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ABSTRACT 

 

Odisha is undergoing a serious power crisis situation at present scenario. Although this power 

shortage can be satisfied by non-renewable energies, these have many environmental problems 

and are too costly to install and maintain. Hence this project is concentrated on small 

hydropower which is a renewable energy, have no environmental issues and relatively cheaper. 

In this project, RS and GIS techniques have been used to find the feasible locations for small 

hydropower plant (SHP) installations. The digital elevation model (DEM) and hydrologic data 

(discharge data) have been used to estimate the small hydropower potential of the state. In the 

present analysis around 40 feasible locations for SHP installation were found which constituted 

around a potential of 33MW. Due to this around 109489 tonnes of coal can be saved that were to 

be used in thermal power plants and a considerable amount of greenhouse gas emission can be 

restricted. A large number of rural population can be benefitted who were earlier being deprived 

of electricity. 

KEYWORDS- RS and GIS, Small hydropower plant, DEM, discharge data 
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CHAPTER 01 

INTRODUCTION 

 

1.1 Power scenario in India  

There has been a regularly expanding requirement for more power era every nation of the world. 

India is bestowed with enormous measure of hydro-electric potential and positions 5th regarding 

exploitable hydro power potential on worldwide situation. Through the progressive schemes 

started after independence of our nation, power improvement has been given the most emphasis. 

At the time of freedom we had barely 2.3 million KW  whereas now remains at 15000 MW more 

or less. According to insights of Central Electricity authority the total installed capacity of India 

is 169749 MW, out of which the share hydropower is 37368 MW i.e., 22% of aggregate limit. 

The increasing population and industrial development requires more power production. Keeping 

in mind the end goal to give satisfactory base to compelling development of economy and to 

meet the shortage of power, Government needs to set up small hydro power projects across the 

nation. Power Potential Studies of a hydroelectric project is an essential procedure in the 

commissioning of the hydroelectric project. It is done for appraisal of the accessible power 

potential of a river/basin taking into account a certain set of head conditions and inflows 

available at the site in years of different degree of reliability, in different periods of a year and 

the estimation of generating capacity (KW), which is required to be provided in power station in 

order to generate the assessed quantity of energy (KWh).   

Besides, the power potential assessment provides the basis for the planning of layout and design 

of the scheme and estimation of cost and evaluation of the financial aspect of the scheme. India 

is poised for expansive organization of hydropower in present conducive policy and investment 

environment. Concern for carbon emission and growing energy demand is making hydropower 

development more favorable. The Government of India has installed many such projects in the 

Himalayan tracts of the country which includes the states of Jammu and Kashmir, Himachal 
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Pradesh, Uttarakhand and many north-eastern states. Moreover, many other projects are under 

screening for feasibility analysis and are waiting to be commissioned.  

But, in case of Odisha, no such work has been done. Odisha is under a serious power crisis at 

present scenario. While the state’s power demand is 5132MW, the power production is only 

3056MW. There are still 3919 un-electrified villages in the state. Many of the rural citizens are 

without access to electricity and much of the population is suffering from sporadic outages. 

These deprived communities can be provided with electricity by installation of SHPs for their 

regular household needs.  

 

1.2 Definition and advantages of small hydropower plants 

SHP are hydropower plant which serves industry and local communities in small scale. In India, 

the development of SHP projects up to 25MW capacity has been vested to ministry of new and 

renewable energies. SHP has many advantages which are discussed below- 

a) Energy efficient source 

Small hydropower requires very less amount of discharge and the power production can be 

transferred to nearby communities. 

b) Reliable energy source 

SHP produces a continuous power in comparison to other small scale renewable technologies. 

The peak energy production season is during the winters. 

c) No reservoirs required 

SHP requires very little or no impoundment. The water passing through the turbine is again 

diverted back to the stream. 

d) Cost effective energy solution 

Construction of SHP requires very less investment compared to its counterpart. The maintenance 

required is also very less. 
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e) Integration with local power grid 

If the site provides excess energy, it can be sold to power companies  

f) More environment friendly 

SHP requires no greenhouse gas emission. It also alters the natural flow of a river to a very small 

extent 

g) Increase in oxygen content in lower course 

The turbines of SHP spins oxygen into the water which increases the DO level downstream of 

the river. This is very good for fish stock preservation. 

 

1.3 Classification of small hydropower plants 

a) Based on layout 

1) Run of river schemes 

These schemes comprises of turbine which operates on the basis of availability of water in the 

river. The generation ceases when the river flow reaches below some fixed amount or the 

minimum technical flow for the turbine. Medium and high head schemes requires weirs to divert 

water into the intake and is then conveyed to turbines via penstocks. Penstocks are costly and 

hence requires careful and economic design. Hence an alternative is to convey water by low 

slope canal along the side of the river to an intake/forebay and then in a short length penstock. In 

case the topography and morphology of the terrain does not allow the easy layout of a canal, then 

low pressure pipe can be an economical option. At the exit of the turbines, the water is released 

to the stream by means of a tailrace. A typical ROR based SHP scheme is shown in diagram 1.1 

(a). 
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Figure 1.1: ROR based SHP scheme 

2) Schemes with the powerhouse located at the base of a dam 

If a dam/barrage is already constructed for purposes such as- flood control, irrigation, drinking 

water supply, recreational, etc, - it may be possible to produce hydropower from such schemes 

using discharge compatible with ecological flow of reservoir. 

The main problem is to fit the turbine while linking the headwater and tail water through a 

waterway. The solution is clear if the dam has a bottom outlet the solution is clear as shown in 

the figure 1.2 (a). A siphon intake can be used if the dam is not too high as shown in the figure 

1(b). 

 

 

 

 

 

 

    Figure 1.2(a): Dam based SHP scheme with   Figure 1.2(b): Dam based SHP scheme with      

                          bottom outlet                                                          siphon 
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The turbine can be installed on top or d/s of dam. The unit can be conveyed prepackaged to the 

works, and introduced without significant alterations of the dam. 

3) Schemes integrated with an irrigation canal 

The potential sites in a irrigation canal are the canal falls. Canal falls are provided along a canal, 

where the level of the canal needs to be stepped-down as a fall structure to match with normal 

ground level. Although the potential head available at these sites are less (0.5m to 15m), the 

energy potential may be considerable due to large and dependable flows.  In India there are large 

numbers of irrigation canals and these have quite good number of falls. Many of these sites have 

been used for generation of hydropower and many are still in planning and construction stage. A 

typical diagram of this scheme is shown in the diagram. 

