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ABSTRACT 

 

EVALUATING FEATURES FOR BROAD SPECIES BASED CLASSIFICATION 

OF BIRD OBSERVATIONS USING DUAL-POLARIZED DOPPLER WEATHER 

RADAR 

 

MAY 2016 

 

SHEILA P. WERTH 

 

 B.Sc., WORCESTER POLYTECHNIC INSTITUTE, WORCESTER 

 

M.S.E.C.E.., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Stephen J. Frasier 

 

 

 Wind energy is one of the fastest-growing segments of the world energy market; 

however, wind energy facilities can have detrimental effects on wildlife, especially birds 

and bats. The ability to monitor vulnerable species in the vicinity of proposed wind sites 

could enable site selection that favors more vulnerable species, but current monitoring 

tools lack this classification capability. This work analyzes polarimetric and Doppler 

measurements of migrating birds for species based variation.  

A novel two stage feature extraction technique was developed to enable 

comparison between birds. Stage one involves mapping time changing radar 

measurements to the birds behavioral state in time (i.e. flapping and gliding); stage two 

uses this behavioral state information to produce temporal and statistical features that 

describe the frequency and appearance of these different behavioral states. 

General trends of temporal features (ex. wing-beat frequency) in the dataset match 

Ecological literature and validate the feature extraction approach. Preliminary clustering 
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of bird detection data suggests possible species based subgroups of targets, although a 

larger dataset is needed for further validation.  
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CHAPTER 1 

 

INTRODUCTION 

 

Wind energy is one of the fastest-growing segments of the world energy market, 

offering a clean and abundant source of electricity to meet growing demands. However, 

wind energy facilities can have detrimental effects on wildlife, especially birds and bats, 

exposing them to increased mortality through turbine collisions and altering behavior, 

habitat use, and movement patterns. Under federal laws, regulatory agencies, such as the 

bureau of Ocean Energy Management (BOEM) and the U.S. Fish and Wildlife Service 

(USFWS), have an obligation to protect wildlife populations affected by wind facilities. 

The anticipated expansion of both land-based and offshore wind installations has 

generated increasing concern about cumulative environmental consequences, particularly 

to wildlife. Monitoring tools are needed to better quantify the potential and ongoing 

impacts of wind installations, either for site development or for compliance with federal 

wildlife regulations. Mapping the dominant flight paths of migratory species is critical to 

inform the selection of minimally harmful locations for land-based and offshore wind 

farms. 

A variety of techniques have been employed to map bird and bat traffic in the 

viscidity of prospective sites. Thermal imaging technology detects heat radiating from 

birds at distances as great as 3km [1], although targets are not resolved in range. Acoustic 

methods involve recording sounds in a region of interest and associating recordings with 

calls of certain species. This technique is vulnerable to noise sources in the environment, 

like wind or waves. Like thermal cameras, a major limitation of acoustic monitoring is 
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the inability to resolve the altitude and range of a target [1]. This information is of critical 

importance to determine which organisms are at rotor swept heights. 

 Unlike conventional camera and acoustic based methods, radar can detect birds at 

great distances, providing resolved range information. Avian monitoring systems based 

on marine navigation radar are often used to quantify bird and bat migration near both 

potential and established wind sites because these radars are relatively inexpensive, easy 

to maintain, and can be easily modified. However, these instruments lack polarization 

and some Doppler capabilities, therefore lacking in target discriminator information. 

Even with more sophisticated systems, the ability to distinguish between bats and 

different varieties of bird is still not practically achieved. The capability to identify 

different broad categories of biological scatterers could enable site selection that favors 

more vulnerable species, such as bats and raptors. 

The potential for exploiting meteorological radar for avian studies has been 

explored by [2]. Radar scattering properties of biological scatterers have been studied 

using dual polarized weather radars [3] [4] [5] [6] [7], in the S-band range and primarily 

for the purpose of preventing undesired contamination of meteorological data. More 

recently, research has reviewed azimuthal dependencies of polarimetric properties in 

echoes from bio-scatter for the purpose of ecological research [8]. These properties were 

found to not only vary by azimuthal orientation, but also by species, although 

classification utility was not explored. 

This thesis extends previous work by exploring the value of polarimetric and 

Doppler radar measurements for species based classification. In order to do this, the 

UMass X-Pol weather radar was used to collect observations of migrating birds. A two-
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step feature extraction technique was used to enable meaningful comparison between 

birds using the radar measurements. Step one involves mapping time-changing radar 

measurements to different behavioral states (i.e. flapping, gliding), resulting in a 

behavioral state that is known at each point in time.  When the behavioral state of a bird 

is known, additional features may be extracted that further describe the bird. These 

features may be (1) temporal in nature, describing the order and frequency of the bird’s 

different behavioral states, or (2) statistical, describing the way a bird generally looks to 

the radar during each behavioral state, in terms of the original radar measurements. 

Clustering of these features reveals suspected species-based groups of observations, 

although a larger dataset is needed to confirm these findings. 

Chapter 2 of this thesis provides a brief introduction to dual-polarized radar, 

previous polarimetric studies of birds, and the radar hardware used to collect data for this 

study. Detection algorithms and methods used to generate polarimetric and Doppler 

metrics will be covered in Chapter 3.  Chapter 4 will describe the two stage feature 

extraction approach. Finally, preliminary clustering results, produced using these 

features, are presented in Chapter 5, followed by a thesis summary in Chapter 6. 
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CHAPTER 2 

 

BACKGROUND 

 

Although species based variation in radar data has yet to be thoroughly studied, 

radar signatures of birds have been reviewed using polarimetric radar [3] [4] [6] [5]. 

Section 2.1 will outline the standard products produced by dual polarized radar and 

Section 2.2 will cover previous studies of avian targets. The radar hardware and data 

collection procedure are  reviewed in Section 2.3.  

2.1 Dual Polarized Radar Products 

 

A traditional radar system measures echo power 𝑃𝑟 at a single electromagnetic 

polarization. Return power is related to the cross section, 𝜎, of a point target  through the 

following formula: 

 

𝜎 =
64𝜋3𝑃𝑟𝑅4

𝐺2𝜆2𝑃𝑡
  [𝑐𝑚2] (2.1) 

 Here, 𝐺 is antenna gain, 𝜆 denotes wavelength, 𝑃𝑡 is transmit power, and 𝑅 is the 

range from the radar to the target. Target cross section is a function of its physical size 

and target azimuthal orientation with respect to the radar. When the target is a single bird, 

cross section will vary as the bird flaps and changes its body shape. When many birds are 

present within a single pulse volume, reflectivity 𝑍 is proportional to echo power and 

measures the size and or density of birds within the illuminated volume. 

Unlike conventional radar systems, dual polarized radars transmit and receive 

energy at two orthogonal polarizations, as shown in Figure 1. Measurements from both 
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polarization yield standard meteorological polarimetric products, including differential 

reflectivity 𝑍𝑑𝑟, correlation coefficient 𝜌ℎ𝑣, and differential phase 𝜓𝑑𝑝. These metrics 

describe target shape and aspect ratio at different points in time. For a bird, shape and 

aspect ratio vary by species and also as it moves its body in flight. 

 
Figure 1 – Unlike traditional single polarized radar, dual-polarized radar transmits and 

receives power in both the horizontal and vertical polarizations. (Image modified from: 

http://benchmarkweb.veriskclimate.com/how-dual-pol-radar-works-better-for-hail-maps-

2/) 

 

Polarimetric products have shown great meteorological classification utility. 

Defined below are the standard meteorological polarimetric products and their physical 

representation. The utility of these metrics for bird classification will be explored later in 

this paper. 

