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Abstract 
Conveyor systems make use of idlers that support the belt and its payload as it is circulated. 

These idlers have bearings to ensure lower friction between the idlers and the belt.  These 

bearings do become contaminated with dust and dirt and bearings tend to fail or even seize, 

adding unwanted strain and stress on the belt. These idlers are monitored and replaced when 

needed to minimize the damage to the belt. 

There are several methods used to monitor the condition of the idlers. Thermal cameras are 

used to identify failing bearings that tend to run hotter than healthy bearings. Acoustic 

equipment exist that can capture the sound produced by the idler and processes it to indicate 

whether an idler is still working properly or when it is failing. These methods require an 

operator to travel the length of the belt, monitoring the idlers along the way. Vibrations have 

been used, with great success, to monitor idlers. An accelerometer is attached to the structure 

of the conveyor and the vibration signals are processed and from this a possible failing idler can 

be identified, either by an operator or an automated artificial intelligence system. However, the 

sensor can only monitor a few idlers close by and the cost of installing accelerometers along the 

entire length of a conveyor does make such a system infeasible. 

A method of using an accelerometer attached to the moving belt that travels over the idlers is 

investigated in this study. The vibration signals of the idler are captured as the accelerometer 

passes it and are then analyzed and used in a decision making system to identify and classify 

the idler bearing conditions.  The accelerometer is attached at different positions across the 

width of the belt to investigate the possibility of only using one or two sensors to monitor all 

the bearings of the idlers across the width of the conveyor. Healthy bearings are tested against 

bearings with inner raceway, outer raceway and rolling element defects. Contaminated 

bearings are tested as well. Wavelet package decomposition is used to extract the bearing 

features and presents it to the intelligent decision making system. Neural networks and support 

vector machines are used with great success to identify and classify faulty bearings. The support 

vector machine monitoring system has a 100% accuracy in identifying and classifying faulty 

bearings, regardless of the sensor position and even when a localized payload is added. The 

system could not only identify a faulty bearing, but also classify the fault with 100% accuracy. 

These accuracies were obtained in a controlled experimental environment with a simplified test 

setup.  

The self-developed data acquisitioning system costs as much as one meter of steel reinforced 

rubber belt. There are some improvements needed before it could be implemented into a 

working conveyor, adding to the cost. A working in-belt idler monitoring system is not only 

plausible, but will be affordable as well.  
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Document structure 

 Chapter 1 deals with a literature study done on the workings of conveyors and what 

failures do occur, with the focus being on idler failure. The various methods that are 

currently used to monitor idler conditions are discussed  as well as the feasibility of a 

vibration-based condition monitoring system.  

 Chapter 2 contains a small scale proof-of-concept test that discusses the transmissibility 

of vibration through rubber conveyor belting. The conveyor test bench and the data 

acquisitioning system is described. The data pre-processing that is done on the vibration 

signals and the two artificial intelligence systems that are used to classify the idler 

bearing faults are also contained in Chapter 2.  

 Chapter 3 presents and discusses the vibration signals of the various idler bearing faults 

at different measurement locations. The artificial intelligence classification results are 

also presented and discussed.  

 The conclusions are discussed in Chapter 4. 

 Proposed future work and recommendations can be found in Chapter 5. 

 Appendix A contains more detail about the self-developed data acquisitioning 

equipment. This includes a component breakdown. 
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Chapter 1 - Literature study 

1.1. Introduction 

Conveyor belts are used in many industries; from the food industry to the mining and power 

generation industry. These conveyors consist of many sub-systems and these systems, like any 

mechanical system, are prone to failure. The failure of these systems can cause the conveyor to 

be stopped and repaired and during this downtime, production is lost.  

One of the most expensive parts of a conveyor is the belt. The cost of the belt is approximately 

a third of the total installation cost. Belts tend to be damaged when the supporting idlers seize 

or have difficulty rotating. The seized idlers put extra strain and stresses on the belt and driving 

unit. Belts wear as they are dragged over a stationary idler and belts have been torn and in 

some cases ripped in two where the two ends of the rip have to be fixed together to form a 

continuous loop again. Repairing a damaged belt can be very costly.   

The bearings of idlers do become contaminated with dust and dirt and this leads to bearing 

failures occurring and can result in the idler seizing. Some conveyors can be several kilometers 

in length and there may be thousands of bearings along the length of the conveyor. Any one of 

these idlers' bearings can start to fail and if it is not identified in time, can damage the belt to an 

extent where portions of the belt have to be removed and replaced.  

A method for early bearing failure detection will allow the faulty bearings to be detected before 

the idlers seize and start to damage the belt. An automated idler monitoring system is desired 

to monitor the conditions of all the idler's bearings and notify an operator when a faulty 

bearing is detected. This system needs to be financially feasible but accurate enough to be 

trusted to identify any faulty bearings. 

Conveyors play an important role in the operation of the mining and power generation 

industry. Conveyors are used to continuously feed the power generation plants with the 

needed quantities of coal over long distances. Conveyors can deliver their payloads 

continuously and the volumes can be regulated to fit the need of the process it is feeding. 

Conveyors play a very important role in the smooth operation of all applicable industries and 

the continuous monitoring of these conveyors ensure that they stay operational and working 

optimally.  

The conditions that conveyors operate in can be very dirty and hazardous to humans if exposed 

to for prolonged time. In plants where conveyors are used there can be very high levels of noise 

and particle inhalation is also a real threat. An automated monitoring system will reduce the 

time an inspector has to be exposed to these conditions considerably. 
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1.2. Brief history of conveyor belts 

With the industrialization in England in the second half of the 18th century, the conveyor belt 

was introduced in many industries like bakeries and abattoirs. The introduction of these 

conveyor belts led to a method of transporting the different products in a shorter period and at 

a reduced cost (Habasit, 2011). Apparently, the first steam powered conveyor belt was set into 

operation in 1804 to produce biscuits for the ships of the British Navy (Habasit, 2011).  

The use of conveyor belts quickly spread to other industries to improve on the production 

efficiency. Thomas Robins developed a conveyor system in 1892 that was used to transport 

coal, ore and other materials (Habasit, 2011).  

Richard Sutcliffe, a British mining engineer, designed a conveyor belt for underground mining, a 

world first that revolutionized the mining industry in 1905 (Habasit, 2011). Figure 1.1 shows one 

of the first conveyor belts used to transport material for the mining industry.  

 
Figure 1.1: One of the first conveyor belts used in the mining industry 

(Habasit, 2011) 

 

The conveyor belt also played an important role in the famous car manufacturer Henry Ford’s 

assembly lines. His assembly line was the first to incorporate a conveyor belt for the purpose of 

car manufacturing (Habasit, 2011). 

In 1957, a patent was filed for the so called “Turnover Conveyor Belt System” by B.F. Goodrich. 

A half-twist in the belt extended its lifetime significantly as it allowed the belt to wear on both 

sides and not just the one side like today’s conveyor belts (Habasit, 2011). Figure 1.2 shows an 

extract of a patent, similar to that of B.F. Goodrich, where the half-twist can be seen. Figure 1.3 

shows the Turnover Conveyor Belt System in operation.  
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Figure 1.2: Turnover Conveyor Belt System by B.F. Goodrich 

(Kapp & Lehman, 1976) 

 
Figure 1.3: Implemented Turnover Conveyor Belt 

(Darling, n.d.) 

 

By twisting the belt half a turn on the bottom section of the conveyor allows the belt to wear 

on all of its exposed surfaces and not only on the one side like conveyor belts we know today. 

Although, at the time, the Turnover Conveyor Belt System was more durable than the other 

untwisted belts, modern day belts are more durable because they can be constructed from 

different layers consisting of different materials and this lead to the twist in the belt to be 

phased out (Darling, n.d.).  

 

The longest conveyor system in use today is in the Western Sahara. The combination of 

conveyors has a total length of just over 100 km and has been in use for over 30 years (Habasit, 

2011), (Conveyor Belt Guide, 2005). Figure 1.4 shows an aerial photo of the conveyor belts in 

the Western Sahara. The conveyor belts are used to transport phosphate from the mines to the 

coast and as some of the phosphate is blown from the belts, it leaves a distinct white line of the 

conveyor in the aerial photo. Belts used for the outdoor transportation of bulk materials like 

stone, coal and ore are made from rugged rubber and is reinforced with steel cord (Habasit, 

2011).   

 
Figure 1.4: Aerial photo of world's longest conveyor belt 

in Western Sahara (Conveyor Belt Guide, 2005) 
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1.3. Working principle of a conveyor 

A conveyor, whether it is used in the food industry or the mining industry, has a few basic, but 

crucial components. A conveyor is comprised of a drive or head pulley, a tail pulley, a 

continuous belt, supporting idlers, a tensioning and alignment device and a driving unit that is 

usually geared down for improved torque to transport great amounts of payload. 

1.3.1. Drive unit 

The heart of the conveyor is the drive unit. The sizing of the drive unit depends on the amount 

of payload that needs to be transported, how fast it needs to be delivered as well the length of 

the belt that needs to be circulated. Some power units can be as small as a 24 V DC motor like 

the drive unit in an iDrive compact conveyor from Dorner (Automation Supplies Ltd, n.d.) as 

seen in Figure 1.5. Other drive units like those found in the mining industry can range from 45 

to 3000 kW with some of the drive units rated at a maximum torque of 600 kNm (David Brown, 

n.d.). A large drive unit like this is shown in Figure 1.6. As seen in the figure, the yellow 

enclosure protects the gearbox, the flywheel and braking system. The size of the drive unit 

depends on the requirements of the transportation of the payload. Some conveyors make use 

of direct drive where the motor is connected directly to the head pulley but it is not widely used 

yet (Siemens, 2013). 

 
Figure 1.5: Small drive unit of an iDrive conveyor 

(Automation Supplies Ltd, n.d.) 

 
Figure 1.6: CX Conveyor Drive unit installed on site 

(David Brown, n.d.) 

 

1.3.2. Head or drive pulley 

The head pulley, or also known as the drive pulley, is a big drum around which the belt of the 

conveyor is wrapped around. The head pulley, with the assistance of the drive unit, provides 

the driving force that circulates the belt.  The payload on the belt, and the weight of the belt 

itself, induces a large amount of tension on the head and tail pulley. The head and tail pulley is 

designed to withstand these large forces and the drum, shaft and bearings can become 

massive. Figure 1.7 shows a very large pulley used in a copper project in Peru where a designed 

tension of 1,422 kN needed to be withstood (RAS, n.d.).  
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Figure 1.7: Large drive pulley 

(RAS, n.d.) 

Another main reason for the large diameter is to accommodate the bending of the belt around 

the pulley. If the diameter is too small, the belt will be strained and the lifetime of the belt can 

be decreased or the splice (connection between the two ends of the belt to create a continuous 

belt) can be damaged and may lead to catastrophic failure (CKIT, n.d.).  

1.3.3. Belt  

The belt is the component of the conveyor system that comes into contact with the payload 

and carries it. There are a number of different belts available to choose from. Some belts are 

made from rubber with reinforcements imbedded and some belts are made completely from 

solid woven PVC. The type of reinforcements usually found in rubber belts differ from steel 

cords (metal) to Kevlar (material) (Du Pont, 2013) and can be imbedded longitudinally and/or 

transversely (Dunlop Conveyor Belting, n.d.). 

Some belts are produced with different layers to increase the strength. The inclusion of steel 

cord is not uncommon when the belt’s strength needs to be increased (Dunlop Conveyor 

Belting, n.d.). As seen in Figure 1.8, different size steel cords can be used depending on the 

strength needed. Some belts may only have steel cord along the longitudinal direction of the 

belt, but other manufacturers may also add transverse strengthening as seen in Figure 1.9. 

 
Figure 1.8: Different steel cord and belt size 

(Shandong Rubber Six Xiang Te Conveyor Belt Co., 

Ltd., 2015) 

 
Figure 1.9: Different orientations of steel cord in a belt 

(ESTAR, 2014) 

 



Chapter 1   Literature study  

6 | P a g e  
 

Belts can be as short as a few meters or as long as 35 km – the longest single conveyor belt in 

the world (Conveyor Belt Guide, 2005). Some belts have flexible rubber sidewalls that can help 

keep the payload on the belt as it is transported as seen in Figure 1.10. A more commonly used 

method is to use additional idlers to form the flat belt into a trough shape as seen in Figure 

1.11. This is done to help keep the payload on the belt and not spill over the edges 

 
Figure 1.10: Conveyor belt with rubber sidewalls 

(C.C.Components Pty. Ltd., n.d.) 

 
Figure 1.11: Trough created with idlers 

(Conveytech, 2013) 

  

Some conveyors create a pipe or tube with the flat conveyor belt by gradually rolling the belt 

into a tube with the idlers as seen in Figure 1.12. The payload is not spilt nearly as much or 

blown by the wind as it is protected against the elements (Lakshmi Macfab, 2015). 

 
Figure 1.12: Belt formed into tube with idlers 

(Lakshmi Macfab, 2015) 

1.3.4. Support idlers 

Support idlers are small cylinders that run on bearings. They are used to support the conveyor 

belt as it transports the payload from one end to the other. Older idlers were made from steel 

cylinders with steel end-caps welded or pressed onto the top and bottom of the cylinder 

(Kinder, 2015). There is a bearing in each end-cap and a shaft through the bearings to support 

the idler. Some of the more modern idlers are made from plastic, nylon, polymer or other high 

density plastic parts. This is done as the parts can be moulded in one piece, keeping the 
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manufacturing cost down as well as the overall weight of the idler (Kinder, 2015). Some idlers 

are hybrids where the cylinder is still made from steel or even aluminium but with high density 

plastic end-caps.  

Seals are used to protect the bearings from the environment, keeping dust and mud away from 

the bearings to increase the usable life. Bearings contaminated with dust or mud tend to seize 

or fail catastrophically (Kinder, 2015). The seizure or failure of a bearing can cause an entire 

idler to seize and then it will start to scrape or rub against the belt, causing unnecessary friction 

on the belt. This excess friction places additional strain on the power unit and the belt may also 

rip, tear or catch fire under these excessive friction forces, leading to the standstill of the 

conveyor. 

1.3.5. Tail pulley 

The tail pulley is very similar to the head or drive pulley but there is normally no driving unit 

coupled to the tail pulley – it is a free running pulley. In some cases the tail pulley may have a 

drive unit coupled to it and in effect it becomes a drive pulley that works with the primary drive 

pulley to circulate the belt. 

The size of the tail pulley is governed, similar to the size of the drive pulley, by the bending of 

the belt and the load on the pulley. Some belts need a larger diameter pulley to wrap around to 

accommodate the bending of the strengthening structure within (CKIT, n.d.). 

1.3.6. Tensioning devices 

The total load on the belt is almost never constant. In the 

mining industry, the rate at which the payload is deposited 

onto the conveyor always fluctuates a bit (CKIT, n.d.).  The 

purpose of the tensioning or take-up devices in the conveyor 

system are to maintain tension in the belt. The tension in the 

belt should be applied gradually and equally over the width 

of the belt to ensure the belt is not stressed excessively. 

When the load on the belt varies, the tensioning device 

should respond to keep the belt from sagging or being 

stretched too much (CKIT, n.d.). 

An example of a tensioning device is where gravity is used to 

pull on a take-up pulley. This pulley can hang underneath the 

conveyor as seen in Figure 1.13. Weights attached to the 

take-up pulley with the belt wrapped around it provide the 

tension. The weight in the take-up system is calculated to 

provide the best tension regulation needed for the system. 

 
Figure 1.13: Vertical gravity take-up 

system 

(CKIT, n.d.) 



Chapter 1   Literature study  

8 | P a g e  
 

1.4. Failures in a conveyor 

Like every mechanical system, something is bound to wear and fail at some stage during the 

operation of the conveyor. There are plenty of individual components that make up a conveyor 

system and each one of them can fail or lead to subsystems failing. The conveyor can still 

operate and deliver the payload even when certain components fail - like the idlers. If these 

components are not fixed they can lead to the failure of subsystems or other components that 

are critical to the operation of the conveyor - like the belt.  

The bearings in the drive unit, head and tail pulleys are subjected to enormous stresses. The 

bearings can fail and lead to catastrophic failure of the conveyor. There have been reports that 

the bearings became so hot that the grease inside caught fire (Owen, n.d.). The gears inside the 

drive unit are also under large cyclic loads. Various condition monitoring methods have been 

implemented on these critical components for preventative maintenance against catastrophic 

failure. 

  

The belt of the conveyor system is an expensive component. For a nylon or polyester 

embedded belt, the cost of the belt is about one third the installation cost of the entire system 

and can be even more expensive if the belt is reinforced with steel cord (Owen, n.d.). 

Preventing damage to the belt is a good way of keeping the maintenance cost down. The belt 

can be damaged in a few ways. Large rocks on the belt or material build-up on the idlers can 

stress the belt to an extent that the strengthening structure, or carcass, of the belt gets 

weakened (Kinder, 2013). These weaknesses in the belt can lead to a tear in the belt or the 

complete severing of the belt. This will mean that the conveyor has to come to a standstill to 

repair or rejoin the belt. Figure 1.14 shows material build-up on an idler and how it stretches 

the belt, weakening and sometimes even tearing it. 

 
Figure 1.14: Material build-up and visible belt damage 

(Kinder, 2013) 
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There are hundreds if not thousands of idlers along the length of conveyors. These idlers 

support the belt as the payload travels from one end to the other. The most belt failures are 

due to the failure of the idlers (Kinder, 2013). The free rotations of the idlers are compromised 

as the bearings wear and in some cases the entire idler seizes as the idler's bearings fail 

catastrophically. Friction between the idler and the belt increases when the bearings start to 

fail and the idlers do not rotate as freely.  The friction between the idler and the belt wears the 

shell of the idler as well as the surface of the belt. In some cases the idler completely seizes and 

the belt, with its payload, is dragged over the stationary idler. These damaged and seized idlers 

wear, cut and tear into the belt (Intium, 2015).  