 

Figure 1.3: Canal based SHP scheme 

b) Based on generation capacity 

The Ministry of New and Renewable Energy classifies the small hydropower plants on the basis 

of generation capacities as follows- 

i) Micro Hydro ( <100KW) 

ii) Mini Hydro ( 101-2000KW) 

iii) Small Hydro ( 2001-25000KW) 
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1.4 Working of small hydropower plants 

A part of river discharge is diverted from the natural waterway or the reservoir created due to the 

construction of dam. This water is conveyed through open channel to a forebay located at a 

height of the natural stream. The water from the forebay is transferred to the turbine located in 

the powerhouse via the penstock. The energy of the falling water rotates the turbine which in 

turn rotates the generator and ultimately produces electricity. This is the basic concept behind the 

working of a typical SHP.  

 

1.5 Objectives of study 

The main objectives of the present study are: 

 To identify suitable streams and feasible locations for SHP projects in Odisha using GIS 

and RS techniques. 

 To develop flow duration curve (FDC) for these feasible locations from which Q75 can be 

derived which is used in further analysis. 

 To calculate the power potential of these locations. 

 To discuss the suitable type of hydraulic machines (turbines) and different type of 

appurtenances and   works required for such projects. 

 To calculate the equivalent amount of coal saved and greenhouse gases emission stopped. 

 

1.6 Organization of the dissertation 

The thesis has been organized in chapter wise with a view to meet the above objectives. 

Chapter 1 concentrates on the introduction of the work related to SHPs. The importance and the 

objectives of the present work have been explained. 
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Chapter 2 presents significant state-of art contributions to various aspects of SHPs such as their 

site location, potential evaluation, installation in different study area. 

Chapter 3 focuses on geographical location, the characteristics of the study area, and the types of 

data required for the analysis. 

Chapter 4 covers the GIS based methodology used in this analysis to locate feasible locations for 

SHP installations. The chapter also discusses about the turbines, works and various 

appurtenances required for SHP installation. 

Chapter 5 incorporates the results and discussion on the present study. 

Chapter 6 provides the summary, important conclusions and specific contribution made in the 

present work. 

Chapter 7 discusses about the future scope of the project. 
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CHAPTER 02 

 REVIEW OF LITERATURE 

 

Many rivers across the world have hydropower potential varying across a large magnitude. 

Before harnessing the hydropower from river, we should know the feasible locations and the 

hydropower potential available. Generally many of these sites are located in remote places. 

Visiting each and every site locations for feasibility study is expensive, time-taking, tedious and 

labour intensive. RS and GIS technique provides many advantages over the conventional 

methods of site locations. Thus the study and use of RS and GIS in site locations has occupied a 

large portion of the literature on site locations of SHP. 

Monk et al. (2009) developed a model named RHAM (Rapid hydropower assessment model) 

which takes input as DEM and regional hydrologic data and gives output as total hydropower 

available on all streams in the study area. It can also estimate the project costs, environmental 

and social factors etc. 

Kusre et al. (2009) assessed the hydropower potential using hydrological modelling (SWAT) and  

GIS technique in Kopili river basin of Assam (India). 

Site location analysis for small hydropower was done by Yi et al. (2009) using geo-spatial 

information system. Their study area was upper part of Geum river basin of South Korea. 

Gunnar (2010) evaluated potential sites for small hydropower plant located in Biobio north 

irrigation system in Chile. 

Jha (2010) used the hydro-meteorological data and incorporated GIS and a hydropower model to 

estimate the total run of river hydropower potential of Nepal. 

Buehler (2011) analyzed the potential for small hydropower installation in the country of 

Dominican Republic using GIS and RS techniques. 

Hammons et al. (2011) worked on extraction of hydropower from river Congo based on low 

head generation technology without the use of a conventional dam. 
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Punys et al. (2011) developed computer aided tools small hydropower plant resource planning 

and development. This tool has been successfully used by countries such as Canada, Italy, 

Norway, Scotland and the US to re-assess hydropower capacities based on spatial information of 

their water stream catchments. 

GIS based procedure was used by Larentis et al. (2011) for hydropower potential spotting.  They 

developed a GIS based computational program named ‘Hydrospot’ which can locate potential 

locations in the study area by using the RS and hydrologic data. 

Meijer (2012) did systematical estimation of the world’s micro, small and large hydropower 

capacities based on a GIS based model developed by him. In order to estimate the global 

hydropower potential a systematical method was developed by him to simulate input data and 

check whether there is hydropower at a specific location. The world is divided into cells with a 

resolution of 3”. The two basic components for hydropower calculation- head and discharge need 

to be evaluated for each cell for potential calculation. The discharge is calculated with help of the  

DEM datasets combined with the GRDC Runoff fields’ dataset. The slope was calculated from a 

global 3” DEM. Hydropower is calculated within each cell using the Input Variables ‘turbine 

efficiency’, ‘minimum discharge’ and ‘minimum head’. 

Hall et al. (2012) assessed natural stream sites for installation of hydroelectric dams in the pacific 

north-west region of USA. They developed a model to give output as capacity potential, number 

of dams in the stream, dam dimensions, inundation etc. 

Feizizadeh et al. (2012) used GIS to calculate the theoretical surface hydropower potential of the 

Tabriz basin in Iran. GIS based hydrological modeling is performed on equiareal raster cells 

using topographical and meteorological datasets. Topographic data, monthly evaporation, and 

precipitation data was used in the analysis. According to their study, Mehran Roud river 

branches has the highest potentials 

Bose et al. (2013) identified suitable locations of micro hydropower stations using geo-spatial 

techniques in the state of Andhra Pradesh. His study area was Kakataya main canal, a major 

distributary to river Godavari. 
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Assessment of hydropower potential of small streams was done using spatial database integration 

by Izeiroski  et al (2013). Their study area was the northern watershed of Prespa lake (Greece). 

Fayzul et al. (2014) developed a merit matrix-based algorithm for stream reach identification for 

new run-of-river hydropower development. 

. 
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CHAPTER 03 

THE STUDY AREA AND DATA COLLECTION 

 

One of the purpose of the project is to find suitable sites for small hydropower installations in 

Odisha. Hence the study area of this project is the administrative boundary of Odisha. To find the 

potential locations, we need to know the elevation data which will ultimately give the head 

available. Another aim of our project is to find the small hydropower potential of the state. A 

pre-requisite for this calculation is the discharge data. 

