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The past century has seen a tremendous rise in female labor force participa-

tion. My dissertation addresses aspects of how the American family has shaped and

has been shaped by rising levels of female labor supply. The first chapter provides an

introduction and discussion. The second chapter describes the impact of maternal

employment on children’s health. While most prior research has found little effect, I

argue that a woman’s choice to work may reflect unobservable characteristics of the

mother or child which complicates the measurement of the causal effect. I utilize

exogenous variation in each child’s youngest sibling’s eligibility for kindergarten as

an instrument for maternal employment. I find robust evidence that maternal em-

ployment increases a child’s probability of having had an overnight hospitalization,

injury or poisoning, or asthma episode.

The third and fourth chapters analyze two possible sources of increased female

labor force participation. In the third chapter, co-authored with Judith Heller-

stein, we consider the role that fathers play in their daughters’ occupational choices.



We demonstrate that over the past century fathers have increasingly transmitted

occupation-specific human capital to their daughters in response to the changing

opportunities for women in the labor market.

In the fourth chapter, I investigate work first published by Fernandez et al.

(2004) and find evidence that contradicts their central conclusions. Their paper

suggests a mechanism by which working mothers endow sons with a preference for

having a working wife, which in turn leads women to choose to work more in order to

attract these men. The key empirical results in their paper show a strong conditional

correlation between a woman’s labor supply and that of her mother-in-law when her

husband was young and no similar relationship between a woman’s labor supply

and that of her own mother. While I confirm the former relationship in my own

analysis, I find that a woman’s choice to work is also highly correlated with her own

mother’s labor supply. While their model provides an interesting hypothesis for

women’s motivation to work, I find that the data do not support their conclusions.
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Chapter 1

Introduction

The labor force participation rate of women rose dramatically throughout the

latter half of the twentieth century. According to a Bureau of Labor Statistics

report,1 about 43 percent of women ages 16 and older were in the labor force in

1970. This number rose to 60 percent by the late 1990s. Furthermore, 47 percent

of mothers with children under age 18 worked in 1975, compared with a labor force

participation rate of 73 percent in 2000. Concurrent with these trends, women

were increasingly likely to be employed in higher paying occupations, to have higher

contribution rates to total family income, and to pursue higher levels of education

and professional degrees.

Such dramatic changes in women’s labor force participation have transformed

women’s role in society and in the family. There are many questions that arise

from considering women’s labor force participation. My dissertation addresses three

aspects of how female labor supply relates to the American family and reflects on

both causes and effects of the rising rate. The second chapter considers an important

consequence of female labor force participation: the effects of maternal employment

on children’s health. The third and fourth chapters discuss intergenerational aspects

of female labor force participation. Chapter 3 investigates the role of fathers in

1Chao, Elaine L. and Philip L. Rones, (2006), “Women in the Labor Force: A Data-
book,” U.S. Department of Labor and U.S. Bureau of Labor Statistics, September 2006,
BLS Report 996.
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shaping the occupational choices of their daughters, while Chapter 4 considers how

mothers’ employment shapes the preferences of their sons (and daughters).

In the second chapter I ask whether maternal employment is harmful to chil-

dren’s health. Many policies in the United States and elsewhere have been aimed

at bringing women into the workplace. Most studies have found very little effect

of maternal employment on children, and some have even found a positive effect.

However, it is complicated to directly measure the effects since mothers may make

labor supply decisions based upon their own (unobserved) preferences and skills and

on the characteristics of their family. This is of particular concern when we consider

child health. A child’s health could directly affect a mother’s labor supply if women

respond to having a child in poor health by reducing (or increasing) their labor

supply. I implement an instrumental variables empirical strategy, which overcomes

the bias introduced by this reverse relationship. I utilize exogenous variation in ma-

ternal labor supply from kindergarten eligibility laws. Gelbach (2002) established

that a child’s kindergarten eligibility increases maternal employment. For school-

age children with at least one younger sibling, I use each child’s youngest sibling’s

eligibility for kindergarten as an instrument for maternal employment.

Ideally, I would like to measure the children’s underlying health stock and to

understand if and how this stock is affected by maternal employment. It would

be particularly interesting to investigate whether any change in this health stock

has long-term consequences for children. However, the empirical strategy and data

source I employ do not allow for any longitudinal analysis or for the measurement

of pure “underlying health.” Instead, I use four proxies for health: overnight hospi-

2



talizations, emergency room visits, injuries/poisonings, and asthma episodes. While

none of these measures are perfect individually, together they tell a compelling story

that maternal employment raises a child’s risk of suffering from a negative health

event.

The effect sizes I find are quite large, indicating that having a mother that

works increases hospitalizations, asthma episodes, or injuries/poisonings each by

around 200 percent. Emergency room visits are only measured for a small subset of

my sample, and these estimates are never statistically significant. I perform a long

series of specification checks and search for any evidence of a non-representative

local average treatment effect. My findings are robust, and I find little evidence of

heterogeneous effects across different types of families.

The empirical strategy that I employ relies on the change in labor supply

at the time when a woman’s youngest child becomes eligible for kindergarten. It

is possible, and even likely, that it is the change in labor supply that has such

large consequences for children, rather than employment generally. As mentioned

above, ideally we would like to measure the consequences of maternal employment

on the long-term health of children. It could be the case that when women start

working, there is a period of adjustment within the family that creates a temporary

spike in adverse health events that subsides over time. It would be interesting to

further explore this “transition” hypothesis and to then compare the estimates to

the previous literature.

And, finally, health is just one aspect of children’s well-being that may be

affected by a mother’s choice to work. While I do not consider other outcomes
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for children in this work, the same omitted variable concern plagues studies of the

effects of maternal employment in other contexts. Investigating other measures of

children’s well-being using a similar empirical strategy would be an interesting and

important extension of this work.

The third chapter of my dissertation, which is co-authored with Judith Heller-

stein, looks at a different familial relationship. We consider whether the rise in

female labor force participation has led fathers to increasingly transmit occupation-

specific human capital to their daughters. We hypothesize that as women are in-

creasingly likely to work, fathers face an increased incentive to invest in their daugh-

ters, since the daughters are more likely to use that investment in the labor force.

We frame this question by asking whether women are increasingly more likely

to enter their father’s occupation over birth cohorts from 1909 and 1977. However,

women are more likely to be entering any man’s occupation over this time period.

Our approach utilizes a woman’s father-in-law as a “counterfactual.” This choice is

motivated by a theoretical model that combines features of intergenerational human

capital transmission, occupational choice, and assortative mating. The basic idea is

that a woman’s father-in-law works in a set of occupations that are “close” to her

father’s occupations, and represent a set of occupations that a woman could have or

might have chosen given endowed characteristics such as social class or preferences.

We compare the trend across birth cohorts in the probability a woman works in

her father’s occupation with the trend in the probability a woman works in her

father-in-law’s occupation. We find strong evidence suggesting that fathers have

increasingly transmitted occupation-specific human capital to their daughters.
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In the fourth chapter, I analyze a different intergenerational relationship: the

influence that mothers have on the preference formation of their sons (and daugh-

ters). I investigate work first published by Fernandez et al. (2004) and find evidence

that contradicts their central conclusions. They present a model whereby a woman’s

participation in the labor force is partially determined by her mother-in-law’s work

experience. The men in the model have preferences for the working behavior of

their wife. These preferences are formed through the man’s mother’s work experi-

ence by mothers having endowed their sons either with skills that make them better

partners for a working woman or with preferences for a working wife. Women in

the model acquire market skills in order to attract this growing subset of men that

prefer working women. The model has dynamic implications, since the new incen-

tive for wives to work yields more mothers that work, creating more sons who will

eventually want working wives. The wives’ preferences are not addressed and, in

particular, the wife’s own mother’s work experience is shown empirically to have no

independent impact on the labor force participation of the wife.

While the empirical results presented in Fernandez et al. support this story, I

present empirical evidence that directly contradicts this finding. I demonstrate that

the results in Fernandez et al. are highly sensitive to small changes in specification.

I utilize an additional data set and confirm that there is a strong and statistically

significant relationship between a woman’s labor supply and her own mother’s work

experience, which is not consistent with the Fernandez et al. model.

There are alternative models that could explain the large coefficient on mother-

in-law’s work experience in the regression of a woman’s labor supply on maternal

5



employment and observable characteristics. If there is assortative mating between

men and women along characteristics of their families, it seems very likely that

a husband and wife were raised by mothers with similar work behavior. What

is so surprising about the results in Fernandez et al. is that the coefficient on

mother-in-law’s work experience is not diminished when a woman’s own mother’s

work experience is included in the regression. The key identifying assumption in

Chapter 3 of this work is that assortative mating by fathers’ occupation has not

decreased over time. Although we are not able to test this directly, Chapter 3

provides evidence consistent with this. Given this evidence, and a large literature

on assorative mating (see, e.g., Mare 1991, Rose, 2001, and Lam and Schoeni, 1993),

FFO’s choice not to model assortative mating directly is surprising. Future work

will be aimed at developing an alternative model of female labor force dynamics and

assortative mating, similar to that proposed by Lam and Schoeni (1993).

The empirical results presented in this chapter suggest that assortative mat-

ing is an important component to understanding the relative correlations between

mothers and daughters and mothers-in-law and daughters-in-law work behavior. I

find strong evidence that the empirical results presented in Fernandez et al. are not

robust, and additional empirical results suggest that there are significant flaws in

their model and interpretation. I find evidence consistent with assortative mating

along mothers’ labor supply, which suggests that an alternative model may better

explain the empirical findings.

The third and fourth chapters of my dissertation both consider the role that

one generation has in the labor supply decisions of women in the next generation.

6



The empirical support we find in chapter 3 suggests that fathers played an increas-

ingly important role in the labor supply decisions of their daughters throughout

the twentieth century. One limitation of this paper is that we do not address the

transmission of human capital from mothers to daughters. We do not consider this

transmission because it was rare for the women in our sample to have mothers that

worked, and information on mother’s occupation was not available from all three of

our data sources. However, the evidence presented in chapters three and four to-

gether suggest a strong role for both fathers and mothers in the occupational choices

and labor supply decisions of their daughters.

There are many important and interesting questions related to the work in

this dissertation. We are only beginning to understand how the rise in the labor

force participation rate of women has been influenced by and is affecting families.

In recent years a debate has erupted in popular press, dubbed “The Mommy Wars,”

that considers the relative benefits of mothers staying home to care for children

and going to work and earning income. While my work is only one piece of a

large literature considering the costs of maternal employment, it does highlight an

important methodological complication that is not widely recognized. This paper

provides evidence that there is a large health consequences of maternal employment

once the endogeneity of the labor supply decision is accounted for.

The latter two chapters consider the transmission of preferences and skills from

parents to children. Both chapters suggest that parents do play an important role in

the formation of their children’s preferences for working. As more women are raised

by working mothers, it will be interesting to consider their occupational choices and
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career paths. We are left with many important questions to consider. For example,

how will daughters (and sons) be influenced differently by the careers of mothers

versus fathers? And, as women become more economically independent and men

take on more responsibilities in child-rearing and housework, will higher labor force

attachment strengthen or weaken the family in the long-run?

The growth in female labor force participation, from 43 percent in 1970 to

60 percent in 1999, slowed and even saw a modest drop by 2005 to 59.3 percent.2

It is possible that the negative consequences of maternal employment, as found

in Chapter 2, are beginning to be recognized by women. Chapter 4 documents a

modest correlation between maternal employment and a daughter’s choice to work as

an adult. It might be the case, as is often suggested in the “Mommy Wars” debate,

that the daughters of working women, after observing the struggles of their mothers,

chose to leave the labor force when they themselves have families. If working mothers

endow their daughters with skills for working but preferences for not working, then

the net effect on daughters’ eventual occupational choices is theoretically ambiguous.

As more data become available for recent years, it will be interesting to study these

and other hypotheses for the recent decline in female labor force participation.

2Chao, Elaine L. and Philip L. Rones, (2006), “Women in the Labor Force: A Data-
book,” U.S. Department of Labor and U.S. Bureau of Labor Statistics, September 2006,
BLS Report 996.
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Chapter 2

The Effects of Maternal Employment on the Health of School-Age

Children
Over the past several decades, an increasing number of women with
children participated in the labor force. This has led researchers from
a variety of disciplines to consider the impact of maternal employment
on children, including the effects of maternal employment on children’s
health. The net effects are theoretically ambiguous given that maternal
employment increases family income and access to health insurance but
places additional burdens on a mother’s time. Empirical identification is
difficult because a mother’s choice to participate in the labor market is
endogenous. For example, a child’s health may directly affect a mother’s
labor supply decision, or a mother’s choice to work may be indicative
of the mother’s preferences and skills. In this paper, I implement an
instrumental variables strategy using pooled data from the restricted
version of the National Health Interview Survey (1985-2004). I iden-
tify the effects of maternal employment on overnight hospitalizations,
emergency room visits, asthma episodes, and injuries and poisonings for
children ages seven to seventeen. The conditional correlations between
maternal employment and each of these four health events are zero or
negative, suggesting that, if anything, having a mother that works is
associated with a lower risk of a child having a bad health episode. I
measure the causal effect of maternal employment on the incidence of
these health events by using exogenous variation in each child’s youngest
sibling’s eligibility for kindergarten as an instrument. I show that having
a mother that works actually increases the probability a child will have
a negative health episode. The results point to a consistent effect for all
four outcomes and are statistically significant for overnight hospitaliza-
tions, injuries and poisonings, and asthma episodes. I provide evidence
that this effect is not a reflection of a non-representative local average
treatment effect and is robust to specification checks.

9



2.1 Introduction

Over the past several decades, an increasing number of women with children

participated in the labor force. According to a Bureau of Labor Statistics report

(2006), in 1975 54.9 percent of women with children ages six to seventeen were in

the civilian labor force. By 2001 that number had risen to 79.4, although it fell

slightly to 76.9 in 2005. The economic impact of women’s labor force participation

cannot be completely characterized without understanding all of the costs and ben-

efits involved. In particular, a woman’s labor force participation might impact the

health and well-being of her children. Not only does poor child health have contem-

poraneous economic consequences, such as health care expenditures and utilization,

but poor health may also hinder a child’s cognitive development (see, e.g., Blau and

Grossberg, 1992). In addition, a growing amount of research finds that experiences

during childhood can affect adult health,1 adult economic and social well-being,2

and even longevity,3 so a woman’s participation in the labor market might have

long lasting effects on her children.

The direction and magnitude of the effect of maternal labor supply on child

health is theoretically ambiguous. The clearest mechanism through which mater-

nal employment might positively impact children is through an increase in family

income. There is a well established income-health gradient, which has been shown

to exist for children as well as adults (see Case, Lubotsky, and Paxson, 2002, and

Currie and Lin, 2007). More income allows families to increase investments in health

1Dietz, 1997.
2Case and Paxson, 2006 and Case, Fertig, and Paxson, 2005.
3Lleras-Muney, 2006.
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for their children, including better diet and better health care. In addition, some

mothers acquire or improve their family’s health insurance coverage due to their

employment. However, maternal employment imposes a burden on a mother’s time

and may result in the poorer supervision or care of her children. A child’s health is

at least partially a function of time-intensive activities such as healthy meal prepa-

ration and house cleaning. A working mother may have less time to allocate to

these types of activities. Bianchi (2000) shows that working mothers spend less

time doing housework, and Crepinsek et al. (2004) document that children of work-

ing mothers have lower overall “Healthy Eating Index” scores. In addition, a child

whose mother works may be left unsupervised or less-supervised more often than if

the mother were at home full-time.

Previous studies on the effects of maternal employment find little measurable

impact on child health, as discussed further in Section 2.2. Empirical identification

of the effect is difficult because a mother’s choice to participate in the labor market

is endogenous. Maternal employment has often been considered as the effect of,

not the cause of, the family’s characteristics.4 Mothers with healthy children may

find it easier to work, whereas mothers of children with special needs may find it

4There is a substantial literature estimating the effect of child morbidity and disability
on maternal employment. For example, Powers (2001 and 2003) argues that when a child
is unhealthy, some mothers reduce their labor supply. Gould (2004) shows that a mother
reduces her labor supply if her child has a time intensive disability but increases her labor
supply if her child has a high-cost disability. Corman et al. (2004) find that having
an unhealthy child reduces a mother’s probability of working by around 8 percentage
points. Duggan and Kearney (2007) investigate the effects of a child’s enrollment in the
federal Supplemental Security Income program (SSI) on his/her family and find little direct
effect on maternal employment. Norberg (1998) looks at outcomes at birth to determine
maternal employment in first year of life. She argues that it is not daycare that affects
child health and development but that child health affects a mother’s decision to work.
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difficult to work outside of the home. Alternatively, having a child with a chronic

condition may make it necessary for a mother to work in order to provide health

insurance or additional income for her family. Isolating the effect of a mother’s

labor force participation on the health and well-being of her children is confounded

by this reverse relationship: a child’s health may directly affect a mother’s labor

supply decision.

In addition, a mother’s choice to work or not may indicate something about

the mother’s (unobserved) preferences and skills. If a mother’s decision to work

indicates something about her general ability level, motivation, inclinations, skill at

caretaking, etc., then the sample of working mothers may not be a random sample of

all mothers. This might lead to a spurious correlation between maternal labor supply

and child health. This particular concern has prompted researchers to employ fixed

effects strategies that can capture unobserved mother (and sometimes child-specific)

characteristics (Ruhm, 2004). However, this methodology can only account for the

unobserved characteristics that are constant over time. This may be problematic

given the reverse relationship described above if children’s health itself changes over

time. In this study, I employ an instrumental variables strategy to isolate the causal

effect of maternal employment, overcoming this limitation of fixed effects analysis.

In the absence of a perfect measure of underlying child health, I analyze the

effects of maternal employment on four health outcomes: overnight hospitalizations,

emergency room visits, asthma episodes, and injuries and poisonings. These out-

comes capture both acute and chronic conditions. As argued in Section 2.3.3, while

none of these outcomes alone are perfect, when taken together they provide a rea-
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sonable proxy for child health. Together the effects of maternal employment on

these four health episodes, presented in Section 2.5, provide compelling evidence of

an increase in the probability a child experiences an adverse health event.

Consistent with much of the existing literature, I find that the conditional

correlations between maternal employment and each of the child health episodes,

as estimated using ordinary least squares regressions, are zero or negative. That is,

having a working mother is associated with a lower risk of a child having the health

incident. Because of the endogeneity of maternal employment, however, these cor-

relations do not necessarily represent a causal relationship. In this paper, I use

an instrumental variables strategy where the instrument relies on the fact that the

opportunity cost of a woman working is substantially lowered when her youngest

child becomes eligible for public school, potentially leading to an increase in mater-

nal labor supply at that time. I measure the health of children ages seven through

seventeen years old that have at least one younger sibling. I further restrict the

estimation sample to children whose youngest sibling is within a specified age range

around five years old. I use each child’s youngest sibling’s eligibility for kindergarten

as an instrument for maternal labor supply in assessing the causal impact of ma-

ternal labor supply on the health of the older child. As discussed further below,

Gelbach (2002) established that a child’s eligibility for kindergarten, as measured

by quarter of birth, increases maternal employment. I argue that a child’s youngest

sibling’s eligibility for kindergarten provides variation in maternal employment that

is plausibly exogenous to the older child’s health. Nonetheless, in Sections 3 and 5

I provide discussions of the potential biases associated with this instrument. I also
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explore whether there is treatment effect heterogeneity across major demographic

categories, and I discuss the generalizability of the estimated local average treatment

effect measured by the instrumental variables strategy.

My estimates suggest that maternal employment increases the probability a

child will have a negative health episode. The estimates are large and statistically

significant when child health is measured by having had an overnight hospitaliza-

tion, an injury or poisoning, or an asthma episode. My main results indicate that

maternal employment increases overnight hospitalizations by 4 percentage points

(baseline 2 percent), injuries/poisonings by 5 percentage points (baseline 3 percent),

and asthma episodes by 12 percentage points (baseline 6 percent). Results for ER

visits are not statistically significant, but point toward a similar qualitative conclu-

sion. The effect sizes I find are large in percentage terms. Although the estimates

are sometimes imprecise, the coefficients are consistent across different samples and

for all four health measures. Decomposition by socioeconomic status, labor force

attachment, and major demographic categories suggest that this is an effect that

is homogeneous across various subpopulations. In total, the instrumental variables

results suggest that, contrary to the basic OLS relationship, maternal employment

increases a child’s risk of experiencing an adverse health event.

The remaining sections of this paper are organized as follows. Section 2.2

reviews the relevant literature. Section 2.3 outlines the empirical specifications used

and discusses issues related to the validity of the instrument. In Section 2.4 I

describe the data and key variables. Section 2.5 discusses the empirical results and

Section 2.6 concludes.

14



2.2 Related Literature

The literature on the effects of maternal employment on child outcomes has

focused primarily on child development, perhaps due to the wider availability of ob-

jective measures such as academic performance. In particular, there has been sub-

stantial interest in estimating how maternal labor supply at early ages affects child

development (e.g., Desai, Chase-Lansdale, and Michael, 1989, Blau and Grossberg,

1992, Ruhm, 2004, Kaestner and Corman, 1995, and Waldfogel, Han, and Brooks-

Gunn, 2002). The findings are mixed, but generally the estimated effect of maternal

employment is small. In one study specifically addressing health, Baker and Milligan

(2007) use variation in maternity leave benefits in Canada to analyze the short-run

effects of maternal non-employment on infant’s health and development and find

no significant effects. There is a related literature on how public assistance and

low-wage maternal employment affect child outcomes, again usually focusing on

younger populations (see, e.g., Moore and Driscoll, 1997, Cadena and Resch, 2006,

and Bitler and Hoynes, 2006). Gordon, Kaestner, and Korenman (2007) use a fixed

effects strategy to measure the effects of maternal employment (and child care) on

child injuries and infectious disease for children ages 12 to 36 months. There is also

a developing literature that finds maternal employment increases childhood obesity

risk, though only for certain populations (Anderson, Butcher, and Levine, 2003).5

Most closely related to this paper, Ruhm (2004) uses the National Longitudinal

Survey of Youth (NLSY) to analyze the effect of maternal employment on a cohort

5Fertig, Gloom, and Tchernis (2006) provide a thorough review of the literature and
an analysis of the mechanisms by which maternal employment affects childhood obesity.
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of children ages 10-11. He employs a fixed effects strategy to control for fixed

family and mother characteristics. He includes a specification regressing a child’s

contemporaneous outcomes on maternal employment in the subsequent period, a

relationship that cannot be interpreted as causal (although maternal employment is

likely highly correlated between time periods). For his measure of obesity, he finds a

positive and significant coefficient of maternal employment in the time period after

height and weight were measured that is similar in magnitude to the main effect. He

interprets this as calling into question the causality in portions of this and earlier

work (cited above) using fixed effects strategies to measure the effect of maternal

employment on childhood obesity.

Also closely related to this paper, Baker, Gruber, and Mulligan (2005) estimate

the effect of maternal labor supply on young children’s health by examining the

impact of a local child care subsidy program in Quebec in the late 1990’s. They use

a difference-in-difference identification strategy and conclude that the policy led to

an increase in maternal labor supply, an increase in formal child care enrollment,

and a decline in health for children. This study considers the impact of the child

care subsidy program on the child who is eligible and therefore cannot separate the

direct effect of child care from the effect of maternal employment per se.

Though they measure the effect of child care quality, rather than maternal

employment, Currie and Hotz (2004) suggest an important role for supervision in

avoiding childhood accident and injury in young children. They find that the in-

cidence of unintentional injury for children under age 5 is reduced in states with

more stringent child care regulation. In related work, Aizer (2004) shows that after
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school supervision of adolescents (ages 10-14) has a large effect on their well-being

as measured by criminal activity and behavior problems. Aizer uses a sample from

the National Longitudinal Survey of Youth (NLSY) to estimate several fixed ef-

fects models using variation in supervision between and within families. If children

whose mothers work spend more time unsupervised, then those children may have

a higher risk of accident or injury (which may also lead to additional ER visits or

hospitalizations).

Medical and epidemiological literatures have explored how demographic char-

acteristics of children and their families contribute to disease incidence, severity,

and management. Poverty has been established as a leading risk factor for many

childhood ailments, as has being a racial or ethnic minority.6 On the whole, rela-

tively little attention has been paid outside of the social sciences to the potentially

harmful - or beneficial - effects of maternal employment.

2.3 Empirical Specification and Methodology

2.3.1 Econometric Models

The key equation of interest is the effect of maternal labor supply on child

health, which can be written as:

CHealthi = α + βMLSi + γXi + εi (2.1)

6For examples on the etiology of asthma, see Flores et al. (2005), Akimbami et al.
(2003), and references therein.
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Here CHealth is the child health outcome of interest, MLS is maternal labor

supply, and X is a vector of demographic characteristics of the child and his/her

family. The unit of observation, i, is the child. In this model, β is the effect of

maternal labor supply on child health. Because of omitted variables, the covariance

of MLS and ε is not necessarily equal to zero, so an ordinary lease squares estimate

of β may be inconsistent. One strategy for recovering a consistent estimate of β

is to identify an instrumental variable Z, i.e. a variable that partially determines

maternal labor supply but is uncorrelated with ε. With such an instrument Z, a

two stage regression model can be estimated, with the first stage equation:

MLSi = αFS + βFSZi + γFSXi + µi (2.2)

The consistency of the estimate of β relies on the validity of the instrument

(Cov(Z, ε) = 0). If Z is uncorrelated with ε, then the instrumental variable estimate

of β is consistent. This is fundamentally an untestable assumption. Although I do

consider below how violations of this assumption would affect my results, as long

as the instrument, Z, is uncorrelated with ε, the model can be estimated by taking

the predicted (fitted) value of MLS from Equation (2.2) and substituting it in for

MLS in Equation (2.1) in a two-stage least squares model (2SLS). The instrumental

variable estimate of β can also be thought of as resulting from the division of the

“reduced form” estimate, βRF below, by the first-stage coefficient derived above,

βFS. The reduced form equation is the regression of the child health outcome on

the instrument:
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CHealthi = αRF + βRF Zi + γRF Xi + σi (2.3)

The reduced form equation is interesting in its own right, as it indicates

whether the instrument is correlated with the outcome of interest. The interpre-

tation of the instrumental variable estimate, βIV , as the causal effect is reliant on

the assumption that the effect of the instrument on the outcome (βRF ) operates

solely through the endogenous variable, in my case maternal employment. This is

discussed further in Section 5.7

All four child health outcomes I present are dichotomous variables, taking a

value of one if the child experienced the health episode and zero otherwise. Models

with binary dependent variables require special consideration, since the two-stage

least squares (2SLS) estimate described above assumes that the dependent variable

in the second stage equation is continuous. As is well known, estimates from linear

models with binary dependent variables may be a poor approximation when the

dependent variable has a very low (or very high) mean (Bhattacharya et al., 2006).

Angrist (1999) argues that, in most cases, the 2SLS estimate is a reasonable es-

timation strategy with limited dependent variables and a dichotomous endogenous

variable. With some assumptions about the distribution of the error terms (i.e., that

both are distributed bivariate normal), a bivariate probit model can be specified.

7One can consider specifications using a binary instrument in a two-stage least squares
model as a fuzzy regression discontinuity design (Imbens and Lemieux, 2007). Ideally,
in a fuzzy regression discontinuity model, I would include a flexible polynomial trend in
youngest child’s age in month and identify only off of the break at 60 months (exactly
5 years). The data do not have sufficient power to identify the effect of the instrument
and a polynomial. Extensive covariates are included to minimize potential bias associated
with this limitation.
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Because of the strong functional form assumptions, the bivariate probit estimates

are more precise. However, as Angrist (1999) argues, these estimates are potentially

biased if the functional form assumptions are not correct. Estimating all specifica-

tions with probit and bivariate probit models lead to similar results. I include the

non-linear version of the main regression results as Appendix Table 2.11; non-linear

results for all other tables are available upon request. The marginal effects from

the bivariate probit model confirm the conclusions from the two-stage least squares

estimates. Future work will explore the sensitivity using other limited dependent

variable estimation strategies.

2.3.2 The Instrument: Youngest Sibling’s Kindergarten Eligibility

My exogenous instrument is motivated by the observation that the opportunity

cost of a woman’s time is substantially lowered when her youngest child becomes

eligible for public school. In the United States, kindergarten is provided free of

charge through public schools for all children ages five or older. By 1983 (the

first school year in my data) all states provided kindergarten, but individual states

determine by what date a child must turn five years in order to be eligible to enroll

in the current school year. The school year usually begins some time around the

beginning of September. There is a fair amount of variation across states in this

eligibility cut-off date and many states changed their policies over my study period.