Figure 1.15 shows an idler that had seized but that had not been replaced for a while. As the 

belt travelled over the idler, it wore through the steel shell. Sharp edges from the worn section 

could potentially slice or rip the belt. 

 
Figure 1.15: Idler seized and belt wore through the steel shell 

(Intium, 2015) 

 

Although the idlers are not as complex as the drive unit, the head and tail pulley or the 

tensioning mechanism, they are very crucial to the smooth operation of a conveyor. There is a 

very large number of idlers along the length of a conveyor. For general engineering practice, 

the spacing, in imperial units, of the idlers based on the belt width and the payload weight can 

be found in Table 1.1. The table was found in an idler selection procedure from (Goodman 

Conveyor, n.d.). Note the table is in imperial units.  

It can be seen that the maximum spacing of the weight carrying idlers are 1.67 m (5.5 ft.) and as 

the belt width and the payload mass increases, the idler spacing becomes smaller to about 0.61 

m (2 ft.). The spacing of the return idlers are larger seeing that they do not have to support the 

mass of the payload, only the mass of the belt has to be supported. The spacing for the return 

idlers range from 3.05 m (10 ft.) to 2.44 m (8 ft.), depending on the belt width. From this, the 

possible number of idlers per kilometer of conveyor can be calculated.  
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Table 1.1: Suggested idler spacing (feet) in engineering practice (Goodman Conveyor, n.d.) 

Belt 

width 

[in] 

Number of troughing Idlers Number 

of return 

Idlers 

Weight of Material Handled, [Lbs. per Cu. Ft] 

30 50 75 100 150 200 

14 5.5 5.0 5.0 5.0 4.5 4.5 10.0 

16 5.5 5.0 5.0 5.0 4.5 4.5 10.0 

18 5.5 5.0 5.0 5.0 4.5 4.5 10.0 

20 5.5 5.0 5.0 5.0 4.5 4.5 10.0 

24 5.0 4.5 4.5 4.0 4.0 4.0 10.0 

30 5.0 4.5 4.5 4.0 4.0 4.0 10.0 

36 5.0 4.5 4.0 4.0 3.5 3.5 10.0 

42 4.5 4.5 4.0 3.5 3.0 3.0 10.0 

48 4.5 4.0 4.0 3.5 3.0 3.0 10.0 

54 4.5 4.0 3.5 3.5 3.0 3.0 10.0 

60 4.0 4.0 3.5 3.0 3.0 3.0 10.0 

66 4.0 4.0 3.5 3.0 3.0 3.0 10.0 

72 4.0 3.5 3.5 3.0 2.5 2.5 8.0 

84 3.5 3.5 3.0 2.5 2.5 2.0 8.0 

96 3.5 3.5 3.0 2.5 2.0 2.0 8.0 

 

It was found that, according to the data in the table, a minimum of 925 or a maximum of 2,049 

idler-assemblies will be needed per kilometer depending on the belt width and the payload 

mass. In each idler assembly, there can be up to three idlers on top to form a trough and to 

support the payload and one or two idlers supporting the empty returning belt. If it is assumed 

that there are three idlers on the top of the assembly supporting the payload and one idler 

supporting the empty returning belt, it equates to four idlers per assembly, or eight bearings. 

That means that there can be 7,400 to 16,392 bearings per kilometer. Some conveyors in the 

mining and power generation industry can be a few kilometers in length. That is a very large 

number of bearings to inspect and monitor for possible failures and any one of these bearings 

can fail and can potentially lead to damage of the belt. 

There are a number of condition monitoring systems implemented on sub-systems like the 

drive unit, head and tail pulley and even the belt surface and internal structure that do not 

need constant human involvement or assistance. These systems are automated and notify an 

operator when a fault is identified. As with the other sub-systems in the conveyor, a system is 

needed to monitor all the bearings in the idlers and notify an operator of any possible failures 

that may have occurred. According to a feasibility study done at Eskom, there is a need for a 

system that can monitor the idlers of conveyor belts (van Tonder, 2002) but it needs to be 

financially feasible. The monitoring equipment has to be affordable and the remuneration of 

the work force needed to monitor and replace the idlers needs to be taken into account.  

  



Chapter 1   Literature study  

11 | P a g e  
 

1.5. Current methods of monitoring the idlers on a conveyor 

There are many possible points of failure as any one of the idlers can fail and cause damage to 

the belt. If the belt is excessively damaged or ripped, the entire system has to be stopped to fix 

the belt and this can cause hours of downtime. A method of identifying a damaged idler early 

on can be very valuable. The cost of repairing a belt is quite high in comparison to the cost of a 

new idler (van Tonder, 2002). If a damaged idler can be identified and replaced/repaired before 

it fails or before it damages the expensive belt, the cost and the hours of repairs can be 

reduced.  

A monitoring system that can be used to monitor the conditions of all the idlers along the 

length of the conveyor can be very beneficial to a plant. If the conditions of all the idlers are 

known, the plant can prepare for the time, the type and number of repairs that has to be done 

in order to keep the conveyor working optimally (van Tonder, 2002). If it is known which idlers 

need to be repaired or replaced, the needed parts can be ordered and all of them can be 

repaired or replaced in a single planned outage when the dependency on a working conveyor is 

not as high. 

There are several existing methods of identifying faulty idlers and the different types of failures 

that do occur. A number of investigations have been done on different ways to monitor the 

condition of idlers.  

1.5.1. Visual inspection 

The simplest form of condition monitoring is usually done by walking the length of the conveyor 

and looking and listening for indications of failures.  

Faulty idlers can be spotted by visual inspection but sometimes failing idlers can be missed. 

Visual inspection cannot accurately determine the degree of failure or the urgency of an idler 

that needs to be replaced (van Tonder, 2002). A seized idler is easy to spot but by the time an 

idler has seized, the belt has already been dragged over it for a while. Some idler supporting 

structures are bolted to the conveyor structure and these bolts can come loose. If these bolts 

do come loose, the idler supporting structure can move and become misaligned. Attention to 

this is also needed when inspecting the conveyor. Material build-up can also be easily identified 

and removed. 

While some failed idlers can be identified with visual inspection, not all the faults or potential 

failures can be identified. Some conveyors are very long, several kilometers, and it can be a 

tedious job to inspect the entire length of the conveyor by human visual or acoustic inspection. 

Some failure characteristics are better/easier to identify by specialized equipment to aid the 

inspectors.  
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1.5.2. Thermal cameras 

Thermal cameras offer a great way of identifying faulty idlers. Bearings that are starting to fail 

will normally run slightly hotter than the other bearings. These temperature differences can 

easily be seen on a thermal image like that of Figure 1.16 and Figure 1.17 and the faulty idler 

can be identified and repaired. Thermal cameras make for a quick inspection (Maras, 2013).  

 
Figure 1.16: Thermal image of a hot idler bearing 

(FLIR, 2015) 

 
Figure 1.17: Clear thermal indication of a faulty idler (Maras, 

2013) 

Most thermal cameras have interchangeable lenses (FLIR, 2015). A wide angle lens can be fitted 

to a thermal camera and a large portion of the conveyor can be inspected with ease. The wide 

angle (90°) lens can also be used when there is not a lot of space and the camera has to be 

close to the idlers. A telephoto (7°) lens can be used to capture the heat signatures of idlers 

that are far away and difficult to access (FLUKE, 2015). Figure 1.18 shows an overlay of a 

thermal photo and a normal colour photo of an idler that is difficult to reach.  

 
Figure 1.18: Thermal image overlay of elevated conveyor 

(FLUKE, 2015) 

 
Figure 1.19: Heat streaks on belt due to uneven loading 

(Nuatitech, 2015) 
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The thermal cameras are not only used to identify faulty idlers, but can also be used to identify 

uneven belt loading. When the belt is not laden evenly, the pressures on the belt as it travels 

over the idlers are not uniform. This uneven pressure creates heat streaks on the belt and this 

can be captured by the thermal cameras (Nuatitech, 2015). Figure 1.19 shows such heat streaks 

due to uneven loading. A camera operator still needs to travel the length of the belt to capture 

the heat signatures of all the idlers. This can also take some time to complete. 

1.5.3. Acoustic sensing equipment 

To help the inspector to identify possible faults or failures, acoustic equipment are used to 

identify audible and inaudible noise. Specialized acoustic equipment like SKF’s idler sound 

monitor kit, depicted in Figure 1.20, can be used to identify small deviations in bearing 

vibrations and serve as a fault identifier (SKF, n.d.).  

The SKF monitor works with headphones and can be operated with one hand, making it safer 

for the inspector. The SKF monitor can identify a faulty idler bearing from 3 m away and even 

when the inspector walks at a pace of 2 km/h (SKF, n.d.).  

Figure 1.21 shows the SFK monitor while a bearing is spun close to the microphone. The bearing 

vibration signal is displayed on the monitor itself. The monitor can then process the signal and 

indicate the level of noise as seen in Figure 1.20. The green light indicates low vibration energy 

and indicates that the bearing is still functioning properly. A red light indicates a failing bearing.  

 
Figure 1.20: SFK idler sound monitor kit 

(SKF, n.d.) 

 
Figure 1.21: SKF monitor displays noise  signal of a bearing 

(Edilson S Ribeiro, 2012) 
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1.5.4. Vibration 

The vibrations of mechanical equipment can reveal the condition it is in and vibration analysis is 

a commonly used tool in fault diagnosis (Li, et al., 2013). The vibration signal of equipment that 

theoretically has no faults, is referred to as a good or healthy signal. The monitoring of the 

equipment’s vibration and comparison to the healthy signal can be a good indication of the 

equipment’s health. The key of vibration analysis is extracting the fault features (Li, et al., 

2013). Deviations from the healthy signal is also a good indication of faults occurring as the 

vibration of equipment will change when faults occur (Li, et al., 2013).  

Vibrations have been used to monitor the conditions of conveyor idlers before with success. By 

looking at the vibration signal of the idlers, the state of the idler can be monitored. By knowing 

the state of the idlers, potential problematic idlers can be identified and decisions can be made 

on whether to replace or just repair these idlers and when to do so. The on-line or real time 

capabilities of such a monitoring system allow potential faulty idlers to be identified and to 

notify an operator before failure occurs.  

An investigation was done on the vibrations of conveyor idlers by the School of Mechanical and 

Electrical Engineering of the China University of Mining and Technology. (Li, et al., 2013). This 

investigation looked at the vibrations of the idlers and identifying which of the idlers close by is 

failing. The vibrations were captured by accelerometers placed on the supporting structure of 

the conveyor as seen in Figure 1.22. Seeing that some conveyors can be very long, and having 

an accelerometer at every idler can become costly, a single accelerometer was used to monitor 

three idlers – the idler at the accelerometer and the two neighbouring idlers. Figure 1.23 shows 

the three idlers that were monitored in the investigation. The accelerometer seen in Figure 1.22 

is placed at the idler marked “Idler 2”. The accelerometer was then used to monitor the 

neighbouring idlers as well - "Idler 1" and "Idler 3".  

 
Figure 1.22: Accelerometer attached to the conveyor's 

supporting structure 

(Li, et al., 2013) 

 
Figure 1.23: Three idlers being monitored by a single 

accelerometer 

(Li, et al., 2013) 
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An artificial intelligence system was then used to analyze the vibration signal of the 

accelerometer and inform an operator of any failing or faulty idlers. This method of monitoring 

the idlers can be very accurate seeing that the intelligent system is trained with the type of 

idlers and bearings used in that specific plant.  

Figure 1.24 shows the classification of faults on a mechanical fault simulator. The simulator was 

used to illustrate the feasibility of using wavelet package decomposition and artificial 

intelligence to classify mechanical faults (Li, et al., 2013). An output of 1 was given for a normal, 

healthy state. Depending on a gear defect in the mechanical fault simulator, either a 2, 3 or 4 

were given as output. Figure 1.24 shows the classification of the gear faults. The red data set 

represents the classification of the faults with a neural network and the blue data set the 

classification by a support vector machine. It can be seen that the support vector machine 

classifies the faults more specifically - the output is one of four values, where the neural 

network classifies the faults with a little less certainty. It has been found that the support vector 

machine is the more accurate classifier (Li, et al., 2013) and was then used for faulty idler 

identification and classification. 

 
Figure 1.24: Neural network (Red), Support vector 

machine (Blue) classification of gear faults 
(Li, et al., 2013) 

 
Figure 1.25: Support vector machine classification of idler 

faults 
(Li, et al., 2013) 

 

A support vector machine, that made use of a radial base function (RBF), was used to identify 

the faulty idlers and the classifications can be seen in Figure 1.25. The investigators found that 

their support vector machine was 91.67% accurate (22 of 24 datasets) in classifying the idler 

conditions, whether it was where no idlers were faulty or where either one of the idlers were 

faulty. Only 2 out of 24 samples were not classified correctly. The investigation group then used 

the support vector machine to create an online monitoring system that could inform an 

operator of a faulty idler within a fraction of a second (Li, et al., 2013).  
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From this successful idler monitoring technique, it can be seen that vibration based monitoring 

can be very accurate and successful to identify faulty idlers of conveyors. The use of wavelet 

package decomposition, for signal pre-processing, and neural networks and support vector 

machines, as classifiers, were very effective in monitoring conveyor idlers (Li, et al., 2013).  

The accelerometer was only used to monitor three idlers. An accelerometer is not sensitive 

enough to pick up the change in vibrations of the idlers that are far from the measuring point 

(Li, et al., 2013). Although this is a very accurate and nearly autonomous monitoring method, 

there is a downside. The number of accelerometers needed to monitor an entire conveyor will 

be too much and the cost of such a system will be too expensive to justify (Li, et al., 2013). Even 

if an operator uses a single accelerometer and moves from one idler to the next, it will still take 

as much time to set up as it would to use a thermal camera or an acoustic monitoring system.   

The research being done in this report intends to address the possibility of using a conventional 

vibration based condition monitoring approach on idler bearings, because of the excessive 

number of bearings that would be required to do so. The feasibility of placing an accelerometer 

and all the data acquisitioning equipment on the moving conveyor belt, and having the sensor 

monitor the vibrations of each idler it passes, will be investigated. 

In essence the methods used in the investigation done by the School of Mechanical and 

Electrical Engineering of the China University of Mining and Technology (Li, et al., 2013) will be 

used, albeit now with the data acquisitioning done on the moving belt and not on the 

stationary supporting structure. This choice is based on the results obtained by pre-processing 

the signals with wavelet package decomposition and classifying the faulty idlers with intelligent 

systems.  

The idea of placing the data acquisitioning equipment on the conveyor belt comes from a 

patent (Freeman, 2010) that was originally filed in 2008 in the United States of America by 

Vincent Neil Freeman. This patent describes a possible solution where the sensors are installed 

or imbedded into the belt rather than on the supporting structure. Figure 1.26 shows an extract 

of the patent. 

As the belt moves over all the idlers (parts 108a to 108h), all the vibration signals are captured 

by the sensors (included in parts 110, 112 and 114). Rather than having a vast number of 

accelerometers or having someone walk the length of the belt with measuring equipment, the 

belt will transport the measuring equipment (parts 110, 112 and 114) along the conveyor. A 

smaller number of sensors are needed to monitor the entire conveyor.  
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Although the proposed system uses only a few accelerometers, some other hardware is now 

required for the system to function. The signals need to be captured and stored on the belt 

until it can be transmitted to a computer. A source of power is also needed for the entire 

duration of the monitoring process.  

 
Figure 1.26: Side-view of conveyor with embedded sensors 

(Freeman, 2010) 

1.6. Feasibility of vibration-based condition monitoring on conveyor idlers 

In 2002, Eskom did a feasibility study of an in-belt on-line idler monitoring system to see 

whether there is a demand for such a system to replace their current methods of idler 

condition monitoring – visual inspection aided with thermal cameras and temperature sensors 

(van Tonder, 2002). Questionnaires were sent to all the Eskom power stations to gather 

information on what their opinion was on the matter, the frequency of idler failures and repairs 

as well as the details of their plant’s belts.  

It was found that there is a need for an on-line idler monitoring system seeing that the current 

methods that were used were quite expensive, but the labour needed for the inspections even 

more so (van Tonder, 2002). The two main factors that contribute to the need for an on-line 

monitoring system are the long lengths of conveyors that are very laborious to inspect manually 

and the critical areas such as inclines and transfer chutes that has to be monitored closely (van 

Tonder, 2002). It is essential to have a system that can accurately monitor idlers seeing that 

visual inspection sometimes misses failing idlers and visual inspection cannot determine the 

degree of failure or the urgency of an idler that needs to be replaced (van Tonder, 2002). 

The feasibility of an in-belt on-line idler monitor, as described by the questionnaires, depends 

on cost of the monitoring system embedded within the conveyor belt in relation to the cost of 

the belt that is being monitored. The cost of not implementing a monitoring system with all the 

repair, maintenance and inspection costs has to be weighed against the cost of implementing 

and maintaining the monitoring system (van Tonder, 2002). Data was gathered from the 

questionnaires in terms of the number of idlers that had been replaced, whether they have 

failed or were failing, the cost of idlers, the cost of lengths of belts used, the cost of splicing a 

belt, the cost of labour to inspect the belt and even the cost of load loss or plant shut down. An 
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estimated cost of an in-belt on-line monitoring system and the maintenance of the system was 

determined, and it was found that the monitoring system would cost less than the visual 

inspection methods used at the time, but not by a significant margin. The total estimated cost 

of an in-belt monitoring system was about 90% of the current inspection methods (van Tonder, 

2002). The cost of the monitoring equipment has decreased over the years but another 

feasibility study has to be done to find accurate values.  

A focus group meeting was held in 2002 where the implementation of an in-belt on-line idler 

monitoring system was discussed. It was mentioned that the technology that was intended for 

the monitoring system was too expensive. It was recommended that the market should be 

scanned for newer, cost effective technology that would be more financially viable (van Tonder, 

2002) seeing that the sensory equipment used in the estimation contributed to about 73.5% of 

the total solution. It was also mentioned that the preferred methods of determining an idler 

failure was through noise or heat monitoring. 

