
Degradation Estimation of High Energy
Steam Piping Using Hybrid Recurrent Neural

Networks

by Johannes Lodewikus van Niekerk

Submitted in partial fulfilment of the requirements for

the degree

Master of Engineering (Mechanical Engineering)

in the

Department of Mechanical and Aeronautical Engineering

Faculty of Engineering, Built Environment and

Information Technology

University of Pretoria

January 2018

Abstract

Degradation Estimation of High Energy Steam Piping Using Hybrid Recurrent

Neural Networks

by

Johannes Lodewikus van Niekerk

Supervisors: Prof. PS Heyns and Dr. M Hindley
University: University of Pretoria
Degree: Master of Engineering (Mechanical Engineering)
Keywords: LSTM, GRU, Recurrent Neural Network, Condition

Based Maintenance, High Energy Steam Pipework,
Creep Degradation Estimation, Power Plant, Ma-
chine Learning, Pipe Elevation Survey.

This dissertation is a study on estimating degradation of high energy steam pipework using modern

machine learning techniques. High energy piping systems are very complex to simulate due to the

many variables that could influence the useful life of a component. In this research a hybrid

recurrent neural network is created that consists of a combined recurrent neural network and a feed

forward neural network. The machine learning model is trained on historical data that has been

captured over a six-year time period and is applied to a test dataset to see if any usable patterns

exist within the training data.

In this research the following variables of the piping system components are used as input to the

machine learning model: the operating temperature and pressure time sequence, the distance to

the closest anchor point, the distances to neighbouring supports as well as their elevation survey

readings and the last known creep damage of the component. The model is created in Python using

the Tensorflow library. Two types of recurrent neural networks (RNN) are tested, gated recurrent

unit (GRU) and long short term memory (LSTM). The standard gradient descent (GD) algorithm,

as well as adaptive gradient descent (ADAGRAD) and adaptive movement estimation (ADAM)

are tested. The model was able to predict the classification of a component with an accuracy of up

to 91% on the training dataset and 56% on the test data set, which is considered to be high given

the complexity of the problem.

The model is successful in recognising patterns within the data and offers an automated way to

parse large data sets that consist of a temporal and static data mixture. This offers an approach

to make an objective decision on similar complex data driven problems and its application is not

constrained to this single problem. The methods applied in this research is expected to perform

even better on problems where the frequency of data collection is higher than what is used in this

research.

Acknowledgements

The author wishes to express sincere appreciation to the following:

Bilfinger Africa, Mr. Erick van Zyl and Mr. Bhavesh Naran for making the elevation survey data

available.

Mr. Ruan van Tonder and Mr. Charl van Tonder for performing the elevation surveys used in this

research.

Ms. Jeanine Roelofse for providing assistance with the metallurgical information and assisting with

analysis of the results.

Mr. Marthinus Bezuidenhout for managing and providing the applicable outage data.

Dr. Jannie Pretorius for setting up the computation servers.

Mr. Eddie Piater for assisting with software installations and licence management.

Mr. Carel Potgieter and Mr. Manny De Sousa for assistance with data collection software config-

uration.

Mr. Christiaan Erasmus for overall technical guidance.

The Eskom Power Plant Engineering Institute (EPPEI) for funding this research.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Project Benefits . 4

1.4 Contributions of the research . 4

1.5 Literature Review . 5

1.5.1 Traditional Methods for Life Estimation . 5

1.5.2 Previous work . 6

1.5.3 Feed Forward Neural Network . 7

1.5.4 Loss Measures . 8

1.5.5 Activation Functions . 9

1.5.6 Back-Propagation . 10

1.5.7 Recurrent Neural Network . 13

1.5.8 LSTM Networks . 14

1.5.9 Datasets . 18

1.5.10 Learning Curves and Stopping Criteria . 20

1.5.11 Damage Models . 22

1.5.12 ISO-Mean Life Estimation . 24

1.6 Scope of Research . 27

1.7 Layout of the Document . 28

2 Machine Learning Models 30

2.1 Prestudy . 30

2.2 Tensorflow . 31

2.3 Tensorflow Records Files . 31

2.4 Tensorflow Graph . 31

2.4.1 Training Sequence . 32

2.5 The Model Layout . 34

2.6 RNN Cell . 35

2.7 The Hybrid Recurrent Neural Network Forward Pass 35

2.8 Loss Function . 36

2.9 Optimisation Algorithm . 36

2.10 Calculating the Accuracy . 37

3 Machine Learning Model Application 39

ii

CONTENTS

3.1 Generating the Data Set . 39

3.1.1 Temperature and Pressure Data . 39

3.1.2 Elevation Survey Data . 42

3.1.3 Metallographic Inspection Results . 45

3.1.4 Pipe Stress Analysis . 47

3.1.5 Defining the Components . 49

3.1.6 Defining the Outages . 51

3.1.7 Grouping Datasets . 52

3.1.8 Automated Data Reading . 52

3.2 Serializing the Data into Protocol Buffers . 54

3.2.1 Normalizing . 55

3.3 Random Seeding the Model Parameters . 56

3.4 Running the Model . 56

4 Results 57

4.1 RNN Hybrid Network Results . 57

4.2 Learning Rate . 61

4.3 Network Layout . 61

4.4 Optimisation Algorithm . 61

4.5 Training Time . 62

4.6 LSTM cell vs GRU cell . 63

4.7 Elevation Survey Impact . 63

4.8 Best Runs . 64

5 Conclusion 68

5.1 Further Research and Recommendations . 69

A RNN trained on a creep damage model 73

A.1 Generating the Data Sets . 73

A.2 Sequence Learning Models Used to Classify Life Fraction Consumed by Temperature

Sequences . 75

A.3 Tensorflow Graph . 75

A.3.1 Classification . 76

A.3.2 Classification Training Curves . 78

A.3.3 Regression . 79

A.3.4 Regression Training Curves . 80

A.4 Results . 81

A.4.1 LSTM and GRU Comparison . 82

iii

CONTENTS

List of abbreviations

ADAGRAD Adaptive gradient descent

ADAM Adaptive movement estimation

ANN Artificial neural network

API Application programming interface

CPU Central processing unit

EP1 Elevation Point 1

EP2 Elevation Point 2

EP3 Elevation Point 3

FFNN Feed forward neural network

GD Gradient descent

GPU Graphics processing unit

GRU Gated recurrent unit

HP High pressure

ID Internal diameter

IPDSS Intelligent predictive decision support system

LSTM Long short term memory

NDT Non destructive testing

NHPP Non homogeneous poison process

ReLU Rectified linear unit

RNN Recurrent neural network

RMS Root mean square

SIF Stress intensification factor

TPU Tensorflow processing unit

WT Wall thickness

iv

CONTENTS

List of symbols

Notation style:

y Scalar

y Batch of scalars

~y Vector

~y Batch of vectors

~Y Matrix

~Y Batch of matrices

~yT Transposed vector

~Wn Matrix number n

~Wij Matrix with row index j and column index j

~Wn,ij The value in matrix number n, row index i and column index j

~Wij(t+ 1) The value of matrix with row index i column index j at time step (t+1)

Roman symbols:

a, b, c, d, e, Ta, ta Material specific constants

~a First time sequence vector
~b Second time sequence vector

~an Neural network hidden layer output vector for layer n

bn Constant bias parameter value for layer n
~bn Neural network bias parameter vector for layer n

bf LSTM forget state bias

bc LSTM candidate state bias

bi LSTM input state bias

bo LSTM output state bias

C̃t LSTM vector of candidate cell state values at time t

Ct LSTM vector of the new cell state

E Loss or error measurements

ft LSTM forget state

~Gij Matrix with size [i,j], where each element contains the sum of the squares of

the past gradients w.r.t. parameter [i,j] up to time step t

h̃t GRU candidate hidden state values at time t

ht GRU n-dimensional hidden state at time t

ID Internal diameter

it LSTM input state

K Number of training examples or the size of the data batch

M Number of output classes

n Number of pairs of sequences

ot LSTM output state

P Internal pressure

P (σ) Creep rupture parameter

v

CONTENTS

r Temperature exponent

rt GRU reset gate vector at time t

SIF Stress intensification factor

T Temperature

~T Refers to a vector of any input or output features of the model

t Predicted creep rupture time in hours or time-step in the case of neural net-

works

~Wn Neural network weight matrix for layer n

~Wij Weight value in weight matrix ~Wn, connecting input node i to output node j

Wc LSTM candidate state weights

Wf LSTM forget state weights

Wi LSTM input state weights

Wo LSTM output state weights

wt Pipe wall thickness

~x Neural network input vector

y Actual (measured) labels for the data batch

y′ Predicted labels for the data batch

y′ Neural network final output/predicted label

zt GRU update gate vector at time t

~zn Neural network hidden layer input vector for layer n

Greek symbols:

ε Instantaneous strain

εr Strain at rupture

ε Learning rate

~ε Modified learning rate for individual parameters

η Smoothing parameter that ensures division by zero is not possible

λ Material creep ductility parameter

σ Material stress

vi

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In this chapter the background to the problem as well as the problem statement is defined. The

project benefits are also summarized in this chapter. A literature review is conducted on previous

work that has been done using machine learning techniques in the asset management space. The

literature review also describes how a feed forward neural network as well as a LSTM recurrent

neural network works. Different optimisation algorithms are investigated together with different

methods of determining the loss fo a model. The damage models that are typically used on these

systems to model remaining creep life, are described and a sensitivity analysis is performed on this

model to get an idea of the difficulty of the problem at hand.

1.1 Background

The high pressure-steam pipework in a coal-fired power plant experiences fluctuating temperatures

and pressure conditions during operation. Replacement of these components is done on a preventa-

tive maintenance basis. The condition is monitored throughout its life and replaced once significant

creep damage or cracks are observed. Creep damage is observed using surface replica micrographs.

Fatigue damage and external loading conditions e.g. pipe support effort are seldom monitored

online. Premature replacement of these components does occur. Using traditional non-destructive

testing (NDT), it is difficult to determine how much of the damage is done to a component due to

pure high-temperature creep and how much is due to fatigue and system loading interaction.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Main Steam And Cold Reheat Piping Systems

The steam piping systems in Figure 1.1 are supported from spring hangers, guides and rigid sup-

ports that are installed at strategically placed locations. The piping support system is designed

to minimise the pipe stresses during operating conditions. Elevation surveys are used to see if

the pipework is moving as per its original design, when the piping conditions are changed from

atmospheric conditions to operating conditions.

Pipe supports that are not working within their intended design envelope usually cause increased

stress on the piping system and directly influences the useful life of the pipework systems that are

operating in the finite life temperature range.

Figure 1.2 illustrates how a piping system is typically supported. The two images illustrate the

rise in stress when one of the supports is removed. Note that the stress does not only rise in the

vicinity of where the support had been. The stress rises significantly at neighboring supports as

these supports need to carry the additional load that is no longer supported by the broken support.

Obtaining the exact magnitude of the stress is not of interest in this study. The aim is to see if any

patterns can be recognized from historical data and to see if premature failures could be linked to

the operating conditions (pressure and temperature) as well as supports that are operating outside

of its design intent.

2

CHAPTER 1. INTRODUCTION

(a) Pipe stress with optimal support (b) Pipe stress with a broken support

Figure 1.2: Influence of broken supports on pipe stress

Replacing components at the end of its usable life is a very tedious process requiring a lot of time

and resources. Predicting when components will need to be replaced is notoriously difficult in these

systems. Currently there exists no reliable method that can be employed to predict the end of

life of a component operating in these systems. Predictions are traditionally made by experienced

system engineers who base their inspection and replacement plans on previous inspection results,

basic creep life model estimations and past experiences of the system engineer with these systems.

1.2 Problem Statement

High-pressure steam piping is a critical system and replacing the pipework requires long outages,

ultimately leading to extended periods of power load loss. It is desirable that a method for deter-

mining and forecasting the level of damage in the high energy steam pipework is to be established.

Improved remnant life estimates of high-energy piping systems will enhance lifecycle management

of piping systems and pipe-replacement interventions can be planned accordingly. There exist very

little failure data with these systems since they are normally replaced well before failure occurs as

piping components may fail in a catastrophic manner.

Predicting the damage in a high-energy piping component is exceptionally difficult to predict even

by the most experienced system engineers. Due to the high number of variables present in piping

systems, it is very difficult to make an accurate prediction as to when components will need to be

inspected. These variables include: material strength scatter, welding techniques, post weld heat

treatment, the geometry of the piping systems, fatigue, creep, corrosion, erosion, vibration, support

effort, stress and temperature during operation, thermal expansion stress, etc.

Various online monitoring tools exist that consider multiple aspects of operation (i.e. temperature,

pressure, fluid chemistry, crack monitoring, displacement, vibration, corrosion, acoustics, etc.).

Despite the effort that has been invested, there exists no standard or unified theory to bring

all these methodologies together. Software that calculates the probability of failure of cracked

components at high temperature has been developed and applied with good success (Deschanels,

Escaravage, Thiry, Le Mat Hamata and Colantoni, 2006). This works well if the cracks are picked

up in time with NDT. Due to the high safety risk that is involved with high energy pipework,

3

CHAPTER 1. INTRODUCTION

defects such as cracks propagating with time are not tolerated and such components are repaired

or replaced before returning to service.

The hypothesis of this research is that: a prediction of remaining life of a piping system can be

made by means of pattern recognition on historical experiences. Machine learning techniques shall

be employed to determine if this is a viable method for damage prediction.

A method is needed to parse both the temporal data (temperature and pressure sequences) and

static data (collected during outages) and give an objective prediction of the expected damage of a

piping component before the component is inspected. The prediction needs to be data driven and

based on historical experiences.

1.3 Project Benefits

The cost of loss of revenue during downtime and the cost of inspection and possible replacement

of components is very high. The aim of the project is to minimize downtime of plants operating

with high steam temperatures and optimizing downtime opportunities. It is not uncommon for

pressure part components to operate outside of its intended design envelope due to unforeseen

circumstances. This is as a result of pressure part components that are subjected to increased

temperature ramp rates, extended operation life, temperatures and pressures outside of design

parameters, pipe support malfunction etc. Using the techniques described in this report it would

potentially be possible to issue early warnings to the plant operator and would encourage healthy

plant operation.

Increasing the ability to accurately predict the damage within a component before inspection occurs

will ensure:
• Increase plant operating safety

• Maximize useful life of plant

• Increased availability and reliability

• Minimising operating and maintenance cost

• Managing rate of damage during operation

• Optimizing maintenance opportunities and resources

• Ordering of critical spares in time

• Reducing the probability of expensive repairs

1.4 Contributions of the research

A system can be defined where the inputs of the system are defined as everything that physically

defines a component, as well as anything that could give information about external influences on

the component that could cause the component to deteriorate. The output of such a system is the

life fraction consumed of the component. Traditionally one would have to account for each of the

damage mechanisms that could apply to any one components. This would mean that one would

need to have a deep understanding of the physics that drives the degradation of the component and

4

CHAPTER 1. INTRODUCTION

one would need to have a complex mathematical model that accounts for all types of degradation

that occurs within a piping component. In the case of a high energy steam piping component,

this would mean that one would need to know what damage has been done to a component due

to creep, the damage to the component due to fatigue and additionally one would need to know

how the two damage mechanisms interact with one another. This requires complex physics based

models that becomes difficult to generate when there is allot of damage mechanism working in on

a single component. When using the methods described in this research, the physics that happens

is regarded to be a black box where you know only the inputs and the outputs of a system. In this

research a hybrid network is created that consists of a RNN and FFNN, which will enable the model

to parse both temporal and static data at the same time which was historically a very difficult thing

to do. If a FFNN was to be used the importance of the static data would be diminished due to

the large number of data points that is contained in the temporal sequences. IF a RNN was to be

used the Model will be extremely computationally inefficient and specialized computers with vast

amounts of memory would be required. As it would be forced to parse the static data with each

entry in the temporal sequence.

1.5 Literature Review

1.5.1 Traditional Methods for Life Estimation

There are various traditional methods for modelling statistical mortality rates of components. In the

asset management framework traditional methods generally fall under renewable systems modelling

or repairable systems modelling.

Although these methods have been applied in the past on high-energy steam piping components,

the accuracy of the data fit is often inaccurate and not useful on safety critical components.

Renewable Systems These systems are modelled by a probability density function. This func-

tion is approximated by fitting a distribution such as the Weibull distribution through the failure

data.

The shortcomings of this method are that it assumes all components are operating under the same

conditions and all components are constructed identically. This also assumes that all components

are operated from new. Thus, if a component is replaced it will perform as new. This is not

accurate in the case of high energy steam pipework due to the fact that when a section of pipework

is replaced it is ”as good as old” and not ”as good as new”.

Repairable Systems The non homogeneous Poisson process (NHPP) addresses the issue of ”as

good as old” replacement as shown in (Coetzee, 1998). However, it still assumes that all components

are similar and are operating under similar constant operating conditions.