As a distributed target, precipitation may be described by volume reflectivity, 𝜂, 

which is defined as the integral sum of all scatterers contained within a pulse volume. 

http://benchmarkweb.veriskclimate.com/how-dual-pol-radar-works-better-for-hail-maps-2/
http://benchmarkweb.veriskclimate.com/how-dual-pol-radar-works-better-for-hail-maps-2/
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𝜂 = ∫ 𝜎𝐷𝑁𝐷𝑑𝐷

∞

0

      [𝑚2/𝑚3] (2.2) 

Here, 𝜎𝐷 denotes backscatter cross section of a target, such as a water droplet, 

within a pulse volume containing 𝑁𝐷 identically sized targets. We assume Rayleigh 

scattering conditions for dielectric spheres and back scatter cross section for each droplet 

with diameter 𝐷 may be written as, 

 

𝜎𝐷 =
𝜋5

𝜆
|𝐾𝑤|2𝐷6       [𝑚2] (2.3) 

 𝐾𝑤 refers to the refractive index of water. Substituting this into the formula for volume 

reflectivity 𝜂 yields: 

 
𝜂(𝜆, 𝑁𝐷) =  

𝜋5

𝜆
|𝐾𝑤|2 ∫ 𝐷6𝑁𝐷𝑑𝐷

∞

0

=
𝜋5

𝜆4
|𝐾𝑤|2𝑍       [𝑚2/𝑚3] 

(2.4) 

 

 
𝑍(𝑁𝐷) = ∫ 𝐷6𝑁𝐷𝑑𝐷

∞

0

    [𝑚6/𝑚3] (2.5) 

Reflectivity factor is a standard meteorological metric that describes the amount of 

precipitation contained within the antenna’s illumination volume. Reflectivity is 

proportional to backscatter power and is represented by the letter, 𝑍ℎ,𝑣, where h and v 

indicate reflectivity at  either the horizontal or vertical polarization. 

Differential reflectivity, 𝑍𝑑𝑟, measures aspect ratio and is the ratio of reflectivity 

at the horizontal polarization 𝑍ℎ to reflectivity in the vertical polarization 𝑍𝑣.  
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𝑍𝑑𝑟 = 10 ∗ log (

𝑍ℎ

𝑍𝑣
)      [𝑑𝐵] (2.6) 

Although conventional weather terminology was used throughout this thesis, it 

should be noted that a pulse volume in our application typically contains a single bird 

point-target. Here,  𝑍𝑑𝑟  is actually used to refer to the following, more physically 

representative ratio: 

 

𝑍𝑑𝑟 = 10 ∗ log (
𝜎ℎ

𝜎𝑣
)  = 10 ∗ log (

( 
64𝜋3𝑅4

𝐺2𝜆2𝑃𝑡
) 𝑃ℎ

( 
64𝜋3𝑅4

𝐺2𝜆2𝑃𝑡
) 𝑃𝑣

)

= 10 ∗ log (
𝑃ℎ

𝑃𝑣
)       [𝑑𝐵] 

(2.6) 

Larger values of differential reflectivity indicate that a target is wider or more reflective 

along its horizontal axis.  

Correlation coefficient 𝜌ℎ𝑣  is a measure of the similarity between both 

polarizations of the received echo voltages 𝐸ℎ and 𝐸𝑣: 

 
𝜌ℎ𝑣 =  

|〈𝐸ℎ𝐸𝑣
∗〉|

√〈|𝐸ℎ|2〉〈|𝐸𝑣|2〉
 (2.7) 

Values of correlation coefficient near unity suggest a target that maintains a more regular 

shape in time. Differential phase 𝜓𝑑𝑝 is the difference between H-polarized and V-

polarized echo phase, and is a measure of target shape and , to some extent, water 

content. 

 

𝜓𝑑 = 𝜓ℎ − 𝜓𝑣 =  ∠〈𝐸ℎ𝐸𝑣
∗〉 (2.8) 
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Differential reflectivity, correlation coefficient, and differential phase 

observations have been found to differ between meteorological and avian targets [2], 

although species based variation has yet to be fully explored. 

2.2 Previous Radar Observations of Birds 

Biological scatterers have been shown to have several distinct polarimetric 

qualities that may be exploited in a future classification algorithm. In polarimetric studies 

at S-band, atmospheric biota is generally associated with higher differential reflectivity 

than meteorological scatterers. For insects, differential reflectivity has been measured as 

high as 10 dB with values for birds typically between -1 and 3 dB [9].The differential 

reflectivity measurement corresponding to a resolution volume that contains biological 

scatterers often depends on the orientation of the organisms relative to the antenna 

boresight [4]. The correlation coefficient, which quantifies the similarity in behavior 

between the horizontally and vertically polarized channels in time, is often lower (0.3-

0.4) for insects and birds than for meteorological scatterers (>0.8) [9]. It has been 

suggested that the azimuthal profile of 𝜌ℎ𝑣 is species dependent, but the exact variation, 

for the purpose of classification, has not yet been well studied [8].  

Avian targets have also been observed with tracking radar to study their flight 

behavior [10] [11]. Here the temporal fluctuation in echo power has been used to estimate 

wingbeat frequency, as illustrated in Figure 2. The three different time series shown in 

Figure 2 represent three different types of flapping behavior, each characterized by the 

duration of flapping and gliding behavior. The first time series is a bird that alternates 

between evenly spaced flapping and gliding intervals. The second time series exhibits the 



 

  

9 

  

same flapping and gliding behavior, with different timing characteristics. Finally, the 

third time series represents a bird that flaps continuously. These variations in behavioral 

pattern, in addition to wing-beat frequency, correlate strongly with different species of 

bird [11]; this variation is explored further in this paper. 

 

Figure 2 – Sample time-series echoes from tracking radar observations of birds with 

different wing-beat signatures. Gliding intervals are denoted by the interval, B, with 

flapping intervals labeled, A. The wingbeat period is interval, D. From [11]. 

 

The purpose of this work is to assess the metrics described above, along with new 

ones, for their species based classification potential. In order to do this, the UMass X-Pol 

weather radar was used to collect observations of migrating birds.  

2.3 Hardware and Data Collection 

The UMass X-Pol weather radar, shown in Figure 3, is a dual polarized X-band 

mobile Doppler radar originally developed measure the characteristics of weather in 

support of  for severe storm research [12]. Based on a high-seas navigation radar with a 

25 kW magnetron transmitter, it employs a 1.2m diameter parabolic dish antenna on a 

scanning pedestal.  Doppler and polarimetric capability are achieved via coherent-on-
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receive techniques, referencing the phase of the transmit pulse to the return pulse phase. 

System parameters are described in Table 1. 

 
Figure 3 – Umass X-Pol weather radar 

 

Table 1 – Umass X-Pol System Parameters 

Parabolic Antenna 

Gain 41 dB 

Beamwidth 1.25˚ 

Transmitter 

Type Magnetron 

Freq 9.41 GHz 

Max Power 25 kW 

Pulse Width 1 us 

Duty Cycle 0.1 % 

Average PRF 1 kHz 

Receiver 

Gain 30 dB 

Dynamic Range 60 dB 

IF 60 MHz 

Bandwidth 5 MHz 

Noise Figure 4 dB 
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 With a narrow antenna beamwidth (1.25º) and 41dB gain, the X-Pol radar is well 

suited for avian observation. The X-band radar wavelength is small, with a typical bird 

being larger than a single wavelength. This moves the target away from the Rayleigh 

scattering region, increasing the radar-cross-section. The single pulse sensitivity of the 

radar is shown in Figure 4, with a list of typical bird cross sections, at X-band, on the 

right. From the figure, it is clear that echoes from smaller birds exceed the noise floor at 

ranges as great as 7km. The narrow beamwidth allows the radar to discriminate among 

elevation angels, providing target altitude information.  

 

Figure 4 – Noise-equivalent Radar Cross Section vs Range for X-Pol radar. The pink 

region bounds the typical cross section of most birds. Blue region represents cross 

sections that exceed the noise floor. The table lists common bird radar cross sections 

measured at X-band, from [10]. 

 

 To collect study data, the radar was parked in a stationary position, looking 

eastward, with the antenna fixed at ten degrees elevation. The Eastward viewing angle 

captures birds migrating North to South. At this elevation angle, a 20 km radial range 

corresponds to an altitude of 3.5km. A constant pulse repetition interval of 1 kHz was 
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used.  Time series in-phase and quadrature channel radar data was logged as birds moved 

through the stationary beam. Data was collected during clear air conditions in Western, 

Massachusetts, over ten separate evenings during Fall 2014.  The full dataset contains 

several hundred bird observations of unknown species. 
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CHAPTER 3 

 

DETECTION AND PREPROCESSING 

 

 Bird observations were a small subset of the hundreds of gigabytes of originally 

unfiltered dataset. In order to isolate observations of interest, a detection algorithm was 

used to find birds within the data and compile them into a database. Time-changing 

polarimetric and Doppler parameters were than extracted from each bird observation. 

This chapter describes the detection scheme in Section 3.1.  The time-changing  

measurements extracted from each detection are discussed in Section 3.2, with several 

measured detection examples in Section 3.3. 

3.1 Bird Detection Algorithm 

The originally unfiltered dataset contained hours of clear-air observation, with 

birds flying through the beam sporadically. In order to extract the bird echoes, the data 

was preprocessed before applying a detection algorithm. First, data was made coherent by 

referencing the phase of the received echo to a copy of the transmit pulse. This is 

necessary due to the random nature of the magnetron based transmitter. Next, a frequency 

domain clutter filter was used to mitigate ground clutter returns in effected range bins. 

