
Abstract

Title of Document:

\title{ GENERATING UP-TO-DATE STARTING VALUES FOR DETAILED FORECASTING MODELS }

San Sampattavanija, Ph.D., 2008

Directed By: Professor Emeritus Clopper Almon, Department of Economics

In economic forecasting, it is important that the forecasts be based on data that is both reliable and up-to-date. The most reliable data typically come from conducting a census. These censuses produce estimates with a long lag between the reference year and the date of publication. However, we also have other sources of economic data that are less reliable but published more frequently. These higher frequency data should be a source of useful information for analyzing economic activity in the current, incomplete year.

The objective of this study is to use high frequency (monthly and quarterly) data to generate forecasts of the annual data from reliable sources used in an inter-industry forecasting model. The results will be used as starting values to improve the model's short-term forecast performance.

The distinguishing feature of this dissertation is that it studies the economic data at the sectoral level as opposed to other studies that only try to generate aggregate data. The aggregate data will be a by-product of these detailed estimates. Thus, we can forecast the trends of the aggregates and observe sectors that contribute to these trends.

In this dissertation, I study data on four main aspectts of the U.S. economy: 1) Personal consumption expenditures, 2) Investment in equipment and software, 3) Investment in structures, and 4) Gross output.

By historical simulations, I find that the performance of the forecasts depends heavily on the accuracy of the exogenous variables used in each forecast. The estimated detailed values are consistent with the macroeconomic data, used as regressors in the processes. Thus, generally, the results will be reliable as long as we have a good forecast of macroeconomic variables.

The performance of the first-period forecast also depends on where in the calendar year the last published data is. The closer to the end of the year, the better is the accuracy of the forecast.

GENERATING UP-TO-DATE STARTING VALUES FOR DETAILED FORECASTING MODELS

By

San Sampattavanija

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
2008

Advisory Committee
Professor Emeritus Clopper Almon, Chair
Professor Ingmar Prucha
Professor Mark P. Leone
Associate Professor John Chao
Dr. Jeffrey Werling

© Copyright by

San Sampattavanija
2008

Dedication

To Praphis and Suvit Sampattavanija, my mother and father. Their love, encouragement, and patient has been and will always be a guiding light for me.

Acknowledgements

I am deeply in debt to Professor Emeritus Clopper Almon, my advisor. His assistance and guidance are very important to the completion of this dissertation. I have learnt not only economics but also many other skills through the vast knowledge and experience of Professor Almon.

I also would like to thank other committee members: Professor Ingmar Prucha, Professor Mark Leone, Professor John Chao, and Dr. Jeff Werling for their comments and suggestions.

All the discussions with INFORUM staffs - Dr. Jeff Werling, Dr. Doug Meade, Dr. Doug Nyhus, Margaret McCarthy, and Dr. Ronald Horst -- were very beneficial and helped toward the completion of this work. I am also grateful to many discussions with Dr. Somprawin Manprasert.

Special thanks to all members of Thai UMCP students as well as all my friends and family for all encouragements and moral supports. Hospitality from Kulthida and Brian O'Neill is very important to my good health through my time in the Program.

Finally, I will not be able to complete this dissertation without love, encouragement and all the supports from my family especially my mother, Praphis Sampattavanija.

Table of Contents

Dedication ii
Acknowledgements iii
Table of Contents iv
List of Tables vii
List of Figures ix
Chapter 1: Introduction. 1
1.1 The Problem of the "Ragged End" of Historical Data for Long-term Modeling. 1
1.2 The Scope of this Study 3
1.3 Related Work 5
1.4 Steps in the Solution of the Ragged-end Problem 7
1.5 Outline of the study and guide to quick reading. 8
Chapter 2: Measuring Real Growth. 10
2.1 Hedonic Indexes. 11
2.2 Runaway Deflators, Ideal and Chained Indexes, and Non-additivity 15
2.3 Remedies for Non-additivity. 24
2.4 Suggested Remedies. 26
Chapter 3. Personal Consumption Expenditure 32
3.1. What are Personal consumption expenditures?. 34
3.2. Broad trends in the structure of PCE 38
3.3. Data for short-term forecasting of PCE 43
The dependent variables. 43
Explanatory variables 44
Equations estimated. 44
Approach to the problem 47
3.4 Discussions of interesting detailed PCE equations' estimation results. 48
New autos 49
Computers and peripherals. 51
Software 53
Pleasure aircraft. 55
Books and maps. 57
Coffee, tea and beverage materials 59
Women's and children's clothing and accessories 61
Gas and Oil 62
Housing. 63
Cell phone, local phone and long distance phone 65
Airlines 69
Health insurance 71
Brokerage charges and investment counseling 73
3.5 Historical Simulations 74
Total annual PCE. 80
Durable goods 82
Nondurable goods 89
Services 97
3.6 Short-term forecast of Personal consumption expenditures 108
3.6.1 Forecast assumptions 108
3.6.2 Outlook with plots and aggregates (annual series) 109
Chapter 4: Private fixed Investment in Equipment and Software 122
4.1 Data for Private Fixed Investment in Equipment and Software 122
4.2 Approach to the problem 134
4.3 NIPA Investment in Equipment and Software by Asset Types Equations.... 135
4.4 FAA Investment in Equipment and Software by Purchasing Industries Equations 145
4.5 Historical Simulations 164
4.6 Forecast of Private Fixed Investment in Equipment and Software through 2008 178
Forecast Assumptions 178
Outlook of Fixed Investment in Equipment and Software 179
Chapter 5. Investment in Structures. 191
5.1 Data and Estimation Approaches for Private Fixed Investment in Structures. 193
5.2 Approach to Forecast Investment in Structures 203
5.2.1 Nonresidential Investment in Structures 203
5.2.2 Residential Investment in Structures 206
5.3 Monthly VIP Equations 207
5.4 Nonresidential Fixed Investment in Structures Equations 214
5.4.1 Quarterly Equations for VIP-based Nonresidential Fixed Investment in Structures 214
5.4.2 Annual NIPA Nonresidential Fixed Investment in Structures Equations. 223
5.5 Residential Fixed Investment in Structures Equations 233
5.5.1 Extending NIPA series using VIP-based Residential Construction. 233
5.5.2 Quarterly Residential Fixed Investment in Structures Equations 236
5.6 Historical Simulations 240
5.7 Forecast of Fixed Investment in Structures between 2007 and 2008 252
Forecast Assumptions 253
Outlook of Fixed Investment in Structures by Asset Types in 2007 and 2008 253
Chapter 6: Gross Output by Industry 268
6.1 Data on Gross Output and High-Frequency Explanatory Variables 271
Gross output by industry 1947 - 2005. 271
High-frequency explanatory variables 273
6.2 The Method 279
Annual Equations. 280
Monthly Equations 284
6.3 Illustration and Evaluation of the Method 287
6.4 Forecast of Gross Output between 2006-2008 322
Forecast assumptions. 322
Outlook of Gross Output by Industries. 324
Chapter 7: Conclusion 337
Appendices 339
Appendix 3.1: Personal Consumption Expenditures by Type of Product. 339
Appendix 3.2: PCE categories to be calculated, 116 categories. 344
Appendix 3.3: 346
Nominal equations. 346
Price index equations 375
Appendix 3.4: Plots of Detailed Annual PCE Forecast 2007-2008. 402
Appendix 3.5: Results 422
Appendix 4.1: Estimation Results for Nominal Value of annual Fixed Asset Accounts by Purchasing Industries. 428
Appendix 4.2: Detailed Forecast Results of NIPA Equipment and Software Investment440
Appendix 4.3: Detailed Forecast Results of FAA by Purchasing Industries. 441
Appendix 4.4: Plots of NIPA Equipment and Software Fixed Investment Forecast. 443
Appendix 4.5: Plots of FAA by Purchasing Industries Forecast. 444
Appendix 5.1: Regressions' Results of Annual Fixed Investment in Nonresidential Structures. 455
Appendix 6.1: Gross Domestic Product by Industry Categories, BEA. 459
Appendix 6.2: Results from Historical Simulations 462
Appendix 6.3: Real Gross Output and Price Index Regressions 465
Appendix 6.4: Regression Results for Monthly Equations 488
Appendix 6.5: Glossary of Variables used in Chapter 6. 518
Appendix 6.6: Gross Output by Detailed industries in 2006-2008. 520
Bibliography. 523

List of Tables

Table 2.1: U.S. and World-Wide Sales of PC-type Computers 15
Table 2.2: The Runaway Deflator Problem with Made-up Data. 16
Table 2.3: The Ideal Index Controls Disparate Deflators 21
Table 2.4: Comparison of Real GDP components between Chain-weighted and Fixed- weighted methods 29
Table 3.1: Nominal Gross Domestic Product [Billions of dollars]. 32
Table 3.2: Content of PCE 36
Table 3.3: Nominal and Real Personal consumption expenditures between 1959-2005, by Major categories 40
Table 3.4: Personal consumption expenditures by Major types of product 43
Table 3.5: Assumptions of exogenous variables used in the Second Historical Simulation 75
Table 3.6: Results from Historical Simulations 77
Table 3.7: Exogenous variables' assumption between July 2007 and December 2008 109
Table 3.8: Major aggregates of annual PCE Forecast 2007 and 2008 111
Table 3.9: Growth rates of U.S. PCE 2000-2008 113
Table 4.1: Quarterly Data on Equipment Investment. From NIPA Table 5.3.5 Quarterly 125
Table 4.2: Private fixed investment in equipment and software. 128
Table 4.3: Equipment Investment by Purchaser, from the Fixed Assets Accounts 132
Table 4.4: Reconciliation of Equipment Investment in NIPA and FAA 134
Table 4.5: Estimation Results for Nominal values of Quarterly NIPA Fixed Investment in Equipment and Software 141
Table 4.6: Estimation Results for Price indexes of Quarterly NIPA Fixed Investment in Equipment and Software 142
Table 4.7: Assumptions of exogenous variables used in the Second Historical Simulation 165
Table 4.8: Historical Simulations' Results in Major Investment Industries, Nominal. 166
Table 4.9: Historical Simulations' Results in Detailed Investment Industries, Nominal. 68
Table 4.10: Assumptions of exogenous variables used in fixed investment forecast. 178
Table 4.11: Summary of Forecast by Major Industry Groups. 180
Table 4.12: Growth rates of Fixed Investment in Equipment and Software 2001-2008. 181
Table 5.1: NIPA Quarterly Data on Investment in Structures 191
Table 5.2: NIPA Annual Table 5.4.5B Private Fixed Investment in Structures by Asset Types 196
Table 5.3: Construction Categories in the BEA Fixed Assets Accounts 197
Table 5.4: Monthly Value of Construction Put in Place (VIP), Census Bureau 197
Table 5.5: Value of Construction Put in Place (VIP). Annual Data, Bureau of the Census 198
Table 5.6: Comparison of NIPA and VIP Total Nonresidential Construction 202
Table 5.7: Integration of VIP with NIPA 205
Table 5.8: Assumptions of exogenous variables used in the Second Historical Simulation240
Table 5.9: Historical Simulations' Results in Major and Detailed Investment Industries 242
Table 5.10: Assumptions of exogenous variables used in forecasting fixed investment of structures. 253
Table 5.11: Nominal Private Fixed Investment in Structures 2003-2008. 259
Table 5.12: Growth Rate of Nominal Private Fixed Investment in Structures. 260
Table 6.1: How each variable of each 65 detailed industries is estimated. 283
Table 6.2: Lists of Exogenous Variables Used in the Monthly Equations. 285
Table 6.3: 65 detailed Industries Real Gross Output Simulations Results 288
Table 6.4: Assumptions of all exogenous variables used in the Second Historical Simulation. 291
Table 6.5: Percentage differences of the exogenous variables from the actual values. 292
Table 6.6: Assumptions of Exogenous Variables Used in Forecasting Gross Output. 323
Table 6.7: Outlook of Gross output by Industry Groups, 2006-2008 325

List of Figures

Figure 2.1: Real PCE of Furniture and household equipment -- 1991 22
Figure 2.2: Real PCE of Furniture and household equipment -- 2000 22
Figure 2.3: Real PCE of Furniture and household equipment 28
Figure 2.4: Real PCE of Durables 30
Figure 2.5: Real Nonresidential investment in Equipment and software 31
Figure 2.6: Real Government investment in Equipment and software 31
Figure 3.1: Personal consumption expenditures by Major types of product 41
Figure 3.2: Major aggregates of annual PCE Forecast Plots 116
Figure 4.1: Components of Equipment Investment 124
Figure 4.2: Components of Information Processing Equipment and software. 127
Figure 4.3: Plots of NIPA Fixed Investment in Equipment and Software Estimation Results. 143
Figure 4.4: Plots of FAA by Purchasing Industries Estimation Results. 154
Figure 4.5: Plots compared BEA numbers with numbers from Historical Simulations. 174
Figure 4.6: Plots of Fixed Investment Forecast by Purchasing Industries 187
Figure 5.1: Investment in Nonresidential Structures, NIPA Quarterly Data. All series deflated by the NIPA deflator for Manufacturing construction 192
Figure 5.2: NIPA Residential Construction series, all deflated by the average deflator.. 194
Figure 5.3: Plots of Monthly VIP Equations 212
Figure 5.4: Plots of Quarterly Equations for Nonresidential Structures Investment. 221
Figure 5.5: Plots of Annual Equations for NIPA Nonresidential Structures Investment. 228
Figure 5.6: Plots of Regressions of Fixed Residential Investment in Structures (Step 3)235
Figure 5.7: Plots of Regression of Fixed Residential Investment in Structures (Step 5). 239
Figure 5.8: Plots compared BEA numbers with numbers from Historical Simulations. 246
Figure 5.9: Plots of Private Fixed Investment in Structures 261
Figure 6.1: Plots of Gross output by Industry Groups 329

Chapter 1: Introduction

1.1 The Problem of the "Ragged End" of Historical Data for Long-term Modeling

In economic forecasting, it is important that the forecasts be based on data that is both reliable and up-to-date. Those two requirements, however, are often contradictory. For example, in a structural model of the U.S. economy with many industries, the most reliable data on the output of the industries comes from the Census of Manufacturing and other economic censuses. These censuses, however, are conducted only every five years and processing them requires around two years. Meanwhile, the Annual Survey of Manufactures produces sample-based estimates of output with a lag of about one years between the reference year and the date of publication. The National Income and Product Accounts (NIPA) appear in full annual detail every year in July for the previous year and, in reduced detail, every quarter for the previous quarter. Moreover, the Federal Reserve Board's indexes of industrial production appear every month for the previous month. As an example, if, in November of 2007, we are forecasting to 2020, the last really firm data we have for automobile output is the 2002 Census of Manufacturing, but we have data through 2005 from the Annual Survey of Manufactures, and the full annual NIPA up to 2006, quarterly NIPA for three quarters of 2007, and the industrial production indexes for the first nine or ten months of 2007. From a quarterly macroeconomic model estimated on data through the third quarter of 2007, we may also have quarterly forecasts for the fourth quarter of 2007 and all of 2008 for many series in the NIPA, including consumer spending on automobiles.

We may refer, for short, to this disparity in the end points of the various data series as the "ragged-end" phenomenon or problem. In view of this ragged end of the data, what values should our forecasts made in November 2007 show for 2006 and $2007 ?$ If we choose something other than what the structural model produced, how should the forecasts for 2008 and future years be affected by the difference?

This problem has great practical importance in applied forecasting. The model builder may well take the position that the structural model is meant to capture trends and long-term developments, not short-term fluctuations. The users of the model, however, inevitably look at the recent past and short-term future values. If what they see does not match their own experience or recent statistical data, they are quite prone to discount the model's results or, indeed, to dismiss them altogether. Thus, the credibility of the longterm model depends heavily on a solution of this short-term problem.

This study develops a partial solution to this problem for one particular long-term structural model. The approach pursued is to use high-frequency - monthly or quarterly data to produce estimates of current and near-term future values of the annual series used in the long-term model and thus eliminate, from the point of view of its builder, the ragged-end phenomenon. In the above example, we would produce "data" for series in the model up through the end of 2007, even though that year is not yet totally history. The equations of the long-term model would then be estimated through 2007 and forecast for 2008 and future years with possible adjustments for autocorrelated residuals. It would also be possible to use the forecast from the macroeconomic model to forecast the series of the structural model through 2008 and start the long-term forecast from that year as if
it were already history. Naturally, one could forecast 2008 in both of these ways and then take an average as the starting point of the long-term forecast.

Ideally, all series used in the structural model should be extended in this way, so that the ragged-end problem completely disappears with a complete "flat-end" data set. In practice, the system of updating the series must be developed gradually. Until it is complete, the features of the structural model software for dealing with the ragged-end problem continue to be used. In effect, the model's equations are used to produce values for the series still missing from the flat-end data set.

Although simple in approach, to be effective this solution must include implementation of a computational procedure which quickly and almost automatically acquires the most recent data from the Internet (and other media), processes the data, extends the series, and re-estimates the equations of the structural model, including provision of adjustments for autocorrelated error terms.

1.2 The Scope of this Study

This study undertakes to develop such system in the context of the LIFT model developed by INFORUM at the University of Maryland. LIFT is a full-scale, multisectoral macroeconomic model. Sectoral input-output data build up macroeconomic or "mesoeconomic" forecasts. The database of the LIFT model includes numerous macroeconomic variables as well as input-output matrices. The model, as it stood as work began on this dissertation, has outputs and prices for 97 commodities, employment for 97 industries, personal consumption expenditure for 92 categories, and equipment
investment for 55 categories. The value-added sectoring is comprised of 51 industries. Most equations in the model are estimated at an industry or product level, and the price and output solution by industry use the fundamental input-output identities. The LIFT model has been producing satisfactory long-term forecasts, but one of its weak spots has been in short-term forecasting. Prior to the present study, the LIFT database did not incorporate the most up-to-date (but perhaps unreliable) data available. Because of the ragged-end problem, the current year has been treated much as if it were a future year, with consequent discrepancies between the most recent statistical data and the estimates made by LIFT. The use of more accurate and up-to-date economic data to produce reasonable estimates of recent industry level data should improve the credibility of the model's results and the accuracy over the first year or two of forecast.

The procedures developed here use monthly or quarterly up-to-date data, such as the industrial production indexes, as indicators of the more basic (but not yet available) annual data for the previous year or two. The higher frequency data can also be used to forecast the basic data for the rest of the current, incomplete year and, towards the end of the year, for the following year.

The ideal of extending all series to obtain a complete flat-end annual data set has not been achieved. The flat-ended dataset does, however, now - as a result of the work described here -- include some of the most important series such as Personal consumption expenditures in 116 detailed categories, fixed investment in equipment and software, fixed investment in structures, and gross output of industries in full BEA 65 sector Input-

Output detail. Significant series still missing are exports, imports, inventory change, and government expenditures in detailed sectors.

1.3 Related Work

One of the problems in working with high-frequency data is that it is subject to revision, especially in the first several periods after the first release. Croushore and Stark (2001) have discussed this problem and some alternative estimation methods in their works. When analysis of revisions began, a predictable pattern was discovered for some series. These patterns have now largely been eliminated by the producers of the series. I will therefore ignore the revision problem in this work, though we still have to keep in mind that we cannot compare models directly without considering the data vintage. For example, in an analysis of forecasts of industrial production indexes (IP), Diebold and Rudebusch (1991) used a real-time data set constructed using both preliminary and partially revised data on the composite leading index (CLI), which is constructed using only data that were available at time t-h (where t is the time index and h is the forecast horizon). In the context of linear forecasting models, they find that the performance of partially revised CLI data deteriorates substantially relative to revised data when used to predict the industrial production indexes. A number of other papers also address issues related to the real-time forecasting. For example, Trivellato and Rettore (1986) discuss the decomposition of forecasting errors into, among other things, the forecast error associated with preliminary data errors. A small sample of other related references includes Boschen and Grossman (1982), Mariano and Tanizaki (1994) and Patterson (1995). Swanson and White (1995) find that using adaptive models, such as an artificial
neural networks model, for forecasting macroeconomic variables in a real-time setting can be useful when the variable of interest is the spot-forward interest-rate differential.

There have been many attempts to incorporate high-frequency information into existing economic forecasting models. Zadrozny (1990) built a single model that relates data of all frequencies. His attempt to build such a comprehensive model was unsuccessful. Litterman (1984) and Corrado and Reifschneider (1986) find that updating forecasts of the current quarter based on incoming monthly data is helpful. However, it is not helpful in forecasting for much longer horizons.

Miller and Chin (1996) try to combine the forecasts of two vector autoregression (VAR) models, a quarterly model and monthly model, using weights that maximize forecasting accuracy. The method is based on studies of Corrado and Greene (1988), Corrado and Haltmaier (1988), Fuhrer and Haltmaier (1988), Howrey, Hymans and Donihue (1991), and Rathjens and Robins (1993). Using the test of Christiano (1989), the method improves quarterly forecasts in a statistical significant way.

The forecasting models used in these studies, however, are much, much simpler than LIFT and their data demands almost minuscule in comparison. Most of these previous papers looked at only one or two macro-variables while here we have hundreds. Moreover, the researchers could take their time to fine-tune each method used. To be useful in practical, real-time forecasting, our system must work completely in a day or two.

1.4 Steps in the Solution of the Ragged-end Problem

The work of the solution developed here can be divided into five steps.

1. Update all data banks to have the most recent data both for annual data and for higher frequency data.
2. Re-estimate and run the quarterly macroeconomic model, in our case, QUEST. This step includes examination of the exogenous assumptions.
3. Extend high-frequency data to the end of current year and perhaps one year beyond by using time-series analysis and interpolated monthly data from the quarterly macroeconomic model.
4. Use this data to predict the annual series used in LIFT. This step produces the flat-end data set.
5. Re-estimate LIFT equations using this data.

Start LIFT with the base year in the last or next to last year of the flat-end data set. The Inforum software in which LIFT runs will automatically compute errors in the equations in the base year and adjust future year's predictions by these errors, diminished each year in a specified proportion, called rho.

The work which will be documented here is primarily steps 3 and 4 . Other parts of the process are documented elsewhere, step 1 in Inforum files, step 2 in The Craft of Economic Modeling, vol. 2, and steps 5 in the LIFT documentation.

In Step 3, we work on each variable at its original frequency. This step is to get forecast estimates of the as-yet unannounced or future values of the explanatory variable. For example, in October 2007, the Federal Reserve Board published the Industrial Production Index (IPI) through September 2007. Thus, in this first step, we have to calculate the value of the IPI from October 2007 (the current period) and the future values through the entire forecast period (e.g. until the end of 2008). Using time-series econometric techniques, more specifically, autoregressive moving average (ARMA) equation seems to be an appropriate way to begin work on the estimation.

Through experiments, I found that having a second-degree moving average error component in the regression equation could cause non-convergence problems in the nonlinear minimization technique used for the estimation because the algorithm falls into a flat part of the objective function. That experience suggested that automatic application of the procedure to a large number of series would prove infeasible. Although I have not yet encountered any problem in estimation with only a one-period moving-average error, I also did not find important improvement in the fit of the equation by using it. I will therefore actually use only autoregressive (AR) equations, though some of them will use variables in addition to the lagged values of the dependent variables.

1.5 Outline of the study and guide to quick reading

Chapter 2 examines a preliminary conceptual problem of how real output, consumption, and investment are to be measured at the LIFT industry level and aggregated into real GDP. The non-additive methods currently used in the official U.S. national accounts cause incessant problem for builders of models. This chapter shows
that, with the official computer deflator replaced by an equally - if not more - plausible one, additive accounts would be very close to the non-additive ones. While this result is important in itself, further chapters do not depend on it.

Chapter 3 develops the flat-ended dataset for Personal consumption expenditures; Chapter 4, for equipment investment by purchasing industry; Chapter 5, for structure investment by purchasing industry and Chapter 6, for gross outputs of input-output industries.

Chapter 3 through Chapter 6 are all organized in the same way. First, the problem specific to each economic data is examined. Second, I discussed the availability and the reliability of the data used in the processes. Third, the outline of the approach is presented. Then, I study the regression results from the procedure. This section can be skipped for quick reading. Fourth, I test the performance of the procedures with two historical simulations, with different set of exogenous variables, published data and data generated by a macroeconomic model. These results are presented in both tabulated and graphical forms. The tabulated results are presented first. The graphical results can be skipped for quick reading. Finally, I use the equations to generate forecast up to 2008. The results are presented in both tables and graphs.

Chapter 2: Measuring Real Growth

In 1995, the Bureau of Economic Analysis (BEA), the makers of the U.S. National accounts, introduced a change in the way it makes the constant price, real national accounts. There are two elements of the change: (1) between adjacent years, the Fisher "ideal" index is used instead of the Laspeyres index, and (2) real growth over periods of more than two years is calculated by multiplying ("chaining") the growth ratios of the year-by-year growth. The resulting index, known as the chain-weighted index, may be appropriate for some purposes.. However, simple economic identities that hold in the nominal accounts are no longer valid in the chain-weighted real accounts. For example, real personal consumption expenditure is not equal to the sum of real expenditures on durables plus non-durables plus services. Moreover, real growth becomes path-dependent. The measure of real growth between year 1 and year N depends not only on prices and outputs in those two years but also on prices and outputs in all intervening years. If one's sole purpose is to make accounts, it perhaps does not matter that identities do not hold in real terms and that measures of growth are path-dependent; but, for building an economic model, these peculiarities can become a serious problem. For example, in an interindustry model, input-output theory requires that real industry output in any year should be the sum of sales to various intermediate uses in real terms in that year plus sales to several components of final demand, also in real terms for that year. If this simple identity is to be replaced by a complex formula involving square roots and prices and outputs in all years between the base year and the year in question, interindustry modeling becomes essentially impossible.

This study deals with the preparation of data for an interindustry model. It is therefore highly important that the data prepared in the ways described here be usable in such a model. In this chapter, therefore, I will explain why BEA moved away from fixedweighted indexes, examine the problem in building economic models with chainweighted national accounts, and offer some suggestions to get around the problems.

2.1 Hedonic Indexes ${ }^{1}$

In 1987, seemingly spurred by Robert Solow's remark "You can see the computer age everywhere but in the productivity statistics, ${ }^{n}=\underline{2}$ the BEA looked for a method to include the increased power and lower cost of computers into productivity as measured in the NIPA. Before explaining what BEA did, however, it is worth noting that productivity increases from the use of computers were already fully included in the NIPA. In so far as computers made manufacturing, banking, transportation, or trade more efficient, their contribution to productivity was accounted for in the NIPA. The only question was the evaluation of computers in investment, consumption, export, and import. At that time, before computers were a common household item, it was mainly a matter of pricing of computers in investment. Today, of course, the computers are also an important consumer durable.

[^0]The question was how to compare the "real" value of computers made in different years in making up a measure of investment "in constant prices." BEA turned to the idea of a "hedonic" index of computer price, created with help from IBM, to solve this problem.

What is a hedonic index? The name is derived from Greek hedonikos, from hedone, pleasure. Thus, a hedonic index should measure the pleasure derived from the goods or services. In statistical practice, hedonics has a rather different meaning illustrated by the computer deflator. Traditional price indexes compare the cost of a typical market basket of goods in two different years. But in the case of computers, the same exact model specification is rarely sold for more than a year or two. Models go out of production often without a change in the maker's price. Thus, the market-basket approach would not work for computers. The "hedonic" approach used regression analysis to estimate what a particular computer model would have cost in a particular year had it been available in that year [Landefeld and Grimm, 2000].

In the study used for making the computer price index, the regression had the form

$$
P=A M_{1}^{b 1} M_{2}^{b 2} u
$$

where P is the price of a certain computer, M_{1} and M_{2} are physical characteristics (processor speed and capacity of the disk drive) of that equipment, and u is an error terms. The coefficients $A, b 1$, and $b 2$ are estimated by the regression over a number of computers in a particular base year [See Triplett, 1986 and Cole et al., 1986].

By applying the estimated coefficients to the physical characteristics of computers made in other years, we get estimates of what the prices of those machines would have been in the base year, had they been available at that time. We may call these estimates the "imputed" prices in the base year. By compared these imputed prices in the base year with the actual price in the forward year, BEA makes an index of the price between the two years. This is said to be the "hedonic" price index of computers. In BEA's implementation of it, it averaged a decline of 15.9 percent per year, continuously compounded, over the period $1980-2005$.

The hedonic price index by itself has both pros and cons. Similar hedonic indexes have been employed to measure consumers' relative valuations of products that have multiple qualities (or characteristics), [See Nerlove, 1995]. For example, hedonic price indexes are commonly used in real estate assessment for tax purposes. The prices of properties that sell are regressed on characteristics such as square footage and number of baths. The result is then used to impute values to properties which have not sold.

Is such an index appropriate for compared computers in the national accounts? Consider compared the original IBM XT with a modern (2007) \$1000 desktop. Processor speed has increased by a factor of roughly 400 , disk space by a factor of 8000 . If we give them equal weight in the above formula, we conclude that the modern machine gives about 1800 times as much "pleasure" as did the IBM XT. Now suppose that the original XT were still on the market and still selling for about $\$ 3000$ while the only other microcomputer available was the modern machine selling for $\$ 5,400,000$. Note that the price per unit of "pleasure" of the two machines would be equal. In this situation, I would
imagine that the XT would still be as ubiquitous as it was in its heyday and the modern machine would be as rare as $\$ 5.4$ million dollar machines were then. That is to say, PC users do not perceive the modern machine as giving anything like 1800 times as much pleasure or utility as did the XT. ${ }^{\underline{3}}$

Is there an alternative way to compare them? There are several. One is to compare them by the costs of the materials and labor that went into producing them. This approach would lead to deflation of computer sales by a broad index of the cost of labor and materials; the deflator for non-computer Personal consumption expenditure would be one candidate. Or one could come from the consumer side, especially for home computers, and convert the computers into some composite commodity for which fairly reliable price indexes can be made, such as food. This approach leads to deflating computer sales by the same deflator as the composite commodity, perhaps food. Application of either of these approaches will lead to the conclusion that computer prices have actually risen at the same rate as the broad measure of inflation used.

Yet another possibility would be to argue that what one is actually buying is the wherewithal to be part of the modern world, to use a word processor or spreadsheet, communicate via email, and consult the Internet. The average price of units sold in various categories such as home desktops, home notebooks, office desktops, and so on, might then be used. Data for total "PC-standard" machines are shown in Table 2.1.

[^1]Table 2.1: U.S. and World-Wide Sales of PC-type Computers

Mears	Million units		\$ billion		$\$ /$ unit		Annual rate of decline	
	USA	Worldwide	USA	Worldwide	USA	Worldwide	USA	Worldwide
$1981-85$	3.8	5.7	10.5	16.9	2763.2	2964.9		
$1986-90$	28.1	60.3	76.4	181.0	2718.9	3001.7	-0.32%	0.25%
$1991-95$	64.3	172.0	153.0	447.0	2379.5	2598.8	-2.50%	-2.68%
$1966-00$	162.0	444.0	335.0	1010.0	2067.9	2274.8	-2.62%	-2.49%
$2001-06$	267.0	855.0	424.0	1440.0	1588.0	1684.2	-4.64%	-5.19%

Source: Computer Industry Almanac, http://www.c-i-a.com/pr0806.htm

During the first ten years after 1981, there was negligible reduction in the price of the average unit. During the 1990's, the price of the average unit declined about 2.8 percent per year. In the new century, that rate has accelerated to about 4.4 percent in the USA and 5.0 percent worldwide. These numbers match subjective impressions that there has indeed been some decline in the 1990's in the cost of equipping oneself with an appropriately spiffy computer, and that the decline has accelerated a bit recently. But it is nowhere near the 16 percent per year average decline in the BEA deflator.

2.2 Runaway Deflators, Ideal and Chained Indexes, and Nonadditivity

When it was used to "deflate" the value of computers in GDP, the BEA hedonic price index actually "inflated" the values of sales in years after the base of the deflator. This "inflation" soon led to a very high growth rate of calculated GDP. With the simple addition of the components of GDP in constant prices to get constant-price total GDP the method used before introduction of the hedonic deflator - the rate of decline in the computer price gradually becomes the rate of growth of real GDP. Table 2.2 illustrates
this phenomenon with data made up to show the problem -- and a solution -- in simple form.

In this table, GDP is made up of two products. The nominal yearly expenditures on Product 1 is shown in row 2; and that on product 2, in row 7 . To keep the table very simple, both are constant at 100 billion dollars per year. The price indexes, shown in rows 3 and 8 , however, are very different. They are both equal to 1.00 in year 4 , but that of product 1 , computers, falls at 25 percent per year while that of product 2 , everything else, remains constant. These data imply that the real quantity of product 1 (row 4) has been growing at 25 percent per year, while that of product 2 (row 9) has been constant. Row 12 shows the simple sum of the two real quantities, and row 13 shows the annual growth ratio of this sum. In year 2 , the growth rate is 8 percent; by year 9 it is up to 18 percent and by year 20, it is closing in on its 25 percent asymptotic growth rate.

Table 2.2: The Runaway Deflator Problem with Made-up Data

1	$\left\lvert\, \begin{aligned} & \text { Year } \\ & \text { Product } 1 \end{aligned}\right.$	1	2	3	4	5	6	7	8	9		20	21	22	23	24
2	Nominal value	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	...	100.0	100.0	100.0	100.0	100.0
3	Price index	1.95	1.56	1.25	1.00	0.80	0.64	0.51	0.41	0.33	\ldots	0.03	0.02	0.02	0.01	0.01
4	Real quantity	51.2	64.0	80.0	100.0	125.0	156.3	195.3	244.1	305.2	\ldots	3552.7	4440.9	5551.1	6938.9	8673.6
5	Real growth ratio		1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	...	1.25	1.25	1.25	1.25	1.25
6	Nominal share	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	...	0.50	0.50	0.50	0.50	0.50
	Product 2															
7	Nominal value	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	\ldots	100.0	100.0	100.0	100.0	100.0
8	Price index	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	...	1.00	1.00	1.00	1.00	1.00
9	Real quantity	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	...	100.0	100.0	100.0	100.0	100.0
10	Real growth ratio		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	...	1.000	1.000	1.000	1.000	1.000
11	Nominal share	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	...	0.500	0.500	0.500	0.500	0.500
12	Sum of real quantities	151.2	164.0	180.0	200.0	225.0	256.3	295.3	344.1	405.2	\ldots	3652.7	4540.9	5651.1	7038.9	8773.6
13	Growth ratio of sum of real quantities		1.085	1.098	1.111	1.125	1.139	1.152	1.165	1.177	...	1.242	1.243	1.244	1.246	1.246
14	Nominal-share-weighted growth ratio		1.125	1.125	1.125	1.125	1.125	1.125	1.125	1.125	\ldots	1.125	1.125	1.125	1.125	1.125
15	Chained real expenditure on combination	140.5	158.0	177.8	200.0	225.0	253.1	284.8	320.4	360.4	...	1316.7	1481.2	1666.4	1874.7	2109.0

By period 23, the rate of real growth is approximately the rate of decline of the computer deflator, although in nominal terms computers remain only half of the total. The phenomenon could be described in headline language as "Runaway computer deflator steals GDP" or "Gresham's Law of Deflators." ${ }^{\ddagger}$ A more sedate name for it might be the outlier index dominance problem.

When BEA first introduced the hedonic computer deflator, it did so in the context of constant-price accounts in which, as in this example, growth in quantities were weighted by shares in a fixed base year and total real GDP was just the sum of its various components. At first, it had the desired effect of increasing GDP growth by a few tenths of a percent per year. But the outlier index dominance problem soon began to appear. Far from not showing up in the productivity statistics, computers began to dominate the productivity and growth statistics. The BEA statisticians were properly concerned. They might have then well questioned the appropriateness of the hedonic computer price index, but instead they turned to a generic, almost arithmetic solution to the problem. ${ }^{\underline{5}}$

As can be seen in Table 2.2, the problem arises because the share of the component with the rapidly declining price index keeps getting larger in "real" terms, so its rate of growth in "real" terms keeps getting a heavier and heavier weight in the total. An obvious solution to this problem is to re-weight the rates of growth of each product

[^2]each year by the shares in the nominal total. Line 14 in the table shows the resulting growth ratios, which, in this example, turn out to be a constant 1.125 each year. Line 15 shows the GDP of the base year of the prices, year 4, moved forward and backward by these year-to-year growth ratios. This process is called chaining and the result is called a chain-weighted index of real GDP.

Notice, in particular, that the growth rate of the chain-weighted aggregate is above the growth rate of the simple sum in the years prior to the year after ${ }^{6}$ the base year of the prices, while it is below that rate in later years. In the simple-sum measure, the weight of the fast-growing item with the declining price is likely to be smaller than the current price share before the base year of the prices and larger after that year. This property, which is an empirical regularity rather than a mathematical certainty, shows up in virtually every real case we have seen. For GDP, it made it possible "to see the computer age ... in the productivity statistics" in the historical period before the base year of the prices yet avoid a runaway deflator problem in the future.

While chaining as shown in Table 2.2 is, by itself, a powerful antidote to outlier index dominance, BEA went one step further to limit the effects of the computer deflator. To get a better measure of year-to-year growth between adjacent years, it weighted the growth rates of the component products not only by their shares in the nominal values in the first year of a pair, as in Table 2.2, but also by the shares in the second year. The first of these growth measures is called the Laspeyres index while the second is called the Paasche index. They may multiplied together and the square root used as the "Fisher

6 The year after the base year is the year when prices in the base year are used as the base of the growth rate.
ideal" index ${ }^{7}$. In Table 2.2, there is no difference between the Paasche and Laspeyres index because the nominal shares are constant, but normally there will be a slight difference.

This description of the indexes in terms of weights on the growth rates of products is slightly different from the usual definition, so it is perhaps worthwhile to show their equivalence.

In the usual definitions, with p_{n}^{t} and q_{n}^{t} as price and quantity of $n(i)$ products at time t, respectively, the definitions are: [See "A Guide to the National Income and Product Accounts of the United States", BEA]

$$
\begin{aligned}
& \text { the Laspeyres index: } \quad Q_{t}^{L}=\frac{\sum_{n=1}^{N} p_{n}^{t-1} q_{n}^{t}}{\sum_{i=1}^{N} p_{i}^{t-1} q_{i}^{t-1}}, \\
& \text { the Paasche index: }
\end{aligned} Q_{t}^{P}=\frac{\sum_{n=1}^{N} p_{n}^{t} q_{n}^{t}}{\sum_{i=1}^{N} p_{i}^{t} q_{i}^{t-1}},
$$

To convert this definition to one using share weights, we can write

$$
Q_{1}^{L}=\frac{\sum_{n=1}^{N} p_{n}^{0} q_{n}^{1}}{\sum_{i=1}^{N} P_{i}^{0} q_{i}^{0}}=\frac{\sum_{n=1}^{N} p_{n}^{0} q_{n}^{1} \frac{q_{n}^{0}}{q_{n}^{0}}}{\sum_{i=1}^{N} P_{i}^{0} q_{i}^{0}}=\frac{\sum_{n=1}^{N} p_{n}^{0} q_{n}^{0} \frac{q_{n}^{1}}{q_{n}^{0}}}{\sum_{i=1}^{N} P_{i}^{0} q_{i}^{0}},
$$

[^3]$$
Q_{1}^{L}=\sum_{n=1}^{N} S_{n}^{0}\left(\frac{q_{n}^{1}}{q_{n}^{0}}\right), \text { where } S_{n}^{0}=\frac{p_{n}^{0} q_{n}^{0}}{\sum_{i=1}^{N} p_{n}^{0} q_{n}^{0}}
$$

Similar algebra converts the Paasche index to the definition using the weights of the more recent year.

The Fisher "Ideal" index multiplies the two together and takes the square root. This index is a special case of what Diewert has called exact and superlative indexes [Diewert, 1976].
the Fisher Ideal Index: $\quad Q_{t}^{F}=\sqrt{Q_{t}^{L} \times Q_{t}^{P}}$
the chain-type quantity index for period t is $\quad I_{t}^{F}=I_{t-1}^{F} \times Q_{t}^{F}$.

Again, a numerical example can help to illustrate the method. Table 2.3 compares the three indexes in the case of two goods, each of unitary demand elasticity, each having a price of 1 and a quantity of 1 unit sold in the first year, while in the second year the price of 1 falls to 0.5 and its purchased volume rises to 2 , while the price of good 2 rises to 2 and its quantity falls to 0.5 . The Laspeyres quantity index shows growth by a factor of 1.25 while the Paasche quantity index shows decline by a factor of 0.80 . The Fisher Ideal index shows no growth at all. Obviously, the Fisher index is also an antidote to runaway deflators.

Table 2.3: The Ideal Index Controls Disparate Deflators

	year 1			year 2					
	p	q	p1q1		p	9	p2q2	p1q2	p2q1
good 1	1	1	1		0.5	2	1	2	0.5
good 2	1	1	1		2	0.5	1	0.5	2
			2				2	2.5	2.5
Laspeyers quantity index	1.25								
Paasche quantitty index	0.80								
Fisher	1.00								

So far, we have looked only at numerical illustrations. Let us now look at real data for the Personal consumption expenditure category Furniture and household equipment (which includes home computers). This category has five subcategories: (1) Furniture (2) Kitchen appliances, (3) China and table ware (4) Video and other electronics (including computers) and (5) Other durable house furnishings (such as rugs, clocks, tools). Figure 2.1 compares the chained ideal indexes of the category made from price indexes equal to 1.0 in 1991 (the lower line, marked with pluses) with the straight sum of the five components evaluated in prices of 1991 (the upper line marked with squares). Clearly, the chaining has moderated the effect of the hedonic index quite considerably. Figure 2.2 shows the same comparison but with the components evaluated in prices of 2000. As in the numerical illustration in Table 2.2, the chained index grows less rapidly than the simple sum after the base year but more rapidly before it.

Figure 2.1: Real PCE of Furniture and household equipment -- 1991

Figure 2.2: Real PCE of Furniture and household equipment -- 2000

To make this example, we have taken the indexes and prices of the sub-categories as data and combined them with the Fisher and chaining formula. It should be understood, however, that BEA works differently and in a way which cannot presently be replicated outside BEA. It maintains series on values and prices of thousands of products going into various components of GDP, and it publishes data at several levels of aggregation. For example, published data show, in increasing order of detail,

Gross domestic product (GDP)

Personal consumption expenditure (PCE)

Clothing

Men's shoes

The published real (constant-price) series for each of these categories is created directly from the most detailed data that BEA has. Thus, the published GDP series calculates the Fisher index directly from thousands of items and chains at the aggregate level. It makes no use of sub-aggregates. It will often not be the sum of its components. BEA warns the user of the accounts of this non-additivity by publishing a line in most constant-price tables called "Residual" defined as the difference between the whole and the sum of the parts. Indeed, no attention at all is paid, in calculating any real series to the values of its components above the finest level of detail available to BEA and in most cases not available outside. Thus, calculations of GDP pay no attention to the calculated real PCE; the calculated real PCE pays no attention to the calculation of real expenditures on Clothing, and so on. Given the nature of the Fisher formula and the chaining, it is
therefore not possible to calculate precisely what BEA will get for a particular aggregate from knowledge of all the published components of that aggregate. Treating the finest level of published detail as if it were indeed the bottom level of data and applying the Fisher formula and chaining will not yield precisely the BEA version of the aggregate. There is, moreover, the problem that if one wants a real aggregate that BEA has not chosen to publish, for example, non-computer PCE, there is presently no way to calculate it precisely from the published detail.

Douglas Meade, who developed the chained ideal index functions for the G regression program, has made experimental calculations of published aggregates from published sub-aggregates and reported orally that the differences from the published aggregates are usually small and less than one gets by approximating the aggregate by addition of the all the pieces that compose it. While this is a consoling result, it would be nice not to have to rely on it. If BEA would release for each aggregate which it publishes a series on the value of the category each year in prices of the previous year, it would be possible to replicate the aggregates and perform other aggregations and get precisely the same results as BEA gets. Publication of such series is routine by some statistical offices.

2.3 Remedies for Non-additivity

We have seen that the breakdown of the national account identities in real aggregates - the Non-additivity problem -- is caused by two sources, (1) the Fisher index and (2) the chaining to create an index over several years. In general, a real aggregate value from the Fisher index will not equal to the sum of its parts. If B and C are two
groups of products and A is the combination of the two groups, $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and C_{0} are their values in year 0 and A^{F}, B^{F} and C^{F} are their Fisher indexes between year 0 and year 1 , then it is NOT in general true that

$$
\mathrm{A}_{0} \mathrm{~A}^{\mathrm{F}}=\mathrm{B}_{0} \mathrm{~B}^{\mathrm{F}}+\mathrm{C}_{0} \mathrm{C}^{\mathrm{F}}
$$

There is, however, one instance when this equations holds, namely when all the prices of the goods in both B and C grow at the same rate, as shown below.

Let $p^{n}{ }_{t}$ and $q^{n}{ }_{t}$ represent vectors of prices and quantities of goods in group n at time t . $p^{n}{ }_{t}$ is a row vector and $q^{n}{ }_{t}$ a column vector, so that their product is defined. We consider two periods, $t=0$ and 1 , and two groups of goods, $n=\mathrm{a}$ and b . Then it is not generally true that value of group 1 in year 0 multiplied by the Fisher ideal index of that group between year 0 and year 1 plus the same thing for group 2 is equal to the Fisher ideal index of the combined group, that is

$$
p_{0}^{a} q_{0}^{a} \sqrt{\frac{p_{0}^{a} q_{1}^{a}}{p_{0}^{a} q_{0}^{a}} \times \frac{p_{1}^{a} q_{1}^{a}}{p_{1}^{a} q_{0}^{a}}}+p_{0}^{b} q_{0}^{b} \sqrt{\frac{p_{0}^{b} q_{1}^{b}}{p_{0}^{b} q_{0}^{b}} \times \frac{p_{1}^{b} q_{1}^{b}}{p_{1}^{b} q_{0}^{b}}} \neq\left(p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}\right) \sqrt{\frac{p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}}{p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}} \times \frac{p_{1}^{a} q_{1}^{a}+p_{1}^{b} q_{1}^{b}}{p_{1}^{a} q_{0}^{a}+p_{1}^{b} q_{0}^{b}}}
$$

If, however, $p_{1}^{a}=\lambda p_{0}^{a}$ and $p_{1}^{b}=\lambda p_{0}^{b} \quad$ for the same scalar λ then the left hand side is just the quantities of year 1 evaluated at the prices of year 0 :

$$
\begin{aligned}
& p_{0}^{a} q_{0}^{a} \sqrt{\frac{p_{0}^{a} q_{1}^{a}}{p_{0}^{a} q_{0}^{a}} \times \frac{p_{1}^{a} q_{1}^{a}}{p_{1}^{a} q_{0}^{a}}}+p_{0}^{b} q_{0}^{b} \sqrt{\frac{p_{0}^{b} q_{1}^{b}}{p_{0}^{b} q_{0}^{b}} \times \frac{p_{1}^{b} q_{1}^{b}}{p_{1}^{b} q_{0}^{b}}}=p_{0}^{a} q_{0}^{a} \sqrt{\frac{p_{0}^{a} q_{1}^{a}}{p_{0}^{a} q_{0}^{a}} \times \frac{\lambda p_{0}^{a} q_{1}^{a}}{\lambda p_{0}^{a} q_{0}^{a}}}+p_{0}^{b} q_{0}^{b} \sqrt{\frac{p_{0}^{b} q_{1}^{b}}{p_{0}^{b} q_{0}^{b}} \times \frac{\lambda p_{0}^{b} q_{1}^{b}}{\lambda p_{0}^{b} q_{0}^{b}}} \\
&=p_{0}^{a} q_{0}^{a} \sqrt{\left(\frac{p_{0}^{a} q_{1}^{a}}{p_{0}^{a} q_{0}^{a}}\right)^{2}}+p_{0}^{b} q_{0}^{b} \sqrt{\left(\frac{p_{0}^{b} q_{1}^{b}}{p_{0}^{b} q_{0}^{b}}\right)^{2}} \\
&=p_{0}^{a} q_{0}^{a}\left(\frac{p_{0}^{a} q_{1}^{a}}{p_{0}^{a} q_{0}^{a}}\right)+p_{0}^{b} q_{0}^{b}\left(\frac{p_{0}^{b} q_{1}^{b}}{p_{0}^{b} q_{0}^{b}}\right) \\
&= \\
& p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}
\end{aligned}
$$

The right-hand side reduces to the same thing:

$$
\begin{aligned}
\left(p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}\right) \sqrt{\frac{p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}}{p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}} \times \frac{p_{1}^{a} q_{1}^{a}+p_{1}^{b} q_{1}^{b}}{p_{1}^{a} q_{0}^{a}+p_{1}^{b} q_{0}^{b}}} & =\left(p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}\right) \sqrt{\frac{p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}}{p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}} \times \frac{\lambda p_{0}^{a} q_{1}^{a}+\lambda p_{0}^{b} q_{1}^{b}}{\lambda p_{0}^{a} q_{0}^{a}+\lambda p_{0}^{b} q_{0}^{b}}} \\
& =\left(p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}\right) \sqrt{\left(\frac{p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}}{p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}}\right)^{2}} \\
& =\left(p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}\right)\left(\frac{p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}}{p_{0}^{a} q_{0}^{a}+p_{0}^{b} q_{0}^{b}}\right)^{2} \\
& =\quad p_{0}^{a} q_{1}^{a}+p_{0}^{b} q_{1}^{b}
\end{aligned}
$$

In view of this fact, we should expect the chain-weighted real national accounts to have approximate additivity when all prices are growing more or less proportionally. It is only when there is an outlier likes the computer hedonic index that non-additivity becomes a major problem.

To summarize, two separate problems have been identified above. One is the question of what the appropriate computer price deflator should be. The other is the breakdown of the economic identities in the real national accounts with the use of chainweighted Fisher indexes.

2.4 Suggested Remedies

We have seen that the BEA computer deflator is both somewhat implausible and fully capable of running away with real GDP if not controlled by chained ideal indexes. I have explored various alternatives such as using the food deflator for computers. Perhaps the most plausible one, however, is the average price of IBM-standard computers,
presented in Table 2.1. It, however, is declining while nearly all other deflators are rising. Will it also "steal" real GDP and require non-additive formula to control it? To answer this question, I returned to the group of products studied above, the PCE category Furniture and household equipment. The lower two lines in Figure 2.3 show the aggregate for this group of products but with Computers and software deflated by average price deflator developed in Table 2.1. The lowest line (marked by the pluses) is the chained index; the line just above it (marked by squares) is the simple summation of the five components. The top line (marked by X's) is the BEA index rebased to 1991. The third line shows the BEA total for this category, rebased to 1991. Clearly, the substitution of the deflator with only moderate decline yields accounts in which it is not necessary to resort to chaining of ideal indexes to avoid a runaway deflator stealing the GDP. In fact, the use of these devices makes little difference over a fifteen-year horizon.

It should be stressed that the alternative computer deflator, which is declining, is substantially different from the price indexes of the other components of this aggregate, which are rising. Even so, the difference is not large enough for chaining to give an aggregate noticeably different from simple addition of the sub-components. The BEA computer deflator, however, is so far out of line with the other price indexes that even with chaining of ideal indexes, it produces a total category index which runs away from the other two indexes of the same thing.

Since this category of Personal consumption expenditure is more influenced by the computer deflator than any other, it seems reasonable to conclude at this point that replacement of the BEA computer deflator by an alternative that shows prices declining
but at more moderate rates would give us improved national accounts in which there would be little difference between simple summation of components and chaining of ideal indexes. There would then be no reason not to make the aggregates by summation. Modeling could then be based on the additive accounts which have every claim to represent the economy as accurately or more accurately than those produced by BEA, supposing that BEA persists in its current methods, which seems likely. In that case, the model could also include adjustment factors by which the major BEA aggregates could be modified to match the corresponding aggregates in the additive accounts.

Figure 2.3: Real PCE of Furniture and household equipment

Encouraged by these results, I have used this computer deflator to produce a complete set of NIPA created by (1) applying the alternative deflator to computers wherever they appear in final demand and (2) otherwise accepting BEA series at the
finest level publicly available, and (3) aggregating by simple addition. This set of accounts is available as a data bank for the G program. Table 2.4 and Figure 2.4, Figure 2.5, Figure 2.6 compare some of the aggregate series with the official BEA accounts.

Table 2.4: Comparison of Real GDP components between Chain-weighted and Fixedweighted methods

	1997			2000 (Base year)			2004		
	chained	$\begin{array}{\|c\|} \hline \text { straight } \\ \text { summation } \end{array}$	percent difference	chained	$\begin{array}{\|c\|} \hline \text { straight } \\ \text { summation } \end{array}$	percent difference	chained	$\begin{array}{\|c\|} \hline \text { straight } \\ \text { summation } \end{array}$	percent difference
1 Personal consumption expenditures	5,860,591	5,895,356	0.59\%	6,739,383	6,739,383	0.00\%	7,547,953	7,576,582	0.38\%
2 Durable goods	671,962	673,471	0.22\%	863,327	863,327	0.00\%	1,052,923	1,062,050	0.87\%
3 Nondurable goods	1,725,338	1,731,646	0.37\%	1,947,220	1,947,220	0.00\%	2,179,183	2,185,735	0.30\%
4 Services	3,468,177	3,490,239	0.64\%	3,928,836	3,928,836	0.00\%	4,323,863	4,328,797	0.11\%
5 Fixed investment	1,372,050	1,373,829	0.13\%	1,678,979	1,678,979	0.00\%	1,683,147	1,677,618	-0.33\%
6 Nonresidential Structures	279,030	280,074	0.37\%	313,185	313,185	0.00\%	249,004	245,099	-1.57\%
7 Nonresidential Equipment and software	705,435	705,294	-0.02\%	918,891	918,891	0.00\%	872,118	873,380	0.14\%
8 Residential Structures	383,778	382,337	-0.38\%	439,544	439,544	0.00\%	551,269	550,150	-0.20\%
9 Residential Equipment	6,124	6,124	0.00\%	7,359	7,359	0.00\%	8,989	8,989	0.00\%
10 Net exports of goods and services	-96,490	-124,601	29.13\%	-379,600	-379,600	0.00\%	-585,494	-577,032	-1.45\%
11 Exports	952,624	953,560	0.10\%	1,096,300	1,096,300	0.00\%	1,122,346	1,126,540	0.37\%
12 Goods	673,312	673,366	0.01\%	784,400	784,400	0.00\%	786,356	790,440	0.52\%
13 Services	279,196	280,200	0.36\%	311,900	311,900	0.00\%	335,804	336,100	0.09\%
14 Imports	1,069,014	1,078,167	0.86\%	1,475,900	1,475,900	0.00\%	1,698,614	1,703,573	0.29\%
15 Goods	893,250	901,970	0.98\%	1,243,600	1,243,600	0.00\%	1,439,325	1,442,772	0.24\%
16 Services	175,563	176,200	0.36\%	232,300	232,300	0.00\%	260,269	260,800	0.20\%
17 Government consumption expenditures and gross investment	1,601,626	1,601,751	0.01\%	1,721,500	1,721,500	0.00\%	1,932,120	1,932,505	0.02\%
18 Federal	568,934	569,426	0.09\%	578,700	578,700	0.00\%	715,428	715,903	0.07\%
19 National defense	373,305	373,595	0.08\%	370,300	370,300	0.00\%	475,180	475,838	0.14\%
20 Nondefense	195,594	195,831	0.12\%	208,400	208,400	0.00\%	240,066	240,065	0.00\%
21 State and local	1,032,133	1,032,325	0.02\%	1,142,800	1,142,800	0.00\%	1,216,766	1,215,602	-0.10\%

All numbers are in Million of 2000 dollars

From Table 2.4, with a sensible computer deflator, it appears that there is essentially no difference between chained-weighted Fisher aggregates and straightaddition aggregates. Thus, simple additive accounts would serve us well by using a sensible computer deflator.

In Figure 2.4, 2.5, and 2.6, each picture shows three lines: 1) chained-weighted aggregate (represented by + line), 2) straight-summation aggregate (represented by box (ם) line), and 3) the actual published series (represented by x line). The first two lines are calculated with the sensible computer deflator as shown in Table 2.4.

All three figures exhibit an interesting result. With the computer deflator generated from a hedonic index, BEA published numbers grows at a much faster rate than the other two lines, which used a more sensible computer deflator. Using the sensible deflator, chained and straight-summation aggregates generate nearly identical rate of growth noticeable trend, chained aggregates grow faster before the base year and slower after the base year.

Figure 2.4: Real PCE of Durables

Real PCE of Durables

Million of 2000 dollars

Figure 2.5: Real Nonresidential investment in Equipment and software Real Nonresidential investment in Equipment and Software
(Millions of 2000 dollars)

- ch_inv_nreq-廿-. ss_inv_nreq........ bea_inv_nreq

Figure 2.6: Real Government investment in Equipment and software
Real Government investment in Equipment and Software
(Billions of 2000 dollars)

Chapter 3. Personal Consumption Expenditure

Personal consumption expenditure (PCE) constitutes roughly 70 percent of U.S. final demand or Gross domestic product (GDP), as may be seen in Table 3.1.

Table 3.1: Nominal Gross Domestic Product [Billions of dollars]

	2000	2001	2002	2003	2004	2005
Gross domestic product	9817.0	10128.0	10469.6	10960.8	11712.5	12455.8
Personal consumption expenditures	6739.4	7055.0	7350.7	7703.6	8211.5	8742.4
Share of PCE (PCE/GDP) , percent	$\mathbf{6 8 . 6 5 \%}$	$\mathbf{6 9 . 6 6 \%}$	$\mathbf{7 0 . 2 1 \%}$	$\mathbf{7 0 . 2 8 \%}$	$\mathbf{7 0 . 1 1 \%}$	$\mathbf{7 0 . 1 9 \%}$

Source: Bureau of Economic Analysis, December 21, 2006

Through the input-output relations, personal consumption affects virtually all industries, even those, such as heavy industrial chemicals, whose products never reach households in recognizable form. Moreover, since growth of output of industries selling directly or indirectly to consumers influences investment by those industries, makers of machinery and other investment goods feel the movements in PCE. These pervasive effects make it also a useful barometer for inflationary pressures. Good forecasting of PCE is, therefore, the foundation of good forecasting of the economy.

Fortunately, the Bureau of Economic Analysis (BEA) gives us a substantial statistical basis for the study of PCE by reporting these expenditures in a rather fine classification. The "underlying detail" tables released on the BEA website ${ }^{8}$ report PCE in 339 lines. Some of these are subtotals; but there are 233 lines of primary data. Names such as "Pork", "Poultry", "New domestic autos", "Tires and tubes", or "Dentists" give

[^4]some idea of the level of detail. The largest primary data line is the imputed space rental value of "Owner-occupied stationary homes." The distant second is "Non-profit hospitals." These data are available with an annual, quarterly, or monthly frequency and are released each month with a lag of about a month. Annual PCE information for a year is first released at the end of March of the following year as preliminary data. It reaches a more mature state with the annual NIPA released at the end of July, but it continues to be revised for the next two years and then revised again with the next benchmark revision.

Forecasting PCE is facilitated by a fact that might at first seem to be difficulty: there are hundreds of millions of consumers. Unlike government spending and some components of investment, the decisions of a few individuals cannot swing the whole PCE. That makes PCE well-suited to prediction by statistical methods. There can be, however, breaks in trends and hard-to-explain shifts is long-stable ratios, such as the drop in the personal savings rate in the 1990's.

This chapter first explains with some care, in section 1, what precisely PCE is. Section 2 then examines recent broad trends of the U.S. personal consumption expenditure, Section 3 outlines the techniques that will be employed for short-term prediction of PCE, Section 4 discusses the estimated equations, Section 5 discusses historical simulations and Section 6 shows a forecast up to 2008.

3.1. What are Personal consumption expenditures?

The name "Personal consumption expenditures" is deceptively simple. One is apt to say, "I am a person, and I know what my expenditures are, so I know what PCE is." But it is not that simple. Here is the official BEA description:

Personal consumption expenditures (PCE) measures goods and services purchased by U.S. residents. PCE consists mainly of purchases of new goods and of services by individuals from private business. In addition, PCE includes purchases of new goods and of services by nonprofit institutions (including compensation of employees), net purchases of used goods by individuals and nonprofit institutions, and purchases abroad of goods and services by U.S. residents. PCE also includes purchases of certain goods and services provided by general government and government enterprises, such as tuition payments for higher education, charges for medical care, and charges for water and other sanitary services. Finally, PCE includes imputed purchases that keep PCE invariant to changes in the way that certain activities are carried out-for example, whether housing is rented or owned, whether financial services are explicitly charged, or whether employees are paid in cash or in kind.

Some of the differences between PCE and what an ordinary, "natural" person thinks of as expenditures should be emphasized. Here are four of them.

1. A home-owner thinks of his expenditures on housing as composed of his mortgage payments, his real estate taxes, and his outlays on painting, plumbing, and general maintenance. None of these are included in PCE. Instead, the home owner is considered to rent his house from a (fictitious) owner-occupied-houserenting industry. The home-owner's expenses just mentioned are treated as inputs to this industry and so appear in the intermediate portion of the input-output table. In so far as this industry makes a profit, that profit is considered as rental income to persons, so that personal savings is not affected by this treatment. Maintenance expenditures, however, may fluctuate considerably whereas the imputed rent is very stable. Thus, this treatment may reduce the volatility of PCE.
2. The father of a student at a private school or university sees the tuition he pays as one of his major expenditures. That tuition, however, does not show up as such in PCE. What shows up is the school's total expenditures, some paid for by tuition, some by endowment or gifts, some by grants. A private school, hospital, church, or charity is just as much a "person" as is the father.
3. Many households consider that they have an expenditure on interest on mortgage or credit-card debt. But none of it appears as such in PCE. As already explained, the mortgage interest is covered by imputed rent of owner-occupied housing and is paid by the owner-occupied housing industry. The credit-card interest is not part of PCE at all because it is not part of GDP, which is evaluated at the cash price of goods bought. Rather, the interest on credit-card and installment debt and non-mortgage borrowing is part of difference between Personal disposable
income and PCE. (The other items in this difference are Personal savings and Net transfers to foreigners.)
4. Few if any households know or care how much they spend on "Services furnished without payment by financial intermediaries except life insurance carriers," yet the PCE accounts say that they spend about as much on this arcane item as on gasoline and oil for their cars. These "expenditures" are derived as the difference between what banks and other financial intermediaries (except life insurance companies) earn on investments of depositors' funds less the interest they pay to the depositors. The same amount is added to imputed interest income of persons, so savings is not affected by the item.

Table 3.2: Content of PCE

Category of expenditure
1 Purchases of new goods and of services by individuals from business and government and purchases of the services of paid workers
2 Purchases of goods and services by nonprofit institutions from business, individuals, and government.
${ }_{3}$ Net Purchases of used goods by individuals and nonprofit institutions from business and from government.
4 Purchases of goods and services abroad by U.S. Residents.
5 Purchases imputed to keep PCE invariant to whether

- Housing and institutional structures and equipment are rented or owned.
- Employees are paid in cash or in kind.
- Farm products are sold or consumed on farms.
- Saving, lending, and borrowing are direct or are intermediated.
- Financial service charges are explicit or implicit.

Source:
BEA, PERSONAL CONSUMPTION EXPENDITURES, METHODOLOGY PAPERS: U.S.
Natonal Income and Product Accounts.

With these and a few lesser deviations, however, PCE does broadly match consumers' idea of household expenditure.

Each PCE category, that is, each of the over 220 lines of primary data mentioned above, is classified into one of three broad groups:

1. Durable goods are physical commodities that can be stored or inventoried and that have an average life of at least 3 years;
2. Nondurable goods are all other physical commodities that can be stored or inventoried; and
3. Services are commodities that cannot be stored and meant to be consumed at the place and time of purchase.

When a product has characteristics of more than one of these classifications (for example, restaurant meals), or where source data do not provide detail on type of product (for example, foreign travel), the product is classified by its dominant characteristic.

Consequently, the following products are included in Nondurable goods: restaurant meals; expenditures abroad by U.S. residents except for travel (e.g. expenditures of U.S. military and embassy personnel abroad); replacement parts whose installation cost is minimal; dealers' margins on used equipment; and household appliances, such as televisions, even when they are included in the price of a new home.

The following products are included in Services: Food that is included in airline transportation and hospital charges; natural gas and electricity; goods and services that
are included in current operating expense of nonprofit institutions e.g., office supplies; foreign travel by U.S. residents; expenditures in the United States by foreigners; repair services; defense research and development; and exports and imports of specific goods, mainly military equipment purchased and sold by the U.S. government.

The BEA's benchmark input-output tables are used to create the numbers for PCE and its components during a comprehensive revision, which occurs every five years. The last comprehensive revision was released in 2003 for the year 1997. For these years, PCE is derived by a commodity flow analysis. That is, the production of a commodity is determined, imports are added and exports subtracted, and the result then divided among various uses, of which PCE is one. For non-benchmark years, nominal PCE is not estimated by starting with production data as in the benchmark year but by moving the PCE number found in the benchmark by interpolation and extrapolation indicators such as retail sales of the appropriate product. The same process is performed for quarterly and monthly PCE estimates in the non-benchmark years. The process is carried out at the level of thousands of products. The 220 series of the "underlying data" release are thus aggregates of series established at much finer detail.

3.2. Broad trends in the structure of PCE

The long-term patterns in the growth of consumption across different goods and services reflect interaction of many economic factors that affect consumer decisionmaking. Increasing wealth, changing demographics, technological progress, new products, and changing consumers' preferences and lifestyles are important.

Increasing real incomes, accumulation of assets, and willingness to take on more debt increase spending on discretionary products more than spending on basic necessities. Technological innovations increase the variety of goods and services such as cellular phones and Internet service. These new products affect spending on old products by way of the consumer's budget constraint.

Table 3.3 shows U.S. PCE by broad category for selected years between 1959 (the beginning of the series of comparable data) and 2005. The top half of the table shows the data in current prices; the bottom half, chained indexes scaled to equal the current-price value in 2000. We shall refer to the series in current prices as "nominal" and to the chained indexes as "real".

Table 3.3: Nominal and Real Personal consumption expenditures between 1959-2005, by Major categories

Nominal PCE, [Billion of dollars]										
	1959	1960	1970	1980	1990	1995	2000	2003	2004	2005
Personal consumption expenditures	317.6	331.7	648.5	1757.1	3839.9	4975.8	6739.4	7703.6	8211.5	8742.4
Durable goods	42.7	43.3	85.0	214.2	474.2	611.6	863.3	942.7	986.3	1033.1
Motor vehicles and parts	18.9	19.7	35.5	87.0	212.8	266.7	386.5	431.7	437.9	448.2
Furniture and household equipment	18.1	18.0	35.7	86.7	171.6	228.6	312.9	331.5	356.5	377.2
Other	5.7	5.7	13.7	40.5	89.8	116.3	163.9	179.4	191.8	207.7
Nondurable goods	148.5	152.8	272.0	696.1	1249.9	1485.1	1947.2	2190.2	2345.2	2539.3
Food	80.6	82.3	143.8	356.0	636.8	740.9	925.2	1046.0	1114.8	1201.4
Clothing and shoes	26.4	27.0	47.8	107.3	204.1	241.7	297.7	310.9	325.1	341.8
Gasoline, fuel oil, and other energy goods	15.3	15.8	26.3	102.1	124.1	133.3	191.5	209.6	248.8	302.1
Gasoline and oil	11.3	12.0	21.9	86.7	111.2	120.2	175.7	192.7	230.4	280.2
Fuel oil and coal	4.0	3.8	4.4	15.4	12.9	13.1	15.8	16.9	18.4	21.9
Other	26.1	27.7	54.1	130.6	285.0	369.2	532.9	623.7	656.5	694.0
Services	126.5	135.6	291.5	846.9	2115.9	2879.1	3928.8	4570.8	4880.1	5170.0
Housing	45.0	48.2	94.1	256.2	597.9	764.4	1006.5	1161.8	1236.1	1304.1
Household operation	18.7	20.3	37.8	113.7	227.3	298.7	390.1	429.4	450.0	483.0
Electricity and gas	7.6	8.3	15.3	57.5	101.0	122.2	143.3	167.3	176.6	199.8
Other household operation	11.1	12.0	22.4	56.2	126.2	176.5	246.8	262.1	273.5	283.2
Transportation	10.6	11.2	24.0	65.2	147.7	207.7	291.3	297.3	307.8	320.4
Medical care	16.4	17.7	51.7	184.4	556.0	797.9	1026.8	1300.5	1395.7	1493.4
Recreation	6.4	6.9	15.1	43.6	125.9	187.9	268.3	317.7	341.6	360.6
Other	29.4	31.3	68.8	183.8	461.0	622.5	945.9	1064.0	1148.9	1208.4
Real PCE, [Billion of 2000 dollars]										
	1959	1960	1970	1980	1990	1995	2000	2003	2004	2005
Personal consumption expenditures	1554.4	1597.2	2452.0	3374.0	4770.2	5433.5	6739.4	7295.3	7577.1	7841.2
Durable goods	93.5	95.3	169.5	257.2	453.5	552.6	863.3	1020.6	1085.7	1145.4
Motor vehicles and parts	60.5	64.2	102.9	144.1	256.1	272.3	386.5	442.1	450.3	452.9
Furniture and household equipment	21.8	21.6	40.3	64.8	119.9	173.3	312.9	397.8	446.0	490.6
Other	17.1	17.0	35.1	57.6	92.7	111.2	163.9	183.2	195.6	212.6
Nondurable goods	652.3	661.8	923.7	1151.5	1484.0	1638.7	1947.2	2103.0	2179.2	2276.8
Food	404.0	407.1	541.6	635.8	784.4	827.1	925.2	977.7	1011.0	1065.7
Clothing and shoes	53.7	54.2	74.2	118.3	188.2	227.4	297.7	334.2	350.9	372.7
Gasoline, fuel oil, and other energy goods	90.0	91.2	130.4	137.1	158.5	173.0	191.5	198.5	200.5	199.5
Gasoline and oil	60.8	62.8	100.0	114.8	141.9	154.4	175.7	183.2	185.9	185.9
Fuel oil and coal	36.3	34.7	32.6	22.6	16.8	18.7	15.8	15.4	14.7	13.7
Other	125.3	131.0	210.3	278.2	361.0	414.1	532.9	593.2	618.5	643.9
Services	816.9	853.5	1376.6	2000.6	2851.7	3259.9	3928.8	4178.9	4323.9	4436.7
Housing	242.4	255.6	410.9	613.1	802.1	887.6	1006.5	1051.9	1091.6	1122.6
Household operation	86.9	91.3	142.8	207.1	266.4	312.8	390.1	398.8	409.3	418.0
Electricity and gas	40.3	42.6	72.6	102.6	117.4	130.2	143.3	147.5	149.9	153.8
Other household operation	45.4	47.6	69.7	104.1	149.4	183.1	246.8	251.2	259.6	264.1
Transportation	68.7	70.9	108.6	139.5	195.7	231.8	291.3	280.6	284.0	284.4
Medical care	169.5	176.2	329.2	541.7	797.6	906.4	1026.8	1180.7	1217.3	1260.9
Recreation	32.4	33.9	52.6	91.4	170.6	219.2	268.3	290.8	304.8	313.1
Other	199.9	206.7	318.9	402.2	621.9	704.4	945.9	975.3	1016.0	1036.1

Source: BEA, NIPA April 12, 2007

On average, real PCE grew 3.7 percent per year between 1959 and 2005, which was slightly faster then the total domestic demand growth rate of 3.56% during the same period.

The PCE share of nominal GDP increased from around 62% in 1959 to 70% in 2005 as shown in Table 3.3. This share increased steadily since World War II. During

1942-1945, the share of PCE in nominal GDP fell to about 52%, the lowest number since the beginning of data in 1929. The highest share ever recorded for PCE was 83% in 1932 when investment had collapsed and defense spending was minimal.

Figure 3.1: Personal consumption expenditures by Major types of product

Services' share of nominal consumer spending increased from 40 percent in 1959 to 59% in 2005, as shown in Figure 3.1. Medicare services, financial services, recreational services, and education and research services were the main contributors to this growth. According to Moran and McCully (2001), the increased share of services reflected the changes in public programs, demographics, average income and the
increased of variety of choices available to the U.S. population. For example, payments by health insurance programs and government transfer programs such as Medicare and Medicaid, and the aging of the U.S. population contributed to the increased share of medical care services. Also, the increased share of recreation services partly corresponded to the increased wealth that supported consumption of new types of services such as cable television and the Internet.

Nondurable goods' share of PCE decreased from 47 percent in 1959 to 29 percent in 2005. This decrease in share was common to most sub-categories of non-durables except prescription drugs, whose share rose as a result of changes in health insurance, Medicaid, and the aging of the population. Some of the decreases reflected falls in prices of products with inelastic demand. Such was, especially the case of clothing and shoes, where inexpensive imports became increasingly available.

Durable goods' share of PCE decreased from 13.4 percent in 1959 to 11.8 percent in 2005. This decline came mostly in new cars and household appliances, which have both seen the declining relative prices over this period.

It should be noted that the decreased shares of durable and nondurable PCE were not due to declining real consumption but to the relative price declines just mentioned and to the more rapid growth in services. In fact, as may be seen in Table 3.3, real PCE on both durables and nondurables increased between 1959 and 2005.

3.3. Data for short-term forecasting of PCE

The dependent variables

We have already mentioned that PCE data is available in 233 primary series. Some of these, however, come from the same input-output industries in the LIFT model or are so specific or small that little is gained by keeping them separate. From the 233 categories, I selected 116 categories covering the whole of consumption. Some of them are the primary, most detailed series; some of them are aggregates made by BEA. They can also be simply aggregated, without splits, into the 13 groups shown in Table 3.4 and called by BEA "Major types of products." Headings for these 13 groups are shown in bold, italic type in Appendix 3.1. The 116 categories include 24 durable products, 41 nondurable products, and 51 services, Appendix 3.2. the large number of services categories reflects the recent trend of U.S. consumer spending to this area.

Table 3.4: Personal consumption expenditures by Major types of product

```
Personal consumption expenditures
    Durable goods
        Motor vehicles and parts
        Furniture and household equipment
        Other
        Nondurable goods
            Food
            Clothing and shoes
            Gasoline, fuel oil, and other energy goods
            Other
        Services
            Housing
            Household operation
            Transportation
            Medical care
            Recreation
            Other
```

Source: BEA

Our dependent variables are the current-price values of the 116 categories and the price indexes of these same 116 categories.

Explanatory variables

An important source of explanatory variables is the quarterly econometric model QUEST built and maintained by Inforum. For this project, it has been expanded to include all 13 of BEA's series on PCE by Major types of products as shown in Table 3.4. QUEST's forecast of GDP, Personal disposable income, and the rate of inflation in food prices are also available.

For some products, "Refiner Acquisition Cost of Crude Oil, Composite" proved useful. The data comes from the Energy Information Administration ${ }^{9}$ (EIA). This data is published monthly with a delay of approximately three months, e.g. the December 2006 n umber was published in March 2007.

A final exogenous variable is the Dow-Jones index of the prices of the stocks of industrial companies.

Equations estimated

For each of the 116 categories, two equations are estimated, one for price and one for nominal value. The results from the two equations are used to create a real value series for that category. This work is done with monthly data at the 116-category detail. We can calculate the aggregates in nominal values by simply adding up the pieces. Also,

[^5]we can calculate the annual series by taking the annual average of both nominal values and prices from the monthly series. The G program provides functions to do this easily.

The real aggregates both at the monthly and at the annual frequencies were calculated from the nominal series and the price index by using the chain-weighted Fisher index as described in Chapter 2. The main reason for forecasting the nominal series and the price series separately instead of just forecasting the real series is to be able to calculate the chain-weighted Fisher indexes of the aggregates.

We must note, however, that the estimated monthly real PCE aggregates are made with a formula different from the one used by the BEA. BEA adjusts the monthly series so that the annual average values of each series are equal to the annual series's values. This practice is also employed in the real accounts. In the case of the real accounts with chain-weighted Fisher indexes, the formula to achieve this adjustment is not disclosed. However, we know for certain that the formula is not as simple as an arithmetic average.

Time-series analysis is used on all equations. Time series analysis has proven useful in generating short-term (less than two to three years) forecast of economic variables. However, it often fails to yield a good long-term forecast.

All equations for both nominal values and prices have the following structure:

$$
\begin{equation*}
Y_{t}^{n}=\alpha+\beta \cdot \varphi^{n}(L) Y_{t}^{n}+\gamma \cdot X_{t}^{n}+\varepsilon_{t} \tag{1}
\end{equation*}
$$

where,

Y_{t}^{n}	$=$ Price or nominal value of PCE category n at time t
$\varphi^{n}(L)$	$=$ Polynomial of lag operators of PCE category n
X_{t}^{n}	$=$ exogenous explanatory variables
ε_{t}	$=$ error terms at time t
α, β, γ	$=$ regression coefficients

This form represents a time-series analysis model called the autoregressive moving average with exogenous variables (ARMAX) model. We use additional exogenous variables to help guide movements of the forecasts. The exogenous variables in most of the equations are macroeconomic variables such as GDP and crude oil price, and the appropriate one of the 13 series on PCE by major type of product.

In most cases, we use the PCE aggregates of which the dependent variable is a component. For example, for New autos, we use PCE of motor vehicles as one of its exogenous variables. However, there are some categories where we use the aggregates from another groups; e.g. the equation for Automobile insurance services used the PCE of motor vehicles instead of the PCE of services as an exogenous variable.

There is one major difference between the price and the nominal value equations. In the price equations, there is no price of the major PCE category among the exogenous variables. All price equations are estimated with lagged dependent variables, consumer price indexes, or predetermined explanatory variables such as oil price. The main reason is matter of practicality. The macroeconomic model, QUEST, which we used to provide
forecast for the exogenous variables does not forecast the price of each major PCE category. In fact, the model uses a uniform deflator across all variables. Also, I had tested two different sets of price equations, one with major PCE prices and one without them. There was no significant difference between them.

All regression results are shown in the appendix.

Approach to the problem

Here are the necessary steps for preparing the short-term forecast of PCE categories each time the interindustry model, LIFT, is being updated.

1. Prepare data banks for the G regression program with all the necessary data. They are: (1) the Underlying PCE tables from BEA, nominal, real and price index series in annual, quarterly, and monthly frequency, (2) monthly crude oil price data from the EIA, (3) the quarterly national accounts and a few other series in the QUIP databank which are used for the QUEST model ${ }^{10}$.
2. Re-estimate the forecasting equations: There are two sets of equations, one for nominal PCE series and one for the price indexes of PCE categories. During this step, we have two options. 1) Just re-estimate the regression equations or 2) Revise the structure of the equations and estimate the new ones. For example, the latter option is appropriate when the current equations produce an implausible forecast. In general, we only need to re-estimate the current equations with the updated data.

10 QUIP databank is the databank used in QUEST model. It contains most of the Quarterly NIPA tables and many macroeconomics variables including financial sector data.
3. Creating with BUILD ${ }^{11}$ a model consisting solely of the equations estimated in step 2. Strictly speaking, we could avoid this step by putting into the command file for estimating the equations commands to rename the series with the forecasts automati cally created by G. Building and running the model, however, requires less manual work and a produces a data bank containing only the historical and forecast series. Once this model is built, we run a historical simulation with it, that is, a "forecast" over the historical period with actual values of all exogenous variables. This is sim ply testing the accuracy of the equations as if we had perfect foresight for the exog enous variables.
4. Generating the exogenous variables for the forecast period. Update and run the QUEST model to obtain quarterly forecasts of a number of exogenous variables such as PCE by major type. These quarterly forecasts are then interpolated to monthly forecasts by G's @qtom() function.
5. Forecasting the detailed PCE series with the model from Step 3.

3.4 Discussions of interesting detailed PCE equations' estimation results

In this section, I select some consumption categories to discuss the performance of the approach and to highlight some interesting observations. This section can be skipped without loss of understanding to the subsequent sections. Appendix 3.3 shows

11 BUILD is a executable program developed by INFORUM. BUILD creates C++ code of the model which will be compiled and ready for the user as an executable program. Go to www.inforum.umd.edu for more details.
all regression results of both nominal PCE and the price index in 116 consumption categories.

The equations being discussed are estimated with historical data between January 1994 and June 2007. Regression results of both nominal PCE and its price index are presented for each product categories being discussed. The fitted graphs are also included. Please note that these equations will be re-estimated for each forecast if there is updated data for any series used in these equations.

New autos

The regression results for the nominal PCE of new autos (pcel) and the price index of new autos (cqpl) are shown above. The fitted graphs of both the nominal value and the price index are included below.

The nominal PCE equation has three regressors: 1) one month lagged nominal PCE of new autos, 2) current period PCE of Motor vehicles, and 3) one month lagged PCE of Motor vehicles. Please note that this equation does not contain a constant (intercept). The equation fit well throughout the estimation period with an adjusted Rsquare of 0.8652 and good MAPE ${ }^{12}$. This result is expected from the use of lagged dependent variable. All three regressors contribute significantly to the explanation of the nominal PCE of new autos, as shown by values of Mexval ${ }^{13}$, during the fitted period. PCE of Motor vehicles' high explanatory value is expected as nominal PCE of new autos accounts for about a quarter of nominal PCE of Motor vehicles and parts. As shown in the fitted graph, BasePred (x), though shows some deviation from the actual value, moves together with the actual value and does pick up the volatility quite well such as the big jump at the end of 2001. This shows that the PCE of Motor vehicles and parts helps in

12 MAPE $=$ Mean Absolute Percentage Error, $\quad M A P E=\frac{100 * \sum_{t=1}^{T}\left|\begin{array}{l}r_{t} \\ \hline\end{array}\right|}{T}$,
13 Mexval = Marginal explanatory value, The percentage increase in Standard Error of Estimate if the variable is left out of the regression. An alternative to the t-statistics.
predicting the movement of the PCE of new autos. Note: BasePred uses the actual lagged value only in the base period and uses the predicted value of lagged dependent variable in other periods.

The price index equation has three regressors and one constant. The regressors are 1) one month lagged price index of the PCE of new autos, 2) time trend, and 3) nominal GDP index in 2000 (GDP/GDP[2000]). The lagged dependent variable is the main contributor to the explanatory power of the equation. The equation shows a very good fit to the actual price index during the forecast period as expected from the use of lagged dependent variable. The time trend and the GDP index help in guiding the movement as shown in the fitted plot of BasePred.

Overall, our approach provide satisfactory results in estimating the nominal PCE of new autos and its price index.

Computers and peripherals

In the last two decades, we have seen the increase in private consumption of computers and peripherals. The nominal PCE of computers and peripherals increases from less than one billion dollars in the early 1980s to 46.9 billion dollars in 2006. During the same period, we also observed the fall in price of computers sold to consumers.

As earlier discussed in Chapter 2, the falling price and the expansion of investment and consumption in computer product affected the way real value is
calculated. In this analysis, the price index being estimated is the price index published by the BEA.

```
: 9 Computers and peripherals
    SEE = 0.34 RSQ = 0.9987 RHO = -0.23 Obser = 162 from 1994.001
    SEE+1 = 0.33 RBSQ = 0.9987 DurH = -2.91 DoFree = 159 to 2007.006
    MAPE = 0.81
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce9 _ - - - - - - - - - - - _ - - - - 31.93 - - -
    l pce9[1] 
    3 cdfur[1] -0.10360 30.1 -0.99 1.00 304.81 -0.655
: 9 Computers and peripherals
    SEE = 4.94 RSQ = 0.9996 RHO = -0.04 Obser = 162 from 1994.001
    SEE+1 = 4.93 RBSQ = 0.9996 DurH = -1.44 DoFree = 160 to 2007.006
    MAPE = 1.06
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp9 _ - _ - _ _ - _ _ - _ _ - - - - - 209.02 - - -
```


The nominal PCE equation contains three regressors without constant terms: 1) one month lagged nominal PCE of computers and peripherals, 2) current period nominal PCE of Furniture and household equipment, and 3) one month lagged nominal PCE of Furniture and household equipment. The equation provides a very good fit with adjusted R-square of 0.9987 . The fitted plot confirms the regression result with BasePred shows that the nominal PCE of Furniture and household equipment helps move the series quite well.

The price index equation has two regressors without constant terms: 1) one month lagged price index of the PCE and 2) two month lagged price index of the PCE. The estimated values have reasonable mexvals and reasonable signs. The result fits well with the actual series during the estimated period as shown by both the R -square and the fitted plot.

Software

Software purchase generally follows the purchase of computers. It is not surprising to observe the increase in nominal PCE of software in the last two decades. The price of software has been falling but not as rapidly as the price of computers, especially since 1998.

The equation for the nominal PCE has three regressors and an intercept. The results show that all three regressors have good Mexvals and reasonable signs. The equation also provides a very good close fit as shown by the adjusted R-square (0.9987) and the fitted plot over the test period. Shown in the fitted plot, the BasePred fits extremely well with the actual series which gives us confidence in this equation for the purpose of forecasting.

The price index results show good fit with very high adjusted R-square and very good MAPE. The coefficients of each regressors have reasonable signs and significant Mexvals. Although the BasePred does not fit to the actual series as well as the nominal equation, BasePred plot tracks the trend of the price index fairly well.

Pleasure aircraft

Pleasure aircraft is a luxury item which its consumption typically fluctuate with the economy. It is interesting to see the effectiveness of our approach in forecasting this type of products.

```
: 22 Pleasure aircraft
    SEE = 0.06 RSQ = 0.9417 RHO = 0.08 Obser = 162 from 1994.001
    SEE+1 = 0.06 RBSQ = 0.9406 DurH = 3.49 DoFree = 158 to 2007.006
    MAPE = 4.20
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce22
    1 pce22[1]
    2 pce22[2]
    3 cdoth
    4 cdoth[2]
        _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - 1.18 _ - -
            0.25150 4.2 0.25 2.03 1.17
            0.28120 4.4 0.28 1.66 1.6 1.17 0.279
    0.01710 16.7 2.33 1.20 160.33 2.165
    -0.01376 9.5 -1.86 1.00 158.87 -1.738
:
    22 Pleasure aircraft
    SEE = 0.61 RSQ = 0.9648 RHO = 0.02 Obser = 162 from 1994.001
    SEE+1 = 0.61 RBSQ = 0.9644 DurH = 0.31 DoFree = 159 to 2007.006
    MAPE = 0.46
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp22
    l intercept 
    3 gdpi 1.29332 1. 2.1 0.01 1.00 1.04 0.082
```

For pleasure aircraft, the nominal PCE equation has 4 regressors: 1) one-month lagged nominal PCE of pleasure aircraft, 2) two-month lagged nominal PCE of pleasure aircraft, 3) current period nominal PCE of other durable goods, and 4) one-month lagged nominal PCE of other durable goods. The equation fits well throughout the test period with R-square of 0.9417 . All regressors have reasonable Mexvals and correct signs. BasePred shows a nice fit to the actual series over the test period.

The price index equation has two regressors and a constant. The regressors are one-month lagged price index of PCE of pleasure aircraft and the GDP index. The lagged dependent variable is the main contributor in explaining the price index over the test period. The BasePred shows that the equation captures increasing trend in the price index over time but fails to capture the volatility of the price index.

Books and maps

All three regressors in the nominal PCE equation of books and maps have good
Mexvals. The equation provides a good fit with adjusted R-square of 0.9926 and MAPE of 1.44 percent. The fitted plots show a very good fit in both the predicted value and the BasePred, which track the actual series quite well.

The price index result shows a good fit with adjusted R-square of 0.996 and MAPE of 0.45 percent. The coefficients of each regressors have reasonable signs. The BasePred plot shows that the equation tracks the long-term trend of the price index quite well but fails to capture any volatility during the test period.

Coffee, tea and beverage materials

The result shows that the nominal PCE of coffee, tea and beverage materials can be estimated quite accurately during the test period with the one-month lagged dependent variable and the current period nominal PCE of food. The closeness of fit statistics are quite good with an adjusted R-square of 0.9989 and MAPE of 0.56 percent. The BasePred plot shows good behavior in tracking the trend of the nominal PCE during the test period.

Price index
39 Coffee, tea and beverage materials

The price index of PCE of coffee, tea and beverage materials had two big spikes in the mid 1990s caused by concerns about frost in Brazil, the biggest coffee producer at the time. The BasePred plot shows that the equation cannot track these volatility (as they were caused by natural cause) in a long-term forecast. On the other hand, the predicted value tracks the actual series quite well with the help of the lagged dependent variables. Overall, the regressors of the price index equation have reasonable Mexvals and signs. The result seems to fit the actual series well during the test period with high adjusted Rsquare and low MAPE.

Women's and children's clothing and accessories

```
: 50 Women's and children's clothing and accessories except shoes
    SEE = 0.34 RSQ = 0.9997 RHO = -0.29 Obser = 162 from 1994.001
    SEE+1 = 0.33 RBSQ = 0.9997 DurH = -3.75 DoFree = 159 to 2007.006
    MAPE = 0.17
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce50
    1 pce50[1]
    2 cncloth 0.52801 4 483.7 1.00 10.80 293.63 1.032
    3 cncloth[1] -0.49765 228.6 -0.94 1.00 292.79 -0.969
: 50 Women's and children's clothing and accessories except shoes
    SEE = 0.70 RSQ = 0.9903 RHO = -0.11 Obser = 162 from 1994.001
    SEE+1 = 0.69 RBSQ = 0.9902 DurH = -1.43 DoFree = 159 to 2007.006
    MAPE = 0.53
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp50 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 9 9.77 _ _ -
    1 cqp50[1] 0.99784 6966.3 1.00 1.01 99.93
    2 crude 0.01123 0.0.6 0.00 1.01 
```


The equation for the nominal PCE shows very good fit with high adjusted Rsquare and very low MAPE. The coefficients of each regressors have good signs. All regressors have high Mexvals. The fitted plots show that both predicted value and BasePred fit very well to the actual series.

The price index equation has very good fit with the actual seires as shown by the adjusted R-square and MAPE. Almost all of the explanation is explained by the lagged dependent variable. The inclusion of crude oil price provides the necessary movement to the forecast as seen by the BasePred plot.

Gas and Oil

The nominal PCE equation of Gasoline and oil has only the nominal PCE of Gasoline, fuel oil, and other energy goods. There is no lagged dependent variable. The Mexvals of the nominal PCE of Gasoline, fuel oil, and other energy goods is very high because the nominal PCE of Gasoline and oil contribute around 90 percent to the nominal PCE of Gasoline, fuel oil, and other energy goods throughout the test period. The
closeness of fit statistics, both adjusted R-square and MAPE, are very good. The fitted plot shows excellent fit as well.

The price equation has 3 regressors and no constant. The first differences of crude oil price, both current period and one-month lagged, are quite good in capturing the volatility of the price index as shown by the fitted plot of BasePred. In general, all coefficients have reasonable Mexvals and the closeness of fit statistics are quite good.

Housing

The PCE of housing is the only detailed PCE in this analysis that is equal exactly to the major aggregate PCE of housing. Thus, we use only the lagged dependent variables in both the nominal PCE and the price index equations without the intercept.

Both equations show very good closeness of fit statistics with very high explanatory value. The fitted plots show very good fit from both predicted value and BasePred plots.

Price index

Cell phone, local phone and long distance phone

The nominal PCE equations of Cell phone, local phone and long distance phone (three separate detailed categories) are estimated together using "stack" ${ }^{14}$ command in G. In the last decade, Cell phone has become almost a primary way of communication to many consumers. Most cell phone providers offer long distance services at no extra charge. Together with the conveniences and the lower price of the cell phone, some consumers no longer have a long distance phone service. Some consumers do not even have a normal local phone. Thus, the increasing consumption of cell phone should be taken into account when we estimate the consumption of local phone and long distance phone. As shown in the following results, the nominal consumption of Cellular phone ($p c e 70$) is one of regressors used in estimating the nominal consumption of both Local phone (pce71) and Long distance phone (pce72).

14 "stack" works in the same way as the seemingly unrelated regression (SUR). However, "stack" pays no attention to contemporaneous covariances. The point of "stack" is only to impose soft constraints across regressions. It can be used without any constraint if we have equations that should be estimated at the same time such as the Cell phone, local phone and long distance phone equations.

```
: 70 Cellular phone
Regression number 1, pce70
    SEE = 0.26 RSQ = 0.9998 RHO = 0.30 Obser = 486 from 1994.001
    SEE+1 = 0.25 RBSQ = 0.9998 DurH = 3.77 DoFree = 478 to 2007.006
    MAPE = 0.67 SEESUR = 1.00
            Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce70 - - - - - - - - - - - - - - - - - 33.89 - - -
    l intercept 
    3 gdp 10.00027 1.0 0.08 1.00 9935.29 0.028
: 71 Local phone
Regression number 2, pce71
    SEE = 0.34 RSQ = 0.9969 RHO = 0.15 Obser = 486 from 1994.001
    SEE+1 = 0.34 RBSQ = 0.9969 DurH = 1.92 DoFree = 478 to 2007.006
    MAPE = 0.53 SEESUR = 1.00
            Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    4 pce71 - - - - - - - - - - - - - - - - - 45.75 - - -
    1 pce71[1] 1.00646 3016.6 1.00 1.00 45.65
    2 pce70[1] 
: 72 Long distance telephone
Regression number 3, pce72
    SEE = 0.58 RSQ = 0.9957 RHO = 0.08 Obser = 486 from 1994.001
    SEE+1 = 0.58 RBSQ = 0.9956 DurH = 1.01 DoFree = 478 to 2007.006
    MAPE = 1.20 SEESUR = 1.00
            Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    7 pce72 _ - - - - - - - - - - - - - - - - 37.36 - - -
    l pce72[1] 
```


The regressions' results are very satisfactory. We have very good fit for the PCE of cellular phone. The coefficients of one month lagged PCE of cellular phone in the equations of both local telephone and the long distance telephone have negative signs as expected. The BasePred plots show that the equation can capture the long-term trend, but not the short-term volatility, of these three PCE categories.

```
Plots of the nominal PCE
```


Long distance phone
72 Long distance telephone


```
: 70 Cellular telephone
    SEE = 0.57 RSQ = 0.9996 RHO = -0.03 Obser = 162 from 1994.001
    SEE+1 = 0.57 RBSQ = 0.9995 DurH = -0.82 DoFree = 158 to 2007.006
    MAPE = 0.39
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp70
    1 intercept 
    2 cqp70[1] 
    4 gdpi 0.52499 0.3 0.00 1.00 1.04 0.004
: 71 Local telephone
    SEE = 0.55 RSQ = 0.9979 RHO = -0.10 Obser = 162 from 1994.001
    SEE+1 = 0.55 RBSQ = 0.9979 DurH = -1.26 DoFree = 161 to 2007.006
    MAPE = 0.33
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp71
    1 cqp71[1] 1.00221 19024.3 1.00 1.00 103.88
: 72 Long distance telephone
    SEE = 1.08 RSQ = 0.9945 RHO = -0.01 Obser = 162 from 1994.001
    SEE+1 = 1.08 RBSQ = 0.9944 DurH = -1.89 DoFree = 159 to 2007.006
    MAPE = 0.81
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp72
_ _ _ _ _ _ - - - _ _ _ _ _ - - - 95.26 _ - -
    1 cqp72[1] 0.90901 
    lrrrr72[2] 
```

The price index equations of the three telephone categories show pretty good fit by the closeness of fit statistics. Each regressor has reasonable Mexvals. However, the fitted plots reveal that, with the exception of cellular telephones' price index equation, the other price index equations do not have much explanation into the movement of the price indexes as shown by the plot of BasePred. Thus, we should be cautious in using these equations in forecasting.

Long distance phone

Abstract

Airlines

The equation for the nominal PCE of Airline services has one-month lagged dependent variable and the nominal PCE of transportation service as its regressors. Both regressors plus the intercept have reasonable Mexvals. The adjusted R-square is quite good (0.9058). The MAPE is slightly high (2.67 percent). The fitted plot shows that Airline services affected the most from the brief recession in 2000 and the terrorist attack

in September 2001. However, the consumption looks to be back to its long-term trend by 2003 as the BasePred shown pretty good fit since then.

The price index plot shows the same story as the nominal value. There was a steep decline in price between 2000 and 2001. The price index also starts increasing again since 2005 as should be expected from the increasing oil price. However, an experiment in estimating the equation with crude oil price was unsuccessful. In general, the price index of the airline service is difficult to estimate. It is affected by many factors such as the overall economy, natural causes (such as weather), etc. Nevertheless, this price index equation should provide a decent short-term forecast in normal circumstance.

Price index

Health insurance

The equation for the nominal PCE of health insurance service has three regressors plus an intercept. Most of the explanatory power of the equation is provided by the onemonth lagged dependent variable. The equation has a very god fit over the test period with adjust R-square of 0.9999 and MAPE of 0.28 percent. The fitted plot shows an excellent fit for the predicted value and a relatively good fit for the BasePred.

The price index equations has three regressors and no intercept. The lagged dependent variables provide most of the explanation with very good Mexvals. The adjusted R-square is 0.9998 and the MAPE is 0.16 percent. The fitted plot shows that the equation can explain the long-term trend but fails to capture the short-term fluctuation of the price index as seen by the BasePred plot.

Price index

Brokerage charges and investment counseling

```
: 100 Brokerage charges and investment counseling
    SEE = 3.51 RSQ = 0.9736 RHO = 0.06 Obser = 162 from 1994.001
    SEE+1 = 3.50 RBSQ = 0.9733 DurH = 0.89 DoFree = 159 to 2007.006
    MAPE = 3.29
        Variable name
        Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce100
    1 intercept
    2 pce100[1] 
    3 djia 0.00134 4.6 4.0.16 1.00 8771.94 0.157
: }100\mathrm{ Brokerage charges and investment counseling
    SEE = 2.79 RSQ = 0.9893 RHO = -0.16 Obser = 162 from 1994.001
    SEE+1 = 2.73 RBSQ = 0.9891 DurH = -2.15 DoFree = 158 to 2007.006
    MAPE = 1.33
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 cqp100 _ _ _ _ _ _ - _ _ - _ _ _ - - - - 114.96 - - -
    1 intercept 
    2 cqp100[1] 0.95325 234.1 
    3 time -0.44230 1.0 -0.03 1.03 1.03 (-0.064
    4 crude 10.07707 1.4 1.4 0.02 1.00 28.35 0.043
```

The equation for the nominal PCE of Brokerage charges and investment counseling has a good fit during the test period. The adjusted R-square is 0.9733 while the MAPE is 3.29 percent. The Dow Jones Industrial index helps the equation in tracking the actual series quite well as shown by the BasePred plot.

The price index equation also has a good closeness of fit statistics with an adjust R-square of 0.9891 and a MAPE of 1.33 percent. Most of the explanatory power of the equation is provided by the lagged dependent variable. The time trend and the crude oil price help guiding the predicted value quite well as seen in the BasePred plot.

3.5 Historical Simulations

The following discussions are grouped by the BEA Major aggregates, i.e. durable, nondurables, services, and the 13 major types, which are published monthly by the BEA. I compared the historical simulations with the annual PCE numbers published by the BEA.

In this section, "The first simulation" refers to the historical simulation with actual exogenous variables and "The second simulation" refers to the historical simulation with exogenous variables generated from QUEST and other ad hoc assumptions.

Unless stated otherwise, each picture shows three lines: 1) historical simulation using actual exogenous variables (represented by + line), 2) historical simulation with exogenous variables generated using QUEST and other simple methods (represented by box (ם) line), and 3) the actual published series (represented by x line). Table 3.6 shows the results of these two historical simulations of PCE at the major product categories and
their percentage difference from the BEA data. Table 3.5 shows assumptions of all exogenous variables used in the second historical simulation.

Table 3.5: Assumptions of exogenous variables used in the Second Historical Simulation

Predetermined explanatory variables used in historical simulation

		2005Q1	2005Q2	2005Q3	2005Q4	2006Q1	2006Q2	2006Q3	2006Q4
	Nominal PCE of motor vehivcles	474.30	479.94	475.23	461.36	477.78	468.83	483.52	487.92
cdfur	Nominal PCE of furnitures	369.85	372.61	373.53	382.67	384.42	391.34	393.49	398.22
cdoth	Nominal PCE of other durables	198.18	200.49	202.42	206.66	206.45	208.71	209.31	211.75
cnfood	Nominal PCE of food	1,152.76	1,161.61	1,169.64	1,188.96	1,191.88	1,208.31	1,216.47	1,233.24
cncloth	Nominal PCE of clothing and shoes	333.32	336.74	338.48	343.33	342.94	346.68	348.38	352.78
cngas	Nominal PCE of gas and oil	270.53	279.80	304.58	323.13	338.87	351.11	359.36	369.08
cnoth	Nominal PCE of other nondurables	679.62	686.11	692.84	703.81	705.63	714.18	719.66	729.54
cshous	Nominal PCE of housing	1,267.93	1,276.32	1,280.66	1,301.06	1,300.51	1,317.27	1,323.73	1,339.03
csho	Nominal PCE of household operatio	459.83	463.62	463.66	473.28	476.20	482.49	486.77	492.63
cs	Nominal PCE of transportation	314.84	317.35	319.29	324.91	324.18	326.39	326.05	327.44
csmc	Nominal PCE of medical services	1,448.02	1,466.35	1,484.00	1,511.69	1,522.73	1,542.15	1,558.62	1,582.26
csrec	Nominal PCE of recreational service	350.36	353.67	353.68	360.39	360.08	366.32	367.02	371.31
csoth	Nominal PCE of other services	1,189.00	1,201.34	1,204.45	1,225.90	1,225.48	1,245.04	1,248.96	1,264.17
ddj	djia - djia(-1)	317.97	267.83	231.12	260.29	201.73	227.24	222.18	252.88
oildf	croil - croil(-1)	5.86	-5.33	1.62	0.45	3.84	3.17	5.13	2.27
gdp	GDP in Billion dollars	12,126.70	12,241.62	12,328.63	12,494.10	12,591.72	12,727.95	12,844.82	12,995.03
djia	Dow Jones Industrial Index	10,730.81	10,998.64	11,229.76	11,490.04	11,691.78	11,919.02	12,141.20	12,394.09
gdpi	GDP deflator (2000Q1 = 1)	1.26	1.27	1.28	1.30	1.31	1.32	1.33	1.35
roil	Crude Oil Price	34.61	29.28	30.90	31.35	35.19	38.36	43.49	45.75

* all nominal PCE are in Billion dollars

As shown in Table 3.6, our approach can generate a very reasonable results when given accurate exogenous variables, especially with the forecast of one-year ahead. The errors grow slightly with the two-year ahead forecast. In one-year ahead forecast, we miss the published real total PCE by 0.38% given accurate exogenous variable and by 0.58% using predicted exogenous variables. In general, the approach errors are less than 2%, for the one-year ahead forecast of real PCE, which is very good. Some categories with major shift during the forecast period, such as Gasoline, fuel oil and other energy goods, exhibit higher errors with the second simulation.

It appears that the accuracy of the forecast depends on the quality of the exogenous variables and how further the forecast period from the last known published data.

The rest of this section (3.5) discusses these results in detail with plots of each aggregates. It can be skipped.

Table 3.6: Results from Historical Simulations

Nominal in Billion dollars

Results from Historical Simulations

```
apce Personal consumption expenditures
md Durable goods
dmv Motor vehicles and parts
dfur Furniture and household equipment
doth Other durable
nd Nondurable goods
nfood Food
ncloth Clothing and shoes
ngas Gasoline, fuel oil, and other energy goods
noth Other nondurable
sv Services
sho Housing
shoop Household operation
str Transportation
smc Medical care
srec Recreation
soth Other Services
```

BEA	2005 actual exog	predicted exog	BEA	2006 actual exog	predicted exog
8,742.35	8,750.59	8,703.84	9,270.81	9,286.61	9,169.77
1,033.07	1,038.39	1,047.87	1,071.25	1,082.30	1,082.22
448.22	450.90	469.83	445.30	451.93	479.26
377.20	377.70	375.09	404.91	406.04	392.73
207.66	209.79	202.96	221.04	224.33	210.23
2,539.29	2,543.52	2,509.00	2,715.99	2,732.61	2,668.11
1,201.39	1,203.62	1,183.59	1,281.66	1,292.86	1,240.17
341.81	342.46	338.57	358.58	360.24	349.13
302.14	301.16	293.40	338.66	337.45	352.37
693.96	696.27	693.44	737.09	742.06	726.44
5,169.98	5,168.67	5,146.97	5,483.57	5,471.70	5,419.44
1,304.07	1,305.15	1,305.15	1,382.24	1,375.31	1,375.31
483.00	471.45	457.77	505.80	479.57	460.12
320.43	321.63	321.05	337.05	338.52	335.51
1,493.41	1,498.04	1,495.21	1,589.13	1,611.96	1,601.46
360.63	362.00	357.25	379.48	382.30	370.49
1,208.45	1,210.40	1,210.53	1,289.87	1,284.03	1,276.55

Deviation from the BEA data as of April 2007 in percent

```
apce Personal consumption expenditures
md Durable goods
dmv Motor vehicles and parts
dfur Furniture and household equipment
doth Other durable
nd Nondurable goods
nfood Food
ncloth Clothing and shoes
ngas Gasoline, fuel oil, and other energy goods
noth Other nondurable
sv Services
sho Housing
shoop Household operation
str Transportation
smc Medical care
srec Recreation
soth Other Services
```

2005		2006	
actual	predicted		
exog	exog	actual exog	predicted exog
0.09	-0.44	0.17	-1.09
0.52	1.43	1.03	1.02
0.60	4.82	1.49	7.63
0.13	-0.56	0.28	-3.01
1.03	-2.27	1.49	-4.89
0.17	-1.19	0.61	-1.76
0.19	-1.48	0.87	-3.24
0.19	-0.95	0.46	-2.64
-0.32	-2.89	-0.36	4.05
0.33	-0.07	0.67	-1.45
-0.03	-0.45	-0.22	-1.17
0.08	0.08	-0.50	-0.50
-2.39	-5.22	-5.19	-9.03
0.38	0.19	0.44	-0.46
0.31	0.12	1.44	0.78
0.38	-0.94	0.74	-2.37
0.16	0.17	-0.45	-1.03

Table 3.6 (cont.)