This method is normally used to optimise maintenance cost of components. Safety is the primary

priority on high energy piping systems and not cost. Although cost can be linked to safety risks,

5

CHAPTER 1. INTRODUCTION

it is not an appropriate method to model the problem at hand.

There are endless statistical models that could be employed, however due to the number of variables

in the system and differences between piping systems, the models become very complex and much

system specific customisation is required on the model.

1.5.2 Previous work

An intelligent predictive decision support system (IPDSS) model, based on the recurrent neural

network (RNN) approach, was developed and tested and run for the critical equipment of a power

plant. The results showed that the IPDSS model provided reliable fault diagnosis and strong

predictive power for the trend of equipment deterioration (Yam, Tse, Li and Tu, 2001). The

predictive decision support system was tested on a planetary gear system of a coal mill, using

a normal RNN (6-2-1) construction, where five of the inputs are the last five known measured

conditions and the last input is the previous output of the model. The RNN has two hidden nodes

and one output node. The model was able to fit to the training data very accurately and the model

was able to predict the next conditions very accurately with an RMS-error of 4.834×10−5 on a test

set of size 45. This enables the user to carry out a condition based maintenance, before a certain

condition actually exists in the system.

Creep rupture of austenitic stainless steels have been modelled using neural networks with good

success enabling the use of different data sources and employing a neural network as a regression

model (Sourmail et al., 2002). The neural network offers a very versatile regression model that can

work with a variety of inputs and outputs while being able to generalize well, even with data that

contains a large amount of noise. This is part of the reason why neural networks are so popular

with data scientists.

A comparative study of elevated temperature creep–fatigue life prediction procedures has shown

that the back-propagation neural network technique, when based upon a statistically designed

training set, has the potential for achieving superior creep–fatigue life cycle predictions when com-

pared to the modified Coffin–Manson, linear life fraction and hysteresis energy methods (Venkatesh

and Rack, 1999).

In other research a fusion network has been applied to vibration data from a rotary device. The

model was trained to classify whether the signals are healthy or faulty. The fusion network sends the

data from the train feature space to four different neural networks that have different configurations

and activation functions. Outputs of the four networks are combined to statistically determine the

class of each of the input feature sets. It was shown that the fusion network performs better than

any of the individual neural networks used in the fusion network (Ebrahimi et al., 2016).

The artificial neural network (ANN) approach for remaining useful life prediction is a multilayer

feed forward network, utilizing both failed and suspension condition monitoring histories, that have

been developed for remaining useful life predictions. If a component is taken out of service before

failure occurs it is regarded as a suspension history. The model uses age and condition monitoring

data as inputs and the life percentage as output. In the case of suspension histories the optimal

6

CHAPTER 1. INTRODUCTION

predicted life is determined and acts as the training label for the ANN. The research shows that

there is a significant decrease in prediction error if the suspension history is included in training

the model, instead of using only failure history (Tian et al., 2010).

In summary, FFNNs and RNNs should theoretically be suited for the type of problem described in

this dissertation. Neural networks have been used successfully in both prognostic and diagnostic

applications. Previous research indicate that there is value in component suspension history when

used to train a predictive model and that fusion networks/hybrid networks can be employed to

increase the accuracy of predictions.

1.5.3 Feed Forward Neural Network

In the 1940s McCulloch and Pitts did pioneering work in the field. Rosenblatt’s perception conver-

gence theorem came about in the 1960s. There was a period of almost 20 years where there was

little research done in the field partly due to Minsky and Papert’s work showing the limitations of a

simple perceptron. Since the 1980s there has been various discoveries in the field that has renewed

interest with researchers in the field (Mao and Jain, 1996).

A FFNN neural network consists of an input layers, hidden layers and output layers. where all

connections are forward feeding and no recurrence or backward feeding is applied. The number of

input, hidden and output layers can be customized to fit a specific problem. A simple FFNN that

consists of the following is depicted in Figure 1.3:

-One input layer, with two input nodes and one biased parameter

-One hidden layer, with three hidden nodes and one biased parameter

-One output layer, with two output nodes.

The feed forward neural network is a powerful pattern recognition tool as explained by (Duda et al.,

2001). There exist many permutations of the feed forward neural network. The feed forward neural

network is the basis upon which most artificial neural networks function. The hidden layers as well

as the output layers have a non-zero bias node as an input that is connected to all nodes in the

layer.

The activation functions can be any one of the functions described in subsection 1.5.5.

Assuming the activation function that is used for forward propagation is tanh, then for a system

with I input layers, N hidden layers and M output layers.

~z1 = ~x ~W1 +~b1 (1.1)

~a1 = tanh(~z1) (1.2)

~z2 = ~a1 ~W2 +~b2 (1.3)

~y′ = softmaxc(~z2) (1.4)

where ~W1 ∈ RI×N ,~b1 ∈ RN , ~W2 ∈ RN×M and ~b2 ∈ RM . The values of ~bn are changed during

training while b1 and b2 are constant values typically chosen as 1.

7

CHAPTER 1. INTRODUCTION

Figure 1.3: Feed forward neural network

1.5.4 Loss Measures

The loss is a measure of the discrepancy between model predictions and actual values. This is also

referred to as the error measurement.

For the classification case the neural network is set up to solve classification problems where the

result of a given set of input values can be classified in a single output bin, in this case (Figure 1.3)

there will be M number of bins.

The predicted output of the neural network is returned as a probability vector that is defined using

a softmax function. The softmax function scales the output vector so that the combined probability

of all the output classes is always equal to one. Given a set of input parameters, the classification

bin with the highest probability will be taken as the positive class.

There are many ways to determine the loss, however in this research the two loss measures that

are used is the cross entropy loss and the root mean squared loss.

Cross Entropy Loss:

The cross entropy loss is also known as the negative log likelihood. The cross entropy loss sums over

all the training examples as well as the possible output classes. This is used as an error measure

to determine how accurately the predicted values of a data batch (~y′) correlates to actual output

values (~y) of the data batch. This loss measure works particularly well with the classification

8

CHAPTER 1. INTRODUCTION

problems as it sums the error over all classes (De Boer et al., 2005).

E = − 1

K

∑
nεK

∑
iεM

~yn,i log(~y′
n,i) (1.5)

where K is the size of the data batch. M is the number of output classes and E is the loss or error

measurement.

Root Mean Squared Loss:

The RMS loss is an arbitrary error measure that can be used to determine the fitness of a neural

network. The value of this error is always positive. This error measure works well with the

regression problems where the output is a scalar value.

E =

√∑
nεK(yn − y′

n)2

K
(1.6)

1.5.5 Activation Functions

The activation function transforms the inputs of the hidden layer into outputs of the hidden layer.

Common choices for activation functions are tanh, the sigmoid function or ReLUs, as shown in

Figure 1.4.

Figure 1.4: Activation function

The logistical sigmoid forces all output values to be between 0 and 1, but has shown empirically

that it can easily get stuck during training. This is more prone to happen when very large negative

numbers are converted by the sigmoid. This causes the outputs to closely approach zero.

The tanh, performs quite well in many scenarios. A property of these functions is that the derivative

of tanhx is 1− tanh2 x. This is useful because it allows the computation of tanhx once and re-use

9

CHAPTER 1. INTRODUCTION

its value later on to get the derivative. This means fewer function evaluations needs to be performed

by the model and decreases the training time of the model.

Figure 1.5: Tanh(x) activation function with derivative

The neural network needs to output probabilities in order to classify and output into a certain class.

The activation function for the output layer will be the softmax with respect to the number of output

classes, which converts raw scores to probabilities. The softmax function is a normalized exponential

function that ”squashes” a K-dimensional vector of arbitrary real values to a K-dimensional vector

of real values in the range [0,1] that add up to 1.

1.5.6 Back-Propagation

Back-propagation based algorithms are the most widely used algorithms for supervised learning

with multi-layered feed forward networks. The basic idea of the back propagation learning algorithm

is the repeated application of the chain rule to compute the influence of changes in the parameter

values of the network on the value of the error-function E (Mishra and Savarkar, 2012).

δE

δ ~Wij

=
δE

δ~ai

δ~ai
δ~zi

δ~zi

δ ~Wij

(1.7)

where ~Wij is the weight between nodes i and j in the network. ~ai is the output of node i and ~zi is

the weighted sum of the inputs of node i.

Gradient Decent

The steepest descent algorithm is explained by Jacobs (1988). The loss or error where the loss

is a measure of how accurately the model’s predictions describe the training label values and is

calculated as in section 1.5.4.

The gradient descent needs the gradients (Jacobian vector), of the loss function with respect to

parameters of the machine learning model, as an input. Gradient descent refers to the algorithm

that decreases function value of the error (loss) by evaluating the gradient of the error with respect

10

CHAPTER 1. INTRODUCTION

to each of the weights in the neural network. Each of the weights is adjusted proportionally to the

specified learning rate (ε) in the direction of descending gradient. This should theoretically result

in a decreased overall error as long as the learning rate is not too large, so that the minimum error

value is overshot. If the learning rate is too small the model may take too long to converge and

could easily get stuck in a local minimum error point.

Thus in order to make sensible changes to the model parameters the following partial derivatives

need to be calculated:

δE
δ ~W1

; δE

δ~b1
; δE

δ ~W2
and δE

δ~b2

Jacobs (1988) illustrates that the partial derivatives of the error function are:

δE

δ ~W2

= ~aT1
~δ3 (1.8)

δE

δ~b2
= ~δ3 (1.9)

δE

δ ~W1

= ~xT~δ2 (1.10)

δE

δ~b1
= ~δ2 (1.11)

where:

~δ3 = ~y′ − ~y (1.12)

~δ2 = (1− tanh2(~z1))~δ3 ~W
T
2 (1.13)

Note that ~δ2 is a function of the activation function being used.

Back-Propagation Weight Updates:

Gradient descent is performed by adjusting the weights after each training run of the network.

Equation 1.14 and Equation 1.15 are used to update each of the elements in the weight matrix.

Due to the linearity of the updating operation, this can be done with pure matrix operations which

are efficient and probably the reason why this algorithm is one of the most widely used algorithms.

~Wij(t+ 1) = ~Wij(t)− ε
δE

δ ~Wij

(t) (1.14)

The bias parameter vector is separately updated using equation 1.15:

~bi(t+ 1) = ~bi(t)− ε
δE

δ~bi
(t) (1.15)

where ε is a constant learning rate.

Normal back propagation follows the route of steepest descent to find the minimum of the error

function. There exist problems where following the steepest descent is not the shortest path to

11

CHAPTER 1. INTRODUCTION

minimise the error function. This can be due to the fact that learning rate does not change when

the direction of gradient descent changes, or when in the vicinity of a local minimum of the error

surface. Using this method the local minima points are often ”overshot” and this leads to a high

number of epochs needed to optimise the neural network.

When the learning rate (ε) is too high the neural network may become unstable and an increase in

the classification error can be observed with each additional epoch.

Adaptive Gradient Descent (ADAGRAD):

An adaptive sub-gradient method is proposed in (Duchi et al., 2011). ADAGRAD is well-suited for

sparse data as it adapts the learning rate vector to individual parameters. ADAGRAD performs

larger updates for parameters that occur infrequently and smaller updates for parameters that

occur frequently. Normal gradient descent uses the same learning rate for all parameters and

is kept constant for every iteration. ADAGRAD uses a different learning rate for each of the

parameters in the neural network and changes with every time step.

The calculation of the gradient stays the same. The only difference is in the way that the weights

are updated. The weight updates are as per Equation 1.16.

Back-Propagation Weight Updates:

~Wij(t+ 1) = ~Wij(t)−
~ε√

~Gij(t) + η
� δE

δ ~Wij

(t) (1.16)

The bias parameter is separately updated using equation 1.17:

~bi(t+ 1) = ~bi(t)−
~ε√

~Gij(t) + η
� δE

δ~bi
(t) (1.17)

where ~ε is the modified learning rate for every parameter, the learning rate is based on past gradients

and is updated with every time step. η is the smoothing parameter that ensures division by zero

is not possible, usually in the order of 10−9. ~Gij is a matrix with size [i,j]. Each element contains

the sum of the squares of the past gradient with respect to parameter [i,j] up to time step t.

Adam-Optimisation Algorithm

In this research Adam-optimisation algorithm is used since a hybrid model is used where the RNN

network receives data much more frequently than the FFNN, this enables different learning rates for

the various parameters of the hybrid network. This should theoretical combat the problem where

one of the networks in the system over-fits to the data before the other network has been trained

properly. Adam-optimisation is similar to ADAGRAD, however Adam-optimisation is theoretically

less prone to get stuck in local minima points due to the addition of the first and second moment

terms.

12

CHAPTER 1. INTRODUCTION

Adam is different to the classical stochastic gradient decent in that a learning rate is maintained

for each network parameter (weight). Each learning rate is separately adapted as learning unfolds.

Back-Propagation Parameter Updates: The parameters of the model is updated using the

following equations.

mt = β1mt−1 + (1− β1)gt (1.18)

vt = β2vt−1 + (1− β2)g2t (1.19)

where, mt is the estimate of the first moment(the mean) and vt is the estimate of the second moment

(the uncentered variance) of the gradients. gt is the derivatives calculated using Equation 1.7.

The bias corrected first and second moment estimates are calculated using:

m̂t =
mt

1− βt1
(1.20)

v̂t =
vt

1− βt2
(1.21)

The model parameter, θ, which could be the the weights ~W or the bias parameter weights ~b is

updated using:

θt+1 = θt −
~η√
v̂t + ε

� m̂t (1.22)

The following hyper-parameters were used in this research: η =0.001; β1 = 0.9; β2 = 0.999 and

ε = 1e-08.

1.5.7 Recurrent Neural Network

An RNN is a network based on the principle of the feed forward network adapted for application

on sequential data. The difference is that the output of step t is used as the input to step t + 1.

Neural networks are based on the working of a biological brain. The biological brain does not start

fresh every second. Concepts are formed over time. Human thoughts have persistence, thus each

new word one reads will have an impact on the idea that is formed in a biological brain. Traditional

neural networks have a shortcoming in that it lacks the ability to work with sequential/temporal

data. Normal RNNs solve this problem, however the RNN cannot distinguish between information

that is important to the result and those that is not. The RNN treats all input data as equally

important to the output.

The cell (A) takes an input xt and outputs a value ht and allows information contained at time t

to persist to time t+ 1. The unrolled network is shown in Figure 1.6.

13

CHAPTER 1. INTRODUCTION

Figure 1.6: RNN-unrolled (Olah, 2015)

RNNs have proven to be ideal for sequential data tasks such as speech and handwriting recognition

and generation (Chung et al., 2015). The RRNs however did prove to be very difficult to train due

to the vanishing gradient problem and the exploding gradient problem. The exploding gradient

problem occurs when very large adjustments are made to the weights of the neural network. This

is easily solved by using gradient clipping where the gradient/weight adjustments are capped at

a predetermined value. The vanishing gradient problem occurs because the activation function is

applied multiple times as time progresses. As an example: an input at xt−100 will have passed

through the activation function at least 100 times, where xt−1 will have passed through the ac-

tivation function only once. In general the activation function is a squashing function hence this

diminishes the contribution of xt−100.

One of the appealing features of RNNs is the idea that they might be able to connect previous

information to the present task, such as using previous data to give context to the data that is read

at the current time step. This is useful in analysing temperature and pressure data.

1.5.8 LSTM Networks

Bengio, Simard, Frasconi and Member (1994) investigated the problems with the RNN, and dis-

covered that the importance of the current input on the RNN output quickly diminishes within a

few steps.

The LSTM solves this problem as it enables input data at a given time step to be remembered and

used to inform the output results many steps later. The LSTM was proposed by (Hochreiter and

Schmidhuber, 1997).

For high energy steam piping operating in the creep regime this is especially important. The rate of

increase in pressure and temperature is very important as it will have an influence on the damage

that manifests in the material. A thermal excursion that occurred a long time ago might have a

big influence on the damage of the material. There therefore exists a need for the model to have a

type of memory.

14

CHAPTER 1. INTRODUCTION

LSTM Architecture

The long short term memory network (LSTM) is a variation on RNN, that gives the ability to learn

long term dependencies. In order for a system to have a memory it must be able to write the data

into the memory. It must be able to read the data back and it also must be able to forget data

that is not important.

Instead of making binary decisions on whether to read, write or forget it makes a probabilistic

decision using a sigmoid. The sigmoid is a continuous function that is differentiable and it is

possible to do back-propagation across this activation function.

Figure 1.7: LSTM - 3 time steps (Olah, 2015)

In Figure 1.7 each line represents a vector. The LSTM cell takes the input vector (xt) and con-

catenates it with the output of the previous step (ht−1). Each of the yellow blocks represents a

feed forward neural network as explained in section 1.5.3, three of which use a sigmoid activation

function and one that uses a hyperbolic tan activation function. The pink circles indicate point-

wise vector operations, vector multiplication and addition. What makes the LSTM unique is that

in addition to the output of the previous step the cell state (Ct−1) is propagated forward. This

allows information to persist many iterations later.

