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Agriculture is a source of livelihood for 86% of households in rural areas, many of

whom rely on their crops for income. However, many farmers in isolated areas do not have

access to reliable market price information that can inform them about the most profitable

opportunities on where to sell their products.

This dissertation presents new evidence on the role of price information in farmers’ mar-

keting outcomes. I use data from a field experiment in the central highlands of Peru. A

group of farmers in randomly selected villages was provided with mobile phones, through

which they received detailed price information for seventeen relevant crops in six regional

markets. I find that those provided with the information received 13-14% higher prices for

their products. This effect was larger for perishable crops and for more risk-averse house-

holds. Information also made farmers more likely to participate in commercial activities

and sell their crops (rather than allocating them for self-consumption).

These results were not driven by other mobile phone benefits as the phones distributed to the



farmers were restricted to only receive the price SMS during the period of the intervention.

They are not driven by production decisions either because the intervention took place

after planting decisions had already been made. Finally, I also investigate the possibility

of information spillovers by examining marketing outcomes of households who did not

receive the information but lived in villages where others did. I do not find any significant

effects among households in this group.
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Chapter 1

Introduction

Imperfect information has adverse consequences on market performance and welfare. Such

imperfections seem to be especially prevalent in developing countries, where communica-

tion technologies and infrastructure are often deficient. Within developing countries, in-

formation imperfections may be particularly acute in agricultural markets and primarily

affect small farmers1. In particular, these small farmers — usually living in remote areas

and without access to adequate infrastructure — may be less informed about market con-

ditions. As they sell their products to middlemen, they face one considerable disadvantage

(among others): better informed traders can exploit information asymmetries to pay lower

farm gate prices. Therefore, enhanced market price information should increase farmers’

1For example, Mitra & Sarkar (2003) investigate the potato markets in West Bengal. They find that,
while farmers earn very small profits for (that even become negative when imputing for factors of production,
such as family labor), traders have exhibit substantial mark-ups for their commercial activity. They argue
that these differences in profit margins are likely to be a consequence of traders’ informational advantage. In
another example, Fafchamps & Hill (2008) analyze coffee markets in Uganda. The authors find that while
increases in international coffee prices readily translate into higher export and wholesale prices, but imply
much smaller increments in the prices paid to farmers. They posit that traders take advantage of farmers’
ignorance about price movements.
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sales prices. However, the evidence has been somewhat mixed: while some authors find a

positive impact, others do not find any2.

In this paper, I provide new experimental evidence about the role of agricultural infor-

mation on marketing outcomes. I conducted a field experiment in the central highlands of

Peru by randomly allocating price information among agricultural households in 58 vil-

lages. Twenty six villages were assigned to the treatment group, while the others remained

as controls. Within villages in the treatment group, I randomly provided cell phones to 111

households. I collected detailed price information for seventeen different crops by quality

in six different relevant markets. Those who received cell phones were sent price informa-

tion through Short Message Service (SMS) for the four months immediately after the rainy

season in the highlands. This is the period in which farmers have already harvested their

crops and make most of their sales decisions. Therefore, the intervention allows me to cap-

ture the effects of price information on marketing strategies, isolated from any production

decisions. To make information more digestible — rather than providing a massive number

of SMS — farmers only received information for the crops they harvested.

The intervention also ensured that the farmers benefited only from enhanced market

price information. In general, mobile phones provide users with a wide array of commer-

cial benefits, besides access to price information (e.g. they facilitate coordination, direct

bargaining of sales conditions with clients; arrangements with input providers; collabora-

tion with other producers, etc.). To measure the impact of price information isolated from

2Svensson & Yanagizawa (2009), Goyal (2010), Courtois & Subervie (2013) and Nyarko, Hildebrandt,
Romagnoli & Soldani (2013) find positive impacts; Fafchamps & Minten (2012), Aker & Fafchamps (2013),
Camacho & Conover (2011) and Mitra, Mookherjee, Torero & Visaria (2013) do not find any effect. This
evidence is discussed in more detail in Section 2.
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these parallel benefits of mobile phones, the devices provided to farmers were only able

to receive SMS and calls from a phone number managed by the project. Participants were

able to keep the devices as unrestricted pre-paid phones with no further obligation after this

period.

Within this setting, I test four hypotheses. First, I test whether market price information

leads to higher sales prices. For this purpose, I compare the prices of the beneficiaries who

directly received the price information through their cell phones with those of households

in the control villages. Second, I test if access to market price information increases farm-

ers’ market participation. In contrast to previous papers that focus on farmers who were

already participating in commercial activities, I intentionally sampled both farmers who

sell their production and who only grow their crops for self-consumption. This allows me

to estimate the effect of information on the probability of engaging in any commercial ac-

tivity. Third, I analyze potential heterogeneous effects by crop types and households’ risk

aversion, to assess the conditions under which information may be more effective. Fourth,

I investigate if there are any spillover effects of information by analyzing the marketing

outcomes of households who did not receive the treatment but lived in villages where oth-

ers were treated. Farmers in this group might have been exposed indirectly to the price

information, even when they did not receive it directly.

This paper presents four main contributions to the literature relating price information

and farmers’ agricultural market performance. First, I present the first experimental esti-

mate of the effect of information on the extensive margin of market participation. Second,

I am able to isolate the short-run effect of information on farmers’ marketing strategy by

phasing the timeline of the intervention. Third, as opposed to some previous work that
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has focused on Information and Communication Technologies in general, the nature of the

intervention allows me to disentangle the sole effect of market price information stripped

from any other benefits. Fourth, in contrast to previous papers which restrict attention to

households that had previous access to a certain technology (e.g. previous cell phone own-

ership, radio, etc.), this intervention encompassed the provision of such technology. This

allows me to explore to what extent the focus on certain subpopulations may have led pre-

vious results, since households with previous access to technology tend to be wealthier and

more educated.

My results suggest that price information has a large and sizable impact: farmers who

received the information directly experienced 13%-14% increases in their sales prices. This

result is robust to different specifications and variations in the sample. The effect is mostly

driven by increases in prices for relatively more perishable products (for which informa-

tion is more valuable), and for more risk-averse households (which might have been more

affected by price market uncertainty). I find no differential effects by previous ownership

of a cell phone. This suggests that those less familiar with this technology can also benefit

from a price dissemination policy.

Among households who received the price information, there was an increase of about

12% in the probability of engaging in a commercial transaction for their crops. Thus, the

information had a large effect on the extensive margins of sales. On the intensive mar-

gin (traded volumes, conditional on any sales), I find large but not statistically significant

impacts on the information group. Due to the timing of the intervention, these results are

not driven by changes in households’ crop choices or output levels. I do not find any ev-

idence to support the presence of spillover effects: there are no apparent price benefits to
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farmers who did not receive the information directly but were in villages where someone

else did. This result is consistent across multiple specifications for social interaction (e.g.

geographic distance, crop restrictions, etc.).

As with any limited scale study, results should be interpreted in context. First, when

comparing these results to previous findings in the literature, the context should be consid-

ered. In this paper, the considerable increases in the probability of commercial transactions

reveal that this area still had ample room for further participation in agricultural markets

(where price information may potentially have larger impacts). Further, the effect of in-

formation may depend on the crops under analysis. My results suggest that information is

more important on perishable crops.

The remainder of this dissertation is organized in five chapters. Chapter 2 discusses

some of the related literature on the impact of market price information in rural areas of

developing countries. Chapter 3 describes the RCT in the central highlands of Peru. Chap-

ter 4 presents a simple theoretical model to frame some of the impact of information on

marketing outcomes. Chapter 5 presents the empirical strategy and the results. Finally,

Chapter 6 concludes.
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Chapter 2

The Effects of Price Information on

Market Performance: A Review of the

Literature

This chapter presents a brief discussion of the recent literature that analyzes the impact of

market price information on market performance in developing countries. A first group of

papers have analyzed the availability of mobile phone service to improve the functioning

of rural markets in developing countries1. Mobile phones can facilitate timely access to

market prices and unexploited opportunities to sell or buy goods2. In this spirit, Jensen

1For a recent review of the impact of mobile phones on agricultural development, see Nakasone, Torero
& Minten (forthcoming).

2Other papers have also discussed the impact of public phone coverage. For example, Chong, Galdo
& Torero (2009) exploit large expansions of the public phone coverage in rural Peru. They combine the
roll-out of public phones with household surveys, and find that this policy led to increases in per-capita
agricultural income of 17-21%. Beuermann (2011) analyzes the same policy and finds similar results: access
to a public phone led to a 19.5% increase in agricultural profitability. In contrast to these findings, Futch &
McIntosh (2009) find no impact on farm gate prices of a program that installed village phones in Rwanda. The
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(2007) analyzes the introduction of mobile phone service among fishermen in Kerala. He

finds that this led to compliance with the law of one price across different markets, fewer

wasted fish and a reduction in prices. On the demand side, this price reduction increased

consumers’ surplus. On the supply side, price reductions were dwarfed by growth in sale

volumes (from reduced wastage), so fishermen’s surplus increased as well. Aker (2010)

studies the rollout of mobile service coverage in Niger. Using data from national markets

and traders, she finds that mobile service reduced price dispersion between millet mar-

kets and increased middlemen’s profits. Later studies show that these benefits might not

have translated into improvements for farmers, though. In a complementary study, Aker &

Fafchamps (2013) find that mobile phones did not lead to increases in cowpea prices for

producers in the same context. However, the authors do find evidence of reduced intra-

annual price variability. Muto & Yamano (2009) use a household panel dataset to identify

the impact of cell phone coverage on farmers’ participation in maize and banana markets in

Uganda. They find that mobile coverage has a positive impact on the sales of bananas but

no effect for maize. They argue that these results might be driven by the higher perishabil-

ity of the former crop compared to the latter. Molony (2008) argues that the existence of

credit relationships between farmers and traders may prevent the former from improving

their marketing strategies when provided with mobile phones.

While these studies analyze the introduction of a technology that potentially allow

households to find out prevailing market prices, a second group of papers investigate the

authors envisaged an experimental evaluation of this program. However, because the actual phone assignment
deviated considerably from the original design, they caution about the interpretation of their results.
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effect of the direct provision of such information. Svensson & Yanagizawa (2009) study

the impact of the Market Information System (MIS) in Uganda, which disseminated agri-

cultural prices through radio stations. The authors compare households with and without

radios in districts that were and were not covered by MIS, and find that access to infor-

mation increased farm-gate prices for maize by 10%-15%. Goyal (2010) investigates the

impact of internet kiosks installed by a large processor in Madhya Pradesh, India; which

provided soybean price information. She finds that this led to an increase of 1-3% in the

prices received by farmers. It also increased the farmers’ land allocated to soybeans by

19%, suggesting a substitution away from other crops.

Fafchamps & Minten (2012) conduct a field experiment, where a group of farmers

was provided with one-year free subscriptions to an SMS-based agricultural information

service (Reuters Market Light) in Maharashtra, India. The subscriptions were randomly

allocated among farmers who already had cell phones in this region. The service included

price information in different markets, and also encompassed weather forecasts and crop

advisory. They find that such service did not lead to increases in agricultural prices for

those who received it. Second, Mitra et al. (2013) study the impact of price information

on potato farmers in West Bengal, India. They test the efficacy of two alternative strategies

for market price dissemination: a private one where a group of randomly selected farmers

received SMSs with this information and a public one where prices where posted in public

notice boards in some villages. The authors find that neither of these strategies improved

farmers’ market performance.

A couple of recent papers analyze the impact of ESOKO, a program that provides farm-

ers with market prices in Ghana. To account for selection into the program, Courtois &

8



Subervie (2013) use propensity score matching techniques; and find that those who re-

ceived information from ESOKO increased their sales prices by 13% for maize and 10%

for groundnuts. Nyarko et al. (2013) also analyze the impact of this program through a ran-

domized controlled trial. Their results suggest that, after one year of exposure, farmers with

information experienced a 7%-11% increase in the prices they receive for yam. However,

they do not find any significant impact for other crops, such as maize and cassava.

This research is also related to the literature of information spillover effects, which

has been present for a while. Though applied to a consumer problem, in the early sixties,

Stigler had already noted that: “Information is pooled when two buyers compare prices:

if each buyer canvasses s sellers, by combining they effectively canvas 2s sellers, duplica-

tions aside[...] in fact, pooling can be looked upon as a cheaper form of search” Stigler

(1961, p. 219). Previous literature has highlighted role of neighbors and social networks

in agricultural technology adoption and learning (e.g. Bandiera & Rasul 2006, Besley &

Case 1994, Foster & Rosenzweig 1995, Munshi 2004, Vasilaky & Leonard 2013, Magnan,

Spielman, Lybbert & Gulati 2013).