Finally, data was coherently integrated to improve signal to noise ratio. Integration 

parameters are captured in Table 2. 
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Table 2 – Parameters used for coherent integration. Time resolution of measurements will 

be limited by the integration period. 

Integration Parameters 

Pulse Repetition Interval 1 ms 

Number of Pulses Integrated 32 

Integration Period 32 ms 

Integration Gain 15 dB 

 

With an integration period of 32 ms, the effective sampling rate of averaged data 

is 31 Hz. Wingbeat frequencies below 15.5Hz should satisfy the Nyquist criteria. From 

Table 3, it is clear that this frequency resolution is sufficient for all of the common birds 

cited in Table 3. 

Table 3 -  Wing-beat frequencies of several common bird species, from [13]. 
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Figure 5 – (A) Coherently integrated range-time-power map. (B) Coherently integrated 

range-time-power map with clutter removed. (C) Range-time-SNR map of coherently 

integrated data with clutter removed. The bright yellow horizontal streak at 1km is a bird 

flying through the antenna beam. 

 

Once detections were filtered and integrated, the range-time-power map was 

converted to a range-time-SNR image. Integrated data in the range-time domain, with and 

without clutter, along with the range-time-SNR image, is shown in Figure 5. The bright 

yellow horizontal streak in each Figure 5 image is a bird moving through the antenna 

beam. This same bird, in the range-time-SNR map, is shown in higher resolution in 

Figure 6A, with the corresponding time series in Figure 6B. Clearly, the detection SNR 

correlates well with the antenna beam shape. In order to automate the detection of birds 

in the data, local maxima were found within the range-time-SNR image. This was 

achieved by first locating all pixels in excess of a specified SNR threshold, and 

cataloguing them. To prevent redundant detections of a single bird, a range-time window, 

or “neighborhood”, was specified that matched the expected duration of a bird in range 

and time.  Pixels in excess of the SNR threshold were considered in descending order, 

with all detections within the same neighborhood removed from the list. A neighborhood 

and local maximum are shown in Figure 6A. 
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Figure 6 - (A) A bird, at 1km range, moves through the antenna beam. Neighborhood size 

matches the expected range and time footprint of a bird moving through the beam. (B) 

The corresponding SNR time series of the bird is taken from the 1km range bin. 

 

Because bird echoes remain in the beam for an extended period of time, all pixels 

within the neighborhood around a local maximum were summed and compared to a 

second threshold. This second threshold removes short time-duration detections cause by 

noise. Observations exceeding the second threshold were classified as bird detections and 

added to the filtered data set. 

3.2 Doppler Metrics 

Once bird echoes were detected and extracted into a database, polarimetric and 

Doppler metrics were computed for each time step across the duration of the observation. 

These metrics change cyclically in time as the bird moves and reorients its body in flight. 

The following metrics were extracted for each bird according to Eq. 1 through 4, across a 

32ms (32 pulse) averaging period: 

1. Radar Cross Section, H-Polarization, 𝜎ℎ 

2. Radar Cross Section, V-Polarization, 𝜎𝑣 
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3. Correlation Coefficient,  𝜌ℎ𝑣 

4. Differential Reflectivity, 𝑍𝑑𝑟 

5. Differential Phase, 𝜓𝑑𝑝 

 

Each metric was computed across a 32ms averaging period. In addition to 

computing the polarimetric products, Doppler spectrum information was extracted from 

each bird detection. The Doppler spectrum contains information about a targets torso 

speed �̅� as well as micro-Doppler signatures associated with moving parts around the 

torso. A spectrogram shows the way that the Doppler spectrum changes in time as a bird 

flaps and reorients its body. If the total received signal at the radar, for a single range bin, 

is given by 𝑟𝑥(𝑛) where n is the sample index, the Doppler spectrogram 𝑠𝑔(𝑤, 𝑡) of this 

signal is: 

 

𝑠𝑔(𝑤, 𝑡) =  |∑ 𝐻𝑎𝑚(𝑞) ∗ 𝑟𝑥(𝑞 + (𝑡 − 1)(𝑄 − 𝑀)) ∗ e
−

j2πwq
Q

𝑄−1

𝑞=0

|

2

 (3.1) 

 M is the length of overlap in the time series’, of length Q, used to produce each 

subsequent spectrum, 𝐻𝑎𝑚(𝑞) is the Hamming window function, w denotes frequency 

filter bin, and t is the time step corresponding to each spectrum. The maximum 

unambiguous velocity is limited by the pulse repetition interval. At X-Band, with a 1kHz 

pulse repetition interval, maximum unambiguous velocity 𝑣𝑚𝑎𝑥  is given by 

 

𝑣𝑚𝑎𝑥 =  
𝑃𝑅𝐹 ∗ 𝜆

4
=  7.5 [

𝑚

𝑠
]  (3.2) 

Horizontally and vertically polarized spectrograms are shown in Figure 7. Each 

image column corresponds to a distinct Doppler spectrum localized in time. The bright 

streak moving from left to right through each image tracks the torso speed of the bird in 
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time. Spectral width introduced around the torso track represents return power from 

moving parts on the bird during flapping behavior. During intervals of increased 

spectrum width (i.e. flapping), the bird in Figure 7 exhibits torso speed changes. 

Physically speaking, this change in speed is a result of the flapping behavior. For a bird 

that is flying perpendicular to the radar, this change in speed would not be observed. 

Spectrograms vary greatly between birds; two additional examples are shown in Figure 8 

and Figure 9 respectively. 

It should be noted that detection signal-to-noise ratio for the vertically polarized 

channel is consistently lower than the horizontal polarization. For birds with greater body 

width than height, this tendency makes sense. As discussed earlier, differential 

reflectivity for volumetric avian targets at S-band has typically been measured between -1 

and 3 dB, although values as high as 10dB have been observed [9]. However, it is 

possible that the radar was not perfectly calibrated. Fortunately, the feature extraction 

method presented in this thesis generally does not rely on absolute measurement values. 

Instead, meaningful features describe the way that measurements change in time with 

respect to themselves and each other as the bird cycles through different behavioral states 

(i.e. flapping and gliding). 
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Figure 7 – Horizontally (A) and vertically (B) polarized spectrograms show the Doppler 

spectrum as it changes in time. The torso speed is tracked by the bright streak moving left 

to right through time. Regions with greater spectral spreading around the torso indicate 

echo power returning from moving parts of the bird during flapping behavior. 
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Figure 8 - Horizontally (A) and vertically (B) polarized spectrograms show the Doppler 

spectrum as it changes in time. The torso speed is tracked by the bright streak moving left 

to right through time. Regions with greater spectral spreading around the torso indicate 

echo power returning from moving parts of the bird during flapping behavior. This bird 

alternates between periods of flapping and gliding. Flapping intervals have a different 

appearance in the H and V polarizations. 
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Figure 9 - Horizontally (A) and vertically (B) polarized spectrograms show the Doppler 

spectrum as it changes in time. The torso speed is tracked by the bright streak moving left 

to right through time. Regions with greater spectral spreading around the torso indicate 

echo power returning from moving parts of the bird during flapping behavior. This bird 

continuously flaps at a constant frequency. 
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Figure 10 - (A) through (G) show intermediate steps in the torso velocity extraction 

algorithm, with the result in (H) 
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Micro-Doppler features are isolated by normalizing the bird’s torso velocity to the 

zero-velocity frequency bin the spectrogram image. In order to do this, the torso speed 

must first be extracted from the image for each time step. Because the brightest bin in 

each spectrum does not always correspond to the torso speed, a more complete approach 

was used to determine the torso speed at each time. The steps involved are listed below, 

with the output of each stage displayed in Figure 10. 

1. The top half (i.e. all positive radial velocities) of the original spectrogram, 

shown in Figure 10 (A), is appended to the bottom of the original 

spectrogram1. The image is smoothed with a moving average filter2 and 

the lowest eighty five percent of pixels are zeroed. The resulting image is 

shown in Figure 10 (B). 

2. The Canny edge detection algorithm [14] is applied to the image, as 

shown in Figure 10 (C). 

3. Next, morphological operations are applied3, first dilation and then 

erosion, to fill regions enclosed by the edge detections (Figure 10 (D)). 

The largest filled region (‘blob’) is maintained, while all others are zeroed. 

