could be dam-

aged. After the gear was damaged, the monitored gearbox was reassembled and con-

nected to the system. In this study, it is assumed that the diagnostic methodology

is applied to a gearbox where the damaged gear resulted due to normal operation.

However, the disassembling and reassembling process alters the system and changes

the integrity of the data. Therefore, the following provisions were made to reduce the
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effects of the disassembling and reassembling processes:

• The healthy data are generated from a gearbox with a gear in a healthy condition.

This gear is removed, damaged and then inserted back into the system. The

damaged dataset is measured from the gearbox with the aforementioned damaged

gear.

• The system is aligned similarly in both cases with the same measurement equip-

ment being used to ensure that there are minimal changes between the healthy

and damaged experiments.

After sufficient data was obtained from a healthy gearbox during the first experiment,

the damage was seeded into one of the teeth of the gear with the result presented in

figure 2.7. The slot was 0.3mm high, 50% of the tooth width deep and is through the

entire breadth of the tooth (i.e. in the axial direction) for the first experiment.

Figure 2.7: The damaged gear of the first experiment.

The measured vibration signal from the axial component of the tri-axial accelerometer

is presented in figure 2.8 for the gearbox with a healthy and a damaged gear. The

operating conditions in figure 2.6 were present during data acquisition. The damaged

gearbox vibration signal was acquired during the early stages of the experiment. The

vibration signals for both conditions contain clear impulses in the time domain signal

which leads to broadband excitation. These type of impulses are normally indicative

of damage. The source of the impulses was isolated to the monitored gearbox by

mounting an accelerometer on various components in the setup during constant torque

and speed conditions. The impulses were non-present in the vibration signals measured

from equipment located with long transmission paths from the monitored gearbox. The

period between successive impulses in figure 2.8 varies over time and it does not clearly
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Figure 2.8: Vibration signal measured on the gearbox with a healthy (undamaged) a

damaged gear.

correspond to a characteristic fault frequency, such as a ball-pass frequency etc., of the

system. The impulses disappear in some cases for short time frames.

It was noticed that one of the supporting bearings of the monitored gearbox’s input

shaft is able to slide freely within its housing. Circlips prevent large axial movements,

but it seems that some axial and radial movement with respect to the housing occur

during experiments. It is suspected that the movement of the bearing results in the

observed impulses in the vibration signal. The investigation that was conducted on

this subject is included in appendix A.2.

The first experiment continued for more than 45 days with the damaged gear, since

there was not a definitive indication that the damaged tooth and other adjacent teeth

had failed. After the experiment was stopped, it was observed that the damaged tooth

had failed during the experiment, as shown in figure 2.9. The time that the tooth

failed is unknown, since the tooth failure was not clearly seen in the data and the

gearbox cannot be disassembled during testing without affecting the data of subsequent

experiments with the same gear. Usually, a few teeth fail, or the shaft fails etc. during

the tooth failure which is easily seen within the data. The time of failure is investigated

in chapter 5.

Another accelerated life test was completed to ensure that the exact time of failure is

known when evaluating the fault diagnostic methodology. The height of the seeded

damage was set to 0.2mm with a depth of 60% of the tooth width, which resulted in

a significantly faster testing time of approximately three days. The second gear failed
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Figure 2.9: The damaged gear in figure 2.7 after more than 45 days of experiments.

similarly to the first experiment, where only the damaged tooth failed.

2.3 Conclusion

Two gearbox datasets were presented in this chapter. The numerical gearbox model

is corrected from the model obtained from the original articles by Chaari et al. (2008,

2012). The purpose of the numerical gearbox model is to test the diagnostic methodo-

logy in a completely controlled environment. An experimental setup was constructed so

that the methodology can be tested on data from an actual gearbox. Two experiments

were conducted in the laboratory. The first experiment was conducted to investigate

the ability of the gearbox model to detect the presence of faults, locate them on the

gear and to trend it over time. It was expected that more than one tooth will break

after the failure of the damaged tooth. A gear with a few broken teeth are easily

seen within the vibration signal and therefore that was some ambiguity whether the

gearbox should be opened or not. It was decided to continue with the experiments

instead of compromising the integrity of the experiment. A second test was conduc-

ted and stopped after it was suspected that the tooth of the gear had failed. These

characteristics are thoroughly investigated in chapter 5. In the next chapter, the pro-

posed tacholess order tracking is evaluated on the data described in this chapter with

additional data as well.
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Chapter 3 Tacholess order tracking

methodology

The purpose of this dissertation is to develop a robust and cost-effective fault diagnostic

methodology. This necessitates using tacholess order tracking methods to circumvent

the practical and financial implications of installing and using tachometers. In this

chapter, a maxima tracking algorithm, developed by Urbanek et al. (2013), is modified,

improved and investigated on seven datasets.

3.1 Proposed tacholess order tracking method

The proposed tacholess order tracking process diagram in figure 3.1 is similar to the

methods used by Urbanek et al. (2013), Zhao et al. (2013) and Vinson (2014). A vi-

bration signal, measured from a rotary machine, is decomposed into a time-frequency

distribution so that an instantaneous frequency (IF), which varies with the rotational

speed of the reference shaft, can be tracked. A Vold-Kalman filter (VKF) is centred

on the estimated IF so that a mono-component signal can be extracted from the mul-

ticomponent vibration signal. The first (angular-velocity) and the second generation

(angular-displacement) VKFs are investigated in this study and it is found that the

angular-displacement VKF performs slightly better than the angular-velocity VKF.

The instantaneous phase is calculated from the mono-component vibration signal by

using the Hilbert transform and is scaled to reflect the phase of the shaft of interest.

The instantaneous phase is subsequently used to resample the vibration signal at a

constant angular frequency to order track the signal.

3.1.1 Time-frequency distribution

The spectrum of a signal measured from a rotary machine contains rotational speed

dependent and -independent components. The time and frequency domain information
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Measured vibration signal

Time-frequency distribution

Maxima tracking procedure

Angular-displacement

Vold-Kalman filter

Hilbert transform and

phase estimation

Signal resampling

Figure 3.1: Overview of the proposed tacholess order tracking method.

in the vibration signal is investigated simultaneously in a time-frequency distribution

so that the IF can be estimated at each time increment. Urbanek et al. (2013) used

the spectrogram for maxima tracking and Zhao et al. (2013) used the spectrogram to

estimate the chirp rate so that the Chirplet transform could be used to estimate the

component of interest. In this study the spectrogram is used for maxima tracking and

motivated by:

• It does not contain any interference terms such as the Bilinear transforms (Wigner-

Ville distribution etc.) (Peng and Chu, 2004).

• It does not require any prior knowledge of the rotating frequency to estimate a

characteristic such as a Chirp rate for the Chirplet transform or which scales to

evaluate for the CWT.

• It is fairly computationally efficient compared to similar methods such as the

Chirplet transform.

The short-time Fourier transform (STFT), performed on a continuous signal x(t),

Γ(t, f) =

∫ ∞
−∞

x(τ)υ(τ − t) exp(−2πfjτ)dτ (3.1)

is used to represent the time and frequency information of the signal simultaneously.

Page 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



The time-limited window, such as a Hamming window, is denoted by υ(τ − t) and

j =
√
−1. Equation (3.1) is easily implemented for discrete signals, since the fast

Fourier transform is recursively applied on each windowed vibration signal segment to

construct the time-frequency distribution. The spectrogram is related to the STFT in

equation (3.1) with |Γ[t, f ]|2.

3.1.2 Proposed maxima tracking procedure

Maxima tracking is performed to find, isolate and track an IF, denoted by fIF, in the

form of,

fIF(t) = k × cs × fr(t) (3.2)

in a time-frequency distribution. The IF is related to the rotating frequency or speed

of the shaft, denoted by fr(t), with the time-invariant factor k × cs. This indicates

that it is the kth harmonic of a component with a frequency of cs × fr(t), such as a

gear mesh frequency etc. This IF presents itself as a ridge or a local maximum in the

discrete time-frequency distribution, where the IF is estimated by solving a constrained

optimisation problem in the form of,

minimise
f

−|Γ[t, f ]|2

subject to (f − fc[n])2 ≤ ∆f 2
c

(3.3)

where ∆fc denotes the feasible bandwidth and fc denotes the centre of the constraint,

which is the predicted value of the IF at time increment n. A discrete signal evaluated

at time increment n is denoted by x[n], where a continuous signal or function is denoted

by x(t). The relationship between the time increment n and the continuous time t is,

t = n∆t =
n

fs
(3.4)

where fs and ∆t are the sampling frequency and sampling period, respectively. The

solution of equation (3.3) at time increment n, denoted by fmax[n], is assumed to be

related to the actual IF by,

fIF(n∆t) ≈ fmax[n] (3.5)

where ∆t is the time difference between adjacent window centres in the spectrogram.

If maxima tracking is performed as an unconstrained optimisation problem, then cs

will vary with time which will result in erroneous phase estimation and order track-

ing results. Urbanek et al. (2013) centred the constraint in equation (3.3) about the

maxima tracked frequency estimated at the previous time increment,

fc[n] = fmax[n− 1] (3.6)
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where the implicit assumption is made that there is no acceleration between time

increments. Note that if fc[n] is incorrect, a larger ∆fc has to be used to accommodate

the errors in the maxima tracking process. However, if a large ∆fc is used in the

maxima tracking process, it is more susceptible to tracking incorrect components which

are present in the large feasible region.

The assumption that is made to obtain equation (3.6) is problematic when performing

maxima tracking in the presence of large angular accelerations, especially in the pres-

ence of strong background noise. Higher order information needs to be incorporated

into the maxima tracking process to make it more robust for tracking the IF in the

presence of large accelerations. The Taylor series expansion of the IF in the signal

about the previous time increment,

fIF(t) = fIF(t−∆t) + ∆t
d

dt
fIF(t−∆t) +

1

2
∆t2

d2

dt2
fIF(t−∆t) + . . . (3.7)

can be used to predict the value of the IF at the next time increment t = n∆t. This

prediction is used to centre the constraint,

fc[n] = fIF(n∆t) (3.8)

used in equation (3.3). Equation (3.6) is obtained from equation (3.7) by assuming that

all the gradients are zero (i.e. no acceleration is present). Incorporating higher order

information into the maxima tracking process can increase its robustness, however

the higher order information is unknown, since the function fIF(t) is unknown. The

spectrogram contains discrete time steps and therefore the gradients in equation (3.7)

can only be estimated by using finite difference schemes on the previous IF estimates

(i.e. fmax[n− 1], fmax[n− 2] etc.), which is not desired. The finite difference estimates

of the higher order information result in erroneous maxima tracking estimates, since

there are ridge smearing and background noise present in the spectrogram.

A probabilistic approach is used to infer the actual IF so that higher order information

can be incorporated into the maxima tracking process. It is assumed that the true

IF, fIF, is related to its representation in the spectrogram or its estimate from the

spectrogram, fmax, with a Gaussian distribution,

p
(
fmax[n] |fIF[n∆t] , σ2

)
∝ exp

(
−(fmax[n]− fIF(n∆t))2

2σ2

)
(3.9)

where σ represents the standard deviation of the noise and is attributed to ridge smear-

ing and other noise components in the spectrogram. The estimate of the true IF, fF,

is represented by a Np order polynomial in the form of,

fF (t) = w0 + w1t
1 . . . wNpt

Np (3.10)
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where fF (t) in equation (3.10) is used instead of fIF(t) in equation (3.9) and then the

weights w = {w0, w1, . . . wNp} are obtained using maximum likelihood. The true IF,

fIF, is unknown and therefore an estimate, fF , needs to be used at each time step. The

weights (Bishop, 2006),

w = (QTQ)−1QTfmax (3.11)

are obtained from the previous Nm estimates of the IF, denoted by fmax, using max-

imum likelihood. The design matrix of the Np order polynomial, in the form of,

Q =


1 t[n− 1] . . . t[n− 1]Np

1 t[n− 2] . . . t[n− 2]Np

...
...

. . .
...

1 t[n−Nm] . . . t[n−Nm]Np

 (3.12)

and the vector of the previous Nm estimates of the IF,

fmax =


fmax[n− 1]

fmax[n− 2]
...

fmax[n−Nm]

 (3.13)

are used in equation (3.11) to obtain the weights in equation (3.10). The polynomial

function in equation (3.10) satisfies the Taylor series expansion of the IF in equation

(3.7), which means that if a first order polynomial function is used, then the assumption

is made that the angular acceleration is constant etc. Note that even though frequentist

statistics are used to infer the weights in this study, Bayesian linear regression can be

investigated with a conjugate prior by slightly modifying equation (3.11). However,

Bayesian linear regression requires additional hyperparameter optimisation, which is

not investigated in this study.

It is strongly suggested to use a first order polynomial to ensure that only a few number

of training points (Nm) are required, solving equation (3.11) remains computationally

efficient and that errors in the extrapolation process are minimised. By using equation

(3.6), the IF estimate at the first time increment in the maxima tracking process needs

to be provided. If the constraint in equation (3.3) is centred by the prediction made

by equation (3.10) from a first order polynomial, then the initial gradient needs to be

provided as well. To make this process easier, it is assumed that the initial gradient

is zero, which results in equation (3.6) to be used for the initial steps. In this study

the first three estimates of the IF are obtained by using equation (3.3) with equation

(3.6) and thereafter equation (3.10) can be used. The initial estimate of the IF is

obtained by inspecting the spectrogram and cs × k, in equation (3.2), is estimated by

Page 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



roughly knowing the operating range of the machine or using a simple device such as

a hand-held tachometer.

Since it is a constrained minimisation problem, the Lagrangian in the form of,

Ln(f,λ, s) = −|Γ(t[n], f)|2+λ1
(
(f − fmax[n− 1])2 −∆f 2

c1 + s21
)

+λ2
(
(f − fF (t[n]))2 −∆f 2

c2 + s22
) (3.14)

is minimised to find the frequency f that minimises the cost function −|Γ[t, f ]|2 and ad-

heres to the constraints. The Lagrangian multiplier and slack variable associated with

the ith constraint are denoted by λi and si, respectively. Equation (3.14) can be solved

by considering the Karush-Kuhn-Tucker conditions, but the penalised unconstrained

cost function in the form of (Arora, 2004),

κ(f,ρ, n) = −|Γ(t, f)|2+ρ1 max
[
0, (f − fmax[n− 1])2 −∆f 2

c1

]
ρ2 max

[
0, (f − fF (t[n]))2 −∆f 2

c2

] (3.15)

is minimised instead. The bandwidth describing the feasible region enforced by the two

constraints are denoted by ∆fc1 and ∆fc2, respectively. In this study the feasibility

bandwidths (∆fc1 and ∆fc2) have the same value. The components of the vector

ρ = [ρ1, ρ2], in equation (3.15), have the following values,

ρ1 =

{
109 if n ≤ 3

0 otherwise
(3.16)

and,

ρ2 =

{
109 if n > 3

0 otherwise
(3.17)

where only one of the constraints are active at a time due to the choice of ρ. The

estimate of the instantaneous frequency is obtained from,

fmax[n] = argmin
f

κ(f,ρ, n) (3.18)

where κ(f,ρ, n) is given by equation (3.15). Note that the solution of equation (3.15)

is also the solution of equation (3.3) if both constraints are incorporated into equation

(3.3) similarly to equation (3.15). The method implemented by Urbanek et al. (2013)

essentially uses ρ1 6= 0, while ρ2 is always zero in equation (3.15).

3.1.3 The Vold-Kalman filter

The Vold-Kalman filter (VKF) is a bandpass filter with a varying centre frequency and

bandwidth. If the centre frequency of the constraint in equation (3.3) is set equal to
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the estimated IF (i.e. fmax) and the bandwidth is set sufficiently fine, then a mono-

component signal, denoted by xIF can be extracted from a multicomponent vibration

signal x. Note that a discrete signal is investigated in this section and therefore the

whole signal is denoted by x (i.e. a one-dimensional vector over all time steps) and the

signal at increment n is denoted by x[n].