One of the difficulties of such analysis is the reflection problem proposed by Manski

(1993): when someone behaves in a similar way to their peers, it might be because of the

influence that peers have on him, or because he shares similar characteristics with his peers

(and, thus, behaves similarly). To circumvent this problem, some studies exploit variation

from random assignment to assess changes among peers of the subjects that receive a treat-

ment. For example, Oster & Thornton (2012) analyze the impact of providing school girls

with menstrual cups on their peers’ subsequent adoption of this technology. Bobonis &

Finan (2009) use experimental evidence from the allocation of a large education-related
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conditional cash transfer program (i.e. PROGRESA / Oportunidades) to assess the impact

of eligible children’s schooling decisions on the enrollment decisions of other children that

lived in the same communities but were ineligible for the program. Giné & Mansuri (2011)

investigate the impact of a voter awareness campaign in Pakistan that was implemented

in randomly selected clusters. They find significant increases of female turnout among

treated households. Importantly, they also find similar increases in turnout among women

that were not part of this campaign but lived in communities where others were.

In this line, I exploit the fact that the treatment was randomized at the village level in

the first stage. In particular, I investigate the marketing outcomes of households who did

not receive any price SMS, but lived in villages where others did. The idea is that those in

this group might have been exposed indirectly to the price information, even when they did

not receive such information directly.
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Chapter 3

An Intervention to Assess the Role of

Price Information on Agricultural

Markets in Rural Peru

The main problem with disentangling the causal effect of the impact of agricultural infor-

mation on marketing decisions is the endogenous nature of this relationship. In a non-

experimental setting, assume that one finds that access to information leads to better sales

outcomes. This relationship could be driven by any number of factors and not necessar-

ily by the information itself. For example, the ones seeking information may be precisely

those who find more profitable to do so, may have better entrepreneurial skills, or may be

more market-oriented. In this sense, this relationship would be merely correlational and

not causal.

To tackle this obstacle, I conducted a field experiment. The experiment randomly al-
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located cell phones to some farmers in the central highlands of Peru. Through these cell

phones, I provided price information in nearby markets for the main crops in this region.

Farmers received this information for four months, throughout the period during which

they sell most of their agricultural production. Hence, the intervention provides me with

exogenous variation in access to information among similar households. The objective is

to investigate whether this information leads to better marketing outcomes.

The intervention took place in the five provinces of the Mantaro Valley in the Central

Highlands of Peru (Figure 3.1). The Mantaro valley is one of the most productive agri-

cultural areas in Peru, and is usually considered the country’s “food pantry”. The five

provinces in the intervention encompass 158 thousand hectares of agricultural land, and

host about 75 thousand farmers. While there are some with large extensions of land, farm-

ers in this area are predominantly small: 53.2% of the farmers grow their crops in less than

0.5 hectares, and 90% of them have less than 3 hectares (National Statistics Institute 2013).

Most households diversify their production, and grow several crops across multiple plots.

The most important crops are potatoes, olluco (a popular Andean tuber), barley, wheat,

peas, lima beans, and animal fodder (e.g. forage grass, alfalfa, ryegrass, etc.). The area is

also characterized by a high rotation of crops between years as part of their soil and pest

management strategies1.

While large farmers grow crops for strictly commercial purposes, small landholders

have to decide whether to allocate their crops to household self-consumption or to sell them

1For example, one of the most common rotations is to grow potatoes one year, another Andean tuber
during the second year, lima beans or barley during the third year, let the land fallow for a year, and start this
rotation again.

12



(or a combination of both). Farmers that decide to sell their production have several options.

The first one is to sell them to agricultural middlemen (locally known as acopiadores).

These are itinerant traders that visit villages (usually with a truck), purchase crops from

several farmers, and resell them to wholesale buyers in local markets or in the capital

city. While there is no precise information about the middlemen in this area, there is a

widespread belief that they face limited competition and earn considerable profits2. The

farmers’ second option is to bypass the middlemen, and sell their harvests directly in local

markets (but incur transportation and transaction costs). There are several markets in the

Mantaro Valley. Two of them are permanent markets that operate daily (Huancayo, Juaja,

and Tarma), while some others are weekly ferias. The size of these markets or ferias is also

quite variable, and some of them are very specialized (for example, some focus exclusively

on cattle or particular agricultural products). However, there are multiple buyers and sellers

(both middlemen and farmers) operating in all of them, fostering a relatively competitive

environment.

Farmers who decide to sell grade their harvest according to their quality: prices are

higher for first quality (usually larger, with better appearance, without any insect damage,

etc.) than for second, third, or fourth qualities. There are implicit agreements between

2For example, a Peruvian Minister of Agriculture argued in an interview that “individual sales of small
quantities of agricultural production to middlemen implies giving up most of the value added of the crop”
( Eguren 2008). The government has promoted different policies to reduce the bargaining power of the
middlemen in the Mantaro Valley. For example, the Ministry of Agriculture launched the “Potato Train” (Tren
Papa) in 2008, a program through which the railway company would sporadically provide free transportation
of potato harvests from Jauja (one of the Mantaro Valley’s largest cities) to Lima’s main wholesale market.
While the program was unsuccessful, it was explicitly implemented to reduce middlemen’s profit margins in
this area and to increase farmers’ incomes. Similarly, Escobal, Ponce & Hernandez-Asensio (2010) describe
how local municipalities in Jauja have organized annual festivals (raymis) for different crops. These festivals
gather local producers of a particular crop in a single space and aim to attract larger wholesale buyers, who
can purchase farmers’ production directly and bypass the middlemen.
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buyers and sellers of about these qualities, and both parties are able to readily identify

them. Households who sell their production are required to grade and sort their harvest.

Some households also grade the share of their production for self-consumption, but usually

they do not.

An important characteristic of this area is the agricultural year (see Figure 3.2). Farmers

in the highlands of Peru usually sow their crops around mid-November, at the start of the

rainy season. The rainy season typically extends until March or April. The growing periods

across products, but harvest is generally between late March and May. For farmers without

irrigation, this is their only cropping cycle in the year and an important source of income.

Those with irrigation can start an additional cropping cycle in May or June. However,

even those with irrigation take advantage of the rainy season, which yields their largest

production in the year.

I selected 58 villages in the Mantaro Valley that met the following criteria in the 2007

Peruvian Census: (a) were in the highlands, (b) were in a rural area, (c) had at least 60

households, (d) were connected to the electricity grid, (e) had at most 35% of cell phone

coverage3. Data from a random sample of households in each of these villages was col-

lected in December 2009, when the rainy season had already started and farmers had al-

ready sown their crops for the 2009/2010 agricultural cycle. I collected information about

socio-economic characteristics (household composition, education, income, expenditures,

etc.), agricultural land, social networks (participation in organizations) and location (GPS

3While the rates in the 2007 Census were substantially lower, I found that cell phone penetration had
already reached about 50% during the intervention.
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Figure 3.1: Location of the Intervention
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location of dwelling and main agricultural plot). Importantly, I gathered retrospective data

about their previous (2008/2009) agricultural cycle: production, sales volume, prices, and

marketing decisions. The questionnaire also asked them which products they had already

planted for the 2009/2010 season.

The baseline survey included 790 households in the 58 villages where the interven-

tion took place. Rather than randomly allocating the cell phones among the full roster of

households, the villages were assigned either to a treatment or a control groups in a first

stage (Figure 3.3). This initial assignment of treatment by cluster has two advantages.

First, it minimized the risk of contamination of the control group: if treatment and control

households were in the same village, this would increase the possibility of beneficiaries

passing price information along to control households. Second, this provides a framework

to investigate the existence of spillover effects in the treatment villages.

The budget of the project allowed for the purchase of 112 mobile phones (out of which

one was connected to a computer and used to deliver the SMS messages to farmers). I

randomly sorted the 58 villages in my sampling framework, and allocated one cell phone

per each four households (rounded up). The 111 mobile phones available for distribution

determined a treatment group of 26 villages and a control group of 32 villages.

There were 410 households in the treatment villages, from which 111 were randomly

selected to receive a cell phone. The devices were basic inexpensive phones4 and were

handed out even to households who already had one. The devices were distributed in early

4The devices cost about $25 each. Considering an average monthly household expenditure of $165 at
baseline, they represented about 15% of their monthly expenditure or 1.3% of their annual expenditure.
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Figure 3.3: Location of Markets, Treatment and Control Villages
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Table 3.1: Calendar of Price Distribution by Permanent Markets and Ferias

Mon Tue Wed Thu Fri Sat Sun
Permanent

Huancayo X X X
Tarma X X X
Jauja X X

Ferias
Chupaca X
Huayucachi X
Zapallanga X

April, during the early harvest. For four months (mid-April to mid-August), a team of

undergraduate students collected price information of 17 different products (by quality):

peas, lima beans, barley, four types of corn, two types of olluco, and eight types of potato.

The information was gathered in three permanent markets (Huancayo, Jauja and Tarma)

and three weekly ferias (Chupaca, Huayucachi and Zapallanga). The calendar of price

distribution is presented in Table 3.1. Once the information was collected, it was compared

with the list of products that households planted for the 2009/2010 season according to

the baseline information. During the same morning, only the information of the relevant

products for each participant was sent through SMS to the number of the cell phone the

intervention provided. An example of a text message with price information is presented in

Figure 3.4a. The text message included the date, market, product, quality, and price quote.

I tried to ensure that participants understood the information they were being sent.

Along with the devices, the participants were provided with two manuals. The first one

explained how to use the cell phone5. The second one had explanations on the price infor-

5Beneficiaries were expected to be able to use a cell phone, either by themselves or to have someone else
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Figure 3.4: Cell Phone and Price Distribution

(a) Example of Price SMS

MarketDate

Product

Quality

Price 

Quote

(b) Distribution kit: Cell Phones, Manuals and
Charts

mation that would be sent out. It included a calendar with the weekdays in which informa-

tion for each market would be distributed and detailed instructions on how to read the text

messages with the prices. They also received a chart to help them keep track of the prices

they received (Figure 3.4b). The team went through the manuals with each participant and

answered any questions or doubts they had.

The participants were informed of an important service restriction: during the first few

months (until late August), their mobiles would only receive calls and text messages from

a number authorized by the project. Through this restriction, I can rule out any other

potential uses of the mobile phone that could drive the results (i.e. communication with

input providers, collusion with other producers, coordination with traders, etc.). In this

way, the treatment does not encompass the full advantages of a mobile phone, but only

in the household help them. However, just in case, they were also provided with a manual - with pictures and
detailed instructions - of their basic functions (how to charge them, how to know if there are any new text
messages, how to open them, etc.).

20



being able to receive price information in different markets. Participants were also required

to answer periodic calls to check if there were any problems with the devices, whether

the price SMS were being delivered appropriately, and whether they had any problems

reading the information. All in all, besides being able to receive periodic check-up calls,

these devices did not have any capabilities beyond those of a pager during the intervention

period. However, after August, full capabilities of the cell phones would be restored and

they would operate as regular pre-paid phones. Participants were told they would be able

to keep the devices without any further obligation. These phones were distributed to all

selected households, even to those who already owned one. No one who was offered a cell

phone declined to participate in the project.

In September 2010, a follow-up survey was conducted. The questionnaire included in-

formation about production, sales volumes and prices in the 2009/2010 agricultural season.

This provides me with a panel of households, where I can compare the outcomes of the

2008/2009 (before the intervention) and 2009/2010 agricultural season (after the interven-

tion) among those who received the intervention via-à-vis those who did not.
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Chapter 4

A Model of Price Bargaining under

Asymmetric Information

This chapter presents a simple theoretical model to investigate the role that information

deficiencies can play in agricultural marketing decisions. A farmer harvests Q units of

his crop, and has to negotiate with a trader the quantity and payment involved in a sales

transaction. At the time of the negotiation, they both face uncertain market prices for an

agricultural product. For simplicity, assume there are two possible states of nature: the

market price is either high (pH) with probability λ or low (pL) with probability (1−λ ),

with 0 < λ < 1, pH > pL. Before the market price is unveiled both parties establish a

contract that determines the sales quantity (si) and total payment (Yi) for each state of

nature, where i= {H,L}. Assume that the farmer offers a contract to the trader, establishing

combinations YH ,sH (if the market price is high) and YL,sL (if the market price is low). The

trader can either accept or reject it. If he rejects the contract, there is no sale. If he does

accept it, the parties verify if the state was H or L, and the corresponding combination is
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enforced.

The farmer is paid Yi, supplies the trader with si units of his crop, and keeps Q− si

units for self-consumption. The trader sells the si units at market price pi. Suppose that the

farmer’s utility function is Y 1−β

i
(1−β )+a(Q−si): he exhibits constant relative risk aversion over

his monetary income (where β is the parameter of relative risk-aversion, 0 < β < 1) and

a constant marginal utility from self-consumption. The trader sells the si units he bought

from the farmer at market price pi. Assume the trader is risk neutral. His profits are given

by pisi−Yi.

Note that the contract is based on the ability of the farmer and trader to observe the

actual realization of pi. I examine the solutions in two information settings. In the first

one, both the trader and the farmer observe pi, providing a benchmark case with symmetric

information. These results are compared to a second model with asymmetric information,

where farmers are uninformed but traders do know the market price. In this second case,

the farmers have to rely on the traders to reveal the realized value of pi.