Chained Real 2000 dollar

Results from Historical Simulations

		BEA	2005 actual exog	predicted exog	BEA	2006 actual exog	predicted exog
apce	Personal consumption expenditures	7,841.17	7,871.17	7,886.90	8,092.54	8,123.11	8,167.46
md	Durable goods	1,145.34	1,161.62	1,172.78	1,203.99	1,234.71	1,237.08
dmv	Motor vehicles and parts	452.90	457.31	477.38	448.01	454.76	482.96
dfur	Furniture and household equipment	490.60	499.62	496.25	551.37	570.44	554.11
doth	Other durable	212.57	216.14	208.99	224.49	231.84	218.22
nd	Nondurable goods	2,276.78	2,286.27	2,275.78	2,363.05	2,391.06	2,370.57
nfood	Food	1,065.70	1,068.68	1,049.81	1,111.41	1,123.01	1,075.36
ncloth	Clothing and shoes	372.72	378.99	376.70	392.68	405.07	394.75
ngas	Gasoline, fuel oil, and other energy goods	199.53	198.78	209.03	197.89	197.67	233.32
noth	Other nondurable	643.90	646.18	643.88	671.44	678.13	666.95
sv	Services	4,436.65	4,443.60	4,459.80	4,549.55	4,528.90	4,588.10
sho	Housing	1,122.60	1,111.55	1,116.35	1,148.68	1,122.75	1,140.53
shoop	Household operation	417.98	411.06	409.22	416.21	398.68	409.24
str	Transportation	284.41	289.56	289.80	288.41	296.06	295.58
smc	Medical care	1,260.92	1,271.88	1,277.03	1,304.32	1,322.40	1,332.79
srec	Recreation	313.14	313.09	310.08	319.86	320.09	313.55
soth	Other Services	1,036.18	1,045.01	1,055.64	1,070.33	1,067.27	1,094.01

Deviation from the BEA data as of April 2007

 in percent```
apce Personal consumption expenditures
md Durable goods
dmv Motor vehicles and parts
dfur Furniture and household equipment
doth Other durable
nd Nondurable goods
nfood Food
ncloth Clothing and shoes
ngas Gasoline, fuel oil, and other energy goods
noth Other nondurable
sv Services
sho Housing
shoop Household operation
str Transportation
smc Medical care
srec Recreation
soth Other Services
```

| 2005 |  | 2006 |  |
| ---: | ---: | ---: | ---: |
| actual <br> exog | predicted <br> exog | actual <br> exog | predicted <br> exog |
| 0.38 | 0.58 | 0.38 | 0.93 |
| 1.42 | 2.40 | 2.55 | 2.75 |
| 0.97 | 5.41 | 1.51 | 7.80 |
| 1.84 | 1.15 | 3.46 | 0.50 |
| 1.68 | -1.69 | 3.27 | -2.79 |
| 0.42 | -0.04 | 1.19 | 0.32 |
| 0.28 | -1.49 | 1.04 | -3.24 |
| 1.68 | 1.07 | 3.15 | 0.53 |
| -0.38 | 4.76 | -0.11 | 17.91 |
| 0.35 | 0.00 | 1.00 | -0.67 |
| 0.16 | 0.52 | -0.45 | 0.85 |
| -0.98 | -0.56 | -2.26 | -0.71 |
| -1.66 | -2.10 | -4.21 | -1.67 |
| 1.81 | 1.89 | 2.65 | 2.49 |
| 0.87 | 1.28 | 1.39 | 2.18 |
| -0.02 | -0.98 | 0.07 | -1.97 |
| 0.85 | 1.88 | -0.29 | 2.21 |

Table 3.6 (cont.)

## Chained Price Index (2000=1)

## Results from Historical Simulations

|  |  | BEA | 2005 <br> actual <br> exog | predicted exog | BEA | 2006 actual exog | predicted exog |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| apce | Personal consumption expenditures | 1.115 | 1.112 | 1.104 | 1.146 | 1.143 | 1.123 |
| md | Durable goods | 0.902 | 0.894 | 0.893 | 0.890 | 0.876 | 0.875 |
| dmv | Motor vehicles and parts | 0.990 | 0.986 | 0.984 | 0.994 | 0.994 | 0.992 |
| dfur | Furniture and household equipment | 0.769 | 0.756 | 0.755 | 0.734 | 0.711 | 0.708 |
| doth | Other durable | 0.977 | 0.971 | 0.971 | 0.985 | 0.967 | 0.963 |
| nd | Nondurable goods | 1.115 | 1.113 | 1.102 | 1.149 | 1.143 | 1.125 |
| nfood | Food | 1.127 | 1.126 | 1.127 | 1.153 | 1.151 | 1.153 |
| ncloth | Clothing and shoes | 0.917 | 0.904 | 0.899 | 0.913 | 0.889 | 0.884 |
| ngas | Gasoline, fuel oil, and other energy goods | 1.514 | 1.515 | 1.404 | 1.711 | 1.707 | 1.510 |
| noth | Other nondurable | 1.078 | 1.077 | 1.077 | 1.098 | 1.094 | 1.089 |
| sv | Services | 1.165 | 1.163 | 1.154 | 1.205 | 1.208 | 1.181 |
| sho | Housing | 1.162 | 1.174 | 1.169 | 1.203 | 1.225 | 1.206 |
| shoop | Household operation | 1.156 | 1.148 | 1.120 | 1.215 | 1.204 | 1.125 |
| str | Transportation | 1.127 | 1.111 | 1.108 | 1.169 | 1.143 | 1.135 |
| smc | Medical care | 1.184 | 1.178 | 1.171 | 1.218 | 1.219 | 1.202 |
| srec | Recreation | 1.152 | 1.156 | 1.152 | 1.186 | 1.194 | 1.182 |
| soth | Other Services | 1.166 | 1.158 | 1.147 | 1.205 | 1.203 | 1.167 |

Deviation from the BEA data as of April 2007 in percent

| apce | Personal consumption expenditures |
| :--- | :--- |
| md | Durable goods |
| dmv | Motor vehicles and parts |
| dfur | Furniture and household equipment |
| doth | Other durable |
| nd | Nondurable goods |
| nfood | Food |
| ncloth | Clothing and shoes |
| ngas | Gasoline, fuel oil, and other energy goods |
| noth | Other nondurable |
| sv | Services |
| sho | Housing |
| shoop | Household operation |
| str | Transportation |
| smc | Medical care |
| srec | Recreation |
| soth | Other Services |


| 2005 |  | 2006 |  |
| :---: | :---: | ---: | ---: |
| actual | predicted |  |  |
| exog | exog | actual <br> exog | predicted <br> exog |
| -0.29 | -1.02 | -0.20 | -2.00 |
| -0.92 | -0.96 | -1.50 | -1.70 |
| -0.37 | -0.55 | -0.02 | -0.16 |
| -1.73 | -1.74 | -3.13 | -3.54 |
| -0.65 | -0.60 | -1.74 | -2.17 |
| -0.25 | -1.15 | -0.57 | -2.08 |
| -0.09 | 0.01 | -0.17 | 0.01 |
| -1.47 | -1.99 | -2.61 | -3.15 |
| 0.05 | -7.31 | -0.25 | -11.75 |
| -0.03 | -0.08 | -0.32 | -0.79 |
| -0.17 | -0.95 | 0.25 | -1.99 |
| 1.08 | 0.64 | 1.80 | 0.21 |
| -0.67 | -3.12 | -0.94 | -7.41 |
| -1.41 | -1.67 | -2.16 | -2.87 |
| -0.55 | -1.14 | 0.05 | -1.37 |
| 0.39 | 0.04 | 0.67 | -0.41 |
| -0.68 | -1.67 | -0.17 | -3.17 |

## Total annual PCE

At the most aggregate level (total PCE), the PCE equations gave quite a good forecast in both historical simulations. Historical simulation with actual exogenous variables produced very close to the published total PCE in nominal value while the simulation with QUEST gave lower estimate of nominal total PCE. The second simulation number was lower than the published number by 0.44 percent.

This result is expected as it basically shows that the lagged dependent variables generate very good forecast in the short-term. Also, the error of each detailed estimates were averaged out when we annualized the estimates and, then, aggregated them up to the total PCE.


Historical Simulation, 2005-2006


The first simulation of the price index gave excellent results while the second simulation only continued the trend and failed to predict the acceleration of inflation which occurred during the simulation period.

The comparison of the Chained 2000 real PCE ${ }^{15}$ compounds the error from both nominal and price equations. Nevertheless, this result is reasonable considering the estimates of nominal values and prices. The first simulation gave a very good estimate of nominal PCE while giving a lower price level. Thus, the real PCE from the first simulation should be higher than the published data. In the same way, the lower estimates of nominal value and price index from the second simulation means that the real PCE estimate should yield a higher value than the published real PCE.

15 All the real values estimated in this chapter are generated from the chained-weighted Fisher index and not from the direct identity [Nominal = price x Real]. As discussed in the previous chapter, since we did not estimate PCEs at the same details as the BEA did, these products (price indexes and real aggregates) from the chain-weighted Fisher index generally will not be equal to the BEA published numbers even when we have no error in all of our estimates.

## Durable goods

Both the first and the second simulations gave acceptable estimates of nominal PCE of durable goods. As expected. The first simulation provides a better estimate of nominal durable PCE than the second simulation.

BEA published nominal PCE of durable goods of 1,033.1 billion dollars and $1,071.3$ billion of dollars in 2005 and 2006, respectively. The estimates from the first simulation are surprisingly close to the published numbers. The second simulation number was higher than the published data by 1.43 percent in 2005 and coming closer to the published number in 2006 with an error of 1.02 percent.



The chained price of durable PCE estimates from both simulations were very close to each other with the first simulation providing slightly better performance. However, both simulations estimated that the price of durables would fall faster than it did. In August 2007, BEA revised these price index numbers downward in both 2005 and 2006. However, our estimates are still lower than the revised numbers.

It may seem like a big misses from the above graph. However, it should be noted that the actual values show a break in the trend.

As a result of the low estimates of the price index, both simulations gave estimates of chained 2000 real durable PCE higher than the published data. In 2006, the second simulation estimate missed the published real durable PCE by 2.75 percent. The high estimates in real value are the compound effect of over-estimated the nominal value and under-estimated price index.

## Motor vehicles and parts

The published nominal PCEs of Motor vehicles and parts in 2005 and 2006 were 448.2 billion dollars and 445.3 billion dollars, respectively. The historical simulation with actual exogenous variables gave pretty good estimates, especially in 2005. The nominal PCE estimates of motor vehicles and parts from the first simulation were higher than the published number by 0.60 percent and 1.49 percent in 2005 and 2006, respectively. On the other hand, the estimates from the second simulation were higher than the published number by 4.82 percent in 2005 and 7.63 percent in 2006.


The difference in performance of the two historical estimations holds for the estimates of chained 2000 real PCE of motor vehicles and parts. On the real side, the second simulation gave an estimate that higher than the published number by 7.80 percent in 2006 while the first simulation missed the published number by 1.51 percent in the same period. The cause of lower accuracy on the real estimates of the second simulation compare to its nominal estimate is evident from observing the estimates of the price index. Both simulations predicted lower price index than the published data with the second simulation provided, relatively, a less accurate one. These underestimations of the price index exacerbate the accuracy of the real numbers.

This result exhibits that the accuracy of the exogenous inputs in the equations is important. We see that, with the accurate exogenous macroeconomic variables, as in the first simulation, we achieve a better forecast than using the less accurate exogenous variables data. This means that, at least for this aggregate, the equation for the nominal estimation performs very well and its performance depends on the quality of its inputs.

## Furniture and household equipment

In 2005 and 2006, BEA published nominal PCE of furniture and household equipment of 377.2 billion dollars and 404.9 billion dollars, respectively. The results show that our equations estimate the nominal consumption of furniture and equipment very well when given proper exogenous inputs, as in the first simulation. The first simulation provided estimates that were lower than the published nominal numbers by 0.13 percent and 0.28 percent in 2005 and 2006, respectively. While the second
simulation gave a pretty comparable performance to the first simulation in 2005 (an error of -0.56 percent), its performance dropped sharply to an error of -3.01 percent in 2006.

Both simulations gave almost identical performance on the estimations of the price indexes. Both missed the published price index by around -3.2 percent with the first simulation having a small advantage ( $-3.13 \%$ vs. $-3.54 \%$ ).


Furniture and household equipment (Real 2000)


Furniture and household equipment (Price,2000=1)
Historical Simulation, 2005-2006


With the underestimated price indexes, the second simulation, exceptionally, gave a better forecast accuracy than the first simulation in estimating the chain 2000 real PCE of furniture and equipment. The second simulation estimates of the real value were higher than the published numbers by 1.15 percent in 2005 and 0.5 percent in 2006. In
the meantime, the first simulation overestimated the real values by 1.84 percent and 3.46 percent in 2005 and 2006, respectively.

The personal consumption of furniture and equipment has become more important in the recent years. In 2005 and 2006, furniture and equipment contributed around 67 percent and 85 percent, respectively, to the change in real PCE of durable goods ${ }^{16}$. One factor of this increasing contribution is the deceasing trend of the price of furniture and equipment. This declining price is mostly a product of the falling computer price as computers are a component of this category.

As this category has become more important, the good performance from our equations in forecasting both nominal and real values of these products is significant for the accuracy of a economic model.

## Other durable goods

The equations' performance from the historical simulation with actual exogenous inputs is very good in nominal value forecast of other durable PCE. In 2005, the first simulation overestimated the nominal PCE of other durable by 1.03 percent. In the same year, the second simulation underestimated the nominal PCE of other durable by 2.27 percent. In 2006, the first simulation underestimated by 1.49 percent and the second simulation by -4.89 percent. Again, the discrepancy of the performance between the two simulations is coming from the difference in the value of the exogenous inputs.

16 SOURCE: BEA, Survey of Current Business, March 2007: Table 2.3.2 page D-19.


Other durable (Price,2000=1)
Historical Simulation, 2005-2006


The price index estimations, however, did not fare as well. Both estimations missed the published price index by around one and two percent in 2005 and 2006, respectively. The likely reason for these significant errors is the price is following the decreasing trend of the last decade (1995-2003). In fact, the price of durable PCE reversed its downward trend and showed a positive growth since 2004. As the price equations are heavily depended on the lagged dependent variables, the forecasts' numbers are to be expected as they follow the past trend of the price level.

For the real value, the first simulation over-estimated by 1.68 percent and 3.27 percent in 2005 and 2006, respectively; and the second simulation under-estimated the real number by 1.69 percent in 2005 and 2.79 percent in 2006.

## Nondurable goods

The first historical simulation overestimated nominal PCE of Nondurables by 0.17 percent and 0.61 percent in 2005 and 2006, respectively. The second simulation underestimated the nominal PCE by 1.19 percent and 1.76 percent in 2005 and 2006, respectively. This, again, shows the importance of the exogenous inputs' quality, especially in the equations used in estimating the nominal consumption.




Both simulations underestimated the price index with better estimates from the first simulation. Both alternatives missed the published price index by around 1 percent in 2005 and 2 percent in 2006.

The Historical simulation with actual exogenous inputs over-estimated the real 2000 consumption by 0.42 percent and 1.19 percent in 2005 and 2006 respectively. The second simulation underestimated the real 2000 PCE by 0.04 percent in 2005 and overestimated it by 0.32 percent in 2006 .

## Food

For the PCE of food, the equations gave good forecasts when the exogenous variables were entered into the model with the actual values. We can observe from the graphs shown below that the movements of all three graphs have the same patterns as we saw in the graphs from the PCE of nondurable goods. This similarity is expected as food PCE accounts for most of nondurable PCE in both nominal value and real value. In 2005
and 2006, BEA estimated the food-consumption contribution to percent change in real PCE of Nondurables at around 60 percent.


Food (Price,2000=1)
Historical Simulation, 2005-2006


In nominal value, the first simulation produced very good forecast of the food
PCE with errors of 0.19 percent in 2005 and 0.87 percent in 2006. On the other hand, the second simulation did not fare as well as the first simulation. The second simulation numbers were lower than the published numbers by 1.48 percent and 3.24 percent in 2005 and 2006, respectively.

Meanwhile, the price equations produced excellent forecasts with both simulations. Both simulations missed the published price index of the food PCE by less than 0.2 percent in both 2005 and 2006. This should not be a surprise as the price index has been increasing quite steadily overtime with very little volatility.

The estimated chained 2000 real food PCEs reflected the accuracy of the nominal and the price equations. For the real food PCE, the first simulation produced errors of 0.28 percent in 2005 and 1.04 percent in 2006 while the second simulation gave errors of -1.49 percent and -3.24 percent in 2005 and 2006, respectively.

## Clothing and shoes

The equations' performance from the historical simulation with actual exogenous variables is very good in nominal forecast of the PCE of clothing and shoes. In 2005, the first simulation estimated the nominal PCE of clothing and shoes of 342.46 billion dollars which is higher than the published number by 0.19 percent. The error became 0.46 percent in 2006. In 2005, the second simulation estimated the nominal PCE of clothing and shoes of 338.57 billion dollars or an underestimation of 0.95 percent. In 2006, the error from the second simulation grew larger to -2.64 percent.


Clothing and shoes (Price,2000=1)
Historical Simulation, 2005-2006


On the real side, both historical simulations overestimated the chained 2000 real PCE of clothing and shoes. The first simulation gave estimates that higher than the published real PCE of clothing and shoes by 1.68 percent in 2005 and 3.15 percent in 2006. The second simulation produced numbers that higher than the published values by 1.07 percent and 0.53 percent in 2005 and 2006, respectively. In the graph above, we observe that the second simulation performed better than the first simulation in 2006.

The relatively better performance of the second simulation came from the relative performance between the two simulations in forecasting the price index of the PCE of clothing and shoes in 2005 and 2006. For price index, the second simulation gave
additional error of around 0.5 percent more than the first simulation. The first simulation missed the published price index by -1.47 percent in 2005 and -2.61 percent in 2006. The second simulation missed the published price index by -1.99 percent and -3.15 percent in 2005 and 2006, respectively.

## Gasoline, fuel oil, and other energy goods

Since 2003, price of gasoline and energy has been rising steadily. This recent trend affects performance of our equation significantly, especially in the price equations, which affect the real value.


Gasoline, fuel oil, and other energy goods (Price,2000=1)
Historical Simulation, 2005-2006


The nominal forecasts show decent performance considering the shift in the price movement. Both simulations predicted that the nominal PCE of gasoline, fuel oil, and other energy goods to keep rising, however, at a rate slightly slower than the published data. The first simulation missed the published nominal values by -0.32 percent in 2005 and -0.36 percent in 2006. The second simulation also underestimated the nominal consumption by 2.89 percent and 4.05 percent in 2005 and 2006, respectively.

The second simulation estimated the increasing in price index of the gasoline, fuel oil, and other energy goods but not as fast as the actual growth rate. In fact, the second simulation missed it by a pretty wide margin. In 2005, the first simulation estimated the price index of 151.5 while the second simulation estimated the same price index of 140.4. The second simulation underestimated the price index by 7.31 percent in 2005. This means that, by themselves, the price equations are very accurate when we have better input information.

The poor performance of the second simulation in predicting the price index affected the forecasting performance of the chained 2000 real value, especially the 2006 forecast. In 2005, the errors were -0.38 percent with the first simulation and 4.76 percent with the second simulation. However, in 2006, the errors are -0.11 percent and 17.91 percent with the first simulation and the second simulation, respectively.

## Other nondurable goods



Both simulations performed very well in forecasting the PCE of other nondurable goods in all three components; i.e. nominal value, real value, and price index. The published nominal PCE of other nondurable goods were 693.96 billion dollars in 2005 and 737.09 billion dollars in 2006. Both simulations provide estimates that have around one percent errors in both 2005 and 2006.

The first simulation overestimated the real PCE of other nondurables by 0.35 percent in 2005 and 1.0 percent in 2006 while the second simulation missed the published real numbers by less than 0.00 percent and -0.67 percent in 2005 and 2006, respectively.

The published price indexes of the PCE of other nondurable goods were 107.77 in 2005 and 109.78 in 2006 [2000=100]. Both simulations underestimated the price index by less than 0.8 percent in both 2005 and 2006. The first simulation perform slightly better than the second simulation in forecasting the price index, i.e. the first simulation missed the published number by 0.32 percent, in 2006, compared to 0.79 percent by the second simulation.

## Services

Overall, our equations perform very well in forecasting the PCE of services. This excellent performance was due to the good performance in forecasting the three main contributors to the PCE of services: Housing, Medical services, and Other services. This result helped the performance of the equations in producing a good estimate of the total PCE, as discussed earlier, because PCE of services has become the main component of the U.S. PCE. BEA reported that PCE of services contributed to around 50 percent of the real growth rate of the total PCE in 2005 and 2006.



The historical simulation with actual exogenous inputs underestimated the nominal PCE of services by only 0.03 percent in 2005 and 0.22 percent in 2006. The historical simulation with QUEST misses the nominal PCE of services by -0.45 percent and -1.17 percent in 2005 and 2006, respectively.

For the price index, both simulations underestimated the chained 2000 price index of the PCE of services by less than one percent in 2005. The first simulation missed the published figures by -0.17 percent in 2005 and 0.25 percent in 2006. The second simulation provided estimates with errors of -0.95 percent in 2005 and -1.99 percent in 2006.

## Housing

PCE of housing is a special aggregate. In this study, this aggregate does not have any sub-category by the definition of PCE, See Appendix 3.2. This means that the nominal value and the price index of this category are estimated by only two equations; one for the nominal value and one for the price index.

As shown below, the equations provided excellent estimates for nominal value of the PCE of housing in both simulations. As stated earlier, this excellent forecast resulted in the better performance at the more aggregate level as PCE of housing contribution to the real growth of the PCE of services were around 25 percent in 2005 and 2006. In fact, it was the second biggest contributor in 2005 and the third biggest contributor in 2006.


Housing (Price,2000=1)
Historical Simulation, 2005-2006


The first simulation missed the nominal PCE of housing by 0.08 percent and -0.5 percent in 2005 and 2006, respectively. It underestimated the chained 2000 real PCE of housing by 0.98 percent in 2005 and 2.26 percent in 2006 . On the chained 2000 price
index, the first simulation missed the published numbers by 1.08 percent and -1.8 percent in 2005 and 2006, respectively.

The second simulation missed the nominal PCE of housing by 0.08 percent and -0.50 percent in 2005 and 2006, respectively. The real 2000 estimates of the second simulation also underestimated the published chained 2000 real PCE of housing by 0.56 percent in 2005 and 0.71 percent in 2006. The second simulation also gave small errors of 0.64 percent in 2005 and 0.21 percent in 2006 when estimating the chained 2000 price index of PCE of housing.

## Household Operation




The first simulation underestimated the nominal PCE of household operation by 2.39 percent in 2005 and 5.19 percent in 2006. The second simulation also underestimated the nominal PCE by 5.22 percent and 9.03 percent in 2005 and 2006, respectively.

The first simulation underestimated the chained 2000 price index of PCE of household operation by 0.67 percent in 2005 and 0.94 percent in 2006. The estimates of the price index form the second simulation were lower than the published data by 3.12 percent and 7.41 percent in 2005 and 2006, respectively.

Things look better on the real side, at least with the historical simulation with actual exogenous variables. The first simulation gave the real 2000 PCE of household operation with error of -1.66 percent and -4.21 percent in 2005 and 2006, respectively. On the other hand, the second simulation underestimated the real 2000 PCE of household operation by 2.1 percent in 2005 and 1.67 percent in 2006.

PCE of household operation is the only component of services PCE that our equations did not provide relatively good results, though the actual numbers were not as
bad as the above graphs suggested. I believe that the increasing energy price contributes greatly to this result. PCE of electricity and gas contributed around 40 percent of nominal PCE of household operation in 2005 and 2006. The PCE of electricity and gas also contributed more than 50 percent to the real growth rate of PCE of household operation. The rapidly increasing energy price since 2003 means that, by 2005, the utility companies started transfer the increasing cost to the consumer as the price of PCE of electricity and gas increasing sharply in 2005 and 2006. As seen in the previous aggregates, our equations seem to have trouble in providing a good estimate when there is a sudden shift in energy cost and energy price affected the consumption behavior on that category.

However, as the PCE of household operation contributes less than ten percent to the real growth rate of PCE of services. This result had little effect to the performance of our equations in estimating the PCE of services.

## Transportation

Both historical simulations accurately estimated nominal PCE of transportation in 2005 and 2006. In fact, both simulations missed the published nominal values by less than 0.5 percent in both 2005 and 2006.

The price equations did not fare as well as the nominal equations in estimating the price index of the PCE of transportation. As discussed in the PCE of household transportation, the rising energy price, especially the crude oil price, since 2003 is likely the main reason for these results as both simulations underestimated the price index in

2005 and 2006. The first simulation underestimated the price index by 1.41 percent in 2005 and 2.16 percent in 2006 while the second simulation underestimated the price index by 1.67 percent in 2005 and 2.87 percent in 2006.


As a consequence of underestimating the price index of PCE of transportation, both simulations overestimated the chained 2000 real PCE of transportation in 2005 and 2006. The first simulation missed the published real numbers by 1.81 percent and 2.65 percent in 2005 and 2006, respectively. The second simulation also overestimated the real transportation PCE by 1.89 percent in 2005 and 2.49 percent in 2006.

## Medical Care



Medical care (Price,2000=1)
Historical Simulation, 2005-2006


In the last 3 decades, medical care has been one of the main contributors to the growth of the services PCE. The good performance of both simulations, shown in the above graphs, helps in providing the good estimates of the PCE of services.

The historical simulation with actual exogenous variables overestimated the nominal medical care PCE by 0.31 percent and 1.44 percent in 2005 and 2006, respectively. The second simulation estimated the nominal PCE of medical care with the error of 0.12 percent in 2005 and 0.78 percent in 2006.

Both simulations provided excellent estimates of the price index of medical care PCE. The first simulation missed the published numbers by -0.55 percent and 0.05 percent in 2005 and 2006, respectively. The second simulation also missed the published medical care PCE by -1.14 percent in 2005 and -1.37 percent in 2006.

The first simulation overestimated the published numbers by 0.87 percent in 2005 and 1.39 percent in 2006. The second simulation also overestimated the published numbers by 1.28 percent in 2005 and 2.18 percent in 2006.

## Recreation

Both simulations performed relatively well in forecasting the PCE of recreation in all three components; i.e. nominal value, real value, and price index. Both simulations provide estimates that have around one percent or less error in both 2005 and 2006, except the 2006 second simulation that gave an error of -2.37 percent.


Recreation (Nominal)
Historical Simulation, 2005-2006

Recreation (Real 2000)
Historical Simulation, 2005-2006



The first simulation underestimated the real PCE of recreation by 0.02 percent in 2005 and overestimated it by 0.07 percent in 2006 while the second simulation missed the published real numbers by -0.98 percent and -1.97 percent in 2005 and 2006, respectively.

The published price indexes of the PCE of recreation were 115.17 in 2005 and 118.64 in $2006[2000=100]$. Both simulations underestimated the price index by less than one percent in both 2005 and 2006. The second simulation performed slightly better than the first simulation in forecasting the price index, i.e. the first simulation missed the published number by 0.67 percent, in 2006, compared to -0.41 percent by the second simulation.

## Other services

As shown below, the equations provided excellent estimates for nominal value of the PCE of housing in both simulations. As stated earlier, this excellent forecast resulted in the better performance at the more aggregate level as PCE of other services contribution to the real growth of the PCE of services were around 20 percent in 2005
and 30 percent in 2006. In fact, it was the third biggest contributor to the real growth of services PCE in 2005 and the second biggest contributor in 2006.


Other Services (Price,2000=1)
Historical Simulation, 2005-2006

_ psotha -廿-- psothb ...... beapsoth

The first simulation missed the nominal PCE of other services by 0.16 percent and -0.45 percent in 2005 and 2006, respectively. It missed the chained 2000 real PCE of other services by 0.85 percent in 2005 and -0.29 percent in 2006. On the chained 2000 price index, the first simulation missed the published numbers by -0.68 percent and -0.17 percent in 2005 and 2006, respectively.

The second simulation missed the nominal PCE of other services by 0.17 percent and -1.03 percent in 2005 and 2006, respectively. The real 2000 estimates of the second
simulation also missed the published chained 2000 real PCE of services by 1.88 percent in 2005 and 2.21 percent in 2006. The second simulation also gave small errors of -1.67 percent in 2005 and -3.17 percent in 2006 when estimating the chained 2000 price index of PCE of other services.

### 3.6 Short-term forecast of Personal consumption expenditures

In this section, the short-term forecasts of the U.S. Detailed Personal consumption expenditures are estimated using the equations estimated with the approach described earlier in this chapter.

All equations, both nominal PCE and the price indexes, are fitted with data between January 1994 and June 2007. We forecast the detailed PCE from July 2007 to December 2008. The estimation is done at the monthly frequency. Then, the monthly estimated series are annualized and are presented in this discussion. The 116 annualized detailed forecasts, nominal, real and price index, are shown in Appendix 3.4 and Appendix 3.5. The discussion will cover generally at the more aggregate level of PCE which should give a better view of the general consumption.

The values and the plots of the estimated major PCE aggregates are shown in Table 3.8 and Figure 3.2 .

### 3.6.1 Forecast assumptions

All exogenous variables used in the forecast are generated by QUEST except crude oil price and the Dow Jones Industrial Index. Both the crude oil price and the Dow

Jones Industrial Index reflect the author's expectation of these two indicators. The problem in the sub-prime credit market has been included as an exogenous input (through the interest rate) in the QUEST model. All exogenous variable assumptions are shown in

Table 3.7.

Table 3.7: Exogenous variables' assumption between July 2007 and December 2008

|  | 2007 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jul | Aug | Sep | Oct | Nov | Dec |  |  |  |  |  |  |
| cdmv | 436.19 | 438.34 | 440.59 | 443.43 | 445.49 | 447.28 |  |  |  |  |  |  |
| cdfur | 411.57 | 410.30 | 409.54 | 409.91 | 409.73 | 409.61 |  |  |  |  |  |  |
| cdoth | 221.66 | 222.45 | 223.15 | 223.79 | 224.34 | 224.82 |  |  |  |  |  |  |
| cnfood | 1336.11 | 1342.21 | 1347.94 | 1353.41 | 1358.32 | 1362.77 |  |  |  |  |  |  |
| cncloth | 370.13 | 370.90 | 371.57 | 372.02 | 372.56 | 373.09 |  |  |  |  |  |  |
| cngas | 362.99 | 358.68 | 355.11 | 352.17 | 350.18 | 349.03 |  |  |  |  |  |  |
| cnoth | 766.57 | 770.97 | 775.20 | 779.31 | 783.14 | 786.76 |  |  |  |  |  |  |
| cshous | 1468.72 | 1476.28 | 1484.12 | 1493.17 | 1500.86 | 1508.12 |  |  |  |  |  |  |
| csho | 528.42 | 531.27 | 533.95 | 536.47 | 538.80 | 540.94 |  |  |  |  |  |  |
| cstr | 358.67 | 360.49 | 362.30 | 364.28 | 365.93 | 367.44 |  |  |  |  |  |  |
| csmc | 1697.00 | 1709.08 | 1720.95 | 1733.15 | 1744.16 | 1754.54 |  |  |  |  |  |  |
| csrec | 401.90 | 403.88 | 406.06 | 408.69 | 411.04 | 413.38 |  |  |  |  |  |  |
| csoth | 1388.97 | 1398.18 | 1406.89 | 1415.37 | 1422.90 | 1429.75 |  |  |  |  |  |  |
| gdp | 13865.55 | 13914.79 | 13965.36 | 14018.73 | 14070.79 | 14123.08 |  |  |  |  |  |  |
| djia | 13362.38 | 13464.63 | 13592.24 | 13837.98 | 13946.58 | 14010.87 |  |  |  |  |  |  |
| ddj | -46.24 | 102.26 | 127.61 | 245.74 | 108.60 | 64.29 |  |  |  |  |  |  |
| crude | 65.87 | 70.19 | 76.02 | 89.07 | 93.63 | 95.41 |  |  |  |  |  |  |
| oildf | 0.80 | 4.32 | 5.83 | 13.05 | 4.56 | 1.78 |  |  |  |  |  |  |
| gdpi | 1.45 | 1.45 | 1.46 | 1.46 | 1.47 | 1.47 |  |  |  |  |  |  |
|  |  |  |  |  |  | 200 | 08 |  |  |  |  |  |
|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| cdmv | 448.90 | 450.03 | 450.78 | 449.99 | 450.88 | 452.26 | 454.61 | 456.66 | 458.88 | 461.26 | 463.80 | 466.50 |
| cdfur | 409.70 | 409.59 | 409.42 | 409.10 | 408.90 | 408.73 | 408.59 | 408.48 | 408.40 | 408.36 | 408.35 | 408.37 |
| cdoth | 225.17 | 225.52 | 225.83 | 225.74 | 226.22 | 226.92 | 228.12 | 229.05 | 229.98 | 230.92 | 231.86 | 232.80 |
| cnfood | 1366.59 | 1370.25 | 1373.58 | 1375.13 | 1378.87 | 1383.36 | 1389.42 | 1394.78 | 1400.27 | 1405.89 | 1411.64 | 1417.52 |
| cncloth | 373.73 | 374.13 | 374.40 | 374.10 | 374.48 | 375.07 | 376.13 | 376.99 | 377.90 | 378.84 | 379.84 | 380.87 |
| cngas | 345.13 | 348.33 | 355.07 | 376.94 | 382.02 | 381.93 | 370.90 | 364.78 | 357.81 | 349.99 | 341.32 | 331.80 |
| cnoth | 790.06 | 793.31 | 796.43 | 798.60 | 802.03 | 805.93 | 810.78 | 815.23 | 819.79 | 824.44 | 829.20 | 834.04 |
| cshous | 1515.09 | 1521.38 | 1527.15 | 1530.53 | 1536.62 | 1543.55 | 1552.12 | 1560.18 | 1568.51 | 1577.13 | 1586.01 | 1595.17 |
| csho | 542.83 | 544.67 | 546.38 | 547.40 | 549.28 | 551.47 | 554.29 | 556.83 | 559.43 | 562.08 | 564.79 | 567.55 |
| cstr | 368.79 | 370.02 | 371.12 | 371.62 | 372.79 | 374.16 | 375.96 | 377.60 | 379.28 | 381.02 | 382.80 | 384.63 |
| csmc | 1764.23 | 1773.39 | 1781.95 | 1787.87 | 1796.79 | 1806.66 | 1818.33 | 1829.45 | 1840.89 | 1852.63 | 1864.69 | 1877.05 |
| csrec | 415.85 | 418.06 | 420.16 | 421.69 | 423.90 | 426.33 | 429.19 | 431.93 | 434.75 | 437.64 | 440.60 | 443.64 |
| csoth | 1435.31 | 1441.22 | 1446.89 | 1450.81 | 1457.12 | 1464.30 | 1473.46 | 1481.58 | 1489.75 | 1497.98 | 1506.27 | 1514.61 |
| gdp | 14175.56 | 14228.21 | 14281.08 | 14332.56 | 14386.98 | 14442.81 | 14502.08 | 14559.09 | 14615.96 | 14672.63 | 14729.14 | 14785.46 |
| djia | 13980.67 | 13994.00 | 14000.66 | 13991.78 | 13991.77 | 13991.78 | 13991.78 | 13991.77 | 13991.78 | 13991.78 | 13991.78 | 13991.77 |
| ddj | -30.20 | 13.32 | 6.66 | -8.88 | -0.02 | 0.02 | 0.00 | -0.02 | 0.02 | -0.01 | 0.00 | -0.01 |
| crude | 90.49 | 89.66 | 89.00 | 89.02 | 88.30 | 87.35 | 84.86 | 84.47 | 84.86 | 86.02 | 87.96 | 90.68 |
| oildf | -4.92 | -0.83 | -0.66 | 0.02 | -0.72 | -0.94 | -2.49 | -0.39 | 0.39 | 1.16 | 1.94 | 2.71 |
| gdpi | 1.48 | 1.49 | 1.49 | 1.50 | 1.50 | 1.51 | 1.51 | 1.52 | 1.53 | 1.53 | 1.54 | 1.54 |

### 3.6.2 Outlook with plots and aggregates (annual series)

In 2007, the U.S. Economy has experienced rising energy costs which could impact personal consumption expenditures. Total PCE has been increasing with a real
growth rate of more than three percent since 2004. This real growth rate is expected to fall to 2.45 percent and 1.65 percent in 2007 and 2008, respectively. Table 3.9 shows the growth rate of the major PCE aggregates. This slower growth in real PCE compared to the nominal PCE is easily seen from the growth rate of the price index. Since 2004, the price index of total PCE is growing at an average rate of $2.5 \%$ to $3.0 \%$ while it had been growing at around two percent before 2004. In 2007 and 2008, the forecasted price indexes are 1.18 and 1.22 , respectively. This means that the price index grows by $3.01 \%$ and $3.32 \%$ in 2007 and 2008, respectively. We can see that the increasing energy price affects the real consumption as its cut into the disposable income that consumers have left for other purchases (besides Gas and Utilities).

Table 3.8: Major aggregates of annual PCE Forecast 2007 and 2008

| Forecast 2007 and 2008 Nominal |  |
| :--- | :--- |
| apce | Personal consumption expenditures |
| md | Durable goods |
| dmv | Motor vehicles and parts |
| dfur | Furniture and household equipment |
| doth | Other durable |
| nd | Nondurable goods |
| nfood | Food |
| ncloth | Clothing and shoes |
| ngas | Gasoline, fuel oil, and other energy goods |
| noth | Other nondurable |
| sv | Services |
| sho | Housing |
| shoop | Household operation |
| str | Transportation |
| smc | Medical care |
| srec | Recreation |
| soth | Other Services |

## Forecast 2007 and 2008 Price, [2000=1] <br> apce Personal consumption expenditures <br> md Durable goods <br> dmv Motor vehicles and parts <br> dfur Furniture and household equipment <br> doth Other durable <br> nd Nondurable goods <br> nfood Food <br> ncloth Clothing and shoes <br> ngas Gasoline, fuel oil, and other energy goods <br> noth Other nondurable <br> sv Services <br> sho Housing <br> shoop Household operation <br> str Transportation <br> smc Medical care <br> srec Recreation <br> soth Other Services

## Forecast 2007 and 2008 Real 2000

apce Personal consumption expenditures
md Durable goods
dmv Motor vehicles and parts
dfur Furniture and household equipment
doth Other durable
nd Nondurable goods
nfood Food
ncloth Clothing and shoes
ngas Gasoline, fuel oil, and other energy goods
noth Other nondurable
sv Services
sho Housing
shoop Household operation
str Transportation
smc Medical care
srec Recreation
soth Other Services

| 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4975.788 | 6739.376 | 8707.818 | 9224.508 | 9724.809 | 10223.716 |
| 611.600 | 863.325 | 1023.879 | 1048.921 | 1077.681 | 1104.922 |
| 266.690 | 386.518 | 444.932 | 434.203 | 444.884 | 465.527 |
| 228.626 | 312.907 | 378.225 | 404.125 | 412.966 | 412.282 |
| 116.285 | 163.901 | 200.722 | 210.593 | 219.831 | 227.113 |
| 1485.065 | 1947.216 | 2516.179 | 2688.034 | 2826.917 | 2951.951 |
| 740.851 | 925.164 | 1183.824 | 1259.279 | 1336.284 | 1398.740 |
| 241.722 | 297.712 | 341.747 | 357.232 | 370.966 | 377.217 |
| 133.287 | 191.482 | 301.832 | 340.135 | 351.300 | 358.961 |
| 369.205 | 532.858 | 688.776 | 731.388 | 768.367 | 817.034 |
| 2879.123 | 3928.836 | 5167.760 | 5487.552 | 5820.209 | 6166.842 |
| 764.386 | 1006.456 | 1298.688 | 1381.341 | 1465.163 | 1547.478 |
| 298.746 | 390.110 | 481.019 | 501.616 | 523.591 | 538.327 |
| 207.673 | 291.253 | 324.242 | 340.598 | 356.855 | 372.245 |
| 797.852 | 1026.813 | 1492.622 | 1587.734 | 1691.609 | 1809.859 |
| 187.921 | 268.265 | 358.811 | 380.985 | 402.980 | 429.763 |
| 622.546 | 945.940 | 1212.379 | 1295.279 | 1380.012 | 1469.170 |
| 0.92 | 1.00 | 1.12 | 1.15 | 1.18 | 1.22 |
| 1.11 | 1.00 | 0.90 | 0.89 | 0.87 | 0.85 |
| 0.98 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 |
| 1.32 | 1.00 | 0.77 | 0.73 | 0.70 | 0.66 |
| 1.05 | 1.00 | 0.98 | 0.98 | 1.00 | 1.00 |
| 0.91 | 1.00 | 1.12 | 1.15 | 1.20 | 1.25 |
| 0.90 | 1.00 | 1.13 | 1.15 | 1.19 | 1.23 |
| 1.06 | 1.00 | 0.92 | 0.91 | 0.90 | 0.91 |
| 0.77 | 1.00 | 1.51 | 1.71 | 2.07 | 2.57 |
| 0.89 | 1.00 | 1.08 | 1.10 | 1.11 | 1.12 |
| 0.88 | 1.00 | 1.17 | 1.21 | 1.25 | 1.30 |
| 0.86 | 1.00 | 1.16 | 1.20 | 1.25 | 1.29 |
| 0.96 | 1.00 | 1.16 | 1.22 | 1.26 | 1.33 |
| 0.90 | 1.00 | 1.13 | 1.17 | 1.19 | 1.23 |
| 0.88 | 1.00 | 1.19 | 1.22 | 1.27 | 1.31 |
| 0.86 | 1.00 | 1.15 | 1.19 | 1.21 | 1.25 |
| 0.88 | 1.00 | 1.17 | 1.21 | 1.25 | 1.31 |
| 5432.392 | 6739.265 | 7803.607 | 8043.521 | 8240.232 | 8376.342 |
| 551.933 | 863.331 | 1137.756 | 1180.891 | 1235.720 | 1295.207 |
| 272.249 | 386.520 | 451.253 | 437.305 | 451.409 | 469.216 |
| 172.787 | 312.915 | 492.589 | 551.358 | 589.716 | 629.163 |
| 111.182 | 163.897 | 205.522 | 213.903 | 220.779 | 227.734 |
| 1638.130 | 1947.129 | 2255.337 | 2336.950 | 2365.485 | 2358.433 |
| 827.063 | 925.154 | 1049.892 | 1091.715 | 1119.176 | 1139.516 |
| 227.387 | 297.727 | 372.630 | 391.111 | 410.166 | 416.218 |
| 172.956 | 191.465 | 199.400 | 198.552 | 174.543 | 139.757 |
| 413.699 | 532.784 | 638.806 | 665.647 | 692.157 | 729.557 |
| 3260.278 | 3928.805 | 4427.085 | 4545.299 | 4665.241 | 4760.254 |
| 887.505 | 1006.385 | 1118.238 | 1148.264 | 1174.386 | 1202.516 |
| 312.829 | 390.134 | 416.449 | 412.862 | 416.740 | 404.911 |
| 231.763 | 291.260 | 287.804 | 291.197 | 299.083 | 302.942 |
| 906.384 | 1026.744 | 1258.130 | 1300.267 | 1337.132 | 1380.720 |
| 219.152 | 268.238 | 311.551 | 321.267 | 333.644 | 344.179 |
| 704.919 | 946.043 | 1033.674 | 1069.875 | 1102.748 | 1123.635 |

The forecast shows a decrease in spending in real nondurable goods consumption
in 2008. Analysing the component of nondurables goods shows that this decrease in nondurable goods real consumption is largely a result of the rapid decline in real
consumption of Gasoline, fuel oil, and other energy goods.

The real consumption of Gasoline, fuel oil, and other energy goods has a growth rate of $-12.09 \%$ in 2007 and $-19.93 \%$ in 2008. Typically, the growth rate of the nominal PCE of Gasoline, fuel oil, and other energy goods is very close to the growth rate of its price index. The reason is that this product categories is largely a necessary goods. The price elasticity of this category is very inelastic. The forecast of nominal PCE of Gasoline, fuel oil, and other energy goods also has a positive growth rate ( $2.18 \%$ in 2008) that is much slower than the growth rate of its price index ( $24.35 \%$ in 2008). This discrepancy between the growth rate of nominal PCE and its price index is out of line according to the recent trend. This finding may show a flaw in a set of equations that estimate the nominal PCE of products in this category. These equations do not take the rising price into account and they should be adjusted in the next update of the model.

Table 3.9: Growth rates of U.S. PCE 2000-2008

|  |  | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forecast 2007 and 2008 Nominal |  |  |  |  |  |  |  |  |  |  |
| apce | Personal consumption expenditures | 7.27\% | 4.68\% | 4.19\% | 4.80\% | 6.39\% | 6.25\% | 5.93\% | 5.42\% | 5.13\% |
| md | Durable goods | 5.59\% | 2.36\% | 4.55\% | 2.03\% | 4.37\% | 4.07\% | 2.45\% | 2.74\% | 2.53\% |
| dmv | Motor vehicles and parts | 4.24\% | 5.53\% | 5.24\% | 0.57\% | 1.19\% | 1.85\% | -2.41\% | 2.46\% | 4.64\% |
| dfur | Furniture and household equipment | 6.48\% | -0.26\% | 3.53\% | 2.60\% | 7.30\% | 6.33\% | 6.85\% | 2.19\% | -0.17\% |
| doth | Other durable | 7.14\% | -0.11\% | 4.80\% | 4.58\% | 6.60\% | 4.93\% | 4.92\% | 4.39\% | 3.31\% |
| nd | Nondurable goods | 7.89\% | 3.59\% | 3.10\% | 5.32\% | 7.01\% | 7.36\% | 6.83\% | 5.17\% | 4.42\% |
| nfood | Food | 5.96\% | 4.62\% | 3.51\% | 4.40\% | 6.42\% | 6.35\% | 6.37\% | 6.12\% | 4.67\% |
| ncloth | Clothing and shoes | 3.98\% | 0.00\% | 1.95\% | 2.45\% | 4.52\% | 5.16\% | 4.53\% | 3.84\% | 1.69\% |
| ngas | Gasoline, fuel oil, and other energs | 27.84\% | -2.31\% | -4.43\% | 17.25\% | 19.12\% | 20.88\% | 12.69\% | 3.28\% | 2.18\% |
| noth | Other nondurable | 7.52\% | 5.92\% | 5.50\% | 4.74\% | 5.17\% | 5.01\% | 6.19\% | 5.06\% | 6.33\% |
| sv | Services | 7.34\% | 5.74\% | 4.64\% | 5.14\% | 6.51\% | 6.15\% | 6.19\% | 6.06\% | 5.96\% |
| sho | Housing | 6.12\% | 6.68\% | 4.60\% | 3.45\% | 5.59\% | 5.86\% | 6.36\% | 6.07\% | 5.62\% |
| shoop | Household operation | 6.94\% | 4.85\% | -0.33\% | 5.32\% | 4.56\% | 7.14\% | 4.28\% | 4.38\% | 2.81\% |
| str | Transportation | 5.37\% | 0.54\% | -1.51\% | 3.08\% | 3.66\% | 5.21\% | 5.04\% | 4.77\% | 4.31\% |
| smc | Medical care | 6.83\% | 8.47\% | 8.29\% | 7.82\% | 7.30\% | 6.96\% | 6.37\% | 6.54\% | 6.99\% |
| srec | Recreation | 7.91\% | 5.92\% | 5.25\% | 6.24\% | 7.59\% | 4.97\% | 6.18\% | 5.77\% | 6.65\% |
| soth | Other Services | 9.90\% | 3.68\% | 4.28\% | 4.04\% | 7.81\% | 5.69\% | 6.84\% | 6.54\% | 6.46\% |
| Forecast 2007 and 2008 Price, [2000=1] |  |  |  |  |  |  |  |  |  |  |
| apce | Personal consumption expenditures | 2.48\% | 2.10\% | 1.42\% | 1.99\% | 2.65\% | 2.95\% | 2.77\% | 3.01\% | 3.32\% |
| md | Durable goods | -1.63\% | -1.87\% | -2.42\% | -3.54\% | -1.83\% | -0.74\% | -1.30\% | -1.81\% | -2.17\% |
| dmv | Motor vehicles and parts | 0.44\% | 0.51\% | -0.44\% | -2.40\% | -0.78\% | 1.75\% | 0.71\% | -0.74\% | 0.67\% |
| dfur | Furniture and household equipment | -4.53\% | -5.90\% | -5.79\% | -6.01\% | -4.16\% | -3.84\% | -4.56\% | -4.45\% | -6.40\% |
| doth | Other durable | -0.84\% | 0.32\% | -0.79\% | -1.62\% | 0.12\% | -0.39\% | 0.81\% | 1.13\% | 0.16\% |
| nd | Nondurable goods | 3.97\% | 1.53\% | 0.56\% | 2.02\% | 3.35\% | 3.66\% | 3.08\% | 4.26\% | 4.39\% |
| nfood | Food | 2.34\% | 2.94\% | 1.95\% | 1.95\% | 3.08\% | 2.23\% | 2.30\% | 3.51\% | 2.80\% |
| ncloth | Clothing and shoes | -1.27\% | -1.99\% | -2.70\% | -2.46\% | -0.39\% | -1.02\% | -0.42\% | -0.97\% | 0.20\% |
| ngas | Gasoline, fuel oil, and other energs | 28.63\% | -3.27\% | -6.39\% | 16.60\% | 17.57\% | 22.05\% | 13.03\% | 20.71\% | 24.35\% |
| noth | Other nondurable | 2.61\% | 2.76\% | 2.20\% | 0.12\% | 0.96\% | 1.57\% | 1.91\% | 1.04\% | 0.87\% |
| sv | Services | 2.67\% | 3.26\% | 2.68\% | 3.17\% | 3.24\% | 3.36\% | 3.43\% | 3.34\% | 3.84\% |
| sho | Housing | 3.18\% | 3.87\% | 3.76\% | 2.48\% | 2.49\% | 2.59\% | 3.58\% | 3.71\% | 3.15\% |
| shoop | Household operation | 1.83\% | 4.69\% | -0.90\% | 3.88\% | 2.04\% | 5.12\% | 5.21\% | 3.40\% | 5.81\% |
| str | Transportation | 2.53\% | 1.64\% | 1.27\% | 2.93\% | 2.23\% | 4.02\% | 3.82\% | 2.01\% | 2.98\% |
| smc | Medical care | 2.90\% | 3.59\% | 2.44\% | 3.79\% | 4.15\% | 3.42\% | 2.93\% | 3.60\% | 3.61\% |
| srec | Recreation | 3.71\% | 3.36\% | 2.89\% | 2.72\% | 2.58\% | 2.76\% | 2.97\% | 1.85\% | 3.38\% |
| soth | Other Services | 1.99\% | 2.12\% | 3.61\% | 3.11\% | 3.93\% | 3.44\% | 3.22\% | 3.38\% | 4.48\% |
| Forecast 2007 and 2008 Real 2000 |  |  |  |  |  |  |  |  |  |  |
| apce | Personal consumption expenditures | 4.66\% | 2.54\% | 2.73\% | 2.76\% | 3.64\% | 3.21\% | 3.07\% | 2.45\% | 1.65\% |
| md | Durable goods | 7.31\% | 4.33\% | 7.12\% | 5.81\% | 6.28\% | 4.86\% | 3.79\% | 4.64\% | 4.81\% |
| dmv | Motor vehicles and parts | 3.78\% | 5.00\% | 5.70\% | 3.06\% | 1.96\% | 0.10\% | -3.09\% | 3.23\% | 3.94\% |
| dfur | Furniture and household equipment | 11.46\% | 6.05\% | 9.82\% | 9.24\% | 11.87\% | 10.60\% | 11.93\% | 6.96\% | 6.69\% |
| doth | Other durable | 8.05\% | -0.45\% | 5.64\% | 6.31\% | 6.48\% | 5.33\% | 4.08\% | 3.21\% | 3.15\% |
| nd | Nondurable goods | 3.76\% | 2.04\% | 2.53\% | 3.24\% | 3.54\% | 3.58\% | 3.62\% | 1.22\% | -0.30\% |
| nfood | Food | 3.54\% | 1.63\% | 1.53\% | 2.41\% | 3.25\% | 4.01\% | 3.98\% | 2.52\% | 1.82\% |
| ncloth | Clothing and shoes | 5.33\% | 2.03\% | 4.77\% | 5.02\% | 4.92\% | 6.25\% | 4.96\% | 4.87\% | 1.48\% |
| ngas | Gasoline, fuel oil, and other energy | -0.63\% | 1.13\% | 1.95\% | 0.58\% | 1.32\% | -0.88\% | -0.43\% | -12.09\% | -19.93\% |
| noth | Other nondurable | 4.78\% | 3.07\% | 3.26\% | 4.60\% | 4.17\% | 3.39\% | 4.20\% | 3.98\% | 5.40\% |
| sv | Services | 4.53\% | 2.40\% | 1.92\% | 1.91\% | 3.16\% | 2.70\% | 2.67\% | 2.64\% | 2.04\% |
| sho | Housing | 2.85\% | 2.71\% | 0.82\% | 0.93\% | 3.03\% | 3.18\% | 2.69\% | 2.27\% | 2.40\% |
| shoop | Household operation | 4.92\% | 0.21\% | 0.58\% | 1.41\% | 2.46\% | 1.93\% | -0.86\% | 0.94\% | -2.84\% |
| str | Transportation | 2.77\% | -1.12\% | -2.70\% | 0.13\% | 1.41\% | 1.14\% | 1.18\% | 2.71\% | 1.29\% |
| smc | Medical care | 3.82\% | 4.71\% | 5.71\% | 3.89\% | 3.02\% | 3.43\% | 3.35\% | 2.84\% | 3.26\% |
| srec | Recreation | 4.06\% | 2.48\% | 2.29\% | 3.42\% | 4.88\% | 2.15\% | 3.12\% | 3.85\% | 3.16\% |
| soth | Other Services | 7.73\% | 1.51\% | 0.65\% | 0.90\% | 3.73\% | 2.18\% | 3.50\% | 3.07\% | 1.89\% |

The other components of nondurable PCE behave as expected. We can see the income effect in the real consumption of food and clothing. The real PCE of food slows down from the real growth rate of $3.98 \%$ in 2006 to $2.52 \%$ and $1.82 \%$ in 2007 and 2008 , respectively. The real growth rate of PCE of Clothing and shoes is $4.87 \%$ in 2007 and
$1.48 \%$ in 2008 compared to the real growth rate of $6.25 \%$ in 2005 and $4.96 \%$ in 2006.

The forecasted real growth rates of both durable goods and services are not much different from the growth rate in 2005 and 2006. Real PCE of durable goods is predicted to grow by $4.64 \%$ in 2007 and $4.81 \%$ in 2008. In 2005 and 2006, the growth rate of real PCE of durables was $4.86 \%$ and $3.89 \%$, respectively. Real PCE of Services is predicted to grow by $2.64 \%$ in 2007 and $2.04 \%$ in 2008 compared to the growth rate of $2.70 \%$ and $2.67 \%$ in 2005 and 2006, respectively.

At the more detailed level, we find that the growth in the real PCE of durables is being forecast differently from the trend in the recent years. Since 2004, the real PCE of Furnitures and household equipment was growing at the rapid rate of more than 10 percent each year. The model forecasts the growth rate of real PCE of Furnitures and household equipment at around six percent in 2007 and 2008. Coincidently, 2001, when we had just experienced a brief recession, is the last time we have the growth rate of around 6 percent. On the other hand, the real PCE of Motor vehicles and parts, which grew between $2 \%$ and -3 percent between 2004 and 2006, is predicted to grow by $3.23 \%$ in 2007 and $3.94 \%$ in 2008. This rate of growth is a little lower than the average growth rate of $4.18 \%$ between 1994 and 2006 for the real PCE of Motor vehicles and parts. With the computer product as a part of Furnitures and household equipment, it is difficult to analyze the contribution to the real growth rate because of the hedonic price index and the chained index used in calculating the growth rate. However, It is save to say that the model predicts the slower than recent trend in the growth rates for most components of the real PCE of durables.

Forecasts of the growth rates of all the components of real PCE of Services look to be in line with the recent trends.

## Figure 3.2: Major aggregates of annual PCE Forecast Plots



Durable goods (Real (2000) and nominal)
Forecast, 2007-2008

† mda -e- nmda
Motor vehicles and parts (Real (2000) and nominal)


Durable goods (price index, 2000=1)
Forecast, 2007-2008


Motor vehicles and parts (price index, 2000=1)


## Furniture and household equipment (Real (2000) and nominal Furniture and household equipment (price index, 2000=1)




Gasoline, and other energy goods (Real (2000) and nominal)
Forecast, 2007-2008


Gasoline, and other energy goods (price index, 2000=1)




## Chapter 4: Private fixed Investment in Equipment and Software

Investment is the both the engine of growth and the consequence of growth. For an economy to grow, it must have investment, especially in equipment. De Long and Summers found that "the cross nation pattern of equipment prices, quantities, and growth is consistent with the belief that countries with rapid growth have favorable supply conditions for machinery and equipment." [De Long and Summers, 1991]

Gross private fixed investment in equipment and software accounts for about half of fixed investment. The other half, Investment in structures, has very different data and will be treated in the next chapter. Investment in Equipment and software has fluctuated over the last quarter century from a low of 6.7 percent of GDP in 1992Q1 to a high of 9.4 percent of GDP in 2000Q2. Although the magnitude is small relative to that of PCE, the amplitude of the swings is large. Virtually every recession has had its origin in a fall in a fixed investment. Accurate short-term forecasting of this volatile component of GDP is therefore necessary for getting the the general short-term outlook correct.

### 4.1 Data for Private Fixed Investment in Equipment and Software

Given this importance for short-term forecasting, the paucity of high-frequency data on equipment is surprising. I have found no monthly data, and the quarterly NIPA give only seven series:

Computers and peripherals

Software (excluding software embedded in machines or bundled in computers)

Other information processing equipment (Communication equipment, Medical instruments, Non-medical equipment and instruments, Photocopy and related equipment, and Office and accounting equipment)

Industrial equipment (Metalworking machinery, Special industrial machinery (i.e. machinery used in specific industries such as paper making machines or textile machines); General industrial machinery (i.e. machines used generally such as pumps, compressors, fans, blowers and material handling equipment); Electrical generation, transmission, and distribution equipment; Engines and turbines; and Fabricated metal products.)

Transportation equipment (Automobiles, trucks, buses, truck trailers, railroad equipment, aircraft, ships and boats)

Other equipment (Furniture and fixtures, Agricultural machinery, Construction machinery, Mining and oilfield machinery, Service industry machinery, and other equipment not elsewhere classified.)

Residential equipment: equipment that is owned by landlords and rented to tenants (Washer and dryer, stove and oven, etc.)

Figure 4.1: Components of Equipment Investment
Figure 4.1: Equipment Investment
Constant 2000 food dollars


Figure 4.1 graphs these series, except software, in constant dollars of the year 2000. To avoid the problematic computer deflator, they have all been deflated by the deflator for food, which adjusts for general inflation without claiming to measure prices for particular types of equipment. Thus, in Figure 4.1, the relative sizes of the different series in any year are the same as those of the series in current prices. The graph presents a very different picture from the PCE graphs, which were mostly extremely smooth. In Equipment investment, ups and downs are common. In the collapse of investment after 2000, investment in Transportation equipment fell some 40 percent; investment in Computers and peripherals took a 30 percent hit; and no component survived unscathed.

It is noteworthy that Computers rose rapidly from 1980 to 1985 as the IBM PC caught on in business, but that from 1985 to 2007 investment in Computers roughly paralleled investment in other capital goods with no growth from 1985 to 1995, then a boom to 2000, and then a bust to 2002. Since 2002, Computers have edged up slightly, while other components have recovered more strongly.

Table 4.1: Quarterly Data on Equipment Investment. From NIPA Table 5.3.5 Quarterly

|  | 2006 | 2006 | 2006 | 2006 | 2007 | 2007 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| Equipment and software | 991.7 | 991.1 | 999.1 | 988.7 | 991.8 | 1,004.5 | 1,016.4 |
| Information processing equipment and software | 479.1 | 479.0 | 484.9 | 480.5 | 497.6 | 507.7 | 511.4 |
| Computers and peripheral equipment | 91.7 | 91.7 | 91.6 | 90.4 | 96.6 | 96.6 | 95.2 |
| Software \2\ | 199.9 | 202.6 | 204.9 | 205.9 | 210.5 | 216.1 | 220.0 |
| Other \3\ | 187.5 | 184.7 | 188.4 | 184.3 | 190.5 | 195.0 | 196.2 |
| Industrial equipment | 161.5 | 168.5 | 169.2 | 167.5 | 168.1 | 176.0 | 180.4 |
| Transportation equipment | 177.6 | 169.5 | 172.4 | 168.0 | 162.9 | 153.3 | 154.0 |
| Other equipment \4\} | 173.5 | 174.0 | 172.6 | 172.7 | 163.2 | 167.5 | 170.5 |

There are several reasons for this volatility of investment. Investment for expansion depends on the changes in the level of output of an industry rather than on its level. For example, if an industry's output went from 100 in year 1 to 103 in year 2 to 109 in year 3, the level of output would have increased rather smoothly, but the change in output in year 3 would be twice what it was in year 2. Besides investment for expansion, there is investment for replacement. But it is deferrable as businesses often can "make do" with existing facilities, especially in periods of slack demand. Waves of optimism and pessimism can lead to substantial additions of capital facilities during expansions, only to be followed by overcapacity and deep cutbacks in investment outlays during recessions, as occurred in the years 2000 to 2002.

In the 1997 comprehensive revision of the NIPA, BEA decided to consider business acquisition of software, whether by purchase or by in-house development, as investment. This decision gave a nice boost to GDP, because expenditures on software had previously been considered an intermediate product and did not count in GDP. Figure 4.2 shows the course of investment in software in comparison to investment in Computers and peripherals and in Other information processing equipment, which includes communication equipment, nonmedical instruments, medical equipment and instruments, photocopy and related equipment, and office and accounting equipment. Clearly, this newcomer to investment was the star performer in the 1990's.

Figure 4.2: Information Processing Equipment \& Software
Constant 2000 food dollars


When we turn to annual data, we find much more information. BEA actually produces two sets of it. The first is in the NIPA themselves and is illustrated in Table 4.2. Excluding the addenda at the bottom of the table, there are 36 lines of data, of which 27 are primary and the other are subtotals or totals. Line 1 and line 37 in this table give us Fixed investment in equipment and software as it appears in the NIPA.

Table 4.2: Private fixed investment in equipment and software.
From NIPA Table 5.5.5

| Line |  | 2000 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Private fixed investment in equipment and software | 926.2 | 794.7 | 808.0 | 864.7 | 946.5 | 1,002.2 |
| 2 | Nonresidential equipment and software | 918.9 | 787.1 | 800.2 | 856.3 | 937.5 | 992.6 |
| 3 | Information processing equipment and software | 467.6 | 399.4 | 406.7 | 429.6 | 457.4 | 480.9 |
| 4 | Computers, software, and communication | 401.7 | 329.4 | 331.0 | 348.3 | 369.0 | 388.5 |
| 5 | Computers and peripheral equipment | 101.4 | 77.2 | 77.8 | 80.3 | 89.0 | 91.3 |
| 6 | Software \11 | 176.2 | 167.6 | 171.4 | 183.0 | 193.8 | 203.3 |
| 7 | Communication equipment $\backslash 2 \backslash$ | 124.1 | 84.5 | 81.8 | 85.0 | 86.2 | 93.9 |
| 8 | Medical equipment and instruments | 34.4 | 42.2 | 46.0 | 50.7 | 56.3 | 59.1 |
| 9 | Nonmedical instruments | 17.8 | 18.2 | 19.0 | 20.9 | 22.5 | 23.8 |
| 10 | Photocopy and related equipment | 9.6 | 4.6 | 4.6 | 3.6 | 3.5 | 3.4 |
| 11 | Office and accounting equipment | 4.1 | 4.9 | 6.0 | 6.1 | 6.1 | 6.0 |
| 12 | Industrial equipment | 159.2 | 135.7 | 140.7 | 139.7 | 156.1 | 166.7 |
| 13 | Fabricated metal products | 12.4 | 11.4 | 11.9 | 12.5 | 14.0 | 14.9 |
| 14 | Engines and turbines | 7.1 | 11.6 | 10.2 | 4.7 | 5.5 | 6.0 |
| 15 | Metalworking machinery | 30.0 | 23.1 | 22.6 | 23.3 | 25.7 | 27.7 |
| 16 | Special industry machinery, n.e.c. | 36.4 | 25.8 | 29.1 | 28.2 | 30.3 | 31.4 |
| 17 | General industrial, including materials handling, equipment | 48.6 | 43.6 | 48.6 | 51.3 | 59.4 | 63.9 |
| 18 | Electrical transmission, distribution, and industrial apparatus | 24.7 | 20.2 | 18.3 | 19.7 | 21.1 | 22.7 |
| 19 | Transportation equipment | 160.8 | 126.3 | 118.3 | 142.9 | 159.5 | 171.9 |
| 20 | Trucks, buses, and truck trailers | 81.8 | 61.0 | 61.9 | 83.4 | 99.4 | 111.0 |
| 21 | Light trucks (including utility vehicles) | 50.8 | 37.5 | 40.8 | 53.7 | 63.0 | 69.6 |
| 22 | Other trucks, buses, and truck trailers | 31.0 | 23.6 | 21.1 | 29.7 | 36.3 | 41.4 |
| 23 | Autos | 36.5 | 32.9 | 29.5 | 31.2 | 34.8 | 39.2 |
| 24 | Aircraft | 32.6 | 25.6 | 19.9 | 20.3 | 16.0 | 13.1 |
| 25 | Ships and boats | 3.4 | 3.5 | 4.0 | 4.6 | 4.8 | 4.1 |
| 26 | Railroad equipment | 6.5 | 3.3 | 3.0 | 3.4 | 4.5 | 4.5 |
| 27 | Other equipment | 134.6 | 128.4 | 137.6 | 149.6 | 169.8 | 180.0 |
| 28 | Furniture and fixtures | 36.3 | 30.3 | 31.8 | 34.0 | 38.0 | 41.3 |
| 29 | Agricultural machinery | 13.7 | 17.1 | 18.4 | 20.5 | 22.5 | 21.7 |
| 30 | Construction machinery | 23.2 | 18.4 | 19.7 | 23.1 | 29.7 | 31.5 |
| 31 | Mining and oilfield machinery | 5.3 | 3.8 | 4.6 | 5.6 | 7.8 | 10.1 |
| 32 | Service industry machinery | 17.5 | 16.9 | 16.5 | 17.0 | 18.7 | 21.3 |
| 33 | Electrical equipment, n.e.c. | 4.6 | 5.6 | 5.8 | 7.1 | 6.9 | 7.8 |
| 34 | Other | 33.9 | 36.3 | 40.7 | 42.4 | 46.2 | 46.5 |
| 35 | Less: Sale of equipment scrap, excluding autos | 3.4 | 2.6 | 3.1 | 5.7 | 5.2 | 6.8 |
| 36 | Residential equipment | 7.4 | 7.6 | 7.9 | 8.4 | 9.0 | 9.6 |
|  | Addenda: |  |  |  |  |  |  |
| 37 | Private fixed investment in equipment and software | 926.2 | 794.7 | 808.0 | 864.7 | 946.5 | 1,002.2 |
| 38 | Less: Dealers' margin on used equipment | 10.3 | 10.1 | 10.0 | 10.7 | 11.4 | 11.6 |
| 39 | Net purchases of used equipment from government | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 |
| 40 | Plus: Net sales of used equipment | 80.3 | 77.2 | 70.9 | 69.2 | 71.2 | 72.6 |
| 41 | Net exports of used equipment | 0.0 | 1.9 | 1.2 | 1.3 | 3.2 | 1.7 |
| 42 | Sale of equipment scrap | 3.5 | 2.8 | 3.2 | 5.4 | 5.4 | 7.0 |
| 43 | Equals: Private fixed investment in new equipment and software | 999.2 | 866.0 | 872.8 | 929.3 | 1,014.2 | 1,071.3 |

There is, however, a serious problem in the use of these data for models such as
LIFT. The models will almost certainly have investment functions for the purchasers of equipment rather than by types of equipment bought. For example, there will be an equation for investment by the automobile industry, not an equation for the purchases of machine tools by all industries. There is, of course, good reason to model investment by
purchaser rather than by type of equipment bought, namely, investment decisions are made by the purchaser, not by the seller, of equipment. Models with sectoral detail on output can use the industry's sales in the equation that determines its investment. Investment by type of equipment is then determined by multiplying the vector of investment by purchasing industry by a matrix - called a capital flow coefficient matrix -showing the shares of each type of equipment in the spending of each purchaser. The airlines column of this matrix, for example, will show a large share going aircraft and a small share, if any, going to agricultural machinery.

Fortunately, BEA produces another set of accounts known as the Fixed Asset Accounts (FAA) which are separate from but related to the NIPA. The objective of the FAA is to create series on the capital stocks by industry, but on the way to this objective they produce series on equipment purchases by buying industry. In fact, the FAA include a complete equipment capital flow matrix showing the sales of each type of equipment to each industry. The FAA series on equipment investment by purchaser are made by distributing NIPA investment by type to likely buying industries. In making this distribution, BEA may use various sources of information on investment by purchaser such as the Annual Survey of Manufactures and the economic censuses. The results, Equipment and software investment classified by purchasing industry, is shown in Table 4.3 for selected recent years. Of the 78 lines in the table, 63 are primary and the others are subtotals and totals. It also must be noted that the residential equipment investment presented in Table 4.2 is purchased only by the Real estate industry (line 56) in Table 4.3.

Our task in this chapter, put briefly, is to produce up-to-date estimates of these 63 series for the current year and one ahead. These estimates are, as usual, needed in current and constant prices.

The FAA, it may be noted, appear at about the same time as the annual NIPA, that is, in late July or early August of the year following the year which they describe. They include, for each year, the capital flow matrix in current prices ${ }^{17}$. It can be converted to constant prices using whatever price index one likes on each row and then summing the columns. Because, as the model runs, the capital flow matrix will be used in the other direction, that is, to convert investment classified by purchaser to investment classified by product purchased, we will make the series on constant-price investment by purchaser by simple addition of the components, not by Fisher chained indexes.

[^6]A super-attentive reader may have noticed that there are small differences in total equipment investment in the NIPA and in the FAA. There are three conceptual differences and one main source of statistical difference. The conceptual differences are (1) The NIPA total investment includes dealers' margins on used equipment; the FAA do not. (2) The NIPA subtract from total spending the value of scrapped equipment; the FAA do not. (3) There is a difference in the valuation of used cars. The statistical difference is mainly that the makers of the FAA don't always go back and revise their estimates when the makers of the NIPA revise historical data. The FAA give a detailed, product-byproduct account of these differences. They are summarized for recent years in Table 4.4. Although the FAA capital flow matrix provides important input for the construction of the capital flow coefficient matrix needed for the interindustry model, it does not yield that matrix by simply dividing each column by its total to get a matrix with columns summing to 1.0 . The problem is that the interindustry model needs a matrix in producer prices; the FAA capital flow matrix is in purchaser prices. The margins for transportation and trade must be stripped off the sales of equipment and but into the trade and transportation rows. That step, however, is beyond the scope of this study and will be left for the model builder.

Table 4.3: Equipment Investment by Purchaser, from the Fixed Assets Accounts

| Line |  | 2000 | 2002 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Private fixed assets | 929.7 | 794.9 | 855.3 | 938.0 | 994.9 |
| 2 | Agriculture, forestry, fishing, and hunting | 22.4 | 25.7 | 29.9 | 32.1 | 32.3 |
| 3 | Farms \1\ | 20.8 | 23.7 | 27.3 | 28.6 | 28.6 |
| 4 | Forestry, fishing, and related activities | 1.6 | 2.0 | 2.7 | 3.6 | 3.6 |
| 5 | Mining | 15.9 | 11.5 | 18.6 | 24.0 | 26.9 |
| 6 | Oil and gas extraction | 6.1 | 3.1 | 5.9 | 5.4 | 5.9 |
| 7 | Mining, except oil and gas | 5.2 | 4.5 | 7.8 | 10.2 | 11.4 |
| 8 | Support activites for mining | 4.6 | 3.9 | 4.9 | 8.4 | 9.6 |
| 9 | Utilities | 35.0 | 37.6 | 30.9 | 34.5 | 36.7 |
| 10 | Construction | 31.7 | 31.1 | 33.9 | 38.4 | 41.3 |
| 11 | Manufacturing | 169.8 | 142.0 | 129.2 | 148.1 | 157.4 |
| 12 | Durable goods | 109.5 | 86.5 | 76.8 | 88.2 | 93.8 |
| 13 | Wood products | 2.6 | 2.2 | 2.3 | 2.6 | 2.8 |
| 14 | Nonmetallic mineral products | 5.1 | 4.5 | 4.1 | 4.6 | 4.9 |
| 15 | Primary metals | 5.4 | 4.7 | 4.3 | 4.9 | 5.2 |
| 16 | Fabricated metal products | 9.6 | 8.2 | 7.3 | 7.9 | 8.5 |
| 17 | Machinery | 18.6 | 15.4 | 14.2 | 16.2 | 17.2 |
| 18 | Computer and electronic products | 37.5 | 21.8 | 19.2 | 25.0 | 26.5 |
| 19 | Electrical equipment, appliances, and components | 3.9 | 2.9 | 2.6 | 2.2 | 2.3 |
| 20 | Motor vehicles, bodies and trailers, and parts | 13.0 | 11.7 | 10.7 | 11.0 | 11.7 |
| 21 | Other transportation equipment | 7.9 | 9.5 | 6.6 | 7.9 | 8.4 |
| 22 | Furniture and related products | 1.8 | 1.9 | 1.4 | 1.5 | 1.6 |
| 23 | Miscellaneous manufacturing | 4.0 | 3.8 | 4.1 | 4.4 | 4.7 |
| 24 | Nondurable goods | 60.3 | 55.4 | 52.4 | 60.0 | 63.7 |
| 25 | Food and beverage and tobacco products | 11.9 | 11.4 | 10.9 | 12.0 | 12.8 |
| 26 | Textile mills and textile product mills | 2.4 | 1.8 | 1.2 | 1.3 | 1.3 |
| 27 | Apparel and leather and allied products | 1.3 | 0.8 | 0.6 | 0.7 | 0.7 |
| 28 | Paper products | 7.7 | 6.4 | 5.5 | 5.9 | 6.3 |
| 29 | Printing and related support activities | 4.8 | 4.1 | 4.4 | 4.7 | 5.0 |
| 30 | Petroleum and coal products | 5.2 | 5.4 | 7.0 | 11.1 | 11.8 |
| 31 | Chemical products | 18.8 | 18.3 | 16.4 | 17.3 | 18.4 |
| 32 | Plastics and rubber products | 8.1 | 7.3 | 6.5 | 6.9 | 7.4 |
| 33 | Wholesale trade | 56.8 | 45.5 | 54.8 | 70.5 | 75.5 |
| 34 | Retail trade | 31.7 | 28.0 | 35.5 | 35.2 | 37.5 |
| 35 | Transportation and warehousing | 64.3 | 48.9 | 45.7 | 48.6 | 52.7 |
| 36 | Air transportation | 31.7 | 24.4 | 17.2 | 12.3 | 13.2 |
| 37 | Railroad transportation | 1.4 | 1.0 | 1.3 | 1.4 | 1.5 |
| 38 | Water transportation | 3.9 | 4.9 | 5.3 | 5.1 | 5.1 |
| 39 | Truck transportation | 10.5 | 8.3 | 10.3 | 17.6 | 19.6 |
| 40 | Transit and ground passenger transportation | 3.7 | 1.9 | 2.9 | 3.4 | 3.7 |
| 41 | Pipeline transportation | 2.8 | 1.7 | 2.1 | 2.4 | 2.6 |
| 42 | Other transportation and support activites \21 | 9.2 | 4.8 | 4.5 | 4.5 | 4.8 |
| 43 | Warehousing and storage | 1.1 | 1.9 | 2.1 | 2.1 | 2.2 |
| 44 | Information | 121.7 | 63.3 | 64.2 | 65.8 | 70.7 |
| 45 | Publishing industries (includes software) | 7.4 | 5.4 | 6.3 | 6.0 | 6.4 |
| 46 | Motion picture and sound recording industries | 0.7 | 0.6 | 0.7 | 0.9 | 1.0 |
| 47 | Broadcasting and telecommunications | 107.4 | 50.7 | 49.4 | 51.3 | 55.3 |
| 48 | Information and data processing services | 6.3 | 6.6 | 7.7 | 7.5 | 7.9 |
| 49 | Finance and insurance | 100.8 | 80.6 | 91.9 | 90.0 | 93.3 |
| 50 | Federal Reserve banks | 2.2 | 1.8 | 2.2 | 1.3 | 1.4 |
| 51 | Credit intermediation and related activities | 64.7 | 53.0 | 57.3 | 58.9 | 60.9 |
| 52 | Securities, commodity contracts, and investments | 13.5 | 9.2 | 10.9 | 10.7 | 11.2 |
| 53 | Insurance carriers and related activities | 18.0 | 15.6 | 19.5 | 17.3 | 18.0 |
| 54 | Funds, trusts, and other financial vehicles | 2.3 | 1.0 | 2.0 | 1.7 | 1.7 |

Table 4.3 continued

| 55 | Real estate and rental and leasing | 92.1 | 69.0 | 76.2 | 89.1 | 94.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | Real estate | 13.6 | 20.6 | 17.3 | 18.2 | 19.3 |
| 57 | Rental and leasing services and lessors of intangible assets $\|3\|$ | 78.6 | 48.3 | 58.9 | 70.9 | 75.1 |
| 58 | Professional, scientific, and technical services | 59.1 | 59.9 | 71.0 | 81.0 | 85.2 |
| 59 | Legal services | 2.7 | 2.7 | 3.0 | 3.1 | 3.2 |
| 60 | Computer systems design and related senvices | 19.5 | 15.6 | 20.1 | 17.7 | 18.6 |
| 61 | Miscellaneous professional, scientific, and technical services $\backslash 4 \backslash$ | 36.9 | 41.6 | 47.8 | 60.2 | 63.3 |
| 62 | Management of companies and enterprises $\backslash 5 \backslash$ | 15.5 | 24.2 | 24.0 | 21.8 | 22.9 |
| 63 | Administrative and waste management services | 21.3 | 20.6 | 25.6 | 25.7 | 27.2 |
| 64 | Administrative and support services | 19.2 | 18.0 | 22.8 | 22.5 | 23.8 |
| 65 | Waste management and remediation services | 2.1 | 2.6 | 2.9 | 3.2 | 3.5 |
| 66 | Educational services | 6.9 | 8.7 | 10.0 | 9.1 | 9.6 |
| 67 | Health care and social assistance | 49.4 | 62.7 | 75.0 | 80.8 | 85.0 |
| 68 | Ambulatory health care senvices | 18.0 | 24.0 | 29.8 | 33.0 | 34.8 |
| 69 | Hospitals | 28.3 | 35.0 | 41.1 | 43.8 | 46.1 |
| 70 | Nursing and residential care facilities | 1.9 | 2.2 | 2.7 | 2.7 | 2.8 |
| 71 | Social assistance | 1.2 | 1.5 | 1.3 | 1.2 | 1.3 |
| 72 | Arts, entertainment, and recreation | 7.7 | 8.1 | 8.0 | 7.9 | 8.1 |
| 73 | Performing arts, spectator sports, museums, and related activities | 2.2 | 2.6 | 2.6 | 2.3 | 2.4 |
| 74 | Amusements, gambling, and recreation industries | 5.6 | 5.5 | 5.4 | 5.6 | 5.8 |
| 75 | Accommodation and food services | 18.0 | 19.7 | 22.4 | 27.0 | 29.2 |
| 76 | Accommodation | 3.1 | 4.4 | 5.1 | 5.3 | 5.6 |
| 77 | Food services and drinking places | 14.8 | 15.4 | 17.4 | 21.6 | 23.6 |
| 78 | Other services, except government | 9.4 | 7.8 | 8.5 | 8.4 | 8.9 |

1. NAICS crop and animal production.
2. Consists of scenic and sightseeing transportation; tranportation support activities; and couriers and messengers.
3. Intangible assets include patents, trademarks, and franchise agreements, but not copyrights.
4. Consists of accounting, tax preparation, bookkeeping, and payroll services; architectural, engineering, and related services; specialized design services; management, scientific, and technical consulting services; scientific research and development services; advertising and related services; and other professional, scientific, and technical services. 5. Consists of bank and other holding companies.

Note. Estimates in this table are based on the 1997 North American Industry Classification System (NAICS).

## Table 4.4: Reconciliation of Equipment Investment in NIPA and FAA

| Line |  | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | NIPA Private fixed investment in equipment and software | $\mathbf{7 9 4 . 7}$ | $\mathbf{8 0 8 . 0}$ | $\mathbf{8 6 4 . 7}$ | $\mathbf{9 4 6 . 5}$ | $\mathbf{1 0 0 2 . 2}$ |
| 2 | Plus: Sale of equipment scrap, excluding autos | 2.6 | 3.1 | 5.7 | 5.2 | 6.8 |
| 4 | Less: Dealers' margin on used equipment | 10.1 | 10.0 | 10.7 | 11.4 | 11.6 |
| 5 | Plus Intersectoral automobile valuation adjustment | -3.5 | -5.6 | -4.4 | -2.2 | -2.2 |
| 6 | Plus: NIPA revisions since FAA was revised | 11.2 | 7.4 | 0.0 | -0.1 | -0.3 |
| 7 | FAA Private fixed investment in equipment and software | 794.9 | 802.9 | 855.3 | 938.0 | 994.9 |

### 4.2 Approach to the problem

As already indicated, our problem is short-range forecasting of the 63 primary series on investment in Table 4.3. We need forecasts for both current-price values and constant price values. Our approach is in seven steps.

Step 1. Make quarterly forecasts of both current price values and the price indexes of the seven series for which we have quarterly data in the NIPA. These forecast will be made with inputs from QUEST in ways already familiar from Chapter 3. They will be in quarterly frequency to make use of the fact that we often have three or even four quarters of a year before the FAA data appear. Convert these quarterly forecasts to annual forecasts.

Step 2. Make preliminary annual forecasts for two years ahead for each of the 63 primary series which are the target of our work. These equations may use as explanatory variables one or more of the seven series forecast in Step 1 or their sum. They may also use their own lagged values.

Step 3. Aggregate the rows of the FAA capital flow matrix to match these seven rows and convert to a capital coefficient matrix. (This step might be done with either the
matrix of the most recent year or with a (perhaps weighted) average of the last two or three years.

Step 4. Multiply the coefficients of the matrix made in Step 3 by the forecast of the corresponding investment series made in Step 2.

Step 5. Scale each of the seven rows calculated in Step 4 to sum to the total for the corresponding series forecast in Step 1.

Step 6. Sum the columns of the matrix found in step 6 to give the current price annual forecast for each of the 63 series.

Step 7. Convert each row of the matrix found in Step 5 to constant prices using the price indexes found for each of the seven series in Step 1. Sum the columns to get the forecasts of the 63 industries in constant prices.

### 4.3 NIPA Investment in Equipment and Software by Asset Types Equations

In this section, I discuss the equation results estimated in Step 1. These equations (both the nominal values and the price indexes) was estimated during the period from 1970Q1 to 2007 Q 3 . The estimation results of are presented in Table 4.5 and Table 4.6. Figure 4.3 shows the plots of the regressions' predicted values and the historical series.

Before discussing each equation, there is an interesting result from Table 4.5 and Table 4.6. In most of these equations, I use regressors with their current period and their one-period lagged value or with two consecutive lagged values. This is an approximation
of using the first difference of the regressors. Thus, we would expect the signs of the coefficients to be different between the two regressors. For example, in Table 4.5, the coefficient of current period nonresidential investment in equipment and software (vfnre) is positive while the coefficient of its lagged value is negative. This result is expected.

## Computer and peripheral equipment

The nominal equation of computer and peripheral equipment consists of intercept, one-quarter lagged dependent variable, two-quarter lagged dependent variable, and the current period NIPA nominal private fixed investment of nonresidential equipment and software (vfnre). The equations shows good fit both in test statistics (adjusted R-square and MAPE) and in fitted plot (with BasePred). All regressors except intercept have good Mexvals and reasonable signs within the test period. The intercept is left in this equation as previous estimation with different test period shows that the intercept has explanatory power.

The price index equation is straight forward with two lagged dependent variables (one- and two-quarter lagged) without an intercept. Both regressors have respectable Mexvals. The closeness of fit statistics are good with adjusted R-square of 0.9993 and MAPE of 1.46 percent. The fitted plot is very good in both the predicted value and BasePred.

## Software

The nominal equation of Software fixed investment has two regressors and an intercept. The regressors are the one-quarter lagged dependent variable and vfire. All
regressors have good Mexvals and appropriate signs. The adjusted R-square is 0.9993 while the MAPE is 6.94 percent. The fitted plot shows a very good fit with BasePred plot moving within a good proximity of the actual series.

The price index equation has two lagged dependent variables as regressors, qvenp2(t-1) and quenp2(t-1), without an intercept. Both regressors has good Mexvals and providing very good fit as shown by the closeness of fit statistics. However, the fitted plot shows that this equation cannot capture the volatility during the test period as seen in the BasePred plot. This is a problem when using only time-series analysis for forecasting economic indicators. Nevertheless, it should be good for our purpose of short-term forecasting.

## Other Information processing equipment and software

The nominal equation for the investment of other information processing equipment and software has the same format as the computer equipment's equation. All regressors, including intercept, have decent Mexvals and appropriate signs. The adjusted R-square is 0.9977 and the MAPE is 3.2 percent. The fitted plot shows that the equation has good fit and should be a good equation for both short-term and long-term forecasts.

The price index equation has two lagged dependent variables, price index of vfire, and intercept as its regressors. All regressors exhibits good Mexvals and reasonable signs. The closeness of fit statistics are very good. The BasePred plot shows that $p$ vfire helps explain the movement of the price index quite well.

## Industrial equipment

The nominal equation for investment in Industrial equipment has the following regressors: 1) intercept, 2) one-quarter lagged dependent variable, 3) two-quarter lagged dependent variable, and 4) vfnre. All regressors have good Mexvals. The MAPE is 2.05 percent and the adjusted R-square is 0.9972 . The predicted value fits well with the historical series (as expected) and the BasePred plot shows a decent fit.

The price index equation consists of three regressors without an intercept. The regressors are one-quarter, two-quarter, and three-quarter lagged dependent variables. All three regressors has respectable Mexvals with most of the explanatory power comes from the first lag. The closeness of fit statistics is very good with MAPE of 0.38 percent. However, the BasePred plot shows that having a short-term forecast rely on the estimation over this test period might not be appropriate. It seems that estimating the equation on the more recent time period might yield a better BasePred plot and a more reliable short-term forecast.

## Transportation equipment

The nominal equation for investment in transportation equipment has a onequarter lagged dependent variable, current quarter vfnre, and one-quarter lagged $v f n r e$ as its regressors. All three regressors have good Mexvals and expected signs. The adjusted R-square is 0.9934 and the MAPE is 3.49 percent. The fitted plots show very good fit by both the predicted value and the BasePred.

The price index equation has one-quarter lagged dependent variable, current quarter price index of vfnre, and one-quarter lagged price index of $v$ fnre as its regressors. All three regressors contribute to the explanation of the price index over the test period. We have good closeness of fit statistics. The fitted plots show a good fit from predicted value and BasePred. The BasePred plot also shows a tendency of over-predicting the series over the test period.

## Other nonresidential equipment

For investment in other nonresidential equipment, its nominal equation has onequarter lagged dependent variable, current quarter vfire, and one-quarter lagged $v f n r e$ as its regressors. All three regressors have good Mexvals and appropriate signs. The adjusted R-square is 0.9981 and the MAPE is 2.04 percent. The fitted plots show very good fit from both the predicted value and the BasePred.

The price index equation has one-quarter lagged dependent variable, current quarter price index of $v$ fnre, and one-quarter lagged price index of $v$ fnre as regressors. All coefficients have good signs and all regressors have reasonable Mexvals. The closeness of fit statistics are very good with adjusted R-square of 0.9999 and the MAPE of 0.27 percent. The fitted plots also show very good fit.

## Residential equipment

The nominal residential equipment investment equation has intercept, one-quarter lagged dependent variable, and the nominal value of private fixed residential investment. The last regressors composes of residential investment in both structures and equipment
and software. All three regressors have good Mexvals and appropriate signs. The estimation shows good closeness of fit statistics for the test period with a MAPE of 1.62 percent. The fitted plots are good. The BasePred helps guiding the forecast with the long-term trend.

The price index equation consists of an intercept, one-quarter lagged dependent variable and two-quarter lagged dependent variable. The three regressors have good Mexvals and reasonable signs. The adjusted R-square is 0.9987 and the MAPE is 0.51 percent. The predicted value plot is very good. The BasePred plot cannot capture the exact movement of the actual series but seems to move well along the long-term trend.

Table 4.5: Estimation Results for Nominal values of Quarterly NIPA Fixed Investment in Equipment and Software


Table 4.6: Estimation Results for Price indexes of Quarterly NIPA Fixed Investment in Equipment and Software


Figure 4.3: Plots of NIPA Fixed Investment in Equipment and Software Estimation Results


Nonresidential software


Other Information processing equipment and software





Other Information processing equipment and software


Nonresidential industrial equipment
Price index $(2000=100)$


Figure 4.3 (cont.)


### 4.4 FAA Investment in Equipment and Software by Purchasing Industries Equations

This section discusses the purchasing industries' equation estimated as described in Step 2 for 13 industries selected from the total of 63 industries. All equations were estimated with historical data from 1975 to 2006. All regression results are shown in Appendix 4.1. The fitted plots of all 63 industries are shown in Figure 4.4.

## Farms

| Farms |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 1716.01 RSQ | $=0.9213 \mathrm{R}$ | RHO $=0$ | 0.29 Ob | ser | 32 from 197 | 975.000 |
| SEE+1 | 1651.39 RBSQ | $=0.9158$ D | DurH $=2$ | 2.68 Do | Free | 29 to 200 | 2006.000 |
| MAPE | 10.00 |  |  |  |  |  |  |
| Variable | name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 vein1 |  | - - - - - | - - - - | - - - - | - - - - | 16385.84 | - - - |
| 1 intercept |  | 1297.25037 | 3.2 | 0.08 | 12.70 | 1.00 |  |
| 2 vein1[1] |  | 0.67477 | 34.1 | 0.65 | 1.21 | 15756.44 | 0.646 |
| 3 vennot |  | 0.05031 | 10.0 | 0.27 | 1.00 | 88589.03 | 0.331 |

The equation shows a good fit with the adjusted R -square of 0.9213 . The MAPE of 10 percent is quite decent as the investment is generally volatile. From experiments, the farms' investment in equipment and software can be explained by the investment in other nonresidential equipment (vennot). The fitted plots show that the equation tracks the general trend over the test period quite well as exhibits by the BasePred. However, the predicted value plot shows observable lagged in movement from the actual series.

## Oil and gas extraction

| SEE = | 1285.42 RSQ | $=0.5967 \mathrm{RHO}=$ |  | 0.05 Obser |  | 32 from 1 | 1975.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE+1 = | 1284.10 RBSQ | D | DurH = | 0.35 D | DoFree = | 29 to 2 | 2006.000 |
| MAPE = | 21.68 |  |  |  |  |  |  |
| Variable | name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 vein3 |  | - - - - - | - - - - | - - - - | - - - | 4719.94 | - - |
| 1 vein3[1] |  | 0.75240 | 70.2 | 0.73 | 1.27 | 4565.69 |  |
| 2 venn1 |  | -0.06457 | 7.8 | -0.66 | 1.22 | 48312.88 | -0.978 |
| 3 venntr |  | 0.04787 | 10.6 | 0.93 | 1.00 | 91518.56 | 1.032 |

The equation shows decent closeness of fit statistics considering the volatility over the test period. We found that the equipment investment by oil and gas extraction industry related can be explained to some degree by the investment in computer (vennl) and investment in transportation equipment (venntr). The BasePred plot shows that the exogenous regressors can explained the trend of the series but cannot capture the magnitude of the volatility. We also observed an pronounced lagged in predicted value, especially when there were significant volatility.

## Construction



This equation works pretty well. The adjusted R-square is 0.9680 with a MAPE of 16.57 percent. The investment in equipment and software by construction industry can be explained by investment in software (venn2), other information processing equipment
(vennoit), and industrial equipment (vennin). The BasePred tracks the trend over the test period remarkably well as shown in the fitted plot.

## Primary metals

| Primary metals |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 608.36 RSQ | $=0.5813 \mathrm{R}$ | RHO = 0 | 0.03 Ob | Obser | $=$ |  | from | 1975.000 |
| SEE+1 = | 608.16 RBSQ | $=0.5524 \mathrm{D}$ | DurH $=0$ | 0.25 Do | DoFree | = |  | to | 2006.000 |
| MAPE | 9.33 |  |  |  |  |  |  |  |  |
| Variable | name | Reg-Coef | Mexval | Elas |  | rRes |  | Mea | Beta |
| 0 vein10 |  | - - - - - | - - - - - | - - - - | - - - | - - |  | 4843. | 59 |
| 1 intercept |  | 1489.65143 | 11.4 | 0.31 |  | 2.39 |  |  |  |
| 2 vein10[1] |  | 0.62269 | 28.4 | 0.61 |  | 1.04 |  | 4778. | $50 \quad 0.652$ |
| 3 vennin |  | 0.00383 | 2.1 | 0.08 |  | 1.00 |  | 8784. | 190.165 |

The equipment investment by primary metals industry exhibit significant
volatility over the test period. Considering the volatility, the equation fits the data quite well with the MAPE of 9.33 percent. We found that investment in industrial equipment can partially explain the trend of this industry equipment investment pattern but not the year-to-year volatility as exhibits by the BasePred plot.

## Machinery



The equipment investment by machinery industry can be explained by investment in industrial equipment and software. This shows that, during the test period, the industry not only invested in industrial equipment (as it should) but also rely more heavily on
computer controlled processes, both in design and manufacturing processes, as observed by the significant investment in software. The equation has a very good fit as shown by the closeness of fit statistics and the fitted plot. BasePred plots show promising forecasting power of this equation.

## Computer and electronics products

```
: Computer and electronic products
SEE = 2285.66 RSQ = 0.9513 RHO = 0.31 Obser = 32 from 1975.000
SEE+1 = 2190.37 RBSQ = 0.9461 DurH = 2.16 DoFree = 28 to 2006.000
MAPE = 16.69
 Variable name
 0 vein13 - - - - - _ - - - - - - _ _ - - - 16035.47 _ - -
 1 intercept -7115.13817 22.2 -0.44 20.54 1.00
2 vein13[1] 0.58715 46.6 0.56 0.5 1.94 15296.00 0.591
3 vennin
4 venn2 -0.05163 13.4 -0.24 1.00 73834.41 -0.334
```

With the same pattern as the machinery industry, the investment by computer and electronic products industry can be partially explained by the investment in software and industrial equipment. The manufacturing process of this industry is heavily dependent on the precision tools and machine. We observed a negative sign with the coefficient of the investment in software. I believe the reason behind this negative effect is that, during the test period, the economy has become more information oriented which shows in the needs of better software while the computer industry, which is capital intensive, has been investing at a slower rate. The relative growth is shown here as a negative coefficient.

Overall, the equation performs well over the test period in both the closeness of fit statistics and the fitted plots.

## Food, beverage and tobacco products



The equation for investment in equipment and software by food, beverage, and tobacco industry performs very well with an adjusted R-square of 0.9751 and a MAPE of 4.34 percent. The investment in other information processing equipment and industrial equipment helps explains the general movement of the investment very well as shown by the BasePred plot.

## Petroleum and coal

