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In the first chapter of my dissertation, I assess the affect of wires alerts for exteme 

weather on hazard mitigation. Wireless alerts delivered through mobile phones 

are a recent innovation in regulatory efforts towards preparation for extreme 

weather events including flash floods. In this article, I use difference-in-

differences models of car accidents and traffic volume, respectively, from days 

with government issued alerts for flash flood in the State of Virginia. I find that 

wireless messages for flash flood reduced car accidents by -17.3 percent and 

reduced traffic volume by -5.2 percent, relative to the predicted level using 

standard, non-wireless alert protocols. These results imply that wireless warning 



   

messages effectively contribute to reductions in exposure to hazards associated 

with extreme weather. 

 

In my second paper, I analyze the effects of a unique forest conservation policy 

on residential development and assess the additionality in forest cover due to this 

policy. I combine panel data on forest cover change from satellite imagery and 

parcel-level modeling on residential development, including residential 

subdivisions occurring before and after policy adoption. My results indicate that 

after introducing the policy, there was a 23% increase in forest cover within 

subdivisions relative to the amount without the policy.  

 

In my third and final paper, I assess the effect of a California 1992 wildfire hazard 

disclosure law on parcel level probability of development using panel data on the 

location and timing of residential development. I find that after the introduction of 

the hazard disclosure law, annual probability of development is reduced by -13% 

and -24%, for parcels located in high and very high severity areas, respectively. 

Based upon these results, the 1992 hazard disclosure law was at least moderately 

effective at updating homeowners’ subjective perception of exposure to wildfire 

risk and reducing the rate of development in the highest severity locations. 

  



   

ESSAYS ON NATURAL HAZARD MITIGATION AND FOREST COVER 

CHANGE 

 

 

 

By 

 

 

Jeffrey Sheppard Ferris 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctorate of Philosophy 

2015 

 

Advisory Committee: 

Professor David Newburn Chair 

Professor Erik Lichtenberg 

Professor Ted McConnell 

Professor Rob Williams 

Professor Maureen Cropper 



   

 

 

 

 

 

 

 

 

 

© Copyright by 

Jeffrey Sheppard Ferris 

2015 

 

 

 



ii 

 

Table of Contents 

 

Title  Page 

   

Table of Contents ………………….......................................................... ii 

   

List of Tables …………………................................................................ iii 

   

List of Figures …………………............................................................. vi 

   

Chapter 1: Wireless Alerts for Extreme Weather and 

the Impact on Hazard Mitigating Behavior 

…………………... 1 

   

Chapter 2: Additionality and Forest Conservation 

Policy for Residential Development 

…………………....... 46 

   

Chapter 3: Wildfires, Hazard Disclosure and the 

effect on Land Development 

…………………....... 94 

   

Appendix A …………………................................................................... 131 

   

Appendix B …………………................................................................... 143 

   

Appendix C …………………................................................................... 156 

   

Appendix D …………………................................................................... 160 

   

Bibliography …………………................................................................... 168 

 

 

 

 

 

 

 

 

 



iii 

 

 

List of Tables 

 

 

Table  Page 

   

Table 1.1 …………………....................................................................... 38 

Table 1.2 …………………....................................................................... 39 

Table 1.3 …………………....................................................................... 38 

Table 1.4 …………………....................................................................... 40 

Table 1.5 …………………....................................................................... 41 

Table 1.6 …………………....................................................................... 42 

Table 1.7 …………………....................................................................... 42 

Table 1.8 …………………....................................................................... 43 

Table 2.1 …………………....................................................................... 87 

Table 2.2 …………………....................................................................... 88 

Table 2.3 …………………....................................................................... 89 

Table 2.4 …………………....................................................................... 90 

Table 2.5 …………………....................................................................... 91 

Table 3.1 …………………....................................................................... 125 

Table 3.2 …………………....................................................................... 127 

Table 3.3 …………………....................................................................... 128 

 

  



iv 

 

List of Figures 

 

 

Figure  Page 

   

Figure 1.1 …………………..................................................................... 44 

Figure 1.2 …………………..................................................................... 45 

Figure 2.1 …………………..................................................................... 92 

Figure 2.2 …………………..................................................................... 93 

Figure 3.1 …………………..................................................................... 129 

Figure 3.2 …………………..................................................................... 129 

Figure 3.3 …………………..................................................................... 130 

 

 

 

 

 

 

 

 

 

 

 

  



1 

 

Chapter 1: Wireless Alerts for Extreme Weather and the Impact on Hazard 

Mitigating Behavior 

 

Nearly every community in the United States is periodically threatened by 

extreme weather events including hurricane, tornado or flash flood. The National 

Weather Service actively monitors weather events as they develop and in the case 

of an imminent threat, issues emergency alerts to affected areas. To complement 

existing warning protocols, the Wireless Emergency Alert (WEA) system was 

adopted in the US in 2012 and is designed to issue warnings directly to mobile 

devices in case of national emergency, extreme weather and AMBER alerts. 

Wireless messages in cases of extreme weather are targeted to mitigate potential 

risk from individuals facing life-threatening exposure to inclement weather. The 

purpose of this article is to study the effect of WEA messages for extreme weather 

on daily car traffic conditions based upon a sample of flash flood events from 

counties located in the State of Virginia between 2011 and 2013. I evaluate hazard 

mitigation outcomes in response to WEA messages through an empirical 

examination of car accidents and assess mechanisms for hazard mitigation 

through an analysis of traffic volume patterns following WEA messages. 

The growth of mobile phone usage has changed how people communicate 

and altered the global economy. The United Nations (UN) estimates that mobile 

phones have spread faster than any other technology in world history (UN 2010). 

Previous research has examined the impact of access to mobile phones on micro-

economic development outcomes. This includes studies of the impact of mobile 
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phones on markets for fish (Abraham 2006; Jensen 2007), agriculture 

(Chowdhury and Wolf 2003; Muto and Yamano 2009; Aker 2010) and textiles 

(Chowdhury and Wolf 2003; Jagun, Heeks, and Whalley 2008). These studies 

suggest that access to mobile phones reduces costs of communication and price 

dispersion, improving both consumer and producer welfare in the process. 

However, mobile phone use can have a broader impact on individuals’ lives, 

including changes in the mode of communication between governments and 

citizens. In case of extreme weather emergency, government agencies in the US 

and other developed nations traditionally rely on conventional media sources, 

including television and radio, to distribute warning messages. With the advent 

and near ubiquity of mobile devices, governments can now send tailored and 

geographically explicit warning messages directly to individuals with the highest 

risk of exposure to dangerous weather conditions. 

Previous research has assessed the effect of product warnings on consumer 

health risks and other hazard mitigating behavior. This includes studies of 

hazardous cleaning products (Viscusi, Magat and Huber 1986), work place 

chemical hazards (Viscusi and Connor 1984), and food safety (Loureiro and 

Umberger 2007; Wang, Mao and Gale 2008). Findings of these studies support 

the hypothesis that an individual’s willingness to undertake hazard mitigating 

behavior generally increases with the perceived level of risk presented by the 

product. Driving conditions are often adversely affected by extreme weather 

events. Many studies have found weather conditions such as precipitation and 

poor visibility to be significant determinants in predicting car accident outcomes 
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(Levine et al., 1995; Eisenberg 2004; Brijs, Karlis and Wets 2008; Jung, Quin and 

Noyce 2010). However, no previous research has evaluated the effect of 

emergency weather alert protocols on hazard mitigation outcomes such as 

automobile collisions or other observed traffic patterns. 

This study is based upon a panel database of daily car accidents and traffic 

volume from all counties located in the State of Virginia in the years 2011 to 

2013. The econometric model is a Poisson model of the daily count of car 

accidents per county and I identify the effect of WEA messages based upon 

difference-in-differences variation. The treatment group includes all counties that 

received a WEA message for flash flood, during the post-WEA period (July, 2012 

– December 2013). The first control group consists of all counties that received a 

non-wireless flash flood warning in the pre-WEA period (July, 2011 – June, 

2012). The second control group includes counties that received a less severe and 

non-wireless alert for a flash flood watch during either the pre- or post-WEA 

period. Other control variables used to predict car accident counts include: time of 

day the alert was issued, weather related variables for daily precipitation and 

average wind speed, day of the week, as well as fixed effects at the county and 

month-year level. I also assess potential mechanisms for reductions in car 

accidents due to WEA messages utilizing hourly traffic volume from counties that 

received flash flood warnings during the pre-WEA and post-WEA period. I 

identify the differential effect of WEA messages on traffic volume using a 

difference-in-differences regression discontinuity (RD) analysis from the hours 

just prior, and immediately after the issuance of an alert. I control for trends in 
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traffic volume by time of day and utilize a local linear regression control function 

to account for the impact of inclement weather and other time varying traffic 

volume trends in the neighborhood of the discontinuity. 

My analysis highlights several main conclusions. On average, car 

accidents are elevated, in both the pre- and post-WEA periods, in counties that 

received a flash flood warning versus a flash flood watch. This is consistent with 

the hypothesis that flash flood warnings are issued primarily on days with more 

car accidents due to extreme weather conditions. I find that WEA messages for 

flash flood reduced a statistically significant average of -17.3 percent daily car 

accidents relative to the number of car accidents using non-wireless warning 

protocols. Based upon estimates for the average car accident cost from the 

National Highway Traffic Safety Administration (NHTSA), WEA messages 

resulted in an expected reduction in the cost of car accidents by -$3.5 million in 

Virginia during the post-WEA period. I also find changes in driving behavior in 

response to WEA from my investigation of traffic volume trends. At the 

boundary, I estimate that WEA messages lead to a statistically significant 

reduction of approximately -4.0 percent of cars travelling per hour, relative to 

traffic conditions following non-wireless flash flood warnings. These results 

suggest that at least some individuals respond to WEA messages by delaying or 

canceling travel plans during extreme weather periods. Thus, observed reductions 

in car accidents may be due, in part, to reduced traffic volume following the 

issuance of a WEA message. 
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This study makes several important contributions to the literature. This is 

the first study to empirically examine the effect of mobile emergency alerting 

protocols on car accident outcomes or other hazard mitigating behaviors. I utilize 

a difference-in-differences natural experimental design to isolate the effect of 

WEA messages on car accident and traffic volume outcomes. This study design 

helps to eliminate bias from several potential sources including: correlation 

between severe weather trends and days with flash flood warnings as well as 

changes in weather and other traffic trends from the pre-WEA to the post-WEA 

period. WEA is currently one of only a handful of nationally operated systems 

designed to deliver geographically explicit emergency alert messages to mobile 

devices. Results of this analysis suggest that wireless messages for extreme 

weather successfully reduce the number of car accidents and traffic volume 

compared to existing non-wireless protocols. The US experience with WEA 

implementation may serve as an example to other countries and municipalities 

considering the adoption of similar mobile warning systems. 

The remainder of this article is organized as follows. In the next section, I 

provide an overview of WEA policy adoption as well as the study area chosen for 

this analysis. Next, I describe the econometric model and data used to estimate the 

effect of WEA messages on car accident outcomes. This is followed by the 

empirical results and several robustness checks. I then present an analysis of 

potential mechanisms for car accident reductions using traffic volume data. I 

conclude with some summary remarks as well as implications for future research. 
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I. Policy Overview and Study Setting 

The Wireless Emergency Alert (WEA) system was established in the United 

States in 2012 and is designed to warn citizens of potential and imminent threats 

by issuing an alert to WEA capable cellphones through mobile carrier networks. 

WEA capable cellphones include most smartphones, which as of 2013 the 

majority (56 percent) of Americans own (Smith 2013). All WEA enabled 

smartphones may receive an alert unless the subscriber has specifically opted out 

of alerts online. The WEA system is operated by several coordinating federal 

agencies including the Federal Emergency Management Agency (FEMA), 

Federal Communications Commission (FCC), the Department of Homeland 

Security (DHS) and the National Weather Service (NWS). WEA protocol may 

issue warnings, typically at the county level, related to extreme weather events, 

local emergency, AMBER alerts or presidential alerts during a national 

emergency. 

Emergency messages in case of extreme weather are primarily the 

responsibility of the National Weather Service (NWS). The NWS distributes non-

wireless emergency alerts through NOAA Weather Radio, local news broadcast, 

and the Emergency Alert System on radio and television. In addition, local 

governments may have their own emergency alert systems such as outdoor sirens 

as well as email and mobile alerts delivered to subscribing residents. However, all 

other local systems for emergency weather alerts that are distributed through 

mobile devices are strictly opt-in systems, requiring the individual to subscribe in 

order to receive weather updates. The NWS actively monitors storm systems as 



7 

 

they develop from weather monitoring stations distributed across the US. In cases 

of flash flood, for instance, the NWS ranks oncoming storm systems into 

categories of flash flood watch and warning. A flash flood watch generally 

indicates conditions that may develop into a flash flood event but the occurrence 

is neither imminent nor certain. A flash flood warning, on the other hand, 

indicates that a flash flood is in progress, imminent, or highly likely.
1
 

Protocols for WEA messages are in addition to existing NWS procedures 

for emergency weather alerts, which did not otherwise change after WEA 

introduction. WEA messages may be issued in case of tsunami, hurricane, 

typhoon, dust storm, extreme wind and flash flood. The WEA system for extreme 

weather events was activated nationally beginning June 29, 2012. When a storm 

system develops into an imminent threat, the NWS will nominate an alert for 

WEA message. This recommendation is then passed on to the DHS and then to 

mobile carriers for distribution to mobile devices.
2
 All individuals located within 

affected areas with a WEA capable cellphone will receive an alert unless the 

individual has opted out of WEA messages online. WEA messages are less than 

90 characters in length and are designed to warn citizens of the nature of the 

weather emergency, the area affected and advise individuals of appropriate 

precautionary behavior. WEA is reserved only for the most severe weather 

conditions, so as an example, WEA messages would be distributed when a storm 

                                                           
1
 For a full list of NWS flash flood watch and flash flood warning criteria, see sections 4.2.2 and 

5.2.2, respectively: http://www.nws.noaa.gov/directives/sym/pd01009022curr.pdf 

2
 WEA messages may only be issued to areas with cell phone coverage, gaps in service most often 

overlap with locations of protected lands (e.g. national parks). For a map of Verizon cell phone 

coverage (the largest cellphone network provider in the US) see 

http://vzwmap.verizonwireless.com/dotcom/coveragelocator/default.aspx?requestfrom=webagent. 

http://www.nws.noaa.gov/directives/sym/pd01009022curr.pdf
http://vzwmap.verizonwireless.com/dotcom/coveragelocator/default.aspx?requestfrom=webagent
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is upgraded to flash flood warning status but would not be issued in cases of flash 

flood watch.   

The WEA program is intended to provide an integrated and flexible 

system to alert American people in case of emergency or other hazards to public 

safety. Several countries either have adopted, or are experimenting with the 

adoption of wireless protocols for extreme weather. This includes systems 

currently being developed by countries in the European Union as well as active 

wireless alert systems in Japan, Chile, Israel and the US.
3
 By distributing 

messages through mobile phone networks, government regulators hope to 

communicate directly with individuals facing the greatest exposure to risk and 

encourage appropriate hazard mitigating behavior. In cases of extreme weather 

like a flash flood, one of the principle aims of WEA messages are to encourage 

safer driving behavior during severe weather periods. Flash floods often entail 

elevated levels of precipitation that may directly imperil driving conditions. In 

addition, one of the greatest hazards posed by flash flood result from roadways 

deluged with excess rainfall and as little as two feet of water can carry away most 

automobiles.
4
 WEA messages signify that extreme weather conditions are 

imminent or ongoing and the purpose is to allow individuals time to seek cover 

and avoid driving during these periods. With enough warning, WEA messages 

                                                           
3
 For more information on other national systems for wireless emergency messages, see 

http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2013/01/One2Many-Cell-

Broadcast-Emergency-Alerts.pdf 

4
 For more information on how flash floods develop and the hazards associated with these events 

see http://www.srh.noaa.gov/images/fwd/pdf/floodsandfloods.pdf 

http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2013/01/One2Many-Cell-Broadcast-Emergency-Alerts.pdf
http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2013/01/One2Many-Cell-Broadcast-Emergency-Alerts.pdf
http://www.srh.noaa.gov/images/fwd/pdf/floodsandfloods.pdf
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may help to prevent increases in automobile collisions, injuries and fatalities that 

often accompany extreme weather events. 

The State of Virginia is the primary study region used to analyze the effect 

of the WEA system on car accidents in this analysis. There are a total of 134 

counties and independent cities in Virginia. Weather conditions in Virginia are 

generally temperate climate but with warm and humid summer months. Severe 

weather most often occurs due to large thunderstorms, which may occasionally 

develop into flash floods. Tornadoes occur less frequently and Virginia typically 

averages approximately six tornadoes per year.
5
 NOAA has issued several 

warnings for emergency weather in the case of flash flood and tornado in the pre-

WEA (July, 2011 – June, 2012) and post-WEA (July, 2012 – December, 2013) 

periods, summarized in table 1.1. Based upon their greater frequency, analyzing 

the effect of WEA messages for flash flood on traffic outcomes in Virginia is the 

primary focus of this article. 

Generally speaking, any weather event that is elevated to flash flood or 

tornado warning status will trigger the dissemination of a WEA message. 

However, the distribution of WEA events was hampered for much of 2012 due to 

software malfunction and scheduled system maintenance. As a result, after July 

2012, there exist several instances of weather events which triggered non-

wireless, NWS warnings for either flash flood or tornado which were not recorded 

as receiving a WEA message. Unfortunately, software malfunction impacted both 

the dissemination of WEA messages and the recording of WEA events. It is 

                                                           
5
 For a list of average yearly count of tornado incidence by state, see 

http://www.erh.noaa.gov/cae/svrwx/tornadobystate.htm 

http://www.erh.noaa.gov/cae/svrwx/tornadobystate.htm
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therefore impossible to determine the exact reason why WEA messages were not 

recorded in these cases. For this reason, in subsequent analyses, I drop any 

observations from counties that were recorded as receiving a NWS warning in the 

post-WEA period that lack a record of receiving a corresponding WEA message. 

Overall, between July 2011 and December 2013 there were 131 days and 

775 counties with extreme weather alerts for flash floods or tornado. Flash flood 

warnings make up the majority of alerts, representing approximately 74 percent of 

all extreme weather warnings and 84 percent of WEA messages. The incidence 

rate of flash flood warning was similar in the pre- and post-WEA periods. There 

were approximately 0.16 flash flood warnings per county per month in the pre-

WEA period and 0.13 during the post-WEA period. A total of 269 counties 

received a WEA message, which represents approximately 35 percent of all 

warnings issued. Since program inception in July of 2012, WEA messages have 

been distributed relatively evenly across the State of Virginia. Figure 2 displays 

the frequency of WEA messages by county in Virginia from July, 2012 to 

December, 2013. WEA messages have been issued in 80 percent of counties, with 

a mean of 2.01 alerts per county over this time period. Albemarle County received 

a total of 11 WEA messages, the most recorded by any county in my sample. 

 

II. Econometric Model of Daily Car Accidents 

In this section, I develop an econometric model to evaluate the effect that the 

introduction of the Wireless Emergency Alert (WEA) system has on county level 

daily car accident counts. The daily count of car accidents are observed for each 
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county that received either a non-wireless flash flood warning in the pre-WEA 

period (July, 2011 – June, 2012) or a wireless alert during the post-WEA period 

(July, 2012 – December, 2013). I also observe car crashes in control counties that 

received an alert for a flash flood watch that did not also receive a wireless or 

non-wireless warning for other severe weather events. Car accidents that occurred 

on other days without a flash flood warning or watch are not otherwise 

considered. In this way, estimated model parameters and unobserved daily 

heterogeneity in weather conditions are all specific to counties on days with 

conditions that may generate either a flash flood watch or flash flood warning. 

The econometric model for this analysis is a Poisson model of daily car 

crash counts, clustered by date. Let 
itY   be the observed number of car 

crashes for county i  in period t . itW  is a binary variable for flash flood warning 

treatment status, taking on a value of one if county i  received either a wireless or 

non-wireless warning for flash flood in period t  and is equal to zero otherwise.   

is a post regulatory dummy that takes on a value of one for all periods after the 

introduction of the WEA system. Let itX be a vector of other control variables 

such as time of day the alert was issued, day of the week, as well as weather 

related variables for daily precipitation and average wind speed. The variable iC  

is a vector of fixed effects at the county level and it
M represents fixed effects at 

the month by year level. The probability that itY y is represented in Equation 1 

below 
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(1)  Pr itY y   

 

    1 2 3exp

1 2 3exp

!

it t
yW

ite W

y

    
   

     
   it i tX C M

it i tX C M
 . 

Here, 
1 2 3, , ,    are parameters to be estimated and clustering by date accounts 

correlation in daily storm level heterogeneity between counties and allows for 

over-dispersion (Cameron and Trivedi 2005). 

The effect of the WEA system in Equation 1 is identified based upon 

difference-in-differences (DD) variation to compare the daily number of car 

accidents in treatment counties that received a WEA message for flash flood to (i) 

control counties that received a less severe flash flood watch message and (ii) 

counties that received a non-wireless flash flood warning in the pre-WEA era. 

Equation 2 displays the interaction of flash flood warning status ( itW ), and the 

post-regulatory dummy ( ) included in Equation 1 

(2) 1 2 3it it itW W W       .  

The parameter 1  accounts for baseline differences in car accident trends in flash 

flood warning counties versus watch counties. This parameter captures both the 

differential effect of flash flood warnings protocols on car accident outcomes as 

well as correlation in extreme weather conditions on these days, relative to days 

that receive only a flash flood watch. The parameter 2  captures changes in car 

accident trends and extreme weather conditions during the post-WEA period. 

Finally, the effect of the WEA system is identified in Equation 2 based upon the 



13 

 

interaction parameter 3 , which accounts for spatial and temporal heterogeneity 

in which counties are selected for WEA messages. However, as Ai and Norton 

(2003) and Puhani (2012) note, sign and significance of parameters for interaction 

terms from non-linear models cannot be interpreted directly. For this reason, I 

therefore stress the importance of marginal effects for interpreting the impact of 

WEA messages on the count of daily car crashes. 

Marginal effects are calculated for all parameters in the model. For non-

interaction terms, let itx  itX  and 
1 1

x  , Equation 3 represents the marginal 

effect of the covariate itx  on the daily count of car accidents 

(3) 
 

 1 1 2 3expxit

it

it

E Y
W

x
    


    


it i t

X C M . 

For interaction terms, the formulation of marginal effects is slightly more 

complicated. In a linear regression, estimates from DD models are recovered 

through the assumption of additive separability of the conditional expectation 

function. In a non-linear model, cross-group differences between counties and 

over time need not be equal (Puhani 2012). Instead, the treatment effect of WEA 

messages on the treated group is recovered as the difference between the observed 

outcome, itY , with a WEA message to the counterfactual potential outcome 

without WEA message,
 

0

itY . Let  , ,it it i tΩ X C M , the conditional expectation 

for the observed count of car accidents is  

(4)    1 2 3| 1, 1 expit itE Y W           itΩ . 
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Although the counterfactual outcome without WEA message cannot be directly 

observed, 0

itY can be parametrically estimated using parameters from Equation 1 

(Puhani 2012). The conditional expectation for the counterfactual count of car 

accidents without WEA message is  

(5)  0

1 2| 1, 1 expit itE Y W           itΩ . 

Equation 6 displays the difference between Equations 4 and 5 and represents the 

estimated marginal effect of WEA messages on daily car accidents 

(6)   0| 1, 1 | 1, 1it it it itE Y W E Y W           

    1 2 3 1 2exp exp           it itΩ Ω . 

Estimates from Equation 5 may be interpreted as the additive effect that 

the introduction of the WEA system has on daily incidence of car accidents 

relative to the previous, non-wireless system that existed prior to WEA 

introduction. Because the exponential function is strictly monotonic, the treatment 

effect of WEA messages in Equation 6 will have the same sign as the estimated 

parameter 3 , though significance of these terms may differ (Puhani 2012). A 

negative and significant estimate from Equation 6 would indicate that WEA 

messages tend to reduce the incidence of car accidents by conveying new 

information regarding the imminent threat of extreme weather. For instance, 

individuals that received a WEA message may be more likely to delay travel and 

avoid roadways during extreme weather periods, thereby reducing car accidents. 

Alternatively, car accidents may be reduced because individuals are more likely to 
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adopt precautionary driving behaviors in response to WEA messages, such as 

reducing speed and defensive driving techniques. 

Equation 1 allow for heterogeneity in which counties are selected for 

WEA treatment across space as well as baseline differences in the incidence of 

car crashes over time. The primary identifying assumption in Equation 6 is that 

controlling for other observables, there are no other unobservable factors that 

impact the incidence of car crash on days with WEA messages that are not 

common to either flash flood watch days, or days with flash flood warnings in the 

pre-WEA period. In robustness checks discussed in the results section, I test 

sensitivity of my results to this assumption by running several falsification tests. I 

conduct a temporal falsification test using observations from the pre-WEA period 

(July, 2011 – June, 2012) with false treatment beginning in January, 2012. This 

exercise is used to check for differential time trends in car accident patterns 

between flash flood warning and flash flood watch counties which may confound 

estimates of the effect of WEA messages on car accident outcomes. To test for 

unobserved spatial heterogeneity in which counties were selected for WEA 

messages, I also conduct a spatial falsification test. In this model I compare car 

accident outcomes in counties that share a border with a county that was issued a 

non-wireless flash flood warning or WEA message to counties that share a border 

only with a flash flood watch county. 
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III. Available Data 

Data used for this study are collected from two primary sources: emergency alert 

system (EAS) data from the National Oceanic and Atmospheric Administration 

(NOAA) and traffic outcome data from the Virginia Department of Transportation 

(VDOT). Emergency alerts are issued by the National Weather Service (NWS) for 

weather events impacting communities across the United States. NOAA maintains 

an online daily log of all WEA messages issued since program inception.
6
 Using 

these data, I collect information regarding the location and time of WEA 

messages for flash flood issued between July, 2012 and December, 2013 in the 

State of Virginia. To compare the effect of WEA messages for flash flood to 

warnings issued for similar weather events in the pre-WEA era (July, 2011- June, 

2012) and in flash flood watch counties, I collect data on all flash flood warnings 

and watches from NOAA’s Interactive Products Database. Data for historical 

flash flood warnings are available from 1986 to the present day but information 

on historical flash flood watches only exist since July, 2011. For both WEA and 

non-WEA events, alert logs contain information on the time the alert was issued, 

locations affected and type of weather event. 

I acquired car accident data from the Virginia Department of 

Transportation (VDOT), which collects information on the location and date for 

each car accident that occurs on public roads and highways in the State of 

Virginia. Using these data I determine the total number of car accidents for each 

day between 2011 and 2013 and for all counties and independent cities in 

                                                           
6
 WEA message logs are located here: http://weather.noaa.gov/pub/logs/heapstats/2013/ 

http://weather.noaa.gov/pub/logs/heapstats/2013/
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Virginia. Once aggregated to the county level, I merge the car accident database 

with the record of NOAA emergency alerts issued by county and by day. The 

outcome variable for this analysis is the daily count of car accidents per county. 

To allow sufficient time for alerting protocols to impact car crash patterns, if an 

emergency alert was issued after 10pm, I use accident totals from the day 

following the alert.
7
 I also determine the number of licensed drivers per county, in 

hundreds of thousands, based upon data provided by VDOT from the year 2012. 

My sample includes one treatment group and two overlapping control 

groups that serve as a basis of comparison to isolate the effect that WEA 

messages have on car crash patterns. The treatment group for this analysis 

comprises all counties that received a WEA message for flash flood on the day 

that the alert was issued in the post-WEA period. The first control group consists 

of all counties that received a non-wireless flash flood warning in the pre-WEA 

period. The second control group includes counties that were issued a less severe 

alert for a flash flood watch in either the pre- or post-WEA period but that were 

not also issued a flash flood warning. Observations from counties on days that do 

not fall into either the treatment group or one of the control groups are not 

considered in this analysis. 

In order to explain daily incidence of car accidents I collect data for 

several other important control variables. Table 1.2 provides summary statistics 

for covariates included in this analysis. The time of day the alert was issued is 

included as a categorical variable with six four-hour groups (12am-4am, 4am-

                                                           
7
 For reference, less than 5 percent of flash flood warnings were issued between 10pm - 12am 
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8am, 8am-12pm, etc.), with 12am-4am serving as the baseline category. This 

variable is used to capture differences in car accident patterns from alerts issued at 

different times of day, which may be common to both flash flood warnings and 

watches. In addition, I interact the dummy variable for flash flood warning status 

with emergency message time categories to assess the differential effect that 

emergency message timing has in counties that received a flash flood warning 

versus a flash flood watch.  

