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The classic model of moral hazard suggests that health insurance may reduce

preventive care because the insurer will pay for part of the treatment in case of

disease. However, if health insurance covers preventive care as well, the reduced

cost of preventive care will encourage the insured to consume more preventive care.

These two countervailing effects are referred to as ex ante and ex post moral hazards

(Zweifel & Manning 2000). Most studies do not distinguish the two effects, leading

to a potentially wrong characterization of moral hazard.

Using Medicare coverage as an example, this thesis identifies ex ante and ex

post moral hazard effects of health insurance on cancer prevention. As we know,

Medicare eligibility rules increase health insurance coverage at age 65. However,

some preventive screenings were not covered in Medicare until recently. The different

timing of Medicare eligibility and Medicare expansion of preventive care allows me

to use a difference-in-differences framework to separate ex ante and ex post moral

hazards.



I focus on female uptake of breast cancer screening and male uptake of prostate

cancer screening, using the Medical Expenditure Panel Survey (MEPS) and the Na-

tional Health Interview Survey (NHIS). In both datasets, I find evidence in support

of ex ante and ex post moral hazards. No evidence shows that people try to delay

screening until it has been covered by Medicare. Moreover, the level of prevention

and responsiveness to insurance changes vary with demographics, with larger effects

among whites and the better-educated.

Then I take a second look at the moral hazard problem in the health insurance

market using the Health and Retirement Study (HRS). Compared with MEPS or

NHIS, the panel nature of HRS allows me to control for individual fixed effects

and therefore provides a more stringent test. The major findings on female uptake

of breast cancer screening are consistent. I find strong ex ante and ex post moral

hazard effects in female uptake of breast cancer screening, and individual reactions to

Medicare enrollment and Medicare’s preventive care coverage vary by factors such

as race and income. However, moral hazards on male uptake of prostate cancer

screening is not found, mainly due to poor quality of data.
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Chapter 1

Introduction & Background

1.1 Introduction

The classic model of moral hazard suggests that health insurance may reduce

the incentive for prevention because it lowers out-of-pocket medical cost in case of

disease. The reduced incentive may result in an increase in unhealthy behaviors and

a decrease in the usage of preventive care. While this moral hazard problem is always

mentioned as a reason for too little prevention in health care, the empirical evidence

of its existence is limited. In comparison, researchers have found a significant moral

hazard effect in other insurance contexts 1.

There are at least two arguments for why moral hazard may not be an im-

portant problem in health insurance. The first is that the moral hazard effect is

neutralized by risk aversion (Zweifel and Manning, 2000). Alternatively, moral haz-

ard may be solved by the fact that health insurance covers the financial but not the

health loss of a serious illness (Kenkel, 2000).

However, both arguments fail to explain why we observe little moral hazard in

health insurance but a significant amount in other contexts, such as workers’ com-

1For discussion on workers’ compensation, please refer to Ruser, 1985, 1991; Kaestner and

Carroll, 1997; and Fortin and Lanoie, 2000. For discussion on automobile insurance, please refer

to Cummins and Tennyson, 1996; and Dionne et al., 2004.
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pensation and automobile insurance. Lack of prevention can result in severe health

events in all three insurance contexts. But none of them address the health loss.

For example, skipping routine cancer screening exams may not detect cancer in a

timely manner and lose the precious time for treatment in early stage; less precau-

tion at work place increases the probability of getting in serious accident; aggressive

driving may lead to fatal accident. Health insurance, workers’ compensation, and

automobile insurance all cover part or all of the insurees in medical costs, but not

health loss.

This thesis aims to solve this puzzle by investigating two types of moral hazard

in health insurance. On the one hand, health insurance may reduce preventive care

because the insurer will pay for part of the treatment in case of disease. This is

the classic moral hazard. On the other hand, if health insurance covers preventive

care as well, the preventive coverage will encourage the insured to consume more

preventive care. These two countervailing effects are referred to as ex ante and ex

post moral hazards2 (Zweifel and Manning, 2000). Failure to distinguish the two

may lead to a conclusion of non-existence because the two moral hazard effects may

cancel one another out.

Using Medicare coverage as an example, I use a difference-in-differences (DD)

approach to separate ex ante and ex post moral hazards. More specifically, Medi-

care eligibility rule increases health insurance coverage at age 65, which allows me

to identify ex ante moral hazard (i.e., reduced prevention due to medical care cov-

erage) by comparing preventive behaviors among people just before and just after

2For definitions of ex ante and ex post moral hazards, the reader is referred to Section 1.3.1.
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65. The same identification strategy has been used to study the impact of Medi-

care enrollment on preventive behavior and health care utilization in several papers

(McWilliams et al., 2003; Decker et al., 2006; Dave and Kaestner, 2006; Card et al.,

2004, 2007).

To estimate ex post moral hazard (i.e., increased prevention due to preventive

care coverage), I use two policy changes that expanded Medicare preventive care

coverage in recent years. Medicare covers annual breast cancer screening for female

beneficiaries since 1998 and covers annual prostate cancer screening for male bene-

ficiaries since 2000. The transition of breast cancer screening from no coverage to

full coverage occurred in 1998. It happened right after the passage of the act that

enacted the change, which makes the transition unlikely to be anticipated. It affects

Medicare female beneficiaries directly but not the younger female cohorts (age 55-

64) who are not eligible for Medicare. The transition of prostate cancer screening is

somewhat anticipated. Later on I examine the anticipation effect explicitly.

The DD approach has several appealing features. First, using the DD frame-

work, I can differentiate ex post moral hazard from ex ante moral hazard. If we do

not separate them, the estimate based on the Medicare eligibility alone will capture

the net sum of the two moral hazards.

The second advantage of the research design is that it solves the endogeneity

problem arising from insurance coverage because the age threshold for Medicare

eligibility provides an exogenous variation in insurance status. Figure 2.1 shows that

Medicare coverage rate jumps from about 10% to 90% at age 65. The expansion of

Medicare preventive coverage offers a second exogenous source of variation focusing

3



on the insurance coverage of preventive care.

Another favorable feature of this study is the choice of prostate cancer and

breast cancer. The reason is that they are less heavily influenced by behavioral

factors than most other chronic diseases. Age, gene mutation, and a personal or

family history of breast cancer are the most important factors affecting female breast

cancer risk; age, race/ethnicity, and family history of the disease are well-established

risk factors of prostate cancer(ACS, 2008). The research design would not work as

well for conditions like heart attach or hip fracture.

The empirical analysis employs three data sets, the Medical Expenditure Panel

Survey (MEPS), the National Health Interview Survey (NHIS), and the Health and

Retirement Study (HRS). They are national interviews and survey a broad range of

health and healthcare related questions. The first two are cross-sectional, and have

large sample sizes, while the third is longitudinal, and contains fewer observations.

They all have pros and cons in terms of quality of data and use for estimation, and

they complement each other’s shortcomings.

I find evidence on both types of moral hazards. From the MEPS, ex ante

moral hazard is found to decrease male uptake rate of prostate cancer screening by

6.5% and ex post moral hazard is found to increase it by 9.8%. With the MEPS

and NHIS combined, the study shows that ex ante moral hazard decreases female

uptake rate of breast cancer screening by 5.8%, and ex post moral hazard increases

it by 7.1%.

In the extreme case, if the estimated moral hazard effects are solely driven

by the uninsured before age 65, ex ante and ex post moral hazards affect male PSA

4



testing by 12.5% and 18.9%, and female mammogram screening by 17.1% and 21.0%

respectively. It is plausible that it is bigger for the uninsured as it is a bigger change

for them and they may be more sensitive to copays.

Using the HRS, I find stronger evidence in support of two moral hazards on

female uptake of breast cancer screening. Ex ante and ex post moral hazards are

found to change the rate of breast cancer screening by −7.4% and 9.8% respectively.

They are statistically significant, and larger than the corresponding numbers in the

MEPS and NHIS data (−5.9% and 7.1%). As I discuss below, estimation on male

uptake of prostate cancer screening using the HRS is problematic due to poor quality

of data.

Another interesting finding is that the two countervailing effects, ex ante and ex

post moral hazards, are of similar magnitudes, and cancel off each other if combined.

This may help to explain why previous literature has not found evidence on ex

ante moral hazard upon Medicare enrollment. The magnitude of the two effects

varies with demographics, such as race/ethnicity, marital status, education and

income/wealth. Higher education is associated with higher level of screening and

larger effects of ex ante and ex post moral hazards.

Several robustness tests are done to verify the validity of the empirical ap-

proach using the MEPS and NHIS. First, I test whether people delay taking screen-

ings around the time of policy change and around age 65. Delaying screenings would

invalidate my research design and bias the estimates on ex ante and ex post moral

hazards. I find no evidence that supports the delay hypothesis. Second, I conduct

falsification tests to investigate whether the discontinuity found in the year of the
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policy change can be found in other years. Test results confirm the research design

and validates the assumptions that the study rely on. Due to data limitation, the

robustness tests are not carried out with the HRS.

Understanding the effect of health insurance on the uptake of preventive care

has important policy implications. CDC (2003) estimates that chronic diseases

account for roughly 75% of the $1 trillion spend on health care costs each year,

and that more than 125 million Americans live with chronic conditions. The focus

of our health care system over the past century has not been on prevention, but

on treatment. If people get sick, they get care. But little is spent to keep people

healthy in the first place and detect disease in early stage when it is most curable.

With the passage of the new health care law, the situation may change.

Congress approved a set of wide-ranging health promotion initiatives to prevent

disease and encourage healthy behavior. Health reform made covering preven-

tion mandatory. Health insurance companies will soon have to cover all recom-

mended screenings, preventive care and vaccines, without charging co-payment or

deductibles.

H.R. 3590 - the Patient Protection and Affordable Care Act (PPACA), which

was signed into law on March 23, 2010, aims to promote preventive health care and

improve the public health. Prevention provisions in the PPACA are summarized

in Appendix A. According to the Implementation Timeline of PPACA, all new

group health plans and plans in the individual market must provide full coverage

for preventive services without co-pay and deductibles in 2010. And all health plans

will be forced to comply by 2018. For Medicare beneficiaries, a free, annual wellness
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visit and personalized prevention plan services will be provided, and cost-sharing

for preventive services will be eliminated since 2011.

This study suggests that changes will increase the use of preventive care. Ex

ante moral hazard is found to cause reduction in preventive care, and ex post moral

hazard can help offset that negative effect. With the removal of financial barriers to

preventive care, more people are expected to use regular preventive care. According

to the Annual Estimate of the Resident Population by U.S. Census Bureau, 26.8

million men and 50.7 million women fall into the recommended age group for prostate

cancer screening and breast cancer screening and are not eligible for Medicare yet

in 2008. This study estimates that each year 710 thousand more men and 1,582

to 1,901 thousand more women would use regular prostate cancer screening and

breast cancer screening respectively. Although it may not stop the medical cost

from growing in the short run, people will be having better quality of life and social

welfare will be improved.

1.2 Outline of Thesis

The rest of Chapter 1 first reviews current theoretical and empirical papers

on the effect of health insurance on preventive care and the debate on the existence

of moral hazard in health insurance. It explores the reason why current empirical

evidence does not offer support for moral hazard by introducing another effect of

health insurance on preventive care utilization, ex post moral hazard.

Then some background information is offered. This thesis studies Medicare
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and its preventive care coverage, focusing on two types of cancers, breast cancer and

prostate cancer, and their corresponding screening tests. Facts on Medicare and its

preventive care coverage are presented and recent studies on cancers and medical

guidelines on preventive screenings are discussed.

At the end of Chapter 1, a theoretical model is presented to study ex ante and

ex post moral hazards caused by insurance coverage on preventive care. The focus is

on the Medicare expansion and its impact on the elderly uptake of preventive care.

According the model, obtaining Medicare at age 65 has two potentially offsetting

effects on prevention. On one hand, getting Medicare may reduce prevention because

it lowers the cost of medical care in case of disease, which is ex ante moral hazard.

On the other hand, Medicare coverage of preventive services reduces the cost of

preventive care, and the financial incentive may increase prevention, which is ex

post moral hazard.

Chapter 2 empirically studies ex ante and ex post moral hazards using the

MEPS and NHIS. The following question is asked - how to identify ex ante and ex

post moral hazards? An empirical framework is developed, validity of the design

is verified, and estimation issues are discussed. To analyze changes in male uptake

of prostate cancer screening, I use survey data from the pooled 1998-2005 MEPS.

For female uptake of breast cancer screening, I supplement these data with pooled

1993-1994 NHIS which provides pre-1998 data on breast cancer screening.

The estimation indicates that both types of moral hazards exist, and that

they are of similar magnitudes and cancel off each other if combined. That helps

explain why previous literature did not find evidence on ex ante moral hazard upon
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Medicare enrollment. The magnitude of the two effects varies with demographics,

with larger effects among white and more educated people. Robustness tests are

done and confirm the research design.

Chapter 3 use the HRS data to evaluate ex ante and ex post moral hazards.

First, the pro’s and con’s of MEPS/NHIS and HRS are discussed. To complement

the shortcomings of the MEPS and NHIS data, HRS is used to control individual

effect. Empirical framework and data are described in details, as also are the esti-

mation results. It is found that evidence on ex ante and ex post moral hazards on

female uptake of breast cancer screening is stronger and that the estimated effects

are larger than those from the MEPS and NHIS. They are significant in all model

specifications. However, estimation on male uptake of prostate cancer screening

using the HRS is problematic due to poor quality of data.

1.3 Background

1.3.1 Two Moral Hazards

Ex ante moral hazard refers to the possibility that health insurance for curative

care reduces incentives for prevention (Ehrlich and Becker, 1972; Pauly, 1986). It is

“ex ante” because it concerns the effect of insurance on the actions that an individual

takes before the possible health event and the provision of medical care (Zweifel

and Breyer, 1997). If the market price of health insurance is actuarially fair and

reflects preventive activities, the insured has the correct incentives to spend on

prevention because it lowers the price of insurance. But if the insurer can not
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observe some of the actions of the insured and therefore the price of insurance

does not reflect individuals’ cost of prevention, the purchase of market insurance

decreases the demand for prevention and creates ex ante moral hazard. In short, ex

ante moral hazard problem stems from an informational asymmetry.