Two generations of the VKF exist namely the angular-velocity (or first generation)

and the angular-displacement (or second generation) VKF. The angular-velocity VKF

aims to estimate the mono-component signal, while the angular-displacement VKF

aims to estimate the envelope of the mono-component signal (Tuma, 2005). The signal

containing the IF that needs to be extracted, xIF[n] is related to the vibration signal

x[n] in the data equation,

x[n] = xIF[n] + ζ[n], (3.19)

where ζ[n] represents the other sinusoidal components and the background noise at

time t = n/fs. The structural equation for the angular-velocity VKF,

xIF[n]− 2 cos(2πfIF[n]f−1s )xIF[n+ 1] + xIF[n+ 2] = ε[n] (3.20)

and of the angular-displacement VKF,

β[n]− 2β[n+ 1] + β[n+ 2] = ε[n] (3.21)

describes the characteristic of interest and ε[n] is known as the non-homogeneity term

at time increment n which represents the error in the left-side of the structural equa-

tion. Equation (3.21) is for a two-pole angular-displacement filter, where the structural

equation for other poles are found in the paper by Tuma (2005). The envelope β[n] is

related to the signal of interest by,

xIF[n] = β[n] exp

(
2πj

fs

n∑
i=0

fIF[i]

)
(3.22)

where fs is the sampling frequency of the signal xIF and j =
√
−1. There are three

sets of unknowns in equation (3.19), (3.20) and (3.21) namely ε, ζ and either β or xIF.

This result in an underdetermined system of equations, which are solved by finding

the characteristic of interest (xIF or β) that simultaneously minimises ε and ζ. This

is achieved by solving the multi-objective optimisation problem with the weighted sum

method in the form of (Tuma, 2005),

κ = εTATAε+ ζTζ (3.23)

where the weight matrix A is a diagonal matrix. The component at time increment n,

denoted by A[n, n], describes the importance of minimising εTε instead of ζTζ at time
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increment. The choice of weighting factor at time increment n (i.e. A[n, n]) determines

the rise time as well as the bandwidth of the filter and is extremely important to the

success of the VKF (Pan and Lin, 2006). The weight factors proposed by Tuma (2005)

are used in this study. Due to the nature of the data and structural equations, the

optimal solution of the cost function, given by equation (3.23), can be obtained in

closed form if only a single component is tracked (Tuma, 2005).

The angular-displacement VKF allows multiple components to be tracked, while the

angular-velocity VKF is constrained to a single component (Tuma, 2005). Pan and

Lin (2006) found that the angular-displacement is able to estimate the component

of interest accurately in the presence of crossing orders. It obtains a better rise time

and bandwidth combination than the angular-velocity VKF. The angular-displacement

VKF does not have any frequency nor slew rate limitations as well (Blough, 2003). A

brief investigation was conducted on the angular-velocity or angular-displacement VKF

with the experimental signals introduced later in this section. The implementations are

based on the paper by Tuma (2005). The results, for the investigated signals, indicate

that the one-pole angular-displacement VKF obtains relatively low errors and it is very

robust, since it is possible to use very small bandwidth factors. The bandwidth factor

is defined by,

Bw =
fb[n]

fIF[n]
(3.24)

where fb denotes the bandwidth of the passband of the VKF at increment n. The

angular-velocity VKF obtains relatively low errors as well, but larger bandwidth factors

are required than the one-pole angular-displacement VKF to avoid numerical problems

in the optimisation process. A two-pole angular-displacement VKF results in numerical

problems when small bandwidth factors are used and is ill-suited for the investigated

signals. The results of this investigation are included in section B.1 in Appendix B.

Even though a specific harmonic is tracked with the maxima tracking process, any har-

monic can be filtered with the VKF. An investigation was performed on the aforemen-

tioned experimental signals to determine which harmonic to filter. If a small bandwidth

factor is used, an arbitrary harmonic of the IF can be filtered without any change in

the error occurring for the investigated signals. However, the harmonic that needs to

be filtered must be chosen carefully if a large bandwidth factor is used and the results

are dependent on the signal that is used as well. The results of this investigation are

included in detail in section B.1. The angular-displacement VKF is used in this study

from the results of the investigations and from the papers by Blough (2003) and Pan

and Lin (2006). A bandwidth factor of 10−4 is used in this study since it is robust and

the error does not depend on the harmonic that is filtered.

Page 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.1.4 Instantaneous phase estimation and resampling

The phase estimation process is presented in this section for continuous signals, however

it is easily extended to discrete signals obtained from the maxima tracking and the

Vold-Kalman filtering processes. The mono-component signal obtained from the VKF

in the previous section, denoted by xIF, is transformed with the Hilbert transform,

H (xIF(t)) =
1

π

∫ ∞
−∞

xIF(τ)
1

t− τ
dτ (3.25)

and used to obtain the instantaneous phase of this signal,

φIF(t) = arctan

(
H(xIF(t))

xIF(t)

)
(3.26)

which is constrained to [−π, π] due to the arctangent function. This phase, obtained

from equation (3.26), is unwrapped to obtain the cumulative phase of the estimated

IF component over time. The tracked IF component is related to the rotating shaft of

interest with equation (3.2) if equation (3.5) is valid. The aforementioned relationship

is used to obtain the instantaneous phase of the shaft,

φr(t) =
1

kcs
unwrap (φIF(t)) (3.27)

at time step t. The instantaneous phase of the shaft over time, obtained from equation

(3.27), is used to resample the signal into equal angular increments.

3.2 Validation of proposed method

Two maxima tracking methods are evaluated and compared in this chapter on numer-

ical data, numerical gearbox model data and experimental data. The maxima tracking

method proposed by Urbanek et al. (2013) does not incorporate acceleration informa-

tion into the maxima tracking process and is used as the benchmark maxima tracking

algorithm. The method is indicated as (a) in all of the figures. The proposed method

incorporates higher order (i.e. acceleration) information into the maxima tracking

process and is indicated by (b) in all of the figures.

3.2.1 Numerical validation

Three numerical signals are investigated in this section. The signals are chosen specific-

ally to highlight some of the deficiencies when performing maxima tracking without
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incorporating higher order information into the process. For the first signal, the shaft

under consideration has the following rotational speed in Hertz,

fr(t) = 200t+ 50 (3.28)

where fr denotes the shaft speed that needs to be tracked in Hertz and t denotes time

in seconds. The simulated shaft accelerates at 400π rad/s2, which exceeds the standard

operating range of common rotary machines. This is merely used to compare the two

maxima tracking algorithms in the presence of large frequency gradients. The resulting

signal,

x(t) = sin

(
2π

∫ t

0

fr(τ)dτ

)
(3.29)

has a single IF, calculated from equation (3.28). Zero mean Gaussian noise with a

standard deviation of 1.0 is added to the signal in equation (3.29). In figure 3.2a the

spectrogram of the signal is superimposed with the two maxima tracking approaches

considered in this study.
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(b)

(b)

Figure 3.2: The spectrogram and the maxima tracking results from the first numerical

signal in figure 3.2a resulted in the phase error in 3.2b. The benchmark maxima

tracking algorithm, proposed by Urbanek et al. (2013), is indicated by (a) and the

proposed method is indicated by (b). Note that the final phase of the shaft component

is 251324.899rad, which indicates that the relative phase error made by the maxima

tracking process is small.

The phase error in figure 3.2b is computed by,

e(t) = |φr(t)− φa(t)| (3.30)

where φr, is the estimated phase in radians obtained from the process described in

section (3.1.4). The analytical phase, denoted by φa(t) and used in equation (3.30), is
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computed from 2π
∫ t
0
fr(τ)dτ . The exact same spectrogram, noise and ∆fc are used

in the two maxima tracking algorithms with the same subsequent processing to obtain

the instantaneous phase of the shaft. The phase error in figure 3.2b indicates that both

maxima tracking algorithms made a constant frequency error in figure 3.2a. This is

attributed to the fixed time-frequency resolution of the spectrogram which is unable

to represent the IF accurately. Even though a linear phase error is present in figure

3.2b, the error is small compared to the total phase of 251324.899rad completed by the

shaft over a 20 second period. The proposed maxima tracking method, indicated by

(b), performs slightly better than the benchmark maxima tracking algorithm.

The second investigated signal contains the exact same rotational speed function (see

equation (3.28)) as the first signal, but with an additional time invariant narrowband

component,

x(t) = sin

(
2π

∫ t

0

fr(τ)dτ

)
+ sin

(
2π103t

)
(3.31)

located at 1kHz. The purpose of this is to evaluate whether it is possible to track a

frequency component with an intersecting component not related to the component of

interest. The spectrogram of the signal in equation (3.31) is superimposed with the

results from the two maxima tracking algorithms in figure 3.3a. The two components in
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Figure 3.3: The spectrogram and the maxima tracking results from the second numer-

ical signal in figure 3.3a resulted in the phase error in 3.3b.

equation (3.31) have the same amplitudes, which make gradient information essential

when determining which component to track. The maxima tracking results indicate

that the proposed method, indicated by (b), performs significantly better than the

method not incorporating acceleration information into the maxima tracking process,

indicated by (a). If no acceleration information is incorporated into the maxima track-

ing process, then the constant frequency component is tracked because it satisfies the
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assumption made when using equation (3.6). The phase error in figure 3.3b reflects

the maxima tracking results. The proposed method resulted in a relative phase error,

computed from,

eR =
max (e(t))

max (φa(t))
(3.32)

of 0.1830%. The error e(t) is computed from equation (3.30) and φa(t) is the analytical

phase.

The third and last investigated numerical signal contains a shaft component with a

rotational speed of,

fr =
1

5
cos(0.1πt) +

1.25

π
(3.33)

in Hertz, which is used to generate a signal in the form of,

x(t) =
3∑
s=1

(
1.5 sin

(
2.0πs

∫ t

0

fr(τ)dτ

)
+ sin

(
80.0πs

∫ t

0

fr(τ)dτ

))
+

0.5 sin(2πf1t) + 0.5 sin(80.0πt)

(3.34)

where,

f1(t) = 1.65t+ 2.0 (3.35)

is a linearly varying frequency component in Hertz. The signal in equation (3.34)

contains three rotational speed and three gear mesh frequency, 40× fr(t), harmonics.

It contains two components which are independent of the rotational speed as well. In

figure 3.4a the spectrogram of the signal in equation (3.34) and the maxima tracking

results from the two approaches are presented. The benchmark method, using equation

(3.6), is unable to distinguish the component of interest from the other frequency

components in the signal. This causes the maxima tracking algorithm to drift off and

follow the component with no acceleration. However, the proposed method is able to

track the correct component in the presence of other misleading components, since it

incorporates angular acceleration information into the maxima tracking process. The

phase errors in figure 3.4b indicate that the proposed method performs significantly

better.

The performance of the two maxima tracking approaches is summarised in table 3.1.

The results indicate that the proposed method performs better than the benchmark

maxima tracking approach. The seemingly large phase errors of the first two signals

are small relative to the total phase completed by the shaft under consideration. It

is concluded that the proposed method obtained significantly lower errors than the

benchmark method, which will consequently result in low order tracking errors. This is

investigated further on the numerical and experimental gearbox data that are discussed

in chapter 2.
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Figure 3.4: The spectrogram and the maxima tracking results from the third numerical

signal in figure 3.4a resulted in the phase error in 3.4b.

Table 3.1: Summary of the maxima tracking results from the numerical signals. All

the phase units are in radians.

Signal 1 Signal 2 Signal 3

Maximum phase completed 251324.899 251324.899 314.1593

Benchmark method by Urbanek et al. (2013):

RMS phase error 576.3152 54636.0666 1.4576

Maximum phase error 967.3627 141189.2577 5.3663

Proposed method:

RMS phase error 540.9771 459.872 0.039169

Maximum phase error 935.9197 829.7571 0.063935

3.2.2 Numerical gearbox model validation

The numerical vibration signal, obtained from the fifth degree of freedom of the gearbox

model in section 2.1, is investigated in this section. The spectrogram of the vibration

signal and the results from the two maxima tracking approaches are presented in figure

3.5a.

The phase calculated from the Vold-Kalman filtered vibration signal with the Hilbert

transform resulted in the phase errors presented in figure 3.5b. The phase errors in

figure 3.5b is calculated from equation (3.30). The output shaft of the gearbox com-

pleted 115.4570 rotations in 10sec. This resulted in a relative phase error of 0.0231% by

the benchmark maxima tracking approach. The proposed maxima tracking method ob-

tained a worse relative phase error of 0.0238%. The proposed method performs slightly
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Figure 3.5: The maxima tracking results are compared in figure 3.5a on the spectro-

gram, where the result of the benchmark and the proposed method are indicated by

(a) and (b), respectively. The resulting phase errors are presented in figure 3.5b.

worse, because the angular acceleration of the gearbox shaft is discontinuous which viol-

ates the constant angular acceleration assumption made. Since the benchmark method

does not incorporate any acceleration information into the maxima tracking process,

it results in a better estimation of the IF. However, the operating conditions are not

realistic for real machines, since real machines have inertia which does not allow such

rapid operating condition changes. The resulting spectrum of the order tracked signal

using the proposed method and the analytical phase is compared in figure 3.6.
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Figure 3.6: The spectrum of the order tracked numerical gearbox vibration signal,

obtained from the analytical phase and the tacholess order tracking method.

The gear mesh frequencies, occurring at 40, 80, etc. orders, are approximately the

same for the computed and the tacholess order tracking methods. However, the natural

frequencies are different in figure 3.6 which indicate that rotational speed independent

components are more sensitive to order tracking errors. The order tracking results,

obtained from the proposed method, are sufficient for the purposes of this study.

Page 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.2.3 Experimental validation

3.2.3.1 Operating conditions

Three operating condition profiles are investigated on the experimental setup, presen-

ted in chapter 2, to evaluate the performance of the proposed tacholess order tracking

method. The rotational speed from the 88 PPR signal is superimposed with the rota-

tional speed profile calculated from the 1 PPR signal obtained from the shaft key and

proximity probe in figure 3.7a. The rotational speed profile from the 1 PPR signal is

incapable of obtaining the correct speed profile due to the large speed fluctuations and

its limited resolution. The phase that is calculated from the zebra tape shaft encoder

is used as the analytical phase in this section. The phase difference between the two

signals are compared in figure 3.7b, which highlights that the phase errors, from the 1

PPR signal, are rotational speed dependent.
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Figure 3.7: The first experimental rotational speed profile. In figure 3.7a the calculated

rotational speed of the two tachometers are compared and the resulting phase difference

between them are presented in figure 3.7b.

Even though the equipment, required to obtain a single PPR tacho signal, is relatively

easy to implement, it is not well suited for rotating machinery with relatively large an-

gular accelerations. The phase errors in figure 3.7b result in additional phase distortion

when performing computed order tracking. This emphasises that shaft encoders, that

provide a large amount of PPR, must be used to ensure that large angular accelera-

tions are fully captured. However, the shaft encoders also necessitate more expensive

equipment, larger sampling frequencies and more data to be stored which increases the

cost of performing CBM.

The second and the third experimental profiles in figure 3.8, obtained from the 88 PPR

Page 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



shaft encoder, contain smooth rotational speed profiles which are aimed to reflect the

profiles seen in wind turbines (He et al., 2016). Note that the second and third exper-

imental rotational speed profiles are only investigated in this chapter. The rotational
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(a) Profile 2
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(b) Profile 3

Figure 3.8: The second and the third rotational speed profiles obtained from the zebra

tape shaft encoder (88 PPR) and the optical probe.

speed calculated from the zebra tape shaft encoder tachometer signal is compared to

the estimated rotational speed from the maxima tracking process as well as the speed

calculated from the phase from the Hilbert transform later in this section.