Figure 1.8 shows the individual step operations that happen within a LSTM cell.

15

CHAPTER 1. INTRODUCTION

(a) Forget gate (b) Input and tanh gate

(c) Cell state update (d) Output gate

Figure 1.8: LSTM cell updates (Olah, 2015)

The formulas used in the LSTM cell as shown in Figure 1.8:

ft = σ(Wf · [ht−1, xt] + bf) (1.23)

it = σ(Wi · [ht−1, xt] + bi) (1.24)

C̃t = tanh(Wc · [ht−1, xt] + bc) (1.25)

Ct = ft × Ct−1 + it � C̃t (1.26)

ot = σ(Wo · [ht−1, xt] + bo) (1.27)

ht = ot � tanh(C − t) (1.28)

Figure 1.8a shows the forget gate. The sigmoid layer decides how important each element of the

input vectors (xt and ht−1) are to keep. The sigmoid outputs a value between 0 and 1, where 1

represents a completely ”keep” and 0 completely ”forget”.

Figure 1.8b shows two layers. A sigmoid layer that decides which values will be updated next and

a hyperbolic tan layer that creates a vector of new candidate cell state values (C̃t). A multiplication

of the two will create an update step to the cell state.

Figure 1.8c shows how the cell state is updated using the outputs of the two previous steps.

Figure 1.8d shows the output gate. The sigmoid layer decides what parts of the cell state is more

important to output. The hyperbolic tan layer scales the cell state between -1 and 1. An output is

16

CHAPTER 1. INTRODUCTION

generated by doing point-wise multiplication of the two layers.

The LSTM actually contains four feed forward neural networks within a single cell. This means

that the computational power needed is much more than that of a normal single layer feed forward

network.

Gated Recurrent Unit

The Gated Recurrent Unit or GRU introduced by (Cho et al., 2014). This is a simplified version of

the LSTM that combines the input gate and the forget gate. The gated algorithm has gained pref-

erence from researchers, partly because the Gated Recurrent Unit trains in less time and generally

can be trained using less data.

Figure 1.9: GRU cell updates (Olah, 2015)

The formulas used in the GRU cell as shown in Figure 1.9:

zt = σ(Wz · [ht−1, xt]) (1.29)

rt = σ(Wr · [ht−1, xt]) (1.30)

h̃t = tanh(W · [rt � ht−1, xt]) (1.31)

ht = (1− zt)� ht−1 + zt � h̃t (1.32)

Theoretically the LSTM should perform better with larger datasets as it has the complexity of two

extra gates. Yao et al. (2015) have developed an extension of LSTM to use a depth gate to connect

memory cells of adjacent layers. This has proven to outperform GRU and LSTM cells on machine

translation and language modelling tasks. This algorithm is not investigated in the current research

but will potentially form part of further research.

17

CHAPTER 1. INTRODUCTION

LSTM and GRU Back propagation:

Due to the increased complexity of the LSTM and GRU cell over the normal FFNN cell, the

calculation of the gradient descent algorithm becomes much more involved. The complete derivation

of back propagation algorithms is explained in Hochreiter and Schmidhuber (1997). An open source

application program interface that can do automatic differentiation, Tensorflow, will be used to do

these computations.

1.5.9 Datasets

Data used in this dissertation consist of both temporal and static data. The temporal data consists

of the operating temperatures and pressures that the piping system is operated under and is

recorded in real time. The static data is measured during major outage events, such as elevation

survey data, metallurgical survey data and all attributes of the component that are assumed to

stay constant such as geometry and code calculated stress.

Temperature and pressure sequences are used as an input (~x) to the RNN part of the hybrid

model because it is long temporal sequences. The output of the RNN is concatenated with the

statical input data, which is the elevation survey data, previous metallographic survey results and

the component features, to form the input (~dense input) of the FFNN. The metallurgical survey

results will be used as the label (~y) during training.

Machine learning models need a labelled data set to train a supervised learning algorithm. The

labels can either be classification labels or regression labels. Classification labels mean that n

classification bins are created. One hot encoding is used to specify the correct class. Regression

labels mean that the labels/model-outputs are usually in the real value domain, in this dissertation

the output shall be a single real value, the metallographic survey result (creep voids per square

millimetre).

The only measured parameters that are used in this dissertation shall be temperature, pressure,

elevation survey data, metallographic survey results and component constant features that defines

physical component such as pipe diameter. This means that there exists plenty of uncertainties

with respect to external variables the hat are not measured. The material properties, external

loading factors well as manufacturing defects play a very influential role in the life consumption of

a component. The dataset is expected to have a considerable amount of noise, with large variance

between components.

Training, Validation and Test sets:

The data used for performing benchmarking on machine learning algorithms are split into three

parts. The first set is used to train the model. The validation set is used as a pseudo test set

in order to evaluate the quality of the machine learning model during training. This is done to

ensure that the optimisation algorithm is not over fitting the model to the training data. A smaller

training error does not always mean a better fit. Early stopping means that a neural network is

18

CHAPTER 1. INTRODUCTION

trained until a minimum error on the validation set is reached during training.

The training data consists of both the training set and validation set. The validation set is solely

used to measure the performance of the model during training on unseen data. This will also give

an indication of when the model is over-fitting to the training data. The test data is used to test

the model on unseen data. In this research the validation and test datasets shall be merged into

a single dataset. This means that more data can be used as training data and only one additional

data set is needed to test the model performance. The model will not be stopped by the stopping

criteria as it would be when employed in operation, but would be left to run until a saturation

state is reached. This will indicate whether the model over-fits to the training data if not stopped

in time while the performance of the model on a test dataset is still evaluated with each iteration

of model training.

Scaling, Normalizing and Standardizing The Datasets:

Real and integer values are rescaled in the range 0 to 1 or -1 to 1. Normalizing and standardizing

the data generally makes the gradient descent algorithms more stable. When dealing with mul-

tidimensional problems where the scales of the input vectors differ greatly, instabilities could be

caused in the gradient descent based algorithms. Where the standard deviation of ~x is small but

the mean value of ~x is large it could also cause problems with gradient descent based algorithms

(Bishop, 2006).

Standardization of data ensures that the data distribution has a mean of zero and a standard

deviations of unity. This particular scaling has the advantage that temperatures above the mean

operating temperature (Tµ), which will have the largest contribution to the creep damage, will be

transposed into a positive value. Temperatures below Tµ will be transformed into a negative value.

~x =
~T − Tµ
Tσ

(1.33)

Normalization is a rescaling of the data from the original range so that all values are within the

range of 0 to 1. This is also known as min-max scaling.

~x =
~T − Tmin

Tmax − Tmin
(1.34)

In this report the temperature time signals are used as the input data. The temperature can vary

between 0 and 600 ◦C. The temperature data is scaled to ensure that all values will be between 0

and 1.

~x =
~T − Tmin

Tmax − Tmin
(1.35)

=
~T − 0

600− 0

19

CHAPTER 1. INTRODUCTION

There are many different ways to standardize and normalize the data. In this research the min-max

scaling is used throughout, the reason for this is that the means and standard deviations of values

between the three different datasets could vary significantly. This could cause the predictions on

the test or validation sets to be biased to the training dataset mean.

1.5.10 Learning Curves and Stopping Criteria

The weights are usually initialised using random variables, meaning the initial error is expected

to be very high. If a gradient descent back propagation is used, the error is expected to decrease

monotonically until it reaches an asymptote that is dependent on the Bayes error (lowest possible

prediction error), the amount of training data and the number of weights in the neural network

(Duda, Hart and Stork, 2001).

The average errors on the test and validation sets are expected to be higher. While the general

trends of errors on these data sets should be downward, the errors can increase and oscillate due

to the fact that the neural network can learn the noise in the training data set and it could over-fit

to the training data set.

In general, the back-propagation algorithm does not always have a clear point of convergence.

When the error surface of the model predictions is considered, there might exist a global minimum

point with multiple local minimum points. The training data set can be split into two sets. Say

the same machine learning model is applied to the two data sets, when the global minimum of the

two data sets are within a certain range of one another and further gradient descent is not possible,

there is a high probability that the model has converged to a global minimum. Any further training

will make the model biased to the training data and will be over-fitted. The validation set can

be used in a stopping criteria in both batch and stochastic protocols. In practice gradient descent

learning of the training dataset is stopped or the model parameters at this stage is saved and used

as the trained model. In this research the model is only stopped after a maximum epoch limit has

been reached. This means the model will continue to train so that we can observe if the model

actually over-fits to the training data. When the validation dataset is too small this could cause

the model to under or over-train and might cause the model to be bias to the validation dataset.

In this research a relatively large validation set is used to ensure that this does not happen.

Figure 1.10 shows the errors of the three data sets during training. In this case the training will

stop after 5 epochs. This does not ensure a minimum test error will be obtained. The test set is

a blind set and can not be used in the training sequence. The validation set can not be reused as

a test set as this data is considered to be tainted and the model will be bias to the training and

validation set data.

20

CHAPTER 1. INTRODUCTION

Figure 1.10: Error surfaces (Duda et al., 2001)

Stopping Criteria

Stopping criteria that can be used during training are:

1. The back-propagation algorithm has converged when the Euclidean norm of the gradient

vector reaches a threshold that is sufficiently small. The Euclidean norm of a vector E is

defined as ‖E‖=
√
E2

1 + E2
2 ...E

2
n

2. The back-propagation algorithm have converged when the absolute rate of change in error

per step/epoch is sufficiently small. This is true when there is no more significant change in

error with each additional training step/epoch.

The stopping criteria that are used in this report are only to set a minimum and maximum epoch

limit. The reason for this is that during the initial stages of training the obtained errors can be

unpredictable and an assumption is made that the optimum solution would not be found within the

first few specified runs. Maximum epoch limits are set so that the model does not take excessively

long to run. Valuable information can be gained by examining the training curves and looking at

what happens after the stopping criteria has been satisfied.

Pseudo code for setting the stopping criteria:

21

CHAPTER 1. INTRODUCTION

1 whi le True :

t r a i n i n g sequence () : # c a l l the t r a i n i n g sequence

i f ((epochs > epoch min) and (abs (E(t)−E(t−1))< th r e sho ld)) or (

epochs >= epoch max) :

break # stop the t r a i n i n g

1.5.11 Damage Models

Creep damage in a material is dependent on the material properties, temperature, stress and

exposure time. Equation 1.36 describes a well known damage model (Cane, 1982):

t

tr
=

[
1−

(
1− ε

εr

)λ]
(1.36)

where t is the operating time, tr is the operating time at rupture, ε is the strain and λ is the

material creep ductility parameter.

In practice the creep damage of a material is measured by counting the number of voids per square

millimetre that has formed on the surface of the material. This is done by polishing the material

to a mirror finish and then etching the material to show the material grain structure. The number

of creep voids per square millimetre is subsequently counted, under a microscope, that has formed

on the surface of the material. Creep can be described by three different function categories:

Primary Creep Stage

Numerous small sub-microscopic creep voids with diameters less than 0.1µ initiate as early as 10% of

the creep rupture life of a material. Some of these voids become visible under an optical microscope

at a magnification of 400 times, when they have grown to a size of 1±0, 5µ. The latter will happen

typically for low alloy steels where the strain rate is less than 10−6/h at life fractions consumed

between 0.2 and 0.5 (Van Zyl, Von dem Bongart, Bezuidenhout, Doubell, Havinga, Pegler, Newby

and Smit, 2005).

During this stage the metallographic replicas will not yield a lot of information regarding the life

fraction used of a material.

Secondary Creep Stage

During this stage the contribution of sub-microscopic voids are insignificant with respect to the

strain due to the small volume fraction that it makes out of the material.

Damage models are based on metallographic micro void damage. During outages the metal surfaces

22

CHAPTER 1. INTRODUCTION

of the high energy piping systems are replicated using a metallographic replica. This is inspected

under a microscope with a magnification of 400 times. Voids are counted and quantified as voids

per square millimetre. Models are specific to the type of weldment, base material and geometry.

Where the creep strain rate is less than 10−6/h the assumption is made that the strain rate is

directly proportional to the void formation rate (Van Zyl et al., 2005).

dε

dt
= k

dN

dt
(1.37)

The fraction of life used can be written as:

t

tr
=

[
1−

(
1− N

Nf

)λ]
(1.38)

where N is the number of voids per square millimetre. In the model the number of voids per square

millimetre at failure (Nf) is limited to 1000 voids/mm2 as components are typically not operated

beyond this limit. In practice this could evolve to a few thousand voids/mm2 before micro crack

formation and crack development occur. The material creep ductility parameter (λ = 5) is used in

this dissertation as this is a conservative value that has been determined from experience gained

in operating multiple units that used the same material over more than 30 years and conducting

post exposure tests on failed components.

Using this approach does have some calculation inaccuracies as the value of λ for low fraction life

might differ from that of a higher fraction life. It is important to note that there is a direct relation

between the number of voids measured (N) and the remaining life fraction of a component t
tf

. It

would be more convenient to train a machine learning model on the number of voids measured (N),

and use the model to predict the number of voids in a component. If the number of voids is known

then it is straight forward to calculate the remaining life of the component.

Equation 1.38 is a useful way to monitor the life fraction used of a component throughout its

life, by taking metallographic replicas during outages. The life fraction used (ttr) can be used as

the regression or classification label ~y to train a machine learning model. In this dissertation the

number of voids shall be used as the label ~y. This should make the model less complex and besides

normalizing the data, no post processing will be required for the number of voids measured during

the outages.

Figure 1.11 shows the material surface under a microscope using 400 times magnification, one taken

two years after the other on the same component. The same material grains are not inspected with

every outage due to the fact that some material is ground away before each inspection, thus the

location of the grain-boundaries and voids will change. Visually one can see that there is an increase

in the number and vividness of the voids in the material after two years of operation. During outages

the metallographic replicas that could be likened to a fingerprint of the grain-boundaries and voids

are sent to a lab where the number of voids per square millimetre are counted for each replica slide.

This is recorded and will be used to label the condition of the components in this dissertation.

23

CHAPTER 1. INTRODUCTION

(a) Creep void damage in bend 2003 (b) Creep void damage in bend reinspected in 2005

Figure 1.11: Creep void degradation

Tertiary Creep Stage

During this stage the number of voids visible at 400 times magnification hardly increase but their

size increases rapidly. A material in the tertiary creep state may have low residual creep ductility

with resultant constraint cavity growth. For high energy piping systems it is critical to detect creep

damage before this stage as strain rates and creep propagation in this region are difficult to predict.

The risk of failure is high in this region if proper condition monitoring is not enforced. Components

are typically replaced before this stage is reached.

1.5.12 ISO-Mean Life Estimation

The ISO 6303 procedure can be used to approximate the useful life of a component operating at a

specified temperature and pressure. In the application of this procedure the following assumptions

are made:

• Effects of fatigue damage are negligible.

• No wall loss, erosion or corrosion is present.

• No external forces or moments are imposed on the component.

Equation 1.39 is used to calculate the stress in a straight pipe section. Equation 1.41 is used to

calculate the mean creep life of a component, operating at a constant pressure and temperature

σstraight =
P × ID
2× wt

(1.39)

σ = σstraight × SIF (1.40)

where P is the internal pressure, ID the internal diameter, wt the pipe wall thickness and SIF is

the stress intensification factor. SIF = 1, for a straight pipe section.

24

CHAPTER 1. INTRODUCTION

The life of a component can be determined using the ISO 6303 procedure as described in (ECCC,

2005)

P (σ) = a+ b(log σ) + c(log σ)2 + d(log σ)3 + e(log σ)4 =
log t− log ta

(T − Ta)r
(1.41)

t = 10(a+b(log σ)+c(log σ)
2+d(log σ)3+e(log σ)4)(T−Ta)r ta (1.42)

where t is the predicted creep rupture time in hours, P (σ) is the creep rupture parameter and T

is the absolute temperature in [K]. a, b, c, d, e, Ta and ta are material specific constants. σ is the

stress in [N
mm2] and r is the temperature exponent.

Table 1.1: Creep life properties used for X20CrMoNiV11-1 (12CrMoV)

a -0.67429707

b 1.444463833

c -1.1950249

d 0.43632984

e -0.0599978034

ta 13.36

Ta 600

r 1

Plotting the ISO-mean life with properties as specified in Table 1.1, with respect to temperature and

pressure yields Figure 1.12. This illustrates that there is an exponential gain in life if the operating

temperature or pressure is reduced. This also illustrates how sensitive the life of a component is to

the operating temperature.

25

CHAPTER 1. INTRODUCTION

Figure 1.12: ISO mean life estimate [hrs], as function of temperature and pressure

Creep Life Sensitivities

There are a few factors that influence the creep life of a component, the most important are the

temperature, stress, and material creep strength. Figure 1.13 illustrates the sensitivity of the

expected creep life in hours, by taking uniformly distributed samples within the specified ranges.

