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My dissertation consists of two papers covering distinct topics within Microe-

conomic Theory. The first chapter is drawn from Matching Theory. One of the

oldest but least understood matching problems is Gale and Shapley’s (1962) “room-

mates problem”: is there a stable way to assign 2N students into N roommate pairs?

Unlike the classic marriage problem or college admissions problem, there need not

exist a stable solution to the roommates problem. However, the traditional notion

of stability ignores the key physical constraint that roommates require a room, and

it is therefore too restrictive. Recognition of the scarcity of rooms motivates replac-

ing stability with Pareto optimality as the relevant solution concept. This paper

proves that a Pareto optimal assignment always exists in the roommates problem,

and it provides an efficient algorithm for finding a Pareto improvement starting from

any status quo. In this way, the paper reframes a classic matching problem, which

previously had no general solution, to become both solvable and economically more

meaningful.

The second chapter focuses on the role networks play in market and social



organization. In network theory, externalities play a critical role in determining

which networks are optimal. Adding links can create positive externalities, as they

potentially make distant vertices closer. On the other hand, links can result in

negative externalities if they increase congestion or add competition. This paper will

completely characterize the set of optimal and equilibrium networks for a natural

class of negative externalities models where an agent’s payoff is a function of the

degree of her neighbors. These results are in sharp contrast to the optimal and

equilibrium networks for the standard class of positive externalities models where

payoff is a function of the distance two agents are apart. This highlights the role

externalities play in optimal and equilibrium network structure.
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Chapter 1

Introduction

Matching Theory, along with Auction Theory, are two of the great success

stories of microeconomic theory. One of the original matching theory papers was

Gale and Shapley’s 1962 paper College Admission and the Stability of Marriage.

This paper consists of a simple but interesting problem, a clever algorithm, and the

discovery that the solution space has a particularly desirable attribute. Theorists

continued to study the problem simply because it was interesting and the results

they discovered were so elegant. Eventually, about twenty years after the prob-

lems were introduced, economists started to recognize that the knowledge gained

from solving these problems could be applied to designing markets, specifically the

doctor-hospital resident market. In this way, matching theory has followed much

of mathematics. Academics studied the problems for years because the properties

discovered are beautiful, and eventually they recognized ways in which this elegant

theory can be applied.

The progress made in matching theory is almost completely contained in the

subfield of two-sided Matching Theory. In two-sided matching theory, we explore

how to best pair two types of distinct agents. This is commonly called the Marriage

Problem. Just as natural, and in fact more general, is the problem of how to best

pair two agents of the same type. This question, called the Roommates Problem,
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has received almost no attention from the literature. This is because the very paper

that introduced it, Gale and Shapley (1962), proved that there does not need to

exist a stable solution to the Roommates Problem while there always exists a stable

solution to the Marriage Problem.1 Economists accepted that an equilibrium need

not exist to the Roommate Problem and turned their attention elsewhere.

The second chapter in my dissertation seeks to rectify this situation. An

equilibrium does always exist in the Roommates Problem, but economists have

simply been looking in the wrong place. I introduce an alternative solution to the

classic formulation of the Roommates Problem. I prove that an equilibrium always

exists under this alternate notion of stability, and I discuss several algorithms for

making an equilibrium assignment and improving one that is in disequilibrium.

This is an original and significant contribution to the field of economics. I have

reframed a classic problem, which previously had no general solution, in a way that

is economically more meaningful and now solvable. This is particularly important

in the context of market design. As with the Marriage Problem, the mechanisms we

study for the Roommates Problem have the potential to be applied to help mitigate

market failure in some specific markets.

The third chapter in my dissertation looks at a different subfield of microe-

conomic theory, Network Theory. Classical economic theory often assumes a con-

tinuum of agents in markets. There are situations where this is both convenient

and appropriate; however, the world is fundamentally a discrete place. There is no

1A matching is stable if no two unassigned agents prefer each other to their current
assignment.
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market with a continuum of agents, and there are many situations where the specific

combinatorial characteristics of the network are critical to the economic character-

istics of the market. For example, a car manufacturer does not buy brakes from a

market. Rather it has long term relationships with a few manufacturers. Moreover,

there are relatively few manufacturers of both cars and brakes. As such, the specific

relationships that the manufacturers do and do not have are critical to understand-

ing the market. It is precisely in this situation where a graph, and not a continuum,

is the appropriate way to model the market.

While Network Theory has received a lot of attention in recent years, there

has been little attention paid to how the choice of utility function affects which

networks will emerge. This is the focus of the third chapter in my dissertation. I am

able to completely characterize one of the most natural classes of utility functions:

when the payoff an agent receives is a nonincreasing function of the degree of her

neighbors. This is meant to model congestion or competition. An agent receives a

payoff for the relationships she has, but these relationships are less beneficial the

more people she has to compete with. The classic example in the literature is a

model of co-authors. The benefit an academic receives from having a co-author is

decreasing in the number of co-authors that person has as she will have less time to

devote to the project.

This characterization of degree based utility models is important for its own

sake, but especially as a contrast to the known results for distance based utility

functions. A utility function is distance based if the payoff two agents receive from

being connected is a nonincreasing function of the distance they are apart in the
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network. The networks I find to be optimal and stable for a degree based function are

strikingly different from the optimal networks for a distance based utility function.

The fact that both models are intuitive yet lead to dramatically different optimal

networks means that when a researcher is attempting to model an economic situation

with a network based model, she needs to be particularly careful how she chooses

the underlying utility function.
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Chapter 2

The Roommates Problem Revisited
One of the oldest but least understood matching problems is Gale and
Shapley’s (1962) “roommates problem”: is there a stable way to assign
2N students into N roommate pairs? Unlike the classic marriage prob-
lem or college admissions problem, there need not exist a stable solution
to the roommates problem. However, the traditional notion of stability
ignores the key physical constraint that roommates require a room, and
it is therefore too restrictive. Recognition of the scarcity of rooms moti-
vates replacing stability with Pareto optimality as the relevant solution
concept. This paper proves that a Pareto optimal assignment always
exists in the roommates problem, and it provides an efficient algorithm
for finding a Pareto improvement starting from any status quo. In this
way, the paper reframes a classic matching problem, which previously
had no general solution, to become both solvable and economically more
meaningful.

2.1 Introduction

Economics is often defined as the study of how to efficiently allocate scarce

resources. As such, assignment problems are at the heart of economics. Two-sided

matching theory asks how to best match agents of two distinct types. Examples

include students and schools, residents and hospitals, or kidneys and people in need

of a transplant. A different but related question asks how to best pair two agents

of the same type. Examples of these one-sided matches include roommates at a

university, lab partners in a science class, and partners in a police force. Two-

sided matching theory has been well studied by economists who have created an

elegant and applicable theory. One-sided matching theory has been comparatively
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neglected1.

This neglect is likely due to the very paper that introduced it. In their classic

1962 article College Admissions and the Stability of Marriage, Gale and Shapley

introduce both the marriage problem and the roommates problem. While Gale and

Shapley prove a stable match always exists in a two-sided market, they introduce

the roommates problem to demonstrate that a stable pairing need not exist in a one-

sided market. Since a stable match need not exist, economists have been stymied in

their attempts to find and analyze solutions to this important assignment problem.

Unfortunately, this has led many economists to turn their attention elsewhere, and

as a result, the economics literature on this classic problem is sparse.

This paper starts by questioning if stability is the correct equilibrium concept.

Gale and Shapley define a set of marriages as unstable if either there exist a man

and woman who are not married but prefer each other to their current spouse or

there exists someone who would prefer to be single than married to their current

partner. Stability in the roommates problem is borrowed from the marriage model.

A pairing is unstable if two students prefer to live with each other rather than their

current assignment.2 Stability fits the marriage model so well that no other solution

1Roth and Sotomayor (1990) is an excellent introduction to the two-sided matching
literature. Gusfield and Irving (1989) is also a nice introduction. Interestingly, although
the economics literature on the roommates problem is very small, there is a comparatively
large computer science literature on it. Roth and Sotomayor, two economists, mention
the roommates problem only as an example. In contrast, Gusfield and Irving, two com-
puter scientists, devote nearly a quarter of the book to the roommates problem. Finding
a traditionally-stable roommate pairing (if one exists) is considered a “hard” algorithmic
question. The bulk of their presentation is a polynomial-time algorithm for finding a
traditionally-stable pairing when one exists. Tan (1991) establishes a necessary and suffi-
cient condition for the existence of a stable pairing. Chung (2000) extends Tan’s result to
a sufficient condition for the existence of a stable pairing when preferences are weak.

2I am interested in the case where each student is required to have a roommate. Con-
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concept has been needed or suggested. The same is not true of the roommates

problem. Roommates face an additional constraint that married couples do not;

roommates must have a room in which to live. A student may prefer another to

her assigned roommate; however, she needs a room in which to live and presumably

does not have the right to evict her current roommate. Therefore, the traditional

notion of stability is too restrictive.

I will present Gale and Shapley’s original example to highlight this point.

Example (Gale and Shapley, 1962): A Stable Assignment Need Not Exist

Suppose there are four students: α, β, γ and δ. α’s top choice is β, β’s top

choice is γ, γ’s top choice is α, and all three rank δ last. Gale and Shapley define an

assignment to be unstable if two students are not currently roommates but prefer

each other to their current assignment. Under this definition, there does not exist

a stable assignment since whoever is assigned to δ prefers the other two students to

δ and is the top choice of one of these students. In the words of Gale and Shapley:

“...whoever has to room with δ will want to move out, and one of the

other two will be willing to take him in.”

While one of the other two may be willing to take him in, it is quite a different

matter whether this student is able to take him in. In order to take him in, either

his current roommate must voluntarily leave, be evicted, or an additional room must

be available. With a scarcity of rooms and with no student willing to change his

sequently, I do not include in my definition of stability the additional requirement that
each student prefers her assignment to being unassigned.
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assignment to δ, the original assignment is an equilibrium after all.

If an agent can dissolve her partnership unilaterally, then stability is the nat-

ural equilibrium concept. If she finds someone she prefers who also prefers her, then

both parties will dissolve their current partnership and pair together. As a result,

the original assignment is not an equilibrium. However, if a partnership requires

bilateral agreement to dissolve, then two agents wanting to change their assignment

is not enough to disturb the original pairing. If bilateral agreement is required, an

assignment will only be changed if all involved parties agree. Since an agent will

only agree if the new assignment makes her better off, any deviation from the orig-

inal set of assignments must be a Pareto improvement. Therefore, when bilateral

agreement is required to dissolve a partnership, Pareto optimality, not stability, is

the proper equilibrium concept. If an assignment is Pareto optimal, then there is

no reassignment that all parties will consent to; therefore, the original assignment

will not be disturbed.

Most of matching theory studies assignments that can be unilaterally dissolved.

Assignments which can only be dissolved with bilateral agreement are an important

but little studied second category. As argued above for the roommates problem,

an essential but scarce input creates the need for bilateral agreement. Additional

examples include police officers who require a police car to do patrol and partners

in a science class who must work at a common laboratory. The same requirement

can be created by a legally binding contract that can only be modified by mutual

consent. For example, many professional athletes have no-trade clauses in their

contract which they may waive at their discretion. In the presence of such clauses,
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the assignment of an athlete to a team can only be disturbed when all relevant

parties approve the trade.

This paper focuses on the roommates problem as reconsidered using the equi-

librium concept of Pareto optimality. I will show there always exists an efficient

assignment. Therefore, unlike the case where stability is applied, an equilibrium

always exists in the roommates problem. Moreover, I show an inefficient assignment

can always be Pareto improved to an efficient one. These results motivate several

questions. If an assignment has not been made, how should we make it? If an

assignment has been made, how can we determine if the assignment is efficient? If

an assignment is inefficient, how can we Pareto improve it? These questions are the

focus of this paper. In particular, the last two turn out to be complicated. To an-

swer them I introduce an algorithm, The Roommate Swap, which identifies whether

an assignment is inefficient and finds a Pareto improvement when it is.