Time of alert may be important to explain car crash incidence, especially 

as alert timing overlaps with daily commute schedules. As an example, figure 1.1 

displays average hourly traffic volume for weekdays and weekends based upon 

VDOT data from 2011-2013. For weekdays, traffic volume peaks with morning 

and evening commuting traffic between 7am-9am and 4pm-7pm, respectively. On 

the weekends, traffic volume varies more smoothly throughout the day but 

reaches its highest level in the afternoon and early evening. Traffic volume is at 

its lowest level from approximately 12am-4am, which also serves as the baseline 

time category in my model. Emergency alerts that are timed to coincide with 

heavier volumes of traffic that occur as the population commutes to and from 

work may have a greater influence on both driver behavior as well as the number 

of cars on the road. I also include dummy variables for the day of week, with 

Sunday set as the baseline, to account for cyclical patterns in traffic volumes, 

which tend to peak during the workweek (Monday – Friday) and fall over the 

weekend. Month by year intercepts are used to account for other unobserved 

sources of temporal heterogeneity such as seasonal weather patterns and changing 
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rates of smartphone ownership. I also include county specific fixed effects to 

control for unobserved sources of spatial trends such as average daily traffic 

volume that may also impact car accident outcomes.  

To control for heterogeneous weather conditions that may impact car crash 

incidence, I collect data on per county daily averages for precipitation and wind 

speed from historical weather station data managed by NOAA’s National 

Climactic Data Center.
8
 For each day in my sample, I match counties to the 

closest neighboring active weather station collecting information on relevant 

weather related variables. For the vast majority of counties (85 percent), daily 

weather data are determined from weather stations located within county borders. 

Precipitation, measured in millimeters of rainfall per day, is expected to positively 

affect car crashes by decreasing road traction and visibility.
9
 Based upon previous 

research (Levine et al. 1995), which has generally found an insignificant 

relationship between wind and car accidents, I anticipate an ambiguous sign for 

wind speed, which is measured in meters per second. 

Table 1.3 provides a breakdown of the average daily counts of car 

accidents that occurred during the pre- and post-WEA periods among flash flood 

warning and watch counties. I report the number of accidents overall as well as 

per 100,000 licensed drivers. The average count of car accidents is elevated in 

counties that received a flash flood warning relative to conditions in flash flood 

watch counties. In the pre- and post-WEA periods, counties that received a flash 

                                                           
8
 NCDC queryable database of weather station data is located here http://www.ncdc.noaa.gov/ 

9
 I also calculate total daily snowfall for each county in my analysis but because most flash flood 

events occur in the spring and summer, no snowfall occurred on any of the dates in my analysis 

http://www.ncdc.noaa.gov/
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flood warning averaged approximately 26 percent and 19 percent more car 

accidents per 100,000 licensed drivers than flash flood watch counties, 

respectively. This increase in the number of car accidents is most likely due to 

inclement weather conditions that tend to accompany warning messages. On 

average, flash flood warning counties report approximately 24.1 mm of 

precipitation on alert days versus 10.0 mm in flash flood watch counties. Overall, 

there is a decrease in the number of car accidents reported in flash flood warning 

counties in the post-WEA versus the pre-WEA period. However, these numbers 

are not directly comparable because of differing populations of flash flood 

warning counties as well as heterogeneous weather conditions between the pre- 

and post-WEA periods. It is therefore necessary to examine the model of daily car 

crash counts developed in the following section to determine the aggregate effect 

of WEA messages on car crash outcomes. 

 

IV. Results 

Table 1.4 reports results of the Poisson model of daily car accident incidence in 

Virginia Counties clustered by date.
10

 All counties and dates included in this 

analysis received either a flash flood WEA message (during the post-WEA 

period), a flash flood warning (during the pre-WEA period), or a less severe flash 

flood watch (during either period). Table 1.5 provides average marginal effects 

for covariates included in this analysis. Coefficients from table 1.5 may be 

                                                           
10

 A negative binomial model of daily car accident counts yielded virtually identical results 



21 

 

interpreted as the average marginal effect of a deviation in observed covariate 

values on the daily count of car accidents per county. Standard errors are 

calculated using the delta method. 

Based upon results of table 1.6, day of the week has a significant effect on 

predicting car accidents. As expected, car accidents peak during the workweek 

when traffic volume is highest. Tuesdays and Fridays report the highest average 

count of car accidents and Sunday reports the lowest levels of car accidents. 

Consistent with previous studies, higher levels of precipitation tend to increase the 

daily count of car accidents, though this coefficient is significant only at the ten 

percent level. 

On average, slightly more daily car accidents occurred during the post-

WEA period, though this effect is not statistically significant and sensitive to 

which months are set as the baseline. Flash flood warning counties, from all 

periods, average more car accidents than flash flood watch counties and this result 

is significant at below the one percent level. This is consistent with the 

interpretation that that flash flood warning events are timed to coincide with the 

most extreme weather conditions. Thus, car accidents may be elevated on these 

days due to the more severe weather conditions which tend to accompany these 

events. 

The timing of alert messages for flash flood is an important predictor of 

the expected number of crashes. On average, days with emergency messages 

issued between 4am-8am report an increase in car accidents for both flash flood 

warning and watch counties, which is statistically significant at below the one 
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percent level. This may be due to the fact that alerts issued during this time 

immediately precede the typical morning rush hour traffic commute. As a result, 

peak inclement weather conditions may arrive during the time of day with the 

largest number of drivers on the road, causing a spike in car accidents. Compared 

to flash flood watch counties, flash flood warning counties report an average of -

1.52 fewer car accidents for alerts issued between 8am-4am, which is significant 

at below the one percent level. The large reduction in car accidents among flash 

flood warning counties during this time may be due to drivers responding to the 

perceived severity in weather conditions by delaying their morning commute until 

after the most extreme weather conditions have passed. However, only 1.2 percent 

of observations and 4.7 percent of flash flood warnings were reported between 

4am-8am, the lowest share of any time category. Thus, the large magnitude of this 

effect could also be explained by some other unusual correlation of county and 

weather driving conditions among the small set of observations reported during 

this period. 

The impact of WEA messages for flash flood is estimated based upon the 

interaction parameter of flash flood warning status and the post-WEA dummy 

variable. Table 1.6 provides a breakdown of the predicted change in car accidents 

due to the introduction of WEA messages, which is estimated based upon 

Equations 4-6. I calculate average change in car accidents overall, per 100,000 

licensed drivers and as a percentage change from the total number accidents 

without WEA message. Based upon these results, I predict an average of 3.38 car 

accidents with WEA message and 4.09 car accidents without WEA message. This 
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represents a difference of approximately -0.71 daily car accidents, or a reduction 

of approximately -17.3 percent compared to conditions without WEA message. 

Both of these results are statistically significant at below the one percent level.  

The National Highway Transit Safety Administration (NHTSA) estimates 

that the average cost of a car accident is approximately $22,000 in 2013 dollars 

(Blincoe et al. 2014).
11

 In total, 764 car accidents were reported in Virginia 

counties that received WEA messages for flash flood. Based upon predictions 

from this model, the introduction of the WEA system resulted in an expected 

reduction of approximately -160 car accidents relative to what would have 

occurred without WEA. Assuming that the national average cost of car accidents 

applies to observations from this model, WEA messages for flash flood 

contributed to an expected reduction of -$3.5 million in damages from car 

accidents in Virginia alone. 

 

A. Robustness Checks 

In this section, I test robustness of previous results to a variety of alternative 

specifications. Although my estimation results allow for heterogeneity in which 

counties are selected for flash flood warnings and WEA messages, my estimates 

may be confounded if diverging car accident trends exist between flash flood 

warning and watch counties over time. To test sensitivity of my results to 

unobserved time trends I conduct a temporal falsification tests using data from the 
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 NHTSA estimates that there were approximately 13.6 million car accidents in 2010 that caused 

economic damages of approximately $277 billion 



24 

 

pre-WEA period (July, 2011 – June, 2012) with hypothetical WEA treatment 

occurring in January of 2012. Covariate marginal effects are reported in table A1 

located in Appendix A, with marginal effects for the false WEA treatment effect 

reported in table A2. Based upon these results, there is no significant difference in 

the effect of flash flood warnings after false treatment (January, 2012 – June, 

2012) as compared to the period before (July, 2011 – December, 2011).
12

 

Previous results may also be biased, for instance, if regulators routinely 

and non-randomly target flash flood warnings to specific areas of the state, or if 

these warning procedures significantly changed after the introduction of WEA. 

Therefore, in table A3 I conduct a spatial falsification exercise to test sensitivity 

of results to unobserved sources of spatial heterogeneity. In table A4 I provide 

marginal effects for false WEA treatment. In this estimation I include 

observations from the pre- and post-WEA periods from untreated counties that 

share a border with a flash flood warning county, as well as untreated counties 

that exclusively border flash flood watch counties. Untreated counties that border 

areas that received flash flood warnings are considered false-treatment 

observations and counties that border flash flood watch counties are considered 

false-control observations. Based upon these results, I find no significant baseline 

differences in car accident patterns between flash flood warning versus flash flood 

watch counties or between flash flood warnings issued during the pre-WEA and 

post-WEA period. 

                                                           
12

 In unreported results, I also try estimating models with false treatment beginning variously in 

November, 2011, December, 2011, February, 2012 and March, 2012 with no change in 

significance of false treatment results. 
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In previous results, I cluster by date to account for correlation in storm 

severity, along with other daily varying car accident trends between counties. 

However, correlation may also exist between observations within the same county 

over time. To account for serial correlation in observations over time, I estimate 

an alternative fixed effect Poisson model of the daily count of car accidents with 

fixed effects at the county level. Unfortunately, average marginal effects are 

impossible to interpret from fixed effect Poisson models due to the exclusion of 

the fixed effects from the condition expectation function. As an alternative, table 

A5 provides the incident rate ratios (IRRs) for covariates from this model. 

Statistical significance for covariates are determined based upon the deviation of 

the IRR from one. IRRs can be interpreted as the multiplicative effect of 

covariates from the baseline and the deviation of the IRR from one indicates the 

percentage change in the count of car accidents due to a marginal increase in the 

covariate of interest. Significance levels of covariates from table A5 are little 

changed from those of table 1.5. In addition, table A5 suggests a reduction in the 

count of car accidents due to WEA messages that is comparable in magnitude and 

significance to results of tables 1.5 and 1.6.  

In table A6 I estimate a county fixed effect linear model, which is two-

way clustered at the date and county level and includes all variables from table 

1.4. Two-way clustered standard errors are calculated using the formulation 

proposed by Cameron, Gelbach and Miller (2011). Coefficients for covariates 

from linear models may be interpreted directly as marginal effects and are 

independent of other parameters from the model. Although the distribution of 
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count data is often highly non-normal, as noted by Angrist (1999), the conditional 

expectation function for discrete covariates can be linearly parameterized using a 

saturated model, regardless of the support of the dependent variable. Not all 

covariates in table A6 are discrete: daily precipitation and wind are represented as 

continuous variables. However, so long as the conditional expectation function is 

reasonably saturated, table A6 may still provide an approximation of the average 

marginal effect and significance for other saturated parameters, including the 

effect of WEA messages on daily car accident outcomes. Based upon table A6, I 

find a significant WEA messages for flash flood reduce an average of -0.86 daily 

car accidents, which is significant at below the one percent level. Compared to 

table 1.6, I predict a slightly larger reduction in car accidents, though this 

difference is statistically insignificant. Marginal effects for other parameters from 

this model are generally of the same sign as those reported in table 1.5, though 

magnitudes and significance levels do differ somewhat. 

In addition to the models discussed above, I also estimate a county fixed 

effect Poisson model using observations from all counties on all days, regardless 

of extreme weather warning status. In other models, I repeat results of tables 1.4-

1.6 but drop the months July, 2013 – December, 2013, to provide symmetric pre- 

and post-WEA time windows. I also estimate a model including additional 

intercepts for alert time with twelve two hour time blocks (i.e. 12am-2am, 2am-

4am, etc.). Additionally, I estimate other models with discretized decile 

categorical ranges for precipitation and wind speed and cubic polynomials for 
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these parameters. Results of these alternative models are available upon request 

but conclusions from these models conform to those reported in tables 1.5-1.6. 

 

V. Mechanisms for Car Accident Reduction 

In this section, I address potential mechanisms for car accident reductions due to 

WEA messages for flash flood. There are two non-mutually exclusive hypotheses 

that may explain the observed reductions in car accidents. One explanation is that 

individuals who receive a WEA message abandon or delay their travel plans until 

after the severe weather period has elapsed. Another explanation is that in 

response to WEA messages, drivers adopt defensive driving behaviors that help 

reduce their chances of being involved in a car accident. Whereas the later 

hypothesis could be discerned by analyzing individual behavioral outcomes, the 

former hypothesis is testable through an analysis of traffic flow data on days with 

WEA messages. 

Reductions in traffic volume may decrease hazard exposure to individuals 

who opt to avoid driving and may also result in spillover benefits to other drivers 

by reducing congestion during severe weather periods. I utilize a difference-in-

differences regression discontinuity (RD) model to assess the differential effect of 

WEA messages on traffic volume. I compare traffic volume in the hours before 

and after the issuance of a WEA flash flood warning during the post-WEA period 

(July, 2012 – December, 2013) and traffic volume before and after the issuance of 

a non-wireless flash flood warning during the pre-WEA period (July, 2011 – June, 

2012). Based upon the RD approach and assuming that commuting patterns and 
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other weather trends vary in a predictable manner throughout the day, flash flood 

warning treatment is as good as randomly assigned in the neighborhood of the 

discontinuity (Lee and Lemieux 2010). Under the hypothesis that WEA messages 

impact an individual’s driving decisions, we may expect that traffic volume is 

lower immediately following the issuance of a WEA message than would be 

predicted using existing non-wireless warning protocols. Previous research has 

estimated RD models with fixed effects (Hoxby 2000; Pettersson‐Lidbom 2008). 

However, to the best of my knowledge, this is the first study to implement a 

difference-in-differences RD model. 

The econometric model used for this analysis is estimated as follows. Let 

iqdhV  be the count of cars per hour for station i  in quarter q  (e.g. July, 2011 – 

September, 2011), on day d and hour h . 
iqhV represents the average count of cars 

from station i  for the quarter q , which is calculated separately for every hour of 

the day and for each day of the week.  i q hV  is based upon an average of qn  

observations per quarter, typically about 13, as this is the approximate number of 

weeks per quarter. As demonstrated in figure 1.1, traffic volume tends to follow a 

predictable daily pattern due to daily commuting schedules. Therefore, I construct 

the dependent variable 
idhV , displayed in Equation 7  

(7) 
iqdh

iqh

d q q

V
V

n

   

 idh iqdh iqhV V V   . 
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idhV  represents traffic volume net average hourly and station specific quarterly 

trends and controls for the influence of cyclical commuting patterns on traffic 

volume. Positive values of 
idhV indicate above trend traffic conditions and negative 

values indicate below trend conditions. Deviations in traffic volume from mean 

trends may be due to extreme weather conditions, weather alerting protocols, or 

other unobserved sources of heterogeneity. 

Let idh idc h   be the running variable, where 
id

  represents the 

time of day that the alert was issued. idhE  is a dummy variable that takes on a 

value of one for all hours after an extreme weather warning (i.e. 0idhc  ). 

 0,1  designates the type of alert sent; 0   indicates a non-wireless flash 

flood warning from the pre-WEA period and 1   indicates a wireless flash 

flood warning from the post-WEA period. Let id be fixed effects at the station by 

day level and idh  be a disturbance term clustered at the traffic monitoring station 

level. Equation 8 displays the predicted effect of WEA messages on traffic 

volume 

(8)  idh idh idh id idhV E f c             ,   

 where idhh c h    and  0,1 . 

Equation 8 is estimated separately for pre-WEA and post-WEA flash flood 

warnings and 
 is the parameter to be estimated. I include fixed effects at the 

station by day level to de-mean the regression of any unrelated trends in traffic 
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volume that are common to the traffic monitoring station on days when flash 

flood warnings are issued. The variables h
 and h

represent the bandwidth of 

the data used. The function  idhf c 
 is the control function and is included to 

capture unobservable trends in traffic volume such as the effect inclement 

weather, which may differ on the left hand side versus right hand side of the 

discontinuity (i.e. before and after the alert). However, for purposes of 

identification these baseline trends in traffic volume are assumed to vary 

smoothly in the region of the discontinuity.  

The parameter 
 represents the average treatment effect on the treated 

(ATT) for non-wireless and wireless alerts. A negative and significant estimate of 


would indicate a statistical decrease in traffic volume in response to flash 

flood warning messages. Let 
1 0WEA    , which is identified through 

difference-in-differences variation. Assuming that WEA messages contribute to a 

greater adoption of hazard mitigating behavior than would be observed using 

existing non-wireless protocols, we may expect 0WEA  , with all other 

conditions being equal. This implies a larger statistical decrease in traffic volume 

for post-WEA flash flood warning messages than for pre-WEA messages.  

Traffic volume for this analysis is reported in hourly increments and is 

based upon continuous traffic monitoring station data provided by the VDOT. 

There are a total of 435 traffic monitoring stations in Virginia, located in 92 out of 

134 counties in the state. The locations of these stations are displayed in figure 

A2, in Appendix A. Monitoring stations tend to be concentrated primarily near 

large urban centers, such as Virginia Beach and Richmond, as well as on 
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interstates and highways. My sample consists of hourly traffic volume from the 

day of alert for stations located in counties that received either a pre-WEA or 

post-WEA flash flood warning. Table 1.7 lists the average count of cars per hour 

and deviation in vehicle count from quarterly station level trends in hourly traffic 

volume for pre-WEA and post-WEA messages. For all hours of the day, vehicle 

count is between 10-20 percent lower for post-WEA messages than for pre-WEA 

messages. However, both alert types follow similar trends throughout the day, 

consistent with the weekday commuting patterns displayed in figure 1.1. On 

average, vehicle count is below station level hourly trends for both alert types. 

Previous research has found that traffic volume tends to decrease in response to 

increased precipitation (Keay and Simmonds 2005). Thus, below trend traffic 

volume may be due in part to the arrival of extreme weather conditions. 

The running variable for this analysis is hours from the issuance of a flash 

flood warning, which may take a value in the interval -12 to 12. Negative values 

indicate hours prior to the alert and positive values indicate hours afterward. I 

adjust the running variable to account for the minute within the hour that the alert 

was issued. Thirty minutes passed the hour is treated as the zero point for the 

discontinuity. As an example, for a flash flood warning issued precisely at 

8:20am, the value of the running variable for the periods of 7-8am and 9-10am 

would be -0.83 and 1.17, respectively. This is due to the fact that the period 7-

8am is closer, on average, to the boundary than the period 9-10am. In my primary 

specification, I also drop any hour during which a flash flood warning was issued 
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if the alert was sent after the 15
th

 minute and before the 45
th

 minute of the hour.
13

 

For instance, from the previous example, I would drop the hour 8-9am. This is 

due to the fact that a substantial share of the hour occurred before as well as after 

the alert was issued and would tend to attenuate my ATT estimates near the 

boundary. 

To estimate the effect of WEA messages on traffic volume, I use a non-

parametric, local linear regression discontinuity model. The dependent variable is 

the count of cars per hour, net quarterly station specific trends by day of week and 

hour of day, as illustrated in Equation 7. I proceed by first de-meaning the data of 

average station by day fixed effects. Then I use these residuals to fit a local linear 

regression of the running variable using a triangular kernel function and optimal 

bandwidth calculated based upon the method proposed by Imbens and 

Kalyanaraman (2012). I calculate the Local Wald Estimate of the impact of pre-

WEA and post-WEA flash flood warnings on hourly traffic volume. The 

difference between these two calculations represents the difference-in-differences 

estimate of the effect of WEA messages on traffic volume. This entire process is 

bootstrapped 1000 times to provide asymptotically consistent RD estimates for 

purposes of hypothesis testing. 

 

 

 

                                                           
13

 In unreported results, I also experiment with alternative restrictions from the hour of the 

discontinuity such as dropping observations after the 10th minute and before the 50th of the hour, 

or after the 20th minute and before the 40th minute, as well as dropping no observations and 

dropping all observations from the hour of the discontinuity. 
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A. Traffic Volume Results 

Table 1.8 reports the results of a set of RD models of the impact of WEA 

messages on traffic volume. I estimate several alternative specifications and for 

each model, I report the estimated average treatment effect on the treated (ATT) 

of non-wireless flash flood warnings, issued during the pre-WEA period, wireless 

alerts issued during the post-WEA period and the difference between these two 

estimates. Model 1 is estimated based upon Equations 7-8 and includes 

observations from alerts issued during all times of day. I exclude station by day 

fixed effects in model 2. Finally, in models 3 and 4 I conduct falsification tests 

using data from the day immediately preceding flash flood warnings, as well as 

data from counties neighboring non-wireless and wireless flash flood warning 

counties, respectively. These falsification models are estimated with restrictions 

identical to those of model 1. Assuming that the RD method is valid for models 1 

and 2 we should expect no significant RD effect in either model 3 or 4.  

In models 1 and 2, the baseline effect of non-wireless alerts on traffic is 

positive but insignificant. On the other hand, compared to trends immediately 

prior, traffic volume decreases by a statistically significant amount following a 

WEA flash flood warning. Relative to traffic volume conditions following non-

wireless alerts, I find that WEA messages reduced traffic volume by 

approximately -38 cars per hour. These results are statistically significant at below 

the one percent level and support the hypothesis that WEA messages help 

contribute to reductions in traffic volume by encouraging individuals to delay or 

cancel travel during severe weather periods. An average of 947 cars per hour were 
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recorded during the hour WEA messages were sent, a -38 car reduction, as 

predicted in model 1, represents a decrease in traffic volume by -4.0 percent 

relative to traffic volume using only non-wireless alerting protocols. 

Figure 2 provides a graphical representation of the effect of pre-WEA and 

post-WEA messages based upon the local linear regression estimated in model 1. 

Traffic volume is represented on the vertical axis, controlling for hourly volume 

trends and station by day fixed effects. Hours from alert is listed on the horizontal 

axis. Pre-WEA traffic volume trends are represented by the solid black line and 

pre-WEA trends are represented by the dashed line. The vertical line in the middle 

of the figure represents the time the alert was issued. Observations to the left of 

the vertical line occurred prior to the issuance of an alert and observations to the 

right occurred after the alert. For pre-WEA observations prior to the alert, traffic 

volume is decreasing over time and reaches a nadir approximately three hours 

before the non-wireless flash flood warning. After this, volume begins to rise. 

Traffic volume reaches a peak approximately seven hours after the alert before 

falling back to pre-alert levels. As is the case with pre-WEA observations, traffic 

volume is decreasing in the hours prior to the issuance of a wireless alert during 

the post-WEA period. At the discontinuity, there is a sharp decrease in traffic 

volume, and in the hours after the WEA message is sent, traffic volume gradually 

rises back to pre-alert levels but does not reach a new peak, as is the case with 

non-wireless flash flood warnings. 

Due to daily commute schedule and other driving activity, traffic volume 

is generally at its highest during the daytime hours and lowest during the night. I 
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therefore explore potential heterogeneity in the effect of WEA messages by time 

of day by dividing the sample of flash flood warning messages into four six hour 

groups. This includes alert messages sent between 12am-6am, 6am-12pm, 12pm-

6pm and 6pm-12am, respectively. Results of these models are reported in table 

A7 in Appendix A and are estimated with restrictions identical to model 1. I 

predict statistically significant reductions in traffic volume for all times of day 

ranging between -34 to -49 cars per hour, with slightly larger reduction in traffic 

volume coinciding with the rush hour traffic periods of 6am-12pm and 12pm-

6pm. WEA messages may have a more pronounced effect on traffic volume 

during the high volume, daytime hours due to the larger share of potential drivers 

on the road. 

To test sensitivity of the control function to unobserved trends in traffic 

volume, I conduct temporal falsification tests in models 3-4, reported in table 1.8. 

Model 3 uses data from the day immediately preceding the issuance of flash flood 

warnings and is estimated with the same restrictions as model 1.
14

 There is no 

evidence of a statistically significant false treatment effect for pre-WEA or post-

WEA messages, nor is there a significant difference between these estimates. 

Figure A3, located in Appendix A provides a graphical representation of control 

functions from model 3. Finally, in model 4 I conduct a falsification test using 

data from neighboring counties that did not receive wireless or non-wireless flash 

flood warning. Figure A4, provides a graph of the control functions from this 
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 The slightly differing sample populations in Model 5, versus Model 1, is due to a handful of 

continuous monitoring stations that were active on the day of a flash flood warning that were 

inactive the day prior 
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model. Although the graph of the control functions for the neighboring counties 

looks similar to those of figure 1.2, at the boundary, I find no statistically 

significant effect of either wireless or non-wireless alerts on traffic volume.  

 

VI. Concluding Remarks 

WEA is among the only emergency message systems in the world that distributes 

geographically explicit emergency messages directly to mobile devices on a 

strictly opt-out basis. This allows regulators to send tailored emergency messages 

directly to individuals in harm’s way and suggest hazard mitigating behaviors to 

minimize their exposure to risk. In this article, I investigate the impact of WEA 

messages for flash flood on car accident outcomes and traffic volume in the State 

of Virginia between 2011 and 2013. I isolate the effect of WEA messages by 

using a difference-in-differences model to compare car accidents in treatment 

counties that received a WEA message for flash flood to counties that received a 

non-wireless flash flood warning during the pre-WEA period and to control 

counties which received an alert for a less severe flash flood watch during either 

the pre- or post-WEA periods. Compared to the existing non-wireless alert 

system, my analysis suggests that WEA messages may reduce daily car accident 

counts by -17.3 percent in the event of flash flood. This result is statistically 

significant at below the one percent level. 

I also address potential mechanisms for reductions in car accidents 

through an analysis of traffic volume following wireless and non-wireless flash 

flood warnings. This analysis uses hourly traffic volume data from just before and 
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just after a flash flood warning message is distributed during either the pre-WEA 

or post-WEA period. I identify the effect of WEA messages using a differences-

in-differences regression discontinuity model. I find that traffic volume is reduced 

by approximately -38 cars per hour (-4.0 percent) following the issuance of a 

WEA message relative to traffic volume conditions following non-wireless flash 

flood warnings. These results suggest that some individuals respond to WEA 

messages by avoiding roadways during inclement weather periods, thereby 

lowering their exposure to risk and contributing to reductions in car accident 

totals. 