```
: Petroleum and coal products
 SEE = 888.98 RSQ = 0.8402 RHO = 0.13 Obser = 32 from 1975.000
 SEE+1 = 883.78 RBSQ = 0.8231 DurH = 1.36 DoFree = 28 to 2006.000
 MAPE = 11.72
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 O vein24
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 5010.59 _ _ _
 1 intercept
 -2171.01368 7.6 -0.43 6.26 1.00
 2 vein24[1]
 3 vennin
 4 venn1 -0.09341
```

The equipment and software investment by petroleum and coal industry can be explained by the investment in industrial equipment and computer and peripheral. The equation fit the data quite well with a MAPE of 11.72 percent. The fitted plot shows that the equation moves the forecast quite well when the movement is small as shown by the BasePred plot. When there was a big year-to-year movement, the predicted value plot exhibits an observable lag.

## Air transportation

| SEE = | 2200.78 RSQ | $=0.9432 \mathrm{RHO}=-0.02 \mathrm{O}$ |  |  | er = | 32 from 1 | 1975.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE+1 = | 2200.08 RBSQ | D | DurH $=-$ | 15 DoFree |  | 27 to 20 | 2006.000 |
| MAPE = | 20.49 |  |  |  |  |  |  |
| Variable | name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 vein29 |  | - - - - - | - - - - | - - - | - - - - | 11594.88 | 8 - - |
| 1 intercept |  | -612.95837 | 0.5 | -0.05 | 17.60 | 1.00 |  |
| 2 vein29[1] |  | 0.56285 | 43.3 | 0.55 | 2.02 | 11231.75 | 50.572 |
| 3 venntr |  | 0.06378 | 2.8 | 0.50 | 1.81 | 91518.56 | 60.301 |
| 4 venntr[1] |  | 0.17218 | 15.1 | 1.29 | 1.67 | 86968.16 | 60.794 |
| 5 vennot |  | -0.16848 | 29.4 | -1.29 | 1.00 | 88589.03 | $3-0.735$ |

We found that the equipment investment by air transportation industry can be explained by investment in transportation equipment and other nonresidential equipment. We can observed the effect from the timing of investment decision as the investment in air transportation equipment, i.e. airplanes, is generally a lengthy process. We observed higher coefficient value in the one-year lagged investment in transportation equipment and higher Mexval than the coefficient and Mexval of the current period investment in transportation equipment. Considering the exogenous shock to the industry in the early 2000s, our equation performs remarkably well with adjusted R-square of 0.9348 and well fitted plots of both the predicted value and the BasePred.

## Information and data processing services



The equation shows a very good fit with an adjusted R-square of 0.9886 . The investment in Software and other information processing equipment are found to be good predictors of this industry's investment in equipment and software. The fitted plot shows that the equation tracks the historical series very well over the test period and should provide a reliable forecast as suggested by the BasePred plot

## Real estate



It is no surprise that the investment in residential equipment is the main predictor of equipment investment by real estate industry because, as mentioned earlier, the investment of residential equipment is all counted as a part of equipment investment by real estate industry by the BEA. The equation exhibits good fit in both the closeness of fit statistics and the fitted plot. From the fitted plot, I believe the very high investment by the industry in 2002 was caused by the September 112001 terrorist attack.

## Educational services



The equation shows very good fit with an adjusted R-square of 0.9833 and a MAPE of 6.49 percent. The investment in software, other information processing equipment and other nonresidential equipment are found to partially explain the equipment investment of this industry with the investment in software provide the most explanatory power among the three asset types. The BasePred plot shows a good forecasting power of the equation while the predicted value plot shows obvious lag when there were a significant year-to-year movement.

## Hospitals

| Hospitals |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 795.01 RSQ |  | $=0.9962$ | $\mathrm{RHO}=-0$ | . 02 Obs | er | 32 from | 1975.000 |
| SEE+1 = | 794.67 | RBSQ | $=0.9958$ | DurH $=-0$ | . 09 DoF | ree | 28 to 200 | 006.000 |
| MAPE | 4.62 |  |  |  |  |  |  |  |
| Variable | name |  | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 vein56 |  |  | - | - - - - | - - - | - - - - | 16833.94 | - - - |
| 1 intercept |  |  | 725.06416 | 2.7 | 0.04 | 263.19 | 1.00 |  |
| 2 vein56[1] |  |  | 0.97361 | 227.2 | 0.89 | 1.11 | 15467.16 | 0.907 |
| 3 venn2 |  |  | 0.02232 | 4.5 | 0.10 | 1.01 | 73834.41 | 0.116 |
| 4 vennoit |  |  | -0.00590 | 0.5 | -0.04 | 1.00 | 101376.84 | -0.024 |

The equipment investment by hospitals industry can be explained very well with its lagged value plus investment in software and other information processing software. The estimated equation has very good closeness of fit statistics. The adjusted R-square is
0.9958 and the MAPE is 4.62 percent. The fitted plot shows very close fit by both the predicted value and the BasePred.

Figure 4.4: Plots of FAA by Purchasing Industries Estimation Results

Farms
nominal (Million dollars)


Oil and gas extraction
nominal (Million dollars)


Support activites for mining
nominal (Million dollars


Forestry, fishing, and related activities


Mining, except oil and gas
nominal (Million dollars)


Utilities
nominal (Million dollars)


Figure 4.4 (cont.)

Construction


Nonmetallic mineral products


Fabricated metal products
nominal (Million dollars)


Wood products
nominal (Million dollars)


Primary metals
nominal (Million dollars)


Machinery
nominal (Million dollars)


Figure 4.4 (cont.)

Computer and electronic products
nominal (Million dollars)


Motor vehicles, bodies and trailers, and parts


Furniture and related products


Electrical equipment, appliances, and components


Other transportation equipment


Miscellaneous manufacturing
nominal (Million dollars)


Figure 4.4 (cont.)

Food, beverage, and tobacco products



Printing and related support activities
nominal (Million dollars)


Textile mills and textile product mills
nominal (Million dollars)


Paper products
nominal (Million dollars)


Petroleum and coal products
nominal (Million dollars)


Figure 4.4 (cont.)


## Wholesale trade

nominal (Million dollars)


Air transportation
nominal (Million dollars)


Plastics and rubber products
nominal (Million dollars)


Retail trade
nominal (Million dollars)


Railroad transportation
nominal (Million dollars)


Figure 4.4 (cont.)

Water transportation
nominal (Million dollars)


Transit and ground passenger transportation
nominal (Million dollars)


Other transportation and support activites
nominal (Million dollars)


Truck transportation
nominal (Million dollars)


Pipeline transportation
nominal (Million dollars)


Warehousing and storage
nominal (Million dollars)


Figure 4.4 (cont.)

Publishing industries (including software)


Broadcasting and telecommunications


Federal Reserve banks
nominal (Million dollars)


Motion picture and sound recording industries
nominal (Million dollars)


Information and data processing services
nominal (Million dollars)


Credit intermediation and related activities
nominal (Million dollars)


Figure 4.4 (cont.)

Securities, commodity contracts, and investments


Funds, trusts, and other financial vehicles
nominal (Million dollars)


Rental and leasing services and lessors of intangible assets


Insurance carriers and related activities
nominal (Million dollars)


Real estate
nominal (Million dollars)


Legal services
nominal (Million dollars)


Figure 4.4 (cont.)

Computer systems design and related services
nominal (Million dollars)


Management of companies and enterprises
nominal (Million dollars)


Waste management and remediation services
nominal (Million dollars)


Miscellaneous professional, scientific, and technical services nominal (Million dollars)


Administrative and support services
nominal (Million dollars)


Educational services
nominal (Million dollars)


Figure 4.4 (cont.)

Ambulatory health care services


Nursing and residential care facilities

'erforming arts, spectator sports, museums, and related activitis


Hospitals
nominal (Million dollars)


Social assistance
nominal (Million dollars)


Amusements, gambling, and recreation industries
nominal (Million dollars)



Accommodation
nominal (Million dollars)


Other services, except government
nominal (Million dollars)


### 4.5 Historical Simulations

Using the earlier described approach, I produced two historical simulations to test the method's performance. Using the same idea as described in Chapter 3, two historical forecasts, one with all actual exogenous variables and one with exogenous variables generated by QUEST, are generated for 2005 and 2006. The assumptions of exogenous variables used in the historical simulation with QUEST (the second simulation) is shown in Table 4.7.
"The first simulation" refers to the historical simulation with actual exogenous variables and "The second simulation" refers to the historical simulation with exogenous variables generated from QUEST and other ad hoc assumptions.

Table 4.7: Assumptions of exogenous variables used in the Second Historical Simulation

| vfnre pvfnre vfr | Nominal value of Nonresidential Equipment and Software fixed investment Price index of Nonresidential Equipment and Software fixed investment Nominal value of Residential investment | 2005Q1 | 2005Q2 | 2005Q3 | 2005Q4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1027.41 | 1027.78 | 1037.52 | 1046.97 |
|  |  | 94.76 | 94.83 | 94.24 | 94.29 |
|  |  | 686.01 | 700.45 | 720.79 | 729.85 |
|  |  | 2006Q1 | 2006Q2 | 2006Q3 | 2006Q4 |
| vfnre | Nominal value of Nonresidential Equipment and Software fixed investment | 1044.79 | 1049.36 | 1058.59 | 1073.27 |
| pvfnre | Price index of Nonresidential Equipment and Software fixed investment | 94.43 | 94.38 | 94.47 | 94.67 |
| vfr | Nominal value of Residential investment | 732.88 | 743.59 | 750.72 | 761.58 |
| All nominal values are in Billions of dollars |  |  |  |  |  |
| Percentage difference from the actual value |  | 2005Q1 | 2005Q2 | 2005Q3 | 2005Q4 |
| vfnre pvfnre vfr | Nominal value of Nonresidential Equipment and Software fixed investment Price index of Nonresidential Equipment and Software fixed investment Nominal value of Residential investment | 12.94\% | 10.88\% | 8.88\% | 9.00\% |
|  |  | 0.00\% | 0.00\% | 0.00\% | 0.01\% |
|  |  | -5.72\% | -7.45\% | -8.26\% | -9.11\% |
|  |  | 2006Q1 | 2006Q2 | 2006Q3 | 2006Q4 |
| vfnre pvfnre vfr | Nominal value of Nonresidential Equipment and Software fixed investment | 5.35\% | 5.88\% | 5.95\% | 8.55\% |
|  | Price index of Nonresidential Equipment and Software fixed investment | 0.01\% | 0.00\% | 0.00\% | 0.00\% |
|  | Nominal value of Residential investment | -9.45\% | -5.66\% | 0.62\% | 6.47\% |

We can compare numbers in Table 4.7 with the actual number from the BEA ${ }^{18}$. First, please note that the price index of nonresidential equipment and software fixed investment inputs are actually the published BEA numbers because QUEST does not provided the price indexes required.

Our assumption for nominal fixed investment in nonresidential equipment is approximately $10 \%$ higher than the actual BEA numbers. At the same time, QUEST's numbers for the nominal residential fixed investment are generally lower than the BEA values, especially in 2005. QUEST predicted that the residential fixed investment would expand steadily in both 2005 and 2006. What actually happened is that residential fixed

[^7]investment expanded rapidly in 2005 and started to slow down in 2006. Historically, only about one to two percent of total residential fixed investment is residential fixed investment in equipment. This underestimation of the residential fixed investment should have minimal effect on the performance of the second simulation.

Table 4.8 and Table 4.9 show the differences between each historical simulation and the published numbers. We can also observe how these differences in exogenous inputs affect the performance of the equations. Figure 4.5 graphically presents these differences by major industry groups.

Table 4.8: Historical Simulations' Results in Major Investment Industries, Nominal
Percentage difference from the published value
Total Private fixed assets
Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods
Nondurable goods
Wholesale trade
Retail trade
Transportation and warehousing
Information
Finance and insurance
Real estate and rental and leasing
Professional, scientific, and technical services
Management of companies and enterprises $15 \backslash$
Administrative and waste management services
Educational services
Health care and social assistance
Arts, entertainment, and recreation
Accommodation and food services
Other services, except government

| 1st Sim |  | 2nd Sim |  |
| :---: | :---: | :---: | :---: |
| 2005 | 2006 | 2005 | 2006 |
| 1.47\% | 1.43\% | 8.72\% | 8.04\% |
| 4.16\% | 7.79\% | 5.98\% | 6.17\% |
| 2.06\% | 3.44\% | 11.72\% | 6.01\% |
| -6.94\% | -8.65\% | -5.20\% | -2.63\% |
| 3.46\% | 2.06\% | -1.02\% | -6.46\% |
| -1.77\% | -0.04\% | -3.53\% | -0.15\% |
| -0.34\% | 2.75\% | -1.54\% | 4.15\% |
| -3.87\% | -4.15\% | -6.46\% | -6.47\% |
| -9.46\% | -9.69\% | -2.76\% | -4.48\% |
| 8.20\% | 4.99\% | 10.85\% | 8.08\% |
| 2.83\% | 2.12\% | 28.73\% | 26.92\% |
| 2.05\% | 2.09\% | 28.16\% | 30.80\% |
| 8.31\% | 7.01\% | 22.21\% | 22.95\% |
| 1.76\% | 5.58\% | 25.16\% | 18.06\% |
| 0.31\% | -1.82\% | 1.75\% | 0.98\% |
| 11.66\% | 6.35\% | 11.33\% | 8.25\% |
| 7.02\% | 3.65\% | 8.02\% | 5.90\% |
| 11.52\% | 8.12\% | 11.44\% | 9.51\% |
| -0.09\% | 1.11\% | -2.70\% | -0.68\% |
| 10.23\% | 14.04\% | 12.21\% | 14.76\% |
| 2.13\% | -0.62\% | 4.36\% | -1.65\% |
| 8.44\% | 7.20\% | 9.14\% | 9.29\% |

From the 63 detailed industries' results shown in Table 4.9, I aggregated the results into 19 industry groups as shown in Table 4.8. I will discuss only the nominal
values in this section as BEA does not publish real values or price indexes of Fixed Assets.

## Table 4.9: Historical Simulations' Results in Detailed Investment Industries, Nominal

|  | st Sim |  | 2nd Sim |  |
| :---: | :---: | :---: | :---: | :---: |
| Percentage difference from the published value | 2005 | 2006 | 2005 | 2006 |
| Farms | 5.99\% | 9.17\% | 9.35\% | 9.40\% |
| Forestry, fishing, and related activities | -10.58\% | -3.21\% | -21.21\% | -19.46\% |
| Oil and gas extraction | 24.49\% | 26.52\% | 56.49\% | 44.73\% |
| Mining, except oil and gas | 3.76\% | 2.66\% | 9.21\% | 5.15\% |
| Support activites for mining | -14.44\% | -9.73\% | -13.97\% | -16.62\% |
| Utilities | -6.94\% | -8.65\% | -5.20\% | -2.63\% |
| Construction | 3.46\% | 2.06\% | -1.02\% | -6.46\% |
| Wood products | 9.19\% | 9.85\% | 1.80\% | 0.87\% |
| Nonmetallic mineral products | -1.83\% | -2.84\% | -2.14\% | -1.04\% |
| Primary metals | 1.61\% | 0.38\% | 0.98\% | 1.23\% |
| Fabricated metal products | 8.90\% | 11.24\% | 6.08\% | 9.77\% |
| Machinery | 3.81\% | 8.70\% | 3.27\% | 11.28\% |
| Computer and electronic products | -9.43\% | -2.06\% | -10.23\% | 0.03\% |
| Electrical equipment, appliances, and components | 18.75\% | 11.98\% | 12.77\% | 12.90\% |
| Motor vehicles, bodies and trailers, and parts | 6.82\% | 7.27\% | 5.84\% | 9.38\% |
| Other transportation equipment | -8.60\% | -6.60\% | -9.21\% | -5.13\% |
| Furniture and related products | 6.88\% | 8.99\% | 6.60\% | 11.59\% |
| Miscellaneous manufacturing | -1.68\% | -4.22\% | -2.05\% | -1.75\% |
| Food, beverage, and tobacco products | -1.66\% | -5.41\% | -4.71\% | -10.04\% |
| Textile mills and textile product mills | 10.11\% | 16.55\% | -7.72\% | 26.77\% |
| Apparel and leather and allied products | 6.01\% | 8.52\% | 7.35\% | 16.57\% |
| Paper products | 6.55\% | 4.38\% | 6.99\% | 9.24\% |
| Printing and related support activities | -0.13\% | -0.33\% | -0.50\% | 1.82\% |
| Petroleum and coal products | -28.84\% | -23.79\% | -33.71\% | -34.03\% |
| Chemical products | -0.06\% | -2.12\% | -2.39\% | -4.67\% |
| Plastics and rubber products | 7.78\% | 9.68\% | 7.29\% | 12.27\% |
| Wholesale trade | -9.46\% | -9.69\% | -2.76\% | -4.48\% |
| Retail trade | 8.20\% | 4.99\% | 10.85\% | 8.08\% |
| Air transportation | 25.39\% | 21.35\% | 35.42\% | 82.90\% |
| Railroad transportation | 12.73\% | 19.16\% | 12.92\% | 19.58\% |
| Water transportation | 11.49\% | 14.03\% | 28.63\% | 27.03\% |
| Truck transportation | -21.54\% | -21.47\% | 17.05\% | -13.49\% |
| Transit and ground passenger transportation | 3.39\% | 1.42\% | 42.72\% | 22.63\% |
| Pipeline transportation | 3.02\% | 2.22\% | 16.99\% | 16.88\% |
| Other transportation and support activites | 19.80\% | 26.75\% | 64.84\% | 59.52\% |
| Warehousing and storage | 9.91\% | 5.57\% | 11.76\% | 3.94\% |
| Publishing industries (including software) | 6.70\% | 2.07\% | 12.34\% | 15.62\% |
| Motion picture and sound recording industries | -4.41\% | -3.53\% | -4.43\% | -3.92\% |
| Broadcasting and telecommunications | 0.95\% | 2.11\% | 33.89\% | 36.94\% |
| Information and data processing services | 6.69\% | 2.67\% | 5.70\% | 4.56\% |
| Federal Reserve banks | 59.20\% | 52.30\% | 84.52\% | 78.93\% |
| Credit intermediation and related activities | 5.85\% | 5.67\% | 20.35\% | 21.91\% |
| Securities, commodity contracts, and investments | -3.81\% | -8.72\% | 9.46\% | 16.76\% |
| Insurance carriers and related activities | 17.96\% | 15.96\% | 26.61\% | 24.26\% |
| Funds, trusts, and other financial vehicles | 32.46\% | 27.13\% | 74.47\% | 41.59\% |
| Real estate | 3.29\% | 3.31\% | 1.35\% | 0.60\% |
| Rental and leasing services and lessors of intangible assets | 1.37\% | 6.16\% | 31.27\% | 22.54\% |
| Legal services | 5.51\% | 3.57\% | 7.47\% | 8.99\% |
| Computer systems design and related services | 13.50\% | 5.24\% | 11.90\% | 9.54\% |
| Miscellaneous professional, scientific, and technical services | -3.82\% | -4.17\% | -1.52\% | -1.95\% |
| Management of companies and enterprises | 11.66\% | 6.35\% | 11.33\% | 8.25\% |
| Administrative and support services | 7.42\% | 3.50\% | 8.07\% | 5.89\% |
| Waste management and remediation services | 4.17\% | 4.69\% | 7.66\% | 5.92\% |
| Educational services | 11.52\% | 8.12\% | 11.44\% | 9.51\% |
| Ambulatory health care services | -1.43\% | 0.87\% | -6.34\% | -4.40\% |
| Hospitals | -0.04\% | 0.63\% | -1.23\% | 1.16\% |
| Nursing and residential care facilities | 8.83\% | 6.71\% | 9.27\% | 7.51\% |
| Social assistance | 14.46\% | 12.15\% | 16.57\% | 15.68\% |
| Performing arts, spectator sports, museums, and related activities | 12.52\% | 16.17\% | 14.23\% | 16.83\% |
| Amusements, gambling, and recreation industries | 9.29\% | 13.16\% | 11.38\% | 13.89\% |
| Accommodation | 2.50\% | 4.28\% | -2.42\% | -1.73\% |
| Food services and drinking places | 2.04\% | -1.78\% | 6.04\% | -1.63\% |
| Other services, except government | 8.44\% | 7.20\% | 9.14\% | 9.29\% |

Overall, our equations can predict the fixed investment by all private industries very well, at least during the 2005 and 2006 historical simulation period, when we can predict exactly what the exogenous variables will be. The first simulation misses the FAA total by $1.47 \%$ in 2005 and $1.43 \%$ in 2006. At the same time, the second simulation performs not as good as the first simulation. The second simulation missed the FAA fixed investment by all private industries by $8.72 \%$ in 2005 and $8.04 \%$ in 2006. This overestimation errors of the second simulation is in line with the overestimation of private fixed investment in nonresidential equipment and software, described earlier.

For equipment investment by Agriculture, forestry, fishing, and hunting, the first simulation missed the BEA numbers by $4.16 \%$ and $7.79 \%$ in 2005 and 2006, respectively. The second simulation missed the same numbers by $5.98 \%$ and $6.17 \%$ in 2005 and 2006, respectively. Both simulations show relatively comparable performance in predicting fixed investment in equipment by Agriculture, forestry, fishing, and hunting. However, the detailed results, shown in Table 4.9, tell a different story. The first simulation performs better than the second simulation in predicting the equipment fixed investment by both Farms and Forestry, fishing, and related activities. Both simulations overestimate the investment in Farms and underestimate the investment in Forestry, fishing, and hunting industries.

The first simulation missed the equipment fixed investment by Mining by $2.06 \%$ in 2005 and $3.44 \%$ in 2006. the second simulation missed the same numbers by $11.72 \%$ and $6.01 \%$ in 2005 and 2006, respectively. Most of the errors from both simulations
come from the oil and gas extraction industry. The second simulation overestimate the expansion by $56.49 \%$ in 2005 and $44.73 \%$ in 2006 .

For fixed investment in equipment by utilities industry, the second simulation provided a better forecast than the first simulation. Out-performing the second simulation, the first simulation performs quite well with errors of $-6.94 \%$ in 2005 and $-8.65 \%$ in 2006.

For the investment by construction industry, the first simulation overestimates the published numbers with errors of $3.46 \%$ in 2005 and $2.06 \%$ in 2006. The second simulation missed the same numbers by $-1.02 \%$ in 2005 and $-6.46 \%$ in 2006.

The first simulation performs very well in predicting the equipment investment by Manufacturing. It missed the published numbers by $-1.77 \%$ in 2005 and $-0.04 \%$ in 2006. The second simulation performs relatively well with errors of $-3.53 \%$ in 2005 and $-0.15 \%$ in 2006. From the detailed industries' forecast, most of the underestimation by both simulations in 2005 comes from nondurable goods manufacturing industries. In 2006, both simulations overestimate the investment by durable goods manufacturing and underestimate the investment by nondurable goods manufacturing. The underestimated forecast of the equipment fixed investment by the computer and electronic products, which contributes around $30 \%$ to the durable goods manufacturing investment, is the main contributor to the slightly underestimation of the equipment investment by durable goods manufacturing. For nondurable goods manufacturing equipment investment, the underestimated forecasts of investment by Food, beverage, and tobacco products and
investment by petroleum and coal products are the two main sources of errors in the second simulation forecast of nondurable manufacturing equipment investment.

For Wholesale trade equipment investment, the first simulation missed the published numbers by $-9.46 \%$ and $-9.69 \%$ in 2005 and 2006, respectively. The second simulation missed the same number by $-2.76 \%$ in 2005 and $-4.48 \%$, respectively.

The equipment investment by Retail trade is overestimated by the first simulation with errors of $8.20 \%$ in 2005 and $4.99 \%$ in 2006. The second simulation missed the same number by $10.85 \%$ in 2005 and $8.08 \%$ in 2006.

Overall, the first simulation can predict most of the major components of equipment investment by Service industries. The first simulation forecast of the Finance and insurance industry, the biggest component of nominal fixed investment in equipment by services industries, is not as good as the forecast of other major components such as Real estate and rental and leasing, Professional, scientific, and technical services, and Health care and social services. The first simulation missed the published numbers of Finance and insurance investment by $8.31 \%$ in 2005 and $7.01 \%$ in 2006. Three industry groups, with the forecast errors by the first simulation over ten percent, are 1) Management of companies and enterprises, 2) Educational services, and 3) Arts, entertainment, and recreation. For these three industry groups, the second simulation generated relative the same magnitude of errors in each industry.

However, the second simulation performs a lot worse than the first simulation in most of the big components of the equipment investment in services industry. Four
industry groups have forecast errors by the second simulation bigger than $20 \%$ in both 2005 and 2006. These four industries are 1) Transportation and warehousing, 2) Information, 3) Finance and insurance, and 4) Real estate and rental and leasing.

From Table 4.9, the source of the significant errors in these four industry groups is that the second simulation forecast significantly missed the biggest component of each of the four industry groups. For Transportation and warehousing equipment investment, the second simulation missed its biggest component, Air transportation, by $35.42 \%$ in 2005 and $82.90 \%$ in 2006. For Information industry equipment investment, the second simulation missed the published numbers of equipment investment by Broadcasting and telecommunication industry by $33.89 \%$ and $36.94 \%$ in 2005 and 2006, respectively. For Finance and insurance industry equipment investment, the second simulation missed the published numbers of equipment investment by Credit intermediation and related activities industry by $20.35 \%$ in 2005 and $21.91 \%$ in 2006. Lastly, for Real estate and rental and leasing industry, the second simulation missed the published numbers of equipment investment by Rental and leasing services by $31.27 \%$ and $22.54 \%$ in 2005 and 2006, respectively.

With the results from the first and the second simulation, we observe that our approach can forecast the nominal fixed investment by major industry groups quite well when we have accurate exogenous inputs, i.e. the first historical simulation. Specifically, the accuracy of the nonresidential fixed investment in equipment and software directly affects the accuracy of the approach, especially in the forecast of equipment investment by Service industries, as Service industries fixed investment is typically mostly in equipment and software.

Figure 4.5: Plots compared BEA numbers with numbers from Historical Simulations


Figure 4.5 (cont.)


Figure 4.5 (cont.)


15 Professional, scientific, and technical services


17 Administrative and waste management services
Nominal


14 Real estate and rental and leasing
Nominal


16 Management of companies and enterprises


+ a.veinmgmt_日- b.veinmgmt...... mveinmgmt


## 18 Educational services

Nominal


+ a.veinedu - $\_$-. b.veinedu ....... mveinedu

Figure 4.5 (cont.)

19 Health care and social assistance
Nominal


21 Accommodation and food services


20 Arts, entertainment and recreation
Nominal


22 Other services, except government
Nominal


+ a.veinsoth - - - b.veinsoth ....... mveinsoth


### 4.6 Forecast of Private Fixed Investment in Equipment and Software through 2008

In this section, I discuss a short-term Outlook of U.S. Private fixed investment in Equipment and software in 2007 and 2008. The forecast is given from the approach described earlier with equations discussed in previous sections.

The outlook is presented by industry groups. The readers can find all detailed forecast estimates and plots of both investment classifications (NIPA by asset types and FAA by purchasing industries) in Appendix 4.2, Appendix 4.3, Appendix 4.4, and Appendix 4.5.

## Forecast Assumptions

This approach needs only three exogenous variables which are provided by the QUEST model. Table 4.10 shows all values of the exogenous variables used in this forecast.

Table 4.10: Assumptions of exogenous variables used in fixed investment forecast

|  |  | 2007Q4 | 2008Q1 | 2008Q2 | 2008Q3 | 2008Q4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vfnre | Nominal value of Nonresidential Equipment and Software fixed investment | 1017.66 | 1020.93 | 1021.16 | 1028.88 | 1036.08 |
| pvfnre | Price index of Nonresidential Equipment and Software fixed investment | 94.85 | 94.83 | 94.82 | 94.83 | 94.84 |
| vfr | Nominal value of Residential investment | 638.83 | 631.77 | 626.18 | 627.30 | 623.69 |

The nominal value of residential investment is predicted to be declining in 2008.
This is a reasonable estimate as the residential investment (both structures and
equipment) is directly affected by the downturn in Real estate market which presents a possible economic recession in the short-term.

The nominal value of nonresidential private fixed investment in equipment and software is predicted to be steadily increasing. However, the growth rates are slower between the last quarter of 2007 and the first half of 2008 while it is predicted to grow faster in the second half of 2008. At the same time, the price index of nonresidential private fixed investment in equipment and software is predicted to be generally stable during the forecast period.

## Outlook of Fixed Investment in Equipment and Software

This discussion contains only the fixed investment by purchasing industries as it is the objective and it can be used in the Inforum model. The 63 industries are grouped into 19 industry groups for discussion. Within the Manufacturing industry group, we show 2 subgroups, Durable goods manufacturing and Nondurable goods manufacturing. Total Private fixed investment in equipment and software is also included.

Table 4.11 shows the historical and forecasted value by industry groups between 1990 and 2008 in both nominal and real 2000. Table 4.12 shows the growth rates between 2001 and 2008. Figure 4.6 shows plots between nominal and real 2000 value of the investment by industry groups.

Table 4.11: Summary of Forecast by Major Industry Groups
Nominal in Million of dollars
Total Equipment Investment
Agriculture, forestry, fishing and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods Manufacturing
Nondurable goods Manufacturing
Wholesale
Retail
Transportation and warehousing
Information
Finance and insurance
Real estate and rental and leasing
Professional, scientific, and technical services
Management of companies and enterprises
Administrative and waste management services
Educational services
Health care and social assistance
Arts, entertainment and recreation
Accommodation and food services
Other services, except government
Real 2000 in Million of dollars
Total Equipment Investment
Agriculture, forestry, fishing and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods Manufacturing
Nondurable goods Manufacturing
Wholesale
Retail
Transportation and warehousing
Information
Finance and insurance
Real estate and rental and leasing
Professional, scientific, and technical services
Management of companies and enterprises
Administrative and waste management services
Educational services
Health care and social assistance
Arts, entertainment and recreation
Accommodation and food services
Other services, except government
The

| 1990 | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 420,324 | 612,831 | 929,682 | 937,976 | 994,854 | 1,027,601 | 1,070,163 |
| 17,372 | 21,260 | 22,408 | 32,131 | 32,253 | 32,868 | 34,087 |
| 9,904 | 16,319 | 15,897 | 23,976 | 26,885 | 25,673 | 23,772 |
| 26,776 | 26,158 | 35,022 | 34,468 | 36,695 | 38,175 | 39,119 |
| 8,982 | 19,433 | 31,714 | 38,395 | 41,293 | 44,640 | 48,145 |
| 99,456 | 142,511 | 169,796 | 148,138 | 157,435 | 172,174 | 185,660 |
| 50,809 | 82,190 | 109,545 | 88,165 | 93,767 | 103,579 | 112,862 |
| 48,647 | 60,321 | 60,251 | 59,973 | 63,668 | 68,595 | 72,799 |
| 22,620 | 42,402 | 56,839 | 70,502 | 75,538 | 74,850 | 74,900 |
| 16,677 | 24,731 | 31,707 | 35,246 | 37,504 | 38,834 | 40,521 |
| 22,610 | 46,004 | 64,297 | 48,630 | 52,738 | 51,083 | 48,717 |
| 40,653 | 58,030 | 121,749 | 65,764 | 70,655 | 72,506 | 75,686 |
| 53,129 | 68,420 | 100,793 | 89,964 | 93,256 | 95,545 | 99,561 |
| 23,483 | 42,025 | 92,126 | 89,065 | 94,406 | 92,211 | 93,359 |
| 15,156 | 21,915 | 59,106 | 80,977 | 85,182 | 86,444 | 89,956 |
| 9,088 | 10,225 | 15,489 | 21,807 | 22,882 | 24,304 | 25,813 |
| 7,917 | 11,317 | 21,345 | 25,742 | 27,232 | 28,727 | 30,425 |
| 2,022 | 3,648 | 6,874 | 9,113 | 9,589 | 10,300 | 11,013 |
| 26,388 | 33,031 | 49,388 | 80,788 | 85,023 | 91,413 | 98,992 |
| 1,966 | 3,988 | 7,714 | 7,890 | 8,144 | 8,446 | 8,929 |
| 10,707 | 13,389 | 17,974 | 26,973 | 29,224 | 29,635 | 30,972 |
| 5,418 | 8,025 | 9,444 | 8,407 | 8,920 | 9,773 | 10,536 |
| 399,686 | 566,897 | 929,682 | 1,012,195 | 1,086,428 | 1,133,253 | 1,216,615 |
| 20,199 | 22,195 | 22,408 | 29,793 | 29,270 | 29,168 | 29,810 |
| 10,773 | 16,425 | 15,897 | 23,346 | 25,857 | 24,376 | 22,530 |
| 28,373 | 25,908 | 35,022 | 34,377 | 36,228 | 37,223 | 38,275 |
| 9,477 | 19,261 | 31,714 | 38,165 | 40,730 | 43,663 | 47,301 |
| 102,317 | 139,159 | 169,796 | 150,976 | 159,594 | 173,391 | 189,130 |
| 51,572 | 79,974 | 109,545 | 90,393 | 95,712 | 105,192 | 116,145 |
| 50,858 | 59,213 | 60,251 | 60,565 | 63,865 | 68,204 | 73,022 |
| 21,958 | 39,121 | 56,839 | 76,185 | 83,314 | 84,025 | 87,888 |
| 16,396 | 23,072 | 31,707 | 37,796 | 40,837 | 42,937 | 46,667 |
| 21,873 | 42,957 | 64,297 | 51,057 | 55,641 | 53,878 | 52,007 |
| 34,414 | 50,292 | 121,749 | 74,926 | 81,990 | 85,433 | 92,126 |
| 44,706 | 58,045 | 100,793 | 106,610 | 115,471 | 123,203 | 138,441 |
| 22,072 | 37,962 | 92,126 | 98,552 | 107,734 | 108,122 | 115,985 |
| 12,029 | 18,995 | 59,106 | 94,428 | 101,577 | 105,589 | 115,520 |
| 7,259 | 8,800 | 15,489 | 25,748 | 27,874 | 30,570 | 34,573 |
| 7,474 | 10,446 | 21,345 | 27,997 | 30,004 | 32,080 | 35,225 |
| 1,769 | 3,256 | 6,874 | 10,240 | 10,975 | 12,012 | 13,381 |
| 23,097 | 29,035 | 49,388 | 89,884 | 95,642 | 103,450 | 113,772 |
| 2,127 | 3,949 | 7,714 | 7,885 | 8,122 | 8,417 | 9,060 |
| 11,994 | 13,671 | 17,974 | 25,865 | 27,614 | 27,614 | 28,809 |
| 5,429 | 7,690 | 9,444 | 8,772 | 9,357 | 10,311 | 11,431 |

Table 4.12: Growth rates of Fixed Investment in Equipment and Software 2001-2008
Nominal
Total Equipment Investment
Agriculture, forestry, fishing and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods Manufacturing
Nondurable goods Manufacturing
Wholesale
Retail
Transportation and warehousing
Information
Finance and insurance
Real estate and rental and leasing
Professional, scientific, and technical services
Management of companies and enterprises
Administrative and waste management services
Educational services
Health care and social assistance
Arts, entertainment and recreation
Accommodation and food services
Other services, except government
Real 2000
Total Equipment Investment
Agriculture, forestry, fishing and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods Manufacturing
Nondurable goods Manufacturing
Wholesale
Retail
Transportation and warehousing
Information
Finance and insurance
Real estate and rental and leasing
Professional, scientific, and technical services
Management of companies and enterprises
Administrative and waste management services
Educational services
Health care and social assistance
Arts, entertainment and recreation
Accommodation and food services
Other services, except government
Nater

| 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -7.40\% | -7.67\% | 1.01\% | 6.52\% | 9.67\% | 6.06\% | 3.29\% | 4.14\% |
| 4.61\% | 9.74\% | 2.52\% | 13.51\% | 7.33\% | 0.38\% | 1.91\% | 3.71\% |
| 6.50\% | -31.87\% | 24.60\% | 29.35\% | 28.97\% | 12.13\% | -4.51\% | -7.41\% |
| 7.42\% | -0.11\% | -8.35\% | -10.36\% | 11.65\% | 6.46\% | 4.03\% | 2.47\% |
| -13.10\% | 12.91\% | -9.40\% | 20.30\% | 13.21\% | 7.55\% | 8.11\% | 7.85\% |
| -7.26\% | -9.85\% | -8.69\% | -0.34\% | 14.68\% | 6.28\% | 9.36\% | 7.83\% |
| -6.94\% | -15.11\% | -10.96\% | -0.39\% | 14.87\% | 6.35\% | 10.46\% | 8.96\% |
| -7.83\% | -0.21\% | -5.15\% | -0.26\% | 14.39\% | 6.16\% | 7.74\% | 6.13\% |
| -11.71\% | -9.42\% | 9.23\% | 10.41\% | 28.60\% | 7.14\% | -0.91\% | 0.07\% |
| -6.68\% | -5.23\% | 11.91\% | 13.03\% | -0.64\% | 6.41\% | 3.55\% | 4.34\% |
| -7.85\% | -17.41\% | -7.16\% | 0.64\% | 6.35\% | 8.45\% | -3.14\% | -4.63\% |
| -15.90\% | -38.14\% | -6.19\% | 8.00\% | 2.49\% | 7.44\% | 2.62\% | 4.39\% |
| -9.48\% | -11.68\% | -1.49\% | 15.83\% | -2.15\% | 3.66\% | 2.45\% | 4.20\% |
| -12.04\% | -14.89\% | 5.54\% | 4.65\% | 16.92\% | 6.00\% | -2.33\% | 1.25\% |
| -4.03\% | 5.55\% | 11.56\% | 6.30\% | 14.05\% | 5.19\% | 1.48\% | 4.06\% |
| -5.94\% | 65.85\% | 1.75\% | -2.50\% | -9.03\% | 4.93\% | 6.22\% | 6.21\% |
| -5.69\% | 2.34\% | 15.99\% | 7.32\% | 0.38\% | 5.79\% | 5.49\% | 5.91\% |
| 0.51\% | 26.02\% | 4.13\% | 9.80\% | -8.47\% | 5.22\% | 7.41\% | 6.92\% |
| 5.47\% | 20.44\% | 10.27\% | 8.38\% | 7.76\% | 5.24\% | 7.52\% | 8.29\% |
| 0.86\% | 3.95\% | -12.34\% | 12.74\% | -1.28\% | 3.22\% | 3.71\% | 5.71\% |
| -3.67\% | 14.01\% | 15.55\% | -1.60\% | 20.18\% | 8.35\% | 1.41\% | 4.51\% |
| -8.09\% | -10.58\% | 9.12\% | 0.26\% | -1.00\% | 6.10\% | 9.56\% | 7.81\% |
| -5.20\% | -5.72\% | 2.53\% | 7.20\% | 10.83\% | 7.33\% | 4.31\% | 7.36\% |
| 4.02\% | 9.10\% | 1.22\% | 10.90\% | 4.36\% | -1.76\% | -0.35\% | 2.20\% |
| 6.77\% | -31.69\% | 24.16\% | 27.70\% | 27.00\% | 10.76\% | -5.73\% | -7.57\% |
| 7.94\% | 0.79\% | -7.98\% | -11.03\% | 10.22\% | 5.38\% | 2.75\% | 2.83\% |
| -12.64\% | 13.62\% | -9.37\% | 19.32\% | 12.10\% | 6.72\% | 7.20\% | 8.33\% |
| -6.55\% | -8.68\% | -7.92\% | -0.59\% | 13.84\% | 5.71\% | 8.64\% | 9.08\% |
| -6.21\% | -13.92\% | -10.09\% | -0.47\% | 14.22\% | 5.88\% | 9.90\% | 10.41\% |
| -7.18\% | 0.92\% | -4.54\% | -0.77\% | 13.28\% | 5.45\% | 6.79\% | 7.06\% |
| -9.22\% | -7.41\% | 10.52\% | 10.43\% | 30.67\% | 9.36\% | 0.85\% | 4.60\% |
| -4.56\% | -3.27\% | 13.52\% | 13.45\% | 0.26\% | 8.05\% | 5.14\% | 8.69\% |
| -5.88\% | -16.23\% | -6.57\% | 0.69\% | 7.05\% | 8.98\% | -3.17\% | -3.47\% |
| -13.16\% | -36.41\% | -3.70\% | 10.65\% | 4.60\% | 9.43\% | 4.20\% | 7.83\% |
| -4.96\% | -8.07\% | 1.20\% | 17.39\% | 1.90\% | 8.31\% | 6.70\% | 12.37\% |
| -8.60\% | -12.73\% | 6.94\% | 4.59\% | 19.91\% | 9.32\% | 0.36\% | 7.27\% |
| -1.12\% | 9.43\% | 15.37\% | 9.27\% | 17.13\% | 7.57\% | 3.95\% | 9.41\% |
| -2.62\% | 72.45\% | 5.33\% | 0.05\% | -6.07\% | 8.25\% | 9.67\% | 13.09\% |
| -3.67\% | 4.67\% | 18.17\% | 8.49\% | 1.47\% | 7.17\% | 6.92\% | 9.80\% |
| 3.19\% | 29.53\% | 6.77\% | 11.98\% | -6.79\% | 7.18\% | 9.45\% | 11.40\% |
| 8.39\% | 23.03\% | 12.67\% | 10.91\% | 9.21\% | 6.41\% | 8.16\% | 9.98\% |
| 1.63\% | 4.76\% | -12.12\% | 11.82\% | -2.30\% | 3.01\% | 3.62\% | 7.65\% |
| -3.81\% | 14.04\% | 15.00\% | -3.04\% | 17.65\% | 6.76\% | 0.00\% | 4.33\% |
| -6.80\% | -9.12\% | 10.29\% | 0.29\% | -0.85\% | 6.67\% | 10.20\% | 10.86\% |

In general, we expect the economy to rebound in 2008. Toward the end of 2007, we have experienced the problem in the credit markets that not only affected the consumer but also the ability of businesses to acquire necessary capital for investment. We could see the real growth rate of equipment investment of $4.31 \%$ in 2007 and $7.36 \%$ in 2008. Thus, we should not expect a recession induced by low investment in equipment and software in 2008 unless the problem in the credit markets is becoming worse than expected or there is another economic shock. The continuing depreciation of the U.S. dollar could be factor in the expansion of many industries, especially manufacturing industries.

There is a sign of expansion in the Agriculture, forestry, fishing, and hunting industry group. In 2006, the real growth rate of this industry is $-1.76 \%$. We expect the real growth rate to improve to $-0.35 \%$ in 2007 and $2.20 \%$ in 2008. The agriculture industries such as farms would benefit from the depreciation of U.S. dollar as it its price becomes more competitive in the world market. Also, the more expensive imports create higher demand for local goods in the domestic market by the substitution effect.

Mining's investment in equipment and software is expected to decline in 2007 and 2008. The real growth rate is expected to be $-5.73 \%$ in 2007 and $-7.57 \%$ in 2008 compared to the real growth rate of more than $25 \%$ between 2003 and 2005. Mining, except Oil and gas, has real growth rate of $-16.25 \%$ in 2008.

I believe this expected decline in investment growth of this industry is a result of massive increase in investment in the past 4 years to update the current infrastructures
and building new ones, which was accelerated by the September 11 attack and the rapidly increasing world oil price. This investment has been done and should start paying off in 2007 and 2008. Thus, I think this slow down is plausible.

Utilities show reasonable growth in real investment of equipment of $2.75 \%$ in 2007 and $2.83 \%$ in 2008.

Surprisingly, the investment in equipment and software by Construction is expected to keep increasing at $7.20 \%$ and $8.33 \%$ in real terms in 2007 and 2008, respectively. This real growth rates are in the same range as the growth rate in 2006 of $6.72 \%$. Considering the problem in the sub-prime credit market in 2007, this predicted growth rate might be on the high side.

Manufacturing shows strong growth in equipment investment in 2007 and 2008. The growth rates are expected to be $8.64 \%$ in 2007 and $9.08 \%$ in 2008 in real terms. Expansion in the durable good manufacturing contributes to the majority of this growth rate as Table 4.11 shows that durable good manufacturing contributes to about $60 \%$ of real investment in equipment by manufacturing industries. Durable goods manufacturing investment in equipment and software is expected to grow by $9.90 \%$ and $10.41 \%$ in real terms in 2007 and 2008, respectively. Nondurable goods manufacturing growth rate in real investment in equipment is $6.79 \%$ and $7.06 \%$ in 2007 and 2008 , respectively. As discussed earlier, the depreciation of U.S. dollar might be a factor in the increasing investment by this industry, especially in durable goods manufacturing industries which are more capital intensive than the nondurable goods manufacturing industries.

Wholesale trade exhibits modest real investment growth in equipment and software of $0.85 \%$ in 2007. The growth rate of this industry's equipment investment increase to $4.60 \%$ in 2008. The higher growth rate in 2008 is a result of predicted lower cost of investment in Wholesale trade in equipment and software as the nominal value of equipment investment by wholesale trade industry is relatively the same size between 2007 and 2008.

Retail trade industry has growth rates of $5.14 \%$ in 2007 and $8.69 \%$ in 2008 in real terms. From the plots of nominal and real investment in Figure 4.6, this growth rate seems to be in line with its long term trend.

Transportation and warehousing has growth rates of real investment in equipment of $-3.17 \%$ and $-3.47 \%$ in 2007 and 2008, respectively. From Appendix 4.3, all detailed industries in this group exhibit the same declining investment pattern except Railroad transportation and Warehousing and storage. Railroad transportation shows a strong real equipment investment growth of $11.90 \%$ and $12.78 \%$ in 2007 and 2008, respectively. Truck transportation shows as much as a $-22.60 \%$ decline in real investment in 2007 while Transit and ground passenger transportation shows the decline in real investment growth of $-15.07 \%$ in 2007.

Information services shows decent equipment investment growth of $4.20 \%$ in 2007 and $7.83 \%$ in 2008 in real terms. This growth rate shows that this industry continues its expansion after the last recession in 2000 which affected this industry equipment investment well into 2003, as shown in Figure 4.6. Within this industry group,

Information and data processing services shows the strongest real investment growth with the rate of $8.80 \%$ in 2007 and $10.39 \%$ in 2008.

Finance and insurance services shows growth rate of real fixed investment in equipment and software of $6.70 \%$ and $12.37 \%$ in 2007 and 2008, respectively. Credit intermediation and related activities account for most of this growth as it is the biggest portion and in 2008 grows at the rate of $13.01 \%$. This forecast is likely to be optimistic. As discussed earlier, in 2007, we have seen many banks, big and small, affected by the problem in the sub-prime mortgage market. The outlook into 2008 does not seem to be better for liquidity,so that this industry could slow down its investment in equipment and software in the near future.

Real estate and rental and leasing services investment in equipment and software is $0.36 \%$ in 2007 and $7.27 \%$ in 2008 in real terms. The real estate services which accounts for about $25 \%$ of this industry group's nominal equipment investment has stable growth of $4.82 \%$ in 2007 and $5.94 \%$ in real terms. This growth rate appears to me to be unlikely to happen in 2008. The reason for this stable growth rate in 2008 comes from the forecast of residential equipment investment in 2008 which has a growth rate of $2.18 \%$ in 2008 in real terms while accounts for about $90 \%$ of all the growth of investment in the real estate services. It is likely that we will see the slowdown in real estate market in 2008 which should slowdown the investment in residential equipment. Thus, the slower growth in equipment investment by real estate industry.

Professional, scientific and technical services shows the equipment investment growth of $3.95 \%$ and $9.41 \%$ in 2007 and 2008 in real terms. This growth rate shows the continuing expansion of this industry group throughout the last two decades.

Table 4.12 and Figure 4.6 show that most of the services industries are expected to grow at around the average growth rate of the last decade (1990s and early 2000s). However, two industries merit note. Social assistance services continues to grow at a rapid rate which reflects the aging population of the United States, especially the "Baby Boomers" generation. The growth rate of real investment in equipment and software by social assistance services is $15.64 \%$ in 2007 and $11.27 \%$ in 2008.

The investment in equipment and software by Food services and drinking places shows a decline of $-0.94 \%$ in 2007 in real terms. The real investment picks up in 2008 with a growth rate of $4.07 \%$ in 2008.

Figure 4.6: Plots of Fixed Investment Forecast by Purchasing Industries


Figure 4.6 (cont.)



Figure 4.6 (cont.)

19 Health care and social assistance
Nominal and Real (2000) in Million dollars


21 Accommodation and food services
Nominal and Real (2000) in Million dollars


20 Arts, entertainment and recreation
Nominal and Real (2000) in Million dollars


22 Other services, except government
Nominal and Real (2000) in Million dollars


+ veinsoth -®- veirsoth


## Chapter 5. Investment in Structures

As observed at the beginning of Chapter 4, investment in structures is about the same size as investment in equipment. Roughly two-thirds of it is residential structures and one third nonresidential structures. Quarterly data is available in the NIPA for five components of nonresidential structures and for three different categories of residential structures plus one for residential equipment. Recent values of these series are shown in Table 5.1 in current prices, and Figures 5.1 and 5.2 on following pages graph these series in constant prices. ${ }^{19}$

Table 5.1: NIPA Quarterly Data on Investment in Structures

| Table 5.3.5. Private Fixed Investment in Structures by Type |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line |  | 2006 | 2006 | 2006 | 2006 | 2007 | 2007 | 2007 |
|  |  | 1 | 2 | 3 | 4 | 1 | 2 | 3 |
| 3 | Nonresidential Structures | 375.7 | 400.2 | 416.1 | 428.4 | 439.6 | 464.5 | 478.5 |
| 4 | Commercial and health care | 142.5 | 149.7 | 159.8 | 164.0 | 172.8 | 174.7 | 178.5 |
| 5 | Manufacturing | 24.6 | 26.8 | 28.4 | 27.3 | 27.5 | 28.9 | 28.0 |
| 6 | Power and communication | 45.4 | 46.3 | 47.7 | 49.6 | 51.1 | 57.1 | 58.5 |
| 7 | Mining exploration, shafts, and wells | 96.2 | 106.3 | 107.9 | 111.2 | 109.1 | 117.4 | 122.5 |
| 8 | Other structures 111 | 67.0 | 71.1 | 72.3 | 76.4 | 79.1 | 86.5 | 91.0 |
| 18 | Residential Structures | 799.9 | 778.6 | 736.4 | 705.7 | 677.8 | 655.2 | 617.7 |
| 19 | Permanent site | 515.7 | 490.7 | 451.9 | 417.8 | 387.2 | 369.6 | 345.0 |
| 20 | Single family | 463.7 | 437.7 | 399.5 | 363.1 | 334.1 | 319.1 | 295.9 |
| 21 | Multifamily | 51.9 | 53.0 | 52.4 | 54.7 | 53.2 | 50.6 | 49.1 |
| 22 | Other structures $\backslash 2 \backslash$ | 284.2 | 287.9 | 284.5 | 288.0 | 290.6 | 285.6 | 272.7 |
| 23 | Residential Equipment | 9.6 | 9.6 | 9.7 | 9.6 | 9.7 | 9.6 | 9.7 |

[^8][^9]The graphs show that investment in structures is no less volatile than investment in equipment. For example, over the two years from the beginning of 1990 to the end of 1991, spending on Commercial structures fell by a third. Single-family residential construction likewise fell by a third from the end of 2005 to mid 2007. This volatility, coupled with the important magnitude of construction spending, make accurate shortterm forecasting of investment in structures both important and challenging.

Figure 5.1: Investment in Nonresidential Structures, NIPA Quarterly Data. All series deflated by the NIPA deflator for Manufacturing construction.

## Nonresidential Structures Constant 2000 \$

Commercial, Mfg, Utilities, Other


### 5.1 Data and Estimation Approaches for Private Fixed Investment in Structures

Our first question must be the choice of the categories in which we will forecast construction. That choice depends, in the first place, on the categories available in the data sources. We have for construction all the sources we had for equipment plus two more highly important ones. Namely, as in equipment, we have:

NIPA Quarterly (See Table 5.1)

NIPA Annual (See Table 5.2)

FAA Annual (See Table 5.3).

In addition, we have a monthly survey conducted by the Bureau of the Census on the value of construction put in place (VIP) which is the fundamental source for the NIPA and FAA series. It is available both monthly and annually. Thus we have also:

VIP Monthly (See Table 5.4)

VIP Annual (See Table 5.5).

Figure 5.2: NIPA Residential Construction series, all deflated by the average deflator.

## Residential Construction, Constant Prices of 2000

Single family, Multifamily, Other Structures, Residential Equipment


Finally, it is relevant to know the detail available in the 2002 benchmark inputoutput table for the inputs into various types of construction. We can certainly have more detail in the types construction we forecast than is shown in the input-output table, but if we do, we will either have to assume that several of the types we distinguish have the same input structure or go to the trouble to split the input structure provided by BEA. In the 2002 benchmark table there are only three types of Nonresidential construction and and two types of Residential, namely:

230101 Nonresidential commercial and health care structures

230102 Nonresidential manufacturing structures

230103 Other nonresidential structures

230201 Residential permanent site single- and multi-family structures

230202 Other residential structures

Table 5.2: NIPA Annual Table 5.4.5B Private Fixed Investment in Structures by Asset Types

| Line |  | 2002 | 2003 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Private fixed investment in structures | 775.5 | 841.8 | 965.3 | 1,093.8 | 1,160.3 |
| 2 | Nonresidential | 279.2 | 277.2 | 298.2 | 334.6 | 405.1 |
| 3 | Commercial and health care | 116.8 | 112.2 | 122.1 | 132.6 | 154.0 |
| 4 | Office \1 \} | 40.6 | 35.1 | 37.8 | 42.8 | 53.1 |
| 5 | Health care | 25.3 | 27.3 | 29.6 | 32.1 | 37.4 |
| 6 | Hospitals and special care | 19.7 | 20.5 | 21.0 | 23.1 | 29.2 |
| 7 | Hospitals | 15.8 | 17.2 | 18.2 | 20.6 | 25.8 |
| 8 | Special care | 4.0 | 3.3 | 2.8 | 2.5 | 3.4 |
| 9 | Medical buildings | 5.5 | 6.8 | 8.5 | 9.0 | 8.2 |
| 10 | Multimerchandise shopping | 14.8 | 14.6 | 17.9 | 21.6 | 27.7 |
| 11 | Food and beverage establishments | 7.5 | 7.9 | 7.8 | 7.4 | 7.0 |
| 12 | Warehouses | 11.3 | 11.7 | 11.5 | 12.2 | 13.6 |
| 13 | Other commercial \2\ | 17.3 | 15.5 | 17.6 | 16.5 | 15.3 |
| 14 | Manufacturing | 17.8 | 16.7 | 18.5 | 23.3 | 26.8 |
| 15 | Power and communication | 49.5 | 44.2 | 39.1 | 40.9 | 47.3 |
| 16 | Power | 31.2 | 32.1 | 26.2 | 25.2 | 29.2 |
| 17 | Electric | 23.5 | 24.1 | 19.2 | 18.1 | 20.4 |
| 18 | Other power | 7.6 | 8.0 | 6.9 | 7.1 | 8.8 |
| 19 | Communication | 18.4 | 12.1 | 12.9 | 15.7 | 18.0 |
| 20 | Mining exploration, shafts, and wells | 35.6 | 45.7 | 55.7 | 73.7 | 105.4 |
| 21 | Petroleum and natural gas | 33.7 | 44.2 | 53.3 | 70.6 | 101.5 |
| 22 | Mining | 1.9 | 1.6 | 2.4 | 3.1 | 3.9 |
| 23 | Other structures | 59.5 | 58.4 | 62.9 | 64.1 | 71.7 |
| 24 | Religious | 8.1 | 8.3 | 7.9 | 7.5 | 7.5 |
| 25 | Educational and vocational | 14.6 | 14.7 | 13.9 | 14.2 | 14.7 |
| 26 | Lodging | 13.0 | 12.3 | 14.8 | 15.7 | 21.9 |
| 27 | Amusement and recreation | 9.0 | 9.3 | 10.1 | 9.0 | 10.9 |
| 28 | Transportation | 6.5 | 6.1 | 6.7 | 7.0 | 7.8 |
| 29 | Air | 1.4 | 1.1 | 1.0 | 0.9 | 0.9 |
| 30 | Land \3\ | 5.1 | 5.0 | 5.7 | 6.1 | 6.9 |
| 31 | Farm | 5.6 | 5.1 | 5.5 | 5.9 | 5.3 |
| 32 | Other \4\} | 2.6 | 2.4 | 3.2 | 3.6 | 2.9 |
| 33 | Brokers' commissions on sale of structures | 2.1 | 2.1 | 2.2 | 2.3 | 2.7 |
| 34 | Net purchases of used structures | -1.9 | -2.0 | -1.4 | -1.1 | -1.9 |
| 35 | Residential | 496.3 | 564.5 | 667.0 | 759.2 | 755.2 |
| 36 | Permanent site | 298.8 | 345.7 | 417.5 | 480.8 | 469.0 |
| 37 | Single-family structures | 265.9 | 310.6 | 377.6 | 433.5 | 416.0 |
| 38 | Multifamily structures | 33.0 | 35.1 | 39.9 | 47.3 | 53.0 |
| 39 | Other structures | 197.5 | 218.8 | 249.5 | 278.4 | 286.2 |
| 40 | Manufactured homes | 8.5 | 7.1 | 7.5 | 9.1 | 7.4 |
| 41 | Dormitories | 1.5 | 1.8 | 1.7 | 1.5 | 2.1 |
| 42 | Improvements | 121.8 | 133.2 | 146.9 | 160.7 | 178.5 |
| 43 | Brokers' commissions on sale of structures | 68.8 | 80.3 | 96.1 | 109.9 | 101.5 |
| 44 | Net purchases of used structures | -3.1 | -3.5 | -2.6 | -2.8 | -3.4 |
|  | Addenda: |  |  |  |  |  |
| 45 | Private fixed investment in new structures $\backslash 5 \backslash$ | 709.7 | 764.9 | 871.0 | 985.5 | 1,061.3 |
| 46 | Nonresidential structures | 279.1 | 277.2 | 297.5 | 333.4 | 404.3 |
| 47 | Residential structures | 430.7 | 487.7 | 573.6 | 652.1 | 657.0 |
| 1. Consists of office buildings, except those constructed at manufacturing sites and those constructed by power utilities for their own use. <br> Includes all financial buildings. Medical buildings are included in health care. |  |  |  |  |  |  |
| 2. Includes buildings and structures used by the retail, wholesale and selected service industries. Consists of auto dealerships, garages, service stations, drug stores, restaurants, mobile structures, and other structures used for commercial purposes. Bus or truck garages are included in transportation. |  |  |  |  |  |  |
| 3. Consists primarily of railroads. |  |  |  |  |  |  |
| 4. Includes water supply, sewage and waste disposal, public safety, highway and street, and conservation and development. |  |  |  |  |  |  |
| 5. Excludes net purchases of used structures and brokers' commissions on the sale of structures. |  |  |  |  |  |  |

Table 5.3: Construction Categories in the BEA Fixed Assets Accounts

1. Office, including medical buildings
2. Commercial
3. Hospitals and special care
4. Manufacturing
5. Electric
6. Other power
7. Communication
8. Petroleum and natural gas
9. Mining
10. Religious
11. Educational
12. Other buildings
13. Railroads
14.Farm
14. Other

Table 5.4: Monthly Value of Construction Put in Place (VIP), Census Bureau

|  |  | Jan | Feb | $\begin{array}{r}\text { Mar } \\ \hline 2007\end{array}$ | Apr 2007 | May | Jun | Jul |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type of Construction: | 2007 | 2007 | 2007 | 2007 | 2007 | 2007 | 2007 |
| 1 | Total Private Construction | 884,379 | 889,677 | 886,834 | 888,025 | 888,085 | 884,975 | 874,388 |
| 2 | Residential | 567,526 | 562,934 | 555,606 | 551,730 | 544,767 | 538,721 | 528,017 |
| 3 | Nonresidential | 316,853 | 326,743 | 331,228 | 336,295 | 343,318 | 346,254 | 346,371 |
| 4 | Lodging | 20,634 | 22,016 | 25,030 | 26,203 | 28,078 | 28,463 | 29,852 |
| 5 | Office | 54,497 | 53,510 | 52,823 | 52,813 | 52,682 | 54,299 | 53,447 |
| 6 | Commercial | 78,607 | 79,906 | 80,243 | 82,311 | 82,287 | 82,395 | 82,082 |
| 7 | Health care | 35,618 | 36,315 | 36,542 | 36,473 | 36,302 | 35,956 | 36,340 |
| 8 | Educational | 15,014 | 15,547 | 15,301 | 15,479 | 15,380 | 16,480 | 17,096 |
| 9 | Religious | 7,792 | 7,783 | 7,631 | 7,614 | 7,449 | 7,366 | 7,544 |
| 10 | Amusement and recreation | 8,448 | 8,427 | 9,323 | 8,507 | 8,728 | 8,686 | 8,388 |
| 11 | Transportation | 8,152 | 8,150 | 8,226 | 8,234 | 8,481 | 8,398 | 8,442 |
| 12 | Communication | 21,777 | 24,839 | 25,380 | 24,462 | 26,367 | 26,760 | 25,761 |
| 13 | Power | 30,431 | 32,854 | 34,186 | 35,679 | 38,247 | 39,138 | 39,532 |
| 14 | Manufacturing | 34,329 | 35,736 | 34,999 | 36,491 | 37,437 | 36,447 | 36,201 |
| 15 | Other | 1,554 | 1,660 | 1,544 | 2,029 | 1,880 | 1,866 | 1,686 |

Table 5.5: Value of Construction Put in Place (VIP). Annual Data, Bureau of the Census

| Type of Construction: | 2002 | 2003 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total Private Construction | 659,651 | 705,276 | 803,305 | 897,989 | 937,047 |
| Residential | 421,912 | 475,941 | 564,827 | 641,345 | 641,332 |
| New single family | 265,889 | 310,575 | 377,557 | 433,510 | 415,997 |
| New multi-family | 32,952 | 35,116 | 39,944 | 47,297 | 53,020 |
| Improvements | 123,071 | 130,250 | 147,326 | 160,538 | 172,315 |
| Nonresidential | 237,739 | 229,335 | 238,478 | 256,644 | 295,715 |
| Lodging | 10,467 | 9,930 | 11,982 | 12,666 | 17,687 |
| Office | 35,296 | 30,579 | 32,879 | 37,276 | 46,194 |
| General | 32,356 | 27,380 | 28,679 | 32,962 | 41,390 |
| Financial | 2,857 | 3,174 | 4,186 | 4,285 | 4,742 |
| Commercial | 59,008 | 57,505 | 63,195 | 66,584 | 72,148 |
| Automotive | 5,807 | 5,039 | 5,235 | 5,614 | 5,463 |
| Sales | 2,235 | 2,099 | 2,443 | 2,834 | 2,306 |
| Service/parts | 2,308 | 1,866 | 1,978 | 1,805 | 2,089 |
| Parking | 1,265 | 1,074 | 814 | 975 | 1,068 |
| Food/beverage | 7,914 | 8,369 | 8,232 | 7,795 | 7,417 |
| Food | 4,207 | 4,234 | 3,590 | 3,128 | 2,773 |
| Dining/drinking | 2,916 | 3,321 | 3,937 | 4,078 | 3,735 |
| Fast food | 792 | 813 | 705 | 590 | 908 |
| Multi-retail | 15,581 | 15,400 | 18,828 | 22,750 | 29,126 |
| General merchandise | 6,009 | 5,341 | 6,416 | 6,740 | 5,849 |
| Shopping center | 6,605 | 6,867 | 9,256 | 12,462 | 18,446 |
| Shopping mall | 2,108 | 2,231 | 2,138 | 2,631 | 3,320 |
| Other commercial | 12,083 | 11,249 | 13,341 | 11,744 | 10,574 |
| Drug store | 1,644 | 1,790 | 1,427 | 1,315 | 1,301 |
| Building supply store | 2,471 | 2,268 | 2,521 | 2,416 | 2,628 |
| Other stores | 7,145 | 6,214 | 8,229 | 7,075 | 5,707 |
| Warehouse | 11,908 | 12,345 | 12,074 | 12,827 | 14,292 |
| General commercial | 10,934 | 11,004 | 10,830 | 11,468 | 13,298 |
| Mini-storage | 951 | 1,326 | 1,141 | 1,311 | 976 |
| Farm | 5,611 | 5,103 | 5,485 | 5,854 | 5,277 |
| Health Care | 22,438 | 24,217 | 26,272 | 28,495 | 33,183 |
| Hospital | 13,925 | 15,234 | 16,147 | 18,250 | 22,860 |
| Medical building | 4,924 | 6,068 | 7,615 | 8,031 | 7,292 |
| Special care | 3,538 | 2,915 | 2,510 | 2,213 | 3,032 |
| Educational | 13,109 | 13,424 | 12,701 | 12,788 | 13,745 |
| Preschool | 593 | 711 | 674 | 516 | 489 |
| Primary/secondary | 3,605 | 3,204 | 3,202 | 2,718 | 3,205 |
| Higher education | 6,875 | 7,259 | 6,496 | 6,946 | 7,561 |
| Instructional | 3,619 | 3,701 | 3,200 | 3,556 | 3,454 |
| Dormitory | 1,528 | 1,761 | 1,669 | 1,537 | 2,085 |
| Sports/recreation | 772 | 677 | 739 | 821 | 854 |
| Other educational | 1,651 | 1,785 | 1,998 | 2,294 | 2,067 |
| Gallery/museum | 1,312 | 1,371 | 1,335 | 1,745 | 1,675 |

Table 5.5 continued.

| Religious | 8,335 | 8,559 | 8,153 | 7,715 | 7,690 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| House of worship | 6,021 | 6,238 | 6,015 | 5,992 | 6,231 |
| Other religious | 2,312 | 2,322 | 2,138 | 1,723 | 1,459 |
| Auxiliary building | 1,358 | 1,296 | 1,258 | 1,251 | 1,190 |
| Public Safety | 217 | 185 | 289 | 408 | 448 |
| Amusement and Recreation | 7,478 | 7,781 | 8,432 | 7,507 | 9,041 |
| Theme/amusement park | 230 | 270 | 198 | 200 | 386 |
| Sports | 1,427 | 1,306 | 900 | 807 | 839 |
| Fitness | 1,286 | 1,262 | 1,141 | 1,425 | 1,999 |
| Performance/meeting center | 900 | 844 | 1,054 | 1,072 | 783 |
| Social center | 2,285 | 1,996 | 2,594 | 1,626 | 1,478 |
| Movie theater/studio | 568 | 855 | 1,218 | 1,248 | 1,214 |
| Other |  |  |  |  | 2,342 |
| Transportation | 6,773 | 6,568 | 6,841 | 7,124 | 7,937 |
| Air | 1,281 | 1,012 | 869 | 748 | 715 |
| Land | 5,325 | 5,462 | 5,800 | 6,214 | 7,049 |
| Railroad | 4,584 | 4,851 | 5,392 | 5,816 | 6,589 |
| Other |  |  |  |  |  |
| Communication | 18,384 | 14,456 | 15,468 | 18,846 | 21,621 |
| Power | 32,608 | 33,619 | 27,360 | 26,304 | 30,481 |
| Electric | 24,998 | 25,592 | 20,431 | 19,192 | 21,660 |
| Gas | 6,080 | 6,358 | 5,096 | 5,239 | 5,741 |
| Oil | 1,193 | 1,068 | 1,579 | 1,293 | 1,876 |
| Other |  |  |  |  | 1,204 |
| Sewage and Waste Disposal | 246 | 278 | 331 | 240 | 284 |
| Water Supply | 397 | 393 | 405 | 326 | 445 |
| Manufacturing | 22,744 | 21,434 | 23,667 | 29,886 | 34,278 |
| Food/beverage/tobacco | 2,817 | 2,695 | 3,157 | 4,677 | 4,892 |
| Textile/apparel/leather \& allied | 284 | 218 | 188 | 415 | 146 |
| Wood | 477 | 376 | 485 | 982 | 1,505 |
| Paper | 584 | 818 | 548 | 467 | 562 |
| Print/publishing | 666 | 630 | 654 | 777 | 748 |
| Petroleum/coal | 887 | 717 | 1,204 | 771 | 1,666 |
| Chemical | 5,625 | 5,368 | 5,507 | 6,588 | 9,239 |
| Plastic/rubber | 776 | 659 | 936 | 877 | 839 |
| Nonmetallic mineral | 536 | 865 | 896 | 1,163 | 1,961 |
| Primary metal | 241 | 436 | 312 | 836 | 1,489 |
| Fabricated metal | 833 | 662 | 595 | 699 | 568 |
| Machinery | 797 | 707 | 645 | 917 | 924 |
| Computer/electronic/electrical | 1,918 | 1,444 | 2,835 | 4,247 | 4,324 |
| Transportation equipment | 3,832 | 3,314 | 2,610 | 3,702 | 2,557 |
| Furniture | 148 | 278 | 217 | 96 | 131 |
| Miscellaneous | 2,325 | 2,248 | 2,878 | 2,674 | 2,726 |

${ }^{\mathrm{p}}$ Preliminary
Note: Total private construction includes the following categories of construction not shown separately: highway and street, and conservation and development.

This is the least detail for construction inputs ever given in a benchmark inputoutput table. The 1997 table, also a NAICS-based table, gave inputs for the following types of construction:

2301 New residential

230110 New residential 1-unit structures, nonfarm

230120 New multifamily housing structures, nonfarm

230130 New residential additions and alterations, nonfarm

230140 New farm housing units and additions and alterations

2302 New nonresidential construction

230210 Manufacturing and industrial buildings

230220 Commercial and institutional buildings

230230 Highway, street, bridge, and tunnel construction

230240 Water, sewer, and pipeline construction

230250 Other new construction

Since the 1997 table could be used fairly easily to make a table balanced to the 2002 row and column totals but with the 9 columns of the 1997 table instead of the 5 of the BEA 2002 table. Furthermore, it is not necessarily pointless to distinguish two or
more types of construction which use the same input structure. For example, since Offices and Hospitals are built by the same input-output sector, it will not matter for the rest of the economy whether or not we combine them or keep them separate. But it may prove much more natural to formulate scenarios with them separate rather than with them combined. Nonetheless, the limited detail in the input-output table is something of a damper on enthusiasm for forecasting construction in great detail such as is provided by the annual VIP or even the annual NIPA.

We also need to inquire about the content and comparability of NIPA and VIP data. According to Census documentation, VIP includes:

- New buildings and structures
- Additions, alterations, major replacements, etc. to existing buildings and structures
- Installed mechanical and electrical equipment
- Installed industrial equipment, such as boilers and blast furnaces
- Site preparation and outside construction, such as streets, sidewalks, parking lots, utility connections
- Cost of labor and materials (including owner supplied)
- Cost of construction equipment rental
- Profit and overhead costs
- Cost of architectural and engineering (A\&E) work
- Any miscellaneous costs of the project that appear on the owner's books as capital assets.

This definition is very close to the NIPA definition except that NIPA includes three series not included in VIP, namely (1) Mining exploration, shafts and wells,(2) Brokers' commissions, and (3) Net purchases of used structures. Other than in these three items, the two series are close together, as is to be expected since the VIP are the main source for the other NIPA series. The Brokers' commissions amount to little for Nonresidential structures but are significant part of NIPA Residential construction. I have been unable to find a "reconciliation" of VIP and NIPA on either the BEA or the Census websites, though NIPA documentation makes plain the difference described above. Table 5.6 shows that adjusting the NIPA totals for the three series known not to be in VIP brings the NIPA total down to within one percent of the VIP total for 2001 through 2006.

## Table 5.6: Comparison of NIPA and VIP Total Nonresidential Construction

| Line |  | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NIPA Nonresidential construction | 322.6 | 279.2 | 277.2 | 298.2 | 334.6 | 405.1 |
| 2 | Less Mining exploration, shatts, wells | 39.2 | 35.6 | 45.7 | 55.7 | 73.7 | 105.4 |
| 3 | Less Brokers' commissions | 2.4 | 2.1 | 2.1 | 2.2 | 2.3 | 2.7 |
| 4 | Net purchases of used structures | 1.6 | -1.9 | -2 | -1.4 | -1.1 | -1.9 |
| 5 | Equals Census definition, NIPA data | 279.4 | 243.4 | 231.4 | 241.7 | 259.7 | 298.9 |
| 6 | Census data | 273.9 | 237.7 | 229.3 | 238.5 | 256.6 | 295.7 |
| 7 | NIPA data - Census data | 5.5 | 5.7 | 2.1 | 3.2 | 3.1 | 3.2 |
| 8 | Percent difference | 2.00\% | 2.38\% | 0.90\% | 1.35\% | 1.19\% | 1.08\% |

Manufacturing is higher in VIP than NIPA because it includes offices at manufacturing plants which have been moved to Offices in the NIPA, so Offices are higher in NIPA than in VIP. Since the input-output table will match the NIPA in this respect, our final product also needs to match NIPA.

### 5.2 Approach to Forecast Investment in Structures

### 5.2.1 Nonresidential Investment in Structures

We can now pull together what we know of data availability to formulate a plan for short-term forecasting of Nonresidential construction. Table 5.7 shows, for 2006, the relations among the annual values of five NIPA series available quarterly and annual values of the twelve VIP series available monthly. The two largest differences, in Manufacturing and in Offices, are due to the fact that offices built on the site of a manufacturing plant are counted in Manufacturing in VIP and in Offices in NIPA. Otherwise, the agreement is close enough to justify the following five-step procedure for short-term forecasting of the NIPA series which go into the model.

Step 1. Forecast, using time-series methods, the 12 VIP monthly series three months ahead and extend the series by as many of these months as necessary to round out the current quarter.

Step 2. Convert the monthly series developed in Step 1 to quarterly series.

Step 3. Forecast these 12 quarterly VIP-based series to the end of the following year, relating them to quarterly series from QUEST. Do the same for Mining exploration, for which the quarterly NIPA provide values.

Step 4. Convert these 13 quarterly series to annual series.

Step 5. Use the 13 annual series as regressors to forecast the corresponding annual NIPA series. These should be the series needed by the interindustry model.

Table 5.7: Integration of VIP with NIPA

| Nonresidential Structures |  | NIPA Ann 2006 | VIP Ann 2006 | NIPA-VIP |
| :---: | :---: | :---: | :---: | :---: |
| NIPA Quaterly |  |  |  |  |
| VIP Monthly and NIPA annual |  | 405.100 | 402.115 | 2.99 |
| 1 | Commercial and health care |  |  |  |
|  | Office | 53.100 | 46.194 | 6.91 |
|  | Commercial (incl. farm) | 68.900 | 72.148 | -3.25 |
|  | Health care | 37.400 | 33.183 | 4.22 |
| 2 | Manufacturing |  |  |  |
| 4 | Manufacturing | 26.800 | 34.278 | -7.48 |
| 3 | Power and communication |  |  |  |
|  | Communication | 18.000 | 21.621 | -3.62 |
|  | Power | 29.200 | 30.481 | -1.28 |
| 4 | Mining exploration, shafts, and wells* | 105.400 | 105.400 | 0 |
| $\begin{array}{ll}5 & \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12\end{array}$ | Other structures |  |  |  |
|  | Religious | 7.500 | 7.690 | -0.19 |
|  | Education | 14.700 | 13.745 | 0.96 |
|  | Lodging | 21.900 | 17.687 | 4.21 |
|  | Amusement | 10.900 | 9.041 | 1.86 |
|  | Transportation | 7.800 | 7.937 | -0.14 |
|  | Other | 3.800 | 1.710 | 2.09 |
|  | Brokers' commissions* | 2.900 | 2.900 | 0 |
|  | Net used * | -1.900 | -1.900 | 0 |
|  | Sum of detail | 406.400 | 402.115 | 4.29 |
|  | Sum without NIPA-only items | 300.000 | 295.715 | 4.28 |
| Sum of detail may not equal total because of rounding <br> * Item available only in NIPA |  |  |  |  |

Brokers' commissions and Net purchases of used structures need to be projected annually exogenously. No specific data is available on them at a higher frequency.

This plan makes no use of the four NIPA quarterly series numbered $1,2,3$, and 5 in Table 5.7. It is assumed, at least initially, that these do not provide any significant information in addition to the twelve VIP series which compose them.

### 5.2.2 Residential Investment in Structures

The plan for Residential construction will be significantly different because the quarterly NIPA give important information not contained in the monthly VIP. Namely, whereas monthly VIP gives only one series for all Residential construction, the quarterly NIPA give three series: (1) Single family, (2) Multifamily, and (3) Other. These are distinctions worth keeping because the 2002 benchmark I-O table has two separate columns, one for the sum of the first two series and one for the third. Moreover, by borrowing information from the 1997 table, it should be possible to split the first of those columns so that we would have three columns matching exactly the three quarterly NIPA series. The following plan makes use of all this data.

Step 1. Forecast with time-series methods the monthly VIP series three months ahead.

Step 2. Convert this series to quarterly frequency. The converted series will not go past the present quarter.

Step 3. Regress each of the three NIPA quarterly series on this one and use to forecast the NIPA series through the current quarter.

Step 4. Forecast these three quarterly series further ahead, through the end of the next year, with exogenous variables from QUEST

Step 5. Convert these three series to annual values for use in the annual multisector model.

### 5.3 Monthly VIP Equations

This section shows the estimation results from Step 1 in both Nonresidential structures and Residential structures, a total of 13 series. In November 2007, the Census Bureau published the VIP data up through July 2007. Thus, all equations in this section are estimated with data from July 1993 to July 2007.

In this section, all regressors are lagged dependent variables. Many equations do not have intercept as it has little to no explanatory power according to Mexvals. Using only Time-series analysis in these equations should not affect the usefulness of the forecast since the objective of equations in this section are to complete the current quarter of the monthly series which are at most a three months forecast.

Figure 5.3 shows fitted plots of all equations discussed in this section.

In general, most of the equations have very good closeness of fit statistics. The BasePred plots also capture the long-term trend of each series quite well except in some categories, such as Lodging, Manufacturing, and Other Nonresidential structures, that are affected by recessions. The failure to be responsive to short-term fluctuation in economic conditions is expected from equations that rely only on lagged dependent variables. All 13 monthly VIP equation results are presented in the following paragraphs.

## Lodging



## Office



## Commercial



## Health Care



Health care structures has shown to be immuned to the recession in 2000-2001.

The plot shows that it keeps expanding consistently throughout the test period. This
trend is understandable as the demand of health care for the U.S. aging population keeps increasing.

## Educational



Education structures also exhibits consistent growth over the test period.

## Religious



## Amusement and Recreation



## Transportation

```
Transportation
SEE = 349.82 RSQ = 0.8938 RHO = -0.08 Obser = 169 from 1993.007
SEE+1 = 348.74 RBSQ = 0.8932 DurH = -1.39 DoFree = 167 to 2007.007
MAPE = 3.63 Test period: SEE 8499.18 MAPE 8.50e+11 end 2007.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 mviptr - - - - - - - - - - - - - - - - - 6516.20 - - -
```



## Communication



## Power



## Manufacturing



## Other Nonresidential Structures



## Residential construction



Figure 5.3: Plots of Monthly VIP Equations


Figure 5.3 (cont.)




### 5.4 Nonresidential Fixed Investment in Structures Equations

### 5.4.1 Quarterly Equations for VIP-based Nonresidential Fixed Investment in Structures

This section, corresponding to Step 3 of our nonresidential procedure, develops the equations to forecast the 12 quarterly VIP-based series. All equations are estimated over the period from 1994Q1 to 2007Q3.

Figure 5.4 shows fitted plots of quarterly equations.

## Lodging



The equations shows very good fit with an adjusted R-square of 0.9698 and a MAPE of 6.28 percent. All three regressors have good Mexvals and reasonable signs.

The fitted plot shows good fit by both predicted value and BasePred. The use of private fixed investment in nonresidential structures and its lagged value as additional regressors helps improve the BasePred.

## Office

| Office |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE = | 1.86 RSQ | $=0.9685 \mathrm{R}$ | HO $=0$ | 0.24 Ob | er = | 55 | from 19 | 994.100 |
| SEE+1 = | 1.81 RBSQ | $=0.9672 \mathrm{D}$ | urH $=1$ | 1.91 Do | ree = | 52 | to 200 | 07.300 |
| $\mathrm{MAPE}=3.74$ |  |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 qvipoffice |  | - - - - - | - - - | - - - | - - - - |  | 37.28 | - - |
| 1 qvipoffice[1] |  | 0.97591 | 227.4 | 0.96 | 1.61 |  | 36.67 |  |
| 2 vfnrs |  | 0.15321 | 21.9 | 1.20 | 1.40 |  | 291.08 | 0.999 |
| 3 vfnrs[1] |  | -0.15109 | 18.2 | -1.16 | 1.00 |  | 285.69 | -0.936 |

The equation has good closeness of fit statistics in both adjusted R-square and
MAPE. Both plots have quite well to the actual series.

## Commercial



With the help of private fixed investment in nonresidential structures, the
BasePred moves very closely to the actual value of commercial structure investment.
The adjusted R-square is 0.9755 and the MAPE is 2.21 percent. All regressors have good Mexvals and expected signs.

## Health Care

| re |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 0 | 0.72 RSQ | $=0.9869 \mathrm{R}$ | RHO $=-0$. | -0.03 Ob | Obser | = | 55 |  | 1994.100 |
| SEE+1 | 0 | 0.72 RBSQ | $=0.9866$ D | DurH $=-0$ | -0.22 D | DoFree | $=$ | 53 | to | 2007.300 |
| MAPE | 2 | 2.78 |  |  |  |  |  |  |  |  |
| Variable name |  |  | Reg-Coef | Mexval | Elas |  | Res |  | Mea | Beta |
| 0 qvipmc |  |  | - - - - | - - | - - - | - - - | - - |  | 21. | 85 - |
| 1 qvipmc[1] |  |  | 1.03000 | 303.7 | 1.01 |  | . 00 |  | 21. |  |
| 2 vfnrs |  |  | -0.00081 | 0.1 | -0.01 |  | . 00 |  | 291. | -08-0.009 |

From Figure 5.4, the actual health care construction has been increasing throughout the test period, with a small drop during the recession in 2001. The BasePred shows that the equation will overestimate the construction in the long run. The RHO of -0.03 will help correcting the overestimation in the short-run forecast. Overall, the equation fits very well with an adjusted R-square of 0.9866 and a MAPE of 2.78 percent. The use of private fixed investment in nonresidential structures helps moves down the BasePred in the fitted plot but has low Mexvals.

## Educational



All the regressors have good Mexvals and appropriate signs. We have good closeness of fit statistics with an adjusted R-square of 0.9792 and a MAPE of 3.67 percent. The educational construction has very good fit as shown in Figure 5.4. Both predicted value and BasePred track the actual value very well. We should be able to get a reliable forecast from this equation given a good exogenous variable (vfnrs).

## Religious

$\mathrm{SEE}=0.28 \mathrm{RSQ}=0.9696 \mathrm{RHO}=0.18$ Obser $=55$ from 1994.100
$\mathrm{SEE}+1=0.27 \mathrm{RBSQ}=0.9696 \mathrm{DurH}=1.33$ DoFree $=54$ to 2007.300
MAPE = 3.08
Variable name Reg-Coef Mexval Elas NorRes Mean Beta


The actual series show that the religious construction has been expanding rapidly during the end of 1990s as the U.S. economy saw a rapid growth rate before the recession in 2001. Although the equation shows good closeness of fit statistics, we can clearly see the lag in movement of predicted value compared to the actual value throughout the test period. As the actual series exhibits a seasonal pattern, the lag from the predicted value should be averaged out when we annualized the predicted value to be used in the annual equations, which will be discussed in the next section.

## Amusement and Recreation

```
: Amusement and recreation
 SEE = 0.45 RSQ = 0.8695 RHO = 0.20 Obser = 55 from 1994.100
 SEE+1 = 0.45 RBSQ = 0.8671 DurH = 1.58 DoFree = 53 to 2007.300
 MAPE = 4.93
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 qviprec - - - - - - - - - - - - - - - - - 7. 7. - - -
 l intercept
```

The equation has an adjusted R-square of 0.8671 and a MAPE of 4.93 percent.
All regressors have good Mexvals and appropriate signs. The plot of predicted value reveal the lag in movement of predicted value as the amusement and recreation construction is quite volatile. The BasePred plot seems to be moving nicely in the middle of the fluctuation which should give a reasonable short-run forecast.

## Transportation



The equation for transportation construction performs decently with an adjusted R-square of 0.8583 . All regressors have good Mexvals and expected signs. From Figure 5.4, the actual series typically moves without much volatility but each shock had significant magnitude. Overall, the equation fits very well to the series during the test period as shown by both the Predicted value and the BasePred plots.

## Communication

```
: SEE = 1.00 RSQ = 0.9450 RHO = 0.14 Obser = 55 from 1994.100
 SEE+1 = 0.99 RBSQ = 0.9439 DurH= 1.20 DoFree = 53 to 2007.300
 MAPE = 4.59
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 qvipcomm
 1 qvipcomm[1]
 2 vfnrs 0.01563 13.5 0.28 1.00 291.08 0.250
```

The communication construction equation fit the actual series during the test period quite well. An adjusted R-square is 0.9439 and a MAPE is 4.59 percent. Both regressors have good Mexvals and appropriate signs. The fitted plots show the equation doing quite well in both the predicted value and the BasePred.

## Power

| Power |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE = 3 | 3.18 RSQ | $=0.7702 \mathrm{R}$ | $\mathrm{RHO}=-0.04$ | 04 Ob | er = |  | from 19 | 994.100 |
| SEE+1 = 3.1 | 3.18 RBSQ | $=0.7613 \mathrm{D}$ | DurH $=-0$. | 44 Do | ree | 52 | to 200 | 007.300 |
| MAPE = 9.60 |  |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 qvippower |  |  | - - - - | - - - | - - - |  | 26.11 | - - - |
| 1 qvippower[1] |  | 0.66446 | 44.8 | 0.66 | 1.30 |  | 25.84 |  |
| 2 vfnrs |  | -0.06778 | 1.4 | -0.76 | 1.05 |  | 291.08 | -0.697 |
| 3 vfnrs[1] |  | 0.10040 | 2.6 | 1.10 | 1.00 |  | 285.69 | 0.981 |

From Figure 5.4, the power structure construction had been quite volatile with big magnitude of changes. Considering the volatility, the equation performs quite well with an adjusted R-square of 0.7613 and a MAPE of 9.60 percent. All regressors have good Mexvals. The BasePred plot moves along the trend of the actual series very well during the test period. Thus, the short-term forecast from this equation should be reliable.

## Manufacturing

| Manufacturing |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | $=\quad 1$. | 1.99 RSQ |  | 0.9051 R | RHO $=-0$ | . 02 Ob | ser | 55 | from 19 | 1994.100 |
| SEE+1 | $=1$ | 1.99 RBSQ | $=$ | 0.9014 D | DurH $=-0$ | . 17 Do | Free | 52 | to 200 | 2007.300 |
| MAPE | $=\quad 4$ | 4.69 |  |  |  |  |  |  |  |  |
| Variable name |  |  |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 qvipmanu |  |  |  | - | - - - - - | - - - | - - - - |  | 32.72 | 2 - |
| 1 intercept |  |  |  | 3.32263 | 5.1 | 0.10 | 10.53 |  | 1.00 |  |
| 2 qvipmanu[1] |  |  |  | 1.14565 | 120.3 | 1.14 | 1.19 |  | 32.50 | 01.160 |
| 3 qvipmanu[3] |  |  |  | -0.24470 | 9.0 | -0.24 | 1.00 |  | 32.02 | $2-0.256$ |

Figure 5.4 shows the characteristics of manufacturing construction very well. The manufacturing structure investment typically is affected the most by a downturn in the overall economy. As explained earlier, businesses tend to be conservative in expansion decision, to avoid idle facilities, and they normally keep using the existing facilities until there is a real need for new or additional manufacturing facilities. This characteristics can be observed with the drop in construction in 2001 and the flat investment between

2002 and 2004. Considering this characteristics, the equation works quite well with a decent adjusted R-square and a good MAPE.

## Other



The construction of other nonresidential structures is another structure type that is affected by the recession. Ignoring the 2001 recession, Figure 5.4 shows that the construction seems to be slowly increasing during the test period. Overall, the equation is acceptable with decent closeness of fit statistics. The fitted plot shows an observable lag in movement from the actual value.

## Mining Exploration, Shafts, and Wells



The equation has an adjusted R-square of 0.9904 and a MAPE of 5.73 percent. The BasePred overestimates the increasing trend of the fixed investment in Mining structures, which should not be a problem for the short-term forecast.

Figure 5.4: Plots of Quarterly Equations for Nonresidential Structures Investment


Figure 5.4 (cont.)


### 5.4.2 Annual NIPA Nonresidential Fixed Investment in Structures Equations

We now come to Step 5 of our procedure, Estimating annual NIPA series from annual VIP-based series. The BEA changed the classification of Private fixed investment in nonresidential structures in 1997 and, so far, has not released any data in new definition before 1997. All annual nonresidential structure investment equations are therefore estimated from 1997 to 2006. All fitted plots are shown in Figure 5.5.

In this section, I discuss 8 selected structure types. All 24 types' regression results are shown in Appendix 5.1.

## Office

```
: OEE = 0.07 RSQ = 0.9999 RHO = -0.36 Obser = 10 from 1997.000
 SEE+1 = 0.07 RBSQ = 0.9999 DW = 2.72 DoFree = 9 to 2006.000
 MAPE = 0.14
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vstnn1 _ - - - - - - - _ - - _ - - - - - 46.27 - - -
 1 vipoffice 1.14934 64571.2 1.00 1.00 40.26
```

The VIP of office construction fits virtually perfectly with the private fixed investment in office structures without an intercept. The equation has an adjusted Rsquare of 0.9999 and a MAPE of 0.14 percent. The fitted plot confirms the finding with the closeness of fit statistics.

## Warehouses

| uses |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE = | 0.69 RSQ | $=0.6406 \mathrm{RH}$ | $\mathrm{HO}=0$ | 0.250 b | er = | 10 | from 19 | 997.000 |
| SEE+1 = | 0.71 RBSQ | $=0.5956 \mathrm{DW}$ | $=1$ | 1.51 Do | ree = | 8 | to 20 | 06.000 |
| $\mathrm{MAPE}=4.53$ |  |  |  |  |  |  |  |  |
| Variable nam |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 vstnn9 |  | - - - - - | - - - - | - - - | - - - |  | 12.63 | - - |
| 1 vipcommerce |  | 0.11288 | 85.8 | 0.55 | 2.67 |  | 61.44 |  |
| 2 vipoffice |  | 0.14031 | 63.3 | 0.45 | 1.00 |  | 40.26 | 0.887 |

The fixed investment of warehouses structure can be explained by the VIP of commercial building and office. Both regressors show very good Mexvals and Elasticities. The estimation has an adjusted R-square of 0.6406 and a MAPE of 4.53 percent.

## Manufacturing



The VIP of manufacturing structures fits very well to the BEA's fixed investment in manufacturing structures. Plot in Figure 5.5 shows that the predicted value generally moves in the same direction as the actual series. The closeness of fit statistics are good with an adjusted R-square of 0.8768 .

## Electric power

```
SEE = 1.00 RSQ = 0.9513 RHO= 0.17 Obser = 10 from 1997.000
SEE+1 = 1.01 RBSQ = 0.9452 DW = 1.66 DoFree = 8 to 2006.000
MAPE = 4.77
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vstnn12 - - _ - - - - - - - - - - - - - - 18.94 - - -
 1 intercept -3.20768 18.1 -0.17 20.52 1.00
 2 vippower 0.81715 353.0 1.17 1.00 27.10 0.975
```

For fixed investment in electric power structures, we find that it can be explained with only the VIP of power structures. During the estimated period, the equation has an adjusted R-square of 0.9452 and a MAPE of 4.77 percent. The fitted plot shows that the predicted value also moves in the same direction (with slightly different magnitude) as the actual value.

## Petroleum and natural gas



Fixed investment in petroleum and natural gas structures is one of the two components of NIPA fixed investment in mining exploration, shafts, and wells structures (the other component is Mining structures). It is also the main contributor to the NIPA fixed investment in Mining exploration, shafts, and wells structures as it covers about $95 \%$ of nominal fixed investment in mining exploration, shafts, and wells structures. Thus, it's not surprising to find that fixed investment in mining exploration, shafts, and
wells structures fits almost perfectly to the fixed investment in petroleum and natural gas structures with very high closeness of fit statistics and almost perfect fitted plot.

## Educational and vocational



The equation for educational and vocational structures has only one regressor, the VIP of educational structures. As to be expected, the equation performs very well throughout the estimation period with very good closeness of fit statistics and fitted plot. The biggest error seen in 2006 might be lower when BEA published its next revised data.

## Air transportation



Air transportation is quite difficult to fit well. In this equation, we find that the use of one-period lagged dependent variable and the VIP of transportation structures works best bit still cannot achieve very good closeness of fit statistics, an adjusted Rsquare of 0.3177 . However, the fitted plot gives a good general movement of the
investment with pronounced lag which should be alleviated by the use of RHO adjustment in the forecast.

## Farm

| Farm |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 0.43 RSQ | $=0.5655 \mathrm{RHO}$ | O $=$ | 0.06 Ob | Obser | $=$ | 10 | from | 1997.000 |
| SEE+1 | 0.43 RBSQ | $=0.4414 \mathrm{DW}$ | $=1.8$ | 1.88 Do | DoFree | = | 7 |  | 2006.000 |
| MAPE | 6.40 |  |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef M | Mexval | Elas | Nor | rRes |  | Mea | Beta |
| 0 vstnn24 |  | - | - - - | - - - - | - - - | - - |  |  | 17 - - |
| 1 intercept |  | 1.23534 | 2.5 | 0.24 |  | 2.30 |  | 1. |  |
| 2 vipoth |  | -0.83102 | 10.8 | -0.25 |  | 2.13 |  | 1. | . $58-0.315$ |
| 3 vipcommerc |  | 0.08538 | 45.9 | 1.01 |  | 1.00 |  | 61. | . 440.702 |

This equation works decently in tracking the long-term trend of the fixed investment in farm structures. Both constructions of other nonresidential structures and commercial structures have good Mexvals. Although the adjusted R-square of 0.4414 is not very high, the MAPE of 6.40 percent is quite good. The fitted plot shows that the equations seems to miss the fluctuation in the last decade but generally gives estimated values in that are not far off the actual values.

Figure 5.5: Plots of Annual Equations for NIPA Nonresidential Structures Investment


Figure5.5 (cont.)


Manufacturing (NIPA)


Other power


Other commercial


Electric


Communication


Figure5.5 (cont.)


Figure5.5 (cont.)


Figure 5.5 (cont.)


### 5.5 Residential Fixed Investment in Structures Equations

Step 1 of the procedure is discussed earlier in section 5.3. I discuss Step 3 and Step 4 for estimating Residential fixed investment in structures in this section.

### 5.5.1 Extending NIPA series using VIP-based Residential Construction

First, as indicated, we use a very short-term forecast of the VIP of residential construction estimated from the equation in section 5.2 to complete the current quarter of components of NIPA Fixed investment in residential structures. The following section discusses the regression equations that will be used to complete the current quarter NIPA series, Step 3. Figure 5.6 shows the fitted plots of these three series.

All three series, which are parts of NIPA Fixed investment in residential structures, can be explained very well with combinations of lagged dependent variables and the VIP of residential construction, qvipr, (and its lagged values). All three equations are estimated with data from 1994Q1 to 2007Q2.

The results show that all three equations have very high closeness of fit statistics in both adjusted R-square and MAPE. The plots of predicted value are very good with out showing a lag in movement when the sudden decline in residential investments occurred in the beginning of 2006. The BasePred plots also move along nicely with the actual series. These should provide accurate forecasts if we can get reliable forecasted values of the VIP of residential construction, especially when our objective is to just complete the current quarter.

## Single-family structures



## Multifamily structures

| Multifamily structures |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 0 | 0.91 RSQ | $=0.9938 \mathrm{R}$ | RHO $=-0$ | 0.11 Ob | bser | $=$ |  |  |  | 994.100 |
| SEE+1 | 0 | 0.90 RBSQ | $=0.9936 \mathrm{D}$ | DurH $=-0$ | 0.83 D | oFre | = | 52 | to |  | 07.200 |
| MAPE | 2 | 2.45 |  |  |  |  |  |  |  |  |  |
| Var | able name |  | Reg-Coef | Mexval | Elas |  | rRes |  | Mea |  | Beta |
| 0 qvis | nnrmul |  | - - - - | - - - | - | - - - | - |  | 31. |  | - - - |
| 1 qvs | nnrmul [1] |  | 0.81960 | 249.7 | 0.80 |  | 1.68 |  | 30. |  |  |
| 2 qvip |  |  | 0.01526 | 29.8 | 0.20 |  | 1.00 |  | 408. |  | 0.179 |

## Other residential structures

| Other Residential structures |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 3 | 3.55 RSQ | $=0.9960 \mathrm{R}$ | RHO $=0$ | 0.14 Ob | Obser | = | 54 |  | 1994.100 |
| SEE+1 | 3 | 3.53 RBSQ | $=0.9959 \mathrm{D}$ | DurH = 1 | 1.06 D | DoFree | $=$ | 52 | to | 2007.200 |
| MAPE | 1 | 1.25 |  |  |  |  |  |  |  |  |
| Vari | iable name |  | Reg-Coef | Mexval | Elas |  | rRes |  | Mea | Beta |
| 0 qvist | tnnroth |  | - - - - | - - | - - - | - - - | - - |  | 191. | . 4 |
| 1 qvist | tnnroth [1] |  | 0.92260 | 245.0 | 0.91 |  | 1.11 |  | 187. |  |
| 2 qvip |  |  | 0.04265 | 5.5 | 0.09 |  | 1.00 |  | 408. | 98 0.102 |

Figure 5.6: Plots of Regressions of Fixed Residential Investment in Structures (Step 3)



Other Residential structures


### 5.5.2 Quarterly Residential Fixed Investment in Structures Equations

All equations in this section are estimated over the period from 1994Q1 to 2007Q2. These equations produce the forecast, which will be annualized, as discussed earlier as the final product of our approach.

## Single-family structures



The equation for single-family structures investment has three regressors. The regressors are one-quarter lagged dependent variable, current period NIPA fixed residential investment and one-quarter lagged NIPA fixed residential investment (plus intercept). All regressors have good Mexvals and reasonable signs. The result shows very good closeness of fit statistics. The adjusted R-square is 0.9979 and the MAPE is 0.99 percent. Most of the explanatory power is provided by the NIPA fixed residential investment (investment in single-family structures accounts for $53 \%$ of NIPA fixed residential investment on average over the estimation period). Plots of both predicted value and BasePred shows very good tracking ability throughout the estimation period.

## Multifamily structures

```
: = Multifamily structures
SEE = 0.87 RSQ = 0.9943 RHO = -0.19 Obser = 54 from 1994.100
SEE+1 = 0.85 RBSQ = 0.9942 DurH = -1.45 DoFree = 52 to 2007.200
MAPE = 2.33
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 qvitnnrmul - - - - - - - - - - - - - - - - - 31.14 - - -
 l qvstnnrmul[1]
```

For the equation of Multifamily structures investment, one-quarter lagged dependent variable and the NIPA fixed residential investment are used as regressors (without intercept). We have very good closeness of fit statistics with an adjusted Rsquare of 0.9942 and a MAPE of 2.33 percent. Both regressors have very good Mexvals and positive signs. The plots show a very good fit by both the predicted values and the BasePred.

## Other residential structures

| Other Residential structures |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 2.63 RSQ | $=0.9978 \mathrm{RHO}=0.04$ Obser |  |  |  | 54 | from 1 | 1994.100 |
| SEE+1 = | 2.63 RBSQ | $=0.9977$ D | urH = 1 | 36 Do | ree | 49 | to 2 | 007.200 |
| MAPE | 0.94 |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 qvitnnroth |  | - - - - - | - - - - | - _ _ | - - - |  | 191.15 | - - |
| 1 intercept |  | -2.56890 | 1.9 | -0.01 | 462.33 |  | 1.00 |  |
| 2 qvitnnroth[1] |  | 0.72714 | 28.0 | 0.71 | 1.81 |  | 187.89 | 0.717 |
| 3 qvitnnroth[2] |  | 0.34476 | 6.7 | 0.33 | 1.79 |  | 184.58 | 0.334 |
| 4 vfr |  | 0.19485 | 32.5 | 0.50 | 1.49 |  | 491.67 | 0.554 |
| 5 vfr[1] |  | -0.21119 | 22.0 | -0.54 | 1.00 |  | 484.62 | -0.603 |

Other residential structures investment equation has four regressors plus an intercept. The regressors are 1) one-quarter lagged dependent variable, 2) two-quarter lagged dependent variable, 3) NIPA fixed residential investment, and 4) one-quarter lagged NIPA fixed residential investment. All regressors have good Mexvals and reasonable signs. The closeness of fit statistics are very good with an adjusted R-square
of 0.9977 and a MAPE of 0.94 percent. The fitted plots show a very good fit by both the predicted value and the BasePred.

Figure 5.7: Plots of Regression of Fixed Residential Investment in Structures (Step 5)


Other Residential structures


### 5.6 Historical Simulations ${ }^{20}$

Using the same idea as described in previous chapters, two historical forecasts, one with all actual exogenous variables and one with exogenous variables generated by QUEST, are generated for 2005 and 2006. The assumptions of exogenous variables used in the historical simulation with QUEST (the second simulation) is shown in Table 5.8

Table 5.8: Assumptions of exogenous variables used in the Second Historical Simulation

|  | 2005Q1 | 2005Q2 | 2005Q3 | 2005Q4 |
| :---: | :---: | :---: | :---: | :---: |
| vfnrs Private Fixed Investment in Nonresidential Structures (nominal) in Billion of dollars vfr Private Fixed Residential Investment (nominal) in Billion of dollars | 295.94 | 298.79 | 311.91 | 314.95 |
|  | 686.01 | 700.45 | 720.79 | 729.85 |
|  | 2006Q1 | 2006Q2 | 2006Q3 | 2006Q4 |
| vfnrs\|Private Fixed Investment in Nonresidential Structures (nominal) in Billion of dollars | 317.30 | 316.87 | 319.28 | 322.90 |
| vfr Private Fixed Residential Investment (nominal) in Billion of dollars | 732.88 | 743.59 | 750.72 | 761.58 |
| Percentage difference from the published value <br> vfnrs Private Fixed Investment in Nonresidential Structures (nominal) in Billion of dollars vfr Private Fixed Residential Investment (nominal) in Billion of dollars | 2005Q1 | 2005Q2 | 2005Q3 | 2005Q4 |
|  | -8.46\% | -9.13\% | -6.67\% | -10.53\% |
|  | -5.68\% | -7.45\% | -8.26\% | -9.11\% |
|  | 2006Q1 | 2006Q2 | 2006Q3 | 2006Q4 |
| vfnrs Private Fixed Investment in Nonresidential Structures (nominal) in Billion of dollars vfr Private Fixed Residential Investment (nominal) in Billion of dollars | -15.54\% | -20.82\% | -23.27\% | -24.63\% |
|  | -9.45\% | -5.66\% | 0.62\% | 6.47\% |

As mentioned in Chapter 4, QUEST predicted that the residential fixed investment (vfr) would expand steadily in both 2005 and 2006. This forecast underestimates $v f r$ from 2005Q1 to 2006Q2. Thus, I would expect to find that the second simulation will underestimate residential fixed investment in structures across all types, especially in 2005.

For private fixed investment in nonresidential structures, the numbers from
QUEST increase steadily throughout the simulation period. However, the growth rate

20 As in previous Chapters, "The first simulation" refers to the historical simulation with actual exogenous variables and "The second simulation" refers to the historical simulation with exogenous variables generated from QUEST and other ad hoc assumptions.
from QUEST is much slower than what actually happened during 2005 and 2006. This discrepancy results in much lower values of private fixed investment in nonresidential structures that was used in the second simulation. Thus, I would expect the second simulation to underestimate the fixed investment in nonresidential structures across all asset types.

Table 5.9 shows the differences between each historical simulation and the published numbers. Figure 5.8 plots the results in Table 5.9 for easier visual comparison.

Table 5.9: Historical Simulations' Results in Major and Detailed Investment Industries

| Percentage difference from the published value |  | 1st Sim |  | 2nd Sim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2005 | 2006 | 2005 | 2006 |
| 1 | Private fixed investment in structures | -0.03\% | 0.36\% | -7.52\% | -3.69\% |
| 2 | Nonresidential | 0.33\% | 1.02\% | -3.24\% | -13.50\% |
| 3 | Commercial and health care | -0.37\% | -0.40\% | -8.46\% | -17.32\% |
| 4 | Office \11 | 0.21\% | -0.04\% | -13.99\% | -27.20\% |
| 5 | Health care | -0.07\% | -0.53\% | -2.39\% | -8.93\% |
| 6 | Hospitals and special care | 2.56\% | -3.17\% | -1.15\% | -14.12\% |
| 7 | Hospitals | 0.44\% | -0.30\% | -4.15\% | -14.08\% |
| 8 | Special care | 20.10\% | -24.95\% | 23.58\% | -14.41\% |
| 9 | Medical buildings | -6.84\% | 8.90\% | -5.58\% | 9.56\% |
| 10 | Multimerchandise shopping | -4.90\% | -10.34\% | -18.75\% | -32.98\% |
| 11 | Food and beverage establishments | -2.39\% | 3.98\% | -0.99\% | 6.23\% |
| 12 | Warehouses | 4.09\% | 7.39\% | -5.55\% | -12.25\% |
| 13 | Other commercial \2\ | 1.08\% | 7.03\% | 2.03\% | 9.03\% |
| 14 | Manufacturing | 8.53\% | 11.78\% | 17.58\% | 12.15\% |
| 15 | Power and communication | -0.29\% | 0.41\% | 3.09\% | -6.89\% |
| 16 | Power | -3.00\% | -2.37\% | 7.73\% | -4.18\% |
| 17 | Electric | 0.95\% | 6.68\% | 13.10\% | 3.48\% |
| 18 | Other power | -13.05\% | -23.35\% | -5.96\% | -21.93\% |
| 19 | Communication | 4.06\% | 5.46\% | -4.37\% | -10.76\% |
| 20 | Mining exploration, shafts, and wells | 0.02\% | 0.08\% | -7.81\% | -21.43\% |
| 21 | Petroleum and natural gas | 0.43\% | -0.10\% | -7.41\% | -21.58\% |
| 22 | Mining | -9.27\% | 4.83\% | -16.93\% | -17.56\% |
| 23 | Other structures | -0.45\% | 1.73\% | 1.21\% | -7.72\% |
| 24 | Religious | 0.14\% | -0.36\% | 9.70\% | 12.60\% |
| 25 | Educational and vocational | -1.03\% | 2.54\% | -0.56\% | -1.31\% |
| 26 | Lodging | 0.03\% | 0.03\% | -0.64\% | -21.28\% |
| 27 | Amusement and recreation | 0.41\% | -0.58\% | 14.62\% | -6.20\% |
| 28 | Transportation | -1.10\% | -2.89\% | -3.90\% | -17.45\% |
| 29 | Air | 15.03\% | 27.35\% | 13.99\% | 20.67\% |
| 30 | Land $\|3\|$ | -3.48\% | -6.83\% | -6.54\% | -22.42\% |
| 31 | Farm | -3.23\% | 12.84\% | -7.78\% | 1.77\% |
| 32 | Other $14 \backslash$ | -11.68\% | 23.07\% | -15.35\% | 13.46\% |
| 33 | Brokers' commissions on sale of structures | 3.66\% | -3.18\% | -1.90\% | -14.28\% |
| 34 | Net purchases of used structures | -37.34\% | 9.92\% | -22.24\% | -11.21\% |
| 35 | Residential | -0.19\% | 0.00\% | -9.40\% | 1.57\% |
| 36 | Permanent site | -0.38\% | -1.26\% | -12.53\% | 0.69\% |
| 37 | Single-family structures | -0.29\% | -1.05\% | -13.34\% | 1.60\% |
| 38 | Multifamily structures | -1.22\% | -2.90\% | -5.09\% | -6.42\% |
| 39 | Other structures | 0.14\% | 2.06\% | -4.00\% | 3.01\% |

Overall, the approach, described in this chapter, can predict the private fixed investment in structures very well, especially in the major asset types as seen by the results of the first historical simulation shown in Table 5.9. As expected, as a result of
significantly low values of exogenous inputs, the second simulation underestimated the structure investment in most of the asset types. The notable asset types that the second simulation overestimated the investment with significant errors are Air transportation and Manufacturing.

For the total fixed investment in structures, the first simulation is very accurate during the simulation period with errors of $-0.03 \%$ in 2005 and $0.36 \%$ in 2006. The second simulation missed the same published figures by $-7.52 \%$ in 2005 and $-3.69 \%$ in 2006.

The first simulation performs equally well in predicting the investment in nonresidential structures and residential structures. This means that the accuracy we observed for the total structure investment does not come from the averaging effect from residential and nonresidential structure investments.

For residential structures, the first simulation performs very well in predicting all of its components with small tendency to underestimate the permanent site structure investments. The second simulation underestimates all components of residential structure investment in 2005. It underestimates the residential investment in Singlefamily structures, which is the biggest component of residential structure investment, significantly with errors of $-13.34 \%$ in 2005. However, in 2006 , the second simulation performs relatively well with only slightly more errors than the first simulation.

For nonresidential structure investment, the first simulation missed the published NIPA numbers by $0.33 \%$ in 2005 and $1.02 \%$ in 2006. The second simulation missed the same numbers by $-3.24 \%$ in 2005 and $-13.50 \%$ in 2006.

The commercial and health care structure investment can be predicted pretty well by the first simulation. Considering the described error with the exogenous inputs, the second simulation performs relatively well in this major asset type. From the first simulation, the only asset type with significant errors is Special care structure investment, with errors of $20.10 \%$ in 2005 and $-24.95 \%$ in 2006. This asset type, also, exhibits comparable performance from the second simulation.

The first simulation missed the nominal manufacturing structure investment by $8.53 \%$ in 2005 and $11.78 \%$ in 2006. The second simulation missed the same numbers by $17.58 \%$ and $12.15 \%$ in 2005 and 2006, respectively.

For Power and communication structure investment, the first simulation missed the published numbers by only $-0.29 \%$ in 2005 and $0.41 \%$ in 2006 . The second simulation missed the same numbers by $3.09 \%$ in 2005 and $-6.89 \%$ in 2006 . Other power structure investment is the only component of power and communication structure investment with significant errors from the first simulation. The first simulation missed the published numbers of other power structure investment by $-13.05 \%$ in 2005 and $-23.35 \%$ in 2006.

For Mining exploration, shafts, and wells structure investment, the first simulation missed the BEA numbers by only $0.02 \%$ in 2005 and $0.08 \%$ in 2006. The second
simulation missed the same numbers by $-7.81 \%$ in 2005 and $-21.43 \%$ in 2006. These errors from both simulations can be traced to the accuracy - or inaccuracy -- of both simulations in predicting Petroleum and natural gas structure investment, the biggest component of Mining exploration, shafts, and wells structure investment. The first simulation missed the official numbers of the Petroleum and natural gas structure investment by $0.43 \%$ in 2005 and $-0.10 \%$ in 2006 while the second simulation missed the same figures by $-7.41 \%$ and $-21.58 \%$ in 2005 and 2006, respectively.

Both simulations performed well in predicting the fixed investment in other structures. The first simulation performs very well in most of them except in some minor components such as Air transportation and Other-other structures ${ }^{21}$. At the same simulation period, the second simulation performs well in predicting the major components of fixed investment in other structures with the exception of Religious structure and Amusement and recreation structure. The second simulation missed the published numbers of investment in religious structure by $9.70 \%$ in 2005 and $12.60 \%$ in 2006. The second simulation, also, missed the published numbers of investment in Amusement and recreation structure by 14.62\% in 2005 and -6.02\% in 2006.

Overall, the first simulation shows that, with accurate exogenous inputs, our approach for estimating fixed investment in structures by asset types can produce reasonable and reliable results.

21 Includes water supply, sewage and waste disposal, public safety, highway and street, and conservation and development.

Figure 5.8: Plots compared BEA numbers with numbers from Historical Simulations


Figure 5.8 (cont.)


Figure 5.8 (cont.)


Figure 5.8 （cont．）
 ＿a．vstnn14－－七廿－－b．vstnn14 ．．．．．．．．．．．．．．．sstnn14

21 Petroleum and natural gas
（Million of dollars）
 ＿a．vstnn15－－Łて－－b．vstnn15 ．．．．．．．．．．．．．vstnn15


20 Mining exploration，shafts，and wells
（Million of dollars）

＿a．vstnnmin＿－e－－b．vstnnmin．．．．．．．．．．．．．vstnmmin
22 Mining
（Million of dollars）


24 Religious
（Million of dollars）


Figure 5.8 （cont．）

†a．a．stnn18－－さt－－b．vstnn18 ．．．．．．．．．．．．．．vstnn18


29 Air transportation


26 Lodging
（Million of dollars）

＿a．vstnn19－－廿－－－b．vstnn19 ．．．．．．．．．．．．．．vstnn19
28 Transportation （Million of dollars）

— a．vstnn21－－さ－－－b．vstnn21 ．．．．．．．．．．．．．．．vstnn21


Figure 5.8 (cont.)


33 Brokers' commissions on sale of structures


35 Residential
(Million of dollars)


32 Other other structures
(Million of dollars)

_ a.vstnn25 --ft-- b.vstnn25 ..............vstnn25
34 Net purchases of used structures

_ a.vstnn27 --e-_. b.vstnn27 ...............sstnn27


Figure 5.8 (cont.)


### 5.7 Forecast of Fixed Investment in Structures between 2007 and 2008

In this section, a short-term outlook of U.S. Private fixed investment in structures in 2007 and 2008 is generated from the described approach. In November 2007, we have monthly VIP data up through July 2007. Thus, after completing the third quarter of 2007 in the VIP monthly series, the forecast for the last quarter of 2007 and all four quarter of 2008 are forecasted.

## Forecast Assumptions

Table 5.10: Assumptions of exogenous variables used in forecasting fixed investment of structures

|  |  | 2007Q4 | 2008Q1 | 2008Q2 | 2008Q3 | 2008Q4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vfnrs | Private Fixed Investment in Nonresidential Structures (nominal) in Billion of dollars | 483.50 | 492.94 | 501.54 | 500.17 | 504.47 |
| vfr | Private Fixed Residential Investment (nominal) in Billion of dollars | 638.83 | 631.77 | 626.18 | 627.30 | 623.69 |

There are only two exogenous variables used in this approach. Private fixed investment in nonresidential structures and Private fixed residential investment are forecasted though the end of 2008 by QUEST model. Table 5.10 shows the values of these two exogenous variables.

The Private fixed investment in nonresidential structures is forecasted to be increasing until the second quarter of 2008 when it will be stable until the end of 2008. The nominal value of residential investment is predicted to be declining in 2008 as the problem in the sub-prime mortgage market is still affecting the economy.

## Outlook of Fixed Investment in Structures by Asset Types in 2007 and 2008

Plots of all fixed investment in structures by asset types are shown in Figure 5.9.
Table 5.11 shows nominal value of fixed investment in structures from 1997 to 2008.
Table 5.12 shows year-to-year growth rate of nominal Fixed investment in structures by types.

Overall, we expect to see a temporary drop in investment in structures in 2007. The investment will expand again in 2008 with a growth rate of 6.54 percent. With more
recent data (up to November 2007), the forecasted growth rate in 2008 seems to be on the high side as many indicators show a sign that the problem in the credit market might persist well into 2008 which will affect the investment, especially residential investment.

## Nonresidential

From 2002 to 2006, investment in Nonresidential structures accounts for less than $35 \%$ of total private fixed investment in structures on average. Its share is expected to increase in 2007 and 2008 as the problem in credit markets mainly affects the residential structures. However, the slowdown in investment will catch up to the nonresidential structures investment in 2008. We expect the Nonresidential structures investment to keep growing at $17.89 \%$ in 2007 and $12.08 \%$ in 2008 in nominal terms. This means that its share of the total structures investment will increase from $35 \%$ in 2006 to $44 \%$ in 2008. Power and communication structures and Mining exploration, shafts, and wells structures are the two asset types that will see the most expansion between 2006 and 2008.

## Commercial and Health Care

Commercial and Health care structures investment is expected to grow by $15.02 \%$ in 2007 and $5.65 \%$ in 2008. Office structures investment will slowdown in 2008 from the growth rate of $15.92 \%$ in 2007 to 3.59 percent in 2008 . Health care structures will keep expanding at a modest rate of $1.99 \%$ in 2007 and $6.91 \%$ in 2008. Most of the expansion in Health care structures comes from the construction of Hospitals and Medical building. The medical building structures investment is expected to grow
rapidly in 2007 with a growth rate of $34.54 \%$ while special care structures will see a slowdown with growth rate of $-30.83 \%$ in 2007 and $-20.06 \%$ in 2008; this decreasing trend started in 2001.

Building of Food and beverage establishments is predicted to have a negative growth rate of -3.24 percent in 2007 and follow by growth of $9.08 \%$ in 2008. It should be noted that the negative growth rate began in 2001 while the structures investment in Multimerchandise shopping has been increasing at the same time. We expect Investment in Multimerchandise shopping structures to grow by $24.14 \%$ in 2007 and $13.86 \%$ in 2008.

Investment in Warehouses will grow by 21.7\% in 2007 and $7.57 \%$ in 2008. Other commercial structures ${ }^{22}$ investment will grow by $7.66 \%$ in 2007 but slowdown in 2008 with a growth rate of $-2.77 \%$.

## Manufacturing

Manufacturing structures investment will grow by $12.52 \%$ in 2007 and will decrease by $-2.77 \%$ in 2008 as the credit problem starts to affect the nonresidential structures investment.

[^10]
## Power and Communication

Power and communication structures will expand rapidly in 2007 with a growth rate of $26.49 \%$ and will keep expanding in 2008 with a growth rate of $16.66 \%$. Most of this expansion comes from the investment in Electric power structures, which has growth rates of $33.67 \%$ in 2007 and $21.42 \%$ in 2008. The Communication structures investment will be growing with growth rates of $21.90 \%$ in 2007 and $10.78 \%$ in 2008.

## Mining exploration, Shafts, and Wells

Mining exploration, shafts, and wells investment is expected to grow at a rate of $13.19 \%$ in 2007 and $21.88 \%$ in 2008. This higher growth rate in 2008 is unique to this asset type as we observe the smaller growth rate of structures investment in all other nonresidential structures. The Petroleum and natural gas structures investment is the main contributor of this growth as it increase from 101.50 billion dollars in 2006 to 140.12 billion dollars in 2008. I believe this expected expansion is reasonable as the world price of petroleum products keep increasing and the U.S. dollar keep depreciating, which create pressure on the economy to reduce cost by using more domestic petroleum products.

## Other Nonresidential Structures

Other nonresidential structures investment will expand with growth rates of $27.29 \%$ in 2007 and $12.81 \%$ in 2008. Historically, the biggest component of other nonresidential structures investment is investment in Lodging which is expected to have growth rates of $57.33 \%$ in 2007 and $16.43 \%$ in 2008. Educational and vocational
structures investment, which is the second largest component, will keep growing by $21.07 \%$ in 2007 and $16.83 \%$ in 2008. Investment in amusement and recreation structures will slowdown with negative growth rate of $-6.00 \%$ in 2007 and $-2.01 \%$ in 2008.

Transportation structures investment shows decent growth as it will expand by $2.96 \%$ in 2007 and $6.30 \%$ in 2008. This increase in investment of transportation structures is provided from the increase in both Air transportation structures investment and Land transportation structures investment. Air transportation structures investment increases by $14.87 \%$ in 2007 from 0.90 billion dollar in 2006 to 1.03 billion dollar in 2007 while Land transportation structures investment increases from 6.90 billion dollars in 2006 to 7.00 billion dollars in 2007, which equal to a growth rate of $1.41 \%$.

Farm structures investment will grow by $28.33 \%$ and $10.83 \%$ in 2007 and 2008, respectively.

## Residential

Residential structures investment is expected to drop sharply in 2007 from 755.15 billion dollars in 2006 to 669.51 billion dollars in 2007, a 11.34\% decrease. The Main contributor to this slowdown is the investment in single-family structures which drop by 86.73 billion dollars from the 416 billion dollars observed in 2006. Our forecast shows that the residential structures investment will stabilize in 2008 with a growth rate of $2.59 \%$. However, this growth is provided mainly from the expansion in other residential
structures investment ${ }^{23}$ which grows by $6.78 \%$ in 2008 while the investment in
Multifamily structures keeps decreasing further by $-6.40 \%$ in 2008

As mentioned earlier, the outlook for the residential structures investment in 2008 is not optimistic as the problem in the credit market is expected to persist. Our equations are very likely to overestimate the investment in residential structures in 2008.

23 Consists of Manufactured homes, Dormitories, Improvements, Brokers' commissions on sale of residential structures, and Net purchases of used residential structures

Table 5.11: Nominal Private Fixed Investment in Structures 2003-2008
in Billion dollars

```
Private fixed investment in structures
 Nonresidential
 Commercial and health care
 Office \1\
 Health care
 Hospitals and special care
 Hospitals
 Special care
 Medical buildings
 Multimerchandise shopping
 Food and beverage establishments
 Warehouses
 Other commercial \2\
 Manufacturing
 Power and communication
 Power
 Electric
 Other power
 Communication
 Mining exploration, shafts, and wells
 Petroleum and natural gas
 Mining
 Other structures
 Religious
 Educational and vocational
 Lodging
 Amusement and recreation
 Transportation
 Air
 Land \3\
 Farm
 Other \4\
 Brokers' commissions on sale of structures
 Net purchases of used structures
 Residential
 Permanent site
 Single-family structures
 Multifamily structures
 Other structures
```

| 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 841.62 | 965.25 | 1,093.77 | 1,160.45 | 1,147.32 | 1,222.39 |
| 277.10 | 298.20 | 334.60 | 405.30 | 477.81 | 535.55 |
| 112.10 | 122.10 | 132.60 | 154.10 | 177.25 | 187.27 |
| 35.10 | 37.80 | 42.80 | 53.10 | 61.56 | 63.77 |
| 27.30 | 29.50 | 32.10 | 37.40 | 41.51 | 44.38 |
| 20.50 | 21.00 | 23.10 | 29.20 | 30.48 | 31.88 |
| 17.20 | 18.20 | 20.60 | 25.80 | 28.13 | 30.00 |
| 3.30 | 2.80 | 2.50 | 3.40 | 2.35 | 1.88 |
| 6.80 | 8.50 | 9.00 | 8.20 | 11.03 | 12.50 |
| 14.60 | 17.90 | 21.60 | 27.70 | 34.39 | 39.15 |
| 7.90 | 7.80 | 7.40 | 7.00 | 6.77 | 6.16 |
| 11.70 | 11.50 | 12.20 | 13.60 | 16.55 | 17.80 |
| 15.50 | 17.60 | 16.50 | 15.30 | 16.47 | 16.02 |
| 16.70 | 18.50 | 23.30 | 26.80 | 30.16 | 30.12 |
| 44.20 | 39.00 | 40.90 | 47.20 | 59.70 | 69.65 |
| 32.10 | 26.10 | 25.20 | 29.20 | 37.76 | 45.35 |
| 24.10 | 19.20 | 18.10 | 20.40 | 27.27 | 33.11 |
| 8.00 | 6.90 | 7.10 | 8.80 | 10.49 | 12.24 |
| 12.10 | 12.90 | 15.70 | 18.00 | 21.94 | 24.31 |
| 45.80 | 55.70 | 73.70 | 105.40 | 119.30 | 145.40 |
| 44.20 | 53.30 | 70.60 | 101.50 | 114.89 | 140.12 |
| 1.60 | 2.40 | 3.10 | 3.90 | 4.41 | 5.28 |
| 58.30 | 62.90 | 64.10 | 71.80 | 91.40 | 103.10 |
| 8.30 | 7.90 | 7.50 | 7.50 | 7.36 | 7.50 |
| 14.70 | 13.90 | 14.20 | 14.70 | 17.80 | 20.79 |
| 12.30 | 14.80 | 15.70 | 21.90 | 34.46 | 40.12 |
| 9.30 | 10.10 | 9.00 | 10.90 | 10.25 | 10.04 |
| 6.10 | 6.70 | 7.00 | 7.80 | 8.03 | 8.54 |
| 1.10 | 1.00 | 0.90 | 0.90 | 1.03 | 1.21 |
| 5.00 | 5.70 | 6.10 | 6.90 | 7.00 | 7.32 |
| 5.10 | 5.50 | 5.90 | 5.30 | 6.80 | 7.54 |
| 2.40 | 3.20 | 3.60 | 2.90 | 3.83 | 3.54 |
| 2.10 | 2.20 | 2.30 | 2.70 | 2.94 | 3.16 |
| -2.00 | -1.40 | -1.10 | -1.90 | -0.07 | 1.88 |
| 564.52 | 667.05 | 759.17 | 755.15 | 669.51 | 686.84 |
| 345.67 | 417.50 | 480.83 | 469.00 | 380.13 | 377.83 |
| 310.55 | 377.55 | 433.52 | 416.00 | 329.63 | 330.56 |
| 35.13 | 39.95 | 47.30 | 53.00 | 50.50 | 47.26 |
| 218.85 | 249.55 | 278.35 | 286.15 | 289.38 | 309.02 |

Table 5.12: Growth Rate of Nominal Private Fixed Investment in Structures

| Private fixed investment in structures |
| :---: |
| Nonresidential |
| Commercial and health care |
| Office \1\} |
| Health care |
| Hospitals and special careHospitals |
|  |  |
|  |
| Medical buildings |
| Multimerchandise shopping |
| Food and beverage establishments |
| Warehouses |
| Other commercial \2\} |
| Manufacturing |
| Power and communication |
| Power |
| Electric |
| Other power |
| Communication |
| Mining exploration, shafts, and wells <br> Petroleum and natural gas <br> Mining |
|  |  |
|  |  |
|  |
|  |
| Educational and vocational |
| Lodging |
| Amusement and recreation |
| Transportation |
| Air |
| Land \3\} |
| Farm |
| Other $\backslash 4 \backslash$ |
| Brokers' commissions on sale of structures Net purchases of used structures |
|  |  |
|  |
| Permanent site |
| Single-family structures |
| Multifamily structures |
| Other structures |


| 2000-2005 | 2003-2004 | 2004-2005 | 2005-2006 | 2003-2006 | 2006-2007 | 2007-2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.93\% | 14.69\% | 13.32\% | 6.10\% | 11.37\% | -1.13\% | 6.54\% |
| 1.74\% | 7.61\% | 12.21\% | 21.13\% | 13.65\% | 17.89\% | 12.08\% |
| -0.38\% | 8.92\% | 8.60\% | 16.21\% | 11.24\% | 15.02\% | 5.65\% |
| -5.33\% | 7.69\% | 13.23\% | 24.07\% | 15.00\% | 15.93\% | 3.59\% |
| 8.05\% | 8.06\% | 8.81\% | 16.51\% | 11.13\% | 10.99\% | 6.91\% |
| 7.51\% | 2.44\% | 10.00\% | 26.41\% | 12.95\% | 4.37\% | 4.60\% |
| 12.52\% | 5.81\% | 13.19\% | 25.24\% | 14.75\% | 9.01\% | 6.66\% |
| -11.65\% | -15.15\% | -10.71\% | 36.00\% | 3.38\% | -30.83\% | -20.06\% |
| 10.30\% | 25.00\% | 5.88\% | -8.89\% | 7.33\% | 34.54\% | 13.28\% |
| 9.31\% | 22.60\% | 20.67\% | 28.24\% | 23.84\% | 24.14\% | 13.86\% |
| -2.14\% | -1.27\% | -5.13\% | -5.41\% | -3.93\% | -3.24\% | -9.08\% |
| -2.11\% | -1.71\% | 6.09\% | 11.48\% | 5.28\% | 21.70\% | 7.57\% |
| -2.28\% | 13.55\% | -6.25\% | -7.27\% | 0.01\% | 7.66\% | -2.77\% |
| -3.27\% | 10.78\% | 25.95\% | 15.02\% | 17.25\% | 12.52\% | -0.12\% |
| -2.36\% | -11.76\% | 4.87\% | 15.40\% | 2.84\% | 26.49\% | 16.66\% |
| -1.62\% | -18.69\% | -3.45\% | 15.87\% | -2.09\% | 29.32\% | 20.08\% |
| -3.32\% | -20.33\% | -5.73\% | 12.71\% | -4.45\% | 33.67\% | 21.42\% |
| 4.07\% | -13.75\% | 2.90\% | 23.94\% | 4.36\% | 19.25\% | 16.59\% |
| -1.56\% | 6.61\% | 21.71\% | 14.65\% | 14.32\% | 21.90\% | 10.78\% |
| 23.61\% | 21.62\% | 32.32\% | 43.01\% | 32.31\% | 13.19\% | 21.88\% |
| 24.00\% | 20.59\% | 32.46\% | 43.77\% | 32.27\% | 13.20\% | 21.96\% |
| 21.91\% | 50.00\% | 29.17\% | 25.81\% | 34.99\% | 13.01\% | 19.76\% |
| -1.39\% | 7.89\% | 1.91\% | 12.01\% | 7.27\% | 27.29\% | 12.81\% |
| -0.70\% | -4.82\% | -5.06\% | 0.00\% | -3.29\% | -1.81\% | 1.79\% |
| 1.90\% | -5.44\% | 2.16\% | 3.52\% | 0.08\% | 21.07\% | 16.83\% |
| -3.53\% | 20.33\% | 6.08\% | 39.49\% | 21.97\% | 57.33\% | 16.43\% |
| -2.74\% | 8.60\% | -10.89\% | 21.11\% | 6.27\% | -6.00\% | -2.01\% |
| 1.36\% | 9.84\% | 4.48\% | 11.43\% | 8.58\% | 2.96\% | 6.30\% |
| -12.67\% | -9.09\% | -10.00\% | 0.00\% | -6.36\% | 14.87\% | 17.37\% |
| 5.51\% | 14.00\% | 7.02\% | 13.11\% | 11.38\% | 1.41\% | 4.66\% |
| 0.20\% | 7.84\% | 7.27\% | -10.17\% | 1.65\% | 28.38\% | 10.83\% |
| -2.28\% | 33.33\% | 12.50\% | -19.44\% | 8.80\% | 32.10\% | -7.64\% |
| -0.64\% | 4.76\% | 4.55\% | 17.39\% | 8.90\% | 8.96\% | 7.31\% |
| n/a |
| 11.65\% | 18.16\% | 13.81\% | -0.53\% | 10.48\% | -11.34\% | 2.59\% |
| 12.80\% | 20.78\% | 15.17\% | -2.46\% | 11.16\% | -18.95\% | -0.60\% |
| 13.03\% | 21.57\% | 14.83\% | -4.04\% | 10.79\% | -20.76\% | 0.28\% |
| 10.95\% | 13.74\% | 18.40\% | 12.05\% | 14.73\% | -4.72\% | -6.40\% |
| 9.83\% | 14.03\% | 11.54\% | 2.80\% | 9.46\% | 1.13\% | 6.78\% |

Figure 5.9: Plots of Private Fixed Investment in Structures


Figure 5.9 (cont.)


Figure 5.9 (cont.)





17 Electric
(Million of dollars)


Figure 5.9 (cont.)


Figure 5.9 (cont.)


Figure 5.9 (cont.)


Figure 5.9 (cont.)


## Chapter 6: Gross Output by Industry

Gross output of the various industries in the input-output table - roughly speaking, the sales of the industries - is in the center of the computing sequence of interindustry models. They begin with the final demands, some of which we have already studied, and then go through the input-output computations to reach gross output by industry. They then use gross output to compute value added, compensation of employees, capital income, taxes, employment and perhaps other variables by industry. Thus, gross output is the key variable linking final demands to industry-specific variables.

Despite the fact that the gross outputs are well down the chain of calculations, users of the models - especially users who work in private industries - almost invariably look first at the gross output forecasts. Indeed, they look immediately at what the model says about gross output in their industry for the last year, the current year and the next year, precisely the period they know best from their own recent experience -- and the period where, up until now, the model's data base has been the weakest, sometimes two full years out of date. If what they find does not match what they know to be true, they can dismiss the model's results without further examination. Builders of quarterly macromodels do not face this problem, for it is a simple matter to have a model's database always updated with BEA's most recent data.

The strength of interindustry models in forecasting for an industry lies in ensuring consistency among the different industries and in accounting for basic variables, such as
demographic changes, and policy variables, such as defense spending. These are longterm considerations and can be easily outweighed in the short terms by inventory or exchange rate fluctuations, overcapacity or undercapacity, or even weather. Yet it is precisely the failure to have up-to-date information on gross output that can readily discredit the model's results for years further in the future. Thus, this final chapter of our study has special importance for the model's credibility and acceptance.

In the U.S. input-output table, gross output of an industry consists of sales, or receipts, and other operating income, plus commodity taxes and changes in inventories. Thus, gross output represents the market value of an industry's production. Subtracting the industry's cost of purchased materials, energy and services gives value added, which represents the contribution of the industry's labor and capital to its gross output and to the overall GDP.

Gross output, however, has its limits as a measure of output for large parts of the economy because summing gross output across industries produces a rather meaningless number owing to "double" -- or better, multiple -- counting. The sum of gross outputs in the food producing sector of the economy would include the value of the corn fed to a pig PLUS the value of the pig sold to the slaughter house PLUS the value of the ham sold to a restaurant PLUS the value of meal served by the restaurant. So the corn would have been counted four times. This problem has led to the creation of measures of value added, which are summable. Gross output, however, maintains its importance because it is the industry-level variable which can be computed directly from the final demands and the input-output matrix.

For some purposes, moreover, it is a more appropriate variable than value added. Much of the recent literature on the estimation of production functions adopts this view. Jorgenson and Griliches $(1967,1972)$ recommend it as the proper measure of production. Hulten (1992) argued that gross output is the correct concept to use in empirical study of structure of production and productivity in contrast to the use of net output (Gross output minus depreciation), as net output requires "a peculiar notion of technological change". Recently, Meade (2006) has argued cogently against using real value added as a measure of output in productivity studies.

Currently, BEA releases gross output data every year. The data are part of the annual industry accounts and have recently been released in December of the year following the reference year. Thus, data for 2006 was scheduled for release in December of 2007. However, BEA decided to delay the release until January 2008 in order to be able to use the Annual Survey of Manufactures for 2006. Previously, this Survey would not have been used in the first release of the annual industry accounts, but Census has accelerated its production process, and BEA judged the improvement in data quality worth the one-month delay in its release. Each release includes gross output by detailed industry of the previous year and a revision of previous releases.

Thus, the official gross output by industry data can be lagged by up to two years. For example, the data for 2005 is still the most up-to-date gross output data available in December 2007. Meanwhile, other economic indicators, such as Census's Manufacturers' Shipments, Inventories, and Orders, the Federal Reserve Board's Industrial Production Indexes (IPI) and Census's wholesale trade survey, have been
released monthly or quarterly in a timely manner. We will use these other economic indicators to predict the annual Gross output by industry in the period where the BEA has not released the official information and to forecast the gross output into the near future.

In this chapter, I will discuss (1) sources of data on gross output and indicators that can be used to estimate its recent course, and (2) regression results for estimation of gross output from high-frequency data.

### 6.1 Data on Gross Output and High-Frequency Explanatory Variables

## Gross output by industry 1947 - 2005

Since converting the annual industry accounts to North American Industry Classification System (NAICS) in 2002, BEA has also updated GDP by industry information from 1947 to be consistent with the current definition. However, because of the limited historical source data, there are many NAICS categories that cannot be extended back to 1947. Thus, BEA has published historical data in various degrees of aggregation.

There is not, however, any BEA data on gross output with frequency higher than annual. The situation is thus very different from that for PCE for which we have monthly data in full detail. Even for investment, we have monthly data for construction and quarterly data for some aggregate categories of equipment. With gross output, we have nothing until the first annual estimate appears, so our technique will need to be slightly different from what we have used previously. Namely, we will select high-frequency
variables which should be good indicators of gross output, convert them to annual series and regress each gross output on the appropriate annualized version of the high-frequency variables. Then we extend the high-frequency series, annualize the extended series, and put it into the estimated regression equation to get predicted values of gross output. The process will be illustrated below. For the moment, it is sufficient to understand that we need data for gross output and the associated price indexes at an annual frequency and data for similar proxy variables at a high frequency.

BEA releases gross output and the associated price indexes at two levels of aggregation. The more aggregate of the two has 65 primary industry categories and a number of subtotal categories. These are the same 65 categories used in the annual inputoutput tables. These 65 categories are shown in Appendix 6.1. On the BEA website, they are in a file called GDPbyInd_VA_NAICS_1998-2006.xls . (Despite the name, there is no gross output data past 2005.) This same spreadsheet file also contains, for these same industries, series for cost of intermediate inputs, value added, and components of value added added such as wages and salaries, supplements, subsidies, taxes on production and imports, and gross operating surplus. Employment is also available in this classification. Thus, this sectoring is convenient for working with other industry-level data.

On the other hand, the 65 -industry aggregation is unfortunately gross in some areas. All construction is in one sector; all utilities - electric, gas, water, and sewer - are in one sector; hospitals and nursing homes are in one sector. However, BEA offers a second set of much more detailed gross product data in 489 primary sectors in a file called GDPbyInd_GO_NAICS_1998-2005.xls . This classification remedies the
limitations mentioned, but only gross output in current and constant prices is available, none of the other series.

The present work will be limited to the 65 -sector classification, but the availability of data in the more detailed classification should be kept in mind for future work. The complete list of the 65 sectors is found in Appendix 6.1.

## High-frequency explanatory variables

## Industrial production index

The industrial production index (IPI) prepared by the Board of Governors of the Federal Reserve System measures the real output of the goods-producing industries, such as manufacturing, mining, and utilities, as defined by the North American Industry Classification System (NAICS) plus other industries such as logging and publishing that have traditionally been considered as manufacturing industries. The IPI contains more than 300 individual series, classified by market groups and industry groups. It is, however, fairly straight-forward to align the IPI sectors with corresponding sector for gross product. That has been done in the data bank used here, so that IPI series 10 (ips10) corresponds to gross output sector 10, namely, Primary metals. All IPI series used here are seasonally adjusted using CENSUS X-12 ARIMA ${ }^{24}$.

Industrial production indexes are used in our model to explain most of the goodsproducing industries. In this study, we used the IPI published in February 2007 which contains data through January 2007.

24 http://www.census.gov/srd/www/x12a/

In passing, we may note that, in the course of setting monetary policy, the Federal Reserve Board needs very current information on what is happening in the economy. It has therefore been making these indexes since 1938, long before the Commerce Department started preparing gross output by industry or even producing quarterly national accounts.

## Producer price index

According to the Bureau of Labor Statistics (BLS), the universe the Producer Price Index (PPI) attempts to cover
consists of the output of all industries in the goods-producing sectors of the American economy-mining, manufacturing, agriculture, fishing, and forestryas well as gas, electricity, and goods competitive with those made in the producing sectors, such as waste and scrap materials. Imports are no longer included within the PPI universe; however, the BLS International Price Program publishes price indexes for both imports and exports. Domestic production of goods specifically made for the military is included, as are goods shipped between establishments owned by the same company (termed interplant or intracompany transfers). The output of the services sector and other sectors that do not produce physical products is also conceptually within the PPI universe, although, in 2002, actual coverage was approximately half of the service sector's output. As of January 2002, the PPI program published data for selected industries in the following industry groups: Railroad, water, and air transportation
of freight; air passenger transportation; motor freight transportation and warehousing; the U.S. Postal Service; petroleum pipelines; travel agencies; hotels and motels; communications; health services; finance, insurance, and real estate; business services; legal services; electrical power and natural-gas utilities; automotive rental and leasing; retail trade; engineering and architectural services; accounting, auditing, and bookkeeping services; and scrap and waste materials collection. ${ }^{25}$

The PPI is the major - though not the only - source of data for BEA's calculation of the price indexes for gross output. Not surprisingly, therefore, PPI is a really good indicator of prices of gross output by industry, especially in the goods-producing industries. In this study, we used PPI published in January 2007 which contains data through December 2006.

25 http://www.bls.gov/opub/hom/homch14_b.htm

## Employment, hours, and earnings

For the many industries where there is no index of industrial production, we often need to rely on employment as an indicator of output. Each month, the Bureau of Labor Statistics (BLS) publishes widely used measures of employment. First, the Current Employment Statistics survey (CES) ${ }^{26}$, which is a survey of businesses and government agencies and measures nonfarm payroll employment by industry. Second, the Current Population Survey (CPS) ${ }^{27}$, measuring civilian employment, is a survey of households in the U.S. The CPS is often referred to as the "household survey" while the CES is called the "establishment survey."

The CPS is important for determining unemployment and the labor force, while the CES is regarded as the more accurate indicator of which industries provide the jobs. It certainly gives greater detail by industry. In this study, therefore, I use employment data from the CES or establishment survey. According to Kliesen (2007), the CES should be considered a superior time-series measure because the survey is conducted over about a third of all workers or a little more than 45 million workers.

[^11]As indicators for gross output by industry, I use three of the 19 measures reported in the CES survey. These three are 1) all employees in each industry, 2) average weekly hours of production workers by industry, and 3) average hourly earnings of production workers. CES data is crucial to most of our equations. It is used as a proxy of either production cost (wages per hour) or labor input (employment times hours). In serviceproducing industries, the CES gives the main explanatory variables used in all the equations, for we have limited information from the IPI or the PPI.

The CES information used in this study was published in January 2007 and includes data up to December 2006.

## Personal consumption expenditure

Personal consumption expenditure (PCE) information for this study is taken from PCE by product categories published by the BEA in the National Income and Product Accounts (NIPA). This data, which is both detailed and available at a monthly frequency, was described in detail in Chapter 3. For some industries selling primarily to consumers, PCE is useful in estimating real or nominal gross output. Again, PCE information used in this study was published in August 2007.

## Wholesale and retail trade

U.S. Census Bureau publishes both annual and monthly wholesale and retail trade data which are used here for estimating the gross output of wholesale and retail trade, respectively. The annual wholesale trade, ${ }^{28}$ the annual retail trade, ${ }^{29}$ the monthly
$28 \mathrm{http}: / / \mathrm{www} . c e n s u s . g o v / \mathrm{svsd} / \mathrm{www} / \mathrm{whltable} . \mathrm{html}$
29 http://www.census.gov/svsd/www/artstbl.html
wholesale trade ${ }^{30}$ and monthly retail trade ${ }^{31}$ data are each in their separate data files indicated in the footnotes to this sentence. Both monthly surveys were updated to December 2006 for this study.

## Annual farm labor expense

For farm related industries, CES does not provide any information. We use Annual farm total labor expense data ${ }^{32}$ published by the United States Department of Agriculture (USDA). The labor expense data is published as a part of U.S. and State production expenses by expense category, which contains data from 1946. The information used here is updated to 2006.

## Other indicators

There are two addition indicators used in estimating both level and price index of gross output by industry. There are exchange rate and crude oil price. The monthly crude oil price, and exchange rate are obtained from FRED database ${ }^{33}$ from the St. Louis Federal Reserve Bank. The FRED databank provides the crude oil price (OILPRICE) in monthly average value from the spot oil price of West Texas Intermediate. The exchange rate is traded weighted exchange index (TWEXBMTH). The information used here was updated to January 2007.

[^12]
## Summary

To summarize, the required data are :

BEA Annual Gross output by industry in current and constant prices
FRB monthly Industrial production index,
BLS monthly Producer Price index
BLS monthly Current Employment Statistics Survey
BEA National Income and Product Accounts
USDA Annual Farms Labor Expense
St. Louis Federal Reserve Bank: monthly crude oil price
St. Louis Federal Reserve Bank: traded weighted exchange index
U.S. Census Retail Trade survey
U.S. Census Wholesale Trade survey

QUEST: the independent macro economic forecast of exogenous variables

### 6.2 The Method

As already indicated, there are three steps in the extension of the gross output series and their price indexes.

Step 1. Regress annual gross output on annualized values of monthly series.

Step 2. Extend the monthly series to the end of the following year.

Step 3. Annualize the extended monthly series and use in the equations estimated in
Step 1 to forecast the gross output to the end of the following year.

Thus, there are two sets of equations used in the process: 1) quantity and price equations at annual frequency and 2) forecasting equations at monthly frequency for each explanatory variable used in the first set of equations.

## Annual Equations

All the equations in this step are estimated without lagged dependent variables. We will use the Primary metals industry as an example. The real value (or quantity) equation of the Primary metals industry has as explanatory variables the industrial production index of Primary metals (NAICS:331) (ips10) and all employees of the Primary metals industry from CES data (ehe10). The price index for gross output of the Primary metals industry has as explanatory variables only one indicator, namely, the producer price index of the Primary metals industry (pri10). The regression results are shown below.