4.1 Symmetric Information

First, I consider the case where both the farmer and the trader observe the market prices

after establishing the contract. The farmer’s objective is to maximize his utility, subject to

the trader’s individual rationality constraints (which should bind in each revealed state).

23



MAX
sH ,YH ,sL,YL

λ

[
Y 1−β

H
(1−β )

+a(Q− sH)

]
+(1−λ )

[
Y 1−β

L
(1−β )

+a(Q− sL)

]
(4.1a)

s.t. pHsH−YH ≥ 0 (4.1b)
pLsL−YL ≥ 0 (4.1c)

In this case, it is straightforward to see that the farmer will push the trader to his reser-

vation utility in both market price scenarios, so constraints (4.1b) and (4.1c) bind with

equality. The farmer’s optimal contract is given by:

sSI
H = p

1−β

β

H
1

a1/β
; Y SI

H = p1/β

H
1

a1/β
if the price is high (4.2a)

sSI
L = p

1−β

β

L
1

a1/β
; Y SI

L = p1/β

L
1

a1/β
if the price is low (4.2b)

In this case, the implicit farm-gate prices in the contract (rSI
i =

Y SI
i

sSI
i

= pi for i = L,H) are

precisely those prevailing in the market.

4.2 Asymmetric Information

Now suppose that there is asymmetric information. The contract is established before the

market price is known by the agents. However, once the market price is unveiled, only

the trader can observe it and the farmer has to rely on what the trader reports to him. The

farmer knows that the trader has an incentive to cheat: if the realized price turns out to

be high, he will lie and tell him it was low. Thus, the farmer’s objective is to establish a

contract that encourages the trader to reveal the state of nature truthfully.
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The farmer maximizes his expected utility

MAX
YH ,YL,sH ,sL

λ

[
Y 1−β

H
(1−β )

+a(Q− sH)

]
+(1−λ )

[
Y 1−β

L
(1−β )

+a(Q− sL)

]
(4.3a)

subject to Individual Rationality (IR) constraints that ensure that the trader is provided

with his reservation utility under both states of nature (so he would be willing to accept the

contract):

pHsH−YH ≥ 0 (4.3b)

pLsL−YL ≥ 0 (4.3c)

and the following Incentive Compatibility (IC) constraints that incentivize the trader to

reveal the true market prices:

pHsH−YH ≥pHsL−YL (4.3d)

pLsL−YL ≥pLsH−YH (4.3e)

IC constraint (4.3d) states that if pH is the prevailing market price, the trader is better

off revealing the true outcome (and enforcing combination sH ,YH) rather than cheating (and

enforcing combination sL,YL). Constraint (4.3e) works analogously for low market prices.

In an optimum, (4.3c) and (4.3d) should bind with equality, while (4.3b) and (4.3e) are

slack conditions of the problem1.

1Note that, constraints (4.3d) and (4.3c) imply that: pHsH −YH ≥ pHsL−YL ≥ pLsL−YL ≥ 0, so (4.3b)
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The optimal contract establishes the following quantity (q), payment (Y ) and implicit

prices (r = Y
q ) if the trader declares low market prices:

sAI
L = p

1−β

β

L
1

a1/β

[
(1−λ )pH

PH−λ pL

]1/β

≤ p
1−β

β

L
1

a1/β
= sSI

L (4.4a)

Y AI
L = p1/β

L
1

a1/β

[
(1−λ )pH

PH−λ pL

]1/β

≤ p
1
β

L
1

a1/β
= Y SI

L (4.4b)

rAI
L = pL = rSI

L (4.4c)

Analogously, the optimal contract establishes the following outcomes if the trader reveals

a high price:

sAI
H = p

1−β

β

H
1

a1/β

[
1+

(pH− pL)

pH

(
(1−λ )pL

pH−λ pL

)1/β
]
≥ p

1−β

β

H
1

a1/β
= sSI

H (4.4d)

Y AI
H = p

1
β

H
1

a1/β
= Y SI

H (4.4e)

rAI
H =

pH

1+
(pH−pL)

pH

(
(1−λ )pL
pH−λ pL

)1/β
≤ pH = rSI

H (4.4f)

Under the optimal contract with asymmetric information, the farmer uses the implicit

farm-gate prices and quantities as instruments to find out the true state of nature. If prices

are high, the trader gets a price premium: while Y AI
H = Y SI

H , the farmer increases the sales

quantity leading to a lower farm-gate price (i.e. rAI
H ≤ rAI

L ). These informational rents

induce the trader to reveal that the market price is high. In contrast, when market prices

are low, the trader cannot exploit any informational rents: the farm gate price remains pL.

is redundant. To solve the problem, I initially solve the problem ignoring (4.3e). It can be shown later that an
optimal solution complies with this constraint.
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However, the farmer reduces the quantity he sells under asymmetric information. If the

trader wants to lie and claim that prices are low (when they are actually high), the farmer

limits his supply to reduce the trader’s profits, reducing his incentives to cheat.

In these lines, the comparison of both models predicts that farm-gate prices for farmers

would be higher under symmetric than asymmetric information. Solving for the expected

farm-gate price E[rSI− rAI] yields:

E[rSI− rAI] = λ pH +(1−λ )pL−
[
λ rAI

H +(1−λ )rAI
L

]
= λ

pH−
pH

1+ (pH−pL)
pL

(
(1−λ )pL
pH−λ pL

)1/β

≥ 0 (4.5)

Also note that the difference between rSI and rAI depends on the degree of risk aversion

of the farmer. Note that (1−λ )pL
pH−λ pL

< 1, so E[rSI− rAI] shrinks as β decreases. For example,

if the farmer is risk neutral (β → 0), then E[rSI − rAI]→ 0. Intuitively, this implies that

more-risk averse farmers are willing to offer larger premia to insure from price uncertainty

and for the traders to reveal the actual realization of market prices. In terms of the model,

this is equivalent to differentiating (4.5) with respect to β .

dE[rSI− rAI]

dβ
= − 1

β 2 λ pH
(pH− pL)

2

p2
L

1[
1+ (pH−pL)

pL

(
(1−λ )pL
pH−λ pL

)1/β
]2

(
(1−λ )pL

pH−λ pL

)1/β

Ln
(
(1−λ )pL

pH−λ pL

)
≥ 0 (4.6)

In terms of sales volumes, the predictions of the model are more ambiguous. In particu-

lar, under asymmetric information, the farmer would offer larger sales volumes if the trader
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reports high prices, but smaller volumes otherwise. The impact on the expected sales quan-

tity E[sSI− sAI] will depend on the difference between pH and pL, and the beliefs about the

price distribution (λ ).

λ sSI
H +(1−λ )sSI

L −
[
λ sAI

H +(1−λ )sAI
L

]
=

1
a1/β

−λ p
1−β

β

H

[
(pH− pL)

pH

(
(1−λ )pL

pH−λ pL

)1/β
]

︸ ︷︷ ︸
<0

+(1−λ )p
1−β

β

L

[
1−
(
(1−λ )pH

PH−λ pL

)1/β
]

︸ ︷︷ ︸
>0


(4.7)

So far, I have assumed that there are no restrictions on the quantities that farmers can

allocate to self-consumption. This makes sense when products can be temporarily stored or

can be transformed into by-products with larger shelf-life2. However, product perishability

of other crops (e.g. produce) imposes natural limits on how much can be destined to self-

consumption. In this line, consider the following additional restrictions to the farmers’

optimizations in (4.1a) and (4.3a):

Q̄− sH ≤ c (4.8a)

Q̄− sL ≤ c (4.8b)

where c is the maximum amount that a farmer can self-consume of his crop. These restric-

2For example, potatoes can be transformed into a flour (know as chuño or tunta) by exposing them to
freezing temperatures overnight and to intense sunlight during the day. Olluco and corn can also be dried for
later consumption.

28



tions entail three possibilities. The first one is that neither (4.8a) nor (4.8b) is binding. In

this case, the farmer’s choice would be given by (4.2a)-(4.2b) if there is symmetric infor-

mation and by (4.4a)-(4.4f) if there is asymmetric information.

The second possibility is that (4.8b) is binding, while (4.8a) is not (which is more

likely if the difference between pH and pL is relatively large)3. Denote {sAI
L ’,Y AI

L ’,rAI
L ’},

{sAI
H ’,Y AI

H ’,rAI
H ’} as the optimal sales volumes, payments and per-unit prices in this situa-

tion. In this case, the contract involves:

sAI
L ’ = Q̄− c (4.9a)

Y AI
L ’ = pL(Q̄− c) (4.9b)

rAI
L ’ = pL (4.9c)

qAI
H ’ = p

1−β

β

H
1

a1/β
+(Q̄− c)

(pH− pL)

pH
(4.9d)

Y AI
H ’ = p

1
β

H
1

a1/β
(4.9e)

rAI
H ’ =

pH

1+(a/pH)1/β (Q̄− c)(pH− pL)
(4.9f)

Note that without restrictions on self-consumption, the farmer was able to use two instru-

ments to have the trader truthfully reveal the market prices: on the one hand, he would

threat to cut back his supply if the trader revealed low prices and, on the other, he would

reward the trader with lower per-unit farm-gate prices for his purchase if he disclosed high

market prices. However, when Q̄− sL ≤ c is binding, he cannot cut back his sales volumes:

3Note that restriction (4.8a) cannot bind if (4.8b) does not.
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even when he would like to supply less than sAI
L ’ = Q̄− c, he cannot keep large volumes

for self-consumption before the crop goes bad. Thus, he can only provide the trader with

an information price premium for him to reveal if market prices are high (rAI
H ’ < rAI

H ).

The third possibility is that both (4.8b) and (4.8a) are binding. In this case, the farmers

supply is completely restricted by his self-consumption restrictions, such that sAI
L ” = sAI

H ” =

(Q̄− c), Y AI
L ” = Y AI

H ” = pL(Q̄− c), and rAI
H ” = rAI

L ” = pL. Thus, he cannot alter his supply

at either price level and is unable to provide any incentives to the trader to reveal the actual

market prices.

4.3 Discussion of Model Predictions

Overall, these results highlight the differences in the farmer’s marketing outcomes under

both information settings. Under symmetric information, the optimal quantities are traded

and the farmer sells his production for the actual market prices. However, when there

is asymmetric information, the trader has an incentive to cheat by telling the farmer that

market prices are low when they are actually high. There are two (costly) mechanisms for

the farmer to elicit this information: he offers the trader with informational rents (through

lower farm-gate prices) when market prices are high, and he can alter the quantities he

supplies depending on the trader’s revelation of the state of nature. While the model leads

to ambiguous predictions regarding sales volumes, it shows that farm-gate prices should

increase when the farmer is supplied with market information. These increases should be

larger for more risk-averse farmers, who are willing to offer larger informational premia in

order to cope with the price uncertainty. In addition, perishability limits the farmer’s ability
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to restrict the quantity he offers to the trader. Thus, the impact of market price information

should be larger for perishable products but sales volumes should not increase as much as

with perishable products. The following chapter provides an empirical analysis of these

predictions.
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Chapter 5

Price Information and Farmers’

Marketing Outcomes: An Empirical

Application for Peru

This chapter analyzes the impact of the intervention described in 3. In particular, I an-

alyze whether the direct provision of price information through SMS increases farmers’

sales prices, market participation, and sales volumes. For this purpose, I compare the

changes in marketing outcomes between the 2008/2009 and 2009/2010 agricultural sea-

sons of those who received the SMS directly to those in control villages (where no one

received the SMS). I also investigate heterogeneous treatment effects by product perisha-

bility, the degree of risk aversion, and previous cell phone ownership. Additionally, I test

for the presence of information spillover effects within villages by comparing the outcomes

of households in control villages with those of farmers those who did not receive the SMS
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but lived in a village where someone else did.

Throughout the analysis, consider the definitions of the following variables:

n Info takes a value of 1 if the household is in a treated village and received the price

SMS. It takes a value of zero otherwise.

n Spill takes a value of 1 if the household is in a treated village but did not receive the

price SMS (i.e. excludes Info=1) . It takes a value of zero otherwise.

The remaining households (i.e. those with Info=0 and Spill=0) are those in control villages.

5.1 Baseline Comparisons

In this section, I show that the randomization process delivered three similar groups: those

who directly received price information, those who lived in treated villages but did not

receive information directly, and those in control villages. I compare the baseline charac-

teristics of those who received information and those in the spillover group with respect to

the control group, with the following Ordinary Least Squares (OLS) Regression:

Yi0 = α0 +α1Infoi +α2Spilli +µi (5.1)

where Yi0 is a characteristic of the ith household before the intervention and µi is a zero-

mean household-specific error term. The coefficients α1 and α2 provide estimates of the

differences in Yi0 of the Info and Spill groups relative to the control group. Sample means

of the information, spillover and control groups — as well as estimates for Equation (5.1)

— are presented in Table 5.1. The sample is relatively well balanced in terms of charac-
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teristics of the household head (age; gender; years and level of education), land, household

expenditure, and cell phone ownership (prior to the intervention).