Visual inspection of conveyor idlers can become dangerous if the necessary precautions are not 

taken. In coal fired power stations, like those of Eskom in South Africa, there are large amounts 

of coal dust, noise, coal spillage and moving conveyor equipment. There are risks of coal dust 

particle inhalation, slippage on coal spillage and even being caught between moving 

components (Mjelo, 2013). Specified personal protective equipment (PPE) has to be worn when 

inspections are done and guidelines have been provided for the correct and safe inspection of 

idlers (Mjelo, 2013). Time to visually inspect an entire conveyor belt, even with additional 

equipment like thermal cameras, will take significantly longer than when the idlers are 

monitored with an in-belt on-line monitoring system.  

A preliminary test will be done first to investigate the feasibility of measuring vibrations 

through the rubber conveyor belt. A data acquisitioning system prototype was developed for 

measuring vibrations on the conveyor belt and can sample at about 1 kHz. The final self 

developed data acquisitioning system is discussed later in Chapter 2.3 and Appendix A. The type 

of idlers and the running conditions of the system that will be used in the final tests were not 

known at this stage as a feasibility test is done first, thus the fundamental bearing fault 

frequencies were not known but was expected to be below the 1 kHz that the data 

acquisitioning system will be able to sample at. To investigate the transmissibility through the 

belt for the entire frequency range that the system will be able to sample, 0 Hz to 1 kHz was 

chosen as the frequency range of the feasibility test. 

The feasibility and accuracy of a low-cost in-belt idler bearing vibration monitoring system 

should be investigated. 
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Chapter 2 - The development of an in-belt idler monitoring 

system and test bench 

2.1. Small scale test - Vibration transmissibility through conveyor belt 

Figure 2.1 shows a frequency plot of the vibrations found in a bearing as it fails. The first signs 

of bearing failure can be detected in the ultrasonic frequency range above 20 kHz (Graney & 

Starry, 2012). Stage two is where the natural frequencies of the structure are excited (Graney & 

Starry, 2012). Stage three are the frequencies associated with the bearing components like the 

race pass frequencies and the roller element frequencies also known as the bearing fault 

frequencies (Graney & Starry, 2012). Stage 4 is where the harmonics of the bearing fault 

frequencies appear.  

 

 
Figure 2.1: Vibration stages of failing bearings  

 

For very early fault detection one can focus on the first stage of bearing failure. Monitoring the 

ultrasonic vibrations will give a very early insight to a bearing’s health. These frequencies are 

very high and the sensors and data acquisitioning equipment that can measure at these high 

frequencies are more expensive. More readily available equipment can be used to measure at 

the lower frequencies and monitor the bearing fault or defect frequencies. This will be more 

financially viable but will only indicate later stage failure. Faulty idlers will be replaced when it is 

in the later stages of failure as it makes no sense to replace a bearing when there is still 

significant life left. It would be beneficial to be able to identify a faulty bearing when it is in the 

initial stages of failure, but identifying the bearing in the third stage of failure should give the 

operators enough time to evaluate the severity of the failing bearing. 
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There are a few concerns when measuring the vibrations of the idler bearings by placing an 

accelerometer on or in the belt. The biggest concern is the potentially low transmissibility of 

the vibrations from the bearings, through the idler body and the rubber belt to the sensor. 

To better understand the risks involved due to this effect, a simple experiment was conducted 

before commencing with the study. This was done to investigate if it is possible to measure the 

vibrations through the rubber belt at various distances from the source.  

 
Figure 2.2: Transmissibility test bench 

Figure 2.2 shows the small scale experiment that was used to investigate the transmissibility. 

The major components are labelled on the figure: 

 A hydraulic actuator was used as the source of the vibration. A frequency sweep was 

done from 0Hz to 1000Hz. This range was chosen because low range frequencies, rather 

than high or ultrasonic frequencies, are more important to characterize properly seeing 

that later stage failure occurs at these frequencies.  

 An accelerometer was used to measure the vibration signal generated from the 

hydraulic actuator. The input sensor was fixed to the underside of the belt on its 

centreline where the hydraulic actuator connected to the belt. This represented the 

source of the vibrations that is induced by the idler. 

 The output sensor was used to measure vibrations on the centreline on top of the belt. 

This is where the sensor of the real-world application ought to be installed. The sensor 

was first placed over the source (as seen in Figure 2.2) and was then moved in 50mm 

increments away from the source. This was done up to a distance of 400mm away from 

the source. 800mm is the average distance between two idlers as seen in Figure 2.2. At 

a distance halfway between idlers, the sensors will start to associate the measured 

signal with the next idler. For this reason, tests were only done up to 400mm. 
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 A weight was used to crudely simulate the effects of a payload on the belt. The weight 

was concentrated and does not represent the uniform loads found in the real-world 

accurately. The weight was placed just to the left of the furthest point of measurement. 

The other end of the belt was fixed to a rigid post. The total distance of the belt that was 

free to move was 800mm in length.   

 The conveyor belt used is a sample that was cut from a steel cord reinforced rubber 

belt. This belt is produced by Fenner for the materials handling industry. It is this 

industry that this monitoring method is aimed at, and this type of belt will be used in the 

tests for this reason.  

The transmissibilities at a certain distance from the source were calculated by comparing the 

input or source vibration to the measured output vibration. The time signals of both 

accelerometers were analyzed in the frequency domain. A simple fast Fourier transform (FFT) 

was done on the measured signals. The two sensors were both connected to the same data 

logger so that both signals had the same sampling frequency. In the frequency domain, each 

value of the two signals that corresponded to the same frequency were used to determine the 

transmissibility. From eq. 2.1, the transmissibility   for a given frequency   is given by the ratio 

between the signal magnitudes, in the frequency domain, of the output    and the input   . 

    
   

  

   
  

 (eq. 2.1) 

The transmissibilities for the entire frequency range and for all nine measured distances were 

calculated. Figure 2.3 shows the gradient filled contour plot of the transmissibility of vibrations 

through the belt.  

 
Figure 2.3: Transmissibility of vibrations through the belt 
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As seen in Figure 2.3, the transmissibilities of the vibrations are very good close to the source 

for a wide range of frequencies. In the region on the belt from 0mm to 50mm and at a 

frequency of 0 Hz to 500 Hz there is a yellow-orange and red region, this corresponds to 100% 

transmissibility and higher. The sensor is still close enough to the source that the dynamics of 

the belt does not influence the transmissibility too much. At higher frequencies the 

transmissibility reduces quite dramatically.  It is also seen that at some positions on the belt, 

transmissibility is larger than 100% - red regions. This can be due to the belt resonating at its 

natural frequencies. The resonating belt can help amplify the underlying bearing frequencies if 

the bearing frequencies correspond with the belt's natural frequencies and these induced 

vibrations are large enough to excite the belt. There are however sections of the belt that 

attenuate the source vibrations - blue and green sections. If a sensor is measuring in these 

regions at those frequencies, the bearing vibrations may be difficult to capture.  

Referring to Figure 2.4 that only shows the regions that have a transmissibility of 75% and 

higher, it can be seen that up to 50mm away from the source, the transmissibility of vibrations 

up to 400Hz is well above 75%. This region, indicated with the bounding box, has a 

transmissibility of 100% and higher and it is comforting to know that sensor readings in this 

region will not be attenuated close to the source when tests will be done on the moving 

conveyor. 

 

Figure 2.5 show the regions that has a transmissibility of 50% and higher. It is shown that at a 

distance of 100mm the transmissibility is higher than 50% for vibrations up to about 760Hz. The 

transmissibility is also well above 50% for frequencies up to 280Hz for distances up to 300mm 

away from the source, but there are sections within this range where the transmissibility is 

 
Figure 2.4: 75% Transmissibility and higher 
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below 50% - shown as the white voids in the contour plot.  This is due to the mode shapes of 

the belt at different frequencies that have an attenuating effect on the transmissibility. 

The belt has mode shapes at some frequencies where troughs and peaks in the wave 

magnitude can be seen in the abovementioned figures. These mode shapes change as the 

frequencies do and explain why, at some frequencies, the transmissibility can be very high at 

some point on the belt, and be very low just a short distance away. Take 150Hz in Figure 2.3 as 

an example, at 50mm, 150mm, 250mm and 350mm the transmissibility is just below 100% 

(yellow-orange region) but in between can be as low as 25% or even lower (dark blue).   

From the contour plots it can be seen that the vibrations are, as expected, attenuated more at 

high frequencies far from the source. 

 
Figure 2.5: 50% Transmissibility and higher 

 

This experiment was done to investigate the magnitude of the attenuation effect of the steel 

reinforced rubber belt on a vibration signal, possibly from an idler bearing, and what influence 

it would have on the capabilities of measuring said signal. 

From the experiment it can be expected that the vibration signals from an idler bearing can be 

measured with little loss to the signal strength, close to the source over a wide range of 

frequencies, and still clearly at low frequencies far from the source. The measuring equipment 

should be able to measure bearing vibrations as it approaches the idler and even as it passes 

and moves away. The next concern is measuring the bearing vibrations as the sensor moves 

towards and away from the idler. A conveyor test bench was built to investigate this. 
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2.2. Conveyor test bench 

A test bench was needed to recreate a more realistic signal that would represent the vibrations 

associated by the bearings in an idler and the different faults found in such a bearing. At first, 

an actuator was considered to shake a piece of belt with an input signal that corresponded with 

theoretical fundamental bearing frequencies, thereafter adding bearing fault frequencies to the 

signal. There are numerous real-world influences that would have an effect on the vibration 

signal that would not be simulated by this method. A better representation of the real-world 

conditions was needed. 

A short conveyor was designed and built. Figure 2.6 shows the test bench that was used to 

acquire vibration signals of different idler bearing faults. The test bench has a head pulley, drive 

motor, tail pulley and an idler. The 1.5 kW motor has a belt reduction to aid with the 

acceleration of the inertias. The motor was powered by a variable speed drive which gave great 

control over the start-up and operational speeds. The rotational speed for all the tests were 

kept constant with the variable speed drive with as little variations as possible (<5%) and 

confirmed with a handheld tachometer. Both the head and tail pulley has tensioners and 

alignment mechanisms. These mechanisms were used to tension and align the drive belt and 

the conveyor belt alternatively and can be seen in Figure 2.7 and Figure 2.8. The idler is easily 

removed by releasing the tail pulley tension – allowing the conveyor belt to be lifted. This 

allows the removal of the idler without having to release tension of the drive belt and having to 

re-align it every time a new idler condition has to be tested. The idler was positioned a bit 

higher than it would normally be found on a conveyor. This was done to easily apply a 

downwards force on the idler, simulating the effect of a payload on the conveyor. Figure 2.9 

shows the idler and the belt wrap. 

 
Figure 2.6: Test bench representation of a conveyor 
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The conveyor belt used on the test bench is only 200mm wide. This decision was made to keep 

the cost and weight of the test bench low. The test bench was designed so that the data 

acquisitioning equipment could be installed on top of the belt - no supporting idler underneath 

the conveyor. It was decided to attach the equipment on top of the belt rather than in the belt 

at this stage because the sensor position relative to the faulty bearing will be varied to 

investigate the influence of the sensor placement on the system's accuracy. Only one idler is 

being used to simplify the test bench and the data processing. 

 
Figure 2.7: Drive pulley and motor 

 
Figure 2.8: Tail pulley and tension/alignment mechanism 

 
Figure 2.9: Idler and wrapped conveyor belt 

 

2.3. Data acquisitioning equipment 

The data acquisitioning equipment used in the earlier transmissibility tests are too large and 

heavy to be attached to the moving belt. The mass and size of the data logger will influence the 

vibration signals and the motion of the belt while the conveyor is operational. A smaller, 

compact data logger is needed but small, compact commercial data acquisitioning equipment 

are quite expensive. A DTS Slice Micro is a data logger that is very compact and has great 

sampling specifications that allow them to be used in applications like car crash test dummies. 

The downside is that the DTS Slice Micro is very expensive. The hardware is in excess of R90 000 

as quoted by ESTEQ on 19 November 2015. The software is an additional cost. Using a DTS Slice 

Micro will not be financially feasible.  
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A data logger was self-developed for the purpose of measuring the vibrations of conveyor 

idlers. A prototype was built with a 16 MHz Arduino Micro and the sampling rates were as high 

as 600 Hz with 12 bit resolution up to a ± 16g range. To improve on the specifications, a new 

data logger was built with a Teensy 3.2 micro controller. This data logger can be seen in Figure 

2.10. The Teensy 3.2 has a clock speed of 96 MHz – a big improvement on the Arduino. The 

data logger reached sampling frequencies of up to 1 kHz with 16 bit resolution up to a range of 

±16g. The logger has a built-in anti-aliasing filter.  

 
Figure 2.10: Self-developed data logger 

 

The micro-controller is used to acquire the acceleration data from an accelerometer and to 

store it on an SD card and/or broadcast it over Bluetooth. The logger has an SD card module 

that allows the accelerometer data and timestamp to be stored on an SD micro card of up to 64 

Gb. The Bluetooth capabilities allow the data to be streamed live over 10m away. The 

Bluetooth also allows for settings to be changed without having to connect a laptop to the 

logger. The filename and the acceleration range can be set and the live stream capabilities can 

be toggled on or off with a cell phone and a serial communication application. A sampling 

frequency of 1 kHz is achieved if the live stream is switched off. The settings are text based and 

can be changed easily with any Bluetooth enabled device.  The data logger has a 2000 mAh 

Lithium-polymer battery built in. This enables the continuous data logging for over 50 hours. 

The battery can be charged with a cell phone charger. A protective aluminium case was 

machined to protect all the components within and a Perspex cover allows the status indication 

lights to still be visible. The overall cost of this data logger is under R2000. This is considerably 

less than the cost of a DTS Slice Micro and should be more financially feasible.  

The accelerometer used is an LSM6DS33 system-package. It is a 3 degree of freedom 

accelerometer and a 3 degree of freedom gyroscope on a single microchip no larger than 23mm 

x 14mm x 2.5mm and costs less than R300. The data logger can communicate with the 
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accelerometer over an Inter-Integrated Circuit protocol (also called I2C). The sensor has 16 bit 

resolution and can measure up to a range of ±16g at a maximum frequency of 6.6 kHz. The 

microcontroller and the combination of all the components and features restrict the sampling 

frequency to about 1 kHz.  The sensor is built into a protective casing and can be seen in Figure 

2.11. The data logger and the sensor connects through a 4-wire screw connector that ensures 

good connection but allows the two to be separated if one needs to be removed as seen in 

Figure 2.12 

 
Figure 2.11: LSM6DS33 sensor encased 

 
Figure 2.12: Logger and sensor connected 

 

Figure 2.13 shows the data logger and the sensor fixed to the belt. The data logger is fixed with 

springs between the bolt head and the casing to accommodate the wrapping over the pulleys 

and idler. The sensor is bolted to the belt to ensure good connection between the sensor and 

the belt. The nuts have been sunk into the underside belt to ensure there are no protruding 

parts underneath the belt. 

 
Figure 2.13: Data logger and sensor fixed to the belt 
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The current developed data logger is too large to encase in the belt and has to be fixed on top 

of the belt. For the test bench it is sufficient because there are no support idlers on the bottom 

return side. The circuit board of the data logger is on top of the battery. In the future, the data 

logger can be reduced in height by placing the battery next to the circuit board. This will 

increase the footprint, but the data logger can be encased in the belt in separate portions to 

accommodate for belt flex so that the circuit does not break or snap. This will enable the entire 

data acquisitioning system to be embedded in the belt – increasing the protection from the 

idlers and the payload. The data can be extracted from the SD card over Bluetooth to any 

device. 

The self-developed data logger and sensor can be used as an alternative to expensive data 

acquisitioning equipment to monitor the vibrations of conveyor idlers. With some work it can 

be developed into an embeddable monitoring system. More detail regarding the data 

acquisitioning equipment can be found in Appendix A - Data acquisitioning details. 

2.4. Pre-processing of sampled data 

Different faults in bearings show in a frequency analysis at different frequencies. There are a 

few elements in an idler bearing that can fail. The inner and outer ring, or raceway, of the 

bearing can crack or pit and this can lead to the failure of the bearing. The rolling element, 

whether it’s a ball or roller bearing, can pit and can cause damage to the inner and outer 

raceways, also leading to the failure of the bearing.  

The different bearing elements, and the type of failures associated with them, correspond to 

different frequencies. As a fault progresses, the magnitude of the associated frequency is 

expected to increase. It is very difficult to identify any obvious changes or differences in the 

signals. Intelligent systems (or artificial intelligence as it is also known) are widely used to 

recognize a change in these features that might indicate a faulty idler or any other potential 

faults within the bearing. These intelligent systems are used seeing that, when they are trained 

correctly, they can be very accurate and consistent in identifying and classifying features like 

those associated with faulty bearings. The accelerometer data is first pre-processed to extract 

the bearing features to be used in the identification and classification of the bearing condition.  

2.4.1. Extracting each idler's signal  

The accelerometer is continuously measuring vibrations as it travels over the idler and around 

the pulleys. When the sensor is in the vicinity of the idler, it captures the vibrations of the 

bearings in the idler better than when it is at a distance from the idler. Extracting the section of 

the signal when the sensor is close to the idler and examining it should produce better and 

clearer results as discovered in the transmissibility tests of Chapter 2.1. 



Chapter 2   In-belt idler monitoring system   

29 | P a g e  
 

Figure 2.14 shows the vibration signal measured for multiple sensor passes over the idler. The 

sensor measures gravitational acceleration of the Earth as well and that is why the signal has a 

+1g offset when the sensor is on the top part of the conveyor and a -1g offset when the sensor 

is upside down when it is on the bottom of the conveyor. This swing between the returning and 

the forward passes is used as a trigger because that is when the sensor moves to the top of the 

conveyor and is in the proximity of the idler. A moving average is applied to the signal and a 

trigger value on the rising and falling edge is used to extract the portion of the signal close to 

the idler. 