Appendix Table 2.9 demonstrates this variation for the first and last school year

of my sample, 1983 versus 2004. Notice both that many states moved their cut-
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off date earlier during the 20 years of my sample, so children had to be somewhat

older when entering school in the later periods, and that September 1st remains

the modal cut-off date. Some states allow the local educational authorities (LEAs)

to determine their own cut-off date, as indicated in the bottom row of Appendix

Table 2.9. I use state and year specific cut-off dates where available and assume a

September 1st cut-off date for states with no standard date; however, results are

not sensitive to including only states with a standard cut-off date.8,9

One key to the success of the instrumental variables strategy is identifying

an instrument with sufficient predictive power. A child’s eligibility for kindergarten

has been found to predict maternal labor supply in several studies to date (Gelbach,

2002, and Cascio, 2006).10 To confirm this relationship for my sample, in Figures 2.1

and 2.2 I illustrate the basic relationship between a mother’s youngest child’s age

and her likelihood of employment. For these graphs, I use the full sample of mothers

8This research does not address the underlying mechanisms by which kindergarten
enrollment affects maternal labor supply. We might expect that a mother faces a reduced
opportunity cost of her time. But there may be more intangible reasons as well, such as
a perceived reduction in the social stigma of working.

9In results not shown, I find that estimates using the youngest child’s age in months
at the interview as an alternative instrument are qualitatively similar. This alternative
instrument relies on the observation that the probability a mother is employed increases
approximately linearly in the youngest child’s contemporaneous age.

10Gelbach (2002) argues that kindergarten provides a cost subsidy for child care, so the
eligibility of a child for kindergarten will lower child care costs thereby lowering the cost
of maternal work. As part of his analysis, he presents results demonstrating the positive
effect of eligibility (as approximated by quarter of birth) on maternal labor supply. Cascio
(2006) also measures the maternal labor supply response to publicly provided kindergarten,
but instead uses variation in introduction of kindergarten in the 1960’s and early 1970’s.
Cascio demonstrates a larger heterogeneity in the labor supply response to kindergarten
eligibility between married and single mothers. She finds no significant labor supply
response from married mothers, though Cascio’s analysis uses a much earlier period of
time than that considered here.
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in the restricted National Health Interview Survey (NHIS) from years 1985-2004,11

regardless of the number and ages of her children (or child), and each mother is

represented only once in this sample. In these graphs, I consider only those mothers

whose youngest child’s exact eligibility could be determined, dropping observations

from states where the local education authority determines the cut-off date (N =

89,317).

First, Figure 2.1 plots the fraction of mothers that were employed for each

month of age, where their youngest child’s age in months is calculated at the exact

cut-off date faced by that child. The dots in Figure 2.1 represent the fraction

of mothers that were employed and fractional polynomial interpolation was used

to produce the smoothed curves on either side of 60 months. A clear increase in

maternal employment occurs when the youngest child achieved 60 months (exactly 5

years) by the cut-off date. Figure 2.2 instead plots average maternal employment by

the youngest child’s age in months on September 1st of the most recent school year.

Children in states with cut-off dates at the beginning of September, October, and

December are included separately. So, for example, children who live in Kentucky

face an October 1st cut-off date, so must have turned 59 months by September 1st to

be eligible for kindergarten in the current school year. The curve with the break at 59

months includes only mothers who live in states with an October 1st cut-off date.

These figures each provide suggestive evidence that kindergarten eligibility raises

the probability a mother works, which is confirmed in estimates of βFS presented in

11For more information on the data, see Section 2.4.
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Section 2.5.12

As discussed above, the instrument in Equation (2), Z, must be uncorrelated

with the error term in Equation (1), ε, in order for the estimate of β to be consistent.

If the youngest child’s kindergarten eligibility has a direct effect on health, then this

assumption would be violated. In order to mitigate potential bias, I restrict the

analysis to children with at least one younger sibling and whose own school eligibility

status is not changing (ages seven and older). So, for example, I measure the health

difference between two otherwise identical eight year old boys, one whose mother

works because his youngest sibling is 5.5 years old and eligible for kindergarten and

one whose mother does not work because his youngest sibling is 4.5 years old and

was ineligible for kindergarten. Therefore the validity of the estimated effects relies

on the assumption that the exact timing of these two births (4.5 years ago versus

5.5 years ago) was random, conditional on observable family characteristics such

as race, maternal education, total number of children in the household, and the

mother’s current marital status.

All preferred specifications include the number of children present in the house-

hold and the mother’s age as covariates, which should minimize the potential of

a spurious correlation between maternal employment and child health through en-

dogenously determined fertility. Furthermore, since all children ages seven and older

12By using kindergarten eligibility as an instrument directly for maternal labor supply, I
am implicitly making the assumption that eligibility for kindergarten leads to kindergarten
enrollment for (at least part of) the sample. In the data that I use for this analysis,
the National Health Interview Survey (NHIS), this link cannot be tested directly because
kindergarten enrollment is not observed. Elder and Lubotsky (2006) utilize state variation
in kindergarten eligibility laws to instrument for a child’s age at school entry and provide
compelling evidence that kindergarten eligibility does lead to kindergarten enrollment.
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must be enrolled in school by law, the direct effect on the older child of the youngest

child being exposed to illness at school, for example, is likely very small. Another

concern is that the instrument is correlated with unobserved maternal effort. If

Z were positively correlated with unobserved maternal effort (for example, if the

youngest child’s eligibility for school reduced the time constraints on the mother,

ceteris paribus), and if maternal effort is good for child health, then the instrument

will be positively correlated with the error term. This would lead to a positive bias

of βIV in the instrumental variable regression, so it would appear that the effect of

maternal employment is better for child health than it truly is. The IV specifica-

tions in this paper demonstrate a large negative effect of maternal employment on

child health. To the extent that this latter type of bias is present, these should be

considered underestimates.

In Section 5 I present results for a series of samples of children ages seven

through seventeen who have at least one younger sibling. I restrict the samples to

children whose youngest sibling is within a progressively smaller age band around

five years old. Comparing these findings reflects the trade-off between the statistical

power gained from expanding the sample and the precision and plausible validity

of the instrument. In Section 5 I also explore threats to instrument validity and

other potential sources of bias further, which all confirm the robustness of my main

findings.
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2.3.3 Health Measures

To explore the relationship between maternal employment and child health, I

use the restricted access version of the National Health Interview Survey (NHIS),

pooling observations from survey years 1985-2004. In the NHIS, maternal employ-

ment is measured contemporaneously, so I limit my analysis in this paper to health

outcomes that can be plausibly influenced by present conditions in the family. There

is no perfect measure of child health, especially since the NHIS questionnaire relies

on reports of child health from a family respondent rather than a medical profes-

sional.13 Because true underlying health cannot be measured, I instead use four

proxies for health which capture both chronic and acute conditions: overnight hos-

pitalizations, emergency room visits, asthma episodes, and injuries and poisonings.

Each of these measures is likely reflecting a health event that is unambiguously bad,

unlike, for example, having had a doctor’s visit. Visiting the doctor could indicate

adequate access to care and healthy, preventative behaviors. Although each health

event has its own strengths and weaknesses, my analysis over all four health out-

comes provides strong evidence that maternal employment does increase a child’s

risk of having an adverse health event. It should be noted that this does not neces-

sarily imply that a child’s long-term health is adversely affected, but rather simply

that the child experiences a negative health episode due to maternal employment.

The first health event I consider is whether the child was hospitalized overnight

at least once in the past 12 months. In the year 2000, over 6 million children were

13In the NHIS one family member answers questions for the entire family. Children
seventeen and under are not eligible to be family respondents, so all data on children is
gathered from a proxy respondent, usually the child’s mother.
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hospitalized overnight. Leading causes of hospitalizations include acute health inci-

dents, such as injuries and poisonings, and chronic diseases, such as mental disorders,

asthma, and diabetes.14 Many of these conditions may be sensitive to supervision,

regular access to care, and access to appropriate medication and preventative treat-

ment.15 Hospitalizations reflect the most severe health events, so recall of having

had a hospitalization is likely measured correctly in the survey, and admission to a

hospital requires the objective judgment of a medical professional. However, there

is some evidence that utilization of hospitals is affected by an individual’s health

insurance status (Currie and Gruber, 1996, and Kemper, 1988) or characteristics of

hospital or region (see, e.g., Goodman et al., 1994), indicating that having had a

hospitalization may reflect access to care in addition to true differences in morbidity.

I provide evidence suggesting that this is not a major source of bias in my estimates.

The second health event I consider is whether the child had an emergency room

visit in the past 12 months, a more common event than overnight hospitalizations.

The leading causes of ER visits are similar to those for hospitalizations, but often

reflect more acute health events. However, having had an ER visit may reflect both

inadequate access to care in a doctor’s office and true emergencies.16

14Estimates are provided by the Agency for Healthcare Research and Quality’s HCUPnet
and are nationally representative for children 0-17 years. Data is collected from the HCUP
Kids’ Inpatient Database, 2000 and can be accessed at http://hcupnet.ahrq.gov.

15The AHRQ HCUP Fact Book No. 5, Kruzikas et al (2000), presents a Prevention
Quality Indicator (PQI) for a number of childhood diseases and finds that 179 (ages 5-9),
113 (ages 10-14), and 70 (ages 15-17) children per 100,000 population in 2000 were admit-
ted for pediatric asthma, a condition classified as preventable. Other preventable diseases
that the AHRQ Fact book discusses are short-term diabetes complications, pediatric gas-
troenteritis, and urinary tract infection.

16Future work will explore incorporating information on the causes of ER visits and of
overnight hospitalizations.
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The next health event I analyze is whether the child had an asthma episode

in the past 12 months. Asthma is a leading cause of hospitalizations, emergency

department care, and doctor’s office visits. According to the American Lung As-

sociation, asthma is the most common chronic disorder in childhood, affecting 6.2

million children under age 18.17 Asthma rates are consistently high across individ-

uals from all levels of socio-economic status, however some researchers have found

that children from low income families and racial minorities are at a higher risk

(McDaniel et al., 2006, and Smith et al., 2005). Differential underreporting and

underdiagnosis are of particular concern when analyzing the effect of maternal em-

ployment on asthma, though I am able to control for an extensive set of covariates.18

There are several mechanisms through which maternal employment may affect a

child’s risk of having an asthma episode. Asthma is an atopic condition and can

usually be controlled through medication. Flores et al. (2005) find that the major-

ity of preventable hospitalizations for asthma were due to parent or patient causes,

predominately medication related (non-adherence, ran out, etc).19 If an employed

mother is less able to adequately monitor adherence to medication or is not able to

17The Asthma and Children Fact Sheet can be accessed at:
http://www.lungusa.org/site/pp.asp?c=dvLUK9O0E&b=44352.

18Akinbami et al. (2003) provide evidence that measurement of asthma is sensitive to
question wording. Yeatts et al. (2003) find high rates of undiagnosed asthma and that
underdiagnosis was correlated with characteristics such as gender, socioeconomic status,
and race/ethnicity.

19Flores et al. provide estimates on the fraction of hospitalizations for asthma which were
preventable, based on assessments by primary care physicians (PCP), inpatient attending
physicians (IAP), and parents. IAP’s responded that 43.3 percent (87 cases) of the 230
children’s hospitalizations for asthma were preventable; while PCP’s reported 37.7 percent
(63 cases) were preventable. Of these, the estimated percent due to parent or patient
related causes were 66.7 percent for IAP’s and 82.5 percent for PCP’s, with the leading
cause in both cases to be medication related (non-adherence, ran out, etc).
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respond promptly to an asthma attack, then maternal employment should increase

a child’s risk of having an overnight hospitalization, an emergency room visit, or

an asthma episode. However, regular access to care and the ability to purchase

appropriate medication to control asthma may reduce the incidence of having an

asthma episode. In addition, one widely recognized risk factor for asthma is indoor

allergens (see, for example, Lanphear et al., 2001). Bianchi et al. (2002) find that

mothers who work spend significantly less time on housecleaning. Maternal em-

ployment could lead to more residential exposure to allergens for children and hence

more asthma episodes.

The final health event I consider is whether the child had an injury or poisoning

episode in the past three months. This measure is less likely to be confounded by

utilization and access to care, since the measure I consider does not require that

the child received medical attention. It is less objective, however, since it is up

to the respondent to determine what constitutes an injury. An employed mother

may be less aware of injuries, so underreporting could lead to a spurious negative

correlation between reporting an injury or poisoning and maternal employment.

However, in my main results I find that maternal employment is associated with

a large increase in injuries and poisonings, so this particular sort of bias should

only cause an underestimate of the negative effect of maternal employment on child

health using this measure.
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2.4 Data Description

To conduct this analysis, information on a child’s health, the mother’s labor

supply, and the ages of the child’s siblings are all needed. The restricted-access

version of the National Health Interview Survey (NHIS), conducted by the Centers

for Disease Control and Prevention’s National Center for Health Statistics (NCHS),

satisfies the extensive data requirements of this project. The NHIS is a repeated

cross-section survey which has been conducted annually in the United States since

1957. The restricted-access version of the NHIS includes state of residence identifiers,

which allow for the more precise measurement of whether the youngest child was

eligible for kindergarten.20 I combine data from survey years 1985 - 2004.21 A major

survey instrument redesign occurred in 1997, so some variables are only defined in

the “post redesign” sample. I define the analysis variables as consistently as possible

across years and especially between survey designs, however, an indicator for whether

the observation was drawn from “pre-” versus “post-” survey redesign is included in

all relevant regressions. See Appendix Table 2.10 for a description of how the key

variables are defined across survey periods.22

20In addition to birth month and year, which are available in all survey years, the
restricted version of the 1997-2004 data includes the day of birth, allowing an even more
refined measurement of kindergarten eligibility. Also, in survey years 1985-1996 month of
birth was imputed to August in approximately two percent of the sample. The restricted
version of the data contains an imputation flag (the public use version only contains this
flag in 1996), to allow these imputed values to be identified. I eliminate any children whose
youngest sibling’s birth month was imputed from the main estimation sample.

21The National Health Interview Survey uses a stratified sampling design. Primary
sampling units are drawn every ten years, so my data span two sample design periods:
1985-1994 and 1995-2004.

22Note that survey weights are utilized for all mean calculations. Because of the com-
plicated sample construction, all weights are normalized to sum to one for each survey
year.
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Because of the NHIS survey design, each of the four health events I explore

is defined for a different, nested sample of children. Figure 2.3 provides a diagram

illustrating the relationship between these samples. The first sample, “All Children,”

consists of all children from survey years 1985-2004 ages seven through seventeen

years who were part of the primary family and whose mother was between eighteen

and sixty-four years old. Children whose mother could not be identified within the

household or who had missing values for any key variable are excluded, yielding

274,842 children in the pooled sample, as indicated in Figure 2.3 Sample 1. For the

key results in this paper the sample is further restricted to children that have at least

one younger sibling. I restrict attention to children with at least one younger sibling

to ensure that a child’s own eligibility for schooling will not confound the analysis.

I further restrict the sample to those children ages seven through seventeen years

old whose youngest sibling is within a certain age range around five years. Within

Sample 1 there are 88,887 children whose youngest sibling was between 24 and 107

months (2 - 8 years), 66,160 children whose youngest sibling was between 36 and 95

months (3 - 7 years), and 41,583 children whose youngest sibling was between 48

and 83 months (4 - 6 years) at the scheduled interview date.

As discussed above, my sample is comprised of a “pre” and “post” redesign

period. In the post-redesign period, 1997-2004, respondents are asked whether the

child had an injury or poisoning in the past three months.23 I denote Sample 2 in

23Data on injuries were collected in the pre-redesign surveys, but only if medical at-
tention was sought. This is qualitatively very different, since this measure would again
confound access to care with true morbidity. In addition, the reference time period within
which the injury must have occurred was two weeks in length, so there are many fewer
incidents reported in the pre-redesign period.
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Figure 2.3 as the “Post Children,” indicating that these are all children ages seven

to seventeen in survey years 1997 - 2004. Sample 3 in Figure 2.3 is also a subset of

Sample 1, referred to as the “Sample Children.” In the pre-redesign survey years,

1985-1996, families were randomly assigned one out of six condition lists. The

respondent was asked whether each family member had the conditions or episodes

on their assigned list. For my third outcome measure, asthma, I include children

from families that were asked whether each child had asthma in the past 12 months

(condition list 6). In 1997 the survey was redesigned and, rather than ask about

one list of conditions for every family member, the respondent was asked detailed

health information about one randomly selected “sample child” from the family. A

Sample Child Supplement is provided for approximately one child in every family

and asks whether the sample child had an asthma episode in the past 12 months.24

Sample 3 in Figure 2.3 indicates that the “Sample Children” are the subset of the

full sample that were asked the asthma question, N = 76,362.

Finally, Sample 4 in Figure 2.3 denotes the children in the post-redesign pe-

riod who were given the Sample Child Supplement described above, N = 44,838.

Information on emergency room visits in the past 12 months was only formally col-

lected in the Sample Child Supplement in the post-1997 survey redesign period.25 I

will present results for each child health outcome on this sample, so that the effects

24The Sample Child Supplement contains more detailed data on asthma, including
whether the child was ever diagnosed with asthma by a doctor. The variable I chose
to use is most similar to the pre-redesign data and, I believe, most closely reflects the
child’s current health.

25In the pre-redesign period a doctor’s visit record does report whether the child saw a
doctor in the emergency room. However, these records are only for the past two weeks,
so are not directly comparable to the 12 month measure.
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can be compared for a consistent sample. However, there are obviously many fewer

observations in Sample 4, which will limit the power to make inferences.

Since the main results are necessarily specified on a sample of families with

two or more children within specified age ranges, one may be concerned that the

results are not readily generalizable. Within the four different samples described

above, I next consider how similar the children in my main estimation samples are

to all children having information about the outcome of interest. In Table 2.1, I

compare the demographic characteristics of these groups. The column numbers of

Table 2.1 correspond to the sample numbers in Figure 2.3.

Table 2.1 Column (1a) represents all children in the NHIS from the pooled

1985-2004 surveys, ages seven through seventeen years old. Note that mothers

with more than one child aged seven to seventeen years will be represented more

than once in the sample. In the regression results to follow, all standard errors are

clustered by state of residence to account for potential correlations in the error terms

introduced by the NHIS sample design and the state-level nature of my instrument,

and from including siblings in the regressions. Nearly 70 percent of children had

mothers who worked. The average age for mothers is 38 years old, and almost 80

percent of the mothers in the sample are currently married (this includes mothers

who are remarried). The average age for children is 12 years and there are slightly

more boys than girls in the sample. Table 2.1 Column (1b) restricts the sample to

children with at least one younger sibling whose youngest sibling was between ages

2-8 years (24 - 107 months) at the scheduled interview date. Further restricting

the sample around age 5 does not change things qualitatively, so these samples are
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omitted for presentational clarity. Notice that the full and restricted samples are

very similar. Because of the mechanical relationship between having a sibling and

family size, the number of children in the family is larger when I restrict to the

sample of children with at least one younger sibling. The mothers are over 2 years

younger on average and slightly less likely to be white in Column (1b) relative to

Column (1a), presumably because fertility rates are lower among whites.

Moving across the columns in Table 2.1, I show that the characteristics of the

samples for each health outcome are very similar. Comparing between the column

panels, we see that, when restricting the sample to children where each health

outcome is reported, the samples remain representative, as expected from the NHIS

sample design. Similar to the findings in Columns (1a) and (1b), we see in the

remaining columns that children with at least one younger sibling are more likely,

on average, to have mothers who are married, less educated, and younger. They are

more likely to be minorities (especially Hispanic). When each sample is restricted to

children with at least one younger sibling, the fraction of mothers employed drops.

As is explored in more detail below, mothers with more children are less attached

to the labor market. Therefore the sample of children with at least one younger

sibling is not representative of the full sample along some dimensions. This should

be kept in mind when considering the generalizability of the key findings to the full

population of children.

Table 2.2 reports the fraction of children that had each health episode. The

columns indicate which health episode. The rows specify different samples of chil-

dren. The first row gives the fraction of all children experiencing each health episode.
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The second set of rows compares the fraction of children experiencing each health

event by the mother’s work status. The fraction of children experiencing each health

episode is larger for the not-working sample for all health outcomes except for in-

juries and poisonings. This foreshadows the negative coefficient in the ordinary least

squares specifications in Table 2.3, indicating that children are less likely to have

had a health episode if their mother worked.

The next set of rows divides the sample by the marital status of the mother.

Notice that children living with not-married mothers are more likely to experience

all health events except injuries and poisonings. Similarly, the next set of rows

divides the sample by the mother’s education level. While hospitalizations and ER

visits are relatively more common for children whose mothers had less than a college

degree, injuries/poisonings and asthma episodes are more likely among children with

higher educated mothers. Finally, dividing the sample by race we see that blacks

are more likely to have had an asthma episode or an emergency room visit, while

whites are more likely to report having had an injury or poisoning.

The bottom panel of Table 2.2 restricts the sample to the Post Sample Re-

design Children, to allow for a more direct comparison between the health outcomes.

Looking across the columns in the bottom panel of Table 2.2, there is clear positive

correlation between the measures, though they are not perfectly correlated. For

example, children who were hospitalized were over twice as likely to have had an

asthma episode compared with the full sample (14.9 percent versus 6.6 percent).

Similarly, children that had an asthma episode were over twice as likely to have

had a hospital episode (5 percent) or an ER visit (37 percent). Children that had
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an injury or poisoning in the past three months were nearly twice as likely to have

been hospitalized in the past 12 months than the full sample; however, only four

percent were hospitalized overnight. The means in the bottom panel indicate that

these measures are reflecting some underlying morbidity, each with varying levels of

severity and incidence.

2.5 Empirical Results

2.5.1 OLS Estimates

Comparison of the means in Table 2.2 suggested that, unconditionally, ma-

ternal employment is associated with a slight decrease in the incidence of hospital-

ization, asthma, and ER visits, and a slight increase in injuries or poisonings. In

Table 2.3 I explore how this relationship changes once demographic characteristics

and other controls are included, before presenting my main IV results.

The cells of Table 2.3 report the coefficient on maternal employment from

separate ordinary least squares regressions.26 Note that since each episode is con-

sidered a negative health outcome, a negative coefficient on maternal employment

implies working benefits child health. Each column in Table 2.3 represents a differ-

ent sample. The sample in Table 2.3 Column (1) contains all children ages seven

to seventeen (Figure 2.3, Sample 1) and Column (2) includes sample children seven

through seventeen in the post-redesign survey years (Figure 2.3, Sample 4). Columns

26Because the outcome variables are dichotomous, this can also be referred to as the
linear probability model. Marginal effects estimated from probit models are very similar
and are available upon request.
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(3)-(7) contain analogous samples for the other three health outcomes, as shown in

Figure 2.3. The specifications on the post-redesign sample (Figure 2.3, Sample 4)

allow for the inclusion of more extensive control variables and allow for a better

comparison across outcome measures. All regressions include year fixed effects to

control for differences in question wording.

The rows of Table 2.3 successively add covariates to explore the sensitivity

of estimates of the relationship between maternal employment and child health.

Row (1) of Table 2.3 presents the basic relationship between maternal employment

and each health episode, with an indicator for “pre-” or “post-” redesign year. In

Column (1) Row (1), the coefficient implies that maternal employment lowers the

probability that a child had an overnight hospitalization by .2 percentage points, a

statistically significant effect. In Columns (3) through (7), the probability a child

had each health event is not statistically significantly related to maternal employ-

ment. Row (2) adds interview quarter,27 state, and year fixed effects. Row (3a)

adds dummy variables for the child’s age and an indicator for the child’s sex. Row

(3b) adds an indicator for child having had low birth weight, which is only available

in the post 1997 redesign Sample Child surveys.28 In Row (4) family characteristics

are added to the specification: the mother’s marital status (married or not married),

the number of children (1, 2, 3, 4, and 5 or more), and dummy variables for the age

27I include interview quarter dummies to address the concern that the effect of employ-
ment varies by interview quarter, since many third quarter interviews (July - September)
are conducted when school is not in session. In results not shown, when the interaction
between maternal employment and quarter three is included in this regression, the co-
efficient is small and not significant. Specifications dropping the third quarter are very
similar.

28The child’s birth weight is classified as “low” if it is below 2,500 grams (approximately
5 pounds, 8 ounces).
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spread between the oldest and youngest child present in the family.29 Finally, Row

(5) adds dummies for mother’s age (18-24, 25-29, 30-34, 35-39, 40-64),30 mother’s

education (less than high school, high school, some college, or BA/Professional

Degree), mother’s race/ethnicity (black, white, Hispanic, other). In the preferred

(most saturated) model, reported in Row (5) of Table 2.3, the estimated relation-

ship between maternal employment and the child health episode are negative and

significant for hospitalizations, asthma, and ER visits (injuries/poisonings is only

sometimes significant), implying that maternal employment reduces the probability

that a child has a negative health outcome.

Income and health insurance are two mechanisms through which maternal

employment may plausibly impact child health. As such, including these variables

as controls will not allow for the full effect of maternal employment to be mea-

sured. However, it is interesting to consider whether the positive effect of maternal

employment disappears when these covariates are included in the regressions. Un-

fortunately, family income is measured poorly in the NHIS, so the fact that the

estimates of the positive effect are only slightly diminished when family income is

included in Row (6) may simply be because true income is not being properly mea-

sured.31 In the bottom panel, Row (6) adds income dummies to the specification in

29The age spread variables are categorized in year bins with 0 or 1 year as the omitted
category and 9 or more years grouped together. The results are insensitive to insteading
specifying the birth spacing as the age of the oldest child minus the age of the second oldest
child. Similarly, the estimates are slightly larger (although not statistically significantly
so) when these controls are eliminated entirely, as in Table 2.8 Section 3 where the sample
is disaggregated by family size.

30Including a similar set of categories for father’s age yields very similar results.
31Family income is defined differently before and after the 1997-survey redesign. The

early survey years 1985-1996, income is summarized in nine categories with a tenth cat-
egory for “unknown.” In the post-redesign surveys, income is grouped into 10 salary
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Row (5) and their is little change in the coefficients.

Maternal health is another source of potential bias, as is illustrated in Table

2.2. The health measure is a decreasing scale from 1 to 5, where 1 indicates a

self-report of excellent health and 5 indicates poor health (i.e., a higher number

for average health implies worse health). Notice that, looking across the columns

of Table 2.2, the sample of children that had each health episode had mothers

with worse health on average. A mother in poor health may not work due to her

health problems and may have children in poorer health (or may be more inclined to

report her children being in poorer health), inducing a spurious positive correlation

between maternal employment and good child health. However, it may also be

the case that being employed affects a mother’s health and through this channel

also affects the child’s health. If this were the case, including maternal health as

a covariate would “over control” and would not allow for the full measurement of

the effects of employment on health. Adding to the specification in Row (5), Table

2.3 Row (7) includes dummy variables for each maternal health level. Including

maternal health controls substantially reduces the size of the coefficients in absolute

value and renders the relationship statistically insignificant in each column except

Column (1).

Table 2.3 demonstrates that the conditional correlations between maternal

categories, 2 overlapping salary subgroups, and 3 missing data categories. These income
values are not adjusted over time for inflation and do not reflect any differences in fam-
ily size (as does the poverty ratio categorizations, for example). Rather than interpolate
income directly from these or more disaggregated income measures, I include dummy
variables for each salary category for each survey year. Many studies using these data
choose to impute family income. For example, Case, Lubotsky, and Paxson, 2002, use the
Current Population Survey to impute family income.
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employment and the four health episodes are negative or zero once child and ma-

ternal demographic characteristics are included as covariates. This implies that, if

anything, maternal employment is good for child health. As discussed above, there

are a number of non-causal explanations for this apparent effect.

2.5.2 Causal Estimates

Table 2.4 presents the main results of this paper. Each coefficient represents

the results from separate regressions, so a total of 60 regressions are summarized

in this Table. Each regression includes maternal, family, and child demographic

characteristics and state, year, and quarter fixed effects that parallel the specification

in Table 2.3 Row (5) (with standard errors clustered by state).32 The sample is

restricted to children ages seven through seventeen years old who have at least one

younger sibling and whose youngest sibling was within the age range specified by

row. Panel A, the first set of rows, presents the effect of maternal employment

on the probability of the child having had an overnight hospitalization. The first

three rows report estimates for all children (Figure 2.3, Sample 1), while the fourth

row provides estimates for the post-redesign sample children (Figure 2.3, Sample

4). I include results for the post-redesign sample children to allow for comparisons

between health measures within a consistent sample.

Table 2.4 Column (1) reports the coefficient from the OLS regression of ma-

ternal employment on child health, corresponding to Equation (2.1) in Section 2.3.