The chapter begins with the description of study area followed by the details of data collection. 

 

3.1 The study area  

The geographical coordinates of Odisha lies between the latitudes 17° 46' 48" to 22° 43' 48" 

North latitudes and 81° 22' 12" to 87° 31' 48" East longitudes. There are many hilly tracts located 

in the districts of Malkangiri, Koraput, Kalahandi, Kandhamal, Rayagada, Nabrangpur, 

Mayurbhanj, Keonjhar etc. The state is also endowed with many natural streams having 

considerably good discharge values in those areas. These two geographical conditions in 

combination provides best sites for small hydropower development. The administrative map of 

Odisha is shown in figure 3.1. 



12 
 

 

Figure 3.1: Map of Odisha 

The climate of Odisha is a tropical monsoon type and having maximum precipitation in July, 

August, and first half of September. 

 

3.2 Data collection 

For my analysis, required two types of data were required as follows- 

1) Elevation data 

The elevation data is obtained in the form of CartoDEM version 1.1R1 which is a remote sensing 

data. These data are maintained by NRSC. These data have a horizontal grid spacing of 30m. 

These data can be obtained from the URL: http://bhuvan.nrsc.gov.in/ . The DEM is used to 

develop the flow direction, flow accumulation and slope map of Odisha. Ultimately it is used to 

find out the head available at different locations. 

2) Discharge data 

The discharge data is required for calculation of hydropower potential and development of FDC 

for the potential sites. The discharge data are collected and maintained by WRIS. In this analysis 
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daily discharge data is required for past six years. Hence daily discharge data for the years 2006-

2011 were downloaded from the URL:  http://www.india-wris.nrsc.gov.in/ .The gauging stations 

under consideration are Saradaput, Kotta, Anandapur, Champua, Sukma, Kantamal, Kesinga, 

Srikakulam, Gudari, Gunupur, Kashinagar, Khairmal, Tikrapara, Altuma, Jenapur, Pandigaon. 
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CHAPTER 04 

 METHODOLOGY 

 

4.1 Theory 

The potential energy of the falling water can be converted into mechanical energy and 

subsequently into electrical energy by using hydroelectric power plants. According to the authors 

of Renewable Energy: Technology, Economics, and Environment, theoretical water power, Pth 

between two points on a river can be calculated using equation 4.1 as shown below- 

 Pth = ρgQ( ZHW-ZTW )                                                                                                             (4.1)    

 Where ρ = density of water (1000kg/m3); g = acceleration due to gravity (m/s2); Q =discharge 

(m3/s); ZHW = head water elevation; ZTW = tail water elevation. 

But the theoretical power is never developed as there is always some head loss associated within 

a hydroelectric plant known as transfer losses. The actual condition can be defined by 

Bernoulli’s equation as shown in equation 4.2-   

𝑧1 +
𝑝1

𝜌𝑔
+

𝑣1
2

2𝑔
= 𝑧2 +

𝑝2

𝜌𝑔
+ (1 + 𝜀)

𝑣2
2

2𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                 (4.2) 

Where z = datum head; 
𝑝1

𝜌𝑔
 = pressure head; 

𝑣1
2

2𝑔
 = velocity head; ε = loss coefficient. 

We can see from the equation that there is always a head loss when the water is conveyed 

through two points. Hence the net usable head, H, is always less than the gross head as shown in 

equation 4.3- 

H < ( ZHW-ZTW )                                                                                                                        (4.3) 

Also the efficiency (η) of the turbine and generator is never 100%.  From the previous 

installations of SHPs worldwide, we can assume that the efficiency of a SHP ranges about 80%. 

Hence the actual equation of power developed from a SHP is given by equation 4.4 as follows- 
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𝑃 = 𝜂𝜌𝑔𝑄𝐻                                                                                                                               (4.4) 

 

4.2 Location based on head available on streams 

To first locate the feasible locations based on head, we need to find streams with adequate flow. 

More is the order of the stream, more probability is there that adequate flow is available. Hence 

to ensure the sufficiency of flows only streams with a minimum stream order of 5 is considered. 

The stream order is based on Stalher’s criteria. The uppermost stream are assigned stream order 

number 1. When two Nth order stream meets, the resultant stream becomes (N+1)th order 

stream. Similarly, when a higher order stream meets the lower order stream, the resultant stream 

becomes the higher order stream. 

 

 

Figure 4.1: Assigning stream order 

The above figure 4.1 illustrates an example of assigning stream order according to Stahler’s 

criteria. The uppermost order stream are assigned stream order number 1. When two 1 order 

stream meets, the resultant stream order number is assigned stream order number 2. When a 2nd 

order meets a 1st order stream meets the resultant stream is assigned the greater stream order 

number, i.e 2. Similarly when two 2nd order stream meets the resultant stream order number is 3. 
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After finding 5th order stream, we have to find feasible stream reach. A stream reach is a certain 

distance of stream. In our analysis we have considered the distance of stream as 500 m. 

We know that more the slope of the river bed more is the head available for a certain length. A 

stream reach is considered feasible if the slope is > 2%. Thus with a stream reach of minimum 

slope of 2% will have head available between two ends equal to 10m. The feasible location for 

SHP installation will be the downstream end of the stream reach. 

 

4.2.1 DEM analysis 

In this analysis ArcGIS software has been used to analyze the DEM and generate flow direction, 

flow accumulation and slope map. It is also used to delineate watershed of feasible locations, 

hydro-observation station etc. 

a)  DEM of the study the area 

DEM basically provides the elevation data. It is used as the input in ArcGIS software to generate 

various maps based on different basin characteristics. DEM is a remote sensing data. It is a raster 

whose grid values signifies the height of the surface. 

b) Flow direction map of the study area  

The flow direction map represents the direction of flow out of each cell. The input required is  

the DEM of the study area in the form of raster. The flow direction is based upon eight direction 

(D-8) flow model. In this model, there are eight valid output directions relating to the eight 

neighbouring cells into which flow could travel. 

 

Figure 4.2: Assigning flow direction value 
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In the figure 4.4, we can see a raster of elevation surface. Let us consider the 1st grid whose value 

is 78. Its adjoining cell have values 72, 67, 74. The minimum value among these is 67. Thus the 

maximum slope is in the direction joining the cell 78 and 67 i.e the south-east direction. 