Much of the analysis in this paper relies on tools from graph theory. Networks

are a natural way of representing assignment problems, particularly one like the

roommates problem where two agents are paired. In particular, my algorithm relies

heavily on applying Edmund’s Blossom algorithm3 to the graph theoretic represen-

tation of the roommates problem.

The paper is organized as follows. Section 2 formally introduces the problem

and proves existence. Section 3 details the Roommate Swap algorithm. Section 4

examines the strategic implications of several assignment mechanisms. Section 5

looks at extensions and modeling issues, and section 6 concludes. The appendix

3Edmunds (1965).
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provides several technical proofs and a discussion of the computational complexity

of the Roommate Swap algorithm.

2.2 The Roommates Problem Revisited

We wish to assign 2N students to M rooms. Students have preferences over

all other students that are strict, complete, and transitive. All rooms are identical

and students have no preference as to which room they are assigned.

An assignment is a function that pairs students. Every student is assigned to

exactly one other student, and assignments are symmetric.

Definition 1. Let S be a set of students with |S| = 2N . A function µ : S → S is

an assignment of S if:

1. µ(s) 6= s.

2. µ(s1) = µ(s2)⇒ s1 = s2.

3. µ(µ(s)) = s.

The traditional equilibrium concept is based on the notion of a blocking pair.

Definition 2. Two students s and t are a blocking pair to an assignment µ if

µ(s) 6= t but s �t µ(t) and t �s µ(s). An assignment is stable if there does not

exist a blocking pair4.

4The traditional definition of stability also includes the constraint that the person
prefers her assignment to being unassigned. In my model every student must be assigned
to some room, so I omit this additional constraint.
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As argued in the introduction, this is not the proper equilibrium concept for

the roommates problem. A roommate assignment is an equilibrium if it is Pareto

optimal.

Definition 3. An assignment µ is inefficient if there exists a different assignment

µ′ such that for every student s, µ′(s) �s µ(s). An assignment is Pareto optimal

(efficient) if it is not inefficient.

Since preferences are strict, if µ′ Pareto improves µ, then at least four stu-

dents must strictly prefer µ′ to µ. As the following result proves, the set of stable

assignments is a subset of the set of efficient assignments.

Proposition 1. If an assignment is stable, then it is Pareto efficient.

Proof. I will prove the contrapositive. If an assignment µ is inefficient, then there

exists an assignment µ′ that Pareto improves µ. Let s be any student such that

µ(s) 6= µ′(s). Since µ′ is a Pareto improvement of µ, both µ′(s) �s µ(s) and

s �µ′(s) µ(µ′(s)). Therefore, s and µ′(s) form a blocking pair to µ.

Note that the reverse direction need not hold. An assignment can be Pareto

efficient but not be stable. In Gale and Shapley’s original example, no assignment

is stable yet every assignment is Pareto efficient.

With the following assumptions, the general case of 2N students and M rooms

reduces to the more familiar case of 2N students and N rooms:

Assumption 1. Each student prefers having a room to not having a room.
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Assumption 2. Each student would rather have a room to herself than to be as-

signed a roommate.

Assumption 3. At most two students can be assigned to a room.

Note that ifN > M , some students will not be assigned a room. Such a student

cannot be involved in a Pareto improving switch by Assumption 1. Similarly, if N <

M , a number of students will not be assigned a roommate. Assumption 2 implies

such a student will never be involved in a Pareto improving switch. Therefore, the

only set of students relevant for this problem are those who have been assigned a

roommate. By Assumption 3, this set has exactly twice as many students as rooms.

Without loss of generality, for the rest of the paper I will assume there are 2N

students and N rooms.

Gale and Shapley show that an assignment without a blocking pair need not

exist. However, an efficient assignment always exists.

Proposition 2. An efficient roommate assignment always exists.

Proof. (Random serial dictatorship5) Assign every student a priority (randomly or

otherwise). Assign the student with highest priority her most preferred roommate

and remove them both from consideration. From students who remain, assign the

student with highest priority her most preferred roommate among those students

that are unassigned. Remove these two from consideration and repeat until no

5Abdulkadiroglu and Sonmez (1998) is a very nice paper on the Random Serial Dic-
tatorship mechanism. They analyze it in the context of a housing allocation problem
where n students are to be assigned to n rooms, but it is rather interesting how robust
the Random Serial Dictatorship is. The same mechanism can be used to make a Pareto
efficient assignment of a student and a room, two students to be roommates, three or more
students to be roommates, students to be roommates and the room they will live in, etc.
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students remain. This assignment is Pareto efficient. To see this, note that if a

student is involved in a Pareto improvement, then necessarily her roommate must

be involved as well. The student with highest priority, s1, receives her top choice,

s2, so neither she nor her choice can be involved in a Pareto improvement. Let s3 be

the student who chooses second. Since neither s1 or s2 are involved in any Pareto

improvements, if s3 is part of a Pareto improvement she must be reassigned to a

student among S \ {s1, s2}. However, s3 already receives her top choice among this

set. Therefore, s3 (and consequently the student she chooses) is not part of any

Pareto improvement. Similarly, the student who chooses third is not part of any

Pareto improvement, and so on.

The following is a stronger statement and implies Proposition 1. It is stated

to motivate the Roommate Swap algorithm.

Proposition 3. If an assignment µ is inefficient, there exists an efficient assign-

ment µ′ which Pareto improves µ.

The proof is straightforward but is included as it motivates the need for the

Roommate Swap Algorithm.

Proof. Let µ be an assignment and PI(µ) be the set of strict Pareto improvements

of µ. Transitivity of preference implies ∀µ′ ∈ PI(µ), P I(µ′) ⊆ PI(µ). Since µ′ ∈

PI(µ) \ PI(µ′), P I(µ′) ⊂ PI(µ). Since there are only a finite number of possible

assignments, the following chain must converge to the empty set:

PI(µ) ⊃ PI(µ1) ⊃ PI(µ2) ⊃ . . . , where µi ∈ PI(µi−1)

13



In particular, there must exist an j such that PI(µj) = ∅. µj is an efficient assign-

ment which Pareto improves µ.

Put simply, if µ is not efficient, there exists a Pareto improvement µ1. µ1 is

either efficient or can be Pareto improved to µ2, etc. We must eventually reach

an efficient assignment, and since preferences are transitive, this assignment must

Pareto improve µ.

Propositions 2 and 3 motivate two distinct but related problems. The first

problem is how to make an efficient assignment when no assignment has yet been

made. The second is how to Pareto improve an inefficient assignment to an efficient

one. Although these two problems are very similar, it is surprising how different

these processes end up being. The serial dictatorship used in Proposition 2 to

show existence provides a linear-time procedure for finding an efficient assignment.

In contrast to the ease of finding an efficient assignment, it is rather difficult to

even determine if any given assignment is efficient let alone how to improve it.

Preferences between students need not interact when assigning students, but they

interact directly when determining if one assignment Pareto improves another. This

makes it significantly more complicated to determine if an assignment is efficient

than it is to simply find an efficient assignment.

At this point the reader may object as there is an obvious and trivial algorithm

to determine if an assignment is efficient. Namely, one could simply look at each

possible reassignment and determine if it Pareto improves the original. If no as-

signment Pareto improves the original, then the original is efficient. Unfortunately,

14



Students Number of Possible Assignments

2 1

4 3

6 15

8 105

10 945

12 10,395

14 135,135

16 2,027,025

18 34,459,425

20 654,729,075

30 6,190,283,353,629,370

2N (2N)!
2N (N !)

this algorithm is of no practical use as the growth of the number of assignments

relative to students being assigned is factorial. Specifically, given 2N students there

exists (2N)!
2N (N !)

= (2N − 1)(2N − 3)(2N − 5) · · · (3)(1) many ways of assigning them

to be roommates.6 Even for small N, this is prohibitively large. For example, there

exists on order of 6 quadrillion (6 × 1015) many ways to assign 30 students to be

roommates. Therefore, a more sophisticated process is required.

6A short proof appears in the Appendix.
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2.3 The Roommate Swap Algorithm

This section demonstrates an O(n2) algorithm for determining if an assignment

is efficient. Moreover, when an assignment is inefficient I provide anO(n3) algorithm,

The Roommate Swap, for finding a Pareto improvement.7 Much of the analysis uses

tools from graph theory, so it is necessary to present some definitions and results.

This document is intended to be self-contained, but I refer the reader to Introduction

to Graph Theory, second edition, by Douglas West for a more detailed analysis of

graph theory.

A graph consists of vertices and edges between them. For my purposes, all

edges are undirected.

1. Two vertices are adjacent if there is an edge between them.

2. The degree of a vertex v, denoted d(v), is the number of vertices it is adjacent

to.

3. A path is a sequence of vertices {v1, v2, . . . , vk} such that no vertex appears

twice and any two consecutive vertices are adjacent.

4. A cycle is a sequence of vertices {v1, v2, . . . , vk} such that no vertex appears

twice, any two consecutive vertices are adjacent, and v1 and vk are adjacent.

5. Two vertices are connected if there is a path between them. Since our graphs

are undirected, connected is a reciprocal relationship. A graph is connected if

all vertices are connected.
7A discussion on the computational complexity of the algorithm appears in the ap-

pendix.
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6. A vertex is incident to an edge if it is one of the edge’s endpoints. G \ v is

the graph that results from deleting the vertex v and all edges incident to v.

7. A vertex v is a cut-vertex if G is connected, but G \ v is not.

8. A block is a maximal subgraph containing no cut vertex.

Note that the subgraph consisting of two vertices and an edge between them

contains no cut-vertex, so any edge is either a block or a subset of a block. I will

refer to any block containing only two vertices as a trivial block. Since every vertex

in our graph has at least one edge incident to it, this is the smallest block possible.

Figure 2.1 shows an example where the blocks have been circled.

Figure 2.1: An example of a graph with four blocks.

Definition 4. Given an assignment µ, a set of students X is closed under room-

mates if s ∈ X implies µ(s) ∈ X.

Given a set of preferences � and assignment µ, I will induce a graph, Gµ
�, as

follows:

• Each vertex corresponds to a student. Label the vertices s1 through sn. When

referring to the graph, I will use the term vertex and student interchangeably.
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• A solid edge is drawn between roommates. By definition, each vertex is inci-

dent to exactly one solid edge.

• Draw a dashed edge between any two students that form a blocking pair to µ.

That is to say, if si prefers sj to her current roommate and vice versa.

When the preferences and assignment are clear from the context, I will just

refer to the graph as G. I will call a path that alternates between dashed and

solid edges (or vice versa) an alternating path. Similarly, a cycle that alternates

between dashed and solid edges is an alternating cycle.

Lemma 1. An assignment µ is efficient under preferences � if and only if Gµ
�

contains no alternating cycle. Moreover, if µ′ Pareto improves µ and s is a student

such that µ(s) 6= µ′(s), then s is contained in an alternating cycle in Gµ
�.

The intuition for sufficiency is captured in Figure 2.2. In an alternating cycle,

we can simply “swap” roommates. We eliminate the solid edges, make the dashed

edges in the cycle solid, and leave everyone outside the cycle unchanged. This is a

well-defined reassignment that Pareto improves the initial assignment.

Proof. Suppose Gµ
� contains an alternating cycle C. An alternating cycle is closed

under roommates as each vertex is incident to a solid edge in the cycle. This implies

V (G) \ C is closed under roommates as well (V(G) means the vertex set of G). We

will construct a Pareto improvement µ′. For every v ∈ V (G) \ C let µ′(v) = µ(v).

This is well defined since V (G) \C is closed under roommates. For every v ∈ C, let

µ′(v) be the vertex it shares a dashed edge with in the cycle C. This is well defined
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Figure 2.2: An alternating cycle with its corresponding Pareto improvement.

S1

S2

S3 S4

S5

S6

S7S8

S1

S2

S3 S4

S5

S6

S7S8

as each vertex is incident to exactly one dashed edge in the cycle and sharing a

dashed edge is a reciprocal relationship. A dashed edge indicates that both vertices

prefer each other to their original assignment. Therefore, µ′ Pareto improves µ.