The illustration is for the case of a straight pipe under internal pressure at a specified constant

temperature.

26

CHAPTER 1. INTRODUCTION

Figure 1.13: ISO-mean creep life sensitivity

Looking at the combined effects of uncertainties in temperature, stress and material properties it

is clearly extremely difficult to accurately predict the creep life of a component operating at the

specified temperatures and pressures. This means that if two identical components are operated

where the temperature differs by ±5◦C, pressure differs by ±10% and the material strength dif-

fers by ±15% there will be a big difference in expected life of the component. The difference in

component life could range from 700 thousand hours to 4.4 million hours.

1.6 Scope of Research

The research focuses on the main steam piping systems at a coal-fired power station. The aim is to

link historical operating and site survey elevation data to pipe degradation. It is envisaged that the

feasibility of the machine learning approach could first be investigated in the context of simplified

numerical models, and that these models may in future be further developed to a fully functional

data driven asset management tool.

A preliminary study is done in Appendix A, to determine if the results of an existing creep life

estimation model can be recreated using machine learning. The study is done on randomly gener-

ated temperature time series. The results of a creep life estimation model (~y) are used to train a

machine learning model. The accuracy of the machine learning model is then tested on a set of new

unseen temperature time series data. This is a test of how well the machine learning model mimics

the outputs of a creep life estimation model, by only looking at input temperature signals and cor-

responding calculated life fraction consumed examples, without having any prior knowledge of the

life estimation model. The preliminary research is for a straight steam pipe under varying internal

temperature and pressure. The damage mechanism is creep and the influence of system loading,

fatigue and other damage mechanisms is assumed to be negligible for the preliminary investigation.

27

CHAPTER 1. INTRODUCTION

The preliminary investigation is done to see if the proposed method can reproduce the results of

industry standard methods. Using the ISO mean life estimate method to generate training data

one can eliminate uncertainties caused by features that are not available or practicable to measure

in a real world scenario for every single component. These features could be material chemical

composition, material heat treatment, weld geometry, weld strength, weld material composition,

welding defects, post weld heat treatment, external loadings, boiler steam quality etc. By doing this

one can have a good idea if there is a problem with the method or if there is too many uncertainties

in the data, once a real world dataset is used.

Historical operational (i.e. pressure and temperature), site elevation survey and creep replica

micrograph data is gathered and systemically captured in a common database. The data is captured

for five coal fired power generating units for a duration of six years. Data quality is assessed and

the data shall be cleaned in order to make it usable in computer model. This means that all values

that has been recorded while the recording instrumentation was broken will have to be padded with

a sensible value or would need to be ignored. In the case where data was manually recorded during

outages into reports and spreadsheet, the values will need to be transformed into data frames where

data. For data such as comments and text based information that cannot be parsed by the model,

will be either ignored or encoded in a manner that can be understood by the machine learning

model. Using machine learning approaches, data driven models that link historical operational

and measured elevation data to the micrograph data (i.e. creep damage) are developed. These

models are used for data-driven predictions and decision making. Specific attention is focused on

the identification of pipework components that are most susceptible to failure based on historical

operational conditions. A hybrid recurrent neural network is constructed that is able to take a

mixture of temporal as well as static data and trained on historical data captured of a piping

system from a coal-fired power station. Finally, model is tested to see how well it performs on

predicting the damage in components when given a new unseen dataset

1.7 Layout of the Document

In this dissertation a machine learning model is developed that will work with the data that is

available that has been collected from an operating power plant.

In chapter 2 the development process of the Hybrid RNN model that has been developed using

Tensorflow is documented. The layout of the machine learning model is described in this chapter as

well as defining the inputs and outputs of the model. This chapter also describes the computational

graph that is created in Tensorflow to successfully train the model. The choice of loss function and

optimisation algorithms is discussed in this chapter.

In chapter 3 the process that is followed to collect, clean and structure the data is explained. The

datasets are segregated into training testing and validation sets. A brief description of the stress

analysis that is used as one of the inputs to the model is documented in this chapter. Special

requirements, to make computation more effective, such as how the data is stored in Tensorflow

records files are discussed.

28

CHAPTER 1. INTRODUCTION

The results that are obtained by running the same datasets with different model parameters are

compared with one another in chapter 4

Appendix A documents an initial investigation where a RNN model is trained on the results of

an ISO-mean life curve. The input temperature signals used are generated randomly and the

corresponding life fraction consumed is calculated using the ISO-mean life curve. This investigation

was done to ensure that when the real data is used that the RNN will be able to recognise patterns

in temperature sequences as well as contribute to the hybrid model.

29

Chapter 2

Machine Learning Models

In this chapter the software packages used are discussed, as well as the special requirements.

The hybrid RNN machine learning model layout is described. The loss functions used as well as

optimisation algorithms used are also described. An arbitrary method for calculating the accuracy

of the model is discussed in this section.

2.1 Prestudy

A pre-study has been performed and is documented in Appendix A. In this pre-study an RNN is

trained on a creep damage model. This is done to see how well the model would perform if the

model input (~x) consisted purely of a temporal dataset, with life fraction consumed as an output

(~y). Artificial noise is added to the data to see if the model is able to ”ignore” the noise in the data

and recognise the underlying patterns in the data.

The model was able to achieve a training accuracy of up to 93% with a corresponding validation

accuracy of 90%. The lessons learned from this pre-study is that LSTMs generally perform better

than GRUs on large datasets. GRUs tend to train in less time, due to it being less complex. The

pre-study also indicates that it is better to train the problem as a regression problem rather than a

classification problem. The reason is that no information is lost when converting the output label

(~y) from a real value to a one hot encoding vector. GD and ADAGRAD optimisation algorithms

do not converge to the same solutions and ADAGRAD is seemingly more suited to optimize the

given model.

The pre-study indicates that RNNs are well suited for dealing with data that has a lot of noise

imposed on it and is very successful at ”ignoring” the effects of noise on the model predictions.

The labels (~y) in this pre-study is a calculated percentage of life fraction consumed. The labels (~y)

used in the main study is the number of creep voids per square millimetre.

30

CHAPTER 2. MACHINE LEARNING MODELS

2.2 Tensorflow

RNNs notoriously have very long training times and are computationally very expensive to train.

GPU processing for machine learning application only became practicable in recent years and is

mostly the reason for the recent popularity gain of RNNs with data scientists.

Tensorflow is an open source application program interface (API). Tensorflow takes variables and

store them in predefined multi-dimensional matrices called tensors. A graph is automatically gener-

ated that specifies the ”flow of tensors” (i.e. addition and multiplication of tensors). This optimizes

the number of parallel operations that can be performed. Graphical Processing Unit (GPU) compu-

tation is used as thousands of parallel operations can be performed. This reduces the computational

time significantly.

Tensorflow has preprogrammed neural network cells such as LSTM and GRU cells. The API has

multiple preprogrammed optimisation algorithms such as gradient descent (GD), adaptive gradient

decent (ADAGRAD) and adaptive movement estimation (ADAM), that can perform automatic

differentiation by applying the chain-rule recursively.

2.3 Tensorflow Records Files

The raw data used in this study is in Microsoft Excel format. To enable easy data manipulations

the data is saved into multiple Python data frames.

The different data frames created is shown in Table 2.1.

Table 2.1: Data frames

Data frame Description
Tags A Python script reads all the pressure and temperature data that is collected in monthly

excel files into one consolidated data frame for all the units. The data frame is saved in
a Tags.pickle file that makes later access easier.

Outage Lists The outage date lists are saved into a data frame that contains the outage dates and file
locations of elevation surveys and outage reports.

Replica Data A Python script iterates through each of the outages listed in the Outage Lists data frame,
and reads the creep damage from corresponding outage report into a replica data, data
frame and is saved in a Replica.pickle.

Opp Data The applicable operational data for each outage is extracted from the Tags dataframe.
Saved into Opp data.pickle.

2.4 Tensorflow Graph

Figure 2.1 shows the Tensorflow graph that is constructed to perform the computations. There

are three different input producers that read the train, test and validation data respectively from

the Tensorflow record files created in section 2.3. The record files are parsed into tensors. Tensors

are multidimensional variables, that have a predetermined shape. The Tensorflow graph describes

31

CHAPTER 2. MACHINE LEARNING MODELS

the flow of tensors i.e. the sequence in which computations will take place. Once the graph

is constructed and sequence of computations is established, Tensorflow can perform automatic

differentiation using the chain rule which is used during back propagation.

Figure 2.1: Tensorflow graph

For each three dataset four tensors are created [x, y, seqlen, components]

x - The temperature and pressure input sequence. A two dimensional float tensor

of shape [sequence length, number of features].

y - The label, in this case the maximum number of voids experienced by a com-

ponent, the tensor contains a single float value.

seqlen - The length of the sequence is saved in a tensor that contains a single value.

components - The discrete information related to each of the components including elevation

survey readings, last known maximum number of voids.

Tensorflow batches are created (”batch size = n”). A batch is a collection of multiple inputs. A

batch of size n will contain the data for n components. Data are fed into the model as batches to

enable parallel computation capabilities.

2.4.1 Training Sequence

Figure 2.2 shows the training part of the Tensorflow graph. It is important to note that the gradient

decent algorithm is only dependent on the inputs of the training batch, hence the model is only

trained using the training data. Firstly the ”Train Batch” is send to the model (”Pred”). The

32

CHAPTER 2. MACHINE LEARNING MODELS

model makes a prediction on each of the entries in the training batch. The ”Loss” is calculated

by comparing the predicted labels to the actual labels. The ”Loss”, which is an error measure, is

sent to the gradient descent algorithm that calculates the gradients as per subsection 1.5.6. The

gradient-descent algorithm determines the updates that need to be made to the ”model parameters”

and the model is updated accordingly. The model parameters are saved in order for it to be recalled

during the testing and validation sequences.

Figure 2.2: Tensorflow training section

33

CHAPTER 2. MACHINE LEARNING MODELS

2.5 The Model Layout

The model layout is shown in Figure 2.3. The sequential data is sent through a LSTM model to

compress the information contained in the temperature and pressure sequence to a single value.

Figure 2.3: Model layout

34

CHAPTER 2. MACHINE LEARNING MODELS

2.6 RNN Cell

In Appendix A both long short term memory (LSTM) and gated recurrent unit (GRU) cells are

employed. It shows that GRU cell does have significant advantages in computational speed, however

the complexity of the LSTM usually yields better results. In this case LSTM cell is used to parse

the sequential data.

2.7 The Hybrid Recurrent Neural Network Forward Pass

The network architecture needs to be decided before the network can be optimized. Note that in

this research the network architecture are loosely based on what previous research has shown to

work and the experience of the author with these networks. Increasing the number of nodes and

layer of the model causes a complexity increases, this in turn makes the optimisations more difficult

and means a larger training set is often required. When the number of layers are increased the

model is able to group extracted features/node values together. This means that the model should

in theory be able to identify more complex patterns in the data. If the number nodes are increased

and the layers are not enough or the layers are increased but there are too few nodes in a layer one

will find little to no improvement in model performance. In this research the model architecture

are tweaked manually to find a good solution, using optimisation techniques to optimise the hyper-

parameters is not practicable as it would require multiple optimisation runs where a single run

could take days to complete.

An example of the hyper parameters that define the architecture is:

n hidden RNN = 32 (RNN cell output size/ number of output hidden nodes)
n classes RNN = 1 (Number of outputs of the RNN Network)
n comp = 37 (Number of static component features)
n hidden fc2 = 256 (Number of hidden nodes in fully connected layer 2)
n hidden fc3 = 32 (Number of hidden nodes in fully connected layer 3)
n classes = 1 (Number of output classes, this is 1 in case of regression)

The feed-forward pass function takes the batch x, batch component, and batch sequence length

values as an input.

The built-in dynamic RNN function is used, which enables the use of varying length tensors in the

same batch. The dynamic RNN uses the batch x values and the sequence length. The specified

cell is an LSTM cell and the outputs of the RNN are calculated as described in section 1.5.8.

The RNN gives an output in the shape: [batch size, max sequence len, n hidden RNN]

The RNN output saves the output vector for each step of the RNN. However only the last output

is of interest. The index of the last output of each of sequence in the batch needs to be saved.

index = range(0, batch size)×maximum sequence length + (seqlen -1) (2.1)

35

CHAPTER 2. MACHINE LEARNING MODELS

The output is then transformed in the shape[batch size × maximum sequence length, n hidden

RNN]. Only the rows with the index numbers are saved in the ”index” variable, the rest are

discarded. Each line in the output matrix contains the last RNN outputs of shape [n hidden RNN],

of an entry of the batch. This means the output is in the shape, [batch size, n hidden RNN].

The final RNN output is calculated for each batch using:

~zfc1 = ReLU(~output) ~Wfc1 +~bfc1 (2.2)

where ReLU is an activation function as described in subsection 1.5.5. The RNN Output is con-

catenated with the static inputs (batch comp) to form a dense input to the next fully connected

layer of shape [n classes RNN + n comp].

~zfc2 = tanh(~dense input) ~Wfc2 +~bfc2 (2.3)

This is sent through more feed forward layers in the same fashion

~zfc3 = ReLU(~zfc2) ~Wfc3 +~bfc3 (2.4)

The final layer is sent through a sigmoid to ensure the result lies between 0 and 1.

~zfc4 = sigmoid(ReLU(~zfc3) ~Wfc4 +~bfc4) (2.5)

2.8 Loss Function

In the case where the problem is set up as a single output regression problem, the cross entropy

loss (section 1.5.4) is not beneficial over using the root mean squared loss (section 1.5.4)

The loss is calculated per batch hence the loss is:

E =

√∑
i(~yi − ~y′

i)
2

K
(2.6)

where yi is the actual life fraction used for each of the components in the data batch. y′i is the

predicted life fraction used for each of the components in the data batch and K is the size of the

data batch.

2.9 Optimisation Algorithm

There exist multiple optimisation algorithms that could potentially be used to optimize the pa-

rameters of the model to ensure the loss is as small as possible. Gradient descent based algorithms

are often favoured over stochastic algorithms, in machine learning problems where computational

power is expensive.

36

CHAPTER 2. MACHINE LEARNING MODELS

The reason for this is that gradient descent algorithms are relatively easy to apply and the algorithm

hyper-parameter optimisation can be done manually with minimal repeated runs. Using gradient

descent based algorithms offers repeatable solutions where stochastic methods may yield different

results with each run.

Learning stochastic recurrent networks is clearly difficult as explained by Bayer and Osendorfer

(2015). Training neural networks with genetic algorithm have been proven to be very successful

(Koehn, 1994), however multiple models need to be created and multiple generations of different

models need to be generated and evaluated, making it very computationally intensive.

In Appendix A GD and ADAGRAD optimisation algorithms are used. It shows that ADAGRAD

outperforms the GD algorithm for the given data set.

There exists multiple gradient descent algorithms such as resilient back-propagation RPROP (Igel

and Hüsken, 2000) and delta-bar-delta (Sutton, 1992). In this research ADAGRAD and ADAM

are used due to the fact that we a hybrid model is used where the LSTM network receives data

much more frequently than the feed forward neural network, this enables different learning rates

for the various parameters of the hybrid network. This should theoretically combat the problem

where one of the networks in the system over-fits to the data before the other network has been

trained properly.

Due to the fact that a hybrid model is used, it makes the computation of the gradients very

cumbersome, and making changes to the model layout would mean that the gradients need to

be recalculated. Tensorflow does not compute the gradients using numerical methods but uses

automatic differentiation. By constructing a Tensorflow graph of the model, Tensorflow knows

what the sequence of elementary arithmetic operations will be. Tensorflow automatically applies the

chain rule repeatedly to these operations. Hence, it does not make use of symbolic differentiation

or numerical differentiation. Using automatic differentiation has the advantage over numerical

differentiation that the answer is exact and fewer function evaluations are needed to determine the

gradient.

2.10 Calculating the Accuracy

The model has been set up as a regression problem and the accuracy of the model is an arbitrary

value. Four arbitrary classes are created based on the maximum void count of a component.

Traditionally the components are placed in a class based on the hours of remaining life, however

this is dependent on the component type and component material as well as the location of the

void count. To simplify one would just want to categorize the components based on the number of

voids as this does have a relation to the remaining life of a component.

The assumption is made that sufficient preventative maintenance action can be taken if each of the

components can be categorised correctly into the correct quartile based on remaining life.

The components are considered to be completely creep exhausted once the void-count reaches 1000

voids per square millimetre.

37

CHAPTER 2. MACHINE LEARNING MODELS

Hence, four classes are created:

Table 2.2: Classification labels for accuracy calculation

Class Description ~y Encoding

Class1 Void Count 750+ [1,0,0,0]
Class2 Void Count 500 to 750 [0,1,0,0]
Class3 Void Count 250 to 500 [0,0,1,0]
Class4 Void Count 0 to 250 [0,0,0,1]

Accuracy =

∑K
i=1 δ(Class(~y

′
i), Class(~yi))

K
(2.7)

The δ function is 1 if the constituents of the function variables are equal to one another. Class(~y′)

is the predicted class, Class(~y) is the actual class and K is the batch size.