Similarly the value is assigned for every cell of the elevation surface. The resultant raster formed 

is the flow direction raster. 

c) Flow accumulation map of the study area 

The Flow Accumulation tool in ArcGIS software calculates accumulated flow as the 

accumulated weight of all cells flowing into each downslope cell in the output raster. In the 

figure 4.6, the top left image shows the direction of travel from each cell and the top right image 

shows the number of cells that flow into each cell. 

 

 

Figure 4.3: How flow accumulation tool works 

In a simplified manner, we can say that the flow accumulation value of a cell represents the 

number of cells accompanying flow to that cell.  

d) Slope Map of the study area 

Slope calculates the maximum rate of change in value from that cell to its neighbors. Basically, 

the maximum change in elevation over the distance between the cell and its eight adjacent cells 

identifies the steepest downhill descent from the cell.  

e) Overlapping stream map and slope map using the raster calculator 
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Raster calculator is a tool to perform map algebra. This tool can be used to overlap different 

maps, show feature with distinct properties etc. A snap of raster calculator tool is shown in figure 

4.9. 

 

Figure 4.4: A snap of raster calculator tool 

In this analysis the expression used in raster calculator is- 

                     (“stream map”==1) & (“slope map”>2%) 

This expression results a new raster layer with stream segments having slope >2%. And from this 

layer the map of feasible location based on head available can be derived. 

 

4.2.2 Head calculation 

To determine the head available for the potential SHP installation, a contour map of a sample 

area is needed as shown in the figure 4.11. The contour map can be created with ArcGIS 

software.  
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Figure 4.5: Contour map of a sample area 

The contour interval of the above map is 10 m. The blue line represents the stream and the black 

line represents the feasible stream reach of 500 m length. The number of contour lines passing 

through the feasible stream reach is 5. Thus the head available between the ends of the feasible 

stream reach in the map is 40 m. The feasible location will be the downstream end of feasible 

stream reach. Through the use of contour lines, head available can be calculated for all potential 

locations in the study area. 
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4.3 Location based on discharge 

After finding feasible location based on head, the task is to find the discharge available at these 

locations. As most of these areas are on ungauged site, no discharge data is available. Hence we 

need a methodology of discharge calculation. Also flow duration curve (FDC) is needed to be 

developed for each point for further analysis. 

4.3.1 Discharge Calculation 

Many times situation arises when the discharge observations 

are not available at all for streams and flow assessment has 

to be made for planning and the preparation of project report 

of a possible project site. Depending on the availability of 

data of other sites or basins there are various methods. But in 

this analysis I used a method suggested by AHEC (alternate 

hydro energy centre) which is described below.                         

                                                                                                                             

                                                                                             Figure 4.6: A typical catchment area 

The above diagram shows a catchment area. The points a,b are gauging stations at which 

discharge is measured. Now the discharge at areas of interest –x, x1 are calculated by using the 

following formula- 

 𝑄𝑥 =  𝑄𝑎 +
𝑄𝑏−𝑄𝑎

𝐴𝑏−𝐴𝑎
∗ 𝐴𝑥                                                                                           (4.5) 

𝑄𝑥1 =  
𝑄𝑏−𝑄𝑎

𝐴𝑏−𝐴𝑎
∗ 𝐴𝑥1                                                                                                  (4.6) 

Where, 

            Qx,Qx1- discharge at points x and x1 respectively 

            Qa, Qb- discharge at points a and b respectively 

            Ax,Ax1- catchment areas of points x and x1 respectively 
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            Aa,Ab- catchment areas of points a and b respectively 

 

4.3.2 Flow duration curve 

It is a plot of discharge against the percent of time the flow was equaled or exceeded. The daily 

discharges for the locations are arranged in descending order and assigned their respective ranks 

“m”. Let the total number of discharge data available be “n”. Now the percentage probability 

(Pp) is calculated by the Weibull method- 

                                  𝑃𝑝 =
𝑚

𝑛+1
                                           (4.7) 

Then the discharges are plotted against their respective percentage probability and the FDC is 

obtained. The discharge with percentage probability X is given by QX. A typical FDC isshown in 

figure    

 

Figure 4.7: A typical flow duration curve 

In this analysis FDC has been developed for every year for past 6 years for the period 2006-11 

for each location. Thus in the graph we have 6 sets of FDC. The Q75 (discharge with percentage 

probability 75%) for each year is noted down and then the average of these 6 Q75 is taken. This 

average Q75 is used in the further analysis. 
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4.4 Installations 

A small hydrower development requires different type of structures and appurtenances, the 

design of which depends upon the site conditions, type of scheme,  access to construction 

materials etc as shown in the figure 4.14.  

 

Figure 4.8: Schematics of a typical SHP 

The following structures and appurtenances are common in a typical small hydropower plant- 

1) Weir 

A weir is a masonry or concrete structure built perpendicular to river axis. The main function of 

the weir is to act as a diversion dam and to create a small reservoir upstream. The weir can be 

sharp-crested, broad crested, ogee type. The concrete and gravity dams can be designed like a 

simple gravity dam. Nowadays the inflatable weir has come into use, which uses a reinforced 
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rubber bladder instead of concrete, steel etc. The main advantages of this weir are lower initial 

cost, simple operation and minimal maintenance. The weir is inflated with air or water under 

pressure through a compressor or pump connected to it. Similarly the weir can be deflated so that 

it lies flat on foundation at the times of flood. A typical concrete weir and inflatable weir are 

shown in the figure 4.15(a) and 4.15(b) respectively. 

 

 

               Figure 4.9(a): Concrete weir                            Figure 4.9(b): Inflated weir 

2) Sedimentation structure 

The river water contains a lot of sediments that can be detrimental to penstock and the blades of 

turbines if conveyed directly. Thus there is a requirement for the construction of sedimentation 

structure which restricts the movement of sediment load any further.  

Sedimentation structure is based on the principle of lowering the turbulence and flow velocities. 

This results in the settlement of the sediments. This lowering is obtained by an enlargement of 

the canal section as it results in decrease of velocity. 

Design 

The length of the sedimentation tank is governed by the discharge of the intake its chosen 

efficiency. The length should be sufficiently large so that all the grains have the time to deposit 

before leaving the tank.  This occurs when the deposition time tD equals the transfer time ‘tt’.  