Suppose that µ′ is a Pareto improvement of µ. Let G′ be the subgraph consist-

ing of all solid edges in Gµ
� and only the dashed edges between vertices not paired

by µ that are paired by µ′ (since µ′ is a Pareto improvement, there must be a dashed

edge between such vertices). Note that any vertex v in G′ either has degree8 1 (if

µ(v) = µ′(v)) or degree 2 (if µ(v) 6= µ′(v)). Moreover, for any vertex v, if d(v) = 2,

then d(µ(v)) = d(µ′(v)) = 2. Choose any vertex t such that d(t) = 2. t is con-

nected via a solid edge to µ(t). Since d(t) = 2, d(µ(t)) = 2 and so µ(t) must be

connected via a dashed edge to µ′(µ(t)). µ′(µ(t)) must be connected via a solid edge

to µ(µ′(µ(t))) which must be connected to a dashed edge via µ′(µ(µ′(µ(t)))), and so

on. Eventually this process must cycle as there is only a finite number of vertices.

However, a cycle to any vertex s 6= t would mean the degree of s is at least three

which is not possible. Therefore, the process must cycle back to our first vertex t.

8The degree of a vertex v, denoted d(v), is the number of edges v is incident to.
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Moreover, it must cycle via a dashed edge as we have already exhausted t’s solid

edge. By construction, this is an alternating cycle.

Lemma 2. Let t be any student.

1. t and µ(t) are contained in a unique block, Bt.

2. If t is part of an alternating-cycle C, then C ⊆ Bt.

3. If t is involved in a Pareto improvement, then Bt is non-trivial. That is

to say if there exists an assignment µ′ such that µ′ Pareto improves µ and

µ′(t) 6= µ(t), then |Bt| > 2.

Proof.

1. Since there is an edge between t and µ(t), they are in at least one block

together. Since the intersection of two blocks contains at most one student,9 t

and her roommate must be in exactly one block together. Call this block Bt.

2. A cycle contains no cut-vertex, so it must be a subset of a block. An alternating-

cycle containing tmust contain µ(t) since t lies on a solid edge in the alternating-

cycle. Since Bt is the unique block containing t and µ(t), the cycle must be

contained in Bt.

3. If t is involved in a Pareto improvement, then by Lemma 1 t is contained in an

alternating-cycle. By (2) this alternating-cycle is contained in Bt, so Bt must

9See West pg. 156. The intuition is that if if two blocks B1 and B2 share two vertices,
then after cutting a vertex, at least one of the two must remain. Call this vertex v. v
is connected to all remaining vertices as it is in a block with each of them. But if every
vertex has a path to v, then all vertices are connected. Therefore B1∪B2 has no cut-vertex
contradicting the maximality of a block.
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contain more than just t and µ(t).

Lemma 2, part (2) says that if a student t is part of a Pareto improvement

(and consequently an alternating-cycle), then she must be reassigned to a member

of Bt. Therefore, no edge between t and a vertex outside of Bt can be part of an

alternating-cycle. Let G′ be the graph obtained by deleting all edges between t and

any vertex not in Bt. Then G contains an alternating-cycle if and only if G′ contains

an alternating-cycle. This motivates the following procedure.

Pruning a Graph

1. Start with a graph G.

2. Determine the set of blocks B1, B2, . . . , Bm.

3. For each student-roommate pair s and µ(s), locate the unique block that both

are in. Remove all edges from either s or µ(s) to any student outside this

block.

A key point is that if a student s was in a block B with µ(s) 6∈ B, then after

pruning the graph, s is no longer in B. By iterating the pruning process we end up

with a graph in which all blocks are closed under roommates. Note that these blocks

may be trivial, but by Lemma 2, the students in such a block are not involved in

any Pareto improvements.

Proposition 4. Any non-trivial block closed under roommates contains an alter-

nating cycle.
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Figure 2.3: A “Blossom”.

si−2 si−1 si

si+1 si+2 si+3

si+6 si+5 si+4

The algorithm in this proof was inspired by Edmunds’ Blossom Algorithm

from graph theory10 and Gale’s Top-Trading Cycles Algorithm.11

Proof. Look at any non-trivial block B closed under roommates. Every vertex v in

B must be incident to a dashed edge. Otherwise v is only connected (by a solid

edge) to µ(v) which would mean removing µ(v) disconnects v from the rest of the

block. This is not possible since a block contains no cut-vertices. Start with any

vertex s. First take a dashed edge to a new vertex s1 then continue on a solid edge

to s2 = µ(s1). Continue alternating between dashed and solid edges until we cycle.

We must eventually cycle since there is a finite number of vertices.

If our cycle is even (a cycle is even if it contains an even number of vertices),

then we are done. By construction, an even cycle alternates between dashed and

solid edges and is therefore an alternating cycle. Therefore, assume our cycle is

odd, {si, si+1, si+2, . . . , si+2m}. By construction, any odd cycle looks like Figure 2.3,

except possibly of different length. Edmunds refers to this as a blossom. The vertices

{s1, s2, . . . , si} are the stem, si is the base of the blossom, and si must connect to

si+1 and si+2m via dashed edges.

10Edmunds (1965). A discussion of the Blossom algorithm appears in West, page 142.
11Shapley and Scarf (1974).
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There must by a dashed edge from one of si+1, si+2, . . . , si+2m to a vertex

outside the cycle. Otherwise si would be a cut-vertex as deleting it would disconnect

si+1, si+2, . . . , si+2m from the rest of the graph. What we will do is contract the

odd cycle into a single super-vertex S1
i . The superscript indicates the number of

contractions we performed to result in Si. See Figure 2.4 for an example. Make any

edge that was previously between a vertex in the cycle and a vertex t outside the

cycle now between S1
i and t. Note that there is a solid edge between si−1 and S1

i and

all other edges incident to S1
i must be dashed as for any sj ∈ {si+1, si+2, . . . , si+2m},

µ(sj) ∈ {si+1, si+2, . . . , si+2m}.

Now continue with one of the unexplored dashed edges incident to S1
j . Again,

we must eventually cycle. If the cycle is even, stop. If the cycle is odd, contract

the blossom and continue. There must always be an unexplored dashed edge out

of an odd cycle (or else the base vertex would be a cut vertex), so after any odd

cycle we will be able to continue. Since we have a finite number of vertices and

edges and each contraction reduces the number of vertices, we cannot continue

indefinitely. The algorithm only stops with an even cycle, and since the algorithm

must eventually terminate, we must eventually reach an even cycle.

Figure 2.4: A blossom before and after contraction.

si−1 si

si+1 si+2

si+4 si+3 si+5

si−1 S1
i

si+5
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Any alternating cycle containing super-vertices can be expanded to an alter-

nating cycle containing no super-vertices. No matter how we enter the blossom,

either the edge to the left or to the right is solid. We can follow the cycle in the

direction of the solid edge all the way to base vertex. This is an alternating path

to the base, the cycle connects to the base with a dashed edge, and then continues

along the stem starting with a solid edge. So indeed, this expands an alternating

path through a super-vertex to an alternating path through the cycle that was con-

tracted. If our super-vertex is the result of multiple contractions, then our base

vertex is now a super-vertex but otherwise nothing changes. Moreover, the base is

a super-vertex containing fewer contractions, so we can proceed by induction on the

number of contractions to get the desired result.

Proposition 4 implies a simple procedure for determining whether an assign-

ment is efficient.

Determining if an assignment µ is efficient given preferences �.

1. Induce graph Gµ
�.

2. Iteratively prune Gµ
� until all blocks are closed under roommates.

3. If all blocks are trivial, then our assignment is efficient. If there exists a non-

trivial block, then by Proposition 4 and Lemma 1, our assignment is inefficient.

The algorithm in the proof finds an alternating cycle when one exists. Once

we have located an alternating cycle then just as we did in Figure 2.2 on page
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Figure 2.5: A non-trivial block closed under roommates, but s1 and s2 are not

contained in any alternating-cycle.

s1 s3 s5

s2 s4 s6

19, we “swap” roommates to get a Pareto improvement, . For this reason I call

the algorithm the Roommate Swap. Note that we have now answered the two

key questions from the previous section. The Roommate Swap identifies if a given

assignment is efficient. Moreover, when an assignment is inefficient, it finds a Pareto

improvement.

The Roommate Swap determines if a given assignment is efficient. However,

a particular student likely does not care whether the assignment can be Pareto im-

proved. Rather, she would like to know if she can be part of a Pareto improvement.

Unfortunately, Proposition 4 does not generalize to the statement if a student t is

contained in a non-trivial block closed under roommates, then t is involved in a

Pareto improvement. Figure 2.5 is a non-trivial block that is closed under room-

mates, but s1 and s2 are not part of any Pareto improvements.

The Roommate Swap does not determine if a particular student can improve

her assignment. However, it is not biased. If we randomly choose the vertex we

start with, and when we have a choice, we randomly choose which edge to continue

on, then the Roommate Swap will find any Pareto improvement with probability

that is uniformly bounded away from zero. Therefore, if the Roommate Swap is
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run repeatedly, it will determine if an individual student is involved in a Pareto

improvement with probability one.

2.4 Strategic Implications

This paper has focused on two problems: finding an efficient assignment and

finding an efficient Pareto improvement of an inefficient assignment. Continuing

the pattern from previous sections, finding a strategy-proof mechanism for making

an assignment is easier than finding a strategy-proof mechanism for improving an

assignment. In fact, we will find that there does not exist a mechanism for select-

ing a Pareto improvement of a given assignment that makes truthful revelation of

preferences a dominant strategy. These results follow very closely the results for

two-sided matching theory presented in Roth and Sotomayor (1990).

Following the matching literature, I will use dominant strategy as my equilib-

rium concept.

Definition 5. A dominant strategy is a strategy that is a best response to all

possible strategies of the other agents. An assignment mechanism is strategy proof

if it is a dominant strategy for each agent to reveal her preferences truthfully.

There does exist a strategy-proof mechanism for making an efficient assign-

ment. In fact, we have already seen this mechanism several times.

Observation 1. The serial dictatorship is strategy proof.

In the serial dictatorship, a student’s preferences are irrelevant unless she is

the one choosing her roommate. Since she gets her top choice, she does best when
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she submits her true preferences regardless of the preferences submitted by other

students.

Finding an incentive compatible, efficient assignment mechanism is very closely

related to Social Choice theory and Arrow’s Impossibility Theorem. The Gibbard-

Satterthwaite Theorem says that if arbitrary preferences are possible, then the

unique incentive-compatible, Pareto optimal mechanism is the dictatorship mecha-

nism. Unfortunately this cannot be directly applied as we are restricting the domain

of allowable preferences. A students is only allowed to have preferences over her own

assignment, and therefore, she is forced to be indifferent between many assignments.

For example, a student does not have a single most-preferred assignment, but rather,

she is indifferent among all assignments that match her to her most-preferred room-

mate. A dictator mechanism would not be Pareto optimal as, among her top choices,

the dictator would select a Pareto optimal assignment only by chance. The serial

dictatorship is the generalization of the dictatorship mechanism that has the prop-

erties of incentive compatibility and Pareto optimality. Due to the corresponding

uniqueness results for the dictatorship mechanism, it seems likely that the serial

dictatorship is the unique incentive-compatible mechanism for selecting an efficient

assignment.

Lemma 3. There does not exist a strategy-proof mechanism for selecting a Pareto

improvement of an inefficient assignment.

Lemma 3 is proved in the appendix. This is quite a general result, but it is

rather easy to proof. A strategy-proof mechanism must be able to handle any initial
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assignment and any profile of preferences. Following the path of Roth (1982), I

demonstrate a case that no mechanism is able to handle.

2.5 Extensions and Modeling Issues

2.5.1 Extensions to the Model

Not surprisingly, the existence of an efficient solution is quite general. For

example, if students have preferences over both their roommate and the room they

are assigned, then Propositions 2 and 3 still hold. In fact, the same proofs are still

valid. Similarly, if more than two students are assigned to be roommates, the same

existence results hold.