32The estimates in Tables 2.4-2.8 do not employ survey weights. Estimates using survey
weights are very similar.
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These estimates are directly comparable to Row (5) of Table 2.3. These estimates

differ slightly because of sample construction; in Table 2.4 I restrict the sample to

children that have at least one younger sibling whose youngest sibling is within a

specified age range around 5 years old. Because of the smaller sample size in this

table relative to Table 2.3, the estimates are less precise. For example, in Table 2.3

Column (1) Row (5), the all children sample, the OLS estimate is -.0032 (.0007).

This estimate can be compared to Table 2.4 Column (1) Row (1), the all children

“with youngest sibling 2-8” sample, OLS estimate of -.0018 (.0011). The validity of

the instrument relies on restricting the sample in this way, though at the cost of a

substantial reduction in sample size and a resulting loss of power. Note again that

a negative coefficient on maternal employment implies that a child whose mother

worked has a lower risk of having had a bad health episode.

The coefficient of interest in Equation (2.2), as described in Section 2.3, is βFS,

the effect of the instrument on maternal employment. These “first stage” estimates

are presented in Column (2) of Table 2.4. The effect of kindergarten eligibility is

large and significant for all regressions, suggesting that the instrument has predictive

power. Column (3) of Table 2.4 reports the coefficient from the “reduced form”

regression, where the coefficient of interest is the effect of the instrument on the

health outcome. The reduced form coefficients are consistently positive, but are

only statistically significant for hospitalizations, asthma, and injuries or poisonings

and only in the largest samples. For example, in Table 2.4 Column (3) Row (1)

the estimated effect is .0033 (.0011), indicating that the youngest child’s eligibility

for kindergarten raises the risk of the older child having been hospitalized by .33
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percentage points. In all rows the estimates point toward a similar finding: the

kindergarten eligibility of the child’s youngest sibling increases the risk the child has

a bad health episode. These results are particularly important when interpreting

the overall findings.

If the instrument does not completely satisfy the validity assumption (i.e., the

instrument may be correlated with the error term in Equation (2.1)), the reduced

form results still give a direct measure of the correlation between the youngest child’s

eligibility for kindergarten and negative health consequences for the older child.

I argue that the predominant mechanism through which kindergarten eligibility

should affect elder sibling health is through the mother’s labor supply, but this

interpretation is not testable, at least not in the current data. As an alternative, it

is possible that maternal effort toward the older child increases with the youngest

child’s kindergarten eligibility, thus leading to better health for the older child. If

this effect dominated, I would find a negative coefficient on the instrument in the

reduced form, indicating that the instrument was good for child health. On the

other hand, it might be the case that eligibility affects the level of supervision of the

child. For example, a mother that works could cease to purchase formal child care

for her children when her youngest child ages into kindergarten and instead rely on

her older children to supervise her younger children after school. In this example,

we might expect to see an increased probability of bad health events for the older

child when the younger child ages into kindergarten eligibility. The change in health

in this example is still theoretically an effect of maternal employment, but it does

confound the interpretation of the instrumental variable estimate. I explore this
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possibility further in Sections 5.3 and 5.4.

Table 2.4, Column (4) presents the instrumental variable estimates using 2SLS.

For computational and expositional simplicity, I include only the 2SLS estimates in

this table.33 As expected from the positive and significant coefficients in the reduced

form and first stage models, the instrumental variable coefficients are positive in all

specifications. Panel A of Table 2.4 presents the effects of maternal employment

on children’s overnight hospitalizations. In Column (4) the IV effects are large and

statistically significant in all rows. The estimate in Row (1) indicates that a mother

working increases the probability of overnight hospitalization by approximately 4

percentage points, or just under 200 percent. When the sample is further restricted

in Rows (2) and (3) the estimate is much less precise, but is still statistically sig-

nificant. Using the Post Sample children in Panel A, Row (4) indicates a similar

effect size, although the coefficient is no longer statistically significant. Overall, the

results in Panel A suggest a reasonably robust relationship where maternal employ-

ment increases a child’s probability of having an overnight hospitalization, contrary

to the OLS relationship. The remaining tables explore the robustness of this effect,

breaking down the sample in Row (1).

Turning now to the second health outcome, Panel B of Table 2.4 presents anal-

33Appendix Table 2.11 replicates this table using entirely non-linear models. The first
three columns report marginal effects from probit models, which all very closely match the
linear estimates in Table 2.4. The fourth column presents estimated marginal effects from
a bivariate probit model. As described in Section 3, this model relies on strong functional
form assumptions. Notice that the estimates are smaller in magnitude and much more
precise, but the qualitative results are consistent. Future work will further explore the
robustness of the results to estimation using these and other limited dependent variable
models.
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ogous specifications for the effects of maternal employment on injuries and poison-

ings. The estimate on the largest sample: the Post Sample children whose youngest

sibling was between 2 - 8 years, in Panel B, Row (1) implies that maternal employ-

ment increases injuries and poisonings by 5.1 percentage points. This represents

just under a 200 percent increase from the baseline 2.6 percent probability. The re-

maining rows in Panel B do not have sufficient sample size to estimate a statistically

significant effect, but the point estimates are similar.

The probability of having had an asthma episode, Panel C in Table 2.4, again

demonstrates a positive effect. In Row (1), Column (4), the coefficient implies that

maternal employment causes an 12 percentage point increase in the probability of

having an asthma episode. Again, this corresponds to just under a 200 percent

increase. The effect is statistically significant in the three largest sample, but the

magnitudes become very large and the estimates are imprecise. Finally, Panel D in

Table 2.4 explores the effect of maternal employment on ER visits. The IV estimates

are not statistically significant for ER visits, but the results are qualitatively similar

to those from the other health outcomes. The “Post Sample,” that used in Row

(4) in Panels A, B, and C, and in all of Panel D, does not have sufficient sample

size to produce statistically significant estimates. However, the results are similar

in magnitude and always large and positive.

Table 2.4 provides evidence that maternal employment negatively affects chil-

dren’s health. The point estimates are large in magnitude, indicating that, in the

largest estimation sample, maternal employment raises the probability of overnight

hospitalization, injury or poisoning, and asthma by just under 200 percent each.
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These are large effects. For example, having had an asthma episode raises the

probability of having had a hospitalization by roughly 3.3 percentage points, com-

pared with the estimated effect of a 3.9 percentage points increase due to maternal

employment. I explore the robustness of these estimates in the subsequent sections.

2.5.3 Heterogeneous Effects and the Local Average Treatment Effect

Up to this point, I have assumed that the effect of maternal employment on

child health is identical for all children. However, the effects of maternal employment

on child health may vary with characteristics of the mother and her family. In this

section, I estimate the effect for subsets of the population, to determine whether it

is qualitatively different for different groups. This is of particular relevance in an

instrumental variables context, since the IV strategy measures the effect only for the

population of women whose labor supply is influenced by the instrument. This is

generally referred to as the local average treatment effect (LATE) (see Angrist and

Imbens, 1994 and Angrist, Imbens, and Rubin, 1996). For example, Angrist and

Imbens (1994) document how instrumental variables estimates measure the effect of

“treatment” on the population whose treatment status is affected by the instrument.

They refer to this group as the “compliers.” In my context, the instrumental variable

estimate is the effect of maternal employment on child health for the population

of mothers whose labor supply is affected by their youngest child’s eligibility for

kindergarten. The population of compliers is never actually observed, so one might

be concerned that this population may be different from the full population of
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mothers in important ways. In particular, the OLS and IV estimates could differ

solely because OLS is estimating an average effect of maternal employment on child

health while IV estimates the effect for the compliers. In other words, it could be

that maternal employment is good on average for child health but particularly bad

for a very specific population. To address this concern as much as possible, I first

estimate the extent of treatment effect heterogeneity by estimating 2SLS equations

on subsets of the population.

Because hospitalizations are defined for the largest sample, and therefore have

sufficient observations to break down the sample along various dimensions, in all

subsequent tables I focus on the effect of maternal employment on overnight hos-

pitalizations for children ages seven through seventeen whose youngest sibling was

between 24 and 107 months (2-8 years) at the scheduled interview date. In the first

row of Table 2.5, I reproduce the results from the first row of Panel A in Table 2.4,

for reference. In the subsequent rows, I disaggregate this sample based on demo-

graphic characteristics of the mother. Note that I provide the means of both child

hospitalization and maternal employment for each sample.

The second set of rows in Table 2.5 shows the results for non-Hispanic black,

non-Hispanic white, and Hispanic mothers. Column (1) reports the OLS estimates

of the relationship between maternal employment and child hospitalizations. The

OLS estimate for blacks is much larger in magnitude than for whites (-.0045 versus

-.0015), but the coefficients on both are statistically insignificant. The first stage

estimates, Column (2) of Table 2.5, suggest that white mothers are more likely to

begin working after their youngest child ages into kindergarten eligibility (.0951)
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than black mothers (.0507), although the baseline probability of working is 68 per-

cent for blacks compared to 63 percent for whites. Next we notice that the reduced

form estimates for blacks are larger than for whites (.0073 for blacks versus .0039 for

whites), although the difference is not statistically significant. Column (4) presents

the instrumental variable results, indicating that maternal employment causes a 14.5

percentage point increase in the risk of overnight hospitalizations for the children

of black women. This estimate is very large in magnitude, but is imprecise. For

white mothers, it is estimated that employment increases hospitalizations by 4.1

percentage points. Both IV estimates are statistically significant and indicate that

maternal employment increases child hospitalizations for black and white mothers.

The estimates for Hispanic mothers are not statistically significant.

Another dimension along which there might be heterogeneous effects is mater-

nal education level. A woman’s education level can be thought of as a reasonable

proxy for socioeconomic status of the family. As stated earlier, some literature

suggests that the consequences of maternal employment are more severe for more

affluent mothers (e.g., Anderson, Butcher, and Levine, 2003). The next set of rows

disaggregates the sample by two levels of maternal education: 12 years of schooling

or less (high school degree or less) and more than 12 years of schooling (some col-

lege and BA or Professional Degree). The difference in the IV effect for these two

groups of women is small and not statistically significant. The effect of maternal

employment for mothers with a high school degree or less is 4.3 percentage points

compared with an effect size of 2.9 percentage points for mothers with at least some

college education. I therefore find no evidence consistent with heterogeneous effects
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by maternal education level.

The third panel of Table 2.5 presents the effects decomposed by marital status.

The “not married” sample consists of any woman not currently married, whether

widowed, divorced, or never married, and also includes women who are separated

from their husbands. The probability of having an overnight hospitalization is over

25 percent higher for the not-married mothers sample (.026 versus .019) and that

sample shows a much stronger relationship between maternal employment and child

health in the OLS specification (-.0094 versus -.0002) in Column (1). Note that

the probability of working is very similar in these two samples. The instrumental

variable estimate in Column (4) suggests that maternal employment has a larger

effect on overnight hospitalizations for not-married mothers (.0952) as compared

to married mothers (.0292), although the coefficient for not-married mothers is not

statistically significant.

The next set of rows explores the treatment effect heterogeneity by the age

of the mother. In all the empirical results presented in this paper, I exclude from

the sample mothers younger than 18 or older than 64. I do this for two reasons.

First, matching children to mothers is complicated in the data and occasionally

children are miscoded as spouses (and vice versa) in the raw data. Restricting the

sample to women 18 to 64 eliminates many instances of siblings or grandmothers

being miscoded as mothers. In addition, women outside of the 18 to 64 age range

are more likely to be in school or to be retired, complicating the interpretation of

employment. In the next set of rows in Table 2.5 I further disaggregate the sample by

maternal age. In doing this, I am also able to consider whether endogenous fertility is
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spuriously affecting the instrument, since women above 40 are less likely to have any

more children. Women younger than 40 may remain not-employed because they are

pregnant or are trying to become pregnant, so these women are not an appropriate

comparison group for employed women of the same age and number of children.

As mentioned above, the number of children is a strong predictor of employment

and may be correlated with child health, so I include controls for mother’s age

and number of children in all specifications to mitigate any potential biases. Table

2.5 shows that the effect of maternal employment is only somewhat heterogeneous

across categories of maternal age. The only age groups with statistically significant

effects are mothers who are 25 - 29 and 30 - 34, where the 2SLS coefficients are .1284

(.0692) and .0476 (.0228), respectively.34 The estimates for the other age groups are

smaller and less precise. Therefore the different estimated effects and the lack of

statistical significance for some maternal age groups appears to be an artifact of a

limited sample size and not of heterogeneous effects along this dimension.

To explore how access to care may be confounding the results, I compare

the effects of maternal employment for children with public versus private health

insurance. Health insurance is defined most consistently for survey years 1998-

2004, therefore in the bottom set of rows I focus on children from these survey

years. The estimated effect of maternal employment on hospitalizations for this

sample is slightly larger and less precise than that for the full sample, indicating

that maternal employment increases hospitalizations by 5 percentage points in these

34Note that there were too few mothers ages 18-24 (N = 716) to estimate the effects
separately on this sample.
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survey years. The subsequent three rows estimate the effects for populations of

children with differing health insurance types. First I present results for children

with any health insurance. Then I break this sample into two groups: those with

private health insurance and those with public health insurance.35 As discussed in

the Introduction, children with public health insurance are more likely than those

without health insurance and with private health insurance to receive treatment

in a hospital setting (see, e.g., Currie and Gruber, 1996). In my data, the mean

rate of overnight hospitalizations is almost twice as large for children with public

health insurance versus private health insurance (2.8 versus 1.5 percent). This could

be due to a higher disease burden in this population or due to characteristics of

reimbursement that lead families to seek care in hospitals. Notice also that maternal

employment rates are lowest for children with public health insurance and highest

for children with private health insurance. To measure the full effect of maternal

employment, we would like to allow health insurance to be a mechanism through

which maternal employment affects child health. Estimating the different effects of

maternal employment by the child’s health insurance types allows the exploration of

the effects of maternal employment on child health without confounding the positive

aspects of an increase in access to care, although there may be selection into health

insurance types based upon child health status.

Although the IV estimates for children with public health insurance are im-

precise (.0465, standard error .0646), the effects of maternal employment among

35I approximate having public health insurance by taking the sample of children that
report having some kind of health insurance and removing those that do not have private
health insurance.
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children with any health insurance and with private health insurance are large and

statistically significant (.0587 and .0667, respectively). While health insurance may

play some mitigating role, the effects of maternal employment on hospitalization are

consistently positive and do not simply reflect an increase in access to care. The

sample of children with no health insurance is too small to enable reliable estimates

of the effect of maternal employment on child health.

In all, the estimates in Table 2.5 indicate that there may be some heterogeneity

in the treatment effects along major demographic categories. However, the effects of

maternal employment are consistently measured as being bad for children’s health.

This exercise in exploring treatment effect heterogeneity does not eliminate the

possibility that the women whose labor supply is affected by the instrument (the

compliers) are actually subsets of women within each category presented in Table 2.5.

Though the consistency of the estimates across different portions of the population

suggest that there is not a great deal of treatment effect heterogeneity, it may still be

the case that the coefficient in the instrumental variable estimate is measuring the

effect of maternal employment for a very specific, and potentially non-representative,

sample of women. To explore this further, I disaggregate the sample in an alternative

way, which may be a better approximation to subsets more or less affected by the

instrument.

I construct an index of labor force attachment (LFA) and break down the

sample by this index. This analysis is similar to that of Kling (2001), who uses

the family background index in Card (1995) in order to determine how the instru-

mental variables estimate of the return to schooling differs across quartiles of family
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background. Because LFA varies in important ways by race (for example, black

women have much higher employment rates and Hispanic women have much lower

employment rates, as compared to whites), I restrict the sample to white mothers

for this exercise.36. I calculate a labor force attachment index from the full sample of

mothers with at least one child between the ages of zero through seventeen from the

NHIS pooled survey (years 1985-2004). I calculate the probability the mother works

from a linear probability model on year, state, and quarter dummies, and maternal

age, education level, marital status, and number of children, as defined above. I

use the coefficients from this regression to predict the labor force attachment for all

white mothers. I then divide the regression sample (i.e., children ages seven through

seventeen years old with at least one younger sibling, whose youngest sibling was

between ages 2 - 8 at the scheduled interview date) into four quartiles based on their

LFA score. This procedure yields over 13,000 children in each quartile.

Table 2.6 presents sample means for each Labor Force Attachment (LFA)

quartile. Notice that the women most highly attached to the labor market have

fewer children on average, have more education, are less likely to be married, and are

older on average. ER visits occur most frequently for the lowest quartile while injury

or poisoning episodes are reported most frequently for those in the highest quartile.

To confirm that the LFA scale is a good approximation for actual probability of

employment, I compare the probability of maternal employment across the four

quartiles. Less than half of the mothers in the lowest quartile worked (48.5 percent),

36Repeating this exercise with the full sample and including controls for race leads to
very similar results. The comparative estimates for Table 2.7 Column 5 are included in
footnote 37.
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as compared to 76 percent of mothers in the highest quartile, indicating that LFA is

reflecting a true difference in likelihood of employment. The probability of working

is one way to measure labor force attachment; another way is through the intensity

of work or hours worked. However, hours of work are only measured in the post-

redesign survey years, 1997-2004. Table 2.6 demonstrates the relationship between

work intensity and my LFA index. The first work-hours measure includes hours

of work for women that reported working last week. We see only a slightly higher

average number of hours worked for the most attached women. When I impute

zero hours of work for women who reported not working last week, there is a strong

gradient in hours worked for the four LFA quartiles.

In Table 2.7 I present results disaggregated by LFA. The first row of Table

2.7 repeats the results from the third row of Table 2.5, the estimated effect on

hospitalizations for the sample of children with white mothers. The second set of

rows in Table 2.7 splits the sample by mothers above and below the median LFA.

Notice that while the overall probabilities of having a hospitalization are very similar

(around 2 percent), the mean of maternal employment is over 16 percentage points

higher for children whose mother is in the top half of the LFA scale (71 versus 55

percent). The first stage estimates in Column (2) indicate that the instrument does

affect labor supply in both groups, though the effect is larger for the less attached

mothers. The reduced form in Column (3) is only significant for less attached

sample (.5 percentage points), indicating a large increase in hospitalizations due

to the instrument. Likewise, the instrumental variable estimates of the effect of

maternal employment on child hospitalizations (Column 4) are positive, large, and

52



statistically significant for the less attached sample only. Although the effect for

the most attached women is not statistically significant, the standard error is large

and the difference in the coefficients for the more and less attached women are not

statistically significant. Indeed, when the sample is broken down further into the

four quartiles, the effects of maternal employment are statistically insignificant for

all four quartiles, but are always positive in sign.37

The estimates in Table 2.7 somewhat alleviate one concern about the mag-

nitudes of the coefficients. The youngest child’s eligibility for kindergarten might

affect the older child’s health for women that do not change their employment sta-

tus. For example, women may respond to the instrument by increasing their work

intensity. Or, women may change the child care arrangements for all of their children

once their youngest child becomes eligible for school. The first stage does not take

into account the population of women whose work intensity changes. In the second

scenario, where the child care arrangements change for all children, the instrument

is correlated with the error term in equation (1), where supervision or child care

is an omitted variable correlated with kindergarten eligibility of the youngest child.

Though the instrumental variable estimate is not measuring the correct effect, in

both scenarios the change in hospitalizations is still a consequence of maternal em-

ployment. Future work will explore the sensitivity of the results to using measures

of work intensity and to outliers. Unfortunately the NHIS does not include data on

37 In results not shown, the estimates for the full sample of children (not restricting on
race) are very similar. The low LFA group has a point estimate of 0.0313 (0.0184) and
the high LFA group has a point estimate of 0.0351 (0.0266). Full results available upon
request.
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child care or supervision. However, failure to find differences along the labor force

attachment scale provides some evidence that this is not a major source of bias in

these results.

2.5.4 Robustness Checks

The final table, Table 2.8, explores the robustness of the main findings to

different sample selection criterion. The first row of Table 2.8 repeats the main

results (Table 2.4, Row 1) for reference. Again, these estimates are for all children

ages seven to seventeen in survey years 1985-2004 that have at least one younger

sibling whose youngest sibling was between 24 and 107 months at the scheduled

interview date. The second and third rows of Table 2.8 explore the possibility that

the youngest child’s exact age is correlated with the older child’s health in a way that

is biasing the IV estimates. For example, one might be concerned that the spacing

of births is influenced by the health of the older child. Park et al. (2003) look at the

extreme case of severe child disability and mothers’ tubal sterilization and find that

having a severely disabled child only increases the probability of seeking sterilization

for mothers who already have one non-disabled child. This evidence suggests that

the change in timing of births due to having a disabled child may vary with birth

order, but it is likely not a strong effect. I first eliminate all children from the

sample that are reported as having an activity limiting disability. This restriction

removes children that were recently injured or are still recovering from a debilitating

disease, for example, so it should understate the negative consequences of maternal
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employment. With this restriction, the estimated effect of maternal employment

declines, but still implies a large and statistically significant effect (.0304, standard

error .0123). Further restricting the sample to children whose siblings are also not

limited has only a minor additional effect on the coefficients and is still statistically

significant (.0288, standard error .0117). These results suggest that birth spacing is

not driving the results.

The next set of rows divides the sample by total family size. I present results

for children with exactly one sibling and for children with two or more siblings (i.e.,

mothers with 2 children versus mothers with 3 or more children).38 First notice

that the hospitalization rate is similar between these samples but mothers are much

less likely to work if they have three or more children. The first stage coefficient

for mothers with exactly two children is statistically significant but small, implying

that fewer mothers are changing their employment status when their youngest child

becomes eligible for kindergarten. Because the average employment rate of these

mothers is higher, it seems likely that mothers with exactly two children return to

work before their youngest child becomes eligible for kindergarten. The IV estimates

are larger, though less precisely measured, for children with exactly one sibling.

Row 6 in Table 2.8 explores the sensitivity of the results to the mother’s own

health. Employment may harm a mother’s health (due to physical strain, stress,

etc), which could be a mechanism through which maternal employment affects child

38For these two rows I do not include the “age spread” dummy variables because in the
two-child families it is too highly correlated with the instrument. When the age-spread
dummies are included, the estimates in Table 2.8 Column 4 are 0.1437 (0.0938) for 2 child
families and 0.0306 (0.0135) for 3 or more child families.
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health. Therefore, I have so far not controlled for maternal health. However, it may

also be the case that the effect of maternal employment is different for mothers with

different health statuses and that mothers respond to the instrument differentially by

health status. For example, mothers with severe health conditions may remain out

of the labor force, even when their youngest child is in school. Restricting the sample

to children with mothers who are reported as having very good or excellent health

does not change the qualitative results, but the estimated effect is now somewhat

larger (.0525).39

Next I look at the difference in estimates for boys versus girls. We might

expect that working has differential effects by gender if, for example, boys require

more supervision than girls. In Table 2.8 we see that the estimated effect for boys

is about twice that for girls, and that the effect is not statistically significant for

girls. Understanding the mechanism by which maternal employment more strongly

affects boys than girls is an interesting avenue for future research.

Finally, because I look at the health of school age children ages seven to seven-

teen but allow the sample of youngest siblings to be between two and eight years, I

test specifications restricting the sample to children ages nine to seventeen. Though

the sample size is reduced, the results on this sample are qualitatively similar and

statistically significant. These results indicate that maternal employment increases

child hospitalizations by 4.6 percentage points. The final row of Table 2.8 further

39Future work will explore the effect of a woman’s employment on her own (and her
husband’s) health using a similar estimation strategy. These results, while interesting
in their own right, will also inform this potential mechanism through which maternal
employment could be affecting children’s health.
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restricts to children between nine and twelve. It may be that maternal employment

is more (or less) harmful for children nine to twelve as compared to teenagers. Also,

in the data girls above age thirteen have an increased risk of hospitalizations. This

could be due to an increase in mental health issues, such as eating disorders, or due

to childbearing. Although I only include in my sample children that report being the

child of the household head or the spouse of the household head, the pathways from

maternal employment to child health may be different for girls at risk of pregnancy.

Note that I include the child’s age and sex in all specifications, so a higher risk of

hospitalizations should not bias the results. In the bottom row of Table 2.8 we find

that effects of maternal employment are even stronger for the sample of children

ages nine to twelve (.0500).

In all, I find evidence that maternal employment leads to an increase in child

hospitalizations, injuries and poisonings, and asthma. The results are qualitatively

similar for ER visits, but always statistically insignificant. I find little evidence

of treatment effect heterogeneity by the mother’s race, marital status, and age.

Specifications on all subsets of the population indicate a similar effect: maternal

employment increases child hospitalizations. To further explore whether treatment

effect heterogeneity is present, I construct an index of labor force attachment. I

find little heterogeneity in the effects of working along this dimension, although

the results are larger for the less attached women. The main results are robust to

estimating the effects for families with no activity-limited children, for families of

different sizes, for healthy mothers only, and for older children within smaller age

ranges.

57



2.6 Conclusion

Maternal employment could affect children’s health through a variety of mech-

anisms. Positive channels include income, health insurance, and the mother’s self-

esteem. Alternatively, employment may hinder a mother from supervising or other-

wise contributing to time-intensive, health promoting activities. The basic correla-

tions between maternal employment and the measures of acute child health events

are small, (almost always) negative, and generally insignificant, even after control-

ling for many other determinants of child health. These results might be interpreted

to reflect that maternal employment has no effect on, or even benefits, children’s

health.

However, there are theoretical reasons to believe estimates of the basic rela-

tionship between maternal employment and child health are not causal. A mother’s

decision to work could reflect underlying (and unobserved) ability, skills, or pref-

erences, so that a mother that works may be different in important ways from a

mother that does not work. Or, a mother whose child is chronically ill may choose

to remain home to care for her child, inducing a positive correlation between working

and good health through a reverse relationship.

To estimate the causal effect of maternal employment on a child’s risk of expe-

riencing an adverse health event, I use an instrumental variables estimation strategy.

I analyze the health of children ages seven to seventeen with at least one younger

sibling, and I use the child’s youngest sibling’s eligibility for kindergarten as an ex-

ogenous instrument for maternal employment. The instrumental variable estimates
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suggest that, once the endogeneity of labor supply is accounted for, maternal em-

ployment raises the probability of having an adverse health event. The main results

indicate that maternal employment increases overnight hospitalizations by 4 per-

centage points, injuries and poisonings by 5 percentage points, and asthma episodes

by 12 percentage points, each by around 200 percent. The estimates for ER visits

are smaller in percent terms and are always statistically insignificant, perhaps due

to the smaller estimation sample.

The main results are robust to a host of specification checks. Although the

estimates are not statistically significant in all cases, the signs and magnitudes

are consistent. My results suggest that studying only the conditional correlation

between maternal employment and child health could lead to incorrect conclusions.

I find that maternal employment is an important determinant of a child’s risk of

experiencing an adverse health event. This result is an important contribution to our

understanding of how a mother’s return to the labor force may affect her children.

2.7 Appendix

Rather than simply studying the treatment effect heterogeneity across LFA

quartiles, here I present estimates of the weights that each quartile receives in the

local average treatment effect estimate. Because the instrumental variable estimate

reflects the effect for women whose labor supply is influenced by the instrument, it

may be the case that women in one portion of the LFA scale receive disproportional

weight. This analysis modifies methods discussed in Kling (2001) for more precisely
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identifying the “local” population that dominates the local average treatment effect.

Kling decomposes the key results in Card (1995), a classic paper estimating the

returns to schooling using proximity to a college as an instrument. Kling uses

the family background index constructed in Card’s paper and calculates precise

weights to estimate how much of the IV estimate is due to each quartile of the

family background distribution. The weight given to each quartile is a function

of the sample size, the variance of the instrument conditional on the quartile and

covariates, and the change in the probability of the endogenous variable due to the

instrument, as described below. Kling finds that 53 percent of the IV estimate

is due to the bottom quartile of the family background distribution. Though this

population is of particular policy interest, the fact that the IV estimate provides

a local average treatment effect which consists primarily of the effect of schooling

for a subset of the population that may see the most benefit from schooling implies

that the local average treatment effect is not generalizable to the full population.

In Appendix Table 2.12 I provide a calculation of weights in my data, similar to

those in Kling (2001). For this entire exercise I restrict my attention to the regression

sample for overnight hospitalizations (Sample 1 in Figure 2.3) where the child has

at least one younger sibling and whose youngest sibling was between 2 - 8 years at

the scheduled interview date. I further restrict the sample to white mothers, since

the characteristics associated with labor force attachment vary by race/ethnicity.