These are defined as h/vD and the latter as L/vt respectively. Thus the minimum length required to 

deposit a grain diameter d is given by equation 4.8. 
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𝐿 ≥
𝑄

𝑣𝐷.𝐵
                          (4.8) 

Where B = width; L = length; Q = discharge; vD = deposition velocity.The width B should be 

smaller than 1/8 times the length L and also be smaller than twice the flow depth h. For spherical 

particles and under ideal conditions (pure water, no turbulence and no wall effects), vD is defined 

by Newton or Prandtl formula. It is a function of form drag of the particle which in turn depends 

on Reynold’s number. For practice, the empirical formula as shown in equation 4.9 is generally 

used as a general in still water flow conditions- 

𝑣𝐷 =
100

9.𝑑
(√1 + 1.57 ∙ 1𝑂2 ∙ 𝑑3 − 1)                                                 (4.9) 

 Where d = grain size diameter (in mm).This expression is valid for a grain-to-water density ratio 

of 2.65 and T = 20°. 

The deposition velocity decreases for turbulent flow conditions, and the following expression as 

in equation 4.10 becomes more appropriate  

𝑣𝐷 = 𝑣𝐷𝑂 − 𝛼 ∙ 𝑣𝑇 ≥ 0                                            (4.10) 

in which vD0 is the deposition velocity in still water and α is a reduction factor expressed as a 

function of trap water depth h (m) as shown in equation 4.11- 

𝛼 =
0.132

√ℎ
                                                                (4.11) 

But the critical transfer velocity (vcr) has to be defined for final and suitable design. The limit 

between the suspension regime and deposition regime is defined by this critical velocity. The 

following formula (equation 4.12) is valid for a Manning-Strickler roughness value of K = 60 

m1/3/s (K = 1/n, average value for concrete) and for a grain-to water density ratio of 2.65 – 

𝑣𝑐𝑟 = 13 ∙ 𝑅𝑛

1
6⁄

∙ √𝑑                                                   (4.12) 

Typical values for vcr ranges from 0.2-0.3 m/s. 
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3) Open channel 

The flow in a canal is a function of its slope, its cross-sectional profile, and its roughness. 

Natural channels are generally irregular in shape, and their surface roughness varies with 

distance and time. Hence the application of hydraulic theory to natural channels is much more 

complex than for artificial channels whereas the cross-section is regular in shape and the surface 

roughness of the construction materials - earth, concrete, steel or wood - is well documented, so 

that the application of hydraulic theories yields reasonably accurate results. 

The flow in open channels of small hydro scheme is in generally rough turbulent zone and the 

Manning equation (equation 4.13) can be applied- 

      

𝑄 =
𝐴∙𝑅

2
3⁄ ∙𝑆

1
2⁄

𝑛
                                                  (4.13)                         

Equation 4.13 shows that for the same cross-sectional area A and channel slope S, the channel 

with a greater hydraulic radius R, conveys a larger discharge Q. Hence for a given cross sectional 

area, the section with the least wetted perimeter is the most efficient hydraulically. Semicircular 

sections are consequently the most efficient sections. But a semicircular section however is 

expensive to build and difficult to maintain, unless built with prefabricated materials. The half 

hexagonal section is the most efficient section for the trapezoidal section . But this is true only if 

the water level reaches the top level of the bank. A certain freeboard has to be provided to 

prevent over spilling of the banks and water level fluctuations. Minimum freeboard for lined 

canals is kept around 10 cm, and for unlined canals this should be about one third of the designed 

water depth with a minimum of 15 cm. The Manning’s coefficient for various material are given 

in table 4.1. 

Table 4.1: Hydraulic parameters for common canal cross-sections 

Type of Channel Manning's n 

Excavated earth channels 

Clean 0.022 

Gravelly 0.025 
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Stony, cobbles (or natural streams) 0.035 

Weedy 0.030 

Artificially lined channels 

Brass 0.011 

Steel, smooth 0.012 

Steel, painted 0.014 

Steel, riveted 0.015 

Cast iron 0.013 

Concrete, well-finished 0.012 

Concrete, unfinished 0.014 

Planed wood 0.012 

Clay tile 0.014 

Brickwork 0.015 

Asphalt 0.016 

Rubble masonry 0.025 

 

4) Penstock 

The main function of penstock is to transfer water from forebay to the powerhouse. It is a tedious 

and difficult task to determine the economical arrangement for penstock. Depending on factors 

such as the penstock material, the nature of the ground, the temperature and the environment, 

penstocks can be installed over or under the ground. 

A flexible and small diameter PVC penstock can be laid on the ground. The pipes can be 

provided with good insulation by surrounding them with sand and gravel. Small pipes installed 

in this manner do not need anchor blocks and expansion joints. 

Larger penstocks are usually buried. Buried penstocks must be carefully painted and wrapped to 

protect the exterior from corrosion and further maintenance should be minimal. Also the buried 

penstock do not constitute a barrier to the movement of the wildlife. 
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Design 

A penstock is generally characterized by materials, diameter, wall thickness. 

i) Materials 

The material is chosen according to the ground conditions, jointing system, accessibility, weight 

and cost. Different materials and their properties are shown in the table 4.2. 

Table 4.2: Different material’s characteristics 

Material Young’s modulus of 

elasticity E(N/m2)E9 

Coefficient of linear 

expansion a (m/m 

0c)E6 

Ultimate tensile 

strength 

(N/m2)E6 

n 

Welded Steel 206 12 400 0.012 

Polyethylene 0.55 140 5 0.009 

Polyvinyl 

Chloride 

2.75 54 13 0.009 

Asbestos 

Cement 

n/a 8.1 n/a 0.011 

Cast iron 78.5 10 140 0.014 

Ductile iron 16.7 11 340 0.013 

 

ii) Diameter 

Friction losses are the main head loss in a pressure pipe. The head losses due to turbulence 

passing through the trashrack, in the entrance to the pipe, in bends, expansions, contractions and 

valves are minor losses. The friction losses in a pipe can be computed by using the Manning 

formula (equation 4.14) as follows- 

      
ℎ𝑓

𝐿
= 10.3

𝑛2𝑄2

𝐷5.333
                                                      (4.14) 

Where hf is the head loss; L is the length of penstock; Q is the discharge through penstock; D is 

the diameter of penstock. 
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The above equation can be rearranged to find the diameter as shown below- 

𝐷 = (
10.3∙𝑛2𝑄2∙𝐿

ℎ𝑓
)

0.1875

                                                            (4.15) 

iii) Wall thickness 

The wall thickness required depends on the pipe material, its ultimate tensile strength (and yield), 

the operating pressure and the pipe diameter. The wall thickness is given by equation- 

         𝑒 =
𝑃∙𝐷

2𝜎𝑓
                                                                                        (4.16) 

Where e = wall thickness (in mm); P= hydrostatic pressure (in kN/mm2); D = internal pipe 

diameter (in mm); σf = allowable tensile strength (in kN/mm2). 