This paper has focused on one-sided matches, but there are many interesting

examples of two-sided matches with a physical constraint. Whenever a two-sided

match requires bilateral approval to dissolve, then any Pareto optimal assignment

will be an equilibrium. For example, an airline matches a pilot with a navigator in

order to fly an airplane. The presence of a physical constraint, the airplane, means

a blocking pair is not enough to disturb an assignment.

The extra structure inherent in a two-sided match makes it easier to find a

Pareto improvement to a two-sided match than a one-sided match. Here we can

use a slight variation of the Top Trading Cycles algorithm12 to determine if an

assignment is Pareto optimal and to Pareto improve the assignment when it is not.

For a given pilot p, define a navigator n to be achievable for p if n weakly prefers p

12See Shapley and Scarf, 1974.
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to her current assignment. Have each pilot point to her most-preferred, achievable

navigator. Note that a pilot always has a navigator to point to as her current

assignment is achievable. Have each navigator point to their current assignment.

There must exist a cycle since there are only a finite number of agents and each

agent is pointing to someone. If the cycle is trivial (the pilot is pointing to the

navigator she is currently assigned to), then neither the pilot nor the navigator can

be involved in a Pareto improvement and we can remove them from consideration. If

the cycle is non-trivial, then it represents a strict Pareto improvement for all agents

in the cycle. Future drafts of this paper will contain a more detailed discussion of

two-sided matches with a physical constraint.

When students have preferences over both their roommate and the room they

are assigned, there still exists an efficient assignment. However, the Roommate

Swap does not readily generalize to this case. The notion of a “swap” completely

characterizes a Pareto improvement when only one other factor is involved in a

pairing; however, with multiple dimensions a Pareto improvement can be much

more complicated.

However, there is one very specific but important case where the Roommate

Swap can be readily generalized. If students have lexicographical preferences over

their roommate and room, then we will be able to find a Pareto improvement for

any inefficient assignment. If the students care about the room first and the room-

mate second, then we can run the Top Trading Cycles algorithm to find a Pareto

improvement when one exists. If a student cares about her roommate first and

her room second, then we can first run the Roommate Swap and next run the Top
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Trading Cycles algorithm. There are a variety of ways we can aggregate individ-

ual preferences over rooms to a single roommate-pairing preference over rooms that

will result in an efficient allocation. Thus, starting with an arbitrary assignment

and lexicographical preferences over roommates and rooms, we can determine if an

assignment is efficient, and if not, Pareto improve it to an efficient one.

2.5.2 Alternative Equilibrium Concepts

This paper has focused on pairing two agents as this is the classic framing

of the roommates problem. While I believe efficiency, not stability, is the correct

equilibrium concept for this classic problem, the more agents that are assigned to

be together, the less compelling efficiency becomes as an equilibrium. If six people

are assigned to an office, it is likely that a person can switch desks with a student in

another office without requiring unanimous approval from her current officemates.

We can formulate an alternative equilibrium that has more appeal in this case.

Instead of assigning six people to be officemates, we make six keys to each office and

give each person a key to one office. Since the rooms are homogeneous, this is just

an indirect way of assigning officemates. If we allow students to trade keys, then

an assignment is an equilibrium if no two students wish to trade offices. Note that

we are honoring the physical constraint; no student is being evicted. Moreover, this

does not allow a student to block another student from switching her assignment.

Similar to stability, there need not exist an equilibrium if students can trade

rooms. Suppose there are four students, a, b, c, and d, with preferences as follows:
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a : b is most preferred

b : c is most preferred

c : d is most preferred

d : a � c � b

If a is assigned to b and c is assigned to d, then b and d will trade places. If a

is assigned to d and b is assigned to c, then a and c will trade places. Finally, if a is

assigned to c and b is assigned to d, then a and d will trade places. Since these are

the only possible assignments, there is no equilibrium.

In general, an argument can be made for either equilibrium. The new equilib-

rium might be a reasonable model for condominiums or rooms in a group house. If a

person decides to sell her condominium, she does not need the approval of the other

condominium owners in the building. Note however that there also exists building

cooperatives. Here a sale does require the approval of the board, so in this context,

Pareto optimality is a more natural equilibrium concept. Similarly, depending on

the lease a person signs, subletting a room in an apartment or group house may or

may not require the approval of the landlord or other tenants. Therefore, whether

or not Pareto optimality is the best equilibrium concept depends on the particular

lease signed.
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2.6 Conclusion

The roommates problem is one of three assignment problems introduced by

Gale and Shapley in their classic 1962 paper College Admissions and the Stability of

Marriage. This is the paper that created the field of matching theory, and the reason

why the roommates problem was included is that it is such a natural assignment

problem. While their other two assignment problems, the marriage problem and the

college admission problem, have been studied extensively, little progress has been

made on the roommates problem. This paper hopes to make several contributions to

the matching theory literature on the roommates problem. First, identifying Pareto

optimality instead of stability as the proper equilibrium makes the roommates prob-

lem economically more meaningful. With this improved equilibrium concept, I have

shown that an equilibrium always exists. Most importantly, I demonstrate how to

improve an inefficient assignment to an efficient one if we are not in equilibrium.

For such a natural assignment problem as the roommates problem, this is likely

to have real world applications. Therefore, this paper reframes a classic matching

problem, which previously had no general solution, in a way that is both solvable

and economically more meaningful.

2.7 Appendix

Lemma 4. There are (2N)!
2N (N !)

= (2N − 1)(2N − 3)(2N − 5) · · · (3)(1) many ways to

assign 2N students to be roommates.

Proof. The proof is by induction. When N = 1, the result is trivial as there is only
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one way to assign two students to be roommates. Assume N > 1 and by induction

there are (2N − 3)(2N − 5) · · · (3)(1) many ways to assign 2(N-1) many students to

be roommates. Select a student s. There are 2N-1 possible roommates for s, and by

assumption, for any roommate we pick, there are (2N − 3)(2N − 5) · · · (3)(1) many

ways to assign the remaining 2N-2 many students. Therefore, there is a total of

[2N − 1]× [(2N − 3)(2N − 5) · · · (3)(1)] many ways of assigning roommates.

Lemma 3 There does not exist a strategy-proof mechanism for selecting a

Pareto improvement of an inefficient assignment.

Proof. Suppose there are four students, a, b, c, and d, and an initial assignment, µ1

pairing a with b and c with d. Moreover, suppose the student’s preferences are as

follows.

a : c � d � b

b : c � d � a

c : b � a � d

d : b � a � c

With four students, there are three possible assignment. Note that an assign-

ment is completely determined by who a (or any other student) is assigned to. Let

µ2 denote the assignment where a is paired with c and µ3 denote the assignment

where a is paired with d. In our original assignment µ1, each person is paired with

their least preferred roommate, so µ1 is Pareto dominated by both of the other as-

signments. Suppose for contradiction that their exists a strategy-proof mechanism

M for selecting an efficient, Pareto improving assignment. Note that if a submits the
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preferences c � b � d and all other students submit true preferences, then µ2 is the

only assignment that Pareto improves µ1 (relative to the submitted preferences). In

such a case, M must select µ2. Similarly, if b submits the preferences c � a � d

and all other students submit true preferences, then M must select µ3 as it is now

the only Pareto improving assignment. When all students submit true preferences,

M must select either µ2 or µ3. If M selects µ2, then b can do better by deviating

and submitting the preferences c � a � d. If M selects µ3, then a can do better by

submitting preferences c � b � d. Either way, M is not strategy proof which is a

contradiction.

2.7.1 Computational Complexity

The purpose of this section is to demonstrate that the Roommate Swap is a

polynomial time algorithm and therefore implementable. I demonstrate that it is at

worst an O(N3) algorithm where N is the number of students.

Each iteration of the algorithm involves the following steps, performed in se-

quence:

1. Induce the graph. This is at worst O(N2) as a graph is defined by its edges

and there are at most N(N−1)
2

many edges.

2. Iteratively prune the graph until all blocks are closed under roommates. West

(2001), pg. 157, details an O(N) algorithm for determining blocks. We need to

iterate at most N times as each iteration eliminates at least one student from

each block or stops looking at a block if it is already closed under roommates.
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Therefore iteratively pruning the graph is at worst O(N2).

3. Find an alternating-cycle. This process is O(N). At each step we either travel

to a previously unvisited vertex, which we can do at most N times, or contract

a minimum of two vertices, which we can do at most N
2

times. So the algorithm

must conclude in at most N + N
2

steps. As it takes at most N steps to expand

a cycle containing super-vertices to a proper cycle, finding an alternating-cycle

concludes in O(N) time.

Therefore each iteration is O(N2).

Observation 2. In each iteration of the Roommate Swap, at least one student is

reassigned her top achievable student.

Proof. The search process ends with an alternating-cycle that may or may not con-

tain super-vertices. Dashed edges from standard vertices are chosen to be the ver-

tex’s most preferred student among those who prefer her to their current assignment.

Therefore, if the alternating cycle contains no super-vertices, then half the students

receive their top achievable match. A grey edge from a super-vertex is not necessar-

ily the student’s most preferred achievable student. However, if the alternating-cycle

contains a super-vertex and we need to expand our contractions, then there must

be a last odd-cycle that needs to be expanded.

Figure 6 shows a last cycle with six vertices, but the analysis is the same for

fewer or greater vertices. Our alternating path must go through si and either si+1

or si+6. None of these edges involve super-vertices (this is our last expansion) so
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Figure 2.6: An odd cycle.

si−2 si−1 si

si+1 si+2 si+3

si+6 si+5 si+4

by construction, si+1 is si’s top achievable student and si is si+6’s top achievable

choice. Either way, at least one student receives her top achievable choice.

The significance of this is that once a student has been assigned her top achiev-

able choice, neither she nor her roommate can ever be involved in another Pareto

improvement. Therefore we can eliminate them both from consideration. Since

we eliminate at least two students after every iteration, there can be at most N
2

iterations.

The algorithm performs O(N) many iterations of an O(N2) process. Therefore

it is, at worst, O(N3).
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Chapter 3

Externalities in Networks

In network theory, externalities play a critical role in determining which
networks are optimal. Adding links can create positive externalities, as
they potentially make distant vertices closer. On the other hand, links
can result in negative externalities if they increase congestion or add
competition. This paper introduces two new equilibrium concepts and
will completely characterize the set of optimal and equilibrium networks
for a natural class of negative externalities models where an agent’s pay-
off is a function of the degree of her neighbors. These results are in sharp
contrast to the optimal and equilibrium networks for the standard class
of positive externalities models where payoff is a function of the distance
two agents are apart.

3.1 Introduction

Networks have long been studied in sociology, computer science, physics and

mathematics. However, economists have only recently begun to focus on networks.

This is surprising as graphs are a natural model of many economic situations. Most

people find a job through a network of friends and associates.1 Similarly, a car

manufacturer does not buy its brakes from a marketplace but rather has long term

relationships with its suppliers.

Fortunately, networks have started to receive the attention they deserve.2

Whether out of convenience or necessity, virtually all networking papers employ

a reduced form utility function. However, there has been very little attention paid

1See Granovetter (1973, 1995), Rees (1966), and Montgomery (1991).
2Jackson (2003) is an excellent survey.
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to how the choice of utility function affects structural predictions. In particular,

there is an interesting feature embedded in a utility function–whether or not ad-

ditional links cause positive or negative externalities to uninvolved vertices. This

paper seeks to show that the choice of underlying utility function and the treatment

of externalities is of critical importance to which networks are optimal.

Jackson and Wolinsky’s seminal paper A Strategic Model of Social and Eco-

nomic Networks [1996, JET], hereafter JW, introduced two reduced form models

and solved for the socially optimal network in each. These models can be described

by the utility an individual gets from a graph.

JW’s Connections Model

ui(G) =
∑
j 6=i

δd(i,j) − c ∗ dvi

where 0 ≤ δ ≤ 1, d(i, j) is the length of the shortest path between vi and vj, and

dvi
is the number of agents vi has an edge with.