I also analyze the crop distribution in the information, spillover and control groups.

Table 5.2 compares the proportion of households that cultivated seventeen important crops

during the 2008/2009 (baseline) agricultural season. The first three columns present the

proportion of households that grew each crop in each of the three groups. The last two

columns report the differences of the information and spillover groups, relative to the con-

trols. The approach to estimate the differences among groups in the proportion of house-

holds growing is similar to that in Equation (5.1). However, because this variable is binary,

I estimate marginal effects from a probit model rather than OLS. The sample is not balanced

across all seventeen crops: arguably it would be difficult to achieve the same composition

across such a large number of crops1. However, the differences in the share of households

growing each product are small and only significant for two products (one variety of olluco

and one of potato). In any case, all the subsequent analysis will include crop controls.

Next, I present the baseline differences in production, sales volumes and prices among

the three groups of interest. Because the sample is not stratified by crop, I cannot draw any

inferences from a specific agricultural product. As a matter of fact, if I were to restrict my

sample to households who produced the most popular crop in the region (Yungay potato),

the sample size would drop by more than half. Thus, I use the full sample to estimate

average differences. Because estimations with the full sample would entail comparing the

1Morgan & Rubin (2012) shows that, given k variables over which we check balance, the chance of
finding a statistical difference between two groups at significance α is 1− (1−α)k. Therefore, if α = 0.1
and we test 34 hypotheses, the probability that we reject at least one of them is 0.97.
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Table 5.1: Household Characteristics in Baseline

Info Spill Control Diff1

(I) (S) (C) (I)-(C) (S)-(C)

HH Head Characteristics
Age 50.53 51.45 49.91 0.62 1.54

(12.81) (15.62) (14.54) (1.69) (1.77)
Head is male 0.86 0.80 0.84 0.02 -0.05

(0.34) (0.40) (0.37) (0.04) (0.03)
Years of education 7.45 6.89 7.51 -0.06 -0.62

(3.92) (4.14) (4.03) (0.50) (0.44)
Primary 2 0.45 0.46 0.45 0.00 0.01

(0.50) (0.50) (0.50) (0.05) (0.05)
Secondary 2 0.42 0.37 0.40 0.02 -0.03

(0.50) (0.48) (0.49) (0.06) (0.05)
Technical 2 0.06 0.06 0.06 0.00 0.00

(0.24) (0.23) (0.23) (0.03) (0.02)
College 2 0.04 0.03 0.05 -0.01 -0.02

(0.19) (0.18) (0.22) (0.02) (0.02)
Any member has Cell Phone 2 0.46 0.50 0.51 -0.05 -0.01

(0.50) (0.50) (0.50) (0.07) (0.06)
Log PC HH Exp 4.69 4.61 4.70 -0.01 -0.09

(0.48) (0.49) (0.45) (0.08) (0.06)
Log Land 8.37 8.17 8.32 0.05 -0.15

(1.36) (1.50) (1.50) (0.36) (0.36)
Has land with irrigation 2 3 0.28 0.29 0.26 0.02 0.03

(0.45) (0.45) (0.44) (0.11) (0.10)

N 111 299 380

1 For the first three columns, the means and standard deviations of each variable in the information, spillover and control
groups are reported. In the last two columns, the differences were calculated using the following regression: Yi =
α1In f oi +α2Spilli +µi. Regression standard errors are reported in parentheses.

2 In the case of discrete variables the linear regression was replaced for a probit model.
3 The variable takes a value of one if the household has at least one plot with irrigation.

Significance levels of the differences between the treatment and spillover groups (with respect to the control group)
denoted by: *** 1%, ** 5%, * 10% .
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Table 5.2: Crop Composition in Baseline

Treat Spill Control Difference1

(T) (S) (C) (T)-(C) (S)-(C)

Peas 0.16 0.12 0.16 0.00 -0.04
(0.37) (0.33) (0.24) (0.08) (0.06)

Barley (common) 0.30 0.24 0.23 0.06 0.00
(0.46) (0.43) (0.42) (0.08) (0.08)

Lima Beans 0.12 0.09 0.17 -0.06 -0.08
(0.32) (0.29) (0.38) (0.08) (0.08)

Corn - White 0.42 0.37 0.26 0.17 0.12
(0.50) (0.48) (0.44) (0.12) (0.13)

Corn - Cusqueado 0.03 0.03 0.03 0.00 0.00
(0.16) (0.17) (0.17) (0.02) (0.02)

Corn - Cusqueno 0.05 0.02 0.01 0.03 0.01
(0.21) (0.15) (0.10) (0.02) (0.01)

Corn - San Jeronimo 0.04 0.04 0.02 0.01 0.01
(0.19) (0.19) (0.15) (0.02) (0.02)

Olluco - Yellow 0.07 0.06 0.09 -0.02 -0.04
(0.26) (0.23) (0.29) (0.04) (0.04)

Olluco - Dotted 0.03 0.01 0.04 -0.02 -0.03
(0.16) (0.12) (0.21) (0.02) (0.02)

Potato - Yellow 0.03 0.02 0.01 0.01 0.01
(0.16) (0.15) (0.11) (0.02) (0.02)

Potato - Andean 0.02 0.05 0.03 -0.01 0.02
(0.13) (0.21) (0.17) (0.03) (0.04)

Potato - Canchan 0.07 0.03 0.07 0.01 -0.03
(0.26) (0.18) (0.25) (0.03) (0.02)*

Potato - Huayro 0.02 0.03 0.02 0.00 0.01
(0.13) (0.18) (0.14) (0.02) (0.02)

Potato - Perricholi 0.25 0.21 0.35 -0.10 -0.14
(0.44) (0.41) (0.48) (0.15) (0.14)

Potato - Peruanita 0.05 0.04 0.01 0.04 0.03
(0.23) (0.20) (0.11) (0.03) (0.03)

Potato - Unica 0.01 0.00 0.04 -0.03 -0.03
(0.09) (0.06) (0.19) (0.02) (0.02)*

Potato - Yungay 0.41 0.47 0.45 -0.04 0.02
(0.49) (0.50) (0.50) (0.09) (0.10)

N 111 299 380

1 For the first three columns, the proportion of households that grew each crop is reported (standard
deviation in parentheses). In the last two columns, the differences were calculated using a probit model:
Prob[Cropic = 1] = Φ(α1In f oi +α2Spilli) for each crop c. Regression standard errors are reported in
parentheses.

Significance levels of the differences between the treatment and spillover groups (with respect to the
control group) denoted by: *** 1%, ** 5%, * 10% .
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prices of households that grow low-value potatoes with higher-value produce, I include

crop controls. Thus, I estimate the following regression:

Yic0 = α0 +α1Infoi +α2Spilli +δcDc + εi +µic (5.2)

where Yic0 is the marketing outcome (production, probability of sales, volume of sales and

price) of the ith household in the baseline (2008/2009 season) for crop c and Dc is an

indicator variable for each crop. The equation allows for correlation of error terms within

the same household (across crops) through εi, which is distributed i.i.d. with zero-mean

and variance σ2
ε . It also includes a zero-mean error term µic that varies by household

and crop. The results for Equation (5.2) are presented in Table (5.3). For each outcome,

the first column reports estimates using crop controls. The second one includes the same

crop controls with additional quality controls2. Overall, they show that households did not

exhibit significant differences among treatment statuses before the intervention.

5.2 The Effect of Information on Agricultural Prices

I calculate the impact of the treatment on agricultural prices through a Difference-in-

Differences (DID) model, including crop (and quality) controls and random effects at the

2Note that about 16% of the observations drop out of the production regression when we control for
quality. This is because farmers do not necessarily sort all their harvest. Production that is sold is necessarily
graded by quality. However, households who do not sell (i.e. allocate their harvests to self-consumption,
seed, by-products, etc.) do not necessarily do so.
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household level. Namely, I estimate the following regression:

log(Pict) = αInfoi +θSpilli + γt +β1Infoit +β2Spillit +δcDc + εi +µict (5.3)

where Pict is the net price at which household i sells crop c in period t. If the household

sells this crop to a middleman, Pict is the gross sales price. If he sells this crop directly in

the market, I subtract the transportation cost from the gross price. The variable t takes a

value of zero for for the 2008/2009 season (before the treatment) and a value of one for the

2009/2010 season (after the treatment). Infoi and Spilli are the (time-invariant) treatment

statuses for each household. Dc are indicator variables for crop c. Additionally, the error

term has two components. The first one εi accounts for the fact that the errors within

the same household are not independent from one another (εi is i.i.d with mean zero and

variance σ2
ε ). The second one (µict) is a zero-mean idiosyncratic error that varies across

households, crops and time. For consistency, this specification requires εi to be uncorrelated

with other explanatory variables. This is a plausible assumption in this setting because of

the random assignment of the treatment3. Additionally, standard errors are clustered at the

village level to allow for any covariate shocks.

3Fixed-effects (FE) estimates exploit the variability of sales prices within the household across both
periods of time. The nature of the data does not seem suitable for this type of regression for two reasons. First,
households vary the crops they harvest between periods. Changes in crops are not systematically correlated
with the treatment (by design of the field experiment and as shown in Table 5.9). However, a FE regression
would exploit variation in prices of potentially very different crops within individuals (and not averages).
Second, households do not necessarily sell in both periods of the data. A FE regression would only take into
account households that have sold their production in both periods. Because this group of households is likely
to have more marketing experience, a FE specification would overestimate the impact of the treatment (see
Table 5.5). Because the treatment is randomly assigned, I prefer a Random-Effects specification. However,
households’ decision whether to sell or not their harvests still imposes a selection problem. I will discuss this
problem later, and calculate sample selection bounds under alternative assumptions.

39



Table 5.4: DID Estimation for Prices

(1) (2)
Info 0.00 -0.02

(0.076) (0.064)
Spill 0.04 0.03

(0.069) (0.062)
t 0.13** 0.15***

(0.056) (0.058)
Info x t 0.13* 0.14*

(0.076) (0.085)
Spill x t -0.01 -0.02

(0.064) (0.069)
Constant -0.10** 0.02

(0.050) (0.047)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 2,125 2,111
Number of households 601 600

Regressions include household random effects. Standard errors are
clustered at the village level.

Significance levels denoted by: *** 1%, ** 5%, * 10%.

In this framework, β1 captures the average effect of information over all crops for which

I observe any sales. β2 provides an analogous estimate for those who may have benefited

from information spillovers, relative to the control group. The results of this estimation are

reported in Table (5.4). They suggest that there were sizable impacts for those who bene-

fited directly from the information: prices at which they were able to sell their production

increased by 13% (with crop controls) to 14% (with crop and quality controls). The results

show little evidence of spillover effects at treated villages: the estimates for β2 are small

and statistically insignificant.

Estimations in Table (5.4) include all observations for which there are price data. How-

ever, I only observe households’ prices for crops that were sold. For example, if a farmer
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harvested a crop for sole subsistence (self-consumption) purposes, I cannot observe the

outcome variable. Due to random assignment, the treatment is not correlated with the

households’ decision whether to sell or not in the baseline (as shown in Table 5.3). How-

ever, as I will show later, the information did make households more likely to sell in the

follow-up survey. This induces a sample selection bias in my results.

The most direct approach to account for sample selection would be to estimate a sys-

tem of equations, where one of them determines the decision to sell and the other would

measure the impact of information on prices. However, I would need to determine at least

one variable that influences households’ decision to sell but does not impact directly its

sales price (only through its sales decision). Because sales decisions are arguably based on

the potential price that a household might be able to charge, I do not have any variables

that would credibly meet this exclusion restriction. Thus, rather than estimating effects

corrected for this selection bias, I try to sign the bias and to construct some bounds for the

treatment effects.

In general, the sample selection issue is created by the subsample of households in the

treatment group who decide to sell their harvests, but would not have chosen to do so in

the absence of the treatment. Intuitively, these households probably have less marketing

experience than the group who would have sold regardless of the intervention. Thus, I

will argue that, if anything, these households are less likely to have fully benefited from

the treatment and sell their production at lower prices than the “always sellers”. Ideally, I

would like to observe the sales history of the households in a time series to discern new

from regular sellers, but I do not have this information and will rely on some proxies.

I implement alternative approaches. The simplest one is to estimate equation (5.3) with
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Table 5.5: Price Regression for
Households with Sales in Both Periods1

(1) (2)
Info -0.05 -0.04

(0.069) (0.055)
Spill 0.05 0.04

(0.063) (0.057)
t 0.10* 0.13**

(0.051) (0.057)
Info x t 0.19*** 0.19**

(0.071) (0.087)
Spill x t -0.00 -0.01

(0.064) (0.077)
Constant -0.08* 0.04

(0.049) (0.045)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 1,579 1,567
Households 311 311

1 Includes households who sold in both periods, regard-
less of the product and quality.
All regressions include household random effects. Stan-
dard errors are clustered at the village level. Significance
levels denoted by: *** 1%, ** 5%, * 10% .

a sample of households that sold (at least one product) in both periods. If households

with commercial activity in the baseline (before the intervention) are believed to be more

likely to sell even in the absence of the treatment, this might be indicative of the impact of

“always sellers”. The results are reported in the first two columns of Table 5.5. Information

seem to have had a larger impact on those with sales in both periods (around 19%). The

larger coefficient for the treatment variable suggests that the effect on this group might be

larger than the one for new sellers. The estimates for the spillover groups remain small and

indistinguishable from zero.