For purposes of this analysis, I have focused on reductions in car accidents 

as indication of overall hazard mitigation in response to WEA messages. Future 

research could be used to study the effect of WEA messages on other traffic 

outcomes such as car accident injuries and fatalities. The empirical strategy used 

in this analysis could easily be applied to study the effect of WEA messages on 

car accident outcomes in other regions of the United States. Expanding the region 

of analysis could also be used to study the effect of WEA messages for a more 

diverse set of extreme weather events, such as hurricanes, dust storms or in 

regions with a more frequent occurrence of tornadoes.  
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TABLE 1.1: TOTAL NUMBER OF EXTREME WEATHER ALERT DAYS AND COUNTIES 

IN THE PRE-WEA PERIOD (JULY, 2011 – JUNE, 2012) AND POST-WEA PERIOD 

(JULY, 2012 – DECEMBER, 2013) 

 

Pre-WEA Period Post-WEA Period 

 

Non-wireless Warning Wireless Warning Other Warnings 

Warning Days Counties Days Counties Days Counties 

Flash Flood 49 259 40 226 27 86 

Tornado 22 131 8 43 8 30 

All 59 390 44 269 31 116 

 

 

TABLE 1.3: MEAN AND STANDARD DEVIATION OF CAR CRASHES FOR FLASH FLOOD 

WARNING AND FLASH FLOOD WATCH COUNTIES (STANDARD DEVIATION IN 

PARENTHESES) 

 

Pre-WEA Period Post-WEA Period 

Warning Warning Watch Warning Watch 

Total Daily Crashes 5.247 2.563 3.381 2.897 

 

(9.265) (5.844) (7.489) (5.777) 

Crashes per 100,000 

Licensed Drivers 

6.697 5.318 7.701 6.438 

(6.877) (6.917) (12.450) (7.174) 
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TABLE 1.2: COVARIATE SUMMARY STATISTICS FOR FLASH FLOOD WARNINGS AND 

WATCHES 

Variables Mean 

Standard 

Deviation Min Max 

WEA Period x Warning County 

       WEA Period 0.5968 0.4907 0 1 

   Warning County 0.2622 0.4399 0 1 

   WEA Period x  Warning County 0.1222 0.3276 0 1 

Alert Time of Day 

       12am - 4am 0.1022 0.3029 0 1 

   4am - 8am 0.1016 0.3022 0 1 

   8am - 12pm 0.1497 0.3569 0 1 

   12pm - 4pm 0.1665 0.3726 0 1 

   4pm - 8pm 0.3595 0.4800 0 1 

   8pm - 12am 0.1205 0.3257 0 1 

Day of Week 

       Sunday 0.1108 0.3140 0 1 

   Monday 0.1670 0.3731 0 1 

   Tuesday 0.1557 0.3626 0 1 

   Wednesday 0.1724 0.3779 0 1 

   Thursday 0.1622 0.3687 0 1 

   Friday 0.1341 0.3408 0 1 

   Saturday 0.0978 0.2972 0 1 

Weather Controls 

       Precipitation (mm) 13.7334 21.8326 0 181.1 

   Wind Speed (m/s) 1.4414 1.7595 0 9.8000 

   Licensed Drivers (100,000s) 0.5161 1.1024 0.0197 7.8890 

Observations 1850 

   Number of Dates 133 
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TABLE 1.4: DIFFERENCE-IN-DIFFERENCES (DD) POISSON MODEL FOR DAILY 

COUNT OF CAR ACCIDENTS 

Variables Coefficient 

Standard 

Error 

WEA Period x Warning County 

     WEA Period 0.0496 0.2162 

   Warning County 0.2921*** 0.0934 

   WEA Period x  Warning 

County -0.1903*** 0.0668 

Alert Time of Day
a
 

     4am - 8am 0.1404*** 0.0492 

   8am - 12pm -0.0075 0.0657 

   12pm - 4pm 0.0181 0.0867 

   4pm - 8pm 0.0197 0.0686 

   8pm - 12am 0.0331 0.1576 

Warning County x Alert Time 

of Day
a
   

   Warning County x 4am - 8am -0.4403*** 0.1655 

   Warning County x 8am - 12pm 0.1075 0.3482 

   Warning County x 12pm - 4pm 0.0698 0.1298 

   Warning County x 4pm - 8pm 0.0610 0.1085 

   Warning County x 8pm - 12am -0.1901 0.1871 

Day of Week   

   Monday 0.4106*** 0.0698 

   Tuesday 0.5675*** 0.0865 

   Wednesday 0.4388*** 0.0756 

   Thursday 0.4423*** 0.0622 

   Friday 0.5049*** 0.0711 

   Saturday 0.4055*** 0.0844 

Weather Controls   

   Precipitation (mm) 0.0014* 0.0008 

   Wind Speed (m/s) -0.0287 0.0177 

   Constant 0.0034 0.3304 

Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 1850  

Number of Dates 133   

***Significant at the 1% level; **Significant at the 5% percent 

level; *Significant at the 10% level 
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a
Baseline time category of 12am-4am 

 

 

 

TABLE 1.5: AVERAGE MARGINAL EFFECTS FOR COVARIATES ON DAILY COUNT OF 

CAR ACCIDENTS 

Variables Coefficient 

Standard 

Error 

WEA Period x Warning County 

     WEA Period 0.1450 0.6170 

   Warning County 1.1087*** 0.3190 

   WEA Period x  Warning 

County -0.7086*** 0.2637 

Alert Time of Day
a
 

     4am - 8am 0.4705*** 0.1651 

   8am - 12pm -0.0234 0.2043 

   12pm - 4pm 0.0569 0.2732 

   4pm - 8pm 0.0622 0.2154 

   8pm - 12am 0.1052 0.5044 

Warning County x Alert Time 

of Day
a
   

   Warning County x 4am - 8am -1.5868*** 0.5299 

   Warning County x 8am - 12pm 0.4362 1.4877 

   Warning County x 12pm - 4pm 0.2850 0.5204 

   Warning County x 4pm - 8pm 0.2485 0.4319 

   Warning County x 8pm - 12am -0.6927 0.7389 

Day of Week   

   Monday 1.0822*** 0.1897 

   Tuesday 1.6281*** 0.2687 

   Wednesday 1.1743*** 0.2020 

   Thursday 1.1857*** 0.1678 

   Friday 1.4000*** 0.2093 

   Saturday 1.0658*** 0.2354 

Weather Controls   

   Precipitation (mm) 0.0044* 0.0025 

   Wind Speed (m/s) -0.0919 0.0567 

Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 1850  
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Number of Dates 133   

***Significant at the 1% level; **Significant at the 5% percent 

level; *Significant at the 10% level 
a
Baseline time category of 12am-4am 

 

 

 

 

TABLE 1.6: CHANGE IN CAR ACCIDENT COUNT CONDITIONAL ON FLASH FLOOD 

WARNING STATUS AND IN POST-WEA PERIOD (STANDARD ERRORS IN 

PARENTHESES) 

Warning With WEA 

Without 

WEA 

DD 

Treatment 

Effect 

Per 100,000 

Licensed 

Drivers 

Percent 

Change 

Flash Flood 3.381*** 4.089*** -0.709*** -1.388*** -17.329*** 

 

(0.125) (0.254) (0.264) (0.507) (5.522) 

***Significant at the 1% level; **Significant at the 5% percent level; *Significant at the 10% level 

 

 

TABLE 1.7: AVERAGE TRAFFIC VOLUME (COUNT OF CARS) BY HOUR OF THE DAY 

FOR PRE-WEA AND POST-WEA FLASH FLOOD WARNINGS 

 

Raw Traffic Volume Deviation from Hourly 

Average 

Hour 

Pre-WEA 

Volume 

Post-WEA 

Volume 

Pre-WEA 

Volume 

Post-WEA 

Volume 

   12am - 1am 292 259 -59 1 

   1am - 2am 204 178 -36 -1 

   2am - 3am 172 155 -31 0 

   3am - 4am 185 164 -26 1 

   4am - 5am 318 266 -27 6 

   5am - 6am 704 602 -38 12 

   6am - 7am 1211 1054 -51 17 

   7am - 8am 1694 1365 -52 -5 

   8am - 9am 1726 1383 -61 -1 

   9am - 10am 1567 1339 -92 8 

   10am - 11am 1568 1351 -105 1 

   11am - 12pm 1629 1405 -113 11 

   12pm - 1pm 1715 1487 -112 16 

   1pm - 2pm 1725 1510 -130 -3 



43 

 

   2pm - 3pm 1823 1577 -151 5 

   3pm - 4pm 1958 1731 -160 -6 

   4pm - 5pm 2041 1753 -188 -29 

   5pm - 6pm 2059 1778 -201 -36 

   6pm - 7pm 1706 1489 -194 -40 

   7pm - 8pm 1329 1135 -162 -46 

   8pm - 9pm 1026 912 -164 -29 

   9pm - 10pm 803 750 -120 -22 

   10pm - 11pm 665 511 -109 -14 

   11pm - 12am 442 394 -85 -4 

 

TABLE 1.8: REGRESSION DISCONTINUITY MODELS OF IMPACT OF PRE-WEA AND 

POST-WEA FLASH FLOOD WARNINGS ON TRAFFIC VOLUME (BOOTSTRAPPED 

STANDARD ERRORS LISTED IN PARENTHESES) 

 

 
WEA Flash Flood 

Warning Falsification Tests 

  (1) (2) (3) (4) 

Pre-WEA 8.83 8.86 -4.1 3.12 

 

(7.79) (7.21) (7.75) (5.49) 

Post-WEA -29.02*** -30.5*** -0.39 -14.87 

 

(8.91) (8.76) (9.19) (9.97) 

Difference -37.85*** -39.35*** 3.71 -17.99 

 

(11.21) (10.92) (12.08) (11.2) 

Station-Day FE Yes No Yes Yes 

Stations 368 368 368 389 

Observations 34769 34769 34557 53051 

***Significant at the 1% level; **Significant at the 5% percent level; 

*Significant at the 10% level 

Based upon 1,000 bootstrapped replications 

Model 1 uses a sample of alerts from all hours of the day and includes 

station by day fixed effects, Model 2 excludes station by day fixed effects 

but is otherwise identical to Model 1. Models 3 and 4 present falsification 

tests using data from the day immediately prior to flash flood warnings 

and from counties neighboring flash flood warning counties, respectively. 
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FIGURE 1.1. HOURLY TRAFFIC VOLUME BY WEEKDAY AND WEEKEND IN 

VIRGINIA (2011-2013) 
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Notes: Controlling for hourly trends by quarter-station and station by day fixed effects 

FIGURE 1.2. LOCAL LINEAR REGRESSION OF HOURS FROM ALERT ON TRAFFIC VOLUME FROM MODEL 1  
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Chapter 2: Additionality and Forest Conservation Policy for Residential 

Development 

 

Forest cover provides ecosystem services and amenities that are not fully 

considered in private landowner decisions. Substantial work has analyzed the 

targeting of voluntary incentive payments for rural landowners to encourage 

forest cover retention and the provision of ecosystem services and amenities (e.g., 

Nelson et al. 2008; Lewis, Plantinga and Wu 2009; Lewis et al. 2011; Lawler et 

al. 2014). The incentive-based policies in these studies have incorporated 

important aspects into targeting payments such as the incomplete information on 

landowner opportunity costs and nonlinear forest benefits for habitat preservation. 

Other research has focused on land-use regulatory policies using parcel-level 

models of residential development to examine the effects of regulations such as 

open space clustering requirements (Irwin and Bockstael 2004), zoning (Newburn 

and Berck 2006; Lewis, Provencher, and Butsic 2009; Butsic, Lewis, and Ludwig 

2011), and permitting (Wrenn and Irwin 2015). Meanwhile, the effect of forest 

conservation regulations on residential development has received less attention. 

Two exceptions are Lichtenberg, Tra, and Hardie (2007) and Lichtenberg and 

Hardie (2007) who assess how the Forest Conservation Act (FCA) in Maryland 

influences residential density and the provision of open space amenities within 

subdivisions. They find that forest conservation requirements crowd out public 

non-forested open space and reduce residential density. Their analysis, however, 
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relies only on parcels already converted to subdivision after the FCA was adopted 

rather than analyze the effect of FCA regulations on the dynamic process of 

residential land conversion. 

The purpose of this study is to analyze the heterogeneous effect of the 

FCA on residential development and estimate the additionality in forest cover due 

to this regulation. We use a spatially explicit panel dataset of residential 

subdivisions during 1985-2000 in Baltimore County, Maryland. The econometric 

model is a panel Heckman selection model with two stages that are jointly 

estimated. The first stage is a panel probit model of the landowner decision to 

develop or remain undeveloped. In the second stage, we estimate the change in 

the percentage of forest cover on the property, conditional on development in the 

first stage. The FCA was adopted in 1993 allowing us to model landowner 

development decisions during periods before (1985-1992) and after (1993-2000) 

the FCA. Land-use decisions are assumed to be a function of the existing forest 

cover, zoning, distance to Baltimore City, riparian buffer area, slope, 

neighborhood housing prices, and other parcel attributes. To characterize parcel-

level forest cover change, we utilize satellite-based data from the North American 

Forest Dynamics Project measuring forest cover on roughly a biennial basis 

between 1985 and 2004.  

Our analysis yields several main results. Prior to the FCA, forest cover 

decreased following residential development across the entire distribution of 

existing forest cover values. After the FCA, forest cover increased on average for 

developed parcels with lower levels of existing forest cover between 0-60%. 
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However, parcels with the highest levels of existing forest cover have significant 

decreases in forest cover even after the FCA, suggesting that parcels with the 

most intact forest cover continue to have fragmentation. Overall, there is an 

expected increase in total forest cover of approximately 23% on subdivisions with 

the FCA relative to without the regulation, according to landscape-level 

simulation analysis in the region. 

This research makes several contributions to the literature. This is the first 

study, to our knowledge, that combines analyses of fine-scale panel data on forest 

cover change from satellite imagery and spatially explicit parcel-level modeling 

on residential development decisions. Importantly, we are able to more accurately 

assess the initial level of existing forest cover on developable parcels and the 

partial loss in forest cover that occurs on residential subdivisions. Forest land 

converted to urban development in prior studies is often implicitly assumed to 

result in a complete loss of forest, thereby overestimating the environmental 

damages from development. In our study, we empirically estimate forest cover 

change with data from satellite imagery in contrast to previous studies relying on 

assumptions between development and forest cover loss. Furthermore, because 

our analysis spans periods before and after the FCA, this allows us to provide 

baseline estimates of forest loss in the pre-regulatory period in order to provide 

potential estimates of additionality in forest cover achieved in the post-regulatory 

period. The FCA in Maryland is the only statewide forest conservation regulation 

in the United States that focuses on forest retention and replanting requirements 

within residential subdivisions. Our analysis suggests that the implementation of 
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the FCA provided an increase in the level of forest area and could provide 

guidance to other regions interested in implementing similar policies to promote 

forest conservation in areas threatened by residential development. 

 

I. Policy Background on Maryland’s Forest Conservation Act 

Forest cover loss is a major concern for states, such as Maryland, that have 

experienced rapid urban development. The proportion of developed land in the 

entire state of Maryland more than doubled from 8.9% in 1973 to 18.2% in 2000; 

and of the 546,000 acres of newly developed land, low-density residential 

development accounts for 62% (Irwin and Bockstael 2007).
15

 Forest cover in 

urban areas can provide amenity values to nearby residents as found in hedonic 

studies (e.g., Tyrväinen and Miettinen 2000; Sander, Polasky, and Haight 2010), 

in addition to other social benefits such as carbon sequestration and storage and 

reduction in air pollution, stormwater runoff and urban heat island effects. 

Meeting goals for water quality improvements in local waterways and the 

Chesapeake Bay has increased attention on the importance of maintaining and 

restoring forested areas. Priority areas for forest protection and restoration include 

environmentally sensitive areas, such as riparian buffers, 100-year floodplains, 

steep slopes and critical habitat. 

The Forest Conservation Act (FCA) was passed as a statewide law by the 

Maryland legislature in 1991 and implemented locally by county and municipal 

                                                           
15

 Irwin and Bockstael (2007) point out that the urban footprint in Burchfield et al. (2006) is based 

on land cover classification from Landsat imagery which can only accurately detect higher density 

urban development at approximately greater than one housing unit per acre; however, it often 

cannot distinguish lower density exurban development on septic systems at less than one housing 

unit per acre from extensive land uses (e.g., agricultural and forestry uses). 
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governments in 1993. Starting in January 1993, the law applies to any subdivision 

development with grading over 40,000 square feet (approximately one acre) and 

is designed to reduce forest loss following property development. The FCA does 

not apply to existing uses on parcels, such as working farms that are not 

undergoing subdivision development. Prior to subdivision development, a 

landowner completes a forest conservation plan (FCP) that specifies the forest 

conservation requirement on the property, including a plan for retaining existing 

forest cover and new tree plantings (Galvin, Wilson and Honeczy 2000).
16

  The 

FCP must be approved by county planning agencies as part of the overall 

subdivision approval process for land use and environmental permitting. 

Thresholds for afforestation and conservation under the FCA regulations 

are determined based on the existing forest cover and the prevailing zoning. The 

afforestation threshold is twenty percent in regions zoned for either agricultural 

and resource areas or medium residential areas. For parcels with less than twenty 

percent existing forest cover, the landowner must plant new trees up to the 

afforestation threshold, even if no trees are cleared in the process of development. 

The conservation threshold is fifty percent in regions zoned for agricultural and 

resource areas and twenty-five percent when zoned for medium residential areas. 

In order to avoid replanting requirements entirely, a landowner must retain at least 

twenty percent of existing forest cover above the conservation threshold, which is 

referred to as the break-even point. Forest land cleared below the break-even 

                                                           
16

 The landowner may also meet the conservation requirement through offsite mitigation.  Offsite 

forest mitigation is relatively uncommon for our study region in rural Baltimore County, 

representing less than 10% of forest acres conserved based on available data. 
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point but above the conservation threshold must be replanted at one-fourth the 

amount the forest is cleared. Forest land must be replanted at twice the amount 

cleared below the conservation threshold.
17

 Prior to the adoption of FCA 

regulations, there were no afforestation or conservation thresholds for the entire 

region.  

II. Conceptual Model 

We present a simple illustrative economic model on how the introduction of 

regulatory costs related to compliance with the FCA are expected to influence 

landowner decisions on the timing of development and forest cover change. We 

assume that the landowner is a profit-maximizing agent that presently owns a 

parcel in an undeveloped land use (e.g., agriculture, forestry) and is considering 

the irreversible decision to convert the parcel to residential development at some 

time  T. The undeveloped parcel has percent existing forest cover F and a vector 

of other parcel attributes X that affect the benefits and costs of the returns in the 

existing and developed land uses. 

If the parcel is developed, the amount of existing forest cover removed on 

the subdivision development is d, where 0d  . Forest cover after development is 

 , , ,F d d F      , which is the existing forest cover before development 

F minus existing forest cover removed d plus forest planting mandated under the 

FCA  , , ,d F   . Mandated forest planting  , , ,d F    depends upon the 

                                                           
17

 For further details on FCA requirements, see the Chesapeake Bay Foundation “A Citizen’s 

Guide to the Forest Conservation Act in Maryland” http://www.cbf.org/document.doc?id=148. 

http://www.cbf.org/document.doc?id=148
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amount of forest cover removed, existing forest cover as well as the afforestation 

and conservation thresholds,  and  , respectively. For simplicity, here we focus 

on the conservation threshold but not the break-even point, though similar results 

would be obtained if considering both. For parcels with percent existing forest 

cover below the afforestation threshold 0 F   , the landowner must meet the 

afforestation requirement equal to F   and must also replant any forest cover 

removed at double the amount cleared, such that  , , , 2d F F d      . 

Parcels with existing forest cover above the afforestation threshold but below the 

conservation threshold F    have no afforestation requirements but must 

replant any forest cover removed at double the amount cleared, such that 

 , , , 2d F d    . Parcels with percent existing forest cover above the 

conservation threshold 100F    have excess forest cover F   that may be 

cleared without penalty and only are required to replant for the portion of forest 

cover removed that falls below the conservation threshold. Hence, parcels with 

high existing forest cover in the range 100F   have excess forest cover, such 

that  2 d F       for d F   and  0   for d F   . Note that 0   

in the absence of the FCA for all parcels. 

Following the conceptual framework of Capozza and Helsley (1989), the 

landowner choses the optimal timing of development *T  and the removal of 

existing forest cover on the subdivision 
*d  to maximize profits 
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(1)         0,
max , , , , , , ,

T
u rt s rt rT

TT d
R F X e dt R F d X t e dt C d X e  


       , 

where r is the interest rate. The first term in equation 1 is the present value of rent 

in the undeveloped use  ,uR F X  from time 0t   to the conversion time *T , 

which is a function of parcel attributes X related to land quality (e.g., soil quality) 

and the existing forest cover F for forestry or cleared for agriculture. The second 

term is present value of rents from subdivision development  , ,sR X t  from the 

conversion time *T onward. The rent in subdivision development is a function of 

the forest cover after development  , other parcel attributes X (e.g., accessibility 

to employment, parcel area, etc.), and is assumed to be increasing over time due 

to income and population growth. The last term is the fixed cost of residential 

development, which occurs at conversion time *T  and is discounted to the 

present. The fixed cost of residential development  , , , , ,C d d F X      

includes the costs for the amount of forest cover removed, regulatory costs related 

to compliance with the FCA, and other parcel attributes affecting development 

costs (e.g., steep slopes, riparian buffers). 

 The landowner’s decision on the optimal timing of development is 

determined from the first-order condition of equation 1 with respect to the 

conversion time T 

(2)      , , , , , , , , 0s uR X T R F X rC d d F X         . 

The optimal timing of development *T  occurs when the rent in residential use 

equals the opportunity costs of forgone rent from the undeveloped land use plus 
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the costs of borrowing capital for residential conversion. The optimal forest cover 

removal is determined from the first-order condition of equation 1 with respect to 

d  

(3) 0
s

rt rT

T

R C C
e dt e

d d d d

   

  


          

      
         

 .  

Consider the landowner’s optimal choice of forest removal 
*

0d  in the absence of 

the  FCA, where 0  . The first-order condition with respect to d in equation 3 

simplifies to 0
s

rt rT

T

R C
e dt e

d d






   

 
   . The first term represents the 

marginal effect of an increase in forest removal on the present value of marginal 

returns in residential use, which is expected to be increasing with forest removal 

at a decreasing rate. Note that 1
d


 


 because an increase in forest removal 

results in a corresponding decrease in forest cover after development. Higher 

levels of forest cover retained on the subdivision, due to less forest removal, 

reduces the profitability of development by limiting the number of developable 

lots, meaning that  , ,sR X t is concave and decreasing with respect to  . The 

second term reflects the marginal cost of residential development due to forest 

cover clearing, which is expected to be increasing with forest removal. It is thus 

expected that, without the FCA, the partial derivative of forest cover removal with 

respect to existing forest cover is 
*

00 1
d

F


 


. Conditional on a parcel in a given 

location, the amount of forest cover removed increases with the initial amount of 
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existing forest cover because some, but not all, of a marginal increase in existing 

forest cover is cleared to accommodate the residential buildings and other aspects 

of the subdivision, such as roads, driveways, and lawns. 

 Figure 1 provides a graphical illustration of forest cover change   as a 

function of existing forest cover F. Without the FCA, forest cover change 
0  is 

equal to the forest cover after development 
*

0 0F d    minus existing forest 

cover F prior to development. This means that *

0 0d   , as depicted in figure 1 

showing an increasing amount of forest removal *

0d  for higher levels of existing 

forest cover. The amount of forest removal *

1d , with the FCA, and existing forest 

cover F generates the planting requirement  *

1 , , ,d F   . With the introduction 

of the FCA, the landowner is expected to have the same or lower amount of forest 

removal, such that * *

1 0d d , to reduce the FCA planting requirements. Hence, 

forest cover change with the FCA is  * *

1 1 1, , ,d F d     . Let   be the 

difference in forest cover change with versus without the FCA  

(4)    * * *

1 0 1 0 1, , ,d F d d        .  

Total forest cover change   includes both the effect of the FCA from 

replanting requirements  *

1 , , ,d F   and avoided deforestation  * *

0 1d d .  

Figure 1 depicts forest cover change with versus without the FCA, 

showing the heterogeneous impact of   across the distribution of existing 

forest cover values. For parcels with percent existing forest cover below the 

afforestation threshold  0 F   , the replanting requirement is 
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 * *

1 1, , , 2d F F d       and thus * *

0 1F d d     . At 0F  , although 

no forest is cleared either with or without the FCA, * *

0 1 0d d  , total forest cover 

change is    due to the afforestation requirement. At F  , the total forest 

cover change is * *

0 1d d    because the afforestation requirement is no longer 

needed but replanting is required for forest cover removal. A local minimum 

occurs at F   unless * *

0 1d d   , as shown in figure 1.  

Parcels with percent existing forest cover F    must replant double 

the amount of forest cover removed with the FCA, meaning that 

 * *

1 1, , , 2d F d     and * *

0 1d d   . The amount of forest removal that the 

landowner would have chosen without the FCA *

0d  is increasing with higher 

existing forest cover in figure 1. With the FCA, the combined effect of replanting 

requirements due to forest clearing and avoided deforestation are increasing, such 

that   is increasing over the range F    and reaches a maximum at 

F  .  

Parcels with existing forest cover above the conservation threshold 

100F    have excess forest cover F   that may be cleared without penalty. 

That is, the landowner is required to replant only for the portion of forest removal 

occurring below the threshold, such that for *

1d F   , then 

   * *

1 1, , , 2d F d F         and thus  * *

0 1 2d d F      . Total forest 

cover change   has a maximum at the conservation threshold F   and is 

declining in magnitude as existing forest cover increases above the conservation 
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threshold in the range 100F   . For parcels with high existing forest cover, 

excess forest cover may be greater or equal to forest cover removal even without 

the FCA, 
*

0d F   . In this case, when no forest cover removal occurs below the 

conservation threshold, the landowner has no incentive to change their behavior, 

such that 0   and 0   for parcels with existing forest cover above the 

critical value *

0cF F d    as depicted in figure 1.
18

  

The FCA may affect other aspects of the landowner’s development 

decisions. Although the FCA planting requirements only directly affect parcels 

undergoing subdivision, there is also potential for indirect effects on the timing of 

development. In the absence of the FCA, the effect of existing forest cover on 

timing of development is ambiguous. Parcels with higher levels of existing forest 

cover may provide amenities valued by future residents but may also raise 

development costs due to increased forest clearing costs. With the introduction of 

the FCA, lower returns to development are expected particularly for parcels with 

higher costs due to the FCA planting requirements. Under these conditions, 

development may be delayed on parcels with higher FCA planting costs 

compared to those parcels with comparatively lower FCA planting costs, such as 

those parcels with cF F  from figure 1. Given the expected heterogeneity in the 

effect of the FCA by existing forest cover values, an empirical model is necessary 

                                                           
18

 This critical value may not exist at  F=100% in the case when forest cover removal 
*

0d  without 

the FCA is large. Nonetheless, excess forest cover is increasing over the range 100F    such 

that the total forest cover change   declines over this range. 
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to understand how the FCA affects landowner decisions on the timing of 

development and forest cover change. 

 

III. Econometric Model 

In this section, we develop a panel Heckman selection model to estimate the 

effect of the FCA on land development and forest cover change decisions. The 

landowner is assumed to be a profit-maximizing agent who decides either to 

develop parcel i  or remain undeveloped in each period t . Conditional on a parcel 

being selected for development, the landowner determines forest cover change on 

the parcel after subdivision. A positive level of forest cover change indicates a net 

gain in forest area while negative forest cover change indicates a net loss. We use 

a bivariate sample selection model because land development and forest cover 

change decisions may be correlated (Heckman 1979). For the first stage, let *

itY  

represent the unobserved latent variable on the value from residential 

development for the landowner on parcel i  in period t  net the value from 

remaining undeveloped in the existing use. Conditional on a parcel being 

undeveloped, parcel i  develops in period t  if * 0itY  , and conversion decisions 

are assumed to be irreversible. Let itY  be a binary variable to indicate when a 

parcel develops such that 

(5) * *1 0, 0 0it it it itY if Y Y if Y     .  
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 In the first stage, a panel probit model is used to estimate land 

development decisions as a function of parcel attributes. We expect the effect of 

the FCA on land development decisions to vary based primarily on the parcel-

level existing forest cover. Due to the afforestation and conservation thresholds 

under the FCA requirements described above, we expect the effect of the FCA to 

vary nonlinearly over the distribution of existing percent forest cover. Therefore, 

we use categorical ranges of existing percent forest cover to allow flexibility in 

the model specification to represent the potential nonlinear relationship between 

land use decisions and existing percent forest cover. Let itF  be a vector of 

existing forest categories grouped into quintile values (i.e., 0-20%, 20-40%, 40-

60%, 60-80%, 80-100%), with the lowest quintile of 0-20% existing forest cover 

as the baseline category. Let   be a post-regulatory dummy variable equal to one 

for any period after the introduction of the FCA in 1993. We also include 

interactions terms between the forest cover categories itF  and post-regulatory 

dummy variable   to estimate whether the effect of existing forest cover in the 

period after the FCA changes relative to the baseline period prior to the FCA. Let 

itX  represent a vector of control variables, such as riparian buffer area, slope, and 

other parcel attributes. Let itZ  represent a vector of exclusion restrictions 

included in the first stage model but omitted from the second stage in the 

Heckman selection model. The model is theoretically identified without any 

exclusion restrictions given the nonlinear functional form assumption in the first 

stage; however, for practical purposes, estimation of the Heckman selection 

model may require at least one regressor to be excluded from the second stage 
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(Cameron and Trivedi 2005). Let tT  represent annual time dummy variables. 

Equation 6 shows the specification for the first stage panel probit model for the 

probability of development where the error term it  is an independently and 

identically distributed and clustered at the parcel level 

(6) *

1 2 3 4 5 6it it it it it t itY F F X Z T               .  

In the second stage, we estimate the percent forest cover change after 

development, represented by the variable itF . It should be noted that we only 

observe forest cover change for parcels actually selected for development. Let 

*

itF  represent a latent variable of forest cover change, such that forest cover 

change is observed as *

it itF F     when parcel i  is developed in period t, * 0itY  , 

and otherwise it is not considered.  Equation 7 shows the specification for forest 

cover change which is similar to equation 6 except we drop the exclusion 

restriction itZ  from the second stage for identification purposes   

(7) *

1 2 3 4 5it it it it t itF F F X T              .  

Land development and forest cover change decisions in equations 6 and 7 

are estimated simultaneously using a full information maximum likelihood 

(FIML) approach. We assume that errors are correlated between equations 6 and 

7, which are jointly and normally distributed  

(8) 
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The correlation coefficient between the first and second stage is represented by 

the parameter  . If   is significant, this implies that ignoring the correlation 

between these two land use decisions would yield inconsistent parameter 

estimates.  

We calculate the marginal effects of covariates on the probability of 

development in the first stage and forest cover change in the second stage. Let 

 , , , ,it it it it tF X Z T   be a vector of covariates included in equations 6 and 7, 

and let  k

it it   be the covariate k for subsequent marginal effects. For the first 

stage, the marginal effect of covariate k

it   on the annual probability of 

development is calculated as  

(9) 
   Pr 1|it it it

k k

it it

Y 

 

    


 
 .  