4. All pixels in the original spectrogram that overlap with the yellow region 

in Figure 10 (D) are multiplied by unity, all other pixels are zeroed (Figure 

10  (E)) 

                                                 

 
1 This step serves to create a continuous torso velocity track through the image in 

cases where aliasing has occurred and the torso velocity track crosses the maximum 

unambiguous velocity. In these cases, a portion of the torso velocity track may be in the 

top half of the image, with the other half on the bottom. 
2 The averaging window is five frequency bins high and three spectrums wide. 
3 Morphological operations use a 9x9 pixel, diamond-shaped , structuring 

element. 
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5. A moving average filter4 is applied to (E) to smooth the image, resulting in 

Figure 10 (F). 

6. The brightest pixel in Figure 10 (F) is selected for each spectral column 

and classified as the pixel corresponding to the torso velocity (Figure 10  

(G). 

7. Finally, the bottom third of the image (the copied half of the original 

spectrogram) is cropped and added to the middle third (i.e. negative 

velocity region) of the image, resulting in Figure 10 (H).  

Selecting the torso track from within a ‘blob’ region provides added robustness in 

scenarios with strong clutter or noise. For example, the data shown in Figure 10 contains 

some ground clutter that does not impact the selected torso velocity track in any way.  

Because standard bird flight speeds are known to exceed the maximum 

unambiguous velocity of the X-Pol radar system, the torso velocity may need to be 

unfolded. For this reason, the original range-time-power image is evaluated for migration 

in range. Figure 11 shows a bird detection in the range-time-power domain. Here the bird 

echo appears closer to the radar at later times, as indicated by the dashed red line. In this 

case, the radial velocity is determined to be negative and the torso velocity vector is 

unfolded if necessary. In order to automatically determine if a given bird is moving 

towards or away from the radar, a line is fit through the detection as shown in Figure 11. 

The slope of this line, along with the tightness of the fit, are used to determine if the bird 

is clearly moving towards or away from the radar. Birds that have no clear radial 

direction are assumed to have an un-aliased torso velocity. 

                                                 

 
4 The averaging window is three frequency bins high and three spectrums wide. 
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Figure 11 – Here, bird echoes appear closer to the radar at later times. The range-time-

power map may indicate the direction of flight when the Doppler velocity is ambiguous.  

 

Once the torso velocity has been extracted, and unfolded if necessary, the original 

spectrogram may be normalized to isolate the micro-Doppler signatures. Normalization is 

achieved by circularly shifting each spectrum so that the torso velocity is centered in the 

spectrogram. Figure 12 shows the original spectrogram (A), the extracted torso velocity 

(B), and the normalized spectrogram (C).  Meaningful micro-Doppler signatures are 

primarily contained in the rows of the image closest to the torso speed, so the radial speed 

axis is cropped. Finally, Doppler spectrum widths, 𝜎ℎ and 𝜎𝑣, are calculated for each 

polarization, at each time step.  
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Figure 12 –  Torso velocity (B) is extracted from the original spectrogram (A), and used 

to produce the normalized spectrogram (C). The radial speed axis of the normalized 

spectrogram is cropped to highlight the micro-Doppler signatures. 

  

3.3 Sample Observation Time-Series 

 As a bird moves through the antenna beam, its time changing behavior may be 

recorded in terms of the Doppler and polarimetric measurements described above. 



 

  

27 

  

Measurements were found to fluctuate significantly as the body orientation, shape, and 

speed change.  The way that these measurements change in time varied between 

Bird detections. Figure 13, Figure 14, and Figure 15 include three different bird 

observations, with corresponding polarimetric and Doppler measurements in time. 

These three examples illustrate three different types of temporal behavior in flight 

and matching measurement fluctuations. 

The bird shown in Figure 13 exhibits evenly spaced intervals of flapping and 

gliding. In horizontally and vertically polarized spectrograms, Figure 13(A) and 

Figure 13(B) respectively, flapping intervals are characterized by increased 

spectrum width about the torso speed. Spectrum width indicates echo power 

returning from parts of the bird that are moving with respect to the torso.  Wider 

spectrum width represents greater relative speeds, while brighter pixels suggest 

more reflective, sometimes larger, moving parts.  

Periods of flapping are also marked by lower echo power in both 

polarizations, Figure 13(C) and Figure 13(D), although this difference is larger in the 

horizontal polarization than in the vertical polarization. Physically speaking, this 

means that this particular bird appears ‘bigger’ to the radar when its body assumes 

a gliding position, although this is not universally the case for all birds and 

orientations.  

For a well calibrated system, higher differential reflectivity suggests a target 

that is more reflective, or potentially longer, in the horizontal polarization. For a 

bird, this may physically occur when its wings are outstretched during gliding 

periods, as measured in Figure 13(E).  Higher values of correlation coefficient 
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indicate a fairly constant aspect-ratio in time. When a bird holds its body in a fixed 

gliding position, this is likely to occur, and higher values are measured, as shown in 

Figure 13(F).  Finally, all measurements, including torso speed and differential 

phase, Figure 13(G) and Figure 13(H), generally appear more variable during 

flapping intervals, matching the dynamic nature of this behavioral state.   

Although correlation coefficient was generally found to be higher during 

gliding periods for all birds, the other measurements tend to vary differently by 

bird; Figure 14 and Figure 15 show two alternative examples. The bird in Figure 14 

alternates between periods of flapping and gliding in a way that is less periodic than 

the bird in Figure 13. Another key difference is that the bird in Figure 14 appears 

much ‘brighter’ to the radar in the vertical polarization when it is in certain stages of 

its flapping cycle, rather than during gliding behavior. As previously mentioned, this 

tends to vary by bird observation, and is likely a function of orientation and species. 

Lastly, unlike the previous two examples, the bird in Figure 15 flaps continuously at 

a constant rate. As it flaps, it cycles its body through a finite set of positions and the 

measurements change accordingly with the same periodicity. 
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Figure 13 –Time series measurements for a bird alternating between evenly spaced 

flapping and gliding intervals. (A) Horizontally-polarized spectrogram, (B) vertically-

polarized spectrogram, (C) h-polarized signal-to-noise ratio, (D) v-polarized signal-to-

noise ratio, (E) differential reflectivity, (F) correlation coefficient, (G) differential phase, 

and (H) torso velocity in meters per second. 
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Figure 14 - Time series measurements for a bird alternating between sporadically spaced 

flapping and gliding intervals. (A) Horizontally-polarized spectrogram, (B) vertically-

polarized spectrogram, (C) h-polarized signal-to-noise ratio, (D) v-polarized signal-to-

noise ratio, (E) differential reflectivity, (F) correlation coefficient, (G) differential phase, 

and (H) torso velocity in meters per second. 
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Figure 15 - Time series measurements for a bird flapping at a constant rate. (A) 

Horizontally-polarized spectrogram, (B) vertically-polarized spectrogram, (C) h-

polarized signal-to-noise ratio, (D) v-polarized signal-to-noise ratio, (E) differential 

reflectivity, (F) correlation coefficient, (G) differential phase, and (H) torso velocity in 

meters per second. 
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CHAPTER 4 

 

FEATURE EXTRACTION  

 

 

The stated objective of this thesis is to analyze radar echoes from birds for species 

based variation. Because truth data was un-available, the goal was not to tie variation to 

specific species. This level of analysis will require a more extensive dataset. In order to 

provide a meaningful comparison between bird observations, a feature vector, derived 

from the time-changing radar measurements, must be produced for each bird. The 

challenge of producing a meaningful feature vector is summarizing time-changing radar 

measurements into meaningful time-independent metrics. As shown in Chapter 3, 

measurement fluctuations in time are physically meaningful, and not random.  For this 

reason, simply averaging a time-series measurement across all time stamps results in a 

loss of meaningful temporal and statistical information, and provides an incomplete 

description of the target. 