For steel pipes the above equation is modified as- 

𝑒 =
𝑃∙𝐷

2𝜎𝑓
+ 𝑒𝑠                                                        (4.17) 

Where es= extra thickness to allow for corrosion (in mm). 

5) Turbines 

The turbine converts the potential energy in the water into the mechanical energy which is 

required for rotation of the blades. This occurs by one of the two fundamental and basically 

different mechanism. 

i) A force is applied by the water pressure on the face of the runner blades, which decreases as it 

moves through the turbine. Turbines operating in this way are called reaction turbines. The 

turbine casing must be strong enough to withstand the operating pressure. 

ii) The water pressure can be converted into kinetic energy in the form of high speed jet before 

entering the runner. This jet then strikes the buckets, mounted on periphery of the runner. 

Turbines operating in this way are called impulse turbine. 

The common types of turbines employed for small hydropower generation are as follows- 
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i) Pelton turbines 

Pelton turbines are impulse turbines. One or more jets of water strikes on the buckets attatched to 

periphery of the runner. Each jet emerges out of a nozzle with a needle (or spear) valve to control 

the flow. These are only used for relatively high heads. The axes of the nozzles are in the plane 

of the runner. The buckets are designed to keep exit velocities to minimum as the some kinetic 

energy leaving the runner is always lost. The turbine casing is only need to protect the 

surroundings against water splashing and hence can be very light. A typical Pelton turbine is 

shown in figure 4.16 (a). 

ii) Turgo turbines 

The Turgo turbine can operate under a head in the range of 30-300 m. It is an impulse turbine, 

but its buckets are differently shaped and the jet of water strikes the plane of its runner at an 

angle of 20º. Water enters the runner through one side of the runner and emerges from the other 

as shown in the figure. The volume of water a Pelton turbine can admit is relatively smaller  

because the water leaving each bucket interferes with the adjacent ones, whereas Turgo runner 

does not present this problem. Thus it results in higher runner speed of the Turgo turbine. This 

results in improved efficiency and decreased maintenance cost. A typical Turgo turbine is shown 

in figure 4.16 (b). 

iii) Michell-Banki turbines 

It is a impulse and cross-flow turbine. It is used for a wide operating range of heads (1-200 m) 

and discharges (0.02-10 m3/sec). Water enters the turbine, directed by one or more guide-vanes 

and through the first stage of runner with a small degree of reaction. After the flow occurs in the 

first stage, the water tries to cross the open centre of the turbine. A compromise direction is 

achieved as then flow enters the second stage resulting in significant shock losses. 

The runner constitutes of two or more parallel disks connected near their rims by a series of 

curved blades. The efficiency of this turbine lower as compared to other conventional turbines, 

but remains at the same level for a wide range of flows and heads. A typical Michell-Banki 

turbine is shown in figure 4.16 (c). 
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              Figure 4.10(a): Pelton turbine                           Figure 4.10(b): Turgo turbine 

 

Figure 4.10(c): Michell-Banki Turbine 

 

 

 

4.5 Performance 

The performance of a SHEP directly depends on the flow available and head available. The 

figure 4.18 below shows an illustration of these elements along with turbine flow over the course 

of a single year. 
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Figure 4.11: Performance graph of SHP 

The turbine flow is directly related to the discharge of the river. The turbines can only generate 

power for the maximum/design flow, and additional discharge goes unutilized. The power 

generated by hydroelectric power stations is directly proportional to flow through the turbine as 

found in above eq. (4.4). Available head also affects the power output, but it is usually less 

significant because it remains nearly constant. 

The power production can be adjusted according to changing flows at any given time of the year. 

Decreasing flows result in lower power generation. Hence a hydroelectric plant must be turned 

off to prevent the turbines from being damaged. Hence a plant must be designed and positioned 

accordingly such that these circumstances occur rarely. In contrast, increasing flows above the 

design capacity results in decreased power generation as the turbine cannot intake the discharge 

(i.e., increased flows cause the difference between the head and tail water height to become 

insignificant). 

The flow prediction is necessary to operate a hydroelectric power plant. Flow varies with time 

(daily hours and seasons of the year) and hence it becomes important to study water flow 

variability before installing SHPs. 
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CHAPTER 05 

RESULT AND DISCUSSION 

 

In the present study, the discharge and elevation data has been used to locate feasible locations 

and their potentials. The potential power thus generated can save a lot of coal used in thermal 

power plants and thus restrict the emission of many greenhouse gases. Thus in our study these 

environmental issues have also been discussed. 

5.1 Maps generated based on basin characteristics 

1) DEM 

 

Figure 5.1: DEM of Odisha 
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2) Basin characteristics of the study area 

 

 

 

 

 

 

 

 

 

 

 

        Figure 5.2: Stream map of Odisha                  Figure 5.3: Flow direction map of Odisha 
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Figure 5.4: Flow accumulation map of Odisha         Figure 5.5: Slope map of Odisha 
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Figure 5.6: Feasible locations for SHP installation 
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5.2 FDC of the feasible locations 

The FDC of some important locations are shown in figure 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

LOCATION NO. - 1 

Q75 = 30.24 

 

 

 

 

LOCATION NO. - 2 

Q75 = 29.96 

 

 

LOCATION NO. - 21 

Q75 = 9.51 

 

 

LOCATION NO. - 22 

Q75 = 5.94 

 

 

LOCATION NO. - 29 

Q75 = 3.42 

 

 

LOCATION NO. - 30 

Q75 = 3.35 
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FDC of other locations are shown in the. 

 

Figure 5.7: FDC of some feasible locations 

The FDC of other locations are shown in the appendix. 