In a second estimation, I use the sales information in the follow-up survey and construct
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two subsamples: one with households who sold (at least one product) in both periods and

another one with those who only reported any sales in the follow-up. Here, I take the

estimates of the first group as a proxy to the impact on the “always sellers” and the second

one as the effect on new sellers (those more likely to sell only because they were encouraged

by the treatment). I estimate the following regression for all households in the follow-up

and, then, for both of the subsamples described:

log(Pic,t=1) = β1Infoi +β2Spilli +δcDc + εi +µic (5.4)

These results are presented in Table (5.6). The first two columns just confirm that the results

using all the observations in the follow-up survey are almost identical to those estimated

with the panel dataset. The effect is 13% for households in the information group and are

close to zero for those in the spillover group. This is not surprising because prices were

not significantly different among groups in the baseline. The subsequent columns show

the differences in the price effect for the group who sold in both periods and the one who

only sold after the treatment. The effect for those who sold in both periods is 14%-15%,

but the one for new sellers is considerably lower (2%-4%) and statistically insignificant. If

the treatment is differentially attracting more of the “new sellers”, this would suggest that,

if anything, my previous estimates are downwardly biased and underestimate the overall

effect of the information.

I also estimate bounds for the impact of the treatment effect. Following Horowitz &

Manski (2000), I assume different potential values for the prices of the crops that were not

sold. First, I simulate what would have happened if non-sellers would not have benefited
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at all from the information intervention. To assess this possibility, I calculate the average

sales price for each crop in the control group in the follow-up survey, and impute this value

to all unsold crops in both the information and spillover groups. With this imputed data,

I estimate Equation (5.4). Effectively, this procedure averages the positive effect of the

intervention among those who sold their crops with a zero-effect on those who did not sell

their harvests. Column (1) of Table (5.7) shows the result of this exercise: even under this

pessimistic scenario, the information group would have experienced a 5% increase in their

sales prices. Even more pessimistically, I also simulate what would have happened if those

who did not sell their crops experienced losses of -2%, -4%, and -6% of their crop prices

with respect to the control group. The results are shown in Columns (2)-(4) of (5.7): even

with losses of 2 and 4%, the treatment group would have increased their sales prices by 3

and 4% respectively. Only when we assume a loss of 6% among those without sales, the

coefficient is no longer statistically significant (though positive).

The advantage of Horowitz & Manski’s (2000) approach is that it does not require any

exclusion restriction (i.e. a variable that determines the probability of sales but does not

affect directly the sales price) and relies on very few distributional assumptions. However,

it is possible to narrow the bounds of the effect with some additional assumptions. In par-

ticular, I follow Angrist, Bettinger, Bloom, King & Kremer (2002) and Angrist, Bettinger

& Kremer (2006), who propose non-parametric bounds with sample selection4. Denote

4In particular, Angrist et al. (2006) investigate the impact of a lottery that provided high school students
with vouchers to attend private schools in Colombia. The authors analyze the impact of this lottery on
students’ high school exit-examination scores. They find that the vouchers made students more likely to
graduate high school. Because only students who graduated took the exit-examination, this creates a sample
selection problem. In this line, their selection problem is quite similar to this one.
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Table 5.7: Bounds under Alternative Price Assumptions for
Non-Sellers (Cross Section, Follow-up)

Non-seller gains 1 (1) (2) (3) (4)
0% -2% -4% -6%

Info 0.05** 0.04** 0.03* 0.02
(0.017) (0.017) (0.017) (0.018)

Spill 0.01 0.00 -0.00 -0.01
(0.014) (0.014) (0.013) (0.013)

Constant 0.23*** 0.24*** 0.25*** 0.25***
(0.015) (0.015) (0.015) (0.016)

Product Dummies Yes Yes Yes Yes
Households 755 755 755 755
Observations 2,784 2,784 2,784 2,784

1 The dependent variable of this regression is: (a) the reported price if the crop was sold, or
(b) (1-X)% of the mean of the sales price in the control group for unsold crops.

Significance levels denoted by: *** 1%, ** 5%, * 10%. Regressions include household
random effects. Standard errors are clustered at the village level.

pic as the the latent price at which household i would have sold crop c in the follow-

up. The household’s decision to sell is represented by the indicator variable sic = {0,1}.

Then, the observed prices are determined by Pic = sic pic. In this case, there are two treat-

ment groups: those who receive the information directly (Infoi) and those in the spillover

group (Spilli). The potential outcomes for a household that receives one of these treatments

(T = Infoi, Spilli) are pT
ic, sT

ic, while the potential outcomes for those in the control group

are pC
ic, sC

ic . Also define qT (θ) as the θ -quantile of the distribution of pT
ic and qC(θ) as the

θ -quantile of the distribution of pC
ic.

The estimation of the bounds for self-selection requires three assumptions. The first

one is that the treatment is never harmful (i.e. pT
ic ≥ pC

ic). In this line, the price information

should not reduce the price at which households are able to sell their crops. The second
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one is monotonicity of selection status, which assumes that the treatment can only affect the

selection in one direction. Partly, because households decide whether to sell or not based on

the price they would get, I will assume that the treatment affects the sales decision positively

(i.e. sT
ic ≥ sC

ic). These two assumptions are somewhat mild in this context. The third one is

probably the most restrictive one: I will assume that the treatment is a quantile preserving

transformation. This assumption implies that for any θ > θ0 — where qC(θ0) = 0 — the

following condition holds: P
[
pT

ic ≥ qT (θ) | pC
ic ≥ qC(θ)

]
= 1. What is assumed here is that

“when the potential outcome in the comparison state is above a certain quantile in its own

distribution, then the potential outcome in the treatment state is also above that quantile in

its own distribution” (Duflo, Glennerster & Kremer 2007). In other words, a household in

the control group would have fared as well in the treatment group quantile-wise.

Under these assumptions, Angrist et al. (2006) derive the following inequality:

E
[
PT

ic |PT
ic > qT (θ)

]
−E

[
PC

ic |PC
ic > qC(θ)

]
︸ ︷︷ ︸

Upper bound

≥ E
[

pT
ic− pC

ic|pC
ic > qc(θ),sC

i = 1
]

︸ ︷︷ ︸
Treatment Effect (cond on θ )

≥

E
[
PT

ic |PT
ic > qC(θ)

]
−E

[
PC

ic |PC
ic > qC(θ)

]
︸ ︷︷ ︸

Lower bound (5.5)

Conditional on being above quantile θ , the first term of this expression provides the upper

bound of the treatment. Intuitively, this component balances the proportion of crops sold

in the treatment and control groups. For example, if θ = 0.7, it compares prices in the top

30% of the treatment group with the top 30% of the control group. On the other hand,

the last term provides a lower bound by comparing all prices in the treatment and control
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groups that are above a certain threshold determined by qC(θ), i.e. quantile θ of the price

distribution in the control group. The term in the middle is the treatment effect (conditional

on being above the θ quantile of the control group), which lays somewhere between these

two bounds.

To construct these bounds, I will make an additional adjustment. Because my sample

is comprised of 17 crops by quality, the sales of low-value products (e.g. potatoes, ollucos)

are likely to be in the bottom of the price distribution even if they are sold at a relatively

good price. Similarly, even if a farmer gets a relatively low price for a higher-value crop

(e.g. produce), this sale might be in the uppermost part of the distribution only because

prices for this product tend to be higher. Thus, any quantile of the distribution would

trim a disproportionate number of low-value crops. To standardize these differences, I

calculate the residuals of a regression of prices on crop and quality indicator variables. The

adjusted prices are then: P̃ic = log(Pic)− γ̂ccropc− λ̂cqualityc, where coefficients γ̂c and λ̂c

are estimated through an OLS regression. In this sense, P̃ic can be interpreted as deviations

from the mean for each quality-crop5.

I will apply this estimation framework to the follow-up survey and compare: (a) the

Information and the Control groups, (b) the Spillover and the Control groups. In general,

62% of households’ crops were not sold in the follow-up survey. However, there are im-

portant differences among groups. The proportion of unsold crops was 65% in the control

5Note that in the original framework discussed above, Pic = sic pic ≥ 0, where sic = {0,1}. In contrast,
now the observed (adjusted) price is not bounded by zero (i.e. because it measures deviations from the mean,
it can take positive or negative values). Nevertheless, it is relatively straightforward to accommodate for this
fact. Consider the new latent variable p̃ic. Then, I construct a variable P̃ic which takes the value p̃ic if sic = 1,
and any other number considerably smaller than Min{P̃ic} if sic = 0.
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group (i.e. θ0 = 65) and was slightly smaller in the spillover group (62%). In contrast, it

was considerably smaller in the information group, where only 54% of households’ crops

were not sold. This highlights the extent of the selection problem.

I illustrate the calculation of the upper and lower bounds of the treatment effects at

θ = 65. For the lower bound, I would need to trim the distributions of the information and

spillover groups by dropping all prices below qc(65). In this case, qc(65) is the minimum

price across all groups, so no trimming takes place. The lower bound at θ = 65 is repre-

sented by the actual price distributions (Figure 5.1a). The estimation of the upper bound

of the effect at θ = 65 requires balancing of the proportion of products sold in each group

(i.e. comparing the top 35% of the price distributions for each group). At θ = 65, no ob-

servations are trimmed from the control group in the upper bound. For the spillover group,

this calculation requires dropping the observations between the 62nd and 65th percentiles.

This is graphically depicted in Figure (5.1b), where the price distribution of the spillover

group shifts slightly to the right. The trimming is much more significant for the infor-

mation group: we need to drop observations between the 54th and 65th percentile of the

distribution. Graphically, there is a pronounced shift to the right in this price distribution.

I follow the same procedure for different values of θ . Table (5.8) presents the estima-

tion of the lower and upper bounds θ=65, 70, 75, 85, 90. These estimates do not allow

to precisely pin down the effect, but do provide an idea of their maximum and minimum

possible values. In general, the upper and lower bounds for those who received the infor-

mation directly differ by 10 to 14 points at each level of θ . The upper bound remains large

(between 21 and 8 points) and statistically significant, and all the lower bounds are positive

except when θ = 90. This is consistent with the effect being smaller when the informa-
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Figure 5.1: Price Distributions in Endline (Observed and Quantile-Adjusted)

(a) Distribution of Prices in Endline (Observed)
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(b) Distribution of Prices in Endline (Adjusted at
θ = 65)
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Adjusted prices are calculated, as the residuals of a regression of prices on crop and quality dummies, i.e. P̃ic =Pic− γ̂Cropc− λ̂Qualityc.
Figure 5.1a is the distribution of p̃ic in the endline and a grahic representation of the results in Table 5.4. Figure 5.1b is the distribution
in the endline, with the following quantile restrictions: p̃C

ic > qC(65), p̃T
ic > qC(65) and p̃S

ic > qC(65); where p̃C
ic, p̃S

ic and p̃T
ic are the

adjusted prices in the control, spillover and treatment groups and qC(65) is the 65-th percentile of the adjusted price distribution of the
control group. Figure 5.1b is the distribution of prices with the following restrictions: p̃C

ic > qC(65), p̃T
ic > qT (65) and p̃S

ic > qS(65).
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tion group is compared to those in the control group that would have sold at a high price

anyway. For the spillover group, the bounds are much tighter: the difference between the

upper and lower bounds is between 1 and 6 points; but all these estimates are considerably

smaller and not statistically significant for the most part. Figure (5.2) graphically present

the bounds for the information and spillover groups for values of θ between 0.65 and 0.9.

All in all, the evidence suggests that there are positive and significant effects on prices

for those who received the information. Among the sample of those who sold their crops,

the effect is between 13% and 14%. While sample selection poses a problem for my esti-

mations, if anything, this selection is likely to have a negative impact on these estimates.

The upper bound of this effect can even reach 20%.

5.3 Effects on Production and Sales

Next, I estimate the impact of the treatment on households’ crop choice, agricultural pro-

duction and sales volumes. Note that — because of its timing — the intervention should not

have altered households’ crop choice or production volumes. As discussed in the model,

however, the impact on sales volumes is ambiguous.

To determine the impact on the farmers’ crop choice, I estimate the following regression

with all observations in the sample:

Cict = Dc [λcInfoi +θcSpilli +δct +βcInfoit + γcSpillit]+ εi +µict (5.6)

where Cict is an indicator variable that takes the value of 1 if household i produces crop c in
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Figure 5.2: Lower and Upper Bounds of Treatment Effects for Prices1

(a) Information Group
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1These graphs provide a graphic representation of the coef-
ficients in Table 5.8 for all integer values of θ between 0.65
and 0.9.
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period t, and 0 otherwise; and Dc is a set of indicator variables for each crop. The DID co-

efficients for each crop (i.e. βc and γc) are presented in the first two columns of Table (5.9).