Based upon the observation that time-changing radar signatures may be mapped 

to meaningful behavioral states (i.e. flapping and gliding), an alternative feature 

extraction approach was designed. This approach has two stages, as illustrated in Figure 

16. During the first stage, each time-step across a single detection is assigned a 

behavioral state. The time changing radar measurements, ‘Feature Space One’, are used 

to make this assignment. The algorithm designed to perform this step is described in 

Section 4.1.  
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Figure 16 - A two stage feature extraction approach is used to provide a meaningful 

description of a given bird. Stage one involves mapping each time stamp across the 

duration of a bird observation to one behavioral state, based upon the radar measurements 

at that time. The second feature extraction stage produces a second set of features derived 

from the assigned behavioral state. These include (1) temporal features which describe 

the frequency and order of a birds different behavioral states and (2) statistical features 

which summarize the typical values of radar measurements during each behavioral state 

 

Once the behavioral state of a bird is known at each point in time, a second layer 

of physically meaningful information, ‘Feature Space Two’, may be extracted from each 

bird detection. This process is outlined in Section 4.2. Feature Space 2 includes (1) 

temporal and (2) statistical features. Temporal features describe the way that a bird cycles 

through different behavioral states in time5. Statistical features describe the way that a 

bird looks to the radar while in each behavioral state, in terms of the original time 

changing radar measurements. For example, Figure 13 and Figure 14 showed that 

correlation coefficient is higher during gliding intervals. Exactly how much higher is a 

function of species and orientation. When the behavioral state of a bird is known at each 

                                                 

 
5 Ecologists have long known that temporal flight behavior varies by species [8]. 
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point in time, we are in a position to go back and compute the average correlation 

coefficient across all gliding intervals. 

4.1 Feature Extraction Stage One: Assigning Behavioral State 

The first stage of the two step feature extraction approach involves mapping each 

time step across a single bird observation to one of a predefined set of behavioral states. 

As shown in Chapter 3, Figure 13, Figure 14 and Figure 15, radar measurements change 

in time with the changing behavioral state of a bird.  In essence, flapping and gliding 

behavioral states look different in terms of the radar measurements.  

The k-means clustering algorithm was used to sort all time-stamps into different 

behavioral groups. K-means takes, as inputs, a list of ‘observations’, (𝒙1, 𝒙2, … , 𝒙𝒏), 

where each observation is defined as a ‘feature vector’ of length 𝑚. These observations 

are then sorted into a pre-specified k-number of ‘output clusters’, 𝑪 = {𝐶1, 𝐶2, … , 𝐶𝑘}, 

based upon the values contained in the feature vectors. Observations are assigned to 

clusters so as to minimize the total distance of all observations within a given cluster 

from its centroid. If 𝝁𝑖 is an 𝑚-length vector denoting the centroid of all observations in 

cluster 𝐶𝑖, the optimal cluster assignment satisfies: 

 

argmin
𝑪

∑ ∑‖𝒙 − 𝝁𝑖‖
2

𝑥𝜖𝐶𝑖

𝑘

𝑖=1

 (4.1) 

In our application, each observation is a time step, during a single bird detection, 

with 𝑛 total time stamps across the entire detection. The corresponding feature vector, 

Feature Space One, contains radar measurements at that time; a complete set of these 

features will be described in more detail in Section 4.1.1. In our case, 𝑘 = 3 output 
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clusters represent three possible behavioral states: one gliding state and two flapping 

states. The reason for three states, as opposed to two, will be further discussed in the next 

section. Sample behavioral clustering results will be shown in Section 4.1.2, with a 

ranking of feature utility in Section 4.1.3. Finally, Section 4.1.4 will explain why this 

novel method is far superior to conventional techniques for extracting temporal 

information, like wing-beat frequency.  

4.1.1 The First Feature Space 

 
Figure 17 – The feature vector for the jth time stamp contains radar measurements from 

that time. These measurements include, but are not limited to, ten central pixels from 

each spectrogram, horizontal and vertical power, differential reflectivity, and differential 

phase. 
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As mentioned previously, the k-means clustering algorithm is applied to all time 

steps, assigning each to one of three possible behavioral states (clusters).  As shown in 

Figure 17, a feature vector may be produced for each time step, containing radar 

measurements from that time. Nine central pixels of the spectrogram, representing speeds 

closest to the torso velocity, are included as features in order to capture spectral 

information associated with flapping behavior. As depicted in Figure 17, horizontally 

polarized signal-to-noise ratio, differential reflectivity, and differential phase may also be 

used as features. A comprehensive list of features is included in Table 4. 

Table 4 – List of features used for behavioral clustering 

 Feature 

1 Horizontally-polarized power6 

2 Vertically-polarized power 

3 Correlation coefficient 

4 Differential phase 

5 Differential reflectivity 

6 Horizontally-polarized spectral width 

7 Vertically-polarized spectral width 

8 Differential-spectrum width 

9 Horizontally-polarized Doppler spectrogram row  at 

�̅� ∓ 𝑛∆𝑣 , for integer 𝑛 where |𝑛| ≤ 4 

10 Vertically-polarized Doppler spectrogram row  at  

 �̅� ∓ 𝑛∆𝑣 , for integer 𝑛 where |𝑛| ≤ 4 

Key: 

 

 �̅� is the torso speed, normalized to the center of the spectrogram. Δ𝑣 

denotes the width of each Doppler bin in [cm/s]. 

 

“H-Polarization at �̅� + 𝑛𝛥𝑣” represents a row of the H-Polarized 

spectrogram, offset from the venter by 𝑛 Doppler bins. 

 

                                                 

 
6 Because this clustering procedure is solely focused on time-variation of 

measurements, converting power to radar cross section or reflectivity is unnecessary. In 

other words, we are comparing measurements at time steps within a single detection to 

each other. Further normalization occurs later to provide desired spread and weighting. 



 

  

37 

  

In addition to the features listed in Table 4, the feature vector for each time stamp also 

included (A) the first derivative of each of these measurements as well as (B) all 

measurements and derivatives at four adjacent time steps (two on each side). 

 
Figure 18 – Prior to implementing the k-means clustering algorithm, features are 

normalized and scaled. 

 

Before applying the k-means clustering algorithm, each feature was smoothed 

using local linear regression to determine local effects of the antenna pattern and 

normalized accordingly. The purpose of this step is to remove the local average, isolating 

the meaningful variation and enabling equal comparison between all time steps. Figure 

18(A) shows the original feature, 𝑧, in blue with the smoothed copy in red  𝑧𝑠𝑚𝑜𝑜𝑡ℎ.  The 

red line represents the changing gain as the bird moves through the antenna beam. 

Subtracting this bias, 
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𝑦𝑛𝑜𝑟𝑚 = 𝑦 − 𝑦𝑠𝑚𝑜𝑜𝑡ℎ (4.2) 

removes the dominant7 effects of underlying system gain, resulting in 𝑦𝑛𝑜𝑟𝑚 as shown in 

Figure 18(B).  Finally, features are rescaled before applying weighting (𝑊): 

 
𝑦𝑛𝑜𝑟𝑚

′ = 𝑊 ∗ (
𝑦𝑛𝑜𝑟𝑚 − min(𝑦𝑛𝑜𝑟𝑚)

max(𝑦𝑛𝑜𝑟𝑚) − min(𝑦𝑛𝑜𝑟𝑚)
) (4.3) 

A sample 𝑦𝑛𝑜𝑟𝑚
′  is shown in Figure 18(C). 

4.1.2 Determining Instantaneous Behavioral State 

Once the features have been selected and prepared , k-means clustering is applied 

with 𝑘 = 3 behavioral states. These behavioral states are defined as follows: 

State 1 Gliding 

State 2 Flapping: Type 1 

State 3 Flapping: Type 2 

 

Two states were selected to describe flapping behavior in order to convey temporal 

information during flapping intervals (i.e. wingbeat frequency). Sample clustering results, 

for the same birds as in Figure 13, Figure 14, and Figure 15, are shown in Figure 19, 

Figure 20, and Figure 21 respectively, along with some of the original measurements for 

reference. 

                                                 

 
7 Further adjustments were explored to addressing residual effects of antenna 

pattern but were found to offer minimal performance improvement. Certainly with more 

time, this should be revisited. 
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Figure 19 - This bird, the same as in Figure 13, alternates between flapping and gliding 

behavior in evenly spaced intervals. (B) Behavioral clustering results indicate that this 

information has been successfully captured. (A)(C)(D) and (E) contain time series 

measurements for reference. 

 

As described in Chapter 3, the bird depicted in Figure 19 alternates between 

evenly spaced flapping and gliding intervals. It is clear from Figure 19 (B) that this 
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temporal information has been captured in the behavioral clustering results. Here, red 

dots indicate the assigned state at each time step. State 1, gliding, persists for extended 

intervals. During flapping behavior, the bird oscillates between Flapping: Type 1, and 

Flapping, Type 2, capturing the temporal information of its flapping cycle. From Figure 

19 (C), it seems that gliding intervals might have been isolated using correlation 

coefficient alone. However, wing-beat information during flapping intervals would not 

have been so easily extracted using conventional Fourier transform based methods on any 

of the time series shown in Figure 19. The behavioral state output from the clustering 

procedure produces clean and localized temporal information about this bird’s flight 

behavior. As previously discussed, this type of temporal information is one of the best 

established mechanisms for distinguishing between birds of different species. 