38

Chapter 3

Machine Learning Model Application

In this chapter application of the model on real world data is described. The different data sources

are described in this chapter as well as the data handling, such as grouping the data into training,

testing and validation sets. The automated data reading methods used to read the data from the

data sources are briefly described. Once all the data has been collected the data is normalized

and then converted into Tensorflow record files, which will be used by the machine learning model.

Finally the Tensorflow records are used to train, validate and test the machine learning model

described in chapter 2. In chapter 4 the results obtained from the machine learning model are

discussed.

3.1 Generating the Data Set

The dataset consists of data collected from a coal-fired power station, from 2011 to 2017, for the

main steam piping systems of five of the operating units. The data consists of the temperature and

pressure that the piping system experienced during operation, elevation survey data, metallographic

inspection results, pipe stress analysis results as well as constant component properties.

3.1.1 Temperature and Pressure Data

The temperature and pressure data is provided in five minute intervals. Four temperature mea-

surements are provided, one at each of the boiler outlet locations. The pressure signal is measured

at one location in the common line of the main steam piping system. Even during so called stable

operating conditions the temperatures does not stay constant and the temperature at each of the

four boiler outlets may differ significantly due to various operational deviations. The boiler is often

shut down for scheduled and unscheduled outages. Boiler trips do also occur when out of normal

operating conditions occur. Due to the age of the plant these events do occur often and can be seen

in Figure 3.1 when all the temperature and pressure signals drops close to atmospheric conditions.

This is not to be confused with noise in the data.

The temperature and pressure data is downloaded monthly and saved in comma delimited files

39

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

(*.csv). A Python script is used to read all the data contained in the files into a data frame.

Table 3.1 illustrates the format in which the data is captured, the table is an extract of data

sequences that are very long.

Table 3.1: Pressure and Temperature Extract

Time RA14T003 RA13T003 RA12T003 RA11T003 RA20P006

2011/01/01 00:05 542.125 534.359 573.773 541.392 16.63
2011/01/01 00:10 542.125 538.462 553.26 537.289 16.514
2011/01/01 00:15 542.125 538.462 553.26 533.187 16.41
2011/01/01 00:20 538.022 538.462 561.465 537.289 16.52
2011/01/01 00:25 538.022 538.462 565.568 537.289 16.52
2011/01/01 00:30 538.022 538.462 565.568 537.289 16.41
2011/01/01 00:35 538.022 538.462 565.568 537.289 16.52
2011/01/01 00:40 538.022 538.462 557.363 537.289 16.624
2011/01/01 00:45 538.022 538.462 557.363 537.289 16.514
2011/01/01 00:50 538.022 538.462 557.363 537.289 16.514
2011/01/01 00:55 538.022 538.462 561.465 537.289 16.404
...

Figure 3.1 illustrates the data that has been captured for the fifth operating unit. The data consists

of four temperature signals and one pressure signal.

Figure 3.1: Unit 5 pressure and temperature data

During operation, some instrumentation might fail or give false readings. Incorrect readings are

ignored from the dataset. It is known that the pressure and temperatures in a boiler operating

under normal conditions has a high positive correlation. There should also be a near perfect positive

40

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

correlation between the four temperatures and the pressure measurement of each unit.

A correlation matrix is constructed for each temperature and pressure dataset. The correlation

coefficient is calculated using:

rab =
nΣ~ai~bi − Σ~aiΣ~bi√

[nΣ~a2i − (Σ~ai)2][nΣ~b2i − (Σ~bi)2]
(3.1)

where n is the number of pairs of sequences, ~a is the first time sequence vector and ~b is the second

time sequence vector.

Figure 3.2 shows the correlation between all the temperature and pressure signals collected. Signals

0 to 4 belongs to unit one and 5 to 9 belongs to unit two and so forth. It is clear that there is

a strong correlation between each one of the units. It is easy to see the signals within each of

the units that do not correlate well, such as signal numbers 0, 3 and 21. Typical reasons why

one signal might not correlate well with the rest is that the instrumentation might be damaged,

slightly detached from the pipe or off calibration. Operating abnormalities such as tube leaks, stuck

spray-water valves or during on-line boiler cleaning events may cause an actual difference in steam

temperature between the different boiler outlet locations.

Figure 3.2: Overall correlation matrix

Individual correlation matrices are done per outage time frame, shown in Figure 3.3. In this case

there exists a high correlation between the four different temperature signals collected. None of

the temperature signals shall be ignored by the machine learning model and the effective operating

temperature shall be the average of the four temperature signals for each time step.

41

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Figure 3.3: Temperature correlation matrix unit 1 2012-01 to 2013-02

Only one pressure signal is recorded because the pressure signal is already processed from three

different pressure signals into a single pressure, before it is stored to the power station distributed

control system’s archive. A two out of three system is used where the two temperatures that are

closest to one another are used to calculate an average pressure which is used as the operating

pressure of the piping system. All the temperature and pressure data is from 2011 to 2017 read

automatically from various excel files and is stored in a Python based data frame.

3.1.2 Elevation Survey Data

The elevation survey data is a measurement of the pipe-movements that is done before an outage

while the unit is on load (pre-hot) during the outage while the unit is cold and after the outage

while the unit is hot (post-hot). Throughout the unit there are fixed datum points (Figure 3.4a)

on the surrounding steel and concrete structures. An automatic level is used to determine the

elevation of different points along the pipe with respect to the datum points (Figure 3.4b). A

measuring rod is pushed through a hole in the insulation in order to measure the elevation of the

bottom of the pipe section. The errors in measurement between two datum points can be as high

as 2mm. Differential expansion between the boiler and the surrounding structure could account for

further inaccuracies that are difficult to quantify.

42

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

(a) Datum points 64 meter level (b) Pipe elevation survey measurements

Figure 3.4: Elevation survey

Table 3.2 shows an extract from typical elevation survey readings. The elevation is measured as

the height above ground level. Each elevation point is measured relative to a known fixed elevation

point usually on one of the eight main boiler support columns, or a concrete surface. These fixed

elevation points usually are less prone to thermal movements, than other structural members of the

boiler house. The elevations are measured at each support location as well as discrete measuring

points between supports marked with ”.1” (see Table 3.2).

The main purpose of the elevation surveys are to determine if there are any counter slopes that

may prevent condensate to drain towards the drain points. The hypothesis however is that the

elevation survey also gives some insight into the operating performance of the supports. If a support

is operating outside of its design conditions, increased system loading on surrounding components

would be expected. This will increase the rate of creep void formation in those components.

Equation 1.38 shows that the number of voids is directly proportional to the remaining life of a

component. As seen in Equation 1.41, the component remaining life is a function of the stress and

temperature under which the component operates. This means the life fraction used and number

of voids is a function of the temperature and the stress under which a component is operated. Thus

one can argue that the rate of void formation should be a direct function of stress and temperature

under which a component is operated. The stress that a component experiences is a function of the

pressure, temperature and external forces applied to the system. The only variable external forces

working in on the system is the forces applied by the pipe supports. This can be seen in the pipe

stress analysis described in subsection 3.1.4 and Figure 1.2. When one of the supports is broken the

stress of the piping system is effected up to the closest three pipe support locations. Components

located further are also influenced, but the change in pipe stress is regarded to be negligible.

In other words a components’ useful life is directly dependent on the stress under which the com-

ponent is operated as shown in subsection 1.5.12. According to the beam stress theory, the bending

moment applied to a component is directly dependent on the displacement of the support as well

as the distance of the component to the support. The bending moment applied to a component

has a direct influence on the maximum stress intensity experienced by a component. The support

locations with respect ot each of the components are known and used as a static input to the model.

The change of displacement at the support location is also measured when the system is changed

43

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

from cold to hot operating state and is also used as a static input to the model.

An assumption is made that the rate of void formation is a function of the difference of expected

and actual movement of a support between hot and cold conditions as well as the distance of a

component to the support and the load carrying capacity of the supports.

Table 3.2: Elevation survey unit 5 extract

SUPPORT Hot 1
(Post)

Hot 2
(Pre)

Cold 1 . . . Hot 9
(Post)

Hot 10
(Pre)

Cold 6 Hot 11
(Post)

May
1999

Dec
2000

Mar
2001

. . . Apr
2010

Mar
2013

Nov
2013

Jan
2014

RA-11

.1 65.364 65.382 65.48 . . . 65.352 65.352 65.457 65.371
MS2 65.369 65.392 65.475 . . . 65.330 65.325 65.427 65.351
.1 . . . 65.314 65.308 65.406 65.355
MS6 65.380 65.390 65.444 . . . 65.274 65.268 65.356 65.314
.1 65.374 65.400 65.446 . . . 65.263 65.256 65.343 65.303
MS10 58.010 58.010 58.099 . . . 57.877 57.863 57.996 57.918
MS14 46.169 46.176 46.263 . . . 46.103 46.100 46.227 46.129
MS20 46.109 46.114 46.126 . . . 46.079 46.079 46.083 46.068
MS22 45.932 46.031 45.964 . . . 46.036 46.051 45.979 46.037
...

When a component is operating outside of its design intent it is not carrying the appropriate load

or travelling the appropriate distance, when the boiler operating conditions are changed from zero

% load to 100% load and vice versa. If a support does not operate within design intent or there is

an imbalance in the piping system, the supports will not move as designed when the piping system

changes from a cold to hot condition. These imbalances cause system loading that increases the

stress in surrounding components.

The model takes the design travel as an input ass well as the actual travel. The travel is calculated

as the hot elevation reading minus the cold elevation reading. Thus, for each outage there are two

travel measurements. One from pre-hot to cold and one from cold to post-hot. Elevation survey

measurement of the past three outages are assumed to be significant and used as an input to the

model, because elevation data that dates further back is not available for all units.

In some cases the unit is shut down earlier that planned due to unforeseen circumstances. In these

cases there is no time to perform a pre-hot elevation survey and the last known post-hot elevations

are assumed to be still valid.

In order to quantify the deviation in load applied to the pipe at the support location, it is important

to know the design load schedule shown in Table 3.3.

44

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Table 3.3: Load schedule extract

Support Number Design Travel [mm] Hanger Load [kN]
MS2 -104 14.5
MS6 -94 13.4
MS10 -135 60.4
MS14 -135 19.2
MS20 -29 19
MS22 68 22
...

3.1.3 Metallographic Inspection Results

The metallographic inspection results give an indication of the number of creep voids per square

millimetre. This has a direct correlation to the life fraction consumed and remaining life of a

component as shown in Equation 1.38.

Welds are usually inspected at four locations around the circumference of the weld. At each location

multiple replica strips are used to replicate the ground and polished metal surfaces as shown in

Figure 3.5a. Figure 3.5b shows the location of replicas for fillet welds.

The metal chemical etchant is used to reveal the micro-structure of the metal. The metal is

subsequently cleaned and an acetate film is placed on the metal surface to replicate the micro-

structure of the metal.

The replica strips are sent to a lab where the number of creep voids are counted manually through

a microscope.

Replica strips are placed across the weld so that the following locations can be measured. The form

in which the results are captured is shown in Table 3.4.

45

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

(a) Straight pipe replica location

(b) T-piece replica locations

Figure 3.5: Replication locations

Around the circumference of the pipe the void count at each of the following locations are recorded:

• PM10 -Parent material 10mm upstream

• PM5 -Parent material 5mm upstream.

• HAZ -Heat affected zone upstream.

• Weld -Weld material

• HAZ -Heat affected zone downstream.

• PM5 -Parent material 5mm downstream.

• PM10 -Parent material 10mm downstream

46

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Table 3.4: Outage report replica results extract

Comp No PM
10

PM 5 HAZ WELD HAZ PM 5 PM10 Min
WT
(mm)

Depth
(mm)

Butt
weld

RA11.Blr
exit

-
<20
<20
<20

-
<50
<50
<20

-
-
-
-

<20
-
-
-

<20
-
-
-

29.88
29.44
28.53
29.88

0.72
0.89
0.93
0.71

Butt
weld

RA11.101
1

-
-
<50
-

-
-
<50
-

-
-
-
-

-
-
<50
<20

-
-
<50
<20

32.16
33.19
33.84
31.88

0.33
0.71
0.69
0.5

Butt
weld

RA11.101
2

<50
<20
<20
<50

160
70
60
70

-
-
-
-

200
250
120
160

100
140
<50
140

60

100

30.5
29.9
30
30

0.7
0.6
0.8
0.6

...

3.1.4 Pipe Stress Analysis

A pipe stress analysis was done for steady state design conditions of the pipework. The analysis

was done using Caesar II software, the model get updated as modifications are made to the main

steam systems.

The model includes the pipe support effort, however the assumption is made that the model operates

with optimum support effort. The model does account for the insulation weight. Both the main

steam and cold reheat systems are modelled as they are interconnected with the HP bypass lines.

47

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Figure 3.6: Main steam stress

The software calculates a code stress according to the EN 13480:2012 code requirements. The code

stress for each component under steady state design conditions is used as a training input feature

to the model. The actual stress value is not what is of importance in this analysis. A stress analysis

is done to determine the stress that a component experiences relative to the stress experienced by

the other components. Components that operate under higher stress will tend to show accelerated

creep void formation. The operating load case below considers:

48

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

W - Self weight

D1 - Displacements at the turbine legs and boiler exits (as they are not fixed)

T1 - Design Temperature 545 [◦C]

P1 - Design Pressure 16.9 [MPa]

H - Hanger support efforts as per hanger load schedule

F1 - External loadings to simulate valve weights and forged pieces weights.

Table 3.5: Caesar II pipe stress results operating case (W+D1+T1+P1+H+F1)

Name -Node Axial
Stress
kPa

Bending
Stress
kPa

Torsion
Stress
kPa

Hoop
Stress
kPa

Max
Stress
Inten-
sity
kPa

Code
Stress
kPa

Piping Code

3.101.RA22 - 10 30324.7 15127.2 -320.8 69287.3 99580.9 55230.1 EN-13480
3.102.RA22 - 20 30297.3 15245.6 320.8 69287.3 99580.9 55348.5 EN-13480
3.102.RA22 - 20 30297.3 15245.6 -320.8 69287.3 99580.9 55348.5 EN-13480
3.103.RA22 - 30 30261.3 15403.8 320.8 69287.3 99580.9 55506.6 EN-13480
3.103.RA22 - 30 29259.3 14345.4 -298.8 67237.1 97562.2 53438 EN-13480

...

The model used for the simulation is the model that is used by the system engineers to see the

impact of changes to the system on the stresses of the components and to ensure code compliance.

The model is not specific to a single unit, but is a generic model for all units.

3.1.5 Defining the Components

In this study components are defined as circumferential butt welds, fillet welds or bends. Past

experience indicate that these are the areas where excessive damage are most likely to occur.

Figure 3.7 illustrates the component numbers for leg RA11 of the main steam piping system.

49

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Figure 3.7: RA 11 Main Steam Components

A Python dictionary was created that contains all the information of a component that is assumed

constant throughout its operating life.

Some information such as text (string value), cannot be fed into a mathematical machine learning

model. For instance, the component type is described by a string value ”Buttweld”. In order to

discriminate between component types a one hot encoding vector was generated. In this case there

exist three different component types thus an encoding vector could be [1, 0, 0] which indicates

that the component is of the first type. Thus, only one of the values in the vector is 1, the rest are

0.

The Python dictionary captures the following information for each of the components in the piping

system:

50

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Component Name - The unique name of the component that corresponds to similar compo-

nents on other operating units

Component Type - One hot encoding (buttweld, filletweld or bend)

ID - Internal Pipe Diameter

WT - Pipe wall thickness

Stress - Code stress under design conditions

EP1 - Elevation Point 1 (the closest support)

EP1 dist - Horizontal distance along pipe to Elevation Point 1

EP2 - Elevation Point 2 (the second closest support)

EP2 dist - Horizontal distance along pipe to Elevation Point 2

EP3 - Elevation Point 3 (the third closest support)

EP3 dist - Horizontal distance along pipe to Elevation Point 3

Dist Anchor - Distance to an anchor point

Repl HRS - The year in which the component was installed

OTN - This denotes if the weld was new material to old material or new material

to new material at the time of installation

3.1.6 Defining the Outages

An outage dictionary is created to describe the time that a unit was started up after an outage as

well as the date that the unit was shut down for an outage. The dictionary describes the location of

the outage report files as well as the location in the outage report that contains the replica results.

The outage dictionary also describes the location where elevation survey data must be read from.