 
Figure 2.14: Vibration signal of multiple idler passes 

 

Figure 2.15 shows an extracted signal of a single idler pass. With the triggers, the section of the 

vibration signal is extracted when the sensor is on top of the belt and close to the bearing. The 

signal that is used to identify the underlying bearing frequencies is extracted from halfway 

between the tail pulley and the idler to halfway between the idler and the driven pulley. This is 

done so that the bearing signal extraction is done after the dynamics between the belt and 

pulley have had enough time to die out and before the approaching pulley affects the signal. 

The extracted signal should contain the bearing vibrations with minimal inclusions of the other 

components in the system. This section of the vibration signal that contains the bearing signal 

will be used, after some pre-processing, by the artificial intelligence to identify and classify the 

bearing condition. Each pass of the idler will be used as a separate dataset. The large spike in 

the middle of the signal is caused by the sudden change in vertical direction of the sensor as it 

passes the idler - negative vertical acceleration.  
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There is a noticeable belt hop that is present between the pulleys and the idler and can be seen 

as the higher amplitude waves in the signal. The belt hop is included in the raw bearing signal 

but it is at a much higher frequency than the fundamental bearing fault frequencies (will be 

discussed in Chapter 3) and should not have an influence on the frequencies that is of 

importance for identifying the bearing conditions.  

 

Figure 2.15: Single idler pass extract 

Together with the acceleration, the timestamp of each data point is also logged. The time 

between each data point is not exactly the same but may differ by a few microseconds. This is 

caused by the microcontroller sending a request to the sensor for its acceleration data and 

having to wait for a response with the value. This happens hundreds of times a second and 

small time differences do occur. All the data sets have been sampled under, but close to, 1000 

Hz. All the data sets have been resampled with software to 1024 Hz to keep it constant over the 

entire data range. Because all the data samples are resampled to the same frequency, they can 

be analyzed in the frequency domain with the same sampling frequency throughout.  

2.4.2. Wavelet package decomposition and energy distributions 

It is easier to identify the underlying frequencies of a time signal by using a Fourier transform 

(FT). With a Fourier transform of the time signal, the underlying frequencies can be identified 

and used to analyze the different bearing elements’ health. As each idler is monitored on its 

own, each idler’s signal needs to be analyzed on its own. A time domain localization can be 

used to focus on each idler individually. A short-time Fourier transform (STFT) can be used 

seeing that a small window of the signal is analyzed at a time with a Fourier transform. This has 
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a limited frequency resolution as a fixed window size is used (Ocak, et al., 2007). The window 

size can be changed but it is fixed for the entire signal. 

A method where variable sized windows are used is called a wavelet transform (WT) and has 

been used, as discussed previously in Chapter 1.5.4, with success to process bearing 

frequencies for fault identification and classifying. This is a more flexible method for 

representing a signal in the time-frequency domain. Long time windows are used to get a finer 

low-frequency resolution and a short time window is used to get high-frequency information 

(Ocak, et al., 2007). Precise frequency information at both low- and high-frequencies can be 

obtained by using wavelet transforms, making it ideal for the analysis of irregular data patterns.  

A wavelet package decomposition is performed on all the bearing time domain data sets by 

making use of quadrature mirror filters as low- and high-pass filters seeing that these filters 

have been used before with success to process bearing frequencies for fault identification and 

classifying (Ocak, et al., 2007). Figure 2.16 shows the high-pass and the low-pass quadrature 

mirror filters that are used to decompose the bearing signals into wavelets.   

 

By applying a level 1 wavelet decomposition on the signal, two decompositions of the signal are 

obtained. These two decomposed signals are in the time domain, but one contains the low- and 

the other the high-frequency components of the signal. The low frequency component of the 

signal is known as the approximation (A) and the high frequency component is known as the 

detail (D). Figure 2.17 shows the level 1 wavelet decomposition that is done on a bearing signal. 

 
 

 
Figure 2.16: Quadrature mirror filters - First level Wavelet package decomposition 
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Figure 2.17: Level 1 wavelet package decomposition 

 

A level 2 wavelet package decomposition is where the approximation (low-frequencies) and the 

detail (high-frequencies) signals of the first level of the decomposition is decomposed again. 

Now the original signal can be decomposed into four signals; approximation of the 

approximation (AA), detail of the approximation (DA), approximation of the detail (AD) and the 

detail of the detail (DD). Figure 2.18 shows the level 2 wavelet decomposition that is done on a 

bearing signal. 

Higher level wavelet package decompositions can be done on the original signal. Figure 2.19 

shows a level 3 wavelet package decomposition that is done on a bearing signal. The higher 

level decompositions divide the original signal into more signals that distinguish the base signal 

and the underlying vibration signals even better from one another.  
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Figure 2.18: Level 2 wavelet package decomposition 

 

 
Figure 2.19: Level 3 wavelet package decomposition 

 

If the different fundamental bearing frequencies can be captured in their own frequency bands, 

it should ease the process of identifying and classifying the bearing faults. For this reason, it was 

decided to apply a level 7 wavelet package decomposition as it should capture small signal 

wavelets, small enough to capture each fundamental fault frequency in its own wavelet.  
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A frequency analysis is done on each of the wavelets to determine the underlying frequency 

data. It will be difficult to use all the data points of the entire frequency spectrum of the all the 

wavelet packages as inputs for the intelligent system as there will simply be too much. To 

reduce the number of inputs to the intelligent system, an energy value representing each of the 

wavelets' frequency spectrums is calculated. By using the energy values of the wavelets, the 

number of inputs for the intelligent systems are reduced, but the energy values are still good 

representations of the frequency spectrum that, in essence, build up the original signal.   

The energy value of a wavelet is calculated by summing the squares of the frequency 

magnitudes of the entire frequency spectrum. For the energy values to be better used in the 

intelligent system, they are non-dimensionalized by calculating each wavelet's percentage 

contribution to the total energy of all the wavelets. This method reduces the number of inputs 

needed for the intelligent system and will reduce the solving, training and testing time. 

2.5. Intelligent systems used for fault identification and classification 

There are many different intelligent systems to choose from, each having its own advantages 

and disadvantages over the other. The two main systems used in the identification and 

classification of errors, as in cases like the fault identification and classification in idler bearings, 

are neural networks (NN) or support vector machines (SVM) (Li, et al., 2013). These two 

classification methods are very accurate if trained well. The two systems will be compared to 

one another to identify the more accurate and reliable system. 

2.5.1. Neural networks 

Neural networks mimic the way the human brain works. Figure 2.20 show a schematic of a 

neural network. As seen in Figure 2.20, there are inputs to the neural network (denoted by  ), 

and each input is connected to neurons (denoted by  ), and these neurons may be connected 

to other neurons and eventually some neurons are connected to outputs (denoted by  ). The 

connections are illustrated with the solid lines. In Figure 2.20, there is only one hidden level - 

one level of neurons between the inputs and outputs. Depending on the complexity of the 

neural network that one wants to use, the number of hidden levels can be increased as well as 

the number of neurons in each hidden level. Not all hidden levels have to have the same 

number of neurons (Bishop, 2006). The tendency is that each input is connected to each of the 

neurons in the neighbouring hidden level, and then each of those connected to each neuron in 

the next hidden level as seen in Figure 2.20 (Bishop, 2006). Eq. 2.2 shows how the input of each 

neuron in the first level,     
 , is connected to each of the neural network inputs,   , and 

weighted with the first level weights     
  . The same methodology is applied in the levels that 

follow. Cases do exist where an input might not be connected to every neuron in the 

neighbouring hidden level or may even connect to a neuron in a hidden level one over. It is the 

weights between the inputs, neurons and outputs that are adjusted when the neural network is 
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trained to best predict the outputs depending on the inputs. The inputs and neurons denoted 

by    and    are usually constants called biases and are normally set to 1 as the weighting on 

each connection will adjust the magnitude of the bias (Bishop, 2006).  

 
    

                       
  

 

   
 

 
 
 

(eq. 2.2) 

 

At the neurons themselves, there is an activation function that takes the sum of the neuron’s 

inputs and returns an output. The sum of the inputs at the neuron produces a single output 

through the activation function. There are several different functions that can be used as the 

activation function (Bishop, 2006). The form of the activation function depends on how the 

output of the neuron should behave depending on the value of the input.  

A number of data sets are used to train and test the neural network. The data sets are divided 

into training sets and testing sets. The ratio is not fixed but should be chosen so that the neural 

network is not under or over trained. If the neural network is under trained, it might not have 

been exposed to all the different possible input and output combinations (insensitive) and if it is 

over trained, it might be too focused on one type of output that all the other possible outputs 

are seen as one class (over sensitive) (Bishop, 2006).  

There are several ways of training a neural network. The activation function is usually kept 

constant throughout and that only leaves the weights of each connection that can be changed. 

Some neurons might be more influential on the outputs than others and their weights will be 

adjusted accordingly. The one way of adjusting the weights is to manually alter the weights and 

 
Figure 2.20: Schematic of a Neural network 

(Bishop, 2006) 
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analyzing the outputs and adjusting some more as needed until the success of the neural 

network is satisfactory. Another way is to randomize the weights and adjusting the range of the 

randomization algorithm until the output is satisfactory. These methods can take quite some 

time to find the ideal combination of weights that will take inputs and accurately estimate the 

outputs.  

Another way of finding the weights is by a method called gradient based back propagation. 

Gradient based back propagation is a method where the weights are calculated automatically. 

Initial weights are chosen at random and the inputs are used to produce outputs based on 

these initial weights. The calculated outputs of the neural network are then compared to the 

target outputs needed for the set of inputs. The derivative of the activation function is used to 

calculate the outputs' dependency on the different neurons connected to it - the method is 

thus called gradient based. The differences between the calculated and the target outputs are 

then taken and the local gradient is calculated. The weights of the connections feeding into the 

output are then adjusted by the local gradient. The weights between hidden levels are adjusted 

in the same way. The more a connection's weight contributes to the error, the more it is 

adjusted to minimize the error of the neural network. These adjustments can be done for a set 

number of iterations or until a small enough error is made. It has been found that back 

propagation gives the greatest accuracy and numerical efficiency (Bishop, 2006). It is for this 

reason that a gradient based back propagation neural network will be used to identify and 

classify the bearing faults in the idler. Each of the non-dimensionalized energy values of the 

decomposed wavelets will be used as an input to the neural network and the signal will be 

classified based on the underlying bearing fault. 

2.5.2. Support vector machines 

Support vector machines are popular for solving problems in classification, regression and 

novelty detection (Bishop, 2006). A Support vector machine is a classifier where data sets are 

separated into classes. The basic support vector machine is the two-class classification problem 

using linear model in a 2D feature space (Bishop, 2006). The objective of a support vector 

machine is to classify data to certain areas. Assuming that the support vector machine is 

working in a 2D feature space with a linearly separable data set, the support vector machine 

will separate the classes of the data set with a linear line and will also maximize the distance 

between the line and the closest data points of either class as a constrained optimization 

problem (Bishop, 2006).  

 

Figure 2.21 illustrates a data set in 2D feature space that can be separated linearly. The red line 

is separating the two classes and is also called the decision boundary. The margin is defined as 

the perpendicular distance between the decision boundary and the closest data points of both 
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classes. The margin is represented as the space between the blue lines in Figure 2.21. The 

purple circles are the data points of both classes that are closest to the decision boundary and 

lie on the margin. These data points are called the support vectors seeing that vectors 

perpendicular to the decision boundary can be drawn to each of these data points and all the 

vectors have the same maximum magnitude. It is these vectors that are maximized by solving 

the optimization problem. The rest of the data points of each class are found on either side of 

the margin.  

 

 

It might happen that for a 2D data space, the data set cannot be separated linearly. To be able 

to classify these data sets, the support vector machine makes use of a non-linear kernel 

function that enables the data sets to be linearly separable in a non-linear feature space 

(Bishop, 2006). Figure 2.22 shows a data set in a 2D feature space (x-y plane) that has been 

classified by a non-linear kernel function. The contour lines represent values of the same height 

(z-direction). A kernel function has been applied to the x-y coordinates of the data set and a z-

value (height) obtained for each data point. The data points can now be represented in 3D 

space and can be separated by a linear plane. It can be seen in Figure 2.22 that the data set is 

separated into two classes by a non-linear contour line. The data points marked with green 

circles are the support vectors. 

 
Figure 2.21: Linear separable data points in feature space 

(Bishop, 2006) 
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Figure 2.22: Non-linear classification of data by using a non-

linear kernel function 
(Bishop, 2006) 

 
Figure 2.23: Overlapping classification to ease the 

optimization problem 
(Bishop, 2006) 

 

A kernel function can be of almost any form. The most common kernel functions that are used 

are linear, polynomial and radial based functions (Bishop, 2006). Some data sets are more 

accurately classified with a certain kernel function. By investigating the accuracy of the support 

vector machine with the different kernel functions, the more accurate kernel function for the 

certain case can be found. By solving the optimization problem, the different parameters of the 

kernel function are determined to produce the optimal function to classify the data set. 

For some cases, it may be very difficult to classify a data set in 2D or even 3D. Attempts can be 

made to classify the data set by making use of a higher dimension kernel function but 

computational power needed to solve the optimization problem becomes quite high (Bishop, 

2006). Rather than trying to solve a complex problem, some data points are allowed to be 

misclassified. A certain number of data points are allowed to be on the wrong side of the 

decision boundary. The optimization problem is altered to allow for data points to be on the 

wrong side of the decision margin and a penalty is assigned to the wrongfully classified data 

points depending on how far they are from the decision boundary. The optimization problem 

tries to solve the problem as before, but also tries to minimize the penalties by trying to fit the 

decision boundary as close to the wrongfully classified data points (Bishop, 2006). Figure 2.23 

shows a data set in 2D feature space that has been classified but has allowed some data points 

to be misclassified in order to simplify the optimization problem. The data points marked with a 

green circle are the support vector. There are a few data points that are on the wrong side of 

the decision boundary.  

As seen in Figure 2.23, it might be very difficult for a human being to allocate a certain data 

point to a specific class. The support vector machine is a great tool for accurately classifying 

data into classes that would otherwise be very difficult. 
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A data set does not have to consist of an x- and y-coordinate as depicted in Figure 2.21 to 

Figure 2.23. There are no limits to the dimensions that a data set can be. The higher the 

dimension, the more computational power may however be needed to solve the optimization 

problem. Each of the non-dimensionalized energy values of the decomposed wavelets will be 

used as an input to the support vector machine and the signal will be classified based on the 

underlying bearing fault. 

2.6. Conclusion of small-scale test and data pre-processing 

It has been found that vibrations can be accurately measured through the conveyor belt up to a 

certain distance from the source. The transmissibility of the vibrations is very good for a fair 

distance from the idler over a fairly wide frequency range - up to 400 Hz. The use of wavelet 

package decomposition, for data pre-processing, will extract the features of the underlying 

bearing fault of the idler and ease the process of classification when used in an intelligent 

system. The use of wavelet package decomposition and assigning energy values to each 

wavelet has been successful in previous investigations of faulty idlers. The same method of data 

pre-processing, feature extraction and intelligent systems should, if trained well, help in idler 

bearing fault identification and classification even if the sensor is mounted on top of the belt 

and moving over the idler. Gradient based back propagation neural networks and different 

support vector machines will be used to identify and classify faulty idler bearings seeing that 

these intelligent systems have been used before with great success in similar investigations. 

Each of the non-dimensionalized energy values of the decomposed wavelets will be used as an 

input to the intelligent system and the bearing signal will be classified based on the underlying 

bearing fault. 
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Chapter 3 - Conveyor belt tests and results 
A bearing has three main fundamental frequencies: the inner-, outer- and rolling element 

fundamental frequency. There are numerous ways in which a bearing can fail and these 

different faults can present themselves at the fundamental frequencies within the bearing. 

These changes in the frequency spectrum are widely used to identify faults in bearings and 

other mechanical equipment. There are a number of components in a bearing that can fail, 

each having a different outcome on the frequency spectrum, and for this reason, different 

bearing fault cases will be tested on the conveyor test bench. There will be five bearing 

conditions tested: 

 Healthy bearing. Seeing that there are idlers that have no bearing faults, it is also 

important to include this as one of the bearing conditions. This also serves as a baseline 

to compare the faulty bearing signals to. Knowing what the baseline is can help to 

identify the deviations of faulty bearings and these deviations can be used to better 

identify and classify faults.  

 Outer raceway. Pits forming in the surfaces of bearing raceways are very common 

bearing faults that occur and can lead to bearing failure. Seeing that pitting is a very 

common bearing fault, a pit is formed in the outer raceway of the bearing with a 

Dremmel and the pit can be seen in Figure 3.1. 

 Inner raceway. A similar pit is formed in the inner raceway with a Dremmel for the 

same reason as the outer raceway and the pit can be seen in Figure 3.2. 

 Rolling element. A small pit is created on the surface of the rolling element. These pits, 

although small, also impact the raceways and can lead to similar failure. Figure 3.3 

shows a small pit created on the rolling element. 

 Contamination: Bearings do become contaminated with dust and dirt and this 

contamination can lead to the acceleration of bearing failure. When failing bearings are 

replaced, it will be beneficial to know which bearings, although not damaged yet, are 

contaminated. Contaminated bearings may not show significant signs of failure, but one 

may want to replace them as a preventative measure. For this reason, bearings are 

contaminated with fine sand as well and are tested in the hope that they may also be 

identified and classified.  