Albeit significant in two products for the information and two for the spillover groups,

overall it seems that the intervention did not alter households’ overall crop choice: they are

statistically insignificant for the all the other crops (fifteen and sixteen in the information

and spillover groups, respectively). I also present the results from a random-effects probit

following the same specifications, which also suggest little impact of the intervention on

households’ overall crop choice.

To determine the impact on households’ output, I estimate a Differences-in-differences

regression with household random effects, following the same strategy outlined in Equation

(5.3). The results are presented in Table (5.10). The first column shows that the DID

estimate is close to zero (-1%) and statistically insignificant. Because of the timing of the

intervention, I did not expect the price information to induce any change in the composition

or amount of harvests. Taken together, these estimates are reassuring that the intervention

did not systematically alter households’ production. This lends some credibility to the

interpretation of the results in this paper: the effect comes from changes in marketing

rather than productive outcomes.

Next, I estimate the impact of price information on sales decisions, by analyzing three

variables: the extensive margin (i.e. whether they decide to sell or not a particular product),

the allocation decision (i.e. where to sell), and the extensive margin (i.e. the sales volumes,

conditional on selling). For the extensive margin, I estimate a difference-in-differences
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Table 5.9: DID Coefficients for Crop Composition

RE Linear Reg1 RE Probit2

Info Spill Info Spill

Peas 0.02 0.00 0.02 0.00
(0.041) (0.027) (0.050) (0.066)

Barley -0.04 0.02 -0.04 0.02
(0.056) (0.043) (0.061) (0.053)

Lima Beans 0.00 -0.04 0.00 -0.04
(0.041) (0.037) (0.042) (0.037)

Corn - White -0.06 -0.03 -0.06 -0.03
(0.062) (0.054) (0.058) (0.051)

Corn - Cusqueado 0.12*** 0.03** 0.12 0.03
(0.046) (0.016) (0.078) (0.093)

Corn - Cusqueno -0.01 -0.01 -0.01 -0.01
(0.029) (0.014) (0.083) (0.047)

Corn - San Jeronimo 0.00 -0.01 0.00 -0.01
(0.019) (0.015) (0.074) (0.063)

Olluco - Yellow -0.04 -0.05*** -0.04 -0.05
(0.026) (0.019) (0.113) (0.116)

Olluco - Dotted -0.01 0.00 -0.01 0.00
(0.030) (0.025) (0.092) (0.025)

Potato - Yellow 0.03 0.00 0.03 0.00
(0.028) (0.010) (0.139) (0.032)

Potato - Andean 0.03** 0.03 0.03 0.03
(0.017) (0.022) (0.043) (0.051)

Potato - Canchan -0.01 -0.02 -0.01 -0.02
(0.028) (0.020) (0.110) (0.122)

Potato - Huayro 0.01 -0.02 0.01 -0.02
(0.025) (0.017) (0.055) (0.074)

Potato - Perricholi 0.08 -0.02 0.08 -0.02
(0.063) (0.027) (0.066) (0.031)

Potato - Peruanita 0.02 -0.00 0.02 -0.00
(0.020) (0.010) (0.017) (0.040)

Potato - Unica -0.06 -0.06 -0.06 -0.06
(0.052) (0.051) (0.041) (0.059)

Potato - Yungay 0.02 -0.02 0.02 -0.02
(0.051) (0.053) (0.053) (0.047)

1 The DID coefficients are βc and γc estimated through the regression: Cict =
Dc [λcInfoi +θcSpilli +δct +βcInfoit + γcSpillit]+εi+µict , where Cict =1 if household i planted
crop c in period t (and Cict =0, otherwise) and Dc are indicator variables for each crop.

2 Marginal effects from a random effects probit, following the same specification.

All regressions include household random effects. Standard errors are clustered at the village
level. Significance levels denoted by: *** 1%, ** 5%, * 10% .
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Table 5.10: DID Estimation for Production

(1) (2) 1

Info 0.06 0.12
(0.242) (0.244)

Spill -0.10 -0.04
(0.217) (0.217)

t -0.51*** -0.39***
(0.147) (0.128)

Info x t 0.01 -0.01
(0.193) (0.183)

Spill x t -0.01 0.01
(0.176) (0.168)

Constant 5.45*** 5.82***
(0.191) (0.249)

Observations 5,236 4,212
Households 789 755
Product Dummies Yes Yes
Quality Dummies No No

1 Note that the regression with quality controls has around one
thousand fewer observations. This is because most house-
holds do not grade their crops when they will not sell them.
Thus, the relevant estimates for the production are those in
Column 1. However, I present this additional regression for
completeness.

All regressions include household random effects. Standard
errors are clustered at the village level. Significance levels
denoted by: *** 1%, ** 5%, * 10% .
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regression for the probability of incurring any sales of a certain product:

sict = λ Infoi +θSpilli +δ t +β Infoit + γSpillit +αcCropict + εi +µit (5.7)

where sict takes a value of one if household i decides to sell crop c in period t, and zero oth-

erwise. The first two columns of Table (5.11) present the results of this regression, and sug-

gests that information increased the probability of selling a product by 12% among those in

the information group. Columns 3 and 4 analyze the same outcome using a random-effects

probit, and show similar impacts. These shifts are the rationale behind the sample selection

adjustments in the previous section: better price information encourages households who

would have not sold before to sell (at least part of) their harvests; and this impact is quite

large.

I also disaggregate these sales decisions to investigate where households sell. I con-

struct a decision variable for each product with three categories: (a) no sales, (b) sales to

middlemen, and (c) direct sales in markets. I estimate a multinomial probit on these three

categories to assess households’ sales choices. The results are shown in Table (5.12). They

show that the previous increases in participation in commercial activities are mostly driven

by direct sales in markets. However, on average, there is no change in the proportion of

households selling to middlemen.

This suggests that most of the increase in participation in commercial activities are

explained by households who did not sell before and sell directly in markets after the in-

tervention. However, one would also have expected that farmers with better information

would have shifted their sales away from middlemen to sell directly in markets, but the
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Table 5.11: Difference-in-Differences for Probability of Sales

Probability of Sales
Linear Regression RE Probit1

(1) (2) (3) (4)

Info 0.01 0.01 0.02 0.00
(0.057) (0.065) (0.058) (0.058)

Spill -0.03 -0.02 -0.03 -0.02
(0.043) (0.052) (0.050) (0.047)

t -0.12*** -0.01 -0.14*** -0.01
(0.033) (0.039) (0.023) (0.030)

Info x t 0.12** 0.10 0.14*** 0.12**
(0.057) (0.064) (0.052) (0.057)

Spill x t 0.08 0.07 0.09* 0.08
(0.058) (0.065) (0.050) (0.050)

Constant 0.48*** 0.90***
(0.068) (0.110)

Observations 5,236 4,212 5,236 4,212
Households 789 755 789 755
Product Dummies Yes Yes Yes Yes
Quality Dummies No Yes No Yes

1 Marginal effects.

Regressions include household random effects. Standard errors are clustered at the village
level. Significance levels denoted by: *** 1%, ** 5%, * 10% .

Table 5.12: Impact on Alternative Sales
Possibilities1

(1) (2) (3)

No Sale
Sale to Sale in

Middleman Market
Info x t -0.11** -0.01 0.12**

(0.056) (0.053) (0.048)
Spill x t -0.08 0.01 0.06

(0.058) (0.040) (0.047)

Observations 5,236
Households 789

1 The estimates are calculated through a Random-Effects Multinomial
Probit for three categories (no sales, sales to middlemen, and direct
sales in markets), with the following variables: Infoi, Spilli, Infoit,
Spillit and crop controls. This table presents marginal effects of Infoit
and Spillit.

Standard errors are clustered at the village level. Significance levels
denoted by: *** 1%, ** 5%, * 10% .
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data does not support this idea. Anecdotal evidence suggest that farmers increased their

bargaining power with middlemen and were able to achieve higher farm-gate prices. These

higher prices encouraged them not to sell their crops directly in markets. For example,

during some informal interviews, farmers expressed that they preferred to receive price in-

formation through text messages rather than phone calls. They argued that, when needed,

they could show text messages to traders, and “prove” that they are aware of the prevailing

market prices.

In the endline, I also collected information about the time that the average time farm-

ers spent bargaining with traders during their transactions. I regress the bargaining time

(in minutes) on the treatment dummies and crop-quality controls. This sample is re-

stricted only to households with any sales to middlemen during the post-intervention pe-

riod: Timeic = β1Infoi + β2Spilli + γDc + εi + µic. Results in Table (5.13) show that the

effect of information on bargaining time is positive. The coefficient is not statistically sig-

nificant, but is quite large in magnitude: it increases bargaining time by more than one third

compared to the control group.

On the extensive margin, I estimate a regression similar to Equation (5.3), where the

dependent variable is the log of sales volume. This estimation only includes those crops

for which at least some output was sold and is therefore the impact within those who de-

cide to sell their crops. Table (5.14) presents the results of this estimation. While the

point estimates of the DID are quite large (around 19%), they are not statistically signifi-

cant at conventional levels. It is certainly possible that — in a similar mechanism as the

one described for price behavior — the treatment is attracting “marginal” farmers whose

sales volumes are smaller because they are less experienced in marketing their products. I
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Table 5.13: Bargaining time with
Middlemen (in minutes)1

(1) (2)
Info 3.30 3.69

(4.104) (4.013)
Spill -0.13 -0.23

(1.169) (1.041)
Constant 8.98*** 8.60***

(1.790) (1.960)

Observations 592 592
Product Dummies Yes Yes
Quality Dummies No Yes

1 The sample is restricted to crops sold to middlemen at
endline (for which we have information about bargaining
time).

Standard errors are clustered at the village level. Signifi-
cance levels denoted by: *** 1%, ** 5%, * 10% .

estimate bounds for the effect on sales volumes following the same approach as the pre-

vious section. The distributions of sales volumes in the baseline and follow-up surveys

are included in Figure (5.3). It shows that the distribution of sales volumes in the endline

becomes more variable and considerably widens in the endline. The estimated bounds are

presented in Figure (5.4): they are quite wide, ranging from 17% to 60% for the informa-

tion and from 17% to 37% for the spillover group. This seems to be consistent with a very

noisy distribution that does not allow to accurately detect the effect even with potentially

large impacts.
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Table 5.14: Difference-in-Differences
Estimations for Sales Volume

Log(Sales Volume)
(1) (2)

Info 0.05 0.01
(0.209) (0.222)

Spill -0.00 -0.01
(0.212) (0.221)

t -0.43*** -0.39***
(0.143) (0.125)

Info x t 0.19 0.19
(0.178) (0.182)

Spill x t 0.19 0.19
(0.168) (0.160)

Constant 5.68*** 5.87***
(0.269) (0.308)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 2,122 2,108
Number of households 600 599

Regressions include household random effects. Standard errors are clus-
tered at the village level. Significance levels denoted by: *** 1%, ** 5%,
* 10% .
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Figure 5.3: Distributions of Sales Volumes in Baseline and Endline

(a) Distribution of Adjusted Sales Volumes in
Baseline
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(b) Distribution of Adjusted Sales Volumes in
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To standardize quantity differences, adjusted quantities are calculated, as the
residuals of a regression of prices on crop and quality dummies, i.e. Q̃ic =
Qic− γ̂Cropc− λ̂Qualityc. Figure 5.3a is the distribution of q̃ic in the baseline
and is a graphic representation of the estimates in Column 6 of Table 5.3. Fig-
ure 5.3b is the distribution of p̃ic in the endline and a grahic representation of the
results in Column 4 of Table 5.11.
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Figure 5.4: Lower and Upper Bounds of Treatment Effects for Sales Volumes1

(90% Confidence Intervals in Parentheses)
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1These graphs provide a graphic representation of the coeffi-
cients and confidence intervals of the bounds for all integer
values of θ between 0.65 and 0.9.
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5.4 Heterogeneous Treatment Effects

5.4.1 Differences by Perishability of Crop

The model in Chapter 4 predicts that improvements of market price information should

have different effects for relatively perishable and non-perishable products. The idea is that

there is a limit on the amount of the latter that farmers can self-consume before they spoil.

This imposes a limit to which farmers can use supply restrictions to obtain better prices

from traders. Thus the model predicts that price increases should be larger for perishable

products but sold quantities should not increase as much.

This is consistent with previous work that finds that the impact of price information

should be more valuable for farmers who sell more perishable crops (e.g. Muto & Yamano

2009, Aker & Fafchamps 2013)6. While there might be a set of other factors in play (e.g.

market structure, context-specific features, etc.), it is possible that differences between per-

ishable and non-perishable crops might also explain why Mitra et al. (2013) do not find any

impact of their price transmission intervention with farmers growing potato (a relatively

less perishable crop) in India.

