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This dissertation focuses on the greenhouse and nursery industry in the United States. Two major 

issues are explored: irrigation and plant disease. The first two essays examine wireless soil-

moisture sensor networks, an emerging technology that measures soil moisture and optimizes 

irrigation levels in real time. The first essay describes a study in which a nationwide survey of 

commercial growers was administered to generate estimates of grower demand and willingness 

to pay for sensor networks. We find that adoption rates for a base system and demand for 

expansion components are decreasing in price, as expected.  The price elasticity of the 

probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat 

greater than that of drip irrigation. In the second essay, yields, time-to-harvest, and plant quality 

were analyzed to measure sensor network profitability. Sensor-based irrigation was found to 

increase revenue by 62% and profit by 65% per year. The third essay investigates greenhouse 

nursery growers’ response to a quarantine imposed on the west coast of the United States from 

2002 to present for the plant pathogen that causes Sudden Oak Death. I investigate whether 

growers choose to 1) improve their sanitation practices, which reduces the underlying risk of 

disease without increasing the difficulty of detecting the pathogen, 2) increase fungicide use, 



  

which also prevents disease but makes existing infections much harder to detect, or 3) change 

their crop composition towards more resistant species.  First, a theoretical model is derived to 

formalize hypotheses on grower responses to the quarantine, and then these predictions are 

empirically tested using several public data sources. I do not find evidence that growers improve 

their sanitation practices in response to the quarantine. I do, however, find evidence that growers 

heavily increase their fungicide use in response to a quarantine policy that requires visual (as 

opposed to laboratory) inspection for the disease before every crop shipment, suggesting that the 

quarantine may have the adverse effect of making the pathogen harder to identify. I also do find 

evidence that growers shift away from susceptible crops and towards resistant crops. 
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Introduction 

This dissertation focuses on issues relating to greenhouse nurseries, a multibillion dollar 

agricultural industry which primarily produces ornamental crops.  Analyses of greenhouse 

nurseries is complicated by several factors largely driven by heterogeneity of crop 

composition.  The three essays of this dissertation focus on two major issues affecting 

greenhouse nurseries: water shortages and plant disease.      

The greenhouse nursery industry produces ornamental plants (trees, shrubs, and flowers 

for landscaping and household use) as well as any plants grown under cover. The official NAICS 

code provides the following definition for greenhouse nurseries: 

This industry group comprises establishments primarily engaged in growing crops 

of any kind under cover and/or growing nursery stock and flowers. "Under cover" 

is generally defined as greenhouses, cold frames, cloth houses, and lath houses. 

The crops grown are removed at various stages of maturity and have annual and 

perennial life cycles. The nursery stock includes short rotation woody crops that 

have growth cycles of 10 years or less. 

Unlike major commodity crops such as wheat, corn, and soybeans that are usually 

produced in a monoculture environment, a typical greenhouse nursery grows a wide variety of 

species. While a mono-cultural commodity farm may have thousands of acres devoted to a single 

species, a typical 40 acre greenhouse nursery may have upwards of 500 species (Parke and 

Grunwald 2012). This heterogeneity makes a number of management decisions more complex 

than they would be in other agricultural settings. The heterogeneity of crops also adds a level of 
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complexity to researching the forces behind trends in the industry, partly because changes in the 

industry size cannot be explained by the overall number of crops sold. 

According to the United States Department of Agriculture (USDA) 2012 Census of 

Agriculture, the market value of the industry was $14.5 billion, with 52,751 operations, 

accounting for 2.5 percent of all farms and 3.7 percent of all agricultural sales in the US. This is 

comparable to vegetables, melons, potatoes, and sweet potatoes ($17 billion) and fruit and tree 

nuts ($22 billion).  

Plant diseases are highly prevalent and difficult to manage in greenhouse nurseries (Parke 

and Grunwald, 2012). According to the University of Georgia Extension 2013 Plant Disease 

Loss Estimates, disease losses account for a 9.1 percent reduction in total crop value for 

ornamental plants in Georgia on average, which was higher than the estimates for wheat (1.6 

percent) and soybeans (4.4 percent), but lower than the losses in corn (19.8 percent) and cotton 

(19.6 percent). Disease reduction efforts can be costly for growers. According to the USDA 

Census of Horticultural Specialties, growers spend 2 percent of their budget on agricultural 

chemicals alone, which does not include the labors costs of applying those chemicals nor the cost 

of sanitation and management practices such as cleaning equipment between uses and inspecting 

for infected plants.   