As noted in Ai and Norton (2003), coefficients need not have either the same sign 

or significance as marginal effects for interaction terms in nonlinear models, such 

as the interaction term F  in our case. For this reason, we emphasize the 

interpretation of statistical significance based on the marginal effects in equation 

9 rather the coefficient estimates in equation 6. Marginal effects of covariates on 

forest cover change decisions are represented in equation 10 and are calculated 

conditional on a parcel being selected for development  

(10) 
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Marginal effects in equation 10 account for the direct effect of covariate k on the 

forest cover change decision, represented by coefficient k , as well as the indirect 

effect on which parcels are selected for development. 

To assess the potential effect of the FCA, we compute the expected forest 

cover change conditional on development for the periods before and after the 

FCA  

(11)    | 1, 1, | 1, 0,it it it it it itE F Y E F Y           .  

In general, we expect an increase in forest cover change on subdivisions after the 

FCA, relative to before. We calculate the forest cover change in equation 11 

separately for each existing forest cover quintile to examine whether 

heterogeneity in the potential effect of the FCA varies by the existing forest cover 

categories. In addition to the change in the FCA, we recognize that there are other 

factors potentially influencing land use decisions that may change over time and 

will discuss these potential effects and robustness tests in the Results section. 

These robustness tests includes alternative specifications that use a more narrow 

time window of subdivision activity in 1988-1997, temporal falsification tests that 

only use either the pre-FCA data or post-FCA data and move the regulatory event 

to an arbitrary time within those time periods, and sensitivity tests to the 

specification using quintile categories of existing forest cover by examining the 

model specification using decile categories. 
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IV. Data 

Baltimore County is located adjacent to the City of Baltimore, and the majority of 

residents commute to work in the county or Baltimore City (see figure A1 in 

Appendix B). Land-use decisions that disturb forest cover affect water quality in 

local waterways and the Chesapeake Bay. Furthermore, the rural area in 

Baltimore County has three large reservoirs that provide the regional drinking 

water supply for over 1.8 million residents in the Baltimore Metropolitan Region. 

An urban growth boundary (UGB) was implemented in Baltimore County in 

1967, also referred to as the urban-rural demarcation line (URDL). An UGB is 

designed to reduce development and conserve agricultural and forested land in 

rural areas by restricting municipal sewer and water access exclusively to parcels 

located within the UGB. Although the UGB may limit higher density 

development on sewer service, it does not prevent lower density residential 

development in rural areas where subdivisions are instead served by individual 

private septic systems and groundwater wells. Despite the efforts of smart growth 

policies, the majority of acreage developed in Maryland occurs as low density 

residential development on septic systems in rural areas.   

Our study region focuses on the rural area located outside the UGB to 

understand the effect of the FCA on residential development and forest cover 

change in this region with the majority of forest area and land conversion. This 

rural area covers 387 square miles, which is approximately two-thirds of the 

county land area. Resource conservation (RC) zoning was created in the rural area 

in 1976 and includes three main zoning types (figure A1). RC2 zoning for 
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agricultural preservation covers the majority of the rural area and designated 

minimum lot size zoning at fifty acres per housing unit.  RC4 zoning was created 

for watershed protection and designated minimum lot size zoning at five acres per 

housing unit. RC5 zoning was created to allow rural residential development and 

has minimum lot size zoning at two acres per housing unit. RC2 and RC4 zoning 

represents the majority of the land area and are considered agricultural and 

resource areas under the FCA regulations outlined above, with a conservation 

threshold of fifty percent. RC5 zoning is considered a medium residential area 

and thus has a conservation threshold of twenty-five percent. All three zoning 

types have an afforestation threshold of twenty percent.  

Data used to estimate the residential land-use conversion model in 

Baltimore County rely on spatially explicit parcel data from the Maryland 

Department of Planning. We manually reconstruct the panel of residential 

subdivisions using historic archives for all recorded plats from 1985 to 2000. We 

determine the landowner’s decision on the timing of subdivision development 

based on the initial recorded year of approval from historic subdivision plat maps. 

All parcels from the same subdivision are aggregated to recover the original 

“parent” parcel and we reconstruct the landscape for parcel boundaries in 1985. 

We also recorded the total number of buildable residential lots allowed for each 

subdivision in the approval process. For the land-use conversion model, we 

determine all developable parcels that, as of 1985, were eligible for residential 

development in the RC zoning area with more than five acres and could subdivide 
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into two or more buildable residential lots.
19

 There were a total of 3,043 

developable parcels starting in 1985, of which 413 residential subdivisions 

occurred during 1985-2000. This includes 230 subdivisions in 1985-1992 prior to 

the FCA and 183 subdivisions in 1993-2000 after the FCA. 

Forest cover data are obtained from the North American Forest Dynamics 

Project, a NASA funded project under the North American Carbon Program 

(NACP) (Goward et al. 2012). The NACP collects detailed forest cover data 

starting in 1984 for 55 selected locations across the United States, including the 

Baltimore-Washington corridor, based on Landsat satellite imagery at 

approximately 30-meter resolution. The Vegetation Change Tracker (VCT) 

algorithm, developed by Huang et al. (2010), is applied to Landsat imagery on an 

annual to biennial basis to provide forest cover maps, which are used to determine 

the timing and spatial distribution of deforestation, reforestation, and 

afforestation.
20

 For the Baltimore-Washington corridor, existing forest cover maps 

are available as raster files for 12 different time periods including the following 

years: 1984, 1986, 1987, 1988, 1990, 1991, 1994, 1996, 1998, 2000, 2002, and 

2004. We intersect these 12 snapshots of forest cover with the parcel boundary 

layer to create variables for the percentage of existing forest cover on each parcel, 

calculated as the amount of existing forest cover divided by the total parcel area. 

                                                           
19

 We have screened out areas zoned for non-residential uses (e.g., commercial, industrial, parks, 

etc.) and parcels already developed. Parcels put into land preservation easements were considered 

developable from 1985 until the date of easement, after which they were not considered 

developable. 

20
 Validation of the NACP data indicate an overall accuracy of 92% for forest clearing disturbance 

events (Thomas et al. 2011). It should be acknowledged that Landsat satellite imagery has a 30-

meter resolution, which results in increased uncertainty in detecting fine-scale changes in forest 

cover. 
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The Landsat imagery used by the NACP did not cover a portion of northern 

Baltimore County (11% of the county area), and this area was thus excluded from 

the analysis. 

 Forest cover change is calculated as the difference between the percent 

forest cover after development and percent existing forest cover prior to 

development. For parcels developed in 1985-1992, forest cover change is 

calculated as the difference between percent forest cover in 1996 and existing 

percent forest cover prior to subdivision development. For parcels developed in 

1993-2000, forest cover change is calculated as the difference between percent 

forest cover in 2004 and existing forest cover prior to subdivision development. 

As an example, for a subdivision event occurring in 1989 we would use the 

existing forest cover prior to subdivision development in 1988 and the forest 

cover following development in 1996 to determine forest cover change. We use 

the year of the subdivision event to represent the timing of the landowner 

development decision because the number of buildable lots and forest 

conservation plan requirements are determined at the time of subdivision 

approval. Approximately 93% of all lots have a residential structure built within 

five years of subdivision. 

Figure 1 shows the average forest cover change for subdivisions occurring 

before the FCA in 1985-1992 and after the FCA in 1993-2000. Prior to the FCA, 

the average forest cover change was negative across the entire distribution of 

existing forest cover. The largest losses occurred on subdivisions with higher 

levels of existing forest cover ranging from approximately 40 to 100%. After the 
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FCA, a modest gain in forest cover occurred on average for subdivisions with 

existing forest cover less than 40%; meanwhile, forest cover change decreased 

continuously for subdivisions with greater than 60% existing forest cover. The 

largest difference in forest cover change occurred for subdivisions with 

approximately 50% existing forest cover, where subdivisions had no change in 

forest cover after the FCA versus an average loss of 9% prior to the FCA. This 

difference was positive for most of the distribution of existing forest cover, except 

at the highest forest cover values of 90-100%. This suggests an overall positive 

effect of the FCA on forest retention and afforestation, albeit heterogeneous 

effects by parcel-level existing forest cover. 

Forest cover change is the dependent variable in the outcome equation for 

the second stage, while the first stage in the Heckman selection model is a panel 

probit model for whether the parcel is developed or not. We derive parcel 

attributes within a geographic information system (GIS) to create explanatory 

variables for each parcel in our dataset. Summary statistics for these covariates 

are reported in table 2.1.  

We represent existing percent forest cover prior to development in quintile 

categories. We use quintiles to allow flexibility to capture the potential nonlinear 

relationship between forest cover change and the existing amount of forest cover. 

Zoning requirements represent another major land use regulation that pertains to 

development. We manually reconstruct the historical zoning map in 1976 to 

represent the zoning designations that existed during the model period of 

subdivision development in 1985-2000. The zoned capacity variable for the 
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number of allowable lots is created according to the parcel size and maximum 

density zoning regulations for each parcel. We expect that parcels with higher 

zoned capacity are more likely to develop. Additionally, the parcel area in acres in 

quadratic form is included to control for the potential effect of parcel size that is 

not already accounted for with the zoned capacity variable. 

A distinction is made in the subdivision approval process between major 

and minor subdivisions. Major subdivisions are projects including four or more 

lots and require a formal public hearing prior to approval, whereas minor 

subdivisions with two or three lots only requires the planning board approval 

rather than a public hearing. The variable authorized minor is a dummy variable 

that takes on a value of one if the zoned capacity on the parcel only allows a 

minor subdivision with two or three lots. Authorized minor parcels tend to be 

smaller parcels with fewer development options that are expected to be less likely 

to develop. The FCA requirements apply the same to both major and minor 

subdivisions. We therefore treat the authorized minor variable as an exclusion 

restriction in the first stage and assume that being zoned for minor development 

may affect the probability of development but not forest clearing, conditional on 

being selected for development.  

We also created an indicator variable for whether the parcel is eligible for 

a land preservation easement in any of the three major statewide easement 

programs—Maryland Environmental Trust (MET), Maryland Agriculture Land 

Preservation Foundation (MALPF), or the Rural Legacy Program (RLP).
21

 

                                                           
21

 MET has eligibility criteria for both parcel size (at least 25 acres or adjacency to equivalent 

sized protected area) and high quality soils (at least 50% of land area with soil capability class I or 
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Easement eligibility is expected to decrease the probability of development 

because the existence of an easement program may delay the decision to 

subdivide, as found empirically by Towe, Nickerson, and Bockstael (2008) and 

based on the real options framework for competing land uses in Geltner, 

Riddiough and Stojanovic (1996). Assuming that a parcel is selected for 

development, easement eligibility is not expected to affect the forest cover change 

following development; and therefore, easement eligibility is used as an exclusion 

restriction in the first stage development equation. 

The distance from each parcel to Baltimore City in miles is used to 

represent accessibility to regional employment opportunities. Similarly, the 

distance from each parcel to the closest major road or highway is used to 

represent access to transportation infrastructure. Parcels located farther from 

either Baltimore City or a major road are expected to have lower likelihood of 

development. We construct the riparian buffer variable based on the stream 

hydrology and 100-year floodplains according to the riparian setback 

requirements in Baltimore County. We represent the riparian buffer variable as 

the percent of parcel area located within a 50-foot buffer around intermittent and 

perennial streams starting in 1986. Beginning in 1989, the riparian buffer variable 

includes a 100-foot buffer around intermittent and perennial streams, due to an 

update in the setback requirements. When the 100-year floodplain is larger than 

the minimum riparian setback requirements described above for a given parcel, 

                                                                                                                                                               
II). MALPF requires meeting criteria for both parcel size (at least 50 acres or adjacency to 

equivalent sized protected area) and high quality soils (at least 50% of land area with soil 

capability class I, II, or III). RLP has designated priority areas focused on environmental sensitive 

watersheds, critical wildlife corridors, and regions of intact agricultural and forest lands.  
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then the riparian buffer variable is set equal to percent of parcel area within the 

100-year floodplain. Riparian buffers are expected to constrain the likelihood of 

development and forest clearing. Average percent slope and elevation in meters 

are both calculated for each parcel using the digital elevation model (DEM) at 10-

meter grid resolution. We included an indicator variable on whether the parcel is 

located on prime agricultural soils to reflect the land suitability for profitable 

agricultural use. Furthermore, the average soil erosion potential is calculated for 

each parcel based on soil survey data from the USDA Natural Resource 

Conservation Service to provide a measure of poor soil quality.  

Surrounding land use variables are included to control for potential spatial 

spillover effects from neighboring protected areas and developed land uses. These 

surrounding land use variables include the percent area within a 500-meter buffer 

around the boundary for each parcel in non-residential use (e.g., commercial, 

industrial, etc.), residential use, parks, and undeveloped land use. The variables 

are lagged temporally to represent the surrounding land uses prior to 

development, and the undeveloped category is omitted as the baseline. We also 

create a dummy variable for whether there was an existing house on the parcel. 

We also included an index variable on real housing prices at the census 

tract level to control for how neighborhood housing prices may affect the 

development decision. To construct our measure of housing prices, we use arm’s 

length housing transaction data between 1985 and 2000 in Baltimore County 

obtained from Maryland Property View (MDPV). Following the method in Sieg 

et al. (2002), we run a series of hedonic regressions for each year to separate out 
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the index on the price of housing services at the neighborhood (census tract) level 

from the structural and lot-specific characteristics of the house. The index on 

housing prices varies spatially and temporally by census tract and by year, 

respectively, where higher housing prices are expected to increase the probability 

of development by increasing the expected returns to development. Additionally, 

we use the hedonic price model predictions to construct a measure of housing 

price variability. Capozza and Li (1994, 2002) show theoretically that an increase 

in housing price uncertainty raises the expected return needed for development. 

Based on this conceptual framework, Cunningham (2007) finds empirical 

evidence that an increase in housing price uncertainty tends to delay development 

(reduce probability of development). Details on the methodology used to create 

the census tract level variables for both price of housing services and variance in 

housing prices can be found in Appendix C. The changes in neighborhood 

characteristics, such as income growth, in theory should be capitalized into the 

index variable on housing prices. We further include census tract fixed effects to 

control for any baseline differences in socioeconomic or other neighborhood 

characteristics. Additionally, we include annual time fixed effects to control for 

broader economy-wide fluctuations, such as mortgage interest rates or regional 

employment rates.  

 

V. Results 

Table 2.2 reports the FIML estimation results of the Heckman model for a panel 

probit model of residential development in the first stage and forest cover change 
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in the second stage. The estimated correlation coefficient ̂  between the first and 

second stage is 0.70 and is significant at the 1% level. The positive correlation 

coefficient suggests that, controlling for observable parcels attributes, parcel 

selected for development have higher levels of forest cover change relative to the 

undeveloped parcels. In table 2.3, we provide the marginal effects for each 

covariate computed at the observed values. For the first stage, marginal effects on 

the average annualized probability of development are calculated based on 

equation 9. For the second stage, marginal effects for forest cover change 

conditional on development are calculated based on equation 10, which account 

for the indirect effects from the selection process of land development in the first 

stage. Standard errors for marginal effects are calculated using the delta method. 

In the first stage, the marginal effects of covariates in table 2.3 on the 

average annualized probability of development yield the following results. The 

marginal effects for existing forest cover are not significant for any quintile 

category, relative to the omitted baseline category of 0-20% existing forest cover. 

This suggests that, prior to the FCA, there was no significant difference in the 

likelihood of development for parcels with high existing forest cover relative to 

those with low existing forest cover. The post-regulatory dummy variable in table 

2.2 is not significant, indicating that the overall rate of development was similar 

between the periods in 1985-1992 and 1993-2000. Additionally, the marginal 

effects of interaction terms between the post-regulatory variable and existing 

forest cover are also not significant. Although the conceptual model suggests that, 

with the introduction of the FCA, there is potential for higher likelihood of 
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development on parcels with the highest levels of existing forest cover; the 

empirical results suggest that the potential effects are not statistically significant 

across the forest cover quintiles in the post-regulatory period for the probability of 

development. 

Marginal effects for several other covariates on the probability of 

development are significant in table 2.3 and generally conform to expectations 

when significant. Larger parcels tend to have economies of scale that lower 

development costs. Thus, the average marginal effect for parcel area is positive 

and significant at the 1% level. Parcels with larger riparian buffer area are less 

likely to be developed, suggesting that the riparian setbacks requirements and 

100-year floodplains reduce the suitability for development, as expected. The 

presence of an existing house, which may indicate working farmland, tends to 

delay development. The marginal effect of surrounding residential land use is 

positive and significant, suggesting that neighboring development potentially 

provides infrastructure to increase the likelihood of development; meanwhile, the 

marginal effect for surrounding parks is not significant. The housing price 

variables are also not significant, presumably because the yearly and census tract 

fixed effects control for most of the variation in housing prices in our study region 

in rural Baltimore County. 

As expected, the coefficients for authorized minor and easement 

eligibility, which are used as exclusion restrictions in the first stage, are both 

negative. In addition, an  F-test reveals that these parameters are jointly 

significant at the 1% level. With two exclusion restrictions, this system of 
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equations is over-identified and we test the suitability of these exclusion 

restrictions using likelihood ratio tests (Cameron and Trivedi 2005). In these tests, 

we compare the log-likelihood from table 2.2 in which both variables are 

excluded from the second stage to the log-likelihood for a model that respectively 

includes either the authorized minor or easement eligibility variable in the second 

stage. If the variable is a suitable exclusion restriction, then we should expect no 

significant difference in the log-likelihood between these models using a chi-

squared test with one degree of freedom. The p-value on the chi-squared test is 

0.26 for the authorized minor variable and 0.48 for easement eligibility, 

suggesting that both variables are suitable exclusion restrictions. 

 The primary interest of our analysis is the marginal effect of existing 

forest cover on the expected forest cover change conditional on development. The 

marginal effects for existing forest cover in table 2.3 are negative and significant 

for all quintile categories, relative to the baseline category for existing forest 

cover at 0-20%. This implies that larger losses in forest cover occurred for 

developed parcels with higher levels of existing forest cover during the period 

1985-1992 prior to the FCA. For example, developed parcels with 20-40% 

existing forest cover have on average approximately 5.7% more forest cover loss 

compared to developed parcels with 0-20% existing forest cover during this 

period. The post-regulatory dummy variable is positive and significant in table 

2.2, suggesting that there was an increase in forest cover on developed parcels in 

1993-2000 relative to those developed in 1985-1992. The marginal effects of the 

interactions between the post-regulatory variable and existing forest cover 
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categories in table 2.3 indicate heterogeneous effects according to the existing 

levels of forest cover. Consider, for example, the negative and significant 

interaction effect between existing forest cover at 80-100% in the post-regulatory 

period. Compared to the baseline category with 0-20% forest cover, this result 

suggests that larger decreases in forest cover occurred during the period after the 

FCA for developed parcels with 80-100% forest cover than occurred prior to the 

FCA.  

Regarding the other covariates in table 2.3, the marginal effect of the 

average percent slope is positive and significant at the 5% level. This indicates 

that parcels with higher average slope have a lower percentage of forest cover 

loss, as expected, because steeper slopes may reduce the area suitable for 

development. The marginal effect is also positive and significant for the riparian 

buffer variable, presumably because riparian setback regulations provide more 

forest retention and restoration since they reduce the area allowed for residential 

development. The marginal effect on parcel area is negative and significant, 

suggesting that larger parcels have a higher percentage of forest cover loss 

following development than smaller parcels. 

To further investigate the potential effect of the FCA on land use 

decisions, we provide the expected forest cover change conditional on 

development in table 2.4 for each quintile category of existing forest cover. We 

base the results shown in table 2.4 upon the same set of 2,813 parcels that were 

undeveloped as of 1993, in order to represent those parcels that were developable 

when the FCA was adopted. Then, according to equation 11, the expected forest 
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cover change is calculated, conditional on development, in the period 1985-1992 

and in the period 1993-2000. The difference indicates the expected increase in 

forest cover after the FCA relative to the period prior to the FCA, while 

accounting for the selection process of land development.  

Table 2.4 shows that the expected forest cover after development 

decreases on developed parcels in the period 1985-1992 for all existing forest 

cover categories. Prior to the FCA, forest cover loss ranges from -3.2% on parcels 

with 0-20% existing forest cover to approximately -11.4% on parcels with 60-

80% existing forest cover. After the FCA, a modest increase in forest cover 

change occurs on average for developed parcels with existing forest cover 

between 0-60%. However, a decrease in expected forest cover change occurs for 

developed parcels with greater than 60% existing forest cover.  

When considering the difference between the periods after versus before 

the FCA in table 2.4, an expected net increase in forest cover conditional on 

development occurs for parcels with 0-60% existing forest cover. The baseline 

category of 0-20% existing forest cover, for example, reports an expected 

decrease in forest cover of -3.2% in 1985-1992 and an expected increase of 4.8% 

in 1993-2000, leading to an overall net increase of 8.1% between these two 

periods. The largest overall net increase in forest cover is 16.4% for parcels with 

40-60% existing forest cover. These results suggest that the afforestation and 

conservation thresholds implemented under the FCA likely increased the amount 

of forest cover, relative to what would have occurred without the regulation, but 

primarily on parcels with lower existing forest cover. In contrast, parcels with the 
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highest levels of existing forest cover at 80-100% have no significant difference 

in expected forest cover on developed parcels between the periods before and 

after the FCA. This result may be due to the FCA setting a maximum 

conservation threshold at 50%, meaning parcels with high levels of existing forest 

cover above this threshold may deforest large tracts of forest area without penalty. 

This has consequences for land fragmentation and suggests that the most intact 

forested areas continue to have the largest losses in forest cover despite the 

implementation of this forest conservation regulation. 

 

A. Robustness Checks 

As mentioned above, it should be acknowledged that, in addition to the effect of 

the FCA, there may be other market or parcel attributes that vary between these 

two time periods. It would be desirable to use another neighboring region that is 

unaffected by the FCA as a control region. However, the FCA is a statewide 

regulation that was adopted at the same time in neighboring counties in Maryland. 

Additionally, the forest cover data from the NACP (Goward et al. 2012) only 

covers the Baltimore-Washington corridor and does not extend into neighboring 

York County, Pennsylvania. In the absence of such a control region, we conduct 

several robustness checks to examine the potential sensitivity of our estimation 

results.  

First, we conduct temporal falsification tests that restrict the sample to 

include either the pre-FCA or post-FCA data only and move the regulatory event 

to an arbitrary year within those respective time periods. We start by performing a 
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falsification test using only the post-FCA data spanning the period in 1993-2000. 

We then estimate the model specified in equations 5-7 while hypothetically 

considering the false regulatory event occurring in 1997, such that 1993-1996 is 

considered before the regulation versus 1997-2000 after the regulation. If there 

were significant differences in the forest cover change conditional on 

development between these two periods, it would suggest potential confounding 

influence of time-varying unobservable factors affecting forest cover change 

decisions. Table B1 in Appendix B is analogous to the calculations made for the 

results in table 2.4. Table B1 shows that there were no significant differences in 

the expected forest cover change between these two periods in 1993-1996 versus 

1997-2000. We repeated this method for the falsification test using only the pre-

FCA data spanning 1985-1992 while hypothetically considering the false 

regulatory event in 1989. Table B2 in Appendix B similarly shows that no 

significant differences in forest cover change occurs between the periods 1985-

1988 versus 1989-1992.
 
 

Second, we estimate the model over a shorter ten-year horizon in 1988-

1997 as a comparison to our main results over the longer horizon in 1985-2000. 

By narrowing the time window, we focus the analysis to the period immediately 

before and after the introduction of the FCA. Hence, this may reduce potential 

bias from confounding temporally varying unobservable factors. The estimated 

covariate marginal effects are presented in table B3 in Appendix B. The marginal 

effects in table B3 change quantitatively but the significance for covariates are 

qualitatively similar to those in table 2.3. Table B4 shows the expected forest 
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cover change conditional on development for the periods 1988-1992 versus 1993-

1997. The results on estimated forest cover change in table B4 are qualitatively 

the same as those reported in table 2.4. This analysis for a shorter period in 1988-

1997, of course, has fewer subdivision events to estimate the model, which is the 

reason we use the longer period in 1985-2000 for our main results.  

Third, we examine the sensitivity to the specification using quintile 

categories of existing forest cover. We explore the model estimation using decile 

categories to saturate the potential nonlinear effects. Tables A5 and A6 

respectively present the covariate marginal effects and expected forest cover 

change based on decile forest cover categories. The results are qualitatively the 

same as those in tables 2.3 and 2.4, respectively. In addition to the discrete 

categories of existing forest cover as quintiles or deciles, we examine an 

alternative model where existing forest cover is represented as a continuous 

variable with a quadratic polynomial to capture the potential nonlinear effects of 

existing forest cover. Table B7 shows the estimation results for the panel 

Heckman selection model with the quadratic specification on forest cover, which 

includes interactions between these forest cover variables and the post-regulatory 

indicator variable. Tables A8 and A9 shows the covariate marginal effects and 

expected forest cover change conditional on development, respectively, where the 

expected effects are calculated at the midpoint of each quintile category (i.e., 

10%, 30%, 50%, 70%, 90%). The main results for this continuous quadratic 
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specification are qualitatively the same as those for the discrete categorical 

specifications in tables 2.3 and 2.4, respectively.
22

 

Fourth, we explore whether spatial autocorrelation is significant using a 

Moran’s I test  on the residuals for our main results on forest cover change. The 

Moran’s I statistic is estimated to be 0.021 with a p-value of 0.81 when using 

neighboring observations within a 500-meter radius, and is estimated to be 0.047 

with a p-value of 0.35 when using neighboring observations within a 1000-meter 

radius. These results suggest the presence of positive but statistically insignificant 

spatial autocorrelation.  

Lastly, we examine whether the forest cover change predictions are 

sensitive to the estimated correlation parameter ̂   in the Heckman selection 

model. Because ˆ 0.70   and is statistically significant (table 2.2), this suggests 

that model estimates would be inconsistent without controlling how parcels are 

selected for development. The model estimation, however, relies on the 

distributional assumptions that the errors are jointly and normally distributed, as 

stated in equation 8. As a robustness check, we explore the model specification 

assuming no sample selection, such that the first stage development equation and 

second stage forest cover change equation are estimated separately (i.e., 0  ). 

The corresponding covariate marginal effects and expected forest cover change 

predictions are provided in tables A10 and A11, respectively. These results are 

similar in magnitude and sign to the analogous results in tables 2.3 and 2.4. While 
                                                           
22

 We also explored the model estimation that included interactions between the quadratic terms 

for parcel area and the existing forest cover quintiles for both the baseline and post-regulatory 

periods. A chi-squared likelihood ratio test comparing a model that includes additional interactions 

to the main model estimation in table 2 was not significant at the 5% level. 
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sample selection is significant in table 2.2, the main results for the forest cover 

change predictions are not overly sensitive to sample selection.
23

 

  

VI. Policy Simulation on Landscape-Level Forest Cover Change 

In this section, we provide results of a policy simulation to analyze the landscape-

level implications of the FCA on forest cover change in rural Baltimore County. 

The analysis uses 1,000 bootstrapped samples of the original data set, followed by 

model estimation according to the specification provided in equations 5-7. Parcels 

that are developable as of 1993 are used to predict the amount of land 

development and forest cover change that would occur under the scenarios with 

and without the FCA during the period 1993-2000. The dummy variable   is set 

to one for the scenario with the FCA and set to zero for the scenario without the 

FCA, while all other variables and coefficients are unchanged between these 

scenarios. 

 For each bootstrapped iteration, we predict the parcel-level expected 

annual probability of development with and without the FCA in each year during 

1993-2000. Then, analogous to the methodology in Lewis, Provencher, and Butsic 

(2009), the expected annual probability of development for each parcel is 

compared to a random number drawn from a uniform distribution for each parcel 

and year. The parcel is considered developed in the first year spanning 1993-2000 

                                                           
23

 We also explore sensitivity analysis for the Heckman selection model where the correlation 

parameter    was fixed at 0.3 and 0.5, respectively, and the model results were similar to those 

reported in tables 3 and 4.   



82 

 

in which the expected annual probability of development is greater than the 

random number; and otherwise, it is considered to remain undeveloped in 2000. If 

the parcel is predicted to develop, then the expected forest cover change 

conditional on development in that given year is calculated.  

Simulation results are summarized in table 2.5 showing the land area, 

existing forest area, and forest cover change on subdivisions under the scenarios 

with and without the FCA. For all estimates, the means are calculated from the 

estimated model using the original data set, and bootstrapped 95% confidence 

intervals (CIs) are calculated based on the 25th and 975th largest simulation 

results from the 1,000 bootstrap iterations. The null hypothesis is a test on 

whether the bootstrapped 95% CIs contain zero for the difference between the 

results under scenarios with and without the FCA. Table 2.5 shows that more total 

developed land area on subdivisions occurs under the scenario with the FCA 

compared to without the regulation, specifically 8,400 acres developed with the 

FCA and 7,504 acres developed without the FCA. This difference, however, is not 

statistically significant since the bootstrapped CIs range from -4,137 to 3,732. 