The geometry of a bearing has an influence on the frequency at which the rolling elements 

passes certain points on the inner and outer raceways. The bearings used in the idlers are NIS 

6205 deep groove ball bearings. The various geometry properties of the bearing that are 

needed to calculate the fundamental fault frequencies are listed in Table 3.1. The idler's 

rotational speed is kept constant throughout the tests with as little variations as possible with a 

tachometer at 311 RPM. This relates to a rotational frequency of 5.183 Hz and is also tabulated. 



Chapter 3   Tests and results   

41 | P a g e  
 

 

 
Figure 3.1: Outer raceway defect 

 

  
Figure 3.2: Inner raceway defect 

 

 

 
Figure 3.3: Rolling element defect 

Table 3.1: NIS6205 deep groove bearing properties 

Pitch diameter    38.5 mm 

Rolling element diameter   7.94 mm 

Contact angle   20° 

Number of rolling elements   9 

Idler rotational speed  311 RPM 

Idler rotational frequency    5.183 Hz 

 

With the idler shaft being stationary, the bearings inner raceway will also be stationary and 

suitable equations are needed to calculate the different fundamental fault frequencies. 

Assuming no slip between the rolling element and the raceways, the rolling element contact on 

a rotating outer raceway frequency,        for short, at which a defect on the outer raceway is 

passed by a rolling element is calculated by equation 3.1 (Norton & Karczub, 2003). The rolling 

element pass on a fixed inner raceway frequency,        for short, at which a defect on the 

inner raceway is passed by a rolling element is calculated by equation 3.2 (Norton & Karczub, 

2003). The rolling element spin frequency, or       for short, is the frequency at which a defect 

on the rolling element passes the inner and outer raceways and is calculated by equation 3.3 

(Norton & Karczub, 2003). 

 
                     

 

 
         

(eq. 3.1) 

 
       

   
 

   
 

 
         

(eq. 3.2) 

 
          

 

 
      

 

 
       

 

  
(eq. 3.3) 
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The fundamental fault frequencies are calculated and tabulated in Table 3.2. These frequencies 

are the rates at which a reference point, or defect, on different bearing elements are in contact 

with one another. These frequencies are expected to appear in a frequency analysis of the 

bearing signals when investigating different bearing conditions with different induced bearing 

faults. These frequencies have no relation to the resonant frequencies of the different bearing 

components. 

Table 3.2: Bearing fundamental fault frequencies 

       18.97 Hz 

       27.68 Hz 

      48.51 Hz 

 

The transmissibility of vibrations through the conveyor belt was tested in Chapter 2.1 for a 

frequency range of 0 to 1000 Hz. This was done to investigate a large spectrum of frequencies 

as the fundamental bearing frequencies were not known yet. Now that the fundamental 

bearing frequencies are known, it can be seen that the frequency range is substantially smaller 

than the range tested in the transmissibility investigation. From the transmissibility tests it can 

be seen that the bearing frequencies should be transmitted clear enough to capture and 

represent the actual underlying frequencies accurately when test on the conveyor belt is done.   

As discussed in Chapter 2.3, the sampling frequency of the data logger is in the region of 1 kHz. 

This sampling frequency is higher than needed for capturing the fundamental bearing 

frequencies but it can still capture high frequency noise and harmonics if they should appear. 

The sampling frequency of this self developed data acquisitioning system is in the region of 1 

kHz but will capture the fundamental fault frequencies that should be lower than 50 Hz. 

The failure mechanism that is of interest is physical defects on the inner and outer raceway as 

well as the rolling element and the geometry and operational speed have an influence on the 

fundamental bearing fault frequencies. These frequencies are very low and would be captured 

clearly with a sampling frequency of 100 Hz.  

The experiment (Li, et al., 2013) conducted by the School of Mechanical and Electrical 

Engineering of the China University of Mining and Technology as mentioned in Chapter 1.4.4. 

was first replicated to some extent. The idler vibrations were measured on the stationary shaft 

of the idler and the data acquisitioning equipment was also stationary while the conveyor test 

bench was in operation. This was done to compare the measured data of the bearing vibrations 

to the calculated fundamental frequencies to ensure that the data acquisitioning equipment 

captured the bearing vibrations and did it accurately.  
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3.1. Vibrations measured on the stationary supporting structure 

As discussed in Section 1.5.4. vibrations have been used with success to identify bearing faults 

in conveyor idlers and monitor them. Before the accelerometer was fixed to the moving belt, 

the same investigation was done to ensure the equipment, pre-processing and intelligent 

systems worked and was as accurate as the current monitoring done on the supporting 

structure. This was also done to validate if the measured frequencies corresponded to the 

calculated fundamental frequencies. The accelerometer was fixed to the shaft of the idler with 

a bolt and some wax in between to help with vibration transmission. Figure 3.4 shows the 

accelerometer bolted to the shaft of the idler. The sensor was attached near the faulty bearing 

and measured the vibrations in the vertical direction. 

 
Figure 3.4: Accelerometer attached to idler shaft 

 

The bearing in the idler nearest to the accelerometer was interchanged with different bearings, 

each with an artificially induced fault. The healthy bearing was compared to a bearing with an 

inner raceway defect, an outer raceway defect, a rolling element defect and a bearing that was 

contaminated with sand and dirt. A number of datasets were measured of the healthy bearing 

installed in the idler and then the bearing was removed and replaced by one of the faulty idlers 

and more measurements were done until a large number of datasets were obtained for each of 

the different bearing conditions. 
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3.1.1. Signal analysis 

The inner raceway was fixed, and a belt speed of 1 m/s was maintained with as little variations 

as possible throughout the test with the use of a variable speed drive. The idler speed was 

monitored as well with a hand-held tachometer. Figure 3.5 shows the fast Fourier transform, or 

FFT, of a vibration signal measured with the accelerometer when both bearings in the idler 

were healthy. The three fundamental frequencies are also indicated on the figure. The 

fundamental frequency produced by the outer raceway was calculated to be 18.97 Hz and was 

measured on the FFT to be 18.63 Hz, a 1.8% difference. The fundamental frequency that 

corresponded to the inner raceway was calculated as 27.68 Hz and was measured at 26.79 Hz, a 

3.2% difference. The fundamental frequency of the rolling element was calculated as 48.51 Hz 

and was measured at 47.63 Hz, a 1.8% difference. From this, it can be seen that the 

accelerometer measured vibration signals produced by the bearing that corresponded to the 

calculated fundamental frequencies. A total of 16 vibration signals were measured of a healthy 

bearing in the idler.  

 
Figure 3.5: FFT of healthy bearing measured on the shaft 

A bearing with an inner raceway defect was installed into the idler and the accelerometer fixed 

to the shaft closest to the faulty bearing. Figure 3.6 shows the FFT comparison of the healthy 

bearing and the bearing with an inner raceway fault. The moving average of the FFT is also used 

and is also shown. Only five data points before and five data points after were used in the 

calculation of the moving average as it still kept the general shape of the frequency spectrum. 

As the rolling element impacted the inner race fault, it increased the magnitude of the inner 

raceway fundamental frequency in the frequency spectrum - it impacted the fault at that 

specific frequency. A total of 12 datasets were measured on the shaft of the idler when a 

bearing with an inner raceway defect was installed. 
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Figure 3.6: FFT of an inner raceway fault as measured on the shaft 

 

A bearing with an outer raceway defect was installed into the idler where the previous faulty 

bearing was. The accelerometer was fixed to the shaft closest to the faulty bearing. Figure 3.7 

shows the FFT comparison of the healthy bearing and the bearing with an outer raceway fault. 

The moving averages of the FFTs are also used and are also shown. The same moving average 

was used throughout all the tests; only five data points before and five data points after were 

used in the calculation of the moving average.  

 

 
Figure 3.7: FFT of an outer raceway fault as measured on the shaft 
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As expected from the analysis of the inner raceway fault, there was an increase in the 

magnitude of the outer raceway fundamental frequency in the frequency spectrum.  Just as 

with the case where the inner raceway defect was introduced, only the magnitude of the 

frequency corresponding to the fault in the bearing increased significantly.  This increase can be 

coupled to the impact of the rolling elements on the bearing fault at the corresponding rate. 

The measured fundamental frequencies of the signals still corresponded to the calculated fault 

frequencies with very little error. A total of 14 datasets were measured on the shaft of the idler 

when a bearing with an outer raceway defect was installed. 

 
Figure 3.8: FFT of a rolling element fault as measured on the shaft 

 

A bearing with a rolling element defect was installed into the idler where the previous bearing 

with the outer raceway fault was installed. The accelerometer was fixed to the shaft closest to 

the faulty bearing. Figure 3.8 shows the FFT comparison of the healthy bearing and the bearing 

with a rolling element fault. The moving averages of the FFTs are also used and are also shown. 

A substantial increase in the magnitude of the rolling element fundamental frequency could be 

seen. The region where the rolling element's fundamental frequency was calculated to be, had 

a wider range of frequencies present compared to the inner and outer raceway fundamental 

frequencies, which had prominent peaks. The peak with the highest magnitude in the region 

near the calculated rolling element fundamental frequency, had a frequency that corresponded 

to that of the calculated fundamental frequency. The other frequencies present in this region 

had a lower frequency than that of the rolling element fundamental frequency, indicating that 

there might have been a small amount slippage between the rolling element and the raceways - 

slightly slower rotational speed of the rolling element. 
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The impact of the defect on the rolling element with the inner and outer raceway increased the 

magnitude of the rolling element fundamental frequency. These cyclic impacts between the 

rolling element and the two raceways increased the magnitude of the rolling element 

fundamental frequency and this can clearly be seen in Figure 3.8. A total of 16 datasets were 

measured on the shaft of the idler when a bearing with a rolling element defect was installed. 

A contaminated bearing was installed into the idler where the previous bearing with the rolling 

element fault was installed. The accelerometer was fixed to the shaft closest to the faulty 

bearing. Figure 3.9 shows the FFT comparison of the healthy bearing and the contaminated 

bearing. The moving averages of the FFTs are also used and are also shown. 

 
Figure 3.9: FFT of a contaminated bearing as measured on the shaft 

 

The FFT of the contaminated bearing shows a prominent peak at the calculated rolling element 

fundamental frequency. Some of the contaminating particles in the bearing were caught 

between the rolling element and the raceways, causing small impacts as the rolling element 

passed over them and could be heard as the test bench was operational. There may have been 

more than one particle rolled over in a single rotation of the rolling element, increasing the rate 

at which these impacts occurred. This was observed as if there were more than one defect on 

the rolling element. The frequency range in which these impacts occurred was larger than that 

of the bearing with only one rolling element fault. The amplitude of the rolling element 

fundamental frequency in the presence of contaminants was not as high as when an actual 

defect was present on the rolling element. The defect was larger than the contaminants' size. A 

total of 14 datasets were measured on the shaft of the idler when a contaminated bearing was 

installed. 
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The signals shown in this section were of single datasets used to illustrate the differences 

between the signals of different bearing conditions. A total of 72 different bearing fault signals 

were measured and captured on the shaft. Of the 72 signals captured, 36 were used to train the 

intelligent systems and 36 were used to test their accuracy. Figure 3.10 shows a typical moving 

average of each of the five different bearing conditions to illustrate all the differences between 

the different signals. Each bearing condition has a unique frequency spectrum and it is these 

differences that were used to distinguish the one condition from the other. Although only one 

signal is shown per bearing fault, 72 data sets were obtained for this case of which half (36) 

were used for training and the other half were used to test the identification and classification 

process. The number of test sets are tabulated in each case's results table. 

 
Figure 3.10: Moving averages of the different bearing conditions as measured on the shaft 

 

A level seven WPD was applied to each signal of all the different bearing condition. A level 

seven WPD was chosen because it had very good resolution - divided the signals into small 

enough sections so that each defect could be placed in its own pair of wavelets but still 

resembled the original signal. The level 7 WPD, in essence, divided the frequency spectrum into 

   frequency bands and an energy value for each band was then calculated as discussed in 

Chapter 2.4.2.  

To normalize the energy levels of the wavelets, the percentage contribution of each wavelet of 

the signal was used and is shown in Figure 3.11. The different energy distributions were used to 

identify and classify the bearing faults with an intelligent system. Only the first 13 levels are 

shown seeing that the remaining energy bands are very small in comparison to the low-

frequency bands. It can be seen that some frequency bands are dominated by the fundamental 

frequency that is present within that frequency range. 
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3.1.2. Identification and classification of the bearing faults 

Neural networks and support vector machines are very popular intelligent systems used to 

classify datasets, even those of different bearing faults. Both of these systems were used to 

identify and classify the different bearing faults measured on the shaft.  

Vibration measurements were taken of the five bearing conditions. All these measurements 

were pre-processed as discussed in Chapter 2.4.2. Each bearing condition's datasets were 

divided into two equal parts, one for training and the other for testing the intelligent system. 

The gradient based back propagation neural network was trained and tested as discussed in 

Chapter 2.5.1. The 36 training datasets were first used to train the neural network to 

distinguish a healthy bearing from a faulty one, regardless of the fault. It was found that the 

neural network had a 100% accuracy (36 of 36 testing datasets) when it had to distinguish a 

healthy bearing from a faulty bearing. The neural network was then retrained to not only 

distinguish a healthy bearing from a faulty bearing, but also classify the type of fault when a 

faulty bearing was detected as either an inner raceway, outer raceway or a rolling element fault 

or a contaminated bearing. The retrained neural network had a 100% accuracy (36 of 36 

datasets) when it had to identify a faulty bearing and had to classify the fault if one was found.  

Figure 3.12 shows the five different classes and the classified datasets. The green markers 

indicate the datasets that were classified correctly. Note that the output of a neural network 

isn't a definite value that corresponds to a class value, but rather a value that, when within a 

range from a specified class value, can be associated with that class. Table 3.3 shows the 

statistics of the neural network classification.  

 
Figure 3.11: WPD of the different bearing defects as measured on the shaft 
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Figure 3.12: Five-class Neural network classification measured on the shaft 

 

Table 3.3: Neural network accuracy when measured on the shaft 

Neural network classification of faulty bearings as measured on the shaft 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 8 8 100.00% 

Inner raceway 6 6 100.00% 

Outer raceway 7 7 100.00% 

Rolling element 8 8 100.00% 

Contaminated bearing 7 7 100.00% 

Total 36 36 100.00% 
 

 

The same datasets were used to train and test the support vector machine as discussed in 

Chapter 2.5.2. A radial base function was used and with a grid search, a cost value of 

            and a gamma value of               produced the highest accuracy. The 

support vector machine did not only classify the datasets into the two classes of healthy and 

faulty, but classified all the different faults with 100% accuracy (36 of 36 test datasets). A single 

support vector machine classified a dataset into any of the five bearing conditions; healthy 

bearing, inner raceway defect, outer raceway defect, rolling element defect or contaminated 

bearing. Figure 3.13 shows the five different classes and the classified datasets. Table 3.4 shows 

the statistics of the support vector machine classification. The output of the support vector 

machine is distinct class values. 
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Figure 3.13: Five-class Support vector machine classification as measured at the shaft 

 

Table 3.4: Support vector machine accuracy when measured on the shaft 

SVM classification of faulty bearings as measured on the shaft 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 8 8 100.00% 

Inner raceway 6 6 100.00% 

Outer raceway 7 7 100.00% 

Rolling element 8 8 100.00% 

Contaminated bearing 7 7 100.00% 

Total 36 36 100.00% 
 

 

 

3.1.3. Conclusion 

The geometry and physical properties of the bearing, together with the operating speeds and 

conditions, has an influence on the different fundamental frequencies of the bearing. Different 

component faults in a bearing effects the different fundamental frequency corresponding to 

the specific bearing fault. An increase in the magnitude of the frequency in the frequency 

spectrum was noted. It was these noticeable changes to the different fundamental frequencies 

that enabled an intelligent system to identify a faulty bearing and distinguish one bearing fault 

from the other. 
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The investigation conducted by the School of Mechanical and Electrical Engineering of the 

China University of Mining and Technology was successfully recreated on the conveyor test 

bench. The test bench was smaller than the conveyor used in their investigation, and this might 

have contributed to the high intelligent system accuracies obtained, but it was confirmed that 

idler bearing faults can be identified and classified with success. The identification and 

classification was successfully done by implementing wavelet package decomposition on the 

vibration signals. The energy contributions of each wavelet were used to train and test a neural 

network and a support vector machine with great success. Both the gradient based back 

propagation neural network and the support vector machine, that used a radial base function, 

were able to identify and classify a bearing fault with 100% accuracy when the vibrations were 

measured on the stationary shaft of the idler.  

The fundamental frequencies of the signals, as measured on the shaft of the idler, 

corresponded to the calculated fundamental bearing frequencies with minimal errors. From 

these tests it could be seen that the self developed data acquisitioning equipment captured the 

fundamental frequencies of the bearing accurately and that the sampling frequency was 

sufficient to capture the needed detail of the signals. The equipment can now be used with 

confidence on the conveyor belt to measure the vibrations of the idler bearings. 

The measuring of the bearing vibrations of the different bearing conditions also provided 

insight into what changes to the fundamental frequencies are to be expected depending on the 

bearing faults present. The knowledge of the fundamental frequencies, and how they respond 

to different faults, will help in the understanding, interpretation and comparison of the 

frequency responses obtained from measuring idler vibrations on the moving conveyor belt.   
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3.2. Measuring vibrations on the moving belt 

Measuring the idler vibration on the supporting structure confirmed the range where the 

calculated fundamental frequencies were expected to be measured. 

In practice, there might be more than one idler on the same supporting structure. Troughs are 

widely used to keep the payload on or in the centre of the belt to reduce spillage as discussed 

in Chapter 1.3.3. These troughs are usually made by placing three idlers side by side as seen in 

Figure 3.14.  

 
Figure 3.14: Trough made with idlers 

 

On the top side of the conveyor, there are a total of three idlers per supporting structure, thus 

six bearings in total. Rather than placing a sensor at each bearing, one or two sensors would be 

ideal to keep costs down. On the conveyor test bench, the sensor was placed on three different 

positions to investigate the number of sensors that might be needed to monitor a conveyor in 

full. 