```
: Real Gross Output: Primary Metals
 SEE = 1502.60 RSQ = 0.9735 RHO = -0.08 Obser = 13 from 1992.000
 SEE+1 = 1490.41 RBSQ = 0.9682 DW = 2.17 DoFree = 10 to 2004.000
 MAPE = 0.81 Test period: SEE 607.84 MAPE 0.41 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor10 _ - - - _ - - _ - - _ - - - - - - 149129.53 - - -
 l intercept
 3 ehe10 36.64322 78.7 0.15 1.00 593.22 0.249
:M Price Index of Gross Output: Primary Metals
```

The easiest check on the plausibility of the results is by use of the elasticities at the mean, given in the "Elas" column. In the first equation, we see that if the industrial production index goes up by 1 percent, real gross output goes up by 0.86 percent, while if employment goes up by 1 percent, gross output goes up by 0.15 percent. Thus, if both industrial production and employment go up by 1 percent, gross output goes up by 1.01 percent, an altogether reasonable relation. The "mexvals" are also easy to interpret: if we had only employment - and thus dropped industrial production - the standard error of the estimate (SEE) would rise by 441.2 percent, while if we dropped employment and had to rely solely on industrial production, the SEE would rise by 78.7 percent. Thus, each of the explanatory variables is making an important contribution to the forecast. The $\mathrm{R}^{2}$ of 0.9735 with the $\rho$ value of -0.08 indicate that the equation fits well with essentially no correlation in the errors. Note that all of the statistics referred to are purely descriptive. We make no use of test statistics such as the $t$ values because we do not propose that there is true, causative equation of the form we are estimating. Rather, we merely propose that there is a complicated reality that results in the gross output, the industrial production, and the employment we observe. We are just trying to see how well we could guess the gross output if we had only the other two, not to test for a causative relation which we do not believe exists.

In the price equation, we again see a plausible elasticity close to 1 , namely 1.04 , a good fit with $R^{2}$ of 0.9952 with the $\rho$ value of 0.25 , low enough not to suggest an important missing variable but high enough to make it desirable to use a rho-adjusted forecast.

The explanatory variables ips 10 , ehe10 and pril0 will be extended into the future by the monthly equations to be described in the next section..

The estimation results for these annual equations for all 65 sectors are given in Appendix 6.3. Please note that, as shown in Appendix 6.3, each sector's gross output price index and level are estimated by separate equations, one for the price index and one for the level of gross output (Real or Nominal). The level equation for each industry will estimate either real value or nominal value. The main reason is simply a better fit between the two. The other reason is that, in some industries, I find a good explanatory value of the price index in explaining both real value and nominal value. Thus, I pick the nominal value equation because having a price index (ppi) as a regressor for real variable is counterintuitive. As we always estimate the price index of each industry, the other level variable will be calculated as an implied value. For example, we estimate the real gross output and the price index for primary metals, as discussed above and the nominal gross output of primary metals will be calculated by identity. Table 6.1 lists how each variable (real, nominal, or price index) is estimated by industries, an R indicates the variable is calculated by regression, while an M means it is implied. Appendix 6.5 shows all variables used in this chapter and their description.

Table 6.1: How each variable of each 65 detailed industries is estimated

|  |  | Nominal | Real | Price Index |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Farms | R | M | R |
| 2 | Forestry, fishing, and related activities | M | R | R |
| 3 | Oil and gas extraction | M | R | R |
| 4 | Mining, except oil and gas | M | R | R |
| 5 | Support activities for mining | M | R | R |
| 6 | Utilities | R | M | R |
| 7 | Construction | M | R | R |
| 8 | Wood products | M | R | R |
| 9 | Nonmetallic mineral products | M | R | R |
| 10 | Primary metals | M | R | R |
| 11 | Fabricated metal products | R | M | R |
| 12 | Machinery | M | R | R |
| 13 | Computer and electronic products | M | R | R |
| 14 | Electrical equipment, appliances, and components | M | R | R |
| 15 | Motor vehicles, bodies and trailers, and parts | M | R | R |
| 16 | Other transportation equipment | M | R | R |
| 17 | Furniture and related products | M | R | R |
| 18 | Miscellaneous manufacturing | M | R | R |
| 19 | Food and beverage and tobacco products | M | R | R |
| 20 | Textile mills and textile product mills | M | R | R |
| 21 | Apparel and leather and allied products | M | R | R |
| 22 | Paper products | M | R | R |
| 23 | Printing and related support activities | M | R | R |
| 24 | Petroleum and coal products | R | M | R |
| 25 | Chemical products | R | M | R |
| 26 | Plastics and rubber products | M | R | R |
| 27 | Wholesale trade | M | R | R |
| 28 | Retail trade | M | R | R |
| 29 | Air transportation | M | R | R |
| 30 | Rail transportation | R | M | R |
| 31 | Water transportation | R | M | R |
| 32 | Truck transportation | R | M | R |
| 33 | Transit and ground passenger transportation | M | R | R |
| 34 | Pipeline transportation | R | M | R |
| 35 | Other transportation and support activities | M | R | R |
| 36 | Warehousing and storage | M | R | R |
| 37 | Publishing industries (includes software) | R | M | R |
| 38 | Motion picture and sound recording industries | M | R | R |
| 39 | Broadcasting and telecommunications | M | R | R |
| 40 | Information and data processing services | R | M | R |
| 41 | Federal Reserve banks, credit intermediation, and related activities | M | R | R |
| 42 | Securities, commodity contracts, and investments | M | R | R |
| 43 | Insurance carriers and related activities | M | R | R |
| 44 | Funds, trusts, and other financial vehicles | M | R | R |
| 45 | Real estate /1/ | M | R | R |
| 46 | Rental and leasing services and lessors of intangible assets | M | R | R |
| 47 | Legal services | M | R | R |
| 48 | Computer systems design and related services | M | R | R |
| 49 | Miscellaneous professional, scientific, and technical services | M | R | R |
| 50 | Management of companies and enterprises | M | R | R |
| 51 | Administrative and support services | M | R | R |
| 52 | Waste management and remediation services | M | R | R |
| 53 | Educational services | M | R | R |
| 54 | Ambulatory health care services | R | M | R |
| 55 | Hospitals and nursing and residential care facilities | M | R | R |
| 56 | Social assistance | M | R | R |
| 57 | Performing arts, spectator sports, museums, and related activities | R | M | R |
| 58 | Amusements, gambling, and recreation industries | M | R | R |
| 59 | Accommodation | M | R | R |
| 60 | Food services and drinking places | M | R | R |
| 61 | Other services, except government | R | M | R |
| 62 | Federal, General government | R | M | R |
| 63 | Federal, Government enterprises | R | M | R |
| 64 | State \& Local, General government | R | M | R |
| 65 | State \& Local, Government enterprises | R | M | R |

Remark: $R=$ Estimated from regression, $M=$ Implied value

## Monthly Equations

Time-series analysis is used on all equations with high frequency, as proven useful in generating short-term forecast of economic variables. All equations in this step have the following structure:

$$
Y_{t}=\alpha+\phi(L) Y_{t}+\gamma W_{t}+\epsilon_{t}
$$

where

$$
Y_{t}=\text { value of dependent variable at time } t
$$

$\phi(L)=$ polynomial of lag operators : $\phi_{1} L+\phi_{2} L^{2}+\ldots$
$W_{t} \quad=$ vector of exogenous explanatory variables at time $t$
$\epsilon_{t} \quad=$ error terms at time $t$

$$
\alpha, \phi_{1}, \phi_{2}, \ldots, \gamma=\text { regression coefficients. }
$$

The use of the $W$ variables, additional explanatory variables besides the lagged dependent variables, helps to guide the movement of the forecasts along the long-term trend; without them, a purely autoregressive systems can begin to explode or oscillate. Generally, these exogenous explanatory variables are macroeconomic variables such as GDP and major aggregates of PCE. Table 6.2 shows these $W$ variables and their definitions.

The lagged dependent variables are forecast within the process using time series analysis. Forecasts of other exogenous variables are obtained from (1) QUEST or other
macroeconomic model, or (2) simple regression against a time trend or lagged dependent variables, or (3) an ad hoc forecast in the case of variables that are difficult to predict mechanically, such as the oil prices and exchange rate variables.

Table 6.2: Lists of Exogenous Variables Used in the Monthly Equations

| cfurgr | : | Monthly growth rate of nominal personal consumption expenditure of Furniture, including mattresses and bedsprin! |
| :---: | :---: | :---: |
| mnipaqcloth | : | Monthly nominal PCE of Clothing and shoes, BEA |
| mnipaqdoth | : | Monthly nominal PCE of Other durables, BEA |
| mnipaqfood | . | Monthly nominal PCE of Food, BEA |
| mnipaqfur | : | Monthly nominal PCE of Furniture and household equipment, BEA |
| mnipaqgas |  | Monthly nominal PCE of Gasoline, fuel oil, and other energy goods, BEA |
| mnipaqho | . | Monthly nominal PCE of Household operation, BEA |
| mnipaqhous | : | Monthly nominal PCE of Housing, BEA |
| mnipaqme | : | Monthly nominal PCE of Medical care, BEA |
| mnipaqmv |  | Monthly nominal PCE of Motor vehicles and parts, BEA |
| mnipaqnoth | : | Monthly nominal PCE of Other nondurables, BEA |
| mnipaqrec | : | Monthly nominal PCE of Recreation, BEA |
| mnipaqsoth | : | Monthly nominal PCE of Other services, BEA |
| mnipaqtr | : | Monthly nominal PCE of Transportation, BEA |
| mnipaqvfr | : | Monthly Private fixed investment in Residential, BEA |
| mnipaqvnre | : | Monthly Private fixed investment in Nonresidential equipment, BEA |
| mnipaqvnrs | : | Monthly Private fixed investment in Nonresidential Structures, BEA |
| mgdp | : | Monthly nominal Gross Domestic Product, BEA |
| mgdpgr | : | Monthly growth rate of nominal Gross Domestic Product, BEA |
| mtime | : | Monthly time trend (December $1969=0$ ) |
| mvnrsgr |  | Monthly growth rate of Private fixed investment in Nonresidential Structures, BEA |

Continuing the example of the annual Primary metals equation, the results of equations for ips10, ehe10 and pri10 are shown below. Table 6.2 shows a list of exogenous variables used in the monthly equations and their definitions.


In the Industrial production index equation (ips10m), we have a plausible elasticity of 1.00 for the lagged dependent variable, a decent fit with adjusted R-Square of 0.8809 and a MAPE of 1.69 percent. The RHO of -0.32 shows that there is unlikely to be an important missing variable but the forecast should be adjusted with the rhoadjustment.

In the employment equation (ehe10m), we have a very good fit with adjusted Rsquare of 0.9987 and a MAPE of 0.28 percent with the elasticity of 1 . There is little correlation in errors with a RHO of -0.13 .

The producer price index equation (pril0m) also has a very good fit with an adjusted R-Square of 0.9936 and a MAPE of 0.34 percent. With a very low RHO of -0.07 , the equation fits well without significant correlation in the errors. All regressors have appropriate signs and decent Mexvals.

The estimated monthly equations are given in Appendix 6.4. The forecast from these monthly equations are annualized and used in forecasting the annual gross output by detailed industries using the annual equations discussed earlier.

### 6.3 Illustration and Evaluation of the Method

The forecasting accuracy of the method has been evaluated by two tests of the method in forecasting 2003 and 2004 on the basis of equations estimated with data through 2002. The difference between the two tests only is in where they get the exogenous data which, in actual practice, would have to come for QUEST or some other quarterly forecasting model. In the first test, we used the actual values of these variables, as the later proved to be. In the second test, we used the values which QUEST would have produced at the end of 2002 using mechanical projections of its exogenous variables. Thus, the first test shows the error inherent in the methods developed in this study, while the second test compounds these errors with errors in forecasting the variables from the macromodel.

Table 6.3 shows the percentage differences of both simulations from the published real gross output in the 65 detailed industries.

Table 6.3: 65 detailed Industries Real Gross Output Simulations Results

| Percentage difference from the published value |  | 1st Sim |  | 2nd Sim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2003 | 2004 | 2003 | 2004 |
| 1 | Farms | 0.31\% | 0.70\% | 0.32\% | -0.37\% |
| 2 | Forestry, fishing, and related activities | -3.23\% | -3.50\% | -1.65\% | -6.25\% |
| 3 | Oil and gas extraction | -0.41\% | -0.23\% | -0.48\% | -0.96\% |
| 4 | Mining, except oil and gas | -0.01\% | -0.38\% | 2.09\% | 0.01\% |
| 5 | Support activities for mining | -6.11\% | -2.57\% | 3.53\% | 16.00\% |
| 6 | Utilities | -2.09\% | 0.55\% | 2.84\% | 11.47\% |
| 7 | Construction | -0.71\% | -1.68\% | -1.39\% | -7.21\% |
| 8 | Wood products | 0.17\% | 2.00\% | 0.37\% | 1.08\% |
| 9 | Nonmetallic mineral products | -0.13\% | 0.84\% | -0.56\% | -0.13\% |
| 10 | Primary metals | 0.17\% | 1.13\% | 0.81\% | -3.71\% |
| 11 | Fabricated metal products | 2.36\% | -2.97\% | 4.67\% | 2.42\% |
| 12 | Machinery | -0.60\% | -0.10\% | 4.50\% | 6.76\% |
| 13 | Computer and electronic products | -2.95\% | 0.67\% | -1.10\% | -2.38\% |
| 14 | Electrical equipment, appliances, and components | -0.23\% | 1.61\% | 2.10\% | 4.47\% |
| 15 | Motor vehicles, bodies and trailers, and parts | -0.96\% | -0.04\% | -3.06\% | -2.20\% |
| 16 | Other transportation equipment | -1.95\% | -0.56\% | 1.08\% | 14.21\% |
| 17 | Furniture and related products | 0.66\% | -0.67\% | 4.60\% | 1.84\% |
| 18 | Miscellaneous manufacturing | -0.44\% | 0.76\% | -0.46\% | 2.61\% |
| 19 | Food and beverage and tobacco products | -0.02\% | -0.31\% | -1.15\% | 1.81\% |
| 20 | Textile mills and textile product mills | -1.11\% | -1.61\% | 2.25\% | 2.91\% |
| 21 | Apparel and leather and allied products | 2.59\% | 2.80\% | -2.30\% | -13.54\% |
| 22 | Paper products | -0.44\% | 0.69\% | -0.19\% | -6.98\% |
| 23 | Printing and related support activities | -0.24\% | 0.63\% | -3.15\% | -13.48\% |
| 24 | Petroleum and coal products | 1.82\% | -0.80\% | -11.77\% | -35.47\% |
| 25 | Chemical products | 0.99\% | 0.51\% | 0.23\% | -5.71\% |
| 26 | Plastics and rubber products | -0.57\% | 0.63\% | -1.00\% | 1.51\% |
| 27 | Wholesale trade | -1.70\% | 3.85\% | -1.09\% | -1.23\% |
| 28 | Retail trade | -0.95\% | 1.13\% | -1.32\% | -2.55\% |
| 29 | Air transportation | 11.35\% | 5.29\% | 10.81\% | 6.14\% |
| 30 | Rail transportation | -1.33\% | -13.08\% | -2.57\% | -18.62\% |
| 31 | Water transportation | -0.29\% | -2.76\% | 3.10\% | -1.29\% |
| 32 | Truck transportation | 1.48\% | -6.20\% | 1.41\% | -11.87\% |
| 33 | Transit and ground passenger transportation | -1.83\% | -2.01\% | -2.98\% | -2.77\% |
| 34 | Pipeline transportation | 1.24\% | -0.26\% | 0.71\% | 1.42\% |
| 35 | Other transportation and support activities | -0.88\% | -1.08\% | 1.31\% | 1.14\% |
| 36 | Warehousing and storage | -0.43\% | 3.61\% | 0.53\% | 2.58\% |
| 37 | Publishing industries (includes software) | -0.94\% | -1.31\% | 0.44\% | -8.61\% |
| 38 | Motion picture and sound recording industries | -2.60\% | -1.04\% | -1.36\% | -1.05\% |
| 39 | Broadcasting and telecommunications | 1.14\% | -1.42\% | -0.94\% | -0.34\% |
| 40 | Information and data processing services | -4.21\% | -9.37\% | -4.43\% | -11.92\% |
| 41 | Federal Reserve banks, credit intermediation, and | 3.63\% | 7.76\% | 3.40\% | 5.84\% |
| 42 | Securities, commodity contracts, and investments | -2.36\% | -5.77\% | -0.50\% | -3.05\% |
| 43 | Insurance carriers and related activities | 1.56\% | -1.90\% | 0.33\% | -6.10\% |
| 44 | Funds, trusts, and other financial vehicles | 1.48\% | 5.25\% | -5.35\% | -12.48\% |
| 45 | Real estate /1/ | 0.43\% | -2.35\% | -0.04\% | -5.46\% |
| 46 | Rental and leasing services and lessors of intangi | -5.63\% | -15.67\% | -10.50\% | -10.28\% |
| 47 | Legal services | -1.96\% | -0.51\% | -2.36\% | -1.68\% |
| 48 | Computer systems design and related services | -6.34\% | -8.13\% | -5.90\% | 0.28\% |
| 49 | Miscellaneous professional, scientific, and techni | -0.17\% | 0.05\% | 3.10\% | 1.19\% |
| 50 | Management of companies and enterprises | -3.54\% | -6.71\% | 0.97\% | -4.80\% |
| 51 | Administrative and support services | -4.97\% | -5.44\% | -3.79\% | -2.75\% |
| 52 | Waste management and remediation services | -0.52\% | 0.75\% | -0.59\% | -3.02\% |
| 53 | Educational services | 0.21\% | 1.53\% | 0.23\% | 1.39\% |
| 54 | Ambulatory health care services | -1.88\% | -0.57\% | -1.90\% | -6.42\% |
| 55 | Hospitals and nursing and residential care facilit | -0.05\% | -0.20\% | -0.33\% | -0.59\% |
| 56 | Social assistance | -2.19\% | -1.12\% | -2.15\% | -3.89\% |
| 57 | Performing arts, spectator sports, museums, and re | -4.75\% | -3.94\% | -4.27\% | -1.89\% |
| 58 | Amusements, gambling, and recreation industries | -0.41\% | -0.20\% | -0.34\% | -1.33\% |
| 59 | Accommodation | -2.71\% | -2.69\% | -2.21\% | -4.81\% |
| 60 | Food services and drinking places | 0.45\% | 2.79\% | -1.53\% | -4.36\% |
| 61 | Other services, except government | -0.90\% | -0.91\% | -1.57\% | -5.32\% |
| 62 | General government | -1.70\% | -3.39\% | -3.05\% | -5.39\% |
| 63 | Government enterprises | -0.48\% | -2.01\% | -1.38\% | -3.28\% |
| 64 | General government | 0.11\% | -1.29\% | -0.05\% | -0.45\% |
| 65 | Government enterprises | 1.41\% | 3.54\% | 1.29\% | 2.73\% |

Generally, the first test can predicted most of the real gross output of each industry quite well, especially the important industry such as Construction and Retail trade, in both one-period and two-period ahead forecasts. The second test, generally, shows slightly bigger errors than the first test. These bigger errors emphasize the importance of the accuracy of exogenous variables.

Air transportation is the only important industry that has unusually large errors, between $5 \%$ to $11 \%$. These errors are relatively equally large in both tests. Thus, this indicates that our equations for estimating Air transportation does not perform as well as equations for other industries.

For the remainder of this section, I show these results in a more graphical way with more discussion of the more aggregates industries. It can be skipped.

Graphical presentation of the results is certainly more "graphic" than the table and shows the forecast in the context of the historical series. But because the graphs also take a lot of space, I have aggregated the 65 industries into 22 groups for the graphs. All real values are aggregated from the 65 -sector level using chain-weighted Fisher indexes. Tabulated numerical results of these 22 industry groups are in Appendix 6.2; the graphs follow here. Unless otherwise noted, each graph shows three lines:

1. a historical simulation using true values of exogenous variables (represented by the red line and marked with plus signs + ),
2. a historical simulation with exogenous variables generated using QUEST and other simple methods such as simple time-series analysis (represented by blue line and marked by the square boxes $\square$ ), Table 6.4 shows the assumptions of these exogenous variables between 2003 and 2004, and
3. the historical BEA published Gross output by industry group as of April 2007 (represented by green line marked by x 's).

All values (shown in Table 6.4), except exchange rate (exrim) and oil price (oilpm), are generated as quarterly series by the QUEST model and converted to monthly data by @qtom command.

Table 6.4: Assumptions of all exogenous variables used in the Second Historical Simulation

| exrim | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 123.44 | 123.29 | 122.81 | 121.83 | 117.86 | 117.22 | 118.43 | 119.74 | 118.40 | 116.06 | 115.93 | 114.36 |
| 2004 | 112.46 | 113.01 | 114.13 | 114.94 | 116.81 | 115.70 | 114.88 | 115.05 | 114.58 | 112.97 | 110.11 | 108.89 |
| oilpm |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 32.94 | 35.87 | 33.55 | 28.25 | 28.14 | 30.72 | 30.76 | 31.59 | 28.29 | 30.33 | 31.09 | 32.15 |
| 2004 | 34.27 | 34.74 | 36.76 | 36.69 | 40.28 | 38.02 | 40.69 | 44.94 | 45.95 | 53.13 | 48.46 | 43.33 |
| mnipaqmv |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 409.85 | 407.32 | 408.62 | 418.67 | 423.92 | 429.30 | 442.22 | 442.29 | 436.93 | 410.72 | 406.04 | 07.49 |
| 2004 | 428.02 | 432.01 | 432.42 | 423.96 | 421.15 | 418.73 | 414.15 | 414.37 | 416.86 | 424.91 | 429.48 | 433.86 |
| mnipaqfur |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 325.62 | 327.90 | 330.32 | 333.90 | 335.83 | 337.14 | 337.48 | 337.78 | 337.69 | 336.54 | 336.22 | 36.05 |
| 2004 | 335.66 | 336.04 | 336.85 | 338.87 | 339.91 | 340.75 | 341.51 | 341.89 | 342.01 | 340.88 | 341.18 | 341.95 |
| mnipaqdoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 176.01 | 177.62 | 178.93 | 179.52 | 180.51 | 181.48 | 182.75 | 183.47 | 183.95 | 183.62 | 184.04 | 184.66 |
| 2004 | 185.47 | 186.45 | 187.62 | 189.78 | 190.71 | 191.20 | 190.83 | 190.79 | 190.64 | 190.05 | 189.95 | 190.00 |
| mnipaqfood |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1,017.84 | 1,018.61 | 1,018.55 | 1,017.67 | 1,015.94 | 1,013.37 | 1,008.07 | 1,005.25 | 1,003.00 | 1,001.78 | 1,000.36 | 999.18 |
| 2004 | 997.56 | 997.39 | 997.99 | 999.51 | 1,001.52 | 1,004.19 | 1,008.44 | 1,011.72 | 1,014.95 | 1,016.47 | 1,020.86 | 1,026.47 |
| mnipaqcloth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 305.96 | 305.75 | 305.40 | 304.93 | 304.26 | 303.40 | 301.86 | 301.05 | 300.46 | 300.41 | 300.01 | 299.58 |
| 2004 | 298.82 | 298.56 | 298.50 | 298.70 | 298.99 | 299.43 | 300.21 | 300.80 | 301.40 | 301.52 | 302.50 | 303.84 |
| mnipaqgas |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 204.30 | 210.98 | 217.86 | 225.15 | 232.28 | 239.45 | 248.48 | 254.39 | 258.98 | 257.32 | 262.98 | 271.02 |
| 2004 | 285.53 | 295.26 | 304.32 | 316.17 | 321.26 | 323.06 | 316.84 | 315.62 | 314.66 | 315.26 | 313.86 | 311.74 |
| mnipaqnoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 605.42 | 605.43 | 604.74 | 602.85 | 601.09 | 598.98 | 595.43 | 593.43 | 591.90 | 591.80 | 590.47 | 588.88 |
| 2004 | 585.84 | 584.61 | 584.01 | 584.71 | 584.84 | 585.09 | 585.42 | 585.91 | 586.53 | 586.72 | 588.05 | 589.94 |
| mnipaqhous |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1,137.25 | 1,137.46 | 1,136.62 | 1,135.53 | 1,132.03 | 1,126.91 | 1,117.12 | 1,111.03 | 1,105.61 | 1,099.76 | 1,096.48 | 1,094.68 |
| 2004 | 1,096.95 | 1,096.16 | 1,094.90 | 1,091.89 | 1,090.67 | 1,089.94 | 1,089.41 | 1,089.91 | 1,091.15 | 1,092.56 | 1,095.67 | 1,099.94 |
| mnipaqho |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 420.43 | 421.29 | 421.54 | 421.17 | 420.18 | 418.56 | 414.71 | 413.06 | 412.00 | 412.06 | 411.80 | 411.74 |
| 2004 | 412.03 | 412.28 | 412.63 | 412.50 | 413.50 | 415.05 | 418.82 | 420.21 | 420.89 | 419.51 | 419.80 | 420.40 |
| mnipaqtr |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 293.09 | 294.74 | 296.16 | 296.91 | 298.19 | 299.55 | 301.29 | 302.63 | 303.86 | 305.00 | 305.96 | 306.76 |
| 2004 | 306.86 | 307.79 | 308.99 | 311.65 | 312.50 | 312.72 | 311.83 | 311.18 | 310.27 | 308.79 | 307.62 | 306.43 |
| mnipaqme |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1,252.52 | 1,252.59 | 1,251.18 | 1,249.12 | 1,244.14 | 1,237.07 | 1,222.52 | 1,215.30 | 1,210.02 | 1,211.56 | 1,206.50 | 1,199.72 |
| 2004 | 1,186.86 | 1,179.90 | 1,174.48 | 1,171.74 | 1,168.55 | 1,166.04 | 1,164.82 | 1,163.22 | 1,161.86 | 1,159.13 | 1,159.42 | 1,161.14 |
| mnipaqrec |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 307.94 | 308.67 | 309.49 | 311.02 | 311.57 | 311.75 | 311.59 | 311.00 | 310.02 | 307.39 | 306.55 | 306.27 |
| 2004 | 307.45 | 307.55 | 307.50 | 306.65 | 306.79 | 307.28 | 309.15 | 309.55 | 309.51 | 307.74 | 307.81 | 308.42 |
| mnipaqsoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1,037.19 | 1,038.74 | 1,040.36 | 1,044.15 | 1,044.30 | 1,042.91 | 1,038.77 | 1,035.25 | 1,031.12 | 1,023.67 | 1,020.36 | 1,018.49 |
| 2004 | 1,020.50 | 1,019.64 | 1,018.35 | 1,014.42 | 1,013.98 | 1,014.80 | 1,019.83 | 1,020.96 | 1,021.14 | 1,016.94 | 1,017.78 | 1,020.23 |
| mnipaqvnrs |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 268.45 | 267.48 | 267.06 | 267.96 | 268.05 | 268.11 | 268.67 | 268.25 | 267.41 | 263.29 | 263.70 | 265.80 |
| 2004 | 270.84 | 275.38 | 280.67 | 290.10 | 294.34 | 296.79 | 294.38 | 295.54 | 297.21 | 301.08 | 302.50 | 303.15 |
| mnipaqvnre |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 782.63 | 791.58 | 803.54 | 822.03 | 837.39 | 853.14 | 876.00 | 887.48 | 894.30 | 889.54 | 892.26 | 895.53 |
| 2004 | 895.04 | 902.64 | 914.02 | 933.68 | 949.25 | 965.23 | 986.85 | 999.71 | 1,009.04 | 1,011.46 | 1,016.29 | 1,020.15 |
| mnipaqvfr |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 534.67 | 542.20 | 550.27 | 565.56 | 569.68 | 569.33 | 556.35 | 553.13 | 551.54 | 551.88 | 553.31 | 556.12 |
| 2004 | 560.97 | 566.09 | 572.12 | 581.64 | 587.57 | 592.48 | 597.84 | 599.61 | 599.27 | 591.42 | 590.88 | 592.26 |
| mgdp |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 10,640.83 | 10,668.81 | 10,701.08 | 10,754.03 | 10,782.53 | 10,803.01 | 10,814.69 | 10,819.64 | 10,817.14 | 10,783.32 | 10,783.73 | 10,794.56 |
| 2004 | 10,823.52 | 10,849.32 | 10,879.73 | 10,923.03 | 10,956.37 | 10,988.09 | 11,020.77 | 11,047.22 | 11,070.10 | 11,077.57 | 11,102.07 | 11,131.80 |

Table 6.5: Percentage differences of the exogenous variables from the actual values

| exrim | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
| 2004 | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
| oilpm |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
| 2004 | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
| mnipaqmv |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -2.01\% | -2.68\% | -2.97\% | -2.57\% | -2.32\% | -1.92\% | -0.28\% | -0.41\% | -1.22\% | -5.03\% | -5.54\% | -4.99\% |
| 2004 | -0.98\% | -0.14\% | -0.05\% | -1.64\% | -2.37\% | -3.16\% | -4.59\% | -5.03\% | -5.07\% | -4.59\% | -3.97\% | -3.05\% |
| mnipaqfur |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1.83\% | 2.52\% | 2.91\% | 3.01\% | 2.77\% | 2.22\% | 0.85\% | 0.11\% | -0.55\% | -1.01\% | -1.59\% | -2.17\% |
| 2004 | -2.97\% | -3.39\% | -3.66\% | -3.46\% | -3.65\% | -3.91\% | -4.28\% | -4.67\% | -5.10\% | -5.82\% | -6.19\% | -6.44\% |
| mnipaqdoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 2.63\% | 3.39\% | 3.60\% | 2.77\% | 2.27\% | 1.60\% | 0.29\% | -0.29\% | -0.65\% | -0.49\% | -0.69\% | -0.91\% |
| 2004 | -1.56\% | -1.56\% | -1.30\% | -0.11\% | 0.17\% | 0.20\% | -0.22\% | -0.52\% | -0.89\% | -1.43\% | -1.90\% | -2.40\% |
| mnipaqfood |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.50\% | -0.83\% | -1.14\% | -1.11\% | -1.67\% | -2.47\% | -4.07\% | -4.90\% | -5.54\% | -5.61\% | -6.17\% | -6.85\% |
| 2004 | -7.98\% | -8.57\% | -8.99\% | -9.10\% | -9.28\% | -9.40\% | -9.24\% | -9.39\% | -9.65\% | -10.41\% | -10.55\% | -10.48\% |
| mnipaqcloth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1.00\% | 1.01\% | 0.67\% | -0.21\% | -1.10\% | -2.18\% | -4.24\% | -5.08\% | -5.52\% | -4.67\% | -5.00\% | -5.61\% |
| 2004 | -7.37\% | -7.84\% | -7.94\% | -6.96\% | -6.82\% | -6.83\% | -7.07\% | -7.30\% | -7.61\% | -8.26\% | -8.50\% | -8.63\% |
| mnipaqgas |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -5.35\% | -4.08\% | -0.43\% | 12.30\% | 17.50\% | 20.62\% | 18.16\% | 19.48\% | 21.19\% | 24.41\% | 26.27\% | 27.72\% |
| 2004 | 28.86\% | 29.33\% | 29.33\% | 28.44\% | 27.95\% | 27.36\% | 27.71\% | 26.12\% | 23.71\% | 18.44\% | 16.29\% | 14.94\% |
| mnipaqnoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.54\% | -0.94\% | -1.37\% | -1.47\% | -2.19\% | -3.17\% | -5.07\% | -6.04\% | -6.76\% | -6.94\% | -7.42\% | -7.90\% |
| 2004 | -8.38\% | -8.86\% | -9.35\% | -9.90\% | -10.34\% | -10.73\% | -11.06\% | -11.37\% | -11.63\% | -11.92\% | -12.07\% | -12.14\% |
| mnipaqhous |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.16\% | -0.43\% | -0.77\% | -1.04\% | -1.67\% | -2.50\% | -3.82\% | -4.80\% | -5.75\% | -6.83\% | -7.57\% | -8.16\% |
| 2004 | -8.31\% | -8.79\% | -9.31\% | -10.01\% | -10.53\% | -10.99\% | -11.42\% | -11.76\% | -12.04\% | -12.26\% | -12.42\% | -12.51\% |
| mnipaqho |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.40\% | -0.77\% | -1.17\% | -1.62\% | -2.11\% | -2.65\% | -3.36\% | -3.89\% | -4.36\% | -4.66\% | -5.11\% | -5.59\% |
| 2004 | -6.28\% | -6.67\% | -6.95\% | -7.09\% | -7.17\% | -7.16\% | -6.70\% | -6.80\% | -7.08\% | -7.90\% | -8.30\% | -8.64\% |
| mnipaqtr |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 0.38\% | 0.58\% | 0.75\% | 0.89\% | 1.00\% | 1.08\% | 1.06\% | 1.13\% | 1.21\% | 1.37\% | 1.44\% | 1.47\% |
| 2004 | 1.37\% | 1.43\% | 1.54\% | 2.04\% | 1.99\% | 1.74\% | 1.17\% | 0.59\% | -0.11\% | -1.09\% | -1.88\% | -2.66\% |
| mnipaqme |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.58\% | -1.18\% | -1.88\% | -2.62\% | -3.57\% | -4.65\% | -6.27\% | -7.34\% | -8.24\% | -8.59\% | -9.48\% | -10.52\% |
| 2004 | -12.04\% | -13.09\% | -14.03\% | -14.77\% | -15.53\% | -16.23\% | -16.87\% | -17.47\% | -18.02\% | -18.60\% | -19.00\% | -19.32\% |
| mnipaqrec |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.10\% | -0.27\% | -0.50\% | -0.70\% | -1.09\% | -1.59\% | -2.17\% | -2.90\% | -3.76\% | -5.01\% | -5.91\% | -6.71\% |
| 2004 | -7.39\% | -8.06\% | -8.67\% | -9.35\% | -9.78\% | -10.07\% | -9.95\% | -10.21\% | -10.55\% | -11.26\% | -11.56\% | -11.75\% |
| mnipaqsoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.03\% | -0.17\% | -0.39\% | -0.49\% | -0.96\% | -1.62\% | -2.70\% | -3.55\% | -4.40\% | -5.26\% | -6.13\% | -7.01\% |
| 2004 | -7.95\% | -8.76\% | -9.52\% | -10.38\% | -10.93\% | -11.33\% | -11.20\% | -11.59\% | -12.10\% | -13.26\% | -13.63\% | -13.75\% |
| mnipaqvnrs |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.15\% | -0.75\% | -1.58\% | -3.38\% | -4.10\% | -4.51\% | -4.08\% | -4.28\% | -4.58\% | -5.65\% | -5.62\% | -5.18\% |
| 2004 | -3.88\% | -2.97\% | -2.00\% | -0.06\% | 0.29\% | 0.02\% | -1.97\% | -2.61\% | -3.02\% | -2.48\% | -3.01\% | -3.87\% |
| mnipaqvnre |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 1.26\% | 2.35\% | 3.55\% | 5.13\% | 6.30\% | 7.32\% | 8.58\% | 9.07\% | 9.18\% | 7.92\% | 8.03\% | 8.50\% |
| 2004 | 9.92\% | 10.74\% | 11.49\% | 12.06\% | 12.75\% | 13.44\% | 14.74\% | 15.01\% | 14.85\% | 13.60\% | 13.17\% | 12.87\% |
| mnipaqvfr |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | 0.12\% | 0.52\% | 1.07\% | 3.61\% | 3.11\% | 1.44\% | -3.34\% | -5.55\% | -7.31\% | -8.58\% | -9.56\% | -10.20\% |
| 2004 | -9.90\% | -10.36\% | -10.95\% | -11.98\% | -12.53\% | -12.96\% | -12.85\% | -13.38\% | -14.12\% | -15.61\% | -16.35\% | -16.89\% |
| mgdp |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 | -0.23\% | -0.34\% | -0.42\% | -0.16\% | -0.41\% | -0.87\% | -1.86\% | -2.44\% | -2.97\% | -3.44\% | -3.87\% | -4.25\% |
| 2004 | -4.56\% | -4.87\% | -5.15\% | -5.41\% | -5.64\% | -5.86\% | -5.99\% | -6.22\% | -6.47\% | -6.81\% | -7.07\% | -7.32\% |

Table 6.5 shows that there are big errors in the exogenous variables generated by the QUEST models, especially in the PCE of Nondurables and Services. It should be noted that we used the actual values of the exchange rate and the oil price in the second simulation.

For each industry or group of industries there are three graphs. The top left is nominal gross output; the top right is real gross output in prices of 2000; and the bottom center is the price index.

## Total Gross Output

Total gross output, need it be said, is not equal to Gross domestic product because it includes intermediate consumption. Nonetheless, it provides a useful measure of how the method worked overall. The two preceding years, 2001 and 2002, had been years of stagnation or very slow growth. At this most aggregate level, our method indicated resumed growth and a gave a good forecast from both historical simulations for nominal gross output in 2003 but missed a bit on the low side for 2004. In 2003, the first and the second simulation underestimated the actual value by 1.08 percent and 0.64 percent, respectively. That is, the QUEST-based forecast proved a bit closer than the actual-based forecast. In 2004, the simulations underestimated the later- published value by 1.80 percent and 3.36 percent, respectively.




Turning to real total gross output, we find the first simulation with the true exogenous variables missing the published figures by -0.51 percent and -0.78 percent in 2003 and 2004, respectively. The second simulation with exogenous values from QUEST missed the BEA numbers by -0.59 percent and -2.72 percent, respectively.

The estimated price indexes are quite accurate. In 2003, the first and the second simulations missed the announced price index by -0.57 percent and -0.06 percent, respectively. The rapid rise of the petroleum price since 2003 caused a slightly worse performance in 2004. The first simulation missed the published number by -1.03 percent in 2004 while the second simulation missed the published number by -0.66 percent in the same year.

## Private industries

Gross output of U.S. private industries contributes approximately 90 percent of U.S. total Gross output in nominal value. Thus, the model's performance in estimating Gross output of private industries is unsurprisingly very similar to the performance seen in the total Gross output. The first simulation missed the published number by -0.93
percent in 2003 and -1.49 percent in 2004. The second simulation missed by -0.44 percent in 2003 and -3.20 percent in 2004.

The first simulation missed the chained real 2000 private industries Gross output by -0.54 percent and -0.68 percent in 2003 and 2004, respectively. The second simulation missed by -0.55 percent in 2003 and -2.84 percent in 2004.



The BEA published a price index for private industries' gross output of 104.48 and 108.45 in 2003 and 2004, respectively. In 2003, the first simulation missed the published figure by -0.40 percent while the second simulation missed it by only 0.11 percent. In 2004, the first and the second simulations missed the published number by
-0.82 percent and -0.36 percent, respectively. Given the break from the previous trend, these forecasts look quite accurate.

## Agriculture, forestry, fishing, and hunting

Both simulations performed fairly well in predicting real Gross output. The first simulation missed the BEA figures by -0.36 percent and -0.12 percent in 2003 and 2004, respectively while the second simulation missed them by -0.05 percent in 2003 and -1.43 percent in 2006. Agricultural prices soared in 2003 and 2004, and both simulations underestimated the price index.

The first simulation performed fairly well. It missed the published price index by -3.06 percent in 2003 and by -0.04 percent in 2004. The second simulation missed the published numbers by -8.42 percent and -11.82 percent in 2003 and 2004, respectively. Evidently and not surprisingly, QUEST and the time-series methods used for the exogenous variables in this forecast did not provide the basis for anticipating this sudden, unprecedented rise in the farm price index. Specifically, shown in Appendix 6.3 and Appendix 6.4, nominal PCE of Furniture and household equipment is the only exogenous variable used in this industry group. compared the PCE numbers in Table 6.4 with the BEA quarterly NIPA, I find that the assumption match the published numbers quite well until the last quarter of 2003 in which QUEST start to underestimate the PCE of furniture significantly by around nearly $10 \%$ each quarter through the end of 2004. Naturally, the nominal gross output forecast will show the combined effect of the real quantity and the price forecasts. The first simulation missed the published number by -3.41 percent in

2003 but by only -0.16 percent in 2004 . However, the second simulation did not do as well. It missed the BEA numbers by -8.46 percent and -13.08 percent in 2003 and 2004, respectively. From just looking at the graph, however, this second simulation looks like an altogether plausible guess of where the series was going to go in 2003 and 2004; what really happened looks highly implausible.


## Mining (including petroleum)

The first simulation performed quite well as it missed the published nominal numbers by -2.10 percent and -1.05 percent in 2003 and 2004, respectively. The second simulation overestimated the nominal gross output by 7.79 percent in 2003 and 30.39 percent in 2004. On the other hand, both simulations gave good forecasts for the real
gross output of Mining. The first simulation missed the published numbers by -1.62 percent and -1.27 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by 0.72 percent in 2003 and 2.27 percent in 2004.


As in agriculture, the performance of the second simulation in forecasting the price index helps explaining its poor performance in estimating the nominal gross output. While the first simulation missed the published number by only -0.49 percent in 2003 and 0.23 percent in 2004, the second simulation missed the published numbers by 7.01 percent in 2003 and 27.49 percent in 2004, respectively.

Mining industry includes oil and gas extraction industry, which is responsible for about two-third of the nominal Gross output of Mining industry. The exploding nominal gross output of the industry is to be expected because of the increasing petroleum price.

The overestimation of the price index in the second simulation is caused by the overestimated nominal PCE of Gasoline, fuel oil, and other energy goods by QUEST.

## Utilities

The first simulation missed the BEA nominal values by -1.96 percent in 2003 and -1.21 percent in 2004 while the second simulation missed the BEA figures by -20.9 percent in 2003 and -1.48 percent in 2004. The difference is evident in estimating the real gross output. The first simulation did fairly well. It missed the published numbers by -20.9 percent and 0.55 percent in 2003 and 2004, respectively. The second simulation overestimated the published number by quite a bit, especially in 2004. It missed the BEA figures by 2.84 percent in 2003 and 11.47 percent in 2004. As in the two previous industry groups, the performance between the two simulations in estimating the price index shows the difference we have seem in the estimation of the chained 2000 real gross output. The first simulation missed the published price index by 0.13 percent in 2003 and -1.75 percent in 2004. The second simulation underestimates the same numbers by -4.80 percent in 2003 and -11.62 percent in 2004.



## Construction

The first simulation missed the published nominal numbers by -0.39 percent in 2003 and -3.73 in 2004. The second simulation missed the published numbers by -1.17 in 2003 and -10.55 in 2004.

The first simulation underestimated the official numbers by -0.71 percent and -1.68 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by -1.39 percent and -7.21 percent in 2003 and 2004, respectively


# Construction (Price,2000=100) <br> Historical Simulation, 2003-2004 <br>  

Both simulations estimated the price index quite accurately in 2003 and underestimated the price index slightly in 2004. The first simulation missed the official price index by 0.32 percent in 2003 and -2.08 percent in 2004 . The second simulation missed the same price index by 0.22 percent in 2003 and -3.60 percent in 2004.

Both simulations predicted a slowdown in the construction industry in 2004, especially in the price index. This slowdown did not happen until the end of 2005.

## Manufacturing

We expect to achieve good estimates from the manufacturing industry as the high frequency data used in the equations of this industry, such as Industrial production index and producer price index, are the main information the BEA used in producing the annual Gross output in these industries. As expected, the model, as seen in the performance of the first simulation, did very well in estimating the Gross output of manufacturing industry in 2003 and 2004.

In 2003, the first simulation missed the BEA nominal gross output by -0.37 percent while the second simulation missed the same number by -0.03 percent. In 2004, the discrepancies are -0.28 percent and -20.7 percent for the first and the second simulation, respectively.

With the chained 2000 real Gross output of manufacturing industry, the first simulation missed the official numbers by -0.19 percent in 2003 and -0.04 percent in 2004. The second simulation missed the same numbers by -0.71 percent and -2.89 percent in 2003 and 2004, respectively.


The BEA published the price index of gross output of manufacturing industry of 100.35 and 105.16 in 2003 and 2004, respectively. The first simulation missed this
numbers by -0.18 percent in 2003 and -0.25 percent in 2004. The second simulation missed the official numbers by 0.69 percent in 2003 and 0.85 percent in 2004.

## Durable goods manufacturing

The first simulation missed the published numbers by -0.91 percent and -0.31 percent in 2003 and 2004, respectively. The second simulation missed the same official figures by 1.02 percent in 2003 and 0.71 percent in 2004.

In estimating the chained 2000 real gross output, the first simulation missed the official numbers by -0.68 percent in 2003 and -0.05 percent in 2004 while the second simulation missed the numbers by 0.50 percent and 1.37 percent in 2003 and 2004, respectively.


The official price index of durable goods manufacturing industry is 96.44 and 99.48 in 2003 and 2004, respectively. The first simulation missed the numbers by -0.23 percent and -0.26 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by 0.51 percent in 2003 and -0.65 percent in 2004.

## Nondurable goods manufacturing

The BEA published the nominal gross output of nondurable goods manufacturing of 1,843 billion dollars and 1,985 billion dollars in 2003 and 2004, respectively. The first simulation with actual inputs missed the official figures by 0.24 percent in 2003 and -0.25 percent in 2004. The second simulation did not do as well. It missed the published numbers by -1.22 percent in 2003 and -5.18 percent in 2004.


For the estimates of chained 2000 real gross output, the first simulation did very well in both 2003 and 2004. It over estimated the published numbers by less than 0.5 percent in both year. The second simulation did well in 2003 with the error of -2.13 percent. However, in 2004, the second simulation missed the published number by -7.70 percent.

Both simulations did well in estimating the price index. The first simulation estimates the price index of 105.08 in 2003 and 111.97 in 2004. The second simulation estimates the same price index of 106.19 and 115.33 in 2003 and 2004, respectively.

## Wholesale trade

The first simulation missed the nominal gross output by -1.77 percent in 2003 and 5.19 percent in 2004. The second simulation missed the same numbers by -0.69 percent and 0.94 percent in 2003 and 2004.

The first simulation missed the published real numbers by -1.70 percent and 3.85 percent in 2003 and 2004, respectively. The second simulation missed the same official figures by -1.09 percent in 2003 and -1.23 percent in 2004.

The model did very well in predicting the price index. The first simulation missed the published price index by -0.07 percent in 2003 and 1.29 percent in 2004. The second simulation missed the same price index by 0.41 percent and 2.20 percent in 2003 and 2004, respectively.


## Retail trade

BEA published the nominal gross output of retail trade of 1,139 billion dollars in 2003 and 1,223 billion dollars in 2004. The first simulation underestimated the numbers by 1.44 percent in 2003 and 1.46 percent in 2004. The second simulation missed the same official number by -1.54 percent in 2003 and -4.17 percent in 2004.

For the real gross output, the first simulation estimates are 1,115 billion dollars in 2003 and 1,195 billion dollars in 2004 or the first simulation missed the published numbers by -0.95 percent in 2003 and 1.13 percent in 2004. The second simulation missed the same numbers by -1.32 percent and -2.55 percent in 2003 and 2004, respectively.


The first simulation missed the price index of retail trade gross output by -0.49 percent and -2.56 percent in 2003 and 2004, respectively. The second simulation underestimated the published numbers by -0.23 percent in 2003 and -1.66 percent in 2004.

## Transportation and warehousing

BEA published the nominal gross output of transportation and warehousing industry of 598 billion dollars in 2003 and 648 billion dollars in 2004. The first simulation gave estimates of 630 billion dollars in 2003 and 655 billion dollars in 2004. These estimates gave errors of 5.21 percent in 2003 and 1.10 percent in 2004. The second simulation missed the published numbers by 6.33 percent and 2.37 percent in 2003 and 2004, respectively.


The official numbers for chained 2000 real gross output of transportation and warehousing industry are 576 billion dollars in 2003 and 608 billion dollars in 2004. The first simulation missed it by 2.58 percent and -1.94 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by 2.85 percent in 2003 and -3.86 percent in 2004.

The first simulation missed the official price index by -0.49 percent in 2003 and -2.56 percent in 2004. The second simulation missed the same price index by -0.23 percent and -1.66 percent in 2003 and 2004, respectively.

## Service industries

BEA's definition of service-producing industries includes Wholesale trade, Retail trade, and Transportation. In this discussion, the Service industries are more narrowly defined to consist of Information and data processing services; Finance, insurance, real estate, rental, and leasing; Professional and business services; Educational services, health care, and social assistance; Arts, entertainment, recreation, accommodation, and food services; and Other services, except government. Thus, the numbers reported here are not to be compared to the BEA's Gross output of services-producing industries. The values presented as BEA figures in this section are derived from the detailed industries published figures.

The method performs well in this service industry, which contributes about 40 percent to total gross output in nominal value in 2000 . The trend is that the model
underestimated the published numbers in all three measures (nominal value, real value, and price index).


Total Services industries (40-61) (Price,2000=100)
Historical Simulation, 2003-2004


The first simulation missed the nominal gross product by -1.52 percent in 2003 and -3.02 percent in 2004. The second simulation missed the same numbers by -0.72 percent and -4.51 percent in 2003 and 2004, respectively.

The first simulation missed the real gross output of the services industries by -0.72 percent in 2003 and -1.51 percent in 2004. The second simulation missed the same real values by -0.64 percent and -3.25 percent in 2003 and 2004, respectively. For the price index, the first simulation underestimated by -0.81 percent in 2003 and -1.53
percent in 2004 while the second simulation missed by -0.09 percent and -1.31 percent in 2003 and 2004, respectively.

## Information

Information is one of the industry groups that has increased its share to the total GDP in the last decade as both information processing services and software publishing industry are included in this group. The model did quite well in estimating the nominal and real gross output of this industry.

The first simulation missed the published nominal gross output of information industry by 0.03 percent in 2003 and -0.54 percent in 2004. The second simulation missed the same nominal values by -1.22 percent and -3.46 percent in 2003 and 2004, respectively.

For the real side, the first simulation missed the real numbers by -0.20 percent in 2003 and -2.19 percent in 2004. The second simulation missed the same numbers by -1.00 percent and -3.60 percent in 2003 and 2004, respectively.

The first simulation missed the price index by 0.23 percent in 2003 and 1.69 percent in 2004. The second simulation missed the same price index by -0.22 percent and 0.15 percent in 2003 and 2004, respectively.


## Finance, insurance, real estate, rental, and leasing

As discussed earlier, Finance, insurance, real estate, rental and leasing industries are the top contributors to the services-producing industry. The BEA published the nominal gross output of this industry at 3,383 billion dollars and 3,713 billion dollars in 2003 and 2004, respectively. The first simulation missed the published numbers by -1.25 percent and -3.41 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by -0.62 percent in 2003 and -4.47 percent in 2004.

Finance, insurance, real estate, rental, and leasing (Nominal Historical Simulation, 2003-2004


Finance, insurance, real estate, rental, and leasing (Real 2000 Historical Simulation, 2003-2004


Historical Simulation, 2003-2004


The first simulation missed the official real gross output figures by 0.61 percent in 2003 and -1.44 percent in 2004. The second simulation missed the same numbers by -0.18 percent in 2003 and -3.90 percent in 2004.

The official price index of Finance, insurance, real estate, rental and leasing industries are 106.46 in 2003 and 109.65 in 2004. The first simulation missed the published numbers by -1.84 percent in 2003 and -1.99 percent in 2004. The second simulation missed the same price index by -0.44 percent and -0.59 percent in 2003 and 2004, respectively.

## Professional and business services

The first simulation missed the published nominal numbers by -2.60 percent in 2003 and -4.63 percent in 2004. The second simulation, also, underestimated the same published numbers by -0.18 percent in 2003 and -5.07 percent in 2004.

On the real side, the first simulation underestimated the published numbers by -2.51 percent in 2003 and -2.92 percent in 2004. The second simulation missed the same official numbers by -0.27 percent and -1.09 percent in 2003 and 2004, respectively.


The first simulation missed the chained 2000 price index of this industry by -0.09 percent in 2003 and -1.76 percent in 2004. The second simulation missed the same official price index by 0.09 percent in 2003 and -4.02 percent in 2004.

## Educational services, health care, and social assistance

BEA published nominal gross output of Educational services, health care and social assistance of 1,388 billion dollars in 2003 and 1,475 billion dollars in 2004. The first simulation missed the published numbers by -0.95 percent and -0.81 percent in 2003 and 2004, respectively. The second simulation missed the same official numbers by -0.83 percent in 2003 and -3.06 percent in 2004.

Educational services, health care, and social assistance (Nomir Historical Simulation, 2003-2004

ducational services, health care, and social assistance (Real $2($ Historical Simulation, 2003-2004


Historical Simulation, 2003-200



The first simulation missed the official chained 2000 real gross output of this industry by -0.94 percent in 2003 and -0.22 percent in 2004. The second simulation missed the same published numbers by -1.05 percent and -3.02 percent in 2003 and 2004, respectively.

The chained 2000 price index of gross output is 109.69 in 2003 and 113.29 in 2004. The first simulation missed the official numbers by -0.02 percent in 2003 and -0.59 percent in 2004. The second simulation missed the same price index by 0.22 percent and -0.04 percent in 2003 and 2004, respectively.

## Arts, entertainment, recreation, accommodation, and food services

The first simulation missed the published nominal numbers by -0.80 percent and -0.42 percent in 2003 and 2004, respectively. The second simulation missed the same official numbers by -1.84 percent in 2003 and - 4.85 percent in 2004.

The first simulation missed the official chained 2000 real gross output of this industry by -0.86 percent in 2003 and 0.59 percent in 2004. The second simulation missed the same published numbers by -1.81 percent and -3.80 percent in 2003 and 2004, respectively.

The chained 2000 price index of gross output is 107.67 in 2003 and 111.32 in 2004. The first simulation missed the official numbers by 0.05 percent in 2003 and -1.00 percent in 2004. The second simulation missed the same price index by -0.03 percent and -1.09 percent in 2003 and 2004, respectively.
sntertainment, recreation, accommodation, and food services (] Historical Simulation, 2003-2004

entertainment, recreation, accommodation, and food services ( Historical Simulation, 2003-2004


Historical Simulation, 2003-2004


## Other services, except government

The BEA published the nominal gross output of other services of 481 billion dollars and 506 billion dollars in 2003 and 2004, respectively. The first simulation missed the published numbers by -1.67 percent in 2003 and -2.88 percent in 2004. The second simulation, also, underestimated the same published numbers by -1.37 percent in 2003 and -5.36 percent in 2004.

For the real gross output, the first simulation underestimated the published numbers by -0.90 percent in 2003 and -0.91 percent in 2004. The second simulation missed the same official numbers by -1.57 percent and -5.32 percent in 2003 and 2004, respectively.


The first simulation missed the chained 2000 price index of this industry by -0.78 percent in 2003 and -1.99 percent in 2004. The second simulation missed the same official price index by 0.20 percent in 2003 and -0.04 percent in 2004.

## Government

BEA published nominal gross output of Government of 2,300 billion dollars in 2003 and 2,448 billion dollars in 2004. The first simulation missed the published numbers by -2.20 percent and -4.17 percent in 2003 and 2004, respectively. The second simulation missed the same official numbers by -2.14 percent in 2003 and -4.65 percent in 2004.

The first simulation missed the official chained 2000 real gross output of this industry by -0.34 percent in 2003 and -1.58 percent in 2004. The second simulation missed the same published numbers by -0.88 percent and -1.79 percent in 2003 and 2004, respectively.

The chained 2000 price index of gross output is 111.04 in 2003 and 116.17 in 2004. The first simulation missed the official numbers by -1.87 percent in 2003 and -2.63 percent in 2004. The second simulation missed the same price index by -1.27 percent and - 2.91 percent in 2003 and 2004, respectively.


## Federal government

For the nominal gross output, the first simulation estimates gave errors of -3.51 percent in 2003 and -6.34 percent in 2004. The second simulation missed the published numbers by -4.15 percent and -8.32 percent in 2003 and 2004, respectively.


On the real side, the first simulation missed it by -1.56 percent and -3.24 percent in 2003 and 2004, respectively. The second simulation missed the same numbers by -2.86 percent in 2003 and -5.16 percent in 2004.

The first simulation missed the official price index by -1.98 percent in 2003 and -3.20 percent in 2004. The second simulation missed the same price index by -1.33 percent and -3.33 percent in 2003 and 2004, respectively.

With the increasing federal government spending in 2003 and 2004, due to the "War on Terrorism", this may explain the increase spending per government workers which reflect in both real gross output and the price index.

## State and local government

The BEA published the nominal gross output of State and local government of 1,541 billion dollars and 1,623 billion dollars in 2003 and 2004, respectively. The first simulation missed the published numbers by -1.56 percent in 2003 and -3.06 percent in 2004. The second simulation, also, underestimated the same published numbers by -1.15 percent in 2003 and -2.79 percent in 2004.

The published chained 2000 real gross output of this industry is 1,392 billion dollars and 1,403 billion dollars in 2003 and 2004, respectively. The first simulation missed the published numbers by 0.26 percent in 2003 and -0.74 percent in 2004. The second simulation missed the same official numbers by -0.10 percent and -0.08 percent in 2003 and 2004, respectively.



The first simulation missed the chained 2000 price index of this industry by -1.81 percent in 2003 and -2.35 percent in 2004. The second simulation missed the same official price index by -1.25 percent in 2003 and -2.71 percent in 2004.

### 6.4 Forecast of Gross Output between 2006-2008

In this section, I applied the earlier discussed method to forecast the annual gross output by detailed industry from 2006 to 2008. The discussion of the Gross output forecast is presented by Major industry groups, as previously shown in Section 6.3. The detailed forecast is shown in Appendix 6.6.

## Forecast assumptions

This approach requires 19 exogenous inputs of monthly variables. All of the exogenous inputs except crude oil price (oilpm) and trade weighted exchange rate index (exrim) are provided by QUEST, where we do not have official numbers (July 2007 to December 2008). oilpm and exrim are generated by ad hoc outlook of the economy from the author's opinion.

Table 6.6: Assumptions of Exogenous Variables Used in Forecasting Gross Output

| exrim | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 105.03 | 104.67 | 104.31 | 103.96 | 103.60 | 103.25 | 102.90 | 102.55 | 102.20 | 101.86 | 101.51 | 101.16 |
| 2007 | 100.82 | 100.48 | 100.14 | 99.80 | 99.46 | 99.12 | 98.78 | 98.44 | 98.11 | 97.78 | 97.44 | 97.11 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 52.75 | 53.80 | 54.88 | 55.97 | 57.09 | 58.24 | 59.40 | 60.59 | 61.80 | 63.04 | 64.30 | 65.58 |
| 2007 | 66.89 | 68.23 | 69.60 | 70.99 | 72.41 | 73.86 | 75.33 | 76.84 | 78.38 | 79.94 | 81.54 | 83.17 |
| 2008 | 84.84 | 86.53 | 88.27 | 90.03 | 91.83 | 93.67 | 95.54 | 97.45 | 99.40 | 101.39 | 103.42 | 105.49 |
| mnipaqmv |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 429.57 | 433.38 | 435.14 | 431.11 | 431.55 | 432.74 | 436.94 | 437.92 | 437.94 | 433.88 | 434.34 | 436.18 |
| 2007 | 443.15 | 444.97 | 445.38 | 444.38 | 441.97 | 438.15 | 441.47 | 443.65 | 445.93 | 448.81 | 450.89 | 452.70 |
| 2008 | 454.34 | 455.48 | 456.24 | 455.45 | 456.34 | 457.74 | 460.12 | 462.19 | 464.44 | 466.84 | 469.42 | 472.16 |
| mnipaqfur |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 398.01 | 401.04 | 402.75 | 401.09 | 401.72 | 402.59 | 403.91 | 405.08 | 406.31 | 407.51 | 408.95 | 410.54 |
| 2007 | 413.19 | 414.38 | 415.03 | 415.13 | 414.68 | 413.69 | 410.38 | 409.10 | 408.35 | 408.71 | 408.53 | 408.41 |
| 2008 | 408.51 | 408.40 | 408.23 | 407.90 | 407.71 | 407.54 | 407.40 | 407.29 | 407.21 | 407.17 | 407.16 | 407.18 |
| mnipaqdoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 208.15 | 209.54 | 210.21 | 208.94 | 209.13 | 209.54 | 210.50 | 211.11 | 211.70 | 212.11 | 212.77 | 213.51 |
| 2007 | 214.32 | 215.26 | 216.32 | 217.49 | 218.76 | 220.15 | 220.98 | 221.76 | 222.47 | 223.10 | 223.65 | 224.12 |
| 2008 | 224.47 | 224.82 | 225.13 | 225.04 | 225.52 | 226.22 | 227.42 | 228.34 | 229.27 | 230.20 | 231.14 | 232.09 |
| mnipaqfood |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1,230.81 | 1,236.89 | 1,241.51 | 1,241.58 | 1,245.61 | 1,250.51 | 1,255.77 | 1,262.78 | 1,271.04 | 1,283.39 | 1,292.00 | 1,299.72 |
| 2007 | 1,306.85 | 1,312.57 | 1,317.18 | 1,320.68 | 1,323.07 | 1,324.35 | 1,332.60 | 1,338.68 | 1,344.39 | 1,349.85 | 1,354.74 | 1,359.18 |
| 2008 | 1,363.00 | 1,366.65 | 1,369.97 | 1,371.51 | 1,375.24 | 1,379.72 | 1,385.76 | 1,391.11 | 1,396.59 | 1,402.20 | 1,407.93 | 1,413.79 |
| mnipaqcloth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 350.27 | 351.27 | 352.37 | 353.54 | 354.86 | 356.30 | 358.20 | 359.64 | 360.96 | 361.36 | 363.04 | 365.20 |
| 2007 | 370.02 | 371.49 | 371.79 | 370.92 | 368.89 | 365.69 | 367.49 | 368.26 | 368.92 | 369.37 | 369.91 | 370.43 |
| 2008 | 371.07 | 371.46 | 371.73 | 371.43 | 371.81 | 372.40 | 373.45 | 374.30 | 375.20 | 376.14 | 377.13 | 378.16 |
| mnipaqgas |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 312.82 | 315.89 | 324.99 | 353.44 | 364.62 | 371.84 | 381.18 | 375.94 | 362.18 | 316.51 | 303.29 | 299.11 |
| 2007 | 310.23 | 319.45 | 333.03 | 350.96 | 373.25 | 399.89 | 382.89 | 378.34 | 374.58 | 371.47 | 369.38 | 368.16 |
| 2008 | 364.04 | 367.43 | 374.53 | 397.60 | 402.96 | 402.87 | 391.23 | 384.77 | 377.42 | 369.18 | 360.03 | 349.99 |
| mnipaqnoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 712.21 | 716.71 | 720.88 | 724.73 | 728.21 | 731.36 | 733.79 | 736.52 | 739.19 | 741.26 | 744.19 | 747.46 |
| 2007 | 752.70 | 755.40 | 757.20 | 758.10 | 758.10 | 757.20 | 763.58 | 767.97 | 772.18 | 776.28 | 780.09 | 783.70 |
| 2008 | 786.98 | 790.22 | 793.33 | 795.49 | 798.91 | 802.79 | 807.62 | 812.06 | 816.60 | 821.24 | 825.97 | 830.80 |
| mnipaqhous |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1,340.46 | 1,347.71 | 1,355.23 | 1,363.62 | 1,371.17 | 1,378.52 | 1,385.37 | 1,392.50 | 1,399.63 | 1,406.80 | 1,413.91 | 1,421.00 |
| 2007 | 1,428.17 | 1,435.13 | 1,442.00 | 1,448.77 | 1,455.43 | 1,462.00 | 1,469.15 | 1,476.72 | 1,484.56 | 1,493.61 | 1,501.30 | 1,508.56 |
| 2008 | 1,515.53 | 1,521.83 | 1,527.60 | 1,530.98 | 1,537.07 | 1,544.01 | 1,552.57 | 1,560.64 | 1,568.98 | 1,577.59 | 1,586.48 | 1,595.64 |
| mnipaqho |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 497.72 | 496.62 | 496.06 | 495.74 | 496.45 | 497.91 | 501.13 | 503.31 | 505.46 | 506.99 | 509.56 | 512.56 |
| 2007 | 517.34 | 520.19 | 522.47 | 524.17 | 525.29 | 525.84 | 529.52 | 532.37 | 535.06 | 537.58 | 539.91 | 542.06 |
| 2008 | 543.96 | 545.80 | 547.51 | 548.53 | 550.42 | 552.61 | 555.44 | 557.99 | 560.59 | 563.25 | 565.96 | 568.73 |
| mnipaqtr |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 333.47 | 334.70 | 335.93 | 337.11 | 338.39 | 339.71 | 341.10 | 342.49 | 343.90 | 345.59 | 346.86 | 347.96 |
| 2007 | 348.33 | 349.51 | 350.96 | 352.66 | 354.61 | 356.83 | 358.66 | 360.48 | 362.29 | 364.27 | 365.93 | 367.44 |
| 2008 | 368.79 | 370.02 | 371.11 | 371.61 | 372.78 | 374.16 | 375.96 | 377.59 | 379.28 | 381.01 | 382.79 | 384.63 |
| mnipaqme |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1,550.94 | 1,558.42 | 1,565.54 | 1,572.25 | 1,578.70 | 1,584.85 | 1,589.63 | 1,595.94 | 1,602.73 | 1,608.09 | 1,617.26 | 1,628.35 |
| 2007 | 1,646.69 | 1,657.60 | 1,666.42 | 1,673.15 | 1,677.80 | 1,680.35 | 1,695.79 | 1,707.86 | 1,719.72 | 1,731.92 | 1,742.92 | 1,753.30 |
| 2008 | 1,762.98 | 1,772.12 | 1,780.68 | 1,786.60 | 1,795.51 | 1,805.37 | 1,817.03 | 1,828.15 | 1,839.58 | 1,851.32 | 1,863.36 | 1,875.71 |
| mnipaqrec |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 369.57 | 371.10 | 372.63 | 373.56 | 375.55 | 377.99 | 381.54 | 384.41 | 387.24 | 390.87 | 393.02 | 394.51 |
| 2007 | 394.41 | 395.29 | 396.21 | 397.17 | 398.19 | 399.24 | 400.86 | 402.84 | 405.00 | 407.63 | 409.97 | 412.31 |
| 2008 | 414.77 | 416.98 | 419.07 | 420.59 | 422.80 | 425.23 | 428.08 | 430.81 | 433.62 | 436.50 | 439.46 | 442.49 |
| mnipaqsoth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1,253.73 | 1,261.13 | 1,269.33 | 1,281.61 | 1,288.95 | 1,294.64 | 1,293.79 | 1,299.83 | 1,307.89 | 1,322.23 | 1,331.10 | 1,338.77 |
| 2007 | 1,344.24 | 1,350.25 | 1,355.81 | 1,360.91 | 1,365.55 | 1,369.74 | 1,382.12 | 1,391.27 | 1,399.94 | 1,408.39 | 1,415.88 | 1,422.69 |
| 2008 | 1,428.23 | 1,434.11 | 1,439.75 | 1,443.65 | 1,449.92 | 1,457.07 | 1,466.19 | 1,474.27 | 1,482.40 | 1,490.59 | 1,498.84 | 1,507.14 |
| mnipaqunrs |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 367.68 | 375.67 | 383.75 | 393.31 | 400.52 | 406.77 | 411.33 | 416.23 | 420.73 | 424.46 | 428.44 | 432.30 |
| 2007 | 433.70 | 439.06 | 446.04 | 454.64 | 464.86 | 476.70 | 477.19 | 480.35 | 483.62 | 487.25 | 490.58 | 493.84 |
| 2008 | 497.07 | 500.16 | 503.17 | 507.45 | 509.23 | 509.89 | 507.07 | 507.25 | 508.07 | 509.52 | 511.62 | 514.35 |
| mnipaqvnre |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 986.01 | 992.88 | 996.21 | 990.03 | 990.78 | 992.49 | 999.16 | 999.78 | 998.36 | 990.17 | 988.20 | 987.73 |
| 2007 | 989.46 | 991.47 | 994.46 | 998.43 | 1,003.37 | 1,009.30 | 1,010.51 | 1,012.69 | 1,014.90 | 1,017.67 | 1,019.52 | 1,020.99 |
| 2008 | 1,022.03 | 1,022.79 | 1,023.20 | 1,021.71 | 1,022.62 | 1,024.36 | 1,028.13 | 1,030.65 | 1,033.11 | 1,035.51 | 1,037.86 | 1,040.15 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 811.36 | 810.42 | 806.42 | 798.36 | 788.97 | 777.26 | 758.46 | 745.68 | 734.16 | 725.12 | 715.19 | 705.59 |
| 2007 | 695.76 | 687.25 | 679.49 | 672.49 | 666.25 | 660.76 | 651.66 | 646.43 | 642.96 | 643.93 | 642.01 | 639.87 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 12,888.41 | 12,967.14 | 13,038.24 | 13,103.17 | 13,157.90 | 13,203.93 | 13,227.60 | 13,266.39 | 13,306.70 | 13,345.44 | 13,391.02 | 13,440.43 |
| 2007 | 13,489.34 | 13,549.54 | 13,616.81 | 13,691.07 | 13,772.35 | 13,860.67 | 13,896.12 | 13,945.47 | 13,996.15 | 14,049.64 | 14,101.82 | 14,154.22 |
| 2008 | 14,206.81 | 14,259.58 | 14,312.56 | 14,364.16 | 14,418.70 | 14,474.66 | 14,534.06 | 14,591.19 | 14,648.18 | 14,704.98 | 14,761.61 | 14,818.06 |

Table 6.6 shows all values of the exogenous variables used in this forecast.

## Outlook of Gross Output by Industries

Table 6.7 shows the forecasted values and their growth rates of Gross output by industry groups from 2006 to 2008 of nominal value, real 2000 value, and price indexes. Figure 6.1 shows plots of these forecasts by industry groups.

Overall, real total Gross output is expected to grow steadily at the average rate of $3.5 \%$ annually during 2006-2008. Most of this growth is coming from the growth in Gross output of Private industries which grows at an average rate of $4.41 \%$ in real terms between 2006 and 2008. The Gross output of Government is expected to decline significantly in 2007 and 2008 in real terms as the increasing price index crowds out the growth of government nominal gross output. In real terms, the government gross output will decline by $-2.8 \%$ and $-3.41 \%$ in 2007 and 2008, respectively.

Among industry groups, the industries that exhibit strong positive growth between 2006 and 2008 are Service industries, Wholesale trade, Retail trade, and Mining industry. Other industry groups grow at a much lower rate, especially in 2007 and 2008.

Table 6.7: Outlook of Gross output by Industry Groups, 2006-2008

## Gross output

| Forecast real 2000 (Million of Dollars) | 2005 | 2006 | 2007 | 2008 | 05-06 | 06-07 | 07-08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Gross Output | 20,058,940 | 20,900,634 | 21,639,600 | 22,368,236 | 4.20\% | 3.54\% | 3.37\% |
| Private industries | 17,937,770 | 18,780,048 | 19,593,794 | 20,415,080 | 4.70\% | 4.33\% | 4.19\% |
| Total Services industries (40-61) | 8,266,276 | 8,593,869 | 9,041,576 | 9,516,695 | 3.96\% | 5.21\% | 5.25\% |
| Agriculture, forestry, fishing, and hunting | 271,988 | 275,967 | 278,746 | 282,101 | 1.46\% | 1.01\% | 1.20\% |
| Mining | 215,154 | 234,499 | 242,825 | 249,499 | 8.99\% | 3.55\% | 2.75\% |
| Utilities | 308,632 | 326,804 | 325,695 | 336,083 | 5.89\% | -0.34\% | 3.19\% |
| Construction | 935,694 | 974,130 | 973,468 | 981,431 | 4.11\% | -0.07\% | 0.82\% |
| Manufacturing | 4,041,547 | 4,163,015 | 4,272,347 | 4,371,470 | 3.01\% | 2.63\% | 2.32\% |
| Durable goods manufacturing | 2,320,544 | 2,474,611 | 2,530,347 | 2,587,441 | 6.64\% | 2.25\% | 2.26\% |
| Nondurable goods manufacturing | 1,731,693 | 1,715,345 | 1,767,631 | 1,809,873 | -0.94\% | 3.05\% | 2.39\% |
| Wholesale trade | 972,399 | 1,085,999 | 1,182,849 | 1,284,355 | 11.68\% | 8.92\% | 8.58\% |
| Retail trade | 1,225,873 | 1,314,233 | 1,388,841 | 1,460,585 | 7.21\% | 5.68\% | 5.17\% |
| Transportation and warehousing | 633,736 | 650,313 | 673,491 | 695,050 | 2.62\% | 3.56\% | 3.20\% |
| Information | 1,184,287 | 1,284,127 | 1,355,553 | 1,387,912 | 8.43\% | 5.56\% | 2.39\% |
| Finance, insurance, real estate, rental, and leasing | 3,549,877 | 3,723,020 | 3,944,919 | 4,173,934 | 4.88\% | 5.96\% | 5.81\% |
| Professional and business services | 2,100,988 | 2,188,728 | 2,298,667 | 2,418,824 | 4.18\% | 5.02\% | 5.23\% |
| Educational services, health care, and social assistance | 1,348,384 | 1,390,250 | 1,457,779 | 1,541,394 | 3.10\% | 4.86\% | 5.74\% |
| Arts, entertainment, recreation, accommodation, and food services | 707,874 | 738,169 | 768,446 | 791,797 | 4.28\% | 4.10\% | 3.04\% |
| Other services, except government | 444,704 | 439,733 | 455,239 | 473,153 | -1.12\% | 3.53\% | 3.94\% |
| Government | 2,125,267 | 2,132,010 | 2,072,299 | 2,001,617 | 0.32\% | -2.80\% | -3.41\% |
| Federal government | 710,359 | 715,079 | 695,107 | 669,418 | 0.66\% | -2.79\% | -3.70\% |
| State and local government | 1,414,380 | 1,416,386 | 1,376,662 | 1,331,714 | 0.14\% | -2.80\% | -3.26\% |
| Forecast nominal (Million of dollars) | 2005 | 2006 | 2007 | 2008 | 05-06 | 06-07 | 07-08 |
| Total Gross Output | 22,857,144 | 24,510,822 | 26,289,532 | 28,128,810 | 7.23\% | 7.26\% | 7.00\% |
| Private industries | 20,256,014 | 21,811,932 | 23,489,066 | 25,227,638 | 7.68\% | 7.69\% | 7.40\% |
| Total Services industries (40-61) | 9,343,153 | 9,987,533 | 10,784,158 | 11,650,302 | 6.90\% | 7.98\% | 8.03\% |
| Agriculture, forestry, fishing, and hunting | 312,372 | 327,810 | 356,912 | 364,944 | 4.94\% | 8.88\% | 2.25\% |
| Mining | 396,278 | 457,485 | 515,217 | 593,814 | 15.45\% | 12.62\% | 15.26\% |
| Utilities | 409,979 | 455,648 | 474,331 | 529,597 | 11.14\% | 4.10\% | 11.65\% |
| Construction | 1,174,995 | 1,252,784 | 1,360,278 | 1,501,666 | 6.62\% | 8.58\% | 10.39\% |
| Manufacturing | 4,501,822 | 4,786,128 | 5,067,578 | 5,302,899 | 6.32\% | 5.88\% | 4.64\% |
| Durable goods manufacturing | 2,364,127 | 2,561,733 | 2,656,236 | 2,760,741 | 8.36\% | 3.69\% | 3.93\% |
| Nondurable goods manufacturing | 2,137,695 | 2,224,395 | 2,411,341 | 2,542,159 | 4.06\% | 8.40\% | 5.43\% |
| Wholesale trade | 1,073,587 | 1,237,017 | 1,427,440 | 1,588,718 | 15.22\% | 15.39\% | 11.30\% |
| Retail trade | 1,288,716 | 1,406,178 | 1,510,383 | 1,626,061 | 9.11\% | 7.41\% | 7.66\% |
| Transportation and warehousing | 712,142 | 777,285 | 821,052 | 883,809 | 9.15\% | 5.63\% | 7.64\% |
| Information | 1,161,134 | 1,247,692 | 1,300,356 | 1,315,753 | 7.45\% | 4.22\% | 1.18\% |
| Finance, insurance, real estate, rental, and leasing | 3,990,862 | 4,282,525 | 4,634,455 | 5,028,573 | 7.31\% | 8.22\% | 8.50\% |
| Professional and business services | 2,318,478 | 2,521,346 | 2,745,371 | 2,967,522 | 8.75\% | 8.89\% | 8.09\% |
| Educational services, health care, and social assistance | 1,578,006 | 1,667,520 | 1,801,734 | 1,961,808 | 5.67\% | 8.05\% | 8.88\% |
| Arts, entertainment, recreation, accommodation, and food services | 815,391 | 857,173 | 900,394 | 946,595 | 5.12\% | 5.04\% | 5.13\% |
| Other services, except government | 522,252 | 535,339 | 573,564 | 615,880 | 2.51\% | 7.14\% | 7.38\% |
| Government | 2,601,131 | 2,698,891 | 2,800,466 | 2,901,174 | 3.76\% | 3.76\% | 3.60\% |
| Federal government | 872,257 | 910,285 | 947,121 | 980,974 | 4.36\% | 4.05\% | 3.57\% |
| State and local government | 1,728,874 | 1,788,606 | 1,853,345 | 1,920,199 | 3.45\% | 3.62\% | 3.61\% |
| Forecast price index (2000=100) | 2005 | 2006 | 2007 | 2008 | 05-06 | 06-07 | 07-08 |
| Total Gross Output | 113.95 | 117.27 | 121.49 | 125.75 | 2.92\% | 3.59\% | 3.51\% |
| Private industries | 112.92 | 116.14 | 119.88 | 123.57 | 2.85\% | 3.22\% | 3.08\% |
| Total Services industries (40-61) | 113.03 | 116.22 | 119.27 | 122.42 | 2.82\% | 2.63\% | 2.64\% |
| Agriculture, forestry, fishing, and hunting | 114.85 | 118.79 | 128.04 | 129.37 | 3.43\% | 7.79\% | 1.03\% |
| Mining | 184.18 | 195.09 | 212.18 | 238.00 | 5.92\% | 8.76\% | 12.17\% |
| Utilities | 132.84 | 139.43 | 145.64 | 157.58 | 4.96\% | 4.45\% | 8.20\% |
| Construction | 125.57 | 128.61 | 139.74 | 153.01 | 2.41\% | 8.65\% | 9.50\% |
| Manufacturing | 111.39 | 114.97 | 118.61 | 121.31 | 3.21\% | 3.17\% | 2.27\% |
| Durable goods manufacturing | 101.88 | 103.52 | 104.98 | 106.70 | 1.61\% | 1.41\% | 1.64\% |
| Nondurable goods manufacturing | 123.45 | 129.68 | 136.42 | 140.46 | 5.05\% | 5.20\% | 2.96\% |
| Wholesale trade | 110.41 | 113.91 | 120.68 | 123.70 | 3.17\% | 5.95\% | 2.50\% |
| Retail trade | 105.13 | 107.00 | 108.75 | 111.33 | 1.78\% | 1.64\% | 2.37\% |
| Transportation and warehousing | 112.37 | 119.52 | 121.91 | 127.16 | 6.37\% | 2.00\% | 4.30\% |
| Information | 98.04 | 97.16 | 95.93 | 94.80 | -0.90\% | -1.27\% | -1.18\% |
| Finance, insurance, real estate, rental, and leasing | 112.42 | 115.03 | 117.48 | 120.48 | 2.32\% | 2.13\% | 2.55\% |
| Professional and business services | 110.35 | 115.20 | 119.43 | 122.68 | 4.39\% | 3.68\% | 2.72\% |
| Educational services, health care, and social assistance | 117.03 | 119.94 | 123.59 | 127.27 | 2.49\% | 3.04\% | 2.98\% |
| Arts, entertainment, recreation, accommodation, and food services | 115.19 | 116.12 | 117.17 | 119.55 | 0.81\% | 0.90\% | 2.03\% |
| Other services, except government | 117.44 | 121.74 | 125.99 | 130.17 | 3.66\% | 3.49\% | 3.31\% |
| Government | 122.39 | 126.59 | 135.14 | 144.94 | 3.43\% | 6.75\% | 7.25\% |
| Federal government | 122.79 | 127.30 | 136.26 | 146.54 | 3.67\% | 7.04\% | 7.55\% |
| State and local government | 122.24 | 126.28 | 134.63 | 144.19 | 3.31\% | 6.61\% | 7.10\% |

Real Gross output of agriculture, forestry, fishing, and hunting is expected to grow by $1.46 \%, 1.01 \%$, and $1.20 \%$ in 2006, 2007, and 2008, respectively. This growth rate of the real gross output is consistent with its long-term trend as shown in Figure 6.1. In 2007, nominal gross output of this industry will grow significantly by $8.88 \%$ as its price index rises by $7.79 \%$.

Real Gross output of Mining industry grows by $8.99 \%, 3.55 \%$, and $2.75 \%$ in 2006, 2007, and 2008, respectively. Surprisingly, Appendix 6.6 shows that the main contributor to this growth is coming from supporting activities for mining industry which has historically been the smallest components of the real gross output of mining industry. The price index of this industries' gross output is expected to rise significantly at rates of $8.76 \%$ in 2007 and $12.17 \%$ in 2008.

Since 2001, the real gross output of utilities has been slowly decreasing. In 2006, we expect to see a positive growth rate of utilities' real gross output of $5.89 \%$. The real gross output will decline slightly in 2007 by $-0.34 \%$ and will increase by $3.19 \%$ in 2008.

As the problem in sub-prime credit market persists, we expect the real gross output of construction industry will grow at the rate of $-0.07 \%$ in 2007 and $0.82 \%$ in 2008.

Manufacturing industry group contributes on average of $20 \%$ to the nominal total gross output. We expect the real gross output of manufacturing industry to grow consistently between 2006 and 2007 at an average rate of $2.65 \%$ annually. In 2006, real gross output of durable manufacturing grows significantly by $6.64 \%$ while real gross
output of nondurable manufacturing decline slightly by $-0.94 \%$. Both durable and nondurable manufacturing industries grow steadily in 2007 and 2008 at an average rate of around $2.5 \%$ annually. From Appendix 6.6, Computer and electronic products gross output grows by $21.5 \%$ in 2006 and will have significantly smaller growth rate in 2007 and 2008 of $11.03 \%$ and $3.74 \%$, respectively. Also, the petroleum and coal products, which expected to have its real gross output reduced by $-12.47 \%$ in 2006, will expand significantly in 2007 and 2008 with growth rates of $13.71 \%$ and $17.15 \%$, respectively. Apparel and leather and allied products real gross output is expected to decline significantly in 2008 by $-32.82 \%$.

Real gross output of wholesale trade will have growth rates of $11.68 \%, 8.92 \%$, and $8.58 \%$ in 2006,2007 , and 2008 , respectively. This growth rate is slightly stronger than its average between 1993 and 2005.

Retail trade will keep growing consistently with its historical trend, as shown in Figure 6.1. The real gross output of this industry will grow at rates of $7.21 \%$ in 2006, $5.68 \%$ in 2007 , and $5.17 \%$ in 2008.

Overall, the real gross output of service industries will grow by $3.96 \%, 5.21 \%$, and $5.25 \%$ in 2006,2007 , and 2008, respectively. Most of this growth comes from the three biggest contributors to the service industry's nominal gross output; 1) Finance, insurance, real estate, rental, and leasing, 2) Professional and business services, and 3) Educational services, health care, and social assistance.

Finance, insurance, real estate, rental, and leasing is expected to see its real gross output grow by $4.88 \%, 5.96 \%$, and $5.81 \%$ in 2006,2007 , and 2008, respectively. Federal Reserve banks, credit intermediation, and related activities will see significantly smaller growth in 2007 and 2008 of $2.36 \%$ and $1.94 \%$, respectively as the problem in credit market persists.

Professional and business services industry's real gross output will grow by an average of $4.81 \%$ annually from 2006 to 2008. Among its components, Miscellaneous professional, scientific, and technical services, which is the biggest contributor to Professional and business services industry's real gross output, will grow the most with an average growth rate of $7.73 \%$ annually between 2006 and 2008. The real gross output of Management of companies and enterprises will decline slightly by $-0.55 \%$ in 2006 but will grow rapidly in 2007 and 2008 at rates of $8.01 \%$ and $9.14 \%$, respectively.

For Educational services, health care, and social assistance, the real gross output will grow by $3.10 \%, 4.86 \%$, and $5.74 \%$ in 2006, 2007, and 2008, respectively. All of its components show steady positive growth rate consistent with their historical rate since 1993. Between the forecast period, Ambulatory health care services' real gross output has the highest average growth rate of $5.87 \%$ annually.

From Appendix 6.6, Performing arts, spectator sports, museums, and related activities' real gross output will be declining throughout the forecast period. This industries' real gross output will decline by $-3.23 \%$ in $2006,-4.47 \%$ in 2007 , and $-1.16 \%$ in 2008.

Figure 6.1: Plots of Gross output by Industry Groups


Figure 6.1 (cont.)
griculture, forestry, fishing, and hunting (Nominal and Real 21
Forecast, 2006-2008



+ gopmin_f - gorpmin_f


Agriculture, forestry, fishing, and hunting (Price,2000=100) Forecast, 2006-2008


Mining (Price, 2000=100)
Forecast, 2006-2008


+ goppmin_f

+ gopputil_f

Figure 6.1 (cont.)


## Figure 6.1 (cont.)

Nondurable goods manufacturing (Nominal and Real 2000
Forecast, 2006-2008


Wholesale trade (Nominal and Real 2000)
Forecast, 2006-2008


+ gopwhsl_f - - gorpwhsl_f
Retail trade (Nominal and Real 2000)
Forecast, 2006-2008


Nondurable goods manufacturing (Price,2000=100)
Forecast, 2006-2008


+ goppndur_f
Wholesale trade (Price, 2000=100)
Forecast, 2006-2008

+ goppwhsl_f
Retail trade (Price,2000=100)



## Figure 6.1 (cont.)

Transportation and warehousing (Nominal and Real 2000)
Forecast, 2006-2008


Information (Nominal and Real 2000)
Forecast, 2006-2008


+ gopinfo_f -e- gorpinfo_f
ace, insurance, real estate, rental, and leasing (Nominal and R $\epsilon$


Transportation and warehousing (Price,2000=100)
Forecast, 2006-2008


+ gopptran_f
Information (Price,2000=100)
Forecast, 2006-2008

+ goppinfo_f
inance, insurance, real estate, rental, and leasing (Price,2000=



## Figure 6.1 (cont.)

Professional and business services (Nominal and Real 2000
Forecast, 2006-2008

ational services, health care, and social assistance (Nominal ai
Forecast, 2006-2008

intertainment, recreation, accommodation, and food services (]
Forecast, 2006-2008


+ gopartfood_ $\mathrm{f}_{\Omega}$ gorpartfood_f

Professional and business services (Price,2000=100)
Forecast, 2006-2008


+ goppbser_f
ıcational services, health care, and social assistance (Price,200
Forecast, 2006-2008

entertainment, recreation, accommodation, and food services (



## Figure 6.1 (cont.)

Other services, except government (Nominal and Real 2000
Forecast, 2006-2008


Government (Nominal and Real 2000)
Forecast, 2006-2008


Federal government (Nominal and Real 2000)


Other services, except government (Price,2000=100)
Forecast, 2006-2008


+ goppothser_f
Government (Price,2000=100)
Forecast, 2006-2008

+ gopg_f
Federal government (Price,2000=100)
Forecast, 2006-2008

+ gopgf_f

Figure 6.1 (cont.)

State and local government (Nominal and Real 2000)
Forecast, 2006-2008


State and local government (Price,2000=100)
Forecast, 2006-2008


+ gopgsl_f


## Chapter 7: Conclusion

The objective of this dissertation is to find a solution to the problem of the "ragged end" of historical data for long-term modeling. Using time-series analysis, this study develops processes to generate values between the last published data and up to two years into the future.

I studied four bodies of data used by a long-term economic model. Personal consumption expenditures, Gross output, Investment in equipment and software, and Investment in structures are estimated in detailed industries or categories.

The processes to estimate the series are generally similar and involve the use of high-frequency data series and time-series analysis. The differences in the methods used for these four bodies of data are due to the differences in the characteristics of the data.

I find that the performance of the forecasts depends heavily on the accuracy of the exogenous variables used in each forecast. The estimated detailed values are consistent with the macroeconomic data, used as regressors in the processes. Thus, generally, the results will be reliable as long as we have a good forecast of macroeconomic variables.

The performance of the first-period forecast also depends on where in the calendar year the last published data is. The closer to the end of the year, the better is the accuracy of the forecast.

Overall, this study met the goal of the dissertation. It established processes to generate detailed economic data which will be used as starting values of a long-term
economic model. Nevertheless, there is room for improving these processes. First, the accuracy of the exogenous variables can be improved by improving the macroeconomic model, i.e. QUEST, used in estimating these variables. Then, the processes' performance can be increased by improving some equations that exhibit relatively higher errors than their peers, such as the equation for nominal gross output of Airline transportation.

Although not perfect, I believe this study will help improve the short-term accuracy of a long-term economic model, which is an important concern for many applied economists.

## Appendices

## Appendix 3.1: Personal Consumption Expenditures by Type of Product

```
Durab7e goods
 Motor vehic7es and parts
 New autos (70)
 New domestic autos
 New foreign autos
 Net purchases of used autos (71)
 Net transactions in used autos
 Used auto margin
 Employee reimbursement
 Other motor vehicles (72)
 Trucks, new and net used
 New trucks
 Net purchases of used trucks
 Net transactions in used trucks
 Used truck margin
 Recreational vehicles
 Tires, tubes, accessories, and other parts (73)
 Tires and tubes
 Accessories and parts
 Furniture and househo7d equipment
 Furniture, including mattresses and bedsprings (29)
 Kitchen and other household appliances (30)
 Major household appliances
 Small electric appliances
 China, glassware, tableware, and utensils (31)
 video and audio goods, including musical instruments, and computer goods (91)
 Video and audio goods, including musical instruments (92)
 Television receivers, video cassette recorders, and videotapes
 Television receivers
 Video equipment and media
 Audio equipment, media, and instruments
 Audio equipment
 Records, tapes, and disks
 Musical instruments
 Computers, peripherals, and software (93)
 Computers and peripherals
 Software
 Other durable house furnishings (32)
 Floor coverings
 Durable house furnishings, n.e.c.
 Clocks, lamps, and furnishings
 Blinds, rods, and other
 writing equipment
 Hand tools
 Tools, hardware, and supplies
 Outdoor equipment and supplies
 Other
 Ophthalmic products and orthopedic appliances (46)
 wheel goods, sports and photographic equipment, boats, and pleasure aircraft (90)
 Sports and photographic equipment, bicycles and motorcycles
 Guns
 Sporting equipment
 Photographic equipment
 Bicycles
 Motorcycles
 Pleasure boats and aircraft
 Pleasure boats
 pleasure aircraft
 Jewelry and watches (18)
 Jewelry and watches
Nondurab7e goods
 Food
 Food and alcoholic beverages purchased for off-premise consumption (3)
 Food purchased for off-premise consumption
 Cereals
 Bakery products
 Beef and veal
 Pork
 Other meats
 Poultry
 Poultry
 Fish and seafood
 Eggs
 Fresh milk and cream
```



```
102
103
104
107
109
109
111
113
114

\section*{Se}
```

services
Housing
Owner-occupied nonfarm dwel1ings--space rent (24)
Owner occupied mobile homes

```
```

    Owner occupied stationary homes
    Tenant-occupied nonfarm dwellings--rent (25)
        Tenant occupied mobile homes
        Tenant occupied stationary homes
    Tenant landlord durables
    Rental value of farm dwellings (26)
    Other (27)
Hotels and motels
Clubs and fraternity housing
Higher education housing
Elementary and secondary education housing
Tenant group room and board
Tenant group employee lodging
Househo7d operation
Electricity and gas
Electricity (37)
Gas (38)
Other household operation
water and other sanitary services (39)
water and sewerage maintenance
Refuse collection
Telephone and telegraph (41)
Local and cellular telephone
Cellular telephone
Local telephone
Long distance telephone
Intrastate tol1 cal1s
Interstate toll calls
Domestic service (42)
Domestic service, cash
Domestic service, in kind
Other (43)
Moving and storage
Household insurance
Household insurance premiums
Less: Household insurance benefits paid
Rug and furniture cleaning
Electrical repair
Reupholstery and furniture repair
Postage
Household operation services, n.e.c.
Transportation
User-operated transportation
Repair, greasing, washing, parking, storage, rental, and leasing (74)
Motor vehicle repair
Motor vehicle rental, leasing, and other
Motor vehicle rental
Motor vehicle leasing
Auto leasing
Truck leasing
Other motor vehicle services
Other user-operated transportation (76+77)
Bridge, tunne1, ferry, and road tolls
Insurance
Purchased local transportation
Mass transit systems (79)
Taxicab (80)
Purchased intercity transportation
Railway (82)
Bus (83)
Airline (84)
Other (85)
Med7ca7 care
Physicians (47)
Dentists (48)
Other professional services (49)
Home health care
Medica1 1aboratories
Eye examinations
A11 other professional medical services
Hospitals and nursing homes (50)
Hospitals
Nonprofit
Proprietary
Government
Nursing homes
Non-profit nursing homes
Proprietary and government nursing homes
Health insurance (56)
Medical care and hospitalization
Income loss
Workers' compensation
Recreation
Admissions to specified spectator amusements (96)
Motion picture theaters
legitimate theaters and opera, and entertainments of nonprofit institutions
spectator sports
Other (94+100+101+102+103)

```
```

250
272

```
 Radio and television repair
 Clubs and fraternal organizations
 Clubs and fraternal organizations
 Commercial participant amusements
 Sightseeing
 Private flying
 Bowling and billiards
 Casino gambling
 Other commercial participant amusements
 Pari-mutual net receipts
 Other
 Pets and pets services excluding veterinarians
 veterinarians
 Cable television
 Film developing
 Photo studios
 Sporting and recreational camps
 High school recreation
 Lotteries
 Video cassette rental
 Commercial amusements n.e.c.
 commercial amusements n.e.c. except Internet service providers
Other
Personal care
 Cleaning, storage, and repair of clothing and shoes (17)
 Shoe repair
 Cleaning, laundering, and garment repair
 Dry cleaning
 Laundry and garment repair
 Barbershops, beauty parlors, and health clubs (22)
 Beauty shops, including combination
 Barber shops
 Other (19)
 Watch, clock, and jewelry repair
 Misce1laneous personal services
Personal business
 Brokerage charges and investment counseling (61)
 Equities commissions including imputed
 Broker charges on mutual fund sales
 Trading profits on debt securities
 Trust services of commercial banks
 Investment advisory services of brokers
 Commodities revenue
 Investment counseling services
 Bank service charges, trust services, and safe deposit box rental (62)
 Commercial bank service charges on deposit accounts
 Commercial bank fees on fiduciary accounts
 Commercial bank other fee income
 Charges and fees of other depository institutions
 Services furnished without payment by financial intermediaries except life insurance
 Commercial banks
 Other financial institutions
 Expense of handling life insurance and pension plans (64)
 Lega1 services (65)
 Funeral and burial expenses (66)
 Other (67)
 Labor union expenses
 profession association expenses
 Employment agency fees
 Money orders
 Money orders
 Classified ads
 Tax return preparation services
 Personal business services, n.e.c.
Education and research
 Higher education (105)
 private higher education
 Public higher education
 Nursery, elementary, and secondary schools (106)
 Elementary and secondary schools
 Nursery schools
 Other (107)
 Commercial and vocational schools
 Foundations and nonprofit research
Religious and welfare activities (108)
 Political organizations
 Museums and libraries
 Foundations to religion and welfare
 Social welfare
 Child care
 social welfare
 Religion
Net foreign travel
 Foreign trave1 by U.S. residents (110)
 Passenger fares for foreign travel
 U.S. trave1 outside the U.S.
 U.S. travel outside the U.S
 Less: Expenditures in the United States by nonresidents (112)
 Foreign travel in the U.S.
```

338 Medical expenditures of foreigners
339 Expenditures of foreign students in the U.s.
n.e.c. Not elsewhere classified

Note. Numbers in parentheses refer to line numbers in NIPA table 2.5.5 published in the Survey of Current Business.
Source: BEA

## Appendix 3.2: PCE categories to be calculated, 116 categories

```
No. Table
Definition
New autos (70)
Net purchases of used autos (71)
Other motor vehicles (72)
Tires; tubes; accessories; and other parts (73)
Furniture; including mattresses and bedsprings (29)
Kitchen and other household appliances (30)
China; glassware; tableware; and utensils (31)
 Video and audio goods; including musical instruments (92)
 Computers and peripherals
 Software
 Floor coverings
 Durable house furnishings; n.e.c.
 writing equipment
 Hand tools
Ophthalmic products and orthopedic appliances (46)
 Guns
 Sporting equipment
 Photographic equipment
 Bicycles
 Motorcycles
 Pleasure boats
 pleasure aircraft
Jewelry and watches (18)
Books and maps (87)
 Cereals
 Bakery products
 Beef and veal
 Pork
 Other meats
 Poultry
 Fish and seafood
 Eggs
 Fresh milk and cream
 Processed dairy products
 Fresh fruits
 Fresh vegetables
 Processed fruits and vegetables
 juices and nonalcoholic drinks
 Coffee; tea and beverage materials
 Fats and oils
 Sugar and sweets
 Other foods
 Pet food
 Beer and ale; at home
 wine and brandy; at home
 Distilled spirits; at home
Purchased meals and beverages (4)
Food furnished to employees (and food produced and consumed on farms (5+6)
Shoes (12)
women's and children's clothing and accessories except shoes (14)
Men's and boys' clothing and accessories except shoes (15+16)
Gasoline and oil (75)
Fue1 oil and coal (40)
Tobacco products (7)
Toilet articles and preparations (21)
Semidurable house furnishings (33)
Cleaning preparations; and miscellaneous household supplies and paper products
Drug preparations and sundries (45)
 Toys; dol1s; and games
 Sport supplies; including ammunition
 Film and photo supplies
Stationery and writing supplies (35)
Net foreign remittances (111 less 113)
Magazines; newspapers; and sheet music (88)
Flowers; seeds; and potted plants (95)
Housing
 Electricity (37)
 Gas (38)
 water and other sanitary services (39)
 Cellular telephone
 Loca1 telephone
 Long distance telephone
 Domestic service (42)
 Other (43)
 Motor vehicle repair
 Motor vehicle rental; leasing; and other
 Bridge; tunnel; ferry; and road tolls
 Insurance
 Mass transit systems (79)
 Taxicab (80)
 Railway (82)
 Railway
 Bus (83)
```

| 84 | 219 | Other (85) |
| :--- | :--- | :--- |
| 85 | 221 | Physicians (47) |
| 86 | 222 | Dentists (48) |
| 87 | 223 | Other professional services (49) |
| 88 | 229 | Hospitals |
| 89 | 233 | Nursing homes |
| 90 | 236 | Health insurance (56) |
| 91 | 241 | Admissions to specified spectator amusements (96) |
| 92 | 246 | Radio and television repair |
| 93 | 247 | Clubs and fraternal organizations |
| 94 | 248 | Commercial participant amusements |
| 95 | 254 | Pari-mutual net receipts |
| 96 | 255 | Other Recreation Services |
| 97 | 270 | Cleaning; storage; and repair of clothing and shoes (17) |
| 98 | 275 | Barbershops; beauty parlors; and health clubs (22) |
| 99 | 278 | Other Personal care(19) |
| 100 | 282 | Brokerage charges and investment counseling (61) |
| 101 | 290 | Bank service charges; trust services; and safe deposit box rental (62) |
| 102 | 295 | Services furnished without payment by fi except life insurance carriers (63) |
| 103 | 298 | Expense of handling life insurance and pension plans (64) |
| 104 | 299 | Legal services (65) |
| 105 | 300 | Funeral and burial expenses (66) |
| 106 | 301 | Other Personal Service( 67 ) |
| 107 | 310 | Higher education (105) |
| 108 | 313 | Nursery; elementary; and secondary schools (106) |
| 109 | 316 | Other Education (107) |
| 110 | 320 | Politicalorganizations |
| 111 | 321 | Museums and libraries |
| 112 | 322 | Foundations to religion and welfare |
| 113 | 323 | Social welfare |
| 114 | 326 | Religion |
| 115 | 328 | Foreign travel by u.s. residents (110) |
| 116 | 332 | Less: Expenditures in the United States by nonresidents (112) |

## Appendix 3.3:

## Nominal equations

```
#1 cdmv E1NEW1 B "New autos (70)"
ti 1 New autos (70)
r pce1 = !pce1[1],cdmv,cdmv[1]
: 1 New autos (70)
 SEE = 3.77 RSQ = 0.8669 RHO = -0.28 Obser = 162 from 1994.001
 SEE+1 = 3.62 RBSQ = 0.8652 DurH = -3.79 DoFree = 159 to 2007.006
 MAPE = 3.06
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce1 - - - - - - - - - - - - - - - - - 95.19 - - -
 1 pce1[1] 0.91716 172.1 0.92 0. 2.71 95.07
 2 cdmv rrrrrrrrrrern
#2 cdmv E1NPU1 B "Net purchases of used autos (71)"
ti 2 Net purchases of used autos (71)
r pce2 = pce2[1],pce2[2],ddj
 2 \text { Net purchases of used autos (71)}
 SEE = 4.20 RSQ = 0.4749 RHO = -0.04 Obser = 162 from 1994.001
 SEE+1 = 4.19 RBSQ = 0.4649 DurH = -1.45 DoFree = 158 to 2007.006
 MAPE = 5.64
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce2 - - - - - - - - - - - - - - - - - 56.50 - - -
```



```
 2 pce2[1]
 4 ddj -0.00212 1.8 -0.00 1.00 59.60 -0.137
#3 10 cdmv E1OAU1 C "Other motor vehicles (72)"
ti 3 Other motor vehicles (72)
r pce3 = pce3[1],cdmv,cdmv[1]
: 3 Other motor vehicles (72)
 SEE = 4.52 RSQ = 0.9923 RHO = -0.19 Obser = 162 from 1994.001
 SEE+1 = 4.44 RBSQ = 0.9921 DurH = -3.12 DoFree = 158 to 2007.006
 MAPE = 2.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce3 - - - - - - - - - - - - - - - - - 171.77 - - -
 1 intercept -20.61022 4.4 -0.12 129.46 1.00
 2 pce3[1] }\begin{array}{lllllll}{0.79358 61.9 0.79 0.36 171.02 0.798}
 3 cdmv rr]
#4 13 cdmv E1TBA1 C "Tires, tubes, accessories, and other parts (73)"
ti 4 Tires, tubes, accessories, and other parts
r pce4 = !pce4[1],pce4[2]
 4 Tires, tubes, accessories, and other parts
 SEE = 0.67 RSQ = 0.9920 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.67 RBSQ = 0.9919 DurH = -1.88 DoFree = 160 to 2007.006
 MAPE = 1.05
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce4 - - - - - - - - - - - - - - - - - 48.16 - - -
```

| 1 | pce $4[1]$ | 0.55608 | 17.6 | 0.55 | 1.25 | 47.99 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | pce $4[2]$ | 0.44880 | 11.7 | 0.45 | 1.00 | 47.82 | 0.450 |

\#5 17 cdfur E1FNR1 C "Furniture, including mattresses and bedsprings (29)" ti 5 Furniture, including mattresses and bedsprings

| 5 Furniture, including mattresses and bedsprings |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | 0.58 RSQ | $=0.9976 \mathrm{R}$ | $\mathrm{RHO}=-0$ | . 15 Ob | Obser = 16 | 162 | from 19 | 1994.001 |
| SEE+1 = | 0.57 RBSQ | $=0.9976 \mathrm{D}$ | DurH $=-2$ | . 69 Do | DoFree = | 158 | to 200 | 2007.006 |
| MAPE = 0.65 |  |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 pce5 |  | - | - - - - | - - - | - - - - - |  | 65.40 | 0 |
| 1 intercept |  | 0.90914 | 2.8 | 0.01 | 1 420.03 |  | 1.00 |  |
| 2 pce5[1] |  | 0.75875 | 49.9 | 0.76 | .76 2.27 |  | 65.14 | 40.760 |
| 3 cdfur |  | 0.22248 | 45.0 | 1.04 | . 1.45 |  | 306.14 | 41.095 |
| 4 cdfur[1] |  | -0.17402 | 20.4 | -0.81 | 811.00 |  | 304.81 | $1-0.856$ |

\#6 18 cdfur E1APP1 C "Kitchen and other household appliances (30)"
ti 6 Kitchen and other household appliances

```
r pce6 = pce6[1],cdfur,cdfur[1]
 6 \text { Kitchen and other household appliances}
 SEE = 0.29 RSQ = 0.9955 RHO = -0.29 Obser = 162 from 1994.001
 SEE+1 = 0.27 RBSQ = 0.9955 DurH = -3.96 DoFree = 158 to 2007.006
 MAPE = 0.74
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce6
- - - - - - - - - - - - - - - - - 30.94 - - -
 1 intercept
 0.55108 1.3 0.02 224.38 1.00
 2 pce6[1] 0.92431 195.0 0.92 1.80
 3 cdfur 0.09084 32.6 0.90 1.64 306.14 1.241
 4 cdfur[1] -0.08510 28.0 -0.84 1.00 304.81 -1.162
```

\#7 21 cdfur E1CHN1 C "China, glassware, tableware, and utensils (31)"
ti 7 China, glassware, tableware, and utensils
r pce7 = pce7[1],cdfur,cdfur[1]

\#8 23 cdfur E1VAM1 C "Video and audio goods, including musical instruments (92)"
ti 8 Video and audio goods, including musical instruments

```
r pce8 = pce8[1],cdfur,cdfur[1]
. 8 Video and audio goods, including musical instruments
 SEE = 0.41 RSQ = 0.9988 RHO = -0.28 Obser = 162 from 1994.001
 SEE+1 = 0.40 RBSQ = 0.9987 DurH = -3.73 DoFree = 158 to 2007.006
 MAPE = 0.45
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce8 - - - - - - - - - - - - - - - - - 71.15 - - -
 1 intercept 0.59440 1.0 0.01 803.75 1.00
 l lrrrer[1] 0.94841 199.3
```

4 cdfur[1] |  | -0.21561 | 63.1 | -0.92 | 1.00 | 304.81 | -1.087 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
#9 32 cdfur E1CPP1 D "Computers and peripherals"
ti 9 Computers and peripherals
r pce9 = !pce9[1],cdfur,cdfur[1]
 9 Computers and peripherals
 SEE = 0.34 RSQ = 0.9987 RHO = -0.23 Obser = 162 from 1994.001
 SEE+1 = 0.33 RBSQ = 0.9987 DurH = -2.91 DoFree = 159 to 2007.006
 MAPE = 0.81
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce9 - - - - - - - - - - - - - - - - - 31.93 - - -
 1 pce9[1] 0.98606 855.1 0.98 0. 1.80 31.70
 2 cdfur 0.10535 31.7 1.01 1.69 306.14 0.666
 3 cdfur[1] -0.10360 30.1 -0.99 1.00 304.81 -0.655
#10 33 cdfur E1CPS1 D "Software"
ti 10 Software
r pce10 = pce10[1],cdfur,cdfur[1]
: 10 Software
 SEE = 0.11 RSQ = 0.9987 RHO = -0.19 Obser = 162 from 1994.001
 SEE+1 = 0.11 RBSQ = 0.9987 DurH = -2.71 DoFree = 158 to 2007.006
 MAPE = 0.86
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce10 _ - - - - - - - - - - - - - - - - 9.74 - - -
 1 intercept
 lrrrrrrrer
 4 cdfur[1] -0.02655 16.9 -0.83 1.00 304.81 -0.516
#11 35 cdfur E1FLR1 D "Floor coverings"
ti 11 Floor coverings
r pce11 = pce11[1],cdfur,cdfur[1],crude
 11 Floor coverings
 SEE = 0.30 RSQ = 0.9921 RHO = -0.27 Obser = 162 from 1994.001
 SEE+1 = 0.28 RBSQ = 0.9919 DurH = - 5.03 DoFree = 157 to 2007.006
 MAPE = 1.40
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce11 - - - - - - - - - - - - - - - - - 16.49 - - -
 1 intercept
```



```
 3 cdfur 0.03608 5 5.5 0.67 1.13 306.14 0.637
 4 cdfur[1] -0.02443 2.4 -0.45 1.06 1.0. 304.81 -0.431
#12 36 cdfur E1DHF1 D "Durable house furnishings, n.e.c."
ti 12 Durable house furnishings, n.e.c.
r pce12 = !pce12[1],cdfur,cdfur[1]
 12 Durable house furnishings, n.e.c.
 SEE = 0.26 RSQ = 0.9986 RHO = -0.28 Obser = 162 from 1994.001
 SEE+1 = 0.25 RBSQ = 0.9986 DurH = -3.95 DoFree = 159 to 2007.006
 MAPE = 0.58
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce12
 1 pce12[1]
 - - - - - - - - - - - - - - - - - 35.92 - - -
 lllll
 2 cdfur
 3 cdfur[1] -0.11991 46.7 -1.02 1.00 304.81 -1.000
```

```
#13 39 cdfur E1WTR1 D "Writing equipment"
ti 13 Writing equipment
r pce13 = !pce13[1],pce13[2],cdfur,cdfur[1]
: 13 Writing equipment
 SEE = 0.03 RSQ = 0.9947 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.03 RBSQ = 0.9946 DurH = -1.52 DoFree = 158 to 2007.006
 MAPE = 0.77
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce13 - - - - - - - - - - - - - - - - - 2.93 - - -
 1 pce13[1] 0.79182 35.0 0.79 1.43 2.92
 2 pce13[2] 0.17263 2.0 0.17 1.37 1.0.0.91
```



```
 4 cdfur[1] -0.00562 13.3 -0.58 1.00 304.81 -0.828
#14 40 cdfur E1TOO1 D "Hand tools"
ti 14 Hand tools
r pce14 = pce14[1],cdfur,cdfur[1],gdp
 SEE = 0.15 RSQ = 0.9969 RHO = -0.23 Obser = 162 from 1994.001
 SEE+1 = 0.15 RBSQ = 0.9968 DurH = -3.90 DoFree = 157 to 2007.006
 MAPE = 0.90
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce14
_ _ _ _ _ _ - _ _ _ _ _ _ - - - - 11.15 - - -
 1 \text { intercept}
 -0.53973 4.1 -0.05 325.53 1.00
 2 pce14[1] 0.78918 59.9 0.79 0.7.41 1. 1.10
 3 cdfur 0.02938 12.4 0.81 1.28 306.14 0.636
 4 cdfur[1] -0.02831 11.9 -0.77 1.05 304.81 -0.612
 5 gdp 0.00026 2.6 0.23 1.00 9935.29 0.187
#15 44 cdoth E1OPT1 C "Ophthalmic products and orthopedic appliances (46)"
ti 15 Ophthalmic products and orthopedic appliances
r pce15 = pce15[1],cdoth,cdoth[1]
 15 Ophthalmic products and orthopedic appliances
 SEE = 0.51 RSQ = 0.9808 RHO = -0.26 Obser = 162 from 1994.001
 SEE+1 = 0.49 RBSQ = 0.9804 DurH = -3.97 DoFree = 158 to 2007.006
 MAPE = 1.67
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce15 - - - - - - - - - - - - - - - - - 20.79 - - -
 1 intercept
 2 pce15[1] 0.84632 03.8 0.8 0.84 1.28 1. 20.70
 3 cdoth 0.10290 10.5 0.79 1.15 160.33 0.924
 4 coth[1] -0.08611 7.1 -0.66 1.00 159.60
#16 47 cdoth E1GUN1 D "Guns"
ti 16 Guns
r pce16 = !pce16[1],cdoth,cdoth[1]
: 16 Guns
 SEE = 0.02 RSQ = 0.9962 RHO = -0.19 Obser = 162 from 1994.001
 SEE+1 = 0.02 RBSQ = 0.9962 DurH = -2.46 DoFree = 159 to 2007.006
 MAPE = 0.87
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce16 _ - - - - - - - - - - - - - - - - 2.08 - - -
 l pce16[1]
 lrrrrrrern
```