JW’s Co-author Model

ui(G) =
∑

j:ei,j∈E(G)

[
1

dvi

+
1

dvj

+
1

dvi
dvj

]

The Connections Model has a very nice solution space. If we measure aggregate

utility as the sum of individual utilities, then the socially optimal graph is either

empty, a star, or complete. A star is a network with one central agent involved

in every connection3. Moreover, for appropriate link costs, these graphs will be

pairwise stable. The Co-author Model has a much less interesting solution space.

3See Figure 3.1 on page 45 for an example.
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For an even number of participants, 2N, the socially optimal graph is simply N

pairs. It is possibly for this reason that the Connections Model (or derivations of

it) appears much more frequently in the subsequent literature.

The star turns out to be optimal for a wide class of models. Bloch and Jackson

(2007) define a utility function to be distance based if there exist c and f such that

ui(G) =
∑
j 6=i

f(d(i, j))− c ∗ dvi

where d(i, j) is the number of links in the shortest path between vertices i and j,

f is a nonincreasing function, and c is a cost per link. They demonstrate that the

unique non-trivial efficient network is the star network. The star formation appears

frequently in the literature under a variety of different utility functions. Given their

result, it is not surprising that the common ingredient among these models is they

are distance based.

The fact that the star is optimal for such a wide class of utility functions makes

a compelling case for it as a real world model. However, there are at least two points

of concern. First, in the star every vertex’s payoff is strictly increasing in the size

of the network, moreover at an increasing rate. Thus, not only do these models

predict the optimal network to be a star but the largest star possible. However,

we expect real-world networks to lose their value and start to break down as they

get too large. Moreover, the entire world organized as a star is clearly not ideal for

any situation. Another concern is that, although star networks are widely predicted

by economic theory, they are not commonly observed in practice. We may observe

star-like networks such as airlines’ hub-and-spoke systems, but I know of no true
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star networks.

A distance based model is an environment where all externalities must be

positive. If two agents form a link, then they weakly decrease the distance all

other agents are apart and weakly increase the number of other agents they are

connected to. There are at least two important considerations that a model with

only positive externalities does not capture. First, in most networks we expect

there to be congestion issues. This is especially true if we are discussing a computer

network, but congestion also occurs in most economic networks. For example, JW’s

co-authors model is meant to capture that as the number of co-authors you have

increases, you have less time to devote to each one. We would expect the same thing

to occur in a network of friends, a communications network, a network of business

associates, etc. A star should be especially prone to congestion issues as there is a

clear bottleneck, the central node.

A second consideration is that most economic networks involve competition

among agents. In a network of buyers and sellers, an additional link literally means

increased competition. In a network of gamblers exchanging private information

about a horse race, the value of the information decreases with each additional

person who learns the inside tip. When an MBA student talks about networking,

they are referring to contacts to help them get a job. One can imagine it would be

very helpful to have a friend forward your resume to her boss. However, the value

of this is substantially decreased if she also forwards the resume of twenty other

friends.4

4Calvo-Armengol and Jackson (2004) captures this effect. In their model, when an
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A natural way of modeling a network where an agent’s payoff is adversely

affected by competition or congestion is through a degree based utility model. I will

define a utility function to be degree-based if there exists a φ such that

uv(G) =
∑

w∈N(v)

φ(dw)

where φ is non-increasing and dw is the number of direct relationships w has5. In

this environment, externalities can only be negative. A new connection in a network

weakly increases the degree of each of an agent’s neighbors, so if the agent is not

directly involved with the new link, her payoff must weakly decrease. This paper

will completely characterize the socially optimal and equilibrium set of networks for

degree based utility functions.

First, I will show that the regular network is socially optimal for any degree

based utility function6. Next, I will introduce two new equilibrium concepts which

extend the traditional notion of pairwise stability. Under pairwise stability, an agent

is able to biilaterally add an edge or unilaterally drop an edge. Strong pairwise

stability, a natural extension of pairwise stability, allows an agent to both drop an

edge and add another concurrently. Under strong pairwise stability with transfers,

an agent is also able to transfer utility to her immediate neighbors. I will be able to

completely characterize the set of strongly-pairwise-stable networks for any degree

based utility function. Finally, with only a mild assumption on the consistency of

employed agent hears about a job, she randomly picks an unemployed acquaintance to
pass the job to. In this model, edges have negative externalities as an acquaintance
adding a connection decreases the chances you will be randomly chosen in the event you
are unemployed.

5The notation w ∈ N(v) will be explained more fully in the section on Graph Theory
terminology, but it means any vertex w that has a direct edge with v.

6A network is regular if all agents have the same number of connections
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externalities, I will be able to show that a network is strongly pairwise stable with

transfers if and only if it is the socially optimal regular graph.

These results for degree based utility functions are not only interesting in their

own right but especially as a contrast to the positive externalities environment. If

we use as our metric maximum degree minus minimum degree, then the star and a

regular graph are as different as two graphs can possibly be. It is interesting that two

very natural classes of utility functions can lead to such strikingly different optimal

and equilibrium networks. As such, this should be taken as a note of caution for

researchers using a reduced form utility function to model a social network. The

choice of utility function and more broadly the treatment of externalities in these

networks are of critical importance to the predictions of the model.

As one of the first papers in networks and specifically one that characterized

the solution space of two reduced form models, JW has greatly influenced the models

in subsequent papers. The solution space for the connections model, the star, is quite

interesting whereas the solution space for the co-authors model is trivial. Possibly for

this reason, most subsequent papers are based roughly on the connections model. As

a result they are positive externalities models. This is unfortunate as most situations

of interest to economists involve competition and thus exhibit negative externalities.

The final contribution of this paper is to propose and solve a negative externalities

model that both has a more interesting solution space than the co-authors model

and is a more natural counterpoint to the connections model.

This paper is closely related to Bloch and Jackson (2007). The two papers,

in conjunction, are able to completely characterize the two most intuitive, general
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classes of network models. The focus of Bloch and Jackson is on network forma-

tion. They introduce several games in which players make decisions about both

link formation and transfers to other agents in the network. Their paper highlights

the importance of externalities and demonstrates a reasonable way in which agents

might overcome them. The equilibrium concept I introduce, strong pairwise sta-

bility with transfers, is a core concept which complements the network formation

games introduced in their paper.

This paper is most closely related to Jackson and Wolinsky (1996). They

present and solve two reduced form models. Their first model, the connections

model, is a distance based model, while their second, the co-authors model, is es-

sentially a degree based model. Therefore, the results presented here in conjunction

with the results in Bloch and Jackson (2007) can be viewed as a generalization of

JW.

There are at least two other papers, Currarini (2002) and Goyal and Joshi

(2002), that look at externalities in networks; however, both papers take a substan-

tially different modeling approach than this paper. Currarini (2002) focuses on the

partition of vertices into connected components. In Currarini’s model the value of

a network depends only on this partition. Externalities are defined by whether the

value of a network increases or decreases when the partition becomes finer. The

network matters in that it determines the partition, but in Currarini’s framework

the role of network architecture is minimized. Goyal and Joshi’s (2002) approach

is more similar to this paper but still substantially different. They examine two

interesting models where agents have varying degrees in equilibrium. The focus of
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their paper is how differing degrees affect agent payoff. Externalities, in the form of

whether or not agents are strategic substitutes or compliments, end up being crucial

to solving their models, but their two games are not an attempt to actually model

externalities. In fact, strategic complementarities are defined specifically in terms of

the particular payoff function they use and their concept is not readily generalizable.

In contrast, this paper’s primary aim is to model network externalities in as general

a way as possible without diminishing the role of network architecture.

The remainder of this article is organized as follows. Section 2 provides a brief

overview of graph theory terminology. Section 3 introduces degree based utility

functions and completely characterizes the socially optimal and equilibrium networks

for any degree based utility function. Section 4 introduces and solves a specific

reduced form utility function. Section 5 concludes, and the Appendix provides

complete proofs.

3.2 Graph Theory Terminology

This paper uses no theoretical results from graph theory, but I will borrow

from its terminology to facilitate discussion. I will represent a network as a graph

where vertices represent agents and an edge represents a relationship between the

two agents. All edges are undirected.

The following are some definitions with corresponding notation:

• E(G) is the set of edges in a graph G. eu,v ∈ E(G) is an edge between vertices

u and v.
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• V(G) is the set of vertices in G.

• u and v are adjacent if eu,v ∈ E(G). u↔ v indicates u and v are adjacent.

• The neighborhood of v is the set of vertices adjacent to v. Symbolically, N(v) =

{u ∈ V (G)|eu,v ∈ E(G)}.

• The degree of v is the number of vertices v is adjacent to. Symbolically,

dv = |N(v)|.

• G is complete if all vertices are adjacent.

• A star is a graph with one center vertex, in which all remaining vertices are

adjacent only to the center.

Figure 3.1: A complete graph and a star.

• A path between u and v is a set of edges
{
ev1,v2 , ev2,v3 , ev3,v4 , . . . , evn−1,vn

}
such

that v1 = u and vn = v.

• u and v are connected if there exists a path between them. The components of a

graph are its maximal connected subgraphs. Note that the connection relation
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is transitive, symmetric, and reflexive, so it is an equivalence relation. The

equivalence classes of the connection relation are the connected components.

This paper assumes the number of vertices are fixed. Therefore, a graph is

completely characterized by its set of edges. As a result, I will slightly abuse notation

and use G and E(G) interchangeably. For example, G∪eu,v represents the new graph

created by adding an edge between u and v.

3.3 Degree Based Utility Functions

In this section I will introduce a class of models which is a natural counterpoint

to the more widely studied distance based models. A utility function is degree-based

if there exists a φ such that

uv(G) =
∑

w∈N(v)

φ(dw)

. A particularly desirable feature of degree based utility models is that they are

interesting even when links are costless to form. For any positive externalities model,

if links are costless then the complete network must be socially optimal as adding

links can not harm the agents but may help them. As a result, positive externalities

models are only interesting to study when links are costly. However, there are

situations where incurring a cost for a link does not have a clear interpretation. For

example, it is not clear how an agent incurs a cost that is completely separate from

the benefit of having a friendship. Time spent maintaining a business relationship or

even expenses incurred “wining and dining” a potential partner might reasonably be

considered costs, but it is difficult to apply this to a model of personal relationships.
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After all, having someone to spend time with and someone to go to costly activities

such as dinners or baseball games are some of the benefits, not costs, of having a

friend. Therefore, it is particularly attractive that we do not need separate costs for

links in order to make a degree-based utility function nontrivial.

The star does not perform as well with a rival utility function. The perimeter

vertices only get utility from their immediate neighbor, the center of the star. How-

ever, the center is connected to so many vertices (the maximum possible) that its

value has decreased. Moreover, we do not expect the star to be an equilibrium of a

network game as two perimeter vertices would do better by dropping their connec-

tion to the center agent and forming a link to each other. In this environment, a

more symmetric graph does better socially and is more likely to be pairwise stable.

A regular graph, where all agents have the same number of connections, is the nat-

ural place to look. Unfortunately, regular graphs do not always exist.7 However, a

regular graph always exists when there is an even number of vertices. I will define

a new class of graphs which exist regardless of the parity of the number of agents.

Definition 6. Let d = max {d(v) : v ∈ V (G)} and d = min {d(v) : v ∈ V (G)}.

Then:

1. A graph is nearly-regular if (d− d) ≤ 1.

2. A graph is nearly-n-regular if (n− 1) ≤ d ≤ d ≤ n.

7For example, if we have an odd number of vertices, we can not have a (2a + 1)-regular
graph. Since every edge contributes two to the sum of all vertex degrees, the total sum of
degrees must be even. An odd-regular graph with an odd number of vertices would have
an odd total degree sum which is not possible.
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The next proposition completely characterizes the set of socially optimal net-

works when there is an even number of vertices. I will be able to simplify this

characterization once I impose a mild assumption on the consistency of externali-

ties.