Furthermore, the amount of existing forest cover on subdivisions with and without 

the FCA is 3,969 acres and 3,743 acres, respectively; but this difference is also 

not statistically significant.  

The results for forest cover change in table 2.5 demonstrate that larger 

predicted losses in forest cover occur for the scenario without the FCA. We 

predict a total loss of 893 forested acres out of 3,743 acres of existing forest cover 

under the scenario without the FCA during 1993-2000, representing about a 24% 
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loss of forest cover. Meanwhile, we predict a total loss of only 229 forested acres 

out of 3,969 acres of existing forest cover for the scenario with the FCA. This 

indicates an overall net difference of 664 forested acres between these two 

scenarios, approximately a 23% increase in forest cover with the FCA relative to 

forest cover on subdivisions without the FCA. 

Importantly, the results for forest cover change are heterogeneous by the 

level of existing forest cover. Table 2.5 indicates that significant decreases in 

forest cover occur for parcels with 20-100% existing forest cover for the scenario 

without the FCA. With the FCA, there is no significant decrease in forest cover 

for parcels with 0-60% existing forest cover, whereas there are significant 

decreases in forest cover for parcels with 60-100% existing forest cover. It is 

informative to compare the difference in forest cover change between the 

scenarios by the existing forest cover categories. The largest gain in forest cover 

occurred on subdivisions for parcels with 40-60% existing forest cover, which had 

an increase of 324 forested acres compared to the simulation without the FCA. 

This result suggests that parcels with existing forest cover near the conservation 

threshold are most significantly affected, which presumably results in either 

higher retention of existing forest cover or more reforestation to compensate for 

areas cleared during the subdivision process. For parcels with 80-100% existing 

forest cover, no significant difference in forest area occurs between the scenarios 

with and without the FCA. According to the FCA, parcels with high levels of 

existing forest cover may remove a significant amount of forest acreage above the 

conservation threshold without requiring reforestation or afforestation. Hence, 



84 

 

forest fragmentation may continue unabated for the parcels with the most intact 

forest habitat.
24

 

 

VII. Conclusion 

The purpose of this paper is to analyze the potential heterogeneous effect of the 

FCA on residential development and assess the change in forest cover occurring 

with the regulation adoption. Prior to the FCA, forest cover decreases on 

subdivision developments across the entire distribution of existing forest cover 

values. After the FCA, forest cover increases on average but only for parcels with 

existing forest cover between 0-60%. The largest difference in forest cover 

change between the periods before and after the FCA is for parcels with 40-60% 

existing forest cover. Meanwhile, parcels with 80-100% existing forest cover have 

no significant difference in the level of forest loss between the periods before 

versus after the FCA. Hence, parcels with the highest levels of forest cover at 80-

100% continue to have the largest decrease in forest cover, despite the FCA, 

thereby resulting in forest habitat fragmentation in regions with the most intact 

forest cover.  

Our analysis suggests that an overall significant and positive effect on 

total forest cover occurred in the region with the FCA. Based upon landscape-

level policy simulations, we find that total expected forest cover in rural 

                                                           
24

 We also provide the simulation results with the bootstrapped 90% and 80% CIs in the Appendix 

in tables B12 and B13, respectively. Both tables B12 and B13 show that there is not a significance 

difference in the total developed land area under the scenarios with versus without the FCA and 

there is an overall significant increase in the forest cover with the FCA relative to without it. 



85 

 

Baltimore County increased by approximately 664 acres with the FCA relative to 

the counterfactual outcome without it, representing a 23% increase in forest area 

relative to the expected total forest cover that would have occurred on 

subdivisions without the FCA. Regulatory effectiveness could be further 

improved, for instance, if regulators increased the conservation threshold. In 

doing so, landowners subdividing their properties would be required to assume 

larger amounts of forest conservation and would reduce the amount of forest 

acreage that could be removed without penalty. Since the most intact forests are 

currently the least affected by the FCA, another approach would be to target 

funding from purchase of development rights programs to protect these high 

priority forested areas. Land managers may find complementary and synergistic 

strategies between current land-use policies and incentive programs by targeting 

payments to areas where the FCA is expected be less effective in meeting 

landscape-level forest conservation goals. However, assessing the tradeoffs 

needed to set priorities for forest conservation would require a more detailed 

evaluation of the spatial distribution of ecosystem services provided by forests 

rather than only the total level of forest cover change provided in this study. 

Another issue that deserves further evaluation is the potential for the FCA adopted 

exclusively in Maryland to induce spatial spillovers, thereby increasing 

development and forest loss in neighboring states without this regulation. Our 

analysis focuses on the direct effect of the FCA to increase forest cover within our 

study region; however, to the extent that spillover effects increase development in 

less regulated regions, it may offset the forest cover gains from the FCA.  
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There is growing interest and research in programs designed to reduce 

deforestation and promote afforestation, including both incentive-based payments 

for ecosystem services (Lubowski, Plantinga, and Stavins 2006; Nelson et al. 

2008; Lewis, Plantinga, and Wu 2009; Lewis et al. 2011) and land-use regulations 

(Lichtenberg, Tra, and Hardie 2007; Lawler et al. 2014). In this study, we 

integrate parcel-level modeling of residential development decisions with fine-

scale panel data on forest cover change from satellite imagery. In doing so, we are 

able to more accurately assess the partial loss in forest cover that occurs on 

subdivision developments even prior to regulatory adoption, as well as estimate 

the additionality of forest cover. This forest loss is often overestimated in prior 

studies that assume a complete loss in forest cover occurs with development or 

use uniform rule-based assumptions on the relationship between urban 

development and forest loss. For instance, Lawler et al. (2014) provide a 

comprehensive national assessment for land-use change and ecosystem services; 

however, the urban containment policies assume a uniform rule that only 10% of 

the initial forest carbon stock remains after development (implying a 90% loss in 

forest carbon with development). We anticipate that the combination of micro-

level land use decisions and fine-scale panel data on forest cover change used in 

our study will have future research opportunities in other regions since the North 

American Forest Dynamics Project provides similar publically available data on 

historic forest cover at 55 sites located across the United States. 
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TABLE 2.1. COVARIATE SUMMARY STATISTICS 

 

Variables Mean 

Standard 

Deviation Min Max 

Existing Forest Cover Quintile 

  Forest Cover 0-20% 0.2218 0.4155 0 1 

  Forest Cover 20-40% 0.1837 0.3872 0 1 

  Forest Cover 40-60% 0.1641 0.3704 0 1 

  Forest Cover 60-80% 0.1589 0.3656 0 1 

  Forest Cover 80-100% 0.2715 0.4447 0 1 

Parcel Characteristics 

  Parcel Area (acres) 28.2811 35.4608 5 348.5600 

  Zoned Capacity 4.3610 7.1924 2 148 

  Distance to Baltimore City (miles) 19.6115 7.6000 3.2167 37.0040 

  Distance to Major Road (miles) 0.7206 0.6061 0.0270 3.9589 

  Riparian Buffer Area (%) 20.2102 19.8844 0 100 

  Slope (%) 10.9102 4.8903 0 42.9550 

  Elevation (meters) 15.8409 4.5448 0.1006 26.2322 

  Prime Ag Land 0.3728 0.2648 0 1 

  Soil Erosion Potential 34.8567 2.7386 9.5000 45 

  Existing House 0.3522 0.4777 0 1 

  Authorized Minor 0.7749 0.4177 0 1 

  Easement Eligibility 0.2478 0.4317 0 1 

Housing Price Indices at Census Tract Level 

  Housing Price 1.1102 0.1480 0.6429 1.9366 

  Housing Price Variance 0.2110 0.0975 0.0423 0.5984 

Surrounding Land Use within 500 Meter Buffer 

  Residential (%) 19.4592 16.3433 0 95.6246 

  Non-residential (%) 1.9862 5.5623 0 55.6519 

  Parks (%) 3.8275 10.6321 0 97.8537 

Number of Parcels 3043    

Observations 44,002    
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TABLE 2.2. FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATION RESULTS ON 

PANEL HECKMAN SELECTION MODEL 

 
  Probability of Development  Forest Cover Change  

Variables Coefficient Standard Error Coefficient Standard Error 

Forest Cover Quintiles
a
 
 

  

  

  Forest Cover 20-40% -0.09233 0.10069 -6.36171** 2.09959 

  Forest Cover 40-60% 0.11061 0.09302 -6.24995** 2.00697 

  Forest Cover 60-80% 0.13283 0.09392 -7.18041** 2.39288 

  Forest Cover 80-100% 0.13812 0.08810 -3.45483* 1.70715 

Post-1993 Forest Cover Quintiles
a 

    

  Post-1993* Forest Cover 20-40%  0.21831 0.13588 5.53714 3.15922 

  Post-1993* Forest Cover 40-60% 0.02125 0.13123 8.51852** 3.11322 

  Post-1993* Forest Cover 60-80% 0.02058 0.13088 0.26920 2.63859 

  Post-1993* Forest Cover 80-100% -0.02250 0.11951 -9.40946** 2.58841 

  Post-1993 -0.00539 0.15072 8.01267* 3.27345 

Parcel Characteristics     

  Parcel Area 0.00332* 0.00136 -0.04726 0.02512 

  Parcel Area^2 -4.16x10
-6 

-4.89x10
-6

 0.00016* 0.00007 

  Zoned Capacity 0.00437 0.00225 0.06610 0.03901 

  Distance to Baltimore City -0.01272 0.00816 -0.18215 0.19702 

  Distance to Major Road 0.03766 0.03996 -0.06565 1.01262 

  Riparian Buffer Area -0.00640** 0.00135 0.05600 0.04153 

  Slope -0.00286 0.00580 0.39383* 0.15958 

  Elevation 0.00665 0.01058 -0.04729 0.23714 

  Prime Ag Land 0.00862 0.09595 0.61742 2.80434 

  Soil Erosion Potential -0.00169 0.00817 -0.30658 0.24937 

  Existing House -0.07424 0.04261 -0.14781 0.96978 

  Authorized Minor -0.35698** 0.04900 -- -- 

  Easement Eligibility -0.08794 0.06143 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.03400 0.23138 -3.46215 5.49321 

  Housing Price Variance 0.56648 0.31636 10.48239 8.52744 

Surrounding Land Use within 500 Meter Buffer 

  Residential 0.00787** 0.00125 0.10120* 0.04866 

  Non-residential 0.00022 0.00391 -0.01843 0.10092 

  Parks -0.00016 0.00211 0.03876 0.04722 
     0.70139** 0.16779 -- -- 

Annual Time Fixed Effects Yes  Yes  

Census Tract Fixed Effects Yes  Yes  

Observations 44,002  413  

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 
a
 Marginal effects are based upon a discrete change from the baseline 0-20% existing forest category. 
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TABLE 2.3. MARGINAL EFFECT OF COVARIATES ON ANNUAL PROBABILITY OF 

DEVELOPMENT AND FOREST COVER CHANGE 

 

  Probability of Development Forest Cover Change 

Variables 
Marginal 

Effect 

Standard 

Error 

Marginal 

Effect 

Standard 

Error 

Forest Cover Quintiles
a 

    

  Forest Cover 20-40% -0.00160 0.00178 -5.70414** 1.95036 

  Forest Cover 40-60% 0.00242 0.00202 -7.03405** 1.94555 

  Forest Cover 60-80% 0.00298 0.00211 -8.12156** 2.29835 

  Forest Cover 80-100% 0.00311 0.00194 -4.43334** 1.57215 

Post-1993 Forest Cover Quintiles
a
 

   Post-1993* Forest Cover 20-40% 0.00277 0.00211 -1.71753 2.21690 

  Post-1993* Forest Cover 40-60% 0.00292 0.00223 1.33408 2.28967 

  Post-1993* Forest Cover 60-80% 0.00348 0.00232 -7.99792** 1.78568 

  Post-1993* Forest Cover 80-100% 0.00251 0.00207 -13.68405** 2.23552 

Parcel Characteristics 

    Parcel Area 0.00007** 0.00002 -0.06029** 0.01977 

  Zoned Capacity 0.00010 0.00005 0.03515 0.03250 

  Distance to Baltimore City -0.00030 0.00019 -0.09209 0.17547 

  Distance to Major Road 0.00088 0.00093 -0.33229 0.97428 

  Riparian Buffer Area -0.00015** 0.00003 0.10129** 0.03477 

  Slope -0.00007 0.00013 0.41406** 0.15522 

  Elevation 0.00015 0.00025 -0.09436 0.22410 

  Prime Ag Land 0.00020 0.00223 0.55639 2.74729 

  Soil Erosion Potential -0.00004 0.00019 -0.29460 0.23886 

  Existing House -0.00173 0.00099 0.37786 0.90944 

  Easement Eligibility -0.00830** 0.00119 -- -- 

  Authorized Minor -0.00204 0.00143 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.00079 0.00538 -3.22137 5.13131 

  Housing Price Variance 0.01316 0.00739 6.47129 8.27907 

Surrounding Land Use within 500 meter buffer 

  Residential 0.00018** 0.00003 0.04547 0.03190 

  Non-residential 0.00001 0.00009 -0.02001 0.09417 

  Parks 0.00001 0.00005 0.03989 0.04191 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 

a
 Marginal effects are based upon a discrete change from the baseline 0-20% existing forest category. 
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TABLE 2.4. PERCENT FOREST COVER CHANGE CONDITIONAL ON DEVELOPMENT IN 

1985-1992 AND 1993-2000 

 

 

Forest Cover Quintile 

Forest Cover Change  

in 1985-1992 

Forest Cover Change 

 in 1993-2000 Difference 

Forest Cover 0-20% -3.2407 4.8103** 8.0510** 

 

(2.8917) (1.3109) (3.0761) 

Forest Cover 20-40% -8.9439* 3.0914 12.0352** 

 

(3.5051) (1.7698) (3.7318) 

Forest Cover 40-60% -10.2760** 6.1429** 16.4189** 

 

(3.4151) (1.9391) (3.7250) 

Forest Cover 60-80% -11.3638** -3.1894* 8.1744* 

 

(4.2193) (1.2573) (3.9265) 

Forest Cover 80-100% -7.6756* -8.8751** -1.1994 

 

(3.2067) (1.7245) (3.4211) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 
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TABLE 2.5. LANDSCAPE-LEVEL PREDICTIONS ON LAND ACREAGE, EXISTING FOREST COVER AND FOREST COVER 

CHANGE WITH AND WITHOUT FCA 

 

 Subdivisions without FCA Subdivisions with FCA Difference 

Forest Cover Quintile Land area 

Existing 

 forest area 

Forest cover 

change Land area 

Existing  

forest area 

Forest cover 

change Land area 

Existing forest 

area 

Forest cover 

change 

Forest Cover 0-20% 1395* 175* -97 1400* 176* 16 5 1 113* 

 [518, 2634] [60, 284] [-269, 2] [581, 2123] [64, 252] [-38, 84] [-1423, 810] [-133, 89] [19, 246] 

Forest Cover 20-40% 1371* 396* -197* 2216* 639* -57 845 243 140* 

 [564, 3175] [170, 954] [-490, -53] [1325, 3332] [393, 956] [-128, 75] [-446, 1674] [-133, 489] [7, 479] 

Forest Cover 40-60% 1969* 931* -273* 2013* 955* 51 44 24 324* 

 [866, 3498] [417, 1686] [-598, -90] [1198, 3439] [565, 1707] [-54, 178] [-1281, 1323] [-618, 635] [100, 692] 

Forest Cover 60-80% 1221* 841* -164* 1366* 936* -77* 145 95 87 

 [659, 2752] [441, 1871] [-488, -54] [835, 2562] [557, 1725] [-161, -22] [-1130, 908] [-780, 616] [-2, 384] 

Forest Cover 80-100% 1548* 1400* -163* 1405* 1263* -162* -143 -137 1 

 [822, 2929] [753, 2664] [-326, -*30] [889, 2307] [815, 2119] [-350, -75] [-1314, 730] [-1210, 672] [-197, 201] 

Total 7504* 3743* -893 8400* 3969* -229* 896 226 664 

 [4928, 13455] [2587, 6866] [-1823, -354] [7270, 11065] [3401, 5547] [-389, 1] [-4137, 3732] [-2165, 1793] [153, 1584] 

All numbers above reported in acres. Asterisk (*) denotes statistical significance of the bootstrapped 95% confidence interval not containing zero. 
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FIGURE 2.1. FOREST COVER CHANGE DUE TO FCA PLANTING AND AVOIDED 

DEFORESTATION OVER EXISTING FOREST COVER VALUES 
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FIGURE 2.2. LOWESS OF AVERAGE FOREST COVER CHANGE FOR SUBDIVISIONS 

BEFORE FCA (1985-1992) AND AFTER FCA (1993-2000) 
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Chapter 3: Wildfires, Hazard Disclosure and the effect on Land 

Development 

 

 

In the United States, wildfires are among the most destructive natural hazards and 

endanger valuable natural resources along with human life and property. One 

challenge to combating wildfires is the growth of developed lands in wildfire 

prone areas, known as the wildland urban interface (WUI). Currently, at least 44 

million homes are located in the WUI and this number is expected to increase by 

66% by 2030 (Hammer et al. 2009). Land development in the WUI is known to 

increase fire suppression costs and may also increase the incidence of wildfire by 

multiplying the number of residents and potential sources of wildfire ignition 

(Stein et al. 2013). To help reduce risk from wildfire damage and decrease fire 

suppression costs, many communities have adopted hazard disclosure 

requirements to educate new residents about the potential risks of wildfire. In 

response to recent large and destructive wildfires, in July of 1991, California 

began publicly publishing wildfire hazards for all state responsibility area (SRA) 

lands and implemented a new law that requires the seller of any property located 

in SRA lands to provide a written disclosure regarding the risk posed by wildfire 

in these areas. In this paper, I study the effect of the hazard disclosure law on land 

development decisions from a community in the sierra foothills of California. 

Previous researchers have used empirically focuses assessments of 

individual land development decisions to evaluate the effect of land use policy on 
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development patterns (Irwin and Bockstael 2004, Newburn and Berck 2006, 

Lewis et al. 2009). These studies determine the location and timing of land 

development based upon individual tax-assessed parcel records. Results of these 

studies highlight the importance of spatial and temporal heterogeneity of parcel 

attributes to development decisions and land-use policy effectiveness. However, 

to date, no studies have examined the effect of wildfire risk and policy on land 

development decisions.  

Prior studies of wildfire risk focused mostly on determining the effect of 

perceived changes in wildfire risk on housing price. For instance, Loomis (2004) 

and Mueller et al. (2009) utilized cross-sectional hedonic analyses to determine 

the effect of large wildfires on nearby home prices. They find that large wildfires 

may contribute to decreases in home value by between 10-20%.  Donovan et al. 

(2007) studied the effect of the Colorado Springs Fire Department publishing 

home specific wildfire risk online on local home sales prices. They found that 

housing price was positively correlated with natural amenities that contribute to 

increased risk of wildfire prior to wildfire rating being posted online. After 

wildfire ratings were posted online, housing prices were negatively correlated 

with these attributes, indicating that home price adjusts due to changes in 

information regarding the underlying risk of wildfire damage. Champ et al. (2009) 

conducted a survey of homeowners affected by the change in wildfire rating 

policy in Colorado Springs and found that even after the policy was adopted, 

homeowners often perceived wildfire risk as substantially lower than actual risk. 
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However, among respondents who actually visited the Colorado Springs FDP 

website, perceptions of risk more closely mirrored actual risk. 

A handful of studies have examined the effect of wildfire hazards and 

hazard reduction incentives on other land use decisions. Busby et al. (2012) 

developed a stylized game-theoretic model to understand how the spatial 

configuration of land ownership impacts wildfire risk mitigating behavior. They 

find that because private landowners are not residual claimants to all the benefits 

from fire prevention, they have an incentive to under invest in risk mitigating 

behaviors, relative to the social optimum. Shafran (2008) studied incentives for 

homeowners to adopt defensible fire spaces around their homes using data from 

properties near Boulder, Colorado. They found that sub-optimal investment in 

defensible spaces was likely because homeowners’ investment decisions were 

conditional on their neighbors’ level of investment. Kousky and Olmstead (2012) 

studied the effect of a change in federal wildfire suppression policy in the 

Yellowstone National Park region on land development trends. Using a panel 

dataset of land use change derived from Landsat satellite imagery, Kousky and 

Olmstead (2012) show that federal fire suppression efforts encourage 

development because homeowners free ride off federal fire suppression 

expenditure.  

The primary purpose of this paper is to study the effect that the 

introduction of California’s hazard disclosure requirement in July of 1991 had on 

a parcel’s probability of development. Wildfire hazard severity rankings, 

published by the State of California, are grouped into three classes: very high, 
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high and medium. Under the hypothesis that the hazard disclosure requirement 

conveyed new information regarding the underlying risk of wildfire, we should 

expect a larger reduction in probability of development for parcels with very high 

and high hazard severity than for ones with medium severity. Aside from hazard 

severity rankings, wildfire events may provide additional information to 

landowners about their exposure to fire risk. Because large wildfires are a low 

probability occurrence and fire risk is non-stationary, a wildfire nearby the parcel 

may update the subjective risk perception of the landowner and impact the timing 

and location of subsequent land development. This study is based upon a spatially 

and temporally explicit panel dataset of residential subdivisions from 1985 to 

2004 in El Dorado County, California. My analysis includes both a pre-disclosure 

period (1985-1991) as well as a post-disclosure period (1992-2004). To estimate 

probability of development, I utilize a linear probability model with parcel based 

fixed effects. By including fixed effects, I reduce potential bias from time 

invariant and unobserved parcel attributes and identify coefficients for observed 

attributes that vary over time. Probability of development is estimated as a 

function of a number of spatially and temporally varying parcel characteristics, 

including: post-disclosure hazard severity group, proximity to recent large 

wildfires, forest area within the parcel and within 500 meters of the parcel, as well 

as surrounding land use within 500 meters. 

Results of my analysis support the hypothesis that the hazard disclosure 

requirement is effective in reducing probability of development for parcels 

located in areas with the highest designated wildfire severity in El Dorado 
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County. Parcels located in very high severity areas are 24% less likely to develop 

per year than parcels located in medium severity zones. Recent wildfire events 

also have an effect on development decisions. Parcels located within 1.25 km of 

recent large wildfires are nearly 1% less likely to develop the following year. 

However, parcels further removed in time and distance are statistically more 

likely to develop following large wildfire events. This result suggests a possible 

misperception of community wildfire risk by landowners akin to the so called 

“gambler’s fallacy,” or the mistaken belief that because a low probability event 

occurred in the recent past, it is less likely to occur in the near future. 

This paper makes several contributions to the literature. Relative to 

previous empirical land use economic studies, I improve upon identification of 

policy variables by studying a sample of properties observed before and after the 

hazard disclosure law adoption. Previous studies (e.g., Irwin and Bockstael 2004, 

Newburn and Berck 2006, Towe et al. 2008, Lewis et al. 2009, Bustic et al. 2011) 

all study residential land use decisions only after policy adoption and 

identification of policy effects are based only on spatial variation in policy 

effectiveness. To the best of my knowledge, this is the first paper to study the 

impact of either hazard disclosure requirements or recent wildfire events on 

residential land use decisions. California is currently the only state with a 

statewide hazard disclosure requirement related to wildfire risk, which could 

provide guidance to other regions considering similar regulations. However, 

policy makers could make efforts to better educate residents regarding causes of 

wildfire and risk updating, particularly in areas near recent wildfire events. 
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This paper proceeds by presenting an overview of the study and policy 

setting for this analysis in Section I. In Section II, I discuss the available data and 

in Section III I present my empirical methodology. Sections IV and V discus the 

main model findings and various robustness checks. Section VI provides 

concluding remarks. 

 

I. Study Area and Policy Overview 

El Dorado is a fast growing rural county thirty miles from Sacramento and 

bordered by Lake Tahoe on the East. Between the 1980 Census and the 2000 

Census, the population of El Dorado nearly doubled from 86,000 to over 155,000 

residents over the span of twenty years (US Census Bureau 2013). This growth of 

population is driven primarily by an increase in exurban development in the 

unincorporated areas of the county. Between 1990 and 2000, the population in 

unincorporated El Dorado County grew by over 20% and accounted for 95% of 

the total change in population over the ten year period (Center for Economic 

Development 2011). In these areas, land is converted primarily from agriculture 

and forestry uses to low-density residential development.  

As in many communities in the United States, growth of urban housing 

density is regulated primarily through minimum lot zoning regulations. In 

unincorporated El Dorado County, there are a total of five exurban residential 

zoning categories: medium-density residential (MDR), low-density residential 

(LDR), rural recreational (RR), agricultural lands (AL) and natural resource (NR). 

Zoned density ranges between one dwelling per acre on MDR up to one dwelling 
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per 160 acres on NR lands.
25

 Figure 3.1 displays a map of El Dorado County 

along with the location and spatial extent of zone classes. Over 50% of El Dorado 

County land area is owned and managed by the federal government, which 

includes two major national forests, the El Dorado National Forest and the Lake 

Tahoe Basin Management Unit. The majority of government lands reside in areas 

zoned as NR. County zoning ordinances date back to the 1960s with some 

amendments made over the years, though zoning in unincorporated El Dorado 

County remained essentially stable from 1985 to 2004, the sample timeline of my 

analysis.
26

 

Wildfires are a common occurrence in El Dorado County both on federal 

and private lands.  El Dorado County is prone to long dry summers, conditions 

favorable to wildfire ignition, and the natural wildlife is adapted to periodic 

wildfire occurrence (Stephens 1997). Between 1985 and 2004, 128 wildfires 

occurred in El Dorado County that were larger than ten acres in size. The mean 

size of fire in this sample was approximately 732 acres, though this estimate is 

influenced by a handful of exceptionally large wildfires including the 1992 

Cleveland wildfire that was over 22,000 acres in size.
27

 The main contributors to 

wildfire risk in El Dorado County include: weather, fuel level (e.g. quantity of 

timber), and terrain. Aside from natural landscape attributes, land development in 

fire prone regions may contribute to growth in wildfire risk as well as increased 

                                                           
25

 For parcels with elevation below 3,000 ft zoned density is 1 Du/40 Ac on NR lands, parcels 

above 3,000 ft in elevationhave a zoned density of 1 Du/160 Ac 

26
 Confirmed through personal contact with El Dorado County Planner Tom Purciel 

27
 For comparison, the median fire size was approximately 35 acres 
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costs for wildfire suppression. Previous studies have linked the presence of 

humans in wildfire prone areas to an increase in fire incidence and spread 

(Hammer, 2007, Blonski et al. 2010). Several studies have also found that the 

quantity and value of developed land near large wildfires are among the greatest 

predictors of fire suppression expenditure (Liang et al. 2008, Gebert et al. 2007). 

To help control the risk of wildfire and reduce costs of fire suppression, 

the State of California and El Dorado County adopted a variety of hazard 

mitigation policies to regulate land development and other landowner behavior. El 

Dorado established a hazard removal requirement in 1985 that requires the owner 

of any structure in the county to maintain a defensible space of cleared land and to 

remove any vegetation or other debris from the structure’s roof. Defensible spaces 

must extend at least 30 feet from the structure. In 2005 this threshold was 

extended out to 100 feet from the structure.
28

 In addition, in response to recent 

large wildfires, including the 49er fire of 1988 which destroyed over 300 

structures, the State of California passed a hazard disclosure law
29

 in 1989 

(Assembly Bill 1812, 1989). This regulation impacts any parcel located in a state 

responsibility area (SRA), which include any areas where the State has a financial 

responsibility for wildland fire protection. Under this policy, after July of 1991, 

any seller of a property located in SRA lands must disclose that the property is 

located in a wildland area that may contain substantial wildfire risk. To coincide 

                                                           
28

 http://www.eldoradocountyfire.com/prevention/defensiblespace.html 

29
 The State of California hazard disclosure law is detailed in sections 4125 and 4136 of the 

California Public Resource Code: http://www.leginfo.ca.gov/cgi-

bin/displaycode?section=prc&group=04001-05000&file=4125-4137 

http://www.eldoradocountyfire.com/prevention/defensiblespace.html
http://www.leginfo.ca.gov/cgi-bin/displaycode?section=prc&group=04001-05000&file=4125-4137
http://www.leginfo.ca.gov/cgi-bin/displaycode?section=prc&group=04001-05000&file=4125-4137
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with the adoption of the new disclosure law, the State of California began 

publishing publicly available hazard severity maps for each county which detail 

the hazard severity in SRA lands in July of 1991. Figure 3.2 displays a map of 

wildfire hazard severity zones in El Dorado County, with data collected from the 

California Department of Forestry and Fire Protection. Fire hazard is divided into 

three classes: very high, high and medium. Areas outside this designation are 

either under the protection of local municipalities, which include the incorporated 

cities of Placerville and South Lake Tahoe, or are federally owned and managed 

lands.  