\#17 48 cdoth E1SPT1 D "Sporting equipment

```
ti 17 Sporting equipment
r pce17 = !pce17[1],cdoth,cdoth[1]
 17 Sporting equipment
 SEE = 0.29 RSQ = 0.9972 RHO = -0.19 Obser = 162 from 1994.001
 SEE+1 = 0.29 RBSQ = 0.9971 DurH = -2.70 DoFree = 159 to 2007.006
 MAPE = 0.84
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce17 - - - - - - - - - - - - - - - - - 25.55 - - -
 1 pce17[1] 0.92469 134.2 0.92 1.95 25.42
```



```
#18 49 cdoth E1CAM1 D "Photographic equipment"
ti 18 Photographic equipment
r pce18 = pce18[1],cdoth
: 18 Photographic equipment
 SEE = 0.06 RSQ = 0.9900 RHO = 0.08 Obser = 162 from 1994.001
 SEE+1 = 0.06 RBSQ = 0.9899 DurH = 1.40 DoFree = 159 to 2007.006
 MAPE = 1.07
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce18 - - - - - - - - - - - - - - - - - 3. 38 - - -
 1 intercept
 2 pce18[1] }\begin{array}{lllllll}{0.58431}&{0.50.1}&{0.58}&{1.35}&{3.67}&{0.584}
 3 cdoth 0.00742 16.0 0.32 1.00 160.33 0.413
#19 50 cdoth E1BCY1 D "Bicycles"
ti 19 Bicycles
r pce19 = !pce19[1],cdoth,cdoth[1]
: 19 Bicycles
 SEE = 0.04 RSQ = 0.9968 RHO = -0.20 Obser = 162 from 1994.001
 SEE+1 = 0.04 RBSQ = 0.9968 DurH = -2.65 DoFree = 159 to 2007.006
 MAPE = 0.86
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce19 - - - - - - - - - - - - - - - - - 3. 35 - - -
 l pce19[1]
 3 cdoth[1] -0.01692 30.4 -0.70 1.00 159.60-0.709
#20 51 cdoth E1MCY1 D "Motorcycles"
ti 20 Motorcycles
#con 50 0.3 = a3
#con 20 0 = a3 + a4
#con 50 0.9 = a2
r pce20 = pce20[1],cdoth,cdoth[2]
: 20 Motorcycles
 SEE = 0.46 RSQ = 0.9797 RHO = -0.27 Obser = 162 from 1994.001
 SEE+1 = 0.44 RBSQ = 0.9793 DurH = -4.25 DoFree = 158 to 2007.006
 MAPE = 4.00
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce20 - - - - - - - - - - - - - - - - 7.72 - - -
 1 intercept
```



```
 4 cdoth[2] -0.05319 3.3 -1.09 1.00 158.87 -0.540
#21 53 cdoth E1BOA1 D "Pleasure boats"
ti 21 Pleasure boats
```

```
r pce21 = pce21[1],cdoth,cdoth[2],crude
: 21 Pleasure boats
 SEE = 0.73 RSQ = 0.9571 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.73 RBSQ = 0.9560 DurH = 0.50 DoFree = 157 to 2007.006
 MAPE = 4.41
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce21
 1 intercept
 - - - - - - - - - - - - - - - 13.31 - - -
 -3.38918
 3 cdoth 0.17056 13.3 2.05 1.0.19
 lllllrl
#22 54 cdoth E1AIR1 D "Pleasure aircraft"
ti 22 Pleasure aircraft
r pce22 = !pce22[1],pce22[2],cdoth,cdoth[2]
 22 Pleasure aircraft
 SEE = 0.06 RSQ = 0.9417 RHO = 0.08 Obser = 162 from 1994.001
 SEE+1 = 0.06 RBSQ = 0.9406 DurH = 3.49 DoFree = 158 to 2007.006
 MAPE = 4.20
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce22 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 1.18 _ - -
 1 pce22[1] 0.25150 4.2 4.2 0.25 2.03 1.17
```



```
 3 cdoth
 4 cdoth[2] -0.01376 9.5 -1.86 1.00 158.87 -1.738
\#23 55 cdoth E1JRY1 C "Jewelry and watches (18)"
ti 23 Jewelry and watches
r pce23 = pce23[1], cdoth, cdoth[1]
: 23 Jewelry and watches
SEE \(=0.58\) RSQ \(=0.9948\) RHO \(=-0.25\) Obser \(=162\) from 1994.001
SEE+1 \(=\quad 0.56\) RBSQ \(=0.9947\) DurH \(=-4.43\) DoFree \(=158\) to 2007.006
MAPE = 0.95
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce23 - - - - - - - - - - - - - 48.97 - - -
\(\begin{array}{llllll}1 \text { intercept } & 2.51352 & 6.1 & 0.05 & 193.54 & 1.00\end{array}\)
\(\begin{array}{lllllll}2 & \text { pce23[1] } & 0.73150 & 46.3 & 0.73 & 2.13 & 48.78 \\ 0.730\end{array}\)
\(\begin{array}{lrrrrrr}3 \text { cdoth } & 0.25156 & 41.2 & 0.82 & 1.38 & 160.33 & 1.015 \\ 4 \text { cdoth[1] } & -0.18524 & 17.4 & -0.60 & 1.00 & 159.60 & -0.746\end{array}\)
\#24 56 cdoth E1BKS1 C "Books and maps (87)"
ti 24 Books and maps
r pce24 = !pce24[1],pce24[2],cdoth[1]
24 Books and maps
SEE = 0.63 RSQ \(=0.9926\) RHO \(=-0.08\) Obser \(=162\) from 1994.001
SEE+1 \(=0.63\) RBSQ \(=0.9925\) DurH \(=-2.58\) DoFree \(=159\) to 2007.006
MAPE \(=1.44\)
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
```



```
\(\begin{array}{llllll}1 \text { pce24[1] } & 0.49170 & 11.7 & 0.49 & 1.27 & 33.06\end{array}\)
\(\begin{array}{lrrrrrr}2 \text { pce24[2] } & 0.35913 & 7.4 & 0.36 & 1.06 & 32.91 & 0.361 \\ 3 & \text { cdoth[1] } & 0.03219 & 2.8 & 0.15 & 1.00 & 159.60 \\ 0.145\end{array}\)
\#25 61 cnfood E1\#grA1 D "Cereals"
ti 25 Cereals
r pce25 = ! pce25[1],cnfood,gdp
```

```
: 25 Cereals
 SEE = 0.23 RSQ = 0.9891 RHO = -0.12 Obser = 162 from 1994.001
 SEE+1 = 0.23 RBSQ = 0.9890 DurH = -1.58 DoFree = 159 to 2007.006
 MAPE = 0.55
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce25
_ - _ - _ - - - - - _ - _ - - - - 27.18 - - -
 1 pce25[1]
 0.99098 1181.5 0.99 1.05 27.13
```



```
#26 62 cnfood E1BAK1 D "Bakery products"
ti 26 Bakery products
r pce26 = pce26[1],pce26[2],pce26[3],cnfood
 26 Bakery products
 SEE = 0.28 RSQ = 0.9979 RHO = 0.03 Obser = 162 from 1994.001
 SEE+1 = 0.28 RBSQ = 0.9979 DurH = 0.97 DoFree = 157 to 2007.006
 MAPE = 0.46
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce26
```



```
 2 pce26[1] 0.47427 12.2 0.47 1.41
 3 pce26[2] 0.13635 0.9 0.14 1.25 4 0.0.19
```



```
 5 cnfood 0.00460 7.8 0.10 1.00 954.45 0.133
#27 63 cnfood E1BEE1 D "Beef and veal"
ti 27 Beef and veal
r pce27 = !pce27[1],cnfood,cnfood[1]
 2 7 \text { Beef and veal}
 SEE = 0.17 RSQ = 0.9973 RHO = 0.38 Obser = 162 from 1994.001
 SEE+1 = 0.16 RBSQ = 0.9973 DurH = 4.85 DoFree = 159 to 2007.006
 MAPE = 0.48
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce27 _ - - - - - - - - - - - - - - - - 26.43 - - -
 1 pce27[1] 0.98421 1131.8 0.98
```



```
#28 64 cnfood E1POR1 D "Pork"
```

\#28 64 cnfood E1POR1 D "Pork"
ti 28 Pork
ti 28 Pork
r pce28 = ! pce28[1],cnfood,cnfood[1]
r pce28 = ! pce28[1],cnfood,cnfood[1]
28 Pork
28 Pork
SEE = 0.14 RSQ = 0.9980 RHO = 0.28 Obser = 162 from 1994.001
SEE = 0.14 RSQ = 0.9980 RHO = 0.28 Obser = 162 from 1994.001
SEE+1 = 0.13 RBSQ = 0.9980 DurH = 3.53 DoFree = 159 to 2007.006
SEE+1 = 0.13 RBSQ = 0.9980 DurH = 3.53 DoFree = 159 to 2007.006
MAPE = 0.44
MAPE = 0.44
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce28 - - - - - - - - - - - - - - - - - 21.83 - - -
0 pce28 - - - - - - - - - - - - - - - - - 21.83 - - -
1 pce28[1] 1.00469 955.0 1.00 1.94 21.77
1 pce28[1] 1.00469 955.0 1.00 1.94 21.77
2 cnfood 0.02268 39.2 0.0.99 1.92
2 cnfood 0.02268 39.2 0.0.99 1.92
3 cnfood[1] -0.02282 38.4 -0.99 1.00 950.60
3 cnfood[1] -0.02282 38.4 -0.99 1.00 950.60
\#29 65 cnfood E1MEA1 D "Other meats"
ti 29 Other meats
r pce29 = pce29[1],cnfood,cnfood[1]
: 29 Other meats
SEE = 0.08 RSQ = 0.9993 RHO = -0.23 Obser = 162 from 1994.001
SEE+1 = 0.08 RBSQ = 0.9992 DurH = -3.30 DoFree = 158 to 2007.006

```
```

    MAPE = 0.32
        Variable name
    0 pce29
    1 \text { intercept}
    2 pce29[1]
    cnfood
    4 cnfood[1]
    | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - - - - - | - - - - | - - - | - - - - | 17.66 | - - - |
| 0.19474 | 2.0 | 0.01 | 1350.24 | 1.00 |  |
| 0.90422 | 132.9 | 0.90 | 2.75 | 17.60 | 0.897 |
| 0.01766 | 63.4 | 0.95 | 2.05 | 954.45 | 1.075 |
| -0.01609 | 43.2 | -0.87 | 1.00 | 950.60 | -0.972 |

\#30 66 cnfood E1POU1 D "Poultry"
ti 30 Poultry
r pce30 = pce30[1],cnfood,cnfood[1]
: 30 Poultry
SEE = 0.18 RSQ = 0.9982 RHO = 0.20 Obser = 162 from 1994.001
SEE+1 = 0.17 RBSQ = 0.9982 DurH = 2.58 DoFree = 158 to 2007.006
MAPE = 0.42
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce30 _ - _ _ _ _ - - - - _ - _ - - - - 32.01 - - -
l intercept
3 cnfood
4 cnfood[1] -0.03155 42.3 -0.94 1.00 950.60 -1.323
\#31 67 cnfood E1FIS1 D "Fish and seafood"
ti 31 Fish and seafood
r pce31 = !pce31[1],cnfood,cnfood[1]
31 Fish and seafood
SEE = 0.07 RSQ = 0.9992 RHO = 0.19 Obser = 162 from 1994.001
SEE+1 = 0.07 RBSQ = 0.9992 DurH = 2.46 DoFree = 159 to 2007.006
MAPE = 0.49
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce31 - - - - - - - - - - - - - - - - - 10.54 - - -
1 pce31[1] 0.99457 874.5 0.99 1.84 10.50

```

```

\#32 68 cnfood E1GGS1 D "Eggs"
ti 32 Eggs
r pce32 = !pce32[1]
: 32 Eggs
SEE = 0.07 RSQ = 0.9955 RHO = 0.47 Obser = 162 from 1994.001
SEE+1 = 0.06 RBSQ = 0.9955 DurH = 5.95 DoFree = 161 to 2007.006
MAPE = 0.79
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce32 - - - - - - - - - - - - - - - - - 5.59 - - -
1 pce32[1] 1.00336 8006.1 1.00 1.00 5.57
\#33 69 cnfood E1MIL1 D "Fresh milk and cream"
ti 33 Fresh milk and cream
\#con 50 1 = a2
r pce33 = !pce33[1],cnfood
: 33 Fresh milk and cream
SEE = 0.12 RSQ = 0.9971 RHO = -0.01 Obser = 162 from 1994.001
SEE+1 = 0.12 RBSQ = 0.9970 DurH = -0.16 DoFree = 160 to 2007.006
MAPE = 0.57
Variable name

| Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - - - - - | - - - - | - - - | - - - - | 14.58 | - - - |
| 0.96448 | 832.1 | 0.96 | 1.14 | 14.54 |  |
| 0.00058 | 6.6 | 0.04 | 1.00 | 954.45 | 0.049 |

```
```

\#34 70 cnfood E1DAI1 D "Processed dairy products"
ti 34 Processed dairy products
\#con 20 -0.3 = a3
r pce34 = !pce34[1],cnfood

- 34 Processed dairy products
SEE = 0.27 RSQ = 0.9982 RHO = -0.06 Obser = 162 from 1994.001
SEE+1 = 0.27 RBSQ = 0.9982 DurH = -0.77 DoFree = 160 to 2007.006
MAPE = 0.55
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce34
1 pce34[1] 0.95497 244.9 0.95 1.03 31.59
2 cnfood 0.00164 1.4 0.05 1.00 954.45
~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ 31.72 - - -
\#35 71 cnfood E1FRU1 D "Fresh fruits"
ti 35 Fresh fruits
r pce35 = pce35[1],cnfood

```

```

\#36 72 cnfood E1VEG1 D "Fresh vegetables"
ti 36 Fresh vegetables
r pce36 = !pce36[1],cnfood,cnfood[1]
36 Fresh vegetables
SEE = 0.16 RSQ = 0.9992 RHO = 0.10 Obser = 162 from 1994.001
SEE+1 = 0.15 RBSQ = 0.9992 DurH = 1.33 DoFree = 159 to 2007.006
MAPE = 0.42
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce36 - - - - - - - - - - - - - - - - 25.49 - - -
1 pce36[1] 0.97941 709.9 0.97 1.83 25.38
2 cnfood 0.02353 34.0
3 cnfood[1] -0.02296 32.1 -0.86 1.00 950.60 -0.740
\#37 73 cnfood E1PFV1 D "Processed fruits and vegetables"
ti 37 Processed fruits and vegetables
r pce37 = !pce37[1]
: 37 Processed fruits and vegetables
SEE = 0.18 RSQ = 0.9957 RHO = 0.01 Obser = 162 from 1994.001
SEE+1 = 0.18 RBSQ = 0.9957 DurH = 0.18 DoFree = 161 to 2007.006
MAPE = 0.61
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce37 - - - - - - - - - - - - - - - - - 19.13 - - -
1 pce37[1] 1.00314 10888.0 1.00 1.00 19.07
\#38 74 cnfood E1JNB1 D "Juices and nonalcoholic drinks"
ti 38 Juices and nonalcoholic drinks
r pce38 = pce38[1],cnfood
38 Juices and nonalcoholic drinks
SEE = 0.40 RSQ = 0.9984 RHO = -0.16 Obser = 162 from 1994.001
SEE+1 = 0.40 RBSQ = 0.9984 DurH = -2.11 DoFree = 159 to 2007.006

```

\#42 78 cnfood E1OFD1 D "Other foods"
ti 42 Other foods
r pce42 = pce42[1], cnfood
: 42 Other foods
SEE \(=0.68 \mathrm{RSQ}=0.9992\) RHO \(=0.02\) Obser \(=162\) from 1994.001
SEE+1 = \(\quad 0.68\) RBSQ \(=0.9991\) DurH \(=0.25\) DoFree \(=159\) to 2007.006
MAPE = 0.51
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce42 - - - - - - - - - - - - 87.30 - - -
1 intercept \(\begin{array}{llllll} & -4.19337 & 5.4 & -0.05 & 1179.60 & 1.00\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2 pce42[1] & & 0.89808 & 188.7 & 0.89 & 1.11 & & 86.80 & 0.891 \\
\hline 3 cnfood & & 0.01419 & 5.3 & 0.16 & 1.00 & & 954.45 & 0.109 \\
\hline \multicolumn{9}{|l|}{\#43 79 cnfood E1PEF1 D "Pet food" ti 43 Pet food} \\
\hline \multicolumn{9}{|l|}{r pce43 = pce43[1], cnfood} \\
\hline & & \multicolumn{7}{|c|}{43 Pet food} \\
\hline SEE = & 0.25 RSQ & \multicolumn{3}{|l|}{\(=0.9972 \mathrm{RHO}=-0.12\) O} & Obser & & from 19 & 1994.001 \\
\hline SEE+1 = & 0.25 RBSQ & \(=0.9972\) & \multicolumn{2}{|l|}{DurH \(=-1.60\) Do} & DoFree & 159 & to 200 & 2007.006 \\
\hline MAPE = 0 & 0.94 & \multirow[t]{2}{*}{Reg-Coef} & \multirow[t]{2}{*}{Mexval} & \multirow[t]{2}{*}{Elas} & \multirow[b]{2}{*}{NorRes} & & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{Beta} \\
\hline Variable name & & & & & & & & \\
\hline 0 pce43 & & - - - - - & - - - & - - & - - - & & 21.82 & - - - \\
\hline 1 intercept & & -0.47003 & 2.9 & -0.02 & 357.79 & & 1.00 & \\
\hline 2 pce43[1] & & 0.86420 & 142.3 & 0.86 & 1.13 & & 21.71 & 0.862 \\
\hline 3 cnfood & & 0.00370 & 6.1 & 0.16 & 1.00 & & 954.45 & 0.138 \\
\hline
\end{tabular}
\#44 81 cnfood E1MLT1 D "Beer and ale, at home"
ti 44 Beer and ale, at home
r pce44 = !pce44[1],pce44[2], cnfood,cnfood[1],oildf
: 44 Beer and ale, at home
SEE = 0.42 RSQ \(=0.9984\) RHO \(=-0.15\) Obser \(=162\) from 1994.001

SEE+1 \(=\quad 0.42\) RBSQ \(=0.9983\) DurH \(=-2.66\) DoFree \(=157\) to 2007.006
MAPE = 0.65
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce44
- - - - - - - . - . - - - 44.88 - -

1 pce44[1]
\begin{tabular}{rrrrrr}
1.10634 & 96.3 & 1.10 & 2.42 & 44.64 & \\
-0.12863 & 1.8 & -0.13 & 2.41 & 44.40 & -0.126 \\
0.05792 & 26.6 & 1.23 & 2.37 & 954.45 & 0.985 \\
-0.05693 & 25.8 & -1.21 & 1.51 & 950.60 & -0.961 \\
0.14136 & 23.0 & 0.00 & 1.00 & 0.32 & 0.030
\end{tabular}
\#45 82 cnfood E1WIN1 D "Wine and brandy, at home"
ti 45 Wine and brandy, at home
r pce45 = !pce45[1], cnfood, cnfood[1]

\#46 83 cnfood E1LIQ1 D "Distilled spirits, at home"
ti 46 Distilled spirits, at home
r pce46 = !pce46[1], cnfood, cnfood[2],oildf
: 46 Distilled spirits, at home
\(\mathrm{SEE}=0.15 \mathrm{RSQ}=0.9956 \mathrm{RHO}=-0.28\) Obser \(=162\) from 1994.001
SEE+1 \(=\quad 0.14\) RBSQ \(=0.9955\) DurH \(=-3.71\) DoFree \(=158\) to 2007.006
MAPE = 0.81
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce46 - - - - - - - - - - - - - 13.59 - - -
1 pce46[1]
\begin{tabular}{rrrrrr}
0.92446 & 199.9 & 0.92 & 1.17 & 13.54 & \\
0.00571 & 3.3 & 0.40 & 1.06 & 954.45 & 0.464 \\
-0.00462 & 2.0 & -0.32 & 1.02 & 946.75 & -0.370 \\
0.00915 & 0.9 & 0.00 & 1.00 & 0.32 & 0.009
\end{tabular}
\#47 84 cnfood E1PMB1 C "Purchased meals and beverages (4)"
ti 47 Purchased meals and beverages
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{4}{|l|}{Purchased meals and beverages} & & & \\
\hline SEE & 2.37 RSQ & \(=0.9989 \mathrm{R}\) & RHO \(=0\) & 0.21 Obs & er & & from 19 & 1994.001 \\
\hline SEE+1 & 2.33 RBSQ & \(=0.9989 \mathrm{D}\) & DurH \(=3\) & 3.73 DoF & ree & 159 & to 20 & 2007.006 \\
\hline MAPE & 0.51 & & & & & & & \\
\hline Variable name & & Reg-Coef & Mexval & Elas & NorRes & & Mean & Beta \\
\hline 0 pce47 & & - - - - - & - - - - - & - - - & - - - - & & 359.65 & 5 \\
\hline 1 intercept & & -16.65154 & 30.4 & -0.05 & 920.10 & & 1.00 & \\
\hline 2 pce47[1] & & 0.30200 & 9.0 & 0.30 & 2.02 & & 358.13 & \(3 \quad 0.300\) \\
\hline 3 cnfood & & 0.28094 & 42.1 & 0.75 & 1.00 & & 954.45 & \(5 \quad 0.700\) \\
\hline
\end{tabular}
\#48 93 cnfood E1PIF1 C "Food furnished to employees or home grown"
ti 48 Food furnished to employees or home grown
r pce48 = !pce48[1],pce48[2]
: 48 Food furnished to employees or home grown SEE \(=0.04\) RSQ \(=0.9996\) RHO \(=-0.22\) Obser \(=162\) from 1994.001 SEE+1 \(=\quad 0.04\) RBSQ \(=0.9996\) DurH \(=-3.94\) DoFree \(=160\) to 2007.006 MAPE = 0.24

Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce48 - - - - - - - - - - - - - 10.21 - - -
1 pce48[1] \(1.74011 \quad 173.4 \quad 1.73 \quad 2.16 \quad 10.17\)
2 pce48[2] \(\quad-0.73906 \quad 46.9 \quad-0.73 \quad 1.00 \quad 10.13-0.722\)
```

\#49 99 cncloth E1SHU1 C "Shoes (12)"
ti 49 Shoes
r pce49 = pce49[1],cncloth,cncloth[1]
49 Shoes
SEE = 0.34 RSQ = 0.9975 RHO = -0.18 Obser = 162 from 1994.001
SEE+1 = 0.33 RBSQ = 0.9975 DurH = -2.84 DoFree = 158 to 2007.006
MAPE = 0.58
Variable name
Reg-Coef Mexval Elas NorRes Mean Beta
0 pce49 - - - - - - - - - - - - - - - - - 46.81 - - -
1 intercept -0.71989 1.8 -0.02 401.19 1.00
2 pce49[1] }\begin{array}{llllllll}{0.81268 69.3 0.81 4.27 4.0.67}\&{0.812}
3 cncloth }r\mathrm{ 0.16509

```
\#50 100 cncloth E1WCL1 C "Women's and children's clothing and accessories except shoes (14)"
ti 50 Women's and children's clothing and accessories except shoes

\#51 106 cncloth E1MMC1 C "Men's and boys' clothing and accessories except shoes \((15+16) "\)
ti 51 Men's and boys' clothing and accessories except shoes
```

r pce51 = !pce51[1],cncloth,cncloth[1]
: 51 Men's and boys' clothing and accessories except shoes
SEE = 0.27 RSQ = 0.9995 RHO = -0.24 Obser = 162 from 1994.001
SEE+1 = 0.26 RBSQ = 0.9995 DurH = -3.12 DoFree = 159 to 2007.006
MAPE = 0.22
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce51 - - - - - - - - - - - - - - - - - 92.10 - - -
1 pce51[1] 0.94644 273.5 0.94 18.67 91.82
2 cncloth 0.30845 332.0 0.98 0.9 8.19
3 cncloth[1] -0.29160 186.2 -0.93 1.00 292.79 -0.920
\#52 114 cngas E1GAO1 B "Gasoline and oil (75)"
ti 52 Gasoline and oil
r pce52 = cngas
5 2 ~ G a s o l i n e ~ a n d ~ o i l
SEE = 1.38 RSQ = 0.9996 RHO = 0.51 Obser = 162 from 1994.001
SEE+1 = 1.20 RBSQ = 0.9996 DW = 0.99 DoFree = 160 to 2007.006
MAPE = 0.61
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce52 - - - - - - - - - - - - - - - - - 182.08 - - -
1 intercept
2 cngas 0.95223 4852.3 1.03 1.00 197.83 1.000
\#53 117 cngas E1FUL1 B "Fuel oil and coal (40)"
ti 53 Fuel oil and coal
r pce53 = pce53[1],cngas,oildf
: 53 Fuel oil and coal
SEE = 1.15 RSQ = 0.9029 RHO = -0.11 Obser = 162 from 1994.001
SEE+1 = 1.14 RBSQ = 0.9011 DurH = -3.15 DoFree = 158 to 2007.006
MAPE = 4.75
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce53 - - - - - - - - - - - - - - - - - 15.75 - - -
1 intercept 2.67014 8.2 0.2 0.17 10.30
2 pce53[1] }\begin{array}{lllllll}{0.58228}\&{19.9}\&{0.58}\&{1.21}\&{15.68}\&{0.577}
3 cngas
\#54 123 cnoth E1TOB1 C "Tobacco products (7)"
ti 54 Tobacco products
r pce54 = !pce54[1],pce54[2],cnoth,cnoth[1]
54 Tobacco products
SEE = 1.44 RSQ = 0.9931 RHO = -0.03 Obser = 162 from 1994.001
SEE+1 = 1.44 RBSQ = 0.9930 DurH = -0.94 DoFree = 158 to 2007.006
MAPE = 1.22
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce54 - - - - - - - - - - - - - - - - - 73.28 - - -
1 pce54[1] 0.61559 20.6 0.61 1.03 1.0.0. 72.97
2 pce54[2] 0.36730 0.7.7 0.36 1.07 1.0. 72.67 0.369
3 cnoth 0.08196 3.3 0.60 1.06 536.51 0.605
4 cnoth[1] -0.07931 3.1 -0.58 1.00 533.91 -0.584
\#55 124 cnoth E1TLG1 C "Toilet articles and preparations (21)"
ti 55 Toilet articles and preparations

```
```

r pce55 = pce55[1],cnoth,cnoth[1]

```
r pce55 = pce55[1],cnoth,cnoth[1]
 55 Toilet articles and preparations
 55 Toilet articles and preparations
 SEE = 0.40 RSQ = 0.9955 RHO = -0.08 Obser = 162 from 1994.001
```

    SEE = 0.40 RSQ = 0.9955 RHO = -0.08 Obser = 162 from 1994.001
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SEE+1 = & 0.40 RBSQ & \(=0.9954 \mathrm{D}\) & rH \(=-0\). & . 98 D & ree = & 158 & to 2 & 2007.006 \\
\hline \multicolumn{9}{|l|}{\[
\text { MAPE }=0.55
\]} \\
\hline Variable name & & Reg-Coef & Mexval & Elas & NorRes & & Mean & Beta \\
\hline 0 pce55 & & - - - - - & - - - - & - - - & - & & 54.25 & - \\
\hline 1 intercept & & 0.91110 & 0.9 & 0.02 & 220.48 & & 1.00 & \\
\hline 2 pce55[1] & & 0.97078 & 367.4 & 0.97 & 1.71 & & 54.09 & 90.969 \\
\hline 3 cnoth & & 0.07306 & 30.2 & 0.72 & 1.66 & & 536.51 & 1.577 \\
\hline 4 cnoth [1] & & -0.07187 & 29.0 & -0.71 & 1.00 & & 533.91 & -1.548 \\
\hline
\end{tabular}
\#56 128 cnoth E1SDH1 C "Semidurable house furnishings (33)" ti 56 Semidurable house furnishings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{56 Semidurable house furnishings} \\
\hline SEE & 0 & 0.36 RSQ & \(=0.9956 \mathrm{R}\) & RHO \(=-0\) & 0.25 Obs & ser = & 162 & from 19 & 1994.001 \\
\hline SEE+1 & 0 & 0.35 RBSQ & \(=0.9955 \mathrm{D}\) & DurH \(=-3\) & 3.73 DoF & Free = & 158 & to 20 & 2007.006 \\
\hline \multicolumn{10}{|l|}{\(\mathrm{MAPE}=0.73\)} \\
\hline \multicolumn{3}{|l|}{Variable name} & Reg-Coef & Mexval & Elas & NorRes & & Mean & Beta \\
\hline \multicolumn{3}{|l|}{0 pce56} & - - - - & - - - - & - - & - - - - & & 36.33 & \(3-\) \\
\hline \multicolumn{3}{|l|}{1 intercept} & 1.99449 & 3.6 & 0.05 & 225.25 & & 1.00 & \\
\hline \multicolumn{3}{|l|}{2 pce56[1]} & 0.85533 & 91.1 & 0.85 & 1.25 & & 36.22 & 20.853 \\
\hline \multicolumn{3}{|l|}{3 cnoth} & 0.03433 & 8.9 & 0.51 & 1.12 & & 536.51 & 10.807 \\
\hline \multicolumn{3}{|l|}{4 cnoth[1]} & -0.02820 & 5.8 & -0.41 & 1.00 & & 533.91 & 1-0.662 \\
\hline
\end{tabular}
\#57 129 cnoth E1CLP1 C "Cleaning, polishing preparations, misc. supplies and paper products"
ti 57 Cleaning, polishing, misc. supplies and paper products
r pce57 = !pce57[1],gdp
: \(\quad 57\) Cleaning, polishing, misc. supplies and paper products
SEE = 0.46 RSQ \(=0.9983 \mathrm{RHO}=-0.36\) Obser \(=162\) from 1994.001
SEE+1 = 0.43 RBSQ \(=0.9983\) DurH \(=-4.81\) DoFree \(=160\) to 2007.006
MAPE = 0.51
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce57
1 pce57[1]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{_ - _ - - - -}} \\
\hline & \\
\hline
\end{tabular}
\(\begin{array}{llrrrrr}2 \text { gdp } & 0.00034 & 1.4 & 0.05 & 1.00 & 9935.29 & 0.060\end{array}\)
\#58 133 cnoth E1DRG1 C "Drug preparations and sundries (45)" ti 58 Drug preparations and sundries
r pce58 = pce58[1], cnoth
: 58 Drug preparations and sundries
SEE = 2.89 RSQ \(=0.9983\) RHO \(=-0.10\) Obser \(=162\) from 1994.001
SEE+1 \(=\quad 2.88\) RBSQ \(=0.9983\) DurH \(=-1.46\) DoFree \(=159\) to 2007.006
MAPE = 1.21
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

\(\begin{array}{lrrrrrr}1 \text { intercept } & -30.20938 & 14.4 & -0.17 & 588.69 & 1.00 & \\ 2 \text { pce58[1] } & 0.73389 & 87.4 & 0.73 & 1.34 & 178.39 & 0.732\end{array}\)
\(\begin{array}{lllllll}3 \text { cnoth } & 0.14725 & 15.7 & 0.44 & 1.00 & 536.51 & 0.268\end{array}\)
\#59 139 cnoth E1DOL1 D "Toys, dolls, and games"
ti 59 Toys, dolls, and games
r pce59 = !pce59[1], cnoth, cnoth[1], gdp
: 59 Toys, dolls, and games
SEE = 0.61 RSQ \(=0.9906\) RHO \(=-0.28\) Obser \(=162\) from 1994.001
SEE+1 = 0.59 RBSQ \(=0.9904\) DurH \(=-3.84\) DoFree \(=158\) to 2007.006
MAPE = 0.99
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 pce59 & - - - - - & - - - & - - - & - - & 40.99 & - - - \\
\hline 1 pce59[1] & 0.90261 & 154.2 & 0.90 & 1.26 & 40.84 & \\
\hline 2 cnoth & 0.05307 & 7.3 & 0.69 & 1.25 & 536.51 & 1.075 \\
\hline 3 cnoth[1] & -0.05959 & 9.4 & -0.78 & 1.06 & 533.91 & -1.204 \\
\hline 4 gdp & 0.00075 & 2.9 & 0.18 & 1.00 & 9935.29 & 0.234 \\
\hline
\end{tabular}
\#60 140 cnoth E1AMM1 D "Sport supplies, including ammunition" ti 60 Sport supplies, including ammunition
```

r pce60 = pce60[1],gdp

```

\#61 141 cnoth E1FLM1 D "Film and photo supplies"
ti 61 Film and photo supplies

\#62 142 cnoth E1STY1 C "Stationery and writing supplies (35)" ti 62 Stationery and writing supplies
r pce62 = pce62[1], cnoth, cnoth[1],gdp

\#63 145 cnoth E1NFR1 C "Net foreign remittances" ti 63 Net foreign remittances

\#65 153 cnoth E1FLO1 C "Flowers, seeds, and potted plants (95)" ti 65 Flowers, seeds, and potted plants
r pce65 = !pce65[1], cnoth, cnoth[1],gdp
65 Flowers, seeds, and potted plants
SEE \(=0.25 \mathrm{RSQ}=0.9846 \mathrm{RHO}=-0.39\) Obser \(=162\) from 1994.001

SEE+1 = \(\quad 0.23\) RBSQ \(=0.9843\) DurH \(=-5.07\) DoFree \(=158\) to 2007.006 MAPE = 1.11

Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce65 - - - - - - - - - - - - - 17.10 - - -
\(\begin{array}{llllll}1 \text { pce65[1] } & 0.97421 & 360.8 & 0.97 & 1.06 & 17.06\end{array}\)
2 cnoth \(\quad 0.00967 \quad 1.6 \quad 0.30 \quad 1.06 \quad 536.51 \quad 0.623\)
3 cnoth[1] \(\quad-0.01178 \quad 2.3-0.37 \quad 1.02 \quad 533.91-0.757\)
\(\begin{array}{lllllll}4 & \text { gdp } & 0.00016 & 1.1 & 0.09 & 1.00 & 9935.29\end{array} 0.158\)
\#66 155 cshous E1HOS1 B "Housing"
ti 66 Housing
r pce66 = !pce66[1]

```

stack
\#67 173 csho E1ELC1 C "Electricity (37)"
ti 67 Electricity
r pce67 = pce67[1],csho
\#68 174 csho E1NGS1 C "Gas (38)"
ti 68 Gas
r pce68 = pce68[1],csho,gdp
do
: SEE = 5.34 RSQ = 0.9249 RHO Gas = 0.06 Obser = 162 from 1994.001
SEE+1 = 5.34 RBSQ = 0.9240 DurH = 1.04 DoFree = 159 to 2007.006
MAPE = 3.69
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

```


The Sigma Matrix
\begin{tabular}{rrr}
0 & 28.53391 & 0.00000 \\
1 & 0.00000 & 12.67309
\end{tabular}

The Sigma Inverse Matrix
\[
\begin{array}{lll}
0 & 0.0350 & 0.0000 \\
1 & 0.0000 & 0.0789
\end{array}
\]

```

    SEE+1 = 0.14 RBSQ = 0.9998 DurH = 2.01 DoFree = 160 to 2007.006
    MAPE = 0.17
            Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 pce69 - - - - - - - - - - - - - - - - - 51.74 - - -
    1 intercept 0.14189 1.6 0.00 4278.67 1.00
    2 pce69[1] 1.00138 6441.2 1.00 1.00 51.52 1.000
    stack
\#70 181 csho E1CEL1 D "Cellular telephone"
ti 70 Cellular telephone
r pce70 = pce70[1],gdp
\#71 182 csho E1OLC1 D "Local telephone"
ti 71 Local telephone
r pce71 = !pce71[1],pce70[1]
\#72 183 csho E1LDT1 D "Long distance telephone"
ti 72 Long distance telephone
r pce72 = !pce72[1],csho,pce70[1]
do
: SEE = 0.26 RSQ = = % Long distance telephone
SEE+1 = 0.25 RBSQ = 0.9998 DurH = 3.79 DoFree = 159 to 2007.006
MAPE = 0.67
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce70 - - - - - - - - - - - - - - - - - 33.89 - - -

```

```

    3 gdp 0.00027 2.9 0.08 1.00 9935.29 0.028
    : 72 Long distance telephone
SEE = 0.34 RSQ = 0.9969 RHO = 0.15 Obser = 162 from 1994.001
SEE+1 = 0.34 RBSQ = 0.9969 DurH = 1.92 DoFree = 160 to 2007.006
MAPE = 0.53
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce71 _ _ - _ _ - - - - _ _ _ _ - - - - 45.75 - - -
1 pce71[1] 1.00646 5296.2 1.00 1.07 45.65
2 pce70[1] -0.00590 3.5 -0.00 1.00 33.49 -0.018
: 72 Long distance telephone
SEE = 0.58 RSQ = 0.9957 RHO = 0.08 Obser = 162 from 1994.001
SEE+1 = 0.58 RBSQ = 0.9956 DurH = 1.01 DoFree = 159 to 2007.006
MAPE = 1.20
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce72
1 pce72[1]
- -- - - - - - - - - - - - -
2 csho
3 pce70[1] -0.04859 5.6 -0.04 1.00 33.49 -0.106

```

The Sigma Matrix
\begin{tabular}{llll}
0 & 0.06584 & 0.00000 & 0.00000 \\
1 & 0.00000 & 0.11878 & 0.00000 \\
2 & 0.00000 & 0.00000 & 0.33565
\end{tabular}
```

The Sigma Inverse Matrix

```
\begin{tabular}{lrrr}
0 & 15.1892 & 0.0000 & 0.0000 \\
1 & 0.0000 & 8.4188 & 0.0000 \\
2 & 0.0000 & 0.0000 & 2.9793
\end{tabular}

\#73 186 csho E1DMS1 C "Domestic service (42)"
ti 73 Domestic service
r pce73 = pce73[1],csho,csho[1]
: 73 Domestic service
 SEE = 0.15 RSQ = 0.9964 RHO = 0.55 Obser = 162 from 1994.001
 SEE+1 \(=\quad 0.13\) RBSQ \(=0.9964\) DurH \(=7.23\) DoFree \(=158\) to 2007.006
 MAPE = 0.61
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce73 - - - - - - - - - - - - - 16.92 - - -
 \(\begin{array}{lrrrrrr}1 \text { intercept } & 0.11043 & 0.5 & 0.01 & 280.56 & 1.00 & \\ 2 \text { pce73[1] } & 0.98043 & 356.6 & 0.98 & 1.01 & 16.86 & 0.980\end{array}\)
 \(\begin{array}{lrrrrrr}3 & \text { csho } & -0.00075 & 0.1 & -0.02 & 1.01 & 391.48\end{array}-0.021\)
 \(\begin{array}{llllllll}4 & \text { csho [1] } & 0.00146 & 0.4 & 0.03 & 1.00 & 389.99 & 0.040\end{array}\)
\#74 189 csho E1OPO1 C "Other (43)"
ti 74 Other Household Services
r pce74 = pce74[1],pce74[2],pce74[3],csho,csho[1]
 74 Other Household Services

\#75 202 cstr E1ARP1 D "Motor vehicle repair" ti 75 Motor vehicle repair

\#76 203 cstr E1RLO1 D "Motor vehicle rental, leasing, and other" ti 76 Motor vehicle rental, leasing, and other
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{76 Motor vehicle rental, leasing, and other} \\
\hline SEE & \(=0\) & 0.60 RSQ & \(=0.9963 \mathrm{R}\) & RHO \(=0\) & 0.19 Ob & ser = & 162 & from 19 & 1994.001 \\
\hline SEE+1 & \(=0\). & 0.59 RBSQ & \(=0.9962 \mathrm{D}\) & DurH \(=2\) & 2.36 Do & Free = & 159 & to 20 & 2007.006 \\
\hline \multicolumn{10}{|l|}{MAPE = 0.88} \\
\hline Var & able name & & Reg-Coef & Mexval & Elas & NorRes & & Mean & Beta \\
\hline 0 pce & & & - - - - - & - - - - - & - & - - - - & & 52.78 & 8 \\
\hline 1 int & ercept & & 1.24298 & 7.2 & 0.02 & 268.35 & & 1.00 & \\
\hline 2 pce & 6[1] & & 0.98054 & 1538.1 & 0.98 & 1.01 & & 52.55 & 5 0.998 \\
\hline 3 oil & & & 0.01963 & 0.3 & 0.00 & 1.00 & & 0.32 & 20.004 \\
\hline
\end{tabular}
\#77 210 cstr E1TOL1 C "Bridge, tunnel, ferry, and road tolls" ti 77 Bridge, tunnel, ferry, and road tolls
r pce77 = !pce77[1]
: \(\quad 77\) Bridge, tunnel, ferry, and road tolls SEE \(=0.06\) RSQ \(=0.9972 \mathrm{RHO}=-0.05\) Obser \(=162\) from 1994.001 SEE+1 \(=\quad 0.06\) RBSQ \(=0.9972\) DurH \(=-0.62\) DoFree \(=161\) to 2007.006 MAPE \(=0.86\)

Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 pce77 - - - - - - - - . - - - - - 5.08 - 1 pce77[1] \(1.004738991 .6 \quad 1.00 \quad 1.00 \quad 5.06\)
\#78 211 cstr E1AIN1 C "Insurance"
ti 78 Insurance (Automobiles)


```

ti 83 Airline
r pce83 = pce83[1],cstr
: 83 Airline
SEE = 1.25 RSQ = 0.9070 RHO = -0.17 Obser = 162 from 1994.001
SEE+1 = 1.24 RBSQ = 0.9058 DurH = -2.58 DoFree = 159 to 2007.006
MAPE = 2.67
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce83
1 intercept 1.80871
l pce83[1]
\#84 219 cstr E1TRO1 C "Other mass transportation(85)"
ti 84 Other transportation
r pce84 = pce84[1],oildf
SEE = 0.12 RSQ = 0.9942 RHO = 0.09 Obser = 162 from 1994.001
SEE+1 = 0.12 RBSQ = 0.9942 DurH = 1.17 DoFree = 159 to 2007.006
MAPE = 1.17
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce84 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - % 8.09 _ - -
1 intercept
l pce84[1]
\#85 221 csmc E1PHY1 C "Physicians (47)"
ti 85 Physicians
r pce85 = pce85[1],csmc
: 85 Physicians
SEE = 0.94 RSQ = 0.9998 RHO = 0.25 Obser = 162 from 1994.001
SEE+1 = 0.92 RBSQ = 0.9998 DurH = 3.79 DoFree = 159 to 2007.006
MAPE = 0.23
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce85 _ - - _ - - - - - - - - - - - 257.60 - - -
l intercept
3 csmc
\#86 222 csmc E1DEN1 C "Dentists (48)"
ti 86 Dentists
r pce86 = pce86[1],csmc
SEE = 0.15 RSQ = 0.9999 RHO = 0.37 Obser = 162 from 1994.001
SEE+1 = 0.14 RBSQ = 0.9999 DurH = 4.69 DoFree = 159 to 2007.006
MAPE = 0.17
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce86 - - - - - - - - - - - - - - - - - 64.89 - - -
1 intercept
2 pce86[1] 1.01094 876.0 1.01 1.00 64.55 1.007
3 csmc -0.00040 0.2 -0.01 1.00 1118.22 -0.007
\#87 223 csmc E1OPS1 C "Other professional services (49)"
ti 87 Other professional services
r pce87 = pce87[1],csmc
8 7 Other professional services

```
```

SEE = 0.47 RSQ = 0.9999 RHO = 0.34 Obser = 162 from 1994.001
SEE+1 = 0.44 RBSQ = 0.9999 DurH = 4.48 DoFree = 159 to 2007.006
MAPE = 0.20
Variable name

| Reg-Coef | Mexval | las | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - - - - | - - - - | - - | - - - - | 175.65 | - - - |
| 0.66587 | 3.4 | 0.00 | 8253.35 | 1.00 |  |
| 0.92531 | 373.1 | 0.92 | 1.16 | 174.73 | 0.921 |
| 0.01190 | 7.7 | 0.08 | 1.00 | 1118.22 | 0.079 |

```
\#88 229 csmc E1HSP1 C "Hospitals"
ti 88 Hospitals
r pce88 = !pce88[1], csmc
: 88 Hospitals
 \(\mathrm{SEE}=1.91 \mathrm{RSQ}=0.9997\) RHO \(=-0.15\) Obser \(=162\) from 1994.001
 SEE+1 = \(\quad 1.89\) RBSQ \(=0.9997\) DurH \(=-2.21\) DoFree \(=160\) to 2007.006
 MAPE = 0.37
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce88 - - - - - - - - - - - - - 435.95 - -
 \(\begin{array}{lrrrrrr}1 \text { pce88[1] } & 0.82141 & 104.2 & 0.82 & 1.16 & 433.73 & \\ 2 \text { csmc } & 0.07126 & 7.6 & 0.18 & 1.00 & 1118.22 & 0.184\end{array}\)
\#89 233 csmc E1NRS1 C "Nursing homes"
ti 89 Nursing homes
r pce89 = pce89[1], csmc
: 89 Nursing homes
 \(\mathrm{SEE}=0.26 \mathrm{RSQ}=0.9998 \mathrm{RHO}=0.60\) Obser \(=162\) from 1994.001
 SEE+1 \(=\quad 0.21\) RBSQ \(=0.9998\) DurH \(=7.63\) DoFree \(=159\) to 2007.006
 MAPE = 0.22
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce89 - - - - - - - - - - - - - 89.70 - - -
 \(\begin{array}{lrrrrrr}1 \text { intercept } & 0.64368 & 5.3 & 0.01 & 4702.34 & 1.00 & \\ 2 \text { pce89[1] } & 0.98086 & 1124.3 & 0.98 & 1.07 & 89.30 & 0.979\end{array}\)
 \(\begin{array}{llllllll}3 \mathrm{csmc} & 0.00131 & 3.4 & 0.02 & 1.00 & 1118.22 & 0.021\end{array}\)
\#90 236 csmc E1HIN1 C "Health insurance (56)"
ti 90 Health insurance
r pce90 = pce90[1],csmc,csmc[1]
: 90 Health insurance
 SEE = 0.35 RSQ \(=0.9999\) RHO \(=0.80\) Obser \(=162\) from 1994.001
 SEE+1 = \(\quad 0.22\) RBSQ \(=0.9999\) DurH \(=10.21\) DoFree \(=158\) to 2007.006
 MAPE = 0.28
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce90
 1 intercept \(\quad-1.08819 \quad 4.9\)-0.01 8209.40 \(\quad 1.00\)
- - - - - - - - - - - - - 94.43 - -
 \(\begin{array}{lllllll}2 \text { pce90[1] } & 0.97680 & 906.7 & 0.97 & 1.19 & 93.81 & 0.969\end{array}\)
 \(\begin{array}{lrrrrrr}3 \mathrm{csmc} & 0.03343 & 3.0 & 0.40 & 1.05 & 1118.22 & 0.295 \\ 4 & \text { csmc }[1] & -0.03011 & 2.4 & -0.35 & 1.00 & 1112.34 \\ -0.264\end{array}\)
\#91 241 csrec E1SSA1 C "Admissions to specified spectator amusements (96)" ti 91 Admissions to specified spectator amusements
```

r pce91 = pce91[1],csrec,csrec[1],oildf
91 Admissions to specified spectator amusements
SEE = 0.78 RSQ = 0.9870 RHO = -0.15 Obser = 162 from 1994.001
SEE+1 = 0.77 RBSQ = 0.9866 DurH = -2.79 DoFree = 157 to 2007.006
MAPE = 1.95
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce91 _ - - - - - - - - - - - - - - - 30.69 - - -

```
\begin{tabular}{lrrrrrr}
1 intercept & 0.97615 & 2.8 & 0.03 & 76.73 & 1.00 & \\
2 pce91[1] & 0.70533 & 40.6 & 0.70 & 1.84 & 30.55 & 0.708 \\
3 csrec & 0.31648 & 24.0 & 2.83 & 1.42 & 274.40 & 3.147 \\
4 csrec[1] & -0.28819 & 18.7 & -2.56 & 1.02 & 272.95 & -2.858 \\
5 oildf & -0.05468 & 1.1 & -0.00 & 1.00 & 0.32 & -0.017
\end{tabular}
\#92 246 csrec E1RTV1 C "Radio and television repair" ti 92 Radio and television repair
r pce92 = pce92[1], pce92[2], csrec
: 92 Radio and television repair
SEE \(=0.02 \mathrm{RSQ}=0.9987\) RHO \(=-0.14\) Obser \(=162\) from 1994.001
SEE+1 \(=\quad 0.02\) RBSQ \(=0.9987\) DurH \(=-2.91\) DoFree \(=158\) to 2007.006
MAPE = 0.36
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce92
1 intercept
_ _ _ _ _ _ _ - _ _ _ _ - - 4.18 - - -
\begin{tabular}{lllllll}
2 & pce92[1] & 1.61556 & 129.5 & 1.61 & 1.64 & 4.17 \\
\hline
\end{tabular}
\(\begin{array}{lrrrrrr}3 \text { pce92[2] } & -0.62562 & 27.8 & -0.62 & 1.01 & 4.15 & -0.617 \\ 4 \text { csrec } & 0.00009 & 0.7 & 0.01 & 1.00 & 274.40 & 0.011\end{array}\)
\#93 247 csrec E1CLU1 C "Clubs and fraternal organizations"
ti 93 Clubs and fraternal organizations
r pce93 = !pce93[1], gdp
93 Clubs and fraternal organizations
SEE \(=0.16\) RSQ \(=0.9967\) RHO \(=0.28\) Obser \(=162\) from 1994.001
SEE+1 \(=\quad 0.15\) RBSQ \(=0.9967\) DurH \(=3.61\) DoFree \(=160\) to 2007.006
MAPE \(=0.54\)
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce93 - - - - - - - - - - - - - 19.83 - - -
\(\begin{array}{llrrrrrr}1 & \text { pce93[1] } & 0.98631 & 888.1 & 0.98 & 1.03 & 19.78 & \\ 2 \text { gdp } & 0.00003 & 1.3 & 0.02 & 1.00 & 9935.29 & 0.023\end{array}\)
\#94 248 csrec E1COM1 C "Commercial participant amusements"
ti 94 Commercial participant amusements
r pce94 = pce94[1],csrec,csrec[1]
: 94 Commercial participant amusements
SEE \(=0.83\) RSQ \(=0.9987\) RHO \(=-0.14\) Obser \(=162\) from 1994.001
SEE+1 = \(\quad 0.82\) RBSQ \(=0.9987\) DurH \(=-2.20\) DoFree \(=158\) to 2007.006
MAPE \(=0.86\)
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pce94 - - - - - - - - - - - - - - 77.78 - - -
1 intercept
\begin{tabular}{rrrrrr}
-3.03012 & 4.8 & -0.04 & 772.36 & 1.00 & \\
0.80843 & 67.4 & 0.80 & 3.17 & 77.28 & 0.807
\end{tabular}
\(\begin{array}{lllllrl}2 & \text { pce94[1] } & 0.80843 & 67.4 & 0.80 & 3.17 & 77.28 \\ 3 \text { csrec } & 0.61391 & 66.2 & 2.17 & 2.01 & 274.40 & 1.811\end{array}\)
4 csrec[1] \(\quad-0.55001 \quad 41.8 \quad-1.93 \quad 1.00 \quad 272.95-1.618\)
\#95 254 csrec E1PAR1 C "Pari-mutual net receipts"
ti 95 Pari-mutual net receipts
r pce95 = pce95[1],pce95[2],csrec,gdp
: 95 Pari-mutual net receipts
SEE = 0.02 RSQ = 0.9994 RHO = -0.05 Obser = 162 from 1994.001
SEE+1 \(=\quad 0.02\) RBSQ \(=0.9994\) DurH \(=-1.43\) DoFree \(=157\) to 2007.006
MAPE = 0.30
Variable name
\begin{tabular}{|c|c|c|c|c|}
\hline Reg-Coef & Mexval & Elas & NorRes & Mean Bet \\
\hline - - - & - & - & - - - - & 4.95 - \\
\hline -0.05623 & 1.1 & -0.01 & 1611.57 & 1.00 \\
\hline 1.33692 & 76.6 & 1.33 & 1.32 & 4.921 .331 \\
\hline
\end{tabular}
```

| 3 pce95[2] | -0.39265 | 9.3 | -0.39 | 1.09 | 4.90 | -0.389 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 csrec | -0.00086 | 1.4 | -0.05 | 1.06 | 274.40 | -0.061 |
| 5 gdp | 0.00006 | 3.2 | 0.12 | 1.00 | 9935.29 | 0.119 |

\#96 255 csrec E1REO1 C "Other Recreation Services"
ti 96 Other Recreation Services

```
```

r pce96 = pce96[1],csrec

```
r pce96 = pce96[1],csrec
 SEE = 0.48 RSQ = 0.9998 RHO = 0.09 Obser = 162 from 1994.001
 SEE = 0.48 RSQ = 0.9998 RHO = 0.09 Obser = 162 from 1994.001
 SEE+1 = 0.47 RBSQ = 0.9998 DurH = 1.34 DoFree = 159 to 2007.006
 SEE+1 = 0.47 RBSQ = 0.9998 DurH = 1.34 DoFree = 159 to 2007.006
 MAPE = 0.24
 MAPE = 0.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce96 - - - - - - - - - - - - - - - - - 136.98 - - -
```

    0 pce96 - - - - - - - - - - - - - - - - - 136.98 - - -
    ```


```

    2 pce96[1] 
    ```
 2 pce96[1]
#97 270 csoth E1CRC1 C "Cleaning, storage, and repair of clothing and shoes
(17)"
ti 97 Cleaning, storage, and repair of clothing and shoes
r pce97 = !pce97[1],pce97[2]
: 97 Cleaning, storage, and repair of clothing and shoes
 SEE = 0.05 RSQ = 0.9992 RHO = -0.13 Obser = 162 from 1994.001
 SEE+1 = 0.04 RBSQ = 0.9992 DurH = -2.59 DoFree = 160 to 2007.006
 MAPE = 0.22
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce97 _ - - - - - - - - - - - - - - 14.75 - - -
 1 pce97[1] 1.64907 136.9 1.65 1.71 14.71
 2 pce97[2] -0.64832 30.8 -0.65 1.00 14.68 -0.656
#98 275 csoth E1BBB1 C "Barbershops, beauty parlors, and health clubs (22)"
ti 98 Barbershops, beauty parlors, and health clubs
r pce98 = pce98[1],gdp
 SEE = 0.13 RSQ = 0.9998 RHO = 0.34 Obser = 162 from 1994.001
 SEE+1 = 0.12 RBSQ = 0.9998 DurH = 4.40 DoFree = 159 to 2007.006
 MAPE = 0.25
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce98 _ - - - _ _ - - - - - _ - _ - - - 38.77 - - -
```




```
#99 278 csoth E1COT1 C "Other Personal Care(19)"
ti 99 Other Personal Care
r pce99 = !pce99[1],pce99[2]
: 99 Other Personal Care
 SEE = 0.16 RSQ = 0.9998 RHO = -0.07 Obser = 162 from 1994.001
 SEE+1 = 0.16 RBSQ = 0.9998 DurH = -2.35 DoFree = 160 to 2007.006
 MAPE = 0.34
 Variable name
\begin{tabular}{|c|c|c|c|c|}
\hline Reg-Coef & Mexval & Elas & NorRes & Mean Beta \\
\hline - & - - - - & - - - & - - - - & 34.69 \\
\hline 1.44993 & 88.9 & 1.44 & 1.24 & 34.45 \\
\hline -0.44588 & 11.3 & -0.44 & 1.00 & 34.20-0.438 \\
\hline
\end{tabular}
\#100 282 csoth E1BRO1 C "Brokerage charges and investment counseling (61)" ti 100 Brokerage charges and investment counseling
```


\#101 290 csoth E1BNK1 C "Bank service charges, trust services, and safe deposit box rental"
ti 101 Bank, trust services, and safe deposit box rental

```
r pce101 = !pce101[1],csoth,csoth[1]
: 101 Bank, trust services, and safe deposit box rental
 SEE = 0.61 RSQ = 0.9994 RHO = 0.17 Obser = 162 from 1994.001
 SEE+1 = 0.60 RBSQ = 0.9994 DurH = 2.21 DoFree = 159 to 2007.006
 MAPE = 0.66
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce101 - - - - - - - - - - - - - - - - - 67.36 - - -
 1 pce101[1] 1.00687 1215.9 1.00 1.00 1.06
```


\#102 295 csoth E1IMP1 C "Services furnished w/out payment by intermediaries except life ins. carriers"
ti 102 Services furnished w/out payment by intermediaries except life ins. carriers
r pce102 = pce102[1], csoth, djia
102 Services furnished w/out payment by intermediaries except life ins. carrier $\mathrm{SEE}=1.01 \mathrm{RSQ}=0.9991 \mathrm{RHO}=0.69$ Obser $=162$ from 1994.001 SEE+1 = $\quad 0.75$ RBSQ $=0.9991$ DurH $=8.89$ DoFree $=158$ to 2007.006 MAPE $=0.47$

| Variable name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pce102 | - | - - - - | - - - | - - - - | 164.08 | - - - |
| intercept | 2.00803 | 4.2 | 0.01 | 1125.32 | 1.00 |  |
| pce102[1] | 0.94777 | 410.8 | 0.94 | 1.15 | 163.38 | 0.947 |
| csoth | 0.00510 | 1.8 | 0.03 | 1.12 | 933.88 | 0.035 |
| djia | 0.00028 | 5.6 | 0.01 | 1.00 | 8771.94 | 0.021 |

\#103 298 csoth E1LIF1 C "Expense of handling life insurance and pension plans (64)"
ti 103 Expense of handling life insurance and pension plans
r pce103 = pce103[1],csmc,gdp,oildf[6],oildf[9]
: $\quad 103$ Expense of handling life insurance and pension plans SEE = 3.58 RSQ $=0.9387$ RHO $=-0.21$ Obser $=162$ from 1994.001 SEE+1 = $\quad 3.50$ RBSQ $=0.9368$ DurH $=-3.94$ DoFree $=156$ to 2007.006 MAPE = 1.97

## Variable name

| Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - - - - |  |  |  | 89.41 | - - - |
| 0.85311 | 0.0 | 0.01 | 16.32 | 1.00 |  |
| 0.67094 | 37.2 | 0.67 | 1.22 | 89.13 | 0.664 |
| -0.02157 | 2.0 | -0.27 | 1.12 | 1118.22 | -0.422 |
| 0.00531 | 4.3 | 0.59 | 1.04 | 9935.29 | 0.722 |
| 0.12589 | 0.3 | 0.00 | 1.03 | 0.24 | 0.018 |
| 0.31839 | 1.6 | 0.00 | 1.00 | 0.25 | 0.046 |

```
#104 299 csoth E1GAL1 C "Legal services (65)"
ti 104 Legal services
r pce104 = !pce104[1],pce104[2],csoth
: 104 Legal services
 SEE = 0.30 RSQ = 0.9996 RHO = -0.04 Obser = 162 from 1994.001
 SEE+1 = 0.30 RBSQ = 0.9996 DurH = -1.37 DoFree = 159 to 2007.006
 MAPE = 0.30
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce104 - - - - - - - - - - - - - - - - - 67.21 - - -
 1 pce104[1] 1.37063 78.1 1.36 1.21
 2 pce104[2] -0.39001
#105 300 csoth E1FUN1 C "Funeral and burial expenses (66)"
ti 105 Funeral and burial expenses
r pce105 = pce105[1],pce105[2],oildf,gdp
: 105 Funeral and burial expenses
 SEE = 0.38 RSQ = 0.9481 RHO = -0.02 Obser = 162 from 1994.001
 SEE+1 = 0.38 RBSQ = 0.9468 DurH = 999.00 DoFree = 157 to 2007.006
 MAPE = 2.00
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce105 - - - - - - - - - - - - - - - - - 14.39 - - -
 1 intercept
 2 pce105[1] 0.53690 13.5 0.54 0.54 1.27 14.35 0.534
 3 pce105[2] 0.09041 0.4 0.09 1.17 14.31 0.090
 4 oildf -0.01633 0.4 -0.00 1.17 0.0.0.32-0.022
 5 gdp [llllllll
#106 301 csoth E1PBO1 C "Other Personal Service(67)"
ti 106 Other Personal Service(67)
r pce106 = pce106[1]
: 106 Other Personal Service(67)
 SEE = 0.13 RSQ = 0.9998 RHO = 0.32 Obser = 162 from 1994.001
 SEE+1 = 0.13 RBSQ = 0.9998 DurH = 4.09 DoFree = 160 to 2007.006
 MAPE = 0.28
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce106 - - - - - - - - - - - - - - - - - 34.18 - - -
 1 intercept 0.13000 2.8 0.00 4167.40 1.00
 2 pce106[1] 1.00118 6355.5 1.00 1.00 34.01 1.000
#107 310 csoth E1HED1 C "Higher education (105)"
ti 107 Higher education
r pce107 = pce107[1],csoth
: 107 Higher education
 SEE = 0.26 RSQ = 0.9999 RHO = 0.57 Obser = 162 from 1994.001
 SEE+1 = 0.22 RBSQ = 0.9999 DurH = 7.29 DoFree = 159 to 2007.006
 MAPE = 0.21
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce107 - - - - - - - - - - - - - - - - - 93.36 - - -
 l intercept
 3 csoth 0.00161 2.3 0.02 1.00 933.88 0.015
\#108 313 csoth E1EED1 C "Nursery, elementary, and secondary schools (106)" ti 108 Nursery, elementary, and secondary schools
```

```
r pce108 = pce108[1],csoth
108 Nursery, elementary, and secondary schools
 SEE = 0.07 RSQ = 0.9999 RHO = 0.35 Obser = 162 from 1994.001
 SEE+1 = 0.07 RBSQ = 0.9999 DurH = 4.48 DoFree = 159 to 2007.006
 MAPE = 0.15
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce108 - - - - - - - - - - - - - - - - - 35.62 - - -
 l intercept
 3 csoth 0.00047 1.0 0.01 1.00 933.88 0.016
#109 316 csoth E1OED1 C "Other Education (107)"
ti 109 Other Education
r pce109 = !pce109[1],pce109[2],csoth
: 109 Other Education
 SEE = 0.27 RSQ = 0.9995 RHO = -0.00 Obser = 162 from 1994.001
 SEE+1 = 0.27 RBSQ = 0.9995 DurH = -0.09 DoFree = 159 to 2007.006
 MAPE = 0.40
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce109 - - - - - - - - - - - - - - - - - 41.68 - - -
 1 pce109[1] 1.36701 78.0 1.36 1.22 41.41
 2 pce109[2] -0.38281 8.3 -0.38 1.03 41.14 -0.379
 3 csoth 0.00089 1.5 0.02 1.00 933.88 0.017
#110 320 csoth E1POL1 D "Political organizations"
ti 110 Political organizations
r pce110 = !pce110[8],pce110[4],csoth
: 110 Political organizations
 SEE = 1.21 RSQ = 0.5307 RHO = 0.81 Obser = 162 from 1994.001
 SEE+1 = 0.72 RBSQ = 0.5248 DurH = 16.22 DoFree = 159 to 2007.006
 MAPE = 96.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pce110
 Reg-Coef Mexval Elas NorRes Mean Beta
 1 pce110[8]
 -0.69327 34.5 -0.66 4.39 2.17
 2 pce110[4]
 3 csoth 0.00242 43.8 1.00 1.00 933.88 0.317
#111 321 csoth E1MUS1 D "Museums and libraries"
ti 111 Museums and libraries
r pce111 = !pce111[1],pce111[2],csoth[1]
111 Museums and libraries
 SEE = 0.04 RSQ = 0.9996 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.04 RBSQ = 0.9995 DurH = -1.13 DoFree = 159 to 2007.006
 MAPE = 0.39
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pcel11
 _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - 7.58 _ - -
 1 pce111[1]
 1.61217 132.4 1.60 1.75 7.54
 2 pce111[2] -0.63850 30.5 -0.63 rrrrrrer
 3 csoth[1] 0.00023 2.4 0.03 1.00 928.97 0.029
#112 322 csoth E1FOU1 D "Foundations to religion and welfare"
ti 112 Foundations to religion and welfare
r pce112 = ! pce112[1],csoth
: 112 Foundations to religion and welfare
 SEE = 0.08 RSQ = 0.9991 RHO = 0.54 Obser = 162 from 1994.001
 SEE+1 = 0.07 RBSQ = 0.9991 DurH = 6.92 DoFree = 160 to 2007.006
 MAPE = 0.60
```



| 2 csoth | -0.02918 | 2.7 | -0.30 | 1.08 | 933.88 | -0.557 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 gdp | 0.00439 | 3.7 | 0.48 | 1.00 | 9935.29 | 0.710 |

## Price index equations

```
#1 3 cdmv E1NEW1 B "New autos (70)"
ti 1 New autos (70)
r cqp1 = cqp1[1],time,gdpi
: 1 New autos (70)
 SEE = 0.22 RSQ = 0.9856 RHO = 0.21 Obser = 162 from 1994.001
 SEE+1 = 0.22 RBSQ = 0.9854 DurH = 2.75 DoFree = 158 to 2007.006
 MAPE = 0.17
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp1 - - - - - - - - - - - - - - - - - 98.89 - - -
 l intercept
 3 time rro.16709
 4 gdpi 2.68918 3.8 0.03 1.00 1.04 0.295
#2 6 cdmv E1NPU1 B "Net purchases of used autos (71)"
ti 2 Net purchases of used autos (71)
r cqp2 = cqp2[1],crude,crude[1]
 2 \text { Net purchases of used autos (71)}
 SEE = 0.89 RSQ = 0.9547 RHO = 0.05 Obser = 162 from 1994.001
 SEE+1 = 0.89 RBSQ = 0.9539 DurH = 0.71 DoFree = 158 to 2007.006
 MAPE = 0.62
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp2 _ - _ - _ - - - - - _ _ _ - - - - 98.59 _ - -
 1 intercept
 2 cqp2[1]
 3 crude rrrrrrrrern
#3 10 cdmv E1OAU1 C "Other motor vehicles (72)"
ti 3 Other motor vehicles (72)
r cqp3 = cqp3[1],time,oildf
: 3 Other motor vehicles (72)
 SEE = 0.32 RSQ = 0.9803 RHO = 0.10 Obser = 162 from 1994.001
 SEE+1 = 0.31 RBSQ = 0.9800 DurH = 1.33 DoFree = 158 to 2007.006
 MAPE = 0.26
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp3 - - - - - - - - - - - - - - - - - 97.47 - - -
 l intercept
 3 time
 4 oildf -0.01932 0.9 -0.00 1.00 0.32 -0.019
#4 13 cdmv E1TBA1 C "Tires, tubes, accessories, and other parts (73)"
ti 4 Tires, tubes, accessories, and other parts
r cqp4 = cqp4[1],crude
 4 Tires, tubes, accessories, and other parts
 SEE = 0.28 RSQ = 0.9957 RHO = -0.11 Obser = 162 from 1994.001
 SEE+1 = 0.28 RBSQ = 0.9956 DurH = -1.44 DoFree = 159 to 2007.006
```

| MAPE = 0.20 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 cqp4 | - - - - - | - - - | - - - | - - - - | 103.84 | - - - |
| 1 intercept | 1.77061 | 0.7 | 0.02 | 231.10 | 1.00 |  |
| 2 cqp 4[1] | 0.98026 | 540.8 | 0.98 | 1.09 | 103.75 | 0.956 |
| 3 crude | 0.01289 | 4.5 | 0.00 | 1.00 | 28.35 | 0.046 |

\#5 17 cdfur E1FNR1 C "Furniture, including mattresses and bedsprings (29)"
ti 5 Furniture, including mattresses and bedsprings

```
r cqp5 = cqp5[1],oildf
 5 Furniture, including mattresses and bedsprings
 SEE = 0.54 RSQ = 0.9611 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.54 RBSQ = 0.9606 DurH = 0.25 DoFree = 159 to 2007.006
 MAPE = 0.43
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp5
 Reg-Coef Mexval Elas NorRes Mean Beta
 1 intercept 1.28593 1.0.2 0.01
```


\#6 18 cdfur E1APP1 C "Kitchen and other household appliances (30)"
ti 6 Kitchen and other household appliances
r cqp6 = cqp6[1],gdpi
6 Kitchen and other household appliances
SEE $=0.53$ RSQ $=0.9872$ RHO $=0.10$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.53$ RBSQ $=0.9871$ DurH $=1.36$ DoFree $=159$ to 2007.006
MAPE $=0.42$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

$\begin{array}{llllll}1 \text { intercept } & -1.05275 & 0.1 & -0.01 & 78.28 & 1.00\end{array}$
$\begin{array}{lrrrrrr}2 \text { cqp6[1] } & 1.00590 & 345.4 & 1.01 & 1.01 & 99.97 & 1.009 \\ 3 \text { gdpi } & 0.41180 & 0.3 & 0.00 & 1.00 & 1.04 & 0.018\end{array}$
\#7 21 cdfur E1CHN1 C "China, glassware, tableware, and utensils (31)"
ti 7 China, glassware, tableware, and utensils
r cqp7 = !cqp7[1], cqp7[2]
: 7 China, glassware, tableware, and utensils
SEE = 1.09 RSQ $=0.9751$ RHO $=-0.04$ Obser $=162$ from 1994.001
SEE+1 = $\quad 1.09$ RBSQ $=0.9749$ DurH $=-5.45$ DoFree $=160$ to 2007.006
MAPE $=0.88$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp7 7 - - . . . . . . . . . . . . . 96.82 - -
$\begin{array}{llrrrrrl}1 & \text { cqp7[1] } & 0.86441 & 32.8 & 0.87 & 1.02 & 96.95 & \\ 2 & \text { cqp7[2] } & 0.13406 & 0.9 & 0.13 & 1.00 & 97.09 & 0.133\end{array}$
\#8 23 cdfur E1VAM1 C "Video and audio goods, including musical instruments (92)"
ti 8 Video and audio goods, including musical instruments
r cqp8 = !cqp8[1],time
: 8 Video and audio goods, including musical instruments
SEE $=0.64$ RSQ $=0.9990$ RHO $=-0.12$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.64$ RBSQ $=0.9990$ DurH $=-1.48$ DoFree $=160$ to 2007.006
MAPE = 0.39
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp8 - - - - - - - - - - - - - 97.91 - - -
1 cqp8[1] $\quad 0.99773$ 9596.3 $\quad 1.00 \quad 1.05 \quad 98.34$


```
#9 32 cdfur E1CPP1 D "Computers and peripherals"
ti 9 Computers and peripherals
r cqp9 = !cqp9[1],cqp9[2]
: 9 Computers and peripherals
 SEE = 4.94 RSQ = 0.9996 RHO = -0.04 Obser = 162 from 1994.001
 SEE+1 = 4.93 RBSQ = 0.9996 DurH = -1.44 DoFree = 160 to 2007.006
 MAPE = 1.06
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp9 - - - - - - - - - - - - - - - - - 209.02 - - -
 1 cqp9[1] 1.31230 72.7 1.34 1.13 213.87
 cqp9[2] -0.32579 6.2 -0.34 1.00 218.76 -0.337
#10 33 cdfur E1CPS1 D "Software"
ti 10 Software
r cqp10 = !cqp10[1],cqp10[2]
 10 Software
 SEE = 2.49 RSQ = 0.9993 RHO = -0.05 Obser = 162 from 1994.001
 SEE+1 = 2.48 RBSQ = 0.9992 DurH = -1.68 DoFree = 160 to 2007.006
 MAPE = 1.10
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp10 - - - - - - - - - - - - - - - - - 134.75 - - -
 1 cqp10[1] 1.33541 74.8 1.36 1.14 136.73
 2 cqp10[2] -0.34628 6.9 -0.36 1.00 138.74 -0.361
#11 35 cdfur E1FLR1 D "Floor coverings"
ti 11 Floor coverings
r cqp11 = cqp11[1],gdpi
 11 Floor coverings
 SEE = 0.81 RSQ = 0.9841 RHO = 0.11 Obser = 162 from 1994.001
 SEE+1 = 0.81 RBSQ = 0.9839 DurH = 1.63 DoFree = 159 to 2007.006
 MAPE = 0.61
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp11 - - - - - - - - - - - - - - - - - 100.51 - - -
 1 intercept
```



```
#12 36 cdfur E1DHF1 D "Durable house furnishings, n.e.c."
ti 12 Durable house furnishings, n.e.c.
r cqp12 = !cqp12[1],time
 12 Durable house furnishings, n.e.c.
 SEE = 0.97 RSQ = 0.9943 RHO = -0.16 Obser = 162 from 1994.001
 SEE+1 = 0.96 RBSQ = 0.9943 DurH = -2.07 DoFree = 160 to 2007.006
 MAPE = 0.74
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp12 - - - - - - - - - - - - - - - - - 95.27 - - -
 1 cqp12[1] 0.99979 5439.1 1.00 1.02 95.52
 2 time -0.03081 1.2 -0.00 1.00 7.79 -0.009
#13 39 cdfur E1WTR1 D "Writing equipment"
ti 13 Writing equipment
r cqp13 = !cqp13[1]
:
 13 Writing equipment
 SEE = 0.82 RSQ = 0.9986 RHO = -0.07 Obser = 162 from 1994.001
 SEE+1 = 0.82 RBSQ = 0.9986 DurH = -0.84 DoFree = 161 to 2007.006
 MAPE = 0.38
```

```
\begin{tabular}{ll}
Variable name & Reg-Coef Mexval Elas NorRes \\
0 cqp13 & \(-\ldots-\ldots-\ldots-\ldots-\ldots-\ldots\)
\end{tabular}\(\quad\) Mean \begin{tabular}{l}
Beta
\end{tabular}
 1 cqp13[1] 1.00455 12910.9 1.00 1.00 104.01
#14 40 cdfur E1TOO1 D "Hand tools"
ti 14 Hand tools
r cqp14 = !cqp14[1],cqp14[3],time,gdpi
 1 4 ~ H a n d ~ t o o l s
 SEE = 0.45 RSQ = 0.9633 RHO = 0.04 Obser = 162 from 1994.001
 SEE+1 = 0.45 RBSQ = 0.9626 DurH = 0.75 DoFree = 158 to 2007.006
 MAPE = 0.34
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp14 - - - - - - - - - - - - - - - - - 100.47 - - -
 1 cqp14[1] 0.87065 54.5 0.8 0.87 1.06 100.47
 2 cqp14[3] 0.09888 1.0 0.10 1.05 100.48 0.099
 3 time -0.25570 1.9 -0.02 1.04 % 7.79 -0.423
 4 gdpi lllllllll
#15 44 cdoth E1OPT1 C "Ophthalmic products and orthopedic appliances (46)"
ti 15 Ophthalmic products and orthopedic appliances
r cqp15 = cqp15[1],time
: 15 Ophthalmic products and orthopedic appliances
 SEE = 0.49 RSQ = 0.9955 RHO = 0.04 Obser = 162 from 1994.001
 SEE+1 = 0.49 RBSQ = 0.9954 DurH = 0.52 DoFree = 159 to 2007.006
 MAPE = 0.34
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp15 - - - - - - - - - - - - - - - - - 100.57 - - -
```



```
 3 time }\begin{array}{llllllll}{0.21919 0.0 0.02 1.00 0.79 0.117}
#16 47 cdoth E1GUN1 D "Guns"
ti 16 Guns
r cqp16 = !cqp16[1]
: 16 Guns
 SEE = 0.65 RSQ = 0.9945 RHO = -0.05 Obser = 162 from 1994.001
 SEE+1 = 0.64 RBSQ = 0.9945 DurH = -0.61 DoFree = 161 to 2007.006
 MAPE = 0.47
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp16 - - - - - - - - - - - - - - - - - 101.81 - - -
 1 cqp16[1] 0.99864 15739.8 1.00 1.00 101.95
#17 48 cdoth E1SPT1 D "Sporting equipment
ti 17 Sporting equipment
r cqp17 = !cqp17[1]
: 17 Sporting equipment
 SEE = 0.65 RSQ = 0.9945 RHO = -0.05 Obser = 162 from 1994.001
 SEE+1 = 0.64 RBSQ = 0.9945 DurH = -0.61 DoFree = 161 to 2007.006
 MAPE = 0.47
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp17 - - - - - - - - - - - - - - - - - 101.81 - - -
 1 cqp17[1] 0.99864 15739.8 1.00 1.00 101.95
#18 49 cdoth E1CAM1 D "Photographic equipment"
ti 18 Photographic equipment
r cqp18 = !cqp18[1],crude,gdpi
```

```
: 18 Photographic equipment
 SEE = 0.59 RSQ = 0.9991 RHO = 0.16 Obser = 162 from 1994.001
 SEE+1 = 0.58 RBSQ = 0.9991 DurH = 2.03 DoFree = 159 to 2007.006
 MAPE = 0.56
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp18
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 90.41 _ _ _
 1 cqp18[1] 1.00840 3755.9 1.01 1.0.38
 2 crude 0.01439 1.0 1.2 0.00 1.11
 3 gdpi -1.52046 5.4 -0.02 1.00 1.04 -0.016
#19 50 cdoth E1BCY1 D "Bicycles"
ti 19 Bicycles
r cqp19 = cqp19[1],gdpi
 19 Bicycles
 SEE = 0.61 RSQ = 0.9649 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.61 RBSQ = 0.9645 DurH = 0.31 DoFree = 159 to 2007.006
 MAPE = 0.46
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp19 _ - - - - - - - - - - - - - - - - 99.19 - - -
 1 intercept
 lrrrerl1]
#20 51 cdoth E1MCY1 D "Motorcycles"
ti 20 Motorcycles
r cqp20 = !cqp20[2]
: 20 Motorcycles
 SEE = 0.85 RSQ = 0.9712 RHO = 0.45 Obser = 162 from 1994.001
 SEE+1 = 0.76 RBSQ = 0.9712 DurH = 5.73 DoFree = 161 to 2007.006
 MAPE = 0.58
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp20 - - - - - - - - - - - - - - - - - 97.96 - - -
 1 cqp20[2] 1.00219 11379.0 1.00 1.00 97.73
#21 53 cdoth E1BOA1 D "Pleasure boats"
ti 21 Pleasure boats
r cqp21 = cqp21[1],gdpi
: 21 Pleasure boats
 SEE = 0.61 RSQ = 0.9648 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.61 RBSQ = 0.9644 DurH = 0.31 DoFree = 159 to 2007.006
 MAPE = 0.46
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp21 - - - - - - - - - - - - - - - - - 99.20 - - -
 l intercept
 3 gdpi 1.29332 1.lllllll
#22 54 cdoth E1AIR1 D "Pleasure aircraft"
ti 22 Pleasure aircraft
r cqp22 = cqp22[1],gdpi
: 22 Pleasure aircraft
 SEE = 0.61 RSQ = 0.9648 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.61 RBSQ = 0.9644 DurH = 0.31 DoFree = 159 to 2007.006
 MAPE = 0.46
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp22 _ - - _ _ - - - - - _ _ _ - - - - 99.20 _ - -
 1 intercept 7.98910 2.7 0.08 28.44 1.00
```

| 2 cqp22[1] | 0.90658 | 148.4 | 0.91 | 1.04 | 99.12 | 0.909 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 gdpi | 1.29332 | 2.1 | 0.01 | 1.00 | 1.04 | 0.082 |

\#23 55 cdoth E1JRY1 C "Jewelry and watches (18)"
ti 23 Jewelry and watches

```
r cqp23 = !cqp23[1],gdpi
```

: 23 Jewelry and watches
SEE = $1.25 \mathrm{RSQ}=0.9797 \mathrm{RHO}=-0.22$ Obser $=162$ from 1994.001
SEE+1 $=\quad 1.21$ RBSQ $=0.9796$ DurH $=-2.75$ DoFree $=160$ to 2007.006
MAPE = 0.92
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp23 - - - - - - - - - - - - - 103.14 - - -
$\begin{array}{llrrrrrr}1 \text { cqp23[1] } & 0.99370 & 2133.7 & 0.99 & 1.01 & 103.23 & \\ 2 \text { gdpi } & 0.53439 & 0.7 & 0.01 & 1.00 & 1.04 & 0.013\end{array}$
\#24 56 cdoth E1BKS1 C "Books and maps (87)"
ti 24 Books and maps
r cqp24 = !cqp24[1],time
24 Books and maps
SEE = 0.63 RSQ $=0.9660$ RHO $=-0.06$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.63$ RBSQ $=0.9658$ DurH $=-0.80$ DoFree $=160$ to 2007.006
MAPE = 0.45
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp24 _ _ - . - . - . . . . . . . - 100.46 _ . -
1 cqp24[1] $1.00183 \quad 6663.5 \quad 1.00 \quad 1.01 \quad 100.39$
2 time $\quad-0.01465 \quad 0.4 \quad-0.00 \quad 1.00 \quad 7.79-0.017$
\#25 61 cnfood E1GRA1 D "Cereals"
ti 25 Cereals
r cqp25 = !cqp25[1],cqp25[2]
SEE = 0.50 RSQ $=0.9870$ RHO $=0.02$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.50$ RBSQ $=0.9869$ DurH $=0.84$ DoFree $=160$ to 2007.006
MAPE = 0.38
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp25 - - - - - - - - - - - - - 101.09 - - -
$\begin{array}{llllll}1 \text { cqp25[1] } & 0.72677 & 25.3 & 0.73 & 1.08 & 100.98\end{array}$
$\begin{array}{llllllll}2 \text { cqp25[2] } & 0.27462 & 4.0 & 0.27 & 1.00 & 100.87 & 0.273\end{array}$
\#26 62 cnfood E1BAK1 D "Bakery products"
ti 26 Bakery products
r cqp26 = !cqp26[1],cqp26[2]
: 26 Bakery products
SEE $=0.40$ RSQ $=0.9985$ RHO $=-0.04$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.40$ RBSQ $=0.9985$ DurH $=-3.33$ DoFree $=160$ to 2007.006
MAPE = 0.29
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp26 - - - - - - - - - - - - - 101.56 - - -
$\begin{array}{llllll}1 \text { cqp26[1] } & 0.75409 & 26.3 & 0.75 & 1.06 & 101.32\end{array}$
$\begin{array}{llllllll}2 & \text { cqp26[2] } & 0.24885 & 3.2 & 0.25 & 1.00 & 101.08 & 0.248\end{array}$
\#27 63 cnfood E1BEE1 D "Beef and veal"
ti 27 Beef and veal
r cqp27 = !cqp27[1],gdpi

- 27 Beef and veal
SEE = $1.17 \mathrm{RSQ}=0.9958 \mathrm{RHO}=0.39$ Obser $=162$ from 1994.001

```
 SEE+1 = 1.07 RBSQ = 0.9958 DurH = 5.04 DoFree = 160 to 2007.006
 MAPE = 0.63
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp27 _ - _ - _ _ - - - - _ _ _ - - - - 108.39 - - -
 l cqp27[1]
#28 64 cnfood E1POR1 D "Pork"
ti 28 Pork
r cqp28 = !cqp28[1],cqp28[2]
 SEE = 0.82 RSQ = 0.9915 RHO = -0.02 Obser = 162 from 1994.001
 SEE+1 = 0.82 RBSQ = 0.9915 DurH = 999.00 DoFree = 160 to 2007.006
 MAPE = 0.61
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp28 - - - - - - - - - - - - - - - - - 101.41 - - -
 1 cqp28[1] 1.06482 4. 46.2 1.06 1.00 101.23
 2 cqp28[2] -0.06312 0.2 -0.06 1.00 101.05 -0.063
#2965 cnfood E1MEA1 D "Other meats"
ti 29 Other meats
r cqp29 = !cqp29[1],gdpi
29 Other meats
 SEE = 1.03 RSQ = 0.9881 RHO = -0.39 Obser = 162 from 1994.001
 SEE+1 = 0.95 RBSQ = 0.9880 DurH = -5.01 DoFree = 160 to 2007.006
 MAPE = 0.74
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp29 - - - - - _ - - - - - _ - - - - - 103.74 - - -
 l cqp29[1]
#30 66 cnfood E1POU1 D "Poultry"
ti 30 Poultry
r cqp30 = !cqp30[1],cqp30[2]
: 30 Poultry
 SEE = 0.95 RSQ = 0.9873 RHO = 0.07 Obser = 162 from 1994.001
 SEE+1 = 0.95 RBSQ = 0.9872 DurH = 8.30 DoFree = 160 to 2007.006
 MAPE = 0.73
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp30 - - - - - - - - - - - - - - - - - 102.84 - - -
 1 cqp30[1]
#31 67 cnfood E1FIS1 D "Fish and seafood"
ti 31 Fish and seafood
r cqp31 = cqp31[1],gdpi
 31 Fish and seafood
 SEE = 0.76 RSQ = 0.9855 RHO = -0.19 Obser = 162 from 1994.001
 SEE+1 = 0.75 RBSQ = 0.9853 DurH = -2.76 DoFree = 159 to 2007.006
 MAPE = 0.60
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp31 _ _ _ _ _ _ _ _ _ _ _ _ - - - 98.80 - - -
 l intercept
 lrrrerrin
#32 68 cnfood E1GGS1 D "Eggs"
```

```
ti 32 Eggs
r cqp32 = !cqp32[1], cqp32[2],cqp32[3]
 SEE = 3.27 RSQ = 0.9359 RHO = -0.04 Obser = 162 from 1994.001
 SEE+1 = 3.27 RBSQ = 0.9351 DurH = 999.00 DoFree = 159 to 2007.006
 MAPE = 2.33
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp32 - - - - - - - - - - - - - - - - - 106.58 - - -
 1 cqp32[1] 0.79854 28.7 0.80 1.08 106.24
 2 cqp32[2] }\begin{array}{lllllll}{0.36391}&{4.1}&{0.36}&{1.02}&{105.89}&{0.352}
 3 cqp32[3] -0.15929 1.2 -0.16 1.00 105.62 -0.153
#33 69 cnfood E1MIL1 D "Fresh milk and cream"
ti 33 Fresh milk and cream
r cqp33 = cqp33[1]
: 33 Fresh milk and cream
 SEE = 1.96 RSQ = 0.9725 RHO = 0.31 Obser = 162 from 1994.001
 SEE+1 = 1.87 RBSQ = 0.9723 DurH = 4.03 DoFree = 160 to 2007.006
 MAPE = 1.04
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp33 _ - - - - - - - - - - - - - - - - 101.25 - - -
 l intercept
#34 70 cnfood E1DAI1 D "Processed dairy products"
ti 34 Processed dairy products
r cqp34 = cqp34[1],time,crude
: 34 Processed dairy products
 SEE = 0.68 RSQ = 0.9954 RHO = 0.05 Obser = 162 from 1994.001
 SEE+1 = 0.68 RBSQ = 0.9953 DurH = 0.65 DoFree = 158 to 2007.006
 MAPE = 0.52
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp34 - - - - - - - - - - - - - - - - - 99.32 - - -
 1 intercept
 2 cqp34[1] 0.91179 165.4 0.91 0.9 1.06
 3 time }\begin{array}{lllllll}{0.27442 0.8 2.8 0.02 1.04 0.107}
 4 crude }\begin{array}{lllllll}{-0.01879}&{1.8}&{-0.01}&{1.00}&{28.35}&{-0.028}
#35 71 cnfood E1FRU1 D "Fresh fruits"
ti 35 Fresh fruits
r cqp35 = cqp35[1],gdpi
: 35 Fresh fruits
 SEE = 1.67 RSQ = 0.9777 RHO = 0.08 Obser = 162 from 1994.001
 SEE+1 = 1.66 RBSQ = 0.9774 DurH = 1.24 DoFree = 159 to 2007.006
 MAPE = 1.19
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp35 - - - - - _ - - - - - - - - - - - 103.01 - - -
 l intercept
 3 gdpi
#36 72 cnfood E1VEG1 D "Fresh vegetables"
ti 36 Fresh vegetables
r cqp36 = cqp36[1],gdpi
: 36 Fresh vegetables
 SEE = 3.17 RSQ = 0.9612 RHO = 0.11 Obser = 162 from 1994.001
```

| SEE+1 = | 3.15 RBSQ | $=0.9607 \mathrm{D}$ | $r \mathrm{H}=2$ | 2.21 DoF | Free = | 159 t | to 200 | 007.006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAPE = 2.18 |  |  |  |  |  |  |  |  |
| Variable name |  | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 cqp36 |  | - - - - - | - - - - | - - - - | - - - - |  | 104.43 | - |
| 1 intercept |  | 8.88688 | 5.9 | 0.09 | 25.78 |  | 1.00 |  |
| 2 cqp36[1] |  | 0.65931 | 33.0 | 0.66 | 1.19 |  | 104.13 | 0.657 |
| 3 gdpi |  | 25.93037 | 9.3 | 0.26 | 1.00 |  | 1.04 | 0.331 |

```
#37 73 cnfood E1PFV1 D "Processed fruits and vegetables"
ti 37 Processed fruits and vegetables
r cqp37 = cqp37[1],cqp37[2],gdpi
: 37 Processed fruits and vegetables
 SEE = 0.57 RSQ = 0.9962 RHO = -0.10 Obser = 162 from 1994.001
 SEE+1 = 0.56 RBSQ = 0.9961 DurH = -3.20 DoFree = 158 to 2007.006
 MAPE = 0.41
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp37 _ - _ _ _ _ _ _ _ _ _ _ _ _ - . - 102.05 _ - -
 l intercept
 3 cqp37[2] [0.43972 11.0
 4 gdpi }\begin{array}{lllllll}{3.71884 1.5 0.04 1.00 1.04 0.083}
```

\#38 74 cnfood E1JNB1 D "Juices and nonalcoholic drinks"
ti 38 Juices and nonalcoholic drinks
r cqp38 = cqp38[1],gdpi
: 38 Juices and nonalcoholic drinks
$\mathrm{SEE}=0.66 \mathrm{RSQ}=0.9778 \mathrm{RHO}=-0.25$ Obser $=162$ from 1994.001
SEE+1 = 0.63 RBSQ $=0.9776$ DurH $=-3.59$ DoFree $=159$ to 2007.006
MAPE = 0.49
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp38 - - - - - - - - - - - - - - 100.10 - - -
$\begin{array}{llllll}1 \text { intercept } & 7.80945 & 2.3 & 0.08 & 45.13 & 1.00\end{array}$
$\begin{array}{llrrrrr}2 \text { cqp38[1] } & 0.89788 & 122.1 & 0.90 & 1.06 & 100.00 & 0.882 \\ 3 & \text { gdpi } & 2.41324 & 3.1 & 0.03 & 1.00 & 1.04 \\ 0.112\end{array}$
\#39 75 cnfood E1CTM1 D "Coffee, tea and beverage materials"
ti 39 Coffee, tea and beverage materials
\#lim 2000.001 2007.001 2006.012
r cqp39 = cqp39[1], cqp39[2],gdpi
39 Coffee, tea and beverage materials
SEE = 1.64 RSQ $=0.9544$ RHO $=0.06$ Obser $=162$ from 1994.001
SEE+1 = $\quad 1.63$ RBSQ $=0.9535$ DurH $=1.33$ DoFree $=158$ to 2007.006
MAPE $=0.85$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp39
_ _ _ _ _ - _ _ _ _ _ _ _ - - $\quad$ Mean Beta
1 intercept
$\begin{array}{lrrrr}7.73683 & 6.8 & 0.08 & 21.92 & 1.00\end{array}$
$\begin{array}{lrrrrrr}2 & \text { cqp39[1] } & 1.45147 & 103.5 & 1.45 & 1.50 & 98.73 \\ 3 \text { cqp39[2] } & -0.54702 & 21.8 & -0.54 & 1.03 & 98.46 & -0.594\end{array}$
$\begin{array}{lrrrrrr}3 \text { cqp39[2] } & -0.54702 & 21.8 & -0.54 & 1.03 & 98.46 & -0.594 \\ 4 \text { gdpi } & 1.75147 & 1.6 & 0.02 & 1.00 & 1.04 & 0.047\end{array}$
\#40 76 cnfood E1FAT1 D "Fats and oils"
ti 40 Fats and oils
r cqp40 = ! cqp40[1]


```
 0 cqp40 - - - - - - - - - - - - - - - - - 103.57 - - -
 1 cqp40[1] 1.00153 11493.6 1.00 1.00 103.41
#41 77 cnfood E1SWE1 D "Sugar and sweets"
ti 41 Sugar and sweets
r cqp41 = cqp41[1],gdpi
: 41 Sugar and sweets
 SEE = 0.52 RSQ = 0.9942 RHO = -0.39 Obser = 162 from 1994.001
 SEE+1 = 0.48 RBSQ = 0.9941 DurH = - 5.53 DoFree = 159 to 2007.006
 MAPE = 0.36
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp41 - - - - - - - - - - - - - - - - - 100.51 - - -
 l intercept
 3 gdpi [llllllll
#42 78 cnfood E1OFD1 D "Other foods"
ti 42 Other foods
r cqp42 = !cqp42[1],oildf,oildf[1]
42 Other foods
 SEE = 0.46 RSQ = 0.9953 RHO = -0.41 Obser = 162 from 1994.001
 SEE+1 = 0.42 RBSQ = 0.9952 DurH = -5.22 DoFree = 159 to 2007.006
 MAPE = 0.35
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp42 - - - - - - - - - - - - - - - 98.94 - - -
 1 cqp42[1] 1.00136 21172.7 1.00 1.05 98.79
 2 oildf
 3 oildf[1] -0.01417 0.2 -0.00 1.00 0.29 -0.005
#43 79 cnfood E1PEF1 D "Pet food"
ti 43 Pet food
r cqp43 = !cqp43[1]
43 Pet food
 SEE = 0.55 RSQ = 0.9927 RHO = -0.03 Obser = 162 from 1994.001
 SEE+1 = 0.55 RBSQ = 0.9927 DurH = -0.32 DoFree = 161 to 2007.006
 MAPE = 0.44
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp43 - - - - - - - - - - - - - - - - - 101.75 - - -
 1 cqp43[1] 1.00151 18498.0 1.00 1.00 101.60
#44 81 cnfood E1MLT1 D "Beer and ale, at home"
ti 44 Beer and ale, at home
r cqp44 = !cqp44[1],gdpi
: 44 Beer and ale, at home
 SEE = 0.35 RSQ = 0.9982 RHO = -0.07 Obser = 162 from 1994.001
 SEE+1 = 0.35 RBSQ = 0.9981 DurH = -0.89 DoFree = 160 to 2007.006
 MAPE = 0.26
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp44 - - - - - - - - - - - - - - - - - 101.79 - - -
 l cqp44[1]
#45 82 cnfood E1WIN1 D "Wine and brandy, at home"
ti 45 Wine and brandy, at home
r cqp45 = cqp45[1]
45 Wine and brandy, at home
```

```
 SEE = 0.37 RSQ = 0.9948 RHO = -0.11 Obser = 162 from 1994.001
 SEE+1 = 0.37 RBSQ = 0.9947 DurH = -1.46 DoFree = 160 to 2007.006
 MAPE = 0.29
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp45 - - - - - - - - - - - - - - - - - 98.33 - - -
 1 intercept
#46 83 cnfood E1LIQ1 D "Distilled spirits, at home"
ti 46 Distilled spirits, at home
r cqp46 = !cqp46[1]
: 46 Distilled spirits, at home
 SEE = 0.28 RSQ = 0.9987 RHO = -0.09 Obser = 162 from 1994.001
 SEE+1 = 0.28 RBSQ = 0.9987 DurH = -1.16 DoFree = 161 to 2007.006
 MAPE = 0.20
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp46 _ _ _ _ _ _ - - - _ _ _ _ - - - - 100.21 _ - -
 1 cqp46[1] 1.00144 35948.6 1.00 1.00 100.07
#47 84 cnfood E1PMB1 C "Purchased meals and beverages (4)"
ti 47 Purchased meals and beverages
r cqp47 = cqp47[1],gdpi
47 Purchased meals and beverages
 SEE = 0.08 RSQ = 0.9999 RHO = -0.04 Obser = 162 from 1994.001
 SEE+1 = 0.08 RBSQ = 0.9999 DurH = -0.54 DoFree = 159 to 2007.006
 MAPE = 0.06
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp47 _ - _ - _ - - - - - - _ - - - - - 101.73 - - -
 1 intercept 1.11047 1.7 0.01 9999.99 1.00
 2 cqp47[1] 0.97620 704.1 0.0.97 1.06 101.51 0.971
 3 gdpi 1.47978 2.7 0.02 1.00 1.0 1.04 0.029
#48 93 cnfood E1PIF1 C "Food furnished to employees or home #grown"
ti 48 Food furnished to employees or home #grown
r cqp48 = !cqp48[1],crude
: 48 Food furnished to employees or home #grown
 SEE = 0.27 RSQ = 0.9992 RHO = 0.11 Obser = 162 from 1994.001
 SEE+1 = 0.27 RBSQ = 0.9992 DurH = 1.35 DoFree = 160 to 2007.006
 MAPE = 0.19
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp48 - - - - - - - - - - - - - - - - - 101.92 - - -
 l cqp48[1]
#4999 cncloth E1SHU1 C "Shoes (12)"
ti 49 Shoes
r cqp49 = !cqp49[1],crude,crude [11]
: 49 Shoes
 SEE = 0.72 RSQ = 0.9632 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.72 RBSQ = 0.9627 DurH = -0.73 DoFree = 159 to 2007.006
 MAPE = 0.56
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp49 - - - - - - - - - - - - - - - 101.41 - - -
 1 cqp49[1] 0.99869 6410.7 1.00 1.01 101.48
```



```
 3 crude[11] -0.01082 0.4 -0.00 1.00 25.51 -0.037
```

\#50 100 cncloth E1WCL1 C "Women's and children's clothing and accessories except shoes (14)"
ti 50 Women's and children's clothing and accessories except shoes


```
#51 106 cncloth E1MMC1 C "Men's and boys' clothing and accessories except shoes
(15+16)"
ti 51 Men's and boys' clothing and accessories except shoes
r cqp51 = !cqp51[1]
: 51 Men's and boys' clothing and accessories except shoes
 SEE = 0.55 RSQ = 0.9907 RHO = -0.09 Obser = 162 from 1994.001
 SEE+1 = 0.55 RBSQ = 0.9907 DurH = -1.13 DoFree = 161 to 2007.006
 MAPE = 0.45
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp51 - - - - - - - - - - - - - - - - - 96.67 - - -
 1 cqp51[1] 0.99887 17374.4 1.00 1.00 96.78
#52 114 cngas E1GAO1 B "Gasoline and oil (75)"
ti 52 Gasoline and oil
r cqp52 = !cqp52[1],oildf,oildf[1]
. 52 Gasoline and oil
 SEE = 4.12 RSQ = 0.9848 RHO = 0.07 Obser = 162 from 1994.001
 SEE+1 = 4.11 RBSQ = 0.9846 DurH = 0.83 DoFree = 159 to 2007.006
 MAPE = 2.60
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp52
 1 cqp52[1]
 _ - - - - - - - - - - - - - - - 103.34 - - -
 0.99859 2467.8 0.99 2.36 102.59
 2 oildf
 3 oildf[1] 1.25764 19.2 0.00 1.00 1.0.0.29 0.083
```

\#53 117 cngas E1FUL1 B "Fuel oil and coal (40)"
ti 53 Fuel oil and coal
r cqp53 = !cqp53[1],cqp53[2],oildf,oildf[1]
53 Fuel oil and coal
SEE $=\quad 2.94$ RSQ $=0.9938$ RHO $=-0.05$ Obser $=162$ from 1994.001
SEE+1 = $\quad 2.94$ RBSQ $=0.9936$ DurH $=-1.77$ DoFree $=158$ to 2007.006
MAPE = 1.60
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp53 - - - - - - - - - - - - - 103.70 - - -
$\begin{array}{llllll}1 & \text { cqp53[1] } & 1.10510 & 57.6 & 1.10 & 1.66 \\ 102.97\end{array}$
$\begin{array}{llrrrrr}2 & \text { cqp53[2] } & -0.10250 & 0.6 & -0.10 & 1.56 & 102.26 \\ 3 & -0.100 \\ \text { oildf } & 0.70990 & 12.0 & 0.00 & 1.14 & 0.32 & 0.042\end{array}$
$\begin{array}{lrrrrrr}3 \text { oildf } & 0.70990 & 12.0 & 0.00 & 1.14 & 0.32 & 0.042 \\ 4 \text { oildf[1] } & 0.59923 & 6.7 & 0.00 & 1.00 & 0.29 & 0.035\end{array}$
\#54 123 cnoth E1TOB1 C "Tobacco products (7)"
ti 54 Tobacco products
r cqp54 = cqp54[1]
SEE = 2.03 RSQ $=0.9951$ RHO $=-0.35$ Obser $=162$ from 1994.001
SEE+1 = $\quad 1.90$ RBSQ $=0.9950$ DurH $=-4.50$ DoFree $=160$ to 2007.006
MAPE = 1.34
Variable name

| Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ---- | - | - | - | - | - |
| 0.61963 | 0.4 | 0.01 | 202.48 | 1.00 |  |

    0 cqp54
    \(\begin{array}{lrrrrrr}1 \text { intercept } & 0.61963 & 0.4 & 0.01 & 202.48 & 1.00 & \\ 2 \text { cqp54[1] } & 0.99899 & 1323.0 & 0.99 & 1.00 & 94.89 & 0.998\end{array}\)
    \#55 124 cnoth E1TLG1 C "Toilet articles and preparations (21)" ti 55 Toilet articles and preparations

```
r cqp55 = cqp55[1],gdpi
```

55 Toilet articles and preparations
SEE $=0.40$ RSQ $=0.9679$ RHO $=-0.21$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.39$ RBSQ $=0.9675$ DurH $=-2.89$ DoFree $=159$ to 2007.006
MAPE = 0.31
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp55 - - - - - - - - - - - - - 98.72 - - -
$\begin{array}{llllll}1 \text { intercept } & 6.83524 & 2.2 & 0.07 & 31.11 & 1.00\end{array}$
$\begin{array}{lllllll}2 & \text { cqp55[1] } & 0.92349 & 174.6 & 0.92 & 1.03 & 98.67 \\ 3 & 0.925\end{array}$
$\begin{array}{llllllll}3 \text { gdpi } & 0.73821 & 1.7 & 0.01 & 1.00 & 1.04 & 0.067\end{array}$
\#56 128 cnoth E1SDH1 C "Semidurable house furnishings (33)"
ti 56 Semidurable house furnishings
r cqp56 = cqp56[1], crude, crude[1],gdpi
: 56 Semidurable house furnishings
SEE = $1.30 \mathrm{RSQ}=0.9887 \mathrm{RHO}=-0.06$ Obser $=162$ from 1994.001
SEE+1 = $\quad 1.30$ RBSQ $=0.9885$ DurH $=-1.06$ DoFree $=157$ to 2007.006
MAPE = 0.99
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp56
_ - _ - - - - - - - - - - - 96.58 - - -
1 intercept $\begin{array}{lllll}36.53039 & 6.2 & 0.38 & 88.85 & 1.00\end{array}$

| 2 | cqp56[1] | 0.76494 | 53.1 | 0.77 | 1.14 | 96.85 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 3 | crude | -0.05352 | 0.4 | -0.02 | 1.12 | 28.359 |

$\begin{array}{lllllll}4 & \text { crude [1] } & 0.03707 & 0.2 & 0.01 & 1.12 & 28.03 \\ 5 & 0.045\end{array}$

\#57 129 cnoth E1CLP1 C "Cleaning, polishing preparations, misc. supplies and paper products"
ti 57 Cleaning, polishing, misc. supplies and paper products
r cqp57 = cqp57[1],gdpi
57 Cleaning, polishing, misc. supplies and paper products
SEE = 0.40 RSQ $=0.9969$ RHO $=-0.02$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.40$ RBSQ $=0.9969$ DurH $=-0.30$ DoFree $=159$ to 2007.006
MAPE = 0.30
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp57 - - - - - - - - - - - - - - 98.91 - - -
$\begin{array}{llrrrrr}1 & \text { intercept } & 2.20005 & 1.5 & 0.02 & 321.87 & 1.00 \\ 2 & 0.96681 & 407.1 & 0.97 & 1.03 & 98.76 & 0.966\end{array}$
$\begin{array}{lrrrrrr}2 \text { cqp57[1] } & 0.96681 & 407.1 & 0.97 & 1.03 & 98.76 & 0.966 \\ 3 \text { gdpi } & 1.18430 & 1.5 & 0.01 & 1.00 & 1.04 & 0.034\end{array}$
\#58 133 cnoth E1DRG1 C "Drug preparations and sundries (45)"
ti 58 Drug preparations and sundries
r cqp58 = !cqp58[1], cqp58[2]
: 58 Drug preparations and sundries
SEE = 0.23 RSQ $=0.9997$ RHO $=0.02$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.23$ RBSQ $=0.9997$ DurH $=3.69$ DoFree $=160$ to 2007.006

| MAPE = 0 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 cqp58 | - - - - - - | - - - - | - - - | - - - - | 102.75 | - - - |
| $1 \mathrm{cqp} 58[1]$ | 1.22069 | 58.7 | 1.22 | 1.05 | 102.51 |  |
| 2 cqp $58[2]$ | -0.21888 | 2.4 | -0.22 | 1.00 | 102.27 | -0.217 |

\#59 139 cnoth E1DOL1 D "Toys, dolls, and games" ti 59 Toys, dolls, and games
r cqp59 = cqp59[1]
: 59 Toys, dolls, and games
$\mathrm{SEE}=0.68 \mathrm{RSQ}=0.9988 \mathrm{RHO}=-0.02$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.68$ RBSQ $=0.9988$ DurH $=-0.20$ DoFree $=160$ to 2007.006
MAPE = 0.50
Variable name
Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp59
1 intercept $\quad-0.61275 \quad 1.5 \quad-0.01 \quad 819.23 \quad 1.00$
- - - - - - - - - - - - $\quad 98.61$ - -
2 cqp59[1] $\begin{array}{lllllll}1.00268 & 2762.2 & 1.01 & 1.00 & 98.95 & 0.999\end{array}$
\#60 140 cnoth E1AMM1 D "Sport supplies, including ammunition"
ti 60 Sport supplies, including ammunition
r cqp60 $=$ !cqp60[1],oildf[1]
: 60 Sport supplies, including ammunition
SEE = 0.64 RSQ $=0.9945$ RHO $=-0.05$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.64$ RBSQ $=0.9945$ DurH $=-0.57$ DoFree $=160$ to 2007.006
MAPE $=0.46$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp60 _ _ _ . . . . . . . . . . . . 101.81 _ -
$\begin{array}{llrrrrrr}1 & \text { cqp60[1] } & 0.99859 & 15655.8 & 1.00 & 1.00 & 101.95 & \\ 2 & \text { oildf[1] } & 0.02040 & 0.2 & 0.00 & 1.00 & 0.29 & 0.005\end{array}$
\#61 141 cnoth E1FLM1 D "Film and photo supplies"
ti 61 Film and photo supplies
r cqp61 = !cqp61[1],oildf,oildf[1]
: 61 Film and photo supplies
$\mathrm{SEE}=0.71 \mathrm{RSQ}=0.9888 \mathrm{RHO}=0.01$ Obser $=162$ from 1994.001
SEE+1 = $\quad 0.71$ RBSQ $=0.9887$ DurH $=0.13$ DoFree $=159$ to 2007.006
MAPE $=0.54$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp61 - - - - - - - - - - - - - 99.07 - - -
$\begin{array}{llrrrrr}1 \text { cqp61[1] } & 0.99861 & 13764.6 & 1.00 & 1.02 & 99.19 & \\ 2 \text { oildf } & 0.01878 & 0.2 & 0.00 & 1.01 & 0.32 & 0.006\end{array}$
$\begin{array}{lllllll}2 \text { oildf } & 0.01878 & 0.2 & 0.00 & 1.01 & 0.32 & 0.006 \\ 3 & \text { oildf[1] } & 0.03971 & 0.7 & 0.00 & 1.00 & 0.29 \\ & 0.013\end{array}$
\#62 142 cnoth E1STY1 C "Stationery and writing supplies (35)"
ti 62 Stationery and writing supplies
r cqp62 = cqp62[1]
: 62 Stationery and writing supplies
SEE = 0.55 RSQ $=0.9826$ RHO $=-0.02$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.55$ RBSQ $=0.9825$ DurH $=-0.32$ DoFree $=160$ to 2007.006
MAPE $=0.45$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

$\begin{array}{lrrrrrr}1 \text { intercept } & 2.65021 & 2.2 & 0.03 & 57.47 & 1.00 & \\ 2 \text { cqp62[1] } & 0.97343 & 658.1 & 0.97 & 1.00 & 97.14 & 0.991\end{array}$
\#63 145 cnoth E1NFR1 C "Net foreign remittances (111 less 113)"
ti 63 Net foreign remittances

```
r cqp63 = !cqp63[1],cqp63[2]
. 63 Net foreign remittances
 SEE = 7.60 RSQ = 0.9626 RHO = 0.06 Obser = 162 from 1994.001
 SEE+1 = 7.60 RBSQ = 0.9623 DurH = 2.28 DoFree = 160 to 2007.006
 MAPE = 2.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp63 - - - - - - - - - - - - - - - - - 141.61 - - -
 1 cqp63[1] 1.38292 79.7 1.38 1.17 141.06
 2 cqp63[2] -0.38182 8.1 -0.38 1.00 140.61 -0.371
#64 150 cnoth E1MAG1 C "Magazines, newspapers, and sheet music (88)"
ti 64 Magazines, newspapers, and sheet music
r cqp64 = !cqp64[1]
: 64 Magazines, newspapers, and sheet music
 SEE = 0.41 RSQ = 0.9976 RHO = -0.17 Obser = 162 from 1994.001
 SEE+1 = 0.41 RBSQ = 0.9976 DurH = -2.13 DoFree = 161 to 2007.006
 MAPE = 0.29
 Variable name
```



```
#65 153 cnoth E1FLO1 C "Flowers, seeds, and potted plants (95)"
ti 65 Flowers, seeds, and potted plants
r cqp65 = cqp65[1],gdpi
: 65 Flowers, seeds, and potted plants
 SEE = 1.40 RSQ = 0.8729 RHO = 0.04 Obser = 162 from 1994.001
 SEE+1 = 1.40 RBSQ = 0.8713 DurH = 0.52 DoFree = 159 to 2007.006
 MAPE = 1.01
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp65 - - - - - - - - - - - - - - - - - 101.98 - - -
 1 intercept
```



```
#66 155 csho E1HOS1 B "Housing"
ti 66 Housing
r cqp66 = !cqp66[1]
: 66 Housing
 SEE = 0.09 RSQ = 0.9999 RHO = 0.33 Obser = 162 from 1994.001
 SEE+1 = 0.08 RBSQ = 0.9999 DurH = 4.18 DoFree = 161 to 2007.006
 MAPE = 0.07
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp66 - - - - - - - - - - - - - - - - - 101.82 - - -
 1 cqp66[1] 1.00258 119334.6 1.00 1.00 101.56
#67 173 cshoelg E1ELC1 C "Electricity (37)"
ti 67 Electricity
r cqp67 = cqp67[1],crude,crude[1],oildf[9]
: 67 Electricity
 SEE = 1.02 RSQ = 0.9910 RHO = -0.23 Obser = 162 from 1994.001
 SEE+1 = 1.00 RBSQ = 0.9908 DurH = -3.00 DoFree = 157 to 2007.006
 MAPE = 0.57
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp67 _ _ - _ _ - - - - _ - _ - - - - - 107.91 - - -
 l intercept
```

```
 3 crude
 4 crude[1]
#68 174 cshoelg E1NGS1 C "Gas (38)"
ti 68 Gas
r cqp68 = !cqp68[1],cqp68[2],oildf[1]
: 68 Gas
 SEE = 4.16 RSQ = 0.9829 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 4.16 RBSQ = 0.9826 DurH = 0.64 DoFree = 159 to 2007.006
 MAPE = 2.00
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp68
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 109.61 _ _ -
 1 cqp68[1] 1.27830 68.4 1.27 1.12 109.09
```



```
#69 176 cshoelg E1WAT1 C "Water and other sanitary services (39)"
ti 69 Water and other sanitary services
r cqp69 = cqp69[1],cqp69[2]
 6 9 \text { Water and other sanitary services}
 SEE = 0.27 RSQ = 0.9997 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.27 RBSQ = 0.9996 DurH = 999.00 DoFree = 159 to 2007.006
 MAPE = 0.15
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp69 - - - - - - - - - - - - - - - - - 103.90 - - -
 1 intercept
```



```
#70 181 cshoelg E1CEL1 D "Cellular telephone"
ti 70 Cellular telephone
r cqp70 = cqp70[1],cqp70[2],gdpi
 70 Cellular telephone
 SEE = 0.57 RSQ = 0.9996 RHO = -0.03 Obser = 162 from 1994.001
 SEE+1 = 0.57 RBSQ = 0.9995 DurH = -0.82 DoFree = 158 to 2007.006
 MAPE = 0.39
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp70 - - - - - - - - - - - - - - - - - 111.06 - - -
 1 intercept
 lrrrrrern
 4 gdpi }\begin{array}{lllllll}{10.52499 0.3 0.00 1.00 1.04 0.004}
#71 182 cshoelg E1OLC1 D "Local telephone"
ti 71 Local telephone
r cqp71 = !cqp71[1]
 7 1 ~ L o c a l ~ t e l e p h o n e
 SEE = 0.55 RSQ = 0.9979 RHO = -0.10 Obser = 162 from 1994.001
 SEE+1 = 0.55 RBSQ = 0.9979 DurH = -1.26 DoFree = 161 to 2007.006
 MAPE = 0.33
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp71 - - - - - - - - - - - - - - - - - 104.11 - - -
 1 cqp71[1] 1.00221 19024.3 1.00 1.00 103.88
#72 183 cshoelg E1LDT1 D "Long distance telephone"
ti 72 Long distance telephone
```

```
r cqp72 = !cqp72[1],cqp72[2],cqp72[3]
72 Long distance telephone
 SEE = 1.08 RSQ = 0.9945 RHO = -0.01 Obser = 162 from 1994.001
 SEE+1 = 1.08 RBSQ = 0.9944 DurH = -1.89 DoFree = 159 to 2007.006
 MAPE = 0.81
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp72 _ - - - - - - - - - - - - - - - - 95.26 - - -
 1 cqp72[1] 0.90901 36.5 0.91 1.05 95.43
```