 Figure 20 (B) shows the results of behavioral clustering for a different bird. As 

previously discussed in Chapter 3 (Figure 14), this bird alternates between flapping and 

gliding in a way that is less periodic. This bird has extended gliding intervals that are 

successfully identified, however, unlike the bird discussed in Figure 19, this bird cycles 

through all three behavioral states during flapping intervals. Physically, this may be due 

to a portion of the flapping cycle that involves similar body mechanics to gliding. For this 

reason, this result is also meaningful. However, when these clustering results are used to 

compute a second set of features (Sections 4.2), care is taken to ensure that temporal 

features extracted from assigned behavioral states are comparable between all bird 

detections. Finally, like the bird in Figure 19, the localized temporal information 

contained in these results would be difficult to obtain using conventional methods. 
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Figure 20 - This bird, the same as shown in Figure 14, alternates between flapping and 

gliding behaviors in a non-periodic way. (B) Assigned behavioral states capture this 

temporal information. (A)(C)(D) and (E) contain time series measurements for reference. 
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Figure 21 – This bird detection, also shown in Figure 15, flaps continuously at a constant 

rate. (B) Behavioral clustering results successfully capture this temporal information. 

(A)(C)(D), and (E) contain time-series measurements for reference. 
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A third example, previously discussed in Chapter 4 Figure 15, is included in 

Figure 21. This particular bird continuously flaps at a constant frequency. When this 

occurs, State 1: Gliding refers to the part of the flapping cycle with high correlation 

coefficient, rather than extended periods of gliding behavior. The physical meaning of 

these three states, in the context of the birds flight mechanics, requires further 

investigation with ground truth. For now, the objective is to ensure that all three states are 

correctly identified in a way that renders them comparable to other bird detections. 

The k-means clustering algorithm does not independently assign a meaningful 

identity to the three clusters; it merely picks centroids that satisfy Eq. 4.1. In order to 

ensure that assigned behavioral states are both (A) physically meaningful and (B) 

comparable between bird detections, identity was assigned to the k-means output clusters 

according to the following rules: 

(1) Behavioral State 1, “Gliding”: if there is a behavioral state that remains 

active for extended time intervals, then this state is the gliding state. If there is 

no state with extended active intervals, then the state with the highest average 

correlation coefficient is determined to be the gliding state. 

(2) Behavioral State 2, “Flapping: Type 1”: is the state, of the remaining two, 

with the highest average value of spectral width in the vertically polarized 

channel8. 

(3) Behavioral State 3, “Flapping: Type 2” : is the state remaining after the first 

two have been assigned. 

                                                 

 
8 Follow up work might reevaluate the second rule based upon ground truth.  
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These rules were selected based upon a review of features containing maximum variance 

across the sample as well as several radar observations with paired video footage of the 

corresponding bird in flight. 

4.1.3 Ranking Features by Classification Utility 

 The features listed in Table 4 were compared for their classification utility to 

determine, which, if any were the most useful in assigning time steps to different 

behavioral states. Classification utility was determined using principal component 

analysis, isolating the features that contribute most to the directions of greatest variance 

in the data. Using this method, a classification utility score was produced for each 

feature, separately for each bird detection. To achieve a general sense for how each 

feature performs across all bird, these utility scores were averaged for all bird detections. 

Results of this process are summarized in Figure 22. 

 The spectrogram row corresponding to the torso speed is the most useful row in 

both spectrograms, although other rows close to the torso speed seem to contain a fair 

amount of information as well. Physically speaking, spectrogram rows near the center 

row 𝑣 ̅  represent the return power from components of the bird that are moving with 

respect to the torso. For this reason, their utility in classifying a bird’s behavioral state 

was expected. Horizontally and vertically polarized power, along with correlation 

coefficient, differential reflectivity, and vertically polarized spectral width are also among 

the most useful features. 
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Figure 22 – Features are listed with a classification utility score, that indicates how useful 

they are in distinguishing between different behavioral states. Features with higher scores 

are more useful. Scores are averaged across the entire database of birds. 

 

 Finally it should be noted that the table contains aggregate results averaged across 

all birds; although the most useful polarimetric and Doppler features did differ 

substantially between bird observations. Spectrogram rows close to the center Doppler 

bin �̅� were universally useful in classifying behavioral state across all birds, while 
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features like correlation coefficient were extremely useful in a subset of observations and 

only moderately useful in the rest, as shown in Figure 23.  

 
Figure 23 – Classification utility of certain features varied between bird detections; 

correlation coefficient is one example. Here, classification utility shows considerable 

spread, with an average score of about 3.75, as shown in Figure 22. 

4.1.4 Improvement over Traditional Techniques 

The method presented in this chapter maps a finite set of behavioral states to time-

changing radar measurements. In the next chapter, an additional set of features will be 

extracted from these assigned behavioral states that enables comparison between birds. 

These features will be (A) temporal, describing the order and frequency of a birds 

different behaviors and (B) statistical, summarizing how each behavioral state generally 

looks to the radar. 

These temporal and statistical features would not be possible without the localized 

information provided by the behavioral clustering technique. As discussed earlier, 
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conventional Fourier transform based methods for extracting wingbeat frequency and 

gliding intervals do not provide the same localized information and would perform poorly 

on some of the examples discussed in Section 6.2. In addition to serving as the basis for a 

second feature space (Chapter 7), localized behavioral state information may have other 

applications. For example, a kalman filter based tracker might adaptively update its 

kinematics model based upon the current behavioral state. 

4.2 Feature Extraction Stage Two: Deriving the Second Feature Space From 

Behavioral States 

 

Once the time-changing behavioral state of all birds has been determined, this 

information was used to produce a second set of features. This feature space enables 

meaningful comparison between different bird detection. Two types of features were 

generated for this purpose:  

(1) Temporal Features – these describe the timing information contained in the 

assigned behavioral states. One classical temporal feature is wingbeat 

frequency. 

(2) Statistical Features – these summarize how the bird appears to the radar 

during each of its behavioral states. The average value of correlation 

coefficient during gliding behavior is one statistical feature. 

K-means clustering was applied to the collection of bird detections, sorting them into 

groups based upon their temporal and statistical features.  Methods used to extract 

temporal and statistical features will be discussed in Sections 4.2.1 and 4.2.2  

respectively.  



 

  

48 

  

4.2.1 Temporal Features 

Mapping a behavioral state to each time step, as discussed in Chapter 6, provides 

a considerable amount of timing information. The duration, regularity, and order of each 

behavioral state are contained in these time series. Physically meaningful temporal 

features that are extracted from this information include: 

(1) Average gliding duration, �̅�𝑔 

(2) Average flapping duration, �̅�𝑓 

(3) Average wingbeat period, �̅�𝑤𝑏 

(4) Average flapping duty cycle, 𝛿�̅�𝑓 

In order to calculate these metrics, each behavioral state was reduced to a series of ‘on’ 

and ‘off’ time intervals. 𝑇𝑂𝑁_𝑆𝑁 is a vector containing the lengths of all on-times for 

behavioral state N; 𝑇𝑂𝐹𝐹_𝑆𝑁 contains off-times. This concept is illustrated for the second 

behavioral state, Flapping-Type 2, in Figure 24.  

As mentioned in Chapter 6, some birds flap at a constant rate, without extended 

gliding periods. For these birds, the first behavioral state (“gliding”) actually represents a 

portion of the flapping cycle. In order to differentiate between this case and the bird that 

alternates between flapping and extended gliding periods, the values in 𝑇𝑂𝑁_𝑆1 are 

compared to a threshold. On-times that exceed the threshold are categorized as confirmed 

gliding time-segments and are stored in 𝑇𝑂𝑁_𝑆1_𝐺 . All times that do not exceed the 

threshold are considered to be a portion of the flapping cycle, and are stored in  𝑇𝑂𝑁_𝑆1_𝐹. 

In Figure 25, the on-time interval marked by arrow B would be classified as confirmed 

gliding and stored in 𝑇𝑂𝑁_𝑆1_𝐺 . Time interval C would not pass the threshold and would 

be considered as part of the gliding cycle. 
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Figure 24 – Each behavioral state may be described as a series of consecutive “on” and 

“off” intervals. These on and of times are stored in 𝑇𝑜𝑛_𝑆𝑁 and 𝑇𝑜𝑓𝑓_𝑆𝑁 where N is the 

state number. 