3.2.3.2 Phase estimation results

The spectrogram, calculated from the vibration signal measured during the operating

condition profile in figure 3.7a, is superimposed with the maxima tracking results of the

two maxima tracking methods in figure 3.9. The spectrogram is obtained by applying

equation (3.1) with a rectangular window and a 90% overlap. The time window length

between centres is 0.0280s with a frequency bin width of 3.1250Hz. The true IF is

masked by broadband noise at some instances, which impedes the maxima tracking

process. The noise and other adjacent frequency components can easily cause the

maxima tracking algorithm to drift off from the true IF. Therefore it is crucial to use

small bandwidths in the constraints (i.e. ∆fc). The ∆fc in equation (3.15) is 6.4 times

the frequency bin width. Five points, with a total time difference of 0.14s, are used

for estimating the two coefficients of the first order polynomial in equation (3.10). It

is assumed that the angular acceleration of the system will be approximately constant

within 0.14s and therefore a first order polynomial is appropriate. If a larger number

of points are used, then a larger acceleration change can possibly occur between the

first and the last measurement which necessitates using higher order polynomials. If no

acceleration information is incorporated into the maxima tracking process, the maxima

Page 54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Figure 3.9: The maxima tracking results of the two algorithms are compared in this

figure on the first experimental profile (see figure 3.7), with the benchmark method

indicated by (a) and the proposed method indicated by (b).

tracking algorithm is unable to handle the large frequency changes and it drifts off from

the true estimate in the presence of noise as shown in figure 3.9. The proposed method,

indicated by (b) in figure 3.9, leads to a more robust maxima tracking procedure as

compared to the benchmark method (indicated by (a)).

The spectrogram of the filtered signal obtained from applying a one-pole, angular-

displacement VKF on the maxima tracked line obtained from the proposed method

(see figure 3.9) is shown in figure 3.10. The mono-component signal in figure 3.10

indicates that the Hilbert transform can be used to obtain the phase of the frequency

component over time. The frequency component in figure 3.10 is clearly related to the

rotational speed profile in figure 3.7.

Figure 3.10: The spectrogram of the VKF filtered signal is presented in figure 3.10.

A one-pole angular-displacement VKF with a centre frequency equal to the maxima

tracked frequency (b) in figure 3.9 is used.
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The phase in figure 3.11a is calculated from the 88 PPR shaft encoder located on the

input shaft of the gearbox and is used to critically compare the errors in the phase

estimation process. The phase profile in figure 3.11a serves as an example of the

mapping between the time and the angle domain, which is used in the resampling

process. The phase errors made by the benchmark method, in figure 3.9 are directly

reflected in the phase errors in figure 3.11b and is significantly larger than the phase

errors that resulted from the proposed method. The phase error of the proposed
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Figure 3.11: The instantaneous phase of the input shaft of the monitored gearbox,

calculated from the zebra tape shaft encoder is given in figure 3.11a, while the absolute

phase error by the two maxima tracking approaches are given in figure 3.11b. The

results are presented for the first experimental rotational speed profile.

method is significantly smaller than the phase error that resulted from the 1 PPR

signal in figure 3.7b as well. Note that all phase errors are computed from equation

(3.30), with the analytical phase (φa(t)) calculated from the tachometer signal obtained

from the zebra tape shaft encoder and the optical probe.

The maxima tracking results as well as the phase estimation errors are given in figure

3.12 and figure 3.13 for the second and third experimental profiles. The proposed

method performs slightly worse than the benchmark maxima tracking method for the

second rotational speed profile in figure 3.12. However, in figure 3.13 a significant

improvement is obtained by the proposed maxima tracking method compared to the

benchmark maxima tracking method.

The resulting phase estimation errors from the two investigated maxima tracking meth-

ods are compared in table 3.2 for the experimental rotational speed profiles. The

relative phase error, computed by equation (3.32), is 0.012769% for the first signal,

0.0096486% for the second signal and 0.01142% for the third signal. The aforemen-

tioned results and the results in table 3.2 prove that the proposed maxima tracking
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Figure 3.12: The spectrogram of the vibration signal resulted from the second rotational

speed profile (see figure 3.8a) and the result of the two maxima tracking approaches in

figure 3.12a. The resulting phase estimation error is given in figure 3.12b.

Table 3.2: Summary of the maxima tracking results from the experimental rotational

speed profiles. All the phase units are in radians.

Profile 1 Profile 2 Profile 3

Maximum phase completed 295.2322 439.753 439.7533

Benchmark method by Urbanek et al. (2013):

RMS phase error 8.3951 0.030019 0.053025

Maximum phase error 16.8094 0.048112 0.069044

Proposed method

RMS phase error 0.016662 0.033053 0.037182

Maximum phase error 0.037697 0.04343 0.050224

algorithm obtain very good phase estimation results and that it is an improvement of

the benchmark method.

3.2.3.3 Order tracking results

The purpose of the proposed methodology is to order track a vibration signal in the

presence of large rotational speed fluctuations with only an accelerometer. The spec-

trum of the vibration signal obtained from the first experimental operating condition

profile, using the computed and tacholess order tracking methods, are compared in

figure 3.14. The computed order tracking is performed by using the tachometer signal

obtained from the zebra tape shaft encoder and the optical probe.
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Figure 3.13: The spectrogram of the vibration signal resulted from the third rotational

speed profile (see figure 3.8b) and the result of the two maxima tracking approaches in

figure 3.13a. The resulting phase estimation error is given in figure 3.13b.
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Figure 3.14: Comparison between the spectrum of the order tracked vibration signal

using the proposed tacholess order tracking method and using the information from

the zebra tape shaft encoder (i.e. computed order tracking).

The results in figure 3.14 indicate that a very similar spectrum is obtained from the

computed and tacholess order tracking approaches. This is clearly seen in the low

frequencies of the spectrum, presented in figure 3.15. The proposed method is able

to capture the input rotational speed of the gearbox (1 order) and its harmonics, the

output rotational speed (1.85 orders), the rotational speed of the motor (4.93 orders)

and the rotational speed of the alternator shaft (9.1227 orders). Spectral smearing is

avoided and the components of interest are clearly highlighted. The results indicate

that the proposed methodology is able to order track the vibration signal well.

Page 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



0 1 2 3 4 5 6 7 8 9 10

Frequency [Order]

10−6

10−4

10−2

M
ag
n
it
u
d
e
[m

/s
2
]

Zebra tape shaft encoder
Tacholess

Figure 3.15: The low frequency range of the computed spectrum in figure 3.14.

3.2.3.4 Rotational speed results

The rotational speed can be estimated from the maxima tracked frequency or it can be

estimated from the phase calculated from the Hilbert transform. The rotational speed

estimated from the maxima tracking process differs from the true estimate due to the

fixed resolution of the spectrogram. The results from maxima tracking, the Hilbert

transform phase and the IAS from the zebra tape shaft encoder are compared in figure

3.16.
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Figure 3.16: Comparison between the three rotational speed estimations for the first

experimental profile. The full rotational speed profile is shown in (a) and a zoomed

view is shown in (b).

The frequency content of the three estimations of the rotational speed (see figure 3.16)

is compared to the frequency content of the measured vibration signal in figure 3.17.

The characteristics of the system (i.e. rotational speed components) are present in the

spectrum of (a) and (b) in figure 3.17. However, the frequency content of the maxima

tracked signal, indicated by (c), and the frequency content of the numerically differ-

entiated Hilbert transform phase, indicated by (d), contain only the input rotational

speed of the monitored gearbox. A lot of noise is present in the spectra of (c) and (d)

in figure 3.17 which indicates that the frequency content of the estimated rotational

speed is limited as compared to the IAS calculated from a shaft encoder. Even though
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Figure 3.17: The spectrum of the axial component of the tri-axial accelerometer (a),

the rotational speed calculated from the shaft encoder (b), the frequency content of

the normalised maxima tracked estimate fmax/(cs × k) (c) and the derivative of the

phase from the Hilbert transformed Vold-Kalman filtered signal (d) are compared.

the rotational speed estimates does not contain a lot of information of the system in its

spectrum, the mean rotational speed remains useful for CBM tasks such as calculating

the number of fatigue cycles completed by a rotary machine etc.

3.3 Conclusion

A tacholess order tracking methodology is developed which is robust to relatively large

angular speeds. The tacholess order tracking uses an improved maxima tracking al-

gorithm which incorporates acceleration information into the process by using a prob-

abilistic approach. The spectrogram frequency content contains ridge smearing due to

the fixed time-frequency relationship and therefore linear regression, using a maximum

likelihood approach, is used to estimate the gradient characteristics of the instantan-

eous frequency of interest. The linear regression model of the frequency component is

used to predict the region where the maxima tracking algorithm searches for the IF

at the next time step. An angular-displacement Vold-Kalman filter is centred at the

maxima tracked frequency and a relatively small bandwidth is used to filter the other

components out. This mono-component signal is transformed with the Hilbert trans-

form to obtain the instantaneous phase of a shaft over time. The instantaneous phase

of the shaft is used to resample the vibration signal from the time to the angle domain.

The proposed tacholess order tracking method is successful in the phase estimation and

the rotational speed estimation process which can be used to perform CBM on rotary

machines.
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Chapter 4 Fault diagnostic method-

ology: Development

In this chapter a gearbox diagnostics methodology, with its process diagram in figure

4.1, is proposed and discussed.

1. Measured vibration signal

from accelerometer

2. Phase estimation

and order

tracking

3. Operating condition

feature extraction

and processing

5. Machine condition

feature extraction

and processing

4. Cluster operating

conditions

6. Statistical gearbox

model(s)

7. Discrepancy signal

8. Post-processing

Figure 4.1: Process diagram for the proposed gearbox diagnostics methodology.

The aim is to develop a fault diagnostic methodology that adheres to the requirements
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set out in section 1.3. It is essential to convert the time domain vibration signal to

the angle domain so that the angle-cyclostationary properties can be preserved. This

is performed with the proposed tacholess order tracking methodology in chapter 3 to

ensure that the diagnostic methodology is cost-effective to implement and to apply.

However, computed order tracking can be used if the required equipment is available

or feasible to acquire.

Operating condition features are extracted from the order tracked signal and modelled

with an operating condition model. Machine condition features are extracted from the

order tracked vibration signal and the operating condition information is used to assign

operating condition states (or labels) to the machine condition features. A machine

condition model is optimised on the machine condition features from each operating

condition state.

The information from the operating and machine condition models are combined using

probabilistic approaches to generate a discrepancy signal which quantifies the deviation

from the expected behaviour of the machine condition features for the present operat-

ing conditions. The information from the machine condition and operating condition

models are combined by first considering the joint distribution over all machine and

operating condition features, model parameters and operating condition model latent

states. The states and the model parameters are marginalised out to obtain a mar-

ginal distribution over the machine and operating condition features. The discrepancy

signal is obtained from the negative log-likelihood of the probability distribution of

the machine condition features statistically conditioned upon the operating condition

features. This process is thoroughly discussed in section 4.2.3. The discrepancy signal

is subsequently post-processed so that fault detection, location and trending is possible

in fluctuating operating conditions. Take note that in this diagnostic methodology the

features generated from a healthy machine is modelled and not the machine itself (as

opposed to physics-based models).

The training process follows steps 1 to 6, while the evaluation process follows steps 1

to 8 in figure 4.1. Each step in the process is explained in detail in the subsequent

sections. The vibration signal obtained from the tri-axial accelerometer in figure 2.8

with the operating conditions in figure 2.6 is used to illustrate the concepts in this

chapter unless stated otherwise.
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4.1 Feature extraction

A two-phase feature extraction process is proposed to extract the operating and ma-

chine conditions of the gearbox. The necessity of this is illustrated in figure 4.2 where

a revolution-frequency distribution is computed from an order tracked vibration signal.

If machine condition features are extracted from the revolution-frequency distribution,

(a)

(b)

Figure 4.2: Illustration of ten features extracted from a revolution-frequency distribu-

tion at different shaft revolutions. A feature is located within a square at a specific

revolution along the frequency axis. Some features contain dominant rotational speed

information and some do not as indicated by (a) and (b), respectively.

then it will contain machine condition information as well as operating condition in-

formation (see (b) in figure 4.2). Hence if the machine condition features are considered

in isolation, it is difficult to ascertain the cause of the magnitude changes in the fea-

tures. If operating condition information is extracted and used when investigating the

machine condition features, the cause of changes can be attributed either to changes

in operating condition or changes in machine condition.

4.1.1 Fault localisation

A single set of machine condition features can be extracted from the raw vibration

signal, but the features are insensitive to incipient faults and fault localisation is im-

possible. In the speech recognition field, which exhibits many similarities to the rotary

machine diagnostic field, an audio signal is windowed into constant time segments from

which features are extracted (Lee, 1990). Even though the speed at which the words

are pronounced is unknown, most humans speak at approximately the same speed and
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hence it is relatively simple to fix a window length in the time domain. However, it is

not possible to fix a window in the time domain for rotary machine data measured in

fluctuating speed conditions, since the characteristics within each window are depend-

ent on the rotating speed. This motivates extracting features from the angle domain,

since the rotary machines are inherently angle-cyclostationary (Antoni et al., 2004).

An example of a windowing process is illustrated in figure 4.3 to allow gear fault

localisation. Each rectangular window in figure 4.3 contains the same characteristics

Extract 
N-features

Figure 4.3: An illustration of the windowing process which allows angle localised fea-

tures to be extracted from a signal. This rack gear emphasises that the windows have

a physical significance in the angle domain for rotating machinery.

(i.e. data generated from the meshing tooth) and therefore the features from each

window are supposed to be the same under constant operating conditions. However, if

a tooth of a gear is damaged, then the features associated with the tooth differs at each

rotation from the expected behaviour, which helps with fault localisation. To ensure

that the information within the windows remain consistent, only small order tracking

errors are allowed.

The window length is critical to the success of the feature extraction process. Fea-

tures extracted from a short window is sensitive to non-condition related outliers (i.e.

noise) and too long windows make fault localisation impossible. Window overlapping

is beneficial, since this allows larger windows to be used with little loss in fault localisa-

tion capabilities. This windowing process is applied to extract operation and machine

condition features from the order tracked vibration signal in the proposed methodology.

4.1.2 Operating condition features

The mean estimated rotational speed, from the maxima tracking process, within an

operating condition feature window is extracted as the first operating condition feature.

The aforementioned feature does not necessarily reflect the instantaneous load in the
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system during data acquisition and therefore additional features need to be extracted.

The load sensitive features are extracted from the spectrogram of the order tracked

vibration signal. The amplitudes of the fundamental gear mesh frequency and its four

harmonics are extracted from the spectrogram, as shown in figure 4.4.
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Figure 4.4: Operating condition features extracted from the spectrogram of the order

tracked signal, where the abscissa denotes shaft revolutions.

It is expected that additional amplitude modulation from fluctuating loads is reflected

in the operating condition features extracted from the spectrogram. Bartelmus and

Zimroz (2009a) found that features from the short-time acceleration spectrum contain

operating condition information. Bartelmus and Zimroz (2009b) used a filtered vibra-

tion signal only consisting of the gear mesh frequency to estimate the instantaneous

load present in a bucket wheel excavator, which supports the idea that the features

should be extracted from the gear mesh frequency of the monitored gearbox. The sens-

itivity of the spectrogram to impulses is influenced by the window length that is used.

It is expected that by making the windows sufficiently long, the presence of impulses

due to localised damage are masked by the operating condition effects. It is assumed

that the operating conditions are approximately constant for one gear rotation and

therefore the window length, used to extract the operating condition features, is one

gear rotation. Another motivation for using long angular windows for the operating

condition feature extraction is addressed in section 4.2.2.

The spectrogram features and the rotational speed features have different magnitudes

which cause the features with larger magnitudes to dominate the operating condition

modelling and clustering process. All the operating condition features are linearly

scaled so that each dimension in the feature space has the same order of magnitude.

Each feature is scaled independently between [−10, 10], where the new dimension is

chosen for convenience. The scaling coefficients for each dimension are obtained from
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the training data and is applied to the training, validation and testing operating con-

dition features. Redundant information is present in the spectrogram features, since

the gear mesh frequency and its harmonics are extracted. This redundant information

is removed by performing PCA on the data, where PCA is discussed in section 4.1.4.