```
 3 cqp72[3] -0.20043 2.0 -0.20 1.00 95.78-0.198
#73 186 cshoelg E1DMS1 C "Domestic service (42)"
ti 73 Domestic service
r cqp73 = cqp73[1],gdpi
: 73 Domestic service
 SEE = 0.37 RSQ = 0.9991 RHO = -0.02 Obser = 162 from 1994.001
 SEE+1 = 0.37 RBSQ = 0.9991 DurH = -0.22 DoFree = 159 to 2007.006
 MAPE = 0.22
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp73 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ 101.53 _ _ -
 1 intercept 1.94178 1.7 0.02 1167.37 1.00
 2 cqp73[1] }\begin{array}{llrllll}{0.94960}&{262.1}&{0.95}&{1.04}&{101.27}&{0.946}\\{3}&{0.94pi}&{3.30563}&{2.0}&{0.03}&{1.00}&{1.04}\end{array}0.05
#74 189 cshooth E1OPO1 C "Other (43)"
ti 74 Other Household Services
r cqp74 = cqp74[1],time,crude
 74 Other Household Services
 SEE = 0.40 RSQ = 0.9993 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.40 RBSQ = 0.9992 DurH = 0.14 DoFree = 158 to 2007.006
 MAPE = 0.21
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp74 - - - - - - - - - - - - - - - - - 103.64 - - -
 1 intercept 3.27657 1.2 0.03 1346.86 1.00
 2 cqp74[1]
 3 time }\begin{array}{lllllll}{0.15403}&{0.3}&{1.3}&{0.01}&{1.00}&{7.79}&{0.041}
 4 crude }\begin{array}{llllllll}{0.00319 0.1 0.00 1.00 28.35}&{0.003}
#75 202 cstr E1ARP1 D "Motor vehicle repair"
ti }75\mathrm{ Motor vehicle repair
r cqp75 = cqp75[1],cqp75[2],time,crude
: 75 Motor vehicle repair
 SEE = 0.16 RSQ = 0.9998 RHO = -0.02 Obser = 162 from 1994.001
 SEE+1 = 0.16 RBSQ = 0.9998 DurH = -1.56 DoFree = 157 to 2007.006
 MAPE = 0.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp75 _ - - - - _ - - - - - - - - - - - 102.27 - - -
 l intercept
 3 cqp75[2] 0.14977 1.2 0.15 0.15
```



```
#76 203 cstr E1RLO1 D "Motor vehicle rental, leasing, and other"
ti 76 Motor vehicle rental, leasing, and other
r cqp76 = !cqp76[1],cqp76[2],oildf[1],oildf[2]
```

```
: 76 Motor vehicle rental, leasing, and other
 SEE = 0.65 RSQ = 0.9730 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.65 RBSQ = 0.9725 DurH = 999.00 DoFree = 158 to 2007.006
 MAPE = 0.48
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp76
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 100.27 _ _ _
 1 cqp76[1]
 1.03160 44.5 1.03 1.01 100.17
 -0.03057 0.0 -0.03 1.01 100.08 -0.031
 -0.01837 0.2 -0.00 1.00 0.29 -0.010
 -0.01534 0.1 -0.00 1.00 0.28 -0.009
#77 210 cstr E1TOL1 C "Bridge, tunnel, ferry, and road tolls"
ti 77 Bridge, tunnel, ferry, and road tolls
r cqp77 = cqp77[1],gdpi
: 77 Bridge, tunnel, ferry, and road tolls
 SEE = 1.07 RSQ = 0.9956 RHO = -0.02 Obser = 162 from 1994.001
 SEE+1 = 1.07 RBSQ = 0.9955 DurH = -0.39 DoFree = 159 to 2007.006
 MAPE = 0.76
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqр77 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 102.70 _ _ _
 l intercept
 3 gdpi 1 18.19516 1.3 6.3 0.18 1.00 1.04 0.232
#78 211 cstr E1AIN1 C "Insurance"
ti 78 Automobile Insurance
r cqp78=!cqp78[1],cqp78[2]
: 78 Automobile Insurance
 SEE = 0.61 RSQ = 0.9987 RHO = 0.00 Obser = 162 from 1994.001
 SEE+1 = 0.61 RBSQ = 0.9987 DurH = 0.45 DoFree = 160 to 2007.006
 MAPE = 0.48
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqр78 _ _ _ _ _ - - _ _ - - _ _ - - - - 105.31 - - -
 1 cqp78[1] 1.13473 52.3 1.13 1.02 104.97
 2 сqp78[2] -0.13191 0.9 -0.13 1.00 104.63 -0.131
#79 213 cstr E1IMT1 C "Mass transit systems (79)"
ti 79 Mass transit systems (79)
r cqp79 = !cqp79[1],gdpi
: 79 Mass transit systems (79)
 SEE = 0.84 RSQ = 0.9957 RHO = 0.05 Obser = 162 from 1994.001
 SEE+1 = 0.84 RBSQ = 0.9956 DurH = 0.61 DoFree = 160 to 2007.006
 MAPE = 0.34
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqр79 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - 106.57 _ - -
 1 cqp79[1]
#80 214 cstr E1TAX1 C "Taxicab (80)"
ti 80 Taxicab
r cqp80 = !cqp80[1],gdpi
: 80 Taxicab
 SEE = 1.06 RSQ = 0.9935 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 1.06 RBSQ = 0.9935 DurH = 0.24 DoFree = 160 to 2007.006
 MAPE = 0.37
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp80 _ _ _ - _ _ - _ - - - _ _ - - - - 106.31 - - -
```

```
 1 cqp80[1] 0.99503 758.0 0.99 1.00 106.02
 2 gdpi 0.77194 0.2 0.01 1.00 1.0.0.0.012
#81 216 cstr E1IRR1 C "Railway (82)"
ti 81 Railway
r cqp81 = cqp81[1],cqp81[2]
: 81 Railway
 SEE = 2.56 RSQ = 0.9186 RHO = 0.20 Obser = 162 from 1994.001
 SEE+1 = 2.53 RBSQ = 0.9176 DurH = 13.68 DoFree = 159 to 2007.006
 MAPE = 1.40
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp81 - - - - - - - - - - - - - - - - - 97.80 - - -
 l intercept
 3 cqp81[2] -0.35597 6.5 -0.35 1.00 97.49 -0.361
#82 217 cstr E1IBU1 C "Bus (83)"
ti 82 Bus
r cqp82 = cqp82[1],gdpi
 SEE = 1.11 RSQ = 0.9932 RHO Bus = 0.26 Obser = 162 from 1994.001
 SEE+1 = 1.08 RBSQ = 0.9931 DurH = 3.66 DoFree = 159 to 2007.006
 MAPE = 0.73
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp82 - - - - - - - - - - - - - - - - 102.78 - - -
 l intercept
 3 gdpi [\begin{array}{lllllllll}{5.77051 2.3 0.06 1.00 1.04 0.088}\end{array}
#83 218 cstr E1IAI1 C "Airline (84)"
ti 83 Airline
r cqp83 = cqp83[1],cqp83[2]
83 Airline
 SEE = 2.03 RSQ = 0.8733 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 2.03 RBSQ = 0.8717 DurH = 4.03 DoFree = 159 to 2007.006
 MAPE = 1.70
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp83 _ - - - - - - - - - - - - - - - - 90.33 - - -
 1 intercept 6.59431 2.0 0.07 7.90 1.00
 2 cqp83[1]
 3 cqp83[2] -0.09587 0.5 -0.10 1.00 90.40-0.096
#84 219 cstr E1TRO1 C "Other mass transportation(85)"
ti 84 Other transportation
r cqp84 = cqp84[1],gdpi
: 84 Other transportation
 SEE = 1.15 RSQ = 0.9742 RHO = 0.09 Obser = 162 from 1994.001
 SEE+1 = 1.15 RBSQ = 0.9739 DurH = 1.36 DoFree = 159 to 2007.006
 MAPE = 0.93
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp84 - - - - - - - - - - - - - - - - - 96.37 - - -
 1 intercept }\begin{array}{llllll}{8.55763}&{3.8}&{0.09}&{38.75}&{1.00}&{}\\{l}&{0.86071}&{102.8}&{0.86}&{1.08}&{9.04}
 l cqp84[1]
#85 221 csmc E1PHY1 C "Physicians (47)"
ti 85 Physicians
```

```
r cqp85 = !cqp85[1],cqp85[2]
. }85\mathrm{ Physicians
 SEE = 0.33 RSQ = 0.9976 RHO = 0.02 Obser = 162 from 1994.001
 SEE+1 = 0.33 RBSQ = 0.9976 DurH = 4.21 DoFree = 160 to 2007.006
 MAPE = 0.16
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp85 _ - - - - - - - - - - - - - - - - 100.27 - - -
 1 cqp85[1] 1.14132 52.6 1.14 1.02 100.10
 2 cqp85[2] -0.13989 1.0 -0.14 1.00 99.93-0.140
#86 222 csmc E1DEN1 C "Dentists (48)"
ti 86 Dentists
r cqp86 = !cqp86[1]
: 86 Dentists
 SEE = 0.17 RSQ = 0.9999 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.17 RBSQ = 0.9999 DurH = -0.80 DoFree = 161 to 2007.006
 MAPE = 0.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp86 - - - - - - - - - - - - - - - - - 102.59 - - -
 1 cqp86[1] 1.00385 62566.7 1.00 1.00 102.19
#87 223 csmc E1OPS1 C "Other professional services (49)"
ti 87 Other professional services
r cqp87 = cqp87[1],time
: 87 Other professional services
 SEE = 0.21 RSQ = 0.9995 RHO = 0.00 Obser = 162 from 1994.001
 SEE+1 = 0.21 RBSQ = 0.9995 DurH = 0.02 DoFree = 159 to 2007.006
 MAPE = 0.15
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp87 - - - - - - - - - - - - - - - - - 101.35 - - -
 1 intercept
 6.62244 2.1 0.07 2025.09 1.00
 lrrrrrrrer lri] (r.92208
#88 229 csmc E1HSP1 C "Hospitals"
ti 88 Hospitals
r cqp88 = !cqp88[1],crude
: 88 Hospitals
 SEE = 0.18 RSQ = 0.9998 RHO = -0.09 Obser = 162 from 1994.001
 SEE+1 = 0.18 RBSQ = 0.9998 DurH = -1.10 DoFree = 160 to 2007.006
 MAPE = 0.14
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp88 - - - - - - - - - - - - - - - - - 104.29 - - -
 l cqp88[1]
#89 233 csmc E1NRS1 C "Nursing homes"
ti 89 Nursing homes
r cqp89 = cqp89[1],cqp89[2],time,crude
 8 9 ~ N u r s i n g ~ h o m e s
 SEE = 0.18 RSQ = 0.9999 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.18 RBSQ = 0.9999 DurH = 31.87 DoFree = 157 to 2007.006
 MAPE = 0.14
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp89 - - - - - _ - - - - - _ _ _ - - - 102.29 - - -
 1 intercept 2.95081 1.7 0.03 7342.94 1.00
```



```
ti 94 Commercial participant amusements
```


\#96 255 csrec E1REO1 C "Other Recreation Services"
ti 96 Other Recreation Services
r cqp96 = cqp96[1],time,oildf,oildf[1]
96 Other Recreation Services
$\mathrm{SEE}=0.22 \mathrm{RSQ}=0.9996 \mathrm{RHO}=0.30$ Obser $=162$ from 1994.001
$\mathrm{SEE}+1=0.21 \mathrm{RBSQ}=0.9996 \mathrm{DurH}=4.01$ DoFree $=157$ to 2007.006
$\mathrm{MAPE}=0.16$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp96 - - - - - - - - - - - - - - - 101.20 - -
1 intercept

| 3.10360 | 1.1 | 0.03 | 2689.52 | 1.00 |
| :--- | :--- | :--- | :--- | :--- |

2 cqp96[1] $\quad 0.96293 \quad 273.0 \quad 0.96 \quad 1.10 \quad 100.98 \quad 0.963$
$\begin{array}{lllllll}3 & \text { time } & 0.10861 & 0.9 & 0.01 & 1.07 & 7.79 \\ 4 & 0.036 \\ & 0.02065 & 1.9 & 0.00 & 1.02 & 0.32 & 0.004\end{array}$
$\begin{array}{lllllll}5 \text { oildf[1] } & 0.01364 & 0.8 & 0.00 & 1.00 & 0.29 & 0.003\end{array}$
\#97 270 csoth E1CRC1 C "Cleaning, storage, and repair of clothing and shoes
(17)"
ti 97 Cleaning, storage, and repair of clothing and shoes
r cqp97 = cqp97[1],gdpi
: 97 Cleaning, storage, and repair of clothing and shoes $\mathrm{SEE}=0.22 \mathrm{RSQ}=0.9996 \mathrm{RHO}=-0.04$ Obser $=162$ from 1994.001 $\mathrm{SEE}+1=0.22 \mathrm{RBSQ}=0.9996 \mathrm{DurH}=-0.47$ DoFree $=159$ to 2007.006 MAPE $=0.15$

Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp97 - - - - - - - - - - - - - - - 103.11 - - -
1 intercept

| 1.03040 | 0.6 | 0.01 | 2275.57 | 1.00 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lrrrrrr}2 \text { cqp97[1] } & 0.97578 & 445.8 & 0.97 & 1.03 & 102.88 & 0.969 \\ 3 & \text { gdpi } & 1.62840 & 1.5 & 0.02 & 1.00 & 1.04\end{array} 0.031$
\#98 275 csoth E1BBB1 C "Barbershops, beauty parlors, and health clubs (22)" ti 98 Barbershops, beauty parlors, and health clubs

\#100 282 csoth E1BRO1 C "Brokerage charges and investment counseling (61)" ti 100 Brokerage charges and investment counseling
r cqp100 = cqp100[1],time, crude
100 Brokerage charges and investment counseling
SEE $=2.79$ RSQ $=0.9893 \mathrm{RHO}=-0.16$ Obser $=162$ from 1994.001
SEE+1 $=\quad 2.73$ RBSQ $=0.9891$ DurH $=-2.15$ DoFree $=158$ to 2007.006
MAPE = 1.33
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp100 - - - - - - - - - - - - - 114.96 - - -
1 intercept

| 6.25085 | 0.8 | 0.05 | 93.48 | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.95325 | 234.1 | 0.96 | 1.03 | 115.37 | 0.962 |
| -0.44230 | 1.0 | -0.03 | 1.03 | 7.79 | -0.064 |
| 0.07707 | 1.4 | 0.02 | 1.00 | 28.35 | 0.043 |

\#101 290 csoth E1BNK1 C "Bank service charges, trust services, and safe deposit box rental"
ti 101 Bank, trust services, and safe deposit box rental
r cqp101 = cqp101[1],cqp101[2]
: 101 Bank, trust services, and safe deposit box rental
SEE = 0.65 RSQ $=0.9979$ RHO $=0.03$ Obser $=162$ from 1994.001
SEE+1 = 0.65 RBSQ $=0.9978$ DurH $=999.00$ DoFree $=159$ to 2007.006
MAPE = 0.43
Variable name

| Reg-Coef | Mexval | Elas | NorRes | Mean |  |
| ---: | ---: | ---: | ---: | ---: | ---: | Beta

\#102 295 csoth E1IMP1 C "Services furnished w/out payment by intermediaries except life ins. carriers"

```
ti 102 Services furnished w/out payment by intermediaries except life ins.
carriers
r cqp102 = cqp102[1],gdpi
 102 Services furnished w/out payment by intermediaries except life ins. carrier
 SEE = 0.68 RSQ = 0.9943 RHO = 0.56 Obser = 162 from 1994.001
 SEE+1 = 0.56 RBSQ = 0.9942 DurH = 7.46 DoFree = 159 to 2007.006
 MAPE = 0.46
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp102 - - - - - - - - - - - - - - - - - 100.15 - - -
 l intercept
 3 gdpi 1.01557 0.4 0.4 0.01 1.00 1.0.04 0.023
#103 298 csoth E1LIF1 C "Expense of handling life insurance and pension plans
(64)"
ti 103 Expense of handling life insurance and pension plans
r cqp103 = gdpi
: 103 Expense of handling life insurance and pension plans
 SEE = 3.55 RSQ = 0.9583 RHO = 0.25 Obser = 162 from 1994.001
 SEE+1 = 3.44 RBSQ = 0.9581 DW = 1.50 DoFree = 160 to 2007.006
 MAPE = 2.18
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp103 - - - - - - - - - - - - - - - - - 99.02 - - -
 1 intercept
 2 gdpi 83.00659 390.0 0.87 1.00 1.04 0.979
#104 299 csoth E1GAL1 C "Legal services (65)"
ti 104 Legal services
r cqp104 = !cqp104[1],gdpi
: 104 Legal services
 SEE = 0.33 RSQ = 0.9997 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.33 RBSQ = 0.9997 DurH = 0.07 DoFree = 160 to 2007.006
 MAPE = 0.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp104 - - - - - - - - - - - - - - - - - 103.43 - - -
 1 cqp104[1] 0.99248 803.6 0.99 1.01 103.06
 2 gdpi 1.l0367 1.106 0.5 0.01 1.00 1.01 1.04 0.012
#105 300 csoth E1FUN1 C "Funeral and burial expenses (66)"
ti 105 Funeral and burial expenses
r cqp105 = !cqp105[1],cqp105[2]
: 105 Funeral and burial expenses
 SEE = 0.21 RSQ = 0.9998 RHO = 0.01 Obser = 162 from 1994.001
 SEE+1 = 0.21 RBSQ = 0.9998 DurH = 999.00 DoFree = 160 to 2007.006
 MAPE = 0.15
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp105 - - - - - - - - - - - - - - - - - 102.77 - - -
 1 cqp105[1] 1.14374 52.7 1.14 1.02 102.41
 cqp105[2] -0.14072 1.0 -0.14 1.00 102.04 -0.140
#106 301 csoth E1PBO1 C "Other Personal Service(67)"
ti 106 Other Personal Service(67)
r cqp106 = cqp106[1],time,crude
: 106 Other Personal Service(67)
 SEE = 0.24 RSQ = 0.9997 RHO = -0.14 Obser = 162 from 1994.001
 SEE+1 = 0.23 RBSQ = 0.9997 DurH = -1.97 DoFree = 158 to 2007.006
```

```
 MAPE = 0.16
 Variable name
 0 cqp106
 1 intercept
 2 cqp106[1]
 3 time 0.27739 0.0.3 0.02 1.03 1.0.0.79 0.076
 4 crude }\begin{array}{lllllll}{0.00535}&{0.4}&{1.4}&{0.00}&{1.00}&{28.35}&{0.006}
#107 310 csoth E1HED1 C "Higher education (105)"
ti 107 Higher education
r cqp107 = !cqp107[1],cqp107[2],oildf,oildf[1]
: 107 Higher education
 SEE = 0.13 RSQ = 1.0000 RHO = -0.06 Obser = 162 from 1994.001
 SEE+1 = 0.13 RBSQ = 1.0000 DurH = -2.92 DoFree = 158 to 2007.006
 MAPE = 0.09
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp107 _ _ _ _ _ _ - _ _ _ _ _ _ . - - 105.82 _ - -
 1 cqp107[1] 1.32370 71.1 1.32 1.17 105.40
 2 cqp107[2] -0.32101 5.5 -0.32 1.06 104.99 -0.317
```



```
 4 oildf[1] -0.00209 0.1 -0.00 1.00 0.29 -0.000
```

\#108 313 csoth E1EED1 C "Nursery, elementary, and secondary schools (106)" ti 108 Nursery, elementary, and secondary schools
r cqp108 = cqp108[1],time, crude
: 108 Nursery, elementary, and secondary schools
SEE = $0.13 \mathrm{RSQ}=0.9999 \mathrm{RHO}=0.12$ Obser $=162$ from 1994.001
SEE+1 = 0.13 RBSQ $=0.9999$ DurH $=1.61$ DoFree $=158$ to 2007.006
MAPE = 0.10
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp108 - - - - - - - - - - - - - 101.86 - - -
1 intercept
$\begin{array}{lllll}4.02898 & 4.5 & 0.04 & 9999.99 & 1.00\end{array}$
$\begin{array}{lllllll}2 \text { cqp108[1] } & 0.94878 & 440.7 & 0.95 & 1.09 & 101.58 & 0.946\end{array}$
3 time $\begin{array}{lllllll} & 0.17125 & 4.3 & 0.01 & 1.04 & 7.79 & 0.050\end{array}$
$\begin{array}{llllllll}4 & \text { crude } & 0.00409 & 2.0 & 0.00 & 1.00 & 28.35 & 0.005\end{array}$
\#109 316 csoth E1OED1 C "Other Education (107)"
ti 109 Other Education
r cqp109 = !cqp109[1],gdpi,crude
: 109 Other Education
SEE = 0.43 RSQ $=0.9995$ RHO $=-0.02$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.43$ RBSQ $=0.9995$ DurH $=-0.24$ DoFree $=159$ to 2007.006
MAPE $=0.28$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 cqp109 _ - . . . . . . . . . . . . . . 104.05 - - -
$\begin{array}{lrrrrrr}1 \text { cqp109[1] } & 0.97216 & 351.7 & 0.97 & 1.02 & 103.64 & \\ 2 \text { gdpi } & 3.13519 & 1.0 & 0.03 & 1.00 & 1.04 & 0.032\end{array}$
$\begin{array}{lllllll}2 & \text { gdp } & \text { crude } & 0.00176 & 0.1 & 0.00 & 1.00 \\ 3.085 & 28.35 & 0.001\end{array}$
\#110 320 csoth E1POL1 D "Political organizations"
ti 110 Political organizations
r cqp110 = !cqp110[1],cqp110[2],oildf,oildf[1]
: 110 Political organizations
SEE = 0.19 RSQ $=0.9996$ RHO $=-0.10$ Obser $=162$ from 1994.001
SEE+1 $=\quad 0.19$ RBSQ $=0.9996$ DurH $=-2.98$ DoFree $=158$ to 2007.006
MAPE = 0.15
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 cqp110 & - - - - - & - - - & - - - & - - & 100.14 & - - - \\
\hline 1 cqp110[1] & 1.46874 & 93.9 & 1.47 & 1.32 & 99.93 & \\
\hline 2 cqp110[2] & -0.46764 & 13.1 & -0.47 & 1.05 & 99.71 & -0.466 \\
\hline 3 oildf & 0.02010 & 2.5 & 0.00 & 1.00 & 0.32 & 0.004 \\
\hline 4 oildf[1] & -0.00501 & 0.2 & -0.00 & 1.00 & 0.29 & -0.001 \\
\hline
\end{tabular}
\#111 321 csoth E1MUS1 D "Museums and libraries"
ti }111\mathrm{ Museums and libraries
r cqp111 = cqp111[1],time
. }111\mathrm{ Museums and libraries
 SEE = 0.38 RSQ = 0.9987 RHO = -0.08 Obser = 162 from 1994.001
 SEE+1 = 0.38 RBSQ = 0.9986 DurH = -1.04 DoFree = 159 to 2007.006
 MAPE = 0.29
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp111 _ _ _ _ _ - _ _ _ _ - - - - - - 99.23 - - -
 1 intercept 4.33280 1.4 0.04 744.84 1.00
 2 cqp111[1]
 3 time }\begin{array}{llllllll}{0.14997 1.4 0.01 1.00 }&{0.140.79}&{0.056}
#112 322 csoth E1FOU1 D "Foundations to religion and welfare"
ti 112 Foundations to religion and welfare
r cqp112 = !cqp112[1],cqp112[2]
112 Foundations to religion and welfare
 SEE = 0.41 RSQ = 0.9992 RHO = -0.00 Obser = 162 from 1994.001
 SEE+1 = 0.41 RBSQ = 0.9992 DurH = 999.00 DoFree = 160 to 2007.006
 MAPE = 0.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp112 - - - - - - - - - - - - - - - - - 101.22 - - -
 1 cqp112[1] 1.01835 42.7 1.02 1.00 100.94
 2 cqp112[2] -0.01561 0.0 -0.02 1.00 100.66-0.016
#113 323 csoth E1WEL1 D "Social welfare"
ti 113 Social welfare
r cqp113 = cqp113[1],time,crude
: 113 Social welfare
 SEE = 0.15 RSQ = 0.9998 RHO = -0.08 Obser = 162 from 1994.001
 SEE+1 = 0.15 RBSQ = 0.9998 DurH = -1.05 DoFree = 158 to 2007.006
 MAPE = 0.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp113 - - - - - - - - - - - - - - - - - 100.74 - - -
 l intercept
 3 time
#114 326 csoth E1REL1 D "Religion"
ti 114 Religion
r cqp114 = !cqp114[1],gdpi
 114 Religion
 SEE = 0.17 RSQ = 0.9999 RHO = 0.38 Obser = 162 from 1994.001
 SEE+1 = 0.15 RBSQ = 0.9999 DurH = 4.83 DoFree = 160 to 2007.006
 MAPE = 0.13
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp114 - - - - - - - - - - - - - - - - - 101.32 - - -
 1 cqp114[1] 0.99998 3161.5 1.00 1.01 101.01
 2 gdpi 0.29792 0.5 0.00 1.00 1.04 0.004
```

```
#115 328 csoth E1FTR1 C "Foreign travel by U.S. residents (110)"
ti 115 Foreign travel by U.S. residents
r cqp115 = !cqp115[1],oildf,oildf[1],oildf[2]
: 115 Foreign travel by U.S. residents
 SEE = 0.60 RSQ = 0.9976 RHO = 0.57 Obser = 162 from 1994.001
 SEE+1 = 0.49 RBSQ = 0.9976 DurH = 7.22 DoFree = 158 to 2007.006
 MAPE = 0.42
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp115 - - - - - - - - - - - - - - - - - 106.35 - - -
 l cqp115[1]
 3 oildf[1] 0.05375 1.0.7 0.00 1.02
 4 oildf[2] 0.03879 0.9 0.00 1.00 0.0.0.0.007
#116 332 csoth E1EXF1 C "Less: Expenditures in the United States by
nonresidents (112)"
ti 116 Less: Expenditures in the United States by nonresidents
r cqp116 = cqp116[1],time,crude
: 116 Less: Expenditures in the United States by nonresidents
 SEE = 0.41 RSQ = 0.9985 RHO = 0.23 Obser = 162 from 1994.001
 SEE+1 = 0.40 RBSQ = 0.9985 DurH = 3.22 DoFree = 158 to 2007.006
 MAPE = 0.30
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 cqp116 _ - _ - _ _ - _ - - _ _ - _ - - - 100.18 _ - -
 l intercept }r\mathrm{ 14.55249
 lrrrrrrern
 4 crude 0.05490 13.6 0.02 1.00 1.0.0.35 0.078
```


## Appendix 3.4: Plots of Detailed Annual PCE Forecast 2007-2008



Appendix 3.4 (cont.)

7 China, glassware, tableware, and uten
Forecast 2007-2008


9 Computers and peripherals
Forecast 2007-2008


11 Floor coverings
Forecast 2007-2008


8 Video and audio goods, including musi
Forecast 2007-2008


10 Software
Forecast 2007-2008


12 Durable house furnishings, n.e.c.


Appendix 3.4 (cont.)

13 Writing equipment
Forecast 2007-2008


+ ancal3 -を- arcal3
15 Ophthalmic products and orthopedic ap
Forecast 2007-2008


17 Sporting equipment


14 Hand tools
Forecast 2007-2008


16 Guns
Forecast 2007-2008


18 Photographic equipment


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)

25 Cereals
Forecast 2007-2008


27 Beef and veal
Forecast 2007-2008


26 Bakery products
Forecast 2007-2008


28 Pork
Forecast 2007-2008


30 Poultry


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)

37 Processed fruits and vegetables
Forecast 2007-2008


39 Coffee, tea and beverage materials
Forecast 2007-2008


41 Sugar and sweets


38 Juices and nonalcoholic drinks
Forecast 2007-2008


40 Fats and oils
Forecast 2007-2008


42 Other foods


Appendix 3.4 (cont.)

43 Pet food
Forecast 2007-2008


45 Wine and brandy, at home
Forecast 2007-2008


47 Purchased meals and beverages (4)


44 Beer and ale, at home
Forecast 2007-2008


46 Distilled spirits, at home
Forecast 2007-2008


48 Food furnished to employees or home $g$


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)


57 Cleaning, polishing preparations, mis
Forecast 2007-2008


59 Toys, dolls, and games


56 Semidurable house furnishings (33)
Forecast 2007-2008


+ anca56 - $\mp$ arca56
58 Drug preparations and sundries (45)
Forecast 2007-2008


60 Sport supplies, including ammunition
Forecast 2007-2008


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)


75 Motor vehicle repair
Forecast 2007-2008


77 Bridge, tunnel, ferry, and road tolls


74 Other (43)
Forecast 2007-2008


76 Motor vehicle rental, leasing, and ot


78 Insurance
Forecast 2007-2008


Appendix 3.4 (cont.)

79 Mass transit systems (79)
Forecast 2007-2008


81 Railway (82)
Forecast 2007-2008


80 Taxicab (80)
Forecast 2007-2008


82 Bus (83)
Forecast 2007-2008


84 Other (85)


Appendix 3.4 (cont.)

85 Physicians (47)
Forecast 2007-2008


87 Other professional services (49)


89 Nursing homes


86 Dentists (48)
Forecast 2007-2008


88 Hospitals


90 Health insurance (56)


Appendix 3.4 (cont.)


Appendix 3.4 (cont.)

97 Cleaning, storage, and repair of clot
Forecast 2007-2008


99 Other Personal Care(19)
Forecast 2007-2008


101 Bank service charges, trust services,


98 Barbershops, beauty parlors, and heal
Forecast 2007-2008


100 Brokerage charges and investment coun
Forecast 2007-2008


102 Services furnished w/out payment by i


Appendix 3.4 (cont.)

103 Expense of handling life insurance an
Forecast 2007-2008


+ ancal03
105 Funeral and burial expenses (66)
Forecast 2007-2008


107 Higher education (105)


104 Legal services (65)
Forecast 2007-2008


+ ancal04 - $\ddagger$-- arcal04
106 Other Personal Service(67)
Forecast 2007-2008


108 Nursery, elementary, and secondary sc


Appendix 3.4 (cont.)


111 Museums and libraries
Forecast 2007-2008


113 Social welfare


110 Political organizations
Forecast 2007-2008


112 Foundations to religion and welfare Forecast 2007-2008


114 Religion


Appendix 3.4 (cont.)

115 Foreign travel by U.S. residents (110
Forecast 2007-2008


116 Less: Expenditures in the United Stat
Forecast 2007-2008


## Appendix 3.5: Results



| 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 82.129 | 103.582 | 104.007 | 107.060 | 107.028 | 112.399 |
| 50.505 | 60.650 | 57.553 | 58.044 | 56.308 | 57.019 |
| 96.231 | 173.248 | 225.431 | 209.255 | 219.981 | 232.204 |
| 37.826 | 49.037 | 57.941 | 59.844 | 61.566 | 63.905 |
| 48.525 | 67.596 | 79.871 | 84.478 | 86.185 | 85.800 |
| 26.465 | 30.410 | 36.830 | 38.623 | 38.889 | 38.351 |
| 23.371 | 30.993 | 36.613 | 39.768 | 40.988 | 40.137 |
| 57.199 | 72.764 | 85.776 | 90.094 | 90.653 | 89.812 |
| 18.801 | 33.514 | 43.062 | 46.899 | 49.330 | 49.584 |
| 5.501 | 10.319 | 13.421 | 14.521 | 15.250 | 15.243 |
| 12.683 | 16.483 | 20.823 | 23.025 | 23.085 | 24.353 |
| 25.969 | 36.934 | 43.652 | 47.184 | 48.732 | 48.154 |
| 2.496 | 3.061 | 3.403 | 3.619 | 3.782 | 3.840 |
| 7.617 | 10.830 | 14.776 | 15.914 | 16.072 | 17.009 |
| 14.979 | 22.116 | 24.312 | 26.134 | 28.352 | 28.476 |
| 1.674 | 2.023 | 2.587 | 2.795 | 2.923 | 3.019 |
| 18.748 | 25.352 | 32.415 | 35.014 | 36.541 | 37.424 |
| 2.856 | 3.808 | 4.336 | 4.576 | 4.747 | 4.899 |
| 2.941 | 3.789 | 4.845 | 5.233 | 5.469 | 5.626 |
| 3.850 | 7.182 | 12.501 | 12.312 | 12.125 | 13.854 |
| 8.701 | 14.187 | 18.003 | 17.476 | 18.722 | 18.899 |
| 0.902 | 1.220 | 1.549 | 1.503 | 1.624 | 1.658 |
| 38.421 | 50.568 | 58.366 | 62.155 | 64.439 | 65.756 |
| 23.212 | 33.655 | 41.808 | 43.394 | 44.891 | 47.502 |
| 24.018 | 27.448 | 28.615 | 30.150 | 31.747 | 33.334 |
| 37.275 | 45.467 | 52.771 | 55.603 | 58.660 | 60.928 |
| 23.617 | 25.770 | 30.001 | 31.509 | 33.363 | 34.637 |
| 18.024 | 21.923 | 24.567 | 25.799 | 27.282 | 27.873 |
| 14.153 | 17.297 | 21.632 | 22.718 | 24.005 | 24.825 |
| 26.173 | 32.013 | 36.102 | 37.916 | 39.998 | 40.730 |
| 7.550 | 10.401 | 13.019 | 13.675 | 14.601 | 15.218 |
| 4.066 | 5.705 | 6.157 | 6.488 | 6.933 | 7.206 |
| 13.096 | 13.916 | 17.656 | 18.603 | 19.660 | 20.593 |
| 24.807 | 29.712 | 40.710 | 42.895 | 45.473 | 47.266 |
| 13.289 | 16.789 | 21.310 | 22.454 | 23.941 | 25.341 |
| 18.037 | 25.146 | 31.574 | 33.268 | 35.504 | 37.175 |
| 15.857 | 19.179 | 22.533 | 23.742 | 24.958 | 25.890 |
| 43.969 | 48.932 | 67.819 | 71.459 | 75.857 | 80.579 |
| 8.394 | 11.647 | 16.142 | 17.008 | 18.126 | 19.205 |
| 8.664 | 9.519 | 11.106 | 11.702 | 12.348 | 12.752 |
| 26.949 | 32.153 | 37.189 | 39.185 | 41.434 | 42.600 |
| 60.596 | 81.186 | 121.125 | 128.056 | 137.033 | 145.864 |
| 15.517 | 21.315 | 27.688 | 29.408 | 31.489 | 33.477 |
| 32.629 | 43.053 | 59.354 | 64.099 | 69.106 | 72.201 |
| 10.966 | 14.763 | 17.981 | 19.336 | 20.765 | 21.685 |
| 10.966 | 13.363 | 16.198 | 17.525 | 18.929 | 19.791 |
| 273.969 | 348.809 | 450.221 | 482.364 | 510.549 | 534.394 |
| 8.271 | 9.659 | 12.356 | 14.315 | 14.523 | 15.175 |
| 37.582 | 47.026 | 55.092 | 58.153 | 59.431 | 61.026 |
| 129.484 | 156.692 | 179.757 | 187.730 | 195.526 | 198.273 |
| 74.656 | 93.993 | 106.898 | 111.350 | 116.008 | 117.918 |
| 120.213 | 175.656 | 280.688 | 318.570 | 327.261 | 335.460 |
| 13.074 | 15.826 | 21.144 | 21.565 | 24.039 | 23.500 |
| 49.205 | 78.543 | 89.693 | 92.362 | 96.201 | 101.891 |
| 45.934 | 55.016 | 61.097 | 63.804 | 67.216 | 68.973 |
| 29.410 | 36.465 | 43.216 | 45.401 | 46.651 | 47.994 |
| 48.794 | 61.587 | 77.087 | 81.255 | 85.017 | 89.976 |
| 92.133 | 169.412 | 265.213 | 285.979 | 302.269 | 328.674 |
| 32.298 | 41.510 | 47.685 | 51.110 | 54.019 | 57.357 |
| 8.867 | 11.793 | 15.078 | 16.287 | 16.956 | 17.756 |
| 3.186 | 3.308 | 3.766 | 3.975 | 4.129 | 4.380 |
| 16.330 | 18.982 | 19.629 | 20.959 | 22.307 | 22.907 |
| 1.554 | 3.220 | 5.025 | 5.308 | 5.529 | 6.171 |
| 27.525 | 35.048 | 42.132 | 45.043 | 47.908 | 49.791 |
| 13.970 | 17.974 | 19.154 | 19.903 | 20.165 | 21.163 |
| 764.386 | 1006.456 | 1298.688 | 1381.341 | 1465.163 | 1547.478 |
| 90.958 | 102.348 | 133.409 | 146.341 | 152.657 | 153.568 |
| 31.245 | 40.953 | 65.334 | 63.494 | 67.245 | 72.745 |
| 39.337 | 50.816 | 63.295 | 66.397 | 69.559 | 72.495 |
| 11.274 | 30.187 | 58.052 | 65.121 | 72.530 | 79.708 |
| 35.988 | 48.893 | 50.771 | 49.639 | 49.665 | 48.636 |
| 37.765 | 45.988 | 25.505 | 22.818 | 21.504 | 17.628 |
| 13.767 | 17.350 | 19.854 | 20.696 | 21.685 | 22.502 |
| 38.413 | 53.576 | 64.799 | 67.111 | 68.747 | 71.044 |
| 89.030 | 119.334 | 143.124 | 149.346 | 157.610 | 164.861 |
| 36.444 | 64.160 | 55.247 | 59.074 | 62.765 | 63.773 |
| 3.663 | 5.076 | 6.513 | 6.910 | 7.233 | 7.648 |
| 34.495 | 43.033 | 57.803 | 60.131 | 61.209 | 63.617 |
| 7.148 | 9.087 | 10.679 | 11.507 | 12.030 | 12.723 |
| 2.989 | 3.139 | 3.947 | 4.156 | 4.311 | 4.502 |


| Nominal in Billion dollars (cont.) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| Railway (82) | 0.410 | 0.518 | 0.578 | 0.639 | 0.698 | 0.712 |
| Bus (83) | 1.826 | 2.376 | 2.175 | 2.170 | 2.043 | 2.136 |
| Airline (84) | 25.278 | 36.724 | 34.374 | 35.624 | 36.246 | 38.243 |
| Other (85) | 6.390 | 7.807 | 9.803 | 11.040 | 12.710 | 14.030 |
| Physicians (47) | 184.635 | 236.836 | 344.570 | 366.337 | 394.594 | 421.266 |
| Dentists (48) | 45.389 | 61.827 | 85.186 | 90.303 | 95.419 | 100.682 |
| Other professional services (49) | 126.596 | 161.577 | 230.928 | 246.131 | 260.973 | 278.801 |
| Hospitals | 314.344 | 395.998 | 579.725 | 618.012 | 658.959 | 706.468 |
| Nursing homes | 66.171 | 86.599 | 110.936 | 117.800 | 123.638 | 130.209 |
| Health insurance (56) | 60.716 | 83.975 | 141.277 | 149.150 | 158.026 | 172.433 |
| Admissions to specified spectator amusements (96) | 21.099 | 30.400 | 38.704 | 39.877 | 41.959 | 46.160 |
| Radio and television repair | 3.553 | 4.172 | 4.782 | 5.353 | 5.424 | 5.566 |
| Clubs and fraternal organizations | 17.394 | 19.026 | 23.714 | 23.907 | 24.803 | 26.052 |
| Commercial participant amusements | 48.815 | 75.812 | 106.759 | 115.302 | 121.539 | 130.546 |
| Pari-mutuel net receipts | 3.702 | 4.986 | 6.164 | 6.580 | 6.882 | 7.218 |
| Other Recreation Services | 93.357 | 133.868 | 178.687 | 189.966 | 202.372 | 214.221 |
| Cleaning, storage, and repair of clothing and shoes (17) | 12.297 | 15.737 | 16.057 | 16.919 | 17.032 | 17.330 |
| Barbershops, beauty parlors, and health clubs (22) | 26.847 | 38.356 | 50.812 | 51.875 | 54.130 | 56.022 |
| Other Personal Care(19) | 22.053 | 32.936 | 47.945 | 54.815 | 59.371 | 64.374 |
| Brokerage charges and investment counseling (61) | 43.464 | 100.582 | 92.712 | 104.177 | 117.008 | 121.192 |
| Bank service charges, trust services, and safe deposit box rental | 37.190 | 64.244 | 99.244 | 108.034 | 118.532 | 130.668 |
| Services furnished w/out payment by intermediaries except life ins. carriers | 113.260 | 167.223 | 203.446 | 208.512 | 222.873 | 237.366 |
| Expense of handling life insurance and pension plans (64) | 72.890 | 96.078 | 108.867 | 114.923 | 117.127 | 120.373 |
| Legal services (65) | 47.354 | 63.854 | 85.985 | 91.832 | 98.980 | 104.323 |
| Funeral and burial expenses (66) | 12.377 | 13.977 | 16.174 | 16.847 | 17.646 | 18.135 |
| Other Personal Service(67) | 23.026 | 33.140 | 45.048 | 47.583 | 48.640 | 50.650 |
| Higher education (105) | 62.906 | 86.358 | 126.422 | 134.117 | 142.089 | 151.866 |
| Nursery, elementary, and secondary schools (106) | 26.995 | 34.618 | 44.360 | 46.382 | 48.179 | 50.497 |
| Other Education (107) | 24.445 | 42.795 | 55.095 | 59.141 | 66.359 | 70.978 |
| Political organizations | 0.615 | 4.290 | 0.873 | 3.982 | 1.770 | 4.344 |
| Museums and libraries | 5.103 | 7.533 | 9.398 | 10.094 | 11.178 | 11.909 |
| Foundations to religion and welfare | 7.324 | 9.334 | 13.088 | 13.976 | 14.463 | 15.458 |
| Social welfare | 70.862 | 105.218 | 144.267 | 152.281 | 163.544 | 175.053 |
| Religion | 36.453 | 45.909 | 57.485 | 61.001 | 63.533 | 66.364 |
| Foreign travel by U.S. residents (110) | 54.711 | 84.415 | 99.985 | 108.650 | 116.469 | 119.671 |
| Less: Expenditures in the United States by nonresidents (112) | 77.626 | 100.658 | 104.883 | 109.862 | 118.911 | 117.404 |


| Chained Real 2000 in Billion dollars |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| New autos (70) | 82.165 | 103.583 | 107.508 | 109.673 | 109.917 | 114.913 |
| Net purchases of used autos (71) | 52.814 | 60.638 | 56.976 | 56.494 | 56.104 | 55.827 |
| Other motor vehicles (72) | 99.823 | 173.261 | 233.248 | 217.693 | 232.805 | 247.466 |
| Tires, tubes, accessories, and other parts (73) | 37.157 | 49.038 | 53.553 | 53.174 | 52.918 | 52.255 |
| Furniture, including mattresses and bedsprings (29) | 48.735 | 67.595 | 85.238 | 89.408 | 91.146 | 90.345 |
| Kitchen and other household appliances (30) | 25.105 | 30.413 | 39.226 | 40.196 | 39.198 | 37.987 |
| China, glassware, tableware, and utensils (31) | 22.534 | 30.992 | 41.058 | 46.299 | 48.451 | 47.929 |
| Video and audio goods, including musical instruments (92) | 45.924 | 72.771 | 117.976 | 134.646 | 151.117 | 167.295 |
| Computers and peripherals | 3.065 | 33.504 | 138.431 | 178.353 | 213.081 | 272.402 |
| Software | 1.890 | 10.319 | 19.460 | 22.413 | 25.062 | 30.054 |
| Floor coverings | 13.746 | 16.483 | 19.422 | 20.577 | 20.293 | 21.108 |
| Durable house furnishings, n.e.c. | 23.868 | 36.947 | 54.919 | 64.632 | 71.299 | 76.729 |
| Writing equipment | 3.223 | 3.061 | 2.605 | 2.605 | 2.537 | 2.438 |
| Hand tools | 7.497 | 10.830 | 14.778 | 15.741 | 15.753 | 16.347 |
| Ophthalmic products and orthopedic appliances (46) | 16.350 | 22.116 | 22.302 | 23.279 | 24.756 | 24.684 |
| Guns | 1.475 | 2.023 | 2.802 | 3.065 | 3.241 | 3.410 |
| Sporting equipment | 16.525 | 25.352 | 35.108 | 38.404 | 40.504 | 42.268 |
| Photographic equipment | 2.631 | 3.808 | 6.825 | 8.276 | 10.782 | 13.593 |
| Bicycles | 3.042 | 3.789 | 4.761 | 4.965 | 5.211 | 5.327 |
| Motorcycles | 4.247 | 7.182 | 12.103 | 11.980 | 12.049 | 13.613 |
| Pleasure boats | 8.999 | 14.187 | 17.703 | 16.574 | 17.840 | 17.895 |
| Pleasure aircraft | 0.933 | 1.220 | 1.523 | 1.426 | 1.547 | 1.570 |
| Jewelry and watches (18) | 32.571 | 50.565 | 62.683 | 65.162 | 64.034 | 63.756 |
| Books and maps (87) | 24.547 | 33.654 | 40.529 | 42.338 | 43.446 | 46.014 |
| Cereals | 25.050 | 27.448 | 26.963 | 28.316 | 28.814 | 29.755 |
| Bakery products | 42.782 | 45.467 | 46.448 | 47.680 | 48.218 | 48.564 |
| Beef and veal | 25.799 | 25.770 | 22.166 | 23.093 | 23.220 | 22.821 |
| Pork | 20.578 | 21.923 | 21.630 | 22.772 | 23.292 | 23.093 |
| Other meats | 15.287 | 17.297 | 18.528 | 19.113 | 19.613 | 19.546 |
| Poultry | 28.811 | 32.011 | 31.145 | 33.297 | 33.422 | 32.779 |
| Fish and seafood | 8.188 | 10.401 | 12.384 | 12.421 | 12.696 | 13.143 |
| Eggs | 4.458 | 5.704 | 5.638 | 5.664 | 4.974 | 4.922 |
| Fresh milk and cream | 15.546 | 13.915 | 14.979 | 15.979 | 15.629 | 15.649 |
| Processed dairy products | 29.705 | 29.712 | 36.654 | 38.730 | 40.135 | 41.858 |
| Fresh fruits | 14.802 | 16.786 | 18.512 | 18.401 | 18.785 | 19.690 |
| Fresh vegetables | 20.312 | 25.139 | 25.511 | 25.678 | 26.367 | 26.517 |
| Processed fruits and vegetables | 17.790 | 19.179 | 19.921 | 20.405 | 20.795 | 20.968 |
| Juices and nonalcoholic drinks | 45.381 | 48.933 | 64.768 | 66.699 | 68.369 | 72.200 |
| Coffee, tea and beverage materials | 8.531 | 11.647 | 15.434 | 16.006 | 16.512 | 17.703 |
| Fats and oils | 9.155 | 9.519 | 9.762 | 10.269 | 10.602 | 10.715 |
| Sugar and sweets | 29.922 | 32.154 | 34.668 | 35.185 | 36.248 | 36.575 |
| Other foods | 68.453 | 81.187 | 114.315 | 119.248 | 124.757 | 129.795 |
| Pet food | 16.832 | 21.315 | 25.591 | 26.051 | 27.181 | 27.818 |
| Beer and ale, at home | 35.504 | 43.053 | 52.778 | 56.436 | 58.633 | 59.080 |
| Wine and brandy, at home | 12.324 | 14.763 | 17.448 | 18.351 | 19.403 | 19.825 |
| Distilled spirits, at home | 12.194 | 13.363 | 14.815 | 15.829 | 16.889 | 17.330 |
| Purchased meals and beverages (4) | 310.774 | 348.812 | 391.544 | 406.654 | 416.042 | 421.577 |
| Food furmished to employees or home grown | 9.150 | 9.659 | 10.831 | 12.166 | 11.913 | 11.944 |
| Shoes (12) | 35.372 | 47.026 | 55.623 | 58.282 | 60.303 | 60.572 |
| Women's and children's clothing and accessories except shoes (14) | 118.690 | 156.695 | 197.672 | 206.523 | 215.672 | 217.549 |
| Men's and boys' clothing and accessories except shoes (15+16) | 73.314 | 94.006 | 119.530 | 126.546 | 134.596 | 138.691 |
| Gasoline and oil (75) | 154.454 | 175.666 | 186.188 | 186.762 | 162.342 | 129.780 |
| Fuel oil and coal (40) | 18.700 | 15.799 | 13.306 | 11.958 | 12.342 | 10.108 |
| Tobacco products (7) | 85.453 | 78.543 | 70.452 | 70.164 | 68.609 | 69.902 |
| Toilet articles and preparations (21) | 47.933 | 55.016 | 61.051 | 63.203 | 65.460 | 66.762 |
| Semidurable house furnishings (33) | 26.484 | 36.461 | 52.891 | 59.640 | 65.994 | 72.457 |
| Cleaning, polishing preparations, misc. supplies and paper products | 54.505 | 61.594 | 73.230 | 74.090 | 76.107 | 78.890 |
| Drug preparations and sundries (45) | 105.602 | 169.342 | 223.810 | 232.195 | 242.796 | 257.715 |
| Toys, dolls, and games | 26.733 | 41.509 | 64.874 | 72.842 | 80.932 | 93.255 |
| Sport supplies, including ammunition | 7.815 | 11.793 | 16.331 | 17.864 | 18.757 | 19.897 |
| Film and photo supplies | 2.992 | 3.308 | 4.137 | 4.493 | 4.669 | 4.932 |
| Stationery and writing supplies (35) | 17.838 | 18.982 | 20.595 | 21.712 | 22.775 | 23.231 |
| Net foreign remittances (111 less 113) | 0.908 | 3.219 | 2.907 | 2.750 | 2.277 | 2.551 |
| Magazines, newspapers, and sheet music (88) | 30.791 | 35.047 | 37.689 | 39.663 | 41.828 | 42.689 |
| Flowers, seeds, and potted plants (95) | 13.541 | 17.970 | 18.080 | 18.635 | 18.750 | 19.560 |
| Housing | 887.505 | 1006.385 | 1118.238 | 1148.264 | 1174.386 | 1202.516 |
| Electricity (37) | 90.172 | 102.338 | 112.998 | 110.563 | 110.616 | 100.525 |
| Gas (38) | 40.394 | 40.987 | 40.802 | 38.700 | 39.529 | 39.248 |
| Water and other sanitary services (39) | 45.153 | 50.815 | 51.430 | 51.417 | 51.391 | 51.039 |
| Cellular telephone | 7.228 | 30.180 | 67.629 | 76.327 | 85.181 | 93.094 |
| Local telephone | 39.397 | 48.892 | 42.537 | 40.747 | 39.376 | 37.492 |
| Long distance telephone | 35.480 | 45.991 | 35.211 | 31.044 | 27.797 | 22.904 |
| Domestic service (42) | 16.049 | 17.352 | 17.024 | 17.133 | 17.232 | 17.279 |
| Other (43) | 44.285 | 53.578 | 53.097 | 52.975 | 52.856 | 52.647 |
| Motor vehicle repair | 101.722 | 119.334 | 122.712 | 122.878 | 125.266 | 125.836 |
| Motor vehicle rental, leasing, and other | 37.784 | 64.161 | 52.987 | 55.699 | 58.946 | 59.690 |
| Bridge, tunnel, ferry, and road tolls | 4.404 | 5.076 | 5.207 | 5.367 | 5.416 | 5.477 |
| Insurance | 40.213 | 43.034 | 44.152 | 44.268 | 44.620 | 44.816 |
| Mass transit systems (79) | 7.865 | 9.087 | 8.545 | 8.906 | 9.085 | 9.246 |
| Taxicab (80) | 3.372 | 3.139 | 3.158 | 3.217 | 3.255 | 3.262 |

Chained Real 2000 in Billion dollars
Railway (82)
Bus (83)
Airline (84)
Other (85)
Physicians (47)
Dentists (48)
Other professional services (49)
Hospitals
Nursing homes
Health insurance (56)
Admissions to specified spectator amusements (96)
Radio and television repair
Clubs and fraternal organizations
Commercial participant amusements
Pari-mutuel net receipts
Other Recreation Services
Cleaning, storage, and repair of clothing and shoes (17)
Barbershops, beauty parlors, and health clubs (22)
Other Personal Care(19)
Brokerage charges and investment counseling (61)
Bank service charges, trust services, and safe deposit box rental
Serices furnished w/out payment by intermediaries except life ins. carriers
Expense of handling life insurance and pension plans (64)
Legal services (65)
Funeral and burial expenses (66)
Other Personal Service(67)
Higher education (105)
Nursery, elementary, and secondary schools (106)
Other Education (107)
Political organizations
Museums and libraries
Foundations to religion and welfare
Social welfare
Religion
Foreign travel by U.S. residents (110)
Less: Expenditures in the United States by nonresidents (112)

| $\mathbf{1 9 9 5}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.478 | 0.518 | 0.582 | 0.592 | 0.637 | 0.667 |
| 2.109 | 2.376 | 1.829 | 1.702 | 1.598 | 1.614 |
| 27.182 | 36.730 | 40.502 | 39.696 | 40.393 | 42.113 |
| 7.352 | 7.806 | 9.471 | 10.229 | 11.652 | 12.519 |
| 200.126 | 236.837 | 317.668 | 334.740 | 346.453 | 363.358 |
| 56.689 | 61.828 | 67.975 | 68.492 | 69.142 | 69.742 |
| 142.259 | 161.565 | 204.402 | 213.694 | 221.403 | 232.123 |
| 353.295 | 395.951 | 473.488 | 484.599 | 497.875 | 508.681 |
| 80.733 | 86.598 | 91.009 | 93.782 | 95.548 | 97.329 |
| 73.734 | 83.966 | 105.829 | 108.441 | 110.857 | 115.035 |
| 26.150 | 30.397 | 31.732 | 31.566 | 31.758 | 33.587 |
| 3.818 | 4.172 | 4.638 | 5.173 | 5.312 | 5.432 |
| 19.972 | 19.026 | 21.871 | 21.374 | 21.427 | 21.958 |
| 55.677 | 75.799 | 93.484 | 97.719 | 99.800 | 103.114 |
| 4.172 | 4.986 | 5.443 | 5.629 | 5.688 | 5.742 |
| 109.400 | 133.858 | 154.562 | 160.048 | 169.972 | 174.560 |
| 13.583 | 15.738 | 13.765 | 13.993 | 13.603 | 13.377 |
| 31.331 | 38.354 | 44.404 | 44.080 | 44.565 | 44.932 |
| 24.434 | 32.934 | 40.399 | 44.252 | 46.058 | 47.703 |
| 28.088 | 100.571 | 99.483 | 108.466 | 115.896 | 106.274 |
| 48.732 | 64.239 | 88.009 | 93.184 | 98.038 | 105.442 |
| 129.716 | 167.396 | 183.064 | 185.743 | 198.836 | 208.161 |
| 96.991 | 96.078 | 90.701 | 92.476 | 89.971 | 87.012 |
| 58.807 | 63.854 | 67.626 | 69.821 | 71.975 | 72.206 |
| 15.068 | 13.977 | 13.275 | 13.149 | 13.139 | 12.948 |
| 27.784 | 33.139 | 37.925 | 38.594 | 38.097 | 38.296 |
| 75.962 | 86.350 | 95.743 | 96.307 | 97.525 | 99.308 |
| 31.930 | 34.616 | 37.500 | 37.811 | 38.205 | 38.647 |
| 30.380 | 42.782 | 41.867 | 42.780 | 46.189 | 46.770 |
| 0.710 | 4.291 | 0.782 | 3.444 | 1.490 | 3.572 |
| 5.960 | 7.533 | 8.421 | 8.745 | 9.399 | 9.811 |
| 8.886 | 9.334 | 11.017 | 11.270 | 11.523 | 11.895 |
| 82.865 | 105.197 | 125.059 | 127.220 | 132.100 | 136.234 |
| 44.130 | 45.909 | 48.387 | 48.799 | 49.264 | 49.552 |
| 57.545 | 84.418 | 79.617 | 84.784 | 87.170 | 85.119 |
| 88.903 | 100.667 | 92.200 | 92.339 | 95.811 | 89.214 |


| Chained 2000 Price index [2000=100] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| New autos (70) | 99.95 | 100.00 | 96.75 | 97.62 | 97.37 | 97.81 |
| Net purchases of used autos (71) | 95.64 | 100.00 | 101.04 | 102.75 | 100.37 | 102.13 |
| Other motor vehicles (72) | 96.38 | 100.00 | 96.64 | 96.13 | 94.49 | 93.83 |
| Tires, tubes, accessories, and other parts (73) | 101.80 | 100.00 | 108.19 | 112.56 | 116.35 | 122.30 |
| Furniture, including mattresses and bedsprings (29) | 99.56 | 100.00 | 93.71 | 94.49 | 94.56 | 94.97 |
| Kitchen and other household appliances (30) | 105.42 | 100.00 | 93.89 | 96.09 | 99.22 | 100.96 |
| China, glassware, tableware, and utensils (31) | 103.74 | 100.00 | 89.21 | 85.91 | 84.60 | 83.74 |
| Video and audio goods, including musical instruments (92) | 124.62 | 100.00 | 72.76 | 66.97 | 60.02 | 53.74 |
| Computers and peripherals | 621.82 | 100.00 | 31.23 | 26.36 | 23.24 | 18.29 |
| Software | 295.02 | 100.00 | 69.00 | 64.84 | 60.93 | 50.88 |
| Floor coverings | 92.27 | 100.00 | 107.19 | 111.93 | 113.75 | 115.37 |
| Durable house furnishings, n.e.c. | 108.79 | 100.00 | 79.56 | 73.04 | 68.38 | 62.80 |
| Writing equipment | 77.43 | 100.00 | 130.62 | 138.93 | 149.11 | 157.55 |
| Hand tools | 101.59 | 100.00 | 99.98 | 101.10 | 102.03 | 104.04 |
| Ophthalmic products and orthopedic appliances (46) | 91.62 | 100.00 | 109.00 | 112.27 | 114.53 | 115.36 |
| Guns | 113.47 | 100.00 | 92.33 | 91.18 | 90.22 | 88.54 |
| Sporting equipment | 113.47 | 100.00 | 92.33 | 91.18 | 90.22 | 88.54 |
| Photographic equipment | 108.56 | 100.00 | 63.58 | 55.51 | 44.16 | 36.23 |
| Bicycles | 96.69 | 100.00 | 101.76 | 105.42 | 104.96 | 105.60 |
| Motorcycles | 90.65 | 100.00 | 103.30 | 102.77 | 100.62 | 101.76 |
| Pleasure boats | 96.70 | 100.00 | 101.76 | 105.42 | 104.96 | 105.60 |
| Pleasure aircraft | 96.70 | 100.00 | 101.76 | 105.42 | 104.96 | 105.60 |
| Jewelry and watches (18) | 117.97 | 100.00 | 93.12 | 95.40 | 100.64 | 103.13 |
| Books and maps (87) | 94.56 | 100.00 | 103.16 | 102.49 | 103.32 | 103.24 |
| Cereals | 95.88 | 100.00 | 106.13 | 106.47 | 110.18 | 112.02 |
| Bakery products | 87.13 | 100.00 | 113.61 | 116.61 | 121.66 | 125.46 |
| Beef and veal | 91.54 | 100.00 | 135.36 | 136.45 | 143.71 | 151.78 |
| Pork | 87.61 | 100.00 | 113.59 | 113.29 | 117.14 | 120.70 |
| Other meats | 92.59 | 100.00 | 116.74 | 118.86 | 122.39 | 127.01 |
| Poultry | 90.84 | 100.00 | 115.92 | 113.87 | 119.73 | 124.26 |
| Fish and seafood | 92.22 | 100.00 | 105.13 | 110.08 | 115.01 | 115.79 |
| Eggs | 91.47 | 100.00 | 109.32 | 114.55 | 139.44 | 146.41 |
| Fresh milk and cream | 84.24 | 100.00 | 117.87 | 116.45 | 125.92 | 131.59 |
| Processed dairy products | 83.51 | 100.00 | 111.06 | 110.76 | 113.30 | 112.92 |
| Fresh fruits | 89.82 | 100.00 | 115.12 | 122.03 | 127.46 | 128.69 |
| Fresh vegetables | 88.91 | 100.00 | 123.86 | 129.56 | 134.65 | 140.19 |
| Processed fruits and vegetables | 89.13 | 100.00 | 113.08 | 116.35 | 120.02 | 123.47 |
| Juices and nonalcoholic drinks | 96.89 | 100.00 | 104.69 | 107.13 | 110.95 | 111.60 |
| Coffee, tea and beverage materials | 98.54 | 100.00 | 104.57 | 106.25 | 109.78 | 108.48 |
| Fats and oils | 94.65 | 100.00 | 113.76 | 113.96 | 116.47 | 119.00 |
| Sugar and sweets | 90.07 | 100.00 | 107.28 | 111.36 | 114.31 | 116.47 |
| Other foods | 88.52 | 100.00 | 105.94 | 107.39 | 109.83 | 112.37 |
| Pet food | 92.19 | 100.00 | 108.19 | 112.88 | 115.84 | 120.34 |
| Beer and ale, at home | 91.90 | 100.00 | 112.46 | 113.58 | 117.83 | 122.22 |
| Wine and brandy, at home | 88.98 | 100.00 | 103.04 | 105.36 | 107.01 | 109.38 |
| Distilled spirits, at home | 89.93 | 100.00 | 109.33 | 110.71 | 112.06 | 114.20 |
| Purchased meals and beverages (4) | 88.16 | 100.00 | 114.98 | 118.61 | 122.71 | 126.76 |
| Food furnished to employees or home grown | 90.40 | 100.00 | 114.06 | 117.64 | 121.91 | 127.05 |
| Shoes (12) | 106.25 | 100.00 | 99.04 | 99.78 | 98.56 | 100.75 |
| Women's and children's clothing and accessories except shoes (14) | 109.10 | 100.00 | 90.95 | 90.90 | 90.67 | 91.14 |
| Men's and boys' clothing and accessories except shoes ( $15+16$ ) | 101.83 | 100.00 | 89.45 | 87.99 | 86.19 | 85.03 |
| Gasoline and oil (75) | 77.83 | 100.00 | 150.84 | 170.50 | 207.26 | 258.68 |
| Fuel oil and coal (40) | 69.90 | 100.00 | 159.61 | 180.35 | 196.95 | 232.54 |
| Tobacco products (7) | 57.58 | 100.00 | 127.31 | 131.64 | 140.21 | 145.75 |
| Toilet articles and preparations (21) | 95.83 | 100.00 | 100.07 | 100.95 | 102.68 | 103.31 |
| Semidurable house furnishings (33) | 111.05 | 100.00 | 81.77 | 76.17 | 70.74 | 66.26 |
| Cleaning, polishing preparations, misc. supplies and paper products | 89.52 | 100.00 | 105.26 | 109.67 | 111.70 | 114.05 |
| Drug preparations and sundries (45) | 87.24 | 100.00 | 118.50 | 123.15 | 124.49 | 127.52 |
| Toys, dolls, and games | 120.83 | 100.00 | 73.53 | 70.18 | 66.80 | 61.57 |
| Sport supplies, including ammunition | 113.47 | 100.00 | 92.33 | 91.18 | 90.40 | 89.25 |
| Film and photo supplies | 106.48 | 100.00 | 91.04 | 88.49 | 88.43 | 88.82 |
| Stationery and writing supplies (35) | 91.55 | 100.00 | 95.31 | 96.52 | 97.95 | 98.60 |
| Net foreign remittances (111 less 113) | 173.90 | 100.00 | 173.35 | 196.79 | 247.52 | 241.89 |
| Magazines, newspapers, and sheet music (88) | 89.39 | 100.00 | 111.78 | 113.56 | 114.53 | 116.63 |
| Flowers, seeds, and potted plants (95) | 103.17 | 100.00 | 105.93 | 106.80 | 107.55 | 108.19 |
| Housing | 86.12 | 100.00 | 116.13 | 120.29 | 124.75 | 128.68 |
| Electricity (37) | 100.86 | 100.00 | 118.02 | 132.35 | 138.06 | 152.82 |
| Gas (38) | 77.40 | 100.00 | 160.34 | 164.48 | 170.20 | 185.34 |
| Water and other sanitary services (39) | 87.12 | 100.00 | 123.07 | 129.14 | 135.35 | 142.04 |
| Cellular telephone | 156.31 | 100.00 | 85.85 | 85.32 | 85.15 | 85.61 |
| Local telephone | 91.35 | 100.00 | 119.37 | 121.82 | 126.14 | 129.74 |
| Long distance telephone | 106.44 | 100.00 | 72.42 | 73.53 | 77.39 | 76.94 |
| Domestic service (42) | 85.78 | 100.00 | 116.63 | 120.80 | 125.84 | 130.23 |
| Other (43) | 86.74 | 100.00 | 122.03 | 126.69 | 130.07 | 134.95 |
| Motor vehicle repair | 87.51 | 100.00 | 116.64 | 121.53 | 125.82 | 131.01 |
| Motor vehicle rental, leasing, and other | 96.45 | 100.00 | 104.25 | 106.06 | 106.49 | 106.84 |
| Bridge, tunnel, ferry, and road tolls | 83.17 | 100.00 | 125.06 | 128.73 | 133.54 | 139.64 |
| Insurance | 85.78 | 100.00 | 130.92 | 135.83 | 137.18 | 141.95 |
| Mass transit systems (79) | 90.89 | 100.00 | 124.96 | 129.19 | 132.41 | 137.60 |
| Taxicab (80) | 88.66 | 100.00 | 124.96 | 129.20 | 132.47 | 137.98 |


| Chained 2000 Price index [2000=100] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| 81 | Railway (82) | 85.83 | 100.00 | 99.76 | 108.03 | 109.91 | 106.85 |
| 82 | Bus (83) | 86.56 | 100.00 | 118.93 | 127.57 | 127.86 | 132.35 |
| 83 | Airline (84) | 92.99 | 100.00 | 84.89 | 89.75 | 89.72 | 90.81 |
| 84 | Other (85) | 86.91 | 100.00 | 103.49 | 107.94 | 109.06 | 112.05 |
| 85 | Physicians (47) | 92.26 | 100.00 | 108.46 | 109.43 | 113.89 | 115.93 |
| 86 | Dentists (48) | 80.07 | 100.00 | 125.32 | 131.84 | 138.00 | 144.36 |
| 87 | Other professional services (49) | 88.99 | 100.00 | 112.97 | 115.17 | 117.87 | 120.10 |
| 88 | Hospitals | 88.97 | 100.00 | 122.42 | 127.53 | 132.35 | 138.87 |
| 89 | Nursing homes | 81.95 | 100.00 | 121.88 | 125.61 | 129.39 | 133.78 |
| 90 | Health insurance (56) | 82.37 | 100.00 | 133.48 | 137.54 | 142.53 | 149.87 |
| 91 | Admissions to specified spectator amusements (96) | 80.65 | 100.00 | 121.97 | 126.34 | 132.11 | 137.42 |
| 92 | Radio and television repair | 93.02 | 100.00 | 103.11 | 103.49 | 102.10 | 102.46 |
| 93 | Clubs and fraternal organizations | 87.10 | 100.00 | 108.42 | 111.85 | 115.75 | 118.64 |
| 94 | Commercial participant amusements | 87.66 | 100.00 | 114.19 | 117.98 | 121.78 | 126.59 |
| 95 | Pari-mutuel net receipts | 88.75 | 100.00 | 113.23 | 116.89 | 121.00 | 125.71 |
| 96 | Other Recreation Services | 85.33 | 100.00 | 115.60 | 118.69 | 119.05 | 122.71 |
| 97 | Cleaning, storage, and repair of clothing and shoes (17) | 90.53 | 100.00 | 116.65 | 120.91 | 125.22 | 129.56 |
| 98 | Barbershops, beauty parlors, and health clubs (22) | 85.68 | 100.00 | 114.43 | 117.69 | 121.46 | 124.68 |
| 99 | Other Personal Care(19) | 90.25 | 100.00 | 118.66 | 123.83 | 128.90 | 134.93 |
| 100 | Brokerage charges and investment counseling (61) | 154.64 | 100.00 | 93.18 | 96.04 | 100.98 | 114.08 |
| 101 | Bank service charges, trust services, and safe deposit box rental | 76.31 | 100.00 | 112.76 | 115.93 | 120.87 | 123.91 |
| 102 | Services furnished w/out payment by intermediaries except life ins. carriers | 87.31 | 100.00 | 111.14 | 112.25 | 112.09 | 114.02 |
| 103 | Expense of handling life insurance and pension plans (64) | 75.15 | 100.00 | 119.99 | 124.28 | 130.32 | 138.36 |
| 104 | Legal services (65) | 80.52 | 100.00 | 127.15 | 131.50 | 137.53 | 144.47 |
| 105 | Funeral and burial expenses (66) | 82.14 | 100.00 | 121.85 | 128.11 | 134.32 | 140.06 |
| 106 | Other Personal Service(67) | 82.87 | 100.00 | 118.77 | 123.29 | 127.68 | 132.25 |
| 107 | Higher education (105) | 82.81 | 100.00 | 132.04 | 139.25 | 145.69 | 152.91 |
| 108 | Nursery, elementary, and secondary schools (106) | 84.54 | 100.00 | 118.29 | 122.66 | 126.10 | 130.66 |
| 109 | Other Education (107) | 80.46 | 100.00 | 131.60 | 138.22 | 143.64 | 151.76 |
| 110 | Political organizations | 86.81 | 100.00 | 112.10 | 115.30 | 118.39 | 121.75 |
| 111 | Museums and libraries | 85.60 | 100.00 | 111.60 | 115.40 | 118.92 | 121.37 |
| 112 | Foundations to religion and welfare | 82.43 | 100.00 | 118.80 | 124.00 | 125.51 | 129.94 |
| 113 | Social welfare | 85.51 | 100.00 | 115.35 | 119.69 | 123.79 | 128.49 |
| 114 | Religion | 82.60 | 100.00 | 118.80 | 125.00 | 128.96 | 133.93 |
| 115 | Foreign travel by U.S. residents (110) | 95.09 | 100.00 | 125.59 | 128.14 | 133.62 | 140.59 |
| 116 | Less: Expenditures in the United States by nonresidents (112) | 87.29 | 100.00 | 113.77 | 118.97 | 124.15 | 131.60 |

# Appendix 4.1: Estimation Results for Nominal Value of annual Fixed Asset Accounts by Purchasing Industries 

```
: SEE = 1716.01 RSQ = 0.9213 RHO = 0.29 Obser = 32 from 1975.000
 SEE+1 = 1651.39 RBSQ = 0.9158 DurH = 2.68 DoFree = 29 to 2006.000
 MAPE = 10.00
 Variable name
 0 vein1
 1 intercept
 2 vein1[1] 0.67477 34.1 0.65 0. 1.21 15756.44 0.646
 3 vennot 0.05031 10.0 0.27 1.00 88589.03 0.331
: Forestry, fishing, and related activities
 SEE = 232.05 RSQ = 0.8695 RHO = -0.24 Obser = 32 from 1975.000
 SEE+1 = 224.55 RBSQ = 0.8555 DurH = -1.54 DoFree = 28 to 2006.000
 MAPE = 9.76
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein2 _ _ _ _ _ _ _ - _ _ _ _ _ _ - - - 1984.97 _ - -
 1 intercept
 2 vein2[1] 0.78192 99.0 0.75 1.66 1891.81 0.749
 3 vennot 0.01774 28.3 0.79 1.53 88589.03 1.113
 4 venntr -0.01429 23.9 -0.66 1.00 91518.56 -0.971
: Oil and gas extraction
 SEE = 1285.42 RSQ = 0.5967 RHO = 0.05 Obser = 32 from 1975.000
 SEE+1 = 1284.10 RBSQ = 0.5688 DurH = 0.35 DoFree = 29 to 2006.000
 MAPE = 21.68
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein3
 1 vein3[1]
\begin{tabular}{|c|c|c|c|c|}
\hline 0.75240 & 70.2 & 0.73 & 1.27 & \\
\hline -0.06457 & 7.8 & -0.66 & 1.22 & \\
\hline
\end{tabular}
 3 venntr
: Mining, except oil and gas
 SEE = 696.75 RSQ = 0.8776 RHO = 0.03 Obser = 32 from 1975.000
 SEE+1 = 696.44 RBSQ = 0.8595 DurH = 999.00 DoFree = 27 to 2006.000
 MAPE = 11.88
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline vein4 & - - - - - & - - - - & - - - & - - - - & 4973.12 & - - - \\
\hline vein4[1] & 1.02771 & 56.1 & 0.97 & 1.99 & 4675.16 & \\
\hline vein4[2] & -0.59061 & 18.4 & -0.52 & 1.71 & 4398.78 & -0.437 \\
\hline vennot & 0.06979 & 20.5 & 1.24 & 1.29 & 88589.03 & 1.412 \\
\hline vennin & -0.02242 & 4.9 & -0.45 & 1.25 & 98784.19 & -0.457 \\
\hline venn2 & -0.01643 & 1 & -0.24 & 00 & 73834 & -0.5 \\
\hline
\end{tabular}
: SEE = 713.61 RSQ }\begin{array}{l}{\mathrm{ Support activities for mining }}\\{=0.8448 RHO = 0.02 Obser = 32 from 1975.000}
 SEE = 713.61 RSQ = 0.8448 RHO = 0.02 Obser = 32 from 1975.000
 MAPE = 16.94
 Variable name
```



```
: SEE = 2122.46 RSQ = 0.9396 RHO = 0.03 Obser = 32 from 1975.000
```

```
 SEE+1 = 2122.62 RBSQ = 0.9306 DurH = 0.35 DoFree = 27 to 2006.000
 MAPE = 7.92
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein6 - - - - - - - - - - - - - - - 24278.19 - - -
```



```
 2 vein6[1] 0.98572 48.2 0.95 1.41 23352.25 1.009
 3 vein6[2] -0.29552 6.1 -0.27 1.33 22471.12 -0.311
 4 venn2 -0.02275 1.8 -0.07 1.17 73834.41 -0.177
 5 vennoit 0.07531 [llllllll
: Construction
 SEE = 2060.42 RSQ = 0.9711 RHO = 0.24 Obser = 32 from 1975.000
 SEE+1 = 2006.49 RBSQ = 0.9680 DurH = 3.61 DoFree = 28 to 2006.000
 MAPE = 16.57
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein7
 1 vein7[1]
 2 venn2 0.12943 17.4 0.60 0.0.4.48
 3 vennoit -0.23962 15.0 -1.52 1.39 101376.84 -1.019
 4 vennin 0.23283 17.9 1.44 1.00 98784.19 0.779
: Wood products
 SEE = 164.76 RSQ = 0.9285 RHO = -0.00 Obser = 32 from 1975.000
 SEE+1 = 164.76 RBSQ = 0.9208 DurH = -0.04 DoFree = 28 to 2006.000
 MAPE = 7.49
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein8 - - - - - - - - - - - - - - - - - 1875.53 - - -
 1 vein8[1] 0.44638 11.0 0.43 2.62 1819.00
 2 vein8[2] -0.34171 12.4 -0.32 2.44 1759.47 -0.348
 3 vennoit -0.01874 35.6 -1.01 2.23 101376.84 -1.569
 4 vennin lllllllll
: Nonmetallic mineral products
 SEE = 320.30 RSQ = 0.9054 RHO = 0.31 Obser = 32 from 1975.000
 SEE+1 = 305.04 RBSQ = 0.8989 DurH = 2.43 DoFree = 29 to 2006.000
 MAPE = 9.74
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein9 - - - - - - - - - - - - - - - - - 3199.81 - - -
 1 intercept
 2 vein9[1] 0.52221 27.1 0.50 0. 0. 1.47 3089.38 0.522
 3 vennin 0.01175 21.4 0.36 1.00 98784.19 0.458
: Primary metals
 SEE = 608.36 RSQ = 0.5813 RHO = 0.03 Obser = 32 from 1975.000
 SEE+1 = 608.16 RBSQ = 0.5524 DurH = 0.25 DoFree = 29 to 2006.000
 MAPE = 9.33
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein10 - - - - - - - - - - - - - - - - 4843.59 - - -
 l intercept
 lrrrrrrrern
: Fabricated metal products
 SEE = 409.87 RSQ = 0.9683 RHO = 0.05 Obser = 32 from 1975.000
 SEE+1 = 409.76 RBSQ = 0.9649 DurH = 0.56 DoFree = 28 to 2006.000
 MAPE = 5.74
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein11
 Reg-Coef Mexval Elas NorRes Mean Beta
 1 vein11[1] 0.59278 19.2 0.57 2.26 5639.84
 l vein11[2]
```





```
 SEE = 2200.78 RSQ = 0.9432 RHO = -0.02 Obser = 32 from 1975.000
 SEE+1 = 2200.08 RBSQ = 0.9348 DurH = -0.15 DoFree = 27 to 2006.000
 MAPE = 20.49
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein29
 1 intercept
 - - - - - - - - - - - - - - - - -
 11594.88 - - -
```



```
 3 venntr 0.06378 2.8 0.50 1.81 91518.56 0.301
 4 venntr[1] 0.17218 15.1 1.29 1.67 86968.16 0.794
 5 vennot -0.16848 29.4 -1.29 1.00 88589.03-0.735
:
 Railroad transportation
 SEE = 458.26 RSQ = 0.6855 RHO = 0.08 Obser = 32 from 1975.000
 SEE+1 = 457.19 RBSQ = 0.6638 DurH = 0.88 DoFree = 29 to 2006.000
 MAPE = 21.47
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name vein30 & \[
\begin{array}{r}
\text { Reg-Coef } \\
-\quad-\quad-\quad .
\end{array}
\] & \begin{tabular}{l}
Mexval \\
- - -
\end{tabular} & Elas
- - - & \[
\begin{aligned}
& \text { NorRes } \\
& -\quad-\quad-\quad .
\end{aligned}
\] & \[
\begin{gathered}
\text { Mean } \\
1768.09
\end{gathered}
\] & \[
\begin{array}{r}
\text { Beta } \\
-\quad-\quad-
\end{array}
\] \\
\hline intercept & 740.62910 & 19.8 & 0.42 & 3.18 & 1.00 & \\
\hline vein30[1] & 1.14203 & 71.5 & 1.13 & 1.49 & 1751.28 & 1.157 \\
\hline vein30[2] & -0.56150 & 21.9 & -0.55 & 1.00 & 1732.06 & -0.579 \\
\hline
\end{tabular}
: SEE = 481.15 RSQ = 0.8687 RHO = 0.16 Obser = 32 from 1975.000
 SEE+1 = 476.61 RBSQ = 0.8596 DurH = 1.38 DoFree = 29 to 2006.000
 MAPE = 14.61
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein31
 _ - _ _ _ _ _ - _ _ _ _ _ _ _ - - 2870.16 _ - -
 1 vein31[1] 0.70956 40.2 0.68 1.23 2747.78
 2 venntr 0.01922 6 6.2 0.61 1.04 91518.56 0.632
 3 vennoit -0.00854 2.0 -0.30 1.00 101376.84 -0.332
: Truck transportation
 SEE = 1543.55 RSQ = 0.8586 RHO = 0.13 Obser = 32 from 1975.000
 SEE+1 = 1537.20 RBSQ = 0.8434 DurH = 2.33 DoFree = 28 to 2006.000
 MAPE = 14.47
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein32 _ - - - - - - - - - - - - - - - 7788.06 - - -
 1 vein32[1] 0.59443 20.4 0.55 1.80
 2 venntr 0.13829 28.8 1.63 1.44 91518.56 1.470
 3 venntr[1] -0.10802 20.1 -1.21
 4 venptr 2.89262 0.1 0.03 1.00 83.21 0.014
:
 Transit and ground passenger transportation
 SEE = 345.39 RSQ = 0.9121 RHO = -0.19 Obser = 32 from 1975.000
 SEE+1 = 338.55 RBSQ = 0.9027 DurH = -1.73 DoFree = 28 to 2006.000
 MAPE = 21.82
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein33 _ - - _ - _ - - - - - - - - - - 1529.88 - - -
 1 \text { intercept}
 r-422.19874
 l vein33[1]
 4 venntr 0.02855 19.3 1.71 1.00 91518.56 1.069
: Pipeline transportation
 SEE = 284.84 RSQ = 0.8719 RHO = 0.40 Obser = 32 from 1975.000
 SEE+1 = 261.52 RBSQ = 0.8631 DurH = 3.00 DoFree = 29 to 2006.000
 MAPE = 22.34
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein34 _ - - - _ - - . - - - - - . - - 1660.66 - - -
 l vein34[1]
```

```
: Other transportation and support activities
 SEE = 567.86 RSQ = 0.8850 RHO = -0.06 Obser = 32 from 1975.000
 SEE+1 = 565.54 RBSQ = 0.8771 DurH = -0.40 DoFree = 29 to 2006.000
 MAPE = 8.56
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein35 _ - - - - - - - - - - - - - - - - 5004.56 - - -
 1 vein35[1]
 2 venntr 0.04839
 3 venn2 -0.02463 51.5 -0.36 1.00 73834.41 -0.985
:
 Warehousing and storage
 SEE = 211.52 RSQ = 0.8788 RHO = 0.06 Obser = 32 from 1975.000
 SEE+1 = 211.18 RBSQ = 0.8658 DurH = 999.00 DoFree = 28 to 2006.000
 MAPE = 23.64
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein36 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 858.16 _ _ -
 1 vein36[1] 0.44126 9.0 0.41 1.37 794.41
 2 vennoit -0.00497 3.3 -0.59 1.21 101376.84 -0.422
 3 vennot 0.00880
 4 venn2 0.00321 7lllllll
:
 Publishing industries (including software)
 SEE = 523.83 RSQ = 0.9364 RHO = -0.14 Obser = 32 from 1975.000
 SEE+1 = 518.30 RBSQ = 0.9295 DurH = -1.31 DoFree = 28 to 2006.000
 MAPE = 8.51
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein37 _ - _ _ - - _ _ - _ - _ - - - - - 4343.28 - - -
 1 vein37[1] 0.58438 27.9 0.56 1.46 4163.06
 2 vennoit 0.04226 0.0.6 0.99 1.26 101376.84 1.049
 3 venn2 -0.01342 7.5 -0.23 1.03 73834.41 -0.433
 4 vennin -0.01399 1.2 -0.32 1.00 98784.19 -0.273
```

:
Motion picture and sound recording industries
$\mathrm{SEE}=177.72 \mathrm{RSQ}=0.9309 \mathrm{RHO}=0.07$ Obser $=32$ from 1975.000
$\mathrm{SEE}+1=177.36 \mathrm{RBSQ}=0.9235 \mathrm{DurH}=1.01$ DoFree $=28$ to 2006.000
$\mathrm{MAPE}=12.94$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

1 intercept
$\begin{array}{rrrrrr}126.02656 & 5.2 & 0.11 & 14.46 & 1.00 & \\ 1.44350 & 95.2 & 1.42 & 1.48 & 1134.00 & 1.472\end{array}$
3 vein38[2] $\quad-0.53047 \quad 17.6 \quad-0.51 \quad 1.01 \quad 1115.84-0.551$
4 venn2 $-0.00023 \quad 0.3-0.01 \quad 1.00 \quad 73834.41-0.023$
:
Broadcasting and telecommunications
SEE $=5686.40 \mathrm{RSQ}=0.9387 \mathrm{RHO}=0.31$ Obser $=32$ from 1975.000
$\mathrm{SEE}+1=5432.63 \mathrm{RBSQ}=0.9322 \mathrm{DurH}=2.25$ DoFree $=28$ to 2006.000
$\mathrm{MAPE}=14.79$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vein39 - - - - - - - - - - - - - - - 39062.50 - - -
$\begin{array}{lrrrrrr}1 & \text { vein39[1] } & 0.28760 & 11.1 & 0.28 & 3.05 & 37615.38 \\ 2 & \text { vennoit } & 0.37765 & 12.7 & 0.98 & 2.08 & 101376.84\end{array} 0.848$
$\begin{array}{lrrrrrr}2 \text { vennoit } & 0.37765 & 12.7 & 0.98 & 2.08 & 101376.84 & 0.848 \\ 3 \text { venntr } & 0.45619 & 25.1 & 1.07 & 1.89 & 91518.56 & 0.866\end{array}$
4 vennot $-0.59053 \quad 37.3-1.34 \quad 1.00 \quad 88589.03-1.036$
:
Information and data processing services
$\mathrm{SEE}=268.32 \mathrm{RSQ}=0.9893 \mathrm{RHO}=0.31$ Obser $=32$ from 1975.000
$\mathrm{SEE}+1=255.43 \mathrm{RBSQ}=0.9886 \mathrm{DurH}=2.08$ DoFree $=29$ to 2006.000
MAPE $=12.76$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 vein40 & - & - - - & - - - & - - & 2662.88 & - - - \\
\hline 1 vein40[1] & 0.60085 & 51.6 & 0.55 & 1.91 & 2420.69 & \\
\hline 2 venn2 & 0.01816 & 25.1 & 0.50 & 1.03 & 73834.41 & 0.469 \\
\hline 3 vennoit & -0.00148 & 1.4 & -0.06 & 1.00 & 101376.84 & -0.029 \\
\hline
\end{tabular}
: Federal Reserve banks
 SEE = 225.92 RSQ = 0.9241 RHO = -0.07 Obser = 32 from 1975.000
 SEE+1 = 225.01 RBSQ = 0.9129 DurH = -1.21 DoFree = 27 to 2006.000
 MAPE = 70.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 O vein41
```



```
:
 Credit intermediation and related activities
 SEE = 2712.35 RSQ = 0.9818 RHO = -0.10 Obser = 32 from 1975.000
 SEE+1 = 2698.75 RBSQ = 0.9799 DurH = -0.93 DoFree = 28 to 2006.000
 MAPE = 6.44
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein42 - - - - - - - - - - - - - - - - - 35409.19 - - -
 1 vein42[1] 0.29087 7.2 0.28 2. 0.54 33647.16
 2 venn1 0.45569 24.1 0.62 1.73 48312.88 0.694
 3 venn2 -0.05888 15.0 -0.12
 4 venntr 0.08725 10.4 0.23 1.00 91518.56 0.189
:
 Securities, commodity contracts, and investment
 SEE = 1530.12 RSQ = 0.8354 RHO = -0.06 Obser = 32 from 1975.000
 SEE+1 = 1526.66 RBSQ = 0.8177 DurH = -0.57 DoFree = 28 to 2006.000
 MAPE = 17.66
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein43 - - - - - - - - - - - - - - - - - 7038.31 - - -
 1 vein43[1] 0.49347 20.8 0.47 1.55 6708.88
 2 venn2 -0.04057 9.0 -0.43 1.47 73834.41 -0.721
 3 vennoit 0.14546 9.5 2.10 1.10 101376.84 1.989
 4 vennin -0.08153 5.1 -1.14 1.00 98784.19 -0.878
:
 Insurance carriers and related activities
 SEE = 1553.99 RSQ = 0.9395 RHO = -0.03 Obser = 32 from 1975.000
 SEE+1 = 1553.17 RBSQ = 0.9353 DurH = -0.41 DoFree = 29 to 2006.000
 MAPE = 14.79
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein44 _ _ _ _ _ _ _ _ _ _ _ _ _ - 9497.50 _ _ -
 1 vein44[1] 0.66258 25.2 0.63 0. 1.22 8963.34
 2 venn2 0.01088 1.3 0.08 1.21 73834.41 0.115
 3 venntr
: Funds, trusts, and other financial vehicles
 SEE = 254.53 RSQ = 0.8383 RHO = 0.08 Obser = 32 from 1975.000
 SEE+1 = 253.89 RBSQ = 0.8210 DurH = 999.00 DoFree = 28 to 2006.000
 MAPE = 25.79
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein45
 l intercept
 2 vein45[1]
 4 venntr[1] -0.00859 2.7 -0.85 1.00 86968.16 -0.578
```

```
SEE = 1385.17 RSQ = 0.9078 RHO = 0.16 Obser = 32 from 1975.000
MAPE = 8.68
 Variable name
 0 vein46
1 \text { intercept}
 Reg-Coef Mexval Elas NorRes Mean Beta
- - - -- - - - - - - - - - - 10930.16 - - -
2 vennr
3 vennot -0.02098 2.2 -0.17 1.00 88589.03-0.185
:
 SEE = 4586.91 RSQ = 0.9684 RHO = 0.03 Obser = 32 from 1975.000
 SEE+1 = 4589.98 RBSQ = 0.9638 DurH = 0.23 DoFree = 27 to 2006.000
 MAPE = 30.41
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein47 - - - - - - - - - - - - - - - - - 27668.12 - - -
 1 intercept -16200.26275 30.8 -0.59 31.68 1.00
 2 vein47[1] 0.36690 8.2 0.34 2.42 25414.69 0.351
 3 vein47[2] 0.13435 1.8 0.11 2.40 23307.72 0.123
```



```
: SEE = 130.07 RSQ = 0.9832 RHO = 0.08 Obser = 32 from 1975.000
 SEE+1 = 129.63 RBSQ = 0.9814 DurH = 0.65 DoFree = 28 to 2006.000
 MAPE = 7.89
 Variable name
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline - - - - - & - - - - & - - - & - - - - & 1468.56 & \\
\hline -172.33111 & 5.6 & -0.12 & 59.39 & 1.00 & \\
\hline 0.57230 & 34.7 & 0.53 & 1.51 & 1371.38 & 0.558 \\
\hline 0.00612 & 9.1 & 0.37 & 1.18 & 88589.03 & 0.246 \\
\hline 0.00649 & 8.5 & 0.21 & 1.00 & 48312.88 & 0.198 \\
\hline
\end{tabular}
: Computer systems design and related services
 SEE = 1076.98 RSQ = 0.9761 RHO = 0.03 Obser = 32 from 1975.000
 SEE+1 = 1076.59 RBSQ = 0.9726 DurH = 0.37 DoFree = 27 to 2006.000
 MAPE = 38.60
 Variable name
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline - & - - - - & - - - & - - - & 6714.06 & \\
\hline 1494.47182 & 3.6 & 0.22 & 41.90 & 1.00 & \\
\hline 0.41973 & 12.6 & 0.38 & 2.18 & 6136.84 & 0.405 \\
\hline 0.12617 & 11.5 & 0.91 & 1.40 & 48312.88 & 0.555 \\
\hline 0.07018 & 15.6 & 0.77 & 1.20 & 73834.41 & 0.674 \\
\hline -0.08516 & 9.6 & -1.29 & 1.00 & 101376.84 & -0.63 \\
\hline
\end{tabular}
: Miscellaneous professional, scientific, and technical services \(\mathrm{SEE}=1873.54 \mathrm{RSQ}=0.9889 \mathrm{RHO}=-0.29\) Obser \(=32\) from 1975.000 SEE+1 \(=1789.79\) RBSQ \(=0.9877\) DurH \(=-3.93\) DoFree \(=28\) to 2006.000 MAPE \(=17.04\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline vein50 & - - - - - & - - - - & - - - & - - - - & 18171.09 & - - - \\
\hline 1 vein50[1] & 0.38666 & 9.8 & 0.35 & 1.74 & 16227.47 & \\
\hline 2 venn2 & 0.13074 & 27.2 & 0.53 & 1.47 & 73834.41 & 0.494 \\
\hline 3 vennin & -0.23171 & 21.2 & -1.26 & 1.47 & 98784.19 & -0.530 \\
\hline 4 vennot & 0.28477 & 21.0 & 1.39 & 1.00 & 88589.03 & 0.647 \\
\hline
\end{tabular}
:
Management of companies and enterprises
SEE \(=1632.77\) RSQ \(=0.9402\) RHO \(=-0.04\) Obser \(=32\) from 1975.000 SEE+1 \(=1630.94\) RBSQ \(=0.9360\) DurH \(=-0.37\) DoFree \(=29\) to 2006.000 MAPE \(=10.38\)
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vein51 - - - - - - - - - - - - 10585.94 - - -
```



```
 SEE+1 = 105.58 RBSQ = 0.9825 DurH = 1.05 DoFree = 28 to 2006.000
 MAPE = 6.77
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein57 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 1132.09 _ _ -
 1 vein57[1] 0.82134 52.0 0.76 1.15 1047.09
 2 venn2 0.00179 2.7 0.12 1.12 73834.41 0.142
 3 vennoit -0.00041 0.1 -0.04 1.03 101376.84 -0.025
 4 vennot 0.00204 1.6 0.16 1.00 88589.03 0.097
:
Social assistance
 SEE = 77.72 RSQ = 0.9627 RHO = 0.24 Obser = 32 from 1975.000
 SEE+1 = 76.69 RBSQ = 0.9601 DW = 1.52 DoFree = 29 to 2006.000
 MAPE = 11.20
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vein58 - - - - - - - - - - - - - - - - - 671.69 - - -
 1 intercept
 3 vennot
: Performing arts, spectator sports, museums, and related activities
 SEE = 175.45 RSQ = 0.9411 RHO = 0.15 Obser = 32 from 1975.000
 SEE+1 = 174.16 RBSQ = 0.9348 DurH = 5.26 DoFree = 28 to 2006.000
 MAPE = 13.63
\begin{tabular}{lrrrrrr}
Variable name & \multicolumn{2}{c}{ Reg-Coef } & Mexval & Elas & NorRes & Mean
\end{tabular} Beta
: Amusements, gambling, and recreation industries
 SEE = 207.82 RSQ = 0.9874 RHO = 0.10 Obser = 32 from 1975.000
 SEE+1 = 207.05 RBSQ = 0.9861 DurH = 0.99 DoFree = 28 to 2006.000
 MAPE = 10.10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline vein60 & - - - - - & - - - - & - - - & - - - - & 2467.91 & - \\
\hline intercept & -231.40660 & 6.0 & -0.09 & 79.55 & 1.00 & \\
\hline vein60[1] & 1.38015 & 96.9 & 1.29 & 1.80 & 2309.97 & 1.326 \\
\hline vein60[2] & -0.54197 & 21.8 & -0.47 & 1.29 & 2153.19 & -0.499 \\
\hline vennot & 0.00766 & 13.6 & 0.27 & 1.00 & 88589.03 & 0.166 \\
\hline
\end{tabular}
: Accommodation
 SEE = 352.54 RSQ = 0.9283 RHO = -0.24 Obser = 32 from 1975.000
 SEE+1 = 340.58 RBSQ = 0.9234 DurH = -2.52 DoFree = 29 to 2006.000
 MAPE = 15.32
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline 0 vein61 & - - & - & - - - & - - - - & 2618.84 & - - \\
\hline 1 vein61[1] & 0.40619 & 12.1 & 0.38 & 1.70 & 2462.72 & \\
\hline 2 vennot & 0.03263 & 24.3 & 1.10 & 1.20 & 88589.03 & 0.999 \\
\hline 3 venntr & -0.01377 & 9.6 & -0.48 & 1.00 & 91518.56 & -0.456 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Food services and drinking places} \\
\hline SEE = & 756.59 & RSQ & \(=0.9818 \mathrm{R}\) & \(\mathrm{HO}=-0\) & . 03 Ob & ser = & 32 from 19 & 1975.000 \\
\hline SEE+1 = & 755.76 & RBSQ & \(=0.9791 \mathrm{D}\) & urH \(=99\) & . 00 D & Free = & 27 to 20 & 2006.000 \\
\hline MAPE = & 6.89 & & & & & & & \\
\hline Variable & name & & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline 0 vein62 & & & - - - - - & - - - - & - - - & - - - - & 9363.22 & \(2-\) - \\
\hline 1 intercept & & & -909.97689 & 4.4 & -0.10 & 54.89 & 1.00 & \\
\hline 2 vein62[1] & & & 0.31514 & 4.9 & 0.29 & 1.63 & 8686.31 & 10.288 \\
\hline 3 vein62[2] & & & 0.33602 & 5.5 & 0.29 & 1.26 & 8072.28 & 80.282 \\
\hline 4 vennin & & & -0.03048 & 7.5 & -0.32 & 1.25 & 98784.19 & 9-0.221 \\
\hline
\end{tabular}
```

| 5 vennot | 0.08844 | 11.9 | 0.84 | 1.00 | 88589.03 | 0.636 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| SEE | 403.51 RSQ | $=0.9629 \mathrm{R}$ | RHO = 0 | 0.18 Ob | Dbser | 32 from 19 | 1975.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE+1 = | 398.62 RBSQ | $=0.9589 \mathrm{D}$ | DurH $=7$ | 7.09 Do | DoFree | 28 to 200 | 2006.000 |
| MAPE | 6.07 |  |  |  |  |  |  |
| Variable | name | Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| 0 vein63 |  | - - - - - | - - - - | - - - - | - - - - | 6080.91 | 1 - |
| 1 intercept |  | 730.22234 | 14.4 | 0.12 | $12 \quad 26.96$ | 1.00 |  |
| 2 vein63[1] |  | 0.65936 | 19.6 | 0.64 | 1.41 | 5886.84 | 40.664 |
| 3 vein63[2] |  | -0.28685 | 4.7 | -0.27 | 1.41 | 5706.78 | 8-0.292 |
| 4 vennin |  | 0.03144 | 18.6 | 0.51 | 1 1.00 | 98784.19 | 90.609 |

## Appendix 4.2: Detailed Forecast Results of NIPA Equipment and Software Investment

|  | 1990 | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 | 06-07 | 07-08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal in Million of dollars |  |  |  |  |  |  |  |  |  |
| Computer | 38,643.00 | 66,110.00 | 101,442.00 | 88,987.00 | 91,338.00 | 96,217.78 | 101,186.00 | 5.34\% | 5.16\% |
| Software | 47,632.00 | 74,635.00 | 176,159.00 | 193,846.00 | 203,335.00 | 217,483.30 | 229,447.41 | 6.96\% | 5.50\% |
| Other Information Equipment | 90,923.00 | 122,257.00 | 190,018.00 | 174,558.00 | 186,191.00 | 195,041.00 | 203,445.30 | 4.75\% | 4.31\% |
| Industrial Equipment | 92,142.00 | 128,961.00 | 159,215.00 | 156,078.00 | 166,679.00 | 176,810.09 | 185,550.50 | 6.08\% | 4.94\% |
| Transportation Equipment | 69,960.00 | 116,077.00 | 160,846.00 | 159,467.00 | 171,892.00 | 156,259.30 | 159,049.09 | -9.09\% | 1.79\% |
| Other Nonresidential Equipment | 83,071.00 | 99,858.00 | 134,581.00 | 169,823.00 | 180,047.00 | 176,089.59 | 181,561.30 | -2.20\% | 3.11\% |
| Residential Equipment | 6,008.00 | 6,327.00 | 7,359.00 | 9,017.00 | 9,601.00 | 9,699.47 | 9,923.40 | 1.03\% | 2.31\% |
| Real 2000 in Million of dollars |  |  |  |  |  |  |  |  |  |
| Computer | 5,478.77 | 19,548.07 | 101,442.01 | 172,985.13 | 203,683.97 | 241,396.63 | 302,338.81 | 18.52\% | 25.25\% |
| Software | 39,858.08 | 71,641.13 | 176,159.02 | 205,665.63 | 213,007.70 | 227,043.44 | 240,134.45 | 6.59\% | 5.77\% |
| Other Information Equipment | 80,072.40 | 106,980.24 | 190,018.03 | 191,485.33 | 204,841.88 | 213,245.44 | 220,427.97 | 4.10\% | 3.37\% |
| Industrial Equipment | 109,161.35 | 134,927.50 | 159,215.02 | 144,317.56 | 149,565.70 | 153,305.19 | 157,019.30 | 2.50\% | 2.42\% |
| Transportation Equipment | 81,004.10 | 120,573.18 | 160,846.02 | 145,099.28 | 155,194.63 | 138,486.61 | 138,941.48 | -10.77\% | 0.33\% |
| Other Nonresidential Equipment | 98,792.91 | 105,884.98 | 134,581.02 | 154,661.53 | 159,322.36 | 151,494.22 | 152,755.70 | -4.91\% | 0.83\% |
| Residential Equipment | 6,023.84 | 6,205.07 | 7,359.00 | 9,311.04 | 9,676.28 | 9,606.22 | 9,815.16 | -0.72\% | 2.18\% |

## Appendix 4.3: Detailed Forecast Results of FAA by Purchasing Industries

| Nominal in Million of dollars |
| :--- |
| Farms |
| Forestry, fishing, and related activities |
| Oil and gas extraction |
| Mining, except oil and gas |
| Support activites for mining |
| Utilities |
| Construction |
| Wood products |
| Nonmetallic mineral products |
| Primary metals |
| Fabricated metal products |
| Machinery |
| Computer and electronic products |
| Electrical equipment, appliances, and components |
| Motor vehicles, bodies and trailers, and parts |
| Other transportation equipment |
| Furniture and related products |
| Miscellaneous manufacturing |
| Food, beverage, and tobacco products |
| Textile mills and textile product mills |
| Apparel and leather and allied products |
| Paper products |
| Printing and related support activities |
| Petroleum and coal products |
| Chemical products |
| Plastics and rubber products |
| Wholesale trade |
| Retail trade |
| Air transportation |
| Railroad transportation |
| Water transportation |
| Truck transportation |
| Transit and ground passenger transportation |
| Pipeline transportation |
| Other transportation and support activites |
| Warehousing and storage |
| Publishing industries (including software) |
| Motion picture and sound recording industries |
| Broadcasting and telecommunications |
| Information and data processing services |
| Federal Reserve banks |
| Credit intermediation and related activities |
| Securities, commodity contracts, and investments |
| Insurance carriers and related activities |
| Funds, trusts, and other financial vehicles |
| Real estate |
| Rental and leasing services and lessors of intangible assets |
| Legal services |
| Computer systems design and related services |
| Miscellaneous professional, scientific, and technical services |
| Management of companies and enterprises |
| Administrative and support services |
| Waste management and remediation services |
| Educational services |
| Ambulatory health care services |
| Hospitals |
| Nursing and residential care facilities |
| Social assistance |
| Performing arts, spectator sports, museums, and related activities |
| Amusements, gambling, and recreation industries |
| Accommodation |
| Food services and drinking places |
| Other services, except government |


| 1990 | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14,714.00 | 19,104.00 | 20,781.00 | 28,579.00 | 28,644.00 | 28,911.59 | 29,811.27 |
| 2,658.00 | 2,156.00 | 1,627.00 | 3,552.00 | 3,609.00 | 3,956.47 | 4,275.79 |
| 3,711.00 | 4,508.00 | 6,070.00 | 5,371.00 | 5,864.00 | 5,638.71 | 5,345.37 |
| 3,517.00 | 7,776.00 | 5,201.00 | 10,243.00 | 11,421.00 | 10,431.08 | 8,757.44 |
| 2,676.00 | 4,035.00 | 4,626.00 | 8,362.00 | 9,600.00 | 9,603.70 | 9,668.70 |
| 26,776.00 | 26,158.00 | 35,022.00 | 34,468.00 | 36,695.00 | 38,174.90 | 39,119.02 |
| 8,982.00 | 19,433.00 | 31,714.00 | 38,395.00 | 41,293.00 | 44,639.81 | 48,145.30 |
| 1,673.00 | 2,898.00 | 2,612.00 | 2,609.00 | 2,762.00 | 3,094.05 | 3,353.80 |
| 2,901.00 | 3,227.00 | 5,101.00 | 4,618.00 | 4,922.00 | 5,174.76 | 5,386.89 |
| 5,403.00 | 6,355.00 | 5,425.00 | 4,862.00 | 5,208.00 | 5,483.13 | 5,682.15 |
| 5,354.00 | 8,447.00 | 9,612.00 | 7,891.00 | 8,454.00 | 9,654.01 | 10,618.64 |
| 6,084.00 | 10,019.00 | 18,641.00 | 16,159.00 | 17,204.00 | 19,125.61 | 21,063.38 |
| 12,421.00 | 24,289.00 | 37,494.00 | 25,034.00 | 26,460.00 | 29,493.71 | 32,542.95 |
| 2,939.00 | 4,030.00 | 3,899.00 | 2,191.00 | 2,339.00 | 2,892.78 | 3,382.14 |
| 6,370.00 | 13,882.00 | 12,951.00 | 10,964.00 | 11,735.00 | 13,134.61 | 14,383.83 |
| 4,231.00 | 4,584.00 | 7,942.00 | 7,931.00 | 8,394.00 | 8,951.40 | 9,488.22 |
| 697.00 | 1,222.00 | 1,831.00 | 1,511.00 | 1,607.00 | 1,811.03 | 1,987.62 |
| 2,736.00 | 3,237.00 | 4,037.00 | 4,395.00 | 4,682.00 | 4,763.77 | 4,971.97 |
| 9,799.00 | 12,158.00 | 11,906.00 | 12,007.00 | 12,816.00 | 13,485.06 | 14,110.89 |
| 2,482.00 | 3,271.00 | 2,430.00 | 1,252.00 | 1,317.00 | 1,998.15 | 2,238.63 |
| 646.00 | 1,215.00 | 1,273.00 | 695.00 | 736.00 | 807.28 | 856.95 |
| 10,529.00 | 8,472.00 | 7,692.00 | 5,941.00 | 6,286.00 | 6,636.50 | 6,820.93 |
| 3,125.00 | 3,127.00 | 4,825.00 | 4,714.00 | 4,963.00 | 5,249.85 | 5,547.99 |
| 3,966.00 | 7,234.00 | 5,217.00 | 11,115.00 | 11,829.00 | 12,627.20 | 13,436.57 |
| 13,602.00 | 17,874.00 | 18,834.00 | 17,309.00 | 18,358.00 | 19,567.48 | 20,795.05 |
| 4,498.00 | 6,970.00 | 8,074.00 | 6,940.00 | 7,363.00 | 8,223.65 | 8,991.50 |
| 22,620.00 | 42,402.00 | 56,839.00 | 70,502.00 | 75,538.00 | 74,849.70 | 74,900.40 |
| 16,677.00 | 24,731.00 | 31,707.00 | 35,246.00 | 37,504.00 | 38,834.28 | 40,520.97 |
| 6,569.00 | 14,668.00 | 31,713.00 | 12,268.00 | 13,248.00 | 16,752.79 | 15,366.78 |
| 1,580.00 | 2,552.00 | 1,380.00 | 1,423.00 | 1,509.00 | 1,667.40 | 1,810.73 |
| 1,749.00 | 2,828.00 | 3,918.00 | 5,086.00 | 5,073.00 | 4,876.66 | 4,792.28 |
| 5,126.00 | 13,121.00 | 10,476.00 | 17,569.00 | 19,647.00 | 15,306.81 | 14,654.93 |
| 747.00 | 1,467.00 | 3,730.00 | 3,364.00 | 3,730.00 | 3,161.37 | 3,033.60 |
| 1,480.00 | 2,641.00 | 2,823.00 | 2,373.00 | 2,557.00 | 2,454.73 | 2,373.54 |
| 4,792.00 | 7,409.00 | 9,155.00 | 4,487.00 | 4,762.00 | 4,602.39 | 4,345.19 |
| 567.00 | 1,318.00 | 1,102.00 | 2,060.00 | 2,212.00 | 2,260.76 | 2,339.76 |
| 5,640.00 | 4,892.00 | 7,369.00 | 6,045.00 | 6,387.00 | 6,662.94 | 6,935.12 |
| 1,869.00 | 2,418.00 | 737.00 | 936.00 | 997.00 | 1,017.11 | 1,018.73 |
| 31,606.00 | 48,614.00 | 107,363.00 | 51,312.00 | 55,344.00 | 56,310.89 | 58,610.60 |
| 1,538.00 | 2,106.00 | 6,280.00 | 7,471.00 | 7,927.00 | 8,514.87 | 9,121.06 |
| 179.00 | 1,328.00 | 2,155.00 | 1,331.00 | 1,377.00 | 1,469.24 | 1,539.68 |
| 34,118.00 | 42,440.00 | 64,750.00 | 58,900.00 | 60,858.00 | 62,589.82 | 65,429.16 |
| 10,174.00 | 6,540.00 | 13,528.00 | 10,728.00 | 11,238.00 | 10,709.18 | 10,615.11 |
| 7,912.00 | 17,416.00 | 18,017.00 | 17,344.00 | 18,040.00 | 19,182.28 | 20,262.78 |
| 746.00 | 696.00 | 2,343.00 | 1,661.00 | 1,743.00 | 1,594.04 | 1,714.38 |
| 12,734.00 | 10,360.00 | 13,554.00 | 18,186.00 | 19,293.00 | 20,122.36 | 20,684.19 |
| 10,749.00 | 31,665.00 | 78,572.00 | 70,879.00 | 75,113.00 | 72,088.55 | 72,675.03 |
| 1,490.00 | 1,548.00 | 2,725.00 | 3,064.00 | 3,228.00 | 3,392.10 | 3,586.56 |
| 3,024.00 | 5,340.00 | 19,530.00 | 17,679.00 | 18,617.00 | 20,346.99 | 22,033.81 |
| 10,642.00 | 15,027.00 | 36,851.00 | 60,234.00 | 63,337.00 | 62,704.93 | 64,335.31 |
| 9,088.00 | 10,225.00 | 15,489.00 | 21,807.00 | 22,882.00 | 24,304.40 | 25,813.18 |
| 5,227.00 | 8,773.00 | 19,202.00 | 22,533.00 | 23,752.00 | 25,070.61 | 26,625.23 |
| 2,690.00 | 2,544.00 | 2,143.00 | 3,209.00 | 3,480.00 | 3,656.01 | 3,800.18 |
| 2,022.00 | 3,648.00 | 6,874.00 | 9,113.00 | 9,589.00 | 10,299.61 | 11,012.74 |
| 12,265.00 | 13,240.00 | 17,952.00 | 33,018.00 | 34,768.00 | 37,717.64 | 41,377.16 |
| 12,625.00 | 17,850.00 | 28,331.00 | 43,844.00 | 46,106.00 | 49,209.30 | 52,842.67 |
| 936.00 | 1,245.00 | 1,879.00 | 2,682.00 | 2,843.00 | 2,997.25 | 3,177.21 |
| 562.00 | 696.00 | 1,226.00 | 1,244.00 | 1,306.00 | 1,488.71 | 1,595.35 |
| 698.00 | 1,218.00 | 2,152.00 | 2,310.00 | 2,394.00 | 2,492.69 | 2,638.06 |
| 1,268.00 | 2,770.00 | 5,562.00 | 5,580.00 | 5,750.00 | 5,953.67 | 6,290.87 |
| 3,453.00 | 2,737.00 | 3,134.00 | 5,349.00 | 5,604.00 | 5,860.34 | 6,116.40 |
| 7,254.00 | 10,652.00 | 14,840.00 | 21,624.00 | 23,620.00 | 23,774.82 | 24,855.29 |
| 5,418.00 | 8,025.00 | 9,444.00 | 8,407.00 | 8,920.00 | 9,772.92 | 10,535.95 |



## Appendix 4.3 (cont.)

Real 2000 in Million of dollars
Farms
Forestry, fishing, and related activities
Oil and gas extraction
Mining, except oil and gas
Support activites for mining
Utilities
Construction
Wood products
Nonmetallic mineral products
Primary metals
Fabricated metal products
Machinery
Computer and electronic products
Electrical equipment, appliances, and components
Motor vehicles, bodies and trailers, and parts
Other transportation equipment
Furniture and related products
Miscellaneous manufacturing
Food, beverage, and tobacco products
Textile mills and textile product mills
Apparel and leather and allied products
Paper products
Printing and related support activities
Petroleum and coal products
Chemical products
Plastics and rubber products
Wholesale trade
Retail trade
Air transportation
Railroad transportation
Water transportation
Truck transportation
Transit and ground passenger transportation
Pipeline transportation
Other transportation and support activites
Warehousing and storage
Publishing industries (including software)
Motion picture and sound recording industries
Broadcasting and telecommunications
Information and data processing services
Federal Reserve banks
Credit intermediation and related activities
Securities, commodity contracts, and investments
Insurance carriers and related activities
Funds, trusts, and other financial vehicles
Real estate
Rental and leasing services and lessors of intangible assets
Legal services
Computer systems design and related services
Miscellaneous professional, scientific, and technical services
Management of companies and enterprises
Administrative and support services
Waste management and remediation services
Educational services
Ambulatory health care services
Hospitals
Nursing and residential care facilities
Social assistance
Performing arts, spectator sports, museums, and related activities
Amusements, gambling, and recreation industries
Accommodation
Food services and drinking places
Other services, except government

| 1990 | 1995 | 2000 | 2005 | 2006 | 2007 | 2008 | 06-07 | 07-08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17,139.23 | 19,966.21 | 20,781.00 | 26,461.42 | 25,941.64 | 25,592.04 | 25,989.11 | -1.35\% | 1.55\% |
| 3,033.36 | 2,218.75 | 1,627.00 | 3,346.54 | 3,343.53 | 3,597.28 | 3,848.10 | 7.59\% | 6.97\% |
| 3,981.47 | 4,500.97 | 6,070.00 | 5,266.79 | 5,709.51 | 5,441.95 | 5,171.80 | -4.69\% | -4.96\% |
| 3,862.57 | 7,869.07 | 5,201.00 | 9,919.30 | 10,912.54 | 9,828.75 | 8,231.56 | -9.93\% | -16.25\% |
| 2,915.65 | 4,071.20 | 4,626.00 | 8,134.89 | 9,206.37 | 9,081.30 | 9,110.03 | -1.36\% | 0.32\% |
| 28,373.41 | 25,908.07 | 35,022.00 | 34,377.43 | 36,227.71 | 37,222.75 | 38,274.77 | 2.75\% | 2.83\% |
| 9,476.82 | 19,260.53 | 31,714.00 | 38,164.91 | 40,729.93 | 43,662.50 | 47,301.26 | 7.20\% | 8.33\% |
| 1,846.41 | 2,919.30 | 2,612.00 | 2,543.47 | 2,654.82 | 2,923.69 | 3,164.15 | 10.13\% | 8.22\% |
| 3,112.90 | 3,210.33 | 5,101.00 | 4,579.08 | 4,826.95 | 5,007.15 | 5,226.05 | 3.73\% | 4.37\% |
| 5,793.19 | 6,336.89 | 5,425.00 | 4,810.77 | 5,090.40 | 5,282.94 | 5,480.78 | 3.78\% | 3.74\% |
| 5,654.58 | 8,330.71 | 9,612.00 | 7,934.38 | 8,438.60 | 9,547.56 | 10,605.63 | 13.14\% | 11.08\% |
| 5,901.90 | 9,572.95 | 18,641.00 | 16,956.80 | 18,060.68 | 20,090.05 | 22,583.94 | 11.24\% | 12.41\% |
| 12,182.60 | 23,372.62 | 37,494.00 | 26,037.34 | 27,469.44 | 30,567.38 | 34,306.44 | 11.28\% | 12.23\% |
| 3,017.47 | 3,920.86 | 3,899.00 | 2,240.30 | 2,382.86 | 2,931.37 | 3,476.39 | 23.02\% | 18.59\% |
| 6,715.27 | 13,779.74 | 12,951.00 | 10,941.09 | 11,581.53 | 12,804.51 | 14,077.05 | 10.56\% | 9.94\% |
| 4,006.89 | 4,357.19 | 7,942.00 | 8,372.03 | 8,865.02 | 9,466.26 | 10,229.14 | 6.78\% | 8.06\% |
| 753.55 | 1,215.44 | 1,831.00 | 1,501.42 | 1,582.56 | 1,763.09 | 1,949.95 | 11.41\% | 10.60\% |
| 2,765.94 | 3,124.98 | 4,037.00 | 4,539.10 | 4,829.65 | 4,901.34 | 5,207.33 | 1.48\% | 6.24\% |
| 10,439.03 | 12,045.56 | 11,906.00 | 11,984.13 | 12,682.56 | 13,206.47 | 13,916.97 | 4.13\% | 5.38\% |
| 2,761.58 | 3,319.72 | 2,430.00 | 1,208.99 | 1,250.10 | 1,858.98 | 2,070.21 | 48.71\% | 11.36\% |
| 688.32 | 1,200.03 | 1,273.00 | 696.50 | 732.69 | 796.32 | 854.05 | 8.68\% | 7.25\% |
| 11,548.22 | 8,532.30 | 7,692.00 | 5,802.58 | 6,050.39 | 6,279.55 | 6,443.47 | 3.79\% | 2.61\% |
| 3,264.81 | 3,044.05 | 4,825.00 | 4,817.89 | 5,066.61 | 5,340.61 | 5,754.21 | 5.41\% | 7.74\% |
| 4,158.78 | 7,118.98 | 5,217.00 | 11,173.19 | 11,793.53 | 12,456.83 | 13,335.14 | 5.62\% | 7.05\% |
| 13,216.34 | 16,950.63 | 18,834.00 | 18,249.63 | 19,407.03 | 20,721.34 | 22,508.60 | 6.77\% | 8.63\% |
| 5,058.88 | 7,100.80 | 8,074.00 | 6,661.93 | 6,929.96 | 7,562.67 | 8,187.71 | 9.13\% | 8.26\% |
| 21,957.55 | 39,120.70 | 56,839.01 | 76,185.30 | 83,313.67 | 84,025.37 | 87,888.38 | 0.85\% | 4.60\% |
| 16,395.92 | 23,071.84 | 31,707.01 | 37,796.11 | 40,837.34 | 42,937.18 | 46,667.35 | 5.14\% | 8.69\% |
| 5,979.96 | 13,215.18 | 31,713.01 | 13,322.46 | 14,501.37 | 18,380.60 | 17,056.79 | 26.75\% | -7.20\% |
| 1,511.26 | 2,366.95 | 1,380.00 | 1,537.03 | 1,652.89 | 1,849.57 | 2,085.93 | 11.90\% | 12.78\% |
| 1,752.28 | 2,683.26 | 3,918.00 | 5,188.71 | 5,179.41 | 4,943.67 | 4,846.20 | -4.55\% | -1.97\% |
| 5,543.43 | 13,022.40 | 10,476.00 | 17,147.15 | 19,180.85 | 14,846.06 | 14,286.80 | -22.60\% | -3.77\% |
| 761.44 | 1,407.05 | 3,730.00 | 3,438.18 | 3,839.82 | 3,261.32 | 3,184.90 | -15.07\% | -2.34\% |
| 1,309.14 | 2,357.98 | 2,823.00 | 2,611.09 | 2,838.98 | 2,738.29 | 2,687.61 | -3.55\% | -1.85\% |
| 4,626.75 | 6,990.30 | 9,155.00 | 4,731.34 | 5,076.17 | 4,952.47 | 4,812.22 | -2.44\% | -2.83\% |
| 567.86 | 1,249.97 | 1,102.00 | 2,161.75 | 2,341.26 | 2,408.97 | 2,566.78 | 2.89\% | 6.55\% |
| 4,848.38 | 4,440.34 | 7,369.00 | 6,742.64 | 7,220.60 | 7,647.59 | 8,265.90 | 5.91\% | 8.08\% |
| 1,750.88 | 2,235.83 | 737.00 | 1,011.66 | 1,090.00 | 1,124.99 | 1,163.01 | 3.21\% | 3.38\% |
| 26,678.04 | 41,800.10 | 107,363.01 | 58,692.44 | 64,586.98 | 66,756.99 | 71,762.65 | 3.36\% | 7.50\% |
| 1,282.10 | 1,888.63 | 6,280.00 | 8,380.61 | 8,994.45 | 9,786.31 | 10,803.10 | 8.80\% | 10.39\% |
| 140.73 | 1,063.33 | 2,155.00 | 1,662.78 | 1,822.01 | 2,049.37 | 2,357.73 | 12.48\% | 15.05\% |
| 29,341.85 | 36,041.80 | 64,750.00 | 69,506.78 | 75,210.88 | 80,670.63 | 91,168.87 | 7.26\% | 13.01\% |
| 7,184.58 | 5,003.21 | 13,528.00 | 14,008.65 | 15,591.69 | 15,732.23 | 17,221.43 | 0.90\% | 9.47\% |
| 6,876.08 | 15,533.64 | 18,017.00 | 19,651.90 | 20,996.73 | 22,933.04 | 25,603.29 | 9.22\% | 11.64\% |
| 697.97 | 643.11 | 2,343.00 | 1,801.72 | 1,933.43 | 1,805.40 | 2,034.71 | -6.62\% | 12.70\% |
| 12,076.61 | 9,667.56 | 13,554.00 | 19,710.57 | 20,970.82 | 21,980.63 | 23,286.61 | 4.82\% | 5.94\% |
| 10,297.90 | 28,405.24 | 78,572.02 | 78,644.17 | 86,571.19 | 85,878.72 | 92,448.59 | -0.80\% | 7.65\% |
| 1,137.38 | 1,248.27 | 2,725.00 | 3,832.00 | 4,241.57 | 4,677.86 | 5,395.07 | 10.29\% | 15.33\% |
| 2,222.99 | 4,413.13 | 19,530.00 | 21,613.09 | 23,594.04 | 26,713.87 | 30,910.88 | 13.22\% | 15.71\% |
| 8,728.85 | 13,403.32 | 36,851.00 | 68,578.50 | 73,345.70 | 74,026.25 | 79,259.89 | 0.93\% | 7.07\% |
| 7,259.04 | 8,800.08 | 15,489.00 | 25,748.47 | 27,873.76 | 30,570.45 | 34,572.79 | 9.67\% | 13.09\% |
| 4,822.58 | 8,029.43 | 19,202.00 | 24,740.34 | 26,479.67 | 28,406.44 | 31,395.46 | 7.28\% | 10.52\% |
| 2,774.19 | 2,480.73 | 2,143.00 | 3,246.23 | 3,510.54 | 3,668.30 | 3,849.78 | 4.49\% | 4.95\% |
| 1,769.29 | 3,255.90 | 6,874.00 | 10,239.70 | 10,974.88 | 12,012.21 | 13,381.24 | 9.45\% | 11.40\% |
| 10,703.51 | 11,599.66 | 17,952.00 | 36,809.50 | 39,208.30 | 42,799.77 | 47,691.78 | 9.16\% | 11.43\% |
| 10,959.00 | 15,619.51 | 28,331.00 | 48,914.43 | 51,997.65 | 55,806.55 | 60,780.61 | 7.33\% | 8.91\% |
| 900.12 | 1,159.39 | 1,879.00 | 2,860.53 | 3,055.28 | 3,243.34 | 3,521.52 | 6.16\% | 8.58\% |
| 536.53 | 652.64 | 1,226.00 | 1,335.33 | 1,418.30 | 1,640.12 | 1,824.90 | 15.64\% | 11.27\% |
| 694.07 | 1,133.01 | 2,152.00 | 2,484.38 | 2,620.27 | 2,778.48 | 3,076.02 | 6.04\% | 10.71\% |
| 1,420.98 | 2,810.33 | 5,562.00 | 5,404.76 | 5,513.28 | 5,658.39 | 6,019.78 | 2.63\% | 6.39\% |
| 3,730.70 | 2,735.23 | 3,134.00 | 5,286.10 | 5,497.70 | 5,715.85 | 6,023.91 | 3.97\% | 5.39\% |
| 8,211.07 | 10,937.45 | 14,840.00 | 20,581.08 | 22,111.77 | 21,904.69 | 22,795.98 | -0.94\% | 4.07\% |
| 5,429.19 | 7,689.55 | 9,444.00 | 8,771.80 | 9,356.68 | 10,311.14 | 11,430.64 | 10.20\% | 10.86\% |

## Appendix 4.4: Plots of NIPA Equipment and Software Fixed Investment Forecast



## Appendix 4.5: Plots of FAA by Purchasing Industries Forecast





19 Food, beverage, and tobacco products
Nominal and Real (2000) in Million dollars


21 Apparel and leather and allied products
Nominal and Real (2000) in Million dollars


23 Printing and related support activities


20 Textile mills and textile product mills
Nominal and Real (2000) in Million dollars


22 Paper products
Nominal and Real (2000) in Million dollars


24 Petroleum and coal products
Nominal and Real (2000) in Million dollars


25 Chemical products
Nominal and Real (2000) in Million dollars


27 Wholesale trade
Nominal and Real (2000) in Million dollars


29 Air transportation
Nominal and Real (2000) in Million dollars


26 Plastics and rubber products
Nominal and Real (2000) in Million dollars


28 Retail trade
Nominal and Real (2000) in Million dollars


30 Railroad transportation
Nominal and Real (2000) in Million dollars



37 Publishing industries (including software)
Nominal and Real (2000) in Million dollars


39 Broadcasting and telecommunications
Nominal and Real (2000) in Million dollars


41 Federal Reserve banks
Nominal and Real (2000) in Million dollars


38 Motion picture and sound recording industries
Nominal and Real (2000) in Million dollars


40 Information and data processing services
Nominal and Real (2000) in Million dollars


42 Credit intermediation and related activities
Nominal and Real (2000) in Million dollars


43 Securities, commodity contracts, and investments
Nominal and Real (2000) in Million dollars


45 Funds, trusts, and other financial vehicles
Nominal and Real (2000) in Million dollars


47 Rental and leasing services and lessors of intangible assets
Nominal and Real (2000) in Million dollars


44 Insurance carriers and related activities
Nominal and Real (2000) in Million dollars


46 Real estate
Nominal and Real (2000) in Million dollars


48 Legal services
Nominal and Real (2000) in Million dollars


49 Computer systems design and related services
Nominal and Real (2000) in Million dollars


51 Management of companies and enterprises
Nominal and Real (2000) in Million dollars


53 Waste management and remediation services
Nominal and Real (2000) in Million dollars


50 Miscellaneous professional, scientific, and technical service Nominal and Real (2000) in Million dollars


52 Administrative and support services Nominal and Real (2000) in Million dollars


54 Educational services
Nominal and Real (2000) in Million dollars



61 Accommodation
Nominal and Real (2000) in Million dollars


63 Other services, except government
Nominal and Real (2000) in Million dollars


62 Food services and drinking places
Nominal and Real (2000) in Million dollars


## Appendix 5.1: Regressions' Results of Annual Fixed Investment in Nonresidential Structures


:
SEE $=0.54$ RSQ $=0.8829$ RHO $=-0.03$ Obser $=10$ from 1997.000
SEE+1 = 0.54 RBSQ $=0.8495 \mathrm{DW}=2.06$ DoFree $=7$ to 2006.000
MAPE = 7.53
Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn6 _ - - _ - - _ - _ - - - - - 6.35 - - -
1 intercept $\begin{array}{llllll}-1.76966 & 13.5 & -0.28 & 8.54 & 1.00\end{array}$
$\begin{array}{lrrrrrr}2 \text { vipmc } & -0.15372 & 3.5 & -0.55 & 1.61 & 22.70 & -0.486 \\ 3 \text { vipmc[1] } & 0.55478 & 26.8 & 1.83 & 1.00 & 20.93 & 1.413\end{array}$
: $\mathrm{SEE}=1.99 \mathrm{RSQ}=0.8116 \mathrm{RHO}=0.58$ Obser $=10$ from 1997.000
SEE+1 $=1.72$ RBSQ $=0.7881$ DW $=0.85$ DoFree $=8$ to 2006.000
MAPE = 9.33
Variable name
0 vstnn7
1 intercept
Reg-Coef Mexval Elas NorRes Mean Beta

| -31.29721 | 68.4 | -1.90 | 5.31 |
| :---: | :---: | :---: | :---: |
| 0.77776 | 130.4 | 2.90 | 1.00 |

: Food and beverage establishments
SEE $=0.26$ RSQ $=0.7059$ RHO $=-0.33$ Obser $=10$ from 1997.000
SEE+1 $=0.23$ RBSQ $=0.6219$ DW $=2.66$ DoFree $=7$ to 2006.000
MAPE = 2.92
Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn8

| Reg-Coef | Mexval | Elas | NorRes | Mean | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - - - - - | - - - - | - - - | - - - - | 7.89 | - - - |
| 11.37066 | 295.5 | 1.44 | 3.40 | 1.00 |  |
| 0.04114 | 43.0 | 0.21 | 3.29 | 40.26 | 0.635 |