To test for this possibility, I examine the degree of perishability within the seventeen

crops in the sample. All in all, there are two that are clearly more perishable than others:

lima beans and green peas (which spoil much more quickly than maize, barley, potatoes or

olluco). To capture differences in the effect for these groups, I use the following variation

6For example, Muto & Yamano (2009, p. 1887) argue that: “although the increased flow of information
can potentially benefit marketing of all kinds of crops, we expect that it has a larger impact on perishable
products than cereals because the prices of perishable products depend heavily on freshness at the time of
exchange.”
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of equation (5.3):

log(Yict) =α1Infoi +α2Spilli + γ1t+β1Infoit+β2Spillit+
λPerishc +θ1PerishcInfoi +θ2PerishcSpilli+
γ2Perishct+δ1PerishcInfoit+δ2PerishcSpillit+ εi +µict (5.8)

where Yict is either prices or sales volumes, Perishc = 1 for lima beans and green peas

and Perishc = 0 for all other crops. In the case of those who received price information

directly, the DID estimators for (relatively) non-perishable and perishable crops are β1and

(β1 +δ1), respectively. Analogously, the DID estimators for the spillover group are β2 and

(β2 +δ2).

The results of the regression for prices is reported in the first two columns of Table

(5.15). Arguably due to sample sizes, β1 and δ1 are not statistically significant, but the

large size of δ1 seem to suggest that the impact on perishable products is larger than the

one on non-perishable ones, and the sum of β1 + δ1 (i.e. the total effect on perishable

products) is significant at conventional levels. Columns 3 and 4 present the coefficients of

the regression for sales volumes. In contrast to the results for prices, these estimates suggest

that, if anything, the increases in sales volumes are smaller for non-perishable products.

5.4.2 Differences by (Previous) Cell Phone Ownership

As explained previously, one of the differences with previous papers exploiting RCTs in

this area is that I do not restrict the treatment to those who already had a cell phone. In

this spirit, this intervention did not exclude anyone who could have participated, but would

have been unable to do so because they did not own a mobile phone. In fact, the devices

were distributed regardless of previous ownership, and actually about half of my sample
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Table 5.15: Effects by Product Perishability1

Log(Price) Log(Sales Vol.)
(1) (2) (3) (4)

Info x t 0.10 0.09 0.19 0.20
(0.092) (0.106) (0.214) (0.209)

Spill x t -0.06 -0.07 0.20 0.20
(0.083) (0.099) (0.204) (0.193)

Info x t x Perish 2 0.13 0.16 -0.02 -0.17
(0.135) (0.158) (0.545) (0.569)

Spill x t x Perish 2 0.17 0.13 -0.11 -0.16
(0.240) (0.211) (0.519) (0.514)

Product Dummies Yes Yes Yes Yes
Quality Dummies No Yes No Yes

Observations 2,125 2,111 2,122 2,108
Households 601 600 600 599

1 Estimation results for the following regression: Yict = α1Infoi + α2Spilli +
γ1t+β1Infoit + β2Spillit + λ1Perishc + θ1PerishcInfoi + θ2PerishcSpilli +
γ2Perishct+δ1InfoiPerishct+δ2SpilliPerishct+εi +µict , where Yict is either Log(Price) or
Log(Sales Volume). The Table reports estimates for β1, β2, δ1 and δ2.

2 Perishable Products: lima beans and green peas. All other crops (i.e. all types of maize,
barley, olluco and potatoes) are considered less perishable.

Regressions include household random effects. Standard errors are clustered at the vil-
lage level. Significance levels denoted by: *** 1%, ** 5%, * 10% .
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already had one prior to the intervention. I estimate the following variation of Equation

((5.3) to estimate the impact among those who already had a cell phone and those who did

not:

Log(Pict) = αoInfoi +α1Spilli + γ0t +β1Infoit +β2Spillit +λ0Mobi +λ1InfoiMobi +

λ2SpilliMobi + γ1Mobit +θ1InfoiMobit +θ2SpilliMobit + εi +µict (5.9)

where Mobi=1 if there was a mobile phone in the household before the intervention, and

Mobi=0 otherwise. The coefficients θ1 and θ2 measure whether there were any differential

effects between both groups. The estimate on the former sample is roughly the one I would

have obtained had my treatment been randomized only among those with mobile service.

Indeed, because of variations in the intervention and the information provided, it is not

strictly comparable to those in Fafchamps & Minten’s (2012) study. However, they do

provide an idea of what would have happened had my intervention (with the variations in

the treatment) been restricted like theirs.

These results are presented in Table 5.16. The coefficients are similar in both groups,

providing evidence that the selection among those who previously owned a mobile phone

is not driving my results. Thus, I posit that the differences in my results and the ones

in Fafchamps & Minten (2012) are more likely to arise from differences in the particular

contexts of the interventions, the relevance of information provided, or how the information

was displayed. However, I cannot distinguish among these competing hypotheses.
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Table 5.16: Effect by (Previous) Cell Phone
Ownership

(1)1 (2)2

Info x t (β1) 0.14* 0.15
(0.085) (0.096)

Info x t x Mobile (θ1) -0.01
(0.055)

Spill x t (β2) -0.02 -0.05
(0.069) (0.074)

Spill x t x Mobile (θ2) 0.10
(0.084)

β1 +θ1 0.14
(0.082)*

β2 +θ2 0.05
(0.080)

Observations 2,111 2,111
Households 600 600
Product Dummies Yes Yes
Quality Dummies Yes Yes

1 Regression: Log(Pict) = αoInfoi +α1Spilli + γ0t + β1Infoit +
β2Spillit+λ0Mobi +λ1InfoiMobi +λ2SpilliMobi +γ1Mobit+
θ1InfoiMobit + θ2SpilliMobit + εi + µict , where Mobi = 1 if
household i owned a mobile phone before the intervention, and
Mobi = 0 otherwise.

2 Corresponds to the results shown in Table 5.4

Regressions include household random effects. Standard errors
are clustered at the village level. Significance levels denoted by:
*** 1%, ** 5%, * 10% .
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5.4.3 Effects by Risk Aversion

The baseline questionnaire included a set of questions to elicit risk aversion, where the head

of household had to select an option among alternative lotteries. I use a simplified version

of a Binswanger’s (1980) task to elicit risk preferences7. Each respondent is presented with

five alternative lotteries. Each of them provides a low and a high payoff to be realized with

an equal probability (through a coin toss). While I intended to play these games with cash,

unanticipated problems during the fieldwork prevented me from doing so, and the games

were only played hypothetically.

My measure of risk aversion is based on the following game, where the respondent is

asked to choose one of these lotteries (in Peruvian Soles), based on the potential outcome

of a coin toss8:

1. Get S/. 0.50 without playing

2. Get S/. 0.80 if it comes up head or S/. 0.40 if it comes up tails

3. Get S/. 1.10 if it comes up head or S/. 0.30 if it comes up tails

4. Get S/. 1.40 if it comes up head or S/. 0.20 if it comes up tails

5. Get S/. 1.70 if it comes up head or S/. 0.10 if it comes up tails

More risk averse households should choose the first option (i.e. not to play and receive

S/. 0.50 with certainty), less risk averse ones should choose lotteries between two and

four, and the least risk averse would choose the fifth option. For simplicity, I construct an

7To determine households’ risk aversion, I use a set of questions developed by Castillo, Petrie & Torero
(2008) and Castillo, Petrie & Torero (2010). Also, the 50/50 gambles involved in each lottery keep the task
as simple as possible. Eckel & Grossman (2008) use similar questions to elicit risk aversion. They compare
the results of this simplified tasks with more complex ones, such as Holt & Laury’s (2002) methods. Their
results suggest that simplified tasks might be more suitable for subjects with lower numerical skills.

8Note that the expected value and risk (measured as the standard deviation) of the payoffs of each lottery
increase linearly from options 1 to 5: there are progressive increases of 0.1 in the x̄ and of 0.2 in the σ .
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Table 5.17: Risk Distribution in Baseline

Info Spill

Risk Averse (RAi = 1) -0.05 -0.01
(Options 1-3)1 (0.043) (0.036)

Observations 749

1 Marginal effects from a probit, where the dependent variable
takes a value of 1 if household chose options 1, 2 or 3 (more
risk averse); and 0 if it chose options 4 or 5 (less risk averse).

Standard errors are clustered at the village level. Significance
levels denoted by: *** 1%, ** 5%, * 10% .

indicator variable for risk aversion: RAi = 1 for households who choose lotteries 1, 2 or 3;

and RAi = 0 for those who choose options 4 or 59. Because this information was gathered

in the baseline — and, thus, before intervention — there is no reason to believe that RAi

would be correlated with the group assignment. Figure (5.5) shows the distribution of RAi

by treatment assignment. Graphically, no large differences in the proportion of households

in each group of risk aversion are apparent. I confirm this through a probit regression for

RAi in Table (5.17), which shows that there are no significant differences in risk aversion

between treatment groups.

Even when my games were only played hypothetically, there are reasons to believe that

they can be used to capture heterogeneous treatment effects for households with different

degrees of risk aversion. First, Castillo, Cotla, Petrie & Torero (2013) use similar modified

Binswanger’s in a large representative sample of around 13 thousand households in the

9Albeit arbitrary, changes in the cut-off point for variable RAi do not alter the results that follow. Though
not shown, the same qualitative results are found, for example, when RAi = 1 for lotteries 1 or 2 and RAi = 0
for lotteries 3, 4 or 5.
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Figure 5.5: Distribution of Risk Answers by Group a/.

a/. This is the distribution of answers to risk questions by group. The risk
questions were based on a hypothetical game. Households are assigned to
RAi = 1 if they choose options 1, 2 or 3 from the following lotteries based
on a coin toss (and to RAi = 0, otherwise):

1. S/. 0.50 without playing
2. S/. 0.80 if it comes up heads and S/. 0.40 if it comes up heads
3. S/. 1.10 if it comes up heads and S/. 0.30 if it comes up heads
4. S/. 1.40 if it comes up heads and S/. 0.20 if it comes up heads
5. S/. 1.70 if it comes up heads and S/. 0.10 if it comes up heads
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Peruvian highlands (including the Mantaro valley). One subsample of individuals was ran-

domly assigned to play their games hypothetically, while other was offered cash payments.

They find no statistically significant differences between both groups. Second, even if the

hypothetical nature of the lotteries would have induced any misreporting, this misreport-

ing would have to be different between the treatment and control groups. This is unlikely

because these preferences were elicited before the treatment was assigned.

To estimate the heterogeneous treatment effects by risk aversion, I initially estimate the

following regression:

log(Pict) = αoInfoi +α1Spilli + γ0t+β1Infoit+β2Spillit+λ0InfoiRAi +λ1SpilliRAi

+τRAi + γ1RAit+θ1InfoiRAit+θ2SpilliRAit+δcDc + εi +µict (5.10)

where RAi = 1 if household chose options 1-3 for the risk elicitation questions, and

RAi = 0 otherwise. I report these results in Table (5.18). Consistent with my previous

results, the impact on households in the spillover group remain are low and statistically

insignificant in all cases. However, this estimation would imply that less risk-averse house-

hold would have accrued most of the benefits of the intervention (β1 = 0.21) within the

information group. In contrast, more risk-averse ones would have experienced little or no

gains (β1+θ1 = 0.07). This result would be somewhat counterintuitive and contrary to the

the predictions of the model in Chapter (4). However, more careful examination indicates

that this is not necessarily the case.

I estimate a DID regression for households’ sales decisions. The estimation framework

is similar to equation (5.10), but the dependent variable is an indicator for sales (Sict =
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Table 5.18: Heterogeneous Effects by
Risk Aversion 1

Log(Pict)
(1) (2)

Info x t (β1) 0.21*** 0.21***
(0.072) (0.067)

Info x RA x t (θ1) -0.14 -0.11
(0.106) (0.095)

Spill x t (β2) 0.01 0.03
(0.073) (0.065)

Spill x RA x t (θ2) -0.02 -0.08
(0.106) (0.084)

β1 +θ1 0.07 0.10
(0.106) (0.116)

β2 +θ2 -0.02 -0.05
(0.088) (0.092)

Observations 2,063 2,049
Households 575 574
Product Dummies Yes Yes
Quality Dummies No No

and would
1 Estimation of the following equation:

Log(Pict) = αoInfoi + α1Spilli + γ0t + β1Infoit +
β2Spillit+λ0RAi+λ1InfoiRAi+λ2SpilliRAi+γ1RAit+
θ1InfoiRAit +θ2SpilliRAit +∑c δcDc + εi +µict .

Standard errors are clustered at the village level. Signifi-
cance levels denoted by: *** 1%, ** 5%, * 10% .
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1 if household i sells product c in period t and Sict = 0 otherwise) rather than prices10.

Table (5.19) shows these estimates. The results suggest that the impact of information on

farmers’ participation in commercial activities (described Section 5.3) was mostly driven

by risk-averse households: while the effect among less risk-averse households was 4% (not

significant), more risk-averse ones increased their probability of sales by 16%. Intuitively,

if risk-averse households were the ones for which market price uncertainty was a more

significant barrier to market participation, this would be the group that would react the

most to the information treatment.