4.1.3 Machine condition features

The wavelet coefficients have proven to be sensitive to the impulses generated by local-

ised and distributed faults (see section 1.2.1.9) and therefore machine condition features

are extracted from it. A wavelet coefficient is obtained at a scale (or frequency value)

for each step along the order tracked vibration signal. Machine condition features are

extracted from the windowed wavelet coefficients at each scale or frequency band. Two

distinct machine condition feature sets are separately investigated in this study,

• Four features are extracted from the windowed continuous wavelet coefficients

at each scale. Specific scales are investigated which correspond to frequency

components with known diagnostic information.

• A single feature is extracted from the windowed wavelet packet coefficients at

each frequency band of the whole vibration signal spectrum. It is assumed that

the frequencies which contain diagnostic information are unknown.

4.1.3.1 Continuous wavelet transform features

The continuous wavelet coefficients are extracted from the discrete vibration signal,

with equation (1.1), by using discrete time steps, but with preselected scales. The

wavelet basis function as well as the scales, a1, have to be selected before the CWT can

be calculated. The Meyer wavelet basis function is investigated, since it was effective

in the study by Jedliński and Jonak (2015) for gearbox fault detection. The CWT

of the gearbox vibration signal in a healthy and a damaged condition in figure 4.5 is

obtained by using equation (1.1) with the Meyer basis functions.

The resonance bands located between 300 and 800 orders in figure 4.5b contain oper-

ating condition information and indicates the possibility of damage within the gearbox

if compared to figure 4.5a. It is difficult to ascertain the cause of the higher amplitude

levels in the range of 300 and 800 orders (i.e. is it localised or distributed damage) as

well as the extent of the damage from figure 4.5b. The resonance bands are a function of

the system and with a novelty detection approach the information in figure 4.5b is not

known beforehand. The gear mesh frequencies of a gearbox are easily calculated and
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(a) (b)

Figure 4.5: Continuous wavelet transform (CWT), with a Meyer wavelet basis function,

of the vibration signals from a gearbox with a healthy and a damaged gear presented

in figure 4.5a and 4.5b, respectively.

contain diagnostic information as well (Dalpiaz et al., 2000, Randall, 1981). Therefore

the continuous wavelet coefficients are calculated for 20 scales in a bandwidth of three

orders around the first five gear mesh frequencies so that features can be extracted

from it. This results in 100 scales at each angular window.

The wavelet coefficients are windowed with a rectangular window so that features

can be extracted from each window at each scale. The window length of the wavelet

coefficients at each scale is 2π/Nteeth radians with a 50% overlap between windows,

where Nteeth denotes the number of teeth on the gear of interest. The statistical

functions, presented in table 4.1, are applied to the windowed wavelet coefficients at

each scale and are used as machine condition features. The four features in table 4.1

result in a 400 dimensional machine condition feature space.

Table 4.1: The features extracted from the continuous wavelet coefficients W at scale

a1[s]. Note that the wavelet coefficients are windowed with rectangular windows and

therefore the summation is performed over the N non-zero wavelet coefficients. The

mean of the non-zero wavelet coefficients at scale a1[s] is denoted by µW [s].

Energy
∑

iW (a1[s], a2[i])
2

Skewness
1
N

∑
i(W (a1[s],a2[i])−µW [s])3

[ 1
N

∑
i(W (a1[s],a2[i])−µW [s])2]

1.5

Kurtosis
1
N

∑
i(W (a1[s],a2[i])−µW [s])4

[ 1
N

∑
i(W (a1[s],a2[i])−µW [s])2]

2

RMS
√

1
N

∑
iW (a1[s], a2[i])2
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4.1.3.2 Wavelet packet transform features

The wavelet packet transform (WPT) discretizes the frequency axis into fixed bands as

opposed to the CWT. The WPT is implemented by low-pass and high-pass filtering the

signal to obtain approximation and detail coefficients, respectively. The approximation

and detail coefficients at the previous level are used to obtain the sets of approximation

and detail coefficients at the next level. The bandwidth, as well as the sampling

frequency, are halved with each level of decomposition. The WPT is discussed in

section 1.2.1.9 and a more detailed overview is given by Addison (2002).

The WPT spectrum of the healthy and damaged gearboxes in figure 4.6 is obtained

from the db1 wavelet basis function with a level four wavelet decomposition. This leads

to the frequency band being decomposed into 24 bins. The db1 wavelet basis function

is motivated by the results by Rafiee et al. (2010) and Jedliński and Jonak (2015).

Figure 4.6: Wavelet packet transform (WPT), with a Daubechies db1 wavelet basis

function using a level four decomposition, of the vibration signal from a gearbox with

a healthy and a damaged gear.

The same resonance bands identified in the CWT of the vibration signal is present in

the damaged spectrum in figure 4.6. It is evident from figure 4.6 that the frequency

resolution of the WPT is poorer compared to the CWT. However, the WPT has the

following advantages over the CWT:

• The coefficients are orthogonal.

• Since the coefficients are decomposed in terms of bands, some error is allowed in

the phase estimation procedure in the tacholess order tracking process.

• The exact characteristic fault frequencies do not have to be known or determined

beforehand.

The purpose of the WPT is to use a naive approach to select features where the location
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of the fault information in the frequency spectrum is unknown. The WPT coefficients

are windowed similarly to the CWT, but only the energy of the windowed wavelet

coefficients, found in table 4.1, is calculated to minimise the feature extraction time.

4.1.4 Dimensionality reduction techniques

The large dimensional machine condition feature space as well as the possibility of re-

dundant information within both the machine and operation condition feature spaces,

motivate the use of dimensionality reduction techniques. For example, 80,600 paramet-

ers need to be estimated when modelling a 400 dimensional feature space with a single

Gaussian distribution. This large dimensional feature space causes problems when per-

forming model optimisation and when insufficient training data are available. Principal

component analysis (PCA) is used in this study, since it has been effective on a range

of problems (see section 1.2.2.2) and it does not require additional hyperparameter

optimisation. This makes it ideal for novelty detection problems.

The eigenvalues and the eigenvectors of the covariance matrix of the features are ob-

tained in the first step of PCA. The eigenvectors of the covariance matrix are orthogonal

and are the new axes of the transformed feature space. Small eigenvalues indicate that

the highly correlated features exist in the original feature space and therefore the new

principal feature space is selected to consist only of the principal directions with large

eigenvalues (i.e. with a large information contribution). The d-largest eigenvalues

and corresponding eigenvectors are used to transform the dataset from the original

D-dimensional feature space to a d-dimensional feature space with,

yn = V T
1:d (xn − µX) (4.1)

where the mean of the dataset X and the eigenvectors of the d-largest eigenvalues

are denoted by µX and V1:d, respectively. A D-dimensional sample xn is transformed

to a d-dimensional vector yn with equation (4.1) at increment n. The transformed

space can be whitened to reduce the covariance of the new feature space to an identity

matrix by yin ← yin/
√
ξi, where ξi is the eigenvalue associated with the ith component

(Bishop, 2006). The accumulative contribution rate (ACR) of principal component k

is calculated from,

ACRk =

∑k
j=1 ξj∑D
i=1 ξi

, with 1 ≤ k ≤ D, (4.2)

where ξi is the ith eigenvalue and the ACR is used to select the dimensionality of the

new feature space by using a predefined threshold.
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4.2 Machine learning models

The operating and machine condition features, extracted from the processed order

tracked vibration signal, are modelled using machine learning approaches in this study.

Hidden Markov models (HMM), a probabilistic modelling approach introduced in sec-

tion 1.2.2.3, are used to model the operating and the machine condition features and

the motivation for this are given in the subsequent sections.

A HMM contains a latent variable Z representing discrete states which follows a

Markov process. The joint distribution of the latent variable over NT increments is

decomposed with the product rule of probability,

p(Z) = p(z1)

NT∏
i=1

p(zi|z1:i−1) (4.3)

and is simplified to,

p(Z) = p(z1)

NT∏
i=1

p(zi|zi−1) (4.4)

if the latent variableZ follows a first order Markov process, where p(z1:i−1) is a compact

form of p(z1, z2, . . . ,zi−1). The latent variable uses a 1-of-K coding scheme, where

znk = 1 if the active hidden state at time increment n is k and zni = 0 if i 6= k. The

transition probability, denoted by p(znj|zn−1 i), is discrete and time-invariant in this

study.

The likelihood function of a HMM (Bishop, 2006),

p(X) =
∑
z1

p(z1)
∑
z2

. . .
∑
zNT

[
NT∏
i=2

p(zi|zi−1)
NT∏
n=1

p(xn|zn)

]
(4.5)

takes the hidden state sequence as well as the position of the dataset X in the fea-

ture space into account. The p(zi|zi−1) is the transition probability of the HMM and

p(xn|zn) is the observation distribution. A Gaussian observation distribution, in the

form of equation (1.2), is used to describe the relationship between a hidden state and

its corresponding features. A continuous distribution is used in this study, because no

quantisation errors occur as opposed to using a discrete distribution (Theodoridis and

Koutroumbas, 2009).

It is significantly more complex to evaluate the likelihood function in equation (4.5),

to infer the latent variable over all time increments and to optimise the parameters of

a HMM as oppose to a GMM. However, computationally efficient methods have been

developed to alleviate the aforementioned problems. The likelihood function in equa-

tion (4.5) is computed efficiently by exploiting the graph structure of the HMM, which
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is significantly more efficient than a brute force approach. The optimal hidden state

sequence is inferred by using the Viterbi algorithm, which maximises p(z1:NT
|x1:NT

,θ).

The optimisation procedure is performed by using the expectation-maximisation pro-

cedure to find the maximum likelihood or maximum posterior solutions which is effi-

ciently implemented using the forward-backward algorithm. More information on this

can be found in the literature by Rabiner (1989) and Bishop (2006).

4.2.1 Operating condition model

The objective of the operating condition model is to identify clusters within the oper-

ating condition features which are approximately the same. The operating conditions

contain strong sequential characteristics due to physical constraints such as the inertia

of the rotary components and it is therefore expected that the operating condition

features exhibit sequential properties as well. This makes a HMM well suited to model

the operating condition features. The operating condition classification process is il-

lustrated in figure 4.7.

Vibration signal

Estimated rotational speed

Spectrogram

Hidden Markov model

Hidden state sequence

PP

Figure 4.7: Illustration of the operating condition classification process, where pre-

processing the features is denoted by PP.

The extracted operating condition features, discussed in section 4.1.2, are pre-processed

using linear scaling methods and PCA. The processed features are evaluated with the

trained operating condition HMM and a hidden state or operating condition state

(OCS) sequence is inferred with the Viterbi algorithm. It is assumed that the operating

condition features that are classified to a specific OCS, correspond to approximately the

same operating conditions during data acquisition. It should be noted that the OCS

sequence is obtained using unsupervised learning and therefore the operating condition

state number is assigned arbitrarily to a cluster in the feature space.
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4.2.2 Machine condition model

Each operating condition window, used to extract the operating condition features, are

classified to a specific operating condition state with the information from section 4.2.1.

The machine condition feature windows operate on different data (i.e. wavelet coeffi-

cients at each scale) than the operating condition feature windows, but both operate

on data along the gear revolution axis. The machine condition features, extracted from

windows that overlap with an operating condition feature window, are labelled with

the same OCS as the operating condition features in that window. This is illustrated

in figure 4.8.

Operating condition feature windows
Machine condition feature windows

Gear revolution j Gear revolution j + 1

Operates on different data

OCS 1

OCS 3
OCS 2

Figure 4.8: The operating condition and machine condition feature windows along the

gear revolution axis are shown with the operating condition classification results.

It is assumed that the different sets of machine condition features associated with a

specific OCS are similar for a gearbox in the same condition, since the operating con-

ditions are similar according to the operating condition model. A machine condition

model is created for each OCS and only trained with the machine condition features

classified to the specific OCS. This makes the different machine condition models in-

dependent of operating conditions if the operating condition classification is correct.

The training process of the machine condition models is illustrated in figure 4.9.

The machine condition features, processed with PCA, are modelled by a HMM, since

the HMM has more discriminatory power than GMMs and Gaussian distributions,

because of the additional temporal dimension. However the HMM requires features

to be sampled consecutively during training and evaluation (see equation (4.5) for

example), which requires that consecutively sampled machine condition features be

from the same OCS. This restriction is satisfied by using long operating condition

windows, where the operating condition windows are discussed in section 4.1.2.

The machine condition models can easily be evaluated on new features, but more work
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MCF

OCS

Set of MC models

Gear revolutions

HMM for OCS 3

HMM for OCS 2

HMM for OCS 1

Figure 4.9: Illustration of the machine condition (MC) model training process using

the operating condition states (OCS) and the machine condition features (MCF). The

different machine condition features are located along the ordinate. Note that the

feature processing is not included in the illustration.

is required to generate a discrepancy signal from the machine condition models.

4.2.3 Discrepancy signal generation

The expected behaviour of the machine condition features, extracted from a healthy

gearbox, is captured by a machine condition model for each operating condition state.

The deviation of the machine condition features from its expected behaviour can be

quantified with a discrepancy measure at each machine condition feature window to

generate a discrepancy signal. The discrepancy signal can be generated from the same

process used during training (see section 4.2.2), similar to Vinson (2014). This means

that the OCS classification process determines which machine condition model should

generate the discrepancy measure at the corresponding machine condition window.

However, this discrepancy signal generation procedure is not optimal, since it does not

capture the uncertainty associated with the OCS classification process and gives false

confidence in the generated discrepancy signal. It is expected that the discrepancy

signal is more robust to detect faults in fluctuating operating conditions by condition-

ing the machine condition features on the operating condition features instead of the

operating condition states. Some operating condition states are more probable than

others for the specific operating condition features, which means that the output of

some machine condition models are more correct than others. For example, when two

operating condition states are approximately equally probable, instead of selecting the
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most probable operating condition state to select the machine condition model, both

machine condition models can be used to generate the discrepancy signal.

A probabilistic approach is used to generate the discrepancy signal in this section. The

first step in deriving the discrepancy signal, is considering independent, identically dis-

tributed (i.i.d) machine condition features. The solution of this derivation is modified

for HMMs later in this section. The joint distribution over all the random variables at

machine condition feature window t,

p(bt, z
o
t , {θb},θo,ot) =p(bt|zot , {θb},θo,ot)p(zot |{θb},θo,ot)×

p({θb}|θo,ot)p(θo|ot)p(ot)
(4.6)

is considered, where the operating condition and the machine condition features are

denoted by ot and bt, respectively. The latent state of the operating condition model

is denoted by zot and contains the information of the OCS at machine condition fea-

ture window t. The latent states of the machine condition models are not present in

equation (4.6) with the explanation provided later in this section. The parameters of

the operating condition model and the set of machine condition models are denoted by

θo and {θb}, respectively. The set of machine condition models contain the parameters

of the Nocs machine condition models, {θb} = {θ1b ,θ2b , . . . ,θ
Nocs
b }, where θib denotes the

parameters of the ith OCS. There are Nocs operating condition states in the operating

condition model. The full joint distribution in equation (4.6) is simplified to,

p(bt, z
o
t , {θb},θo,ot) = p(bt|zot , {θb})p(zotj|ot,θo)p(ot|θo)p(θo, {θb}) (4.7)

from the conditional independence properties of the different random variables. The

only variables that are important for generating the discrepancy signal are the ma-

chine condition features and the operating condition features. Hence the unimportant

variables are marginalised out,

p(bt,ot) =
Nocs∑
j=1

∫∫
p(bt, z

o
tj, {θb},θo,ot)dθod{θb} (4.8)

to obtain a joint distribution over the machine and operating condition features. The

integrals in equation (4.8) are complicated to compute and therefore it is assumed

that the joint distribution p(θo, {θb}) is sharply peaked around the variables θ̂o and

{θ̂b}, which are obtained from maximising the likelihood function. This allows equation

(4.8) to be simplified into a joint distribution over the machine and operating condition

features,

p(bt,ot) ≈
Nocs∑
j=1

p(bt, z
o
tj, θ̂

j
b , θ̂o,ot) (4.9)
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from which the conditional distribution,

p(bt|ot) ≈
Nocs∑
j=1

p(bt|zotj, θ̂
j
b)p(z

o
tj|ot, θ̂o) (4.10)

is obtained. The machine condition features are conditioned on the operating condition

features in equation (4.10) to generate a discrepancy signal in the form,

η[t] = − log p(bt|ot) (4.11)

which is robust to operating condition changes. The negative log-likelihood (NLL)

or the error function over each machine condition window t, denoted by η[t], is used

as the discrepancy signal in this study. Note that η[t] is a discrete signal at machine

condition window t and bt is a multidimensional feature at window t in equation (4.11).