Table 3.6: Outage dictionary extract

Outage
num

Unit
num

Opp
Start

Opp
End

Outage report Replica Sheet Elevation
Sheet

1 1 2011-05-
01

2011-09-
01

20120731-DUV-
U1-HP-Outage
Report October
2011.xls

ATT 11 - MS
Replica results

TRPT002723
DUVHA1HP.xlsx

2 1 2012-01-
01

2013-02-
26

20130325-DUV-
U1-HP-Outage
Report February
2013.xls

ATT 10 - MS
Replica Res

TRPT002723
DUVHA1HP.xlsx

3 1 2013-03-
06

2013-09-
29

20140116-DUV-
U1-HP-Outage
Report October
2013.xls

ATT 10 - MS
Replica Results

TRPT002723
DUVHA1HP.xlsx

4 1 2013-09-
29

2014-07-
05

20140812-DUV-
U1-HP-Outage
Report July
2014.xls

ATT 10 - MS
Replica Results

TRPT002723
DUVHA1HP.xlsx

...

51

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

3.1.7 Grouping Datasets

For this dissertation the data for all the components in a recorded outage is kept together. This

outage data set is then grouped into one of the three data groups [train, valid, test]. The probability

that the data for any given outage belongs to a certain group is selected to be the following:

P (train) = 0.4

P (valid) = 0.3

P (test) = 0.3

A uniform random number generator is used to generate a number, the data for the specific outage

is grouped in a data group based on the number that was generated.

In order to compare the difference in model performance after certain changes have been made,

the grouping is kept the same for all the runs. The datasets are placed in a group per outage

and not per component. Firstly, the data batches that the model will receive in future will be per

outage and not a mixture of components from different outages. Secondly, if the components of

one outage is distributed between the train, test and valid groups, the model will be trained on

the temperature and pressure sequences that will appear again in the test and validation datasets.

This is not ideal as the model could over-fit to those sequences.

There are 15 outages in total and they are numbered as in Table 3.6. During each outage multiple

components may be inspected thus each outage contains a set of components. Each outage is

grouped in one of the three data groups.

The following grouping shown in Table 3.7 was obtained for the first run. For all other runs this

same grouping was forced to ensure the runs could be compared directly with one another.

Table 3.7: Outage Grouping by Outage Number

Train Test Valid
3 1 4
7 2 6
12 5 8
14 10 9
15 11 13

Total number of components 627 322 369

The spread in data is ideal, as we would typically use the largest part of the data to train the model,

while the test and validation is still large enough to make an objective decision on the performance

of the model.

3.1.8 Automated Data Reading

The script iterates through the inputs in the outage dictionary. The operational temperature and

pressure data signals are read from the data frame that contains all the pressure and temperature

data. This is saved in an operational data pickle (Opp data.pickle).

The replica data is read from the corresponding outage report. The components that have been

52

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

Table 3.8: Opp Pickle extract

Date Time Index Common Line Pressure [MPa] Average Temp [◦ C]
12/02/06 00:00 16.667 543.66325
12/02/06 01:00 16.654 544.24925
12/02/06 02:00 16.667 544.83525
12/02/06 03:00 16.661 544.359
12/02/06 04:00 16.673 546.0075
12/02/06 05:00 16.685 547.5825
12/02/06 06:00 16.679 549.5605
12/02/06 07:00 16.673 544.79875
...

inspected during the outage is kept and other components are discarded. A data frame is generated

that contains a list of all components inspected during this outage. The replica results of each of the

components are saved in the data frame as well as the last known replica results of the components

(Replica.pickle).

The properties of each of these components are read from the component database. Elevation survey

results for the closest three supports of each component are read from the elevation data-frames.

The component data-frame is saved in a component pickle (Component.pickle).

Table 3.9: Component pickle extract

Component Name RA11.Blr.exit RA11.101.1 RA11.106.1 RA11.107.1 RA11.108.1
Current Max 50 2300 1100 2200 1700
Previous Max 80 70 60 80 140
Buttweld 1 1 1 1 1
Bend 0 0 0 0 0
Fillet 0 0 0 0 0
ID 250 250 250 250 250
WT 31 31 31 31 31
SIF 69382 69382 65329 39910 51347
EP1 dist 2587 2000 -510 -4460 -6960
EP2 dist 8097 7337 4907 270 -1230
EP3 dist 10494 9734 7307 3357 1857
Dist Anchor 0 -760 -2510 -5472 -7972
Repl Hrs 368 44 44 368 368
OTN 0 1 1 0 0
Design Travel 1 -104 -104 -104 -104 -104
Hanger Load 1 14.5 14.5 14.5 14.5 14.5
Hot 1.1.1 -0.093 -0.093 -0.093 -0.093 -0.093
Hot 1.1.2 -0.092 -0.092 -0.092 -0.092 -0.092
Hot 1.2.1 -0.1 -0.1 -0.1 -0.1 -0.1
Hot 1.2.2 -0.101 -0.101 -0.101 -0.101 -0.101
Hot 1.3.1 -0.092 -0.092 -0.092 -0.092 -0.092
Hot 1.3.2 -0.095 -0.095 -0.095 -0.095 -0.095
Design Travel 2 -94 -94 -94 -94 -94
Hanger Load 2 13.4 13.4 13.4 13.4 13.4
Hot 2.1.1 -0.086 -0.086 -0.086 -0.086 -0.086
Hot 2.1.2 -0.078 -0.078 -0.078 -0.078 -0.078
Hot 2.2.1 -0.125 -0.125 -0.125 -0.125 -0.125
Hot 2.2.2 -0.104 -0.104 -0.104 -0.104 -0.104
Hot 2.3.1 -0.098 -0.098 -0.098 -0.098 -0.098
Hot 2.3.2 -0.081 -0.081 -0.081 -0.081 -0.081
Design Travel 3 -135 -135 -135 -135 -135
Hanger Load 3 60.4 60.4 60.4 60.4 60.4
Hot 3.1.1 -0.111 -0.111 -0.111 -0.111 -0.111
Hot 3.1.2 -0.109 -0.109 -0.109 -0.109 -0.109
Hot 3.2.1 -0.175 -0.175 -0.175 -0.175 -0.175
Hot 3.2.2 -0.143 -0.143 -0.143 -0.143 -0.143
Hot 3.3.1 -0.136 -0.136 -0.136 -0.136 -0.136
Hot 3.3.2 -0.127 -0.127 -0.127 -0.127 -0.127

The automated data reading programs create two pickle files for each recorded outage, that will be

used to train the model.

1. Opp data.pickle

2. Component.pickle

The Opp-data pickle creates the temporal data for the outage. The assumption is made that

53

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

all components in the main steam piping system had been subjected to the same pressures and

temperatures during operation from the previous outage to the current outage. The piping system

is well insulated with less than 5◦C temperature loss from system inlet to outlet. There are also

no valves or components in the main steam system that cause a considerable pressure loss.

The component pickle contains the static data of the components that have been inspected during

the current outage. Static data is data that is assumed to stay constant throughout the duration

of the operation from the previous outage to the current outage, such as pipe diameter and wall

thickness. The movement of the pipe supports is not known, however there is a static record of

the pipe movement from cold to hot, before and after each major outage. Thus the assumption is

made that the pipes were at the measured elevation for the entire duration of pipe operation from

the previous outage to the current outage. In the Hybrid RNN all these inputs are inserted on

the same level, hence there is no discrimination as to which inputs are more important than other.

During the training phase inputs that causes allot of confusion or that has little or no influence on

the model output will be trained out. This means that the weight parameters associated with a

given input shall typically tend to zero.

The inputs that are used in this research are chosen based on experience that has been gained while

managing the assets. It is well known that the main damage mechanism in the main steam systems

is high temperature creep. It is also known that there is an influence on the creep degradation due

to thermal fatigue. All information that is available that can give information about the component

as well as the conditions that is was operated under while in operation is used as an input to the

model. During the operation the stress that the components is operated under is not measured,

however the operating temperatures and pressures are an indirect measurement as these two factors

play a very large roll in the stress that a component experiences. The previous metallurgical results

are used as an input as it gives information about the starting condition of the component. The

temperature and stress cycles that the piping systems is operated under has a direct influence on

the creep and fatigue degradation that component experiences. This is why the temperature and

pressure sequences are used as an input as there is valuable information contained in these sequences

that we hope to extract using the machine learning model, without doing in depth physics based

computations.

The elevation survey results contains information about the external forces that is applied to the

piping system. The external forces applied to the system has a direct influence on the stresses

experienced by the surrounding components. The stress of a component under design conditions

is used as an input because this gives an indication of the stress that a component should experi-

ence under normal conditions. Component that is operating under a higher stress tends to have

accelerated creep damage.

3.2 Serializing the Data into Protocol Buffers

After the data has been read into the respective pickle files as described in section 3.1.8, the data

is read from the pickles, normalized and then saved into Tensorflow record files.

54

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

3.2.1 Normalizing

The data is normalized using min-max scaling described in section 1.5.9. If a data point T lies

between Tmin and Tmax the normalized value x will be in the range [0,1]. This makes the neural

network computationally more stable, meaning that features such as stress in the 105 [kPa] range

can be used in the same model as the elevation survey features in the 10−3 [m] range.

xi =
Ti − Tmin
Tmax − Tmin

(3.2)

The following Tmin and Tmax values are used to normalize the training data (Feature ∈ [Tmin,Tmax]):

Temperature ∈ [0,600] Pressure ∈ [0,17]
Buttweld ∈ [0,1] Bend ∈ [0,1]

Filletweld ∈ [0,1] Pipe ID ∈ [0,500]
Pipe Stress ∈ [20000,170000] Maximum Voids ∈ [0,1000]

EP1 ∈ [-19554, 5802] EP2 ∈ [-9832, 10917]
EP3 ∈ [-3824,14317] Distance to Anchor ∈ [-31714, 27568]

Months in operation ∈ [0,369] Old to new ∈ [0,1]
Support design travel ∈ [-154,168] Support design load ∈ [0,156.8]

Support movement ∈ [-0.154,0.168]

Converting Data-frames to Tensor-flow Record Files

Tensorflow has the ability to serialize the protocol buffer to a string and then writes the string

to a Tensorflow record file. The Tensorflow record files contain the different features of an entry

as fields, the entry can be either a sequence or a single value. Using this approach has multiple

advantages, such as batching the data of multiple components together is easy. The main reason

for using this is that computations are sped up significantly as the data is already in the format

that the Tensorflow graph is expecting to receive. During training, time is not waisted in reading

data from files and then serializing the data.

A Python script loads the respective datasets (train, test and validation) one at a time. The script

cycles through each of the outages in the dataset and loads the pickles that have been created for

the given outage into the respective opp data data-frame and component data frames.

The script then cycles through each component in the component data frame of the current outage,

and loads the corresponding pressure data temperature data, sequence length of the operational

data, component data and label.

Each of the five information sets are serialized and appended to the TFrecords file. Each entry to the

TFrecords file is indexed by a feature, in this case the features are called: ’Press’, ’Temp’,’Seqlen’,

’Comp’ and ’Label’.

During the Tensorflow session the serialized protocol buffers are loaded using the built in TFrecords

reader function. The feature indices (’press’, ’temp’, etc.) are used to get the specific data from the

protocol buffer. The data is then parsed into tensors, which is the data-type used by Tensorflow to

55

CHAPTER 3. MACHINE LEARNING MODEL APPLICATION

do matrix computations.

3.3 Random Seeding the Model Parameters

The parameters of the network such as the weights are randomly chosen, before the network is

optimized to ensure that different optimisation techniques can be objectively compared to one

another. The same random seed was used for every run. This means that as long as the network

layout is the same, the random initial weights of the network will be the same for all the cases.

3.4 Running the Model

A Python script is used to transfer the data from TFrecords files in batches of a predefined size. The

inputs are gathered as tensors and used to train the model that has been developed in chapter 2.

The model runs the complete training dataset num epochs times trough the optimisation sequence.

The model processes one batch at a time where a batch contains the specified batch size number

of components.

After each training batch sent to the optimisation sequence, the updated model is validated with

a validation batch. Thus for each training epoch the batch loss and batch accuracy for each of the

training, validation data sets are recorded and plotted as documented in chapter 4.

56

Chapter 4

Results

In this chapter the results obtained from the implementation of the machine learning model de-

scribed in chapter 2, using the data described in chapter 3 are discussed. Multiple runs are done to

see how the change of model hyper parameters influences the accuracy of the model. The accuracy

and loss of the model is evaluated to see which model layout and hyper parameter set performs best.

The influences of the data sample frequency, optimisation algorithm and the RNN-cell type (LSTM

or GRU) are investigated. Due to the long training times required to train such a complex model

on a large dataset the number of runs were limited. The initial hyper-parameters of the model was

selected based on the results obtained in the preliminary study that had been performed. With

each run one hyper-perameter such as the number of nodes in a given layer or the optimisation

algorithms used is changes, this will enabable one to see how the change of a single hyper-perameter

influences the performance of the model.

4.1 RNN Hybrid Network Results

The Hybrid RNN network design as described in chapter 2 is used with the input data collected as

described in chapter 3. The results listed in this section has been run on a windows based operating

system using Python 3.5 with the Tensorflow 1.2 library. The following hardware setup was used

to give the reported results:

Table 4.1: Hardware Setup

CPU GPU System Memory HardDrive
Intel Core i5 @ 3.30GHz NVIDIA GeForce GTX

1060 6GB, 1280 CUDA
Cores

20GB @ 1600MHz SATA Magnetic Drive

Some of the model parameters were kept constant for all the runs in order to keep consistency

between different runs as well as keeping the degree of complexity of the problem lower. The

model was trained using the following fixed hyper-parameters, where hyper-parameters refer to

parameters that are set manually and are not changed during optimisation of the model:

57

CHAPTER 4. RESULTS

Table 4.2: Constant Model Hyper Parameters

Sub-sample
method

Learning rate n classes RNN Loss Component fea-
tures

max 0.001 1 RMS 37

The max sub sample method means that each sample value extracted from the original sequence

is the maximum value experienced since the previous sample was taken. In other words, if the sub

sampling rate is one sample per hour, then the sample value will be the maximum value experienced

in each hour for the entire sequence.

With each run some hyper parameters were changed to see how the machine learning algorithm

performs. The hyper parameters for each of the runs are:

Table 4.3: Model hyper-parameters for different runs

R
u

n

S
a
m

p
le

ra
te

N
u

m
E

p
o
ch

s

B
a
tc

h
S

iz
e

R
N

N
h

id
d

e
n

n
o
d

e
s

la
y
e
r

2
h

id
d

e
n

n
o
d

e
s

la
y
e
r

3
h

id
d

e
n

n
o
d

e
s

R
N

N
c
e
ll

T
y
p

e

O
p

ti
m

is
a
ti

o
n

A
lg

o
ri

th
m

1 1 hour 1457 64 32 64 0 LSTM ADAGRAD
2 1 hour 2478 64 64 64 0 LSTM ADAGRAD
3 1 Day 3513 64 64 64 0 LSTM ADAGRAD
4 1 Day 1787 512 32 64 0 LSTM ADAGRAD
5 1 Day 1787 512 64 256 0 LSTM ADAGRAD
6 10 min 2041 16 32 256 0 LSTM ADAGRAD
7 1 hour 1712 128 32 256 0 LSTM ADAGRAD
8 1 hour 1712 128 32 256 0 GRU ADAGRAD
9 1 hour 2190 128 32 256 0 LSTM GD
10 1 hour 2133 128 32 256 32 LSTM ADAGRAD
11 (1) 1 hour 1640 128 32 256 0 LSTM ADAGRAD

elevation survey data padded with zero values(1)

A total of 11 runs were completed. The loss diagrams off all 11 runs are shown in Figure 4.1.

Significant smoothing is applied to see the general trend of the loss as some training curves are

irregular.

58

CHAPTER 4. RESULTS

Figure 4.1: Training Loss

The accuracy of the model (as defined in Equation 2.7) is expected to increase as the loss decreases.

The accuracy diagrams of the corresponding 11 runs are shown in Figure 4.2.

Figure 4.2: Training Accuracy

The results for each of the training runs are shown in Table 4.4

59

CHAPTER 4. RESULTS

Table 4.4: Results

Run
number

Loss train Loss valid Acc train Acc valid Running
time
[hours]

1 0.377 0.600 67.5% 49.9% 14.4
2 0.331 0.491 71.0% 52.9% 24.1
3 0.400 0.430 63.3% 56.2% 1.7
4 0.456 0.447 60.0% 52.1% 3.0
5 0.448 0.386 64.7% 64.3% 2.4
6 0.240 0.413 77.4% 52.9% 103.4
7 0.273 0.493 77.2% 59.9% 21.0
8 0.264 0.473 79.0% 62.5% 18.9
9 0.340 0.597 76.3% 58.2% 25.1
10 0.647 0.641 36.5% 32.0% 25.0
11 0.481 0.561 52.7% 49.4% 20.2

For each run the train, test and validation datasets were evaluated to see how the model performs.