In contrast, ex post moral hazard refers to the possibility that health insurance

increases incentive for medical care consumption because health insurance reduces

the net price of medical care. It is not caused by asymmetric information and has

nothing to do with morality. It is essentially a price effect (Pauly, 1968). The

problem of ex post moral hazard has received a great deal of attention in health

economics, but few works have been done to analyze the ex post moral hazard

problem in preventive care as it is often thought as an insignificant problem (Cutler

and Zeckhauser, 2000; Kenkel, 2000). This thesis shows that ex post moral hazard

problem is important and it helps identify the “pure” ex ante moral hazard.

There are theoretical reasons to believe the existence of ex ante moral haz-

ard in health insurance market, but there is very limited empirical evidence on it.

Researchers have mixing views on this dilemma. For example, some researchers

support the ex ante moral hazard hypothesis. Klick and Stratmann (2007) find that

mandated health insurance coverage for the treatment of diabetes does generate a

moral hazard problem with diabetics exhibiting higher BMIs after the adoption of

the mandates. In contrast, other researchers do not find any ex ante moral haz-

ard effect. Newhouse and the Insurance Experiment Group (1993) find that less

generous insurance had no significant effect on health behavior such as smoking,

drinking, and exercise. Courbage and Coulon (2004) show that purchasing private
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health insurance in Britain does not significantly affect the probability of exercising,

physical check-ups and smoking.

Using the Medicare eligibility rule of age 65, several researchers have studied

ex ante moral hazard problem and found no positive evidence for its existence.

McWilliams et al. (2003) and Decker et al. (2006) estimate that obtaining Medicare

at age 65 significantly increased the uptake rates of breast cancer screening and

prostate cancer screening; Dave and Kaestner (2006) find no significant increase in

unhealthy behaviors (less exercise, smoking and alcohol use) among elderly persons;

Card et al. (2004) find that Medicare coverage is not strongly associated with the

increased use of breast or prostate cancer screenings.

One explanation for the conflict between theoretical prediction and empirical

findings is that previous empirical works do not isolate ex post moral hazard from ex

ante moral hazard. Since health insurance reduces the net price of both preventive

services and curative cares, the use of both services will go up. In other words,

while the insurance coverage of curative care may reduce prevention due to ex ante

moral hazard, the coverage of preventive services may increase prevention due to ex

post moral hazard. The failure to distinguish the two effects will lead to a potential

cancellation of the two moral hazards. For papers listed above which use Medicare

eligibility rule to study the use of cancer screenings, their data covers the period

over which Medicare covers cancer screenings, and therefore their estimates do not

reflect the pure ex ante moral hazard effect. Rather, they capture the sum of ex

ante and ex post moral hazards.
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1.3.2 Too Little Prevention?

With the objective of improving health, public health professionals commonly

emphasize the importance of prevention and encourage greater use. According to

an estimate of total spending on prevention in the U.S. by the Centers for Disease

Control and Prevention (CDC, 1992), prevention is not being used at levels recom-

mended by major professional organizations such as the U.S. Preventive Services

Task Force and the American Cancer Society.

However, economists tend to approach the question of what is the optimal level

of prevention and what level represents an appropriate balance between prevention

and cure differently than do public health professionals. In economics, an opti-

mal level of prevention is reached where the marginal benefits equals the marginal

costs. This approach in prevention study is somewhat foreign and even controversial

(Kenkel 2000).

Another way to study whether there is enough prevention is to look at social

welfare and economic efficiency. One question needs to be answered is whether there

are relevant market failures, like ex ante moral hazard caused by insurance coverage.

My thesis focuses on the moral hazard problem.

Externalities are important market failures as well. Phelps (1992) introduces

the concept of ”herd immunity” where an individual’s chances of getting an infec-

tious disease fall when others in the society are immune because of previous vacci-

nations. Since societal marginal benefits of a vaccination exceed private marginal

benefits, private vaccination decisions will result in a vaccination rate that is less
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than the socially optimal rate. This provide a ground for government involvement

in prevention.

Health economics researchers also have done study on the link between lack of

consumer information and demand of prevention. Because consumers lack informa-

tion about the health consequences of their choices, they will fail to make optimal

personal prevention choices. Kenkel (1991a) finds that people knew a great deal but

not everything about the health effects of smoking and that people knew less about

drinking and exercise. Viscusi (1990) and Kenkel (1991b) show that information is

an important determinant of cigarette demand.

1.3.3 Medicare and Preventive Care Coverage

Medicare is a health insurance program for the elderly, which covers nearly

40 million Americans. In general, individuals are eligible for Medicare if they are

65 years or older and they or their spouses have worked for at least 10 years in

Medicare-covered employment3. Medicare coverage begins on the first day of the

month in which they turn 65. Younger people might also qualify for coverage if they

have a disability or an End-Stage Renal disease.

Medicare beneficiaries are automatically enrolled in Medicare Part A (hospital

insurance) free of charge, which helps pay for the health care services delivered in a

hospital and skilled nursing facility, home health care, and hospice care. Medicare

beneficiaries may choose whether or not to accept Part B (medical insurance), which

3Individuals who do not quality may still enroll in Medicare at age 65 by paying monthly

premiums for both Part A and Part B.
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helps pay for doctor visits, outpatient hospital care, and other medical services.

The monthly premium for Part B is $96.40 in 2008. Part B is optional and may

be deferred if the beneficiary or their spouse is still actively working. There is a

lifetime penalty (10% per year) imposed for not enrolling in Part B unless actively

working.

Figure 2.1 shows the effects of reaching age 65 on Medicare coverage and any

coverage for male and female respectively. Medicare coverage jumps from 10% at

age 64 to 90% at age 65, and the jump for female sample is larger than that of the

male sample. There is an increase for any coverage at age 65 as well due to Medicare

coverage, and after age 65 the fraction of any coverage remains stable.

Although Medicare program started in 1965, it did not cover a number of

clinical preventive services until recently. The Balanced Budget Act of 1997 (BBA)

expanded coverage of preventive care. First, effective January 1, 1998, Medicare

covers an annual screening mammogram for all women over age 39, and waives the

Part B deductible for screening mammogram. Second, effective January 1, 2000,

Medicare provides coverage for annual prostate cancer screening for men over age

50, and no Part B deductible for the PSA test. A prostate-specific antigen (PSA)

blood screening is included.

This change significantly brings down the cost of screenings of breast cancer

and prostate cancer for Medicare beneficiaries. For one without health insurance,

the average cost of mammogram is about $100, and may cost up to $400. And a

PSA test costs $70 to $400 without insurance. Under Medicare coverage, eligible

women are only responsible for the Part B 20% coinsurance amount for an annual
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mammogram and eligible men pays no coinsurance for an annual PSA test.

Is financial incentive enough for Medicare beneficiaries to respond? Neuman et

al. (2009) find that health care spending is a heavy financial burden among Medicare

beneficiaries. In 2006, out-of-pocket health care spending comprised a larger share of

total expenditures for Medicare households (14.1%) than non-Medicare households

(4.3%). And, top quartile of Medicare households spends on average 32.9% of total

expenditures on health care. Thus, the difference in the cost of screenings with and

without Medicare is a financial incentive for Medicare beneficiaries to utilize those

screenings.

1.3.4 Cancers and Preventive Screenings

Cancer is one of the most severe chronic diseases. In the U.S., nearly 20%

of adults aged 65 and older have cancer (CDC, 2004), and it is the second most

common cause of death, accounting for 1 of every 4 deaths (ACS, 2008). According

to the estimate by National Institutes of Health, the overall costs of cancer in 2007

are $219.2 billion, including health expenditures, lost productivity due to illness,

and lost productivity due to premature death (ACS, 2008).

Breast cancer and prostate cancer are two common types of cancer among

women and men. Breast cancer is the most frequently diagnosed cancer in women,

excluding skin cancer, and ranks second as a cause of cancer death in women after

lung cancer. Prostate cancer is the most frequently diagnosed cancer in men, and

is a leading cause of cancer death in men.
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This thesis focuses on prostate cancer and breast cancer for two reasons.

Firstly, they are less affected by behavioral factors than many other cancers. Ac-

cording to ACS, important factors affecting female breast cancer risk are age, gene

mutation, a personal or family history of breast cancer, and previous chest radia-

tion. Cigarette smoking and diet are not found to be associated with breast cancer

in most studies, but excessive alcohol use is linked to an increased risk of developing

breast cancer. Although recent studies find that physical exercise reduces breast

cancer risk, the question how much exercise is needed remains open (ACS, 2008).

For prostate cancer, age is the strongest risk factor, and race/ethnicity and

family history of the disease are important risk factors as well. The exact role of

diet in prostate cancer is not clear, and being obese and physical exercise are not

linked with risk of getting prostate cancer in most studies (ACS, 2008). It is not

associated with cigarette smoking either (Lumey et al., 1997).

Secondly, prostate cancer and breast cancer can be detected at an early stage

and early detection can greatly increase the chances of survival. The ACS recom-

mends yearly mammogram for women beginning at age 40. Research has shown that

annual mammograms lead to early detection of breast cancers, when they are most

curable and breast-conservation therapies are available. Currently, 61% of breast

cancers in the U.S. are diagnosed at a localized stage (malignant cancer that has not

spread to lymph nodes or other locations outside the breast), for which the 5-year

survival rate is 98% (ACS, 2007). Prostate-specific antigen (PSA) tests measure the

level of PSA in the blood, which may be increased by prostate cancer. The ACS

recommends that the PSA test should be offered annually to men at average risk
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beginning at age 50 4. More than 90% of all prostate cancers are discovered in the

local and regional stages, for which the 5-year survival rate approaches 100% (ACS,

2008).

There are other screening tools for breast cancer, such as digital mammo-

gram, Magnetic Resonance Imagine of the breast, clinical breast examination and

self-examination of the breast, and for prostate cancer, such as digital rectal ex-

amination. However, so far mammogram and PSA test are the most recommended

screening tools for breast cancer and prostate cancer respectively. According U.S.

Preventive Service Task Force, for breast cancer screening, there is lack of evidence

on the benefits of digital mammography and Magnetic Resonance Imaging of the

breast as substitutes for film mammogram; there is inadequate evidence of Clini-

cal Breast Examination’s additional benefit, beyond mammography; and adequate

evidence suggests that Breast Self-Examination does not reduce breast cancer mor-

tality. For prostate cancer screening, the prostate-specific antigen (PSA) test is

more sensitive than the digital rectal examination (DRE).

4The most recent recommendation of the American Cancer Society does not support routine

testing for prostate cancer at this time. The ACS suggest that health care professionals should

discuss the potential benefits and limitations of prostate cancer early detection testing with men

before any testing begins. This discussion should include an offer for testing with the prostate-

specific antigen (PSA) blood test and digital rectal exam (DRE) yearly, beginning at age 50, to

men who are at average risk of prostate cancer and have at least a 10-year life expectancy.
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1.4 A Theoretical Model

The theoretical model is based on Ehrlich and Becker (1972) model of mar-

ket insurance which only covers treatment care, self-protection and self-insurance.

Self-protection, also called primary prevention, means behaviors that reduce the

probability of a loss. For example, staying physically active, limiting alcohol and

eating right. Self-insurance, also called secondary prevention, means behaviors that

reduce the size of a loss. For example, screening mammogram can detect early

breast cancers in women who experience no symptoms and thus reduces the medical

cost from late-stage treatment and loss from diminished quality of life.

A main improvement of this model is that health insurance may include pre-

ventive care besides curative care and thus ex ante moral hazard can be differentiated

from ex post moral hazard. Mammograms and prostate-specific antigen (PSA) tests

can reduce the size of loss from cancers but cannot reduce the probability of getting

cancer. Therefore, those screening tests are ways to self-insure. The model below

only includes self-insurance because it is the kind of prevention discussed later in

the empirical part.

An individual is assumed to face only two states of the world (ill, healthy) with

probabilities p and 1 − p. He has a utility function U() which depends exclusively

on income. His income in healthy state is given with certainty by I and in the case

of illness he faces a sick loss L which includes income loss of not being able to work,

medical expenditure, and disutility of being sick. The sick loss is determined by the

nature of the disease but he can reduce the size of the sick loss by spending c on

18



self-insurance, with L′(c) < 0 and L′′(c) := ∂2L/∂c2 > 0. The expenditure on self-

insurance (c) is assumed to not affect the probability of being sick (p).For example,

screening for cancer, cardiovascular disease, diabetes and other chronic illnesses

allows early detection and treatment thus reducing the health consequences of these

illnesses but they cannot change the risk of getting cancer.

Besides self-insurance, the individual can insure himself against the sick loss

by purchasing health insurance with the amount of coverage for curative care s

when insurance is available. The price per dollar of insurance coverage is π. Due

to an informational asymmetry, the insurer cannot observe the insuree’s preventive

effort and thereby the price of health insurance is assumed to be independent of

the amount of self-insurance. If health insurance also covers preventive services, the

out-of-pocket expenditure on preventive services is reduced to θ(c), with θ(c) < c

and θ′(c) < 1.

Discussion will be carried out under three scenarios:

(1) there is no health insurance available and the individual can only choose the

level of self-insurance to maximize the expected utility,

(2) health insurance coverage of curative care is available but coverage of preven-

tive care is unavailable,

(3) both coverage of curative care and preventive care are available.

We will compare individual’s choice of taking preventive care under the three scenar-

ios. Let c1, c2 and c3 be the optimal expenditure on preventive care (self-insurance)
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under three scenarios respectively. Then by definition, c2−c1 is ex ante moral hazard

and c3 − c2 is ex post moral hazard.

1.4.1 No Insurance

When health insurance is unavailable, the individual’s utility in healthy state

is U(h1) = U(I − c) and the utility in ill state is U(i1) = U(I −L(c)− c). Thus, the

objective would be to maximize

EU = (1− p)U(h1) + pU(i1)

= (1− p)U(I − c1) + pU(I − L(c1)− c1) (1.1)

The first order conditions are5:

−L′(c1)pU
′(i1) = (1− p)U ′(h1) + pU ′(i1) (1.2)

On the left-hand side of (1.2) is the expected marginal benefit of prevention and on

the right-hand side is the marginal cost of prevention, given by the decreased utility

associated with additional prevention in both states.