The assumption that the joint distribution is sharply peaked around the maximum

likelihood estimates, to simplify equation (4.8) to (4.10), is valid if a lot of data is used

(Bishop, 1995).

This whole derivation is based on the assumption that the machine condition features

are i.i.d, however this is invalid for the machine condition features modelled by a HMM.

Equation (4.10) is slightly modified for a set of HMMs, modelling the machine condition

features,

p(bt|ot, b1, . . . , bt−1) ≈
Nocs∑
j=1

p(bt|zotj, θ̂
j
b , b1, . . . , bt−1)p(z

o
tj|ot, θ̂o) (4.12)

where the discrepancy is calculated similarly to equation (4.11). The likelihood of a

machine condition model at a specific OCS is weighted with the probability of being at

the specific operating condition state. The weights, denoted by p(zotj|ot, θ̂o), are easily

calculated for latent variable models such as GMM and HMM. It is known as the

responsibility function in GMM literature and is easily obtained by using the forward-

backward algorithm for HMMs (Bishop, 2006). Since the operating condition features

have a different sampling frequency than the machine condition features (see figure

4.8), p(zotj|ot, θ̂o) is not strictly available. However, it is assumed that the posterior

distribution over the latent states at an operating condition window is the same for all

coinciding machine condition windows, which makes p(zotj|ot, θ̂o) available.

The computation of the discrepancy signal is illustrated in figure 4.10 for i.i.d machine

condition features. The operating condition model is evaluated with the sequence of

operating condition features and each of the machine condition models are evaluated

with the machine condition features at machine condition window t. A likelihood is

generated from each machine condition model i with parameters denoted by θib and it

is weighted by the posterior distribution over the latent variable zo of the operating

Page 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



New data

Phase estimation, feature extraction, 
feature pre-processing and windowing 

MC features at window t:OC features at window t

OC model
Set of
MC models

Figure 4.10: The discrepancy signal generation process with equation (4.10) and equa-

tion (4.11) is visualised for i.i.d machine condition features.

condition model. A weighted sum is computed to obtain the conditional distribution

p(bt|ot) where the discrepancy is calculated from equation (4.11).

From figure 4.10 it is concluded that it is important that the operating features must

be insensitive to the presence of faults, since the posterior distribution over the latent

variable of the operating condition model should only indicate which OCS is more

probable. The latent states of the machine condition models are not present in equation

(4.6), since it is marginalised out in the computation of the likelihood of the machine

condition model p(bt|zotj, θ̂
j
b).

4.2.4 Model selection

The complexity of a probabilistic model (i.e. the number of parameters) needs to be

determined before optimising the model. In the case of novelty detection, it is not

possible to use the novelty data (i.e. the gearbox in different damaged conditions) to

find the optimal model complexity which is able to detect faults well.

A complex model provides more flexibility to fit complicated data at the cost of a larger

optimisation space and also the risk of overfitting on the data. A simple model has
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less flexibility to fit complicated data and could result in modelling errors, but it is

less likely to overfit on the data. This is known as the bias-variance trade-off (Bishop,

2006) and can be used to determine the appropriate model complexity. The model

evidence,

p(X|Mi) =

∫
p(X|θ,Mi)p(θ|Mi)dθ (4.13)

for the multidimensional dataset X and model Mi with parameters θ, favours non-

complex models which describe the data well. However equation (4.13) is analytically

intractable and therefore approximation methods are used in practical implementa-

tions. The Bayesian information criterion (BIC) is computed from the Laplace ap-

proximation, a variational approach, which finds approximate solutions for equation

(4.13) (Bishop, 2006). The BIC,

−2× p(X|Mi) ≈ BIC = −2 log p(X|θ̂) +Nθ logNX (4.14)

needs to be minimised, which results in maximising equation (4.13) with respect to

model complexity if the approximation is correct. The first term in equation (4.14)

contains the negative log-likelihood of the optimised model parameters, denoted by θ̂,

and it penalises poor fits. The second term contains the number of parameters Nθ and

the number of training data NX and it penalises model complexity. The BIC penalises

model complexity more than other similar methods such as Akaike information criterion

(Bishop, 2006). Equation (4.14) is used as a guideline to select the appropriate model

complexity in this study.

4.3 Post-processing the discrepancy signal

Three discrepancy signal post-processing techniques are proposed in this study which

allow faults to be detected, localised and trended. Automatic fault detection is per-

formed with the fault localisation technique and statistical theory. Therefore, the fault

localisation section precedes the fault detection section.

4.3.1 Fault localisation

4.3.1.1 Synchronous average of the discrepancy signal

The discrepancy signal generated, in section 4.2.3, does not intuitively indicate the

condition of the gearbox and requires further processing so that the condition of the

Page 77

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



machine can be inferred. The synchronous average of the discrepancy signal η,

µ(1)
η [l] =

1

Nr

Nr−1∑
i=0

η[l + iNs], where 1 ≤ l ≤ Ns (4.15)

computed with Ns samples per gear revolution and over Nr rotations, enhances the

synchronous components induced by localised faults etc. The synchronous average

is used by Heyns, Heyns and De Villiers (2012) and Vinson (2014) to process the

generated discrepancy signals.

4.3.1.2 Second synchronous average of the discrepancy signal

The ability of the synchronous averaging process to attenuate non-synchronous com-

ponents depends on the number of rotations used for averaging (Stander and Heyns,

2005). In some cases a sufficient number if rotations are not available or spurious com-

ponents, which adversely affects the quality of the synchronous average, are present

in a single measurement. A second synchronous averaging process of the discrepancy

signal, between the synchronous averages of consecutive measurements, are proposed

to alleviate the aforementioned problems. The second synchronous average at position

l on the gear,

µ(2)
η [l] =

(
Nm+Na∑
i=1+Na

Nr,i

)−1 Nm+Na∑
k=1+Na

(
Nr,kµ

(1)
η,k[l]

)
(4.16)

is computed over Nm synchronous averages µ
(1)
η,k[l] from a set of Nm consecutive meas-

urements in the form of a weighted average. The synchronous average of measurement

k, denoted by µ
(1)
η,k[l], is performed over Nr,k gear rotations and is calculated from

equation (4.15), where the measurement number is excluded. The second synchronous

average is computed from measurement 1 +Na to measurement Nm +Na and after the

synchronous average is computed Na is increased so that the next averaging process

can ensue. If Na is increased by Nm then a 0% overlap between measurements occur,

and if Na remains the same, then a 100% overlap between measurements occur. If the

period between measurements is small, the condition of the gearbox is the same for

a finite amount of consecutive measurements and therefore equation (4.16) attenuates

only non-diagnostic information.

It is assumed that there is no phase difference between the Nm measurements when

implementing equation (4.16). Non-synchronous averaging occurs in the second aver-

age, if the phase difference between measurements is non-zero. The phase difference

between measurements cannot be obtained from a tachometer, since it is not available

in this study. Instead the cross-correlation, denoted by the operator ?, between the
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discrepancy signal from a reference measurement ηref[t] and measurement i, denoted

by ηi[t],

ηref ? ηi[t] =

NT−t−1∑
n=0

ηref[t+ n]ηi[n] (4.17)

is maximised so that the time delay or phase difference between ηref[t] and ηi[t] can be

estimated. The phase difference, calculated from the cross-correlation maximisation

process, is used to align the new measurement to the reference measurement. This is

performed so that the phase difference between the two aforementioned measurements

are zero. The best results are obtained for minimising the phase between the Nm

measurements, when using the last measurement as a reference signal. See Appendix

B for more details on the most appropriate reference signal. The presence of two

faults may lead to the presence of local maxima in the objective function in equation

(4.17). However, the cross-correlation maximisation process is a global optimisation

strategy with the results unaffected by the presence of local minima. Therefore the

cross-correlation process is theoretically unaffected by the presence of more than one

fault.

The advantages of using the second synchronous averaging process between measure-

ments are illustrated in figure 4.11 on simulated data. A synchronous average of a

discrepancy signal is simulated for a gear that has a fault at 180 degrees. The discrep-

ancy associated with the damage is 31, while the healthy part has a discrepancy of 30.

A lot of synthetic noise is added to synchronous average to make it difficult to observe

the damage on the gear. A 1,000 unique vibration signal measurements are available of

this gear and therefore 1,000 synchronous averages are available. The 1,000 synchron-

ous averages, of the discrepancy signal in figure 4.11a, are contained in the rows and it

is presented over one full gear rotation. A feint gear fault is observed at 180 degrees,

however it is immersed in a lot of noise which makes it difficult to infer the condition of

the gear. A second synchronous averaging process over 500 measurements is completed

with an overlap of 400 measurements between each average (i.e. Na increases by 100

between averaging processes). The result of this second synchronous averaging process

in figure 4.11b uses the mean measurement time of the Nm measurements in figure

4.11a with the simulated gear fault clearly observed at 180 degrees because the noise

was averaged out and only the diagnostic information is retained in the signal. Note

that this is merely an example to show that the second synchronous average is more

robust and it makes it easier to observe the damage if the synchronous average contains

spurious noise. The second synchronous average process is tested on experimental data

in section 5.2.
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Figure 4.11: The advantages of using the second averaging process for incipient fault

detection are illustrated on simulated data. The synchronous average of a simulated

discrepancy signal, with a lot of noise, is presented in figure 4.11a for 1,000 measure-

ments. The result of a second synchronous averaging process is presented in figure

4.11b with the noise content reduced and only the diagnostic information retained.

Normalised time is used on the ordinate to show the reduction in sampling frequency

in the measurement time.

4.3.1.3 Gear-pinion discrepancy distribution

The discrepancy signal, η, is generated at the meshing between the gear and the pinion.

If the gear and the pinion information is investigated simultaneously, it can provide

invaluable insight into the condition of the gears in the gearbox. A gear-pinion dis-

crepancy distribution J [i, l],

J [i, l] =
1

N g
r

Ng
r∑

k=1

ηg[i+ kN g
s ]ηp[l + kNp

s ] (4.18)

is proposed to investigate the information from the gear and the pinion simultaneously.

The discrepancy signal with respect to gear and pinion revolutions are denoted by ηg

and ηp, respectively. The incremental position on the pinion and the gear is denoted by

l and i, respectively. The gear completes fewer rotations than the pinion and therefore

the number of averages N g
r is set to the number of rotations completed by the gear.

The number of samples per revolution for the gear and the pinion discrepancy signals

are N g
s and Np

s , respectively. This procedure is similar to calculating the synchronous

average of the discrepancy signal in equation (4.15), but now the information from the

pinion and the gear is treated simultaneously. Since the pinion and the gear discrepancy

signals contain the same fault information and because they are multiplied in equation

(4.18), the gear-pinion discrepancy distribution contains a large bias if discrepancies
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are present. Therefore it remains critical to use the second average of the discrepancy

signal and compare it to an alarm threshold to infer the correct condition of the gear.

4.3.2 Fault detection

This second synchronous average needs to be monitored by an expert or by automat-

ically comparing it to an alarm threshold. The latter is used in this study, since it

is more robust and cost-effective. The threshold of the alarm is obtained from a con-

fidence bound generated from the healthy gearbox data, since it is based on sound

statistical theory. The mean and the standard deviation of the second synchronous av-

erage are estimated from a maximum likelihood approach and therefore the Student-t

distribution is appropriate to generate the confidence bound (Montgomery and Runger,

2011). An upper limit for the one-sided confidence bound for the second average µCB
η [i],

µCB
η [i] = µ̂η[i] + Tα,Nh−1

σ̂η[i]√
Nh

(4.19)

is obtained from the estimated mean µ̂η[i] and the standard deviation σ̂η[i] of the

healthy dataset so that an alarm threshold can be set. The Student-t indicator Tα,Nh−1

is obtained from Nh healthy data sets with a 100 × (1− α) % confidence interval

(Montgomery and Runger, 2011). Hence the second synchronous average from a set

of Nm measurements is compared to the threshold, set by equation (4.20), to infer the

condition as follows,

Condition =

{
µCB
η [i]− µ(2)

η [i] ≥ 0 Expected behaviour

µCB
η [i]− µ(2)

η [i] < 0 Novelty is observed at [i]
(4.20)

where µCB
η [i]− µ(2)

η [i] represents the degree of novelty and is calculated from equation

(4.16) and equation (4.19). The i in equation (4.20) represents a value of: 1 ≤ i ≤ Ns.

4.3.3 Fault trending

The second average of the discrepancy signal, computed with equation (4.16), can be

represented over measurement time by using the mean measurement time over the Nm

measurements as illustrated in figure 4.11. The discrepancy versus gear angle over time

can be used to trend a fault in the gear as it progresses. If only a localised fault is present

on the gear, it makes sense to plot the discrepancy value over time of the damaged

tooth. This is performed automatically with a healthy-damaged decomposition.

It is assumed that the gear contains a healthy and a damaged portion and that this is

reflected in a bimodal distribution in the second synchronous average of the NLL. The

Page 81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



two modes of the probability density can easily be estimated by using methods such as

k-means, GMM etc. The k-means algorithm is utilised for this since it is simple, cost-

effective and robust for this task. The healthy-damaged decomposition is implemented

as follows:

1. Initialise a k-means algorithm with two clusters, since it is assumed that the gear

contains a healthy and a damaged portion.

2. Find the two clusters within the data and classify the points according to those

clusters.

3. Calculate the mean and the standard deviation of the two clusters.

4. The cluster with the larger and the smaller mean is labelled as damaged and

healthy, respectively. The two clusters will be close to one another for a healthy

gear.

Note that this can easily be modified to accommodate an arbitrarily amount of damage

modes if the sampling frequency of the second synchronous average is sufficiently high

and the number of damage modes is known.

4.4 Conclusion

The proposed fault diagnostic methodology requires a vibration measurement from a

transducer connected to the gearbox of interest. The measurement from this transducer

contains diagnostic (machine condition) and operating condition information which is

extracted and modelled. A discrepancy signal is generated by combining the operating

condition and machine condition model information which is subsequently processed by

using a second synchronous averaging. The second synchronous averaged discrepancy

signal is compared to an alarm threshold set by a confidence bound generated from

healthy data to infer the condition of the machine. Fault trending can be performed

from the second synchronous average or from the healthy-damaged decomposition.

This procedure is tested in chapter 5 on the data in chapter 2.
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Chapter 5 Fault diagnostic

methodology: Results

The proposed diagnostic methodology in chapter 4 is validated on the numerical and

experimental gearbox data described in chapter 2. The numerical gearbox data are

investigated in section 5.1 and the experimental data are investigated in section 5.2.

The investigation on the numerical gearbox data is focused on the performance of the

machine condition features and corresponding machine condition models in their ability

to locate and trend faults with the first synchronous average. The investigation on the

experimental data focuses on the practical aspects of the diagnostic methodology, such

as automatic and robust fault detection, localisation and trending.

5.1 Numerical gearbox data

The numerical gearbox model, presented in section 2.1, is simulated in a healthy and in

damaged conditions with the operating conditions presented in figure 2.4a. The accel-

eration of the fifth degree of freedom, located in the horizontal direction on the second

mass block in figure 2.4b, is used as the measured signal in this section. The operating

conditions result in severe amplitude modulation in the vibration signal, which tests

the ability of the fault diagnostic methodology to handle complex fluctuating operating

conditions. This temporal vibration signal is converted to the angle domain using the

proposed tacholess order tracking method described in chapter 3.