 

 
Figure 25 – Arrow (A) denotes a flapping interval 𝑇𝑓, arrow (B) marks an extended 

gliding period which would be stored in  𝑇𝑂𝑁_𝑆1_𝐺 , and (C) indicates an interval in 𝑇𝑂𝑁_𝑆1 

that would be considered as part of the flapping cycle and stored in 𝑇𝑂𝑁_𝑆1_𝐹. 
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For birds where there are confirmed extended gliding intervals, the average 

gliding duration �̅�𝑔 is computed as: 

 

𝑇�̅�
̅ = 𝑚𝑒𝑎𝑛(𝑇𝑂𝑁_𝑆1_𝐺)  (4.4) 

For birds where there are no extended gliding intervals, with only continuous 

flapping, �̅�𝑔 is given by: 

 

𝑇�̅�
̅ = 𝑚𝑒𝑎𝑛(𝑇𝑂𝑁_𝑆1)  (4.5) 

Average flapping duration, �̅�𝑓, is computed as the average time interval between 

all consecutive time segments in 𝑇𝑂𝑁_𝑆1_𝐺 . In Figure 25, a single flapping interval 𝑇𝑓 is 

indicated by arrow A. For birds that continuously flap, �̅�𝑓 is not computed.  

 
Figure 26 – Dashed red lines enclose a single wingbeat period (A). This period is the sum 

of time spent in State 2: Flapping Type 1 (C) and State 3: Flapping Type 2 (B) 
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Figure 27 - Dashed red lines enclose a single wingbeat period (A). This period is the sum 

of time spent in State 1:Gliding (D), State 2: Flapping Type 1 (C) and State 3: Flapping 

Type 2 (B). 

 

There are two different ways that the wingbeat period may present in terms of the 

behavioral state assignments. These two cases are shown in Figure 26 and Figure 27, 

where the region enclosed by dashed red lines indicates a single wingbeat period. The 

key difference is that the wingbeat period in Figure 26 does not include any time spent in 

behavioral state one; the wingbeat period in Figure 27 does. As a result, the wingbeat 

period in Figure 26 is the sum of time spent in state 2 (Flapping Type 1) and in state 3 

(Flapping Type 2), labeled as intervals C and B respectively. To compute the average 

wingbeat period  �̅�𝑤𝑏 for this bird: 

 
�̅�𝑤𝑏 =  𝑇𝑂𝑁_𝑆2

̅̅ ̅̅ ̅̅ ̅̅ + 𝑇𝑂𝑁_𝑆3
̅̅ ̅̅ ̅̅ ̅̅   (4.6) 

Likewise, the wingbeat period in Figure 27 is the sum of time spent in behavioral 

state 1 (Gliding), state 2 (Flapping Type 1), and state 3 (Flapping Type 2), shown as 
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intervals D, C, and B in the diagram. In this case, the average wingbeat period  �̅�𝑤𝑏, and 

wingbeat frequency 𝑓𝑤𝑏, are given by: 

 
�̅�𝑤𝑏 =  𝑇𝑂𝑁_𝑆1_𝐹

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑇𝑂𝑁_𝑆2
̅̅ ̅̅ ̅̅ ̅̅ + 𝑇𝑂𝑁_𝑆3

̅̅ ̅̅ ̅̅ ̅̅    (4.7) 

 

𝑓𝑤𝑏 = 1/𝑇𝑤𝑏 (4.8) 

Flapping duty cycle 𝛿�̅�𝑓 is the ratio of time spent gliding to the total time spent 

both flapping and gliding: 

 
 𝛿�̅�𝑓 =  

𝑇�̅�

𝑇�̅� +  𝑇�̅�

 (4.9) 

For birds that only exhibit flapping behavior, 𝛿�̅�𝑓 is zero. In addition to the 

features listed above, the variances of 𝑇𝑂𝑁_𝑆1_𝐹,  𝑇𝑂𝑁_𝑆1_𝐺 , 𝑇𝑂𝑁_𝑆2, and 𝑇𝑂𝑁_𝑆3 were 

computed and used as features to describe the variability in a bird’s temporal behavior. 

4.1.2 Statistical Features 

As described in Chapter 5, radar measurements change in time as birds cycle 

through different behavioral states. For example, gliding intervals are often associated 

with higher measured values of correlation coefficient. Because flight mechanics vary 

between different types of bird, corresponding measurement fluctuations contain useful 

species based classification information. When the behavioral state of a bird is known at 

each point in time, statistical properties of radar measurements may be analyzed 

separately for each behavioral state. In other words, all measurement values at time steps 
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assigned to the same behavioral state are considered together because, physically 

speaking, they all describe a similar measurement condition. 

 

Figure 28 – Statistical features are calculated by considering measurement values that 

correspond to a given behavioral state together. Here, correlation coefficient is averaged 

only during gliding periods resulting in a higher, more representative, mean value. This 

mean value is a statistical feature, and so is the distance (D) between mean values for 

different behavioral states. 
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The method used for extracting statistical features is summarized visually in 

Figure 28. Here, the assigned behavioral state is shown at each step time, along with the 

corresponding correlation coefficient time series. Correlation coefficient is higher and 

less variable during assigned gliding intervals than during flapping periods. For this 

reason, accumulating statistics from the entire time series would result in poor features 

and a loss of meaningful information. Instead, each behavioral state is considered 

separately. The green shaded regions in Figure 28(A) and Figure 28(B) highlight gliding 

intervals, while red boxes enclose all measured values of 𝜌ℎ𝑣  at those times. These 

values may be accumulated into an estimated probability density function (PDF), shown 

in Figure 28(C). As expected this gliding PDF has a higher mean value and lower 

variance then the two flapping PDF’s (yellow and blue).   

The mean value and standard deviation of each PDF are considered to be 

statistical features that describe how this bird looks to the radar  in terms of measurement 

𝜌ℎ𝑣, during each behavioral states. The mean value and standard deviation of 

measurement 𝑥 in behavioral state 𝑛 are named according to the following convention: 

𝜇𝑠𝑛_𝑥 and 𝜎𝑠𝑛_𝑥. In Figure 28, the distance between the PDF means for State 1 and State 

2, 𝜇𝑠1_𝜌ℎ𝑣
− 𝜇𝑠2𝜌ℎ𝑣

=  ∆𝜇12_𝜌ℎ𝑣
, marked by arrow (D), is an additional statistical feature. 

This metric describes how different 𝜌ℎ𝑣 measurement values tend to be between 

behavioral states. There are three of these features for each measurement; one for each 

PDF pair.  

Statistical features 𝜇𝑠𝑛_𝑥,  𝜎𝑠𝑛_𝑥,  and   ∆𝜇𝑛𝑚_𝜌ℎ𝑣
were calculated for all behavioral 

states, across all measurements. Both scaled measurements, shown in Figure 18(C), and 
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unscaled measurements were used to produce statistical features, although scaled 

measurements were found to produce the most useful features.  
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CHAPTER 5 

 

PRELIMINARY CLUSTERING RESULTS 

 

 

The stated objective of this thesis is to analyze radar echoes for species based 

differences; the features described in Chapter 4 enable this type of analysis. Before 

performing clustering, imperfect detections were removed from the data set. These 

included any detections with multiple radial tracks, detections that had extreme radial 

acceleration (orientation change), and those not exceeding a predefined signal-to-noise 

threshold.  After this down selection process, 152 detections remained in the dataset. This 

chapter will first attempt to validate the behavioral clustering method by comparing 

temporal trends observed in the data with established trends in bird flight behavior in 

Section 5.1. Next, select preliminary clustering results will be reviewed in Section 5.2. 

Section 5.3 will discuss the limitations of the data and future research directions. 

5.1 Feature Extraction Validation and General Trends 

Prior to performing clustering of birds, the dataset was evaluated against known 

bird flight characteristics to validate the behavioral clustering feature extraction method 

discussed in Chapter 4. Figure 29 shows a scatter plot comparing gliding interval with 

wingbeat frequency. Blue points represent birds that were not found to have a distinct 

gliding period during the feature extraction procedure; red dots indicate birds that 

alternate between flapping and gliding behaviors. As mentioned previously, for birds that 
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do not have an extended gliding interval, the gliding interval instead measures a portion 

of the flapping cycle. 

 
Figure 29 – Birds that alternate between flapping and gliding, shown in red, generally 

exhibit increasing wing-beat frequencies when the gliding period is longer. Wing-beat 

frequencies span 3-11Hz, which corresponds to results in published ecological research 

[13]. 