```
: Land transportation
 SEE = 0.47 RSQ = 0.5815 RHO = 0.60 Obser = 8 from 1999.000
 SEE+1 = 0.39 RBSQ = 0.5117 DurH = 999.00 DoFree = 6 to 2006.000
 MAPE = 7.09
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 vstnn23 - - _ _ _ _ - - - - _ - _ - - - - 5.40 - - -
 1 vstnn23[2]
 2 viptr
\begin{tabular}{|c|c|c|c|c|}
\hline \[
-0.53781
\] & 9.1 & -0.51 & 2.65 & 5.40
5.16 \\
\hline 1.17405 & 62.8 & 1.52 & 1.00 & 6.97 \\
\hline
\end{tabular}
```

: $\mathrm{SEE}=0.4 \mathrm{Farm} \quad 0.06$ Obser $=10$ from 1997.000
SEE+1 = 0.43 RBSQ $=0.4414$ DW $=1.88$ DoFree $=7$ to 2006.000
MAPE = 6.40
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn24 - - - - - - - - - - - - - - 5.17 - - -
$\begin{array}{llllll}1 \text { intercept } & 1.23534 & 2.5 & 0.24 & 2.30 & 1.00\end{array}$
2 vipoth $\begin{array}{lllllll} & -0.83102 & 10.8 & -0.25 & 2.13 & 1.58 & -0.315\end{array}$
$\begin{array}{llllllll}3 \text { vipcommerce } & 0.08538 & 45.9 & 1.01 & 1.00 & 61.44 & 0.702\end{array}$
: Other (other) structures
SEE = $0.30 \mathrm{RSQ}=0.7748 \mathrm{RHO}=-0.11$ Obser $=10$ from 1997.000
SEE+1 = 0.29 RBSQ $=0.7104$ DW $=2.22$ DoFree $=7$ to 2006.000
MAPE = 6.26
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn25 _ _ _ . . . . . . . . . . . . 3.42 _ -
1 intercept
$\begin{array}{rrrrrr}-0.67354 & 4.2 & -0.20 & 4.44 & 1.00 & \\ 1.82297 & 70.7 & 0.84 & 1.34 & 1.58 & 0.716\end{array}$
$\begin{array}{lllllll}3 & \text { vipoth[1] } & 0.77788 & 15.7 & 0.36 & 1.00 & 1.56\end{array} 0.301$
: Brokers' commissions
SEE $=0.05 \mathrm{RSQ}=0.9293 \mathrm{RHO}=-0.13$ Obser $=10$ from 1997.000
SEE+1 = 0.05 RBSQ $=0.8939$ DW $=2.26$ DoFree $=6$ to 2006.000
MAPE $=1.97$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn26
_ _ _ _ _ _ _ _ _ _ _ _ _ _ 2.27 _ -
1 intercept
$\begin{array}{rrrrrr}0.13316 & 1.7 & 0.06 & 14.14 & 1.00 & \\ 0.02770 & 133.7 & 0.75 & 3.16 & 61.44 & 0.775\end{array}$
$\begin{array}{lrrrrrr}2 \text { vipcommerce } & 0.02770 & 133.7 & 0.75 & 3.16 & 61.44 & 0.775 \\ 3 \text { vipoffice } & 0.00613 & 10.9 & 0.11 & 1.24 & 40.26 & 0.235\end{array}$
$\begin{array}{lllllll}4 \text { vipmanu } & 0.00586 & 11.2 & 0.08 & 1.00 & 32.07 & 0.209\end{array}$
: Used structures
SEE $=0.67$ RSQ $=0.5763$ RHO $=-0.27$ Obser $=10$ from 1997.000
SEE+1 = 0.64 RBSQ $=0.2373$ DW $=2.54$ DoFree $=5$ to 2006.000
MAPE $=55.55$
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 vstnn27

$\begin{array}{lrrrrrr}1 \text { intercept } & -15.26220 & 31.0 & 14.26 & 2.36 & 1.00 & \\ 2 \text { vipcommerce } & 0.53630 & 27.0 & -30.80 & 2.34 & 61.44 & 2.768\end{array}$
$\begin{array}{lrrrrrr}2 \text { vipcommerce } & 0.53630 & 27.0 & -30.80 & 2.34 & 61.44 & 2.768 \\ 3 \text { vipoffice } & -0.25064 & 23.0 & 9.43 & 1.92 & 40.26 & -1.774\end{array}$
$\begin{array}{lllllll}4 \text { vipmanu } & 0.09782 & 16.8 & -2.93 & 1.71 & 32.07 & 0.643\end{array}$
$\begin{array}{lllllll}5 \text { vipmc } & -0.52004 & 30.6 & 11.03 & 1.00 & 22.70 & -2.524\end{array}$

## Appendix 6.1: Gross Domestic Product by Industry Categories, BEA

|  | Detailed |  |
| :--- | :---: | :---: |
| BEA | Industry | Gross domestic product |
| 1 |  | Private industries <br> 2 |
| 3 |  | Agriculture, forestry, fishing, and hunting |
| 4 | 1 | Farms |
| 5 | 2 | Forestry, fishing, and related activities |
| 6 |  | Mining |
| 7 | 3 | Oil and gas extraction |
| 8 | 4 | Mining, except oil and gas |
| 9 | 5 | Support activities for mining |
| 10 | 6 | Utilities |
| 11 | 7 | Construction |
| 12 |  | Manufacturing |
| 13 |  | Durable goods |
| 14 | 8 | Wood products |
| 15 | 9 | Nonmetallic mineral products |
| 16 | 10 | Primary metals |
| 17 | 11 | Fabricated metal products |
| 18 | 12 | Machinery |
| 19 | 13 | Computer and electronic products |
| 20 | 14 | Electrical equipment, appliances, and components |
| 21 | 15 | Motor vehicles, bodies and trailers, and parts |
| 22 | 16 | Other transportation equipment |
| 23 | 17 | Furniture and related products |
| 24 | 18 | Miscellaneous manufacturing |
| 25 |  | Nondurable goods |
| 26 | 19 | Food and beverage and tobacco products |
| 27 | 20 | Textile mills and textile product mills |
| 28 | 21 | Apparel and leather and allied products |
| 29 | 22 | Paper products |
| 30 | 23 | Printing and related support activities |
| 31 | 24 | Petroleum and coal products |
| 32 | 25 | Chemical products |
| 33 | 26 | Plastics and rubber products |
| 34 | 27 | Wholesale trade |
| 35 | 28 | Retail trade |
| 36 |  | Transportation and warehousing |
| 37 | 29 | Air transportation |
| 38 | 30 | Rail transportation |
| 39 | 31 | Water transportation |
|  |  |  |


| 40 | 32 | Truck transportation |
| :---: | :---: | :---: |
| 41 | 33 | Transit and ground passenger transportation |
| 42 | 34 | Pipeline transportation |
| 43 | 35 | Other transportation and support activities |
| 44 | 36 | Warehousing and storage |
| 45 |  | Information |
| 46 | 37 | Publishing industries (includes software) |
| 47 | 38 | Motion picture and sound recording industries |
| 48 | 39 | Broadcasting and telecommunications |
| 49 | 40 | Information and data processing services |
| 50 |  | Finance, insurance, real estate, rental, and leasing |
| 51 |  | Finance and insurance |
| 52 | 41 | Federal Reserve banks, credit intermediation, and related activities |
| 53 | 42 | Securities, commodity contracts, and investments |
| 54 | 43 | Insurance carriers and related activities |
| 55 | 44 | Funds, trusts, and other financial vehicles |
| 56 |  | Real estate and rental and leasing |
| 57 | 45 | Real estate /1/ |
| 58 | 46 | Rental and leasing services and lessors of intangible assets |
| 59 |  | Professional and business services |
| 60 |  | Professional, scientific, and technical services |
| 61 | 47 | Legal services |
| 62 | 48 | Computer systems design and related services Miscellaneous professional, scientific, and |
| 63 | 49 | technical services |
| 64 | 50 | Management of companies and enterprises |
| 65 |  | Administrative and waste management services |
| 66 | 51 | Administrative and support services |
| 67 | 52 | Waste management and remediation services |
| 68 |  | Educational services, health care, and social assistance |
| 69 | 53 | Educational services |
| 70 |  | Health care and social assistance |
| 71 | 54 | Ambulatory health care services |
| 72 | 55 | Hospitals and nursing and residential care facilities |
| 73 | 56 | Social assistance |
| 74 |  | Arts, entertainment, recreation, accommodation, and food services |
| 75 |  | Arts, entertainment, and recreation |
| 76 | 57 | Performing arts, spectator sports, museums, and related activities |
| 77 | 58 | Amusements, gambling, and recreation industries |

Accommodation and food services
Accommodation
Food services and drinking places
Other services, except government
Government
Federal
General government
Government enterprises
State and local
General government
Government enterprises
Private goods-producing industries
Private services-producing industries
Information-communications-technology-producing industries

## Appendix 6.2: Results from Historical Simulations

Nominal in Billion dollars

| Results from Historical simulations | BEA | 2003 actual exog | predicted exog | BEA | 2004 actual exog | predicted exog |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Gross Output | 19,757.5 | 19,544.2 | 19,630.9 | 21,306.9 | 20,923.8 | 20,590.4 |
| Private industries | 17,457.3 | 17,294.6 | 17,379.9 | 18,859.3 | 18,578.2 | 18,256.7 |
| Total Services industries (40-61) | 8,078.4 | 7,955.5 | 8,020.1 | 8,741.9 | 8,478.0 | 8,347.8 |
| Agriculture, forestry, fishing, and hunting | 279.6 | 270.1 | 256.0 | 319.5 | 319.0 | 277.7 |
| Mining | 259.9 | 254.5 | 280.2 | 307.1 | 303.9 | 400.4 |
| Utilities | 355.7 | 348.7 | 348.3 | 372.9 | 368.4 | 367.4 |
| Construction | 956.8 | 953.1 | 945.5 | 1,063.0 | 1,023.3 | 950.8 |
| Manufacturing | 3,957.6 | 3,942.8 | 3,956.6 | 4,207.1 | 4,195.2 | 4,120.0 |
| Durable goods manufacturing | 2,114.9 | 2,095.6 | 2,136.5 | 2,221.6 | 2,214.7 | 2,237.3 |
| Nondurable goods manufacturing | 1,842.7 | 1,847.2 | 1,820.1 | 1,985.5 | 1,980.5 | 1,882.6 |
| Wholesale trade | 902.3 | 886.4 | 896.1 | 995.1 | 1,046.7 | 1,004.4 |
| Retail trade | 1,138.9 | 1,122.5 | 1,121.4 | 1,223.3 | 1,205.5 | 1,172.3 |
| Transportation and warehousing | 598.5 | 629.7 | 636.4 | 648.4 | 655.5 | 663.7 |
| Information | 1,031.5 | 1,031.8 | 1,019.0 | 1,094.7 | 1,088.7 | 1,056.8 |
| Finance, insurance, real estate, rental, and leasing | 3,382.4 | 3,340.2 | 3,361.3 | 3,713.2 | 3,586.8 | 3,547.3 |
| Professional and business services | 2,004.5 | 1,952.4 | 2,000.9 | 2,164.3 | 2,064.1 | 2,054.5 |
| Educational services, health care, and social assistance | 1,387.6 | 1,374.3 | 1,376.0 | 1,474.5 | 1,462.6 | 1,429.4 |
| Arts, entertainment, recreation, accommodation, and food services | 721.3 | 715.5 | 708.0 | 770.9 | 767.7 | 733.5 |
| Other services, except government | 480.7 | 472.7 | 474.2 | 505.5 | 491.0 | 478.4 |
| Government | 2,300.2 | 2,249.5 | 2,251.0 | 2,447.6 | 2,345.5 | 2,333.7 |
| Federal government | 758.9 | 732.2 | 727.4 | 824.8 | 772.5 | 756.2 |
| State and local government | 1,541.3 | 1,517.3 | 1,523.6 | 1,622.8 | 1,573.1 | 1,577.5 |

Percentage Deviation from the BEA data as of December 2006
Total Gross Output
Private industries
Total Services industries (40-61)
Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods manufacturing
Nondurable goods manufacturing
Wholesale trade
Retail trade
Transportation and warehousing
Information
Finance, insurance, real estate, rental, and leasing
Professional and business services
Educational services, health care, and social assistance
Arts, entertainment, recreation, accommodation, and food services
Other services, except government
Government
Federal government
State and local government

| 2003 |  | 2004 |  |
| :---: | :---: | :---: | :---: |
| actual | predicted | actual | predicted |
| exog | exog | exog | exog |
| -1.08\% | -0.64\% | -1.80\% | -3.36\% |
| -0.93\% | -0.44\% | -1.49\% | -3.20\% |
| -1.52\% | -0.72\% | -3.02\% | -4.51\% |
| -3.41\% | -8.46\% | -0.16\% | -13.08\% |
| -2.10\% | 7.79\% | -1.05\% | 30.39\% |
| -1.96\% | -2.09\% | -1.21\% | -1.48\% |
| -0.39\% | -1.17\% | -3.73\% | -10.55\% |
| -0.37\% | -0.03\% | -0.28\% | -2.07\% |
| -0.91\% | 1.02\% | -0.31\% | 0.71\% |
| 0.24\% | -1.22\% | -0.25\% | -5.18\% |
| -1.77\% | -0.69\% | 5.19\% | 0.94\% |
| -1.44\% | -1.54\% | -1.46\% | -4.17\% |
| 5.21\% | 6.33\% | 1.10\% | 2.37\% |
| 0.03\% | -1.22\% | -0.54\% | -3.46\% |
| -1.25\% | -0.62\% | -3.41\% | -4.47\% |
| -2.60\% | -0.18\% | -4.63\% | -5.07\% |
| -0.95\% | -0.83\% | -0.81\% | -3.06\% |
| -0.80\% | -1.84\% | -0.42\% | -4.85\% |
| -1.67\% | -1.37\% | -2.88\% | -5.36\% |
| -2.20\% | -2.14\% | -4.17\% | -4.65\% |
| -3.51\% | -4.15\% | -6.34\% | -8.32\% |
| -1.56\% | -1.15\% | -3.06\% | -2.79\% |

$\quad$ Results from Historical simulations
Total Gross Output
Private industries
Total Services industries (40-61)
Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods manufacturing
Nondurable goods manufacturing
Wholesale trade
Retail trade
Transportation and warehousing
Information
Finance, insurance, real estate, rental, and leasing
Professional and business services
Educational services, health care, and social assistance
Arts, entertainment, recreation, accommodation, and food services
Other services, except government
Government
Federal government
State and local government

| BEA | 2003 actual exog | predicted exog | BEA | 2004 actual exog | predicted exog |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18,782.6 | 18,686.1 | 18,672.6 | 19,496.2 | 19,344.6 | 18,965.7 |
| 16,709.1 | 16,619.5 | 16,617.5 | 17,390.2 | 17,271.9 | 16,895.6 |
| 7,559.2 | 7,504.7 | 7,511.1 | 7,949.9 | 7,830.1 | 7,691.9 |
| 262.0 | 261.0 | 261.9 | 269.8 | 269.5 | 265.9 |
| 211.4 | 208.0 | 213.0 | 216.4 | 213.7 | 221.3 |
| 316.1 | 309.5 | 325.1 | 313.0 | 314.8 | 348.9 |
| 863.0 | 856.9 | 851.0 | 902.3 | 887.1 | 837.2 |
| 3,943.8 | 3,936.1 | 3,915.8 | 4,000.6 | 3,999.1 | 3,884.9 |
| 2,193.1 | 2,178.1 | 2,204.1 | 2,233.3 | 2,232.1 | 2,263.9 |
| 1,751.2 | 1,757.9 | 1,714.0 | 1,768.7 | 1,768.8 | 1,632.4 |
| 911.8 | 896.3 | 901.9 | 950.1 | 986.7 | 938.4 |
| 1,125.8 | 1,115.1 | 1,111.0 | 1,181.6 | 1,195.0 | 1,151.6 |
| 575.7 | 590.6 | 592.1 | 607.8 | 596.0 | 584.3 |
| 1,033.2 | 1,031.2 | 1,022.9 | 1,103.0 | 1,078.8 | 1,063.3 |
| 3,177.1 | 3,196.4 | 3,171.3 | 3,386.5 | 3,337.7 | 3,254.4 |
| 1,909.7 | 1,861.8 | 1,904.5 | 2,013.2 | 1,954.4 | 1,991.2 |
| 1,265.0 | 1,253.2 | 1,251.7 | 1,301.5 | 1,298.7 | 1,262.2 |
| 669.9 | 664.1 | 657.7 | 692.5 | 696.6 | 666.2 |
| 437.5 | 433.6 | 430.6 | 445.5 | 441.5 | 421.8 |
| 2,071.5 | 2,064.4 | 2,053.4 | 2,106.9 | 2,073.5 | 2,069.1 |
| 678.9 | 668.3 | 659.5 | 703.4 | 680.6 | 667.1 |
| 1,392.3 | 1,395.9 | 1,393.7 | 1,403.0 | 1,392.6 | 1,401.8 |

## Percentage Deviation from the BEA data as of December 2006

Total Gross Output
Private industries
Total Services industries (40-61)
Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods manufacturing
Nondurable goods manufacturing
Wholesale trade
Retail trade
Transportation and warehousing
Information
Finance, insurance, real estate, rental, and leasing
Professional and business services
Educational services, health care, and social assistance
Arts, entertainment, recreation, accommodation, and food services
Other services, except government
Government
Federal government
State and local government

| 2003 |  | 2004 |  |
| :---: | :---: | :---: | :---: |
| actual | predicted | actual | predict |
| og | exog | og | exog |
| -0.51\% | -0.59\% | -0.78\% | -2.72\% |
| -0.54\% | -0.55\% | -0.68\% | -2.84\% |
| -0.72\% | -0.64\% | -1.51\% | -3.25\% |
| -0.36\% | -0.05\% | -0.12\% | -1.43\% |
| -1.62\% | 0.72\% | -1.27\% | 2.27\% |
| -2.09\% | 2.84\% | 0.55\% | 11.47\% |
| -0.71\% | -1.39\% | -1.68\% | -7.21\% |
| -0.19\% | -0.71\% | -0.04\% | -2.89\% |
| -0.68\% | 0.50\% | -0.05\% | 1.37\% |
| 0.38\% | -2.13\% | 0.01\% | -7.70\% |
| -1.70\% | -1.09\% | 3.85\% | -1.23\% |
| -0.95\% | -1.32\% | 1.13\% | -2.55\% |
| 2.58\% | 2.85\% | -1.94\% | -3.86\% |
| -0.20\% | -1.00\% | -2.19\% | -3.60\% |
| 0.61\% | -0.18\% | -1.44\% | -3.90\% |
| -2.51\% | -0.27\% | -2.92\% | -1.09\% |
| -0.94\% | -1.05\% | -0.22\% | -3.02\% |
| -0.86\% | -1.81\% | 0.59\% | -3.80\% |
| -0.90\% | -1.57\% | -0.91\% | -5.32\% |
| -0.34\% | -0.88\% | -1.58\% | -1.79\% |
| -1.56\% | -2.86\% | -3.24\% | -5.16\% |
| 0.26\% | 0.10\% | -0.74\% | -0.08\% |


| Results from Historical simulations | BEA | 2003 <br> actual <br> exog | predicted exog | BEA | 2004 <br> actual <br> exog | predicted exog |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Gross Output | 105.2 | 104.6 | 105.1 | 109.3 | 108.2 | 108.6 |
| Private industries | 104.5 | 104.1 | 104.6 | 108.4 | 107.6 | 108.1 |
| Total Services industries (40-61) | 106.9 | 106.0 | 106.8 | 110.0 | 108.3 | 108.5 |
| Agriculture, forestry, fishing, and hunting | 106.7 | 103.5 | 97.7 | 118.4 | 118.4 | 104.4 |
| Mining | 122.9 | 122.3 | 131.6 | 141.9 | 142.2 | 180.9 |
| Utilities | 112.5 | 112.7 | 107.1 | 119.1 | 117.0 | 105.3 |
| Construction | 110.9 | 111.2 | 111.1 | 117.8 | 115.4 | 113.6 |
| Manufacturing | 100.4 | 100.2 | 101.0 | 105.2 | 104.9 | 106.1 |
| Durable goods manufacturing | 96.4 | 96.2 | 96.9 | 99.5 | 99.2 | 98.8 |
| Nondurable goods manufacturing | 105.2 | 105.1 | 106.2 | 112.3 | 112.0 | 115.3 |
| Wholesale trade | 99.0 | 98.9 | 99.4 | 104.7 | 106.1 | 107.0 |
| Retail trade | 101.2 | 100.7 | 100.9 | 103.5 | 100.9 | 101.8 |
| Transportation and warehousing | 104.0 | 106.6 | 107.5 | 106.7 | 110.0 | 113.6 |
| Information | 99.8 | 100.1 | 99.6 | 99.2 | 100.9 | 99.4 |
| Finance, insurance, real estate, rental, and leasing | 106.5 | 104.5 | 106.0 | 109.6 | 107.5 | 109.0 |
| Professional and business services | 105.0 | 104.9 | 105.1 | 107.5 | 105.6 | 103.2 |
| Educational services, health care, and social assistance | 109.7 | 109.7 | 109.9 | 113.3 | 112.6 | 113.2 |
| Arts, entertainment, recreation, accommodation, and food services | 107.7 | 107.7 | 107.6 | 111.3 | 110.2 | 110.1 |
| Other services, except government | 109.9 | 109.0 | 110.1 | 113.5 | 111.2 | 113.4 |
| Government | 111.0 | 109.0 | 109.6 | 116.2 | 113.1 | 112.8 |
| Federal government | 111.8 | 109.6 | 110.3 | 117.3 | 113.5 | 113.4 |
| State and local government | 110.7 | 108.7 | 109.3 | 115.7 | 113.0 | 112.5 |

## Percentage Deviation from the BEA data as of December 2006

Total Gross Output
Private industries
Total Services industries (40-61)
Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Durable goods manufacturing
Nondurable goods manufacturing
Wholesale trade
Retail trade
Transportation and warehousing
Information
Finance, insurance, real estate, rental, and leasing
Professional and business services
Educational services, health care, and social assistance
Arts, entertainment, recreation, accommodation, and food services
Other services, except government
Government
Federal government
State and local government

| 2003 |  | 2004 |  |
| :---: | :---: | :---: | :---: |
| actual | predicted | actual | predicted |
| exog | exog | exog | exog |
| -0.57\% | -0.06\% | -1.03\% | -0.66\% |
| -0.40\% | 0.11\% | -0.82\% | -0.36\% |
| -0.81\% | -0.09\% | -1.53\% | -1.31\% |
| -3.06\% | -8.42\% | -0.04\% | -11.82\% |
| -0.49\% | 7.01\% | 0.23\% | 27.49\% |
| 0.13\% | -4.80\% | -1.75\% | -11.62\% |
| 0.32\% | 0.22\% | -2.08\% | -3.60\% |
| -0.18\% | 0.69\% | -0.25\% | 0.85\% |
| -0.23\% | 0.51\% | -0.26\% | -0.65\% |
| -0.14\% | 0.92\% | -0.26\% | 2.73\% |
| -0.07\% | 0.41\% | 1.29\% | 2.20\% |
| -0.49\% | -0.23\% | -2.56\% | -1.66\% |
| 2.57\% | 3.39\% | 3.10\% | 6.48\% |
| 0.23\% | -0.22\% | 1.69\% | 0.15\% |
| -1.84\% | -0.44\% | -1.99\% | -0.59\% |
| -0.09\% | 0.09\% | -1.76\% | -4.02\% |
| -0.02\% | 0.22\% | -0.59\% | -0.04\% |
| 0.05\% | -0.03\% | -1.00\% | -1.09\% |
| -0.78\% | 0.20\% | -1.99\% | -0.04\% |
| -1.87\% | -1.27\% | -2.63\% | -2.91\% |
| -1.98\% | -1.33\% | -3.20\% | -3.33\% |
| -1.81\% | -1.25\% | -2.35\% | -2.71\% |

# Appendix 6.3: Real Gross Output and Price Index Regressions 

```
FARMS
: Nominal Gross Output: Farm
 SEE = 9533.68 RSQ = 0.7754 RHO = 0.27 Obser = 13 from 1992.000
 SEE+1 = 9277.59 RBSQ = 0.7305 DW = 1.45 DoFree = 10 to 2004.000
 MAPE = 3.73 Test period: SEE 8679.47 MAPE 3.43 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago1 - - - - - - - - - - - - - - - - - 208055.38 - - -
 1 foodpri[1] 1308.87204 155.2 0.79 1.93 125.56
 2 gdpa < 86.63329 32.1
 3 gdpa[1] -85.93539 29.8 -3.46 1.00 8382.53-6.795
: Price Index of Gross Output: Farm
 SEE = 3.65 RSQ = 0.7020 RHO = 0.08 Obser = 13 from 1992.000
 SEE+1 = 3.65 RBSQ = 0.6027 DW = 1.83 DoFree = 9 to 2004.000
 MAPE = 2.93 Test period: SEE 5.07 MAPE 4.31 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop1 _ - - _ _ _ - - - _ - _ _ - - - - 107.28 - - -
```



```
 2 farmlabexp
 4 exri }\begin{array}{lllllll}{10.90718}&{-0.36.3}&{-0.90}&{1.00}&{106.37}&{-2.149}
FORESTRY, FISHING, AND RELATED ACTIVITIES
: Real Gross Output: Forestry, fishing, and related services
 SEE = 1487.62 RSQ = 0.7120 RHO = 0.31 Obser = 13 from 1992.000
 SEE+1 = 1456.24 RBSQ = 0.6159 DW = 1.39 DoFree = 9 to 2004.000
 MAPE = 2.68 Test period: SEE 2810.55 MAPE 4.91 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor2 - - - - - - - - - - - - - - - - - 50893.13 - - -
 1 intercept 34820.75375 9.7 0.68 3.47 1.00
 2 ehe2 -627.60330 72.5 -0.96 1.51 77.51 -1.154
 3 ips2_1
 4 ips2_2 139.20092 7.8 0.27 1.00
: Price Index of Gross Output: Forestry, fishing, and related services
 SEE = 0.66 RSQ = 0.9828 RHO = 0.00 Obser = 13 from 1992.000
 SEE+1 = 0.66 RBSQ = 0.9794 DW = 2.00 DoFree = 10 to 2004.000
 MAPE = 0.55 Test period: SEE 2.03 MAPE 1.96 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop2 - - - - - - - - - - - - - - - - - 99.21 - - -
 1 intercept }r\mathrm{ 17.70190
```



```
OIL AND GAS EXTRACTION
: Real Gross Output: Oil and Gas Extraction
 SEE = 1128.73 RSQ = 0.9289 RHO = 0.04 Obser = 13 from 1992.000
 SEE+1 = 1128.28 RBSQ = 0.9147 DW = 1.91 DoFree = 10 to 2004.000
 MAPE = 0.67 Test period: SEE 4153.74 MAPE 3.27 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor3 - - - - - - - - - - - - - - - - - 139158.84 - - -
 1 intercept 61021.21383 32.3 0.44 14.07 1.00
```



```
 3 ehe3 134.71446 53.2 0.14 1.00 141.86 0.621
: Price Index of Gross Output: Oil and Gas Extraction
 SEE = 2.86 RSQ = 0.9905 RHO = 0.49 Obser = 13 from 1992.000
```

```
SEE+1 = 2.66 RBSQ = 0.9896 DW = 1.01 DoFree = 11 to 2004.000
MAPE = 3.63 Test period: SEE 3.47 MAPE 1.78 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 75.26 _ _ -
1 intercept
2 pri3 0.77110 925.8 1.04 1.00 101.82 0.995
```

\# MINING, EXCEPT OIL AND GAS
: Real Gross Output: Mining, except Oil and Gas
SEE $=268.42$ RSQ $=0.9759$ RHO $=-0.35$ Obser $=13$ from 1992.000
SEE+1 = 246.17 RBSQ $=0.9711$ DW $=2.69$ DoFree $=10$ to 2004.000
MAPE $=0.50$ Test period: SEE 718.89 MAPE 1.48 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor4 - - - - - - - - - - - - - - 46503.42 - - -
$\begin{array}{llllll}1 \text { intercept } & 3269.51085 & 7.1 & 0.07 & 41.53 & 1.00\end{array}$
$\begin{array}{lrrrrrr}2 & \text { ips } 4 & 398.58727 & 519.6 & 0.86 & 2.01 & 100.05 \\ 3 \text { ehe4 } & 14.21965 & 41.8 & 0.07 & 1.00 & 236.03 & 0.172\end{array}$

\# SUPPORT ACTIVITIES FOR MINING
: Real Gross Output: Support activities for Mining
SEE $=2249.93$ RSQ $=0.7902$ RHO $=0.08$ Obser $=13$ from 1992.000
SEE+1 $=2249.08$ RBSQ $=0.7483$ DW $=1.85$ DoFree $=10$ to 2004.000
MAPE $=6.89$ Test period: SEE 4863.64 MAPE 12.53 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor5 - - - - - - - - - - - - 26792.74 - - -
1 intercept $\quad-27109.95120 \quad 32.0-1.01 \quad 4.77 \quad 1.00$
$\begin{array}{lllllll}2 & \text { ips } 5 & -6.48249 & 0.1 & -0.03 & 4.53 & 118.24\end{array} \quad-0.017$
$\begin{array}{lllllll}3 \text { ehe5 } & 320.54506 & 112.9 & 2.04 & 1.00 & 170.55 & 0.893\end{array}$
: Price Index of for Gross Output: Support activities for Mining
SEE $=11.89 \mathrm{RSQ}=0.8843 \mathrm{RHO}=0.30$ Obser $=13$ from 1992.000
SEE+1 = 11.54 RBSQ $=0.8612$ DW $=1.40$ DoFree $=10$ to 2004.000
MAPE $=6.08$ Test period: SEE 3.13 MAPE 1.46 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop5 _ _ _ _ _ _ _ _ _ . . . . 102.71 _ -
1 intercept $\quad-296.14561 \quad 32.9 \quad-2.88 \quad 8.65 \quad 1.00$
$\begin{array}{lllllll}2 \text { pri5_2 } & 2.15780 & 157.5 & 2.51 & 1.15 & 119.42 & 0.876\end{array}$
$\begin{array}{llrrrrr}3 \text { pri5_4 } & 1.23157 & 7.2 & 1.37 & 1.00 & 114.63 & 0.143\end{array}$
\# UTILITIES
: Nominal Gross Output: Utilities
SEE = 5741.58 RSQ $=0.9744$ RHO $=-0.03$ Obser $=13$ from 1992.000
SEE+1 = 5734.57 RBSQ $=0.9692$ DW $=2.05$ DoFree $=10$ to 2004.000
MAPE = 1.52 Test period: SEE 3410.53 MAPE 0.83 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ago6 _ _ _ _ _ _ _ _ . . . - 302719.77 _ -
1 intercept $\quad-82307.46187 \quad 47.8 \quad-0.27 \quad 39.02 \quad 1.00$
$\begin{array}{lllllll}2 \text { ips } 6 & 3459.21138 & 272.5 & 1.05 & 5.27 & 92.26 & 0.700\end{array}$
$\begin{array}{llllllll}3 \text { oilp[1] } & 2994.81199 & 129.6 & 0.22 & 1.00 & 22.00 & 0.403\end{array}$
:
Price Index of for Gross Output: Utilities


## \# CONSTRUCTION



## \# MANUFACTURING: WOOD PRODUCTS



```
: Price Index of Gross Output: Wood Products
```

    \(\mathrm{SEE}=1.21 \mathrm{RSQ}=0.9648 \mathrm{RHO}=0.17\) Obser \(=13\) from 1992.000
    \(\mathrm{SEE}+1=1.20 \mathrm{RBSQ}=0.9578 \mathrm{DW}=1.67\) DoFree \(=10\) to 2004.000
    MAPE = 0.92 Test period: SEE 1.42 MAPE 1.25 end 2005.000
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    
$\begin{array}{lrrrrrr}1 \text { intercept } & -5.51910 & 3.5 & -0.06 & 28.43 & 1.00 & \\ 2 \text { wagnf } & 0.09036 & 308.4 & 0.41 & 14.25 & 447.93 & 0.744\end{array}$
$\begin{array}{rrrrrrr}2 & \text { wagnt } & 0.09036 & 308.4 & 0.41 & 14.25 & 447.93 \\ 3 \text { pri8_1 } & 0.42354 & 277.4 & 0.65 & 1.00 & 150.53 & 0.684\end{array}$
\# NONMETALLIC MINERAL PRODUCTS


```
 3 ehe9
 -6.81513
 2.6 -0.04
 1.00
 517.76 -0.018
```

```
: Price Index of Gross Output: Nonmetallic mineral products
```

: Price Index of Gross Output: Nonmetallic mineral products
SEE = 0.19 RSQ = 0.9991 RHO = 0.53 Obser = 13 from 1992.000
SEE = 0.19 RSQ = 0.9991 RHO = 0.53 Obser = 13 from 1992.000
SEE+1 = 0.17 RBSQ = 0.9990 DW = 0.95 DoFree = 11 to 2004.000
SEE+1 = 0.17 RBSQ = 0.9990 DW = 0.95 DoFree = 11 to 2004.000
MAPE = 0.17 Test period: SEE 0.61 MAPE 0.54 end 2005.000
MAPE = 0.17 Test period: SEE 0.61 MAPE 0.54 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop9 - - - - - - - - - - - - - - - - - 95.62 - - -
0 agop9 - - - - - - - - - - - - - - - - - 95.62 - - -
1 intercept -0.48434 1.4 -0.01 1135.42 1.00
1 intercept -0.48434 1.4 -0.01 1135.42 1.00
2 pri9 0.74563 3269.6 1.01 1.0.00 128.89 1.000

```
 2 pri9 0.74563 3269.6 1.01 1.0.00 128.89 1.000
```

\# PRIMARY METALS
: Real Gross Output: Primary Metals
SEE $=1502.60$ RSQ $=0.9735$ RHO $=-0.08$ Obser $=13$ from 1992.000
SEE+1 $=1490.41$ RBSQ $=0.9682$ DW $=2.17$ DoFree $=10$ to 2004.000
MAPE $=0.81$ Test period: SEE 607.84 MAPE 0.41 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor10 _ - - . - . . . - . . - - - 149129.53 - - -
1 intercept

| -933.87108 | 0.1 | -0.01 | 37.72 | 1.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1221.64143 | 441.2 | 0.86 | 3.19 | 105.04 | 0.894 |
| 36.64322 | 78.7 | 0.15 | 1.00 | 593.22 | 0.249 |


| 2 ips10 | 1221.64143 | 441.2 | 0.86 | 3.19 | 105.04 | 0.894 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | ehe10 | 36.64322 | 78.7 | 0.15 | 1.00 | 593.22 |

: Price Index of Gross Output: Primary Metals
SEE $=0.48 \mathrm{RSQ}=0.9952$ RHO $=0.25$ Obser $=13$ from 1992.000
SEE+1 = 0.47 RBSQ $=0.9948$ DW $=1.50$ DoFree $=11$ to 2004.000
MAPE $=0.34$ Test period: SEE 0.28 MAPE 0.21 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

$\begin{array}{llllll}1 \text { intercept } & -4.00796 & 14.3 & -0.04 & 210.10 & 1.00\end{array}$
$\begin{array}{llllllll}2 \text { pril0 } & 0.86651 & 1349.5 & 1.04 & 1.00 & 120.53 & 0.998\end{array}$
\# FABRICATED METAL PRODUCTS
: Nominal Gross Output: Fabricated metal products
SEE = 3742.47 RSQ $=0.9832$ RHO $=-0.09$ Obser $=13$ from 1992.000
SEE+1 $=3659.06$ RBSQ $=0.9799$ DW $=2.18$ DoFree $=10$ to 2004.000
MAPE $=1.30$ Test period: SEE 11766.19 MAPE 4.34 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ago11 - - - - - - - - - - - - - 228872.62 - - -
$\begin{array}{llllll}1 \text { intercept } & 11529.19165 & 1.7 & 0.05 & 59.59 & 1.00\end{array}$
2 ips11 $3922.51035 \quad 540.2 \quad 1.68 \quad 4.25 \quad 97.94 \quad 1.222$
3 ehe11 $\begin{array}{llllllllllll} & -103.47916 & 106.1 & -0.73 & 1.00 & 1612.32 & -0.348\end{array}$
:
Price Index of Gross Output:Fabricated metal products
SEE $=0.15 \mathrm{RSQ}=0.9991 \mathrm{RHO}=0.55$ Obser $=13$ from 1992.000
SEE+1 = 0.13 RBSQ $=0.9990$ DW $=0.91$ DoFree $=11$ to 2004.000
MAPE $=0.13$ Test period: SEE 0.27 MAPE 0.24 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agopl1 - - - - - - - - - - - - 97.66 - -
$\begin{array}{lrrrrrr}1 \text { intercept } & -4.54239 & 78.6 & -0.05 & 1113.06 & 1.00 & \\ 2 \text { pril1 } & 0.80065 & 3236.3 & 1.05 & 1.00 & 127.65 & 1.000\end{array}$
\# MACHINERY
Real Gross Output: Machinery
SEE $=1594.67$ RSQ $=0.9954$ RHO $=-0.31$ Obser $=13$ from 1992.000
SEE+1 $=1510.81$ RBSQ $=0.9945 \mathrm{DW}=2.63$ DoFree $=10$ to 2004.000
MAPE $=0.46$ Test period: SEE 1203.97 MAPE 0.45 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor12 - - - - - . - . - . - - - - 246831.01 - - -
1 intercept $\quad 6040.15572 \quad 4.5 \quad 0.02 \quad 218.73 \quad 1.00$
$\begin{array}{rrrrrrr}2 & \text { ips12 } & 2335.44648 & 1178.0 & 0.97 & 1.00 & 102.72 \\ 3 & \text { ehe12 } & 0.65746 & 0.1 & 0.00 & 1.00 & 1364.78 \\ 0.096\end{array}$


## \# COMPUTER AND ELECTRONIC PRODUCTS

Real Gross Output: Computer and electronics products
SEE $=12249.96$ RSQ $=0.9923$ RHO $=0.52$ Obser $=13$ from 1992.000 SEE+1 = 11750.77 RBSQ $=0.9907 \mathrm{DW}=0.96$ DoFree $=10$ to 2004.000 MAPE $=4.74$ Test period: SEE 11539.94 MAPE 2.20 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor13
1 intercept $\quad-316197.46716 \quad 125.5 \quad-0.99 \quad 129.67 \quad 1.00$
$\begin{array}{lllllll}2 \text { ips13 } & 3862.44804 & 1000.5 & 0.77 & 8.32 & 63.34 & 1.098\end{array}$
$\begin{array}{lllllllll}3 \text { ehe13 } & 234.22982 & 188.4 & 1.23 & 1.00 & 1662.96 & 0.271\end{array}$
: Price Index of Gross Output: Computer and electronics products
SEE = $5.21 \mathrm{RSQ}=0.9922$ RHO $=0.44$ Obser $=13$ from 1992.000
SEE+1 $=\quad 5.13 \mathrm{RBSQ}=0.9914 \mathrm{DW}=1.11$ DoFree $=11$ to 2004.000

MAPE $=2.96$ Test period: SEE 2.68 MAPE 3.69 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop13 - - - - - - - - - - - - - 144.54 - - -
1 intercept

| 41.93604 | 311.5 | 0.29 | 127.44 | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.30289 | 1028.9 | 0.71 | 1.00 | 338.76 | 0.996 |

\#ELECTRICAL EQUIPMENT, APPLIANCES, AND COMPONENTS
: Real Gross Output: Electrical equipment, appliances, and components
$\mathrm{SEE}=668.61 \mathrm{RSQ}=0.9948 \mathrm{RHO}=0.22$ Obser $=13$ from 1992.000
SEE+1 $=678.19$ RBSQ $=0.9938$ DW $=1.56$ DoFree $=10$ to 2004.000
MAPE = 0.44 Test period: SEE 40.77 MAPE 0.04 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor14 - - - - - - . - . - - - - 104574.79 - - -
1 intercept
$\begin{array}{rrrrrr}4479.81442 & 12.1 & 0.04 & 194.08 & 1.00 & \\ 1022.00022 & 1207.6 & 1.03 & 1.88 & 105.24 & 1.025 \\ -13.38465 & 37.1 & -0.07 & 1.00 & 557.12 & -0.074\end{array}$

| 3 ehe14 | -13.38465 | 37.1 | -0.07 | 1.00 | 557.12 | -0.074 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

: Price Index of Gross Output: Electrical equipment, appliances, and components SEE $=0.61 \mathrm{RSQ}=0.9316 \mathrm{RHO}=0.50$ Obser $=13$ from 1992.000 SEE+1 = 0.56 RBSQ $=0.9179$ DW $=1.01$ DoFree $=10$ to 2004.000 MAPE = 0.52 Test period: SEE 2.94 MAPE 2.73 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop14 - - - - - - . - - - - - - 98.49 - -
$\begin{array}{llllll}1 \text { pri14 } & 0.85274 & 133.4 & 1.19 & 4.22 & 137.99\end{array}$
$\begin{array}{llrrrrr}2 \mathrm{hr} 14 & -0.11206 & 0.8 & -0.05 & 1.53 & 41.51 & -0.044 \\ 3 \text { wagnf } & -0.03243 & 23.6 & -0.15 & 1.00 & 447.93 & -0.739\end{array}$
\# MOTOR VEHICLE, BODIES AND TRAILERS, AND PARTS
: Real Gross Output: Motor vehicle, bodies and trailers, and parts SEE = 6587.17 RSQ $=0.9896$ RHO $=0.11$ Obser $=13$ from 1992.000 SEE+1 = 6551.72 RBSQ $=0.9875 \mathrm{DW}=1.78$ DoFree $=10$ to 2004.000 MAPE $=1.08$ Test period: SEE 7045.25 MAPE 1.45 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor15

| 15243.21608 | 1.3 | -0.04 | 96.1 | 1. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4656.20085 | 786.9 | 0.97 | 1.07 | 87.38 | 0.98 |
| 22.24281 | 3.3 | 0.06 | 1.00 | 1194.64 | 0.02 |


\# OTHER TRANSPORTATION EQUIPMENT
: Real Gross Output: Other transportation equipment
SEE = $1679.29 \mathrm{RSQ}=0.9865 \mathrm{RHO}=0.36$ Obser $=13$ from 1992.000
SEE+1 $=1603.24$ RBSQ $=0.9838$ DW $=1.27$ DoFree $=10$ to 2004.000
MAPE $=0.86$ Test period: SEE 112.48 MAPE 0.07 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor16 - - - - - - - - - - - - - 158718.64 - - -
1 intercept $16856.22084 \quad 12.6 \quad 0.11 \quad 73.97 \quad 1.00$
2 ips16 $\begin{array}{lllllll} & 1756.78339 & 697.4 & 1.12 & 1.93 & 100.78 & 1.048\end{array}$
$\begin{array}{lllllll}3 \text { ehe16 } & -18.05430 & 38.8 & -0.22 & 1.00 & 1948.58 & -0.127\end{array}$
: Price Index of Gross Output: Other transportation equipment SEE = 0.49 RSQ $=0.9941$ RHO $=0.62$ Obser $=13$ from 1992.000 SEE+1 = 0.46 RBSQ $=0.9936 \mathrm{DW}=0.75$ DoFree $=11$ to 2004.000 MAPE = 0.40 Test period: SEE 0.20 MAPE 0.18 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop16 - - - - - - - - - - - - 97.62 - - -
1 intercept $\begin{array}{lllll}43.65025 & 951.7 & 0.45 & 170.88 & 1.00\end{array}$
$\begin{array}{llllllll}2 & \text { pri16 } & 0.35000 & 1207.2 & 0.55 & 1.00 & 154.21 & 0.997\end{array}$
\# FURNITURE AND RELATED PRODUCTS
: Real Gross Output: Furniture and related products SEE = 262.31 RSQ $=0.9988$ RHO $=-0.08$ Obser $=13$ from 1992.000 SEE+1 $=258.28$ RBSQ $=0.9985$ DW $=2.16$ DoFree $=10$ to 2004.000 MAPE $=0.32$ Test period: SEE 1749.62 MAPE 2.23 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agor17 - - - - - - - - - - - - - 65794.11 - - 1 intercept $\quad-1254.35144 \quad 3.8 \quad-0.02 \quad 825.13 \quad 1.00$ $\begin{array}{llllllll}2 \text { ips17 } & 771.48286 & 2356.8 & 1.07 & 1.33 & 90.92 & 1.012\end{array}$ 3 ehe17 $\quad-5.06565 \quad 15.5 \quad-0.05 \quad 1.00 \quad 611.03-0.024$
: Price Index of Gross Output: Furniture and related products SEE = 0.26 RSQ $=0.9981$ RHO $=0.09$ Obser $=13$ from 1992.000 SEE+1 = $\quad 0.26$ RBSQ $=0.9979$ DW $=1.83$ DoFree $=11$ to 2004.000 MAPE $=0.19$ Test period: SEE 1.16 MAPE 1.07 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop17 - - - - - - - - - - - - - 96.58 - - 1 intercept $\quad-0.78951 \quad 1.7 \quad-0.01 \quad 523.75 \quad 1.00$ $\begin{array}{llllllll}2 \text { pril7 } & 0.70308 & 2188.6 & 1.01 & 1.00 & 138.49 & 0.999\end{array}$
\# MISCELLANEOUS MANUFACTURING
Real Gross Output: Miscellaneous manufacturing
SEE $=532.13 \mathrm{RSQ}=0.9985 \mathrm{RHO}=-0.08$ Obser $=13$ from 1992.000 SEE+1 $=524.28$ RBSQ $=0.9982$ DW $=2.17$ DoFree $=10$ to 2004.000 MAPE $=0.35$ Test period: SEE 3943.20 MAPE 2.93 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor18
1 intercept - - - - - - - - - - - - - - - 107540.05 - - -

2 ips18

| 4643.52755 | 2.8 | 0.04 | 664.31 | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1272.60670 | 2251.1 | 1.04 | 1.30 | 88.20 | 0.990 |

3 ehe18 $\quad-13.22931 \quad 14.0 \quad-0.09 \quad 1.00 \quad 706.37-0.023$

```
: Price Index of Gross Output: Miscellaneous manufacturing
 SEE = 0.47 RSQ = 0.9875 RHO = 0.63 Obser = 13 from 1992.000
 SEE+1 = 0.41 RBSQ = 0.9864 DW = 0.73 DoFree = 11 to 2004.000
 MAPE = 0.41 Test period: SEE 0.59 MAPE 0.55 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop18 - - - - - - - - - - - - - - - - - 98.35 - - -
 1 intercept 51.57055 881.9 0.52 80.13 1.00
 2 pri18 0.38306 795.1 0.48 1.00 122.11 0.994
```

\# FOOD AND BEVERAGE AND TOBACCO PRODUCTS
: Real Gross Output: Food and beverage and tobacco products
SEE = 3910.32 RSQ $=0.9695$ RHO $=0.09$ Obser $=13$ from 1992.000
SEE+1 $=3896.56$ RBSQ $=0.9635$ DW $=1.82$ DoFree $=10$ to 2004.000
MAPE $=0.65$ Test period: SEE 13889.44 MAPE 2.47 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor19
1 intercept
$\begin{array}{lrrrrrr}2 \text { ips19 } & 6287.36558 & 457.4 & 1.16 & 1.24 & 98.35 & 1.010 \\ 3 & \text { ehe19 } & 494.99965 & 11.2 & 0.19 & 1.00 & 205.26 \\ 0.090\end{array}$
: Price Index of Gross Output: Food and beverage and tobacco products
$\mathrm{SEE}=1.03 \mathrm{RSQ}=0.9773 \mathrm{RHO}=0.70$ Obser $=13$ from 1992.000
$\mathrm{SEE}+1=0.81 \mathrm{RBSQ}=0.9752 \mathrm{DW}=0.60$ DoFree $=11$ to 2004.000
MAPE $=0.97$ Test period: SEE 1.45 MAPE 1.24 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop19
- - - - - - - - - - - - 98.71 - - -
1 intercept
$\begin{array}{lllll}-17.94846 & 42.0 & -0.18 & 44.04 & 1.00\end{array}$
$\begin{array}{llllllll}2 & \text { pri19 } & 0.91361 & 563.6 & 1.18 & 1.00 & 127.69 & 0.989\end{array}$
\# TEXTILE MILLS AND TEXTILE PRODUCT MILLS
: Real Gross Output: Textile mills and textile product mills
SEE $=1191.64 \mathrm{RSQ}=0.9611$ RHO $=0.42$ Obser $=13$ from 1992.000
SEE+1 $=1094.44$ RBSQ $=0.9533$ DW $=1.15$ DoFree $=10$ to 2004.000
MAPE $=1.19$ Test period: SEE 3873.01 MAPE 5.65 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ago20 _ - _ . . . . . . . . . . . . . 81150.54 - . -
$\begin{array}{llllll}1 \text { intercept } & -9951.41544 & 10.5 & -0.12 & 25.69 & 1.00\end{array}$
$\begin{array}{lllllll}2 \text { ips20 } & 874.55915 & 263.2 & 1.16 & 1.12 & 107.56 & 1.056\end{array}$
$\begin{array}{lllllllllll}3 & \text { ehe20_1 } & -7.54932 & 5.7 & -0.04 & 1.00 & 392.72 & -0.103\end{array}$
: Price Index of Gross Output: Textile mills and textile product mills
SEE $=1.16 \mathrm{RSQ}=0.4818 \mathrm{RHO}=0.79$ Obser $=13$ from 1992.000
SEE+1 = 0.91 RBSQ $=0.3782 \mathrm{DW}=0.41$ DoFree $=10$ to 2004.000
MAPE $=0.96$ Test period: SEE 0.58 MAPE 0.56 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

1 intercept $\quad 66.00412 \quad 109.4 \quad 0.66 \quad 1.93 \quad 1.00$
$\begin{array}{lrrrrrr}2 \text { pri20 } & 0.29608 & 38.6 & 0.32 & 1.19 & 107.53 & 0.821 \\ 3 \text { oilp } & 0.08634 & 9.3 & 0.02 & 1.00 & 23.53 & 0.378\end{array}$
\# APpAREL AND LEATHER AND ALLIED PRODUCTS
Real Gross Output: Apparel and leather and allied products
SEE $=972.72$ RSQ $=0.9960$ RHO $=-0.18$ Obser $=13$ from 1992.000
SEE+1 = 946.74 RBSQ $=0.9952 \mathrm{DW}=2.36$ DoFree $=10$ to 2004.000
MAPE = 1.33 Test period: SEE 534.81 MAPE 1.50 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor21


```
: Price Index of Gross Output: Apparel and leather and allied products
 SEE = 0.68 RSQ = 0.8931 RHO = 0.75 Obser = 13 from 1992.000
 SEE+1 = 0.49 RBSQ = 0.8834 DW = 0.50 DoFree = 11 to 2004.000
 MAPE = 0.62 Test period: SEE 0.78 MAPE 0.78 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop21 - - - - - - - - - - - - - - - - - 98.31 - - -
 1 intercept 45.34015 166.7 0.46 9.35 1.00
 2 pri21 0.38844 205.8 0.54 1.00 136.38
PAPER PRODUCTS
 Real Gross Output: Paper products
 SEE = 701.65 RSQ = 0.9861 RHO = -0.33 Obser = 13 from 1992.000
 SEE+1 = 638.59 RBSQ = 0.9833 DW = 2.66 DoFree = 10 to 2004.000
 MAPE = 0.36 Test period: SEE 3619.94 MAPE 2.47 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor22
 1 intercept
 2 ips22
 ehe22
 - - - - - - - - - - - - - - - - - 159469.06 - - -
 1813.43291 0.3 0.01 71.77 1.00
```



```
: Price Index of Gross Output: Paper products
 SEE = 3.39 RSQ = 0.7959 RHO = 0.84 Obser = 13 from 1992.000
 SEE+1 = 1.96 RBSQ = 0.7773 DW = 0.33 DoFree = 11 to 2004.000
 MAPE = 3.29 Test period: SEE 1.95 MAPE 1.84 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop22 - - - - - - - - - - - - - - - - - 93.10 - - -
 l intercept
PRINTING AND RELATED SUPPORT ACTIVITIES
: Real Gross Output: Printing and related support activities
 SEE = 375.51 RSQ = 0.9926 RHO = -0.01 Obser = 13 from 1992.000
 SEE+1 = 375.30 RBSQ = 0.9911 DW = 2.01 DoFree = 10 to 2004.000
 MAPE = 0.32 Test period: SEE 7101.57 MAPE 8.30 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor23 _ - _ _ _ _ - - - _ _ _ _ - - - - 97610.61 - - -
 1 intercept 7691.93353 35.0 0.08 135.25 1.00
 2 ips23 942.03718 434.1 1.02 1.52 105.90 1.139
 3 ehe23 -12.67857 23.5 -0.10 1.00 776.04 -0.157
: Price Index of Gross Output: Printing and related support activities
 SEE = 0.69 RSQ = 0.9878 RHO = 0.73 Obser = 13 from 1992.000
 SEE+1 = 0.49 RBSQ = 0.9867 DW = 0.53 DoFree = 11 to 2004.000
 MAPE = 0.56 Test period: SEE 0.57 MAPE 0.54 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop23 _ - - - - - - - - - - - - - - - - 95.71 - - -
 1 intercept }\quad-5.05089 [\begin{array}{lrrrrr}{0.7}&{-0.05}&{82.18}&{1.00}&{}
 2 pri23 0.67543 806.6 1.05 1.00 149.18 0.994
PETROLEUM AND COAL PRODUCTS
: Nominal Gross Output: Petroleum and coal products
 SEE = 4261.57 RSQ = 0.9928 RHO = -0.13 Obser = 13 from 1992.000
 SEE+1 = 4212.68 RBSQ = 0.9913 DW = 2.26 DoFree = 10 to 2004.000
 MAPE = 1.93 Test period: SEE 7906.41 MAPE 1.99 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago24 - - - - - - - - - - - - - - - - - 186606.38 - - -
 1 intercept 188312.36126 128.9 1.01 138.16 1.00
 2 ehe24 -1013.13136 109.2 -0.71
 3 oilp }\begin{array}{lllllll}{5578.87223}&{484.8}&{0.70}&{1.00}&{23.53}&{0.788}
```

```
:
 Petroleum and-coal products
 0.42 RSQ = 0.9995 RHO = -0.11 Obser = 13 from 1992.000
 SEE+1 = 0.42 RBSQ = 0.9995 DW = 2.21 DoFree = 11 to 2004.000
 MAPE = 0.41 Test period: SEE 0.93 MAPE 0.53 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop24 _ - - - _ - - - _ - - _ - - - - - 82.97 - - -
 1 intercept 1.66240 36.5 0.02 2188.71 1.00
 2 pri24 0.87006 4578.4 0.98 1.00 93.45 1.000
CHEMICAL PRODUCTS
: Nominal Gross Output: Chemical products
 SEE = 9585.19 RSQ = 0.9705 RHO = 0.18 Obser = 13 from 1992.000
 SEE+1 = 9528.21 RBSQ = 0.9646 DW = 1.63 DoFree = 10 to 2004.000
 MAPE = 2.02 Test period: SEE 14800.69 MAPE 2.74 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago25 - - - - - - - - - - - - - - - - - 403904.46 - - -
 1 intercept 118247.43730 0.9 0.29 33.89 1.00
 2 ehe25 -233.55794 7.1 - - 0.56 4.34 973.29 -0.172
 3 ips25 5646.89122 108.3 1.27 1.00 90.84 0.824
: Price Index of Gross Output: Chemical products
 SEE = 1.23 RSQ = 0.9741 RHO = 0.66 Obser = 13 from 1992.000
 SEE+1 = 0.98 RBSQ = 0.9718 DW = 0.69 DoFree = 11 to 2004.000
 MAPE = 1.01 Test period: SEE 5.54 MAPE 4.50 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop25 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - 95.97 _ - -
 1 intercept 14.44395 47.4 0.15 38.68
 2 pri25 0.54987 521.9 0.85 1.00 148.27 0.987
PLASTICS AND RUBBER PRODUCTS
 Real Gross Output: Plastics and rubber products
 SEE = 645.65 RSQ = 0.9984 RHO = -0.36 Obser = 13 from 1992.000
 SEE+1 = 558.49 RBSQ = 0.9981 DW = 2.73 DoFree = 10 to 2004.000
 MAPE = 0.31 Test period: SEE 1641.39 MAPE 0.96 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor26 _ - - - - - - - - - - - - - - - 156981.26 - - -
 1 intercept
 996.69926
```



```
: Price Index of Gross Output: Plastics and rubber products
 SEE = 0.17 RSQ = 0.9981 RHO = 0.14 Obser = 13 from 1992.000
 SEE+1 = 0.16 RBSQ = 0.9979 DW = 1.72 DoFree = 11 to 2004.000
 MAPE = 0.14 Test period: SEE 0.09 MAPE 0.08 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop26 _ _ _ _ _ - _ _ _ _ _ _ - - - - 98.36 - - -
 1 intercept
\begin{tabular}{|c|c|c|c|c|}
\hline 1.01182 & 2.8 & 0.01 & 518.39 & 1.00 \\
\hline 0.79269 & 2176.8 & 0.99 & 1.00 & 122.80 \\
\hline
\end{tabular}
```

\# WHOLESALE TRADE

```
: Real Gross Output: Wholesale trade
 SEE = 19678.46 RSQ = 0.9755 RHO = 0.31 Obser = 13 from 1992.000
 SEE+1 = 19018.05 RBSQ = 0.9706 DW = 1.37 DoFree = 10 to 2004.000
 MAPE = 2.23 Test period: SEE 83629.12 MAPE 8.60 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor27 _ _ _ _ _ - _ _ _ _ _ _ _ - - - 771270.77 _ _ -
 1 intercept -311850.50078 16.8 -0.40 40.87 1.00
 2 whilst 0.24246 263.6 0.78 1.5 1.58 2479824.85 0.842
 3 ehe27 年 %6.53847 25.5
```

:

Price Index of Gross Output: Wholesale trade


```
RETAIL TRADE
 SEE = 6449.49 RSQ = 0.9986 RHO = 0.20 Obser = 13 from 1992.000
 SEE+1 = 6489.33 RBSQ = 0.9983 DW = 1.60 DoFree = 10 to 2004.000
 MAPE = 0.66 Test period: SEE 39827.75 MAPE 3.25 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor28
 - - - - - - - - - - - - - - - - - 901639.02 - - -
 1 intercept
 197968.92002 33.4 0.22 700.72 1.00
 2 retl 0.35838 980.4 1.05 1.63 2635187.54 1.072
 3 ehe28 -16.74711 27.7 -0.27 1.00 14373.85 -0.079
: Price Index of Gross Output: Retail trade
 SEE = 1.14 RSQ = 0.5196 RHO = 0.61 Obser = 13 from 1992.000
 SEE+1 = 0.95 RBSQ = 0.3594 DW = 0.79 DoFree = 9 to 2004.000
 MAPE = 1.00 Test period: SEE 2.13 MAPE 2.02 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop28 - - - - - - - - - - - - - - - - - 99.69 - - -
 1 intercept
 2 hr28 4.23553 4.4.3 1.31
 3 wag28 -4.90742 16.9 -0.50 1.48 10.08 -3.997
 4 rtptot 0.00002 21.5 0.39 1.00 1918479.15 4.548
AIR TRANSPORTATION
 Real Gross Output: Air transportation
 SEE = 1352.76 RSQ = 0.9895 RHO = 0.16 Obser = 9 from 1992.000
 SEE+1 = 1344.76 RBSQ = 0.9860 DW = 1.67 DoFree = 6 to 2000.000
 MAPE = 1.22
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor29
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 101325.91 _ _ -
 1 intercept
 -31651.38329 64.8 -0.31 94.92 1.00
 2 ehe29 -92.45774 32.3 -0.50 19.69 543.24 -0.244
 3 wagnf [436.68858 343.7 1.81 1.00 419.53 1.218
: Price Index of Gross Output: Air transportation
 SEE = 1.20 RSQ = 0.6386 RHO = -0.18 Obser = 9 from 1992.000
 SEE+1 = 1.17 RBSQ = 0.5869 DW = 2.35 DoFree = 7 to 2000.000
 MAPE = 0.88
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop29 - - - - - - - - - - - - - - - - - 95.76 - - -
 1 intercept
 2 pri29
```


## \# RAIL TRANSPORTATION

```
: Nominal Gross Output: Rail transportation
 SEE = 1536.81 RSQ = 0.8273 RHO = 0.51 Obser = 13 from 1992.000
 SEE+1 = 1435.03 RBSQ = 0.7927 DW = 0.98 DoFree = 10 to 2004.000
 MAPE = 2.60 Test period: SEE 9808.21 MAPE 17.03 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago30 - - - - - - - - - - - - - - - - - 42469.31 - - -
 1 intercept 34280.29024 9.5 0.81 5.79 1.00
 2 ehe30 -70.82674 3.5 -0.38 2.58 229.00-0.165
```

```
: Price Index of Gross Output: Rail transportation
 SEE = 0.21 RSQ = 0.9974 RHO = 0.64 Obser = 8 from 1997.000
 SEE+1 = 0.19 RBSQ = 0.9969 DW = 0.73 DoFree = 6 to 2004.000
 MAPE = 0.19 Test period: SEE 2.12 MAPE 1.76 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop30 _ - _ - _ - - - - - _ - _ - - - - 102.16 - - -
 1 intercept -3.73173 21.3 -0.04 381.75 1.00
 2 pri30 1.00912 1853.8 1.04 1.00 104.94 0.999
WATER TRANSPORTATION
 Nominal Gross Output: Water transportation
 SEE = 732.31 RSQ = 0.9724 RHO = 0.40 Obser = 13 from 1992.000
 SEE+1 = 689.97 RBSQ = 0.9668 DW = 1.20 DoFree = 10 to 2004.000
 MAPE = 2.35 Test period: SEE 845.27 MAPE 2.36 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago31
```




```
: Price Index of Gross Output: Water transportation
 SEE = 1.89 RSQ = 0.9691 RHO = 0.73 Obser = 13 from 1992.000
 SEE+1 = 1.49 RBSQ = 0.9663 DW = 0.54 DoFree = 11 to 2004.000
 MAPE = 1.84 Test period: SEE 2.14 MAPE 1.76 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop31 - - - - - - - - - - - - - - - - - 97.19 - - -
 1 intercept
\begin{tabular}{rrrrrr}
58.99465 & 739.5 & 0.61 & 32.36 & 1.00 & \\
0.26167 & 468.8 & 0.39 & 1.00 & 145.98 & 0.984
\end{tabular}
```


## \# TRUCK TRANSPORTATION

```
: Nominal Gross Output: Truck transportation
 SEE = 3152.70 RSQ = 0.9912 RHO = 0.14 Obser = 13 from 1992.000
 SEE+1 = 3149.67 RBSQ = 0.9883 DW = 1.72 DoFree = 9 to 2004.000
 MAPE = 1.66 Test period: SEE 6042.28 MAPE 2.41 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago32 _ - - _ _ - - - - _ - _ - - - - 176999.85 - - -
 1 intercept -199333.90468 307.6 -1.13 113.53 1.00
 2 wagnf lllllllll
 3 ehe32 168.81043 148.4 1.24 1. 1.54 1297.01 0.451
 4 oilp 601.53270 24.0 0.08 1.00 23.53 0.127
: Price Index of Gross Output: Truck transportation
 SEE = 1.34 RSQ = 0.9746 RHO = 0.29 Obser = 13 from 1992.000
 SEE+1 = 1.33 RBSQ = 0.9723 DW = 1.42 DoFree = 11 to 2004.000
 MAPE = 1.22 Test period: SEE 7.39 MAPE 6.32 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop32 _ - - - - _ - - - - - - - - - - - 95.51 - - -
 l intercept }r\mathrm{ -72.91712
TRANSIT AND GROUND PASSENGER TRANSPORTATION
: Real Gross Output: Transit and ground passenger transportation
 SEE = 476.75 RSQ = 0.8181 RHO = 0.40 Obser = 13 from 1992.000
 SEE+1 = 440.79 RBSQ = 0.7817 DW = 1.20 DoFree = 10 to 2004.000
 MAPE = 1.62 Test period: SEE 459.91 MAPE 1.88 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor33
 1 \text { intercept}
 2 wagnf
 3 ehe33
```



\# OTHER TRANSPORTATION AND SUPPORT ACTIVITIES
: Real Gross Output: Other transportation and support activities SEE = 968.63 RSQ $=0.9861$ RHO $=0.05$ Obser $=13$ from 1992.000 SEE+1 $=968.46$ RBSQ $=0.9833$ DW $=1.90$ DoFree $=10$ to 2004.000 MAPE $=0.86$ Test period: SEE 702.55 MAPE 0.70 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agor35 - - - - - - - - - - - - - 91210.09 - - 1 intercept $\quad 27717.52928 \quad 250.5 \quad 0.30 \quad 71.74 \quad 1.00$
2 wagnf $\quad-29.95013 \quad 14.0 \quad-0.15 \quad 12.01 \quad 447.93-0.193$

| 3 ehe35 | 161.83338 | 246.5 | 0.84 | 1.00 | 475.23 | 1.173 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

: Price Index of Gross Output: Other transportation and support activities SEE = $1.18 \mathrm{RSQ}=0.9815 \mathrm{RHO}=0.42$ Obser $=13$ from 1992.000 SEE+1 = 1.16 RBSQ $=0.9779$ DW $=1.16$ DoFree $=10$ to 2004.000 MAPE = 1.00 Test period: SEE 5.70 MAPE 4.71 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop35 - - - - - - - - - - - - 95.42 - - $\begin{array}{llllll}1 \text { intercept } & 29.56344 & 180.9 & 0.31 & 54.18 & 1.00\end{array}$

| 2 pri35 | 0.53695 | 312.3 | 0.67 | 1.12 | 118.33 | 0.925 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 oilp | 0.09831 | 5.9 | 0.02 | 1.00 | 23.53 | 0.080 |

\# WAREHOUSING AND STORAGE
Real Gross Output: Warehousing and storage
SEE $=966.99$ RSQ $=0.9713$ RHO $=0.63$ Obser $=13$ from 1992.000 SEE+1 $=798.60$ RBSQ $=0.9655$ DW $=0.75$ DoFree $=10$ to 2004.000 MAPE $=2.91$ Test period: SEE 788.93 MAPE 1.93 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agor36 - - - - - - - - - - - - - 29494.19 - - -

| 1 intercept |  | -18988.10743 | 53.9 | -0.64 | 34.83 | 1.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 wagnf |  | 98.07608 | 26.6 | 1.49 | 1.00 | 447.93 | 3.910 |
| 3 ehe36 |  | 9.53155 | 0.2 | 0.15 | 1.00 | 477.52 | 20.076 |
|  | Price Index of Gross Output: Warehousing and storage |  |  |  |  |  |  |
| SEE | 1.04 RSQ | $=0.9615 \mathrm{RHO}$ | 0. | 0.44 Obser = 11 from 199 |  |  | 1994.000 |
| SEE+1 | 0.97 RBSQ | $=0.9519 \mathrm{DW}$ | 1. | 1.11 DoFree | ee $=8$ | to 200 | 2004.000 |
| MAPE | 0.91 Test | period: SEE |  | 0.75 MAPE | 0.70 | end 200 | 2005.000 |
| Variable | name | Reg-Coef M | Mexval | Elas | JorRes | Mean | Beta |
| 0 agop36 |  | - - - - - - | - - - | - - - - | - - - | 98.45 | 5 |
| 1 intercept |  | -104.51001 | 80.5 | -1.06 | 25.97 | 1.00 |  |
| 2 pri36 |  | 1.93645 | 189.5 | 2.07 | 1.01 | 105.06 | 6 1.005 |
| 3 oilp |  | -0.02029 | 0.3 | -0.01 | 1.00 | 24.26 | -0.028 |

\#PUBLISHING INDUSTRIES (INCLUDING SOFTWARE)
: Nominal Gross Output: Publishing industries (including software)
SEE $=5709.92$ RSQ $=0.9848$ RHO $=0.47$ Obser $=12$ from 1993.000
SEE+1 $=5228.90$ RBSQ $=0.9815$ DW $=1.06$ DoFree $=9$ to 2004.000
MAPE $=2.38$ Test period: SEE 11175.06 MAPE 4.17 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ago37 - - - - - - - - - - - - - 200453.67 - - -
1 intercept $\quad-39397.64188 \quad 8.1 \quad-0.20 \quad 65.97 \quad 1.00$
$\begin{array}{llllllll}2 \text { ips37 } & 1095.41097 & 38.9 & 0.54 & 28.00 & 98.04 & 0.162\end{array}$
$\begin{array}{llllllll}3 \text { apce37 } & 3715.60164 & 429.1 & 0.66 & 1.00 & 35.65 & 0.875\end{array}$
: Price Index of Gross Output: Publishing industries (including software) SEE $=1.06 \mathrm{RSQ}=0.7567 \mathrm{RHO}=0.50$ Obser $=12$ from 1993.000 SEE+1 $=\quad 0.94$ RBSQ $=0.6655 \mathrm{DW}=0.99$ DoFree $=8$ to 2004.000 MAPE $=0.86$ Test period: SEE 1.56 MAPE $\quad 1.56$ end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop37 _ _ _ _ _ _ _ _ _ . . . . 98.44 _ $\begin{array}{llllll}1 \text { intercept } & 93.34451 & 129.1 & 0.95 & 4.11 & 1.00\end{array}$ 2 nipa37p $\quad-0.00477 \quad 4.0-0.01 \quad 1.10 \quad 260.90-0.529$

| 3 oilp | 0.01766 | 0.1 | 0.00 | 1.02 | 23.78 | 0.060 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 4 pri37 | 0.03255 | 0.8 | 0.06 | 1.00 | 181.79 | 0.312 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## \# MOTION PICTURE AND SOUND RECORDING INDUSTRIES

: Real Gross Output: Motion picture and sound recording industries
SEE $=1423.02$ RSQ $=0.9549$ RHO $=0.60$ Obser $=12$ from 1993.000
SEE+1 $=1157.08 \mathrm{RBSQ}=0.9504 \mathrm{DW}=0.79$ DoFree $=10$ to 2004.000
MAPE = 1.54 Test period: SEE 1861.03 MAPE 2.38 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor38 - - - - - - - - - - - - 71972.28 - - -
$\begin{array}{llllll}1 \text { intercept } & 17921.49742 & 81.5 & 0.25 & 22.19 & 1.00\end{array}$
$\begin{array}{lllllll}2 \text { ehe38 } & 154.52064 & 371.1 & 0.75 & 1.00 & 349.80 & 0.977\end{array}$
: Price Index of Gross Output: Motion picture and sound recording industries SEE $=1.09$ RSQ $=0.9901$ RHO $=0.24$ Obser $=12$ from 1993.000 SEE+1 = 1.07 RBSQ $=0.9891$ DW $=1.52$ DoFree $=10$ to 2004.000 MAPE = 1.00 Test period: SEE $2.41 \mathrm{MAPE} \quad 2.17$ end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop38 - - - - - - - - - - - - - 93.62 - - $\begin{array}{llllll}1 \text { intercept } & 2.42708 & 3.4 & 0.03 & 101.08 & 1.00\end{array}$ $\begin{array}{lllllllllll}2 \text { wag38 } & 5.04690 & 905.4 & 0.97 & 18.00 & 18.07 & 0.995\end{array}$
\# BROADCASTING AND TELECOMMUNICATIONS


```
 0 agor39
 1 intercept
2 ips39
3 ehe39
```



```
: Price Index of Gross Output: Broadcasting and telecommunications SEE \(=1.03\) RSQ \(=0.7932\) RHO \(=0.29\) Obser \(=12\) from 1993.000 SEE+1 = 1.02 RBSQ \(=0.7472\) DW \(=1.42\) DoFree \(=9\) to 2004.000 MAPE \(=0.84\) Test period: SEE 2.22 MAPE 2.34 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop39 - - - - - - - - - - - - - 100.81 - - -
1 intercept \(\quad 122.83895 \quad 945.0 \quad 1.22 \quad 4.83 \quad 1.00\)
2 wag39 \(\begin{array}{lllllll} & -3.09879 & 53.3 & -0.56 & 1.74 & 18.07 & -2.966\end{array}\)
```


## \# INFORMATION AND DATA PROCESSING SERVICES

```
: Nominal Gross Output: Information and data processing services
SEE \(=9172.66 \mathrm{RSQ}=0.8918 \mathrm{RHO}=0.82\) Obser \(=12\) from 1993.000
SEE+1 \(=6383.22\) RBSQ \(=0.8677\) DW \(=0.36\) DoFree \(=9\) to 2004.000
MAPE \(=15.65\) Test period: SEE 13560.19 MAPE 11.48 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ago40 - - - - - - - - - - - - 67553.75 - - -
1 intercept
\(\begin{array}{lllll}-72381.26250 & 18.2 & -1.07 & 9.24 & 1.00\end{array}\)
\(\begin{array}{llllllllll}2 \text { ips } 40 & 311.06129 & 7.4 & 0.36 & 1.46 & 78.81 & 0.352\end{array}\)
\(\begin{array}{lllllllllllll}3 \text { ehe40 } & 2747.67946 & 20.8 & 1.71 & 1.00 & 42.01 & 0.608\end{array}\)
: Price Index of Gross Output: Information and data processing services SEE = 2.90 RSQ \(=0.8466\) RHO \(=0.71\) Obser \(=12\) from 1993.000 SEE+1 \(=2.36\) RBSQ \(=0.8313\) DW \(=0.58\) DoFree \(=10\) to 2004.000 MAPE \(=2.51\) Test period: SEE 2.22 MAPE 2.19 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agop40 - - - - - - - - - - - - 95.89 - -
1 intercept \(\quad \begin{array}{llllll} & -74.65722 & 43.4 & -0.78 & 6.52 & 1.00\end{array}\)
\(\begin{array}{lllllll}2 \text { wag40 } & 15.91629 & 155.3 & 1.78 & 1.00 & 10.72 & 0.920\end{array}\)
\# Federal Reserve Banks, CREdit Intermidiation, And Related activities Real Gross Output: 41
SEE \(=18774.13 \mathrm{RSQ}=0.9107 \mathrm{RHO}=0.69\) Obser \(=12\) from 1993.000
SEE+1 \(=15504.54\) RBSQ \(=0.8909\) DW \(=0.63\) DoFree \(=9\) to 2004.000 MAPE = 3.37 Test period: SEE 24637.00 MAPE 4.15 end 2005.000 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 agor41 - - - - - - - - - - - - - 490324.79 - - -
1 intercept \(\quad-484281.85192 \quad 82.7\)-0.99 \(11.20 \quad 1.00\)
\(\begin{array}{lllllll}2 \text { ehe41_2 } & 216.92518 & 15.0 & 1.12 & 1.17 & 2534.67 & 0.562\end{array}\)
3 ehe41_2[1] \(170.38489 \quad 7.9 \quad 0.87 \quad 1.00 \quad 2493.02 \quad 0.403\)
: Price Index of Gross Output: 41
SEE = 0.63 RSQ \(=0.9972\) RHO \(=0.06\) Obser \(=12\) from 1993.000
SEE+1 \(=\quad 0.63 \mathrm{RBSQ}=0.9961 \mathrm{DW}=1.88\) DoFree \(=8\) to 2004.000
MAPE = 0.55 Test period: SEE 3.48 MAPE 3.02 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop41 - - - - - - - - - - - - - 93.96 - - -
1 intercept \(\quad-184.48893 \quad 54.8 \quad-1.96 \quad 353.19 \quad 1.00\)
2 wag41 \(\begin{array}{llllllllllll} & -4.09420 & 13.3 & -0.37 & 16.46 & 8.45 & -0.170\end{array}\)
\(\begin{array}{lrrrrrr}3 \text { hr41 } & 5.64787 & 66.2 & 2.14 & 13.72 & 35.66 & 0.073 \\ 4 & \text { atime } & 3.91704 & 270.5 & 1.19 & 1.00 & 28.50 \\ 1.147\end{array}\)
\# SECURITIES, COMMODITY CONTRACRS, AND INVESTMENTS
Real Gross Output: 42
SEE \(=17329.18\) RSQ \(=0.9697\) RHO \(=0.20\) Obser \(=12\) from 1993.000
SEE+1 \(=17291.19\) RBSQ \(=0.9583\) DW \(=1.61\) DoFree \(=8\) to 2004.000
MAPE \(=11.38\) Test period: SEE 63221.00 MAPE 17.36 end 2005.000
```

```
 Variable name
 Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor42
 1 intercept
 _ - _ - _ _ - _ _ _ _ _ - _ _ _ - 198847.58 _ - -
 -432759.86129 275.2 -2.18 32.99 1.00
 2 ehe42
 1267.38103 100.1 4.37 1.76 685.57 1.357
 -910.38413
 4 ehe42[2]
: Price Index of Gross Output: 42
 SEE = 8.11 RSQ = 0.9233 RHO = 0.58 Obser = 12 from 1993.000
 SEE+1 = 6.71 RBSQ = 0.9062 DW = 0.85 DoFree = 9 to 2004.000
 MAPE = 6.39 Test period: SEE 6.39 MAPE 7.25 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop42 - _ - - - - - - - - - - - - - - - 122.77 - - -
 1 intercept
 1011.48831 12.9 8.24 13.03 1.00
 2 wag42 -56.40244 247.7 -3.88 1.04 8.45 -0.946
 3 hr42 -11.56314 2.2 -3.36 1.00 35.66 -0.060
INSURANCE CARRIERS AND RELATED ACTIVITIES
: Real Gross Output: 43
 SEE = 9041.56 RSQ = 0.9157 RHO = 0.27 Obser = 12 from 1993.000
 SEE+1 = 8810.89 RBSQ = 0.8675 DW = 1.47 DoFree = 7 to 2004.000
 MAPE = 1.97 Test period: SEE 21815.03 MAPE 4.41 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor43 _ - - _ - - _ _ - - - _ - - - - - 414833.71 - - -
 1 intercept -619614.57658 20.8 -1.49 11.86 1.00
 2 ehe43 414.60404 29.4 2.18 4.37 2184.81 0.857
 3 ehe43[1] 109.46693 10, 1.8
 4 oilp 1936.49033 25.6 0.11 1.47 23.78 0.454
 5 exri
: Price Index of Gross Output: 43
 SEE = 1.63 RSQ = 0.9818 RHO = 0.66 Obser = 12 from 1993.000
 SEE+1 = 1.28 RBSQ = 0.9778 DW = 0.67 DoFree = 9 to 2004.000
 MAPE = 1.46 Test period: SEE 0.47 MAPE 0.39 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop43 - _ - _ - - - - _ - - _ - - - - - 95.77 - - -
 1 intercept 19.65477 2.4 0.21 54.94 1.00
 l wag43 -5.05675
FUNDS, TRUSTS, AND OTHER FINANCIAL VEHICLES
 Real Gross Output: 44
 SEE = 2463.92 RSQ = 0.9744 RHO = -0.47 Obser = 12 from 1993.000
 SEE+1 = 2135.90 RBSQ = 0.9598 DW = 2.94 DoFree = 7 to 2004.000
 MAPE = 3.06 Test period: SEE 5775.77 MAPE 6.09 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor44 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 64193.23 _ _ _
 1 intercept -45850.56481 150.2 -0.71 39.07 1.00
```



```
 3 ehe44[1] -1199.82880 44.5 -1.38 2.98 73.60 -0.816
 4 oilp
 5 exri -246.45658 3.2 -0.42 1.00 108.83 -0.222
: Price Index of Gross Output: 44
 SEE = 1.46 RSQ = 0.6527 RHO = 0.08 Obser = 12 from 1993.000
 SEE+1 = 1.47 RBSQ = 0.5225 DW = 1.84 DoFree = 8 to 2004.000
 MAPE = 1.13 Test period: SEE 2.15 MAPE 2.18 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop44 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - 98.62 _ _ -
 l intercept
```

```
 4 hr44[1] 6.18192 17.0
 REAL ESTATE
Real Gross Output: 45
 SEE = 13328.14 RSQ = 0.9908 RHO = 0.14 Obser = 12 from 1993.000
 SEE+1 = 13320.01 RBSQ = 0.9873 DW = 1.72 DoFree = 8 to 2004.000
 MAPE = 0.78 Test period: SEE 29612.50 MAPE 1.66 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor45 - _ - - _ - - _ - - _ - _ - - - - 1425797.50 - - -
 1 intercept -361260.18547 63.5 -0.25 108.14 1.00
 2 ehe45 1209.75792 43.1 1.08 3.52 1277.62 0.728
 3 ehe45[1] 104.22360 0.4 0.0.09 0.4 3.47 1252.54 0.063
 4 oilp 4 4663.79045 86.3 0.08 1.00 23.78 0.246
: Price Index of Gross Output: 45
 SEE = 0.85 RSQ = 0.9921 RHO = 0.75 Obser = 12 from 1993.000
 SEE+1 = 0.59 RBSQ = 0.9913 DW = 0.51 DoFree = 10 to 2004.000
 MAPE = 0.71 Test period: SEE 1.63 MAPE 1.42 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop45 _ - _ - _ - - - _ - - _ - _ - - - 96.46 _ - -
 l intercept
RENTAL AND LEASING SERVICES AND LESSORS OF INTANGIBLE ASSETS
 Real Gross Output: 46
 SEE = 10364.97 RSQ = 0.9160 RHO = 0.67 Obser = 12 from 1993.000
 SEE+1 = 8715.75 RBSQ = 0.8973 DW = 0.66 DoFree = 9 to 2004.000
 MAPE = 4.02 Test period: SEE 26935.17 MAPE 11.99 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor46 _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - 171672.97 _ - -
 1 intercept -32260.53727 0.4 0.0.19 11.90 1.00
 2 ehe46_1
```



```
: Price Index of Gross Output: 46
 SEE = 0.69 RSQ = 0.9710 RHO = 0.04 Obser = 12 from 1993.000
 SEE+1 = 0.69 RBSQ = 0.9646 DW = 1.93 DoFree = 9 to 2004.000
 MAPE = 0.59 Test period: SEE 1.58 MAPE 1.44 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop46 _ - - _ - - - - - - - _ - - - - - 97.79 - - -
 1 intercept
```



```
LEGAL SERVICES
Real Gross Output: 47
 SEE = 1854.28 RSQ = 0.9829 RHO = -0.15 Obser = 12 from 1993.000
 SEE+1 = 1830.43 RBSQ = 0.9792 DW = 2.31 DoFree = 9 to 2004.000
 MAPE = 0.75 Test period: SEE 681.89 MAPE 0.34 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor47 _ - - - - - - - - - - - - - - - - 176610.35 - - -
 1 intercept -20063.49699 17.9 -0.11 58.64 1.00
 2 ehe47 292.81367 85.8 1.73 1.27 1041.20 1.468
 3 ehe47[1] -105.72175 12.5 -0.61 1.00 1023.47 -0.483
: Price Index of Gross Output: 47
 SEE = 1.45 RSQ = 0.9846 RHO = 0.60 Obser = 12 from 1993.000
 SEE+1 = 1.29 RBSQ = 0.9831 DW = 0.81 DoFree = 10 to 2004.000
 MAPE = 1.16 Test period: SEE 5.89 MAPE 4.79 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
```



```
COMPUTER SYSTEMS DESIGN AND RELATED SERVICES
Real Gross Output: 48
 SEE = 6165.88 RSQ = 0.9809 RHO = 0.50 Obser = 12 from 1993.000
 SEE+1 = 5604.58 RBSQ = 0.9767 DW = 0.99 DoFree = 9 to 2004.000
 MAPE = 3.56 Test period: SEE 18353.12 MAPE 9.83 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor48 _ - - - - - - - - - - - - - - - - 127329.91 - - -
 1 intercept
 2 ehe48 116.20137 12.9 7
 3 ehe48[1] 40.02856 12.9 0.28 1.00 877.39 0.270
: Price Index of Gross Output: 48
 SEE = 1.50 RSQ = 0.8913 RHO = 0.07 Obser = 12 from 1993.000
 SEE+1 = 1.50 RBSQ = 0.8672 DW = 1.86 DoFree = 9 to 2004.000
 MAPE = 1.33 Test period: SEE 0.86 MAPE 0.89 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop48 - - - - - - - - - - - - - - - - 95.18 - - -
 1 intercept 61.41592 419.2 0.65 9.20 1.00
 2 wag48 0.00635 0.0 0.00 2.78 14.64 0.003
 3 exri
MISCELLANEOUS PROFESSIONAL, SCIENTIFIC, AND TECHNICAL SERVICES
: Real Gross Output: 49
 SEE = 21149.97 RSQ = 0.9793 RHO = 0.68 Obser = 12 from 1993.000
 SEE+1 = 17732.51 RBSQ = 0.9747 DW = 0.63 DoFree = 9 to 2004.000
 MAPE = 3.52 Test period: SEE 10247.88 MAPE 1.17 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor49 _ - - - - - - - - - - - - - - - 590592.18 - - -
 1 intercept 269175.72239 23.9 0.46 48.36 1.00
 2 ehe49 1441.17097 273.5 1.49 1.94 612.47 1.301
 3 ehe49_2 -719.27815 39.2 -0.95 1.00 780.31-0.350
: Price Index of Gross Output: 49
 SEE = 1.42 RSQ = 0.9440 RHO = 0.48 Obser = 12 from 1993.000
 SEE+1 = 1.35 RBSQ = 0.9316 DW = 1.05 DoFree = 9 to 2004.000
 MAPE = 1.18 Test period: SEE 1.40 MAPE 1.31 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop49 _ _ _ _ _ _ _ - _ _ _ _ _ _ - - - 97.63 _ - -
 1 intercept
 2 wag49 8.79549 52.2 1.32 1.58 14.64 2.830
 3 wag49[1] -6.03823 25.8 -0.88 1.00 14.16 -1.884
MANAGEMENT OF COMPANIES AND ENTERPRISES
: Real Gross Output: 50
 SEE = 5963.07 RSQ = 0.9072 RHO = 0.48 Obser = 12 from 1993.000
 SEE+1 = 5597.93 RBSQ = 0.8724 DW = 1.05 DoFree = 8 to 2004.000
 MAPE = 2.00 Test period: SEE 10109.47 MAPE 3.09 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor50 _ - _ _ _ - - - - _ - _ - - - - 282490.78 - - -
 1 intercept -2001764.63590 38.8 -7.09 10.78 1.00
 2 hr50 65961.11440 44.1 7.61 10.48 32.58 0.471
 3 exri
```



```
: F Price Index of Gross Output: 50 = 0.21 Obser = 1.61 RSQ =0.9770 RHO = from 1993.000
 SEE+1 = 1.59 RBSQ = 0.9719 DW = 1.59 DoFree = 9 to 2004.000
```


\# ADMINISTRATIVE AND SUPPORT SERVICES



## \# WASTE MANAGEMENT AND REMEDIATION SERVICES

    SEE = 711.00 RSQ \(=0.9690\) RHO \(=0.26\) Obser \(=12\) from 1993.000
    SEE+1 = 691.16 RBSQ \(=0.9574 \mathrm{DW}=1.49\) DoFree \(=8\) to 2004.000
    MAPE = 1.10 Test period: SEE 1186.32 MAPE 2.19 end 2005.000
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 agor52 - - - - - - - - - - - - - 46700.05 - - -
    1 intercept \(\begin{array}{llllll} & -132257.50696 & 23.3 & -2.83 & 32.25 & 1.00\end{array}\)
    \(\begin{array}{lrrrrrr}2 & \text { ehe52 } & 212.03223 & 18.6 & 1.35 & 1.58 & 297.05 \\ 3 & \text { ehe52[1] } & -40.68929 & 0.9 & -0.25 & 1.49 & 289.40 \\ -0.282\end{array}\)
    \(\begin{array}{lrrrrrr}3 & \text { ehe52[1] } & -40.68929 & 0.9 & -0.25 & 1.49 & 289.40 \\ 4 \text { hr52 } & 3920.95011 & 22.2 & 2.74 & 1.00 & 32.58 & 0.136\end{array}\)
    : Price Index of Of Gross Output: 52
$\mathrm{SEE}=1.80 \mathrm{RSQ}=0.9703 \mathrm{RHO}=0.67$ Obser $=14$ from 1991.000
SEE+1 = 1.49 RBSQ $=0.9649$ DW $=0.65$ DoFree $=11$ to 2004.000
MAPE = 1.64 Test period: SEE 1.62 MAPE 1.33 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agop52 - - - - - - - - - - - - - 95.78 - - -
$\begin{array}{lrrrrr}1 \text { intercept } & 25.23230 & 105.9 & 0.26 & 33.70 & 1.00\end{array}$
$\begin{array}{lrrrrrr}2 \text { wag52 } & 5.20010 & 253.3 & 0.68 & 1.36 & 12.51 & 0.866 \\ 3 \text { oilp } & 0.23442 & 16.7 & 0.06 & 1.00 & 23.39 & 0.154\end{array}$
\# EDUCATIONAL SERVICES
: Real Gross Output: 53
SEE = $1433.59 \mathrm{RSQ}=0.9893 \mathrm{RHO}=0.41$ Obser $=12$ from 1993.000
SEE+1 = 1342.64 RBSQ $=0.9852 \mathrm{DW}=1.18$ DoFree $=8$ to 2004.000
MAPE $=0.84$ Test period: SEE 2871.33 MAPE 1.86 end 2005.000
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 agor53
_ _ _ _ _ _ _ _ _ _ _ _ _ - 132741.07 _ _ -
1 intercept
$\begin{array}{lllll}-1361.39192 & 0.0 & -0.01 & 93.04 & 1.00\end{array}$
2 ehe53
3 ehe53[1]

| 17.49507 | 6.6 | 0.30 | 1.32 | 2287.38 | 0.394 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 26.07349 | 14.7 | 0.43 | 1.00 | 2199.97 | 0.590 |



```
 0 agor56
 1 intercept
 -457768.80566 24.5 -5.53 106.38 1.00
 2 ehe56
 3 hr56
: Price Index of Of Gross Output: 56
 SEE = 1.39 RSQ = 0.9761 RHO = 0.76 Obser = 12 from 1993.000
 SEE+1 = 1.02 RBSQ = 0.9737 DW = 0.48 DoFree = 10 to 2004.000
 MAPE = 1.17 Test period: SEE 3.64 MAPE 3.34 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop56 - - - - - - - - - - - - - - - - - 94.44 - - -
 1 \text { intercept}
 2 wag56 5.53546 547.1
PERFORMING ARTS, SPECTATOR SPORTS, MUSEUMS, AND RELATED ACTIVITIES
: Nominal Gross Output: 57
 SEE = 1937.87 RSQ = 0.9785 RHO = 0.54 Obser = 12 from 1993.000
 SEE+1 = 1708.88 RBSQ = 0.9737 DW = 0.92 DoFree = 9 to 2004.000
 MAPE = 2.67 Test period: SEE 882.19 MAPE 1.08 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago57 - - - - - - - - - - - - - - - - - 60817.08 - - -
 1 intercept -27947.14056 112.8 -0.46 46.53 1.00
 2 ehe57_2 19.03047 10.5 0. 0.16 1.81
 3 ehe57_2[1]
:
 Price Index of Of Gross Output: 57
 SEE = 0.78 RSQ = 0.9959 RHO = 0.30 Obser = 12 from 1993.000
 SEE+1 = 0.77 RBSQ = 0.9950 DW = 1.40 DoFree = 9 to 2004.000
 MAPE = 0.72 Test period: SEE 1.29 MAPE 1.08 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop57 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 94.40 _ _ -
 1 intercept
 2 wag57 15.46610 726.1 1.28 2.80 7.81 1.164
 3 exri
AMUSEMENTS, GAMBLING, AND RECREATION INDUSTRIES
: Real Gross Output: 58
 SEE = 1042.74 RSQ = 0.9871 RHO = 0.38 Obser = 12 from 1993.000
 SEE+1 = 966.74 RBSQ = 0.9823 DW = 1.24 DoFree = 8 to 2004.000
 MAPE = 0.97 Test period: SEE 3698.47 MAPE 4.17 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor58 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 75374.03 _ _ -
```



```
 2 ehe58 [\begin{array}{lllllll}{53.27452 29.2 0.84 1.83 1193.11 0.784}\end{array}
 3 ehe58[1] }\begin{array}{lllllll}{31.25417 11.2 0.48}&{1.82}&{1152.14}&{0.513}
 4 exri [-215.88569 34.9 -0.31 1.00 108.83-0.326
:
 Price Index of Of Gross Output: 58
 SEE = 0.60 RSQ = 0.9956 RHO = 0.30 Obser = 12 from 1993.000
 SEE+1 = 0.59 RBSQ = 0.9940 DW = 1.41 DoFree = 8 to 2004.000
 MAPE = 0.56 Test period: SEE 1.01 MAPE 0.89 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop58 _ _ _ _ _ _ _ _ - _ _ _ _ - - 96.27 - _ -
 1 intercept 18.71496 241.3 0.19 229.61
 2 wag58 9.53560 31.8 0.77 2.00 7.81 0.973
 3 wag58[1]
 4 wag58[2] 8.48680 19.6 0.65 1.00 % 7.34 0.812
 ACCOMMODATION
 Real Gross Output: 59
 SEE = 2901.85 RSQ = 0.9304 RHO = 0.31 Obser = 12 from 1993.000
```

```
 SEE+1 = 2847.72 RBSQ = 0.8906 DW = 1.39 DoFree = 7 to 2004.000
 MAPE = 1.81 Test period: SEE 9152.78 MAPE 6.12 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor59 _ - - _ - _ - - - - - _ - - - - - 125238.67 - - -
 1 intercept
 -37793.77577 0.1 -0.30 14.36 1.00
 2 ehe59 79.57757 14.5 1.11 4.39 1747.02 0.654
 3 ehe59[1] -12.63804 0.6 -0.17 4.27 1727.97 -0.118
 4 hr59
 5 oilp
: Price Index of Of Gross Output: 59
 SEE = 1.12 RSQ = 0.9864 RHO = 0.33 Obser = 12 from 1993.000
 SEE+1 = 1.07 RBSQ = 0.9834 DW = 1.34 DoFree = 9 to 2004.000
 MAPE = 1.04 Test period: SEE 3.46 MAPE 3.03 end 2005.000
 Variable name
 0 agop59
 Reg-Coef Mexval Elas NorRes Mean Beta
 - - - - - - - - - - - - - - - - 94.08 - - -
 1 intercept
 13.99267 75.9 0.15 73.49 1.00
```



```
 3 atime }\begin{array}{lllllll}{0.65211}&{1.9}&{0.20}&{1.00}&{28.50}&{0.235}
FOOD SERVICES AND DRINKING PLACES
Real Gross Output: 60
 SEE = 3750.19 RSQ = 0.9881 RHO = 0.60 Obser = 12 from 1993.000
 SEE+1 = 3058.61 RBSQ = 0.9855 DW = 0.80 DoFree = 9 to 2004.000
 MAPE = 0.95 Test period: SEE 7173.12 MAPE 1.79 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agor60 - - - - - - - - - - - - - - - - 333534.53 - - -
 1 intercept 72392.00722 9.7 0.22 84.07 1.00
```



```
 3 rtfood 0.53101 62.4 0.45 1.00 284189.75 0.759
:
 Price Index of Of Gross Output: 60
 SEE = 0.64 RSQ = 0.9923 RHO = -0.03 Obser = 12 from 1993.000
 SEE+1 = 0.64 RBSQ = 0.9894 DW = 2.06 DoFree = 8 to 2004.000
 MAPE = 0.47 Test period: SEE 2.19 MAPE 1.91 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop60 - - - - - - - - - - - - - - - - - 98.21 - - -
 1 intercept 39.21065 609.0 0.40 130.11
 2 wag60 -11.55420 51.2 -0.92 4.82 % 7.81 -1.451
 3 wag60[1] }\begin{array}{lllllll}{8.85818}&{46.6}&{0.68}&{3.28}&{7.57}&{1.092}
 4 atime 2.88086 81.0 0.84 1.00 28.50 1.352
OTHER SERVICES, EXCEPT GOVERNMENT
: Nominal Gross Output: 61
 SEE = 7005.37 RSQ = 0.9901 RHO = 0.07 Obser = 12 from 1993.000
 SEE+1 = 6999.65 RBSQ = 0.9879 DW = 1.85 DoFree = 9 to 2004.000
 MAPE = 1.57 Test period: SEE 8297.38 MAPE 1.59 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago61 - - - - - - - - - - - - - - - - 390858.58 - - -
 1 intercept -441392.09928 295.1 -1.13 100.85 1.00
 2 ehe61 157.24330 479.8 2.00 3.52 4961.44 0.819
 3 oilp 2190.80386 87.6 0.13 1.00 23.78 0.227
:
 Price Index of Of Gross Output: 61
 SEE = 1.12 RSQ = 0.9877 RHO = 0.73 Obser = 12 from 1993.000
 SEE+1 = 0.83 RBSQ = 0.9865 DW = 0.53 DoFree = 10 to 2004.000
 MAPE = 0.95 Test period: SEE 2.91 MAPE 2.48 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop61 - - - - - - - - - - - - - - - - - 96.38 - - -
 l intercept
```

```
FEDERAL GOVERNMENT: GENERAL
: Nominal Gross Output: 62
 SEE = 19052.56 RSQ = 0.9569 RHO = 0.50 Obser = 12 from 1993.000
 SEE+1 = 16953.83 RBSQ = 0.9408 DW = 1.00 DoFree = 8 to 2004.000
 MAPE = 2.77 Test period: SEE 32736.94 MAPE 4.19 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago62 - - - - - - - - - - - - - - - - - 524062.33 - - -
 1 intercept -1656730.68889 141.9 -3.16 23.23 1.00
 2 ehe62 203.30124 12.0 0.78 19.74 1998.73 0.267
 3 ehe62[1] 314.56938 26.4 1.22 16.16 2028.99 0.502
:
 Price Index of Of Gross Output: 62
 SEE = 1.54 RSQ = 0.9781 RHO = 0.52 Obser = 12 from 1993.000
 SEE+1 = 1.34 RBSQ = 0.9732 DW = 0.96 DoFree = 9 to 2004.000
 MAPE = 1.15 Test period: SEE 0.32 MAPE 0.26 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop62 _ - _ _ _ - - - _ _ _ _ - - - - 97.27 _ - -
 1 intercept
 15.86664 36.0 0.16 45.58 1.00
 2 wagnf [0.15896 232.4 0.74 2.27 454.56 0.761
 3 oilp
FEDERAL GOVERNMENT: ENTERPRISES
: Nominal Gross Output: 63
 SEE = 1057.25 RSQ = 0.9809 RHO = 0.18 Obser = 12 from 1993.000
 SEE+1 = 1055.37 RBSQ = 0.9766 DW = 1.64 DoFree = 9 to 2004.000
 MAPE = 1.12 Test period: SEE 7.67 MAPE 0.01 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago63 _ - _ - - - - - _ - - _ - - - - - 77426.67 _ - -
 1 intercept -1271.23549 0.1 -0.02 52.31 1.00
 2 ehe63 19.00818 18.3 0.21 52.27 845.64 0.087
 3 atime 2197.32942 623.0 0.81 1.00 28.50 0.992
: Price Index of Of Gross Output: 63
 SEE = 2.27 RSQ = 0.9027 RHO = 0.24 Obser = 12 from 1993.000
 SEE+1 = 2.21 RBSQ = 0.8810 DW = 1.53 DoFree = 9 to 2004.000
 MAPE = 1.75 Test period: SEE 2.58 MAPE 2.25 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop63 - _ _ - - _ - - - - - _ - - - - - 100.75 - - -
 1 intercept
\begin{tabular}{lrrrrrr}
2 wagnf & 0.11677 & 86.8 & 0.53 & 1.13 & 454.56 & 0.798 \\
3 oilp & 0.18335 & 6.4 & 0.04 & 1.00 & 23.78 & 0.184
\end{tabular}
\# STATE AND LOCAL GOVERNMENT: GENERAL
: Nominal Gross Output: 64
 SEE = 23954.35 RSQ = 0.9870 RHO = 0.85 Obser = 12 from 1993.000
 SEE+1 = 17202.61 RBSQ = 0.9841 DW = 0.30 DoFree = 9 to 2004.000
 MAPE = 2.08 Test period: SEE 64377.00 MAPE 4.20 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago64
 _ - - _ - - _ - - _ _ - _ _ - - - 1076137.83 - - -
 1 intercept
 -985233.45583 8.6 -0.92 77.03 1.00
 2 ehe64 137.56510 1.1 1.1 0.35 28.16 2723.05 0.027
 3 atime 59185.08520 430.6 1.57 1.00 28.50 0.972
: Price Index of Of Gross Output: 64
 SEE = 1.22 RSQ = 0.9854 RHO = 0.39 Obser = 12 from 1993.000
 SEE+1 = 1.13 RBSQ = 0.9822 DW = 1.21 DoFree = 9 to 2004.000
 MAPE = 0.93 Test period: SEE 0.28 MAPE 0.23 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop64 _ _ - _ _ - _ _ - - _ _ - _ - - - 96.73 - - -
 1 intercept 16.78179 58.6 0.17 68.72 1.00
```

```
 2 wagnf 0.15703 308.2 0.74 2.78 454.56 0.774
 3 oilp llllllll
STATE AND LOCAL GOVERNMENT: ENTERPRISES
: Nominal Gross Output: 65
 SEE = 1575.70 RSQ = 0.9963 RHO = -0.17 Obser = 12 from 1993.000
 SEE+1 = 1546.68 RBSQ = 0.9955 DW = 2.35 DoFree = 9 to 2004.000
 MAPE = 0.71 Test period: SEE 5259.25 MAPE 2.67 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ago65
 1 intercept
 - - - - - - - - - - - - - - - - - 143749.92 - - -
 llllllllllll
 27.64945 32.2 0.39 22.63 2019.17
```