The El Dorado County Council also adopted an additional hazard 

disclosure law in November of 1992. This ordinance was designed to complement 

the State’s hazard disclosure law and must be completed before the sale of any 

property located in SRA lands in El Dorado County. The hazard disclosure form 

required by El Dorado County law is reported in Appendix D. The language of 

this hazard disclosure law mirrors the state requirement but it further clarifies the 

local fire department’s responsibilities for fire protection and advises the 

prospective buyer of behaviors which may reduce risks from wildfire damage. 

This policy also advises buyers and sellers to seek professional guidance and 

inspection to more accurately assess the local risk of wildfire risk in the vicinity 

of the property. 
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II. Econometric Model 

The landowner is assumed to be a utility maximizing agent who makes a discrete 

choice in each period to convert a parcel from undeveloped to developed land use. 

Let 
itU be landowner 'i s  utility from development in period t , net the return from 

his outside option of remaining undeveloped for an additional period. Let 

it it itU V    , where 
itV  is a function of observable parcel attributes expected to 

influence land conversion and it  is independently and identically distributed and 

clustered at the parcel level. Conditional upon a parcel being undeveloped in the 

current period, landowner i  will develop if 0it itV    . 

Landowner development decisions are assumed to be a function of both 

time variant and time invariant parcel attributes. Let itH  be a vector of hazard 

severity, divided into medium (the baseline), high and very high classes. The 

variable   is a dummy variable that takes on a value of one for all years after the 

hazard disclosure law was introduced. itF  is a vector of dummy variables that 

capture whether a recent large wildfire occurred near the parcel in the recent 

past.
30 

Let itX  be a vector of time varying parcel attributes (e.g. parcel level forest 

area and surrounding land use), itZ  be a vector of observable, time invariant 

parcel attributes (e.g. zoning and parcel area). tT  is a set of yearly dummy 

variables and i  is a parcel specific intercept. Equation 1 represents the 

econometric specification for my model  

                                                           
30

 Please refer to section 4 for more information about construction of the fire proximity variables 
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(1) 1 2 3 4 5 6 7it it it it it it i i itU H H F X Z T                   .   

Assuming that   0iE   , Equation 1 may be estimated through, for 

example, a random effects probit, or logit model. However, if for some set of 

observations,   0iE   , random effects models may yield inconsistent coefficient 

estimates. Wildfire hazard severity is determined based upon a number of risk 

factors, such as nearby fuel stock, weather, and wind patterns, some of which are 

observed and some unobserved. Therefore, to overcome bias from unobserved 

time invariant parcel attributes potentially correlated with hazard severity class, in 

the primary specification of my model, I estimate a linear probability model of 

land development decisions with parcel based fixed effects. Equation 2 represents 

the simplified linear probability model estimated in my primary specification 

(2)  2 3 4 5 7 ,it it it it t i itU H F X T                  

  2~ 0,it iN   . 

By including fixed effects in Equation 2, I estimate coefficients only for 

covariates that vary over time and parameters are identified based upon within 

parcel variation in covariate values. Unlike a non-linear model, coefficients from 

Equation 2 may be interpreted directly as the average marginal effect of 

covariates on the likelihood of development. In addition, because the marginal 

effects of a linear probability model are not conditional upon the estimates of 

other parameters and covariates, interpreting the magnitude and significance of 

interaction terms, such as 2 , is straightforward. In non-linear models, structural 
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parameters of the model need not have either the same sign
31

 or significance as 

marginal effects, confounding standard hypothesis testing procedures (Ai and 

Norton 2003). 

Linear probability models do have some important draw backs. Estimating 

a linear probability model will introduce heteroskedasticity to parameter estimates 

by imposing a continuous distribution to an inherently binary process. In practice, 

heteroskedasticity may be overcome by estimating models with cluster-robust 

standard errors. In addition, linear probability models may estimate predicted 

probabilities that lie outside the unit interval. This issue poses a more serious 

problem, particularly when researchers are interested in interpreting outcomes far 

from the average covariate values, and may imply inconsistent or biased 

parameter estimates (Horrace and Oaxaca 2006). However, so long as covariates 

are all discrete and completely saturated, the conditional expectation function can 

be linearly parameterized and a linear probability model will yield consistent 

parameter estimates (Angrist 2001). Even if all covariates are not fully saturated, 

as Wooldridge (2010) notes, to the extent that we are interested in the marginal 

effects of independent variables on the response probability for the average 

observation, the fact that some predicted vales are outside the unit interval may 

not be very important. 

In Equations 1 and 2, the effect of the hazard disclosure law on land 

development decisions is captured by the vector of parameters 2 . A negative and 

significant estimate for these parameters would indicate a reduction in probability 

                                                           
31

 In a difference-in-differences (DID) model, Puhani (2012) showed that the sign of the 

interaction term should at least be the same as the marginal effect 
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of development due to the hazard disclosure law relative to the baseline medium 

severity category. This result would suggest that the hazard disclosure law 

effectively conveyed new information regarding the underlying risks of wildfire, 

correspondingly reducing the rate of development for parcels with greater hazard 

severity. The effect of proximity to large wildfires is captured by the vector of 

coefficients 4 . A negative and significant coefficient estimate would indicate 

that proximity to a recent large wildfire tends to reduce probability of land 

development. Conversely, a positive coefficient estimate would indicate that 

parcels are more likely to develop after large wildfires occur. Because large 

wildfires occur with low probability, when a wildfire occurs nearby, some 

landowners may perceive this as a signal that their actual wildfire risk is now 

lower than before the fire. In reality, although large wildfires in close proximity to 

the parcel may provide some short term protection from fire damage by 

exhausting nearby fuel, over the medium to long term, the underlying risk of 

wildfire is unchanged by the occurrence of individual wildfire events. 

Estimates of the treatment effect of the hazard disclosure law in Equation 

2 are robust to sources of both spatial and temporal heterogeneity but rely upon 

the assumption of parallel time trends between treatment and control groups for 

purposes of identification. In robustness checks included in the Results section, I 

conduct a temporal falsification test using data only from the pre-hazard 

disclosure period (1985-1991), with false treatment occurring in 1988, to test for 

baseline differences in development patterns between severity classes. In addition, 

to reduce bias from unobserved spatial and temporal heterogeneity, I estimate a 
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model that includes only parcels within a two-kilometer spatial buffer of the 

border with medium hazard severity lands. Both probit and logit model 

specifications face problems with incidental parameters when estimated with 

fixed effects
32

 but, for sake of comparison, I also report results of a random effect 

probit model of land development decisions, which are estimated based upon 

Equation 1, above. 

 

III. Available Data 

The sample used for this analysis consists of all subdivisions and undeveloped 

parcels zoned for less than one dwelling per acre between the years 1985 and 

2004 in El Dorado County. The El Dorado County Geographic Information 

System (GIS) Program Office provided current parcel boundaries, zoning, and 

parcel attribute data. Undeveloped parcels include any property zoned for at least 

two authorized lots as of 1985, and with no more than one structure already built 

on the property. For subdivisions, the parcel boundary prior to development (the 

parent parcel) is determined based upon common attribute information stored in 

the legal description of each parcel. Subdivisions are identified as any parent 

parcel that produced two or more residential lots following land development. The 

year of development is based upon the year of construction for the first residential 

lot built. However, if more than ten years separate construction year for the first 

lot and successive lots, the date of construction for the second lot is treated as the 

                                                           
32

 Probit models cannot be consistently estimated with fixed effects and logit models can only be 

estimated for observations with variation in the dependent variable (i.e. developed parcels in my 

sample) . 
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year of development and the subdivision is recorded as having an existing house. 

In El Dorado County, major developments are considered any subdivision with 

more than five buildable lots and minor developments have five or fewer lots. In 

my sample, the vast majority, 96% of subdivisions, are considered minor 

developments. The final sample for my analysis includes 5,921 parcels, 1,117 

(19%) of which subdivided. 

The dependent variable for my analysis is a binary indicator of 

development. All parcels begin as undeveloped at year start in 1985 and once a 

parcel develops, it exits the sample permanently. Land development decisions are 

modeled as a function of spatially and temporally varying parcel attributes 

described in the remainder of this section. The primary model specification used 

for this analysis consists of a linear probability model of land development 

decisions with parcel based specific effects. By running a fixed effects model, I 

eliminate bias from any unobserved parcel attributes held constant over the 

sample timeline but also require that included explanatory variables temporally 

vary for purposes of identification. In robustness checks, I present an alternative 

random effects probit model and include other temporally invariant parcel 

attributes in this model. Table 3.1 provides summary statistics for included 

explanatory variables, including covariate means with standard deviations listed 

in parenthesis. 

For each parcel in my sample I determine wildfire risk based upon fire 

hazard severity data provided by the California Department of Forestry and Fire 

Protection (Cal FIRE). The spatial extent of Cal FIRE, hazard severity data is 
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reported in Figure 3.2. Hazard severity is mapped for all SRA lands in El Dorado. 

A total of 64 parcels were dropped from my analysis because they were located 

outside Cal FIRE data coverage. Hazard severity is divided into three classes: 

medium (the baseline), high and very high. Approximately 34% of sample 

properties reside in medium hazard severity zones, 26% in high severity zones 

and 41% in very high severity zones. 

The primary purpose of this analysis is to determine the effect that the 

introduction of the California wildfire hazard disclosure law had on land 

development patterns in El Dorado County. This policy was approved in 1989 and 

adopted in July 1991 and I therefore treat 1992 as the start of the post-disclosure, 

treatment period for purposes of my analysis. Thus, my sample includes both a 

pre-disclosure period (1985-1991) and a post-disclosure period (1992-2004). To 

test the hypothesis that the introduction of the hazard disclosure requirement 

caused a reduction in development for parcels with higher hazard severity, I 

interact a parcels hazard severity with a dummy variable equal to one for years 

greater than or equal to 1992. 

I determine the proximity of each parcel to several large wildfires that 

occurred in and around El Dorado County from a sample of mapped wildfires 

produced by Cal FIRE. Cal FIRE works jointly with the US Forest Service, the 

Bureau of Land Management and the National Park Service to develop a 

comprehensive GIS database of fire perimeters on public and private lands 

throughout California.
33

 Cal FIRE maps fire perimeters for timber fires larger than 

                                                           
33

 For more information regarding Cal FIRE, fire perimeter data see: 

http://frap.cdf.ca.gov/projects/fire_data/fire_perimeters/methods.php 

http://frap.cdf.ca.gov/projects/fire_data/fire_perimeters/methods.php
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ten acres, brush fires larger than fifty acres and grass fires three hundred acres or 

more from 1950 to the present day. In El Dorado County, mixed-oak and pine 

forests are the primary vegetation types (US Forest Service 2013) and thus, for 

most intents and purposes, Cal FIRE data contains fire perimeters for fires larger 

than ten acres. The current fire perimeter data represents the most comprehensive 

digital record of fire perimeters in the state of California. Fire perimeters for fires 

mapped by Cal FIRE between the years 1980 and 2004 near El Dorado County 

are reported in figure 3.3, along with the location of all the subdivisions included 

in my sample.  

Although wildfires are common in El Dorado County, the actual 

probability of a large wildfire occurring near a given parcel in a particular year is 

relatively small. In my sample, in each year, on average only 6% of parcels were 

within 7.5km of a wildfire. Thus, a parcel may update their subjective risk 

assessment even if not immediately threatened by the wildfire event. For each 

parcel in my sample and in each year, I create a set of dummy variables to 

indicate if a large wildfire occurred in the year prior within 1.25 km, 1.25-5 km 

and 5-7.5 km buffer. I also determine if a wildfire occurred in the two to five 

years prior over an identical set of distance thresholds. Under the hypothesis that 

the presence of a nearby large wildfire in the recent past generally delays 

development by conveying new information about the actual risk of wildfire, we 

should expect a negative coefficient for these fire proximity variables. However, a 

positive and significant coefficient for fire proximity may indicate a possible 

misperception regarding fire risk updating.  
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Historical forest cover is derived from the North American Carbon Project 

(NACP): Forest Disturbance data (Goward et al. 2012). NACP maintains detailed 

GIS raster databases of forest change for 55 selected locations across the United 

States at 30 square-meter resolution. For each study location, Landsat satellite 

imagery is collected starting in year 1984 and re-sampled every two to three years 

to create panel based observations of forest vegetation. Using this panel satellite 

data, the NACP apply their proprietary Vegetation Change Tracker (VCT) 

algorithm to determine timing and location of forest change (Huang et al. 2010). 

Results may be used to predict timing and distribution of deforestation, 

reforestation and afforestation events, based upon the date of first and last 

disturbance of each observation cell. For each parcel in my sample, I calculate the 

percent of parcel area covered by forest as well as the percent of the area within 

500 meters covered by forest. Each parcel is assigned forest values from the 

previous year. I expect a negative coefficient for the effect of forest area within 

parcel on probability of development. Parcels with larger forest area require more 

costly forest clearing to produce cleared land, ready for the construction of 

dwellings and defensible spaces. Previous empirical research by Bockstael (1996) 

found that forest clearing costs negatively affect probability of development. 

However, previous hedonic research has also shown that adjacent forest area 

tends to increase home values (Garrod and Willis 1992, Thorsnes 2002). To the 

extent that forests provide amenities valued by future homeowners, forest area 

within 500 meters may have a positive effect on probability of development. 
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Surrounding land use (SLU) within five hundred meters was estimated for 

each parcel, in each year, based upon parcel plat data provided by the El Dorado 

GIS Program Office. Land use is divided up into four categories: undeveloped, 

developed, non-residential and government lands. Undeveloped lands are 

considered the baseline land use in my models. The developed area surrounding 

each parcel updates each year as new structures are built and parcels are 

converted from undeveloped land uses to developed uses. For each parcel in my 

sample, I calculate the percent of area within a five hundred meter buffer 

identified as developed, non-residential, government, or undeveloped land uses. 

Of all the land use designations, only developed and undeveloped surrounding 

land use percentages update over time. Developed and non-residential 

surrounding land use both have ambiguous signs and may attract, or repel 

additional development relative to undeveloped land uses. I expect government 

surrounding land use to have a positive effect on development because 

government land includes large tracts of protected open space which may provide 

local amenities to homeowners. 

I calculate several time invariant parcel attributes included in robustness 

checks using a random effects probit model of land development. I calculate 

parcel area, existing house and zoning based upon data provided by The El 

Dorado County Geographic Information System (GIS) Program Office. I expect 

parcel area to have a positive effect on a parcel’s probability of development and 

existing house to have a negative effect. Zoning is calculated as a categorical 

variable with five potential values: MDR (1 du/1-5 acre), LDR (1 du/5-10 acre), 
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RR (1 du/10 acre), AL (1 du/20 acre) and NR (1 du/40-160 acre). MDR is treated 

as the baseline zoning category. Assuming that zoning laws are binding in El 

Dorado, we should expect a negative sign for the coefficients of the other zone 

classes. Distance to Sacramento and distance to major road are calculated as the 

linear distance, in kilometers from parcel centroid to Sacramento city boundary 

and closest major road. Both of these variables are measures of parcel 

accessibility and I expect parcels further away from Sacramento and further from 

major roads to have a lower probability of development. Mean parcel elevation, in 

meters, and slope, in degrees, are calculated using 10-meter resolution US 

Geological Survey (USGS) National Elevation Dataset. I expect a positive sign 

for elevation because parcels at higher elevation tend to have better views, which 

are valued by prospective homebuyers. Slope should have a negative effect, 

however, because parcels with more variable terrain are also more costly to 

develop. Using hydrography data provided by CalFish, I calculate the total length 

of intermittent streams, perennial streams and rivers and scale this measure by 

parcel area to determine parcel level stream density, measured in feet per acre. 

Stream density is expected to negatively affect probability of development by 

increasing construction costs and limiting lot configuration options. 

 

IV. Results 

Results of a fixed effect linear probability model of land development decisions 

are reported in in table 3.2. Table 3.2 is estimated between the years 1985 and 

2004, with the hazard disclosure requirement beginning in 1992. By including 
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parcel fixed effects, table 3.2 excludes all time invariant observed and unobserved 

parcel attributes from the estimation. In table 3.2, estimated coefficients are 

displayed in column 2 with cluster-robust standard errors in parenthesis. 

Coefficient estimates for forest variables included in table 3.2 are in line 

with expectation. Existing forest area within the parcel decreases probability of 

development on average and is statistically significant at below the one percent 

level. This result is consistent with the interpretation that larger forest area on the 

parcel contributes to higher forest clearing cost necessary to construct structures 

and defensible spaces. Forest area within 500 meters does have a slight positive 

effect on probability of development, which may imply that nearby forests may 

provide some amenity to homeowners, though this effect is not statistically 

significant. Percent developed land within 500 meters has a positive and 

statistically significant effect on probability of development. This implies that 

residential land development in rural El Dorado County tends to attract more 

neighboring development. Isolated clusters of developed infrastructure tend to be 

more difficult to defend against wildfire damage than more densely populated 

areas (Syphard et al. 2012). Given the high risk of fire damage in this area, 

residents have a strong incentive to locate homes closer to existing developed 

infrastructure to maximize their benefit from community wildfire protection and 

reduce risk of damage from catastrophic wildfire. 

I account for the impact of the 1992 hazard disclosure law introduction 

based upon a fixed average change in the rate of development in the post 

disclosure period and a relative change in consumption of parcels based upon 
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hazard severity. The sign of the coefficient for 𝜏 is negative, which indicates that 

after 1992, all parcels were on average slightly less likely to develop. This effect 

is statistically insignificant and not robust to changes in other temporally varying 

market conditions. However, relative to parcels located in medium hazard severity 

zones, both very high and high severity parcels are less likely to develop after 

hazard disclosure law introduction in 1992. Relative to medium severity parcels, 

on an annual basis, probability of development for very high hazard severity 

parcels after 1992 is approximately -0.28% lower, a result significant at below the 

five percent level. Probability of development is reduced on high severity parcels 

by an average -0.01% per year though this result is not statistically significant. 

These results support the hypothesis that the hazard disclosure requirement caused 

a reduction in development for parcels with higher State designated wildfire risk. 

In table 3.3, I report average annualized probability of development by 

hazard severity class during the post-disclosure period (1992-2004). In addition, I 

also report the average percent change in probability of development for high and 

very high severity parcels relative to medium severity parcels, based upon a non-

linear test of hypothesis. On average, approximately 1% of all parcels are 

developed each year. However, relative to the baseline medium severity group, 

high and very high severity parcels report a decrease in probability of 

development of approximately 13% and 24%, respectively. The latter decrease is 

significant at below the five percent level. In the thirteen year period after the 

disclosure law was adopted (1992-2004), 145 parcels were developed in high 

severity areas and 202 parcels were developed in very high severity areas. 
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Without the hazard disclosure policy introduction, results from table 3.3 imply an 

expected increase of 20 and 60 developed parcels on high and very high severity 

lands. 

Table 3.2 does not permit a direct understanding of the level of 

community knowledge of fire risk prior to the introduction of the hazard 

disclosure requirement. Any baseline effect of hazard severity would be absorbed 

by the parcel fixed effects. However, the negative and significant coefficient for 

very high hazard post 1992 suggests that prior to policy introduction, the 

community was either under-informed or asymmetrically informed. Anecdotal 

evidence from California legislative history suggests little prior landowner 

knowledge of underlying wildfire risk. In 1992, the California Association of 

Realtors petitioned the California Legislator to amend the existing hazard 

disclosure requirement to explicitly state that responsibility for hazard disclosure 

is solely that of the property owner (Assembly Bill 2428, 1992). Although this 

responsibility was already the sellers, few landowners had direct knowledge of 

their property’s location in SRA lands or susceptibility to wildfire and thus the 

realtor was generally requested to research the required information. Evidenced 

by this legislative action, the market’s prior failure to account for underlying 

wildfire risk may have been due, in part, to poor information delineation to 

landowners. 

Proximity to large wildfires also has a significant effect on probability of 

development. When a large fire occurs, parcels close to the fire tend to delay land 

development plans the following year. Parcels are nearly 1% less likely to 
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develop the year following large wildfires that occurred within 1.25 kilometers, a 

result significant below the five percent level. Landowners may delay 

development plans because the visible damage to the surrounding landscape 

reduces subdivision profitability. Alternatively, the occurrence of the wildfire 

may increase the community or landowner’s perception of future risk posed by 

wildfires which would tend to delay subsequent development. Interestingly, any 

negative shock to probability of development dissipates the further removed a 

parcel is in time or distance from the wildfire. Between two and five years after 

fire, no parcels within 7.5 kilometers are statistically less likely to develop than if 

a fire had not occurred. In fact, parcels between 1.25 and 7.5 kilometers away 

from wildfire are actually more likely to develop in the following years. For 

instance, parcels between 5 and 7.5 kilometers are on average 0.7% more likely to 

develop the year following wildfire and 0.5% more likely to develop two to five 

years after wildfire. Both of these estimates are significant at below the one 

percent level. These results are somewhat paradoxical, as we would generally 

expect wildfires in the vicinity of the parcel to delay development plans. 

However, these results could be evidence of possible misperception of wildfire 

risk updating. 

Because of cognitive limitations, humans have difficulty evaluating risk 

associated with low probability events. Individuals tend to have an optimistic bias 

towards disasters and systematically underestimate their true exposure to risk 

(Camerer and Kunreuther 1989). When a large wildfire occurs, a nearby 

landowner may believe that because a low probability event occurred in the recent 
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past, it is less likely to occur in the future. Such a conclusion is similar to the 

“gambler’s fallacy,” and has been observed in individual perceptions of risk posed 

by other natural disasters such as flooding (Pielke 1999). In the case of wildfire, 

individuals may believe that a large fire consumes nearby combustible fuel and 

nearby wildfires are therefore less likely to occur again in the near future. While 

large wildfires may lower future probability of wildfire over the short term, 

wildfire events do not substantial impact long term fire risk. In fact, Hurteau and 

North (2010) find that following controlled burn and understory thinning in 

Southern California, local forest carbon stock returned to normal in as little as 

seven years following fuel treatment. The authors also note that because small, 

understory trees are more fire prone than older stocks, fire hazard may recover at 

a faster rate than forest carbon. Other researchers have found that hazard 

reduction benefits from prescribed burning dissipate in as little as 2-4 years 

(Fernandez and Betelho 2003). The spatial benefits from natural and prescribed 

wildfires extend approximately as far as the maximum fire spotting distance
34

 

from burn perimeter, typically less than one mile (Finney et al 1997). For parcels 

located as much as 7.5km from the leading edge of a wildfire, there is little reason 

to believe that even an exceptionally large fire event could provide any substantial 

protection from future wildfire incidence.  

 

 

                                                           
34

 Fire spotting refers to the spread of wildfire to neighboring fuel sources from ignitable firebrand 

embers. 
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A. Robustness Checks 

In this section, I test robustness of previous results to a variety of alternative 

specifications. The estimated effect of the hazard disclosure law may be 

confounded if very high, high and medium severity parcels have non-parallel 

baseline time trends. To test robustness of my results to unobserved market time 

trends, I conduct a temporal falsification test using data from the pre-disclosure 

period (1985-1991), with hypothetical treatment beginning in 1988. These results 

are presented in table D1, located in Appendix D. Coefficients for post-1988 

hazard severity treatment are all insignificant at the five percent level, indicating 

no significant baseline differences in rate of development by hazard severity class 

during the pre-disclosure period. In addition, in unreported results I also try 

interacting hazard severity with a linear time trend, and find no change in 

conclusions. These alternative results are available upon request. 

The hazard disclosure law was passed in 1989 and officially enacted in 

July of 1991. I therefore treat the year 1992 as the start date for this policy in my 

primary model. Given the delay between hazard disclosure law approval and 

enactment, policy preemption by landowners is a possibility. In addition, because 

the date of development in my sample is based upon the year of lot construction 

and not the date of subdivision approval, some parcels that were developed after 

1992 may be exempt from the hazard disclosure requirement, which would imply 

attenuation in the effect of the hazard disclosure law. To control for potential 

policy preemption and attenuation, in alternative results presented in table D2, I 

estimate a model dropping the years just before and after hazard policy enactment 
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(1991 and 1992). Results of this model are essentially unchanged from those of 

table 2, though the coefficient very high hazard severity is slightly larger, in 

absolute value, and more significant. In unreported results, I also estimate a model 

dropping the years 1990 to 1993, with coefficient for very high hazard severity 

negative and significant at below the one percent level. Overall, these results 

imply that attenuation in my estimates of the effect of the post-1992 hazard 

disclosure law is likely. Assuming this hypothesis is true; coefficient estimates for 

hazard severity variables in table 2 would be under-estimates of the true average 

marginal effect. 

In table D3, I restrict the sample exclusively to parcels located within a 

two-kilometer buffer of the border with medium severity lands to reduce potential 

bias from other unobserved sources of market level heterogeneity. In this model, I 

include high and very high severity parcels within two-kilometers of medium 

severity areas and medium severity parcels within two-kilometers of high or very 

high severity areas. Parcel based fixed effects may reduce bias from time-

invariant and unobserved parcel attributes but limiting the analysis to parcels 

within a boundary of medium severity lands may reduce bias from unobserved 

local amenities that vary over time, such as the construction of a new fire station 

or variation in wildfire home insurance rates. Previous research by Dempsey and 

Plantinga (2013), Cunningham (2006), Black (1999) and Holms (1998), estimated 

models restricting their sample to parcels in the vicinity of a jurisdictional 

boundary to reduce bias from unobserved geographic and economic conditions. In 

table D3, the effect of the hazard disclosure law is substantially larger for high 
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and very high severity parcels relative to results reported in table 3.2. Coefficients 

for the treatment effect of the introduction of the hazard disclosure law on high 

and very high severity parcels are negative and significant at below the five 

percent level and one percent level, respectively. These results suggest that 

estimates from table 3.2 may be a lower bound for the true effect of the hazard 

disclosure law on probability of development 

I report a set of random effects probit models of parcel level probability of 

development in table D4. The first model includes the full sample used for table 

3.2 and the second model limits the population to parcels within a two-kilometer 

buffer of medium severity lands, as is the case in table D3. In these models, the 

probability of development is estimated as a function of all temporally varying 

parcel attributes included in table 3.2, along with temporally invariant parcel 

attributes including: natural log of parcel area, presence of an existing house, 

distance to Sacramento, distance to the closest major road, elevation, slope, 

stream density, as well as non-residential and government land use within 500 

meters of the parcel. In unreported results, I also estimate random effects logit 

models and linear probability models with no significant differences in model 

performance. In table D4, the effect of the hazard disclosure requirement is 

identified based upon a difference in differences (DID) variation in policy 

effectiveness between hazard severity classes. Coefficients in non-linear models 

need not have the same sign or significance as marginal effects in models with 

interactions terms, therefore, marginal effects for the DID effect of the hazard 
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disclosure law are calculated based upon the method proposed by Puhani (2012) 

and are reported in table D5.  

In contrast to table 3.2, marginal effects for post-1992 hazard disclosure 

are positive but insignificant for very high and high hazard severity parcels in the 

unrestricted sample. For the sample of parcels within two-kilometers of the 

medium severity border, marginal effects for high and very high severity parcels 

are negative but statistically insignificant at the five percent level. These results 

are opposite expectation and suggest little to no effect of the hazard disclosure 

law on probability of development. However, estimates from DID models are not 

robust to the presence of unobserved, time invariant variables that’s effects covary 

jointly with the treatment and dependent variable. By including fixed effects in 

table 3.2, I reduce bias from unobserved heterogeneity in stationary parcel 

attributes and therefore treat this as my primary specification to test hypotheses 

related to the impact of the hazard disclosure law. Coefficients for fire proximity 

variables are of the same sign and similar significance to those of table 3.2. The 

effects of other parcel attributes included in table D4 are in keeping with 

expectation. Parcel area, elevation, and more government lands within 500 meters 

all positively impact a parcels probability of development. Whereas, the presence 

of an existing house, higher stream density and more non-residential land near the 

parcel negatively affect probability of development. Coefficients for zoning 

categories are by in large insignificant, which suggests that zoning regulations in 

El Dorado County do not significantly curtail residential development decisions. 
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In unreported results, I estimate several models with differing 

specifications of the effect of nearby wildfires on land development. These 

include models with more finely delineated distance thresholds for nearby 

wildfires
35

 and additional intercepts if a wildfire occurred on the parcel or within 

10 kilometers of the parcel. Results from these alternative models all support the 

conclusions from table 2 and are available upon request. I also estimate a fully 

saturated linear probability model by dividing up the three continuous variables 

from table 2 (parcel forest area, forest area within 500 meters and developed land 

within 500 meters) into quintiles or deciles. Conclusions from these models are 

unchanged from table 3.2 and are also available upon request. 