The labor force attachment index (LFA) is discussed in the main text. Column

(1) of Appendix Table 2.12 gives the fraction of the sample in each quartile, wq =

P (Q), where Q is the quartile. Column (2) gives the conditional variance of the
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instrument λ1|x = E[P (Z|X, Q)(1−P (Z|X, Q))|Q], where Z is the instrument, X are

the covariates, and Q is the quartile. The impact of the instrument on the probability

the mothers work is given by ∆MWq|x = E[E(MW |Z = 1, X,Q) − E(MW |Z =

0, X,Q)|Q]. Column (4) shows the overall weight of each quartile in the two-stage

least squares regression, ωq|x =
(wqλq|x∆MWq|x)∑
q
(wqλq|x∆MWq|x)

.

In Column (4) of Appendix Table 2.12, we see that the most weight is given

to women in the lowest quartile of LFA, though the weights are very similar. Most

importantly, the highest quartile receives the least amount of weight, 18 percent

versus 30 percent. This table provides evidence that the group of “compliers” is not

disproportionally from one particular quartile.
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Figure 2.1: A: The Fraction of Mothers Working by Youngest Child’s Age in Months

A: Maternal employment before and after the youngest child is eligible for kindergarten at the
exact eligibility cut-off date. Dots represent average maternal employment for each age by months.
Lines are from a fractional polynomial smoother. Each mother/youngest-child observation is only
included once and observations are weighted by the youngest-child’s sample weight. No restrictions
are placed on the number or ages of siblings, N = 89,317.
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Figure 2.2: B: The Fraction of Mothers Working by Youngest Child’s Age in Months

B: Maternal employment before and after the youngest child is eligible for kindergarten at 60
months, with the youngest childs age measured on September 1st of the most recent school year.
Three cut-off displayed here: September Cut-off = 60 months (N = 36,485), October Cut-off = 59
months (N = 12,818), and December Cut-off = 57 months (N = 23,647). Each mother/youngest-
child observation is only included once and observations are weighted by the youngest-child’s
sample weight. No restrictions are placed on the number or ages of siblings.
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Figure 2.3: Estimation Samples for Each Health Outcome
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Table 2.2: Fraction with Health Event by Population Characteristics

Had Had Injury/ Had Asthma Had ER
Hospital Poisoning Episode Visit

(1) (2) (3) (4)
Number of Obs 274,842 98,233 76,362 44,838
Full Sample .023 .031 .066 .179
Mother Worked .023 .032 .065 .176

(.001) (.001) (.002) (.004)

Mother Did Not .025 .030 .067 .185
Work (.001) (.002) (.003) (.007)

Married .022 .031 .061 .163
(.001) (.001) (.002) (.004)

Not Married .030 .031 .083 .232
(.002) (.002) (.003) (.007)

Less Than HS .028 .019 .056 .208
(.002) (.002) (.004) (.014)

High School .025 .028 .063 .185
(.001) (.001) (.002) (.007)

Some College .023 .036 .070 .184
(.001) (.002) (.003) (.005)

BA/Prof Deg. .018 .037 .072 .145
(.001) (.002) (.003) (.005)

Black .025 .018 .078 .208
(Non-Hispanic) (.001) (.001) (.004) (.009)

White .024 .038 .065 .178
(Non-Hispanic) (.001) (.001) (.002) (.004)

Hispanic .021 .015 .056 .160
(.002) (.001) (.005) (.010)

Had Hospitalization 1 .068 .149 .719
(.008) (.011) (.015)

Had Injury/Poisoning .043 1 .117 .674
(.006) (.011) (.016)

Had Asthma Episode .051 .064 1 .365
(.004) (.006) (.015)

Had ER Visit .081 .123 .122 1
(.004) (.004) (.005)

Notes: See Table 2.1 and text.
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Table 2.4: The Effects of Maternal Employment on Child
Health

N Mean Mean OLS First Reduced IV
Outcome Work Stage Form 2SLS

(1) (2) (3) (4)
Panel A: Health Outcome: Hospitalization
(1) All Children 88887 .0203 .6205 -.0018 .0842 .0033 .0388
(Youngest Sib 2-8) (.0010) (.0127) (.0011) (.005) (.0011) (.0133)

(2) All Children 66160 .0205 .6235 -.0021 .0706 .0033 .0474
(Youngest Sib 3-7) (.0011) (.0126) (.0014) (.0054) (.0012) (.0173)

(3) All Children 41583 .0211 .6243 -.0035 .0433 .0042 .0974
(Youngest Sib 4-6) (.0011) (.0123) (.0016) (.0068) (.0014) (.0388)

(4) Post Sample 10389 .0163 .6382 -.0071 .0721 .0030 .0417
(Youngest Sib 2-8) (.0013) (.0136) (.0028) (.0107) (.0032) (.0455)

Panel B: Health Outcome: Injury/Poisoning
(1) Post Children 31960 .0262 .6438 -.0008 .0736 .0038 .0510
(Youngest Sib 2-8) (.0015) (.0133) (.0020) (.0081) (.0020) (.0268)

(2) Post Children 23714 .0259 .6466 -.0010 .0684 .0030 .0443
(Youngest Sib 3-7) (.0016) (.0130) (.0022) (.0079) (.0020) (.0292)

(3) Post Children 14868 .0243 .6477 -.0008 .0428 .0026 .0596
(Youngest Sib 4-6) (.0017) (.0127) (.0024) (.0094) (.0024) (.0545)

(4) Post Sample 10389 .0278 .6382 .0015 .0721 .0022 .0306
(Youngest Sib 2-8) (.0021) (.0136) (.0038) (.0107) (.0049) (.0676)

continued on next page
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Table 2.4: continued

N Mean Mean OLS First Reduced IV
Outcome Work Stage Form 2SLS

(1) (2) (3) (4)
Panel C: Health Outcome: Asthma Episode
(1) Sample Children 20304 .0624 .6164 -.0072 .0856 .0103 .1203
(Youngest Sib 2-8) (.0028) (.0132) (.0045) (.0085) (.005) (.0611)

(2) Sample Children 15205 .0636 .6161 -.0073 .0733 .0109 .1489
(Youngest Sib 3-7) (.0031) (.0130) (.0051) (.0088) (.0042) (.0599)

(3) Sample Children 9642 .0643 .6134 -.0065 .0519 .0106 .2034
(Youngest Sib 4-6) (.0036) (.0144) (.0065) (.0108) (.0056) (.1105)

(4) Post Sample 10389 .0561 .6382 -.0010 .0721 .0107 .1484
(Youngest Sib 2-8) (.0026) (.0136) (.0040) (.0107) (.0062) (.0918)

Panel D: Health Outcome: ER Visit
(1) Post Sample 10389 .1674 .6382 -.0001 .0721 .0055 .0767
(Youngest Sib 2-8) (.0055) (.0136) (.0079) (.0107) (.0127) (.1778)

(2) Post Sample 7757 .1682 .6377 -.0033 .0701 .0059 .0848
(Youngest Sib 3-7) (.0062) (.0135) (.0099) (.0106) (.0119) (.1716)

(3) Post Sample 4892 .1693 .6366 -.0063 .0523 .0078 .1491
(Youngest Sib 4-6) (.0063) (.0149) (.0134) (.0126) (.0136) (.2697)

Notes: Each coefficient is from a separate regression and includes the covariates listed in
Table 2.3 Row 5, with standard errors (clustered by state) in parentheses. Observations are children
ages 7 to 17 whose youngest sibling is within the age range specified by row. Coefficients presented
are: Column (1) regression of child health on maternal employment, Column (2) regression of
maternal employment on the youngest child’s eligibility for kindergarten (First Stage), Column (3)
regression of child health on the youngest child’s eligibility for kindergarten (Reduced Form), and
Column (4) instrumental variables.
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Table 2.6: Means by Labor Force Attachment Quartile

Lowest 3rd 2nd Highest
Quartile Quartile Quartile Quartile

(1) (2) (3) (4)

Number of Obs 13347 13346 13347 13346

Hospitalization .023 .019 .020 .020
(.002) (.002) (.002) (.001)

Injury/Poisoning .032 .032 .031 .034
(.004) (.003) (.002) (.003)

Asthma Episode .054 .072 .068 .065
(.009) (.007) (.006) (.006)

ER Visit .196 .162 .158 .160
(.014) (.012) (.010) (.009)

Mother Worked .485 .609 .668 .758
(.006) (.006) (.006) (.006)

Work Hours if Worked 34.052 32.661 33.982 35.571
(.384) (.384) (.384) (.384)

Work Hours with Zero’s 7.632 11.598 14.880 21.025
(.403) (.403) (.403) (.403)

Num Kids 4.013 3.14 2.615 2.218
(.036) (.036) (.036) (.036)

Married .943 .954 .924 .760
(.016) (.016) (.016) (.016)

Mother’s Age 34.183 35.553 36.061 37.028
(.133) (.133) (.133) (.133)

Mom HS or Less .754 .516 .401 .280
(.014) (.014) (.014) (.014)

Mom Some College .246 .484 .599 .720
or More (.014) (.014) (.014) (.014)

Notes: Coefficients are weighted means with standard errors (clustered by state) in parentheses.
The sample is restricted to children ages 7 to 17, with white mothers, who have at least one younger
sibling and whose youngest sibling was between 24 and 107 months at the scheduled interview date.
The Labor Force Attachment index is calculated as described in the text.

73



Table 2.7: Heterogeneous Effects of Maternal Employment on Overnight Hospital-
izations by Labor Force Attachment Quartiles

Health Outcome: Overnight Hospitalization

N Mean Mean OLS First Reduced IV
Hospital Work Stage Form 2SLS

(1) (2) (3) (4)

All White Children 53386 .021 .632 -.0015 .0951 .0039 .0408
(.001) (.009) (.0012) (.0075) (.0015) (.0165)

Bottom Half LFA 26693 .021 .548 -.0005 .1077 .0048 .0446
(.001) (.005) (.0020) (.0106) (.0021) (.0218)

Top Half LFA 26693 .020 .713 -.0033 .0746 .0014 .0190
(.001) (.007) (.0021) (.0090) (.0026) (.0359)

Lowest Quartile 13347 .023 .485 -.0010 .0979 .0069 .0706
(.002) (.006) (.0024) (.0152) (.0049) (.0530)

3rd Quartile 13346 .019 .609 .0003 .1161 .0026 .0228
(.002) (.007) (.0030) (.0154) (.0025) (.0215)

2nd Quartile 13347 .020 .668 -.0026 .0875 .0001 .0014
(.002) (.008) (.0024) (.0149) (.0036) (.0407)

Highest Quartile 13346 .020 .758 -.0038 .0577 .0026 .0445
(.001) (.006) (.0033) (.0107) (.0041) (.0712)

Notes: See notes to Table 2.4 for column descriptions. The sample is restricted to children ages
7 to 17, with white mothers, who have at least one younger sibling and whose youngest sibling
was between 24 and 107 months at the scheduled interview date. All coefficients are from separate
regressions, standard errors (clustered by state of residence) are in parentheses. The sample is
broken down by the labor force attachment scale, as described in the text.
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Table 2.8: Robustness Checks

Health Outcome: Overnight Hospitalization

N Mean Mean OLS First Reduced IV
Hosp. Work Stage Form 2SLS

(1) (2) (3) (4)

All Children 88887 .020 .621 -.0018 .0842 .0033 .0388
(.001) (.013) (.0011) (.0050) (.0011) (.0133)

Child Not Limited 82372 .016 .624 -.0006 .0857 .0026 .0304
(.001) (.013) (.0008) (.0052) (.0010) (.0123)

No Kids Limited 74661 .016 .631 -.0002 .0866 .0025 .0288
(.001) (.013) (.0008) (.0058) (.0010) (.0117)

2 Children 30006 .021 .703 -.0024 .0628 .0040 .0876
(.001) (.010) (.0019) (.0051) (.0018) (.0400)

3+ Children 58881 .020 .576 -.0014 .1020 .0026 .0333
(.001) (.014) (.0013) (.0063) (.0012) (.0160)

Mom in Very Good 58530 .018 .652 .0005 .0873 .0046 .0525
or Excellent Health (.001) (.011) (.0012) (.0076) (.0013) (.0154)

Boys 45475 .021 .620 -.0004 .1111 .0045 .0492
(.001) (.013) (.0017) (.0059) (.0016) (.0181)

Girls 43412 .019 .621 -.0031 .0939 .0018 .0240
(.001) (.013) (.0015) (.0059) (.0018) (.0229)

Child 9-17 67342 .020 .632 -.0015 .0843 .0038 .0456
(.001) (.013) (.0013) (.0056) (.0014) (.0170)

Child 9-12 42271 .017 .628 -.0026 .1028 .0051 .0500
(.001) (.013) (.0015) (.0073) (.0021) (.0211)

Notes: All coefficients are from linear models. Each coefficient is from a separate regression includ-
ing covariates listed in Table 2.3 Row 5, with standard errors (clustered by state) in parentheses.
All samples include children ages 7 to 17 whose youngest sibling was between 24 and 107 months at
the scheduled interview date. The rows are represented subsamples as specified. The coefficients
presented are: Column (1) regression of child health on maternal employment, Column (2) re-
gression of maternal employment on the youngest child’s eligibility for kindergarten (First Stage),
Column (3) regression of child health on the youngest child’s eligibility for kindergarten (Reduced
Form), and Column (4) instrumental variables estimates. Note that in the third and fourth row
the “age spread” dummies are not included, as explained in footnote 38.
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Table 2.9: Appendix Table A: Kindergarten Eligiblity Cut-off Dates for 1983 and
2004

Approximatee States 1983-1984 States 2004-2005
Cut-off Date School Year School Year
July 1 IN IN
August 1 MO
August 15 AK

September 1

AZ, FL, GA, KS, MN, ND, AL, AZ, DE, FL, GA, ID,
NM, OK, PA, SD, TX, UT IL, KS, MN, MS, NM, ND,

WA, WV, WI OK, OR, PA, RI, SC, SD,
TX, UT, WA, WV, WI

September 15 IA, MT, WY AR, IA, MT, WY
October 1 AL, AR, KY, MO, NV, OH, VA KY, LA, NV, OH, TN, VA
October 15 ID, ME, NE, NC ME, NE, NC
November 1 AK, SC, TN MD
November 15 OR
December 1 CA, IL, MI, NY CA, MI, NY*

January 1
CT, DE, DC, HI, CT, DC, HI, VT
LA, MD, RI, VT

LEA CO, MA, MS, NH, NJ CO, MA, NH, NJ

Note: Cut-off dates are rounded for ease of presentation and some cut-off dates are interpolated
for years where exact cut-off dates could not be obtained. Data acquired from individual state
statues. * NY legally removed the State-level recommendation, but it appears that all major
school districts retained a December 1st cut-off.

76



Table 2.10: Appendix Table B: Key Variable Definitions

Variable 1985-1996 Surveys 1997-2004 Surveys
Mother
Worked

Employment Status in Past
TWO WEEKS

Doing LAST WEEK

Equals 1 if worked, 0 if did not work, dropped otherwise
Youngest
Child’s Age

Determined from date of birth and interview date. Birth month
and year available all years, birth day 1997-2004 only.
Youngest child’s age is calculated both at the kindergarten eli-
gibility cut-off month (for the instrument) and at the interview
date (for sample selection).

Kindergarten
Eligibility

Kindergarten eligibility is determined by whether the youngest child
achieved 60 months of age by the cut-off date. When state-specific
cut-offs are not available, I use September 1st. Eligibility is measured
for the most recent school year.
Note: Though three health outcomes span the past 12 months, con-
temporaneous school eligibility is used throughout the analysis

Overnight
Hospitaliza-
tions

Derived from the number of
short stay hospital episodes in
the past year.

Derived from the number of
hospital stays.

Defined for all children Defined for all children
Injury/ Poi-
soning

Not available The child had an injury or poi-
soning episode in the past 3
months

Defined for all children
Asthma
Episode

During the past 12 months, did
have... Asthma?

During the past 12 months, has
had an episode of asthma

or an asthma attack? (Ques-
tion only asked if child has ever
been diagnosed with asthma by
a doctor.)

Children in families assigned to
condition list 6

Sample Children

Emergency
Room Visit

Not available Derived from number of ER
visits in the past 12 months

Sample Children
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Table 2.11: Appendix Table C: Non-linear Models, Compare to
Table 2.4

N Mean Mean Probit First Reduced IV
Work Stage Form BiProb

(1) (2) (3) (4)
Panel A: Health Outcome: Hospitalization
(1) All Children 88887 .0203 .6205 -.0017 .0899 .0030 .0255
(Youngest Sib 2-8) (.0010) (.0127) (.0010) (.0054) (.0010) (.0086)

(2) All Children 66160 .0205 .6235 -.0018 .0754 .0030 .0218
(Youngest Sib 3-7) (.0011) (.0126) (.0013) (.0058) (.0011) (.0076)

(3) All Children 41583 .0211 .6243 -.0032 .0465 .0039 .0266
(Youngest Sib 4-6) (.0011) (.0123) (.0014) (.0073) (.0013) (.0107)

(4) Post Sample 10389 .0163 .6382 -.0065 .0770 .0030 .0117
(Youngest Sib 2-8) (.0013) (.0136) (.0022) (.0110) (.0027) (.0081)

Panel B: Health Outcome: Injury/Poisoning
(1) Post Children 31960 .0262 .6438 -.0008 .0785 .0031 .0236
(Youngest Sib 2-8) (.0015) (.0133) (.0019) (.0083) (.0019) (.0135)

(2) Post Children 23714 .0259 .6466 -.0010 .0729 .0026 .0395
(Youngest Sib 3-7) (.0016) (.0130) (.0020) (.0082) (.0017) (.0191)

(3) Post Children 14868 .0243 .6477 -.0009 .0461 .0023 X
(Youngest Sib 4-6) (.0017) (.0127) (.0021) (.0073) (.0020) (X)

(4) Post Sample 10389 .0278 .6382 .0009 .0770 .0019 .0325
(Youngest Sib 2-8) (.0021) (.0136) (.0034) (.0110) (.0041) (.0512)

continued on next page
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Table 2.11: continued

N Mean Mean Probit First Reduced IV
Work Stage Form BiProb

(1) (2) (3) (4)
Panel C: Health Outcome: Asthma
(1) Samp. Children 20304 .0624 .6164 -.0066 .0919 .0093 .0486
(Youngest Sib 2-8) (.0028) (.0132) (.0042) (.0089) (.0046) (.0151)

(2) Samp. Children 15205 .0636 .6161 -.0063 .0792 .0099 .0549
(Youngest Sib 3-7) (.0031) (.0130) (.0047) (.0094) (.0038) (.0182)

(3) Samp. Children 9642 .0643 .6134 -.0058 .0572 .0098 .0567
(Youngest Sib 4-6) (.0036) (.0144) (.0059) (.0117) (.0050) (.0283)

(4) Post Sample 10389 .0561 .6382 -.0013 .0770 .0097 .0498
(Youngest Sib 2-8) (.0026) (.0136) (.0038) (.0110) (.0059) (.0297)

Panel D: Health Outcome: Emergency Room Visit
(1) Post Sample 10389 .1674 .6382 .0008 .0770 .0065 .0816
(Youngest Sib 2-8) (.0055) (.0136) (.0077) (.0110) (.0127) (.086)

(2) Post Sample 7757 .1682 .6377 -.0023 .0750 .0071 .0825
(Youngest Sib 3-7) (.0062) (.0135) (.0097) (.0109) (.0120) (.1259)

(3) Post Sample 4892 .1693 .6366 -.0058 .0572 .0095 .1447
(Youngest Sib 4-6) (.0063) (.0149) (.0133) (.0133) (.0138) (.1162)

Notes: See Table 2.4 notes. Columns (1) - (3) are marginal effects from a probit model
specification. Column (4) are marginal effects from a bivariate probit estimation.
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Table 2.12: Appendix Table D: Estimated Weights for Local Average Treatment
Effect

Q wq λq|x ∆Sq|x ωq|x
(1) (2) (3) (4)

Lowest Quartile .25 .207 .089 .295
(.012)

3rd Quartile .25 .213 .085 .290
(.014)

2nd Quartile .25 .196 .074 .232
(.011)

Highest Quartile .25 .178 .064 .183
(.009)
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Chapter 3

Dads and Daughters: The Changing Role of Fathers in Women’s

Occupational Choices

Over the last century the labor force participation rate of women has
risen threefold and there has been a tremendous increase in the integra-
tion of women into male-dominated occupations. We examine whether
these phenomena have led to increased intergenerational transmission of
occupation from fathers to daughters. We formalize this by estimating
whether more recent birth cohorts of women are more likely than older
cohorts to enter their father’s occupation, controlling for general occu-
pational upgrading of women into traditionally male-dominated occu-
pations. We formulate a model of intergenerational occupation-specific
human capital investment by fathers in daughters. When coupled with
an assortative mating assumption for which we find support in our data,
this model generates an empirical test of increased transmission from
fathers to daughters. We compare the trend in the probability that a
woman works in her father’s occupation with the trend in the probability
that a woman works in her father-in-law’s occupation. Under reasonable
assumptions, we argue that this difference is a lower-bound estimate of
the increase in occupation-specific human capital transmission between
fathers and daughters. Using three data sets on women and their fam-
ilies covering birth cohorts from 1909 through 1977, we estimate that
the difference in trends is statistically significant and, in our full sample,
accounts for 13 to 20 percent of the total increase in the probability that
a woman enters her father’s occupation over our sample period. This
result is qualitatively robust to a host of specification checks.

3.1 Introduction

Over the last century, the labor force participation of women has risen three-

fold.1 In addition, there has been a tremendous increase in the amount of integration

1See, for example, Goldin (1991).
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of women in the labor market, so that women are far more likely now to work with

men than in previous generations. Although the exact mechanisms for these changes

remain somewhat elusive,2 the fact that more women enter the labor market now

and work in the same occupations as men has profound implications for many di-

mensions of the economy.

Interestingly, there is virtually no previous research examining how rising labor

force participation and labor market integration of women have affected intergen-

erational transmission to daughters. In this paper, we examine changing intergen-

erational transmission from fathers to daughters by focusing on one key dimension

of this change: the increasing probability across birth cohorts that a woman enters

her father’s occupation. The first contribution of this paper is to document the

steady and large rise across birth cohorts of the 20th century in the probability

that a woman works in her father’s occupation. This suggests that the occupations

of women’s fathers may have played an increasingly important role in determining

women’s occupational choices, but does not directly imply that the transmission

of what we call “occupation-specific human capital” has increased over this period.

Because a woman born in a recent cohort is more likely to work in any tradition-

ally male-dominated occupations relative to a woman in an older cohort, she is

more likely than a woman born in an earlier cohort to enter her father’s occupation

even absent any changes in the transmission of occupation specific human capital

from fathers to daughters. As a result, in order to provide evidence that inter-

generational transmission of occupation-specific human capital between fathers and

2See, for example, Acemoglu, Autor, and Lyle (2004) and Goldin and Katz (2002).
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daughters really has increased, we demonstrate empirically that the positive trend

in the probability that a woman works in her father’s occupation is larger than that

which would be predicted just from the fact that women are more likely to enter

men’s occupations more generally.

The difficulty in demonstrating this is in figuring out the counterfactual for a

given woman: What occupations might the woman have entered absent any trans-

mission of occupation-specific human capital from her father? Clearly, for any given

woman, some occupations are likely to be closer substitutes than others (and, in

particular, closer substitutes to her father’s occupation). Moreover, this set of close

substitutes may differ across women and across birth cohorts in ways that would

require us to place some structure on the substitutability of occupations. Consider

the case of a woman whose father is a doctor. If her father is a country doctor

who treats (and lives among) many farmers, the daughter may be more likely all

else equal to become a farmer (versus, say, a college professor) because her father’s

labor market and social network puts her in contact with farmers. In contrast, the

daughter of a city doctor who treats college professors is more likely to become a

college professor rather than a farmer. But for both daughters, if her father increases

his investment in her occupation-specific human capital, she becomes more likely to

become a doctor than to become either a farmer or a college professor. Of course

no data set is going to contain information on the relevant alternative occupations

for any given woman. In the end, then, we draw on an identification assumption

about assortative mating in order to identify the set of alternative occupations that

a woman might enter, thereby distinguishing the country doctor’s daughter from
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the city doctor’s daughter. The basic idea is that because of assortative mating,

a woman’s father-in-law is likely to be working in the set of occupations that a

woman might choose to work in, given her general human capital and given her

preferences–preferences that may have been shaped by her social network growing

up, her father’s labor market network, her religious background, etc. To complete

the example, the daughter of the country doctor is more likely to marry the son of

a farmer than the son of a college professor, whereas the opposite is true for the

daughter of the city doctor.

In order to formalize these ideas, we develop a model that combines features

of intergenerational job-specific human capital transmission with an occupational

choice model. The comparative statics of the model explicitly motivate the use

of the information on the occupation of a woman’s father-in-law to generate an

empirical test of whether daughters have become more likely to enter their fathers’

occupations, conditional on the general economic forces that have led to women

increasingly entering men’s occupations. The resulting empirical test compares the

rate of increase in the probability that a woman works in her father’s occupation

to the rate of increase in the probability that a woman works in her father-in-law’s

occupation. Within the framework of the model we also are able to examine the

empirical implications that arise if assortative mating is not perfect across fathers’

occupations. We demonstrate that as long as assortative mating by occupation has

not gone down across subsequent birth cohorts, our results are robust. To confirm

that assortative mating has not decreased, we show that there has been no change

in the probability that a woman’s husband works in the same occupation as her
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father (his father-in-law).

Using data from the General Social Survey (GSS), the Survey of Income and

Program Participation (SIPP), and the Occupational Changes in a Generation

(OCG), we document changes in occupation-specific human capital transmission

between fathers and daughters spanning birth cohorts from 1909 to 1977. There

is clear evidence in the data of an increase in the probability that a woman works

in her father’s occupation over time. For example, with the baseline definition of

occupation that we use, just under 6 percent of women born in our earliest birth

cohorts work in their fathers’ occupations, while around 20 percent of women born

most recently work in their fathers’ occupations. We also document an increase

over birth cohort in the fraction of women working in the same occupations as their

fathers-in-law. However, the increase in the probability over birth cohorts that a

woman works in her father’s occupation is larger than the increase in the proba-

bility that she works in her father-in-law’s occupation, and the difference in these

trends is statistically significant. In our baseline full sample results, we estimate that

around 13 to 20 percent of the total increase in the probability a woman enters her

father’s occupation over our sample period can be attributed to an increase in the

transmission of occupation-specific human capital between fathers and daughters,

an estimate that we argue is likely a lower bound.

We perform a number of robustness checks and confirm our key empirical find-

ings. In particular, our results are robust to changing the definition of occupation,

accounting for (1) changes in labor force participation rates over time, (2) changes

in the age at first marriage and the age of retirement for women, (3) changing educa-
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tional attainment of women, and (4) the changing composition of male employment.

Our key implications are also robust to using alternative definitions of occupation,

including one that defines “occupations” to be industries. Finally, in contrast to

what we find for daughters, we find no increase over time in the fraction of sons

working in their fathers’ occupations, nor any evidence that there has been an in-

creased amount of specific human capital transmission over time between fathers

and sons. Our results document an experience unique to women.

3.2 Background and Related Literature

3.2.1 Estimates of Intergenerational Transmission

Research on intergenerational transmission between parents and children has

a long and rich history across multiple disciplines, going all the way back to Galton’s

work (1889) on the heritability of height. Becker and Tomes (1979, 1986) present

an economic model where the utility of parents is a function of current consumption

and the utility of a child. Because the utility of the child is itself a function of

the child’s general human capital, the parents optimize by choosing between con-

sumption and investments in children. The model in its simplest form generates a

straightforward, empirically testable relationship that specifies that the log of the

income of the child will be a linear function of the log income of the parent. Ac-

tually testing the model empirically, however, is harder than it first appears given

measurement error in income, (Solon, 1992), with perhaps the best current estimate

of a stable intergenerational income parameter in the United States between fathers
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and sons standing at 0.6 (Mazumder, 2005).3 Because these estimates just measure

a correlation across generations, they cannot distinguish between a simple model

of genetic heritability of traits associated with income and an economic model of

investments parents make in children. This point has been made and examined in

detail by Mulligan (1999) and Grawe and Mulligan (2002), who derive tests aiming

to distinguish between economic models and models of heritability and find some

evidence weakly consistent with investments. The model we specify below follows

in the tradition of treating intergenerational human capital transmission as arising

from parental investments in children, although in our discussion of the empirical

results we simply refer to transmission of human capital, be it via investments or

heredity.4

In sociology, the tradition has been to estimate intergenerational measures of

“occupational prestige” and “occupational mobility.” Sons may enter their fathers’

occupations because of investments that fathers make in sons, because of heritable

aspects of occupation-specific skills that lead sons to have comparative advantages

in their fathers’ occupations, or because of barriers to movement out of a father’s

occupation. Contingency tables (transition matrices) can be utilized to measure

the extent of occupational mobility, where the cells of the contingency table are

determined by fathers’ occupations and sons’ occupations. Occupational mobility

3 There has been much less research devoted to intergenerational income transmission
between pairs other than father-son. One notable exception is Chadwick and Solon (2002).
Fernandez et al. (2004) discuss preference formation in an intergenerational transmission
framework between mothers and sons.