```
: Price Index of Of Gross Output: 65
 SEE = 1.46 RSQ = 0.9721 RHO = 0.40 Obser = 12 from 1993.000
 SEE+1 = 1.42 RBSQ = 0.9659 DW = 1.19 DoFree = 9 to 2004.000
 MAPE = 1.13 Test period: SEE 9.03 MAPE 7.41 end 2005.000
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 agop65 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 97.36 _ _ -
 1 intercept
 2 wagnf -0.06965 0.9 -0.33 1.21 454.56 -0.395
 3 wagnf[1] 0.24504 10.0 1.11 1.00 1.0.041.12 1.380
```


## Appendix 6.4: Regression Results for Monthly Equations

```
Farms
 PPI: u311
 SEE = 0.94 RSQ = 0.9829 RHO = 0.01 Obser = 144 from 1993.001
 SEE+1 = 0.94 RBSQ = 0.9824 DurH = 999.00 DoFree = 139 to 2004.012
 MAPE = 0.45 Test period: SEE 1.61 MAPE 0.90 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 foodprim - - - - - - - - - - - - - - - - - 128.60 - - -
 1 intercept
 2 foodprim[1] 1.09027 48.0 1.09 1.08 128.41 1.081
 3 foodprim[2] -0.09934 0.2 -0.10 1.05 128.22 -0.098
 4 foodprim[3] -0.07479 0.3 -0.07 1.05 128.04 -0.073
 5 mnipaqfood llllllll
:
 USDA: Farm Labor Expense
 SEE = 54.21 RSQ = 0.9996 RHO = 0.46 Obser = 144 from 1993.001
 SEE+1 = 49.24 RBSQ = 0.9996 DurH = 5.73 DoFree = 140 to 2004.012
 MAPE = 0.16 Test period: SEE 193.68 MAPE 0.74 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 mfarmlexp - - - - - - - - - - - - - - - - 19228.17 - - -
 1 intercept 50.54923 0.8 0.00 2608.42 1.00
 2 mfarmlexp[1] 1.21112 255.4 1.21 1.44 19162.00 1.213
 3 mfarmlexp[4] -0.21526 7.7 -0.21 1.00 18959.15 -0.216
 4 mfarmlexp[8] 0.00275 0.0 0.00 1.00 18689.69 0.003
: BEA Farm employment
 SEE = 2.17 RSQ = 0.9979 RHO = -0.09 Obser = 72 from 1999.001
 SEE+1 = 2.16 RBSQ = 0.9979 DurH = -0.94 DoFree = 68 to 2004.012
 MAPE = 0.07 Test period: SEE 1007.01 MAPE 7.12e+10 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 mempprod1 - - - - - - - - - - - - - - - - 1586.50 - - -
 1 intercept
 13.16412
 3 mempprod1[2]
 4 mnipaqfood -0.00539 1.2 -0.00 1.00 987.86 -0.009
Forestry, fishing, and related
: BLS: CES et1133
 SEE = 0.86 RSQ = 0.9746 RHO = -0.07 Obser = 144 from 1993.001
 SEE+1 = 0.86 RBSQ = 0.9742 DurH = -0.88 DoFree = 141 to 2004.012
 MAPE = 0.89 Test period: SEE 1.66 MAPE 2.18 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe2m _ - _ _ _ _ _ - _ - _ _ _ _ - - - 7 77.42 - - -
 1 intercept
 2 ehe2m[1]
:
 IPI: n1133
 SEE = 2.53 RSQ = 0.6208 RHO = 0.02 Obser = 144 from 1993.001
 SEE+1 = 2.53 RBSQ = 0.6126 DurH = 999.00 DoFree = 140 to 2004.012
 MAPE = 1.88 Test period: SEE 3.41 MAPE 2.75 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ips2_1m - - - - - - - - - - - - - - - - - 104.42 - - -
 1 intercept
```



```
 3 ips2_1m[2]
 4 mnipaqfur -0.01723 2.8 -0.05 1.00 278.07 -0.208
```


\# oil and Gas extraction
: IPI: g211
SEE = 0.93 RSQ $=0.8888 \mathrm{RHO}=-0.04$ Obser $=144$ from 1993.001
SEE+1 $=\quad 0.93$ RBSQ $=0.8873$ DurH $=-0.60$ DoFree $=141$ to 2004.012
MAPE $=0.65$ Test period: SEE $\quad 4.26$ MAPE $\quad 3.07$ end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips3m - - - - - - - - - - - - - 102.01 - - -
$\begin{array}{llllll}1 \text { intercept } & 18.36396 & 3.3 & 0.18 & 9.00 & 1.00\end{array}$
2 ips3m[1] $\quad 0.83491 \quad 66.6 \quad 0.84 \quad 1.04 \quad 102.07 \quad 0.831$
3 mnipaqgas $\quad-0.00955 \quad 2.1 \quad-0.02 \quad 1.00 \quad 165.14-0.130$

: PPI: u211
SEE = $11.91 \mathrm{RSQ}=0.9216 \mathrm{RHO}=0.04$ Obser $=144$ from 1993.001
SEE+1 = 11.90 RBSQ $=0.9199$ DurH $=9.17$ DoFree $=140$ to 2004.012
MAPE $=6.93$ Test period: SEE 49.96 MAPE 15.18 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pri3m - - - - - - - - - - - - - 103.93 - - -
1 intercept $\quad-30.57015 \quad 7.1 \quad-0.29 \quad 12.75 \quad 1.00$
2 pri3m[1] $\quad 0.68813 \quad 19.5 \quad 0.68 \quad 1.22 \quad 102.99 \quad 0.672$
$\begin{array}{lrrrrrr}3 \text { pri3m[2] } & -0.08946 & 0.4 & -0.09 & 1.22 & 101.94 & -0.084 \\ 4 \text { mnipaqgas[1] } & 0.44317 & 10.4 & 0.70 & 1.00 & 164.15 & 0.384\end{array}$
\# Mining
: IPI: g212
SEE = 1.76 RSQ $=0.8519$ RHO $=-0.12$ Obser $=144$ from 1993.001
SEE+1 = $\quad 1.74$ RBSQ $=0.8498$ DurH $=-1.59$ DoFree $=141$ to 2004.012


```
 SEE = 1.43 RSQ = 0.8765 RHO = 0.03 Obser = 144 from 1993.001
 SEE+1 = 1.43 RBSQ = 0.8747 DurH = 0.34 DoFree = 141 to 2004.012
 MAPE = 0.50 Test period: SEE 11.03 MAPE 7.97 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pri5_4m - - - - - - - - - - - - - - - - - 115.11 - - -
 1 intercept 7.58897 1.7 0.07 8.09 1.00
 2 pri5_4m[1]
 3 mnipaqgas[2] 0.00366 0.4 0.01 1.00 163.17 0.032
Utilities
: IPI: g2211a2
 SEE = 1.53 RSQ = 0.9490 RHO = 0.03 Obser = 144 from 1993.001
 SEE+1 = 1.53 RBSQ = 0.9483 DurH = 0.76 DoFree = 141 to 2004.012
 MAPE = 1.27 Test period: SEE 2.53 MAPE 1.83 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ips6m
 1 intercept
\begin{tabular}{|c|c|c|c|c|c|}
\hline 17.32578 & 11.8 & 0.19 & 19.61 & 1.00 & \\
\hline 0.55161 & 19.9 & 0.55 & 1.27 & 93.15 & 0.550 \\
\hline 0.84691 & 12.8 & 0.26 & 1.00 & 29.04 & 0.433 \\
\hline
\end{tabular}
:
 BLS: CES wp22
 SEE = 0.12 RSQ = 0.9977 RHO = -0.13 Obser = 144 from 1993.001
 SEE+1 = 0.11 RBSQ = 0.9977 DurH = -3.04 DoFree = 140 to 2004.012
 MAPE = 0.41 Test period: SEE 0.26 MAPE 0.80 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 wag6m _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 21.70 _ - -
 1 intercept
 2 wag6m[1] 0.51212 16.7 0.51 1.3 1.3 [0.0. 21.64 0.512
 3 mgdp
 4 mtime }\begin{array}{llllllll}{0.18530}&{0.7}&{0.7}&{0.25}&{1.00}&{29.04}&{0.267}
:
 PPI: u22112242
 SEE = 2.04 RSQ = 0.8977 RHO = 0.57 Obser = 144 from 1993.001
 SEE+1 = 1.68 RBSQ = 0.8940 DurH = 8.80 DoFree = 138 to 2004.012
 MAPE = 1.33 Test period: SEE 10.11 MAPE 6.34 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pri6 1m _ _ _ _ _ _ _ _ _ _ _ _ _ _ 116.93 _ _ -
 1 intercept 14.61397 1.3 0.12 0.0.78 1.00
 2 pri6_1m[1] 0.41816 20.6 0.42 2.40 116.79 0.421
 3 pri6_1m[4] -0.10329 2.5 -0.10 2.16 116.45 -0.103
 4 pri6_1m[8] -0.00826 0.0 -0.01
 5 pri6_1m[12]
 6 mgdp- 0.00045 1.5 0.03 1.00 9027.08 0.109
: PPI: u22112243
 SEE = 1.90 RSQ = 0.9131 RHO = 0.37 Obser = 144 from 1993.001
 SEE+1 = 1.77 RBSQ = 0.9100 DurH = 5.85 DoFree = 138 to 2004.012
 MAPE = 1.21 Test period: SEE 11.93 MAPE 6.95 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pri6 2m _ - - - _ - - - - _ - - - - - - 113.33 - - -
 1 \mp@code { i n t e \overline { r c e p t } }
 2 pri6_2m[1]
 3 pri\sigma_2m[4] -0.13001
 4 pri\sigma_2m[8]
 lrrrrr_2m[12]
:
 PPI: u221210114
 SEE = 9.11 RSQ = 0.9480 RHO = 0.20 Obser = 144 from 1993.001
 SEE+1 = 8.94 RBSQ = 0.9465 DurH = 2.84 DoFree = 139 to 2004.012
 MAPE = 3.55 Test period: SEE 50.51 MAPE 17.46 end 2006.012
```



| MAPE = 1.61 | Test period: SE | SEE 9 | 9.11 MAPE |  | 4.97 | end 200 | 2006.012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable name | Reg-Coef | Mexval | Elas | NorRes |  | Mean | Beta |
| 0 pri8_1m | - - - - - | - - - - | - - - - | - - - - |  | 152.42 | 2 |
| 1 intercept | 26.95731 | 7.6 | 0.18 | 9.87 |  | 1.00 |  |
| 2 pri8_1m[1] | 1.25610 | 72.0 | 1.25 | 1.30 |  | 152.28 | 1.266 |
| 3 pri8_1m[2] | -0.42281 | 11.4 | -0.42 | 1.07 |  | 152.10 | -0.433 |
| 4 mnipaqfur | 0.11078 | 2.3 | 0.20 | 1.05 |  | 278.07 | 7 0.546 |
| 5 mnipaqfur[12] | -0.12271 | 2.7 | -0.21 | 1.00 |  | 263.31 | -0.618 |

\#Nonmetallic mineral products

\#Primary metals


| BLS: CES et 331 |  |  |
| :--- | :--- | :--- |
| SEE $=$ | 2.29 RSQ $=0.9988$ RHO $=-0.13$ Obser $=144$ from 1993.001 |  |
| SEE+1 $=$ | 2.27 RBSQ $=0.9987$ DurH $=-1.67$ DoFree $=140$ to 2004.012 |  |
| MAPE $=$ | 0.28 Test period: | SEE 9.05 MAPE |


\# 11 Fabricated metal product

:
BLS: CES et332
SEE = 4.52 RSQ $=0.9978$ RHO $=0.61$ Obser $=144$ from 1993.001
SEE+1 $=\quad 3.58$ RBSQ $=0.9978$ DurH $=7.38$ DoFree $=140$ to 2004.012
MAPE = 0.21 Test period: SEE 16.71 MAPE 1.02 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta 0 ehellm - - - - - - - - - - - - - 1621.91 - - -
1 intercept

| 30.97760 | 7.2 | 0.02 | 463.30 | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1.05689 | 950.7 | 1.06 | 2.00 | 1621.80 | 1.058 |

3 ehel1m[12] $\quad-0.07433 \quad 21.8 \quad-0.07 \quad 1.01 \quad 1621.96-0.074$
4 mnipaqmv $\quad-0.00744 \quad 0.4-0.00 \quad 1.00 \quad 345.86-0.006$
: PPI: u332
SEE = 0.18 RSQ $=0.9992$ RHO $=-0.13$ Obser $=156$ from 1992.001
SEE+1 $=\quad 0.18$ RBSQ $=0.9992$ DurH $=-2.26$ DoFree $=152$ to 2004.012
MAPE $=0.11$ Test period: SEE $1.20 \mathrm{MAPE} \quad 0.71$ end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 prillm $\quad$ - - - - - - - - - - - - 127.65 - -
$\begin{array}{lrrrrrr}1 \text { intercept } & 0.75134 & 0.7 & 0.01 & 1228.51 & 1.00 & \\ 2 \text { pril1m[1] } & 1.73983 & 176.8 & 1.74 & 2.56 & 127.46 & 1.711\end{array}$
3 prillm[2] $\quad-0.74785 \quad 50.2-0.75 \quad 1.04 \quad 127.28-0.723$
$\begin{array}{lllllll}4 \text { mnipaqgas } & 0.00197 & 1.8 & 0.00 & 1.00 & 162.02 & 0.012\end{array}$
\# Machinery
: IPI: g333
SEE = 1.28 RSQ $=0.9780$ RHO $=-0.19$ Obser $=144$ from 1993.001
SEE+1 = $\quad 1.26$ RBSQ $=0.9773$ DurH $=-2.57$ DoFree $=139$ to 2004.012
MAPE $=0.94$ Test period: SEE 7.12 MAPE 5.27 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips12m - - - - - - - - - - - - - 104.51 - -
$\begin{array}{llllll}1 \text { intercept } & 3.83455 & 2.8 & 0.04 & 45.39 & 1.00\end{array}$


```
SEE+1 = 1.07 RBSQ = 0.9836 DurH = -2.66 DoFree = 140 to 2004.012
MAPE = 0.81 Test period: SEE 2.31 MAPE 1.94 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips14m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 106.60 _ _ -
1 intercept 2.59078 1.7 0.02 62.12
2 ips14m[1] 1.03749 386.4 1.04 1.12 106.54 1.046
3 ips14m[12]
4 mnipaqfur -0.00048 0.0 -0.00 1.00 278.07 -0.003
```

:
BLS: CES et335
SEE = 1.86 RSQ $=0.9988$ RHO $=-0.08$ Obser $=144$ from 1993.001
SEE+1 = $\quad 1.85$ RBSQ $=0.9988$ DurH $=-1.04$ DoFree $=140$ to 2004.012
MAPE $=0.26$ Test period: SEE $\quad 10.78$ MAPE 1.87 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe14m _ _ _ _ _ _ _ _ _ . . . 555.26 _ - -
1 intercept
$\begin{array}{lllll}7.00572 & 1.6 & 0.01 & 827.97 & 1.00\end{array}$
2 ehel4m[1] $\begin{array}{lllllll} & 1.15497 & 449.2 & 1.16 & 1.70 & 556.16 & 1.137\end{array}$
3 ehe14m[6] $\begin{array}{lllllll} & -0.16289 & 24.4 & -0.16 & 1.03 & 560.70 & -0.147\end{array}$
4 mnipaqfur $\quad-0.00995 \quad 1.7-0.00 \quad 1.00 \quad 278.07-0.009$
:
PPI: u335121p
SEE $=0.45 \mathrm{RSQ}=0.9852 \mathrm{RHO}=-0.02$ Obser $=144$ from 1993.001
SEE+1 $=\quad 0.45$ RBSQ $=0.9848$ DurH $=-0.28$ DoFree $=140$ to 2004.012
MAPE $=0.22$ Test period: SEE $\quad 1.30 \mathrm{MAPE} \quad 0.71$ end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pril4m _ _ _ _ _ _ _ _ . . . . 138.74 _
$\begin{array}{llllll}1 \text { intercept } & 5.42791 & 2.1 & 0.04 & 67.37 & 1.00\end{array}$
$\begin{array}{llllllll}2 & \text { pril4m[1] } & 0.95641 & 369.9 & 0.96 & 1.07 & 138.62 & 0.953\end{array}$
$\begin{array}{lllllll}3 \text { mnipaqgas } & 0.01715 & 1.3 & 0.02 & 1.01 & 165.14 & 0.176\end{array}$
4 mnipaqgas[1] $\quad-0.01279 \quad 0.7-0.02 \quad 1.00 \quad 164.15-0.128$
:
BLS: CES hp335
SEE = 0.35 RSQ $=0.8815$ RHO $=-0.11$ Obser $=144$ from 1993.001
SEE $+1=0.34$ RBSQ $=0.8781$ DurH $=-1.62$ DoFree $=139$ to 2004.012
MAPE $=0.60$ Test period: SEE 0.65 MAPE 1.43 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

$\begin{array}{lrrrrrr}1 \text { intercept } & 17.75018 & 11.4 & 0.43 & 8.44 & 1.00 & \\ 2 \text { hr } 4 \mathrm{~m}[1] & 0.61319 & 28.2 & 0.61 & 1.24 & 41.49 & 0.610\end{array}$
$3 \mathrm{hr} 14 \mathrm{~m}[12] \quad-0.00910 \quad 0.0 \quad-0.01 \quad 1.23 \quad 41.57-0.009$
$\begin{array}{lrrrrrr}4 \text { mnipaqfur } & 0.01880 & 4.8 & 0.13 & 1.14 & 278.07 & 0.924 \\ 5 \text { mnipaqfur[12] } & -0.02492 & 7.0 & -0.16 & 1.00 & 263.31 & -1.250\end{array}$
\# Motor Vehicles, bodies and trailers, and parts
IPI: g3361t3
SEE = 3.03 RSQ $=0.9377 \mathrm{RHO}=-0.14$ Obser $=144$ from 1993.001
SEE+1 = $\quad 3.00$ RBSQ $=0.9364$ DurH $=-2.12$ DoFree $=140$ to 2004.012
MAPE $=2.21$ Test period: SEE 2.54 MAPE 1.97 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips15m - - - - - - - - - - - - - 89.63 - - -
$\begin{array}{llllll}1 \text { intercept } & 8.04873 & 4.5 & 0.09 & 16.06 & 1.00\end{array}$
$\begin{array}{lllllll}2 \text { ips15m[1] } & 0.78771 & 68.8 & 0.79 & 1.11 & 89.35 & 0.795\end{array}$
$\begin{array}{lllllll}3 \text { mnipaqmv } & 0.03978 & 2.4 & 0.15 & 1.00 & 345.86 & 0.235\end{array}$
4 mnipaqmv[12] $\quad-0.00782 \quad 0.1 \quad-0.03 \quad 1.00 \quad 327.21-0.048$
:
BLS: CES et336001
SEE $=17.58 \mathrm{RSQ}=0.9487 \mathrm{RHO}=-0.26$ Obser $=144$ from 1993.001
SEE+1 = $\quad 16.96$ RBSQ $=0.9476$ DurH $=-4.24$ DoFree $=140$ to 2004.012
MAPE $=\quad 0.72$ Test period: SEE 16.13 MAPE 1.09 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe15m _ _ _ _ _ . . . . . . . . . . 1206.88 _ - -

\#Other Transportation equipment

: PPI: u3364113
$\mathrm{SEE}=0.71 \mathrm{RSQ}=0.9983 \mathrm{RHO}=0.16$ Obser $=144$ from 1993.001
SEE+1 = $\quad 0.70$ RBSQ $=0.9983$ DurH $=2.03$ DoFree $=141$ to 2004.012
MAPE $=0.30$ Test period: SEE 4.90 MAPE 2.08 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pril6m - - - - - - - - - - - - - 156.34 - - -
$\begin{array}{lrrrrrr}1 \text { intercept } & -0.80811 & 0.6 & -0.01 & 590.54 & 1.00 & \\ 2 \text { pril6m[1] } & 1.03878 & 333.9 & 1.04 & 1.01 & 155.86 & 1.027\end{array}$
$\begin{array}{lrrrrrr}2 & \text { pri16m[1] } & 1.03878 & 333.9 & 1.04 & 1.01 & 155.86 \\ 3 \text { pril6m[12] } & -0.03148 & 0.7 & -0.02 & 1.00 & 151.20 & -0.028\end{array}$
\# furniture and related products

| SEE | = | 0.95 RSQ | $=0.9893$ | RHO = | 0.08 | Obser | $=144$ | from | 1993.001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE+1 | = | 0.94 RBSQ | 0.9891 | DurH = | 1.00 | DoFree | 141 | to | 2004.012 |
| MAPE | = | 0.80 Test | period: | SEE | 3.30 | MAPE | 2.57 | end | 2006.012 |
| Var |  |  | Reg-Coef | f Mexv | El | as Nor | Res | Mean | Beta |


\#Miscellaneous manufacturing


```
Food,beverage, tobacco
```



```
: BLS:CES et312
 SEE = 1.00 RSQ = 0.9465 RHO = -0.07 Obser = 144 from 1993.001
 SEE+1 = 1.00 RBSQ = 0.9449 DurH = -0.98 DoFree = 139 to 2004.012
 MAPE = 0.37 Test period: SEE 3.23 MAPE 1.56 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe19m _ - _ - _ _ - - - - - _ - - - - - 204.98 - - -
 1 intercept 11.12297 1.2 0.05 18.68 1.00
 2 ehe19m[1]
 3 ehe19m[4] 0.12151 1.2 0.12 1.05 205.33 0.112
 4 ehe19m[12] -0.08297 1.4 -0.08 1.01 206.14 -0.060
 5 mnipaqfood[4] -0.00101 0.7 -0.00 1.00 860.21 -0.030
:
 PPI: u311
 SEE = 0.94 RSQ = 0.9826 RHO = 0.14 Obser = 144 from 1993.001
 SEE+1 = 0.94 RBSQ = 0.9821 DurH = 1.98 DoFree = 139 to 2004.012
 MAPE = 0.46 Test period: SEE 1.64 MAPE 0.91 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pril9m - - - - _ - - - - - - - - - - - - 128.60 - - -
 1 intercept
 2 pri19m[1] 0.95715 102.1 0.96 1.06 128.41 0.949
 3 pril9m[4] -0.00891 0.0 -0.01 1.06 127.85 -0.009
 4 pril9m[12]
 5 mnipaqfood[1] 0.00549 2.8 0.04 1.00 869.71 0.101
Textile, mills
 IPI: g313a4
 SEE = 1.45 RSQ = 0.9654 RHO = -0.20 Obser = 144 from 1993.001
 SEE+1 = 1.42 RBSQ = 0.9644 DurH = -3.40 DoFree = 139 to 2004.012
 MAPE = 1.12 Test period: SEE 3.97 MAPE 3.87 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ips20m _ - - - - - - - - - - - - - - - - 107.88 - - -
 1 intercept
 2 ips20m[1] 0.99094 70.1 0.0.99 1.07 107.96 0.980
 3 ips20m[4] -0.04150 0.2 -0.04 1.06 108.17 -0.040
 4 mnipaqcloth[6] -0.00302
 5 mnipaqcloth[12] -0.01236 0.1 -0.03 1.00 267.24 -0.048
:
 BLS:CES et313
 SEE = 1.69 RSQ = 0.9995 RHO = -0.03 Obser = 120 from 1995.001
 SEE+1 = 1.69 RBSQ = 0.9995 DurH = -0.32 DoFree = 116 to 2004.012
 MAPE = 0.32 Test period: SEE 8.15 MAPE 3.45 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe20_1m _ _ _ _ _ _ - _ _ _ _ _ _ - - - 367.00 - - -
 1 ehe20-1m[1]
```



```
 4 ehe20_1m[12] 0.00822 0.1 0.01 1.00 391.09 0.007
```

```
:
 PPI: u31311
 SEE = 0.45 RSQ = 0.9908 RHO = 0.07 Obser = 144 from 1993.001
 SEE+1 = 0.45 RBSQ = 0.9906 DurH = 0.81 DoFree = 140 to 2004.012
 MAPE = 0.30 Test period: SEE 3.26 MAPE 2.72 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pri20m _ _ _ _ _ _ - _ - _ _ _ _ - - - - 107.33 - - -
 1 intercept 1.73931 1.2 1.2 0.02 108.63 1.00
 2 pri20m[1] 1.14535 100.6 1.15 1.20 107.35 1.146
 3 pri20m[3] -0.11675 1.2 -0.12 1.04 107.38 -0.117
 4 pri20m[12] -0.04480 2.1 -0.04 1.00 107.69 -0.045
```

\# Apparel and leather products


BLS:CES et315
SEE = 2.77 RSQ $=0.9998$ RHO $=-0.10$ Obser $=144$ from 1993.001
SEE+1 = $\quad 2.75$ RBSQ $=0.9998$ DurH $=-1.22$ DoFree $=142$ to 2004.012
MAPE $=0.38$ Test period: SEE 2.41 MAPE 0.84 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe21 1m _ - - - - - - - - - - - - 589.38 - - -
1 ehe21-1m[1] $1.24473 \quad 311.2 \quad 1.25 \quad 1.65 \quad 593.72$
2 ehe21_1m[4] $-0.24655 \quad 28.4-0.25 \quad 1.00 \quad 606.60-0.245$
PPI: u316
SEE = 0.37 RSQ $=0.9929$ RHO $=-0.11$ Obser $=144$ from 1993.001
SEE+1 = $\quad 0.37$ RBSQ $=0.9927$ DurH $=-1.43$ DoFree $=139$ to 2004.012 MAPE $=0.20$ Test period: SEE 0.40 MAPE 0.23 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

0 pri21m - - - - - - - - - - - - - 137.16 - - -
1 intercept

| 4.46386 | 1.6 | 0.03 | 141.16 | 1.00 |
| :--- | ---: | ---: | ---: | ---: | ---: |

$\begin{array}{lrrrrrr}2 & \text { pri21m[1] } & 1.06339 & 120.4 & 1.06 & 1.08 & 137.04 \\ 3 & \text { pri21m[4] } & -0.13325 & 2.6 & -0.13 & 1.05 & 136.70 \\ -0.138\end{array}$

| 4 | pri21m[12] | 0.02792 | 0.4 | 0.03 | 1.02 | 135.77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 0.030 |  |  |  |  |  |

$\begin{array}{llllllllll}5 \text { mnipaqcloth } & 0.00502 & 0.8 & 0.01 & 1.00 & 275.84 & 0.035\end{array}$
\# paper products
: IPI: g322
SEE = $1.08 \mathrm{RSQ}=0.9203 \mathrm{RHO}=-0.33$ Obser $=144$ from 1993.001
SEE+1 = $\quad 1.02$ RBSQ $=0.9180$ DurH $=-4.25$ DoFree $=139$ to 2004.012
MAPE $=0.81$ Test period: SEE 1.53 MAPE 1.28 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips22m - - - - - - - - - - - - - 102.91 - - -
1 intercep
$18.22070 \quad 6.4 \quad 0.18 \quad 12.55 \quad 102.91$
$\begin{array}{lllllll}2 & \text { ips22m[1] } & 0.89943 & 138.8 & 0.90 & 1.11 & 102.90 \\ 0.900\end{array}$
3 ips22m[12] $\quad-0.06113 \quad 1.3-0.06 \quad 1.10 \quad 103.04-0.059$
$\begin{array}{lllllll}4 \text { mnipaqnoth [4] } & 0.04372 & 2.3 & 0.20 & 1.05 & 471.65 & 1.223\end{array}$
5 mnipaqnoth[12] $\quad-0.04901 \quad 2.6$-0.22 $\quad 1.00 \quad 452.87-1.327$
$\begin{aligned} & \text { BLS:CES et } 322 \\ & \text { SEE }= 1.22 \text { RSQ }=0.9994 \text { RHO }=-0.10 \text { Obser }=144 \text { from } 1993.001 \\ & \text { SEE+1 }= 1.21 \text { RBSQ }=0.9994 \text { DurH }=-1.32 \text { DoFree }=142 \text { to } 2004.012\end{aligned}$

\# Printing
:
IPI: 9323
SEE = 0.67 RSQ $=0.9920$ RHO $=-0.18$ Obser $=144$ from 1993.001
SEE+1 $=\quad 0.00$ RBSQ $=0.9916$ DurH $=-2.30$ DoFree $=137$ to 2004.012
MAPE $=0.51$ Test period: SEE 1.26 MAPE 0.92 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips23m - - - - - - - - - - - - - 134.60 - - -
$\begin{array}{lllllll}1 \text { intercept } & 6.44430 & 5.1 & 0.06 & 118.47 & 1.27\end{array}$
$\begin{array}{lllllll}2 & \text { ips23m[1] } & 0.98287 & 229.9 & 0.98 & 1.21 & 134.66\end{array} 0.979$
3 ips23m[12] $\quad-0.03809 \quad 0.9 \quad-0.04 \quad 1.14 \quad 135.37-0.035$
4 mnipaqnoth $\begin{array}{lllllll} & 0.03161 & 5.1 & 0.14 & 1.13 & 610.43 & 0.583\end{array}$
$\begin{array}{lrrrrrr}5 \text { mnipaqnoth[12] } & -0.03641 & 5.0 & -0.16 & 1.07 & 574.35 & -0.641 \\ 6 \text { mnipaqgas } & 0.00399 & 0.4 & 0.01 & 1.05 & 209.35 & 0.025\end{array}$
7 ips23m_mu[1] $\quad-0.21360 \quad 2.1 \quad 0.00 \quad 1.00 \quad 10.01-0.021$
:
SEE = $1.72 \mathrm{RSQ}=0.9991 \mathrm{RHO}=-0.06$ Obser $=144$ from 1993.001
SEE+1 = 1.71 RBSQ $=0.9991$ DurH $=-0.69$ DoFree $=142$ to 2004.012
MAPE $=0.17$ Test period: SEE 3.91 MAPE 0.57 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

0 ehe23m - - - - - - - - - - - - - 775.70 - - -
1 ehe23m[1] $1.27549 \quad 396.5 \quad 1.28 \quad 2.11 \quad 776.57$
2 ehe23m[4] $\begin{array}{lllllllllllll} & -0.27571 & 45.3 & -0.28 & 1.00 & 779.12 & -0.258\end{array}$
:
PPI: u323110
SEE = 0.44 RSQ $=0.9969$ RHO $=0.03$ Obser $=144$ from 1993.001
SEE+1 $=\quad 0.44$ RBSQ $=0.9967$ DurH $=0.56$ DoFree $=138$ to 2004.012
MAPE $=0.19$ Test period: SEE 0.39 MAPE 0.19 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pri23m - - - - - - - - - - - - - 150.71 - - -
$\begin{array}{llllll}1 \text { intercept } & 1.43382 & 0.2 & 0.01 & 318.72 & 1.00\end{array}$
$\begin{array}{lllllll}2 & \text { pri23m[1] } & 1.11139 & 135.1 & 1.11 & 1.09 & 150.52 \\ 1.127\end{array}$
3 pri23m[4] $\quad-0.11048 \quad 0.7-0.11 \quad 1.01 \quad 149.92-0.117$
4 pri23m[6] $\begin{array}{lllllll}-0.01547 & 0.0 & -0.02 & 1.01 & 149.53 & -0.017\end{array}$
5 mnipaqnoth $\quad-0.00257 \quad 0.1 \quad-0.01 \quad 1.00 \quad 481.30-0.036$
$\begin{array}{lllllll}6 \text { mnipaqfood } & 0.00241 & 0.2 & 0.01 & 1.00 & 872.92 & 0.041\end{array}$
\# Petroleum and Coal

| BLS:CES et324 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE | = | 0.74 | RSQ | $=0.9958$ | RHO = | -0.01 | Obser | $=$ | 144 | from |  | 1993.001 |
| SEE+1 | = | 0.74 | RBSQ | $=0.9957$ | DurH = | 999.00 | 0 DoFr | = | 139 | to |  | 2004.012 |
| MAPE |  | 0.41 | Test | period: | SEE | 3.16 | MAPE |  | 2.33 | end |  | 2006.012 |
| Vari |  |  |  | Reg-Coef | Mexva | Ela | as | Re |  | Mean |  | Beta |



\# Wholesale Trade




## \# Retail Trade

BLS:CES etrt
SEE = 22.13 RSQ $=0.9990$ RHO $=-0.06$ Obser $=144$ from 1993.001
SEE+1 = 22.08 RBSQ $=0.9990$ DurH $=-0.78$ DoFree $=137$ to 2004.012
MAPE $=0.11$ Test period: SEE 123.60 MAPE 0.73 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe28m _ - - - _ - - - _ - _ - - - - 14502.62 - -
$\begin{array}{llllll}1 \text { intercept } & 220.84009 & 2.5 & 0.02 & 1016.44 & 1.00\end{array}$
2 ehe28m[1] $\quad 1.01381 \quad 100.2 \quad 1.01 \quad 1.34 \quad 14486.731 .030$
$\begin{array}{lllllll}3 & \text { ehe28m[4] } 0.02575 & 0.1 & 0.03 & 1.15 & 14439.17 & 0.027\end{array}$
4 ehe28m[12] $\quad-0.05703 \quad 2.2-0.06 \quad 1.12 \quad 14316.79-0.066$
$\begin{array}{lllllll}5 & \text { mgdp } & 0.12136 & 4.3 & 0.08 & 1.10 & 9027.08 \\ 0.268\end{array}$
6 mgdp [6] $\quad-0.11538 \quad 3.4-0.07 \quad 1.02 \quad 8800.77-0.249$
7 mnipaqgas $\begin{array}{lllllll} & -0.24549 & 0.9 & -0.00 & 1.00 & 165.14 & -0.013\end{array}$
:
BLS:CES hprt
SEE $=0.09$ RSQ $=0.4328$ RHO $=-0.02$ Obser $=144$ from 1993.001
SEE+1 = $\quad 0.09$ RBSQ $=0.4123$ DurH $=-0.40$ DoFree $=138$ to 2004.012
MAPE $=0.23$ Test period: SEE 0.23 MAPE 0.68 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 hr28m - - - - - - - - - - - - - - 30.78 - - -
$\begin{array}{lllllll}1 \text { intercept } & 8.76052 & 3.8 & 0.28 & 1.76 & 1.00\end{array}$
$\begin{array}{llrllll}2 & \mathrm{hr} 28 \mathrm{~m}[1] & 0.50873 & 15.4 & 0.51 & 1.10 & 30.78 \\ 3 & \mathrm{hr} 28 \mathrm{~m}[3] & 0.27548 & 4.2 & 0.28 & 1.02 & 30.78 \\ 0.274\end{array}$

| 3 | hr28m[3] | 0.27548 | 4.2 | 0.28 | 1.02 | 30.78 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | hr28m[6] | -0.06828 | 0.3 | -0.07 | 1.01 | 30.79 |

    \(\begin{array}{lrrrrrr}4 \text { hr28m[6] } & -0.06828 & 0.3 & -0.07 & 1.01 & 30.79 & -0.072 \\ 5 \text { mnipaqgas } & -0.00069 & 0.5 & -0.00 & 1.01 & 165.14 & -0.210 \\ 6 \text { mnipaqgas [6] } & 0.00061 & 0.3 & 0.00 & 1.00 & 159.62 & 0.160\end{array}\)
    :
BLS:CES wprt
SEE $=0.03$ RSQ $=0.9996$ RHO $=-0.08$ Obser $=144$ from 1993.001
SEE+1 = 0.03 RBSQ $=0.9996$ DurH $=-1.32$ DoFree $=139$ to 2004.012
MAPE $=0.19$ Test period: SEE 0.11 MAPE 0.75 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 wag28m - - - - - - - - - - - - - 10.24 - -
1 intercept
0.02598
$0.5 \quad 0.002427 .90 \quad 1.00$

```
\begin{tabular}{lrrrrrr}
2 wag28m[1] & 0.70688 & 25.0 & 0.70 & 1.13 & 10.22 & 0.707 \\
3 wag28m[2] & 0.37005 & 5.9 & 0.37 & 1.02 & 10.19 & 0.370 \\
4 wag28m[6] & -0.07612 & 0.7 & -0.07 & 1.00 & 10.08 & -0.076 \\
5 mnipaqgas & -0.00004 & 0.0 & -0.00 & 1.00 & 165.14 & -0.001
\end{tabular}
:
 SEE = 5017.39 RSQ = 0.9999 RHO = 0.82 Obser = 144 from 1993.001
 SEE+1 = 2912.26 RBSQ = 0.9999 DurH = 9.93 DoFree = 141 to 2004.012
 MAPE = 0.14 Test period: SEE 16275.45 MAPE 0.40 end 2005.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 retlm _ _ _ _ _ _ _ - - _ - _ _ _ - - - 2703476.57 - - -
 1 intercept 6011.66046 2.0 0.00 8888.50 1.00
 2 retlm[1]
: CENSUS: Retail Purchases, total
 SEE+1 = 2468.73 RBSQ = 0.9998 DurH = 9.79 DoFree = 141 to 2004.012
 MAPE = 0.15 Test period: SEE 13815.62 MAPE 0.46 end 2005.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 rtptotm _ _ - _ - - _ - - _ _ _ _ - - - - 1968248.18 - - -
 1 intercept 6867.58752 3.9 0.00 6667.20 1.00
 2 rtptotm[1] 0.95136 585.5 0.95 0.9 1.12 1959774.94 0.951
 3 mgdp 10.73723 6.0 0.05 1.00 9027.08 0.049
Air transportation
: BLS:CES et481
 SEE = 4.05 RSQ = 0.9889 RHO = 0.66 Obser = 144 from 1993.001
 SEE+1 = 3.05 RBSQ = 0.9887 DurH = 7.99 DoFree = 141 to 2004.012
 MAPE = 0.43 Test period: SEE 7.26 MAPE 1.15 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe29m _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - 549.27 - - -
 1 intercept
 2 ehe29m[1] 1.00285 687.4 1.00 1.01 549.30 1.002
 3mnipaqtr -0.01207 0.6 -0.01 1.00 254.75 -0.014
:
 PPI: u4811
 SEE = 1.70 RSQ = 0.9960 RHO = 0.00 Obser = 144 from 1993.001
 SEE+1 = 1.70 RBSQ = 0.9959 DurH = 0.01 DoFree = 140 to 2004.012
 MAPE = 0.67 Test period: SEE 12.16 MAPE 4.98 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 pri29m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 163.06 _ _ _
 1 intercept
 2 pri29m[1] 0.96777 407.2 0.96 1.03 162.51 0.972
 3 mnipaqtr
 4 mnipaqtr[4] 0.00135 0.0 0.00 1.00 250.59 0.002
Rail Transportation
: BLS:CES et482
 SEE = 1.37 RSQ = 0.9643 RHO = -0.20 Obser = 144 from 1993.001
 SEE+1 = 1.34 RBSQ = 0.9633 DurH = -2.54 DoFree = 139 to 2004.012
 MAPE = 0.45 Test period: SEE 0.64 MAPE 0.21 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe30m _ _ _ _ - _ _ _ _ _ - _ - - - - - 227.40 - - -
 intercep
\begin{tabular}{|c|c|c|c|c|c|}
\hline 18.40754 & 3.2 & 0.08 & 28.00 & 1.00 & \\
\hline 0.99616 & 233.8 & 1.00 & 1.06 & 227.53 & 1.020 \\
\hline -0.07027 & 2.9 & -0.07 & 1.02 & 229.27 & -0.089 \\
\hline -0.00821 & 0.9 & -0.01 & 1.00 & 242.20 & -0.055 \\
\hline 0.00262 & 0.1 & 0.00 & 1.00 & 165.14 & 0.01 \\
\hline
\end{tabular}

\# Water transportation

\# Truck transportation

\# Transit and ground passenger transportation

```

            BLS:CES hptr
    SEE = 0.22 RSQ = 0.9604 RHO = -0.14 Obser = 144 from 1993.001
    SEE+1 = 0.21 RBSQ = 0.9595 DurH = -1.79 DoFree = 140 to 2004.012
    MAPE = 0.40 Test period: SEE 0.24 MAPE 0.57 end 2006.012
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 hr33m _ - - _ - - - - - - - _ - - - - - 38.09 - - -
    1 intercept 
    ```

```

    4 mnipaqtr[3] -0.01919 1.2 -0.13 1.00 251.63 -0.799
    :
BLS:CES wptr
SEE = 0.05 RSQ = 0.9986 RHO = -0.11 Obser = 144 from 1993.001
SEE+1 = 0.05 RBSQ = 0.9986 DurH = -2.31 DoFree = 140 to 2004.012
MAPE = 0.25 Test period: SEE 0.12 MAPE 0.60 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 wag33m _ - - _ - - - - - - - _ - - - - - 14.46 - - -
1 intercept
3 wag33m[3]
4 mnipaqtr 0.00073 2.7 0.01 1.00 254.75 0.025

# Pipeline transportation

: BLS:CES et486
SEE = 0.25 RSQ = 0.9983 RHO = -0.00 Obser = 144 from 1993.001
SEE+1 = 0.25 RBSQ = 0.9983 DurH = -0.00 DoFree = 140 to 2004.012
MAPE = 0.33 Test period: SEE 1.08 MAPE 2.20 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe34m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 48.08 _ _ -
1 intercept -0.45959 0.3 -0.01 592.76
2 ehe34m[1] 1.01250 1. 166.9 1.02 1.01
3 ehe34m[6]
: PPI: u486110
SEE = 1.51 RSQ = 0.9609 RHO = -0.00 Obser = 144 from 1993.001
SEE+1 = 1.51 RBSQ = 0.9598 DurH = -0.03 DoFree = 139 to 2004.012
MAPE = 0.65 Test period: SEE 5.06 MAPE 3.75 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pri34m _ - - _ - - - - - - - _ - - - - - 104.55 - - -
l intercept
2 pri34m[1]
4 mnipaqgas
5 mnipaqtr[1] -0.00406 0.2 -0.01 1.00 253.71 -0.024

# Other transportation

: BLS:CES et488
SEE = 2.13 RSQ = 0.9984 RHO = -0.09 Obser = 144 from 1993.001
SEE+1 = 2.12 RBSQ = 0.9984 DurH = -1.10 DoFree = 140 to 2004.012
MAPE = 0.35 Test period: SEE 11.35 MAPE 1.80 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe35m _ _ _ _ - _ _ - _ - - _ - - - - - 484.01 - - -
1 intercept
2 ehe35m[1] 0.94990 289.1
3 mnipaqtr }r\mathrm{ 0.18502
4 mnipaqtr[12] -0.12477 7.0 -0.06 1.00 242.20 -0.112
: PPI: u488119p
SEE = 2.00 RSQ = 0.9814 RHO = -0.09 Obser = 144 from 1993.001

```

\# warehousing and storage
: BLS:CES et493
SEE = 2.01 RSQ \(=0.9978\) RHO \(=-0.10\) Obser \(=144\) from 1993.001
SEE+1 \(=\quad 2.00\) RBSQ \(=0.9977\) DurH \(=-1.28\) DoFree \(=139\) to 2004.012
MAPE \(=0.26\) Test period: SEE 22.41 MAPE 3.12 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe36m - - - - - - - - - - - - - 483.49 - - -
1 intercep
\begin{tabular}{rrrrrr}
25.75244 & 4.5 & 0.05 & 450.86 & 1.00 & \\
0.88969 & 169.4 & 0.89 & 1.23 & 482.36 & 0.886 \\
0.00408 & 0.1 & 0.08 & 1.17 & 9027.08 & 0.149 \\
0.00696 & 0.1 & 0.13 & 1.15 & 8988.88 & 0.253 \\
-0.00826 & 7.0 & -0.15 & 1.00 & 8581.40 & -0.290
\end{tabular}
: PPI: u4931101
SEE = \(0.32 \mathrm{RSQ}=0.9868 \mathrm{RHO}=-0.03\) Obser \(=132\) from 1994.001
SEE+1 = \(\quad 0.32\) RBSQ \(=0.9866\) DurH \(=-0.36\) DoFree \(=129\) to 2004.012
MAPE \(=0.17\) Test period: SEE 0.75 MAPE 0.62 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pri36m _ - - - - - - - - - - - - 105.06 - - -
\(\begin{array}{llllll}1 \text { intercept } & 7.29283 & 2.2 & 0.07 & 75.60 & 1.00\end{array}\)
\(\begin{array}{llrrrrr}2 & \text { pri36m[1] } & 0.91641 & 154.3 & 0.92 & 1.05 & 105.00 \\ 3 & 0.911\end{array}\)
3 mgdp \(\quad 0.00017 \quad 2.4 \quad 0.01 \quad 1.00 \quad 9242.51 \quad 0.086\)
\# publishing
IPI: g5111
\(\mathrm{SEE}=0.86 \mathrm{RSQ}=0.9851 \mathrm{RHO}=-0.03\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 0.86\) RBSQ \(=0.9847\) DurH \(=-0.37\) DoFree \(=139\) to 2004.012
MAPE \(=0.66\) Test period: SEE 3.41 MAPE 2.81 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips37m - - - - - - - - - - - - - 98.04 - - -
\(\begin{array}{llllll}1 \text { intercept } & 3.88732 & 2.6 & 0.04 & 67.15 & 1.00\end{array}\)
2 ips37m[1] \(\quad 1.00410 \quad 276.2 \quad 1.00 \quad 1.08 \quad 97.97 \quad 1.009\)
3 ips37m[12] \(\quad-0.05086 \quad 2.0 \quad-0.05 \quad 1.03 \quad 97.38-0.054\)
\(\begin{array}{lllllll}4 \text { mnipaqnoth } & 0.02698 & 1.5 & 0.13 & 1.03 & 481.30 & 0.415\end{array}\)
5 mnipaqnoth[12] \(\quad-0.02706 \quad 1.5 \quad-0.13 \quad 1.00 \quad 452.87-0.397\)
PPI: u51113
SEE = 1.01 RSQ \(=0.9976\) RHO \(=-0.17\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 1.00\) RBSQ \(=0.9975\) DurH \(=-2.15\) DoFree \(=140\) to 2004.012
MAPE \(=0.43\) Test period: SEE \(2.64 \mathrm{MAPE} \quad 1.02\) end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 pri37m - - - - - - - - - - - - 181.79 - - -
1 intercept \(\quad 4.82487 \quad 1.3 \quad 0.03 \quad 415.11 \quad 1.00\)
\(\begin{array}{lllllll}2 \text { pri37m[1] } & 0.95042 & 213.3 & 0.95 & 1.03 & 181.28 & 0.949\end{array}\)
\(\begin{array}{lllllll}3 \text { mnipaqnoth } & 0.00945 & 0.2 & 0.03 & 1.00 & 481.30 & 0.049\end{array}\)
\(\begin{array}{lllllll}4 & \text { mnipaqnoth [12] } 0.00027 & 0.0 & 0.00 & 1.00 & 452.87 & 0.001\end{array}\)
NIPA: Nominal PCE of Computer and software
SEE \(=1.53 \mathrm{RSQ}=0.9806 \mathrm{RHO}=0.99\) Obser \(=144\) from 1993.001
\(\mathrm{SEE}+1=\)

\#Motion pictures and sound recording

\# Broadcasting and telecommunication
SEE \(=0.90\) RSQ \(=0.9992\) RHO \(=0.50\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 0.79\) RBSQ \(=0.9992\) DurH \(=6.07\) DoFree \(=140\) to 2004.012
MAPE \(=0.92\) Test period: SEE 2.56 MAPE \(\quad 1.52\) end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ips39m _ - - - - - - - - - - - - 78.81 - -
1 intercept
\(\begin{array}{rrrrrr}-9.46846 & 17.0 & -0.12 & 1237.49 & 1.00 & \\ 0.89288 & 450.2 & 0.89 & 1.64 & 78.22 & 0.896\end{array}\)
\(\begin{array}{llrrrrr}2 & \text { ips } 39 \mathrm{~m}[1] & 0.89288 & 450.2 & 0.89 & 1.64 & 78.22 \\ 3 \text { mnipaqnoth } & 0.00591 & 2.7 & 0.04 & 1.61 & 481.30 & 0.020\end{array}\)
\(\begin{array}{lllllll}4 \text { mnipaqvire } & 0.02115 & 26.8 & 0.20 & 1.00 & 737.62 & 0.088\end{array}\)
:
BLS:CES et515
SEE = 0.90 RSQ \(=0.9978\) RHO \(=-0.04\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 0.90\) RBSQ \(=0.9977\) DurH \(=-0.48\) DoFree \(=140\) to 2004.012 MAPE \(=\quad 0.22\) Test period: SEE \(\quad 6.37\) MAPE 1.75 end 2006.012 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe39m - - - - - - - - - - - - 317.97 - - -
\(\begin{array}{lrrrrrr}1 \text { intercept } & 15.45412 & 10.7 & 0.05 & 444.94 & 1.00 & \\ 2 \text { ehe } 39 \mathrm{~m}[1] & 0.93238 & 536.9 & 0.93 & 1.40 & 317.65 & 0.943\end{array}\)
\(\begin{array}{lrrrrrr}2 & \text { ehe39m[1] } & 0.93238 & 536.9 & 0.93 & 1.40 & 317.65 \\ 3 \text { mnipaqvnre } & 0.01284 & 15.2 & 0.03 & 1.19 & 737.62 & 0.090\end{array}\)

\#Information and data processing

\# Federal reserve banks, credit intermediation, etc.
 SEE = 4.13 RSQ = 0.9994 RHO = 0.22 Obser = 144 from 1993.001
 SEE+1 \(=\quad 4.04\) RBSQ \(=0.9993 \mathrm{DurH}=3.28\) DoFree \(=139\) to 2004.012
 MAPE \(=0.12\) Test period: SEE 10.80 MAPE 0.31 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe41 2m _ _ _ _ 2534.67 _
 1 intercept
 \(\begin{array}{lllll}42.57581 & 2.6 & 0.02 & 1579.81 & 1.00\end{array}\)
 2 ehe41 2m[1] \(\quad 1.29367 \quad 248.9 \quad 1.29 \quad 2.34 \quad 2531.151 .285\)
 3 ehe \(41-2 \mathrm{~m}[4] \quad-0.37847 \quad 9.2-0.38 \quad 1.11 \quad 2520.75-0.369\)
 \(\begin{array}{lrrrrrr}4 & \text { ehe41_2m[6] } & 0.06141 & 0.6 & 0.06 & 1.06 & 2513.73 \\ 5 \text { mnipaqsoth } & 0.02075 & 3.0 & 0.01 & 1.00 & 832.56 & 0.024\end{array}\)
: BLS:CES hpfi
 SEE = 0.10 RSQ \(=0.6722\) RHO \(=-0.10\) Obser \(=144\) from 1993.001
 SEE+1 = \(\quad 0.10\) RBSQ \(=0.6652\) DurH \(=-2.06\) DoFree \(=140\) to 2004.012
 MAPE \(=0.21\) Test period: SEE 0.27 MAPE 0.63 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 hr41m _ - - _ - - _ - _ - - - - - 35.66 - -
 1 intercept
 \(\begin{array}{llllllll}2 \mathrm{hr} 41 \mathrm{~m}[1] & 0.57348 & 24.4 & 0.57 & 1.18 & 35.66 & 0.574\end{array}\)
 \(\begin{array}{lllllll}3 \mathrm{hr} 41 \mathrm{~m}[6] & 0.31212 & 6.2 & 0.31 & 1.00 & 35.65 & 0.313 \\ 4 \mathrm{hr} 41 \mathrm{~m}[12] & 0.01199 & 0.0 & 0.01 & 1.00 & 35.65 & 0.012\end{array}\)
```

            BLS:CES w$fi
    SEE = 0.03 RSQ = 0.9963 RHO = 0.08 Obser = 144 from 1993.001
    SEE+1 = 0.03 RBSQ = 0.9962 DurH = 1.12 DoFree = 139 to 2004.012
    MAPE = 0.26 Test period: SEE 0.13 MAPE 1.11 end 2006.012
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 wag41m _ - _ _ _ _ - - - - _ _ _ _ - - - 8.45 - - -
    1 intercept 0.34299 1.6 0.04 270.97 1.00
    2 wag41m[1] 0.99636 101.8 1.00 1.05 8.44 0.998
    3 wag41m[4] -0.05067 0.4 -0.05 1.05 1.0.0.40
    lllllll
    
# securities, commodity contracts and investment

                    BLS:CES et523
    SEE = 2.18 RSQ = 0.9996 RHO = -0.22 Obser = 144 from 1993.001
    SEE+1 = 2.13 RBSQ = 0.9996 DurH = -2.92 DoFree = 138 to 2004.012
    MAPE = 0.20 Test period: SEE 24.58 MAPE 2.74 end 2006.012
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 ehe42m _ - - - - - - - - - _ - - - - - - 685.57 - - -
    1 intercept 5.09952 4.1 0.01 2415.39 
    2 ehe42m[1] 1.17302 184.7 1.17 2.53 683.54 1.184
    3 ehe42m[4] -0.19987 11.3 -0.20 1.12 677.46 -0.207
    4 mnipaqsoth 0.01546 0.4 0.02 0.0.10
    5 mnipaqsoth[12] -0.01573 0.3 -0.02 1.05 781.60 -0.027
    6 mnipaqvnre 
    
# Insurance

: BLS:CES et524
SEE = 2.59 RSQ = 0.9984 RHO = -0.10 Obser = 144 from 1993.001
SEE+1 = 2.57 RBSQ = 0.9984 DurH = -1.25 DoFree = 139 to 2004.012
MAPE = 0.09 Test period: SEE 26.03 MAPE 0.93 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe43m _ _ _ _ _ _ _ - _ _ _ _ _ _ - - - 2184.81 _ _ -
1 intercept
2 ehe43m[1] 1.23958 304.6 1.24 1.68 2183.38 1.252
3 ehe43m[4]
lrrrrrrr

# Funds, Trusts, etc.

    BLS:CES et525
    SEE = 0.35 RSQ = 0.9988 RHO = -0.06 Obser = 144 from 1993.001
    SEE+1 = 0.34 RBSQ = 0.9988 DurH = -0.68 DoFree = 140 to 2004.012
    MAPE = 0.31 Test period: SEE 4.58 MAPE 4.13 end 2006.012
        Variable name Reg-Coef Mexval Elas NorRes Mean Beta
    0 ehe44m _ - - - _ _ - - - - - - - - - - - 7 75.85 - - -
    1 \text { intercept}
    2 ehe44m[1]
        0.35863 
    3 ehe44m[4] 
    4 ehe44m[12] 
    
# Real estate

: BLS:CES et531
SEE = 3.27 RSQ = 0.9985 RHO = -0.00 Obser = 144 from 1993.001
SEE+1 = 3.27 RBSQ = 0.9984 DurH = 999.00 DoFree = 140 to 2004.012
MAPE = 0.20 Test period: SEE 11.87 MAPE 0.68 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe45m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - 1277.62 _ - -
1 intercept
2 ehe45m[1]

```
```

| 3 ehe $45 \mathrm{~m}[2]$ | -0.04220 | 0.1 | -0.04 | 1.04 | 1273.33 | -0.042 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 mgdp | 0.00413 | 1.9 | 0.03 | 1.00 | 9027.08 | 0.077 |

# Rental and leasing

: BLS:CES et532
SEE = 2.26 RSQ = 0.9981 RHO = 0.04 Obser = 144 from 1993.001
SEE+1 = 2.26 RBSQ = 0.9980 DurH = 0.51 DoFree = 139 to 2004.012
MAPE = 0.26 Test period: SEE 4.23 MAPE 0.56 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe46_1m _ - _ _ - - _ - - - - _ - - - - - 612.10 - - -
1 intercept 5.89633 1.2 0.01 525.79 1.00
2 ehe46_1m[1] 1.00053 165.9 1.00 1.12 611.12 1.014
3 ehe46_1m[6]
4 ehe46_1m[12] -0.09393 [-0.8 -0.09 1.00 1.00 600.03 -0.109
5 mnipāq\mathrm{ mv[6] 0.00057 0.0 0.0.00 1.00 336.53 0.001}
:
BLS:CES et533
SEE = 0.27 RSQ = 0.9956 RHO = -0.01 Obser = 144 from 1993.001
SEE+1 = 0.27 RBSQ = 0.9955 DurH = -0.18 DoFree = 140 to 2004.012
MAPE = 0.77 Test period: SEE 2.02 MAPE 5.93 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe46 2m _ - - - - - - - - - - _ - - - - - 23.89 - - -
1 intercept

| 0.37125 | 2.4 | 0.02 | 227.57 | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1.11575 | 93.0 | 1.11 | 1.04 | 23.81 | 1.131 |
| -0.13818 | 1.1 | -0.14 | 1.00 | 23.68 | -0.144 |
| 0.00915 | 0.0 | 0.01 | 1.00 | 23.46 | 0.010 |

# Legal services

: BLS:CES et5411
SEE = 1.96 RSQ = 0.9992 RHO = 0.02 Obser = 144 from 1993.001
SEE+1 = 1.96 RBSQ = 0.9992 DurH = 0.20 DoFree = 138 to 2004.012
MAPE = 0.14 Test period: SEE 3.84 MAPE 0.28 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe47m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1041.20 _ _ _
1 intercept
11.16727
2 ehe47m[1] 1.05718 81.2 1.06 1.11 1039.73 1.051
3 ehe47m[3] -0.02291 0.0 -0.02 1.07 1036.73 -0.022
4 ehe47m[12] -0.04978 1.7 -0.05 1.03 1023.47 -0.045
5 mnipaqmv 0.00210 0.0 0.00 1.01
6 mnipaqmv[3] 0.01414 0.5 0.5 0.00 1.00 341.15 0.014
:
BLS:CES wppb
SEE = 0.04 RSQ = 0.9996 RHO = -0.23 Obser = 144 from 1993.001
SEE+1 = 0.04 RBSQ = 0.9996 DurH = -3.97 DoFree = 139 to 2004.012
MAPE = 0.18 Test period: SEE 0.09 MAPE 0.41 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 wag47m _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ 14.64 _ - -
1 intercept
2 wag47m[1]
3 wag47m[4]
5 mnipaqsoth 0.00043 2.4 0.02 1.00 832.56 0.043

# computer systems design

: BLS:CES et5415
SEE = 3.62 RSQ = 0.9998 RHO = 0.18 Obser = 144 from 1993.001
SEE+1 = 3.57 RBSQ = 0.9998 DurH = 2.23 DoFree = 140 to 2004.012
MAPE = 0.27 Test period: SEE 105.27 MAPE 7.70 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe48m _ - - - - - - - - - - _ _ - - - - 936.01 - - -
1 intercept -20.85032 9.3 -0.02 6019.41 1.00

```

\# management
: BLS:CES hpps
SEE = 0.07 RSQ \(=0.7976\) RHO \(=0.03\) Obser \(=144\) from 1993.001
SEE+1 \(=\quad 0.07\) RBSQ \(=0.7903\) DurH \(=0.98\) DoFree \(=138\) to 2004.012
MAPE \(=0.16\) Test period: SEE 0.05 MAPE 0.10 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

\(\begin{array}{llllll}1 \text { intercept } & 1.36698 & 0.4 & 0.04 & 4.94 & 1.00\end{array}\)
\(\begin{array}{lllllll}2 \mathrm{hr} 50 \mathrm{~m}[1] & 0.42917 & 8.8 & 0.43 & 1.32 & 32.58 & 0.428\end{array}\)
\(\begin{array}{lllllll}3 \text { hr50m[2] } & 0.11836 & 0.6 & 0.12 & 1.17 & 32.58 & 0.117\end{array}\)
\begin{tabular}{lllllll}
4 & hr50m[3] & 0.35067 & 4.9 & 0.35 & 1.00 & 32.58 \\
\hline
\end{tabular}\(\quad 0.344\)
\(\begin{array}{llllllll}5 \mathrm{hr} 50 \mathrm{~m}[4] & 0.00683 & 0.0 & 0.01 & 1.00 & 32.59 & 0.007\end{array}\)
\(\begin{array}{llllllll}6 & \text { hr50m[6] } & 0.05296 & 0.2 & 0.05 & 1.00 & 32.59 & 0.051\end{array}\)
\# Administrative
: BLS:CES et561
SEE = 30.18 RSQ \(=0.9989\) RHO \(=0.13\) Obser \(=144\) from 1993.001
SEE+1 \(=\quad 29.92\) RBSQ \(=0.9989\) DurH \(=1.65\) DoFree \(=140\) to 2004.012
MAPE \(=0.34\) Test period: SEE 226.76 MAPE 2.45 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta
0 ehe51m - - - - - - - - - - - - - - 6744.55 - - -
1 intercept
\begin{tabular}{rrrrrr}
65.50723 & 1.1 & 0.01 & 948.97 & 1.00 & \\
1.00345 & 309.6 & 1.00 & 1.24 & 6724.09 & 1.017
\end{tabular}
\(\begin{array}{lrrrrrr}2 & 1.0035 & 30.6 & 1.03 & 1.24 & 6724.09 & 1.017 \\ 3 \text { mnipaqvnre } & 1.18153 & 8.4 & 0.13 & 1.23 & 737.62 & 0.169\end{array}\)
\# Waste management and remediation
BLS:CES et562
SEE = \(1.42 \mathrm{RSQ}=0.9968 \mathrm{RHO}=-0.24\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 1.37\) RBSQ \(=0.9967\) DurH \(=-3.02\) DoFree \(=139\) to 2004.012
MAPE \(=0.33\) Test period: SEE 2.06 MAPE 0.47 end 2006.012

\begin{tabular}{llllllll}
5 mgdp & 0.00559 & 3.5 & 0.01 & 1.00 & 9027.08 & 0.019
\end{tabular}
\#Hospitals, residential care

\#Performing Arts, spectator sports, museums, etc.
 SEE = 0.55 RSQ \(=0.9984 \mathrm{RHO}=0.01\) Obser \(=144\) from 1993.001
 SEE+1 = \(\quad 0.55\) RBSQ \(=0.9984\) DurH \(=0.12\) DoFree \(=139\) to 2004.012
 MAPE \(=0.41\) Test period: SEE 1.62 MAPE \(\quad 1.02\) end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 ehe57 2m - - - - - - - - - - - - - 99.96 - - -
 1 intercept
 \(\begin{array}{rrrrrr}0.78629 & 0.4 & 0.01 & 641.08 & 1.00 & \\ 0.99637 & 69.9 & 0.99 & 1.02 & 99.66 & 1.000 \\ 0.03268 & 0.1 & 0.03 & 1.01 & 99.06 & 0.033\end{array}\)
 \(\begin{array}{llllllll}3 & \text { ehe57 2m[3] } & 0.03268 & 0.1 & 0.03 & 1.01 & 99.06 & 0.033\end{array}\)
 4 ehe57_2m[12] \(\quad-0.03795 \quad 0.6-0.04 \quad 1.00 \quad 96.35-0.039\)
 \(\begin{array}{lllllllllllll}5 \text { mnipaq̆rec[12] } & 0.00127 & 0.0 & 0.00 & 1.00 & 227.57 & 0.005\end{array}\)
: BLS:CES wplh
 SEE \(=0.02\) RSQ \(=0.9995\) RHO \(=-0.15\) Obser \(=144\) from 1993.001
 SEE+1 = 0.02 RBSQ \(=0.9995\) DurH \(=-1.77\) DoFree \(=141\) to 2004.012
 MAPE \(=0.19\) Test period: SEE 0.03 MAPE 0.24 end 2006.012
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta

 \(\begin{array}{lrrrrrr}1 \text { intercept } & 0.03261 & 1.6 & 0.00 & 2215.85 & 1.00 & \\ 2 \text { wag57m[1] } & 0.99108 & 2228.5 & 0.99 & 1.07 & 7.79 & 0.990\end{array}\)
 \(\begin{array}{llllllll}3 \text { mnipaqvnrs } & 0.00022 & 3.4 & 0.01 & 1.00 & 257.85 & 0.011\end{array}\)
\# Amusement, Gambling

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable name & Reg-Coef & Mexval & Elas & NorRes & Mean & Beta \\
\hline 0 ehe61m & - & - - - - & - - - & - - - - & 4961.44 & - - - \\
\hline 1 intercept & -11.33681 & 0.0 & -0.00 & 3338.07 & 1.00 & \\
\hline 2 ehe61m[1] & 1.00453 & 536.8 & 1.00 & 1.17 & 4953.76 & 1.011 \\
\hline 3 mnipaqsoth & -0.07319 & 1.3 & -0.01 & 1.02 & 832.56 & -0.038 \\
\hline 4 mgdp [6] & 0.00840 & 0.6 & 0.01 & 1.02 & 8800.77 & 0.035 \\
\hline 5 mnipaqgas & -0.09921 & 1.2 & -0.00 & 1.00 & 165.14 & -0.010 \\
\hline
\end{tabular}
\# Federal Government : General

\# Federal enterprises
SEE \(=4.27\) RSQ \(=0.9860\) RHO \(=-0.07\) Obser \(=144\) from 1993.001
SEE+1 = \(\quad 4.26\) RBSQ \(=0.9855\) DurH \(=-1.22\) DoFree \(=138\) to 2004.012
MAPE \(=\quad 0.35\) Test period: SEE 19.54 MAPE 2.35 end 2006.012
Variable name Reg-Coef Mexval Elas NorRes Mean Beta

0 ehe63m - - - - - - - - - - - - - 845.64 - -
1 ehe63m[1] \(0.81263 \quad 49.5 \quad 0.81 \quad 1.26 \quad 845.74\)
\(\begin{array}{llllllll}2 \text { ehe63m[3] } & 0.20094 & 3.6 & 0.20 & 1.26 & 845.65 & 0.201\end{array}\)
3 mnipaqtr[3] \(\quad-0.25072 \quad 0.4 \quad-0.07 \quad 1.10 \quad 251.63-0.313\)
\(\begin{array}{lllllll}4 \text { mnipaqtr[6] } & 0.15521 & 0.2 & 0.05 & 1.09 & 248.50 & 0.198\end{array}\)
\(\begin{array}{lrrrrrr}5 \text { mnipaqvnrs[1] } & -0.40666 & 2.9 & -0.12 & 1.07 & 256.88 & -0.534 \\ 6 \text { mnipaqvnrs } & 0.45530 & 3.7 & 0.14 & 1.00 & 257.85 & 0.595\end{array}\)
\# SL government

\# SL enterprises

\title{
Appendix 6.5: Glossary of Variables used in Chapter 6
}
\begin{tabular}{|c|c|}
\hline aempprod1 & : Annual employment in production of all private industries, BEA industry accounts \\
\hline agoxx & : Annual nominal gross output of industry \(x x\), BEA \\
\hline agorxx & : Annual real gross output of industry xx, BEA \\
\hline agopxx & : Annual price index of gross output of industry xx, BEA \\
\hline apce37 & : Annual nominal personal consumption expenditure of Publishing industries (includes software), BEA \\
\hline atime & Annual time trend (1970=1) \\
\hline cfur & : Annual nominal personal consumption expenditure of Furniture, including mattresses and bedsprings, BEA \\
\hline ehexx or ehexx_y & : Annual all employee in industry \(x x\) option\# \(y\), BLS \\
\hline ehexxm or ehexx_ym & : Monthly all employee in industry \(x x\) option\# y, BLS \\
\hline exri & : Annual U.S. trade weighted exchange index, FRED \\
\hline exrim & : Monthly U.S. trade weighted exchange index, FRED \\
\hline farmlabexp & : Annual Farm labor expenditure, USDA \\
\hline foodpri & : Annual Price Index of PCE of food, BEA NIPA \\
\hline foodprim & : Monthly Price Index of PCE of food, BEA NIPA \\
\hline gdpa & Annual Nominal Gross Domestic Product, BEA \\
\hline hrxx & : Annual average weekly hours of production workers in industry xx ,BLS \\
\hline hrxxm & : Monthly average weekly hours of production workers in industry xx ,BLS \\
\hline ipsxx or ipsxx_y & : Annual Industrial production index of industry xx option\# y, Federal Reserve \\
\hline ipsxxm or ipsxx_ym & : Monthly Industrial production index of industry xx option\# y, Federal Reserve \\
\hline mcomppce & : Monthly nominal PCE of Computers, peripherals, and software, BEA \\
\hline mcomppceq & : Monthly Price Index of PCE of Computers, peripherals, and software, BEA \\
\hline mempprod1 & : Monthly employment in production of all private industries, BEA industry accounts \\
\hline mfarmlexp & : Monthly Farm labor expenditure, USDA \\
\hline mgdp & : Monthly nominal Gross Domestic Product, BEA \\
\hline mnipaqcloth & : Monthly nominal PCE of Clothing and shoes, BEA \\
\hline mnipaqdoth & : Monthly nominal PCE of Other durables, BEA \\
\hline mnipaqfood & : Monthly nominal PCE of Food, BEA \\
\hline mnipaqfur & : Monthly nominal PCE of Furniture and household equipment, BEA \\
\hline mnipaqgas & : Monthly nominal PCE of Gasoline, fuel oil, and other energy goods, BEA \\
\hline mnipaqho & : Monthly nominal PCE of Household operation, BEA \\
\hline mnipaqhous & : Monthly nominal PCE of Housing, BEA \\
\hline mnipaqme & : Monthly nominal PCE of Medical care, BEA \\
\hline mnipaqmv & : Monthly nominal PCE of Motor vehicles and parts, BEA \\
\hline mnipaqnoth & : Monthly nominal PCE of Other nondurables, BEA \\
\hline mnipaqrec & : Monthly nominal PCE of Recreation, BEA \\
\hline mnipaqsoth & : Monthly nominal PCE of Other services, BEA \\
\hline mnipaqtr & : Monthly nominal PCE of Transportation, BEA \\
\hline \(m n i p a q v f r\) & : Monthly Private fixed investment in Residential, BEA \\
\hline mnipaqvnre & : Monthly Private fixed investment in Nonresidential equipment, BEA \\
\hline mnipaqvnrs & : Monthly Private fixed investment in Nonresidential Structures, BEA \\
\hline mrt722 & : Monthly retail sales of Food services and drinking places, Census \\
\hline
\end{tabular}

\section*{Appendix 6.5 (cont.)}
```

mtime : Monthly time trend (December 1969=0)
mwh42 : Monthly total wholesale sales, Census
nipa37p : Annual Price Index of PCE of Computers, peripherals,
and software, BEA
Oilp : Annual Crude Oil Price, FRED
oilpm : Monthly Crude oil price, FRED
prixx or prixx_y : Annual Producer price index of industry xx option\# y,
BLS
prixxm or prixx_ym
retl : Annual Retail Sales, Total, Census
retlm : Monthly Retail Sales, Total, Census
rtfood : Annual retail sales of Food services and drinking
rtptot : Annual Retail purchase, Total, Census
rtptotm : Monthly Retail purchase, Total, Census
wagxx or wagxx_y : Annual average hourly earnings of production workers in
industry xx option\# y, BLS
wagxxm or wagxx_ym
wagnf : Annual average hourly earnings of production workers,
wagnfm : Monthly average hourly earnings of production workers,
whsl : Annual total wholesale sales, Census
: Annual Producer price index of industry xx option\# y,
BLS
places, Census
: Monthly average hourly earnings of production workers
in industry xx option\# y, BLS
Total Nonfarm, BLS
Total Nonfarm, BLS

```

\section*{Appendix 6.6: Gross Output by Detailed industries in 2006-2008}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Nominal Gross Output (Million of Dollars) & 2005 & 2006 & 2007 & 2008 & 2005-2006 & 2006-2007 & 2007-2008 \\
\hline 1 & Farms & 253,170 & 270,782 & 275,080 & 287,677 & 6.96\% & 1.59\% & 4.58\% \\
\hline 2 & Forestry, fishing, and related activities & 59,202 & 57,028 & 81,832 & 77,267 & -3.67\% & 43.49\% & -5.58\% \\
\hline 3 & Oil and gas extraction & 248,488 & 246,668 & 274,728 & 307,901 & -0.73\% & 11.38\% & 12.08\% \\
\hline 4 & Mining, except oil and gas & 64,368 & 69,190 & 66,923 & 71,471 & 7.49\% & -3.28\% & 6.80\% \\
\hline 5 & Support activities for mining & 83,422 & 141,628 & 173,566 & 214,441 & 69.77\% & 22.55\% & 23.55\% \\
\hline 6 & Utilities & 409,979 & 455,648 & 474,331 & 529,597 & 11.14\% & 4.10\% & 11.65\% \\
\hline 7 & Construction & 1,174,995 & 1,252,784 & 1,360,278 & 1,501,666 & 6.62\% & 8.58\% & 10.39\% \\
\hline 8 & Wood products & 105,013 & 103,552 & 94,447 & 85,411 & -1.39\% & -8.79\% & -9.57\% \\
\hline 9 & Nonmetallic mineral products & 111,788 & 125,743 & 126,527 & 135,038 & 12.48\% & 0.62\% & 6.73\% \\
\hline 10 & Primary metals & 193,520 & 231,278 & 248,754 & 270,089 & 19.51\% & 7.56\% & 8.58\% \\
\hline 11 & Fabricated metal products & 270,896 & 284,251 & 290,519 & 293,506 & 4.93\% & 2.21\% & 1.03\% \\
\hline 12 & Machinery & 287,403 & 315,283 & 328,831 & 338,393 & 9.70\% & 4.30\% & 2.91\% \\
\hline 13 & Computer and electronic products & 381,270 & 436,813 & 460,787 & 470,704 & 14.57\% & 5.49\% & 2.15\% \\
\hline 14 & Electrical equipment, appliances, and components & 109,254 & 117,213 & 123,692 & 128,411 & 7.28\% & 5.53\% & 3.82\% \\
\hline 15 & Motor vehicles, bodies and trailers, and parts & 482,931 & 467,907 & 461,174 & 479,038 & -3.11\% & -1.44\% & 3.87\% \\
\hline 16 & Other transportation equipment & 191,929 & 236,034 & 265,976 & 295,652 & 22.98\% & 12.69\% & 11.16\% \\
\hline 17 & Furniture and related products & 85,380 & 87,714 & 87,140 & 90,102 & 2.73\% & -0.65\% & 3.40\% \\
\hline 18 & Miscellaneous manufacturing & 144,743 & 155,945 & 168,387 & 174,398 & 7.74\% & 7.98\% & 3.57\% \\
\hline 19 & Food and beverage and tobacco products & 658,751 & 695,643 & 794,432 & 807,476 & 5.60\% & 14.20\% & 1.64\% \\
\hline 20 & Textile mills and textile product mills & 68,572 & 67,537 & 63,265 & 60,670 & -1.51\% & -6.33\% & -4.10\% \\
\hline 21 & Apparel and leather and allied products & 35,814 & 36,086 & 34,790 & 23,453 & 0.76\% & -3.59\% & -32.59\% \\
\hline 22 & Paper products & 155,198 & 162,761 & 160,989 & 161,220 & 4.87\% & -1.09\% & 0.14\% \\
\hline 23 & Printing and related support activities & 89,593 & 96,260 & 97,252 & 94,667 & 7.44\% & 1.03\% & -2.66\% \\
\hline 24 & Petroleum and coal products & 397,578 & 407,701 & 495,486 & 606,978 & 2.55\% & 21.53\% & 22.50\% \\
\hline 25 & Chemical products & 539,280 & 545,947 & 546,982 & 562,569 & 1.24\% & 0.19\% & 2.85\% \\
\hline 26 & Plastics and rubber products & 192,909 & 212,460 & 218,144 & 225,126 & 10.13\% & 2.68\% & 3.20\% \\
\hline 27 & Wholesale trade & 1,073,587 & 1,237,017 & 1,427,440 & 1,588,718 & 15.22\% & 15.39\% & 11.30\% \\
\hline 28 & Retail trade & 1,288,716 & 1,406,178 & 1,510,383 & 1,626,061 & 9.11\% & 7.41\% & 7.66\% \\
\hline 29 & Air transportation & 135,068 & 176,208 & 183,593 & 195,844 & 30.46\% & 4.19\% & 6.67\% \\
\hline 30 & Rail transportation & 57,588 & 57,742 & 58,646 & 59,424 & 0.27\% & 1.56\% & 1.33\% \\
\hline 31 & Water transportation & 35,752 & 37,792 & 41,156 & 44,914 & 5.71\% & 8.90\% & 9.13\% \\
\hline 32 & Truck transportation & 250,622 & 264,937 & 287,375 & 314,906 & 5.71\% & 8.47\% & 9.58\% \\
\hline 33 & Transit and ground passenger transportation & 28,726 & 28,604 & 28,940 & 31,735 & -0.42\% & 1.18\% & 9.66\% \\
\hline 34 & Pipeline transportation & 39,053 & 35,698 & 34,282 & 33,685 & -8.59\% & -3.97\% & -1.74\% \\
\hline 35 & Other transportation and support activities & 121,355 & 127,066 & 132,533 & 145,849 & 4.71\% & 4.30\% & 10.05\% \\
\hline 36 & Warehousing and storage & 43,978 & 49,238 & 54,527 & 57,452 & 11.96\% & 10.74\% & 5.36\% \\
\hline 37 & Publishing industries (includes software) & 268,169 & 289,176 & 298,650 & 297,658 & 7.83\% & 3.28\% & -0.33\% \\
\hline 38 & Motion picture and sound recording industries & 86,978 & 91,666 & 96,688 & 100,297 & 5.39\% & 5.48\% & 3.73\% \\
\hline 39 & Broadcasting and telecommunications & 687,822 & 743,219 & 776,378 & 787,875 & 8.05\% & 4.46\% & 1.48\% \\
\hline 40 & Information and data processing services & 118,165 & 123,631 & 128,640 & 129,924 & 4.63\% & 4.05\% & 1.00\% \\
\hline 41 & Federal Reserve banks, credit intermediation, and & 682,942 & 732,837 & 779,864 & 814,201 & 7.31\% & 6.42\% & 4.40\% \\
\hline 42 & Securities, commodity contracts, and investments & 320,693 & 286,224 & 248,949 & 240,298 & -10.75\% & -13.02\% & -3.48\% \\
\hline 43 & Insurance carriers and related activities & 592,952 & 659,147 & 744,531 & 829,765 & 11.16\% & 12.95\% & 11.45\% \\
\hline 44 & Funds, trusts, and other financial vehicles & 93,674 & 115,695 & 121,143 & 133,006 & 23.51\% & 4.71\% & 9.79\% \\
\hline 45 & Real estate /1/ & 2,053,073 & 2,221,504 & 2,423,726 & 2,662,353 & 8.20\% & 9.10\% & 9.85\% \\
\hline 46 & Rental and leasing services and lessors of intangi & 247,528 & 267,118 & 316,242 & 348,951 & 7.91\% & 18.39\% & 10.34\% \\
\hline 47 & Legal services & 245,323 & 256,929 & 270,594 & 281,863 & 4.73\% & 5.32\% & 4.16\% \\
\hline 48 & Computer systems design and related services & 180,407 & 181,914 & 187,082 & 194,555 & 0.84\% & 2.84\% & 3.99\% \\
\hline 49 & Miscellaneous professional, scientific, and techni & 933,598 & 1,063,424 & 1,175,119 & 1,282,543 & 13.91\% & 10.50\% & 9.14\% \\
\hline 50 & Management of companies and enterprises & 367,956 & 382,855 & 432,400 & 488,646 & 4.05\% & 12.94\% & 13.01\% \\
\hline 51 & Administrative and support services & 525,169 & 566,431 & 604,741 & 636,710 & 7.86\% & 6.76\% & 5.29\% \\
\hline 52 & Waste management and remediation services & 66,025 & 69,794 & 75,436 & 83,204 & 5.71\% & 8.08\% & 10.30\% \\
\hline 53 & Educational services & 192,063 & 205,738 & 221,608 & 241,148 & 7.12\% & 7.71\% & 8.82\% \\
\hline 54 & Ambulatory health care services & 649,450 & 686,482 & 745,202 & 811,559 & 5.70\% & 8.55\% & 8.90\% \\
\hline 55 & Hospitals and nursing and residential care facilit & 615,685 & 645,828 & 695,507 & 758,904 & 4.90\% & 7.69\% & 9.12\% \\
\hline 56 & Social assistance & 120,808 & 129,473 & 139,417 & 150,197 & 7.17\% & 7.68\% & 7.73\% \\
\hline 57 & Performing arts, spectator sports, museums, and re & 81,683 & 83,567 & 86,893 & 93,132 & 2.31\% & 3.98\% & 7.18\% \\
\hline 58 & Amusements, gambling, and recreation industries & 101,086 & 107,125 & 114,954 & 121,578 & 5.97\% & 7.31\% & 5.76\% \\
\hline 59 & Accommodation & 170,767 & 179,433 & 199,243 & 215,400 & 5.08\% & 11.04\% & 8.11\% \\
\hline 60 & Food services and drinking places & 461,855 & 487,048 & 499,304 & 516,485 & 5.45\% & 2.52\% & 3.44\% \\
\hline 61 & Other services, except government & 522,252 & 535,339 & 573,564 & 615,880 & 2.51\% & 7.14\% & 7.38\% \\
\hline 62 & General government & 781,886 & 817,805 & 852,569 & 884,398 & 4.59\% & 4.25\% & 3.73\% \\
\hline 63 & Government enterprises & 90,371 & 92,480 & 94,552 & 96,576 & 2.33\% & 2.24\% & 2.14\% \\
\hline 64 & General government & 1,531,929 & 1,587,380 & 1,644,878 & 1,702,753 & 3.62\% & 3.62\% & 3.52\% \\
\hline 65 & Government enterprises & 196,945 & 201,226 & 208,467 & 217,446 & 2.17\% & 3.60\% & 4.31\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Real 2000 Gross Output (Million of Dollars) & 2005 & 2006 & 2007 & 2008 & 2005-2006 & 2006-2007 & 2007-2008 \\
\hline 1 & Farms & 215,052 & 220,011 & 221,079 & 229,290 & 2.31\% & 0.49\% & 3.71\% \\
\hline 2 & Forestry, fishing, and related activities & 57,272 & 55,985 & 57,721 & 53,567 & -2.25\% & 3.10\% & -7.20\% \\
\hline 3 & Oil and gas extraction & 127,206 & 130,655 & 132,380 & 129,324 & 2.71\% & 1.32\% & -2.31\% \\
\hline 4 & Mining, except oil and gas & 48,610 & 48,782 & 46,090 & 47,424 & 0.35\% & -5.52\% & 2.89\% \\
\hline 5 & Support activities for mining & 38,803 & 50,879 & 56,842 & 62,990 & 31.12\% & 11.72\% & 10.81\% \\
\hline 6 & Utilities & 308,632 & 326,804 & 325,695 & 336,083 & 5.89\% & -0.34\% & 3.19\% \\
\hline 7 & Construction & 935,694 & 974,130 & 973,468 & 981,431 & 4.11\% & -0.07\% & 0.82\% \\
\hline 8 & Wood products & 92,357 & 91,336 & 84,267 & 79,865 & -1.11\% & -7.74\% & -5.22\% \\
\hline 9 & Nonmetallic mineral products & 98,513 & 103,171 & 101,423 & 107,480 & 4.73\% & -1.69\% & 5.97\% \\
\hline 10 & Primary metals & 147,582 & 153,104 & 151,179 & 153,675 & 3.74\% & -1.26\% & 1.65\% \\
\hline 11 & Fabricated metal products & 235,857 & 237,165 & 231,001 & 223,859 & 0.55\% & -2.60\% & -3.09\% \\
\hline 12 & Machinery & 264,962 & 280,041 & 281,194 & 278,562 & 5.69\% & 0.41\% & -0.94\% \\
\hline 13 & Computer and electronic products & 525,050 & 637,953 & 708,315 & 734,782 & 21.50\% & 11.03\% & 3.74\% \\
\hline 14 & Electrical equipment, appliances, and components & 101,601 & 106,874 & 110,016 & 111,759 & 5.19\% & 2.94\% & 1.58\% \\
\hline 15 & Motor vehicles, bodies and trailers, and parts & 485,024 & 481,758 & 477,700 & 497,025 & -0.67\% & -0.84\% & 4.05\% \\
\hline 16 & Other transportation equipment & 168,100 & 200,456 & 221,457 & 240,605 & 19.25\% & 10.48\% & 8.65\% \\
\hline 17 & Furniture and related products & 78,323 & 77,912 & 75,719 & 77,054 & -0.52\% & -2.82\% & 1.76\% \\
\hline 18 & Miscellaneous manufacturing & 134,385 & 142,423 & 150,096 & 152,931 & 5.98\% & 5.39\% & 1.89\% \\
\hline 19 & Food and beverage and tobacco products & 563,183 & 593,495 & 619,657 & 620,626 & 5.38\% & 4.41\% & 0.16\% \\
\hline 20 & Textile mills and textile product mills & 66,151 & 64,574 & 59,177 & 55,555 & -2.38\% & -8.36\% & -6.12\% \\
\hline 21 & Apparel and leather and allied products & 35,572 & 35,522 & 33,871 & 22,755 & -0.14\% & -4.65\% & -32.82\% \\
\hline 22 & Paper products & 146,427 & 147,552 & 143,998 & 141,672 & 0.77\% & -2.41\% & -1.62\% \\
\hline 23 & Printing and related support activities & 85,531 & 90,120 & 90,432 & 87,189 & 5.37\% & 0.35\% & -3.59\% \\
\hline 24 & Petroleum and coal products & 224,720 & 196,702 & 223,667 & 262,016 & -12.47\% & 13.71\% & 17.15\% \\
\hline 25 & Chemical products & 438,657 & 426,927 & 416,269 & 408,578 & -2.67\% & -2.50\% & -1.85\% \\
\hline 26 & Plastics and rubber products & 170,619 & 177,371 & 181,109 & 182,881 & 3.96\% & 2.11\% & 0.98\% \\
\hline 27 & Wholesale trade & 972,399 & 1,085,999 & 1,182,849 & 1,284,355 & 11.68\% & 8.92\% & 8.58\% \\
\hline 28 & Retail trade & 1,225,873 & 1,314,233 & 1,388,841 & 1,460,585 & 7.21\% & 5.68\% & 5.17\% \\
\hline 29 & Air transportation & 147,957 & 169,019 & 179,681 & 189,415 & 14.23\% & 6.31\% & 5.42\% \\
\hline 30 & Rail transportation & 47,794 & 44,188 & 43,952 & 42,771 & -7.54\% & -0.53\% & -2.69\% \\
\hline 31 & Water transportation & 29,347 & 31,028 & 34,222 & 36,965 & 5.73\% & 10.29\% & 8.01\% \\
\hline 32 & Truck transportation & 214,465 & 214,541 & 225,916 & 234,689 & 0.04\% & 5.30\% & 3.88\% \\
\hline 33 & Transit and ground passenger transportation & 24,424 & 23,603 & 22,656 & 23,480 & -3.36\% & -4.01\% & 3.64\% \\
\hline 34 & Pipeline transportation & 32,080 & 28,429 & 25,117 & 22,322 & -11.38\% & -11.65\% & -11.13\% \\
\hline 35 & Other transportation and support activities & 100,113 & 102,879 & 104,476 & 107,498 & 2.76\% & 1.55\% & 2.89\% \\
\hline 36 & Warehousing and storage & 40,833 & 43,681 & 46,002 & 48,221 & 6.97\% & 5.31\% & 4.82\% \\
\hline 37 & Publishing industries (includes software) & 268,429 & 287,733 & 297,254 & 297,002 & 7.19\% & 3.31\% & -0.08\% \\
\hline 38 & Motion picture and sound recording industries & 78,072 & 77,536 & 78,774 & 78,536 & -0.69\% & 1.60\% & -0.30\% \\
\hline 39 & Broadcasting and telecommunications & 723,188 & 806,274 & 866,162 & 900,777 & 11.49\% & 7.43\% & 4.00\% \\
\hline 40 & Information and data processing services & 116,550 & 117,465 & 120,739 & 121,454 & 0.79\% & 2.79\% & 0.59\% \\
\hline 41 & Federal Reserve banks, credit intermediation, and & 593,519 & 620,387 & 635,042 & 647,377 & 4.53\% & 2.36\% & 1.94\% \\
\hline 42 & Securities, commodity contracts, and investments & 364,161 & 354,161 & 362,861 & 381,029 & -2.75\% & 2.46\% & 5.01\% \\
\hline 43 & Insurance carriers and related activities & 494,138 & 534,059 & 587,780 & 636,674 & 8.08\% & 10.06\% & 8.32\% \\
\hline 44 & Funds, trusts, and other financial vehicles & 94,909 & 112,711 & 119,476 & 128,793 & 18.76\% & 6.00\% & 7.80\% \\
\hline 45 & Real estate /1/ & 1,782,986 & 1,862,015 & 1,964,428 & 2,090,476 & 4.43\% & 5.50\% & 6.42\% \\
\hline 46 & Rental and leasing services and lessors of intangi & 224,722 & 238,085 & 268,937 & 281,179 & 5.95\% & 12.96\% & 4.55\% \\
\hline 47 & Legal services & 199,537 & 200,341 & 201,929 & 202,778 & 0.40\% & 0.79\% & 0.42\% \\
\hline 48 & Computer systems design and related services & 186,670 & 193,150 & 200,992 & 211,391 & 3.47\% & 4.06\% & 5.17\% \\
\hline 49 & Miscellaneous professional, scientific, and techni & 876,800 & 947,711 & 1,018,006 & 1,096,161 & 8.09\% & 7.42\% & 7.68\% \\
\hline 50 & Management of companies and enterprises & 327,183 & 325,385 & 351,451 & 383,579 & -0.55\% & 8.01\% & 9.14\% \\
\hline 51 & Administrative and support services & 459,005 & 471,529 & 477,045 & 477,790 & 2.73\% & 1.17\% & 0.16\% \\
\hline 52 & Waste management and remediation services & 54,153 & 55,445 & 56,495 & 58,421 & 2.39\% & 1.89\% & 3.41\% \\
\hline 53 & Educational services & 154,539 & 158,954 & 163,190 & 168,347 & 2.86\% & 2.67\% & 3.16\% \\
\hline 54 & Ambulatory health care services & 579,629 & 603,263 & 643,008 & 687,723 & 4.08\% & 6.59\% & 6.95\% \\
\hline 55 & Hospitals and nursing and residential care facilit & 504,922 & 515,545 & 535,316 & 565,149 & 2.10\% & 3.83\% & 5.57\% \\
\hline 56 & Social assistance & 110,909 & 114,683 & 119,687 & 124,740 & 3.40\% & 4.36\% & 4.22\% \\
\hline 57 & Performing arts, spectator sports, museums, and re & 68,246 & 66,039 & 63,086 & 62,356 & -3.23\% & -4.47\% & -1.16\% \\
\hline 58 & Amusements, gambling, and recreation industries & 88,618 & 91,817 & 94,135 & 96,540 & 3.61\% & 2.52\% & 2.56\% \\
\hline 59 & Accommodation & 149,578 & 154,329 & 165,531 & 172,512 & 3.18\% & 7.26\% & 4.22\% \\
\hline 60 & Food services and drinking places & 401,774 & 426,737 & 447,293 & 462,650 & 6.21\% & 4.82\% & 3.43\% \\
\hline 61 & Other services, except government & 444,704 & 439,733 & 455,239 & 473,153 & -1.12\% & 3.53\% & 3.94\% \\
\hline 62 & General government & 631,773 & 637,044 & 618,422 & 594,289 & 0.83\% & -2.92\% & -3.90\% \\
\hline 63 & Government enterprises & 78,843 & 78,205 & 76,937 & 75,554 & -0.81\% & -1.62\% & -1.80\% \\
\hline 64 & General government & 1,252,665 & 1,251,825 & 1,210,575 & 1,163,748 & -0.07\% & -3.30\% & -3.87\% \\
\hline 65 & Government enterprises & 161,670 & 164,568 & 166,466 & 169,144 & 1.79\% & 1.15\% & 1.61\% \\
\hline
\end{tabular}

\section*{Appendix 6.6 (cont.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Price Index (2000=100)}} & & & & & \multirow[b]{2}{*}{2005-2006} & \multirow[b]{2}{*}{2006-2007} & \multirow[b]{2}{*}{2007-2008} \\
\hline & & 2005 & 2006 & 2007 & 2008 & & & \\
\hline 1 & Farms & 117.72 & 123.08 & 124.43 & 125.46 & 4.55\% & 1.10\% & 0.83\% \\
\hline 2 & Forestry, fishing, and related activities & 103.37 & 101.86 & 141.77 & 144.25 & -1.46\% & 39.18\% & 1.75\% \\
\hline 3 & Oil and gas extraction & 195.34 & 188.79 & 207.53 & 238.09 & -3.35\% & 9.92\% & 14.72\% \\
\hline 4 & Mining, except oil and gas & 132.42 & 141.83 & 145.20 & 150.71 & 7.11\% & 2.37\% & 3.79\% \\
\hline 5 & Support activities for mining & 214.99 & 278.36 & 305.35 & 340.44 & 29.48\% & 9.69\% & 11.49\% \\
\hline 6 & Utilities & 132.84 & 139.43 & 145.64 & 157.58 & 4.96\% & 4.45\% & 8.20\% \\
\hline 7 & Construction & 125.57 & 128.61 & 139.74 & 153.01 & 2.41\% & 8.65\% & 9.50\% \\
\hline 8 & Wood products & 113.70 & 113.37 & 112.08 & 106.94 & -0.29\% & -1.14\% & -4.58\% \\
\hline 9 & Nonmetallic mineral products & 113.47 & 121.88 & 124.75 & 125.64 & 7.41\% & 2.36\% & 0.71\% \\
\hline 10 & Primary metals & 131.13 & 151.06 & 164.54 & 175.75 & 15.20\% & 8.93\% & 6.81\% \\
\hline 11 & Fabricated metal products & 114.86 & 119.85 & 125.77 & 131.11 & 4.35\% & 4.93\% & 4.25\% \\
\hline 12 & Machinery & 108.47 & 112.58 & 116.94 & 121.48 & 3.79\% & 3.87\% & 3.88\% \\
\hline 13 & Computer and electronic products & 72.62 & 68.47 & 65.05 & 64.06 & -5.71\% & -4.99\% & -1.53\% \\
\hline 14 & Electrical equipment, appliances, and components & 107.53 & 109.67 & 112.43 & 114.90 & 1.99\% & 2.51\% & 2.20\% \\
\hline 15 & Motor vehicles, bodies and trailers, and parts & 99.57 & 97.12 & 96.54 & 96.38 & -2.45\% & -0.60\% & -0.17\% \\
\hline 16 & Other transportation equipment & 114.18 & 117.75 & 120.10 & 122.88 & 3.13\% & 2.00\% & 2.31\% \\
\hline 17 & Furniture and related products & 109.01 & 112.58 & 115.08 & 116.93 & 3.28\% & 2.22\% & 1.61\% \\
\hline 18 & Miscellaneous manufacturing & 107.71 & 109.50 & 112.19 & 114.04 & 1.66\% & 2.46\% & 1.65\% \\
\hline 19 & Food and beverage and tobacco products & 116.97 & 117.21 & 128.21 & 130.11 & 0.21\% & 9.38\% & 1.48\% \\
\hline 20 & Textile mills and textile product mills & 103.66 & 104.59 & 106.91 & 109.21 & 0.90\% & 2.22\% & 2.15\% \\
\hline 21 & Apparel and leather and allied products & 100.68 & 101.59 & 102.72 & 103.07 & 0.90\% & 1.11\% & 0.34\% \\
\hline 22 & Paper products & 105.99 & 110.31 & 111.80 & 113.80 & 4.07\% & 1.35\% & 1.79\% \\
\hline 23 & Printing and related support activities & 104.75 & 106.81 & 107.54 & 108.58 & 1.97\% & 0.68\% & 0.96\% \\
\hline 24 & Petroleum and coal products & 176.92 & 207.27 & 221.53 & 231.66 & 17.15\% & 6.88\% & 4.57\% \\
\hline 25 & Chemical products & 122.94 & 127.88 & 131.40 & 137.69 & 4.02\% & 2.76\% & 4.79\% \\
\hline 26 & Plastics and rubber products & 113.06 & 119.78 & 120.45 & 123.10 & 5.94\% & 0.56\% & 2.20\% \\
\hline 27 & Wholesale trade & 110.41 & 113.91 & 120.68 & 123.70 & 3.17\% & 5.95\% & 2.50\% \\
\hline 28 & Retail trade & 105.13 & 107.00 & 108.75 & 111.33 & 1.78\% & 1.64\% & 2.37\% \\
\hline 29 & Air transportation & 91.29 & 104.25 & 102.18 & 103.39 & 14.20\% & -1.99\% & 1.19\% \\
\hline 30 & Rail transportation & 120.49 & 130.67 & 133.43 & 138.94 & 8.45\% & 2.11\% & 4.13\% \\
\hline 31 & Water transportation & 121.82 & 121.80 & 120.26 & 121.50 & -0.02\% & -1.26\% & 1.03\% \\
\hline 32 & Truck transportation & 116.86 & 123.49 & 127.20 & 134.18 & 5.67\% & 3.01\% & 5.48\% \\
\hline 33 & Transit and ground passenger transportation & 117.61 & 121.19 & 127.74 & 135.16 & 3.04\% & 5.40\% & 5.81\% \\
\hline 34 & Pipeline transportation & 121.74 & 125.57 & 136.48 & 150.90 & 3.15\% & 8.70\% & 10.56\% \\
\hline 35 & Other transportation and support activities & 121.22 & 123.51 & 126.86 & 135.68 & 1.89\% & 2.71\% & 6.95\% \\
\hline 36 & Warehousing and storage & 107.70 & 112.72 & 118.53 & 119.14 & 4.66\% & 5.15\% & 0.52\% \\
\hline 37 & Publishing industries (includes software) & 99.90 & 100.50 & 100.47 & 100.22 & 0.60\% & -0.03\% & -0.25\% \\
\hline 38 & Motion picture and sound recording industries & 111.41 & 118.22 & 122.74 & 127.71 & 6.12\% & 3.82\% & 4.05\% \\
\hline 39 & Broadcasting and telecommunications & 95.11 & 92.18 & 89.63 & 87.47 & -3.08\% & -2.76\% & -2.42\% \\
\hline 40 & Information and data processing services & 101.39 & 105.25 & 106.54 & 106.97 & 3.81\% & 1.23\% & 0.40\% \\
\hline 41 & Federal Reserve banks, credit intermediation, and & 115.07 & 118.13 & 122.81 & 125.77 & 2.66\% & 3.96\% & 2.41\% \\
\hline 42 & Securities, commodity contracts, and investments & 88.06 & 80.82 & 68.61 & 63.07 & -8.23\% & -15.11\% & -8.08\% \\
\hline 43 & Insurance carriers and related activities & 120.00 & 123.42 & 126.67 & 130.33 & 2.85\% & 2.63\% & 2.89\% \\
\hline 44 & Funds, trusts, and other financial vehicles & 98.70 & 102.65 & 101.40 & 103.27 & 4.00\% & -1.22\% & 1.85\% \\
\hline 45 & Real estate /1/ & 115.15 & 119.31 & 123.38 & 127.36 & 3.61\% & 3.41\% & 3.22\% \\
\hline 46 & Rental and leasing services and lessors of intangi & 110.15 & 112.19 & 117.59 & 124.10 & 1.86\% & 4.81\% & 5.54\% \\
\hline 47 & Legal services & 122.95 & 128.25 & 134.00 & 139.00 & 4.31\% & 4.49\% & 3.73\% \\
\hline 48 & Computer systems design and related services & 96.64 & 94.18 & 93.08 & 92.04 & -2.55\% & -1.17\% & -1.12\% \\
\hline 49 & Miscellaneous professional, scientific, and techni & 106.48 & 112.21 & 115.43 & 117.00 & 5.38\% & 2.87\% & 1.36\% \\
\hline 50 & Management of companies and enterprises & 112.46 & 117.66 & 123.03 & 127.39 & 4.62\% & 4.56\% & 3.54\% \\
\hline 51 & Administrative and support services & 114.41 & 120.13 & 126.77 & 133.26 & 4.99\% & 5.53\% & 5.12\% \\
\hline 52 & Waste management and remediation services & 121.92 & 125.88 & 133.53 & 142.42 & 3.25\% & 6.08\% & 6.66\% \\
\hline 53 & Educational services & 124.28 & 129.43 & 135.80 & 143.24 & 4.14\% & 4.92\% & 5.48\% \\
\hline 54 & Ambulatory health care services & 112.05 & 113.79 & 115.89 & 118.01 & 1.56\% & 1.84\% & 1.82\% \\
\hline 55 & Hospitals and nursing and residential care facilit & 121.94 & 125.27 & 129.92 & 134.28 & 2.73\% & 3.71\% & 3.36\% \\
\hline 56 & Social assistance & 108.93 & 112.90 & 116.48 & 120.41 & 3.65\% & 3.18\% & 3.37\% \\
\hline 57 & Performing arts, spectator sports, museums, and re & 119.69 & 126.54 & 137.74 & 149.36 & 5.72\% & 8.85\% & 8.43\% \\
\hline 58 & Amusements, gambling, and recreation industries & 114.07 & 116.67 & 122.12 & 125.94 & 2.28\% & 4.67\% & 3.13\% \\
\hline 59 & Accommodation & 114.17 & 116.27 & 120.37 & 124.86 & 1.84\% & 3.53\% & 3.73\% \\
\hline 60 & Food services and drinking places & 114.95 & 114.13 & 111.63 & 111.64 & -0.71\% & -2.19\% & 0.01\% \\
\hline 61 & Other services, except government & 117.44 & 121.74 & 125.99 & 130.17 & 3.66\% & 3.49\% & 3.31\% \\
\hline 62 & General government & 123.76 & 128.38 & 137.86 & 148.82 & 3.73\% & 7.39\% & 7.95\% \\
\hline 63 & Government enterprises & 114.62 & 118.25 & 122.90 & 127.82 & 3.17\% & 3.93\% & 4.01\% \\
\hline 64 & General government & 122.29 & 126.81 & 135.88 & 146.32 & 3.69\% & 7.15\% & 7.68\% \\
\hline 65 & Government enterprises & 121.82 & 122.28 & 125.23 & 128.56 & 0.37\% & 2.42\% & 2.66\% \\
\hline
\end{tabular}

\section*{Bibliography}

Clopper Almon, "Thoughts on Input-Output Models in National Accounting Systems with "Superlative" and Chain-Weighted Indexes", personal notes, March 2005
H. N. Barnum and Lyn squire, "Predicting Agricultural Output Response", Oxford Economic Papers, New Series, Vol. 32, No. 2 (July 1980), 284-295
V.R. Berlinguette, "Measurement of Real Output", The Canadian Journal of Economics and Political Science/Revue canadienne d'Economique et de Science politique, Vol. 20, No. 1 (February 1954) 59-75Bureau of Economic Analysis, "A guide to the National Income and Product Accounts of the United States"

Bureau of Economic Analysis, "An Introduction to National Economic Accounting, Methodology Papers: U.S. National Income and Product Accounts", March 1985

Bureau of Economic analysis, "Personal Consumption Expenditures, Methodology Papers: U.S. National Income and Product Accounts",June 1990

Bureau of Economic Analysis, "Updated Summary of NIPA Methodologies", Survey of Current Business, November 2006, page 10-27

Leo Breiman, "Bagging Predictors", Machine Learning, 36, 105-139, 1996.

John Y. Campbell and N. Gregory Mankiw, "Are Output Fluctuations Transitory?", The Quarterly Journal of Economic, Vol. 102, No. 4 (November 1987), 857-880

Lawrence J. Christiano, " P *: Not the Inflation Forecaster's Holy Grail", Federal Reserve Bank of Minneapolis Quarterly Review 13 (1989), 3-18.

Rosanne Cole, Y.C. Chen, Joan A. Barquin-Stolleman, Ellen Dulberger, Nurhan Helvacian, and James H. Hodge, "Quality-Adjusted Price Indexes for Computer Processors and Selected Peripheral Equipment", Survey of Current Business, January 1986, pp 41-50.

Rosanne Cole, "Data Errors and Forecasting Accuracy", Chapter 2 in Jacob Mincer (ed.), Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, National Bureau of Economic Research, 1969.

Carol A. Corrado and Mark N. Greene, "Reducing uncertainty in Short-Term Projections: Linkage of monthly and quarterly models", Journal of Forecasting 7 (1988).

Carol A. Corrado and Jane Haltmaier, "The Use of High-Frequency Data in Model Based Forecasting at the Federal Reserve Board", Finance and Economics Discussion Series 24 (1988), Division of Research and Statistics, Board of Governors of the Federal Reserve System.

Carol A. Corrado and Reifschneider, "A Monthly Forecasting Model of the United States Economy", Board of Governors of the Federal Reserve System (1986).

Dean Croushore and Tom Stark, "A Real-Time Data Set for Macroeconomists", Journal of Econometrics 105 (2001), 111-130.

Dean Croushore, "Forecasting with Real-Time Macroeconomic Data", University of Richmond, June 2005.

Francis X. Diebold and Glenn D. Rudebusch, "Forecasting Output with the Composite Leading Index: A Real Time Analysis", Journal of the American Statistical Association (1991), 603-610.
W.E. Diewert, "Exact and Superlative Index Numbers", Journal of Econometrics 4(2), 1976, pp. 115-145.
W.E. Diewert, "Superlative Index Numbers and Consistency in Aggregation", Econometrica 46(4), 1978, pp 883-900.

Eugene F. Fama, "Inflation, Output, and Money", The Journal of Business, Vol. 55, No. 2. (April 1982), 201-231

John F. Foschen and Herschel I. Grossman, "Tests of Equilibrium Macroeconomics Using Contemporaneous Monetary Data"' Journal of Monetary Economics 10 (1982), 309-333.

Scott Freeman and Finn E. Kydland, "Monetary Aggregates and Output", The American Economic Review, Vol. 90, No. 5. (December 2000), 1125-1135

Norman Frumkin, "Tracking America’s Economy", Second Edition, M.E. Sharpe, Inc., 1992

Jeffrey C. Fuhrer and Jane Haltmaier, "Minimum Variance Pooling of Forecasts at Different Levels of Aggregation", Journal of Forecasting 7 (1988).

Robert E. Hall and Charles I. Jones, "Why Do Some Countries Produce So Much More Output Per Worker Than Others?", The Quarterly Journal of Economic, Vol. 114, No. 1 (February 1999), 83-116

Thomas F. Howells III and Kevin B. Barefoot, "Annual Industry Accounts: Advance Estimate for 2006", Survey of Current Business, BEA, May 2007, 12-25

Thomas F. Howells III, Kevin B. Barefoot, and Brian M. Lindberg, "Annual Industry Accounts: Revised Estimates for 2003-2005", Survey of Current Business, BEA, December 2006, 45-55

Philip E. Howrey, Saul H. Hymans, and Michael R. Donihue, "Merging Monthly and Quarterly Forecasts: Experience with MQEM", Journal of Forecasting 10 (1991).

Atsushi Inoue and Lutz Kilian, "Bagging Time Series Models", Preliminary paper, 2003

Timotej Jagric, "Forecasting with Leading Economic Indicators---A Neural Network Approach", Business Economics, October 2003.

Konstantin A. Kholodilin and Wenxiong Vincent Yao, "Business Cycle Turning Points: Mixed-Frequency Data with Structural Breaks", IRES, September 2004.

John Kitchen and Ralph Monaco, "Real-Time Forecasting in Practice", Business Economics, October 2003.

Kevin L. Kliesen, "How Well Does Employment Predict Output?", Federal Reserve Bank of St. Louis Review, (2007),Volume 89, Number 5, 433-446
J. Steven Landefeld and Bruce T. Grimm, "A Note on the Impact of Hedonics and Computers on Real GDP", Survey of Current Business, December 2000, pp 17-22.

Robert B. Litterman, "Above-Average National Growth in 1985 and 1986", Federal Reserve Bank of Minneapolis Quarterly Review 8 (1984), 3-7.

Roberto S. Mariano and Hisashi Tanizaki, "Prediction of Final Data with Use of Preliminary and/or Revised Data", Journal of Forecasting (1994).

Roberto Mariano and Yasutomo Murasawa, "A New Coincident Index of Business Cycles based on Monthly and Quarterly data", Journal of Applied Econometrics, 18, 427-443, 2003.

Margaret M. McConnell and Gabriel Perez-Quiros, "Output Fluctuations in the United States: What Has Changed Since the Early 1980's?", The American Economic Review, Vol. 90, No.5. (December 2000), 1464-1476

Douglas S. Meade, "Why Real Value Added Is Not My Favorite Concept", Working paper, 2006

Preston J. Miller and Daniel M. Chin, "Using Monthly Data to Improve Quarterly Model Forecasts", Federal Reserve Bank of Minneapolis Quarterly Review (1996).

Larry R. Moran and Clinton P. McCully, "Trends in Consumer Spending 1959-2000", Survey of Current Business, March 2001, page 15-21

Marc Nerlove, "Hedonic price functions and the measurement of preferences: The case of Swedish wine consumers", European Economic Review (39), 1995, pp 1697-1716.
K. D. Patterson, "An Integrated Model of the Data Measurement and Data Generation Process with an Application to Consumers' Expenditure", The Economic Journal, Volume 105, Issue 428, 1995, 54-76.

George L. Perry, Michael L. Wachter, Otto Eckstein, and Peter K. Clark, "Potential Output and Productivity", Brookings Papers on Economic Activity, Vol. 1997, No. 1. (1977), 11-60

Peter Rathjens and Russell P. Robins, "Forecasting Quarterly Data Using Monthly Information", Journal of Forecasting 12 (1993).
T.W. Schultz, "Output-Input Relationships Revisited", Journal of Farm Economic, Vol. 40, No. 4 (November 1958), 924-932

Eugene P. Seskin and Daniel Larkins, "Improved Estimates of the National Income and Product Accounts for 1929-2002", Survey of Current Business, February 2004, page 7-29

George M. Smith, Mathew J. Gruenberg, Tameka R.L. Harris, and Erich H. Strassner, "Annual Industry Accounts: Revised Estimates for 2001-2003", Survey of Current Business, BEA, January 2005, 9-43

James H. Stock and Mark W. Watson, "Forecasting Output and Inflation: the Role of Asset Prices", Journal of Economic Literature, Vol. 41, NO. 3 (September 2003), 788-829

Norman R. Swanson and Halbert White, "A Model Selection Approach to Assessing the Information in the terms Structure Using Linear Models and Artificial Neural Networks", Journal of Business and Economic Statistics 13 (1995), 265-275.

Jack E. Triplett, "The Economic Interpretation of Hedonic Methods", Survey of Current Business, January 1986, pp 36-40.

Ugo Trivellato and Enrico Rettore, "Preliminary Data Errors and Their Impact on the Forecast Error of Simultaneous-Equations Models", Journal of Business and Economic Statistics 4 (1986), 445-453.

Robert E. Yuskavage and Yvon H. Pho, "Gross Domestic Product by Industry for 1987-2000: New Estimate on the North American Industry Classification System", Survey of Current Business, BEA, November 2004, 33-53

Robert E. Yuskavage and Mahnaz Fahim-Nader, "Gross Domestic Product by Industry for 1947-86: New Estimates Based on the North American Industry Classification System", Survey of Current Business, BEA, December 2005, 70-84

Peter Zadrozny, "Estimating a Multivariate ARMA Model with Mixed Frequency Data: an Application to Forecasting U.S. GNP at Monthly Intervals", Center for Economic Studies Discussion Paper 90-5 (1990), Bureau of Census, U.S. Department of Commerce.```

[^0]: 1 Some parts of the following background and suggestions are a summary of Clopper Almon's note, "Thoughts on Input-Output Models in National Accounting Systems with "Superlative" and Chain Weighted Indexes", March 2005.
 2 Solow, Robert M. "We'd Better Watch Out." New York Times Book Review, July 12, 1987, p. 36.

[^1]: 3 The BEA deflator is not as extreme as this example. It says that a dollar's worth of computer in 2005 gave about 50 times as much pleasure as did a dollar's worth in 1981. Had the modern microcomputer been available in 1981 at $\$ 150.000$ it would have been comparable in cost to mid-range minicomputers of that time, but actually it is much more powerful in terms of processor speed and disk storage than were those machines.

[^2]: 4 "Bad deflators drive out good."
 5 It should be noted that computer is not the only product deflated with the hedonic index. BEA now also uses hedonic index with other goods such as apparel and prepackaged software. With the exception of computers, these products do not lead to significant substitution bias. Landefeld and Grimm (2000) show that, for software prices, the contribution of software investment to real GDP growth is almost identical to its contribution to nominal GDP growth. The impact of prepackaged software hedonic price on the software deflator is offset by the price deflator of other software components such as custom software and own-account software.

[^3]: 7 Irving Fisher, The Making of Index Numbers (Boston, 1922)

[^4]: 8 http://www.bea.gov/national/nipaweb/nipa underlying/DownSS2.asp

[^5]: 9 http://www.eia.doe.gov/emeu/mer/prices.html, Table 9.1

[^6]: 17 The BEA name of the file is detailedness_inv1.xls. To get to it from the BEA main website, www.bea.gov, click "Fixed Assets", then under "Fixed assets" to the right of "Interactive tables" click "Fixed assets tables." Then to the right of "Download a spreadsheet of" click "Detailed fixed assets tables." On the screen where that brings you look for " 2 . Nonresidential detailed estimates". Under it find " 5 . Investment, historical cost" To the far right click on "XLS" and download the file. The last tab, called "Datasets" has all of the series in one sheet.

[^7]: $18 \mathrm{http}: / / w w w . b e a . g o v /$ national/nipaweb/SelectTable.asp

[^8]: 1. Consists primarily of religious, educational, vocational, lodging, railroads, farm, and amusement and recreational structures, net purchases of used structures, and brokers' commissions on the sale of structures. 2. Consists primarily of manufactured homes, improvements, dormitories, net purchases of used structures, and brokers' commissions on the sale of residential structures.
[^9]: 19 For Nonresidential construction, four of the five series had almost the same deflator with that for manufacturing being slightly the most stable; it was used for all series so that in any quarter the relative sizes are the same as the relative sizes of the current price series. The outlier deflator was Mining exploration, shafts, and wells. As high oil prices strongly stimulated exploration beginning in 2001, costs also rose sharply. For Residential construction, all deflators rose nearly proportionally and the average has been used for all series. Residential equipment was deflated by its own deflator, which grew much less rapidly than any of the deflators for structures.

[^10]: 22 Includes buildings and structures used by the retail, wholesale and selected service industries. Consists of auto dealerships, garages, service stations, drug stores, restaurants, mobile structures, and other structures used for commercial purposes. Bus or truck garages are included in transportation., Source:BEA

[^11]: $26 \mathrm{http}: / / \mathrm{www} . b l \mathrm{~s} . g o v / \mathrm{ces} / \mathrm{home} . \mathrm{htm}$
 27 http://www.bls.gov/cps/home.htm

[^12]: $30 \mathrm{http}: / / \mathrm{www} . c e n s u s . g o v / m w t s / w w w / m w t s . h t m l$
 31 http://www.census.gov/mrts/www/mrts.html
 $32 \mathrm{http}: / / \mathrm{www} . e r s . u s d a . g o v / D a t a / F a r m I n c o m e / f i n f i d m u W k 4 . h t m$
 33 http://research.stlouisfed.org/fred2/