1.4.2 Insurance Covers Curative Treatment

When health insurance which covers curative treatment is available, the indi-

vidual’s expected utility becomes

EU = (1− p)U(h2) + pU(i2)

= (1− p)U(I − c2 − πs2) + pU(I − L(c2)− c2 − πs2 + s2) (1.3)

5The second order conditions are satisfied.
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The first order conditions are:

−L′(c2)pU
′(i2) = (1− p)U ′(h2) + pU ′(i2) (1.4)

pU ′(i) = π[(1− p)U ′(h) + pU ′(i2)] (1.5)

Similar to scenario one, on the left-hand side of (1.4) is the expected marginal return

of prevention and on the right-hand side is the expected cost. One the left-hand

side of (1.5) is the expected return of health insurance, given by the probability of

being sick timing the increased utility in ill state associated with additional health

insurance coverage. On the right-hand side is the expected cost of health insurance.

1.4.3 Insurance Covers Curative Treatment and Preventive Care

When health insurance covers both curative treatment and preventive services,

the individual’s objective would be to maximize

EU = (1− p)U(h3) + pU(i3)

= (1− p)U(I − θ(c3)− πs3) + pU(I − L(c3)− θ(c3)− πs3 + s3) (1.6)

The first order conditions are:

−L′(c3)pU
′(i3) = θ′(c3)[(1− p)U ′(h3) + pU ′(i3)] (1.7)

pU ′(i3) = π[(1− p)U ′(h3) + pU ′(i3)] (1.8)

On the left-hand side of the first order conditions are the expected marginal returns

in regard to prevention and health insurance respectively and on the right-hand side

are the expected costs respectively.
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1.4.4 Discussion

Combining equation (1.4) and (1.5) yields

L′(c2) =
−1

π
(1.9)

Combining equation (1.7) and (1.8) yields

L′(c3) =
−θ′(c3)
π

(1.10)

Since θ′(c) < 1, the right-hand side of (1.10) is greater than the right-hand

side of (1.9) and thus L′(c3) > L′(c2). Since L′′(c) > 0, c3 > c2. Therefore, when

preventive services are covered, the demand for preventive services increases due

to reduced effective price of preventive services. Thus ex post moral hazard exists.

Ehrlich and Becker (1972) in their paper show that c1 > c2, meaning when medical

cost is covered in case of disease, demand for prevention decreases. That is ex ante

moral hazard. Thus this model shows that ex ante and ex post moral hazards exists

in the health insurance market.

Ex ante moral hazard may induce decreased demand for preventive care and

ex post moral hazard may induce increase demand for preventive care. When taking

the two effects together, the total effect of health insurance on uptake of preventive

care is ambiguous. Figure 1.1 illustrates this. If ex ante moral hazard effect is great

than the ex post one, there is reduced use of preventive care when individual gets

covered; if the ex ante one equals the ex post one, there is no change in the use

of preventive care; if the ex ante one is less than the ex post one, increased use of

preventive care is observed.
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Individuals who are either age 65 and over, or who meet other special criteria

are eligible for Medicare. The theoretical model above indicates that Medicare has

an ambiguous impact on use of screening procedures, depending on which effect is

larger, ex ante or ex post moral hazard.
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Figure 1.1: Ex Ante and Ex Post Moral Hazards

24



Chapter 2

Evidence from MEPS & NHIS

2.1 Empirical Framework & Data

2.1.1 Empirical Framework

Health insurance may have an ambiguous impact on the use of cancer screen-

ings because ex ante and ex post moral hazards coexist. This section discusses the

empirical framework that identifies the two moral hazard effects.

The basic specification is:

Screenit = HIcureit ∗ α +HIcureit ∗HIscreenit ∗ β + εit, (2.1)

where Screenit measure whether individual i uses preventive screening in year t,

HIcureit and HIscreenit are binary variables indicating whether health insurance cov-

ers curative treatment and preventive screening respectively. Typical Difference-in-

Differences framework requires inclusion of a third term, HIscreenit , on the right hand

side of equation (2.1). But few health insurance covers only screenings but not cover

treatment. Thus, HIscreenit is dropped in the model specification.

The key coefficients in the model are α and β, which measure ex ante and ex

post moral hazard effects respectively. If insurance coverage of curative treatment

reduces incentives to use cancer screenings (i.e., ex ante moral hazard exists), then

α is negative. If insurance coverage of cancer screening increases incentives to use
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those screenings (i.e., ex post moral hazard exists), then β is positive.

However, there are two problems associated with the estimation of equation

(2.1). The first problem is the endogeneity of insurance coverage. The age 65

boundary for Medicare eligibility provides a plausibly exogenous variation in insur-

ance status and this variation has been exploited by several papers (Card et al., 2007;

Decker and Rapaport, 2002; Lichtenberg, 2002; McWillams, 2003; Decker, 2005).

Figure 2.4 shows the age profiles of Medicare coverage estimated with data from

MEPS. The rate of Medicare coverage (female or male) shows a great discontinuity

at age 65, jumping from 10% at age64 to 90% at age 65.

Another problem is the identification of ex post moral hazard from ex ante

moral hazard. Medicare expansion which included coverage of preventive services

offers a credible source of exogenous variation. By this expansion, Medicare covers

screening mammogram for women since 1998 and covers prostate cancer screening

tests for men since 2000 1. The different timing of Medicare eligibility and Medicare

expansion allows me to separate ex ante and ex post moral hazard.

Combining above information on Medicare eligibility and Medicare expansion

with equation (2.1) and adding some control variables, the reduced form model for

prevention becomes:

Screenit = Post65it ∗ α + Post65it ∗ PostExpansiont ∗ β

+f(ageit; θ) + controlit ∗ γ + µt + εit, (2.2)

where Post65it denotes an indicator for being age 65 or older for individual i in year

1Detailed discussion on validity of this variation is in Section 2.1.3
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t, and PostExpansiont denotes an indicator for being after Medicare expansion in

year t. That is,

Post65it = 1 if age ≥ 65,

and

PostExpansiont =


Post1998t = 1 if t ≥ 1998 for female (mammogram)

Post2000t = 1 if t ≥ 2000 for male (PSA test).

The function of f(ageit; θ) represents a smooth age profile. The reason for

adding a age profile function is that the decision on Medicare enrollment fits a fuzzy

regression discontinuity. In general, individuals are eligible for Medicare when they

are 65 years or older. Meanwhile, people who are under 65 are also eligible if they are

disabled and have been receiving either Social Security or the Railroad Retirement

Board disability benefits for at least 24 months, or they get continuing dialysis for

permanent kidney failure or need a kidney transplant, or they have Amyotrophic

Lateral Sclerosis. I follow DiNardo and Lee (2004), Cart et al. (2007), and Lee

and Card (2008) assuming that the age profile function, f(ageit; θ), is a continuous

polynomial with potential discontinuities in the derivatives at age 65.

The coefficient on Post65it measures the effect of Medicare enrollment on

preventive behaviors and it should be negative if ex ante moral hazard exists; the

coefficient on Post65it ∗PostExpansiont measures the effect of Medicare expansion

on the use of preventive screenings and it should be positive if ex post moral hazard

exists. Combining them yields the overall effect of Medicare on the use of preventive

screenings. Section 2.1.2 and 2.1.3 discuss the key assumption on the design. Section

2.1.4 describes the data and summary statistics, and Section 2.1.5 presents the
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estimation issues.

2.1.2 Changes in Insurance Coverage and Employment at Age 65

Medicare provides health insurance coverage for the elderly in the U.S., and its

coverage begins on the first day of the month in which they turn 65. Younger people

might also qualify for coverage if they receive Social Security Disability Insurance

(DI) or have an End-Stage Renal disease. Eligible individuals can obtain Medicare

Part A (hospital insurance) free of charge, and Part B (medical insurance) for a

modest monthly premium.

Figure 2.1 shows the effects of reaching age 65 on Medicare and other cover-

age for males and females respectively. Figure 2.2 to 2.3 show the male Medicare

enrollment pattern by education and by race/ethnicity. The data for analysis on

males in Section 2.1.2 and 2.1.3 are drawn from the 1996-2005 MEPS.

Medicare coverage for male sample jumps from 17% at age 64 to 92% at age

65 (Figure 2.1). There are two reasons why the fraction of Medicare coverage does

not sharply jump from 0 to 1. First, younger people with DI or End-Stage Renal

disease are qualified for Medicare and thus Medicare enrollment prior to 65 is not

zero. Autor and Duggan (2003) find that high school dropouts are more likely to

receive DI benefits than those who have completed high school. Consistent with

their finding, Figure 2.2 shows that Medicare enrollment prior to 65 is higher for

high school dropouts than for high school graduates and people with above-college

schooling. A 55-64 year old high school dropout is five times more likely to enroll in
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Medicare than an individual of the same age who has completed at least some years

of college. Figure 2.3 depicts that pattern of Medicare enrollment by race/ethnicity.

Medicare enrollment rate prior to 65 is higher for blacks and Hispanics while the

post-65 rate is slightly higher for whites.

The validity of the regression discontinuity approach relies on the assumption

that other factors trend smoothly at age 65. The first concern is that there could

be an abrupt change in insurance coverage other than Medicare at age 65, and that

change would lead to differences in the uptake of cancer screenings. Figure 2.4

depicts the fraction of Medicare coverage, the fraction of private coverage, and the

fraction of other public coverage except Medicare among males, using data from the

1996-2005 MEPS. Private coverage and other public coverage (except Medicare) are

hardly affected by the onset of Medicare eligibility.

The stability of private coverage and other public coverage comes from the fact

that most people who have private coverage and/or other public coverage (except

Medicare) before age 65 carry over the coverage, or purchase Medigap policy and

hold a combination of Medicare and supplemental coverage because neither Part A

nor Part B pays for all the medical costs 2.

Another concern is that changes in the fraction of people working at 65 could

lead to changes in the uptake of cancer screenings. Compared with working people,

retired people’s opportunity costs of visiting doctors are lower and they have flex-

ible time schedule. Changes in employment trend at 65 may invalid the regression

2Medicare program contains premiums, deductibles and coinsurance and the covered individual

must pay out-of-pocket cost.
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discontinuity approach. Figure 2.4 also displays the age profiles of employment for

the MEPS male sample. As people age, the employment rate declines smoothly, and

there is no abrupt change at age 65.

Female sample shows similar patterns on Medicare enrollment, other insurance

coverage and employment. Curves on females in Figure 2.1, Figure 2.5 to 2.7 are

drawn using data from the 1996-2005 MEPS. Medicare coverage jumps from 15% at

age 64 to 95% at age 65 (Figure 2.1), and Medicare enrollment prior to 65 is higher

for the less-educated and minorities (Figure 2.5 and 2.6). In comparison with males,

the disparity in pre-65 Medicare enrollment among females with different education

levels is smaller. Private coverage and public coverage other than Medicare remain

pre-65 trends. Employment rate steadily declines over the 55-75 age range and there

is no discontinuity at age 65.

Above all, age 65 provides a credible source of exogenous variation in insurance

status. First, there is a sharp rise in insurance coverage at age 65, mainly due

to Medicare enrollment. Many of those who were not covered prior to 65 obtain

Medicare coverage at 65. The better-educated and whites experience relatively

larger gains at age 65 because of relatively lower level of DI enrollment. Second,

private coverage (either employer-provided plan or an individually purchase policy)

and public coverage other than Medicare are hardly affected by the onset of Medicare

eligibility, mostly because multiple coverages are prevalent after age 65. Third,

employment trends smoothly at age 65, and thus it is unlikely to affect cancer

screening utilization in an abrupt way at age 65. I also checked family structure

and family income. Neither show significant discontinuities at age 65 for males and
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females.

2.1.3 Changes in Medicare Preventive Coverage

According to the Balanced Budget Act of 1997, Medicare covers an annual

screening mammogram for all women over age 39 since January 1, 1998, and an

annual prostate cancer screening for men over age 50 since January 1, 2000. Eligible

women are only responsible for the Part B 20% coinsurance to get the screening

mammogram, as Part B deductible is waived. Eligible men can get the PSA test

free of charge, with no coinsurance and no Part B deductible.

I use the two policy changes to identify the ex post moral hazard effect. The

key assumption is that factors other than the policy changes, which may affect

individuals’ incentives to use cancer screenings, trend smoothly. As discussed in

Section 2.1.2, insurance coverage and employment are important factors. Figure 2.8

and 2.9 depict the trend of the insurance coverage and employment among males

and females respectively. The sample is drawn from individuals aged 55-75 years

in 1996-2005 MEPS. For each characteristic, I show the incidence rate at age 55-64

and at age 65-75.

Curves for insurance coverage and employment show no discontinuities in 2000

among males. Medicare coverage remains stable at 8% among 55-64 year olds, and

at 98% among 65-75 years olds from 1996 to 2005. The great difference between pre-

65 and post-65 rate of Medicare coverage is consistent with Medicare eligibility rule

(Section 2.1.2). Pre-65 private coverage trends down slightly and there is a small
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increase from 1998 to 1999. Most people get private coverage through their employ-

ers, and thus private coverage is correlated with employment status. The increase

in pre-65 private coverage is probably because of a jump in pre-65 employment rate

in 1999 as depicted in Figure 2.8. Post-65 private coverage and employment rate do

not change much over the years.

In public coverage other than Medicare, the pre-65 and post-65 rates are sim-

ilar before 2001, and there is some disparity in 2002 and after, about 7 percentage

point. Public coverage other than Medicare is defined by TRICARE, Medicaid, and

some other public coverage asked in the MEPS. The disparity in public coverage

is caused by the onset of TRICARE for Life program. TRICARE provides civilian

health benefits for military personnel, military retirees, and their dependents. TRI-

CARE for Life (TFL) originated in October of 2001 to fulfill a promise of life-long

health care many of which were given when they first joined the military. Prior to

2001, TRICARE coverage expired at age 65. As of October 1, 2001, TFL provides

TRICARE as supplemental health insurance for all Medicare-eligible military re-

tirees age 65 or older who are enrolled in Medicare Part B, and thus they do not

experience a break in TRICARE coverage. TFL largely explains the disparity in

other public coverage since 2002.

In all, there are no major changes in insurance coverage and employment in

2000 among males. Figure 2.9 shows similar patterns on females. Although there

is a 3% increase in pre-65 private coverage in 1999 and a 7% increase in other

public coverage in 2002, there are no discontinuities from 1997 to 1998. Therefore,

I conclude that insurance coverage and employment are unlikely to confound the
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analysis of the impact of Medicare expansion of preventive services.

One more concern is that campaigns for cancer awareness and technology

advances in cancer screening may affect the usage of cancer screening procedures.