4 In discussing our model, we do briefly outline the empirical implications and that
would arise under a model of pure heritability, where the main empirical implication
would be that we are testing for an increase over time in the return to occupation-specific
heritability.
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can then calculated as the probability or odds of a son not entering his father’s

occupation (see, e.g., Ferrie, 2005 and Mosteller, 1968).

Measurements of the intergenerational transmission of occupational prestige

involve rankings of occupations along some index, usually determined as functions

of average income in occupations, and estimating the correlation in occupational

prestige across generations. A few of these studies do examine intergenerational

generational transmission between fathers and daughters (see, e.g., DiPrete and

Grusky, 1990). While the exact specification of the occupational prestige index

may be subject to criticism, using average incomes in an occupation may mitigate

some of the problems associated with noisy measures of permanent income that

have plagued some of the estimates of intergenerational income transmission in the

economics literature.

3.2.2 Changes in Intergenerational Transmission

Sociologists have long been interested in changes in intergenerational transmis-

sion across generations, as seen in early work discussed by Hauser and Featherman

(1978). Economists have only recently begun to examine this issue, partially as a

result of the increasing availability of panel data, such as the PSID, with enough

years of data to estimate changes in the transmission parameter over birth cohorts.

Evidence on the extent of change in intergenerational transmission of income be-

tween fathers and sons is mixed (see Fertig, 2003, Lee and Solon, 2006, and the

references therein) and depends to a large extent on the data sets used, how income
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is measured, and the time span considered. Partially as a result of this, we are care-

ful in this paper to combine data from three different data sets collected over a time

span of 29 years to ensure the robustness of our results across data sets that differ

in the timing of data collection, the wording of questions, and sampling schemes.

When estimating changes in occupational mobility over (at least) two different

generations, researchers distinguish between changes in “prevalence” and changes

in “association.” Changes in prevalence refer to changes across generations in the

marginal distributions of the rows and columns of the contingency tables, whereas

changes in association refer to changes that are left over once marginal distributions

of contingency tables have been adjusted to be equal. It is changes in association

that are generally referred to as changes in occupational mobility over time.5

What is absent from much of the empirical investigation into changes in in-

tergenerational transmission is an investigation of underlying changes in behavior.

For example, when contingency tables are adjusted for prevalence, so that only

changes in association are used to quantify changes in occupational mobility over

generations, there is no consideration given for why it may be that the marginal

distributions of occupations have changed across the generations. In the case of

women and their fathers, the fact that women have become more likely over time

to be in male-dominated occupations may be a function of changes in investments

made by their fathers. Adjusting contingency tables so that the marginal distribu-

5 For a summary of statistical methods to adjust for differences in prevalence across
contingency tables, see Little and Wu (1991). For a recent study of changes in occupational
mobility, see Ferrie (2005) who concludes that occupation mobility in the United States
has fallen over the 20th century. For an analogy between these methods and estimation
techniques more commonly used by economists, see Hellerstein and Imbens (1999).
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tion of women’s occupations for recent cohorts looks like that of much older cohorts

may adjust away the important changes in the impact of fathers on the occupation

choices of their daughters. As a result, we take an entirely different approach.

3.3 The Illustrative Model

In this section, we develop an illustrative model to motivate how fathers’

incentives to invest in daughters change as women’s labor market opportunities

change. To do this, we combine a model of intergenerational transmission and a

model of occupation choice. We then use the model to illustrate how daughters’

fathers-in-law can be used to control for changes in the marginal distributions of

occupations over time. The comparative statics generate an empirical test of changes

over time in the transmission of occupation-specific human capital from fathers to

daughters.

The model consists of an occupational choice decision nested within a model

of human capital investments in children. First, the father chooses the amount of

the consumption good to purchase and the amount of investment to make in his

daughter’s general human capital H and job-specific human capital S, given his

income I. The father can only invest in job-specific human capital for his own

occupations.

The daughter chooses her occupation conditional on paternal investments that

have been made and may decide to remain out of the labor force.6 We begin with

6 We explicitly consider the father as the individual decision-maker in this context, given
that we are considering transmission of human capital embodied in the occupation of the
father. We recognize, obviously, that there are also transmissions between mothers and
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the daughter’s occupation decision.

3.3.1 The Daughter’s Problem

The daughter gains utility from working or not working, given the investment

made by her father. We think of the daughter’s choice of occupation as arising from

the maximization of her latent utility y∗j over four possible occupations. Occupation

1 is her father’s occupation. Occupations differ in their closeness to each other, where

occupations 1 and 2 are “closer” in utility terms to each other than occupation 3.

Occupation 4 represents the choice of the daughter to remain out of the labor force.

The woman’s utility in each of the four occupations is represented as:

y∗1 = α + βH + γS + ε1

y∗2 = α + βH + ε2

y∗3 = βH + ε3

y∗4 = βoH + ε4.

In this formulation, occupation 2 is close to occupation 1 in the sense that they have

the same (presumably positive) intercept shift α in utility. We think about this as

reflecting something about a woman’s taste for a set of occupations, as defined by

her father’s occupation, so that occupation 2 is a closer substitute to occupation 1

in utility than is occupation 3. These tastes may reflect factors, such as the social

class in which the woman was raised or labor market networks defined by her father’s

daughters. For most of the cohorts we consider in our empirical analysis, the daughters
were raised by women who did not work, so in this paper we do not explicitly consider
the role of mothers in daughters’ occupational choices.
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occupation, that change the woman’s preferences directly or decrease costs of entry

in some occupations more than others. To again use the example we discussed in the

Introduction, a woman whose father is a doctor treating farmers may find herself,

all else equal, more likely to become a farmer than to become a professor.

Note that general human capital pays the same return to a woman in the

labor market regardless of what occupation she chooses, but a different return (βo)

if she is out of the labor market. Specific human capital only has a payoff if the

woman enters her father’s occupation. Alternatively and without loss of generality,

y∗4 could instead represent the latent utility in an entirely female occupation. In that

case the occupations 1 - 3 represent occupations in which men do work. The error

terms εj can represent differences across occupations in a woman’s underlying ability

(comparative advantage) in that occupation, or preferences for that occupation.7

The daughter will choose the occupation j which yields the maximum value of

y∗. If one has data from a sample of daughters that contains information on their

occupational choices and those of their fathers, one can formulate an empirical test

of whether γ > 0 without having actual data on S. In particular, one can estimate

a discrete choice model of occupation by making functional form assumptions on

the ε’s, and by making the distinction between occupation 2 on the one hand, and

occupations 3 and 4 on the other; that is, to model the closeness of occupations.

As is often done in models of occupational choice, assume the ε’s are i.i.d from

7 The closeness of occupations could also be modeled through assumptions on the
covariance of the εj ’s, as for example in a nested multinomial logit model. For our purposes,
modeling the closeness explicitly in the utility function through an intercept shift α is
sufficient.
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a Type I Extreme Value Distribution. Conditional on the H and S with which she

has been endowed, the probability that a woman enters her father’s occupation is:

Pr(y1 = 1) =
eα+βH+γS

eα+βH+γS + eα+βH + eβH + eβoH
. (3.1)

The probability that a woman enters occupation 2 is

Pr(y2 = 1) =
eα+βH

eα+βH+γS + eα+βH + eβH + eβoH
. (3.2)

Note that if S = 0, so that the father has not made any investments in the

daughter, then Pr(y1 = 1) = Pr(y2 = 1). Therefore, if one does not have data on the

investments of fathers, and in particular no data on S, an empirical test of whether

fathers are making any specific human capital investments in their daughters can

instead involve testing whether Pr(y1 = 1) = Pr(y2 = 1). This test presumes no

knowledge of S, but it does presume the ability to distinguish occupation 2 from

the other occupations. Given a sample of women and a mapping of real occupations

(e.g., doctor, farmer, professor, and out of the labor force) to occupations 1-4,

this test is operationalized by estimating a multinomial logit regression over the

four occupations. It requires including one dummy variable to represent α for the

father’s occupation, occupation 1, and the occupation that is close to it, occupation

2. A second dummy variable would be included for the father’s occupation alone,

where an estimated coefficient greater than zero on this dummy variable implies the

existence of occupation-specific transmission between fathers and daughters.
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Identifying which occupations are close together requires assumptions, how-

ever. First, one would have to make the assumption that closeness is the same

across all women (at least in unobservable ways). Second, the nature of occupa-

tions and women’s roles in those occupations themselves has changed over time in

ways that may reflect changes in the closeness of occupations. To the extent that

we are ultimately interested in measuring changes over time in the transmission of

occupation-specific human capital between fathers and daughters, we would need

to model changes in the closeness over time. One simple way we could implement

this is to assume that α is equal to zero and estimate a standard multinomial logit

model of occupation choice, including a dummy variable for father’s occupation and,

to estimate changes in the probability of entering a father’s occupation over time,

an interaction between a time (birth cohort) trend and father’s occupation. As we

discuss below, we have assembled a sample of women for whom we do not have

complete information on father’s occupation. Nonetheless, for the subset of our es-

timation sample for whom we do have information on father’s occupation we have

estimated this kind of simple multinomial logit model. The assumption of the Inde-

pendence of Irrelevant Alternatives is strongly rejected by the data, substantiating

that we do need to model the substitutability of occupations.

Therefore, we instead define which occupations are “close” to each other in

utility terms by assuming that assortative mating occurs along the dimension of α,

so that a woman whose father is in occupation 1 will always choose a husband whose

father is in occupation 1 or occupation 2. This is true regardless of what occupation

2 happens to be for that woman, and whatever its origin (social networks, labor
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market networks across occupations, etc.). Repeating our example, the daughter of

a doctor who treats farmers may be more likely all else equal to become a farmer

(versus, say, a professor) because her father’s social and labor market networks

puts her in contact with farmers. The strict assortative mating assumption implies

that this woman would meet and marry a man whose father is either a doctor

or a farmer. In contrast, the daughter of a doctor who treats professors is more

likely to become a professor (rather than a farmer) and will meet and marry a

man whose father is either a doctor or a professor. In our view, a taxonomy of

closeness defined by something like social or labor market networks that influence

occupational choice and influence assortative mating is much less mutable over time

than closeness as defined by the tasks performed in given occupations, for example.

The assumption that assortative mating is perfect along occupations 1 and 2 in

the model is obviously a strict assumption. Below we discuss the implications of

relaxing both the assumption of strict assortative mating and the (less restrictive)

assumption of constant assortative mating over time.

Given this assortative mating assumption, the probability that a woman is in

the occupation of her father-in-law is:

Pr(yfather−in−law = 1) = Pr(y1 = 1)σ + Pr(y2 = 1)(1− σ). (3.3)

We assume that the father-in-law works in either occupation 1 or 2. Therefore

σ can be thought of as the number of men in the woman’s father-in-law’s cohort
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who are in occupation 1 divided by the number of men who are in either occupation

1 or 2 (i.e., the probability the father-in-law is in occupation 1). Similarly, (1−σ) is

the fraction of men in this population in occupation 2. Note again that if the father

makes no specific human capital investments in his daughter so that S = 0, then

Pr(y1 = 1) = Pr(yfather−in−law = 1). This generates an empirical test of whether

S = 0, which would involve testing whether Pr(y1 = 1) = Pr(yfather−in−law = 1).

3.3.2 The Father’s Problem

We assume that the father gains utility from his own consumption and from

the utility of his daughter. The father has a finite level of income I to allocate

between his own consumption, general human capital investment (e.g., schooling)

in his daughter, and job specific human capital investment in his daughter. We

assume that the father can only invest in occupation-specific human capital S for

his own occupation. There are many possible forms these specific investments may

take. For example, a father could make explicit investments in teaching his daughter

his trade (either through teaching her himself or spending money to have her trained

by others). He could also spend more time with her, and through their time together,

demonstrate the value of working in his occupation. A father could invest in lowering

barriers to entry for his daughter in his own occupation. Or, he could give his

daughter monetary transfers and a taste for his occupation that she could use to

invest in the skills necessary to work in his occupation.

The father’s problem takes the following form:
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max
H,S

{
E[uF (C, maxjy

∗
j (H, S))]

}
(3.4)

s.t. I = C + pHH + pSS. (3.5)

where uF (C, y∗j (H, S)) represents the father’s utility, a function of own con-

sumption, C, and daughter’s utility, maxjy
∗
j as determined by her occupation choice,

and where pH is the cost of investments in general human capital and pS is the cost

of investments in occupation-specific human capital.

The father calculates expected utility knowing β, γ, and only the distribution

of the ε’s in the daughter’s optimization problem. One could make functional form

assumptions about the form of the father’s utility function, but this is unnecessary

for our purposes.8

3.3.3 Comparative Statics and Empirical Strategy

In the model, a father must make predictions about the actions of his daughter

and decide on the levels of general and specific human capital investments to make

in his daughter in order to maximize his utility. A father’s investment decision

will change with exogenous changes in the parameters of the model. We focus

on changes in β, the return to general human capital, where we can think of an

increase in β as representing an overall rise in the return to female labor market

8 An obvious functional form assumption to make is that uF (C, y∗j (H,S)) = φ ln(C) +
(1−φ)E[maxj{y∗j }]. This, coupled with the assumption that β0 = 0 would lead to a closed
form solution of uF (C, y∗(H,S)) = φ ln(C)+ (1−φ) ln[eα+βH+γS + eα+βH + eβH +1]+E,
where E is Euler’s constant (see, e.g., McFadden, 1981).
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participation. Because we have no direct data on investments of H or S that fathers

make in daughters, we cannot directly examine what happens to these investments

over time. Instead, we derive a comparative static that shows that if a father’s

investment in S increases with β, then the probability that a woman will enter her

father’s occupation increases relative to the probability a woman enters her father-

in-law’s occupation.9

From the daughter’s problem, we derive the following comparative static from

considering how the probability a woman enters her father’s occupation changes

with respect to β:

∂ln[Pr(y1 = 1)]

∂β
= γ

∂S

∂β
+

∂ln[Pr(y2 = 1)]

∂β
, (3.6)

This shows that if ∂S
∂β

> 0, the rate of change at which the daughter enters

her father’s occupation, occupation 1, due to a rise in β is larger than the rate of

change at which she enters occupation 2.10

9 While this discussion focuses specifically on the effects of changes in β, our empirical
strategy looks at changes over time. Given the extensive empirical evidence in the litera-
ture, we assume that ∂β

∂t > 0. These cases are identical as long as ∂γ
∂t = 0. It is theoretically

possible that ∂γ
∂t > 0, that is, that there has been a rise in the return to occupation-specific

human capital. Our empirical results cannot actually distinguish between a rise in S and
a rise in γ. This is an example of the more general problem of disentangling heredity from
investments that is a common feature of empirical work on human capital transmission.
We find increases in investment to be a more compelling interpretation of the observed
phenomena than simply increasing returns.

10 Given the functional form of the utility function suggested in footnote 8, an interior so-
lution for the optimal level of specific human capital S is S = ln[pSβ]+ln[1+e−α]−ln[pHγ−pSβ]

γ .
One of the requirements for an interior solution is therefore the sensible condition that
γ
β > pS

pH
, or that the relative return to investing in specific rather than general human cap-

ital is greater than the relative price. The relevant comparative static is ∂S
∂β = γpH

β(γpH−βpS)
which must be greater than zero.
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It is also the case that,

∂ ln[Pr(yfather−in−law = 1)]

∂β
=

σγ ∂S
∂β

eγS

(σeγS + (1− σ))
+

∂ ln[Pr(y2 = 1)]

∂β
, (3.7)

so that the rate of change at which she enters her father-in-law’s occupation

is also positive if ∂S
∂β

> 0. The difference between these two comparative statics is:

γ
∂S

∂β
(1− σeγS

(σeγS + (1− σ))
), (3.8)

which is positive as long as ∂S
∂β

is positive, and zero otherwise. Therefore, an

empirical test of whether fathers’ specific human capital investments in daughters

have increased over time can be cast as examining the difference between Equa-

tion 3.6 and Equation 3.7. Moreover, because the last term in parentheses in Equa-

tion 3.8 is positive, the difference between Equation 3.6 and Equation 3.7 actually

provides a lower bound estimate for the rate at which changes in S increase the

probability that a woman works in her father’s occupation, occupation 1, relative

to occupation 2.11

11 We recognize that this model is simple in many ways and potentially could be extended
along a number of interesting dimensions. For example, it incorporates no dynamics of the
form of increasing β leading to increasing H and S which lead to further changes in the
returns to H and S (similar in spirit to Fernandez et al., 2004). It would also be interesting
to expand our model to incorporate a search model of marriage with the intergenerational
transmission of human capital framework. Ermisch et al. (2006) contains a model of
general human capital investment and marriage. It would also be interesting to consider
investments that vary by family structure (e.g., family size, marital status of parents). We
do not have data that would allow us to investigate these differences empirically, so we do
not consider them further.
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3.3.4 Imperfect Assortative Mating

Recall that our strict assortative mating assumption requires that a woman’s

father-in-law be chosen from occupation 1 or occupation 2 and not from occupation

3. Of course, in reality assortative mating is not perfect along the dimensions of

sets of occupations as defined in the model with the parameter α, and so it is

important to understand how violations of strict assortative mating might impact

our results. One obvious way in which imperfect assortative mating could occur is

if there is some probability that the woman will marry a man whose father is in

occupation 3. If this probability is unchanging over time, however, this will simply

lead to an intercept shift down in the probability that the woman is in her father-

in-law’s occupation, and more specifically will not alter the comparative statics as

β rises. Alternatively, assortative mating could be stronger than we assume, so

that the woman may be more likely to marry a man whose father is in her father’s

occupation than in any other. To the extent that this is true, the changing rate at

which a woman is in her father-in-law’s occupation will bias upward the estimate

of Equation 3.7, and therefore will lead us to further underestimate the extent to

which increased specific human capital investments have induced women to enter

their fathers’ occupations.12 Finally, it is possible that, in reality, assortative mating

patterns themselves have changed over time. To the extent that women are more

12 This is also the reason why we use the probability that a woman is in her father-in-law’s
occupation rather than in her husband’s occupation in our empirical test. If, for example,
successive cohorts of men are increasingly more (less) likely to enter occupation 1, we will
understate (overstate) the importance of transmission between fathers and daughters if
we use husbands rather than fathers-in-law in our empirical test. By using fathers-in-law
as the “counterfactual” for fathers, we draw men from the same cohort as fathers with
the same underlying distribution of occupations.
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likely than previously to marry a man whose father is in her own father’s occupation,

this again will cause us to underestimate the extent to which father’s specific human

capital investments have increased. Thus, the key identification assumption with

respect to assortative mating in our model is that assortative mating by occupation

cannot have gone down across birth cohorts.

Our strong sense is that assortative mating by occupation has not decreased.

As women’s education and labor force participation rates have risen, there is more

contact between women and men in the same occupation and in places where they

learn skills specific to their occupations (e.g. graduate school). If anything, this

would lead to increased assortative mating on husbands’ and wives’ occupations,

and hence on the occupations of fathers-in-law and fathers.13 In the context of our

model, the assortative mating assumption can be thought of as occurring along the

dimension of “α.” In words it implies that a woman’s father-in-law works in an

occupation that is “close” to her father’s occupation. The identification assumption

necessary for our empirical test to be valid is simply that assortative mating along

α has not decreased over time. In practice, one implication of this assumption is

that the probability that a father and father-in-law work in the same occupation

is not declining over time. Because data constraints prevent us from testing this

directly, we instead estimate whether there has been a change across birth cohorts

in the probability that a woman’s husband works in her father’s occupation (his

father-in-law). This approach is similar in spirit to a test of assortative mating used

13There is a long literature on the extent of assortative mating, particularly by education,
and its change over time (see, e.g., Mare, 1991, and the references therein, and Rose, 2001).
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by Lam and Schoeni (1994) who examine the extent of correlations in incomes of

fathers-in-law (that is, women’s fathers) and sons-in-law (women’s husbands) as a

measure of assortative mating.14

In order to search for any evidence of declines in assortative mating in our data,

we estimated a series of regressions where we regressed a binary variable indicating

whether a woman’s father and husband work in the same occupation (using the

measure of occupation described in Section 3.4) on a variety of controls and on the

husband’s birth cohort. We modeled the husband’s birth cohort alternatively as a

linear term and as a more flexible set of cohort dummy variables. We find that the

probability that a man works in the same occupation as his wife’s father is high

(around 25 percent), but there is no evidence in any specification of a decline across

birth cohorts in this probability.15 This supports the key identifying assumption

required for our analysis of the changing impact of fathers on women’s occupation

choices – assortative mating by occupation has not decreased over time. We discuss

(and show graphically) the basic results of this analysis once more in Section 3.5,

after a full discussion of our data set, our empirical methodology, and the results

for fathers and daughters.

14Lam and Schoeni (1994) compare the intergenerational income correlation between
fathers and sons and fathers-in-law and sons-in-law in the United States and Brazil. The
father-son correlation is higher than the father-in-law-son-in-law correlation in the United
States, but the opposite is true in Brazil. They argue that in Brazil assortative mating is
so strong as to match husbands to fathers-in-laws who are more similar to them than the
husband’s own fathers, but that this is not true in the United States.

15This is true using simple regression as well as regression methods that control for
changes over time in the marginal distribution of the occupations of the fathers-in-law.
Full regression results are available upon request. Details on the method used for adjusting
the marginal distributions can be found in Hellerstein and Imbens, 1999.
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3.4 Data and Summary Statistics

3.4.1 The Data Sets

To create our sample, we combined data from three sources: the 1973 Occu-

pational Changes in a Generation (OCG), the General Social Survey (using years

1975-2002), and the Survey of Income and Program Participation (1986-1988, Wave

II). In the Data Appendix we provide an explanation of how the main variables of

interest, labor force participation and occupation, were defined.

We chose to focus on more than one survey, and on these three surveys in

particular, for a few reasons. First, these surveys are similar in that they are cross-

sectional in nature and all ask information about a wife’s occupation and the oc-

cupation of at least her father or her father-in-law, and sometimes both. Both the

SIPP and OCG samples were specifically designed to to capture intergenerational

information, and the GSS has the advantage that because it consists of repeated

cross-sections, it helps us to separate age and cohort effects. Second, together the

three samples comprise a large enough sample to allow us to obtain precise esti-

mates. Third, because we use data spanning the years 1973 to 2002 and focus on

individuals between the ages of 25 and 64, we are able to estimate effects for birth

cohorts spanning a long time period: 1909 to 1977. Finally, using multiple data

sets allow us to examine the robustness of our estimates. This is important given

the heterogeneous findings in research on intergenerational income transmission for

men. That said, we can only compare results across these data to the extent that

the cross-sectional data sets do not confound age and cohort effects, something we
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return to below.16

The GSS has the distinct advantage of being drawn from a series of nationally

representative cross-sectional data sets over a long period of years. Because of this,

when a series of GSS’s are linked together, there are observations on individuals

at different ages who were born in the same birth cohort, allowing analyses that

separately identify age and cohort effects. This is vital in our context because our

aim is to identify how the relationship between fathers’ occupations and daughters’

occupations has changed across birth cohorts, conditional on the age of the women

in the sample. This analysis obviously cannot be done conditional on age with

only one cross-section of data. The GSS does have a few shortcomings, however.

First, it is a small data set, even when surveys are pooled over multiple years.

Second, the unit of observation in the GSS is an individual and not a household, so

while information is collected on the occupation of the respondent, the respondent’s

father, and the respondent’s spouse there is no information on the occupation of

the respondent’s father-in-law. As a result, one cannot use data from the GSS to

estimate a full-blown multinomial occupational choice model, where one estimates

whether a given woman is more likely to go into her father’s occupation and her

father-in-law’s occupation, relative to other occupations. But the GSS data can be

used for our empirical test. We utilize data from the GSS surveys of 1975-2002.17

The 1973 OCG, while no longer a well known data set, is an obvious candidate

16We considered adding information from longitudinal data sets like the NLS and PSID,
but they are different enough in structure and do not contain information on in-laws of
sample individuals or families that we chose not to utilize them in this paper.

171975 was the first year that the GSS employed standard probability sampling
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survey for this paper because it was a large survey that was designed specifically

to capture intergenerational relationships (see Featherman and Hauser, 1978, for

more information). Because we combine data from the OCG with later surveys,

we concorded the 1970 occupation codes that are used in the OCG to 1980 so that

the occupations would be comparable. More details on this are given in the Data

Appendix.18 The SIPP Personal History Topical Modules in 1986, 1987, and 1988

were designed to mimic the OCG and are therefore complements to the OCG, as

they contain similar information on cohorts of individuals 13-15 years after the OCG.

Because these SIPP topical modules were all conducted in Wave II, there is very little

of the attrition that sometimes plagues studies that use the SIPP. Unfortunately,

these particular topical modules have not been repeated for more recent years.

The OCG was conducted as a supplement to the Current Population Survey

(CPS) in March 1973. Questionnaires were mailed out to male CPS respondents,

specifically asking information about their family and their background, including

the occupation of their father when they were 16 and, for married respondents,

the occupation of their wife’s father when their wife was 16. These responses,

combined with the occupation responses and other background variables given as

part of regular CPS survey, allow us to have for our sample the key information

that we need to conduct our analysis: occupations of the husband and wife, the

occupations of each of their fathers, and the ages of the husband and wife. The

SIPP data that we use naturally contains similar information.

18There was a 1962 OCG survey as well, but we have chosen not to use it because it
would have required yet another concordance, of 1960 occupations to 1980 occupations.
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Because our analysis relies on using information on the occupation of fathers-

in-law, we necessarily restrict the data to contain only married respondents. We

further restrict the sample to only whites, so as not to confound occupational changes

that are unique to women with those that are due to changing opportunities for

blacks. Finally, we restrict our baseline sample to those between the ages of 25 and

64 in order to obtain information on individuals during their prime working years.

But because the age at first marriage has risen over time and the age of retirement

has declined over time, we examine the robustness of our results to limiting the age

range to those between the ages of 35 and 55.19

3.4.2 Female Labor Force Participation

In order to get some sense of how comparable the data are across surveys and

how they reflect general trends, we first examine female labor force participation

by birth cohort in each data set. We provide a graph in Figure 3.1 that shows the

fraction of women who were employed in each year for each survey. Because we

19It is worth noting that because we are combining data across multiple surveys, we have
a limited amount of demographic information that is consistent across surveys. This, along
with issues related to small sample sizes when we disaggregate the data, limits the scope
of questions we can explore as well as the set of controls we can add to the regressions.
For example, we would expect that changes in family structure over time should affect
the transmission of human capital from fathers to daughters in ways that theoretically
could be tested. Rising divorce rates should have reduced the average transmission over
time from fathers to daughters if divorce leads daughters to have less exposure to fathers.
On the other hand, declining family size may increase a father’s transmission to the focal
daughter, since there is less competition for resources from siblings, absent changes in the
return to general human capital in the labor market. But we do not know consistently
in our data whether a woman was raised in a household with her father present, nor
do we know how many siblings she had (nor their gender composition), so we cannot
examine these issues directly. What we do estimate then is an average trend across family
structures in the rate of transmission of occupation-specific human capital over time.
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treat “out of the labor force” as an occupation in itself (one that daughters do not,

by our definition, ever share with their fathers), it is important to examine female

labor force participation rates in the context of occupation transmission between

fathers and daughters.

We do not expect our data sets to provide identical female labor force partic-

ipation rates for each birth cohort because of age effects. We therefore also graph

female labor force participation rates by birth cohort for the 1970-2000 Decennial

Census Public Use Micro Samples (PUMS), four nationally representative data sets

drawn from years similar to our three data sets. Our samples consist of married,

white women between the ages of 25 and 64 who report that they are not in school

and are either working or out of the labor force (we exclude “unemployed” women

and women in school).20 We also restrict our attention to women who are either the

head of household or the spouse of the head of household.

It is useful to begin by comparing data from the PUMS samples. For the birth

cohorts that overlap between the samples, it is clear that overall female labor force

participation rates increased over time. Looking at birth cohorts separately, one

can see that for earlier birth cohorts there is exit out of the labor force as women

age toward retirement while for later birth cohorts female labor force participation

clearly increased over the decades. For all four data sets, a dip in female labor force

participation exists for women in their 30’s, presumably as a result of child-rearing.

The changing labor force participation rates of women through their lifetimes fore-

20Note that the PUMS definition of labor force participation is closest to that of the
SIPP. See the Data Appendix for exact definitions of female labor force participation
across data sets.
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shadows the importance of controlling for age in our analysis of intergenerational

occupation between fathers and daughters.