The sensor was placed on three different positions across the width of the belt. The first 

position was almost directly above the faulty bearing. If the faulty bearing could only be 

identified and classified at this position, and not at the others, a sensor would be needed for 

every bearing across the width of the belt. This position can be seen in Figure 3.15 as the "Near 

position".  

The second position was in the middle of the belt. If the faulty bearing could be identified and 

classified from this position, it was assumed that only one sensor per idler was needed across 

the width of the belt.  This position can be seen in Figure 3.15 as the "Middle position". 

The third position was almost directly above the healthy bearing. This was the furthest the 

sensor could be placed from the faulty bearing on the belt of the test bench. If the faulty 

bearing could be identified and classified at this position, the number of sensors needed could 

be reduced to having a common sensor between two idlers.  
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As with the case of having three idlers creating a trough, there could be a possibility of only 

having two sensors across the width of the belt. This position can be seen in Figure 3.15 as the 

"Far position". 

 
Figure 3.15: Different sensor positions on the belt 

 

3.2.1. Measuring near the faulty bearing 

3.2.1.1. The different bearing conditions and faults 

The different bearing faults were investigated first by attaching the sensor to the belt close to 

the faulty bearing. The vibrations of the healthy bearing were measured first. Figure 3.16 shows 

the FFT of the healthy bearing signal. The moving average of the FFT is also used and is also 

shown. A simple moving average was used throughout the tests. Only five points before and 

five points after were used to eliminate most of the noise but still kept the general shape of the 

frequency spectrum.  

As discussed in Chapter 3.1, there were three distinct frequency regions seen on the frequency 

spectrum. The first, and lowest frequency that was observed corresponded to the outer 

raceway fundamental frequency. The second frequency was that of the inner raceway 

fundamental frequency. These two fundamental frequencies were easily observed on the FFT 

and the moving average. The rolling element's fundamental frequency could be seen in the FFT 

but was not as prominent as the other two fundamental frequencies. The deviations in the 

faulty bearings' fundamental frequencies, from that of the healthy bearing, would be used to 

identify and classify the bearing faults. 
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Figure 3.16: FFT of a healthy bearing as measured near the bearing 

 

Each dataset that was captured was of a single pass over the idler as discussed in Section 2.4.1. 

A total of 616 datasets were recorded of the healthy bearing in the idler when the sensor was 

fixed in the near position on the belt. After the healthy bearing was tested, it was removed and 

replaced with a bearing with an artificially induced inner raceway fault.   

 

 
Figure 3.17: FFT of an inner raceway fault as measured near the faulty bearing 
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Figure 3.17 shows the FFT of a bearing with an inner raceway fault that was measured at the 

near position. The FFT of a healthy bearing is also included to compare. The moving averages of 

the FFTs are also shown. From Figure 3.17, it can be seen that the magnitude of the frequency 

corresponding to that of the inner raceway fundamental frequency was larger in the faulty 

bearing than in the healthy bearing, as expected from the previous tests. There was very little 

change in the outer race frequency as well as in the rolling element fundamental frequency. A 

total of 394 datasets were recorded of the bearing with an inner raceway fault. The faulty 

bearing was removed and replaced with a bearing with an artificially induced outer raceway 

fault. 

Figure 3.18 shows the FFT of a bearing with an outer raceway fault that was measured at the 

near position. The FFT of a healthy bearing is also included to compare. The moving averages of 

the FFTs are also shown. A clear increase in the magnitude of the outer raceway fundamental 

frequency was visible. Not only the magnitude of the outer raceway fundamental frequency, 

but the magnitude of the inner raceway fundamental frequency had increased. The magnitude 

increase of the outer raceway fundamental frequency could be clearly seen. A total of 276 

datasets were recorded of the bearing with an outer raceway fault. The faulty bearing was 

removed and replaced with a bearing with an artificially induced rolling element fault. 

 

 
Figure 3.18: FFT of an outer raceway fault as measured near the faulty bearing 
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Figure 3.19 shows the FFT of a bearing with a rolling element fault that was measured at the 

near position. The FFT of a healthy bearing is also included to compare. The moving averages of 

the FFTs are also shown. There was a distinct increase in the rolling element fundamental 

frequency as expected.  

 
Figure 3.19: FFT of a rolling element fault as measured near the faulty bearing 

 

The impact of the defect on the rolling element with the inner and outer raceway increased the 

magnitude of the frequency of the rolling element, but also that of the inner and outer 

raceway. Both the inner and outer raceways were impacted by the rolling element as the fault 

passed the raceways' surfaces. These cyclic impacts on all three components increased the 

magnitude of the three fundamental frequencies of the bearing. This could be seen in Figure 

3.19 as all three fundamental frequencies have increased in magnitude. A total of 428 datasets 

were recorded of the bearing with an artificially induced rolling element fault. The faulty 

bearing was removed and replaced with a bearing that was contaminated with fine sand and 

dust. 

Figure 3.20 shows the FFT of a contaminated bearing. The FFT of a healthy bearing is also 

included to compare. The moving averages of the FFTs are also shown. As with the rolling 

element defect, there was a distinct increase in the magnitudes of all three fundamental 

frequencies of the bearing. Some of the contaminating particles in the bearing were caught 

between the rolling element and the raceways. When the rolling element moved over a 

particle, small impacts occurred between the rolling element and the raceways. These impacts 

increased the magnitude of the fundamental frequencies of both the raceways as well as that 

of the rolling element. The FFT of the contaminated bearing shows a deviation in the rolling 

element's fundamental frequency from that of what was expected. . 
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Figure 3.20: FFT of a contaminated bearing as measured near the bearing 

 

As seen in Figure 3.20, the measured frequency corresponding to the rolling element is 

noticeably higher than the calculated frequency and the frequency observed in the healthy 

bearing. This could be due to the contamination particles. As the rolling element rolled over the 

surfaces of the raceways, particles would get trapped and caused the impacts. The slight 

increase in the frequency magnitude associated with the rolling element suggest that there 

may have been more than one particle rolled over in a single rotation of the rolling element, 

increasing the rate at which impacts occurred between the rolling element and the raceways. 

The frequency range in which these impacts occurred was slightly wider and at slightly higher 

frequencies than that of the bearing with only a rolling element fault, seeing that there was a 

wide range of different impact rates in the contaminated bearing.  A total of 432 datasets were 

recorded of the contaminated bearing. 

It was noticed that when the accelerometer was attached to the shaft of the idler, the 

measured fundamental frequencies corresponded to the calculated values with very little 

deviation, as seen in Figure 3.5 to Figure 3.9. Deviations as little as 3.2% were found between 

the calculated and measured fundamental frequencies. When the accelerometer was attached 

to the belt, the measured bearing fundamental frequencies did not correspond to the 

calculated values as well as the case where it was fixed to the shaft. Larger deviations were 

noted as seen in Figure 3.16 to Figure 3.20. Some of the largest deviations found were in the 

order of 6.3 Hz from the 18.97 Hz outer raceway fundamental frequencies, a 33.2% deviation. 

The magnitudes of the deviations were not excessive, but still noticeable.  
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When the accelerometer was attached to the shaft, the system showed characteristics of a 

linear system where the frequencies of the measured vibrations corresponded to the 

frequencies of source vibration, albeit the calculated source frequencies. The stiff idler shaft 

transmitted the source vibration to the accelerometer with very little dampening.  

When the accelerometer was attached to the belt, the system did not show these 

characteristics of a linear system anymore. The accelerometer was placed on top of the rubber 

conveyor belt that is known to have viscoelastic properties and dampening effects. While the 

belt was moving it had a low frequency hop. The idler has a slight eccentricity that adds 

additional forced vibrations to the system.  A classic characteristic jump was also noted that has 

an influence on the natural frequency of the belt and it changes as the belt speed changes. 

Efforts were made to maintain the belt at a constant speed, but small variations were observed. 

These are all characteristics of a non-linear system as described by (Moon & Wickert, 1997) that 

studied natural frequencies of non-linear belt systems. 

High-speed footage of the conveyor test bench was recorded and motion amplification was 

done on the video. From the video it can clearly be seen that the system and the belt in 

particular behaves in a non-linear way as described in (Zhang & Zui, 1998) and (Kim & Lee, 

1999). Figure 3.21 to Figure 3.23 show screenshots taken from the footage. From the footage it 

can clearly be seen that there is belt hop present and this is also supported by the time-domain 

signals recorded on the belt as seen in Figure 2.15 where low-frequency waves are present 

before and after the sensor passes the idler.  

The vibrations measured on the belt had frequency spectrums that looked similar to those 

measured on the shaft, but the measured fundamental fault frequencies did not correspond to 

the calculated source frequencies. The non-linear conveyor belt system showed belt hop 

between the pulleys and the idler and other characteristics that corresponds to the 

observations, analysis and modelling done of non-linear belt systems by (Zhang & Zui, 1998) 

and (Kim & Lee, 1999). Non-linear vibration systems have been investigated by (Narayanan & 

Jayaraman, 1991) and (Choi & Noah, 1988) and it has been found that non-linear systems can 

have subharmonic, superharmonic and chaotic responses to harmonic excitation. This shows 

that the fundamental fault frequencies as measured on the belt can appear at higher or lower 

frequencies due to the non-linearity of the on-belt monitoring system and still contain the 

underlying bearing fault data. 

The characteristics of this non-linear system can be investigated in future to better understand 

and predict the frequencies of the measured vibrations when the accelerometer is placed on 

top of a moving conveyor belt.  
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Figure 3.21: High-speed footage screenshot 1 

 

 
Figure 3.22: High-speed footage screenshot 2 

 

 
Figure 3.23: High-speed footage screenshot 3 
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Figure 3.24: Moving averages of different bearing conditions as measured near the bearing 

 

Figure 3.24 shows the moving averages of the five different bearing conditions. It is clear that 

the frequency spectrum of each bearing condition has a unique shape and it was this 

uniqueness that was used to distinguish the one condition from the other. Figure 3.25 shows 

the energy values of the different bearing conditions depicted in Figure 3.24. A level seven WPD 

had been applied and the energy levels were calculated. 

A level seven WPD was applied to each bearing dataset. A level seven WPD was chosen because 

it had very good resolution - divided the signals into small enough sections so that each defect 

could be placed in its own pair of wavelets but still resembled the original signal. The level 7 

WPD, in essence, divided the frequency spectrum into    sections and an energy value for each 

section was calculated as discussed in Chapter 2.4.2. It can be seen from Figure 3.25 that each 

bearing condition has a different energy distribution and it was these differences that were 

used to identify and classify the bearing faults. Only the first 13 levels are shown seeing that the 

remaining energy bands are very small in comparison to the low-frequency bands.  
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3.2.1.2. Identification and classification of the bearing faults 

There are two popular intelligent systems used to classify datasets. These are neural networks 

and support vector machines. Both of these systems were used to attempt to identify and 

classify the different bearing faults that were measured near the faulty bearing.  

A large number of measurements were taken for each of the five bearing conditions. All these 

measurements were pre-processed, as discussed in Chapter 2.4.2, and the energy values of 

each measurement were used to train and test the intelligent systems. Each bearing condition's 

datasets were divided into two equal parts, one for training and the other for testing the 

intelligent system. 

The gradient based back propagation neural network was trained and tested as discussed in 

Chapter 2.5.1. Firstly it was investigated to see if the neural network could distinguish a healthy 

bearing and a faulty bearing, regardless of the fault. It was found that the neural network had a 

94.41% accuracy (1013 of 1073 datasets) when distinguishing a healthy bearing from a faulty 

one. It was however not as accurate in classifying the fault. The neural network only had a 

58.90% accuracy (632 of 1073 datasets) when trying to classify the bearing fault. 

Being able to tell if a bearing is faulty with 94.41% accuracy is quite good but the error is too 

large when looking at the amount of idler bearings there can be in a single conveyor. The neural 

network was not very accurate when classifying the type of fault. Only 58.90% (632 of 1073 

datasets) were classified correctly. This may have been because the signals of the faulty 

bearings were too different from one fault to the other for the neural network to distinguish 

 
Figure 3.25: WPD of the different bearing defects as measured near the faulty bearing 
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them properly. But when the different bearing faults were combined as one class, the faulty 

bearing class, and compared to the healthy bearing class, the differences seemed to be 

prominent enough for the neural network to distinguish the faulty bearings from the healthy 

ones. This made the identification of a faulty bearing easier and more accurate but the 

classification of the fault could not be done. Figure 3.26 shows the two classes, healthy and 

faulty, and the different classifications of the datasets. The green markers indicate the datasets 

that are classified correctly and the red markers indicate those that are misclassified.  

Note that the output of the neural network (most neural networks in general) was not a fixed 

output value or class value like a support vector machine would be. The output of a neural 

network was not a definite value that corresponded to a class value, but rather a value that, 

when within a range from a specified class value, could be associated with that class. Table 3.5 

shows the statistics of the neural network classification. The majority of the misclassified 

datasets were from the healthy bearing class, roughly 13% of this class had been misclassified. 

 
Figure 3.26: Two-class, near bearing, Neural network classification 

 
Table 3.5: Neural network accuracy when measured near the faulty bearing 

Neural network classification of faulty bearings (Measured at near position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 308 308 268 87.01% 

Inner raceway 197 

765 745 97.39% 
Outer raceway 138 

Rolling element 214 

Contaminated bearing 216 

Total 1073 1013 94.41% 
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The support vector machine had a fixed value for each class's output, unlike the neural 

network, which made it such a popular classifier. The support vector machine was trained and 

tested, as discussed in Chapter 2.5.2, with the same datasets as with the neural network. A 

radial base function was used and with a grid search, a cost value of            and a 

gamma value of               was found to produce the highest accuracy. The support 

vector machine did not only classify the datasets into the two classes of healthy and faulty, but 

classified all the different faults with 100% accuracy (1073 of 1073 test datasets). A single 

support vector machine could classify a dataset measured at the near position into any of the 

five bearing conditions; healthy bearing, inner raceway defect, outer raceway defect, rolling 

element defect or contaminated bearing. Figure 3.27 shows the five different classes and the 

classified datasets. Table 3.6 shows the statistics of the support vector machine classification.  

 
Figure 3.27: Five-class, near bearing, Support vector machine classification 

 

 
Table 3.6: Support vector machine accuracy when measured near the faulty bearing 

SVM classification of faulty bearings (Measured at near position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 308 308 100.00% 

Inner raceway 197 197 100.00% 

Outer raceway 138 138 100.00% 

Rolling element 214 214 100.00% 

Contaminated bearing 216 216 100.00% 

Total 1073 1073 100.00% 
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3.2.1.3. Conclusion 

The different bearing faults and conditions had more or less the same frequency spectrums but 

the small deviation from one another was what enabled an intelligent system to distinguish 

them from one another. The vibrations measured on the belt, right above the faulty bearing, 

were used to identify and also classify these faults with very high accuracy. A 100% accurate 

classification (with a SVM) of over a thousand different datasets is a very good indication that it 

is possible to measure and monitor idler bearing vibrations through a rubber conveyor belt as it 

moves at speed. This means that it is possible to make use of accelerometers, fixed to a 

conveyor belt, to monitor the conditions of the idler bearings. With the success of this test, it 

can be said with confidence, that having a sensor over each bearing across the width of the belt 

will enable the monitoring of all the idler bearings with high accuracy. Further investigations 

will be done to try and reduce the number of sensors used. 

3.2.2. Measuring at other positions on the belt 

3.2.2.1. Influence of sensor placement on signal clarity 

When the accelerometer was placed on the belt so that it travelled directly over the faulty 

bearing, it was possible to identify when the bearing was faulty and even classify the different 

faults. It would be possible to monitor all the bearings of the idlers if a sensor was placed over 

each bearing position. This requires a number of sensors and can become costly. To reduce the 

number of sensors needed to monitor all the bearings across the width of the belt, different 

sensor positions will be investigated. Figure 3.28 shows how the sensor was placed in the 

middle of the belt and over the other, healthy, bearing as well - as far from the faulty bearing as 

possible on the test bench. The accelerations were measured perpendicular to the belt surface 

and the sensor rotation about this axis, as in the far position depicted in Figure 3.28, had no 

influence on the measured data.  

 
Figure 3.28: Different sensor placement on the belt 
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Figure 3.29 shows the moving averages of the case where both bearings in the idler were 

healthy. It can be seen from the FFTs of the signals that were measured directly over the 

bearings were very similar. The magnitudes of the different fundamental bearing frequencies 

were close to one another for the near and far positions. This was expected seeing that both 

bearings were healthy. When measured in the middle of the belt, the FFT magnitudes were 

lower than the other two positions, but by a small margin. This could be due to the further 

distance between the sensor and the source of the vibrations, reducing the transmissibility. A 

total of 226 datasets were recorded on the middle of the belt when both bearings were healthy 

and a total of 222 datasets were recorded over the healthy bearing in the far position.  

 
Figure 3.29: FFT of healthy bearings at different positions 

Figure 3.30 shows the moving averages measured at the three positions when a bearing with an 

inner raceway defect was installed at the near position. It was noted the FFTs had the same 

shape, independent of the position where measurements were taken from. There was very 

little change in the magnitude of the fundamental frequency associated with an inner raceway 

fault, independent of the sensor position, but there was a difference between the healthy 

bearing and the bearing with an inner raceway defect. 