For example, (1) the National Breast Cancer Awareness Month program started as a

week-long campaign in 1985 and is dedicated to increasing the nationwide awareness

about the importance of the early detection of breast cancer, and (2) in 1997, the

National Cancer Advisory Board recommends that National Cancer Institute should

advise all women age 40 years and older to receive screening mammograms every

one to two years. Those campaigns increase people’s awareness of cancer, update

their information on cancer screenings, and thus change people’s behaviors.

However, I found no cancer campaigns or technology advances which specially

target the elderly (aged 65 or older), or Medicare beneficiaries. Thus, campaigns for

cancer awareness and technology advances in cancer screening influence non-elderly

and elderly at the same time. While I do not have specific data on cancer screening

campaigns, their impact on the general population is absorbed in the year fixed

effect.

2.1.4 Data

The National Health Interview Survey (NHIS) is the principal source of infor-

mation on the health of the civilian non-institutionalized population of the United

States. The survey was initiated in 1957 and has been conducted annually since

then. Data are collected through a personal household interview. The NHIS ques-
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tionnaire that was used from 1993 to 1994 consisted of two parts: (1) a set of basic

health and demographic items (known as the Core questionnaire), and (2) one or

more sets of questions on current health topics (known as the Supplement). The

1993 and 1994 NHIS Supplements cover topics on preventive services. Specifically,

it asks questions on the history of mammogram use in the past 3 years.

The Medical Expenditure Panel Survey (MEPS), which began in 1996, is a

nationally representative survey of the U.S. civilian non-institutionalized popula-

tion. The sampling frame is drawn from a nationally representative subsample of

households that participated in the prior year’s NHIS. MEPS collects detailed in-

formation for each person in the household on demographic characteristics, health

conditions, health status, use of medical services, access to care, health insurance

coverage, employment and income. It asks history of PSA use and mammogram use

in the past 5 years.

The data used for male prostate cancer screening is from the pooled 1998-2005

MEPS, and the data for female breast cancer screening is from pooled 1993-1994

NHIS and 1998-2005 MEPS. The 1993-1994 NHIS is necessary in the female data

because the MEPS only contains post-expansion data on mammogram (i.e., the

MEPS only covers period after 1998 when Medicare covers mammogram screen-

ing) and there is no pre-expansion data. In this sense, the NHIS complements the

MEPS’s limitation.

The key variables - use of PSA test and mammogram - come from the following

type of question:

“About how long has it been since (PERSON) has a prostate exam?”
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“About how long has it been since (PERSON) has a mammogram?”

1) within past year

2) within past 2 years

3) within past 3 years

4) within past 5 years

5) more than 5 years

6) never

From above question, I can recover part of the history on cancer screening

use. Consider MEPS 2004 as an example. Questions on cancer screening use were

asked in the second half of year 2004 with reference period start date concentrating

from August to October. Thus the date when questions on prevention were asked

is presumably toward end of year 2004. Combining the inferred date of being asked

questions and the type of questions and answers, I make the following assumptions

(taking PSA test by respondent i in MEPS 2004 for example):

(1) If answer is “1) within past year”, individual i is assumed to have taken

the PSA test in 2004;

(2) if answer is “2) within past 2 years”, he is assumed to have taken the PSA

test in 2003 and have not taken the test in 2004;

(3) if answer is “3) within past 3 years”, he is assumed to have taken the PSA

test in 2002 and have not taken the test in 2003 and 2004;

(4) if answer is “4) within past 5 years”, he is assumed to have taken the PSA

test in 2000 and 2001 with 50% chances each year, and have not taken the test since

2002;
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(5) if answer is “5) more than 5 years” or “6) never”, he is assumed to have

never taken the PSA test since 2000.

Based on above assumptions, I impute individual i’s PSA test use from 2000

to 2004, and the data are shown as follows:

Answer PSAi,2000 PSAi,2001 PSAi,2002 PSAi,2003 PSAi,2004

1) . . . . 1

2) . . . 1 0

3) . . 1 0 0

4) 0.5 0.5 0 0 0

5) 0 0 0 0 0

6) 0 0 0 0 0

Mammogramit, which indicates female mammogram use, is constructed in a

similar way. I recover the past 5 year history of PSA use and mammogram use for

the MEPS respondents and the past 3 year history of mammogram use for the NHIS

respondents because of different length of history being asked. Sample is restricted to

respondents aged from 55 to 75. The final male sample includes 13760 respondents,

and the imputed sample includes 68800 observations and 47% is uncensored. The

female sample includes 22892 respondents, and the imputed sample size is 97687

(44% uncensored).

Table 2.1 gives the summary statistics on demographics, insurance status, and

cancer screening use. Rates of screening tests are normalized by percentage. Age is

36



distributed around 65, and pre-65 sample slightly overweights post-65. The NHIS

provides a nationally representative sample of the U.S. civilian non-institutionalized

population, with an over-sampling of Hispanics and blacks. The MEPS sample

is selected from the NHIS and thus that over-sampling carries over to the MEPS

sample. The MEPS also over-samples low-income people, which are considered a

policy-relevant population subgroup. The table reports the simple average instead

of the weight-adjusted average because of the pooling of the MEPS and the NHIS.

Gender difference is consistent with the Census Bureau’s Population Esti-

mates. More males are married than females. More females graduated from high

school and more males have at least some college education. The male employment

rate is higher than female by 15 percentage point. Insurance coverage rates are

similar.

Table 2.2 does a raw difference-in-differences analysis. For PSA test, the raw

difference-in-differences estimate of ex post moral hazard is 4.97. That is, male

Medicare beneficiaries increased the use of PSA test after 2000 by 4.97 percentage

point as compared to the rate before 2000. The difference in PSA use around age 65

is positive no matter it is before or after 2000. It seems to contradict the hypothesis

of ex ante moral hazard. The reason is that age trend is not taken out. As will be

seen in Section 2.2 when age trend is controlled, ex ante moral hazard shows up.

The raw difference-in-differences analysis on mammogram is similar. Figure 2.10

displays a raw difference-in-differences analysis similar to Table 2.2.
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2.1.5 Estimation Issues

Estimation issues arise from data imputation. First, a linear probability model,

instead of a probit model, will be estimated because the screening variables, PSAit

and Mammogramit, are not binary. Second, I cannot recover the full history of

every respondent’s cancer screening use within five years up to the survey time.

Since part of the information on some people’s cancer screening use is missing, OLS

estimator may be biased.

Let Dit be an indicator for data availability, which is 1 if data is not missing

and is 0 if data is missing. Then

E[Screenit|Screenit is observed] = E[Screenit|Dit = 1]

=Post65it ∗ α + Post65it ∗ PostExpansiont ∗ β + f(ageit; θ) + controlit ∗ γ

+ µt + E[εit|Dit = 1]. (2.3)

The existence of E[εit|Dit = 1] may lead to bias in OLS estimation.

In this chapter, to estimate the impact of Medicare on cancer screening use, I

apply a sample selection model, where selection is based on taking cancer screening

in recent years or not. The selection problem arises from the design of the survey

question on cancer screening use. It does not trace the history of PSA test or mam-

mogram use, and it only asks the time of the most recent PSA test or mammogram

use. Therefore, in the imputed data, history before most recent screening is missing

and information on cancer screening use is selected. As will seen in Section 2.2.1,

selection is not random with respect to the dependent variable.

One potential instrument/exclusion restriction for use in a selection equation is
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identified in Table 2.3. From the design of the survey question on cancer screenings,

I know that the non-missing rate in the imputed data for year t = Survey Y ear

is 100%, and that non-missing rates for year t < Survey Y ear are less than 100%.

Table 2.3 proves this. Non-missing rates in use of PSA test and mammogram, for

year t = Survey Y ear are significantly higher than those for all other years by more

than 50 percentage points (100% versus 29% to 46% for PSA test use; 100% versus

18% to 45% for mammogram use). Let Dsurvey year=t be an indicator, which turns

on if survey year equals t and turns off if survey year is later than t. The correlation

between year t = Survey Y ear and being non-missing suggests that Dsurvey year=t

is a strong candidate to be used as an instrument to account for this selection.

A valid instrument requires that it has little effect on cancer screening use and

Dsurvey year=t satisfies this. Dsurvey year=t is defined to be 1 if survey year = t and

0 otherwise. Taking cancer screenings or not happened before the MEPS or NHIS

survey was given, and taking MEPS or NHIS survey does not change the decision to

use cancer screening. Thus the timing of survey is not related with cancer screening

use, and Dsurvey year=t is a valid instrument.

The third issue is that standard errors need to be clustered on two dimensions.

The reasons are as follows. First, Lee and Card (2008) point out that conventional

standard errors ignore the group structure induced by specification errors in the re-

gression discontinuity research design. In their proposed procedure, standard errors

should be computed clustering on age in this study. Second, errors can be expected

to be correlated from one period to the next for each individual and therefore in-

dividuals should serve as a second dimension for clustering. I use a new variance
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estimator suggested by Cameron et al. (2006), which provides cluster-robust infer-

ence when there is a two-way or multi-way clustering that is non-nested.

There are two typical methods to eliminate the selection bias using a Heckman

sample selection model: the traditional two-step method, and full information max-

imum likelihood (FIML). This chapter will focus on the maximum likelihood (ML)

estimator for two reasons. First, ML estimator is more efficient than the two-step

estimator as the two-step estimator is a limited information maximum likelihood

(LIML) estimator. In asymptotic theory and in finite samples as demonstrated

by Monte Carlo simulations, FIML estimator exhibits better statistical properties

(Puhani, 2000). Second, the robust variance estimator with two-way clustering

provided by Cameron et al. (2006) cannot be implemented with the two-step esti-

mation. For comparison, I report the two-step estimates along with the ML esti-

mates. Because the covariance matrix generated by OLS estimation of the second

stage is inconsistent, standard errors of two-step estimates are generated through

bootstrapping.

2.2 Results and Discussion

2.2.1 Ex Ante & Ex Post Moral Hazards

Table 2.4 presents estimates of equation (2.2) by maximum likelihood with

two-way clustered standard errors and by two-step with bootstrapping standard

errors respectively. Estimates on PSA test are listed in columns (1) to (5) and those

on mammogram are in columns (6) to (10). In panels A1 and A2 (i.e., rows 1
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through 4), ex ante and ex post moral hazard effects are separated while the two are

not separated in panels B1 and B2 (i.e., rows 5 and 6). Panels A1 and B1 report ML

estimates with two-way clustered standard errors. For comparison, panels A2 and

B2 show the two-step estimates with bootstrapping standard errors. Coefficients on

ex ante and ex post moral hazards are normalized by percentage.

It is clear from Table 2.4 that males exhibit strong ex post moral hazard

in taking PSA test, with about 2.65 percentage point increase by the Medicare

expansion of PSA test coverage. Medicare enrollment at age 65 decreases PSA use

by about 1.75 percentage points. Tests of selection reject the null, i.e., selection

is not random and OLS estimator is biased. Estimates on selection equation by

maximum likelihood are presented in Appendix B.

In Table 2.4, column (1) shows estimates of the simplest model (without any

controls), column (2) controls demographics (including marital status, race/ethnicity,

education, and income), column (3) and column (4) add in employment and insur-

ance coverage status (including private coverage, other public coverage, and no

coverage), and column (5) controls potential error from imputed employment and

insurance coverage. It is plausible to assume that demographics do not change over

a short period time, but the same assumption may not be carried over to employ-

ment and insurance status. An indicator Dimpute is constructed, which turns on for

imputed observations, and {Employ, Ins}∗Dimpute tries to control errors arising from

the imputed data.

The reasons for including insurance coverage status as control variables are as

follows. Firstly, according to Kaiser Family Foundation (2005), on average, basic
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Medicare benefits cover about 45 percent of the personal health care expenditures

of Medicare beneficiaries. Given the financial burden from medical expenditures,

people with other insurance coverage may behave differently from those without

coverage. Secondly, it has been shown that the rates of private insurance coverage

and public coverage other than Medicare are hardly affected by the onset of Medicare

eligibility, which has also been proved by Card et al. (2008). Thirdly, although

including private purchased insurance may pose an endogeneity problem, having

employer provided plan and other public coverage has less to do with Medicare

coverage. They are more related to employment status and eligibility for relevant

public plans. In the Health and Retirement Study (HRS) sample in Chapter 3, less

than a third of Medicare beneficiaries who are covered by private or other public

plans have other health insurance which includes private purchased plans. However,

the inclusion of insurance status remains arguable.

The rate of PSA test use among pre-65 males is 27%. The 2.65 percentage

point gain at age 65, the estimated ex post moral hazard, represents 2.65/27%=9.8

percent increase in PSA testing. And the 1.75 percentage point drop at 65, the es-

timated ex ante moral hazard, represents 1.75/27%=6.5 percent decrease in testing.

It is expected that the uninsured response to Medicare enrollment and Medicare

policy change more than the insured group, and they may account for most of the

changes at 65. Fourteen percent of the pre-65 male sample is uninsured. In the

extreme case where the changes are solely driven by the uninsured, the estimates

imply that ex ante moral hazard decreases PSA testing by 1.75/14%=12.5 percent-

age point and ex post moral hazard increases it by 2.65/24%=18.9 percentage points
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among this group.

Panels B1 and B2 show the combined effect at age 65. Models with only

Post65, but not Post65 ∗ PostExpansion, are estimated. Using maximum likeli-

hood and two-step methods, I find no significant discontinuity at age 65. The two

countervailing effects, ex ante and ex post moral hazards, are of similar magnitudes,

and cancel off each other if combined. This finding helps explain why previous

literature did not find evidence on ex ante moral hazard at Medicare enrollment.

Similar results are found in mammogram use. Columns (6) through (10) of

Table 2.4 show that evidence on ex post moral hazard is strong, which is about

3.12 percentage point increase by Medicare mammogram coverage. Ex ante moral

hazard decreases mammogram use by 2.56 percentage points, and it is significant

when insurance coverage is controlled. Given the rate of pre-65 mammogram use

(43.8%), ex ante and ex post moral hazards change the rate by 5.8% and 7.1%

respectively. If the uninsured (15% of the sample) account for all the changes, ex

ante and ex post moral hazards affect mammogram screening among the uninsured

group by 17.1 percentage points and 20.8 percentage points respectively. Again, ex

ante and ex post moral hazards cancel off each other if combined. Tests of selection

indicate that selection error needs to be corrected as well.