Data from the GSS surveys of 1975-2002 provide the longest time period over

which to examine labor force participation by birth cohort. The GSS spans the

data from the SIPP and OCG, and nearly spans our Census years as well. As the

graph in Figure 3.1 indicates, the GSS labor force participation rates do cut through

those of the other data sets and rise from well below 20 percent for the birth cohorts

early in the 20th century to well above 60 percent for women born in the 1960s and

thereafter.

The OCG contains information on the labor force participation in 1973 of

women born between 1909 and 1948. Average labor force participation of women in

the OCG lies between the 1970 and 1980 PUMS graphs, as it should. Similarly, the

SIPP profile of female labor force participation, derived from data collected between

1986 and 1988, is between the two PUMS profiles from 1980 and 1990, and is closer

to 1990, as would be expected. In total, female labor force participation in our data

reflects that seen in PUMS data, and across our three data sets the trends in female

labor force participation over time by birth cohort are consistent with age effects of

retirement and child-rearing.

3.4.3 The Definition of Occupations

Until this point we have been vague as to what we mean by an occupation and

how to operationalize it. Following standard practice, we define occupation using
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Census definitions. In our baseline results, we use the six major occupation groups

as defined by the 1980 Census Occupation Codes: Managerial and Professional Spe-

cialty; Technical, Sales, and Administrative Support; Service; Farming, Forestry,

and Fishing; Precision Production, Craft, and Repair; and Operators, Fabricators,

and Laborers. As in our model, for women we also include a seventh occupation

group, Out of the Labor Force, which includes women who are not working, are not

in school full time, and are not unemployed or looking for work. As part of our

robustness checks we disaggregate the list of occupations further, to 13 occupations

listed as subheadings of the three-digit 1980 Occupation Codes.21 Clearly, the more

we disaggregate, the less power we have to detect changes in father-daughter oc-

cupation transmission, so we do not consider levels of occupational disaggregation

below this. Perhaps more importantly, as mentioned above, the theoretical notion

of occupation-specific human capital does not map directly to Census occupation

classifications. For example, just as the literature on job-specific human capital can

be recast to be about industry-specific human capital (see, e.g., Neal, 1995), so our

definition of occupation can be recast to map into industries. We therefore also

present our main results using an indicator of a woman being in the same industry

as her father or father-in-law.

Table 3.1 contains summary statistics for our pooled sample, as well as for each

data set. The statistics cover the occupational breakdown of women, fathers, and

fathers-in-law, as well as age and birth year of women in our sample. The pooled

21See Appendix Table 3.6 for a mapping between the six and thirteen occupation cate-
gory groupings.
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data set is our estimation sample, so that for all women we have information on the

occupation of her father or her father-in-law.22 In our pooled data set, almost half

(46.2 percent) of women are out of the labor force, with the next most populated

occupation being Technical, Sales, and Administrative Support, comprising 22.8

percent of the sample. By comparing the proportions in each occupation across

data sets, and particularly by comparing women in the OCG and women in the

SIPP, one can clearly see how the occupational distribution of women has changed

over time. In the OCG, 57.0 percent of women are coded as out of the labor

force, whereas only 37.3 percent of women are in the SIPP. Moreover, conditional

on labor force participation, women in the SIPP are more likely than their earlier

counterparts to be either managerial and professional occupations or in technical,

sales, and administrative support (46.1 percent in the SIPP versus 27.7 percent in

the OCG).

The occupation distributions of fathers and fathers-in-law are extremely sim-

ilar within each data set, as they should be absent non-random sampling or dif-

ferential response rates by occupation of parents and in-laws. Over time for these

fathers and fathers-in-law there are also changes in the occupational distribution;

for example, these men are less likely to be in farming in the SIPP relative to the

OCG. Because of this, and because fathers in different occupations may transmit

different amounts of specific human capital to children, we show results below with

and without occupation controls for fathers and fathers-in-law.

22The distribution of occupation for women is very similar when women for whom we
have no information on fathers or fathers-in-law are included.
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Below the distributions of occupations in Table 3.1 we present summary statis-

tics on the fraction of women who are in their father’s and father-in-law’s occupations

in each data set. Overall, 10.7 percent of women in the data work in their father’s

occupation, and 9.9 percent work in their father-in-law’s occupation. While these

differences are not large in absolute terms, they are in percentage terms. Moreover,

across data sets, it becomes clear that the differences grow over the birth cohorts

in our sample: in the OCG, where the mean birth year of women is 1931, the dif-

ference between the two means is 0.2 percentage points, whereas in the GSS, where

the mean birth year is 1946, the difference is 1.8 percentage points.

3.5 Empirical Implementation and Results

Our basic empirical strategy is to compare the trends over birth cohorts in the

probability that a woman works in her father’s occupation relative to the probability

that a woman is in her father-in-law’s occupation. We formulate this as a single

regression equation, pooling observations where we observe a woman and her father

with observations where we observe a woman and her father-in-law:

Prob(same = 1)i = δ0+δ1∗DILi+δ2∗Di∗Yi+δ3∗DILi∗Yi+δ4∗Di∗Ai+δ5∗DILi∗Ai+εi.

(3.9)

In this specification, same is an indicator which equals one if a woman is in the

same occupation as her father or father-in-law, DIL is a dummy variable that equals

one if the observation contains information on a woman (daughter-in-law) and her

father-in-law, D is (1-DIL), Y is the birth year of the woman, and A is the age
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of the woman. The empirical prediction of the theoretical model suggests that we

should be comparing rates of change in the probabilities over time, rather than

absolute changes. But, as we show below, the estimate of δ1 is small, and, when

statistically significant, is positive. This indicates that the baseline probability for

fathers and daughters to be in the same occupation is the same or lower as that for

fathers-in-law and daughters-in-law, so that a statistically significant differences in

the absolute change (a difference between δ2 and δ3) alone implies that fathers have

increased investments over time in occupation-specific human capital of daughters.

Controlling for age (when possible) is important because women may transition

into their “final” occupations as they gain experience in the labor market and, more

importantly, as women move in and out of the labor force when they have children.

Theoretically, it is quite possible for the coefficients on age, δ4 and δ5, to be different

if, for example, a woman moves into her father’s occupation as she gains experience

in the labor market.

For two of our data sets, the OCG and the SIPP, we often observe information

on the occupation of a woman and those of her father and her father-in-law, con-

tributing two observations to the regression, so we always calculate robust standard

errors clustering on observations where the same woman is observed. We present

results for linear probability models. Marginal effects from logit models are virtually

identical and therefore are not presented.

In Table 3.2 we show basic results for this regression specification for all three

data sets together and then the three data sets separately. Because we cannot

separately identify age and cohort effects in the OCG and SIPP, we do not include
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separate controls for age in this table. Column 1 contains results for the full sample.

The estimated coefficient on the daughter’s birth year, δ2, is statistically significant

and indicates that the probability that a woman enters her father’s occupation

increases by 0.27 percentage points per year. To put this in perspective, the fraction

of women in their father’s occupation born over the first decade of our sample (1909-

1919) is only 0.058, so that we estimate each year thereafter leads to a very large 4.59

percent increase in the probability that a woman works in her father’s occupation.

The coefficient estimate on the daughter-in-law’s birth year is 0.21 and is

also statistically significant.23 The fact that this point estimate is also large in

magnitude, a finding repeated throughout the empirical results to follow, highlights

the importance of controlling for overall trends in women’s labor market entry when

teasing out the distinct impact of the change in the extent of occupation-specific

human capital transmission between fathers and daughters. We estimate nonetheless

that δ2− δ3, the annual change in the probability of a daughter being in her father’s

occupation relative to the equivalent change for a daughter-in-law/father-in-law pair,

is a statistically significant 0.05 percentage points, or a difference of 1.19 percent.

This difference, a measure of the impact of increased transmission in specific human

capital on the shift toward women working in their fathers’ occupations, accounts

for approximately one fifth of the overall change over time in the probability that a

woman works in her father’s occupation.

Figure 3.2 is the graphical representation of Table 3.2, column (1), except that

23The fraction of women in their father-in-law’s occupation born over the first decade of
our sample (1909-1919) is 0.063, which is actually statistically indistinguishable from the
fraction of daughters in their fathers’ occupations.
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instead of using linear regression, we generate these results using locally weighted

least squares. There are two important things to take away from this figure. First,

the probability that a woman is in her father’s occupation is very slightly below that

of fathers-in-law and daughters-in-law early in the period, but grows over the period

of our sample to be above that of fathers-in-law and daughters-in-law. Second, the

time trends in both of these probabilities are indeed close to linear, as we model

them in equation 3.5. Figure 3.3 presents the same results as in Figure 3.2, but

in terms of rates of change rather than absolute changes. Here, trends show the

probability a woman is in her father’s (father-in-law’s) occupation relative to the

fraction of women in their father’s (father-in-law’s) occupation in 1909-1919. As in

Table 3.2, on average, each decade leads to approximately 50 percent increase in the

probability that a woman works in her father’s occupation.

Column 2 of Table 3.2 shows results for only the OCG sample of women who

were born between 1909 and 1948. Of the women in this sample, 57 percent are

recorded as being out of the labor force in 1973. The gradient of the probability of

a woman working in her father’s occupation is relatively flat over this period, with

a precisely estimated increase of 0.09 percentage points every year. The estimated

increase in the fraction of women entering their father-in-law’s occupation is lower,

0.06 percentage points. The difference between these two is not statistically signifi-

cant. This is not surprising given that women born in these years largely remained

out of the labor force.

Column 3 shows the baseline results for the GSS for women in birth cohorts

spanning 1911 to 1977 (although with very few observations for women at the tails

114



of this distribution). The point estimate on the increased probability of father-

daughter occupation transmission is 0.33 percentage points. Relative to the baseline

over the 1909-1919 period, this represents almost a 6 percent increase in this prob-

ability per year of the sample. The increase in the probability that a woman works

in her father-in-law’s occupation is smaller, at 0.27 percentage points. Finally, the

relative difference between these two is 0.06 percentage points per year, which while

not statistically significant, is 17.8 percent of the overall increase in the probability

that a woman works in her father’s occupation. In column 4 we report results for

the SIPP sample, representing women born 1921-1963. These results are similar to

those for the GSS.

In Table 3.3 we examine results for various specifications of the model in the

full sample of pooled data. Column 1 replicates the baseline results of Table 3.2

but includes controls for the survey from which the observation comes. If survey

questions differ in a way that might affect the baseline probability of a woman being

in a man’s occupation, the inclusion of these controls should pick that up.24 The

point estimates of the father-daughter and father-in-law-daughter-in-law trends are

somewhat smaller than in the previous table, but still are large and statistically

significant. Moreover, the difference in the trends between fathers and daughters

and fathers-in-law and daughters-in-law again is 0.06 percentage points per year and

is statistically significant. There are a few other things to note in this specification.

First, there are statistically significant differences in the constant terms across data

24For example, the GSS asks the respondent to report the occupation of her father while
she was growing up, while the SIPP and OCG ask for the occupation of her father when
she was 16 years old.
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sets. As we show below, however, this result does not hold up in other specifications

when we include more controls. Second, the dummy variable for the daughter-in-

law equation constant, δ1 in the regression equation, has a coefficient of 0.02 and is

statistically significant. This result is also not robust.

In column 2 of Table 3.3 we include variables for age separately for daughters

and daughters-in-law, as in Equation 3.5. The estimates of the coefficients on the age

variables are highly significant, almost identical (0.25 and 0.23 percentage points),

and statistically indistinguishable from one another. They imply that every for 10

years that the woman ages the probability that a woman enters her father or father-

in-law’s occupation increases by over a healthy 2 percentage points. Given this

result, and given that birth year and age are negatively correlated in these data, the

inclusion of age into the model should cause the coefficients on the birth year trend

variables to go up. Indeed, the estimates more than double, indicating large changes

between birth cohorts in the probability that a woman works in both the occupations

of her father and her father-in-law. The coefficient on the birth year of a daughter

rises to 0.44 percentage points (from 0.22), while the coefficient on the birth year of a

daughter-in-law rises to 0.37 percentage points. The former result can be interpreted

as a 7.6 percent increase per year relative to the baseline probability, while the latter

yields a 5.9 percent increase. The estimate of the relative difference in the two trend

variables is 0.07 percentage points and again is statistically significant.

The fact that the dummy variables for the survey of origin and the dummy

variable for the daughter-in-law are all statistically significant in column 2 leads

to the specification in column 3, where we interact the survey of origin dummy
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variables with the daughter-in-law dummy variable. The point estimates on birth

year are slightly closer together and slightly less precise, so while the estimate of

the relative difference between the two is very close to the previous specifications

(0.05 percentage points), it is not statistically significant. The full set of interactions

between the survey dummies and the daughter-in-law constant leads to small and

insignificant differences across the board in these coefficients. Because they are

small and statistically insignificant, we drop the interaction terms in the columns

that follow, in order to gain more power in estimating the difference in the trends

between daughters and daughters-in-law. Similarly, we constrain the coefficient on

daughter’s age, δ4, to equal that on daughter-in-law’s age, δ5. These results are

presented in column 4, where the point estimates on the birth year coefficients

are virtually unchanged, but more precise, so that the estimated difference of 0.05

percentage points between the two coefficients is statistically significant (standard

error of 0.02). This difference accounts for 13.1 percent of the overall change in the

probability that a woman works in her father’s occupation.

Because the distribution of the occupations of fathers and fathers-in-law has

changed over time as well (see Table 3.1) in ways that may affect the probability

that a woman is in one of these men’s occupations, and because we can only estimate

the impact of average investments made by fathers across different occupations, in

column 5 we include a full set of controls for the occupations of fathers and fathers-in-

law. To the extent that it is fathers transmitting occupation-specific human capital

rather than fathers-in-law, there is no reason to expect the coefficients on these

dummy variables to be the same for these two groups, and indeed (in results not
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shown) they are not. Including these dummy variables reduces the point estimates

on the birth year variables and the variable for women’s age. The coefficient on the

birth year of daughters is 0.28 percentage points, a 4.8 percent increase per year

over the baseline father-daughter probability, while that of the daughter-in-law is

0.23 percentage points. Both remain highly statistically significant. The difference

between these two is 0.05 and is again statistically significant. This represents 16

percent of the overall increase in the probability that a woman works in her father’s

occupation and, once again, implies that there has been an substantial increase in the

transmission of occupation-specific human capital between fathers and daughters.

The last two columns of Table 3.3 replicate the specifications in columns 4

and 5, but they also include controls for the educational attainment of women.

Education partially determines occupational choice, and educational attainment is

also correlated with the occupations of fathers and fathers-in-law. Therefore, a

woman’s educational attainment may represent an important omitted variable in

the regressions. Of course, education is also endogenously chosen and we have

no way to account for this, so we view these results as a robustness check. As

anticipated, the coefficient estimates on the probability a woman is in her father’s

or father-in-law’s occupation decline with the inclusion of education controls, but

the difference in these trends is still significant and is similar to the specification

without education controls. In both the specification without and with the controls

for father’s and father-in-law’s occupation, the difference in trends represents 19

percent of the increase in the probability a woman is in her father’s occupation.

The different specifications reported across columns in Table 3.3 vary the set
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of covariates included in the model. In Table 3.4 we vary other aspects of the model,

presenting results that parallel those in columns 4 and 5 of Table 3.3. In columns

1 - 4 of Table 3.4 we vary the samples over which we estimate the model. Recall

that the age range of women in our baseline sample is 25 to 64. By necessity, all

of these women are married. Because the age at first marriage has been rising over

time and because the age of retirement has been falling, there may be compositional

changes over time in who is included in this sample. To test whether this has an

effect on our results, in columns 1 and 2 of Table 3.4 we restrict the age range of

our sample to 35 to 55, an age range where the vast majority of people (particularly

whites) have gotten married, and where early retirement is not yet a major factor.25

This reduces our sample size considerably, from 63,076 to 34,544. The specification

in column 1 mimics that of Table 3.3, column 4, and therefore includes separate

controls for survey and constrains the effect of age to be the same for daughters and

daughters-in-law. The coefficient on the birth year variables in this column (0.46

percentage points for daughters and 0.40 percentage points for daughters-in-law)

are very similar to those in the previous table and are again statistically significant.

The estimate of the difference between the two, 0.06 is also statistically significant.

Column 2 adds controls for the occupations of fathers and fathers-in-law, paralleling

the specification of Table 3.3, column 5. Here, the point estimates are again similar

to those of Table 3.3, column 5, but the difference between the two of 0.04 has a

larger standard error than in Table 3.3, presumably because the sample size has been

25According to the authors’ calculations using pooled CPS data from 1970-1999, less
than 6 percent of women ages 35-55 report having never been married. As a comparison,
just under 9 percent of women ages 25-64 fall into this category.
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cut almost in half. In total, we interpret these specifications as providing evidence

that our results are robust to these sample selection issues.

The theoretical model in Section 3.3 differentiates between women who are

out of the labor force and women who are in a set of occupations in which men

work. As mentioned above, we could recast the occupation of women who are out

of the labor force in our model (which we labeled occupation 4) to be traditionally

female occupations where men never (or almost never) work, such as nursing. The

model would yield the same implications. Moreover, our model suggests that if

investments in specific human capital S increases as the return to general human

capital in the labor market increases, we should see an increase in the probability

that a woman works in her father’s occupation, relative to that of her father-in-law,

even conditional on labor market participation. In columns 3 and 4 we therefore

explore this empirically by including in the sample only women who are in the labor

force. This again causes the sample to fall by almost one half. Column 3 replicates

the specification of column 4, Table 3.3. Because so much of the change over time in

the probability a woman enters the occupation of her father or father-in-law is due to

labor force entry, the coefficients on the birth year trend are lower when we restrict

the sample in this way. The coefficient on birth year of daughters is 0.33 percentage

points and that of daughters-in-law is 0.25. Both are statistically significant and,

importantly, the difference between the two is 0.08 and is statistically significant.

In column 4 we add controls for father and father-in-law occupations. While

the birth year coefficients themselves become small and statistically insignificant,

the relative difference between the two remains of the same magnitude as the full
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sample result at 0.05. This estimate is only marginally significant, due to the much

lower sample size. In summary, we interpret the results in columns 3 and 4 as

showing that our full sample results are not being driven solely by entry into the

labor market, and, as our model suggests, that occupational changes over time by

women in the labor market are affected by the transmission of specific human capital

between fathers and daughters.

In the last four columns of Table 3.4 we vary the definition of “occupation.” In

Columns 5 and 6 we refine the definition of occupation to consist of 13 occupation

categories (rather than 6).26 Perhaps the most important distinction between the

categorizations is that the two broad occupations in which most women work condi-

tional on labor market participation, “Managerial and Professional Specialty” and

“Technical, Sales, and Administrative Support,” are each broken up. In column 5,

the estimate on the coefficient on birth year for daughters is 0.19 percentage points

and is statistically significant. The estimate on the father-in-law trend coefficient is

smaller, at 0.15 percentage points, and the difference between the two is 0.04 and is

statistically significant. Column 6 includes father’s and father-in-law’s occupation

controls. While the coefficients on the trends fall and the difference between the two

falls to 0.03, it is still statistically significant. Again, this implies there has been

an increase in the transmission of occupation-specific human capital from fathers to

daughters.

Finally, as mentioned previously, while our results thus far have used Census

occupation codes, this may not correspond to our theoretical notion of occupation-

26For a list of the 6 and 13 occupation groupings see Appendix Table 3.6.
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specific human capital. Therefore, in Columns 7 and 8 of Table 3.4 we report results

from specifications paralleling Columns 4 and 5 of Table 3.3, now using industry to

classify the notion of specific human capital.27 The magnitudes of the estimates

in these columns are similar to that using the more disaggregated occupation cate-

gories. The baseline probabilities that a woman is in her father’s and father-in-law’s

occupation are .046 and .049 respectively. Again, we calculate the baseline proba-

bility as the fraction of women born between 1909 and 1919 that are in the same

occupation as their father (father-in-law). Therefore the results in Column 7 should

be interpreted as indicating that for every year there is a 4.84 percent increase

in the probability that a woman works in her father’s industry. The difference in

trends between a woman entering her father’s versus father-in-law’s industry is .04

percentage points, representing almost 19 percent of the increase in probability a

woman enters her father’s industry. Though the trends are flatter in Column 8,

when controls are added for father’s and father-in-law’s industry, the difference is

still statistically significant and large. This evidence is consistent with increased

specific-human capital transmission from fathers to daughters.

In total, the results are remarkably robust across specifications and samples.

There has been a large increase over time in the probability that a woman enters

27In order to make the definition of industry consistent over time, we collapse the 15
major industries categories from the 1980 Census into 13 categories: (1) Agriculture,
Forestry, and Fishing, (2) Mining, (3) Construction, (4-5) Manufacturing (combined Non-
durable and Durable Goods), (6) Transportation, Communications, and Other Public
Utilities, (7-8) Wholesale Trade (combined Durable and Nondurable Goods), (9) Retail
Trade, (10) Finance, Insurance, and Real Estate, (11) Business and Repair Services, (12)
Personal Services, (13) Entertainment and Recreational Services, (14) Professional and
Related Services, and (15) Public Administration.
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her father’s occupation. Moreover, this increase is not due simply to changes in

the marginal distribution of women’s occupations, but is due, at least partially, to

increased transmission of occupation-specific human capital from fathers to daugh-

ters. Our results imply that the increase in the probability a woman is in her father’s

occupation is about 13 to 20 percent larger than the increased probability that a

woman will enter her father-in-law’s occupation, and this is a lower bound estimate

of the impact of increased transmission.

In the last two columns of Table 3.3 we explored the robustness of our results to

the inclusion of education controls for women, noting that occupation and education

are correlated. In Figure 3.4 we explore this possibility more explicitly by using

education instead of occupation to generate results analogous to those in Figure

3.2. That is, we present locally weighted least squares estimation of the probability

a woman has the same level of education as her father and as her father-in-law

by her birth cohort. If the results for education look like those for occupation,

one might be worried that we are not picking up something about specific human

capital transmission between fathers and daughters but instead something more

akin to general human capital. Figure 3.4 looks nothing like Figure 3.2. The change

over time in the probability a woman has the same education level as her father (or

father-in-law) is u-shaped with respect to her year of birth.

Our final check on the link between our empirical results and the main moti-

vation for this paper is illustrated in Figure 3.5. We have claimed that something

special changed in the relationship between fathers and daughters as a result of the

increased entry of women into the labor market and into traditionally male occu-
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pations, and we framed our model to be changing incentives for fathers to invest in

the specific human capital of their daughters. To the extent that this is true, we

should not see the same trends in the probability that sons work in their fathers’

occupations.

Figure 3.5 presents results from locally weighted least squares that are anal-

ogous to those in Figure 3.3.28 We contrast the rate of growth of the fraction of

daughters in the same occupation as their father and their father-in-law to the re-

spective rates of growth for sons. The top two “lines” illustrate growth rates in the

probability that a woman is in her father or father-in-law’s occupation over time,

while the bottom “lines” show the same trends but for sons. There are several things

to note in this graph. First, while the baseline probability that a son enters his fa-

ther or father-in-law’s occupation is much higher than that for women, the growth

rate across birth cohorts for men are essentially flat. There is a slight rise toward

the end of the period for fathers and sons, but this is an artifact of a nonlinear

increase in the probability of fathers and sons working in the same occupation in

the SIPP. This increase is not seen in the GSS over the same birth cohorts. Second,

as noted previously in our discussion of assortative mating, the flat trend for sons

and fathers-in-law supports the identifying assumption that assortative mating by

occupation has not changed over time. We also estimated regressions for sons that

28We exclude from our sample men who are not working. We think it unlikely that
most of these men are actively engaged in home production, but instead that they are
temporarily out of the labor force, so that the fact that they are not in their father’s
occupation at the time of the survey is transitory. This eliminates very few men in
practice and including a separate out-of-labor force category for these men does not affect
the results.
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parallel those of Tables 3.3 and 3.4, and they confirm that there is no evidence of a

rise in the probability that a son enters his father’s occupation across birth cohorts,

and no robust evidence that this probability has increased faster than the probabil-

ity that a son enters his father-in-law’s occupation.29 Finally, and most importantly,

the rate of growth in the probability a woman is in her father’s occupation dwarfs

any changes that men experienced over the same time period.30

3.6 Conclusion

The labor market in the 20th century was profoundly affected by the increase

in female labor force participation. One potential implication of increased female

labor force participation is that it changes the incentives for fathers to invest in their

daughters. In particular, it can increase the incentive to invest in human capital

that is specific to a father’s occupation, causing a rise in the probability that a

woman enters her father’s occupation.

Simply documenting that there has been an increase over time in the propen-

sity of a woman to enter her father’s occupation is not enough to determine whether

there has been increased occupation-specific human capital transmission between

29Results available upon request.
30There is one caveat to using men as a falsification test of our results. Until this point,

our model and discussion have focused on one-child families. If human capital transmission
within the family is a purely private good, and if fathers over time invest more in their
daughters, they may invest less in their sons. This will itself affect the results in Figure
3.5, rendering it a flawed falsification test of our model and results for women. Moreover,
if fathers invest less in sons, and if there is assortative mating in marriage by occupation,
this could lead over time to fathers-in-law becoming a poorer control for fathers in our
analysis of women. The OCG and SIPP do contain data on the number and sex mix of
siblings which could potentially be used to examine whether the impact on boys of having
sisters has changed over time, but of course family size and sex mix are endogenous.
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fathers and daughters. A woman will be more likely to enter her father’s occupation

even absent such an increase, because she will be more likely to enter any number

of traditionally male-dominated occupation, including her father’s.

We demonstrate that under the assumption that assortative mating by fathers’

occupation has not decreased over time, an assumption for which we find support

in our data, we can compare the rates of change over time in the probabilities

that a woman enters her father’s occupation and her father-in-law’s occupation to

determine whether there has been an increase in the transmission of occupation-

specific human capital from fathers to daughters.

We combine three data sets containing information collected between 1973 and

2002 spanning birth cohorts born between 1909 and 1977. We show that over time

the probability that a woman enters her father’s occupation has increased signifi-

cantly and substantially. For the full sample of married women, we estimate that

with each successive year, the probability that a woman born in a particular year

would enter her father’s occupation increased by somewhere between 0.22 and 0.44

percentage points. The fraction of women entering their father-in-law’s occupation

increased anywhere from 0.16 to 0.38 percentage points. Across our many spec-

ification checks, the increase in the probability that a woman enters her father’s

occupation is always larger than the probability that a woman enters her father-in-

law’s occupation, a finding that we interpret as evidence of increased transmission of

occupation-specific human capital between fathers and daughters. For the full sam-

ple of women, our results imply that the increase in the probability that a woman

enters her father’s occupation is around 20 percent higher than the increased proba-
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bility that she enters another occupation in her choice set, an estimate that is likely

a lower bound.

It is natural to speculate as to the form of transmission of occupation-specific

human capital from fathers to daughters. Unfortunately, there is not much direct

evidence that we know of that helps in this regard. For example, for the case of

specific human capital investments, perhaps the most obvious form is investments

in time. While there is some information from time-use diaries on how much time

parents spend with children, the earliest reliable data come from time-use diaries

from 1965, so we have no information on many of the birth cohorts in our sample.

There is some evidence that fathers did not spend more time on primary childcare in

the mid-1980’s than they did in the mid-1960’s, but that there has been an increase

more recently. Of course, this is an increase that would not be represented in the

birth cohorts of our sample. Disappointingly, there is no systematic evidence over

time in how this time that fathers spend with children is allocated across daughters

and sons, making it difficult to draw any inferences about investments of time in

daughters specifically. (See the review in Raley and Bianchi, 2006, for more on

what has been learned from time-use surveys on parental time with children.) Dahl

and Moretti (2005) present evidence that the ways in which fathers are part of the

lives of sons and daughters have changed over time (e.g., via divorce, custody, single

parenthood), but these various ways all indicate that fathers have preferences for

sons and do not suggest how this manifests itself in terms of changing investments

in daughters over time.

We have focused on transmission from fathers to daughters in this paper be-
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cause for many of the birth cohorts in our sample, the vast majority of their mothers

were out of the labor force. Therefore, any maternal investments (or transmission)

that affected the occupation choice of daughters is difficult to formalize in this way

and is perhaps second order to those made by fathers. However, as recent cohorts of

women with high levels of labor force attachment themselves become mothers, there

should be changing incentives for these women to make investments of occupation-

specific human capital in their own daughters (and sons). It will be quite inter-

esting to examine for future cohorts how potentially “competing” transmission of

the occupation-specific human capital of fathers and mothers affect the occupation

choices of children, and in particular how they affect the occupation decisions of

daughters relative to sons.