As expected, there was an increase in the magnitude of the fundamental frequency 

corresponding to the inner raceway fault. These magnitudes were larger than expected. It was 

expected for the magnitudes of the middle position to be lower than the near position and the 

far position even lower. The hard rubber compound of the belt seemed to be a good medium 

for transmitting vibrations at these distances.  It is comforting to see that the inner raceway 

fault could be seen in the FFTs for both the middle and the far sensor placements. A total of 388 

datasets were recorded on the middle of the belt and a total of 206 datasets were recorded by 

the sensor in the far position when a bearing with an inner raceway fault was installed in the 

idler. 
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Figure 3.30: FFT of inner raceway faults at different positions 

 

Figure 3.31 shows the moving averages of the case where a bearing with an outer raceway 

defect was installed at the near position. It could be seen that, just like when measured near 

the faulty bearing, the magnitude of the outer raceway fundamental frequency had increased 

when measuring at the other two positions. It was noted that the magnitudes of the frequency 

spectrums of the signals measured at the middle position were slightly lower than that of the 

near position. The magnitudes of the frequency spectrums of the signals measured at the far 

position were the lowest of the three sensor positions, as expected. The distance from the 

faulty bearing to each of the measuring positions had an influence on the transmissibility of the 

bearing vibrations. The further the sensor from the faulty bearing, the less of the underlying 

frequencies were captured by the sensor, but the losses were very small. 

The sensor captured the vibration due to both bearings in the idler. Depending on where the 

sensor was placed, it would capture more of the one bearing than the other seeing that the 

transmissibility of the bearing closest to the sensor would be better. This is why, when the 

sensor was placed near the faulty bearing, the magnitudes of the fundamental frequencies 

were so much higher than the other two positions. The middle position can be seen as a 

midway between the two bearings, capturing both bearings' vibrations equally. It is comforting 

to see that the sensor captured the faulty bearing's signal when it was placed at the far position 

and that it could be seen from this signal that there was a fault in the bearing. A total of 284 

datasets were recorded on the middle of the belt and a total of 298 datasets were recorded by 

the sensor in the far position when a bearing with an outer raceway fault was installed in the 

idler. 



Chapter 3   Tests and results   

68 | P a g e  
 

 
Figure 3.31: FFT of outer raceway faults at different positions 

 

Figure 3.32 shows the moving averages of the case where a bearing with a rolling element 

defect was installed at the near position. The presence of a rolling element fault was clear when 

the frequency spectrums of the different sensor placements were inspected. The higher 

magnitude of the rolling element fundamental frequency was an indication that there was a 

rolling element fault in the bearing. As expected, the magnitude of the frequencies, as 

measured near the fault, was higher than that of the middle position and even higher than the 

far position. A total of 240 datasets were recorded on the middle of the belt and a total of 246 

datasets were recorded by the sensor in the far position when a bearing with a rolling element 

fault was installed in the idler.  

Figure 3.33 shows the moving averages of the case where a contaminated bearing was installed 

at the near position. It can be seen that there was a rolling element related fault in the bearing 

because the magnitudes of all three the bearing fundamental frequencies had increased. As 

with the case where the sensor was placed near the faulty bearing, there was a larger-than-

normal range of frequencies present around the rolling element fundamental frequency as 

discussed in Chapter 3.2.1. The ranges of the rolling element frequencies of the cases where 

the sensor was placed at the middle and the far positions were at lower frequencies. It looks 

like the rubber of the belt and the idler itself had a dampening effect on the additional high 

frequency vibrations of the contaminants. The base fundamental frequency of the rolling 

element was prominent on the frequency spectrums with less high frequency data. There was 

however a difference between these signals and the signals of a healthy bearing. A total of 262 

datasets were recorded on the middle of the belt and a total of 294 datasets were recorded by 

the sensor in the far position when a contaminated bearing was installed in the idler. 
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Figure 3.32: FFT of rolling element fault at different positions 

 

 
Figure 3.33: FFT of contaminated bearing at different positions 

 

3.2.2.2. Identification and classification with sensor in the middle of the belt 

Data was sampled for each of the five bearing conditions at both the middle and far positions. 

All these measurements were pre-processed and the energy values calculated as discussed in 

Chapter 2.4.2. Each bearing condition's datasets were divided into two equal parts, one for 

training and the other for testing the intelligent system. 
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The gradient based back propagation neural network was trained and tested, as discussed in 

Chapter 2.5.1, with data measured in the middle of the belt. Firstly it was investigated to see if 

the neural network could distinguish a healthy bearing and a faulty bearing, regardless of the 

fault. It was found that the neural network had a 96.86% accuracy (678 of 700 test datasets) 

when distinguishing a healthy bearing from a faulty one. It was however not as accurate in 

classifying the fault. The neural network only had a 75.43% accuracy in trying to classify the 

bearing fault. 

 
Figure 3.34: Two-class, middle of the belt, neural network classification 

 

Figure 3.34 shows the two classes, healthy and faulty, and the different neural network 

classifications of the datasets as measured in the middle of the belt. The green markers indicate 

the datasets that were classified correctly and the red markers indicate those that were 

misclassified. Table 3.7 shows the statistics of the neural network classification for this sensor 

position. The majority of the misclassified datasets were from the healthy bearing class - almost 

17% of this class had been misclassified. Although 83.19% of the healthy bearings had been 

correctly classified, it's not accurate enough to say with confidence whether a bearing is healthy 

or not when there can be thousands of bearings in the idlers of a conveyor. The large 

misclassification could be due to the large amount of faulty bearing datasets when they were all 

combined. The neural network can become oversensitive or over trained for faulty bearings.  
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Table 3.7: Neural network accuracy when measured in the middle of the belt 

Neural network classification of faulty bearings (Measured at middle position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 113 113 94 83.19% 

Inner raceway 194 

587 584 99.49% 
Outer raceway 142 

Rolling element 120 

Contaminated bearing 131 

Total 700 678 96.86% 
 

 

As discussed in Chapter 2.5.2, the support vector machine was trained and tested with the 

same datasets as with the neural network. A radial base function was used with a grid search 

and a cost value of             and a gamma value of               was found to produce 

the highest accuracy. The support vector machine did not only classify the datasets into the two 

classes of healthy and faulty, but classified all the different faults with 100% accuracy (700 of 

700 test datasets). A single support vector machine classified a dataset into one of the five 

bearing conditions; healthy bearing, inner raceway defect, outer raceway defect, rolling 

element defect or contaminated bearing. Figure 3.35 shows the five different classes and the 

classified datasets. Table 3.8 shows the statistics of the support vector machine classification. 

 
Figure 3.35: Five-class, middle of the belt, Support vector machine classification 
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Table 3.8: Support vector machine accuracy when measured in the middle of the belt 

SVM classification of faulty bearings (Measured at middle position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 113 113 100.00% 

Inner raceway 194 194 100.00% 

Outer raceway 142 142 100.00% 

Rolling element 120 120 100.00% 

Contaminated bearing 131 131 100.00% 

Total 700 700 100.00% 
 

 

3.2.2.3. Identification and classification with sensor far from the faulty bearing 

The gradient based back propagation neural network was trained and tested, as discussed in 

Chapter 2.5.1, with the data measured far from the faulty bearing. Firstly it was investigated to 

see if the neural network could distinguish a healthy bearing and a faulty bearing, regardless of 

the fault. It was found that the neural network had a 98.74% accuracy (625 of 633 test datasets) 

when distinguishing a healthy bearing from a faulty one. It was however not as accurate in 

classifying the fault. The neural network only had a 79.30% accuracy in trying to classify the 

bearing fault. It was noted that the accuracies had increased from the case where the sensor 

was placed near the faulty bearing to the case where it was placed in the middle of the belt and 

the highest for the case where the sensor was placed far from the faulty bearing. A summary of 

the accuracies can be seen in Table 3.11. As the tests progressed, the faults may have increased 

slightly in size, making it easier for the neural network to identify the faulty bearings. 

Figure 3.36 shows the two classes, healthy and faulty, and the different neural network 

classifications of the datasets as measured far from the faulty bearing. The green markers 

indicate the datasets that were classified correctly and the red markers indicate those that 

were misclassified. Table 3.9 shows the statistics of the neural network classification for this 

sensor position. 

Table 3.9: Neural network accuracy when measured far from the faulty bearing 

Neural network classification of faulty bearings (Measured at far position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 111 111 103 92.79% 

Inner raceway 103 

522 522 100.00% 
Outer raceway 149 

Rolling element 123 

Contaminated bearing 147 

Total 633 625 98.74% 
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Figure 3.36: Two-class, far from the bearing, Neural network classification 

 

The support vector machine was trained and tested, as discussed in Chapter 2.5.2, with the 

same datasets as with the neural network. A radial base function was used, and with a grid 

search, a cost value of             and a gamma of               was found to produce 

the highest accuracy. The support vector machine did not only classify the datasets into the two 

classes of healthy and faulty, but classified all the different faults with 100% accuracy (633 of 

633 test datasets). A single support vector machine could classify a dataset into any of the five 

bearing conditions; healthy bearing, inner raceway defect, outer raceway defect, rolling 

element defect or contaminated bearing. Figure 3.37 shows the five different classes and the 

classified datasets. Table 3.10 shows the statistics of the support vector machine classification. 

Table 3.10: Support vector machine accuracy when measured far from the faulty bearing 

SVM classification of faulty bearings (Measured at far position) 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 111 111 100.00% 

Inner raceway 103 103 100.00% 

Outer raceway 149 149 100.00% 

Rolling element 123 123 100.00% 

Contaminated bearing 147 147 100.00% 

Total 633 633 100.00% 
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Figure 3.37: Five-class, far from the bearing, support vector machine classification 

 

 

From the tests conducted on the conveyor test bench, it is clear that the condition of idler 

bearings can be monitored by using an accelerometer attached to the belt, regardless of sensor 

position. The datasets were classified with neural networks with very high accuracy. By using a 

support vector machine, the datasets were classified with 100% accuracy. Even the type of 

bearing fault was identified correctly for all the datasets. Table 3.11 shows the summary of the 

intelligent systems' accuracies for all three sensor positions; near and far from the faulty 

bearing and in the middle of the belt. 

 

Table 3.11: Summary of Intelligent systems' accuracies 

Summary of Intelligent systems' accuracies 

Sensor placement 
Five-class fault classification Two-class fault identification 

Neural network SVM Neural network SVM 

Near the faulty bearing 58.90% 100% 94.41% 100% 
In the middle of the belt 75.43% 100% 96.86% 100% 

Far from the faulty bearing 79.30% 100% 98.74% 100% 
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3.2.2.4. Conclusion 

Accelerometers have previously been used to monitor the health or condition of idler bearings, 

but these sensors were attached to the supporting structure of the idlers. These sensors only 

monitored a few idlers at a time and a vast number of sensors would have been needed to 

monitor all the idlers of a single conveyor. From these tests done in this investigation, it can be 

said with certainty and confidence, that an in-belt idler monitoring system has great potential 

of monitoring the idlers of a conveyor.  

The neural network may have been very accurate, but when working with thousands of idler 

bearings, accuracies close to 100% are desired. The support vector machine proved to be a 

great classifier for the bearing conditions. Whether the sensor was placed near or far from the 

faulty bearing, the support vector machine classified each dataset with 100% confidence.  

It was noted that the accuracies of the neural network increased as the sensor moved further 

away from the faulty idler. As the tests progressed, the bearing faults may have become slightly 

larger, making it easier to identify the fault. The bearings were all still in working condition at 

the end of the tests and no sign of bearing seizure was visible. The monitoring system was 

sensitive enough to identify a bearing in its early failing stages. It is good that the faulty 

bearings can be identified a while before catastrophic failure occurs, giving enough time to 

prepare for planned outages and before a catastrophic bearing failure causes damage. 

These tests were done under fairly ideal conditions. There was no payload on the belt and the 

addition of a payload may create other dynamic conditions that can create noise and other 

frequencies in the spectrum. The effects on the accuracy of identifying and classifying a faulty 

bearing when a payload, although small, is added, will be investigated. 

3.2.3. Measuring vibrations on the belt with the addition of payload 

The investigation where the accelerometer was attached to the belt to monitor idler bearings 

was very successful. The tests done in that investigation were done without any payload on the 

belt. The presence of a payload on a conveyor belt added, to a certain degree, a dynamic 

aspect. The payload was expected to shift around as it travelled on the conveyor belt, adding 

additional noise and features to the measured signals.  

To add a payload to the belt, without needing a large amount of gravel or rocks to be constantly 

loaded and collected, a plastic container was used and filled with rocks. Figure 3.38 shows the 

plastic container and some of the rocks that were added. More rocks were added and then the 

container was closed with its lid-locking handles. The locking mechanism of the lid allowed the 

same payload to be cycled with the sensor over and over again. This reduced the amount of 

payload that was needed to add some dynamic conditions and it was cleaner. Large rocks were 

chosen as they tumbled more violently than smaller rocks, creating more signal noise. 
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The addition of the payload was expected to add more noise to the signals. These signals were 

pre-processed as discussed in Chapter 2.4.2 and were used to train and test a neural network 

and a support vector machine to identify and classify the bearing faults. The same bearing 

faults were tested, but the sensor was only placed in the middle of the belt for these tests. 

 
Figure 3.38: Payload surrounding the accelerometer 

 

3.2.3.1. Influence of payload on the signal quality 

When the conveyor was started again with the payload around the accelerometer, there was a 

clear, audible noise as the rocks tumbled in the container. It was however only heard as the 

sensor and container passed over the idler and when the container and sensor rotated around 

the drive and tail pulley.  In the rest of the cycle there was almost no movement in the payload.  

 
Figure 3.39: Influence of a payload in the time domain 
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Figure 3.39 shows a comparison between the measured vibrations, in the time domain, of a 

healthy bearing measured in the middle of the belt with and without the presence of a payload. 

The end of the steady rise in the acceleration, as seen in Figure 2.15, as the sensor rotated 

around the pulley from the bottom return section to the top part of the conveyor, was used as 

the trigger to enable the superposing of the two signals. As seen before with the case where 

there was no payload on the belt, there was a sharp decrease in the acceleration as the sensor 

passed over the idler. The sensor travelled slightly upward to the idler and downward the other 

side. This sudden change in the vertical direction of the sensor was what created the sharp, 

negative acceleration. The same sudden change in direction was what disturbed the payload in 

the plastic container as it travelled over the idler. The tumbling of the rocks can be seen in 

Figure 3.39 as the additional noise.  

As the plastic container with the payload and the sensor travelled over the idler, the payload 

shifted around, causing some noise in the signal. This movement created a very noisy signal, but 

it only lasted a fraction of a second. This can be seen in Figure 3.39. After the payload settled, 

the signal looked like normal. An FFT was done on the two signals and is shown in Figure 3.40. 

The frequency spectrums for the two cases are shown up to 250 Hz. The noise continues on at 

the higher frequencies. The previous tests that were done without the payload were only 

shown to 100 Hz as there were very few peaks in the spectrum above this frequency. With a 

payload present, this was no longer true. There was a large amount of high-frequency noise 

present in the signal. The fundamental bearing frequencies were still present but the 

magnitudes were not as expected. The outer raceway fundamental frequency had a lower 

magnitude and the rolling element fundamental frequency had a higher magnitude than 

expected.  

 
Figure 3.40: Influence of a payload on the frequency spectrum 
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3.2.3.2. Identification and classification of the bearing faults 

Data was sampled for each of the five bearing conditions with a payload present around the 

sensor. A total of 1202 datasets were recorded. All these measurements were pre-processed 

and the energy values of each measurement calculated as discussed in Chapter 2.4.2. Each 

bearing condition's datasets were divided into two equal parts, one for training and the other 

for testing the intelligent system. 

The gradient based back propagation neural network was trained and tested, as discussed in 

Chapter 2.5.1, with the data obtained. Firstly it was investigated to see if the neural network 

could distinguish a healthy bearing from a faulty bearing, regardless of the fault. It was found 

that the neural network had a 98.00% accuracy (589 of 601 test datasets) when distinguishing a 

healthy bearing from a faulty one. Table 3.12 shows the statistics for the neural network fault 

identification, and although the faulty bearings were all correctly classified, almost 10% of the 

healthy bearings were misclassified. In practice, this means that 1 out of 10 healthy idlers would 

be considered as faulty. This will lead to healthy idlers being replaced - unnecessary downtimes 

and costs will result of this. The misclassification might have been due to the neural network 

being over trained with the datasets of the faulty bearings, making it oversensitive to faulty 

bearings. Figure 3.41 shows the classifications of the healthy and faulty bearings. 

Table 3.12: Neural network identification of faulty bearings with a payload 

Neural network identification of faulty bearings with payload present 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 128 116 90.63% 

Inner raceway 

473 473 100.00% 
Outer raceway 

Rolling element 

Contaminated bearing 

Total 601 589 98.00% 
 

 

The neural network identified a faulty bearing with a very high accuracy. The accuracy of the 

neural network was tested to see how accurate it could classify the faulty bearings - not only 

tell if a bearing was faulty, but also classify the fault. Figure 3.42 shows the classification and 

Table 3.13 shows the statistics for the neural network. As expected, the overall accuracy of the 

neural network was lower when trying to classify the bearing faults and not only just identify 

them. The percentage misclassifications were still too high to be accepted but was higher than 

all the neural network classifications done before. The addition of the payload may have tighten 

the belt, helping with the transmissibility of the vibrations through the belt, or the faults in the 

bearings may have become a bit larger, making it easier to identify a faulty bearing.  
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Figure 3.41: Two-class Neural network classification with additional payload 

 

 

 
Figure 3.42: Five-class Neural network classification with additional payload 
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Table 3.13: Neural network classification of bearings with a payload 

Neural network classification of faulty bearings with payload present 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 128 117 91.41% 

Inner raceway 162 137 84.57% 

Outer raceway 82 75 91.46% 

Rolling element 111 103 92.79% 

Contaminated bearing 118 110 93.22% 

Total 601 542 90.18% 
 

 

The support vector machine was trained and tested, as discussed in Chapter 2.5.2, with the 

same datasets as with the neural network. A radial base function was used and with a grid 

search, a cost value of             and a gamma of              was found to produce 

the highest accuracy. The support vector machine did not only classify the datasets into the two 

classes of healthy and faulty, but classified all the different faults with 100% accuracy (601 of 

601 test datasets). A single support vector machine could classify a dataset into any of the five 

bearing conditions; healthy bearing, inner raceway defect, outer raceway defect, rolling 

element defect or contaminated bearing. Figure 3.43 shows the classification and Table 3.14 

shows the statistics of the support vector machine. 