2.2.2 Do People Delay Screenings?

One concern that may undermine the research design is that people may delay

screenings due to anticipation. In fact, the delay may appear in two ways. First,
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people may delay taking screenings before the policy because they expect future

policy change. Specifically, the BBA of 1997 was signed into law on August 5,

1997, and therefore Medicare beneficiaries and those who became eligible in 2000

might have known about Medicare expansion of PSA test coverage before it became

effective. This expectation effect may induce a plunge of PSA test use before 2000

and a jump after 2000. If this kind of delay effect is significant, it may invalidate

the estimates on ex ante and ex post moral hazards.

Panel A of Table 2.5 studies this delay effect. Rows 3 and 4 present the

changes in two years before Medicare expansion and two years after for affected age

groups respectively. Specifically, I look at males aged 63 or over in 1998 and 1999

(Post63 ∗ Y r98,99) versus those aged 65 or over in 2000 and 2001 (Post65 ∗ Y r00,01),

and females aged 63 or over in 1996 and 1997 (Post63 ∗ Y r96,97) versus those aged

65 or over in 1998 and 1999(Post65 ∗ Y r98,99).

People aged 63 or over (Post63) are chosen to study the change in two years

before the expansion because they become eligible to enroll in Medicare when the

policy is in effect and may potentially be affected by the policy change. If they

delay, we should observe a negative coefficient on Post63 ∗ Y r98,99 for males and on

Post63 ∗ Y r96,97 for females, and a positive coefficient on Post65 ∗ Y r00,01 for males

and on Post65 ∗ Y r98,99 for females.

Columns (1) through (5) show that this delay effect is not found for male PSA

test. Male post-65 group did not increase PSA test use in two years after the policy

was enacted as much as the average post-2000 increase. One explanation is that

Medicare beneficiaries were not aware of this new coverage when it was effective.
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Mammogram use is tested for this delay effect and nothing is found as well, which

is shown in columns (6) - (10).

The second delay effect can happen after policy is in effect. People may stop

using screenings before age 65 and delay testing until 65. This kind of delay effect

may bias ex post moral hazard upwards. Rows 7 and 8 of Panel B list two age

groups within two-year boundary of Medicare eligibility rule. That is, people aged

63-64 (Age63,64) versus people aged 65-66 (Age65,66). If the delay effect exists, we

should observe a negative coefficient on Age63,64 ∗ PostExpansion, and a positive

coefficient on Age65,66 ∗ PostExpansion.

Again, this delay effect is not found for neither screenings. For males aged

63-64 years, there is no significant decrease in PSA test use, and for those aged

65-66, there is a significant decrease, contrary to the delay effect hypothesis. One

reason might be that people are not well aware of the detailed Medicare coverage

(similar to the case of expectation in previous paragraph). As they interact more

with doctors, they know this benefit and use more tests.

2.2.3 Falsification Test

Table 2.6 conducts a falsification test using post-expansion data. Pre-expansion

data is not used for the falsification test due to small sample size. This test uses

Post2004 instead of Post2000 to construct a proxy for the false ex post moral hazard

(shown in row 2). If the false ex post moral hazard shows up, previous estimates

and the model would be invalid. The sample contains MEPS 2002-2005, i.e., post
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Medicare expansion years, to guarantee the results are not affected changes around

2000 for male and around 1998 for female.

Row 2 shows that Post65∗Post2004 is not significant, and this further confirms

significant results on ex post moral hazard. Row 1 is not significant because it

actually captures the sum of two countervailing moral hazards, which is about zero

as shown in Panel B1 and B2 of Table 2.4. The results do not change when the false

test is run at 2003 as shown in row 4 of Panel B.

2.2.4 Different Effects by Demographic Groups

Table 2.7 and Table 2.8 show the detailed estimates on control covariates.

Table 2.7 is on PSA test, showing details of columns (3) - (5) of Table 2.4 Panel

A1, and Table 2.8 is on mammogram, showing details of columns (8) - (10) of Table

2.4 Panel A1. The average PSA and mammogram use varies by marital status and

race/ethnicity. Individuals with at least some college education use more tests than

high school dropouts, and high income individuals seem to use more than the low

income ones. Employment is related to value of time since the working people value

time more than the retired. The negative sign on employment indicates that working

people use less PSA test or mammogram. Private coverage may provide coverage

for PSA test or mammogram, or function as a Medigap plan, and thus people with

private coverage take more tests. Row (17) captures those without any coverage

before age 65, and it shows that they take much less tests.

While different demographic groups vary in the rate of PSA test and mammo-
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gram use, they respond differently to Medicare enrollment and coverage expansion

of PSA test and mammogram. Table 2.9 estimates equation (2.2) on different de-

mographic groups. Regressions are run on different samples by demographics. The

white respond more to the Medicare enrollment and expansion of preventive cares

than the sample average. Ex ante moral hazard effects on PSA test and mammo-

gram use are respectively about 65% and 43% larger than the sample average, and

the ex post moral hazard effects are respectively 24% and 13% larger than the sample

average.

Greater ex ante and ex post moral hazards among the white may be explained

by financial burden of health care spending borne by them. Neuman, Cubanski and

Damico (2009) find that among Medicare beneficiaries the white spent a greater

share of income on health care than other race/ethnicity groups. They show that

medium out-of-pocket health care spending as percent of income among the white

in 1997 is 12.5%, higher than the black (9.6%), Hispanic (9.9%), and other non-

Hispanic (6.5%), and in 2005 the financial burden of health care grows and the

medium among the white still leads other groups by 3 - 4 percentage point.

There are big differences among education groups as well. Higher education is

related to larger ex ante and ex post moral hazards.This finding seems puzzling. The

better-educated are typically less liquidity-constrained and should be less sensitive

to price change. There are a few studies on education and health.

On the theoretical side, Grossman (1972) modeled schooling and prevention.

He hypothesizes that schooling increases the efficiency of the household production

of health. In his model prevention choices are viewed as inputs into the household
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production of health. He finds ambiguous predictions about the relationship between

schooling and prevention. Schooling reduces the shadow price of health capital

which increases the demand for health capital, but the derived demand for health

inputs such as prevention only increases if the price elasticity of the demand for

health capital exceeds one. Thus, the relationship between education and use of

prevention is not definitive.

On the empirical side, Kenkel (1990, 1991) finds empirical evidence on the

relationship between education and information. He also shows that information

increases the probability that a consumer uses medical care. Leigh (1990) finds that

people with more schooling are more likely to use seatbelts. These findings may

help to explain the big difference in screening use by education level.

There are other views on the relationship between schooling and health be-

haviors. Fuchs (1982) and Farrell and Fuchs (1982) suggest that the estimated

relationships between schooling and the health behaviors might be due to unob-

servable differences across individuals. They suggest the individual rate of time

preference as a candidate for the ”hidden third variable” behind the link between

schooling and health, if people with low rates of time preference are more likely to

invest in both schooling and prevention.

Results by income level suggest that income decreases ex ante moral hazard.

Among males, low income (defined by income lower than 25 quantile) decreases

PSA test use at age 65 by 4.81 percentage point (significant at 10% level), and

high income (defined by income higher than 75 quantile) by 2.55 percentage point.

Among females, low income decreases mammogram use at 65 by 3.19 percentage
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point, and medium high income by 1.77 percentage point. One exception is the

high income females. Ex ante moral hazard effect among high income females is

surprisingly high, 3.19 percentage point, and significant at 5% level.

The relationship between ex post moral hazard and income is unclear. Medi-

care reduces cost of taking PSA test from up to $400 (without insurance) to free

of charge, and reduces cost of taking mammogram from average $100 (up to $400

without insurance) to the Part B 20% coinsurance amount. The financial incentive

among the low income people should be higher than the high income people, and

larger ex post moral hazard effect is expected among low income people. However,

estimated ex post moral hazard shows no big variation by income level. The role of

income in taking screenings will be discussed in Chapter 3.

2.2.5 The Uninsured

People who are uninsured before age 65 is expected to respond more to Medi-

care enrollment and Medicare expansion of preventive coverage than those who are

insured, and they may account for most of the changes at 65. According the back-

of-envelop calculation earlier in this section, in the extreme case where the changes

are solely driven by the uninsured, ex ante moral hazard may decrease PSA testing

by up to 12.5 percentage point and ex post moral hazard may increase it by up to

18.9 percentage points among this group; and ex ante and ex post moral hazards

may affect mammogram screening by 17.1 percentage points and 20.8 percentage

points respectively.
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Since the MEPS and NHIS are cross-sectional, one cannot follow the pre-65

uninsured and observe their behavioral change upon Medicare enrollment. In order

to assess the ex ante and ex post moral hazards among the uninsured, the pre-65

sample who is uninsured and post-65 sample who has only Medicare are pool to

estimate equation (2.2).

Table 2.10 compares the results. The first row is estimated using the entire

sample and the second row is on the pre-65 uninsured and post-65 Medicare only.

The estimated ex ante and ex post moral hazards among females in uptake of mam-

mogram are about twice the size of the entire sample. This is consistent with the

expectation that the uninsured is more responsive to Medicare enrollment and Medi-

care expansion of preventive service than the insured. The size is much smaller than

the back-of-envelop calculation.

The result on male uptake of PSA test is not significant. There are two possible

causes. First, the size of the pooled male sample is small, which has less than

3,000 individuals. Second, due to data imputation, the information on insurance is

imprecise and the pooled sample may not be well defined.

2.3 Conclusion

Moral hazard theory predicts that health insurance may reduce preventive

care due to ex ante moral hazard. Meanwhile, ex post moral hazard may encourage

use of preventive care if it is covered by health insurance. This chapter empirically

examines the issue of ex ante and ex post moral hazards among the elderly. Using
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discrete changes generated by Medicare eligibility rule and Medicare expansion of

preventive care, this chapter identifies ex ante and ex post moral hazard effects of

Medicare on cancer prevention.

I focus on the utilization of two cancer screenings, female uptake of breast

cancer screening and male uptake of prostate cancer screening. For both of them, I

find evidence in support of ex ante and ex post moral hazards. No evidence shows

that people try to delay taking screenings until it has been covered by Medicare or

they reach age 65. Falsification tests further support the research design. More-

over, the level of prevention and responsiveness to insurance changes varies with

demographics, with larger effects among the whites and more educated people.

Understanding the effect of health insurance on uptake of preventive care has

important policy implications. Chronic diseases bring patients inconvenience and

discomfort, and cause huge medical cost. Even more costs are incurred from the

disability and the diminished quality of life resulting from chronic diseases, especially

among the elderly. According to estimates by CDC (2003), chronic diseases account

for roughly 75% of the $1 trillion spend on health care costs each year, and more

than 125 million Americans live with chronic conditions.

However, the focus of our health care system over the past century has not

been on prevention of chronic diseases, but on treatment. Take cancer research for

example. The huge majority of funding has gone into the search for a cure rather

than to prevent normal cells from becoming malignant in the first place.

A public policy that encourages individuals to utilize more preventive care

could improve the welfare of individuals and the society. Cutler (2008) studies the
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reduction in cancer mortality between 1990 and 2004 and highlights three factors

that lead to improved survival. He finds that cancer screening is the most important

one and that it has had the largest impact on survival, at relatively moderate cost.

This chapter studies breast cancer and prostate cancer which are leading cause

of death from cancer, and finds that Medicare coverage of cancer screenings increases

female uptake of breast cancer screening and male uptake of prostate cancer screen-

ing among the elderly. It suggests that policies that reduce the cost of preventive

care can boost its use and countervail the negative effect of health insurance caused

by ex ante moral hazard. And such policies are expected to increase survival rate,

and prevent huge medical cost at late stage.

With the enactment of PPACA, all new group health plans and plans in the

individual market must provide full coverage for preventive services without co-pay

and deductibles in 2010. According to the Census 2009 estimate, 26.8 million men

and 50.7 million women fall into the recommended age group for prostate cancer

screening and breast cancer screening and are not eligible for Medicare yet in 2008.

The estimates from the MEPS and NHIS predict that each year 710 thousand more

men and 1,582 thousand more women would use regular prostate cancer screening

and breast cancer screening respectively.
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Table 2.1: Summary Statistics

Male Female
Mean Std. Dev. Mean Std. Dev.

Original Sample:
Age 63.47 6.02 64.10 6.10

Demographics

White non-Hispanic 0.70 0.46 0.70 0.46
Black non-Hispanic 0.11 0.32 0.14 0.34
Hispanic 0.14 0.34 0.13 0.33

Married 0.76 0.42 0.53 0.50

High School Dropout 0.25 0.43 0.24 0.43
High School Graduate 0.45 0.50 0.52 0.50
At Least Some College 0.31 0.46 0.24 0.43

Above Poverty Line 0.89 0.31 0.86 0.35

Employment, Insurance

Employed 0.51 0.50 0.36 0.48

Private Coverage 0.69 0.46 0.67 0.47
Other Public Coverage 0.15 0.36 0.17 0.38

# individuals 13760 22892

Imputed Sample:
PSA Test Mammogram

Screening Test(%) 31.54 45.80 42.72 48.72

# observations 68800 97687

Data Source 1998-2005 MEPS 1993-1994 NHIS &
1998-2005 MEPS
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Table 2.2: Raw Difference-in-Differences Analysis

PSA Test (%)

Before age 65 After age 65 Difference
(Medicare ineligible) (Medicare eligible)

Before 2000 13.51 25.97 12.46
(PSA not covered)

After 2000 31.95 49.38 17.43
(PSA covered)

DD 4.97

Mammogram (%)

Before age 65 After age 65 Difference
(Medicare ineligible) (Medicare eligible)

Before 1998 33.31 35.48 2.17
(Mammogram not covered)

After 1998 44.75 47.64 2.89
(Mammogram covered)

DD 0.72

Table 2.3: Sample Sizes and Percent Non-missing

PSA Test Mammogram
Year t N % Non-missing N % Non-missing

t = Survey Y ear 13760 100 21587 100

t = Survey Y ear − 1 13760 45.5 22892 44.6

t = Survey Y ear − 2 13760 32.7 18606 25.4

t = Survey Y ear − 3 13760 28.5 17301 18.1

t = Survey Y ear − 4 13760 28.5 17301 18.1

Total 68800 47.1 97687 43.8
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Table 2.7: Detailed Screening Equation: Male

PSA Test

(1) (2) (3)

1. Post65 -1.55 -1.79 -1.75
(1.25) (1.27) (1.24)

2. Post65 ∗ PostExpansion 2.71** 2.65** 2.65**
(1.32) (1.33) (1.33)

3. (Age− 65) 1.04*** 0.98*** 0.96***
(0.10) (0.10) (0.10)