 

V. Conclusion 

Wildfires are a common occurrence in many communities across the United 

States and may become more common in the future as climate change 

permanently alters temperature and precipitation patterns across the globe. Land 

development in at risk areas may contribute to higher expected damages from 

wildfire as well as more costly fire suppression efforts. Evidence from El Dorado 

County California suggests that hazard disclosure requirements are at least 

moderately effectively in curtailing development on parcels located in the highest 

fire risk areas of the county. In other communities facing similar fire risk, hazard 

disclosure requirements, coupled with detailed risk mapping may provide a viable 

                                                           
35

 I include separate dummy variables by 1.25km bands (i.e. within 0-1.25km, 1.25-2.5km, etc.) 
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option to limit land development in areas most threatened by wildfire. Hazard 

disclosure requirements may have the added advantage of being less politically 

contentious than other land use regulations such as taxation or zoning policy. 

However, it is currently unknown what the optimal rate of land development 

should be in these communities. Future research could reveal what policy, or mix 

of policies most optimally balances the costs and benefits associated with land 

development and growing wildfire risk. 

This research also highlights the importance of recent wildfires events to 

land development decisions in El Dorado County. Parcels close to wildfire 

perimeters (less than 1.25km) tend to delay land development the year following a 

fire event. However, parcels further removed in time or distance are more likely 

to develop following wildfire events. Residents may believe that because a large 

wildfire occurred in recent memory near their house, they face less risk of wildfire 

damage in the future. Although wildfires confer some short-term protection from 

future risk by consuming available fuel, long term fire risk is unaffected by 

individual fire events. This result is similar to the “gambler’s fallacy,” or the 

mistaken belief that because an outcome recently occurred, it is less likely to 

occur in the future, which has been observed by individuals in response to other 

natural hazards, such as flooding. To correct this problem, policy makers could 

make efforts to educate residents regarding the determinants of wildfire risk, 

particularly in the areas surrounding recent wildfire events. Depending upon the 

severity of wildfire risk in these areas, direct policy intervention may be necessary 

to prevent growth of housing in areas with critically high fire risk.  
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TABLE 3.1: COVARIATE SUMMARY STATISTICS (MEANS WITH STANDARD 

DEVIATIONS IN PARENTHESIS) 

 

 
Pre-1992 Data Post-1992 Data 

Variables 

Undeveloped 

Parcels 

Developed 

Parcels 

Undeveloped 

Parcels 

Developed 

Parcels 

Hazard Severity Class 

        Medium Severity 0.3313 0.3752 0.3311 0.3327 

 

(0.4707) (0.4846) (0.4706) (0.4716) 

    High Severity 0.2582 0.2379 0.256 0.2788 

 

(0.4377) (0.4261) (0.4364) (0.4489) 

    Very High Severity 0.4105 0.3869 0.4129 0.3885 

 

(0.4919) (0.4875) (0.4924) (0.4879) 

Fire Event 1 Year Prior 

        Fire within 0-1.25km 0.0022 0.005 0.0049 0.0019 

 

(0.0466) (0.0708) (0.0695) (0.0439) 

    Fire within 1.25-5km 0.0184 0.0235 0.034 0.0769 

 

(0.1345) (0.1515) (0.1813) (0.2667) 

    Fire within 5-7.5km 0.0145 0.0436 0.0392 0.0962 

 

(0.1195) (0.2043) (0.1941) (0.2951) 

Fire Event 2-5 Year Prior 

        Fire within 0-1.25km 0.0084 0.0201 0.0116 0.0154 

 

(0.0911) (0.1405) (0.1069) (0.1232) 

    Fire within 1.25-5km 0.0579 0.0988 0.0773 0.15 

 

(0.2335) (0.2987) (0.267) (0.3574) 

    Fire within 5-7.5km 0.0466 0.1139 0.096 0.1942 

 

(0.2108) (0.318) (0.2945) (0.396) 

Time Varying Attributes 

        Forest Area (%) 49.387 47.5254 48.4998 49.4701 

 

(36.7782) (33.8888) (36.6942) (34.2389) 

    Forest within 500m (%) 48.8861 50.355 47.2877 54.6756 

 

(33.461) (30.8857) (33.3798) (29.2798) 

    Developed within 500m (%) 13.4406 27.7591 17.1765 37.5638 

 

(14.7164) (14.4823) (18.5648) (17.76) 

    Undeveloped within 500m (%) 66.7344 61.7309 62.0587 51.2929 

 

(19.0819) (15.5549) (21.4577) (17.2666) 

Stationary Attributes 

        ln(Parcel Area) 2.6284 2.6486 2.6017 2.8748 

 

(1.2416) (0.9734) (1.2679) (0.931) 

    Existing House 0.4308 0.3233 0.4033 0.6846 

 

(0.4952) (0.4681) (0.4906) (0.4651) 

    Distance to Sacramento (km) 48.5038 50.6784 48.0906 52.3226 

 

(12.0147) (10.6851) (12.1102) (10.3484) 
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    Distance to Major Road (km) 0.673 0.6097 0.6761 0.6444 

 

(0.7357) (0.5647) (0.7461) (0.6307) 

    Elevation (m) 593.2375 639.1453 585.0004 669.3511 

 

(263.4741) (224.2451) (265.4422) (231.243) 

    Slope ( 
ₒ
 ) 9.8522 9.5163 9.8745 9.6464 

 

(4.7024) (4.195) (4.7562) (4.1713) 

    Stream Density (ft/acre) 25.3404 23.5648 25.2848 25.8538 

 

(40.0699) (37.71) (40.4804) (36.0846) 

    Non-residential within 500m (%) 10.3005 3.4001 11.08 3.0994 

 

(11.1206) (7.7321) (11.1675) (7.5245) 

    Government within 500m (%) 9.5407 7.1099 9.7027 8.0439 

 

(12.9534) (10.382) (13.0933) (11.4838) 

Zoning 

        MDR 0.3919 0.33 0.4125 0.2019 

 

(0.4882) (0.4706) (0.4923) (0.4018) 

    LDR 0.2832 0.2831 0.2789 0.3231 

 

(0.4506) (0.4509) (0.4485) (0.4681) 

    RR 0.2633 0.3417 0.2489 0.3962 

 

(0.4404) (0.4747) (0.4324) (0.4896) 

    AL 0.0314 0.0218 0.0293 0.05 

 

(0.1743) (0.1461) (0.1688) (0.2182) 

    NR 0.0302 0.0235 0.0304 0.0288 

 

(0.1712) (0.1515) (0.1716) (0.1675) 

Parcel Count 5325 597 4805 520 
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TABLE 3.2: TABLE 2, LINEAR PROBABILITY MODEL OF DEVELOPMENT WITH 

PARCEL FIXED EFFECTS (1985-2004) 

 

VARIABLES Probability of Development 

    

Post-1992 Hazard Severity Class 

     Post-1992 * High Severity -0.00146 

 

(0.00144) 

    Post-1992 * Very High Severity -0.00275* 

 

(0.00129) 

    Post-1992 -0.00026 

 

(0.00196) 

Fire Event 1 Year Prior 

     Fire within 0-1.25km -0.00988* 

 

(0.00452) 

    Fire within 1.25-5km 0.00266 

 

(0.00237) 

    Fire within 5-7.5km 0.00735** 

 

(0.00262) 

Fire Event 2-5 Year Prior 

     Fire within 0-1.25km 0.00180 

 

(0.00374) 

    Fire within 1.25-5km 0.00274 

 

(0.00168) 

    Fire within 5-7.5km 0.00488** 

 

(0.00171) 

Time Varying Parcel Attributes 

     Forest Area (%) -0.00052** 

 

(0.00016) 

    Forest within 500m (%) 0.00011 

 

(0.00010) 

    Developed within 500m (%) 0.00214** 

 

(0.00012) 

    Constant 0.00377 

 

(0.00793) 

Fixed Effects 

 Year Yes 

Parcel Yes 

  Observations 105,912 

Number of Parcels 5,921 

Cluster-Robust standard errors in parentheses 

** p<0.01, * p<0.05 
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TABLE 3.3: ANNUALIZED PROBABILITY OF DEVELOPMENT AND PERCENT CHANGE 

BY HAZARD SEVERITY CLASS DURING POST-DISCLOSURE PERIOD (1992-2004) 

 

 

Probability of Development Percent Reduction+ 

Hazard Severity Coefficient Standard Error Coefficient Standard Error 

    Medium 0.01139** 0.00102 -- -- 

    High 0.00993** 0.00113 -12.81 11.91 

    Very High 0.00864** 0.00098 -24.18* 10.04 

+Percent reduction relative to baseline medium severity parcels  

**p<0.01, *p<0.05 
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FIGURE 3.1: EL DORADO COUNTY ZONING LOCATIONS  

 

FIGURE 3.2: EL DORADO FIRE HAZARD SEVERITY ZONES (CAL FIRE, 2007) 
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FIGURE 3.3: FIRE PERIMETERS MAPPED BY CAL FIRE (1980-2004) NEAR 

EL DORADO COUNTY AND SUBDIVISIONS (1985-2004) 
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Appendix A 

Table A1. Covariate Marginal Effects for Temporal Falsification Test Using 

Pre-WEA (July, 2011 – June, 2012) Observations with False Treatment 

Beginning in January, 2012 

Variables Coefficient 

Standard 

Error 

WEA Period x Warning County 

     WEA Period -0.8009 0.7264 

   Warning County 1.7260*** 0.4427 

   WEA Period x  Warning 

County 0.3850 0.7273 

Alert Time of Day
a
 

     4am - 8am 0.7040* 0.3731 

   8am - 12pm 0.1453 0.3770 

   12pm - 4pm 0.7594* 0.4369 

   4pm - 8pm 0.6941 0.5569 

   8pm - 12am -0.7854 0.8072 

Warning County x Alert Time of 

Day
a
   

   Warning County x 4am - 8am -2.2378*** 0.7279 

   Warning County x 8am - 12pm -1.1683 0.8863 

   Warning County x 12pm - 4pm -1.0728 0.8198 

   Warning County x 4pm - 8pm -0.6589 0.8782 

   Warning County x 8pm - 12am 0.2362 0.9357 

Day of Week   

   Monday 0.8330*** 0.2169 

   Tuesday 1.7767*** 0.5210 

   Wednesday 1.3676*** 0.4124 

   Thursday 0.9683*** 0.1788 

   Friday 1.5759*** 0.4547 

   Saturday 0.8063** 0.3403 
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Weather Controls   

   Precipitation (mm) 0.0005 0.0050 

   Wind Speed (m/s) 0.0785 0.0759 

Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 746  

Number of Dates 62   

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 

a
Baseline time category of 12am-4am 

 

 

Table A2.  Temporal Falsification Test, Change in Car Accident Count 

Conditional on Flash Flood Warning  in Post-WEA Period (Standard Errors 

in Parentheses) 

Warning 

With 

WEA 

Without 

WEA 

DD 

Treatment 

Effect 

Per 

100,000 

Licensed 

Drivers 

Percent 

Change 

Flash 

Flood 4.988*** 4.603*** 0.385 0.462 8.363 

 

(0.345) (0.667) (0.727) (0.889) (16.88) 

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 
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Table A3. Covariate Marginal Effects for Spatial Falsification Test 

Variables Coefficient 

Standard 

Error 

WEA Period x Warning County 

     WEA Period -0.8200 1.1101 

   Warning County -0.0500 0.2932 

   WEA Period x  Warning 

County 0.1570 0.2408 

Alert Time of Day
a
 

     4am - 8am -0.3312 0.2847 

   8am - 12pm -0.4230 0.2894 

   12pm - 4pm -0.1470 0.3280 

   4pm - 8pm -0.3615 0.3111 

   8pm - 12am -0.8826* 0.5098 

Warning County x Alert Time of 

Day
a
   

   Warning County x 4am - 8am 0.2650 0.3816 

   Warning County x 8am - 12pm 0.1390 0.4431 

   Warning County x 12pm - 4pm -0.2818 0.4963 

   Warning County x 4pm - 8pm -0.0577 0.3522 

   Warning County x 8pm - 12am 0.4171 0.4564 

Day of Week   

   Monday 0.3223 0.2065 

   Tuesday 0.8619*** 0.2440 

   Wednesday 0.5620** 0.2552 

   Thursday 0.4392** 0.2155 

   Friday 0.8546*** 0.2270 

   Saturday 0.4067** 0.2016 

Weather Controls   

   Precipitation (mm) 0.0084*** 0.0022 

   Wind Speed (m/s) 0.1077** 0.0482 
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Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 1516  

Number of Dates 133   

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 

a
Baseline time category of 12am-4am 

 

 

 

Table A4.  Spatial Falsification Test, Change in Car Accident Count 

Conditional on Flash Flood Warning  in Post-WEA Period (Standard Errors 

in Parentheses) 

Warning 

With 

WEA 

Without 

WEA 

DD 

Treatment 

Effect 

Per 

100,000 

Licensed 

Drivers 

Percent 

Change 

Flash 

Flood 2.348*** 2.191*** 0.157 0.429 7.166 

 

(0.087) (0.234) (0.241) (0.659) (28.321) 

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 
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Table A5. Difference-in-Differences (DD) Poisson Model for Daily Count of 

Car Accidents with Fixed Effects by County (Incident Rate Ratios Reported) 

Variables 

Incident Rate 

Ratio 

Standard 

Error 

WEA Period x Warning County 

     WEA Period 1.0509 0.2339 

   Warning County 1.3392*** 0.1284 

   WEA Period x  Warning 

County 0.8267*** 0.0545 

Alert Time of Day
a
 

 

 

   4am - 8am 1.1508 0.1018 

   8am - 12pm 0.9925 0.1050 

   12pm - 4pm 1.0182 0.0928 

   4pm - 8pm 1.0199 0.0905 

   8pm - 12am 1.0337 0.1543 

Warning County x Alert Time of 

Day
a
 0.6439*** 0.1245 

   Warning County x 4am - 8am 1.1135 0.3692 

   Warning County x 8am - 12pm 1.0723 0.1314 

   Warning County x 12pm - 4pm 1.0629 0.1334 

   Warning County x 4pm - 8pm 0.8269 0.1524 

   Warning County x 8pm - 12am 0.6439*** 0.1245 

Day of Week   

   Monday 1.5077*** 0.1103 

   Tuesday 1.7638*** 0.0921 

   Wednesday 1.5509*** 0.0812 

   Thursday 1.5562*** 0.0817 

   Friday 1.6568*** 0.0959 

   Saturday 1.5000*** 0.1393 

Weather Controls   

   Precipitation (mm) 1.0014 0.0009 
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   Wind Speed (m/s) 0.9717 0.0186 

Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 1820  

Number of Counties 130   

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 

a
Baseline time category of 12am-4am 

 

 

Table A6. Linear Model of Daily Count of Car Accidents, Two-way 

Clustered at Date and County Level 

Variables Coefficient 

Standard 

Error 

WEA Period x Warning County 

     WEA Period 0.2517 0.8631 

   Warning County 0.2757 0.5959 

   WEA Period x  Warning 

County -0.8559*** 0.3161 

Alert Time of Day
a
 

     4am - 8am -0.3841 0.6057 

   8am - 12pm -0.9494 0.8839 

   12pm - 4pm -0.7520 0.6922 

   4pm - 8pm -0.6245 0.6229 

   8pm - 12am -0.7047 0.8244 

Warning County x Alert Time of 

Day
a
   

   Warning County x 4am - 8am -0.6569 0.7576 
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   Warning County x 8am - 12pm 1.1666 1.0404 

   Warning County x 12pm - 4pm 1.4834 0.9190 

   Warning County x 4pm - 8pm 1.1119 0.9172 

   Warning County x 8pm - 12am 0.1548 0.8276 

Day of Week   

   Monday 1.1998*** 0.3441 

   Tuesday 1.4258*** 0.3732 

   Wednesday 1.3992*** 0.4438 

   Thursday 1.2477*** 0.3053 

   Friday 1.4933*** 0.4776 

   Saturday 1.1796*** 0.2197 

Weather Controls   

   Precipitation (mm) 0.0039* 0.0023 

   Wind Speed (m/s) -0.0072 0.0942 

Fixed Effects   

   County Yes  

   Month x Year Yes  

Observations 1850  

Number of Counties 134   

Number of Dates 133  

***Significant at the 1 percent level 

**Significance at the 5 percent level 

*Significance at the 10 percent level 

a
Baseline time category of 12am-4am 
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Table A7. Regression Discontinuity Models of Impact of Pre-WEA and Post-

WEA Flash Flood Warnings on Traffic Volume by Alert Time of Day 

(Bootstrapped Standard Errors Listed in Parentheses) 

 

  12am-6am 6am-12pm 12pm-6pm 6pm-12am 

Pre-WEA 8.83 8.86 21.99** 11.74 

 

(7.79) (7.21) (9.25) (7.12) 

Post-WEA -29.02*** -30.5*** -27.46*** -22.7** 

 

(8.91) (8.76) (10.43) (9.65) 

Difference -37.85*** -39.35*** -49.45*** -34.45*** 

 

(11.21) (10.92) (13.51) (11.05) 

Station-Day FE Yes Yes Yes Yes 

Stations 51 256 190 258 

Observations 1534 11516 13062 8657 

***Significant at the 1% level; **Significant at the 5% percent level; 

*Significant at the 10% level 

Based upon 1,000 bootstrapped replications 
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Figure A1. Frequency of WEA messages by Virginia county 

 

Figure A2. Continuous traffic monitoring station locations in the State of 

Virginia 
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Figure A3. Local linear regression of hours from alert on traffic volume from day prior to alert (Model 3) 

 

Notes: Controlling for hourly trends by quarter-station and station by day fixed effects 
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Figure A6. Local linear regression of hours from alert on traffic volume from counties neighboring flash flood 

warning counties (Model 4) 

 

Notes: Controlling for hourly trends by quarter-station and station by day fixed effects 
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Appendix B 

 

Figure B1. Residential subdivisions in 1985-2000 in rural Baltimore County 
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Table B1. Temporal Falsification Test on Percent Forest Cover Change 

Conditional on Development in 1993-1996 and 1997-2000 (False Regulatory 

Event=1997) 

 

 

Forest Cover Quintile 

Forest Cover Change in 

1993-1996 

Forest Cover Change 

 in 1997-2000 Difference 

Forest Cover 0-20% 8.1711* 7.5559** -0.6151 

 

(3.6325) (2.4141) (3.8344) 

Forest Cover 20-40% 7.7132* 3.7127 -4.0005 

 

(3.6792) (3.002) (4.5581) 

Forest Cover 40-60% 5.2248 8.8514** 3.6266 

 

(3.5153) (2.6696) (4.25) 

Forest Cover 60-80% -0.0414 -2.5983 -2.5568 

 

(3.2973) (2.0821) (3.485) 

Forest Cover 80-100% -8.486* -7.1626** 1.3234 

 

(3.7806) (2.5944) (4.4135) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 

 

 

Table B2. Temporal Falsification Test on Percent Forest Cover Change 

Conditional on Development in 1985-1988 and 1989-1992 (False Regulatory 

Event=1989) 

 

 

Forest Cover Quintile 

Forest Cover Change in 

1985-1988 

Forest Cover Change  

in 1989-1992 Difference 

Forest Cover 0-20% -0.0803 0.4633 0.5436 

 

(3.1825) (1.2571) (3.0198) 

Forest Cover 20-40% -5.4528 -5.7471** -0.2944 

 

(3.7697) (1.5829) (4.378) 

Forest Cover 40-60% -8.9164* -3.8089** 5.1075 

 

(3.8481) (1.2609) (3.9863) 

Forest Cover 60-80% -7.8195** -8.2477** -0.4281 

 

(2.7497) (2.952) (4.9285) 

Forest Cover 80-100% -4.6040 -4.1951** 0.4089 

 

(2.6429) (1.1967) (2.7736) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 
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Table B3. Marginal Effect of Covariates on Annual Probability of 

Development and Forest Cover Change (1988-1997) 

 

  Probability of Development Forest Cover Change 

Variables 
Marginal 

Effect 

Standard 

Error 

Marginal 

Effect 

Standard 

Error 

Forest Cover Quintiles
a 

    

  Forest Cover 20-40% -0.00061 0.00229 -3.66954 2.02522 

  Forest Cover 40-60% 0.00065 0.00238 -3.28292 1.73414 

  Forest Cover 60-80% 0.00110 0.00256 -7.32801* 3.02690 

  Forest Cover 80-100% 0.00135 0.00236 -3.23078 1.65573 

Post-1993 Forest Cover Quintiles
a
 

   Post-1993* Forest Cover 20-40% 0.00035 0.00279 0.96027 2.51787 

  Post-1993* Forest Cover 40-60% 0.00060 0.00288 0.12311 2.63140 

  Post-1993* Forest Cover 60-80% 0.00292 0.00320 -5.41213** 1.93637 

  Post-1993* Forest Cover 80-100% 0.00119 0.00276 -12.14439** 2.68034 

Parcel Characteristics 

    Parcel Area 0.00008** 0.00003 -0.09476** 0.02425 

  Zoned Capacity 0.00007 0.00007 0.03650 0.04119 

  Distance to Baltimore City -0.00042 0.00024 -0.07736 0.18007 

  Distance to Major Road 0.00083 0.00118 -0.70108 1.15396 

  Riparian Buffer Area -0.00012** 0.00004 0.11048* 0.04429 

  Slope -0.00002 0.00017 0.28380 0.14507 

  Elevation 0.00011 0.00032 -0.15133 0.23185 

  Prime Ag Land 0.00105 0.00275 0.23597 2.88823 

  Soil Erosion Potential 0.00002 0.00023 -0.48981 0.29864 

  Existing House -0.00173 0.00099 0.37786 0.90944 

  Easement Eligibility -0.00870** 0.00151 -- -- 

  Authorized Minor -0.00612** 0.00225 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price 0.00349 0.00707 -5.57392 5.98297 

  Housing Price Variance 0.01627 0.00994 7.20897 11.39436 

Surrounding Land Use within 500 Meter Buffer 

  Residential 0.00016** 0.00004 -0.00280 0.03850 

  Non-residential -0.00004 0.00012 -0.03573 0.12573 

  Parks -0.00004 0.00007 0.04786 0.05549 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 

a
 Marginal effects are based upon a discrete change from the baseline 0-20% existing forest category. 
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Table B4. Percent Forest Cover Change Conditional on Development in 

1988-1992 and 1993-1997 

 

 

Forest Cover Quintile 

Forest Cover Change in 

1988-1992 

Forest Cover Change 

 in 1993-1997 Difference 

Forest Cover 0-20% -2.8146 1.1447 3.9593 

 

(2.8061) (1.0585) (2.9505) 

Forest Cover 20-40% -9.2385** -1.9391 7.2994* 

 

(3.3935) (1.3585) (3.55) 

Forest Cover 40-60% -10.1855** 0.7941 10.9796** 

 

(3.3587) (1.5095) (3.5285) 

Forest Cover 60-80% -11.0173** -5.0917** 5.9257 

 

(4.1305) (1.3125) (3.8417) 

Forest Cover 80-100% -7.0294* -9.2351** -2.2057 

 

(3.0912) (1.6703) (3.2881) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively.  
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Table B5. Marginal Effect of Covariates on Annual Probability of 

Development and Forest Cover Change Using Existing Forest Cover Deciles 

(1985-2000) 

 

  Probability of Development Forest Cover Change 

Variables 
Marginal 

Effect 

Standard 

Error 

Marginal 

Effect 

Standard 

Error 

Forest Cover Deciles
a
     

  Forest Cover 10-20% 0.00154 0.00265 -0.24484 2.05101 

  Forest Cover 20-30% 0.00090 0.00258 -5.23324* 2.38447 

  Forest Cover 30-40% -0.00260 0.00218 -7.17858* 3.23449 

  Forest Cover 40-50% 0.00428 0.00282 -7.83797** 2.55761 

  Forest Cover 50-60% 0.00192 0.00269 -6.55699* 2.74452 

  Forest Cover 60-70% 0.00393 0.00284 -5.85405* 2.33180 

  Forest Cover 70-80% 0.00353 0.00285 -10.70781** 3.49479 

  Forest Cover 80-90% 0.00250 0.00270 -5.51554* 2.49724 

  Forest Cover 90-100% 0.00450 0.00248 -4.25257* 2.05497 

Post-1993 Forest Cover Deciles
a
 

   Post-1993*Forest Cover 10-20% -0.00065 0.00252 -4.21941 2.25090 

  Post-1993*Forest Cover 20-30% 0.00301 0.00296 -2.95215 2.66580 

  Post-1993*Forest Cover 30-40% 0.00194 0.00284 -4.17179 3.37044 

  Post-1993*Forest Cover 40-50% 0.00147 0.00285 0.08732 3.34962 

  Post-1993*Forest Cover 50-60% 0.00422 0.00339 -1.41646 2.95707 

  Post-1993*Forest Cover 60-70% 0.00412 0.00309 -10.93418** 2.19783 

  Post-1993*Forest Cover 70-80% 0.00216 0.00327 -8.13439** 2.67318 

  Post-1993*Forest Cover 80-90% 0.00126 0.00303 -16.78175** 3.57278 

  Post-1993*Forest Cover 90-100% 0.00275 0.00267 -15.19892** 2.74415 

Parcel Characteristics 

    Parcel Area 0.00007** 0.00002 -0.05379** 0.02071 

  Zoned Capacity 0.00011* 0.00005 0.02788 0.03454 

  Distance to Baltimore City -0.00028 0.00019 -0.09545 0.18090 

  Distance to Major Road 0.00087 0.00093 -0.39872 0.98109 

  Riparian Buffer Area -0.00015** 0.00003 0.09942** 0.03486 

  Slope -0.00007 0.00014 0.44192** 0.15611 

  Elevation 0.00015 0.00025 -0.06986 0.22277 

  Prime Ag Land 0.00018 0.00222 0.08806 2.75346 

  Soil Erosion Potential -0.00004 0.00019 -0.30814 0.24144 

  Existing House -0.00174 0.00099 0.37154 0.93229 

  Easement Eligibility -0.00831** 0.00119 -- -- 

  Authorized Minor -0.00195 0.00143 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.00094 0.00538 -3.40132 5.04824 
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  Housing Price Variance 0.01338 0.00740 8.11707 8.52739 

Surrounding Land Use within 500 Meter Buffer 

  Residential 0.00018** 0.00003 0.04874 0.03220 

  Non-residential 0.00001 0.00009 0.00841 0.09522 

   0.00001 0.00005 0.03749 0.04421 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 
a
 Marginal effects are based upon a discrete change from the baseline 0-10% existing forest category. 