3.7 Data Appendix

3.7.1 Core Sample Description

In each data set we restrict to white, married men and women. We exclude

respondents who are younger than 25 years old or who report being married to

someone under age 25. While we exclude women who are older than 64 years in the

regressions (and make similar restrictions for men in the male sample regressions),

we do allow women who are married to men older than 65. One reason for this

asymmetric treatment is that restricting to men and women older than 25 helps

control for data quality, since occasionally children are incorrectly coded as spouses.

The results are insensitive to restricting to couples that are between 25-64 years
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old, but relaxing the upper bound restriction allows for a larger sample. One effect

of this asymmetric treatment is that the male sample is slightly smaller than the

female sample, since men tend to marry women who are younger. All of our results

are for married, white individuals who report being either the head of household or

the spouse of the head of household.

3.7.2 Labor Force Participation and Occupations

Appendix Table 3.5 describes how we define who participates in the labor force

and who is dropped from the sample across each data set. As described in the text of

the paper, we consider women who have decided not to work as a separate occupation

“Out of Labor Force”. This category includes women who are “keeping house,” as

the OCG and GSS categorize them. The OLF category should not include women

who are unemployed, looking for work, in school, or doing something else that is

distinct from choosing to remain out of the labor force. We run sensitivity tests

restricting regressions to include only women who report working and to include

an OLF category for men and our results are qualitatively consistent across these

samples. Note that we never include OLF for fathers or fathers-in-law, since we do

not have an employment status code for fathers and therefore can not distinguish

between item non-response and a non-working father.

The SIPP is distinct from the OCG and GSS in how employment status is

coded. In the SIPP, work status is asked separate of school enrollment or other

activities. A respondent could be coded as having a job and being enrolled in
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school, while the GSS and OCG only report one employment status per individual.

We feel someone enrolled in school, either part-time or full-time, is likely to not

be in their final occupation, even if a valid occupation code is given. Because of

this, we restrict the SIPP sample to include only individuals who are not currently

enrolled in school. While we were not able to make an identical restriction in the

OCG and GSS, sensitivity tests including only individuals who reported working

full-time provide similar results.

3.7.3 Occupation Coding and Concordances

Because our three surveys contain different occupation codings, we had to

find a way to get a consistent definition of “occupation” for our analyses. For each

decennial census a new set of occupation codes are defined. Though these tend to

be similar, they are not identical across years. The 1973 OCG reports 1970 (and

1960) Census Occupation Codes, while the SIPP reports 1980 Occupation Codes.

The GSS, on the other hand, uses 1970 codes for some years, 1980 codes for later

years, and both for the middle years. To get a consistent definition of occupation we

created a concordance from the 1970 to 1980 Census Occupation Codes. In the GSS

survey years 1975-1990 the 1970 occupation codes are reported, while 1980 codes

are provided for survey years 1988-2002. This provides us with 3 survey years (1988,

1989, and 1990) for which both 1970 and 1980 occupation codes are given to create

a concordance.

To create the concordance we take the 1980 occupation code that is most
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frequently matched to each 1970 occupation code, choosing the smallest code by

default in a tie. Once we have this mapping from 1970 to 1980, we merge the 1980

occupation codes onto the early years of the GSS with only 1970 occupation codes

and onto the OCG. Tests of the sensitivity to using categorizations of the 1970 and

of the 1960 codes provided consistent results.

Appendix Table 3.6 lists the occupation groupings used in our analysis.
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Figure 3.1: Female Labor Force Participation by Birth Cohort
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Figure 3.2: The fraction of women in the same occupation as their father and their
father-in-law

Figure 3.3: The rate of growth of the fraction of women in the same occupation as
their father and their father-in-law
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Figure 3.4: The fraction of women in the same education level (measured in 4 broad
categories) as their father and their father-in-law
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Figure 3.5: A comparison of the rates of growth of the fraction of women versus
men in their father’s occupation and father-in-law’s occupation
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Table 3.1: Summary Statistics for Women
ALL OCG GSS SIPP

Women (1) Managerial and Professional Specialty 0.155 0.103 0.215 0.178
(2) Technical, Sales, and Admin. Support 0.228 0.174 0.254 0.283
(3) Service 0.078 0.068 0.082 0.088
(4) Farming, Forestry, and Fishing 0.009 0.010 0.006 0.010
(5) Precision Production, Craft, and Repair 0.011 0.008 0.012 0.015
(6) Operators, Fabricators, and Laborers 0.058 0.067 0.050 0.052
(7) Not in Labor Force 0.462 0.570 0.381 0.373

Fathers (1) Managerial and Professional Specialty 0.191 0.180 0.223 0.190
(2) Technical, Sales, and Admin. Support 0.119 0.096 0.131 0.147
(3) Service 0.050 0.055 0.040 0.048
(4) Farming, Forestry, and Fishing 0.195 0.232 0.156 0.157
(5) Precision Production, Craft, and Repair 0.230 0.224 0.240 0.235
(6) Operators, Fabricators, and Laborers 0.216 0.213 0.210 0.224

Father- (1) Managerial and Professional Specialty 0.184 0.172 0.225 0.185
in-Laws (2) Technical, Sales, and Admin. Support 0.111 0.090 0.117 0.145

(3) Service 0.048 0.050 0.040 0.048
(4) Farming, Forestry, and Fishing 0.222 0.263 0.174 0.174
(5) Precision Production, Craft, and Repair 0.223 0.214 0.242 0.228
(6) Operators, Fabricators, and Laborers 0.213 0.212 0.202 0.221

Fraction of Women in Father’s Occupation 0.107 0.079 0.138 0.134
Fraction of Women in Father-in-Law’s Occupation 0.099 0.077 0.120 0.128

Woman’s Age 42.100 41.800 42.300 42.300
(10.9) (10.7) (11.0) (11.2)

Woman’s Birth Year 1939.1 1931.2 1946.2 1944.4
(13.6) (10.7) (13.3) (11.2)

Sample Size of Women 40,360 17,617 11,006 11,737

136



Table 3.2: Baseline Results for Probability of Daughters in Same Occupation as
Father

Dependent variable: In same occupation as father or father-in-law

Pooled OCG GSS SIPP
(1) (2) (3) (4)

Birthyear Daughter 0.268 0.088 0.328 0.305
(0.013) (0.019) (0.031) (0.028)
[4.591] [1.504] [5.629] [5.235]

Birthyear Daughter-in-law 0.213 0.065 0.270 0.250
(0.013) (0.019) (0.032) (0.031)
[3.399] [1.031] [4.310] [3.990]

Const. 0.005 0.051 -.014 -.0008
(0.005) (0.006) (0.014) (0.012)

DIL Eqn Dummy 0.013 0.005 0.009 0.015
(0.006) (0.007) (0.020) (0.016)

Relative Diff F/D vs FIL/DIL 0.055 0.023 0.058 0.055
(0.017) (0.023) (0.045) (0.037)
[1.192] [0.473] [1.319] [1.245]

Obs. 63076 32700 11006 19370

Notes: Standard errors are in parentheses. Rates of increase (relative to baseline 1909-1919 birth
cohorts fraction of women in the same occupation as their father or father-in-law, 0.058 for daugh-
ters and 0.063 for daughters-in-law) are in brackets. Results are from linear probability models.
Coefficients on birth year, age, and the relative difference in slopes are in percentage point terms.
Standard errors are robust and account for correlation across observations that arise from a daugh-
ter and daughter-in-law representing the same woman.
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Table 3.3: Full Specification for Women

Dependent variable: In same occupation as father or father-in-law

(1) (2) (3) (4) (5) (6) (7)
Birthyear Daughter 0.218 0.441 0.434 0.435 0.279 0.297 0.242

(0.014) (0.042) (0.055) (0.040) (0.038) (0.040) (0.038)
[3.743] [7.571] [7.440] [7.464] [4.793] [5.091] [4.147]

Birthyear Daughter-in-law 0.160 0.371 0.379 0.378 0.234 0.242 0.196
(0.014) (0.042) (0.056) (0.040) (0.038) (0.040) (0.038)
[2.554] [5.924] [6.053] [6.037] [3.737] [3.860] [3.127]

Const. 0.034 -.173 -.164 -.166 -.108
(0.006) (0.037) (0.048) (0.035) (0.034)

SIPP 0.004 0.009 0.004 0.009 0.007 0.010 0.008
(0.004) (0.004) (0.006) (0.004) (0.004) (0.004) (0.004)

OCG -.023 0.011 0.007 0.011 0.003 0.007 0.002
(0.004) (0.006) (0.009) (0.006) (0.006) (0.006) (0.006)

DIL Eqn Dummy 0.015 0.028 0.009 0.015 0.014
(0.006) (0.025) (0.069) (0.006) (0.006)

DIL Dummy*SIPP 0.009
(0.008)

DIL Dummy*OCG 0.008
(0.013)

Daughter’s Age 0.247 0.239
(0.044) (0.057)

Daughter-in-law’s Age 0.226 0.235
(0.045) (0.058)

Constrained D/DIL’s Age 0.237 0.190 0.155 0.158
(0.041) (0.038) (0.040) (0.038)

F/FIL Occ Cntrls No No No No Yes No Yes

Own Ed Cntrls No No No No No Yes Yes

Relative Diff F/D vs 0.058 0.070 0.055 0.057 0.045 0.055 0.046
FIL/DIL (0.017) (0.031) (0.079) (0.017) (0.016) (0.017) (0.016)

[1.188] [1.647] [1.386] [1.428] [1.056] [1.231] [1.020]

Obs. 63076 63076 63076 63076 63076 63032 63032

Notes: See Table 2.
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Table 3.6: Appendix Table A2: 1980 Census Occupation Code Groupings

1980 Census Occupation Codes
Six Occupation Categories 13 Occupation Categories
(1) Managerial and Professional
Specialty

(1) Executive, Administrative, and Managerial
Occupations and Management Related Occupa-
tions
(2) Professional Specialty Occupations

(2) Technical, Sales, and Adminis-
trative Support

(3) Technologists, Technicians and Related Sup-
port Occupations”
(4) Sales Occupations
(5) Administrative Support Occupations, Includ-
ing Clerical

(3) Service (6) Service Occupations, Private Household Oc-
cupations
(7) Protective Service Occupations
(8) Service Occupations, Except Protective and
Household

(4) Farming, Forestry, and Fishing (9) Farming, Forestry, and Fishing Occupations
(5) Precision Production, Craft, and Repair
(10) Precision Production, Craft, and Repair Oc-
cupations

(6) Operators, Fabricators, and La-
borers

(11) Machine Operators, Assemblers and Inspec-
tors
(12) Transportation and Material Moving Occu-
pations
(13) Handlers, Equipment cleaners, Helpers, and
Laborers”
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Chapter 4

A Critique of “Mothers and Sons: Preference Formation and Female

Labor Force Dynamics”

In reference to the article:
Published in the Quarterly Journal of Economics, November 2004
Authors: Raquel Fernandez, Alessandra Fogli, and Claudia Olivetti
Full Title: “Mothers and Sons: Preference Formation and Female Labor Force
Dynamics”

4.1 Introduction

In their 2004 paper, “Mothers and Sons: Preference Formation and Female

Labor Force Dynamics,” Fernandez, Fogli, and Olivetti (hereafter referred to as

FFO) present a model whereby a woman’s participation in the labor force is partially

determined by her mother-in-law’s work experience. The men in the model have

preferences for the working behavior of their wife formed through their mother’s

work experience, either by mothers having endowed them with skills that make

them better partners for a working woman or inclining them to prefer a working wife.

Women in the model acquire market skills in order to be able to marry this growing

subset of men that prefer working women. Assortative mating is not incorporated

into the model. In addition, a woman’s own preferences for working are not modeled

to be a function of her own background characteristics, such as her own mother’s

labor supply. The model has dynamic implications, since the new incentive for wives
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to work yields more mothers that work, creating more sons who will eventually want

working wives. While the empirical results presented in FFO support this story, in

this paper I present empirical evidence that directly contradicts their findings. In

Section 4.5 I discuss a possible interpretation of this new empirical evidence.

FFO present three sets of results that support their model. First, the General

Social Survey (GSS) is used to show a conditional correlation between the working

behavior of men’s mothers and that of their wives. While I am not able to exactly

replicate these results, I present qualitatively similar regressions confirming this

relationship. However, while FFO correctly describe that the GSS data only include

the working behavior of the respondent’s mother and contain no mother-in-law labor

force information, they do not present a parallel set of regressions using female

respondents and the working behavior of wives’ mothers. In addition, FFO only use

data from 1988 and 1994, when a particular variable on mother’s work was collected.

However, similar variables were collected in other years. An expanded analysis

of the GSS confirms a significant conditional correlation between mother-in-law

and daughter-in-law work experience in some specifications, although always with a

smaller magnitude than that presented in FFO. More importantly, the conditional

correlation between mother’s and daughter’s work experience is similar in magnitude

and is also statistically significant, in contrast with FFO’s main findings. It is this

relationship between the labor force participation of mothers and daughters that

calls into question FFO’s interpretation of the dynamic results as simply about

men’s changing preferences.

The second set of results that FFO present uses data from the Female Labor
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Force Participation and Marital Instability survey (FLFPMI).1 The data allow the

authors to include the working behavior of both the husbands and wives’ mothers in

the regression on the wives’ labor force participation. I am able to replicate most of

their results. I confirm that in these particular specifications there is a conditional

correlation between mother-in-law and daughter-in-law work behavior and, once the

work behavior of the spouse’s mother is included in the regression, there is no con-

ditional correlation between mother and daughter work behavior. However, I will

demonstrate that these results are highly sensitive to specification. In particular,

a small change in the definition of mother’s work causes both estimates to become

statistically insignificant. I am not able to account for why the conditional corre-

lation between the labor force participation of mothers and daughters is zero (and

at times negative), besides noting potential omitted variables, selection bias, and

measurement error made more problematic due to small sample sizes. To address

this specifically I present a parallel analysis using the much larger, and potentially

more reliable, data set the Survey of Income and Program Participation (SIPP).

The SIPP results demonstrate that the marginal effect of own mother’s work expe-

rience on a woman’s labor force participation is positive and significant in almost

all specifications, contradicting the conclusions drawn in FFO.

The final evidence FFO present leverages PUMS data to test the dynamic

1The FLFPMI is the first wave of a six wave survey by Booth, Johnson, Amato, and
Rogers that is generally referred to as the “Marital Instability over the Life Course” or
“Work and Family Life” surveys. Citation: Booth, Alan, et al. MARITAL INSTABILITY
OVER THE LIFE COURSE [UNITED STATES]: A FIVE-WAVE PANEL STUDY, 1980,
1983, 1988, 1992-1994, 1997 [Computer file]. ICPSR02163-v2. University Park, PA: Alan
Booth et al., Pennsylvania State University [producers], 1998. Ann Arbor, MI: Inter-
university Consortium for Political and Social Research [distributor], 2001.
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implications of their male preference formation model. The results show that in

regions where more mothers work due to an exogenous shock (variation in mobi-

lization rates during World War II) the next generation of women are more likely

to work. Similarly, in states where the average fertility rate of working mothers

compared with non-working mothers is higher, the model predicts that the next

generation will have higher female labor supply, since relatively more children are

raised by working mothers. While this is interpreted as an effect of the preferences of

men in FFO, it may also be seen as evidence supporting the intergenerational effect

of mothers’ work experience on their own daughters. FFO refute this competing

explanation by highlighting their cross sectional evidence showing a zero marginal

effect of own mother’s work behavior on daughter’s labor force participation. As I

hope to provide sufficient evidence to call this result into question, I will not further

analyze the intergenerational evidence presented in Section III of FFO and simply

suggest that the effect found may be due, at least in part and perhaps entirely, to

the intergenerational effects of mothers on daughters.

4.2 Evidence from the General Social Survey (GSS)

To begin, I replicate the GSS analysis presented in Section II of FFO. Table A

shows that my sample is similar qualitatively to FFO’s, but they are not identical.

The first column is a copy of the values presented in Appendix I of FFO. Column

(2) of Table A shows the means and standard deviations of the variables used in

my replication. The third column uses the same sample, but does not place the
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restriction that all variables must have valid entries. Notice that the restriction

placed by having all the variables present creates a sample with fewer working wives

and mothers, a potential source of bias.

Table B presents the specifications reported in Table I of FFO. Though the

sample sizes differ by at most three observations and the coefficients are remarkably

similar, the marginal effects of MAWORKH are consistently smaller in the replicated

results. My results still show a positive and significant effect of mother-in-law’s work

behavior on daughter-in-law’s labor force experience, between 12.6 and 23.8 percent,

which is considerably smaller than the 15.7 to 32.3 percent effect shown in FFO.

Similarly, footnote 21 in FFO cites “The correlation between a wife working and

her mother-in-law working is 0.17, significant at the 1 percent level.” I find the

correlation in the full sample (column 3 of Table A) to be only 0.12 (sig. level

5.45 percent) and in the regression sample (column 2 of Table A) to be 0.11 (sig.

level 12.3 percent). Though I am unable to exactly match the FFO sample and

coefficients, my results are at least consistent with FFO’s finding of a conditional

correlation between mother-in-law and daughter-in-law work behavior.

In the GSS the respondent is chosen from among adults in a selected household

randomly according to a sampling procedure, so there are approximately equal num-

bers of male and female respondents.2 In my extended analysis, I include a parallel

set of regressions for female respondents.3 Though these regressions cannot address

2In the full sample there are 8,666 (52.74 percent) female and 7,767 (47.26 percent)
male respondents. These numbers vary by specification but give a close approximation to
the baseline sample available.

3In the survey, the respondent is asked to identify who he (she) considers the household
head and his (her) relationship to that head. In order to ensure that the observation is for
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the link between the work behavior of mothers-in-law and daughters-in-law, they do

provide evidence contradicting the finding that there is no statistically significant

relationship between the work behavior of mothers and daughters in FFO.

In FFO’s analysis using the GSS, the key variable, MAWORKH, is defined

from the survey question “Did your mother ever work for pay for as long as one

year after you were born and before you were 14?” This variable was only collected

in 1988, 1994, and 2002, and only the 1988 and 1994 surveys were used in FFO.

The full sample of the GSS contains six separate variables that describe the working

behavior of the respondent’s mother: that the mother worked for as long as a year

(1) after she was married, (2) before the respondent was in first grade, (3) after the

respondent was born and before he/she was in first grade, (4) when the respondent

was around age 16, (5) while the respondent was growing up, and (6) after the

respondent was born and before the respondent was age 14. Each variable is only

provided in some of the survey years, as shown in Table C.4 Table C also provides

the core family in the household, I restrict the sample to heads of households and their
spouses. Though most male respondents report that they are the head of the household,
around 8 percent (over 600) of the male respondents in the sample responded that they are
the spouse of the household head. Likewise, around 11 percent of female respondents in
the married sample report that they are the household head. FFO restrict their attention
to “male heads of households.” For my extended analysis, I will include both household
heads and spouses of household heads in the male respondent and female respondent
samples.

4To demonstrate the overlap between these variables I compared MAWORK14 (did
your mother work for as long as a year after you were born and before you were age 14)
and MAWRKGRW (did your mother work for as long as a year while you were growing
up). These variables seem qualitatively similar in what they are trying to capture. In the
two survey years that have both variables, 1994 and 2002, the correlation between MA-
WORK14 and MAWRKGRW is 0.78. Eighty observations (8.3 percent) reported that the
respondent’s mother worked while growing up but NOT before age 14 and 27 observations
(2.8 percent) reported that the respondent’s mother worked before age 14 but NOT while
growing up. The variables are slightly more consistent in 1994 than 2002.
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the sample sizes and the means of the mother’s work variables (restricted to having

the other regression variables present) and the means of the wife’s work variables

by year.

The regression results from the extended GSS analysis are provided in Table

D. It should be noted that I did not include data from the 2002 survey, since several

variables are defined differently in that year and FFO did not use these data. The

regression specifications that I present include only controls for husband and wife’s

age and husband’s education (HUSB AGE, HUSB EDUC, WIFE AGE) and the

number of children under six in the household (BABIES).5 I chose to omit the

wife’s years of education, since it is endogenous. Including WIFE EDUC in either

the men or women’s samples only changes the coefficients on mother’s work slightly

and does not effect significance except in the women’s column 5 (MAWKGRW).

In the survey the respondent is asked about his or her own parents’ education and

contribution to household income, but no parallel spousal information was gathered.

Controlling for the wife’s income in the women’s regressions does not make sense,

since wife’s labor force participation is the dependent variable. Similarly, household

income is also correlated with the wife’s labor force participation. Because of this,

I chose to present results in Table D for men and women that were comparable,

so I did not include any parental information or income variables. The sample is

restricted to married, white men or women with the wife’s age between 30 and 50

years.6 I did not make a restriction on husband’s age in either the male or female

5BABIES represented the number of children under age six in the household while
CHILDREN is the number of children the respondent has ever had.

6There are two race variables present in the years prior to 2002, individual and house-

148



respondent sample.

Table D provides six specifications each for men and women using the different

definitions of mother’s work. Notice that the sample sizes vary dramatically between

the columns, as only some survey years contain each of the variables. The means

of the mother’s work variables are provided in the bottom rows of Table C. Notice

that the two variables MAWKBABY and MAWKBORN have similar means, around

35 percent of mothers worked under these definitions. Though MAWKBABY and

MAWKBORN are defined similarly (“before first grade” versus “after born and

before first grade”), the marginal effects are strikingly different in both the male and

female samples. This could be due to real differences in how adding “after born”

changes the responses or it could be a year effect. Dummy variables are included

in every GSS specification to capture year fixed effects, but this only captures level

differences between the years a particular variable definition is available and not

across different years of the full sample. For the men’s sample, the conditional

correlation between mother-in-law and daughter-in-law work behavior is large and

significant when mother’s work is defined as after the son was born and before he was

in first grade or after the son was born and before he was 14 years old. The marginal

effect is insignificant if mother’s work is defined as working for a year while the son

was growing up. On the other hand, in the women’s sample the mother/daughter

hold race. Though around 5 percent of the sample reports their individual race to be
non-white and their household race to be white, these variables agree for just less than 80
percent of the sample. FFO do not specify which variable was used to restrict the sample
to “white males.” In both the replication results in Table B and the new regression in Ta-
ble D, I restricted to respondents who answered white for both individual and household
race, though the results were not sensitive to this decision.
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conditional correlation is positive and significant when mother’s work is defined

as any time after marriage, after the daughter was born and before she was in

first grade, or while the daughter was growing up. These results demonstrate that

the relationship between the work behavior of mothers and daughters may also be

significant, depending on specification, and that both mother-in-law/daughter-in-

law and mother/daughter estimates are highly sensitive to specification.

FFO discuss sensitivity analysis on the GSS results on pages 1270-1272. They

acknowledge that using MAWORK or MAWKBORN to define the mother’s work

variables make the coefficient on mother’s work insignificant. FFO argue that this

suggests sons preferences are formed later in their childhood (and that the “after

marriage” variable is too vague to use). This may or may not satisfactorily explain

why the variables “while growing up” or “around 16” are also not significant in the

mothers-in-law/daughters-in-law regressions. These full results demonstrate that

the findings that FFO present are not robust across different definitions of mother’s

work and different subsamples of the GSS and that the mother/daughter work be-

havior correlation may be just as important as that between mothers-in-law and

daughters-in-law.

4.3 Evidence from the Marital Instability Survey (FLFPMI)

The second data set employed by FFO is the first wave of the Marital Instabil-

ity over the Life Course survey, referred to as the Female Labor Force Participation

and Marital Instability survey (FLFPMI). This survey of married persons was con-
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ducted in 1980 by telephone interviews. The respondent was chosen to be the

husband or wife depending on the last digit of the telephone number (even for wife,

odd for husband). Though the full sample (restricted to married white couples) has

almost 1,800 observations, some of the regression samples are nearly half that size.

Unlike the GSS, I was able to almost exactly replicate the sample used in

FFO, as shown in Table E. All values reported in column (1) of Table E match

those included in Appendix 1 of FFO, with the exception of HUSB INCOME. My

replicated value for HUSB INCOME has mean 23.14 (standard deviation 13.74)

while Appendix 1 in FFO shows a mean of 23.0 (standard deviation 13.5).7 Although

the means are not exact, I obtain identical regression coefficients for this variable.

In column (2) of Table E I include the means of the variables from the full sample

(without restricting to having each variable present) to demonstrate any differences

in the sample due to selection. The regression sample is slightly younger, has more

education, and has fewer children, but is not dramatically different than the full

sample.

In Table F I demonstrate an exact replication of the first four columns of

Table II in FFO, with the exception that my log/likelihood row is different than

that reported in FFO in all but column (ii). The next three columns of FFO’s

Table II include controls for religion and for father’s socioeconomic status. Since

the means of these variables were not presented in FFO, I do not know whether or

7In the text of FFO, HUSB INCOME is described to be the husband’s contribution to
family income (defined by multiplying the husband’s percent contribution by the family
income) measured in thousands. Family income is taken as the midpoint of the categories
with the top category multiplied by 1.2.
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how the variables in my sample replicate those used in the original. I defined the

PASOCEC variables from the father and father-in-law occupation status variables,

as described in FFO. The religion variables consist of four dummies: PROTES-

TANT, CATHOLIC, NONE, and OTHER. A question about the respondent’s re-

ligion is asked in the FLFPMI with these categories, but the spouse’s religion was

only identified as the same or different than that of the respondent. Religion could

therefore be coded for most respondents, but only some of the spouses, which ex-

plains why the sample size decreases between columns (i) – (iv) and (v) – (viii).

By construction, the observations dropped due to missing religion are more likely

to have different religions than their spouse, a potentially important selection effect

(note that the coefficient on MAWORKH more than doubles from earlier estimates

in columns (vii) and (viii)).8 My attempted replication of columns (v) – (vii) is

compared to those from FFO in Table G. These columns are particularly important

because wife’s mother’s work behavior, MAWORKW, is only included in columns

(vi), (vii), and (viii). I did not attempt to replicate column (viii) because of the addi-

tion of two other controls, RESIDENCE and REGION. Though I could not replicate

the FFO results (presented in Column 1 of Table G), my results are qualitatively

similar.

In the FLFPMI analysis the main identifying variables, MAWORKH and MA-

WORKW, are defined from the variables labeled “Time Mother Worked When Re-

spondent (Spouse) Grew Up.” There are five possible responses to each of these

8Note that including a flag for the husband and wife having a different religion in
addition to the religion variables or instead of the religion variables does not change the
coefficient on MAWORKH.
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questions: (1) All the Time, (2) Most of the Time, (3) About Half, (4) Less than

Half, or (5) Never. FFO define MAWORKH/W as equal to 1 if the respondent

answered “(1) All the time” and zero otherwise. Table H provides the frequency of

responses coded as “husband” and “wife.”9

Table I contains the results of two regression specifications using four sequential

definitions of mother’s work. The first is that used in FFO, the mother worked all

the time. I then include the second category, so MAWORK2 equals 1 if the mother

worked all or most of the time. The third category indicates whether the mother

worked all, most, or about half the time. And the final category, MAWORK4, is

zero if the mother never worked and 1 if the mother worked at all. Because of my

inability to replicate the controls used in specifications (v) – (viii), the sensitivity

analyses I present use a modified version of column (iv) that includes the wife’s

mother’s work experience variable, MAWORKW, labeled (iv’). Notice that the

regressions using the second definition of MAWORK, reported in columns (3) and

(4) of Table I, show no significant effect of mother or mother-in-law’s work behavior

on the woman’s labor force participation. On page 1276, FFO describe their findings

under this test:

If we use as an indicator of the husband’s mother’s working history not
whether she worked “all the time” while her son was growing up, but
instead whether she worked “most of the time,” the mother’s working
behavior still enters positively and significantly in determining the prob-
ability that the son’s wife works, but its marginal effect is about 11
percentage points.

9Questions about own and spouse’s mother are asked of both male and female respon-
dents, which are then combined and recoded as husband and wife variables. I found some
evidence that men and women respond to these questions differently, but it does not
appear that this has an impact on the estimated marginal effects.

153



This is not consistent with the findings I report in Table I. As it seems unlikely

that the preference formation channel that FFO are attempting to detect should be

sensitive to the difference in perception between mothers working all the time versus

most of the time while the respondent or spouse was growing up, this finding calls

the FLFPMI estimates into question.