4. (Age− 65)2 -0.03*** -0.03*** -0.03***
(0.01) (0.01) (0.01)

Control Variables:
5. Married 9.02*** 7.57*** 7.43***

(0.86) (0.89) (0.88)

6. White non-Hispanic 13.94*** 12.78*** 12.49***
(1.67) (1.54) (1.51)

7. Black non-Hispanic 18.20*** 17.57*** 17.20***
(1.93) (1.85) (1.81)

8. Hispanic 10.77*** 11.71*** 11.41***
(1.75) (1.68) (1.65)

9. At Least Some College 8.83*** 8.37*** 8.22***
(1.17) (1.17) (1.16)

10. High School Dropout -13.37*** -11.62*** -11.43***
(1.02) (1.04) (1.03)

11. Poor -6.64*** -4.46*** -4.39***
(1.12) (1.13) (1.11)

12. High Income 8.08*** 6.04*** 5.91***
(0.97) (0.96) (0.93)

13. Employment -6.03*** -6.41*** -5.57***
(0.93) (0.85) (0.73)

14. Private Coverage 6.91*** 7.72***
(1.16) (1.12)

15. Other Public Coverage -0.70 1.62
(1.22) (1.30)

16. No Coverage -10.28*** -12.11***
(1.31) (1.82)

17. {Employ,Ins}∗Dimpute

X

Observations 68410 68410 68410

Note: Coefficients are estimated by maximum likelihood. Standard errors (in paren-
theses) are clustered by age and individual. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.8: Detailed Screening Equation: Female

Mammogram

(1) (2) (3)

1. Post65 -0.92 -2.63* -2.56*
(1.40) (1.45) (1.46)

2. Post65 ∗ PostExpansion 2.56** 3.18*** 3.12***
(1.22) (1.20) (1.18)

3. (Age− 65) -0.06 -0.16* -0.17*
(0.09) (0.09) (0.09)

4. (Age− 65)2 -0.03*** -0.03*** -0.03***
(0.01) (0.01) (0.01)

Control Variables:
5. Married 6.44*** 4.81*** 4.77***

(0.78) (0.74) (0.73)

6. White non-Hispanic 8.24*** 6.00*** 5.89***
(1.95) (1.91) (1.90)

7. Black non-Hispanic 15.50*** 14.55*** 14.36***
(2.18) (2.10) (2.09)

8. Hispanic 8.78*** 10.79*** 10.64***
(2.06) (2.15) (2.14)

9. At Least Some College 8.26*** 6.88*** 6.80***
(0.89) (0.83) (0.82)

10. High School Dropout -12.17*** -9.66*** -9.52***
(0.73) (0.79) (0.77)

11. Above Poverty Line 6.78*** 3.54*** 3.48***
(0.91) (0.89) (0.88)

12. Employment 0.36 -0.78 -2.30*
(0.94) (0.97) (1.17)

13. Private Coverage 9.45*** 10.99***
(1.18) (1.24)

14. Other Public Coverage 0.77 2.03**
(0.96) (0.97)

15. No Coverage -16.53*** -16.70***
(1.48) (1.56)

16. {Employ,Ins}∗Dimpute

X

Observations 96044 95984 95984

Note: Coefficients are estimated by maximum likelihood. Standard errors (in paren-
theses) are clustered by age and individual. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.9: Ex Ante and Ex Post Moral Hazards by Demographics

PSA Test Mammogram

Post65 Post65 ∗ Post2000 Post65 Post65 ∗ Post1998
ex ante ex post ex ante ex post

(1) (2) (3) (4)

Overall Sample -1.75 2.65** -2.56* 3.12***
(1.24) (1.33) (1.46) (1.18)

Classified by Race/Ethnicity

White non-Hispanic -2.89 3.29* -3.67** 3.54***
(1.84) (1.80) (1.70) (1.37)

Black non-Hispanic 2.52 -0.83 0.51 -0.60
(3.87) (3.72) (3.54) (3.00)

Hispanic 1.55 2.43 -1.29 3.66
(2.74) (2.69) (3.71) (3.82)

Classified by Education

At Least Some College -4.71* 5.25** -2.66 2.79
(2.79) (2.50) (3.35) (2.71)

High School Graduate -0.76 2.91 -3.50** 4.55***
(2.25) (2.20) (1.62) (1.53)

High School Dropout -0.41 0.65 -1.41 1.54
(2.16) (2.06) (2.42) (2.02)

Classified by Income

0 to 0.25 quantile -4.81* 1.31 -3.19 2.42
(low income) (2.49) (2.45) (3.30) (3.07)

0.25 to 0.5 quantile -3.47 7.10** -2.16 -0.93
(medium low income) (2.67) (2.79) (2.17) (2.06)

0.5 to 0.75 quantile 4.30+ 0.89+ -1.77 2.41
(medium high income) (2.86) (2.69) (2.99) (2.87)

0.75 to 1 quantile -2.55 1.83 -3.19** 3.64***
(high income) (4.09) (3.43) (1.46) (1.22)

Note: 1. Each row represents a separate regression.
2. Coefficients are estimated by maximum likelihood. Standard errors (in parentheses)
are clustered by age and individual. *** p < 0.01, ** p < 0.05, * p < 0.1.
3. Control variables include demographics, employment and insurance status.
4. + Those two coefficients are estimated by two step method with bootstrap standard
errors because of computational difficulty in ML estimation.
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Table 2.10: Ex Ante and Ex Post Moral Hazards among the Uninsured
and Medicare only

PSA Test Mammogram

Post65 Post65 ∗ Post2000 Post65 Post65 ∗ Post1998
ex ante ex post ex ante ex post

(1) (2) (3) (4)

Overall Sample -1.75 2.65** -2.56* 3.12***
(1.24) (1.33) (1.46) (1.18)

Uninsured & -1.92 1.92 -5.88** 5.15**
Medicare only (2.78) (2.60) (2.63) (2.36)

Note: 1. The sample used to estimate the second row is composed of the pre-65 sample
who does not have private or public plans and the post-65 sample who does not have
private coverage and does not have public coverage except Medicare.
Note: 2. Each row represents a separate regression.
3. Coefficients are estimated by maximum likelihood. Standard errors (in parentheses)
are clustered by age and individual. *** p < 0.01, ** p < 0.05, * p < 0.1.
4. Control variables include demographics, and employment.
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Figure 2.1: Age Profile of Coverage by Medicare and by Any Insurance

Data Source: 1996-2005 MEPS.

Figure 2.2: Age Profile of Medicare Coverage by Education: Male

Data Source: 1996-2005 MEPS.
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Figure 2.3: Age Profile of Medicare Coverage by Race/Ethnicity: Male

Data Source: 1996-2005 MEPS.

Figure 2.4: Age Profile of Employment Status and Insurance Coverage: Male

Data Source: 1996-2005 MEPS.
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Figure 2.5: Age Profile of Medicare Coverage by Education: Female

Data Source: 1996-2005 MEPS.

Figure 2.6: Age Profile of Medicare Coverage by Race/Ethnicity: Female

Data Source: 1996-2005 MEPS.
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Figure 2.7: Age Profile of Employment Status and Insurance Coverage: Female

Data Source: 1996-2005 MEPS.

Figure 2.8: Pre-65 and Post-65 Insurance Coverage and Employment: Male

Data Source: 1996-2005 MEPS.
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Figure 2.9: Pre-65 and Post-65 Insurance Coverage and Employment: Female

Data Source: 1996-2005 MEPS.

Figure 2.10: Difference in Rate of Pre-65 and Post-65 Cancer Screening Use

Data Source: 1998-2005 MEPS and 1993-1994 NHIS.
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Chapter 3

Evidence from HRS

3.1 MEPS, NHIS vs HRS

The combine Medical Expenditure Panel Survey (MEPS) and National Health

Interview Survey (NHIS) allow me to do a cross-sectional analysis with a large

sample. The advantages of a cross-sectional analysis are efficiency and large numbers

of subjects. MEPS and NHIS are carried out annually and the combined sample size

is large. Table 2.1 shows that there are 13760 males and 22892 females in the sample.

The imputed numbers of observations on the use of PSA test and mammogram are

68800 and 97687 respectively.

But there are shortcomings associated with MEPS and NHIS data. One can-

not follow the same individuals over time. With cross-sectional data, the observed

preventive behavior is representative of the population at a single period in time and

the temporal aspects of a specific individual’s preventive behavior is not necessarily

available. In the case of MEPS, one may follow for a couple of years, but not for a

long time. Another disadvantage arises from data censoring and data selection.

This research is concerned with change that occurs over age and year. This fact

brings forward another research choice: longitudinal study using panel data. Lon-

gitudinal studies involve studying the same group of participants over a particular

time period, while cross-sectional studies involved studying groups of participants
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in different age groups at the same point in time.

Longitudinal studies collect panel data, which follows a cohort of individuals

with the purpose of monitoring changes over a period of time. The Health and

Retirement Study (HRS) is a longitudinal household survey data set for the study

of retirement and health among the elderly. The survey time period is referred to as

a “wave”, and a total of seven waves of data have been collected at approximately

two-year intervals.

There are three reasons why the HRS longitudinal data is valuable. Firstly, the

HRS follows the same group of individuals, thus making possible the observation of

any one individual’s preventive behavior over time. It provides the best information

about the continuity or discontinuity of preventive behavior over time and allows

for the individual tracking of patterns of behavior, as well as trends of development,

within the elderly group.

With individual effects being extracted, I can better track the change in indi-

vidual’s preventive behavior that happens over age and year. And policy changes are

not expected to be correlated with individual effects. Therefore, the research design

can be better fulfilled and the HRS avoids a disadvantage that the cross-sectional

study suffers. That is, age differences do not show age change and cohort effects.

Secondly, HRS does not have the similar data censoring and data selection

issues like the MEPS and NHIS. Due to the type of questions being asked in the

MEPS and NHIS, the data on the use of preventive screenings are imputed, thus

making data censoring and selection a potential problem. Chapter 2 uses the Heck-

man selection model to solve the problem arising from data imputation while the
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HRS data is free of that problem.

Thirdly, as will seen in this chapter, the HRS does not only circumvent the

shortcomings of the MEPS and NHIS, but also strengthens the results from the

MEPS and NHIS. As will seen later in this chapter, Chapter 2 and 3 come to the

same conclusion though different data and estimation methods are used.

However, there is a limitation of using HRS, which has a small number of

panels. In contrast to MEPS which is an annual survey, HRS is carried out every

other year. And the panels available for this study is even fewer. In total, there are

three panels available for female, which are wave 3 (pre-1998), wave 5 and 7 (post-

1998) and there are two panels available for male, which are wave 3 (pre-2000) and

wave 7 (post-2000).

Wave 5 is not included in analysis on male because Medicare expanded cov-

erage of prostate cancer screening tests in 2000, the same year wave 5 interview

was carried out. The survey asks male uptake of prostate screening test in the last

two years before the survey and thus it is impossible to tell whether individuals

took tests before or after the date when Medicare began to cover the tests. For

that reason, wave 5 is dropped and there are only two panels of data available for

estimation on male uptake of PSA tests, one before 2000 and one after.

In all, the HRS and the MEPS/NHIS each have pros and cons. No one data

set is perfect for this study. As is known, the benefits of a longitudinal analysis over

a repeated cross-sectional study include the ability to control individual effects. And

the HRS does not have data censoring and data selection issues. This chapter tries

to utilize these benefits to redo our exercise and to compare the results obtained
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from the MEPS and NHIS.

3.2 Empirical Framework & Data

3.2.1 Empirical Framework

In this chapter, I still work with the same reduced form model as in Chapter

2, equation (2.2). Individual effects will be controlled because of the nature of

longitudinal data. A linear probability model, instead of probit model, will be

estimated because of the large number of individual fixed effect.

Screenit = Post65it ∗ α + Post65it ∗ PostExpansiont ∗ β

+f(ageit; θ) + controlit ∗ γ + µt + εit

(3.1)

where Post65it denotes an indicator for being age 65 or older for individual i in year

t, and PostExpansiont denotes an indicator for being after Medicare expansion in

year t. That is,

Post65it = 1 if age ≥ 65,

and

PostExpansiont =


Post1998t = 1 if t ≥ 1998 for female (mammogram)

Post2000t = 1 if t ≥ 2000 for male (PSA test).

f(ageit; θ), is a continuous polynomial with potential discontinuities in the deriva-

tives at age 65.
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The coefficient on Post65it measures the effect of Medicare enrollment on

preventive behaviors and it should be negative if ex ante moral hazard exists; the

coefficient on Post65it ∗PostExpansiont measures the effect of Medicare expansion

on the use of preventive screenings and it should be positive if ex post moral hazard

exists. Combining them yields the overall effect of Medicare on the use of preventive

screenings. Section 3.2.2 describes the data in use, and Section 3.2.3 discusses the

variables and summary statistics.

3.2.2 Data

The Health and Retirement Study (HRS) is a longitudinal household survey

data set for the study of retirement and health among the elderly in the United

States. It began as a panel survey of a nationally representative sample of people

aged 51 to 61 in 1992, including their spouses. The original cohort (wave 1) has been

re-interviewed every other year since then. In 1998 the sample was supplemented

with both older and younger cohorts. A total of 7 waves are available now. Thus

HRS is particularly well-suited to a study of the elderly.

The HRS is rich and complex. It contains detailed information on preventive

services that the respondents had, along with rich data on their other health insur-

ance coverage, economic and demographic variables (including age, race/ethnicity,

marital status, education, wealth), own assessment of health status, and subjective

life expectancy.

The RAND Center for the Study of Aging created a RAND HRS data file,
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which is a subset of the HRS. RAND HRS is derived from the HRS and more

accessible than the raw data. It contains all the information I need for this study.

Therefore I use data from RAND HRS in this chapter.

I focus on a panel of respondents who were continuously interviewed in wave

3, wave 5 and 7, and aged 56 to 75 during my sample period (wave 3 to wave 7).

Wave 3 interview was carried out in 1995 and 1996 for two cohorts, and wave 5 and

7 were carried out in 2000 and 2004 for both cohorts. Data in wave 4 and wave 6

is not included in the study because no question was asked on preventive behaviors

in those two waves. In addition, Wave 5 is not used for men group because it was

carried out in 2000, the first year PSA tests were covered by Medicare. There is

no way to tell if the test was taken before or after the expansion of the Medicare

preventive services.