The operating condition feature extraction and scaling is performed as described in

section 4.1.2. The dimension of the feature space is reduced using PCA, as outlined

in section 4.1.4, with the ACR threshold set to 80%. This results in an operating

condition feature space of six dimensions, with the features modelled with a Gaussian

observation distribution HMM. The more operating condition states (OCS) or hidden

states are used in the operating condition model, the more machine condition models

need to be optimised by using less training data, which can result in generalisation
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problems etc. Some of the OCS may be rarely visited when using a complex HMM,

which can result in the corresponding machine condition models to have insufficient

training data as well.

Only HMMs with two and three hidden states are investigated to model the operating

condition features for the numerical data in this study. The OCS sequence (or hidden

state sequence) results are superimposed with the normalised rotational speed over

gear revolutions in figure 5.1.

0 10 20 30

Gear revolutions [Rot]

Normalised rotational speed
Hidden state sequence

(a)

0 10 20 30

Gear revolutions [Rot]

Normalised rotational speed
Hidden state sequence

(b)

Figure 5.1: The hidden state sequence with respect to normalised rotational speed

for the numerical gearbox model over gear revolutions. The hidden state (or OCS)

sequence of the HMM with the two and three hidden states are presented in figure 5.1a

and 5.1b, respectively.

The hidden state (or OCS) sequence for the two state HMM in figure 5.1a is able to

capture the trend in the operating conditions well. The two hidden states, in figure

5.1a, correspond to the maximum and minimum operating conditions (i.e. rotational

speed and load). The hidden state sequence of the three state HMM, in figure 5.1b,

provides a finer resolution to the operating conditions, since a hidden state associated

with the transition region is added. However, this new hidden state (indicated as the

first hidden state in figure 5.1b) is rarely visited due to its features’ similarity with

the features associated with the other hidden states. This results in insufficient data

for optimising the machine condition model associated with the new hidden state.

Therefore a two state operating condition HMM is used in this study.

The machine condition feature extraction process, explained in section 4.1.3, is pre-

formed on the order tracked vibration signal with the CWT and WPT treated sep-

arately. The ACR for the CWT in figure 5.2a and the ACR of the WPT in figure

5.2b indicate that the dimensionality of the feature space is significantly lower than

the apparent dimensionality of the original feature space. Only the first 20 principal
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components are included for the CWT, since the ACR of the other principal compon-

ents is close to unity. Both the WPT and CWT feature spaces are reduced to a six

dimensional feature space with PCA, which results in little apparent information loss.

0 5 10 15 20

Principal component number

0.8

0.85

0.9

0.95

A
C
R

(a)

5 10 15

Principal component number
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0.8

0.85

0.9

0.95

1

A
C
R

(b)

Figure 5.2: The accumulative contribution rate (ACR) of the principal components of

the CWT and WPT machine condition features in figure 5.2a and 5.2b, respectively.

The machine condition features are labelled with the same operating condition states

as the corresponding operating condition features as explained in section 4.2.2 and

illustrated with figure 4.8. The labelled machine condition features are used to train

two HMM machine condition models, with three hidden states in each model, with the

process described in section 4.2.2. A discrepancy signal is generated from the procedure

described in section 4.2.3 if new data are evaluated. The generated discrepancy signal,

in the form of a negative log-likelihood signal (NLL), requires further processing before

the condition of the machine can be inferred.

The synchronous average of the discrepancy signal from the numerical gearbox data is

displayed in figure 5.3 for various gear tooth fault severities. The machine condition

models are trained on the machine condition features extracted from the CWT. The

localised faults are induced in the gearbox of the model by the procedure discussed in

section 2.2 with the result shown in figure 2.2. A 0.05 fault severity indicates that the

gear mesh stiffness of the damaged tooth is (1−0.05)×kgm(t), where kgm is the stiffness

of a healthy tooth. The damaged tooth is centred at 180 degrees in all of the figures

to make the comparison easier. A fault severity of 0.05 and larger is easily detected in

the synchronous average of the discrepancy signal from the CWT machine condition

features. The discrepancy generated by the damaged tooth looks very similar to the

envelope of an impulse in figure 5.3.

The same investigation is performed with the machine condition features extracted

from the WPT. The synchronous averages of the discrepancy signals generated from

the numerical gearbox in different machine conditions are presented in figure 5.4.
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Figure 5.3: Synchronous average of the discrepancy signal for different fault severities

using CWT machine condition features.
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Figure 5.4: Synchronous average of the discrepancy signal for different fault severities

using the WPT machine condition features.

A fault with a severity of 0.1 is observed in the synchronous average of the discrepancy

signal in figure 5.4. However, the synchronous average of the data generated from a

gearbox with a fault severity of 0.05, looks very similar to a healthy gearbox. The

inability of the machine condition models, trained on WPT features, to detect a fault

with a severity of 0.05 is attributed to the difference between the CWT and the WPT

feature extraction approaches. A naive approach is used with the WPT machine con-

dition features, since it is assumed that the nature of the damage is unknown. In the

machine learning field, features are extracted that convey the information of interest

(machine condition information), since unimportant information adversely affects the

performance of the machine learning models. Hence the WPT features are able to

detect localised damage from all of the available information at the cost of a decreased

sensitivity to incipient faults. It is envisaged that the WPT features are appropriate

for cases where the nature of the damage and the frequency range, in which the dam-

age manifests within the spectrum, are unknown. This reduces the need for experts to
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identify the frequency range that needs to be investigated to diagnose machine faults.

The NLL associated with the damaged portion of the gear in figure 5.3 and 5.4 is

trended against fault severity in figure 5.5. The damaged portion is extracted from the

healthy-damaged decomposition of the discrepancy signal.

0 0.05 0.1 0.15 0.2

Fault severity

30
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(a) CWT features
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(b) WPT features

Figure 5.5: The NLL, associated with the damaged portion of the gear, is trended

against fault severity. The performance of the CWT and the WPT machine condition

features are compared in the figure.

A change in fault severity is detected by both sets of machine condition features in

figure 5.5, however, the CWT machine condition features are more sensitive than the

WPT machine condition features to incipient faults.

Lastly, two different fault diagnostics methodologies are compared on the numerical

gearbox data in figure 5.6. The first case, with results in figure 5.6a, does not incor-
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(a) Neglecting OC information
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(b) Incorporating OC information

Figure 5.6: The result of incorporating operating condition information into the fault

diagnostic methodology, with WPT machine condition features being used.

porate operating condition information into the process. Hence, only a single machine
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condition model is trained with the WPT machine condition features. The second case,

in figure 5.6b, follows the proposed diagnostics methodology. An evident improvement

is observed in the ability of the synchronous average to detect faults if operating con-

dition information is incorporated into the process.

The proposed methodology performs well on the data generated from the numerical

gearbox model. The synchronous average, obtained from the proposed methodology,

is sensitive to changes in machine condition caused by fault growth. The proposed

discrepancy signal post-processing techniques in section 4.3 are not required for the

numerical gearbox data and are only investigated on the experimental data as a result.

5.2 Experimental gearbox data

In this section, the proposed diagnostic methodology is evaluated with the experimental

data introduced in chapter 2. The feature extraction and the model optimisation

aspects of the diagnostic methodology are treated first in this section, whereafter the

performance of the diagnostic methodology is investigated. The proposed tacholess

order tracking procedure, developed in chapter 3, is used in this section. The operating

and machine condition features are extracted from the order tracked vibration signal

measured from the axial component of the tri-axial accelerometer.

5.2.1 Feature extraction and model optimisation

5.2.1.1 Operation condition feature extraction, processing and modelling

The two sets of operating condition features, discussed in section 4.1.2, result in a

poorly scaled 18 dimensional feature space because the magnitude of the spectrogram

features is larger than the rotational speed of the gear shaft. The principal component

dimensionality reduction process would be dominated by the spectrogram features

and therefore each operating condition feature is scaled independently as discussed

in section 4.1.2. PCA analysis is performed on the scaled feature space to remove

correlated (uninformative) features. The ACR of the operating condition feature space

in figure 5.7 is calculated from equation (4.2).

A five dimensional operating condition feature space is obtained after setting the ACR

threshold to 80%. The linearly scaled operating condition features are transformed to

the principal component space with equation (4.1). The first two principal components

of the operating condition features in figure 5.8 indicate that there is a strong sequential
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Figure 5.7: The accumulative contribution rate (ACR) of the linearly scaled operating

condition features.

pattern along the manifold of the features. This makes a HMM well suited for modelling

the operating condition features.
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(a) All training OC features
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Figure 5.8: The principal component space of the operating condition (OC) features

of the undamaged gearbox with the gear revolutions (in rotations) also indicated in

figure 5.8b.

The model complexity of the operating condition HMM describing the experimental

data is chosen similarly to the numerical data in section 5.1. The three hidden state

operating condition HMM provides the ideal compromise between model simplicity and

good results and it is used further in this section. The rotational speed of the gearbox

shaft is superimposed on the hidden state sequence from the aforementioned operating

condition HMM in figure 5.9. It is concluded from the gear revolutions in figure 5.8b

and the hidden state sequence in figure 5.9 that the operating condition features are

sensitive to operating condition changes.
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Figure 5.9: The OCS or hidden state sequence of the operating condition model with

the corresponding rotational speed over gear revolutions.

5.2.1.2 Machine condition feature extraction, processing and modelling

The machine condition feature processing results are only illustrated for the CWT

machine condition features in this chapter. The results for the machine condition

models, optimised on the WPT machine condition features, are included at the end of

this chapter. The ACR of the original CWT machine condition feature space in figure

5.10 indicates that the intrinsic dimensionality of the CWT features is significantly

lower than the apparent dimensionality of 400. The first six principal components
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Principal component number
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Figure 5.10: The ACR calculated from the CWT machine condition features. The first

six principal components have an ACR of 0.999491.

describe the original 400 dimensional feature space well with negligible information

loss. The continuous wavelet coefficients inherently contain redundant information

as opposed to the orthogonal coefficients from the DWT and the WPT. The scales

around the first five gear mesh frequencies of the monitored gearbox have very similar

characteristics, which contribute to the large amount of redundant information as well.

The model complexity of the machine condition model HMMs needs to be determined
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before the six dimensional machine condition feature space can be modelled and the

discrepancy signal generation process can ensue. In this study, it is assumed that each

machine condition model has the same model complexity (the number of parameters,

the number of hidden states etc.). In equation (4.14) it is indicated that the BIC

is minimised if the model complexity is low and the performance of the HMM (i.e.

the likelihood) is high. The BIC is not computed directly in this section, since it is

approximately inversely proportional to the model evidence under a set of assumptions,

where the assumptions may be incorrect for the investigated models. The log-likelihood

and the model complexity, contained within the two terms in the BIC, are computed

and compared in figure 5.11 instead. The results in figure 5.11a are obtained from a
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Figure 5.11: The log-likelihood and the number of parameters that need to be estimated

when optimising the three machine condition HMMs are presented in figure 5.11a and

5.11b, respectively.

statistical analysis over 20 runs with the same number of parameters. This ensures

that the starting point of the expectation-maximisation algorithm does not adversely

affect the validity of the results in figure 5.11a. A larger number of hidden states could

not be investigated for the results in figure 5.11, since the covariance matrix became

singular.

The log-likelihood keeps increasing as the model complexity increases in figure 5.11a

and the number of parameters, that need to be estimated, grow monotonically with an

increase in model complexity in figure 5.11b. The change in the log-likelihood gradient,

that occurs at four hidden states in figure 5.11a, indicates the model’s performance

starts to saturate even if the number of parameters increases. Hence, a HMM with

four hidden states is used to model the CWT machine condition features associated

with an OCS.
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5.2.2 Discrepancy signal and post-processing

A discrepancy measure is computed at each machine condition feature window and

is used to generate the discrepancy signal in figure 5.12 over gear revolutions. The

discrepancy is generated at the meshing point between the gear and the pinion’s teeth

and therefore the same discrepancy signal is obtained over the pinion revolutions as

well. However, damage on the gear is synchronous with the gear revolutions and are

non-synchronous with the pinion revolutions.

0 5 10 15 20 25 30 35 40 45

Gear revolutions

0

50

100

150

200

250

300

N
L
L

(a)

Healthy
Damaged

30 35 40

Gear revolutions

60

80

100

120

140

N
L
L

(b)

Figure 5.12: An example of the discrepancy signal over gear revolutions for a gearbox

with a healthy and a damaged gear is shown in (a) with a zoomed view shown in (b).

The discrepancy signal for the gearbox with the damaged gear in figure 5.12 contains

larger discrepancies than for the healthy gearbox, but it is difficult to ascertain the

source of the larger discrepancies. The aforementioned larger discrepancies can be

generated by the presence of localised faults or by other sources, which emphasises

that the discrepancy signal requires further processing.

5.2.2.1 Synchronous averaging results and the alarm threshold

The synchronous averaging process of the discrepancy signal, with respect to the dam-

aged gear, retains the synchronous components (i.e. localised faults on the gear) and

attenuates the non-synchronous components (i.e. possible localised faults on the pin-

ion, impulses generated from the bearing etc.).

The synchronous average from the validation set (i.e. data from a healthy gearbox

not used during model optimisation) is computed and is subsequently compared to

an alarm threshold, generated from equation (4.19) with healthy data, in figure 5.13.

The synchronous average of the discrepancy signal associated with the validation data

and the alarm threshold is denoted by µv and CBv, respectively. Approximately 200

rotations (see Nh in equation (4.19)) are used to generate the confidence bound in
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Figure 5.13: The confidence bound, denoted by CBv, is used as the alarm threshold

and is compared to the first synchronous average of the discrepancy signal from the

validation data, denoted by µv.

figure 5.13 with α in equation (4.19) selected as 10−4. Equation (4.20) indicates that

the gear associated with the validation data in figure 5.13 is in a healthy condition. This

validates that the selected confidence bound is appropriate and that the methodology

works on the validation data.

The vibration data, from the damaged gear presented in figure 2.7, is investigated

on the proposed fault diagnostic methodology. The first synchronous average of the

discrepancy signal from the gearbox with a damaged gear, denoted by µt, is compared

to the confidence bound, denoted by CBv, and the synchronous average of the validation

data, denoted by µv in figure 5.14. The synchronous average of the first measurement
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Figure 5.14: The discrepancy signal obtained from a single averaging process for the

first measurement in figure 5.14a and for a measurement one week later in 5.14b. The

position of the seeded slot is set to 180 degrees in all of the figures. Note the different

y-axis scales. The synchronous average of the new measurement is denoted by µt.
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after the gearbox was reassembled, in figure 5.14a, exceeds the alarm on the position

of the damage, but with five false alarms present as well. This synchronous average

does not reflect the actual condition of the machine, since only one tooth is damaged.

The synchronous average in figure 5.14b is from data measured at a later stage, with

more prominent damage on the gear tooth. Spurious discrepancies, not related to

the condition of the gear, exceed the confidence bound slightly in figure 5.14b which

results in false alarms as well. The true condition of the gear is misrepresented in

figure 5.14a and figure 5.14b. The spurious components that lead to the false alarms

are attributed to the disassembling and reassembling process between the healthy and

the damage datasets and the bearing discussed in chapter 2. The spurious components

become less prominent over time in the synchronous average, however false alarms

remain probable. The synchronous average requires further processing before it can be

used as a diagnostic indicator.

5.2.2.2 The second synchronous average results

A second synchronous averaging process is proposed, over the discrepancy signals from

consecutive measures, to reduce the influence of the non-diagnostic characteristics on

the diagnostic indicator. The set of measurements which are averaged to obtain the

second synchronous average must contain the same machine condition information (i.e.

same gear condition, same position of the damage etc.) to ensure that the deterministic

components are not averaged out. Hence, the phase difference between consecutive

measurements has to be zero.

The phase difference between consecutive measurements is estimated by maximising the

cross-correlation between them, as described in section 4.3. The synchronous average

of the discrepancy signal from 50 consecutive measurements in figure 5.15a is aligned

in figure 5.15b by minimising the phase difference between them. The cross-correlation

maximisation process results in figure 5.15b contain errors, which results in an increased

noise floor and standard deviation when performing the second synchronous average

over the rows in figure 5.15b.