 

 

Table B6. Percent Forest Cover Change Conditional on Development in 

1985-1992 and 1993-2000 Using Existing Forest Cover Deciles 

 

 

Forest Cover Decile 

Forest Cover Change 

in 1985-1992 

Forest Cover Change 

 in 1993-2000 Difference 

Forest Cover 0-10%  -3.6581 6.6227** 10.2808** 

 

(3.1139) (1.6895) (3.4561) 

Forest Cover 10-20%  -3.9039 2.4036 6.3075 

 

(3.006) (1.6996) (3.324) 

Forest Cover 20-30%  -8.8919* 3.6690 12.5609** 

 

(3.5638) (2.0952) (4.0235) 

Forest Cover 30-40%  -10.8349** 2.4499 13.2847** 

 

(4.2014) (2.8505) (4.7376) 

Forest Cover 40-50%  -11.4984** 6.7092* 18.2076** 

 (3.7459) (2.9328) (4.5894) 

Forest Cover 50-60%  -10.2162** 5.2041* 15.4204** 

 (3.5773) (2.3636) (4.1259) 

Forest Cover 60-70%  -9.5143** -4.3135** 5.2007 

 (3.5528) (1.4184) (3.3937) 

Forest Cover 70-80%  -14.3678** -1.5129 12.8550* 

 (5.0514) (2.0604) (5.0731) 

Forest Cover 80-90%  -9.1751** -10.1598** -0.9847 

 (3.5043) (3.2272) (4.5571) 

Forest Cover 90-100%  -7.9131* -8.5777** -0.6646 

 

(3.1818) (2.0077) (3.5726) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 
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Table B7. Full Information Maximum Likelihood Estimation Results on 

Panel Heckman Selection Model with Quadratic Existing Forest Cover 

 
  Probability of Development  Forest Cover Change  

Variables Coefficient Standard Error Coefficient Standard Error 

Continuous Forest Variables 
 

  

  

  Existing Forest Cover 0.00136 0.00378 -0.31985** 0.08622 

  Existing Forest Cover^2 0.00001 0.00003 0.00276** 0.00076 

  Post-1993*Existing Forest Cover 0.00285 0.00527 0.41090** 0.12195 

  Post-1993*Existing Forest Cover^2 -0.00004 0.00005 -0.00518** 0.00119 

  Post-1993 0.01630 0.16661 6.15036 3.51653 

Parcel Characteristics     

  Parcel Area 0.00325* 0.00135 -0.04058 0.02615 

  Parcel Area^2 3.80x10
-6 

4.90x10
-6

 0.00014* 0.00007 

  Zoned Capacity 0.00462* 0.00225 0.06926 0.04134 

  Distance to Baltimore City -0.01292 0.00816 -0.20419 0.20150 

  Distance to Major Road 0.03752 0.03999 -0.00031 0.99061 

  Riparian Buffer Area -0.00636** 0.00135 0.05533 0.04208 

  Slope -0.00266 0.00586 0.37276* 0.16151 

  Elevation 0.00689 0.01058 -0.04718 0.24311 

  Prime Ag Land 0.00402 0.09553 -0.01639 2.80915 

  Soil Erosion Potential -0.00149 0.00815 -0.20780 0.24977 

  Existing House -0.07058 0.04241 -0.06763 0.98056 

  Authorized Minor -0.35751** 0.04957 -- -- 

  Easement Eligibility -0.09180 0.06134 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.03867 0.23170 -3.35442 5.56555 

  Housing Price Variance 0.55620 0.31584 10.54182 8.29223 

Surrounding Land Use within 500 Meter Buffer 

  Residential  0.00784** 0.00125 0.10179* 0.04970 

  Non-residential 0.00013 0.00391 -0.02535 0.10592 

  Parks -0.00009 0.00210 0.02490 0.04372 

  Constant -2.44338** 0.49822 -20.41032 15.81169 
     0.72761** 0.15623 -- -- 

Annual Time Fixed Effects Yes  Yes  

Census Tract Fixed Effects Yes  Yes  

Observations 44,002  413  

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 
a
 Marginal effects are based upon a discrete change from the baseline 0-20% existing forest category. 
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Table B8. Marginal Effect of Covariates on Annual Probability of 

Development and Forest Cover Change with Quadratic Existing Forest 

Cover 

 

  Probability of Development Forest Cover Change 

Variables 
Marginal 

Effect 

Standard 

Error 

Marginal 

Effect 

Standard 

Error 

Forest Cover Quintiles
a 

    

  Forest Cover 30% 0.00061 0.00095 -4.42910** 1.11009 

  Forest Cover 50% 0.00137 0.00152 -6.68036** 1.68057 

  Forest Cover 70% 0.00229 0.00170 -6.75361** 1.76972 

  Forest Cover 90% 0.00341 0.00175 -4.64863** 1.59013 

Post-1993 Forest Cover Quintiles
a
 

   Post-1993* Forest Cover 20-40% 0.00132 0.00108 -0.57473 1.14663 

  Post-1993* Forest Cover 40-60% 0.00218 0.00173 -2.89737 1.65347 

  Post-1993* Forest Cover 60-80% 0.00247 0.00188 -6.96888** 1.70210 

  Post-1993* Forest Cover 80-100% 0.00213 0.00191 -12.78956** 1.91877 

Parcel Characteristics 

    Parcel Area 0.00007** 0.00002 -0.05616** 0.02044 

  Zoned Capacity 0.00011* 0.00005 0.03387 0.03349 

  Distance to Baltimore City -0.00030 0.00019 -0.10511 0.17926 

  Distance to Major Road 0.00087 0.00093 -0.28804 0.95016 

  Riparian Buffer Area -0.00015** 0.00003 0.10409** 0.03562 

  Slope -0.00006 0.00014 0.39313* 0.15551 

  Elevation 0.00016 0.00025 -0.10002 0.22530 

  Prime Ag Land 0.00009 0.00222 -0.04720 2.73416 

  Erosion k-factor -0.00003 0.00019 -0.19636 0.23791 

  Existing House -0.00164 0.00099 0.47368 0.91872 

  Easement Eligibility -0.00832** 0.00120 -- -- 

  Authorized Minor -0.00214 0.00143 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.00090 0.00539 -3.05790 5.17774 

  Housing Price Variance 0.01294 0.00738 6.27628 7.90262 

Surrounding Land Use within 500 Meter Buffer 

  Residential 0.00018** 0.00003 0.04162 0.03232 

  Non-residential 0.00001 0.00009 -0.02633 0.09855 

  Parks 0.00001 0.00005 0.02558 0.03848 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 

a
 Marginal effects are based upon a discrete change from the baseline 10% existing forest category. 
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Table B9. Percent Forest Cover Change Conditional on Development with 

Quadratic Existing Forest Cover 

 

 

Forest Cover Quintile 

Forest Cover Change in 

1985-1992 

Forest Cover Change 

 in 1993-2000 Difference 

Forest Cover 0-20% -4.0947 5.3284** 9.4231** 

 

(2.9132) (1.193) (3.0512) 

Forest Cover 20-40% -8.5242* 4.753** 13.2771** 

 

(3.3782) (1.1214) (3.2804) 

Forest Cover 40-60% -10.7758** 2.4299 13.2058** 

 

(3.703) (1.2921) (3.5127) 

Forest Cover 60-80% -10.8496** -1.6417 9.2078** 

 

(3.7073) (1.1399) (3.4463) 

Forest Cover 80-100% -8.7451* -7.4623** 1.2829 

 

(3.4468) (1.4226) (3.4346) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 
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Table B10. Marginal Effect of Covariates Using Indpendent Model with 

Separately Estimated Equations for Development and Forest Cover Change  

( 0   ) 

 

  Probability of Development Forest Cover Change 

Variables 
Marginal 

Effect 

Standard 

Errors 

Marginal 

Effect 

Standard 

Errors 

Forest Cover Quintiles
a 

    

  Forest Cover 20-40% -0.00163 0.00178 -5.39091** 1.89326 

  Forest Cover 40-60% 0.00235 0.00201 -6.67588** 1.87579 

  Forest Cover 60-80% 0.00292 0.00210 -7.71678** 2.23698 

  Forest Cover 80-100% 0.00312 0.00194 -4.22618** 1.52334 

Post-1993 Forest Cover Quintiles
a
 

   Post-1993* Forest Cover 20-40% 0.00274 0.00213 -1.49220 2.27253 

  Post-1993* Forest Cover 40-60% 0.00276 0.00221 1.71401 2.53415 

  Post-1993* Forest Cover 60-80% 0.00357 0.00236 -8.11151** 1.79947 

  Post-1993* Forest Cover 80-100% 0.00251 0.00210 -13.62128** 2.24654 

Parcel Characteristics 

    Parcel Area 0.00007** 0.00002 -0.06686** 0.01905 

  Zoned Capacity 0.00011* 0.00005 0.01627 0.03154 

  Distance to Baltimore City -0.00029 0.00019 -0.08784 0.17378 

  Distance to Major Road 0.00086 0.00093 -0.29554 0.95713 

  Riparian Buffer Area -0.00015** 0.00003 0.08580* 0.03657 

  Slope -0.00006 0.00013 0.35782* 0.15066 

  Elevation 0.00015 0.00025 -0.10177 0.23124 

  Prime Ag Land 0.00020 0.00224 0.43416 2.71821 

  Soil Erosion Potential -0.00004 0.00019 -0.26262 0.23943 

  Existing House -0.00175 0.00099 0.62027 0.94043 

  Easement Eligibility -0.00815** 0.00123 -- -- 

  Authorized Minor -0.00187 0.00148 -- -- 

Housing Price Indices at Census Tract Level 

  Housing Price -0.00080 0.00539 -2.66288 5.04415 

  Housing Price Variance 0.01330 0.00739 7.09213 8.21542 

Surrounding Land Use within 500 Meter Buffer 

  Residential 0.00018** 0.00003 0.03372 0.03115 

  Non-residential 0.00001 0.00009 -0.03407 0.09256 

  Parks 0.00000 0.00005 0.02535 0.04188 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, respectively. 

a
 Marginal effects are based upon a discrete change from the baseline 0-20% existing forest category. 
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Table B11. Percent Forest Cover Change Conditional on Development in 

1985-1992 and 1993-2000 Using Independent Model with Separately 

Estimated Equations for Development and Forest Cover Change ( 0   )  

 

 

Forest Cover Quintile 

Forest Cover Change  

in 1985-1992 

Forest Cover Change 

 in 1993-2000 Difference 

Forest Cover 0-20% -3.7115 4.1557** 7.8672* 

 

(2.8367) (1.3621) (3.1466) 

Forest Cover 20-40% -9.1024** 2.6635 11.7659** 

 

(3.4453) (1.7756) (3.6905) 

Forest Cover 40-60% -10.3874** 5.8697** 16.2571** 

 

(3.3595) (2.0492) (3.6595) 

Forest Cover 60-80% -11.4283** -3.9558** 7.4725 

 

(4.1345) (1.2163) (3.9333) 

Forest Cover 80-100% -7.9377* -9.4656** -1.5279 

 

(3.1387) (1.7574) (3.429) 

Double and single asterisks (*, **) denote statistical significance at the five and one percent level, 

respectively. 
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Table B12. Landscape-Level Predictions on Land Acreage, Existing Forest Cover and Forest Cover Change 

With and Without FCA (Bootstrapped 90% Confidence Intervals) 

 

 Subdivisions without FCA Subdivisions with FCA Difference 

Forest Cover Quintile Land area 

Existing 

 forest area 

Forest cover 

change Land area 

Existing  

forest area 

Forest cover 

change Land area 

Existing forest 

area 

Forest cover 

change 

Forest Cover 0-20% 1395* 175* -97* 1400* 176* 16 5 1 113* 

 [678, 2342] [63, 260] [-213, -17] [754, 2007] [86, 244] [-23, 55] [-994, 616] [-105, 77] [27, 224] 

Forest Cover 20-40% 1371* 396* -197* 2216* 639* -57 845 243 140* 

 [726, 2647] [214, 794] [-377, -60] [1571, 3059] [445, 887] [-91, 59] [-230, 1577] [-70, 468] [34, 353] 

Forest Cover 40-60% 1969* 931* -273* 2013* 955* 51 44 24 324* 

 [1046, 3333] [494, 1609] [-558, -99] [1226, 3090] [591, 1487] [-37, 163] [-1074, 1160] [-521, 566] [148, 668] 

Forest Cover 60-80% 1221* 841* -164* 1366* 936* -77* 145 95 87* 

 [800, 2674] [549, 1823] [-451, -71] [992, 2453] [685, 1667] [-146, -28] [-913, 660] [-610, 428] [3, 340] 

Forest Cover 80-100% 1548* 1400* -163* 1405* 1263* -162* -143 -137 1 

 [880, 2858] [791, 2617] [-305, -48] [962, 2293] [881, 2066] [-285, -88] [-1054, 601] [-960, 565] [-146, 152] 

Total 7504* 3743* -893* 8400* 3969* -229* 896 226 664* 

 [5198, 12540] [2738, 6473] [-1661, -378] [7424, 10518] [3557, 5419] [-337, -37] [-3070, 3563] [-1893, 1505] [218, 1542] 

All numbers above reported in acres. Asterisk (*) denotes statistical significance of the bootstrapped 90% confidence interval not containing zero. 
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Table B13. Landscape-Level Predictions on Land Acreage, Existing Forest Cover and Forest Cover Change 

With and Without FCA (Bootstrapped 80% Confidence Intervals) 

 

 Subdivisions without FCA Subdivisions with FCA Difference 

Forest Cover Quintile Land area 

Existing 

 forest area 

Forest cover 

change Land area 

Existing  

forest area 

Forest cover 

change Land area 

Existing forest 

area 

Forest cover 

change 

Forest Cover 0-20% 1395* 175* -97* 1400* 176* 16 5 1 113* 

 [757, 2154] [84, 239] [-169, -31] [880, 1815] [94, 206] [-18, 46] [-685, 506] [-76, 61] [34, 188] 

Forest Cover 20-40% 1371* 396* -197* 2216* 639* -57 845 243 140* 

 [860, 2295] [248, 663] [-292, -71] [1595, 2780] [467, 838] [-68, 49] [-7, 1309] [-1, 422] [53, 308] 

Forest Cover 40-60% 1969* 931* -273* 2013* 955* 51 44 24 324* 

 [1169, 2976] [541, 1469] [-453, -129] [1317, 2787] [630, 1368] [-16, 133] [-761, 726] [-379, 347] [190, 531] 

Forest Cover 60-80% 1221* 841* -164* 1366* 936* -77* 145 95 87* 

 [1077, 2502] [714, 1684] [-392, -98] [1118, 2193] [752, 1498] [-123, -38] [-671, 550] [-470, 382] [18, 289] 

Forest Cover 80-100% 1548* 1400* -163* 1405* 1263* -162* -143 -137 1 

 [1037, 2546] [957, 2340] [-285, -59] [1104, 2174] [1019, 1983] [-237, -102] [-735, 441] [-704, 404] [-98, 122] 

Total 7504* 3743* -893* 8400* 3969* -229* 896 226 664* 

 [5887, 11413] [3076, 5759] [-1439, -465] [7639, 10051] [3668, 5120] [-309, -73] [-1949, 2826] [-1198, 1317] [260, 1372] 

All numbers above reported in acres. Asterisk (*) denotes statistical significance of the bootstrapped 80% confidence interval not containing zero. 
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Appendix C: Creation of Housing Price Variables 

 

In this appendix, we describe the methodology used to create census tract-level 

variables for both the price for housing services and variance of housing prices. 

To construct our housing price indices, we use arm’s length housing transaction 

data between 1985 and 2000 in Baltimore County compiled from the Maryland 

Property View (MDPV) database. Next, we combine the MDPV housing 

transactions with tax assessment data for the study region, which contains 

additional structural and property specific attributes for each house. Finally, we 

exclude observations with housing prices in the top and bottom 1% of the sample 

to reduce the potential influence of outliers. The final data set on housing 

transactions includes 9,030 arm’s length housing sales between 1985 and 2000 in 

Baltimore County. 

Based upon the method described in Sieg et al. (2002), we proceed by 

running a series of hedonic regressions for each year to distinguish the pure price 

of housing services, at the neighborhood level, from the quantity index of 

structural and lot-specific characteristics of the house. The dependent variable for 

our analysis is the real transaction price of housing ijP  for house i  in census tract 

j converted into 2000 dollars using the CPI for the Baltimore metro region. The 

vector ijX  represents the structural and lot-specific characteristics from tax 

assessment records for each house, such as building square footage, number of 

floors, lot acreage, etc. For each year between 1985 and 2000, we estimate a 

separate hedonic price equation represented in Equation C.1 
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(C.1) ij ijX

ij jP e
 




  . 

Taking the natural log of each side yields the price function 

(C.2) ln lnij j ij ijP X     . 

The coefficient k   represents the average marginal effect of the structural 

characteristic, k , on the natural  log of housing price and ij is the housing price 

residual. After controlling for the structural and lot-specific attributes of the 

house, the vector of fixed effects, j , represents the price for housing services for 

each census tract for the given year of the hedonic model (Sieg et al. 2002). By 

combining the vector of fixed effects for all the hedonic models estimated 

between 1985 and 2000, we construct the index variable on housing price that 

varies spatially and temporally by census tract and by year, respectively. Higher 

housing prices are expected to increase the probability of development by 

increasing the expected returns from subdivision development. 

 In addition, we use predictions from Equation C.2 to construct a measure 

of housing price variability. Capozza and Li (1994, 2002) show theoretically that 

an increase in housing price uncertainty raises the expected return needed to 

justify development. Based on this conceptual framework, Cunningham (2006, 

2007) finds empirical evidence that an increase in housing price uncertainty tends 

to delay development (reduce probability of development). Following the related 

approach in Towe, Nickerson and Bockstael (2008), the measure for housing 

price variance for census tract j  for each year is represented by Equation C.3 
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Here, ˆln ijP represents the predicted natural log of housing price predicted from 

Equation C.2, ijl is the number of observations in census tract j , k is the number 

of regressors and îj is the deviation in the untransformed housing price from the 

predicted level. However, we are primarily interested in the relative level of 

housing price variability and we therefore standardize price variance by taking the 

square root and dividing by the average housing price in each census tract, 

represented in Equation C.4  

(A.4) 
 ˆ

j

j

j

Var
E

P


  . 

The empirical measure for the variance in housing price also varies spatially and 

temporally by census tract and by year.  
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Appendix D 

 

REAL ESTATE TRANSFER DISCLOSURE STATEMENT 

  

THIS DISCLOSURE STATEMENT CONCERNS THE REAL PROPERTY 

SITUATED IN THE COUNTY OF EL DORADO, STATE OF CALIFORNIA, 

DESCRIBED AS 

__________________________________________________________________

____________ 

THIS STATEMENT IS A DISCLOSURE OF THE CONDITION OF THE 

ABOVE DESCRIBED PROPERTY IN COMPLIANCE WITH ORDINANCE 

NO. _________________ OR COUNTY CODE AS OF ________________, 

19__. IT IS NOT A WARRANTY OF ANY KIND BY THE SELLER(S) OR 

ANY AGENT(S) REPRESENTING ANY PRINCIPAL(S) IN THIS 

TRANSACTION, AND IS NOT A SUBSTITUTE FOR ANY INSPECTION OR 

WARRANTIES THE PRINCIPAL(S) MAY WISH TO OBTAIN SELLERS 

INFORMATION. 

 

The seller hereby discloses the following information with the knowledge that 

even though this is not a warranty, prospective buyers may rely on this 

information in deciding whether, and on what terms, to purchase the subject 

property. Seller hereby authorizes any agent(s) representing any principal(s) in 

this transaction to provide a copy of this statement to any person or entity in 

connection with any actual or anticipated sale of the property.  

THE FOLLOWING ARE REPRESENTATIONS MADE BY THE SELLER(S) 

AS REQUIRED  

BY THE COUNTY OF EL DORADO AND ARE NOT THE 

REPRESENTATION OF THE AGENT(S), IF ANY. THIS INFORMATION IS 

A DISCLOSURE AND IS NOT INTENDED TO BE PART OF ANY 

CONTRACT BETWEEN BUYER AND SELLER.  

1. Buyer is advised that this property is within an area of state responsibility 

for fire protection and is within a wildland area which may contain 

substantial forest or wildfire risks and hazards, subject to the fire 

prevention measures of Public Resources Code section 4291. Further, that 

it is not the state's responsibility to provide fire protection services to any 

building or structure located therein; which is therefore the responsibility 

of the local fire department.  

2. Understanding and cooperation of property owners is essential to provide 

adequate fire protection services. The buyer or new homeowner can help 

by providing a defensible space around structures, reducing flammable 

vegetation on roads and driveways, widening of narrow roadways or 

driveways, and providing proper road signs and number signs which meet 

fire safe requirements for existing properties. Your local fire agency (local 

fire district, California Department of Forestry, or United States Forest 

Service) may provide additional information regarding risks and hazards 

of forest fires and wildland fires for specific properties.  
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To be filled out by seller:  

____________________________ ____________________________  

(Local Fire District) (Telephone Number)  

__________________________________________________________________

____________ 

 (Local Fire District Office Address) 

C.D.F., 2840 Mount Danaher Road, Camino, California 95709 (916) 644-2345  

U.S.F.S., 100 Forni Road, Placerville, California 95667 (916) 622-5061  

Seller certifies that the information herein is true and correct to the best of the 

seller's knowledge  

as of the date signed by the seller.  

(Seller) (Date)  

(Seller) (Date)  

BUYER(S) AND SELLER(S) MAY WISH TO OBTAIN PROFESSIONAL 

ADVICE AND/OR INSPECTIONS OF THE PROPERTY AND TO PROVIDE 

FOR APPROPRIATE PROVISIONS IN A CONTRACT BETWEEN BUYER 

AND SELLER(S) WITH RESPECT TO ANY ADVICE/INSPECTION 

DEFECTS.  

I/WE ACKNOWLEDGE RECEIPT OF A COPY OF THIS STATEMENT.(Date) 

_________________ __________________________________  

(Seller) (Date) (Buyer) (Date)  

__________________ ___________ _______________ _________  

(Seller) (Date) (Buyer) (Date)  

Agent (Broker  

Representing Seller) __________ By ______________ _______  

 (Signature) (Date)  

Agent (Broker  

Obtaining Offer) __________ By ______________ _______  

 (Signature) (Date)  

A REAL ESTATE BROKER IS QUALIFIED TO ADVISE ON REAL ESTATE. 

IF YOU  

DESIRE LEGAL ADVICE, CONSULT AN ATTORNEY. 
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Table D1: Falsification Test of Hazard Disclosure Treatment in Pre-

Disclosure Period  

(1985-1991) 

VARIABLES Probability of Development 

    

Post-1988 Hazard Severity Class 

     Post-1988 * High Severity -0.00118 

 

(0.00289) 

    Post-1988 * Very High Severity 0.00183 

 

(0.00262) 

    Post-1988 0.01325 

 

(0.00258) 

Fire Event 1 Year Prior 

     Fire within 0-1.25km -0.00331 

 

(0.01727) 

    Fire within 1.25-5km -0.00160 

 

(0.00467) 

    Fire within 5-7.5km 0.01514 

 

(0.00813) 

Fire Event 2-5 Year Prior 

     Fire within 0-1.25km 0.02234* 

 

(0.01117) 

    Fire within 1.25-5km 0.00827 

 

(0.00454) 

    Fire within 5-7.5km 0.01756** 

 

(0.00547) 

Time Varying Parcel Attributes 

     Forest Area (%) -0.00113 

 

(0.00099) 

    Forest within 500m (%) -0.00014 

 

(0.00010) 

    Developed within 500m (%) 0.00466** 

 

(0.00040) 

    Constant 0.05777 

 

(0.07232) 

Fixed Effects 

 Year Yes 

Parcel Yes 

  Observations 39,730 

Number of Parcels 5,921 

Cluster-Robust standard errors in parentheses 

** p<0.01, * p<0.05 
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Table D2: Linear Probability Model of Development with Parcel Fixed 

Effects  

(1985-1990, 1993-2004) 

VARIABLES Probability of Development 

    

Post-1992 Hazard Severity Class 

     Post-1992 * High Severity -0.00039 

 

(0.00152) 

    Post-1992 * Very High Severity -0.00320* 

 

(0.00131) 

    Post-1992 -0.00319 

 

(0.00195) 

Fire Event 1 Year Prior 

     Fire within 0-1.25km -0.00992* 

 

(0.00454) 

    Fire within 1.25-5km 0.00315 

 

(0.00238) 

    Fire within 5-7.5km 0.00734** 

 

(0.00265) 

Fire Event 2-5 Year Prior 

     Fire within 0-1.25km 0.00203 

 

(0.00383) 

    Fire within 1.25-5km 0.00164 

 

(0.00166) 

    Fire within 5-7.5km 0.00472** 

 

(0.00176) 

Time Varying Parcel Attributes 

     Forest Area (%) -0.00057** 

 

(0.00017) 

    Forest within 500m (%) 0.00012 

 

(0.00011) 

    Developed within 500m (%) 0.00198** 

 

(0.00011) 

    Constant 0.00377 

 

(0.00793) 

Fixed Effects 

 Year Yes 

Parcel Yes 

  Observations 95,180 

Number of Parcels 5,921 

Cluster-Robust standard errors in parentheses 

** p<0.01, * p<0.05 
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Table D3: Linear Probability Model of Development with Parcel Fixed 

Effects, Parcels within 2km of Medium Severity Border (1985-2004) 

VARIABLES Probability of Development 

    

Post-1992 Hazard Severity Class 

     Post-1992 * High Severity -0.00355* 

 

(0.00170) 

    Post-1992 * Very High Severity -0.00554** 

 

(0.00174) 

    Post-1992 -0.00454 

 

(0.00276) 

Fire Event 1 Year Prior 

     Fire within 0-1.25km -0.00520 

 

(0.00516) 

    Fire within 1.25-5km 0.00263 

 

(0.00305) 

    Fire within 5-7.5km 0.00310 

 

(0.00341) 

Fire Event 2-5 Year Prior 

     Fire within 0-1.25km -0.00060 

 

(0.00469) 

    Fire within 1.25-5km 0.00257 

 

(0.00220) 

    Fire within 5-7.5km 0.00473* 

 

(0.00236) 

Time Varying Parcel Attributes 

     Forest Area (%) -0.00086* 

 

(0.00037) 

    Forest within 500m (%) -0.00031 

 

(0.00033) 

    Developed within 500m (%) 0.00200** 

 

(0.00015) 

    Constant 0.02917 

 

(0.01917) 

Fixed Effects 

 Year Yes 

Parcel Yes 

  Observations 53,491 

Number of Parcels 2,972 

Cluster-Robust standard errors in parentheses 

** p<0.01, * p<0.05 
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Table D4: Random Effects Probit Model of Development (1985-2004) 

VARIABLES (1) (2) 

   
Hazard Severity Class 

 
    High Severity 0.01469 -0.00749 

 

(0.04748) (0.06394) 

    Very High Severity -0.03079 -0.00287 

 

(0.04593) (0.06724) 

Post-1992 Hazard Severity Class 

    Post-1992 * High Severity 0.06675 -0.00135 

 

(0.06607) (0.08683) 

    Post-1992 * Very High Severity 0.05652 -0.08194 

 

(0.05869) (0.09130) 

    Post-1992 -0.36377** -0.49165** 

 

(0.08591) (0.12375) 

Fire Event 1 Year Prior 

     Fire within 0-1.25km -0.07706 -0.36080 

 

(0.19670) (0.38968) 

    Fire within 1.25-5km 0.15513* 0.12766 

 

(0.06434) (0.09682) 

    Fire within 5-7.5km 0.29223** 0.24247** 

 

(0.05644) (0.08389) 

Fire Event 2-5 Year Prior 

    Fire within 0-1.25km 0.23572* -0.08959 

 

(0.09805) (0.18988) 

    Fire within 1.25-5km 0.19465** 0.14558* 

 

(0.04099) (0.06129) 

    Fire within 5-7.5km 0.25365** 0.26085** 

 

(0.03826) (0.05413) 

Parcel Attributes 

     ln(Parcel Area) 0.16949** 0.13983** 

 

(0.02186) (0.03195) 

    Existing House -0.25369** -0.24292** 

 

(0.02814) (0.04178) 

    Distance to Sacramento (km) 0.00307 0.00559 

 

(0.00343) (0.00498) 

    Distance to Major Road (km) -0.01544 0.03531 

 

(0.02212) (0.03772) 

    Elevation 0.00037* 0.00011 

 

(0.00016) (0.00024) 

    Slope -0.00513 -0.01076* 



166 

 

 

(0.00344) (0.00518) 

    Stream Density (ft/acre) -0.00104** -0.00075 

 

(0.00035) (0.00056) 

    Forest Area (%) -0.00259** -0.00207** 

 

(0.00050) (0.00070) 

    Forest within 500m (%) 0.00126* 0.00005 

 

(0.00058) (0.00080) 

    Developed SLU within 500m (%) 0.01946** 0.01851** 

 

(0.00081) (0.00115) 

    Non-residential within 500m (%) -0.04581** -4.79891** 

 

(0.00258) (0.37817) 

    Government within 500m (%) 0.00396** 0.00364 

 

(0.00119) (0.00192) 

Zoning 

      LDR -0.00604 0.11224 

 

(0.04252) (0.06244) 

    RR 0.06465 0.13797 

 
(0.05195) (0.07922) 

    AL -0.13417 0.06925 

 
(0.08970) (0.12682) 

    NR 0.14810 0.58826** 

 

(0.10350) (0.15257) 

    Constant -2.95231** -2.76480** 

 

(0.10939) (0.15403) 

Fixed Effects 
 

Year Yes Yes 

Parcel No No 

   
Observations 105,912 53,491 

Number of Parcels 5,921 2,972 

Notes: (1) Includes the unrestricted sample from Table 2,  

(2) Includes only parcels within 2km of medium severity border 

Cluster-Robust standard errors in parentheses 
 

** p<0.01, * p<0.05 
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Table D5: Difference in Differences (DID) Hazard Severity Treatment Effect 

on Probability of Development 

 

Full Sample 

Hazard Severity With Disclosure Law Without Disclosure Law DID Treatment Effect 

High 0.01232** 0.01057** 0.00175 

 

(0.00119) (0.00103) (0.00174) 

Very High 0.01084** 0.00951** 0.00134 

 

(0.00096) (0.00081) (0.00139) 

**p<0.01, *p<0.05 

       

    

 

Parcels within 2km of Medium Severity Border 

Hazard Severity With Disclosure Law Without Disclosure Law DID Treatment Effect 

High 0.01006** 0.01009** -0.00003 

 

(0.00131) (0.00135) (0.00202) 

Very High 0.00842** 0.0102** -0.00178 

 

(0.00127) (0.00141) (0.00198) 

**p<0.01, *p<0.05    
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