The original sample includes 2712 males and 3178 females. Two types of

individuals are excluded from the sample. First, individuals who are/were on Social

Security Disability Insurance (DI) or possibly are/were on DI are excluded from the

sample due to DI enrollment patterns (Autor and Duggan 2003). Because of this,

266 males and 298 females are excluded.

Second, individuals who report to have cancer or do not answer cancer ques-

tions in any waves are excluded from the sample. Because mammograms and PSA

tests help detect breast cancer and prostate cancer in the early stage, cancer pa-

tients may not need to take the screening tests after the cancer has been detected

or may have to take more tests for diagnostic purpose. Therefore, cancer patients

are excluded from the sample as well. 243 males (191 reporting cancer) and 148
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females (122 reporting cancer) are excluded. In all, the final sample includes 2203

males and 2732 females.

3.2.3 Variables

Dependent variables, i.e., uptake of mammogram and PSA test are derived

from the following yes-no questions:

“Did you have a mammogram/examination of prostate to screen for cancer in

the last two years?”

Dependent variables on use of mammogram and PSA test do not indicate

actual use in survey year, but two years before that. One should be careful when

interpreting the rates because they mean the rates two years before corresponding

ages. In general, rates fluctuate over ages.

Post65 turns on when the individual’s age at the survey is equal to or over

65. Post1998 indicates female coverage of mammograms, and Post2000 shows male

coverage of PSA tests. In this specific data set, Post1998 is coded 0 for wave 3

(carried out in 1995 and 1996), and 1 for wave 5 (carried out in 2000) and wave 7

(carried out in 2004); Post2000 is coded 0 for wave 3, and 1 for wave 7.

Control variables are demographic characteristics, employment status, other

insurance coverage, and life expectancy. Demographics include age, race/ethnicity,

marital status, education and wealth. Information on other health insurance in-

cludes coverage by Medicaid, Champs/VA, employer provided plan, spouse’s em-

ployer provided plan, and other insurance plans.
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Table 3.1 gives the summary statistics on cancer screening use, demographics,

employment status, insurance coverage and life expectancy. Rates of screening tests

are normalized by percentage. The statistics from the HRS sample are consistent

with those from the MEPS and NHIS. One seemingly discrepancy is the rate of

taking cancer screening test. For male PSA testing rate, Table 3.1 reports 71.83%

while Table 2.1 reports 31.54%; for female mammogram uptake rate, Table 3.1

reports 75.54% while Table 2.1 reports 42.72%.

The reason for this seemingly discrepancy is that the HRS surveys biennial

screening test utilization instead of the annual one in MEPS and NHIS. Thus the

means calculated from the HRS sample for screening test utilization (Table 3.1) is

about double the size of the ones from the MEPS and NHIS sample (Table 2.1). In

both tables, females use the screening test more frequently than males.

All other statistics are similar and consistent with the MEPS and NHIS, which

include age, race/ethnicity, education, employment, and insurance coverage. Besides

the common variables, the HRS asks questions on probability of living to a given

age. The self-reported probability of living to age 75 or older is included in some

estimations. The problem with the subjective probability is that it may be affected

by health conditions and test results on cancer screenings. Details will be discussed

in the next section.

Table 3.2 does a raw difference-in-differences analysis. For mammogram, the

raw difference-in-differences estimate of ex post moral hazard is 3.05. That is, fe-

male Medicare beneficiaries increased the use of mammogram after 1998 by 3.05

percentage point as compared to the rate before 1998. The difference in mammo-
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gram around age 65 is -2.96 before 1998. It conforms to the hypothesis of ex ante

and ex post moral hazards. But the results on PSA test contradict the hypothesis.

As will be discussed in the next section, the data on male uptake of PSA test is

limited. Figure 3.1 and 3.2 present the graph results.

3.3 Results and Comparison

3.3.1 Ex Ante & Ex Post Moral Hazards

Summarized estimation results on the linear probability model (equation 2.2)

are presented in Table 3.3 and Table 3.4. Table 3.3 is on female uptake of mam-

mogram and Table 3.4 is on male uptake of PSA test. In panels A1 and A2 (i.e.,

rows 1 through 4), ex ante and ex post moral hazards are separated while they are

not in panels B1 and B2 (i.e., rows 5 and 6). Panels A1 and B1 report fixed effect

estimates, and Panels A2 and B2 use random effect estimation. As suggested by

Lee and Card (2008), standard errors are clustered by age in some fixed effect re-

gressions, which are shown in even-numbered columns. Coefficients on ex ante and

ex post moral hazards are normalized by percentage.

In Table 3.3, columns (1) and (2) show estimates of the basic model (with-

out control variables) on female uptake of mammogram, columns (3) and (4) con-

trol demographics (including marital status, race/ethnicity, education, and wealth),

columns (5) and (6) add employment, columns (7) and (8) control insurance status

other than Medicare coverage, and finally columns (9) and (10) add self-assessed life

expectancy. One problem with the subjective measure of life expectancy is that it

77



may be affected by the mammogram test result. For that reason, columns (7) and

(8) are preferred to columns (9) and (10) though there is no big difference among

them.

Panels A1 and A2 in Table 3.3 indicate that females exhibit strong ex ante

and ex post moral hazards in taking mammogram, with about 5 to 6 percentage

point decrease after Medicare enrollment and about 7 percentage point increase

after Medicare expansion of mammogram coverage. Coefficients on Post65 and

Post65 ∗PostExpansion are significant in all specifications. The result is based on

the full sample, i.e., 2732 females who were interviewed in wave 3 (carried out in

1995 and 1996), wave 5 (in 2000) and wave 7 (in 2004).

Column (7) and (8) indicate that there is a 5.54 percentage point drop at age

65 and 7.30 percentage point gain among age 65 and older after year 1998. The

biennial rate of mammogram use among pre-65 HRS female sample is 74.67%. The

5.54 percentage point drop at age 65, which is shown in row 1 and column (7) or

(8), represents 5.54/74.67 = 7.4 percent decrease in mammogram utilization, and

the 7.30 percentage point gain at age 65 and year 1998, which is shown in row 2

and column (7) or (8), means 7.30/74.67 = 9.8 percent increase. Therefore, ex ante

and ex post moral hazards change the rate of mammogram utilization by 7.4% and

9.8% respectively.

Panels B1 and B2 show the combined effect at age 65. That is the summation

of ex ante and ex post moral hazards. In both fixed effect and random effect esti-

mations, I find no significant discontinuity at age 65. This is consistent with results

shown in Panels A1 and A2, which indicate that ex ante and ex post moral hazards
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are of similar magnitudes, and have opposite signs. When combined, they cancel

off each other. When combined, they cancel off each other. Therefore, it might be

a reason why previous literature did not find evidence on ex ante moral hazard at

Medicare enrollment and helps explain the puzzling question.

Results on male uptake of PSA test are not showing any ex ante moral hazard,

nor ex post moral hazard. In Table 3.4 Panels A1 and A2, the estimated coefficients

are insignificant, and their signs are opposite to the theoretical prediction. One

possible cause is poor quality of data. The reasons are as follows.

First, there is a short panel problem. The sample consists of 2203 males who

were interviewed in wave 3 (carried out in 1995 and 1996), and wave 7 (in 2004).

Wave 5 (in 2000) is not used because it was carried out the same year as Medicare

coverage of PSA test. There is no way to tell if the test was taken before or after the

expansion. Second, there are large gaps between the time the surveys were taken

and the policy change. One panel is four to five years before the policy change

and one is four years after. It makes the fuzzy regression discontinuity estimation

imprecise and may even invalid the design. Third, the selected surveys were taken

eight to nine years apart, and the 2004 sample is aged. The average age of wave 3

sample is 60.7 while that of wave 7 sample is 68.6. It makes the data poor in terms

of comparability.
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3.3.2 Control Variables

Table 3.5 and Table 3.6 show the detailed random effect estimation of the full

model. Fixed effect estimation is not presented because several control variables are

dropped due to no variation. Each column from left to right corresponds to column

(1), (3), (7) and (9) of Table 3.3 and Table 3.4 respectively.

The utilization of mammogram and PSA test varies by the control variables.

The average rate is different for the white, the black and the Hispanic. Married

or partnered people tend to use more frequently. The screening rates decrease

significantly as education level drops. Non-housing assets also play a role here.

More non-housing assets are related to a higher level of screening use.

3.3.3 Different Effects by Demographic Groups

Different demographic groups vary not only in the level of screening test use,

but also in the responsiveness to Medicare enrollment and coverage expansion. That

is, people show different ex ante and ex post moral hazards. Table 3.7 estimates ex

ante and ex post moral hazards by demographics. Since the estimates on PSA test

are poor and not informative due to data limitation, I will focus the discussion on

mammogram utilization in this section. The results are listed in columns (3) and

(4), and the model specification corresponds to column (8) in Table 3.3.

There are a few observations. Firstly, Ex ante and ex post moral hazards are

found to vary by race/ethnicity. The sample is divided into two subsamples, and

the white show different responsiveness from the Black and the Hispanic combined.
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Secondly, better education is related to larger ex ante and ex post moral hazards.

Females with some college education or having a college degree or above modify their

behavior greatly at age 65 and at year 1998. Their estimated ex ante moral hazard is

more than doubled of the sample average, and their estimated ex post moral hazard

is thirty percent more than the sample average. Thirdly, wealth affects the two

effects as well.

3.3.4 HRS versus MEPS/NHIS

As discussed earlier in this chapter, both the HRS and the MEPS/NHIS have

pros and cons. The HRS is valuable because the longitudinal data allows the obser-

vation of development and the control of individual effects. And the strength of the

MEPS/NHIS is large sample size which increases efficiency of estimation. Results

obtained from those two sources are discussed here.

The estimated ex ante and ex post moral hazards do not differ statistically

across the two data sets. Columns (7) and (8) in Table 3.3 corresponds to column

(9) in Table 2.4. The estimates do not seem to be consistent in that the magnitude

of estimates using the HRS is larger than those using the MEPS and NHIS. This is

because the HRS is biennial and the MEPS and NHIS is annual. Estimates from the

HRS is slightly more than doubled of those from the MEPS/NHIS. As calculated

earlier in this section, ex ante moral hazard reduce the rate of mammogram utiliza-

tion by 7.4%, and ex post moral hazard increase the rate by 9.8%. Those numbers

are slight higher than what have been calculated in previous chapter, which are 5.9%
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and 7.1%, but they are not statistically different.

The finding that ex ante and ex post moral hazards cancel off each other when

combined is consistent from both studies. Panels B1 and B2 in Table 3.3 show the

summation of ex ante and ex post moral hazards at age 65. In both fixed effect and

random effect estimations, there is no significant discontinuity at age 65. This is

consistent with the finding with the MEPS/NHIS data.

In regard to demographic differences, the findings on demographic control

variables are consistent between the two data sources. The only exception is em-

ployment. With the MEPS/NHIS, employment significantly decreases the use of

PSA test in all model specification, and it is significant at 10% level for the use of

mammogram in full specification. However, it is not significant for neither mammo-

gram nor PSA test in any of the specifications with the HRS data.

Table 2.9 and Table 3.7 present the estimated ex ante and ex post moral hazards

by demographics. The sample classifications in Table 3.7 are a bit different from

Table 2.9 due to sample size constraint.

Major results are similar. Firstly, ex ante and ex post moral hazards vary by

race/ethnicity. Secondly, better education is related to larger ex ante and ex post

moral hazards. Thirdly, income/wealth affects the two moral hazard effects as well.

However, the HRS produces some results different than the MEPS and NHIS

do. Table 3.7 indicates that the white are less responsive to Medicare enrollment

and screening test coverage while Table 2.9 shows the opposite. In Table 2.9, the

relationship between income, and ex ante and ex post moral hazards is unclear. But

Table 3.7 clear shows that people with above average non-housing assets have larger
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ex ante and ex post moral hazards.

One possible reason for the different results on income/wealth is that Table

2.9 uses income while Table 3.7 uses non-housing assets as an indicator for wealth.

Another possible reason is that HRS uses variations within an individual but MEPS

uses variations across individual. If no individual fixed effect is controlled, the

estimated ex ante and ex post moral hazards among people with above average non-

housing assets are -3.77 and 6.93 percentage point respectively, and are statistically

significant. Since they are less than the overall sample in absolute value, the second

reason is plausible in explaining the difference.

Since the HRS is longitudinal, one can follow the pre-65 uninsured individuals

and observe their behavioral change at age 65 and in year 1998 and 2000. It seems

that the HRS offers an opportunity to study the uninsured and provides better

data than the MEPS and NHIS. However, similar study on the uninsured cannot

be carried out due to data limitation. One cannot identify the comparison group

composed of individuals who got on Medicare before 1998 and did not have insurance

before Medicare enrollment. Therefore, ex ante and ex post moral hazards cannot

be separated.

3.4 Conclusion

The Health and Retirement Study (HRS) is a longitudinal household survey

of the elderly and it allows for controlling the individual effects. It overcomes the

disadvantage of data from the Medical Expenditure Panel Survey (MEPS) and Na-
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tional Health Interview Survey (NHIS). However, the HRS does not have a large

sample as compared to the MEPS and NHIS and has only a few panels for use. The

HRS, MEPS and NHIS each have pros and cons. No single data set is perfect for

the study of two moral hazards. Therefore, results obtained from the HRS, MEPS

and NHIS complement each other, and have equal importance.

The results on female uptake of mammogram are largely consistent with the

findings in Chapter 2. Evidence supports the existence of ex ante and ex post moral

hazards. The HRS suggests larger effects than the MEPS and NHIS. The level of

screening utilization and the size of the two moral hazards vary with demographics.

Higher education is associated with more frequent use and more responsiveness

to insurance change. Wealthy people show similar pattern. Estimation on male

uptake of PSA test is not as good as Chapter 2 due to data limitation. The results

are insignificant, and the signs of the estimated coefficients are opposite to the

theoretical prediction and empirical findings from the MEPS.

In all, ex ante moral hazard is found at Medicare enrollment and ex post moral

hazard is found at Medicare expansion of cancer screening procedures. Medicare

enrollment reduces breast cancer screening due to ex ante moral hazard. This study

also shows that ex post moral hazard can offset the negative effect caused ex ante

moral hazard. Therefore, one way to encourage people to use preventive screen-

ing procedures is to reduce the cost. This study supports insurance coverage of

preventive care.