Proposition 5. Suppose there is an even number of agents. A network G is socially

optimal if and only if for every vertex v, dv ∈ arg maxxφ(x). In particular, for any

n ∈ arg maxxφ(x), all n-regular graphs are socially optimal.

Proof. Each agent receives a payoff from her neighbors and contributes utility to

her neighbors. As an accounting identity, the sum of what every agent receives must

equal the sum of what every agent contributes. In particular

U(G) =
N∑
i=1

ui(G) =
N∑
i=1

∑
vj∈N(vi)

φ(dvj
) =

N∑
i=1

dvi
φ(dvi

) (3.1)

Let n ∈ arg maxxφ(x). Since we have an even number of vertices, an n-regular

graph exists8. Pick any n-regular graph H. By Equation 3.1, H must be socially

optimal. Moreover, if J is a network with a vertex v such that dv 6∈ arg maxxφ(x),

then U(J) < U(H).

8To see this, label the vertices 0 through |V (G)| − 1. If n is even, then connect vertex
i to vertices i± jmod(|V (G)|), for 1 ≤ j ≤ n

2 . If n is odd, then connect vertex i to vertex
i + |V (G)|

2 mod(|V (G)|) and to vertices i± jmod(|V (G)|), for 1 ≤ j ≤ n−1
2
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3.3.1 Pairwise Stability

Pairwise stability is the standard equilibrium concept in Network Theory. In-

tuitively, it says no agent wishes to unilaterally drop one of her connections, and no

two agents wish to bilaterally add a connection. More formally:

Definition 7. A graph G is pairwise stable if:

1. If ei,v ∈ E(G), then ui(G) > ui(G− ei,v) and uj(G) > uj(G− ei,v).

2. If ei,v 6∈ E(G), then either ui(G) > ui(G+ ei,v) or uj(G) > uj(G+ ei,v).

So far in this section we have assumed that links are costless. However, we

must add link costs in order to make pairwise stability interesting. Otherwise, as

long as φ is strictly positive, the only pairwise stable graph is the complete graph.

For the remainder of this subsection, I will assume uv(G) =
∑

w∈N(v) φ(dw)− c · dv.

Moreover, to avoid any nuisances, I will assume c 6= φ(n) for any n ∈ N. This

assumption is without loss of generality since one can perturb c by an arbitrarily

small ε.

This next structure appears several times so I will explicitly define it.

Definition 8. G is a maximal nearly-n-regular graph if it is nearly n regular

and there does not exist a nearly-n-regular graph G′ such that E(G) ⊂ E(G′).

Proposition 6. Let n = max {x ∈ N|φ(x) > c}. If utility is rival, then all maximal

nearly-n-regular graphs are pairwise stable.

Proof. Let G be any maximal nearly-n-regular graph. Look at any vertices u and v

such that eu,v /∈ E(G). The maximality of G implies at least one u or v must have
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Figure 3.2: An undesirable pairwise stable graph
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degree n. Without loss of generality, assume dv = n. Then ui(G + eu,v) − ui(G) =

φ(n + 1) − c < 0 by the maximality of n. Similarly, look at any vertices u and v

such that eu,v ∈ E(G). ui(G)−ui(G− eu,v) ≥ φ(n)− c ≥ 0. Therefore G is pairwise

stable.

Pairwise stability is a fairly weak concept. Pairwise stability only allows a

vertex to unilaterally drop a connection or to bilaterally add a connection, but not

both. For example, if max {x ∈ N|φ(x) ≥ c} = 3, then the graph in Figure 3.2 is

pairwise stable since u will be unwilling to add an edge with any vertex that already

has degree 3. However, this is unsatisfying as any of the vertices in the 4-clique

would be happy to exchange one of their edges for an edge with u. Similarly, as long

as the vertex is willing to drop one of her edges, u would be happy to form an edge

with any vertex in the 4-clique. This leads to a new solution concept.

Definition 9. A graph G is Strongly Pairwise Stable if

1. G is pairwise stable

2. There does not exist a u, v, w ∈ V (g) such that uu(G
′) > uu(G) and uv(G

′) >

uv(G) where G′ = G+ eu,v − ev,w.
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With this stronger solution concept, we are able to completely characterize

the set of strongly pairwise stable graphs.

Proposition 7. Let n = max {x ∈ N|φ(x) > c} and suppose φ is strictly decreasing.

Then G is strongly pairwise stable if and only if G is a maximal nearly-n-regular

graph.

Proof. It is straightforward to verify that a maximal nearly-n-regular graph is strongly

pairwise stable. To prove the other direction, look at any strongly pairwise stable

graph G. First note that max {dv|v ∈ V (G)} = n since otherwise G would not be

pairwise stable.9 Suppose for contradiction that G is not nearly-regular. Then

there exists a u and v such that dv − du ≥ 2. Let w ∈ N(v) \ N(u) 6= ∅ and let

G′ = G+ {eu,w} − {ev,w}. Note that uw(G′) > uw(G) since du + 1 < dv. Moreover,

uu(G
′) > uu(G) since dw ≤ n and φ(n) > c. Therefore G is not strongly pairwise

stable, a contradiction. Since G has max degree n and is nearly-regular, it must be

nearly-n-regular. If G is not maximal, then there are two non-adjacent vertices of

degree n-1 and therefore G is not pairwise stable.

3.3.2 Equilibrium with Transfers

In this section I will introduce a new core concept which generalizes pairwise

stability to allow agents to make transfers. This complements the games introduced

in Block and Jackson (2007). They define several new network games which extend

9If the maximum degree is greater then n, some vertex would want to drop an edge.
If the max degree is less then n, any unconnected vertices would be better off adding an
edge.

51



the traditional network games to allow players to make financial transfers. In their

paper they make a distinction between who an agent is able to make a transfer to and

on what an agent is able to condition this transfer payment. In the direct transfer

game, an agent can only make a transfer for a link she is directly involved with. In

the indirect transfer games she can only make demands on her own relationships,

but she is free to subsidize any relationship. In their standard game, a transfer is

conditional only on a link forming, but in their game with contingent transfers, an

agent can condition a payment on the entire network structure.

Transfers are a natural concept in a social network. We often see situations

where maintaining the relationship is more important to one of the agents than the

other. In the business world, one person may be in a position of greater power

or may simply have more connections than the other. In the academic world, the

marginal value of publishing an article should decrease with the total number of

publications an author has. Therefore, even if two co-authors are equally talented,

the relationship should be relatively more valuable to the person with fewer publica-

tions. In such a situation, it is natural for a transfer to occur. The person to whom

the relationship is more valuable will have the incentive to put forth more effort into

the project or else might agree to do the less desirable aspects of the work.

I propose a new core concept which generalizes pairwise stability to allow

agents to make transfers to the people they have a relationship with. I only allow

direct transfers as I find indirect transfers much less natural. A transfer between

two agents with a relationship can be non-pecuniary; however, there is less flexibility

when the transfer is between two agents who are not linked. It is hard to interpret
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an indirect transfer as anything other that a monetary payment. In some situations

this may be perfectly natural, but especially with social networks, direct monetary

transfers occur infrequently. An academic can do many things to either ease the

burden on her coauthor or make the relationship more valuable, but it would be

strange for her to pay an academic to not collaborate with any of her coauthors.

Despite this restriction, we will still be able to reach some powerful conclusions.

More formally, the game consists of a graph G and a matrix of transfers T .

In the transfer matrix, tij represents the transfer from agent i to agent j. An agent

can only make a transfer to someone she has a direct relationship with. Therefore,

tij > 0 only if eij ∈ G. To avoid ambiguity, I will require that tij = −tji as we care

only about the net transfer.

Therefore, given a network G and transfers T , agent i receives a payoff of

πi(G, T ) =
∑

vj∈N(vi)

[φ(dvj
) + tji] (3.2)

Individually, an agent should be able to drop any of her edges and change

the transfers she offers. Two agents should also be able to form a link if they so

desire. Anytime an agent changes her edges or transfers, she alters the payoff of her

neighbors and, therefore, potentially jeopardizes these relationships. However, if two

agents are able to move bilaterally to establish a mutually beneficial relationship and

to adjust their transfers so that all of their neighbors are better off, then they do

not jeopardize these relationships and surely the network is in disequilibrium.

Definition 10. Given a network G with transfers T , agent vi blocks < G, T > if
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there exists an agent vj
10, subsets A ⊆ N(vi), B ⊆ N(vj), and transfers T ′ on the

set {vi, vj, N(vi) \ A,N(vj) \B} such that:

πx(G
′, T + T ′) > πx(G, T )

for every x ∈ {vi, vj, N(vi) \ A,N(vj) \B} where G′ = G ∪ ei,j \ {ei,k : k ∈ A} \

{ej,k : k ∈ B}.

This definition is purely a generalization of strong pairwise stability. An agent

can drop any edge, add an edge (as long as the other agent wishes to as well), or

do both simultaneously. If the agent is also able to compensate all the agents she

remains in a relationship with so that they are made better off by the change, then

surely we are in disequilibrium.

Definition 11. A network G is strongly pairwise stable with transfers if there

exists transfers T such that no agent blocks < G, T >. In such a case, we say the

transfers T support G.

When it is clear from context that it is a network with transfers, I will just

say strongly pairwise stable instead of strongly pairwise stable with transfers. With

a mild regularity assumption on externalities, I will prove that the only network

that is strongly pairwise stable with transfers is the socially optimal, nearly-regular

network.

Whenever an edge is added to an network, there is a social trade off. There is a

direct benefit to the two agents forming the relationship but at a cost of a decreased

10We allow vj = ∅ in which case we interpret G ∪ ei,j = G.
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payoff to all the agents they already share an edge with. This trade-off is captured

by the function:

to(x) = φ(x+ 1)− x(φ(x)− φ(x+ 1)), 1 ≤ x ≤ |V (G)| − 2

When an agent with degree x forms a new edge, she is contributing φ(x + 1) to

the new neighbor but at a cost of φ(x) − φ(x + 1) to the x many agents she was

previously connected to. This motivates a regularity condition on externalities.

Definition 12. The externalities in a network are consistent if to(x) is decreasing.

Definition 13. Externalities are weakly consistent if any of the following condi-

tions hold:

1. to(x) > 0.

2. to(x) < 0.

3. There exists a integer M such that to(x) ≥ 0 for every x ≤ M and to(x) < 0

for every x > M .

For each respective case, we define the threshold of to(x) to be:

1. |V (G)| − 1

2. 1

3. M

to(x) is decreasing if φ(x)− φ(x+ 1) is increasing. Therefore, if φ is concave,

then externalities are consistent. However, this condition is much weaker than

concavity. Of course, if externalities are consistent then they are weakly consistent.
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I will assume that if to(x) is weakly consistent with threshold M with 1 < M <

|V (G)|−1, then to(M) = 0. This does not change the results in any significant way,

but it does make the proofs cleaner. Moreover, if to(M) 6= 0, then we can replace

φ(x) by φ′(x) where φ′(x) = φ(x)− to(M). Now:

toφ′ = φ′(x+ 1)− x(φ′(x)− φ′(x+ 1))

= φ(x+ 1)− to(M)− x(φ(x)− to(M)− φ(x+ 1) + to(M))

= toφ(x)− to(M)

and therefore toφ′(M) = 0.

With this mild assumption on externalities, we can completely classify the set

of socially optimal networks. In a surprising result, once agents are able to make

transfers to their neighbors, these networks will also be the only strongly pairwise

stable networks.

Proposition 8. Suppose externalities are weakly consistent.

1. When 1 < M < |V (G)| − 1, then G is socially optimal if and only if G is

nearly-(M+1)-regular.

2. When M = |V (G)|−1, then the complete network is the unique socially optimal

network.

3. When M = 1, then the unique socially optimal network is the trivial network11.

11The trivial network consists of |V (G)|
2 many pairs if |V (G)| is even and |V (G)−3|

2 many
pairs plus the three remaining vertices connected as a path if |V (G)| is odd. See Figure
3.3 on page 66 for an example.
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I will prove Proposition 8.1 here. The remaining cases, which are more tech-

nical, are proved in the Appendix.