The loss and accuracy curves for run number 8 is shown in Figure 4.3 to Figure 4.4

(a) Training Loss (b) Training Accuracy

Figure 4.3: Training Curves

(a) Validation loss (b) Validation Accuracy

Figure 4.4: Validation Curves

The training loss curve initially decreases and finally steadies out after about 800 epochs. It is

clear that the machine learning algorithm is able to recognise patterns in the data and accuracy is

improving as the epochs are increasing.

When the temporal dataset length gets too long the GPU (Graphics Processing Unit) memory is

too small and the program runs into an out of memory error. To get around this problem the

batch size can be reduced. This causes an increase in training time as fewer parallel computations

60

CHAPTER 4. RESULTS

can be done by the GPU. When the length of the temporal datasets is decreased, the batch size

can be increased meaning that Tensorflow can make more effective use of the parallel computation

capabilities of the GPU.

There does not seem to be a noticeable difference in performance between the GRU and LSTM cell,

as is the case with the investigation done in Appendix A. The difference is that there are only five

temporal data-sets in the training set, compared to the 100 temporal datasets used in Appendix A

and the temporal set is also longer. This means that the model cannot extract the optimal amount

of information from the given temporal datasets, this should improve if a larger training dataset is

used. Reducing the sampling rate has a minor influence on the accuracy of the model but has a

major influence on the required training time.

4.2 Learning Rate

The learning rate (ε) is kept constant for all runs at 0.001 as this has been found to provide a stable

decrease in loss during training when the batch size is large. When the learning rate is increased

the decrease in loss is not stable and the optimisation algorithms struggle to minimise the loss

because the changes to the model parameters are not subtle enough. When the learning rate is

too small, the changes in the parameters are not large enough to have a significant influence in the

model output. This means that the learning rate needs to be chosen carefully for each problem. If

computational time and computational power had not been a limiting factor multiple runs could be

done to completely optimize the parameters that define the model such as learning rate, activation

functions used and the model layout. However, even with modern day computational power this

is still not feasible and a lot of research is done with respect to hyper-parameter optimisation

techniques.

4.3 Network Layout

The network layout is constrained by the computational power that is available. While conducting

the research with results tabulated in Table 4.4, it was found that a RNN with output size of

32 and a fully connected feed forward network with a (38-256-1) configuration is computationally

stable enough to run on a 6gb GPU. If the network size is increased the model would not run on

the computer set up that was used as it would overfill the GPU memory when a sample of the

temporal sequence sample rate was every 10 minutes. When increasing the network size, additional

steps should be taken to ensure the GPU memory is not overfilled. It was also found that when

the model complexity is increased there is no noticeable increase in prediction accuracy.

4.4 Optimisation Algorithm

Adaptive gradient descent performs better than normal gradient descent and is able to converge to

a mature model in a shorter time. This is partially because a hybrid model is used and having an

61

CHAPTER 4. RESULTS

adaptive gradient descent is a large advantage.

In general both the gradient descent and adaptive gradient descent algorithms struggle to over-fit

to the training data. The ADAM-optimiser is able to fit to the training data with a very low loss,

this is a good sign that the model is able to pick up patterns within the data. The validation

error is higher than that of the training error. This is mostly because the training dataset is not

large enough or the information contained in the input data is not enough to make an accurate

prediction.

4.5 Training Time

The training time is largely influenced by the sample rate of the temporal data. There is an

exponential increase in training time when the temporal sequence sub-sampling rate is less than

ten minutes per sample. However, there not not significant decrease in training loss as seen in

Figure 4.5

Figure 4.5: Temporal Sub-sampling rate influence

The Tensorflow package has the ability to do some the computations in parallel. Running the

computation on a TPU or Tensorflow processing unit will decrease the required computation time.

A normal GPU could be used to carry out the required computations. Figure 4.6 shows the per-

centage of the operations that are compatible with TPUs. This model has an overall compatibility

of 75 %, meaning that there is room for improvement. This however does not fall within the scope

of this research.

62

CHAPTER 4. RESULTS

Figure 4.6: TPU Compatibility

4.6 LSTM cell vs GRU cell

In this research most of the runs are performed using the LSTM cell as the results of the preliminary

indicated that the LSTM cell performed better, and is a more well known cell, that has been proven

to work well with different types of datasets. The results obtain in this research indicates that this

is not the case that LSTM outperforms the GRU. The GRU cell reaches a saturated state during

training earlier than the LSTM-cell. This is a state where there are no more upward or downward

trends in the loss of any datasets. This means that the model is not over-fitting to the training

data, however it is as there are fewer parameters that need to be optimised. Unlike the findings

in Appendix A, the LSTM-cell does not outperform the GRU-cell. It is evident that the extra

complexity offered by the LSTM-cell does not help when working with such long time sequences

and small sample size.

4.7 Elevation Survey Impact

The impact of adding the elevation survey data is evaluated by running the model with the elevation

survey data as an input and then repeating the model where all the elevation survey data input is

0. This ensures that all the model parameters are the same at the start of the optimisation and

the optimisation difficulty is the same.

The results show that the model struggles to ignore the padded inputs. However, removing the

inputs all together, the overall accuracy of the model seems to be around 3% lower. This indicates

63

CHAPTER 4. RESULTS

that in the case where we have this data, including the data from the elevation survey does add

value to the model, however this is marginal.

It can be noted that the model with reduced inputs trains significantly faster due to the reduction

in model complexity and converges to a solution much earlier.

4.8 Best Runs

Due to the high number of class 4 elements in the training data there exists a local minimum point

where the model always predicts a low damage class four elements. This means that the model

does not really fit to the training data but is able to achieve a low loss with good accuracy by just

predicting class 4 components every time. This is not ideal for the given data set because we are

more interested in components with high damage in order to perform the required maintenance

activities on those components. Normal GD and ADAGRAD optimisation seems to struggle with

this. Using the built in ADAM-optimizer function in Tensorflow alleviates this problem as the

model is able to fit the training data very well.

It was found that using this approach the model is able to obtain a very high training accuracy of

94.1%. This means it is very good at classifying a set of input data that it has seen before. However

when it is provided a new set of input data, it only achieves a classification accuracy of 50.1%.

This could mean that the training dataset is not large enough, or there is insufficient information

contained in the input data or that there is a very low correlation between the measured inputs

and the damage of a component. Another run was performed increasing the size of the training

dataset, from 627 components to 948, which increased the validation accuracy to 56.1%

When a different random training set is used a validation accuracy of 64% can be achieved. This

however cannot be benchmarked against the other runs because in real world application you would

not have the opportunity to choose a good training set that will yield better validation accuracies.

The runs performed has the same hyper parameters as previous runs with changes as noted in

Table 4.5

Table 4.5: Best Runs Hyper Parameters

Run
Number

Sample
Rate

Number
Epochs

Batch
Size

RNN
Hid-
den
Nodes

Layer 2
Hidden
Nodes

Layer 3
Hidden
Nodes

RNN
Cell

Optimization
Algo-
rithm

13 6H 1540 625 1 125 64 LSTM ADAM
14 6H 1540 500 1 125 64 GRU ADAM

The results for the two runs are listed in Table 4.6

64

CHAPTER 4. RESULTS

Table 4.6: Best Runs Results

Run
number

Loss
train

Loss
valid

Accuracy
train

Accuracy
valid

Running
time

13 0.132 0.407 94.1% 50.1% 5.3
14 0.099 0.403 90.8% 56.1% 5.1

Figure 4.7 shows the predicted number of voids compared to the actual measured number of voids.

The dotted line indicates an ideal line where the predicted number of voids is exactly the same as

the measured number of voids. From this figure it is clear that given the complexity of the problem

the model fits the training data very well. However, when the model is given a new validation

dataset the fit is not as good. It would seem that the model has over-fitted to the training data

which is not the case, because Figure 4.11 shows a monotonic decrease on loss on the training

dataset. It means that the model is getting better at predicting the damage of the components. An

over-fit or bias towards a training dataset would cause the validation loss to dramatically increase

which is not the case.

(a) Training data fit (b) Validation data fit

Figure 4.7: Validation Curves

Figure 4.8 compares the number of components in each of the classes for the model predictions and

the actual measured values. Note that even though the model does not have a very accurate fit

to the validation data, the distribution of the number of components in each of the classes for the

validation set is surprisingly accurate.

The confusion matrix (Figure 4.9) highlights the areas where the model has misclassified the most

components in the training data set. This shows that the model misclassifies a lot of class four

components as class three and vice versa. It also shows that the model classifies some class one

components as class two, but for the given batch none of the class two components are misclassified

as a class one. The model seems to predict the damage slightly lower than the actual damage on

average.

65

CHAPTER 4. RESULTS

(a) Training data classes (b) Validation data classes

Figure 4.8: Measured vs Predicted Classification

Figure 4.9: Training Set Confusion Matrix

Figure 4.10 and Figure 4.11 illustrate the training curves for the training and validation set. It is

clear that the training accuracy trends upward while the validation accuracy does not follow any

trend. The loss curves shows a clear downward trend in both the training and validation set. This

means that there are some patterns contained in the training data that can be used to improve

predictions about the component damage of a different dataset. The fact that the validation error

decreases is a very good sign, and makes these methods very promising. Keep in mind that the

accuracy is an arbitrary measure and a decreasing accuracy does not necessarily mean that the

model becomes worse at making predictions.

66

CHAPTER 4. RESULTS

(a) Best Run Training Accuracy (b) Best Run Validation Accuracy

Figure 4.10: Best Run Accuracy

(a) Best Run Training Loss (b) Best Run Validation Loss

Figure 4.11: Best Run Loss

67

Chapter 5

Conclusion

Historically temporal/sequential data sequences such as temperature-time data sequences, are no-

toriously difficult to analyse and perform pattern recognition. The LSTM cell based Recurrent

Neural Network has been proven to be able to perform pattern recognition successfully on these

sequences. The flexibility that the hybrid-RNN model offers, makes it ideal for application to real

world data.

The hybrid RNN is able to recognize patterns within the data, by using the temperature and

pressure signals as an input, as well as previous damage and elevation survey data. The model is

able to predict damage in a component with relatively high accuracy. Despite the accuracies that

have been achieved the model does struggle to predict component that goes from low damage to

high damage classes within a short period of operating time.

GD, ADAGRAD and ADAM back-propagation algorithms can be used to optimize the parameters

of the machine learning model. The use of ADAM is clearly superior to the other algorithms as

the algorithm is more stable and convergence is reached earlier. This is especially true in the case

of the hybrid recurrent neural network model.

With the randomly generated data, a training accuracy of 90.6% was obtained on a training set

and 56.1% was obtained in a validation set. On a different training dataset validation accuracies

as high as 64% have been achieved.

It was noted that adding additional information to the model such as elevation survey information

does improve the model accuracy by around 3%. It was noted there is a significant reduction

in training time due to the decrease in model complexity. The user is advised to take this into

consideration to determine if the extra effort used to collect the data is worth the increase in model

prediction accuracy.

In order to improve the accuracy of the model more frequent training samples need to be taken,

thus if the piping support movement as well as the creep void formation could be tracked in real

time it would potentially increase the model accuracy significantly.

At this stage a large amount of computational power is needed to parse all the information that

68

CHAPTER 5. CONCLUSION

is available within a fleet of operating units. It has been shown that when the size of the training

data is increased from 627 to 948 components there is a 6% increase in validation accuracy. Thus

it can be expected that the model should get better at predictions as the size of the dataset grows.

Although the model is not able to predict all the damage of components with high levels of accuracy,

this does prove to be a very promising method of parsing large and complex data sets. The model

will not be able to identify all the class one components in a system. It can however list components

that are at high risk, based on the current data provided and previous experiences.

The model has proven to be a promising tool that could be used to create inspection plans. Even

if the classification accuracy is only 56.1% this would be a major advantage over guessing where

damage components might be. Randomly guessing the classification of a component should theo-

retically yield a classification accuracy of 25% given a uniform distribution throughout the classes,

which is not the case, meaning that an even lower accuracy is to be expected when randomly guess-

ing the classification of a component. The model has also been proven to be able to predict the

distribution of components within each of the classes. This would also give the user a good idea of

the damage within the system and the overall risk profile of a given system. This tool can be used

to double check that all inspections plans do include the possible high risk ”class 1 and class 2”

components. Even if the location of the high risk components are not known, having an accurate

estimation of the distribution of components in the damage classes will assists with ordering spare

parts in time because a lot of components are interchangeable.

The hybrid-RNN is a very promising tool that can be applied to similar data driven problems. The

problem in this research is a very difficult one as shown with the sensitivity analysis in section 1.5.12,

and is expected to do even better with other problems. The method used in this research is expected

do well with problems where plenty of historical data is available and where creating a physics based

model is too complex. The hybrid-RNN is scalable and configurable to work with most types of

data driven problems.

5.1 Further Research and Recommendations

Further research will potentially include looking at the networks proposed by Yao et al. (2015) as

it adds further complexity to the LSTM cell by adding a depth gate that connects the memory

cells of adjacent layers. Depth-Gated Recurrent Neural Networks have proven to increase accuracy

of language modelling and could potentially increase the accuracy of the current model.

The recent success with convolutional neural nets has proven to be a promising pattern recognition

tool (Deng, Hinton and Kingsbury, 2013). The convolutional neural net has outperformed all other

machine learning models on multiple platforms such as speech recognition, image recognition as

well as playing the game of GO, which is regarded by some to be one of the most challenging

pattern recognition tasks attempted.

In order to address the out of memory problem when working with long temporal datasets in a

RNN, the temporal data should be split into smaller mini batches, and the state of the LSTM cell

must be saved, and reloaded if the next mini batch continues from the previous mini-batch. This

69

CHAPTER 5. CONCLUSION

would potentially have a massive impact on the computational time and would remove the current

limit on the length of the temporal sequences that can be loaded into the GPU memory.

Methods should be researched on how to increase the TPU compatibility of the Tensorflow graphs.

This should aid in decreased training times of the models.

Further research should include optimizing the model hyper parameters, i.e. the number of hidden

nodes, the number of hidden layers used, the optimisation algorithms used, etc. This could be done

generating a latin hypercube sample space of the model hyper parameters and doing multiple runs

to see which model configuration yields the best results (Stein, 2012). This would however require

a lot of computation time.

If more data is available the model could be trained specifically on components with high damage.

This would ensure that the model will specialise in identifying components with high damage.

Due to the fact that components with high damage is in the minority, the influence of the these

components on the model parameters is small compared to components with low damage. This is

not ideal because for the given data set it is much more important to identify components with

high damage than it is to identify components with low damage.

It is recommended that a data capturing standard be created for all future data collection where

these methods are to be applied. Standardizing the way in which data is stored will make automated

data reading easier. When data is saved in tabular formats such as Microsoft Excel format, one

should also refrain from entering multiple values in a single cell, which will make data reading much

easier.

To truly benchmark the model, it is recommended that the model predictions are compared to that

of an experienced system engineer and compared with one another.

70

References

Bayer, J. and Osendorfer, C. (2015), ‘Learning Stochastic Recurrent Networks’, ICLR Confenerence

pp. 1–9.

Bengio, Y., Simard, P., Frasconi, P. and Member, S. (1994), ‘Learning Long-Term Dependencies

with Gradient Descent is Difficult’, 5(2).

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Vol. 4, Springer, 2006, Singapore.

Cane, B. J. (1982), ‘Remaining creep life estimation by strain assessment on plant’, International

Journal of Pressure Vessels and Piping 10(1), 11–30.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio,

Y. (2014), ‘Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation’, Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP) pp. 1724–1734.

Chung, J., Kastner, K., Dinh, L., Goel, K., Couville, A. and Bengio, Y. (2015), ‘A Recurrent Latent

Variable Model for Sequential Data’, Nips pp. 1–9.

Coetzee, J. L. (1998), Maintenance, Maintenance Publishers, Hatfield.

De Boer, P. T., Kroese, D. P., Mannor, S. and Rubinstein, R. Y. (2005), ‘A Tutorial on the

Cross-Entropy Method’, Annals of Operations Research 134, 19–67.

Deng, L., Hinton, G. E. and Kingsbury, B. (2013), ‘New types of deep neural network learning for

speech recognition and related applications: An overview’, 2013 IEEE International Conference

on Acoustics, Speech and Signal Processing pp. 8599–8603.

Deschanels, H., Escaravage, C., Thiry, J. M., Le Mat Hamata, N. and Colantoni, D. (2006), ‘As-

sessment of industrial components in high temperature plant using the ”ALIAS-HIDA” - A case

study’, Engineering Failure Analysis 13(5), 767–779.

Duchi, J., Hazan, E. and Singer, Y. (2011), ‘Adaptive Subgradient Methods for Online Learning

and Stochastic Optimization’, Journal of Machine Learning Research 12, 2121–2159.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001), Pattern Classification, edition 2 edn, John Willey

and Sons, New York.