All new group health plans and plans in the individual market must provide

full coverage for preventive services without co-pay and deductibles in 2010 under
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PPACA. About 50.7 million women fall into the recommended age group for annual

mammogram and are not eligible for Medicare in 2008, according to the Census

2009 estimate. A simple back-of-envelope calculation shows that each year 1,901

thousand more women would use regular breast cancer screening.
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Table 3.1: Summary Statistics

Male Female
Mean Std. Dev. Mean Std. Dev.

Dependent Variable PSA Test Mammogram
Screening Test(%) 71.83 44.99 75.54 42.99

Key Independent Variable
Post65 0.52 0.50 0.48 0.50
Post1998 - - 0.67 0.47
Post2000 0.50 0.50 - -

Controls
Age 64.67 5.08 64.30 4.40

White non-Hispanic 0.78 0.41 0.74 0.40
Black non-Hispanic 0.11 0.32 0.16 0.36
Hispanic 0.08 0.28 0.08 0.27

Married or Partnered 0.86 0.35 0.65 0.48

College and Above 0.24 0.43 0.15 0.36
Some College 0.19 0.39 0.21 0.40
High School Graduate 0.29 0.45 0.37 0.48
GED 0.05 0.23 0.04 0.20

Non-housing Assets (in million) 0.32 1.38 0.25 0.69

Employed 0.53 0.50 0.38 0.49

Employer provided plan 0.48 0.50 0.30 0.46
Spouse’s employer provided plan 0.11 0.32 0.23 0.42
Medicaid 0.03 0.18 0.06 0.23
Champs/VA 0.08 0.27 0.04 0.19
Other health insurance 0.16 0.37 0.19 0.40

Prob. of Living 75+ 74.69 9.49 82.53 5.05

# observations 4406 8196
# individuals 2203 2732

Note: Number of observations varies across variables due to missing
values. Means, standard deviations and the number of observations are
unweighted.
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Table 3.2: Raw Difference-in-Differences Analysis

Mammogram (%)

Before age 65 After age 65 Difference
(Medicare ineligible) (Medicare eligible)

Before 1998 73.07 70.11 -2.96
(Mammogram not covered)

After 1998 76.86 76.95 0.09
(Mammogram covered)

DD 3.05

PSA Test (%)

Before age 65 After age 65 Difference
(Medicare ineligible) (Medicare eligible)

Before 2000 64.38 78.79 14.41
(PSA not covered)

After 2000 75.21 77.38 2.17
(PSA covered)

DD -12.24
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Table 3.5: Detailed Screening Equation: Female

Mammogram

(1) (2) (3) (4)

1. Post65 -6.28** -6.33** -5.12* -5.38**
Ex Ante (2.67) (2.66) (2.67) (2.73)

2. Post65 ∗ PostExpansion 7.22*** 7.36*** 7.18*** 7.56***
Ex Post (2.53) (2.52) (2.53) (2.65)

3. (Age− 65) 0.59* 0.65* 0.85** 1.59
(0.35) (0.35) (0.35) (1.56)

4. (Age− 65)2 -0.05** -0.04** -0.04** -0.01
(0.02) (0.02) (0.02) (0.07)

5. (Age− 65)3 -0.010** -0.009** -0.011** -0.010**
(0.004) (0.004) (0.004) (0.004)

Controls:
6. White non-Hispanic -2.64 -3.08 -3.10

(4.76) (4.70) (4.71)

7. Black non-Hispanic 3.42 3.71 3.70
(4.98) (4.91) (4.92)

8. Hispanic -2.16 -0.68 -0.64
(5.25) (5.18) (5.19)

9. Married 8.75*** 8.18*** 8.17***
(1.20) (1.23) (1.23)

10. College or Above 17.98*** 15.26*** 15.30***
(2.21) (2.23) (2.23)

11. Some College 10.93*** 9.37*** 9.41***
(2.01) (2.00) (2.01)

12. High School Graduate 8.72*** 7.22*** 7.24***
(1.78) (1.78) (1.78)

13. GED 5.43 4.14 4.14
(3.38) (3.34) (3.34)

14. Non-housing Assets 2.78*** 2.81*** 2.82***
(0.74) (0.74) (0.74)

15. Employment 0.71 0.74
(1.08) (1.08)

16.Prob. of Living 75+ -0.67
(1.37)

17.Other Insurance Coverage X X

# observations 8180 8180 8180 8180
# individuals 2732 2732 2732 2732

Note: Coefficients are estimated by random effect. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 3.6: Detailed Screening Equation: Male

PSA Test

(1) (2) (3) (4)

1. Post65 3.64 3.43 4.24 5.95*
Ex Ante (3.42) (3.35) (3.35) (3.49)

2. Post65 ∗ PostExpansion -3.67 -3.57 -2.97 -7.57*
Ex Post (2.92) (2.85) (2.85) (3.92)

3. (Age− 65) 1.54*** 1.56*** 1.50*** -0.88
(0.58) (0.56) (0.57) (1.50)

4. (Age− 65)2 -0.07*** -0.07*** -0.07*** -0.16***
(0.02) (0.02) (0.02) (0.06)

5. (Age− 65)3 -0.01 -0.01 -0.004 -0.01
(0.01) (0.01) (0.006) (0.01)

Controls:
6. White non-Hispanic 9.82* 9.40* 9.40*

(5.42) (5.38) (5.38)

7. Black non-Hispanic 10.08* 10.08* 10.03*
(5.81) (5.77) (5.76)

8. Hispanic 3.30 5.09 4.84
(5.98) (5.95) (5.95)

9. Married 11.11*** 10.03*** 10.14***
(2.03) (2.05) (2.05)

10. College or Above 23.95*** 22.40*** 22.33***
(2.29) (2.31) (2.31)

11. Some College 17.01*** 15.83*** 15.66***
(2.36) (2.37) (2.37)

12. High School Graduate 14.58*** 13.42*** 13.38***
(2.16) (2.16) (2.16)

13. GED 10.64*** 9.34*** 9.53***
(3.56) (3.55) (3.55)

14. Non-housing Assets 0.78 0.79* 0.79*
(0.48) (0.48) (0.48)

15. Employment -2.01 -2.03
(1.48) (1.48)

16. Prob. of Living 75+ 1.49*
(0.87)

17.Other Insurance Coverage X X

# observations 4377 4377 4377 4377
# individuals 2203 2203 2203 2203

Note: Coefficients are estimated by random effect. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 3.7: Ex Ante and Ex Post Moral Hazards by Demographics

PSA Test Mammogram

Post65 Post65 ∗ Post2000 Post65 Post65 ∗ Post1998
ex ante ex post ex ante ex post

(1) (2) (3) (4)

Overall Sample 1.43 -9.92* -5.54* 7.30***
(5.56) (5.47) (2.79) (1.75)

Classified by Race/Ethnicity

White Non-Hispanic 1.49 -15.05** -3.49 5.19*
(6.26) (7.11) (3.66) (2.79)

Black Non-Hispanic -1.81 14.44 -13.93*** 15.71**
& Hispanic (12.96) (11.99) (4.72) (6.91)

Classified by Education

At Least Some College -3.62 1.08 -12.36** 9.63**
(4.57) (4.88) (4.66) (4.54)

High School Graduate 3.86 -17.88* -1.00 4.76
& GED (7.56) (8.80) (3.66) (3.40)

Classified by Non-housing Assets

Below average 4.15 -22.33** -1.93 5.71**
(7.70) (8.28) (3.22) (2.38)

Above average 2.85 -0.53 -9.40** 9.71***
(10.96) (11.61) (3.44) (2.46)

Note: 1. Each row represents a separate regression.
2. Coefficients are estimated by fixed effect. Standard errors (in parentheses) are
clustered by age. *** p < 0.01, ** p < 0.05, * p < 0.1.
3. Control variables include demographics, employment, and insurance status.
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Figure 3.1: Raw Difference-in-Differences Graph: Female

Data Source: HRS wave 3, 5, and 7.

Figure 3.2: Raw Difference-in-Differences Graph: Male

Data Source: HRS wave 3 and 7.
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Appendix A

Selected Prevention Provisions

Table A.1: Selected Prevention Provisions

TITLE I QUALITY, AFFORDABLE HEALTH CARE FOR ALL AMERI-
CANS

Subtitle A Immediate Improvements in Health Care Coverage for All Americans
Sec. 2713 Coverage of preventive health services

Subtitle D Available Coverage Choices for All Americans
Sec. 1302 Essential health benefits requirements

TITLE IV PREVENTION OF CHRONIC DISEASE AND IMPROVING
PUBLIC HEALTH

Subtitle A Modernizing Disease Prevention and Public Health Systems
Sec. 4001 National Prevention, Health Promotion and Public Health Council
Sec. 4002 Prevention and Public Health Fund
Sec. 4003 Clinical and community preventive services
Sec. 4004 Education and outreach campaign regarding preventive benefits

Subtitle B Increasing Access to Clinical Preventive Services
Sec. 4101 School-based health centers
Sec. 4102 Oral healthcare prevention activities
Sec. 4103 Medicare coverage of annual wellness visit providing a personalized

prevention plan
Sec. 4104 Removal of barriers to preventive services in Medicare
Sec. 4105 Evidence-based coverage of preventive services in Medicare
Sec. 4106 Improving access to preventive services for eligible adults in Medicaid
Sec. 4107 Coverage of comprehensive tobacco cessation services for pregnant

women in Medicaid
Sec. 4108 Incentives for prevention of chronic diseases in Medicaid

(Continue)
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Subtitle C Creating Healthier Communities
Sec. 4201 Community transformation grants
Sec. 4202 Healthy aging, living well; evaluation of community-based prevention

and wellness programs for Medicare beneficiaries
Sec. 4203 Removing barriers and improving access to wellness for individuals

with disabilities
Sec. 4204 Immunizations
Sec. 4205 Nutrition labeling of standard menu items at chain restaurants
Sec. 4206 Demonstration project concerning individualized wellness plan
Sec. 4207 Reasonable break time for nursing mothers

Subtitle D Support for Prevention and Public Health Innovation
Sec. 4301 Research on optimizing the delivery of public health services
Sec. 4302 Understanding health disparities: data collection and analysis
Sec. 4303 CDC and employer-based wellness programs
Sec. 4304 Epidemiology-Laboratory Capacity Grants
Sec. 4305 Advancing research and treatment for pain care management
Sec. 4306 Funding for Childhood Obesity Demonstration Project

Note: This table lists some selected sections in Patient Protection and Af-
fordable Care Act (HR 3590) that reforms prevention provisions.Details on the
provisions can be found in the Patient Protection and Affordable Care Act,
which is available online at http://democrats.senate.gov/reform/patient-protection-
affordable-care-act-as-passed.pdf
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Appendix B

Selection Equation

Table B.1: Selection Equation: Male

PSA Test

(1) (2) (3)

1. Dsurveyyear=t 8.21*** 8.23*** 8.78***
(0.07) (0.07) (0.08)

2. Ex Ante -0.05 -0.05 -0.05
(0.05) (0.04) (0.04)

3. Ex Post -0.07** -0.07* -0.07*
(0.04) (0.04) (0.04)

4. (Age− 65) -0.014** -0.011** -0.011**
(0.006) (0.005) (0.005)

5. (Age− 65)2 0.0009** 0.0009** 0.0009**
(0.0004) (0.0004) (0.0004)

6. Married -0.26*** -0.22*** -0.22***
(0.02) (0.03) (0.03)

7. White non-Hispanic -0.36*** -0.33*** -0.34***
(0.05) (0.05) (0.05)

8. Black non-Hispanic -0.48*** -0.47*** -0.47***
(0.06) (0.06) (0.06)

9. Hispanic -0.25*** -0.29*** -0.29***
(0.06) (0.05) (0.06)

10. At Least Some College -0.23*** -0.22*** -0.22***
(0.03) (0.03) (0.03)

11. High School Dropout 0.39*** 0.36*** 0.36***
(0.03) (0.03) (0.03)

12. Poor 0.18*** 0.13*** 0.13***
(0.03) (0.04) (0.04)

13. High Income -0.21*** -0.16*** -0.16***
(0.03) (0.03) (0.03)

(Continue)
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PSA Test

(1) (2) (3)

14. Employment 0.20*** 0.20*** 0.21***
(0.03) (0.03) (0.02)

15. Private Coverage -0.12*** -0.12***
(0.03) (0.03)

16. Other Public Coverage 0.02 0.03
(0.03) (0.03)

17. No Coverage 0.46*** 0.46***
(0.04) (0.04)

18. Employ,Ins∗Dimpute X

Note: 1. Coefficients are estimated by maximum likelihood. Standard errors (in
parentheses) are clustered by age and individual. *** p < 0.01, ** p < 0.05, *
p < 0.1.
2. Dsurvey year=t = 1 if survey year = t.
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Table B.2: Selection Equation: Female

Mammogram

(1) (2) (3)

1. Dsurveyyear=t 7.85*** 7.92*** 8.17***
(0.06) (0.07) (0.07)

2. Ex Ante -0.05 -0.03 -0.03
(0.05) (0.04) (0.04)

3. Ex Post -0.06** -0.06** -0.06**
(0.03) (0.03) (0.03)

4. (Age− 65) 0.015*** 0.018*** 0.018***
(0.005) (0.005) (0.005)

5. (Age− 65)2 0.0007** 0.0007** 0.0007**
(0.0003) (0.0003) (0.0003)

6. Married -0.16*** -0.13*** -0.13***
(0.02) (0.02) (0.02)

7. White non-Hispanic -0.21*** -0.16*** -0.16***
(0.05) (0.05) (0.05)

8. Black non-Hispanic -0.37*** -0.36*** -0.36***
(0.06) (0.06) (0.06)

9. Hispanic -0.22*** -0.29*** -0.29***
(0.05) (0.06) (0.06)

10. At Least Some College -0.22*** -0.19*** -0.19***
(0.02) (0.02) (0.02)

11. High School Dropout 0.31*** 0.26*** 0.26***
(0.02) (0.02) (0.02)

12. Above Poverty Line -0.16*** -0.08*** -0.08***
(0.02) (0.02) (0.02)

13. Employment 0.05* 0.08*** 0.07**
(0.03) (0.03) (0.03)

14. Private Coverage -0.21*** -0.20***
(0.03) (0.03)

15. Other Public Coverage 0.004 0.01
(0.026) (0.03)

16. No Coverage 0.55*** 0.55***
(0.04) (0.04)

17. Employ,Ins∗Dimpute X

Note: Please refer to the note after Table B.1
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