Proof. We know from the previous section that G is optimal if and only if every

vertex has degree from the argmaxxφ(x). Note that

to(x) = φ(x+ 1)− x(φ(x)− φ(x+ 1))

= (x+ 1)φ(x+ 1)− xφ(x)

and therefore

∑
2≤i≤x

to(i− 1) =
∑

2≤i≤x

[iφ(i)− (i− 1)φ(i− 1)]

= xφ(x)− φ(1)

since
∑

2≤i≤x[iφ(i)− (i− 1)φ(i− 1)] is a telescoping series. In particular,

xφ(x) = [
∑

2≤i≤x

to(i− 1)] + φ(1) (3.3)

Since, to(x) ≥ 0 for every x ≤M and to(x) < 0 for every x > M , xφ(x) is maximized

at x = M + 1. Note that

(M + 1)φ(M + 1) = [
∑

2≤i≤(M+1)

to(i− 1)] + φ(1)

= to(M) + [
∑

2≤i≤(M)

to(i− 1)] + φ(1)

= 0 + [
∑

2≤i≤(M)

to(i− 1)] + φ(1)

= Mφ(M)

Where the second to last equality follows from our assumption that to(M) = 0.

Since to(x) 6= 0 for every x 6= M , argmax(to(x)) = {M,M + 1}. As mentioned
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previously, a nearly regular graph always exists. Therefore, a network is optimal if

and only if it is nearly-(M+1)-regular.

I will now prove the main theorem of this section.

Proposition 9. Suppose externalities are weakly consistent.

1. When 1 < M < |V (G)| − 1, G is strongly pairwise stable with transfers if an

only if G is nearly-(M+1)-regular.

2. When M = |V (G)| − 1, the complete network is the unique network that is

strongly pairwise stable with transfers.

3. When M = 1, the unique network that is strongly pairwise stable with transfers

is the trivial network.

This proposition is proved with a sequence of lemmas. Complete proofs are

given in the Appendix, but I will list the lemmas and give the intuition to the proof

here.

Lemma 5. Suppose 1 < M < |V (g)| − 1 and let G be strongly pairwise stable. If

there exists a vertex u with degree less than M, then u is adjacent to every vertex

with degree less than or equal to M.

Intuition. If there are two non-adjacent agents with degree less than the thresh-

old, then adding an edge is socially beneficial as the trade-off for both agents is posi-

tive. Moreover, all the social gains are realized by the two agents. Since it is socially
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beneficial, they benefit enough to be able to compensate all of their neighbors and

still improve their payoff.

Lemma 6. Suppose 1 < M < |V (g)| − 1 and let G be strongly pairwise stable. If

there exists a vertex u with degree greater than M + 1, then u is not adjacent to any

vertex with degree greater than or equal to M + 1.

Intuition. It is socially beneficial for the two agents with degree greater than

the threshold to cut their relationship. Their neighbors, who receive all the benefit

from the two agents cutting an edge, are willing and able to increase their transfers

by enough to make it in u or v’s best interest to cut the edge. We have to be a little

more careful than in Lemma 5 since there may be transfers between the two agents

which would affect their willingness to drop the edge.

Lemma 7. Suppose T supports a network G. Then for every two agents i and j

such that ei,v ∈ G,

tij ≤ φ(dj)− (di − 1)(φ(di − 1)− φ(di))

Proof. vi has di−1 many neighbors who would be willing to pay up to φ(di−1)−φ(di)

for i to sever her relationship with j. i receives a benefit of φ(dj) − ti, j from her

relationship with j, so if φ(dj)− tij < (di − 1)(φ(di − 1)− φ(di)) then i and all her

remaining neighbors do strictly better if i drops her relationship with j and accepts

a transfer of φ(di − 1)− φ(di)− ε from each of her remaining neighbors.

Lemma 8. Suppose 1 < M < |V (g)| − 1 and let G be strongly pairwise stable. If

there exists a vertex u with du > M + 1, then all of u’s neighbors are adjacent.
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Intuition. If there is an agent u such that du > M + 1, v, w ∈ N(u), but

evw 6∈ G, then v and w are better off dropping their edges with u and creating

an edge between themselves. They do not need to compensate their neighbors for

such a move as their degree has not changed. We know from Lemma 6 that dv and

dw are both less than M + 1, so, both v and w are made better off as they each

have degree less than u. The only thing we have to be careful about is that u may

be subsidizing her relationship with either or both of the agents, and when they

sever the relationship with u they forgo the subsidy. Lemma 7 sets a bound on the

transfer from u to v or w that ensures it will always be in v and w’s best interest to

forgo the transfer and establish a relationship with each other.

Lemma 9. Suppose 1 < M < |V (g)| − 1 and let G be strongly pairwise stable. No

vertex in G has degree greater than M + 1.

Intuition. This is a pigeonhole argument. Suppose for contradiction there is a

vertex u with du > M + 1. By Lemma 6, every neighbor of u must have degree less

than or equal to M. By Lemma 8, all neighbors of u must be adjacent. However,

there are at least M + 1 neighbors of u. All are adjacent to the other neighbors of

u (there are at least M other neighbors of u) plus u itself. Therefore, all neighbors

of u must have degree at least M + 1, a contradiction.

Lemma 10. Suppose 1 < M < |V (g)| − 1 and let G be socially optimal. No vertex

in G has degree less than M .

Intuition. If there exists a vertex u with du < M , we know from Lemma 5

that u must be adjacent to all vertices with degree less than or equal to M . We can
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establish that there must be two vertices, v and w that are adjacent to each other,

but neither of which are adjacent to u. Either of these agents would be better off

dropping the edge with the other and instead establishing an edge with u. Moreover,

this will be socially beneficial as both v and w must have degree M + 1 and socially

we are indifferent whether or not they are adjacent. However, since du < M , we

strictly prefer that u create a new relationship. Since this switch is socially beneficial

and all the gains are realized by u and the vertex that switches, they will be able to

compensate u’s neighbors for their decreased payoff. Again, we have to be careful

about transfers between v and w, but only one can be receiving a positive transfer

from the other.

Lemma 11. Suppose 1 < M < |V (g)| − 1. If G is nearly-(M+1)-regular, then G is

strongly pairwise stable with transfers.

Proof. Let G be any nearly-(M+1)-regular graph. Define a set of transfers T by:

tuv =


0 du = dv

φ(M)− φ(M + 1) du = (M + 1), dv = M

φ(M + 1)− φ(M) du = M,dv = M + 1

Every agent with degree M receives a total payoff of Mφ(M) and every agent with

degree M + 1 receives a payoff of (M + 1)φ(M + 1). Since to(M) = 0, Mφ(M) =

(M + 1)φ(M + 1).

A nearly-(M+1)-regular graph is optimal, so adding an edge cannot increase

social payoff. Since all the benefits are captured by the two agents adding an edge

and all costs are incurred by their neighbors, it is not possible for the two agents

61



adding the edge to make all their neighbors better off. Similarly, an agent u has

no wish to delete one of her edges. u’s remaining neighbors receive all the benefit,

while u incurs all the costs. Since the costs are greater than or equal to the benefits

(the original graph was socially optimal), u’s remaining neighbors will not be able

to compensate u so that all are better off. Finally, two vertices u and v can not do

better by each dropping an edge and creating an edge with each other. The new

relationship is worth at most φ(M) which is exactly what they received from their

previous relationship.

Lemma 9 and Lemma 10 establishes the nearly-(M+1)-regularity is necessary

for strong pairwise stability with transfers. Lemma 11 establishes that being nearly-

(M+1)-regular is sufficient as well. This is a surprising and powerful result. In a

network of relationships, an agent should be able to sever any ties it chooses and

establish new ties when it is mutually desirable. Moreover, there should always

be informal ways an agent can exert effort that is costly for herself but makes the

relationship more beneficial for a partner. My result establishes that if this is case,

then the only network which will be an equilibrium is the socially optimal network.

3.4 A Reduced Form Utility Model

A particular degree based utility function of interest is:

ui(G) = wi +
∑
i↔j

γdvjwi,j −
∑
i↔j

ci,j, where 0 ≤ γ ≤ 1. (3.4)
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Recall JW’s Connections Model is:

ui(G) = wi +
∑
j 6=i

δti,jwi,j −
∑
i↔j

ci,j

where ti,j is the length of the shortest path between vi and vj.

As mentioned before, the Connections Model has only positive externalities.

The co-authors model is the negative externalities model JW examine, but the

utility function presented in Equation 3.4 is a more natural negative externalities

counterpoint to the connections model. A vertex only gets utility from its neighbors,

and this utility is a decreasing function of each neighbor’s degree. This also fits

JW’s motivation for the co-authors model. The benefit to working with a colleague

is decreasing in the number of co-authors she has as she will have less time to devote

to your project.

With our results from Section 3, we can quickly solve for the symmetric version

of Equation 3.4. Let

ui(G) =
∑
i↔j

γdvj (3.5)

where 0 < γ < 1. Further, suppose γ = τ
τ+1

for some integer τ .

By assumption:

to(x) = (x+ 1)γx+1 − xγx

= γx((x+ 1)γ − x)

= γx(x(γ − 1) + 1)

which is a decreasing function of x. Moreover

to(τ) = γτ ((τ + 1)γ − τ)
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= γτ ((τ + 1)
τ

τ + 1
− τ)

= γτ ((τ − τ)

= 0

Therefore all the assumptions of Proposition 3 on page 58 are met.

Proposition 10. Suppose ui(G) =
∑

i↔j γ
dvj . Then

1. G is socially optimal if and only if G is nearly-(τ + 1)-regular.

2. G is strongly pairwise stable with transfers if and only if G is nearly-(τ + 1)-

regular.

3.5 Conclusion

Distance based and degree based models are the two most intuitive models of

an agent’s payoff from a network. While much attention has been paid to distance

based models, very little has been paid to degree based models. This paper com-

pletely characterizes the set of optimal and stable networks for this natural class

of utility functions. The predicted networks are interesting in their own right but

especially so when taken in contrast to the optimal networks for distance based mod-

els. It is striking that two intuitive models can lead to such dramatically different

predictions. In particular, this paper, taken in conjunction with the results from

Bloch and Jackson (2007), provides a generalization and simplification of results in

the classic networks paper by Jackson and Wolinsky (1996).
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3.6 Appendix - Proofs

The trivial network consists of |V (G)|
2

many pairs if |V (G)| is even and |V (G)−3|
2

many pairs plus the three remaining vertices connected as a path if |V (G)| is odd.

Proposition 8. Suppose externalities are weakly consistent.

1. When 1 < M < |V (G)| − 1, then G is socially optimal if an only if G is

nearly-(M+1)-regular.

2. When M = |V (G)| − 1, then the complete network is the unique socially

optimal network.

3. When M = 1, then the unique socially optimal network is the trivial network.

Proof. Proposition 8.2 Let G be any graph that contains two non-adjacent vertices

u and v, and suppose the threshold is |V (G)|−1. By the definition of the threshold,

to(x) > 0. Therefore,

U(G ∪ eu,v)− U(G) = (du + 1)φ(du + 1)− duφ(du) + (dv + 1)φ(dv + 1)− dvφ(dv)

= to(du) + to(dv)

> 0

and G can not be optimal. Therefore, the only optimal network is one where all

vertices are adjacent.

Proposition 8.3 We know from Equation 3.1 on page 48 that

U(G) =
N∑
i=1

dvi
φ(dvi

)
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Figure 3.3: Trivial graph for an even and odd number of vertices.
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and from Equation 3.3 on page 57 that

xφ(x) = [
∑

2≤i≤x

to(i− 1)] + φ(1)

Since to(x) < 0 for every x > 0, xφ(x) is strictly decreasing for x ≥ 1.

Therefore, if a 1-regular graph exists, it must be optimal. A 1-regular graph exists

when there is an even number of vertices (the trivial graph), but does not when the

number of vertices is odd. Since 2φ(2) > 0, the trivial graph must be optimal when

there is an odd number of agents.