 

 

 

 

 

 

 
 

 
 

LOCATION NO. - 31 

Q75 = 1.89 

 

 

LOCATION NO. - 32 

Q75 = 1.7 

 

 

LOCATION NO. - 18 

Q75 = 1.36 

 

 

LOCATION NO. - 19 

Q75 = 1.12 
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5.3 Location and potential calculation 

The location and potential of SHP has been listed in the following table- 

Table 5.1: Feasible locations for SHP installation and their potential 

NAME LATITUDE LONGITUDE RIVER CATCMENT 

AREA (km2) 
HEAD 

(m) 

Q75 

(m3/s) 

POTENTIAL 

POWER 

(MW) 

1 82°8'11.666"E   18°44'44.293"N  KOLAB 2655 35 30.24 8.306323 

2 82°8'4.171"E   18°45'11.062"N  KOLAB 2651 45 29.96 10.58067 

3 82°16'35.137"E   18°34'25.824"N  SAPTADHARA 131 35 1 0.27468 

4 82°19'33.739"E   18°31'33.646"N  SAPTADHARA 52 25 0.4 0.07848 

5 83°2'44.544"E   18°29'12.841"N  PEDDA GEDDA 77 110 0.1 0.086328 

6 83°14'30.53"E   18°55'51.91"N  JHANJAVATI 528 50 0.67 0.262908 

7 83°22'17.037"E   19°9'23.202"N  CHASHISHIHAT 790 30 1 0.23544 

8 83°21'18.103"E   83°21'18.103"E   CHASHISHIHAT 787 25 1 0.1962 

9 83°20'52.747"E   19°9'33.481"N  CHASHISHIHAT 455 30 0.58 0.136555 

10 83°19'7.899"E   19°11'16.274"N  CHASHISHIHAT 297 35 0.38 0.104378 

11 83°18'37.746"E   19°11'15.589"N  CHASHISHIHAT 290 40 0.37 0.11615 

12 83°21'20.904"E   19°22'28.127"N  NAGAVALI 1154 30 1.47 0.346097 

13 83°40'12.823"E   19°5'58.319"N  PEDAGURHA 57 30 0.072 0.016952 

14 83°57'25.89"E   19°11'37.535"N  SAN 741 25 1.01 0.198162 

15 84°5'43.921"E   19°15'35.329"N  SAN 404 30 0.58 0.136555 

16 84°7'13.76"E   19°17'2.788"N  SAN 356 50 0.51 0.200124 

17 83°55'44.45"E   19°17'53.328"N  MAHENDRATANAYA 273 20 0.39 0.061214 

18 84°0'40.792"E   19°32'56.608"N  HARIBANGA 952 35 1.36 0.373565 

19 84°2'20.844"E   19°32'2.471"N  HARIBANGA 782 40 1.12 0.35159 

20 84°12'52.12"E   19°28'6.476"N  HARIBANGA 352 35 0.5 0.13734 

21 83°5'40.932"E   19°47'18.611"N  SAGADA 258 30 9.51 2.239034 

22 83°18'6.179"E   19°52'6.43"N  RET 161 60 5.94 2.797027 

23 83°35'22.758"E   20°6'51.818"N  SUNDAUL 268 20 0.83 0.130277 

24 83°42'51.941"E   19°57'2.723"N  RAUL 397 45 0.86 0.303718 

25 83°43'21.922"E   19°56'32.742"N  RAUL 395 45 0.86 0.303718 

26 83°37'48.917"E   20°10'22.579"N  RAUL 416 30 0.9 0.211896 

27 83°38'19.969"E   20°10'25.791"N  RAUL 415 45 0.7 0.247212 

28 83°36'43.6"E   20°13'20.325"N  RAUL 84 40 0.18 0.056506 

29 83°49'48.251"E   20°23'1.746"N  KHARAG 1575 40 3.42 1.073606 

30 83°49'26.836"E   20°20'31.84"N  KHARAG 1543 35 3.35 0.920178 

31 84°0'32.419"E   20°37'41.052"N  BUGH 871 30 1.89 0.444982 

32 83°56'47.988"E   20°33'42.916"N  BUGH 781 40 1.7 0.533664 

33 84°2'1.506"E   20°36'11.965"N  BUGH 139 45 0.3 0.105948 
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34 84°11'2.619"E   20°36'17.336"N  BUGH 1312 35 2.84 0.780091 

35 84°41'11.728"E   21°44'34.803"N  RAKURA 116 30 0.32 0.075341 

36 85°40'3.229"E   21°7'58.551"N  RAMIALA 53 50 0.16 0.062784 

37 86°0'6.433"E   21°19'28.851"N  SANDHEI 500 20 0.6 0.094176 

38 85°59'43.884"E   21°19'26.706"N  SANDHEI 495 25 0.6 0.11772 

39 86°12'33.127"E   21°52'22.917"N  KAIROBANDAN 292 35 0.35 0.096138 

40 86° 12' 25.693" 21° 52' 28.890" KAIROBANDAN 253 50 0.3 0.11772 

  TOTAL     32.91145 

 

Thus the total small hydro potential according to this analysis is 33 MW.  

 

5.4 Classification according to generation capacity 

The above potential SHPs has been classified according to the potential available as shown in 

table 5.2. 

Table 5.2: Classification of SHPs 

TYPE LOCATION NUMBER NUMBER OF STATIONS 

MICRO 4, 5, 13, 17, 28, 35, 36, 37, 39 9 

MINI 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 

20, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 

34, 38,40 

29 

SMALL 1,2,21,22 4 

 

 

5.5 Coal saved 

From the table 5.1, we conclude that the potential of SHP installation according to this study is 

33MW. 

Thus energy produced in a whole year= 33 × 106 × 365 × 24 × 3600 J 

                                                             = 2.9 × 108 KWh 

According to a research done by M.Mittal the average power produced per ton of coal in Indian 

thermal power plants is 2640 KWh. 

Thus the amount of coal saved = 
2.9×108

2640
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                                                  = 109849 tonnes 

Thus at least 109849 tonnes of coal can be saved per year due to the power generated by the 

potential SHPs. 