Ebrahimi, O. H., Esmaeili, M., Oskouei, A., Mirhadizadehd, S. and Tse, P. (2016), ‘Defect detection

of helical gears based on time-frequency analysis and using multi-layer fusion network Defect

detection’, Nondestructive Testing and Evaluation (November), 1–18.

71

REFERENCES

ECCC (2005), ‘ECCC Data Sheets 2005’, ETD 47(2).

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long Short-Term Memory’, Neural Computation

9(8), 1735–1780.

Igel, C. and Hüsken, M. (2000), ‘Improving the Rprop learning algorithm’, Proceedings of the

Second International Symposium on Neural Computation pp. 115–121.

Jacobs, R. A. (1988), ‘Increased rates of convergence through learning rate adaptation’, Neural

Networks 1(4), 295–307.

Koehn, P. (1994), ‘Combining Genetic Algorithms and Neural Networks : The Encoding Problem’,

The University of Tennessee, (December), 1–67.

Mao, J. and Jain, A. K. (1996), ‘Why artificial neural networks?’, Communications 29, 31–44.

Mishra, S. and Savarkar, S. (2012), ‘Image Compression Using Neural Network’, Proceedings of

International Conference and Workshop on Emerging Trends in Technology (ICWET) 3(2), 18–

21.

Olah, C. (2015), ‘Understanding LSTM Networks’.

URL: http://colah.github.io

Sourmail, T., Bhadeshia, H. K. D. H. and Mackay, D. J. C. (2002), ‘Neural network model of creep

strength of austenitic stainless steels’, Material Science and Technology 18(June), 655–663.

Stein, M. (2012), ‘Large Sample Properties of Simulations Using Latin Hypercube Sampling’, Tech-

nometrics 29(January 2014), 37–41.

Sutton, R. S. (1992), ‘Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-

Delta’, Proceedings of the Tenth National Conference on Artificial Intelligence pp. 171–176.

Tian, Z., Wong, L. and Safaei, N. (2010), ‘A neural network approach for remaining useful life pre-

diction utilizing both failure and suspension histories’, Mechanical Systems and Signal Processing

24(5), 1542–1555.

Van Zyl, F. H., Von dem Bongart, G., Bezuidenhout, M. E. J., Doubell, P., Havinga, F. C., Pegler,

D. A. H., Newby, M. and Smit, W. (2005), ‘Life Assessment and Creep Damage Monitoring of

High Temperature Pressure Components in South Africa’s Power Plant’, ECCC Creep Conference

(September), 934–945.

Venkatesh, V. and Rack, H. (1999), ‘A neural network approach to elevated temperature

creep–fatigue life prediction’, International Journal of Fatigue 21(3), 225–234.

Yam, R., Tse, P., Li, L. and Tu, P. (2001), ‘Intelligent Predictive Decision Support System for

Condition-Based Maintenance’, Advanced Manufacturing Technology (17), 383–391.

Yao, K., Cohn, T., Vylomova, K., Duh, K. and Dyer, C. (2015), ‘Depth-Gated LSTM’, Microsoft

Research pp. 1–5.

72

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Appendix A

RNN trained on a creep damage

model

In this section an RNN is trained on a creep damage model. This is done to see how well the model

would perform if the problem consisted purely of a temporal dataset, with life fraction consumed

as an output and all other external factors that could influence the remaining life of a component

ignored. Artificial noise is added to the data to see if the model is able to ”ignore” the noise in the

data and recognise the underlying patterns in the data.

In order to train a model a training set of data is needed. A training dataset consists of an input

vector (~x) with a corresponding function value or label (~y). In the preliminary models the function

value (~y) may be either represented by a real scalar value or an one-hot encoding vector.

A.1 Generating the Data Sets

Random data sets are generated following the same methods described in subsection 1.5.9. The

datasets are randomly generated using a Python script. Each random dataset is labelled using

Equation A.1.

With the classification problem the labels are represented by a one hot encoding vector e.g.

[0, 0, 0, 1]. In this case a one hot encoding vector means that four bins are created in which every

input vector can be classified. The correct bin is denoted by ”1” and the other bins are denoted

by the ”0”.

The labels ~y is calculated using Equation A.1.

~y = % life used =

N∑
j=1

∆tj
t

(A.1)

73

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

where N is the length of the input vector (~x), ∆t the time between data points in the input vector

(~x). The components calculated creep rupture life (t) is calculated using Equation 1.41, while the

input variables (T,P,σ) are assumed to be constant throughout ∆t.

To ensure that the data set is more representative of a real world data set, Gaussian noise is added

to the generated labels. This is done in order to create a model that will be more applicable to

a real life data set where the actual damage measured on a component is likely to be in some

confidence bound of the calculated damage on the same component. Gaussian noise is added using

Equation A.2.

~ynoise = ~y ×N (µ = 1, σ = 0.4) (A.2)

where: ~ynoise is the associated life fraction label with added noise. ~y is the associated life fraction

as calculated using Equation A.1 and N (µ = 1, σ = 0.4) is the noise multiplication factor sampled

from the distribution shown in Figure A.1.

Figure A.1: Gaussian Noise Distribution

The noise distribution is chosen so that the mean of the distribution is unit. Thus if enough training

sequences are generated the algorithm should be able to ignore the effects of noise and should be

able to predict the most probable life fraction used quite accurately. Actual real plant data will

not follow such a clean distribution. By adding Gaussian white noise to the training labels, a more

realistic dataset is generated and ensures that the machine learning model is able to lessen the

effect of noise in real sequential data sets on the prediction model output.

74

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

A.2 Sequence Learning Models Used to Classify Life Fraction

Consumed by Temperature Sequences

The generated data sets are divided into training, test and validation set as per section 1.5.9. The

model is trained using the training data set. The validation set is used to monitor the loss or

accuracy of the model after each training iteration. If the validation loss starts to increase while

the training loss is still decreasing, it means that the model is starting to over-fit to the training

data and the training needs to stop. The test set is used as a separate untainted data set to test

how the model performs once the training is completed.

Table A.1: Model parameters

Parameter Value Comment

~x variable Temperature signal
∆t 20000 Time at which a temperature signal stays constant
batch size 64 The number of datasets ~x and corresponding ~ynoise used within one epoch
nhidden 64 Number of nodes in hidden layer
ε 0.001 Learning rate
training iterations 500000 Number of time gradient descent and weight updates are applied

A.3 Tensorflow Graph

Figure A.2 illustrates the tensor graph that is generated by Tensorflow. The model takes an input

variable ~x the output of the model is compared to the actual label ~y. The loss (error) is calculated

and used by the specified stochastic gradient descent algorithm (ADAGRAD in this case) to adjust

the model parameters. The stochastic gradient descent algorithm is used to make adjustments

to the RNN cell (basic LSTM cell in this case). The model parameters is updated and the cycle

is repeated for each batch of training data. Note that the thickness of connecting lines gives an

indication of how many computations can be done in parallel.

75

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Figure A.2: Level 1 Tensor Graph for Basic LSTM Regression Model

A.3.1 Classification

If the data is treated as a classification problem the training labels (~ynoise) that are used by the

machine learning model is converted to one hot encoding vectors as specified in Table 2.2. The

machine learning model calculates a pseudo-probability of each of the bins being the correct label

for a given input vector (~x). A typical predicted value (~y′) with a softmax classifier could be [0.05,

0.1, 0.3, 0.65]. The argmax(~y′) is used to determine the predicted class. In this case the one hot

encoding will be [0,0,0,1]. Thus the model will predict class 4.

The generated data (~x) is used to train the classification model. The generated temperature signals

are scaled using min-max scaling described in section 1.5.9.

Figure A.3 shows four sampled signals from the training dataset and four sample signals from the

test dataset. The actual signal label (~y) as well as the predicted signal label without a softmax

and argmax filters (~y′) is displayed.

76

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Figure A.3: Classification Temperature Signals

The prediction values of a given signal is set of four arbitrary values which could be seen as a pseudo

probability distribution, where the bin with the highest positive value is the predicted classification

for the given component.

Figure A.4: Training Dataset Confusion Matrix

Figure A.4 shows the confusion matrix for the classification case on the training data set. The size

of the training data set is 100 data sets .The confusion matrix shows that six classification labels

were incorrectly classified to class2 instead of class3. The figure on the left gives an indication of

the noise that was added to the training data set. The figure on the right gives an indication of

how many of the training datasets the model will classify incorrectly.

77

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Figure A.5: Testing Dataset Confusion Matrix

Figure A.5 shows the confusion matrix for the classification case on the testing data set. The size

of the training sata set is 40 data sets. The confusion matrix shows that four class 3 datasets were

incorrectly classified as class 2 instead of class 3. The figure on the left gives an indication of the

noise that was added to the testing data set. The figure on the right gives an indication of how

many of the testing datasets the model will classify incorrectly.

A.3.2 Classification Training Curves

Figure A.6: Accuracy GRU Classification ADAGRAD (iter = 500k)

Figure A.6 shows the accuracy training curves for the training validation and test curve. The time

axis shows the number of calculation iterations. The data is processed in batches of 64 iteration

78

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

to allow for parallel processing.Thus 500k iterations equates to 7813 calculation iterations/epochs.

Smoothing is applied to the curves to better track the overall trend. The ADAGRAD algorithm

very efficiently increases the accuracy of the machine learning GRU model within a relatively short

period of time. The training curve shows a general upward trend until the model is stopped after

7813 epochs. The validation curve does not decrease sufficiently to indicate that the model is over-

fitting to the training data. Given that the training, testing and validation accuracies is within

close proximity of one another. It can be said that the machine learning algorithm is matured and

little to no improvement is expected with additional training of the model.

Figure A.7: Loss GRU Classification ADAGRAD (iter = 500k)

Figure A.7 shows the loss training curves. At around 6000 epochs the training curve loss decreases

slightly below the validation curve indicating that further training could possibly decrease the

accuracy of the machine learning model on the testing data set.

A.3.3 Regression

The classification problem very effectively classifies the noisy data. In the classification problem

only four bins are used, which makes the data very coarse. This is ideal for human interface and

works well to prioritise component inspection and replacement plans. Most of the optimisation

algorithms that is available uses some form of gradient descent method. These methods work well

with smooth continues objective functions. Approaching this problem as regression problems holds

various advantages.

As with the classification problem the datasets are generated as per subsection 1.5.9, however

instead of converting the life fraction used into a classification label. The data set label ~y is left in

the real value domain.

79

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Figure A.8: Regression Signals

Figure A.8 illustrates the same scaled temperature signals as used in the classification problem.

The signal labels y are real values and not one hot encoding vectors. Both the actual label (~y) and

predicted label (~y′) are shown in the legends.

A.3.4 Regression Training Curves

Figure A.9: Loss LSTM Regression ADAGRAD (iter = 100k)

Figure A.9 shows the Loss training curves of a LSTM cell recurrent neural network. The machine

learning model converges to a solution within 900 epochs. The model is able to classify al 40 testing

signals into the correct classification bin.

80

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Figure A.10: Regression Accuracy

Figure A.10 illustrates the calculated life predictions with Gaussian noise (~ynoise) in blue and the

model predictions (~y′) in yellow. One dot on the figure represents the life fraction used of one

input time series. It is interesting to notice that the model prediction fits the noise free calculated

life fraction (~y), indicate with light blue dotted line, values surprisingly accurately. Keep in mind

that the model has only used the blue dots (~ynoise) to train. Also keep in mind that each blue

dot represents a input temperature sequence. Thus one can say that the Machine Learning Model

does not over-fit to the training data and very effectively learns to ignore noise in the data. The

background contour plot is shows the RMS error of a prediction point. Areas close to the light blue

dotted line (~y) are accurate predictions and the error/loss is low.

A.4 Results

A Python based program using the Tensorflow library was used to obtained the results reported in

this chapter.

81

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

A.4.1 LSTM and GRU Comparison

Figure A.11: Cell type and regression algorithm comparison

Figure A.11 compares the validation training curves of the LSTM cell and the GRU cell, as well as

the influence of the gradient descent algorithm that is employed. It is clear that the ADAGRAD

algorithm is a much more stable algorithm and takes much longer to converge than Gradient Decent

algorithm. Generally the LSTM cell outperforms the GRU cell. The GRU cell in general takes less

time to execute, because there is less function evaluations to perform with each iteration.

Table A.2 summarizes the results obtained with the GRU cell based model. Is shows that there is

an increase in classification accuracy if the classification model is changed to a regression model. In

not one of the five cases the model has over-fit to the training data as the training set predictions

are no more accurate than the test or validation set predictions. Normal gradient descent does not

seem to work well with the GRU cell as in both cases accuracy of the model was very low. The

ADAGRAD algorithm on the other hand seems to work well with the GRU cell. The ADAGRAD

algorithm also manges to score a high accuracy of a 95% correct classification rate in the case of

the regression problem.

82

APPENDIX A. RNN TRAINED ON A CREEP DAMAGE MODEL

Table A.2: GRU

CLASSIFICATION REGRESSION

Cost SCEWL(1) SCEWL(1) RMS(2) RMS(2) RMS(2)

Optimizer GD(3) ADAGRAD(4) ADAGRAD(4) ADAGRAD(4) GD(3)

Training iterations 500000 500000 100000 500000 500000
Losstraining 0.349 0.263 0.096 0.137 0.083
Lossval 0.418 0.220 0.151 0.087 0.075
Losstest 0.415 0.251 0.109 0.108 0.217
Accuracytraining 65.0% 90.0% 85.0% 93.0% 69.0%
Accuracyval 62.5% 87.5% 90.0% 92.0% 67.5%
Accuracytest 75.0% 90.0% 75.0% 95.0% 75.0%
SOLVING TIME 7m34s 7m29s 1m52s 8m57s 9m23s

SCEWL(1) Sigmoid cross entropy with logits

RMS(2) Root mean square

GD(3) Gradient descent

ADAGRAD(4) Adaptive gradient decent

Table A.3 shows the results for the LSTM cell based model. The ADAGRAD algorithm shows

increase classification accuracy over the gradient descent algorithm. From the tests conducted, no

conclusion can be made to weather the classification of regression case will yields better results. It

is interesting to note that the most accurate testing accuracy obtained was 100% on a test set of

40 datasets. This accuracy was obtained by using ADAGRAD with a LSTM based model, with

100k training iterations. Intrestingly the accuracy goes down with more training iterations.

Table A.3: LSTM

CLASSIFICATION REGRESSION

Cost SCEWL(1) SCEWL(1) RMS(2) RMS(2) RMS(2)

Optimizer GD(3) ADAGRAD(4) ADAGRAD(4) ADAGRAD(4) GD(3)

Training iterations 500000 500000 100000 500000 500000
Losstraining 0.250 0.861 0.083 0.136 0.180
Lossval 0.225 0.775 0.091 0.112 0.173
Losstest 0.301 0.700 0.095 0.100 0.176
Accuracytraining 89.0% 90.0% 93.0% 88.0% 58.0%
Accuracyval 85.0% 87.5% 90.0% 87.5% 62.5%
Accuracytest 90.0% 92.5% 100.0% 95.0% 62.5%
Solving Time 9m20s 9m22s 1m30s 10m05s 9m01s

SCEWL(1) Sigmoid cross entropy with logits

RMS(2) Root mean square

GD(3) Gradient decent

ADAGRAD(4) Adaptive gradient decent

83

	Introduction
	Background
	Problem Statement
	Project Benefits
	Contributions of the research
	Literature Review
	Traditional Methods for Life Estimation
	Previous work
	Feed Forward Neural Network
	Loss Measures
	Activation Functions
	Back-Propagation
	Recurrent Neural Network
	LSTM Networks
	Datasets
	Learning Curves and Stopping Criteria
	Damage Models
	ISO-Mean Life Estimation

	Scope of Research
	Layout of the Document

	Machine Learning Models
	Prestudy
	Tensorflow
	Tensorflow Records Files
	Tensorflow Graph
	Training Sequence

	The Model Layout
	RNN Cell
	The Hybrid Recurrent Neural Network Forward Pass
	Loss Function
	Optimisation Algorithm
	Calculating the Accuracy

	Machine Learning Model Application
	Generating the Data Set
	Temperature and Pressure Data
	Elevation Survey Data
	Metallographic Inspection Results
	Pipe Stress Analysis
	Defining the Components
	Defining the Outages
	Grouping Datasets
	Automated Data Reading

	Serializing the Data into Protocol Buffers
	Normalizing

	Random Seeding the Model Parameters
	Running the Model

	Results
	RNN Hybrid Network Results
	Learning Rate
	Network Layout
	Optimisation Algorithm
	Training Time
	LSTM cell vs GRU cell
	Elevation Survey Impact
	Best Runs

	Conclusion
	Further Research and Recommendations

	RNN trained on a creep damage model
	Generating the Data Sets
	Sequence Learning Models Used to Classify Life Fraction Consumed by Temperature Sequences
	Tensorflow Graph
	Classification
	Classification Training Curves
	Regression
	Regression Training Curves

	Results
	LSTM and GRU Comparison