If the number of measurements used in the second averaging process is large, then the

condition may change significantly between the first and the last measurement. This

results in the discrepancy measure representing the average condition within the set

of measurements, which results in a large standard deviation (i.e. large uncertainty in

the true condition) at the location of the fault. The second average is computed over

20 measurements with an 80% overlap in this study. This ensures that the condition of

the machine remains approximately the same between the measurements used in the

second synchronous averaging process.
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Figure 5.15: The set of synchronous averages, that is used to compute the second

average of the discrepancy signal, before and after the phase difference minimisation

process is completed. Each row represents a synchronous average of the discrepancy

signal generated for a specific measurement.

The second averaging process results in figure 5.16a are obtained with the first set of

20 measurements, with the results in figure 5.16b obtained at approximately the same

time as the results in figure 5.14b. The second synchronous average and the standard

deviation of the discrepancy signal of the damaged gearbox is denoted by µt and σt,

respectively. The synchronous average of the validation data and the confidence bound

is denoted by µv and CBv, respectively. Smoother results are obtained in figure 5.16
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Figure 5.16: The results from the second averaging process on the discrepancy signal

for the first set of measurements and the set of measurements taken approximately one

week later are presented in figure 5.16a and 5.16b, respectively. The mean and the

standard deviation of the discrepancy signal, from the second synchronous averaging

process, are denoted as µt and σt, respectively.
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than in figure 5.14. The raised noise floor or bias in figure 5.16a is attributed to the

spurious discrepancies in the first synchronous average process as well as the errors in

the cross-correlation maximisation process which are not properly averaged out. The

bias decreases over time which is possibly due to the components in the gearbox which

settle to its original positions and the cross-correlation process which estimates the

phase difference better for well established damage. According to equation (4.20), the

result in figure 5.16b has a novelty at 180 degrees. The small standard deviation in

figure 5.16b provides confidence that the novelty at 180 degrees is from a deterministic

phenomenon which is attributed to the presence of localised damage. However, the

condition of the gearbox in figure 5.16b is misrepresented due to the high bias.

The increased bias in the second synchronous average, especially in the results of the

initial set of measurements (see figure 5.16a), increases the risk for false alarms and

misdiagnosing the condition of the gear. The following three remedies are proposed to

avoid undesirable false alarms due to a high bias:

• Ignore the initial set of measurements and wait until the bias decreases to an

acceptable level.

• Estimate and subtract the initial bias from the second synchronous average of

the discrepancy signal. If the bias subtraction procedure is continuously used,

then a method is required to determine whether distributed damage is present.

• Increase the alarm threshold temporarily or permanently. This avoids the risk of

false alarms, but the presence of a developing fault may be detected too late if

this alarm threshold is set too high.

A bias estimation procedure is used in this study, where the bias is automatically sub-

tracted from the second synchronous average of the discrepancy signal as shown in

figure 5.17a. The bias estimation procedure is very similar to the proposed fault trend-

ing procedure in section 4.3.3. The k-means clustering algorithm is used to determine

the mean of second synchronous average of the discrepancy signal associated with the

healthy and damaged portion of the gear. It is assumed that the mean associated

with the healthy portion or cluster is the bias and can be subtracted from the second

synchronous average. If a large overlap between the two clusters of the two portions

exists, it indicates that the gear is healthy and then the mean of the entire discrepancy

signal is subtracted instead. The mean from the validation data is subtracted from

the confidence bound and is compared to the unbiased second averaged discrepancy

signal when performing fault detection. The unbiased second synchronous average is

compared to the confidence bound and the validation data, with zero mean, in figure

5.17b.
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Figure 5.17: The bias estimation process, displayed in figure 5.17a, is used to obtain the

unbiased second synchronous average in figure 5.17b of the biased signal presented in

figure 5.16a. In figure 5.17a, µd and µh denotes the mean of the damaged and healthy

portions estimated from the k-means algorithm.

The mean of the damaged portion of the gear, µd, is outside the three standard de-

viation bound of the healthy portion of the gear in figure 5.17a. This indicates that

the gear contains two machine conditions and the two cluster k-means algorithm is

correctly applied. Therefore, µh is the true bias of the second synchronous average and

is subsequently subtracted from the second synchronous average to obtain the result in

figure 5.17b. The second synchronous averaging process results in a smoother discrep-

ancy signal with a larger bias than the first synchronous averaging process. However,

this bias is successfully estimated and subtracted to obtain a robust diagnostic indic-

ator. Note that no false alarms occur in figure 5.17b as opposed to the result in figure

5.16a with the damage easily identified.

The second synchronous average of the pinion, in figure 5.18a, is computed with the

gear in a damaged condition. The large discrepancies from the gear fault are attenuated

in the synchronous averaging process over the pinion revolutions, which consequently

results in the bias in figure 5.18a. The bias estimation procedure is performed on the

pinion to ensure that its condition is correctly inferred.

The assumption that the pinion contains a healthy and a damaged portion failed in

figure 5.18a, since the centre of the perceived damaged component, falls within the

bounds of the healthy condition. This indicates that the whole signal is from a healthy

source and therefore the mean of the entire second averaged signal (i.e. µt) is computed

and subtracted to obtain the result in figure 5.18b. The desired result is obtained in

figure 5.18b, since the pinion is healthy according to equation (4.20) with no false

alarms.
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Figure 5.18: The second synchronous average of the pinion, µt, contains a healthy and

a damaged portion, denoted by µh and µd respectively. The bias is subtracted to obtain

the unbiased second synchronous average in figure 5.18b.

5.2.2.3 Gear-pinion discrepancy distribution

Even though the unbiased second synchronous average is robust and can be used to

infer the condition of the machine, it is beneficial to investigate the gear and the pinion

information simultaneously. The gear-pinion discrepancy distribution, introduced in

section 4.3, is used to represent the discrepancy information of the gear and the pinion

simultaneously. The gear-pinion discrepancy distribution in figure 5.19 is obtained by

evaluating equation (4.18) on the discrepancy signal generated from a gearbox with a

healthy and a damaged gear. From figure 5.19b it is concluded that localised damage
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(a) Healthy gear
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(b) Damaged gear

Figure 5.19: The gear-pinion discrepancy distribution of the gears of a gearbox in a

healthy and damaged condition. The gear tooth increment emphasises that the number

of teeth of the gear and the pinion is different.
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is present on the gear, while the pinion is undamaged. If the healthy portion of the

damaged gear in figure 5.19b is investigated and compared to the healthy gear in figure

5.19a, it can be observed that a large bias is present in the gear-pinion discrepancy

distribution of the damaged gear. It is suspected that the gear-pinion distribution is

very sensitive to changes in machine condition and it provides further insight into the

condition of the gear.

5.2.2.4 Fault trending

The ability of the fault diagnostic methodology to trend localised faults in experimental

conditions is vital for the proposed methodology to be successful. The damaged gear

in figure 2.7 is overloaded with the operating conditions in figure 2.6 which resulted in

the damaged tooth fail, as shown in figure 2.9, during experiments.

The second synchronous average of the discrepancy signal (NLL) over one gear rotation

is presented over normalised time in figure 5.20. The change in the condition of the

1
60

0 0.845
90 0.6135

Normalised time

80

Position on gear

180 0.4

N
L
L

225
270 0.2

100

315
0360

Figure 5.20: Second synchronous average of the discrepancy signal with respect to

normalised time. Each average is performed over 20 measurements with an overlap of

80%.

machine, due to the deteriorating damaged tooth, is clearly observed in the second

synchronous average of the discrepancy signal in figure 5.20. The sensitivity of the

discrepancy signal to fault growth is further investigated by using the proposed healthy-

damaged decomposition, presented in section 4.3.3.

The purpose of the healthy-damaged decomposition is to clearly visualise the progres-

sion of localised damage over time . This healthy-damaged decomposition is performed
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on the first synchronous average and smoothed using a moving average window over 10

consecutive measurements to obtain the result in figure 5.21. Note that the smooth-

ing process is essentially performing the second synchronous averaging process on the

discrepancy signal, but it is only focused on two portions of the gear.
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Time [days]
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µ

µ± σ

Figure 5.21: The discrepancy of the healthy and damaged portion of the damaged gear

smoothed using 10 measurements and a 80% overlap between measurement windows.

The smoothing process is similar to the proposed second synchronous average.

The damaged portion of the gear has an increasing trend in figure 5.21 from the start of

the first experiment to the 19th day of the experiment. The discrepancy of the damaged

portion decreases after this and another increase in the discrepancy is observed from

the 26th day to the 28th day of the experiment. A similar phenomenon is observed

at day 35 of the experiment. The damaged tooth of the gear broke off during the

experiment, but the exact time of failure is unknown, because the gearbox has to be

disassembled before the condition of the gear can be inspected. The disassembling

process adversely affects the integrity of the data and is only performed if the gearbox

has definitely failed. The presumed time of failure is the 19th day, since this is the

time at which the discrepancy is a maximum in figure 5.20 and figure 5.21.

Helical gears have large contact ratios with respect to spur gears. Therefore the re-

duction in tooth stiffness, due to a damaged tooth, has a smaller effect on the total

gear mesh stiffness for helical gears as opposed to spur gears. In the final stages of

the damaged tooth’s life, it does not contribute to the gear mesh stiffness, but it is

present during meshing which increases the impulses within the vibration signal. The

damaged tooth leads to additional impacts which disappear after failure. This can

possibly explain the decrease after the presumed time of failure.
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However, the phenomenon that occurs after the time of failure in figure 5.21 has not

been explained. The discrepancy, associated with the damaged component, increases

twice after the presumed time of failure and there is a periodic behaviour in the discrep-

ancy signal of both components of the gear from the 30th day of the experiment. The

periodic behaviour from the 30th day of the experiment has a maximum discrepancy

in the afternoon which is proven in Appendix A. The daily temperature fluctuations

are investigated to possibly explain the aforementioned phenomenon.

The minimum and maximum daily temperature, as well as the average daily temper-

ature during the experiment, are superimposed on the log-likelihood (the negative of

the discrepancy signal) in figure 5.22. Note that the log-likelihood data points in figure

5.22 are from the first synchronous averaging process, without any smoothing.
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Figure 5.22: The scaled log-likelihood (LL) signal is superimposed with the scaled

temperature characteristics over time. The maximum, minimum and the average tem-

perature for each day are scaled consistently so that they are correct in proportion to

one another.

There is a clear relationship between the temperature and the log-likelihood, especially

in the damaged portion of the damaged gear. The minimum daily temperature dropped

significantly at the 19th and the 26th day, while a sharp increase occurred on the 35th

day to the 39th day of the experiment. The aforementioned temperature changes occur

at the same time as the interesting behaviour observed in the discrepancy signal in

figure 5.21. The viscosity of the oil is sensitive to temperature and affects the dynamic

characteristics of the system (i.e. the damping characteristics). This can possibly

explain the reason for the increase in discrepancy as well as the periodic behaviour

that has a maximum in the warmest time of the day. However, it is unlikely that
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the decrease in temperature at the 19th day is the only reason for the sharp increase

in the discrepancy signal of the damaged portion. This supports the presumed time

of failure at the 19th day. Even though the fluctuating temperature adversely affects

the diagnostic indicator, it does not seem to dominate it, and therefore measuring

temperature is not essential for diagnostic purposes.

The number of measurements that are averaged are increased from 10 (as in figure

5.21) to a 100 in figure 5.23. This allows the discrepancy of the damaged portion of the

gear to be viewed over time until the presumed time of failure. The damaged portion

is denoted by the subscript d and the healthy data is denoted by the subscript h. A

significantly smoother increase is observed in the damaged portion as compared to

figure 5.21. This indicates that by performing a second averaging process, the results

are well suited for fault trending.

2 4 6 8 10 12 14 16 18 20

Time [days]
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70
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90
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L
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µh ± σh

µd

µd ± σd

Figure 5.23: The discrepancy signal from the healthy, denoted by µh and damaged

portion, denoted by µd, of the gear of the first experiment, smoothed using 100 meas-

urements with an 80% overlap. The standard deviation is denoted by σ.

A second experiment was completed to prove that the presumed time of failure in the

first experiment was the actual time of failure. More severe damage was seeded on the

tooth of the gear, as discussed in chapter 2, which resulted in a shorter time to failure.

The discrepancy signal is decomposed into the healthy and damaged portion again and

is presented in figure 5.24 with the same characteristics as figure 5.23.

The experiment was stopped after the gradient of the diagnostic indicator started

to decrease similar to the behaviour after the presumed time of failure of the first

experiment. After opening the gearbox it was observed that the tooth had indeed

failed. This smoothed discrepancy signal in figure 5.24 looks very similar to the results

that are obtained in figure 5.23 for the first experiment. This gives confidence that the

presumed time of failure in the first experiment is the actual time of failure and it also

proves that this methodology is able to trend fault progression well.
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Figure 5.24: The second average of the discrepancy over normalised time from the data

of the second experiment. A similar process and subscripts are used as in figure 5.23.

Lastly, the performance of the discrepancy signal generated from WPT machine con-

dition features needs to be compared to the discrepancy signal from CWT machine

condition features. Instead of showing all of the results from the WPT, only the final

results of the two are compared. Note that the discrepancy signal is a relative measure

and differs for different models and features. The discrepancy signals from the CWT

and the WPT machine condition features are normalised and compared in figure 5.25.

The same feature processing, modelling and discrepancy generation processes are used
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Figure 5.25: The comparison between the WPT-based and CWT-based discrepancy

signal, associated with the damaged portion, obtained from the second averaging pro-

cess. This is obtained over 100 measurements with an 80% overlap.

for the WPT and the CWT machine condition features. The healthy portion of the

gear has very similar characteristics for the WPT and the CWT machine condition fea-

tures and is therefore not presented in this study. Both machine condition approaches

are able to detect and localise the fault on the gear, however only the discrepancy sig-

nal associated with the CWT machine condition features has a monotonic increasing

trend. This indicates that the discrepancy signal associated with the WPT is unable

to trend the fault as well as the CWT machine condition features.
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5.3 Conclusion

The proposed fault diagnostic methodology in chapter 4 successfully detected, located

and trended localised faults in the presence of fluctuating operating conditions with

data only available from a single vibration transducer using the continuous wavelet

machine condition features. The operating condition features and the operating con-

dition model captures the operating conditions that are present within the data. The

operating condition information is combined with the machine condition features with

a probabilistic approach to generate a discrepancy signal which is subsequently pro-

cessed so that the condition of the gear can be inferred. It is proven that gear faults

can be detected using the confidence bound obtained from the healthy data. If this

threshold is exceeded, the characteristic of the fault can be inferred by using the second

average of the discrepancy signal and by using the gear-pinion discrepancy distribution.

A bias estimation procedure is proposed which is used to obtain an unbiased second

synchronous average which is robust and can be used for fault detection, localisation

and trending. A healthy-damaged decomposition was performed to extract the mean

associated with the damaged part as well as the healthy part and is used to trend dam-

age until the time of failure. The healthy-damaged portion performs well for single

faults, however multiple faults are not investigated in this study.
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Chapter 6 Conclusion and

recommendations

6.1 Conclusion

In this dissertation a diagnostic methodology was proposed that is able to perform fault

detection, location as well as trending in fluctuating operating conditions. A robust

tacholess order tracking method was proposed and used in this study to ensure that

the proposed diagnostic methodology is practical and cost-effective to implement. In

the proposed tacholess order tracking method, higher order frequency information is

incorporated into the maxima tracking process by using probabilistic approaches. The

angular-displacement Vold-Kalman filter and the Hilbert transform are subsequently

utilised to obtain the instantaneous phase of the shaft of interest. The results, from

a brief investigation, indicated that the angular-displacement Vold-Kalman filter is

slightly more robust than the angular-velocity Vold-Kalman filter and is therefore used

in this study. The proposed method was investigated on seven datasets in this study.

The proposed maxima tracking method is robust in the presence of background noise

and in applications with large accelerations as compared to the benchmark method

proposed by Urbanek et al. (2013). The phase and rotational speed, without tor-

sional information, were accurately estimated on the seven datasets using the proposed

method, which consequently resulted in good order tracking results.