These results have important implications for the analysis of price effects by risk aver-

sion. The sample selection problem (described in Section 5.2) is more severe for risk-averse

households. Among less-risk averse households in the endline, the proportions of unsold

crops were 53% and 59% in the information and control groups, respectively. In contrast,

these proportions were 55% and 68% for more risk-averse farmers. This implies that the

treatment makes me much more likely to observe a price for risk-averse rather than non

risk-averse households (6% vs. 13%).

To address this problem, I construct bounds similar to those in Equation (5.5). I take

the deviations from the mean of each crop and quality for each log(Pic) in the endline to

standardize prices. I estimate the upper and lower bounds with the standardized variable P̃ic

considering six groups: households in information, spillover and control groups, catego-

rized by RA. For each percentile θ ∈ [68, 90], I construct samples for the upper and lower

10The estimates for a random-effects probit on the sales decision is not reported, but yielded results similar
to those of the linear specification.
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Table 5.19: Effect of Information on
Sales Decision, by Risk Aversion

(1) (2)

Info x t (β1) 0.04 0.04
(0.08) (0.09)

Info x t x RA (θ1) 0.12 0.08
(0.08) (0.09)

Spill x t (β2) 0.10 0.10
(0.11) (0.12)

Spill x t x RA (θ2) -0.05 -0.07
(0.09) (0.11)

β1 +θ1 0.16** 0.12*
(0.067) (0.068)

β2 +θ2 0.06 0.03
(0.046) (0.500)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 5,031 4,058
Households 748 716

1 Results from the following regression:
Sitc = αoInfoi +α1Spilli + γ0t +β1Infoit +β2Spillit +
λ0RAi + λ1InfoiRAi + λ2SpilliRAi + γ1RAit +
θ1InfoiRAit + θ2SpilliRAit + ∑c δcDc + εi + µict ,
where Sitc = 1 if household i sells (at least some) of its
harvest of crop c in period t, and Sitc = 0 otherwise.

Standard errors are clustered at the village level. Sig-
nificance levels denoted by: *** 1%, ** 5%, * 10% .
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bounds, and estimate the following regression:

P̃ic = α0Infoi +α1Spilli + γ0RAi + γ1RAi +δ0InfoiRAi +δ1SpilliRAi + εi +µic (5.11)

Coefficient α0 compares the outcomes in the information and control groups among those

with RAi = 0, while α0 +δ0 contrast the outcomes among those with RAi = 1. The analo-

gous estimators for the spillover group are α1 and α1 +δ1. I present estimates of the upper

and lower bounds for selected values of θ in Table (5.20) and plot these coefficients in

Figure (5.6). There are larger differences between the upper and lower bounds for more

risk-averse households, suggesting that sample selection would have underestimated the

previous impact on this group. Within the information group, the upper bound for more-

risk averse households is consistently higher for all values of θ . For values θ > 75, both

the upper and lower bounds of the effect are larger for more risk-averse households (unam-

bigually showing larger effects within this group). Within the spillover households, both

the upper land lower bounds remain relatively small, suggesting limited impacts for both

risk-averse and non risk-averse households in this group.

5.4.4 Additional Regressions for Spillover Effects

The results in the previous sections do not support the presence of strong spillover effects.

One possibility is that villages are somewhat broad areas for information exchange: if the

nearest neighbor with information is still too far away, there might be no possibility for

communication. In this spirit, I provide some estimates that restrict the spillover effect

through geographic distances. I collected the GPS position of each household in the base-
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Table 5.20: Upper and Lower Bounds of Treatment Effect on Prices by Risk Aversion for
Alternative Values of θ

θ = 68 θ = 70
Upper Bound Lower Bound Upper Bound Lower Bound

Info (β1) 0.16*** 0.15*** 0.16*** 0.11***
(0.03) (0.04) (0.03) (0.03)

Info x RA (θ1) 0.06 -0.09 0.04 -0.06
(0.04) (0.06) (0.04) (0.04)

Spill (β2) 0.05 0.04 0.04 0.03
(0.03) (0.05) (0.03) (0.04)

Spill x RA (θ2) 0.04 -0.04 0.03 -0.02
(0.05) (0.07) (0.04) (0.04)

β1 +θ1 0.22*** 0.06 0.20*** 0.05
(0.04) (0.06) (0.03) (0.05)

β2 +θ2 0.09*** 0.00 0.07*** 0.00
(0.03) (0.04) (0.03) (0.03)

Observations 874 1,037 814 986
Households 366 392 355 382

θ = 80 θ = 90
Upper Bound Lower Bound Upper Bound Lower Bound

Info (β1) 0.10*** -0.02 0.05* -0.02
(0.03) (0.04) (0.03) (0.03)

Info x RA (θ1) 0.04 0.03 0.07** 0.01
(0.04) (0.03) (0.03) (0.04)

Spill (β2) 0.03 -0.02 0.03 0.03
(0.03) (0.03) (0.03) (0.03)

Spill x RA (θ2) -0.01 -0.00 -0.03 -0.04
(0.04) (0.03) (0.04) (0.04)

β1 +θ1 0.14*** 0.02 0.12*** 0.00
(0.03) (0.03) (0.04) (0.04)

β2 +θ2 0.02 -0.03 0.00 -0.02
(0.03) (0.03) (0.03) (0.03)

Observations 543 665 274 339
Households 272 307 159 185
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Figure 5.6: Upper and Lower Bounds of the Information Effect, by Risk Aversion
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The dependent variable of these graphs is P̃ic: the deviation from the mean of each crop-quality for each observation Pic in
the endline. Each point in the graph is obtained from the following regression: P̃ic = α0Infoi +α1Spilli + γ0RAi + γ1RAi +
δ0InfoiRAi +δ1SpilliRAi + εi +µic, constructing different samples for all integer values of θ ∈[68, 90] (see Section 5.2).

Figure 5.6b plots the values of α0 for different levels of θ . Figure 5.6a plots the values of α0 +δ0. Analogously, Figures 5.6d and
5.6c plot the coefficients of α1 and α1 +δ1, respectively.
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line that allow me to control for this. For each of the households that lived in a treated

village but did not receive the market price information, I estimate the distance to its clos-

est neighbor who directly received the price information. I construct quartiles with the

distances to the nearest source of information. Denote Dq as dummy variables for each of

these quartiles, where q = 1 is the group with closest neighbors that directly received the

information and q = 4 is the most distant. I calculate the following regression:

Log(Pict) = αInfoi+
4

∑
q=1

θq(DqSpilli)+δ t +β Infoit+
4

∑
q=1

γq(DqSpillit)+εi+µict (5.12)

The estimates for γq are shown in Table (5.21). If the geographic distance were to play an

important role in price transmission, then we would expect γ1 > γ2 > γ3 > γ4. However, all

the coefficients are still small and not statistically different from zero., and do not suggest

this pattern.

Another possibility is that lack of spillover effects is driven by crop differences between

the group that directly received the information and the one that could potentially benefit

from them indirectly. For example, a farmer in treated village might be getting price infor-

mation for a certain crop. Because there are 17 different relevant crops in the sample, his

neighbors (who are not receiving the information) might be harvesting a different product.

To account for this, I construct a variable Matchict for households in the spillover group.

Matchict = 1 if any other household in the farmer i’s village is directly receiving price

information for crop c in period t, and Matchict = 0 otherwise. I estimate the following

equation:
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Table 5.21: Effects by Distance to
Nearest Neighbor with Information1

Log (Price)
(1) (2)

Q1 x t 0.01 -0.01
(0.074) (0.081)

Q2 x t -0.05 -0.02
(0.076) (0.075)

Q3 x t -0.01 -0.08
(0.093) (0.099)

Q4x t 0.04 0.03
(0.104) (0.092)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 2,125 2,111
Households 601 600

1 The quartiles to the nearest neighbor with information
are created with the distance of each household in the
spillover group (i.e. in a treated village but did not re-
ceieve the price SMS) to the closest household that di-
rectly received the price information.

2 The results in this table correspond to the follow-
ing regression: Log(Pict )= αInfoi +Σ4

q=1θq(DqSpilli)
+δ t+β Infoit +Σ4

q=1γq(DqSpillit) +ΣcλcCropc+εi+µict .
Columns 1 and 2 report the esimtates for γq, without
and with crop quality controls.

Regressions include household random effects. Stan-
dard errors are clustered at the village level. Signifi-
cance levels denoted by: *** 1%, ** 5%, * 10% .
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Log(Pict) = αInfoi +δ0Spilli +δ1SpilliMatchict + γt+
δ Infoit+θ0Spillit+θ1SpilliMatchict t+ εi +µict (5.13)

If the previous results — where there was no evidence of spillover effects for the trans-

mission of prices — were driven by product differences, we would expect θ0 = 0 and

θ1 > 0. However, the results in Table 5.22 show that both coefficients are small and not

statistically significant. This additional piece of evidence seems to confirm the absence of

spillover effects and the idea that farmers do not share the market information they receive

privately with others.
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Table 5.22: Effects by Crop Match to
Households with Direct Information1

Log(Price)
(1) (2)

Treatment 0.00 -0.02
(0.076) (0.065)

t 0.13** 0.15***
(0.056) (0.058)

Treatment x t 0.13* 0.14*
(0.076) (0.085)

Spill 0.01 -0.03
(0.094) (0.075)

Spill x t 0.04 0.04
(0.101) (0.090)

Spill x Match 0.03 0.08
(0.074) (0.048)

Spill x t x Match -0.06 -0.07
(0.083) (0.061)

Constant -0.10** 0.02
(0.050) (0.046)

Product Dummies Yes Yes
Quality Dummies No Yes

Observations 2,125 2,111
Households 601 600

1 Match=1 if the household in the spillover group is in a
village where another household has directly received
market price information for crop c in year t. It takes
a value of zero otherwise.

Regressions include household random effects. Standard
errors are clustered at the village level. Significance lev-
els denoted by: *** 1%, ** 5%, * 10% .
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Chapter 6

Conclusion

The objective of this paper is to analyze the effect of agricultural price information on

marketing outcomes. For this purpose, I set up a RCT where I give access to market price

information to farmers in the central highlands of Peru. I find that households with access

to information are able to get better prices for their crops: their sales prices increase by

13%-14% relative to those of their counterparts. These results are affected by a sample

selection mechanism. However, it seems likely that households who marginally decide to

sell (and would have not sold in the absence of the information) would have achieved lower

prices than those who would have sold anyway. In this spirit, I construct bounds for the

effect of information which suggest that the impact could potentially have been larger.

On the extensive margin, I find a positive and significant impact of information (about

14%) on the probability that households with information engage in commercial transac-

tions for their crops. On the intensive margin, my estimates are positive, but not statistically

significant.

Direct beneficiaries might have shared the information they received with their neigh-
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bors and lead to indirect gains by others. To test for this possibility, I examine the market-

ing outcomes of households who did not receive the information but lived in villages where

others did. All in all, I do not find any significant impact on marketing outcomes among

households in this group.

While in line with the evidence presented by Nyarko et al. (2013) and Courtois &

Subervie (2013), my results contrast other studies who analyze programs that directly pro-

vide farmers with price information and find a limited effect of information on farmers’

sales prices (i.e. Fafchamps & Minten 2012, Mitra et al. 2013). While there are many

possibilities to explain such divergence, there are three features in these papers that might

help explain why my results are quite different. First, Mitra et al. (2013) focus on potato

markets, which is a relatively less perishable crop. As shown in the model (and later vali-

dated in my results), the potential benefits for farmers are smaller for these crops. Second,

agricultural market conditions in their region of study in India are probably very different

from those in the ones in the central highlands of Peru. In explaining their small effects, the

authors argue that farmers in this market have little opportunities to sell their crops directly

in markets. These markets are usually characterized by long-term relationships between

large buyers and sellers1. Thus, their results might not necessarily apply to other more

fluid agricultural markets. Third, Fafchamps & Minten (2012) focus on farmers that are

much more market-oriented 2. Therefore, they might have targeted a population that was

1In their analysis, Mitra et al. (2013) conclude that “mandis in West Bengal still feature decentralized
trades between large buyers and local traders engaged in bilateral long term personalized relationships. This
creates entry barriers for farmers or other newcomers who intend to sell in these markets”.

2The authors argue that “unlike Aker (2008) or Muto (2009) who focus on poorly developed agricultural
markets, we focus on a part of India where small scale commercial farming has been on the rise, with a
growing emphasis on horticulture for urban domestic consumption”.
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relatively more informed about market prices even in the absence of an intervention.

All in all, this suggests that price information can have very different impacts depend-

ing on the crops harvested, the market conditions and the population under analysis. From

a policy perspective, this suggests that, while there seem to be opportunities to improve

farmers’ welfare by enhancing market information, the environment in which price dissem-

ination programs are implemented should be carefully considered. Probably more research

is required to fully understand the impact of price information.
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