 

 
Figure 3.43: Five-class Support vector machine classification with additional payload 
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Table 3.14: Support vector machine classification with a payload 

SVM classification of faulty bearings with payload present 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 128 128 100.00% 

Inner raceway 162 162 100.00% 

Outer raceway 82 82 100.00% 

Rolling element 111 111 100.00% 

Contaminated bearing 118 118 100.00% 

Total 601 601 100.00% 
 

 

Seeing that the support vector machine was the better classifier of the two intelligent systems 

and had a 100% accuracy throughout all the investigations, it was decided to combine all the 

data collected while the sensor was on the belt. The datasets of the near, middle and far 

positions were added to the datasets of the additional payload tests. This created a very large 

dataset of 3007 training and 3007 test signals. Each bearing fault class consisted of the data of 

all the tests done with the specific bearing fault. The different types of investigations of a 

specific bearing fault had slightly different characteristics but all belonged to the same class.  

The support vector machine was trained and tested, as discussed in Chapter 2.5.2, with all the 

datasets collected in the different investigations. A radial base function was used and with a 

grid search, a cost value of             and a gamma of               was found to 

produce the highest accuracy. The support vector machine classified all the different faults with 

100% accuracy (3007 of 3007 test datasets). A single support vector machine could classify a 

dataset into any of the five bearing conditions; healthy bearing, inner raceway defect, outer 

raceway defect, rolling element defect or contaminated bearing. This was done regardless of 

the position of the sensor on the belt and if there was a payload or not. Table 3.15 shows the 

statistics of the support vector machine classification of all the datasets and Figure 3.44 shows 

the classifications. 

Table 3.15: Support vector machine Classification of all the datasets 

SVM classification of faulty bearings with payload present 

Bearing condition Number of datasets Correctly classified Accuracy 

Healthy bearing 660 660 100.00% 

Inner raceway 656 656 100.00% 

Outer raceway 511 511 100.00% 

Rolling element 568 568 100.00% 

Contaminated bearing 612 612 100.00% 

Total 3007 3007 100.00% 
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Figure 3.44: Five-class Support vector machine classification of all the on-belt measurements 

 

3.2.3.3. Conclusion 

It was seen in the tests without a payload that, when placing an accelerometer on the belt, 

regardless of the position, the bearing faults were be classified with 100% accuracy when a 

support vector machine was used. When a payload with a dynamic aspect was investigated, it 

was seen that the rocks tumbling around the sensor did add more noise and other energy to 

the signals, but the bearing faults were still classified with 100% confidence with a support 

vector machine. The neural network was 98.00% accurate but the 2% error was made only on 

healthy bearings. This 2% error in the total scheme of things translated to almost a 10% 

misclassification of the amount of healthy bearing datasets. In practice, this means that 1 out of 

10 healthy idlers could be considered as faulty. This will lead to healthy idlers being replaced - 

unnecessary downtimes and costs will result of this.  

The use of a support vector machine in a monitoring system is sensitive enough to identify a 

bearing in its early failing stages, even with the addition of a payload. It was found that the 

faulty bearings could be identified even before failure occurred. This can give enough time to 

prepare for a planned outage before a catastrophic bearing failure can cause significant damage 

to the belt. From the tests, it was seen that, when sufficient pre-processing was done, a support 

vector machine was a very powerful classifier. It is strongly advised to use a support vector 

machine to be used in an in-belt vibration monitoring system for conveyor idler bearings with 

the addition of wavelet package decomposition to pre-process the bearing signals. A substantial 

amount of iterative training processes went into the training of the intelligent systems, 

especially the support vector machines, to be able to have such high accuracies. 
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Chapter 4 - Conclusion 
There is a need for conveyor idler monitoring, but the cost of such a system has a very large 

influence on the feasibility of implementation. There are several methods for monitoring or 

inspecting idlers but the use of vibrations enables the implementation of an on-line system. 

This system will reduce the labour cost of inspection and will also eliminate the possibility of 

human error. The use of vibrations have been found, through experiments, to be very accurate 

in identifying faulty idlers when the accelerometer was installed on top of the moving belt. 

It was found, trough the replication of a study done on the measurements of vibrations on the 

supporting structure, that a faulty idler could be identified and the fault classified. Making use 

of wavelet package decomposition for data pre-processing and a support vector machine as a 

classifier, the idler bearing faults were identified and classified with 100% accuracy.  

The downside of monitoring all the idlers’ vibrations along the length of the conveyor, by 

placing the sensor against the supporting structure, is that a large number of accelerometers 

are needed, even if there is one accelerometer for every three or more idlers.  

To reduce the number of accelerometers needed to monitor all the idler bearings, an 

investigation was done on the feasibility of attaching an accelerometer to the moving belt. As 

the accelerometer travelled along the length of the conveyor, it measured the vibrations of all 

the idlers it passed. From the tests done, it was found that an accelerometer could be used with 

great success to identify and classify idler bearing faults, regardless of the sensor position or the 

presence of a payload or not. The self-developed data acquisitioning system attached to the 

moving conveyor belt was used to identify a faulty bearing and classify the fault with a 100% 

success rate. Wavelet package decomposition for data pre-processing and a support vector 

machine was used to achieve this accuracy. 

The self-developed data acquisitioning system cost a fraction of commercially available systems 

that complied with the size and performance needed for the data sampling. The self-developed 

data acquisitioning system cost less than R2000. One meter of the steel reinforced rubber belt 

used on the test bench, and used in the industry, costs R2500. The data acquisitioning system, 

as it is, needs to be improved before it can be installed in a working conveyor, but the 

additional costs of the improvements will still make it a financially feasible solution to a great 

need in the conveyor industry.  

The non-linear characteristics of the on-belt system showed that the system had subharmonic 

and superharmonic responses to the fundamental bearing fault frequencies. Although the 

excitement and response frequency values did not correspond to one another, the bearing 

faults were still identified in the signals and the bearings were classified correctly.  
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By attaching the data acquisitioning equipment to the moving belt, an automatic monitoring 

system can be created. This reduces the need for an operator to travel the length of the 

conveyor with visual or acoustic monitoring equipment to identify failing or faulty idlers. The 

speed at which an operator has to travel along the conveyor to accurately determine if an idler 

is faulty, is usually walking speed, or even slower. The in-belt monitor travels at the speed of 

the belt and is usually much faster than an operator, and can monitor idlers in hard to reach 

places with ease. This means that the frequency at which all the idler bearings are monitored is 

much higher when an in-belt monitoring system is used, and the conditions of the bearings can 

be updated more regularly.  

It is seen from the results that the in-belt monitor can identify  a faulty bearing even before 

failure occurs. This allows all the faulty bearings to be identified and the needed stock can be  

purchased ahead of a planned outage and all the faulty bearings can be replaced. This will 

reduce the number of short outages that interrupts the conveyor feed and one large planned 

outage can be organised instead where all faulty bearings, and bearings that show signs of 

failing in the near future, can be replaced. The current method of monitoring cannot determine 

the remaining useful life of the faulty bearings. This feature will be very beneficial in the 

planning of an outage and should be investigated in future. 
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Chapter 5 - Future work and recommendations  
It has been confirmed that vibrations of idler bearings can be used to identify a faulty idler and 

even classify the fault. There are a few improvements that need to be done on the data 

acquisitioning system before it can be incorporated into a fully functioning conveyor. The 

following improvements will have to be made and investigated:    

 This system in its current state, although used with great success, is too thick to be 

imbedded into a belt as seen in Figure 5.1. The data acquisitioning system has to be fully 

imbedded into the belt and cannot protrude because it will be damaged by the idlers. 

The thickness reduction of the data acquisitioning system has to be addressed. 

 
Figure 5.1: Comparison between belt and logger thickness 

 

 The vibration data was stored on a SD card for the tests done in this investigation. The 

raw vibration data was transferred to a computer and the pre-processing done on the 

computer. Onboard pre-processing will be very beneficial to the system and a support 

vector machine can be loaded onto the microprocessor. Being able to pre-process the 

data onboard the belt and then classify it as well will reduce the need for constant 

communication between the monitoring system and the operator. The Teensy 3.2 has 

onboard fast Fourier transform and support vector machine capabilities, allowing 

onboard monitoring to be done. The use of multiple microcontrollers may be needed to 

spread the work load. 

 The monitoring system is powered by a lithium-polymer battery and the battery would 

need to be charged regularly. The charging would ideally have to be done while the 

conveyor is still operational. Induction charging sections can be installed along the belt 
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but this can become expensive because the monitoring system will pass these sections 

with speed and long sections will thus be needed. Piezo-electric components can be 

used, with the addition of an energy harvester circuit, to charge the battery. The 

constant flex of the belt as it travels over and in between idlers can be a large source of 

piezo-electric harvested energy. The power that can be generated by solar panels is 

much more than piezo-electric energy  and can be a constant source of power, rather 

than sections of induction chargers. However, the solar panels will have to be robust 

enough to withstand the wear and tear and be able to endure the constant flexing of 

the belt. The solar panels will have to be clear of any payload so that it can have direct 

sunlight to produce power, otherwise the efficiency of the panel will be reduced.  

 Long distance transmission of large amounts of raw data is problematic. Serial 

communication like Bluetooth can only transmit data between 10 and 20m and is not 

feasible for long conveyors. Wi-Fi data transmission is faster and can be done over 

longer distances. Bluetooth or Wi-Fi connection spots will have to be installed along the 

entire length of the conveyor, making it infeasible. The other problem with Bluetooth or 

Wi-Fi is that between two connection points, there is usually an interruption in data 

transfer when a new connection is established to the next connection point. One way of 

eliminating the problem of transmitting large amounts of raw data is to not transmit it 

at all. Wavelet package decomposition and  support vector machine code is available 

that can be added to the software of the micro-controller. This will allow for onboard 

pre-processing and classification to be done and the need to stream the large amounts 

of data no longer exists. Small GSM modules do exist that can be used to send an SMS 

with positioning information of the faulty bearing as soon as it is detected, or a list of 

faulty bearings that has been identified can be sent at predetermined periods. This 

requires more computational power, but newer versions of the micro-controller, the 

Teensy 3.6, is much more powerful and has a built-in SD card slot. The additional cost of 

the GSM module and the upgrade to the Teensy 3.6 should add about 10 to 15% to the 

cost of the data acquisitioning equipment. Short GSM towers can be erected at sites 

where there is no cell-phone reception. The GSM module stores the outgoing message 

until it has signal, so the monitoring equipment can send an update every time it is close 

to the operating or monitoring room if there is no signal along the conveyor. 

 The current method of monitoring cannot determine the remaining useful life of the 

faulty bearings. This feature will be very beneficial in the planning of an outage and 

should be investigated in future. 
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After the monitoring system has been improved so that it can be fitted into a conveyor belt, 

real-world test will have to be done. The addition of multiple idlers and external factors will 

lead to additional pre-processing and support vector machine learning to be done. Tests need 

to be done with varying faulty idler positions, bearing faults and even different stages of 

bearing faults.     

Further investigations need to be done on the influence that variations in the belt speed has on 

the measured fundamental frequencies as well as the non-linearity of the on-belt measuring 

system. It is clear that the system is non-linear and that this has an influence on the frequency 

response measured by the sensor. A better understanding of the system dynamics will enable 

better analysis of the measured response signals and why the excitement frequencies have a 

tendency to appear at subharmonic or superharmonic response frequencies when the sensor is 

placed on top of the belt.  
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Appendix A - Data acquisitioning details 
 

A data logger was self-developed for the purpose of measuring the vibrations of conveyor 

idlers. A few components were combined to build a data acquisitioning system that could 

sample at the desired frequency and could be mobile so it could be installed on to a moving 

conveyor belt. The following components were used: 

 Teensy 3.2 microcontroller. 

 LSM6DS33 6 degrees of freedom accelerometer and gyroscope breakout board. 

 SparkFun OpenLog microSD card read/writer. 

 HC-05 Bluetooth transmitter/receiver. 

 2000 mAh lithium-polymer battery. 

 SparkFun Lithium-polymer battery manager/charger. 

 Pololu 5V step-up voltage regulator (NCP1402).  

 

The Teensy 3.2 micro controller is the core of the data acquisitioning system and is shown in 

Figure A.0.1. The Teensy 3.2 has a clock speed of 96 MHz and is very fast for a microcontroller 

of its size. The LSM6DS33 is an accelerometer and gyroscope breakout board that has 6 degrees 

of freedom; 3 axis of linear acceleration and 3 axis of rotational acceleration. Figure A.0.2 

shows the LSM6D33 breakout board. Only the one axis of linear acceleration is used in the 

application of measuring idler vibrations. The accelerometer sensor has 16 bit resolution and 

can measure up to a range of ±16g at a maximum frequency of 6.6 kHz. breakout board is 

digital and the inputs and outputs are digital values.  

 
Figure A.0.1: Teensy 3.2 

 
Figure A.0.2: LSM6D33 accelerometer 

 

The microcontroller and the accelerometer breakout board communicate over an Inter-

Integrated Circuit protocol (also called I2C). This protocol allows the microcontroller to access 

the registers of the accelerometer sensor. The registers are where various setting values are 

stored and can be read or changed by the microcontroller as needed. If for instance, the 
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accelerometer range needs to be changed from ±16g to ±2g to better capture the small 

amplitude vibrations, it can be changed by altering the value of the appropriate register. It is in 

these registers where the acceleration values are stored each time the accelerometer samples.  

Each cycle the microcontroller requests the acceleration values over the protocol and waits for 

a response from the accelerometer breakout board to notify it that there are acceleration 

values available. When the values are available they are transmitted to the microcontroller. As 

the acceleration values are received from the accelerometer module, they are compiled to a 

string and written over serial communication to the OpenLog microSD card read/writer. The 

OpenLog read/writer appends whatever string it receives over serial communication to the end 

of a text file (.txt) or a comma separated value file (.csv). This cycle is repeated, logging 

acceleration data, until the data acquisitioning system is turned off. Figure A.0.3 shows the 

OpenLog card read/writer. The microSD card slots in underneath and is not show. A microSD 

card of up to 64 Gb can be used with the OpenLog read/writer - more than enough storage 

space.  

 
Figure A.0.3: OpenLog microSD card read/writer 

 

The microcontroller needs a 5V source and cannot turn on at any lower voltages. A lithium-

polymer battery, seen in Figure A.0.4, only supplies 3.7V. To supply the microcontroller of 5V, a 

step-up regulator is used. The step-up regulator, seen in Figure A.0.5, uses power electronics to 

enable the 3.7V source to supply higher voltages, 5V in this case. It can step-up a voltage as low 

as 0.5V to 5V. A battery management circuit board is used to ensure the voltage of the lithium-

polymer battery does not drop below a safe voltage level. Operating the battery at low voltage 

can cause damage to the battery and will be disconnected automatically when its voltage 

becomes too low. The circuit board is also used to charge the lithium-polymer battery and can 

be done so with a normal micro USB charger. A 2000 mAh lithium-polymer battery is used and 

provides over 50 hours of logging time. The management/charging circuit board can be seen in 

Figure A. 0.6 



Appendix A   
   

90 | P a g e  
 

 
Figure A.0.4: Lithium-polymer 

battery 

 
Figure A.0.5: 5V step-up regulator 

 
Figure A. 0.6: Battery management/charger 

circuit board 

 

A Bluetooth module was also included. The Bluetooth was not used in the tests because 

streaming the accelerometer data over Bluetooth made the sampling frequency lower. The 

Bluetooth was however used to change settings of the LSM6DS33 accelerometer breakout 

board wirelessly when needed. This made it easier to change the settings because the data 

acquisitioning system could be left on the belt - was not necessary to be removed to be taken 

to a computer to change the settings. Any laptop, computer or cell phone that has Bluetooth 

can be used to change the settings if the needed software is installed and the setting 

commands are known. 

As mentioned, the microcontroller operates at 5V. This means that the high logic level of its 

digital output signal is 5V (and low logic level is 0V). The LSM6DS33 accelerometer breakout 

board, OpenLog read/writer and the Bluetooth module operates at a 3.3V high logic level. This 

means that the 5V digital output signal of the microcontroller can damage the other 

components when it is communicating with them. A voltage divider is used between the output 

of the microcontroller and the input of the other components. The voltage divider is a set of 

two resistors that can be calculated to lower a 5V signal to 3.3V. The digital signal will not be 

affected in any way, except that the voltage is lower. The microcontroller can receive a 3.3V 

signal and recognizes it as a high logic level - no need to step-up the digital output signals from 

the components to the microcontroller input. Everything is grounded to a common ground. 

All the components, except the LSM6DS33 accelerometer breakout board, were placed in an 

aluminium case that was machined by CNC. This case protects the components when tests are 

done against knocks and bending. Perspex covers the front so that the indication lights inside 

can be seen.  

The case also provides strong points where the data acquisitioning system can be fixed to the 

moving belt. Bots were used to fix the case to the belt. Stiff springs were used between the bolt 

heads and the sunk holes in the case.  The belt compresses when it wraps around the pulleys 

and idler and then the case is loose on the belt. The springs press it onto the belt so that it does 
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not rattle around. The battery is housed in the case underneath the circuit board to reduce the 

footprint.  The logging section of data acquisitioning system can be seen in its aluminium case 

in Figure A.0.7.   

The LSM6DS33 accelerometer breakout board is placed in its own, small, aluminium case. The 

data logging part and the accelerometer is connected with a cable that has a four-wire screw-

connection so that the sensor can be moved from one position on the belt to another without 

needing to remove the entire data acquisitioning system. This also allows the one to be 

removed if needed without having to remove the other. Figure A.0.8 shows the accelerometer 

in its aluminium case - images not to the same scale.  

 

 
Figure A.0.7: Data acquisitioning system in its aluminium case 

 
Figure A.0.8: Accelerometer in its aluminium 

case 
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