Machine condition features extracted from the continuous wavelet coefficients and from

the wavelet packet transform were separately investigated in this study. The machine

condition features, extracted from a healthy machine in a specific operating condi-

tion state, were modelled in the proposed fault diagnostic methodology using Hidden

Markov models. Operating condition features, representative of the operating condi-

tions, were extracted, modelled with a Hidden Markov model and used to determine

the operating condition state of the machine. The information from the operating con-

dition model and the machine condition model associated with each hidden state were
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combined using probabilistic approaches. This is performed to quantify the deviation

of the features from its expected value, in a specific operating condition state, in the

form of a discrepancy signal.

The discrepancy signal is processed with synchronous averaging and additional post-

processing so that the diagnostic information in the signal can be enhanced and the

non-diagnostic information can be attenuated. The following novel post-processing

techniques were proposed and successfully implemented in this study:

• A second synchronous averaging was performed over the synchronous averaged

signals from multiple measurements. A bias estimation and subtraction process

were used to obtain an unbiased second synchronous averaged signal which is a

robust condition indicator.

• A gear-pinion discrepancy distribution was used to infer the condition of the gears

within a gearbox. This distribution is very sensitive to changes in the data.

• A healthy-damaged decomposition is used to perform fault trending. The result

of this is very intuitive to understand and can be used to track the stability of

the developing fault.

A confidence bound, obtained from statistical theory, is used as a threshold for an

alarm and is compared to the unbiased second synchronous average of the discrepancy

signal for automatic fault detection. The unbiased second synchronous average was

successfully used for fault detection, localisation and trending in this study. It is en-

visaged that the second synchronous average is sensitive to incipient faults if all of the

measurements are correctly aligned (i.e. no errors in the cross-correlation maximisation

process). The gear-pinion discrepancy distribution and the healthy-damaged decom-

position provides invaluable information for gearbox diagnostics, since it intuitively

represents the condition of the gearbox. The gear-pinion discrepancy distribution is

very sensitive to changes reflected in the discrepancy signal, which makes it appropriate

to detect the presence of incipient faults as well.

The fault detection and trending capabilities of the discrepancy signal from the continu-

ous wavelet coefficients performed better than the discrepancy signal from the wavelet

packet coefficients. This does not necessarily indicate that the continuous wavelet

transform is better suited for fault diagnosis than the wavelet packet transform. It

merely indicates that features that focus on very specific bands, using the Meyer basis

functions, performs better than features extracted from the whole spectrum, using

Daubechies db1 basis functions. However, the features extracted from the wavelet

packet coefficients can potentially be used in cases where a lot of damage modes are

present and the location of the damage modes, in the spectrum, are unknown. The
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proposed diagnostic methodology was validated on numerical and experimental data

and it satisfied all of the research objectives set out in section 1.3.

This methodology does not require historical fault data and is simpler than physics-

based models, since it does not require the physics within the system to be modelled or

compensated for. This novelty detection approach (i.e. only healthy data is available)

combined with machine learning techniques provide a lot of advantages above standard

fault detection techniques. The large amount of datasets, situated in large dimensional

spaces, can be combined with expert knowledge and modelled so that small changes in

the characteristics of the dataset can be automatically detected.

6.2 Recommendations

The following recommendations are made for future work:

• Distributed gear fault detection, localisation and trending need to be investigated,

since it affects maintenance decisions differently than localised faults.

• A wider range of operating conditions needs to be investigated to evaluate the

performance of the fault diagnostic methodology.

• Optimal machine condition features for general fault detection need to be in-

vestigated, since the success of the fault detection methodology depends on the

quality of the features.

• Automatic harmonic selection techniques need to be investigated for the maxima

tracking process. Techniques estimating the relationship between the tracked

component and the shaft of interest needs to be investigated as well.

• This technique performed well on the experimental gearbox setup in the laborat-

ory, however it needs to be investigated on gearboxes used in various industrial

applications. This will help to evaluate the performance of the proposed meth-

odology and validate it on those gearboxes.
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Chapter A Experimental setup

A.1 Characteristics of the setup

The schematic of the experimental setup in figure A.1 contains the equipment that

is used during the experiments. The alternator applies a varying load to the system,

while the motor applies a varying rotational speed to the system. Three gearboxes,

denoted by GB in the schematic is used, to ensure that the maximum load is applied

at the input shaft of the monitored gearbox (GB2). The different data streams are

indicated in the figure with the characteristics of each data stream in figure A.2.

Figure A.1: Schematic of the experimental setup used in this study.

The personal computer has a National Instruments data acquisition card which is used

to control the alternator as well as the motor. The alternating voltage and current

from the alternator are converted to direct voltage and current before it is measured

by the personal computer. The data streams from the accelerometers indicate the tri-

axial accelerometer (6708) and the two 500mV/g uni-axial accelerometers measuring

only in the vertical direction (denoted by 3320 and 4642). The axial-direction of the
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Figure A.2: Legend for experimental schematic in figure A.1.

accelerometer is used in this study. Two tachometers are used, the first tachometer is

a proximity probe which is located on the key of the third shaft (indicated by S3) and

the second is an optical probe measuring on a 88 pulse per revolution zebra tape shaft

encoder. An eight channel OROS data acquisition system is used to acquire the five

acceleration streams as well as the two tachometer streams. The characteristics of the

gearboxes in table A.1 was obtained by the manufacturers, Siemens.

Table A.1: Characteristics of the gearboxes used in the experimental setup.

E38-A-100 E68-A-100

Gearbox number in figure

A.1

2 1,3

Gear ratio 1.85 4.93

Number of teeth:

Pinion: Np 20 15

Gear: Ng 37 74

Maximum output torque

[N.m]

37.0 98.6

Maximum input torque

[N.m]

20.0 ∼20

The normalised characteristic frequencies of the shafts and the gears of the experimental

setup are included in table A.2. The input shaft is located on the right of the gearbox

in question in figure A.1.

Table A.2: Normalised rotation and gear mesh frequencies for the gearboxes.

Gearbox 1 Gearbox 2 Gearbox 3

Rotational speed: Input 1.0 0.2027 0.375

Rotational speed: Output 0.2027 0.375 1.85

Meshing frequencies 15.0 7.5 27.75
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A.2 Impulses in the vibration signal

The presence of impulses in the time domain signal was localised to the monitored

gearbox (E38-A-100) by an experiment, but the cause of the impulses is unknown.

A laser displacement transducer (LDT) was focused on the coupling attached to the

input shaft of the monitored gearbox to detect the presence of axial movement. The

experimental equipment is presented in figure A.3. The bearing that supports the input

Positive displacement
LDT

CouplingBearing Gear

Gearbox E38-A-100

Gearbox
E68-A-100

Direction
of alternator

Direction
of motor

Figure A.3: The experimental equipment used to determine whether axial movement

in the shaft is present during operation. The bearing which is suspected to cause the

impulses is loose in its housing and is indicated in the schematic as well.

shaft of the monitored gearbox is loose in its housing. Circlips are the only constraints

prohibiting large axial movement. Vibration measurements as well as measurements

from the LDT were obtained for various rotational speeds and loads as indicated in

figure A.4. The rotational speed associated with each measurement file is included

0 5 10 15 20 25

File number

0

1

2

3

R
o
ta
ti
o
n
a
l
sp
ee
d
[H

z]

StepRunUp 0 Data
StepRunUp 1 Data
StepRunUp 2 Data
StepRunUp 3 Data

Figure A.4: The input rotational speed at the monitored gearbox versus the file number

for the different load cases.

in figure A.4 with the load indicated in the legend. The convention that is used for

a specific load is StepRunUp < Load applied in volts > Data. The applied load,
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represented by a voltage value, was kept constant for a single set of measurements. The

rotational speed of the system was constant for a measurement file and then it was

increased incrementally for the next measurement file as indicated in figure A.4. The

measured vibration signal in figure A.5 is obtained for the aforementioned operating

conditions.
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A
cc
.
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2
] Load: 0V
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Figure A.5: The vibration signal against time for the different load cases. The vertical

dashed lines indicate where new measurement files start.

The dashed lines indicate a new measurement file with the rotational speed indicated

in figure A.4 and the load in the title in figure A.5. An interesting observation is made

from the vibration signal between different load cases. No clear impulses are present

if there is no external load from the alternator acting on the system. As the load

increases (between sub-plots), the impulsive nature of the signal increases.

The results from the displacement transducer is presented in figure A.6. The displace-

ment of the coupling (and the shaft) is dependent on the load as well as the rotational

speed. A saturation is observed in the mean displacement presented in figure A.6 after

the speed increases up to a point. Since the standard deviation between the measure-

ments with a load applied to the system are relatively small and it is approximately

constant, it is concluded that the mean displacements in figure A.6 are comparable.

The results from A.6 indicates that there are some axial movement present during

operation and if the applied load is increased, the impulsive nature of the vibration

signal increases. However, this does not directly prove that the axial movement is the

cause of the impulses in the vibration signal. Another experiment was conducted with a

new bearing used. The experiment was conducted continuously for longer than 45 days,

with the bearing under consideration as well as continuously fluctuating loads. The
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Figure A.6: The mean and standard deviation of the displacement of the coupling from

the laser for the different load cases as the rotational speed increases. An increase in

displacement indicates that the coupling moved further from the monitored gearbox

and this indicates that the shaft moves as well.

outer surface of the bearing under consideration was investigated after the completion

of the experiment with a photo included in figure A.7. There are some marks on the

Figure A.7: The bearing with the marks on its outer ring.

outer surface of the bearing which was not there before the experiment was conducted.

The marks were made in the radial direction of the bearing which indicates radial

movement occurred as well. It is concluded from the results in this investigation that

the bearing causes the impulses in the vibration signal. As the bearing is sliding within

the housing it is expected that it will be momentarily stopped due to friction forces

etc. which results in an impulse to occur. As the loads increases within the system, the

effects of the phenomenon are more severe. These events may not occur periodically

which explains the seemingly non-periodic behaviour of the impulses.
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A.3 Temperature effects on the results

The synchronous average of the discrepancy signal over time is decomposed using the

proposed healthy-damaged gear portion decomposition, with the result presented in

figure A.8. Some very interesting characteristics are present within the data which

5 10 15 20 25 30 35 40 45
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5 10 15 20 25 30 35 40 45

Time [days]
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64
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L
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Figure A.8: The synchronous average of the discrepancy signal partitioned into the

healthy and the damaged portion over measurement time. The mean of the healthy

and the damaged portions.

is explained in the main report. The discrepancy within the healthy portion of the

gearbox in figure A.9 indicates that there is periodic behaviour present during the last

stages of the experiment. The x-axis is the form of XX.Y Y . The day from 1 July

40 41 42 43 44 45 46 47 48

Time in days from 1 July 2016

56

58

60

62

N
L
L

X: 40.55
Y: 61.57

X: 41.66
Y: 61.35

X: 42.65
Y: 61.43

X: 43.67
Y: 62.09

X: 44.66
Y: 61.99

X: 45.63
Y: 62.47

X: 46.65
Y: 62.73

X: 47.7
Y: 63.18

X: 45.97
Y: 56.98

X: 42.33
Y: 55.92

X: 43.18
Y: 56.46

X: 44.11
Y: 56.6

X: 41.23
Y: 56.9

X: 47.92
Y: 57.63

Figure A.9: Zoomed view of the mean discrepancy of the healthy portion of the gear.

Note that the x-axis is from 1 July instead of the start of the experiments.

is indicated by XX and Y Y denotes the time from 00h00. As an example, consider

a x-axis reading of 41.66. This denotes that it is day 41 or 10 August and the 0.66

denotes that it is 0.66× 24 = 15.84 hours from 00h00. This can be converted to time
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15h50 + 00h00 = 15h50. The 0.84 was converted to minutes. It can be observed

that the maximum deviation occurred at approximately 15h00−16h00. The minimum

deviation occurs approximately in the middle of the night. Hence this indicates that

there is a daily periodicity in the deviation in the healthy portion of the damaged

gear and therefore the daily temperatures were investigated. The temperature data is

obtained from the following website:

http://www.timeanddate.com/weather/south-africa/pretoria/historic

and plotted over time for different time frames in figure A.10. The average as well as the
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Figure A.10: Temperature over time for different times in Pretoria, South Africa.

minimum and maximum temperatures of each day was used instead of the temperature

at the different periods of the day, to make the comparison with the discrepancy signal,

easier. The temperature is compared to the discrepancy signal in figure A.8, in figure

5.22.
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Chapter B Additional results

B.1 Vold-Kalman filter investigation

An investigation into the suitability of the angular-velocity and angular-displacement

VKF is conducted on the different experimental signals. In figure B.1a and B.1b the

RMSE are compared for different bandwidth factors for the angular-displacement (de-

noted by VKF 2) and the angular-velocity (denoted by VKF 1) VKF. The bandwidth

factor is defined by equation (3.24). All of the results are based on the experimental

profiles in figure 3.7a and 3.8a. The one-pole angular-displacement VKF is able to
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(a)
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(b)

Figure B.1: Comparison between the RMSE from the different variations in the Vold-

Kalman filters with experimental profile 1 in B.1a and profile 2 in figure B.1a. See

section 3.2.3 for more details.

obtain very small differences to the actual rotational speed when very small bandwidth

factors are used. The angular-velocity VKF is not suited for as small bandwidth factors

as the one-pole angular displacement VKF, but it obtains low error estimates as well.

The two-pole angular-displacement VKF is not capable of filtering signals with low

bandwidth factors, however relatively low errors are obtained for its feasible band-

width factors. It is concluded from the analyses investigated here that the one-pole

angular-displacement VKF with a bandwidth factor of 10−4 to 10−6 is stable and cap-
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able of obtaining low RMSE. This motivates the use of 10−4 as the bandwidth factor

for the investigated signals.

Even though the kth harmonic is tracked, any of the other harmonics can be used to

centre the Vold-Kalman filter. The most appropriate harmonic of the IF for centring the

VKF is investigated in this section. In figure B.2 the results of the investigation for the

profile in figure 3.7a is shown, which is investigated for the angular-displacement VKF.

1 2 3 4 5 6 7

Harmonic number

-2

-1

0

1

2

lo
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log10(Bw): -3
log10(Bw): -2
log10(Bw): -0.30103

Figure B.2: Different harmonics of the estimated IF are used as the centre of the Vold-

Kalman filter and different bandwidth factors, indicated by Bw, are investigated. This

is performed for the same profile investigated in figure B.1.

The results of this analysis is shown for the second experimental profile investigated

(see figure 3.8a) in figure B.3 as well. The large bandwidth factor of 0.5 has a relatively
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Figure B.3: The logarithm of the RMS error (RMSE) is computed from using different

harmonics to centre the VKF and with different bandwidth factors, indicated by Bw.

This is performed for the profile in figure 3.8a.

large error, since the large bandpass bandwidth includes other components not associ-

ated with the harmonic of the IF. The very small bandwidth factors (10−4 and 10−6)

obtain stable values for all the harmonics. The resulting bandwidths are so small that

sidebands etc. are not included into the passband of the filter. As the bandwidth is

increased the error can possibly increase or decrease between different harmonics, since

it depends on the frequency characteristics that are present at the harmonics as well

as the maxima tracking errors. Therefore, even though a global minimum error can be

obtained when using a larger bandwidth for a specific signal, it is difficult to predict

how it will react for other signals when the operating conditions changes etc. It is
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therefore suggested that a very small bandwidth needs to be used on the investigated

signals to ensure that the errors are predictable.

B.2 Cross-correlation maximisation

The results before and after performing the cross-correlation maximisation process us-

ing the first and last signal as a reference is presented in figure B.4 and B.5, respectively.

The last signal is a better reference, since the fault is most probably more prominent

at the last measurement than at the first measurement. This makes the task of cross-

correlation maximisation easier. Each row represents the discrepancy obtained from a

measurement.
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Figure B.4: First signal as reference
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Figure B.5: Last signal as reference
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