 

5.6 Reduction in greenhouse gases emission 

Coal is composed primarily of carbon along with variable quantities of other elements, chiefly 

hydrogen, sulfur, oxygen, and nitrogen. Thus when combustion of coal occurs in thermal power 

plants, it leads to emission of different types of greenhouse gases such as carbon dioxide, sulphur 

dioxide and oxides of nitrogen. Due to saving of 109849 tonnes of coal, these greenhouse gas 

emission can be stopped. The list below shows the average amount of greenhouse gases 

produced per KWh of power produced in thermal power plants- 

Table 5.3: Greenhouse gas emission per KWh production in thermal power plants 

Sl.no Gas Emission per KWh 

1 CO2 1.1 Kg/KWh 

2 SO2 8 g/ KWh 

3 NOX 2.1 g/ KWh 

 

Thus 109849 tonnes of coal produces 3.2 × 105 tonnes of CO2, 2320 tonnes of SO2, 609 tonnes 

of oxides of nitrogen. Hence if 109849 tonnes of coal is saved then respective amounts of 

greenhouse gas emission can also be stopped which are a significant account. This can reduce the 

rate of rampant air pollution. 

 

 

 

 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Nitrogen


41 
 

CHAPTER 06 

SUMMARY AND CONCLUSION 

 

The summary and conclusion of the present study are as follows- 

i) Feasible points for small hydropower installation in Odisha have been located. The head at 

these points are found out using the contour maps generated by ArcGIS software. The discharge 

at these locations are also found out. From these two factors the power potential available at 

those feasible locations are also estimated. 

ii) FDC for these locations have been developed to find out Q75. This Q75 is used as the discharge 

in calculation of power potential. 

iii) This surplus power production by the SHPs will lead to lesser load on thermal power plants. 

Thus there share of power production will decrease. This will lead to lesser coal consumption. 

From our analysis, we have conclude that around 109849 tonnes of coal can be saved per year if 

these potential SHPs are installed. 

iv) The reduction in coal consumption will ultimately lead to lesser greenhouse gases emission 

from the thermal power plants. Emission of around 3.2 × 105 tonnes of CO2, 2320 tonnes of 

SO2, 609 tonnes of oxides of nitrogen can be stopped. This will result lesser air pollution and 

hence a cleaner environment. 

v) A lot of rural people who had no access to electricity. Providing them electricity will increase 

production and will enhance their quality of life.  This will lead to increased human development 

index of the state. 

vi) Power outages can be reduced due to the extra power production. 

vii) Surplus power can be sold to industries and hence more revenue can be generated. 
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viii) The application of RS and GIS to delineate drainage, contour, DEM, flow direction, flow 

accumulation, slope, watershed maps etc were very helpful in determining locations for SHP 

installations. 

ix) The installation, maintenance and operating cost of SHPs are much less compared to its 

counterparts. 
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CHAPTER 07 

FUTURE SCOPE OF THE WORK 

 Environmental impact assessment (EIA) of these SHP installations can be studied. 

 Social impact assessment of these projects can be studied on the basis of people displaced 

(due to reservoirs) and people benefitted. 

 More feasible locations can be obtained with more study and more detailed analysis. 
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APPENDIX 

 

Table 1: Location of hydro-observation station and their respective catchment area 

HO STATION LONGITUDE LATITUDE CA(KM2) 

SARADAPUT 82°6'19.021"E 18°36'46.585"N  3581 

KOTTA 82°30'6.88"E   18°56'37.089"N  220 

ANANDPUR 86°7'22.223"E   21°13'34.726"N  8338 

CHAMPUA 85°37'20.347"E   22°7'34.118"N  1570 

SUKMA 81°40'8.47"E   18°23'36.966"N  6514 

KANTAMAL 83°43'9.154"E   20°39'41.442"N  2121 

KESINGA 83°12'10.881"E   20°11'59.027"N  1307 

SRIKAKULAM 83°53'25.312"E   18°17'2.481"N  9120 

GUDARI 83°42'33.2"E   19°24'25.752"N  3005 

GUNUPUR 83°48'15.842"E   19°2'43.711"N  6760 

SRIKAKULAM 83°50'32.899"E   18°14'45.515"N  9120 

ANDPUR 86°11'1.902"E   21°11'47.429"N  8338 

KASHINAGAR 83°55'7.013"E   18°45'35.784"N  7997 

KHAIRMAL 83°58'17.179"E   20°50'31.086"N  115514 

TIKRAPARA 84°44'32.583"E   20°36'48.745"N  124000 

ALTUMA 85°30'47.986"E   20°57'56.521"N  875 

JENAPUR 85°56'29.877"E   20°52'13.879"N  36062 

PANDIGAON 83°5'11.15"E  20°5'28.59"E  7083 

 

 

 

 

 

 

 

 

 

 

 

  

LOCATION NO.- 3 

Q75= 1 

 

LOCATION NO.- 4 

Q75= 0.4 
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LOCATION NO.- 7 

Q75= 1 

 

 

LOCATION NO.- 5 

Q75= 0.1 

 

 

LOCATION NO.- 8 

Q75= 1 

 

 

LOCATION NO.- 6 

Q75= 0.67 

 

 

LOCATION NO.- 9 

Q75= 0.58 

 

 

LOCATION NO.- 10 

Q75= 0.38 
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LOCATION NO.- 13 

Q75= 0.072 

 

 

LOCATION NO.- 14 

Q75= 1.01 

 

 

LOCATION NO.- 15 

Q75= 0.58 

 

 

LOCATION NO.- 16 

Q75= 0.51 

 

 

  

LOCATION NO.- 11 

Q75= 0.37 

 

 

LOCATION NO.- 12 

Q75= 1.47 
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LOCATION NO.- 23 

Q75= 0.83 

 

 

LOCATION NO.- 17 

Q75= 0.39 

 

 

LOCATION NO.- 20 

Q75= 1.12 

 

 

LOCATION NO.- 24 

Q75= 0.86 

 

 

LOCATION NO.- 25 

Q75= 0.86 

 

 

LOCATION NO.- 26 

Q75= 0.9 
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LOCATION NO.- 33 

Q75= 0.3 

 

 

LOCATION NO.- 34 

Q75= 2.84 

 

 

LOCATION NO.- 27 

Q75= 0.7 

 

 

LOCATION NO.- 28 

Q75= 0.18 

 

 

LOCATION NO.- 35 

Q75= 0.32 

 

 

LOCATION NO.- 36 

Q75= 0.16 
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Figure 1: FDC of remaining feasible locations 

 

 

 

  

 

LOCATION NO.- 39 

Q75= 0.35 

 

 

LOCATION NO.- 40 

Q75= 0.3 

 

 

LOCATION NO.- 37 

Q75= 0.6 

 

 

LOCATION NO.- 38 

Q75= 0.6 

 

 

 