Lemma 5. Suppose 1 < M < |V (g)|−1 and let G be strongly pairwise stable.

If there exists a vertex u with degree less than M, then u is adjacent to every vertex

with degree less than or equal to M.

Proof. Suppose for contradiction that G is supported by transfers T and has two

non-adjacent vertices u and v with du < M and dv ≤M . Let

t′vx =


φ(dv)− φ(dv + 1) + ε x ∈ N(v)

φ(du + 1)− φ(dv + 1) x = u

t′ux =


φ(du)− φ(du + 1) + ε x ∈ N(u)

φ(dv + 1)− φ(du + 1) x = v

66



Then

∆πu(G ∪ ei,j, T + T ′) = φ(dv + 1) + t′vu −
∑

w∈NG(u)

t′uw

= φ(dv + 1) + [φ(du + 1)− φ(dv + 1)] + du(φ(du + 1)− φ(du)− ε)

= φ(du + 1)− du(φ(du)− φ(du + 1))− du ∗ ε)

= to(du)− du ∗ ε

> 0

for ε sufficiently small.

For x ∈ NG(u)

∆πx(G ∪ ei,j, T + T ′) = φ(du + 1)− φ(du) + t′ux

= φ(du + 1)− φ(du) + φ(du)− φ(du + 1) + ε

= ε

> 0

Similarly, πv(G∪ei,j, T+T ′)−πv(G, T ) > 0 and πx(G∪ei,j, T+T ′)−πu(G, T ) >

0 for every x ∈ NG(v). Therefore, u and v block < G, T >, contradicting the

assumption that T supports G.

Lemma 6. Suppose 1 < M < |V (g)|−1 and let G be strongly pairwise stable.

If there exists a vertex u with degree greater than M + 1, then u is not adjacent to

any vertex with degree greater than or equal to M + 1.

Proof. Suppose for contradiction that G is supported by transfers T and has two

adjacent vertices u and v with du > M + 1 and dv ≥ M + 1. Let rxu = φ(du −
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1) − φ(du) − ε for every x ∈ N(v) \ u. In other words, each neighbor of u gives u

φ(du−1)−φ(du)−ε. Similarly, let svx = φ(dv)−φ(dv−1)+ε for every x ∈ N(u)\v.

Then if u drops its edge with v in order to receive transfers R, it loses the

benefit from v, φ(dv), no longer makes the transfer tu,v, and gains the transfers R

from each of its remaining neighbors. Specifically,

∆πu(G \ euv, T +R) = −φ(dv) + tuv + (du − 1)(φ(du − 1)− φ(du)− ε)

Similarly,

∆πv(G \ euv, T + S) = −φ(du) + tvu + (dv − 1)(φ(dv − 1)− φ(dv)− ε)

Adding these two equations yields

∆πu(G \ euv, T +R) + ∆πv(G \ euv, T + S) =

−to(dv − 1)− to(du − 1) + tuv + tvu − ε(du + dv − 2) =

−to(dv − 1)− to(du − 1)− ε(du + dv − 2) > 0

for sufficiently small ε. The first equality comes from rearranging terms. The second

equality follows since tuv = −tvu by definition. The final inequality follows since

du − 1 > M and dv − 1 ≥ M , so by the definition of the threshold, φ(du − 1) < 0

and φ(dv− 1) ≤ 0. But, since ∆πu(G \ euv, T +R) + ∆πv(G \ euv, T +S) > 0, either

∆πu(G \ euv, T +R) > 0 or ∆πv(G \ euv, T + S) > 0.

By construction, πx(G \ euv, T +R)−πx(G, T ) > 0 for every x ∈ N(u) \ v and

πx(G \ euv, T + S)− πx(G, T ) > 0 for every x ∈ N(v) \ u. Since

[πu(G \ euv, T +R)− πu(G, T )] + [πv(G \ euv, T + S)− πv(G, T )] > 0

68



at least one of [πu(G\euv, T +R)−πu(G, T ) > 0 or πv(G\euv, T +S)−πv(G, T ) > 0.

Whichever one is greater than zero blocks G, a contradiction.

In equilibrium, there is a limit to how much an agent is willing to transfer

another agent.

Lemma 7. Suppose T supports a network G. Then for every two agents i

and j such that ei,v ∈ G,

tij ≤ φ(dj)− (di − 1)(φ(di − 1)− φ(di))

.

Proof. vi has di−1 many neighbors who would be willing to pay up to φ(di−1)−φ(di)

for i to sever her relationship with j. i receives a benefit of φ(dj) − ti, j from her

relationship with j, so if φ(dj)− tij < (di − 1)(φ(di − 1)− φ(di)) then i and all her

remaining neighbors do strictly better if i drops her relationship with j and accepts

a transfer of φ(di − 1)− φ(di)− ε from each of her remaining neighbors.

Lemma 8. Suppose 1 < M < |V (g)| − 1 and let G be strongly pairwise

stable. If there exists a vertex u with du > M + 1, then all of u’s neighbors are

adjacent.

Proof. Suppose not, and let u be such that du > M + 1, v, w ∈ N(u), but evw 6∈ G.

We know from Lemma 6 that dv, dw ≤M . Since v and w are not adjacent, we know

from Lemma 5 that neither v nor w has degree less than M. Therefore, dv = dw = M .

From Lemma 7

tuv ≤ φ(dv)− (du − 1)(φ(du − 1)− φ(du))
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= φ(dv)− φ(du) + φ(du)− (du − 1)(φ(du − 1)− φ(du))

= φ(M)− φ(du) + to(du − 1)

Similarly, tuw ≤ φ(M)− φ(du) + to(du − 1). Therefore

∆πv(G+ evw \ {euv, euw} , T ) = φ(dw)− φ(du)− tuv

= φ(M)− φ(du)− tuv

≥ φ(M)− φ(du)− (φ(M)− φ(du) + to(du − 1))

= −to(du − 1)

> 0

where the last inequality follows from du > M + 1 and therefore, to(du − 1) < 0.

Similarly, ∆πw(G + evw \ {euv, euw} , T ) > 0. Note that since the degree of

v and w has not changed, all vertices in N(v) ∪ N(w) \ u are indifferent between

< G+evw\{euv, euw} , T > and < G, T >. Therefore agents v and w block < G, T >

contradicting the stability of G.

Lemma 9. Suppose 1 < M < |V (g)|−1 and let G be strongly pairwise stable.

No vertex in G has degree greater than M + 1.

Proof. This is a pigeonhole argument. Suppose for contradiction there is a vertex u

with du > M + 1. By Lemma 6, every neighbor of u must have degree less than or

equal to M. By Lemma 8, all neighbors of u must be adjacent. However, there are

at least M + 1 neighbors of u. All are adjacent to the other neighbors of u (there
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are at least M other neighbors of u) plus u itself. Therefore, all neighbors of u must

have degree at least M + 1, a contradiction.

Lemma 10. Suppose 1 < M < |V (g)| − 1 and let G be socially optimal. No

vertex in G has degree less than M .

Proof. Suppose for contradiction there exists a vertex u with du < M . Since M <

|V (G)| − 1, there exists a v not adjacent to u. By Lemma 5, dv > M . Therefore, by

Lemma 9, dv = M+1. Since v has M+1 neighbors and u has less than M neighbors,

there must exist a w which is adjacent to v but not adjacent to u. Repeating the

logic above, dw = M + 1. We will demonstrate that u, w, and all of their neighbors

can be made better off if u adds an edge with w and w drops it’s edge with v.

From Lemma 7

twv ≤ φ(dv)− (dw − 1)(φ(dw − 1)− φ(dw))

= φ(M + 1)− (M)(φ(M)− φ(M + 1))

= to(M)

= 0

Similarly tvw ≤ 0, therefore twv = tvw = 0. Let G′ = G ∪ euw \ evw. Then

∆πw(G′, T ) = φ(du + 1)− φ(dv)− tvw

= φ(du + 1)− φ(dv)

∆πu(G
′, T ) = φ(dw)

∆πx(G
′, T ) = φ(du + 1)− φ(du) for every x ∈ N(u)

∆πx(G
′, T ) = 0 for every x ∈ N(w)
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Let

t′ux =


φ(du)− φ(du + 1) + ε x ∈ N(u)

φ(dv)− φ(du + 1) + ω x = w

t′wx = δ for every x ∈ N(w) \ v.

Now

∆πw(G′, T + T ′) = ω − dw ∗ δ

∆πu(G
′, T + T ′) = φ(du + 1)− du(φ(du)− φ(du + 1))− du ∗ ε− ω

= to(du)− du ∗ ε− ω

∆πx(G
′, T + T ′) = ε for every x ∈ N(u)

∆πx(G
′, T + T ′) = δ for every x ∈ N(w)

Since du < M , to(du) > 0, and therefore, u, w and all of their neighbors can be

made better off in G∪ euw \ evw. This contradicts the strong pairwise stability of G.

72



Bibliography

[1] Abdulkadiroglu, A. and Sonmez, T. (1998), “Random Serial Dictatorship and

the Core from Random Endowments in House Allocation Problems,” Econo-

metrica 66: 689-701.

[2] Bala, V. and Goyal, S. (2000), “A Non-Cooperative Model of Network Forma-

tion,” Econometrica 68: 1181-1230.

[3] Bloch, F. and Jackson, M. (2007), “The Formation of Networks with Transfers

Among Players,” Journal of Economic Theory, 133: 83-110.

[4] Calvo-Armengol, T. and Jackson, M. (2004), The Effects of Social Networks on

Employment and Inequality, American Economic Review, 94: 426-454.

[5] Chung, K. (2000), “On the Existence of Stable Roommate Matchings,” Games

and Economic Behavior 33: 206-230.

[6] Currarini, S. (2002) Stable Organizations with Externalities, mimeo: Universita

di Venezia.

[7] Edmunds, J. (1965), “Paths, Trees, and Flowers,” Canad. J. Math. 17: 449-467.

[8] Gale, D. and Shapley, L. (1962), “College Admissions and the Stability of

Marriage,” Amer. Math. Monthly 69: 9-15.

73



[9] Granovetter, M. (1973) “The Strength of Weak Ties,” American Journal of

Sociology, 78: 1360-80.

[10] Granovetter, M. (1995) “Getting a Job: A Study of Contacts and Careers,”

2nd Ed. Chicago: University of Chicago Press.

[11] Goyal, S. and Joshi, S. (2002) Unequal Connections, mimeo: University of

London and George Washington University.

[12] Gusfield, D. and Irving, R. (1989), “The Stable Marriage Problem: Structure

and Algorithms,” MIT Press, Boston, MA.

[13] Jackson, M.O. (2003), “A Survey of Models of Network Formation: Stability

and Efficiency,” Mimeo, Cal-Tech.

[14] Jackson, M.O. and Wolinsky, A. (1996), “A Strategic Model of Social and

Economic Networks,” Journal of Economic Theory, 71: 44-74.

[15] Kranton, R. and Minehart, D. (2002), “A Theory of Buyer-Seller Networks,”

American Economic Review,

[16] Mongtomery, J. (1991), “Social Networks and Labor Market Outcomes: Toward

an Economic Analysis,” American Economic Review, 81: 1408-18.

[17] Rees, A. (1966) “Information Networks in Labor Markets,” American Economic

Review, 56: 559-66.

74



[18] Roth, A. E., and Sotomayor, M. (1990). “Two-Sided Matching: A Study in

Game-Theoretic Modeling and Analysis,” Econometric Society Monograph 18,

Cambridge Univ. Press, Cambridge.

[19] Shapley, L.and Scarf, H. ( 1974), “On Cores and Indivisibility,” Journal of

Mathematical Economics 1: 23-28.

[20] Tan, J. J. M. (1991). A Necessary and Sufficient Condition for the Existence of

a Complete Stable Matching, J. Algorithms 12: 154178.

[21] West, D.B. (1996) “Introduction to Graph Theory,” Upper Saddle River, NJ:

Prentice Hall.

75