The variable for whether the wife works is derived from the response to two

questions in the survey. The first item reports whether the woman worked for pay

with responses yes or no. If yes, a separate question asks whether the woman works

(1) full time, (2) part time, or (3) both. The regressions thus far have restricted the

definition of wife working to women who worked for pay (yes to the first question)

and who reported working full time (response 1 in the second question) or working

both full time and part time (response 3 in the second question). I test the sensitivity

of the results to an alternative definition of whether the wife works in Table J. Here

the dependent variable, WIFEWORK2, is equal to one if the wife worked for pay

at all (responded yes to the first question), regardless of the response to the second

question. I include specifications using the original FFO definition of MAWORK and

those using the variable indicating whether the mother worked at all, MAWORK4.

In the text of the paper on pages 1275 and 1276 and in footnote 35, FFO describe

their results from a similar test:

As before, our results are robust to alternative definitions of the depen-
dent variable: whether we define a wife as working when she works full
time or when she just works for pay, we obtain similar results. [Foot-
note 35:] The marginal effect of MAWORKH decreases to 17 percentage
points using this looser definition but remains significant at the 1 percent
level.
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I found a smaller effect under this new definition of whether the wife worked

which is significant under the restrictive definition of mother work and not signifi-

cantly different from zero when mother’s work is defined as working at all.

A final concern with the FLFPMI study is the neglect to address the range

of valid ages. The GSS sample is restricted to women ages 30-50 because “women

in this age interval are more likely to have completed their education and are still

far from retirement considerations.”(pg. 1267) However, no similar restriction was

imposed in the FLFPMI section and the age range of women in the full sample

was 15 to 55 years old. Table K illustrates how the responses to the mother’s work

question vary between three age ranges: 15 – 29, 30 – 50, and 51 – 55. The small

sample sizes do not allow enough power to detect differences across samples.

Table L presents the results when the sample is broken down by the three age

groups listed above. Notice that using the original FFO definition of MAWORKH

and MAWORKW that mother-in-law’s work behavior is only significant for the 30-

50 year old sample while own mother’s work behavior is now significant but only

for the 15 – 29 and 51 – 55 sample. What is most surprising is that in the over 50

sample own mothers’ work enters negatively under each definition of mother’s work.

The FLFMPI result of a zero effect of mother’s work behavior on their daughter’s

labor force participation could be just a consequence of the averaging of a positive

and negative effect for two different cohorts. The sample size (68 observations in the

51-55 year old wives sample) is extremely small for this type of analysis, so a larger

data set might produce more accurate and precise estimates broken down by age.

It is beyond the scope of this essay to determine why the marginal effects of own
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mother’s work are different by age group, but further investigation of age and cohort

effects is clearly warranted. The lack of attention paid to differences in marginal

effects of maternal work behavior both across cohorts and throughout the life-cycle

raises further concerns over the validity and robustness of the FFO findings.10

4.4 New Evidence from the Survey of Income and Program Partici-

pation (SIPP)

Because there is a discrepancy in the robustness of the FLFPMI results to alter-

native definitions of mother’s work and because the zero coefficient on own mother’s

work experience is not consistent with evidence found in the GSS, I present results

from a third data set, the Survey of Income and Program Participation (SIPP).

The SIPP provides a much larger sample size, yielding more precise estimates. Al-

though the SIPP does not directly report mother’s work intensity, questions were

asked about the occupation of the respondent’s mother and work behavior can be

inferred. The parental occupation questions were asked in the Family Background

Topical Module conducted as part of Wave II of the 1986, 1987, and 1988 surveys.

The data are therefore a pooled sample from these three cross-sections. The survey

is answered by all members of the household (and proxy response is allowed), so we

10All coefficients reported in these tables represent how a marginal change in a indepen-
dent variable affects the probability that the dependent variable (WIFEWORK) is equal
to one. I present the results from measuring the marginal effect at the mean (considering
binary variables as if they were continuous), as is standard practice (using Stata’s DPRO-
BIT command). An alternative method for calculating the marginal effect for binary
explanatory variables involves instead evaluating the marginal effect for each observation,
and then taking the mean over the entire sample. Marginal effects using this second
method are virtually identical, so are not presented here.
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have data for both the mother and mother-in-law as reported by the husband and

wife.

In the survey the respondent is asked, “When was 16, what was ’s

(mother/stepmother’s or person marked in TM8564) occupation?”11 A flag variable

(TM8576) equals to “-1” if the mother did not work and “0” if the mother did

work. For this analysis I define mother’s work (MAWORKH/MAWORKW) equal

to 1 if the flag is set to zero and 0 if the flag is set to “-1.” The dependent variable

WIFEWORK is defined from the employment status recode variable that gives the

woman’s employment activities during the prior month (ESR-4). There are eight

possible codes:

(1) With a job entire month, worked all weeks

(2) With a job entire month, missed one or more weeks, no time on layoff

(3) With a job entire month, missed one or more weeks, spent time on layoff

(4) With job one or more weeks, no time spent looking or on layoff

(5) With job one or more weeks, spent one or more weeks looking or on layoff

(6) No job during month, spent entire month looking or on layoff

(7) No job during month, spent one or more weeks looking or on layoff

(8) No job during month, no time spent looking or on layoff

WIFEWORK is set equal to 1 if the employment status recode is (1)-(5), 0 if

the employment status recode is (8), and missing otherwise. This matches as closely

as possible to the “wife working for pay full or part time” while eliminating women

11The variable TM8564 asks who the head of household when was 16 was, so is
only different from mother or stepmother if the respondent was living with a female head
of household that was not the respondent’s mother or stepmother.
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who are unemployed and actively looking for work. The SIPP contains parental

information for respondents between ages 25-64 only, so the sample is restricted to

husbands and wives between those ages. Table M presents the means of the full

sample and then of the sample broken down by wife’s age. The education variables

have four possible values, though the husbands and wives in our sample always report

attending at least some school: (0) never attended school, (1) attended elementary

and some high school, (2) has high school degree, and (3) has at least some college

education. Because a woman’s educational attainment is endogenous to her decision

to work, as discussed above, I have chosen not to include WIFE EDUC in all but

the full specification of the SIPP.12

Table N presents the SIPP results using WIFEWORK as the dependent vari-

able. The first two columns show the effects of mothers’ work when entered inde-

pendently, while the third and fourth column include both mothers’ work variables.

The first three columns include controls for husband and wife’s age, husband’s edu-

cation, and the number of children. The fourth column includes controls for parental

education levels.13 We see in the first four columns of Table N that the effect of

husband’s mother’s work appears to be slightly larger than wife’s mother’s work for

the full sample, but the differences between the two coefficients are not statistically

12Inclusion of wife’s education lowers the coefficients on the work behavior of the mother-
in-law slightly and does not affect the estimate of the impact of the work behavior of the
mother. As would be expected, education always enters positively and significantly when
less than high school is the omitted category. It is interesting to note that inclusion
of a woman’s educational attainment has an asymmetric influence on the estimate of
the impact of mother versus mother-in-law’s work experience, but the effects are not
statistically significant.

13Notice that in this analysis, education is treated nonlinearly, so that dummy variables
are added for three categories, no school, less than high school, high school degree, and
some college, as shown at the bottom of Table M.

158



significant in columns (3) or (4). Notice that the magnitudes of the estimated ef-

fects of mother and mother-in-law work decrease when both are included, suggesting

there is at least some correlation. These results support the hypothesis that both

mother and mother-in-law work experience significantly affects a woman’s decision

to work.

The next three columns of Table N show similar results broken down by wife’s

age. Recall that the SIPP only includes parental information for respondents ages

25-64, so the sample is thus restricted. In column (5) we see that for the sample of

women ages 25-29, own mother’s work experience is highly significant. Although the

magnitude appears much larger than the effect of mother-in-law’s work behavior,

the coefficients are not statistically significantly different. Similarly, for women ages

30-50, the sample FFO identifies as most reliable due to concerns over childrearing

and retirement, the effects of mother’s and mother-in-law’s work are both positive

and statistically significant, and are again not statistically significantly different

from each other. The sixth column of Table N shows that for women ages 51-64

there is no discernible effect of mother’s or mother-in-law’s work behavior on labor

force participation, perhaps because levels are so low. When interpreting the age-

group results in Table N, it is important to remember that the SIPP only contains

3 consecutive years of data from the 1980’s, so it is impossible to isolate age and

cohorts affects.

It is interesting to note in Table N that wife’s age is statistically significant in

each of the samples broken out by age group. This implies that the labor force par-

ticipation of women is highly non-linear in age, as expected. The coefficients suggest
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a downwards U-shape to women’s labor force participation, with rates increasing by

age at first, then approaching flat, then decreasing. The final column in Table N

includes higher order terms in wife’s age. I include up to a third degree polynomial

in wife’s age, which is highly significant (tests including higher powers yielded in-

significant coefficients for those variables). Notice that including a polynomial in

wife’s age does not significantly alter the coefficients on mother or mother-in-law’s

work behavior. This at least suggests that the heterogeneous affects of mother and

mother-in-law’s work behavior by age group on a woman’s labor force participation

is not being driven solely by differences in levels of female labor force participation.

A more detailed analysis is necessary to identify the age-specific affects of mother

and mother-in-law’s work behavior, but the results presented in Table N suggest

that a woman’s age is an important factor in understand the relationship between

a woman’s labor force participation and that of her mother and mother-in-law.

The SIPP results confirm the conclusions drawn from an extended analysis of

the GSS, that the working behaviors of women and their own mothers are correlated.

This directly contradicts the conclusions FFO draw from the FLFPMI results. With

this in mind, the intergenerational evidence presented in FFO could be reflecting

the transmission from mothers to daughters as well as (or even instead of) that from

mothers to sons.
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4.5 Discussion and Conclusion

Perhaps the most surprising result in the empirical portion of FFO is that

mother’s and mother-in-law’s labor supply are not highly correlated. There is a large

literature on assortative mating, with many researchers finding strong correlations

in observable characteristics of a husband and wife (see, e.g., Mare, 1991, Rose,

2001, Lam and Schoeni, 1993). I find that there is a strong correlation between the

labor supply of a woman’s mother and mother-in-law, which is more consistent with

previous findings in assortative mating.

Lam and Schoeni (1993) present a model whereby a man’s father-in-law’s edu-

cation level is a strong predictor of the man’s earnings because it is correlated with

unobserved characteristics of the man. In fact, in their empirical results using data

from Brazil, they find that father-in-law’s education level is a better predictor of

a man’s wage than the education level of his own father, once the man’s schooling

and other demographics are included as covariates. They present a model of as-

sortative mating that suggests that unobserved characteristics of a man are more

correlated with the man’s father-in-law’s schooling, since the effects of a man’s fa-

ther’s schooling on his wages can be more completely captured through his own

schooling level.

Future work will explore how a similar model to Lam and Schoeni’s, which

explicitly models the marriage market and assortative mating, can be employed to

characterize the relationships between a woman’s mother-in-law’s labor supply, her

own mother’s labor supply, and her own choice to work. If the mother-in-law’s labor
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force participation is correlated with unobserved characteristics of the woman, in a

similar fashion to the wage equation in Lam and Schoeni (1993), then an alternative

model of female labor force dynamics can be generated. This model would more

explicitly address the role of assortative mating and of a woman’s own preference

formation. The empirical results presented here may better fit this type of model.

While the results presented here do not point to a clear answer about the rela-

tive strength of the relationships between mothers and daughters and mothers-in-law

and daughters-in-law work behavior, they do suggest that the empirical results pre-

sented in FFO are not conclusive. FFO’s model of preference formation in sons

suggests that there is a causal link between a man’s mother’s work experience while

he was growing up and the labor force participation of his wife. While some speci-

fications support this story, the results are not robust to small changes in variable

definitions and do not hold for all survey years within the data sets. In addition,

the link between a woman’s own mother’s work experience while she was growing

up and her labor force participation is found to be equally important.

The regressions presented in FFO and in this paper may be confounded by

other elements of a woman’s decision to enter the labor force which either mask or

bias upward the estimated intergenerational correlations. While FFO do add con-

trols for wife’s age, these level effects may not adequately account for the changing

life cycle labor force participation profile of women who may leave the labor force

temporarily for child-rearing. The data span over 25 years of surveys, during which

time the labor force participation of women (and mothers) has changed in ways that

may not be properly controlled for by simply adding age. A more thorough study
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might investigate how the marginal effects differ by age cohorts (the preliminary

analysis presented here suggests that this may be quite important) and by birth co-

horts. Unfortunately, data constraints make distinguishing age versus cohort effects

exceedingly difficult.

Another issue not accounted for in FFO (or in this essay) is selection into

marriage and divorce. It is especially troubling that no age restriction was used

in FFO’s FLFPMI analysis, so women in the sample that reported ages as young

as 15 years old were included. Although the correlation between young wives and

their mothers-in-law may be an important piece, it seems likely that this relation-

ship differs, not only throughout the lifecycle, but also between people who differ

in unobserved ways that might also make them marry younger or be more likely to

divorce. FFO emphasize the importance of religion in a woman’s labor force partic-

ipation decisions, since some religions may encourage or discourage woman to work.

Since religion is likely to be highly correlated across generations, it might be an

important mechanism by which mother and/or mother-in-law work behavior is cor-

related with a woman’s labor force decisions. Though efforts were made to control

for level effect differences across four major religion categories (including “other”),

selection effects into the sample due to underreporting of religion may bias upward

the marginal effects of maternal work experience.

The SIPP results (and the FLFPMI in some specifications) demonstrate that

when the working behavior of both the mother and mother-in-law are included, the

coefficients decline relative to when they are included alone. Because of assortative

mating, we would expect mother and mother-in-law work experience to be at least
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somewhat correlated, so the inclusion of both should have this diminishing effect.

However, in FFO the marginal effect of the husband’s mother’s work behavior actu-

ally increases when the wife’s control variables (which include wife’s mother’s work

behavior) are included. As FFO report, when mother’s work is defined as “all the

time” the correlation between mothers and mothers-in-law is “basically zero” at 0.05,

though I find this is significant at the 5 percent level. In the SIPP, the correlation

between mother and mother-in-law’s work experience is 14.2 percent (significant at

the 1 percent level). FFO describe their test as finding no evidence for the “net-

work effect”, where mother-in-law’s work behavior is only significant because it is

correlated to the mother’s work behavior. More work is needed to establish how the

correlation between mother and mother-in-law work experience is different by age

and through time and especially how this correlation may confound measurement of

the effects of mother and mother-in-law work behavior on a woman’s work decisions.

While FFO present an interesting model to explain a mechanism by which

women’s labor force participation increases over time, the empirical findings are not

as robust to specification changes as is indicated in the text. I find that a significant

conditional correlation between mother-in-law and daughter-in-law work behavior

can be found across several different surveys, but the level may be smaller and

less robust than the results in FFO indicate. In addition, the importance of own

mother’s work experience in a woman’s decision to work should not be discredited

due to the FLFPMI results. The mother/daughter conditional correlation is found

in both the GSS and the SIPP and is reasonably robust to specification changes.

In light of this, the intergenerational effects posited in Section III of FFO can be
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reinterpreted as including the effect of intergenerational transmission from mothers

to daughters in addition to that from mothers to sons. Future work will explore

how a model based on assortative mating can more clearly characterize female labor

force dynamics and can better explain the empirical findings.
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Table 4.1: Comparison of GSS Samples

FFO Appendix 1 Replication Full Sample
Sample With Missing

N = 189 N = 188 Values
Variable Mean S.D. Mean S.D. N Mean S.D.
WIFEWORK .53 .50 .53 .50 406 .54 .50
MAWORKH .50 .50 .49 .50 254 .52 .50
HUSB AGE 41.00 6.40 41.40 6.93 414 42.46 7.59
HUSB EDUC 14.40 3.00 14.27 2.88 414 13.90 2.85
HUSB INCOME 33.40 21.20 32.35 20.28 366 32.73 22.36
WIFE AGE 38.00 5.70 38.35 6.01 414 39.06 6.13
WIFE EDUC 13.60 2.70 13.53 2.59 408 13.44 2.41
CHILDREN 2.20 1.30 2.21 1.39 413 2.24 1.38
MAEDUCH 11.30 3.10 11.29 3.16 380 11.31 3.05
PAEDUCH 11.10 3.80 11.02 3.78 346 11.08 3.70
BABIES .37 .69 .37 .69 411 .36 .68

Notes: Variable definitions match the descriptions in FFO as closely as possible. WIFEWORK =
1 if the woman is employed full time or is temporarily away from her job due to illness, vacation,
or strike. MAWORKH = 1 if the husband’s mother worked for pay for as long as one year after he
was born and before he was fourteen. HUSB INCOME is the labor earnings of the male respondent
in 1986 dollars, measured in thousands. CHILDREN is the number of children the respondent has
ever had and BABIES is the number of children present in the household under six. The education
variables are the number of years of schooling and have values between 0 and 20.
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Table 4.4: GSS Alternative Mother’s Work Variables and
Women’s Results

MEN SAMPLE (Mothers-in-law)
(1) (2) (3) (4) (5) (6)

MAWORK -.006
(.024)

MAWKBABY .005
(.050)

MAWKBORN .114***
(.042)

MAWK16 .006
(.047)

MAWRKGRW .011
(.034)

MAWORK14 .178***
(.064)

HUSB AGE -.002 -.001 -.003 .000 .001 .002
(.003) (.006) (.005) (.006) (.003) (.007)

HUSB EDUC .006 .006 .010 .004 -.008 .001
(.004) (.008) (.007) (.008) (.006) (.011)

WIFE AGE -.003 .001 -.001 -.000 -.006 -.010
(.003) (.007) (.006) (.007) (.005) (.009)

BABIES -.177*** -.154*** -.133*** -.159*** -.156*** -.279***
(.020) (.042) (.033) (.042) (.028) (.058)

Observations 2,093 461 599 479 951 262
Pseudo R2 .058 .055 .034 .055 .030 .086
Log/likelihood -1356.21 -285.33 -397.70 -297.16 -63.25 -165.34

continued on next page
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Table 4.4: continued

WOMEN SAMPLE (Mothers)
(1) (2) (3) (4) (5) (6)

MAWORK .053**
(.023)

MAWKBABY .020
(.042)

MAWKBORN .080**
(.040)

MAWK16 .019
(.042)

MAWRKGRW .065**
(.032)

MAWORK14 .096
(.059)

HUSB AGE -.004 -.002 -.001 -.002 .001 .008
(.002) (.004) (.004) (.004) (.003) (.006)

HUSB EDUC -.004 -.006 -.003 -.005 -.016*** -.016
(.003) (.007) (.007) (.007) (.006) (.011)

WIFE AGE -.001 -.006 -.008 -.006 -.003 -.007
(.003) (.006) (.006) (.006) (.004) (.008)

BABIES -.155*** -.120*** -.223*** -.114*** -.202*** -.171***
(.019) (.036) (.034) (.034) (.026) (.053)

Observations 2,433 611 748 632 1,128 304
Pseudo R2 .043 .038 .059 .037 .061 .056
Log/likelihood -1594.14 -395.68 -485.93 -409.39 -724.73 -195.57

Robust standard errors in parentheses, * significant at 10%; ** significant at 5%; *** signif-
icant at 1%. Marginal effects from probit models are reported. The dependent variable is whether
the wife worked. Year fixed effects are included in each specification, but are not reported.

171



Table 4.5: FLFPMI Sample

Regression Sample Full Sample
(FFO)

(1) (2)

Variable N Mean S.D. N Mean S.D.
WIFEWORK 969 0.45 0.50 1574 0.46 0.50
MAWORKH 969 0.12 0.33 1747 0.12 0.32
MAWORKW 969 0.09 0.29 1760 0.11 0.31
HUSB AGE 969 35.92 9.01 1786 37.01 9.35
HUSB EDUC 969 14.53 2.70 1789 13.88 2.91
HUSB INCOME 969 23.14 13.74 1682 22.88 13.83
WIFE AGE 969 33.82 8.89 1786 34.65 9.15
WIFE EDUC 969 13.77 2.17 1787 13.22 2.25
CHILDREN 969 1.92 1.48 1784 2.09 1.61
MAEDUCH 969 11.49 2.97 1489 11.37 2.99
PAEDUCH 969 11.36 3.68 1411 11.11 3.78
MAEDUCW 969 11.68 2.76 1586 11.39 2.84
PAEDUCW 969 11.60 3.57 1522 11.26 3.71

Note that the first column of this table matches the means and standard deviations presented in
column 2 of Appendix 1 in FFO, with the exception of HUSB INCOME. The second column is
the raw means in the sample without restricting so that each variable is present. WIFEWORK =
1 if the wife was working for pay at the time of the interview. MAWORK = 1 if the husband (or
wife)’s mother worked “all the time” when he (or she) was growing up.
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Table 4.6: Replication of Columns (i)-(iv) of Table II FFO, FLFPMI Sample

Dependent variable is WIFEWORK
(1) (2) (3) (4)

MAWORKH .093** .103*** .091** .089**
(.041) (.039) (.042) (.042)

HUSB AGE .004** .009** .011***
(.002) (.004) (.004)

HUSB EDUC -.002 -.025*** -.028***
(.005) (.006) (.007)

HUSB INCOME -.012*** -.013*** -.012***
(.001) (.001) (.001)

WIFE AGE -.002 -.005 -.002
(.001) (.004) (.004)

WIFE EDUC .014** .048*** .042***
(.006) (.008) (.008)

CHILDREN -.065***
(.011)

Observations 1454 1535 1453 1449
Pseudo R2 .060 .007 .081 .098
Log/likelihood -943.75 -1052.14 -921.96 -902.50

Robust standard errors in parentheses, * significant at 10%; ** significant at 5%; *** significant
at 1%
Marginal effects from probit models are reported. The dependent variable is whether the wife
worked.
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Table 4.8: FLFPMI Frequencies of Mothers’ Work Behavior

Husband Wife
MOTHER’S WORK Freq Pct Cum. Freq Pct Cum.
WHEN GROWING UP Percent Percent
(1) ALL THE TIME 205 11.73 11.73 188 10.68 10.68
(2) MOST OF TIME 195 11.16 22.9 227 12.9 23.58
(3) ABOUT HALF 188 10.76 33.66 193 10.97 34.55
(4) LESS THAN HALF 242 13.85 47.51 275 15.63 50.17
(5) NEVER 917 52.49 100 877 49.83 100

Total 1,747 100 1,760 100
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Table 4.10: FLFMPI Age Test Tabulations

HUSBAND
WIFE AGE WIFE AGE WIFE AGE

15-29 30-50 51-55
MOTHER’S WORK Freq Pct Freq Pct Freq Pct
(1) ALL THE TIME 80 13.16 116 11.13 9 9.57
(2) MOST OF TIME 75 12.34 110 10.56 9 9.57
(3) ABOUT HALF 82 13.49 101 9.69 5 5.32
(4) LESS THAN HALF 104 17.11 129 12.38 9 9.57
(5) NEVER 267 43.91 586 56.24 62 65.96

Total 608 100 1,042 100 94 100

WIFE
WIFE AGE WIFE AGE WIFE AGE

15-29 30-50 51-55
MOTHER’S WORK Freq Pct Freq Pct Freq Pct
(1) ALL THE TIME 60 9.82 124 11.8 4 4.21
(2) MOST OF TIME 92 15.06 125 11.89 10 10.53
(3) ABOUT HALF 86 14.08 101 9.61 6 6.32
(4) LESS THAN HALF 119 19.48 146 13.89 10 10.53
(5) NEVER 254 41.57 555 52.81 65 68.42

Total 611 100 1,051 100 95 100
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Table 4.11: FLFPMI Age Test Regressions

Ages Ages Ages Ages Ages Ages
15-29 30-50 51-55 15-29 30-50 51-55
(1) (2) (3) (4) (5) (6)

MAWORKH .074 .151*** -.112
(.069) (.057) (.185)

MAWORKW .169** -.083 -.291*
(.075) (.054) (.149)

MAWORKH2 -.051 .065 -.018
(.055) (.043) (.153)

MAWORKW2 .123** -.025 -.215
(.054) (.042) (.141)

MAWORKH3

MAWORKW3

MAWORKH4

MAWORKW4

HUSB AGE .011 .011** .103** .012 .011** .090**
(.008) (.005) (.042) (.008) (.005) (.040)

HUSB EDUC -.046*** -.021*** -.048* -.047*** -.021*** -.048*
(.013) (.008) (.027) (.013) (.008) (.027)

HUSB INC -.017*** -.011*** -.010* -.017*** -.011*** -.010*
(.003) (.002) (.006) (.003) (.002) (.005)

WIFE AGE .007 .004 -.073 .005 .004 -.061
(.013) (.005) (.059) (.013) (.005) (.059)

WIFE EDUC .046*** .035*** .019 .046*** .036*** .023
(.017) (.010) (.038) (.017) (.010) (.038)

CHILDREN -.150*** -.058*** -.022 -.153*** -.057*** -.012
(.030) (.014) (.035) (.029) (.014) (.034)

Observations 503 857 68 503 857 68
Pseudo R2 .143 .100 .158 .143 .095 .156
Log/likelihood -298.90 -53.22 -38.45 -298.81 -533.21 -38.55

continued on next page
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Table 4.11: continued

Ages Ages Ages Ages Ages Ages
15-29 30-50 51-55 15-29 30-50 51-55
(7) (8) (9) (10) (11) (12)

MAWORKH

MAWORKW

MAWORKH2

MAWORKW2

MAWORKH3 .028 .099*** .049
(.049) (.038) (.145)

MAWORKW3 .023 -.048 -.117
(.049) (.038) (.139)

MAWORKH4 .032 .073** .015
(.048) (.036) (.136)

MAWORKW4 .049 -.057 -.181
(.049) (.036) (.133)

HUSB AGE .010 .013*** .091** .010 .013*** .096**
(.008) (.005) (.038) (.008) (.005) (.040)

HUSB EDUC -.046*** -.021*** -.051* -.046*** -.021*** -.058**
(.013) (.008) (.028) (.013) (.008) (.029)

HUSB INC -.017*** -.011*** -.008 -.016*** -.011*** -.007
(.003) (.002) (.005) (.003) (.002) (.006)

WIFE AGE .007 .002 -.072 .008 .002 -.068
(.013) (.005) (.056) (.013) (.005) (.058)

WIFE EDUC .044** .036*** .022 .044** .037*** .031
(.017) (.010) (.037) (.017) (.010) (.038)

CHILDREN -.151*** -.057*** -.010 -.152*** -.057*** -.012
(.029) (.014) (.034) (.029) (.014) (.036)

Observations 503 857 68 503 857 68
Pseudo R2 .136 .100 .146 .137 .099 .159
Log/likelihood -301.40 -53.41 -39.02 -30.97 -531.32 -38.44

Robust standard errors in parentheses, * significant at 10%; ** significant at 5%; *** sig-
nificant at 1%. Marginal effects of the probit on whether a wife works are presented. MAWORK
= 1 if mother worked “all the time”, MAWORK2 = 1 if mother worked “all the time” or “most of
the time”, MAWORK3 = 1 if mother worked “all the time”, “most of the time”, or “about half”,
and MAWORK4 = 1 if mother worked “all the time”, “most of the time”, “about half”, or “less
than half.”
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Table 4.12: SIPP Means - Part 1

Full Sample Restricted Sample on Wife’s Age
(N = 12,869)

Wives Wives Wives
25 - 29 30 - 50 51 - 64
(N = 1,894) (N = 8,122) (N = 2,853)

Variable Mean S.D. Mean S.D. Mean S.D. Mean S.D.
WIFEWORK 0.648 0.478 0.673 0.469 0.693 0.461 0.504 0.500
MAWORKH 0.380 0.485 0.463 0.499 0.397 0.489 0.278 0.448
MAWORKW 0.413 0.492 0.488 0.500 0.434 0.496 0.301 0.459
HUSB AGE (25-64) 43.502 10.797 30.248 4.007 41.474 7.424 58.072 4.196
WIFE AGE (25-64) 41.079 10.433 27.167 1.385 38.942 5.925 56.398 3.683
CHILDREN 2.304 1.489 1.344 1.089 2.241 1.322 3.119 1.721
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Table 4.13: SIPP Means - Part 2

FULL SAMPLE
Never Some Elem. High School Some College Total

Attended or High Degree

HUSB EDUC
0 2,105 4,411 6,353 12,869

0.00% 16.36% 34.28% 49.37% 100.00%

WIFE EDUC
0 1,786 5,511 5,572 12,869

0.00% 13.88% 42.82% 43.30% 100.00%

MAEDUCH
179 3,179 3,831 1,617 8,806

2.03% 36.10% 43.50% 18.36% 100.00%

PAEDUCH
188 3,691 2,752 1,838 8,469

2.22% 43.58% 32.49% 21.70% 100.00%

MAEDUCW
176 3,888 3,970 1,784 9,818

1.79% 39.60% 40.44% 18.17% 100.00%

PAEDUCW
182 4,113 2,922 2,125 9,342

1.95% 44.03% 31.28% 22.75% 100.00%
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