 

It is clear from the graph that the birds measured in this study had wing-beat 

frequencies spread between 3Hz and 11Hz. These values correspond almost exactly to 

standard wingbeat frequencies represented in Table 3. This plot also shows an interesting 

trend of increasing wing-beat frequency with increasing gliding period. Although I could 

not find a corresponding pre-established trend supporting this finding, it makes intuitive 

physical sense; if two birds of the same species have different gliding periods, the 

individual gliding for longer intervals would need to exert more energy during its 

flapping period to maintain the same flight performance. Finally, it should be noted that 
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both groups depicted in Figure 29 may contain species based sub-groups. The red 

flapping and gliding group appears to have at least two sub-clusters of points. Division 

within this group will be further explored in Section 5.1, although this type of analysis 

will ultimately require a larger dataset. 

 

Figure 30 – Birds that had no extended gliding period have a behavioral duty cycle of 

zero, and are shown in blue. Birds that alternate between flapping and gliding behaviors 

generally spend less time gliding at higher altitudes. Pink columns indicate altitudes with 

fewer detections due to ground clutter. Ground clutter appears in antenna sidelobes, and 

not at the actual altitude indicated in the image. 

 

Figure 30 and Figure 31 show the same two groups of birds, plotted against their 

measured altitude. In both figures, two pink shaded regions indicate ranges that had 

substantial ground clutter returns. Due to the clutter, these regions had fewer viable bird 

detections. In Figure 30, behavioral cycle, or the ratio of time spent gliding to all other 

behaviors, is shown to decrease with increasing altitude (i.e. shorter gliding periods). 
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Similarly, Figure 31 illustrates an apparent increase in wing-beat frequency with greater 

altitude measurements. This measurement is supported by previous Ecological research, 

which has already correlated altitude with both changing flight behavior and with the 

presence of different species of bird altogether. Thinner air has been associated with a 

necessary increase in wingbeat frequency. It is also known that, as birds ascend during 

migration, they flap faster and pick up speed [15]. To my knowledge, the correlation 

between altitude and shorter gliding periods has not been previously observed, however 

this trend may occur for the same reasons as increased wingbeat frequency. 

 

Figure 31 – Birds without an extended gliding period are shown in blue; birds that 

alternate between flapping and gliding are shown in red. The flapping and gliding group 

may have three potential subgroups, the bottom one is circled. A general trend towards 

higher wing-beat frequencies with greater altitudes is observed. Pink regions mark 

altitudes that contain fewer detections due to clutter. 

 

 Generally speaking, the temporal information, extracted from each bird detection 

using the behavioral clustering method, was found to match published Ecological 
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research. Specifically, the trend towards greater wingbeat frequencies at greater altitudes, 

as well the span of measured wing-beat frequencies, strongly match the literature.  Other 

measured trends, such as the positive relationship between gliding interval and wingbeat 

frequency, make sense from a physical perspective, considering the dynamics of a bird in 

flight. Together, these findings strongly support the performance of the behavioral 

clustering feature extraction method as a tool for producing temporal/behavioral 

information.  

5.2  Other Clustering Results 

As shown in Section 5.1, temporal features enable us to immediately divide bird 

observations into groups of birds that only flap and those that both flap and glide. These 

groups show considerable variance across the different temporal features, as shown for 

wingbeat frequency and gliding interval in Figure 29. It is fully expected that both groups 

contain a number of different species. A logical approach to evaluate the species-based 

classification potential of the statistical features might involve looking deeper into groups 

of observations that have similar temporal characteristics, such as the two groups in 

Figure 29. Because this is an unsupervised dataset, and features vary with both 

orientation and species, it makes sense to start the analysis within groups defined by 

features that are already known to have a species-based dependence. A group of 

detections that share temporal characteristics represent a subset of the total species 

contained in the data. Looking within just this group simplifies the problem and allows us 

to hopefully isolate species and orientation based trends.  
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Unfortunately, as mentioned previously, the filtered dataset contained a total of 

152 bird detections. While this is more than enough to establish general trends, it is not 

sufficient to perform the analysis described about. There are simply not enough birds that 

only flap, for example, to establish any species based trends within this group. However, 

preliminary results are promising. 

 

Figure 32 – Bird detections were clustered into three groups, based solely on their 

temporal features. 

 

Figure 32 shows the collection of detections divided into 3 groups, using k-means 

clustering, based solely on equally weighted temporal features. One group mostly 



 

  

62 

  

exhibits constant flapping behavior9, the other two alternate between flapping in gliding 

but generally span different wingbeat frequencies. These groups were evaluated in terms 

of the statistical features and select results are shared below. 

 

Figure 33 – Groups of birds with similar temporal characteristics have different spreads 

of correlation coefficient during flapping and gliding periods 

 

Figure 33 shows the same three clusters, plotted in terms of their measured 

correlation coefficient. Here, the y-axis represents correlation coefficient measured 

during gliding behavior; the x-axis is correlation coefficient during flapping behavior 

(Type 2).  Although there is some overlap, the blue group, which was the flapping and 

gliding cluster with higher wingbeat frequencies, generally has higher correlation 

coefficient then the other two groups while flapping.  

                                                 

 
9 The red group is not exclusively birds that had no gliding intervals. There are 

also some birds with very short flapping intervals in this group. It is named for ease of 

reference. 
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Figure 34 – The blue group, birds that alternate between flapping and gliding and have 

higher wingbeat frequencies, appears to have two sub-clusters, marked by arrow. These 

groups exhibit different wingbeat frequency as well as larger differences in differential 

reflectivity in flapping and gliding states. 

 

Figure 34, again, shows the same three clusters. Here, they are plotted in terms of 

wingbeat frequency and difference in differential reflectivity between flapping and 

gliding states. This plot shows two subgroups within the blue group that have different 

spreads of the differential reflectivity metric and that are also separated in wingbeat 

frequency. Although more data is needed to support this finding, it indicates that there are 

meaningful subgroups within groups of birds that share temporal features in common. It 

is certainly possible that these two subgroups represent orientation differences. However, 

this is likely not the case due to the difference in wingbeat frequency. Also, the difference 

between differential reflectivity during flapping and gliding states measures the degree to 
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which a birds aspect ratio changes, with respect to the radar, as it alternates between 

flapping and gliding states. This could easily be a species dependent metric because wing 

cross-section, and orientation during flapping, are a function of species. 

5.3 Limitations and Future Work 

Based upon the findings presented in this chapter, it is clear that the behavioral 

clustering method yields viable temporal information. To an extent, this temporal 

information has already been associated with species [13]; however this thesis presented 

and validated a novel technique for extracting it from echoes in a more localized and 

robust way. The size of the dataset was a limiting factor in providing an extensive 

analysis of some of the statistical features. However, two examples of potential species 

based clusters were shown in Section 5.2.  

With a more extensive dataset, birds that share temporal qualities could be 

isolated and analyzed separately for species-based subgroups. Within these groups, 

statistical features may be evaluated for orientation dependence, using the radial velocity 

as a rough estimate. The orientation dependence of biological scatterers is established [8]. 

If the orientation profile can be characterized, it may be an advantage in a future 

classification algorithm. With a larger dataset, the tools now exist to begin this process. 

As shown, there is a considerable amount of variance in the data. However, most 

of the information is contained in the way that measurements change in time with respect 

to themselves and other measurements. Using the tools presented above, and a larger 

dataset, this variation could be characterized and mapped to broad species based groups. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSION 

The stated objective of this thesis was to evaluate features for species based 

classification potential. Towards this objective, a novel feature extraction technique and 

preliminary clustering results of a set of bird detections were presented. While initial 

results were promising, further research, with a larger set of detections and corresponding 

ground truth, are needed to confirm that species based differences exist.  

The behavioral clustering technique described in Chapter 4, and validated in 

Chapter 5, is a viable alternative to conventional Fourier based methods for extracting 

wingbeat frequency and other temporal characteristics. Behavioral clustering yields more 

localized frequency information and works for shorter duration detections. In addition, 

because this method determines behavioral state using many simultaneous measurements, 

it is more robust. Knowledge of instantaneous behavioral state could also be useful in 

other applications. For instance, it may allow for an adaptable tracking algorithm that 

updates its kinematic model based upon the current behavior. 

When behavioral state is known, this information may be translated into statistical 

and temporal features that provide a holistic description of the bird. These features 

showed variance across the sample, and groups of birds that had similar temporal 

characteristic were found to contain potential subgroups with different statistical features. 

However, the size of the dataset limited the extent of the analysis that could be 

performed. The tools presented in this thesis may be used for further analysis on a larger 

dataset to uncover species and azimuthal based trends.  
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