In many of the major greenhouse nursery producing states, such as Texas, California, and 

Oregon, water demand is rapidly outpacing available supply. The horticultural industry uses 

222.6 billion gallons of water per year, accounting for 5.6 percent of all water use in agriculture 

(Farm and Ranch Irrigation Survey, 2013). Since agriculture accounts for more than 80 percent 

of total water use in western states, and ornamental crops can be water intensive, allocating water 

effectively within an operation is a critically important task. Among horticultural operations, 57 
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percent of water use is from ground water, which is being extracted much faster than it is being 

replenished in much of the country. (Farm and Ranch Irrigation Survey, 2013; Gleick, 2010)  

Disease management and irrigation management are closely related. Over or under 

watering can stress the plants, making them more susceptible to disease. Grower management 

practices influence the amount of water used and plant health.  Precision irrigation technologies 

are designed to reduce the amount of over or under watering by delivering the amount of water 

needed by the plant. A variety of factors influence the adoption of efficient irrigation 

technologies, include stable water prices, land ownership, and grower education level 

(Schoengold and Sunding, 2014; Daberkow and McBride, 2003).  Grower behavior also 

influences plant health and the probability of disease through the adoption of best management 

practices. The factors with the biggest influence on best management practices include access to 

and quality of information, financial capacity, and being connected to agency or local networks 

of farmers or watershed groups (Baumgart-Getz, Prokopy, and Floress, 2012). This dissertation 

investigates the likelihood and factors that influence adoption and willingness to pay of both 

precision irrigation technologies and of farm management practices.  

The three essays in this dissertation examine the management decisions and their payoffs 

for greenhouse nursery growers as they relate to disease control and irrigation. The first two 

essays focus primarily on irrigation. In particular, they focus on an emerging technology called 

wireless soil moisture sensor networks. These irrigation technologies measure the amount of 

moisture in the soil and send the information to a computer which automatically adjusts the 

amount of water sent to plants in real time. The first essay, co-authored with Professors Erik 

Lichtenberg and John Majsztrik, uses data from an original survey of greenhouse nursery 

growers to estimate growers’ willingness to pay for the sensor networks. The second essay, co-
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authored with Erik Lichtenberg, John Lea-Cox, John Majsztrik and Bruk Belayneh, uses data 

from an operation that implemented these sensor networks to determine the effect of the 

networks on the operation’s profitability. The third essay investigates growers’ response to a 

quarantine imposed on the west coast of the United States from 2002 to present for the plant 

pathogen that causes Sudden Oak Death (Phytophthora ramorum). It investigates whether 

growers choose to 1) improve their sanitation practices, which reduces the underlying risk of 

disease without increasing the difficulty of detecting the pathogen, 2) increase fungicide use, 

which also prevents disease but makes existing infections much harder to detect, allowing 

growers to evade quarantine restrictions on sales of infected plants or 3) change their crop 

composition towards more resistant species.  

 

 

 

  



 

5 
 

Chapter 1: Grower Demand for Sensor-Controlled Irrigation 

Erik Lichtenberg; John Majsztrik; Monica Saavoss  

 

Abstract 

Water scarcity is likely to increase in the coming years, making improvements in 

irrigation efficiency increasingly important.  An emerging technology that promises to increase 

irrigation efficiency substantially are wireless irrigation sensor networks, which upload sensor 

data into irrigation management software, creating an integrated system that allows real-time 

monitoring and control of moisture status.  This has been shown  to reduce irrigation costs, lower 

plant loss rates, shorten production times, decrease pesticide application, increasing yields, 

quality, and profit.  We use an original survey to investigate likely initial acceptance, ceiling 

adoption rates, and profitability of this new sensor network technology in the nursery and 

greenhouse industry.  We find that adoption rates for a base system and demand for expansion 

components are decreasing in price, as expected.  The price elasticity of the probability of 

adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that 

of drip irrigation.  Adoption rates for a base system and demand for expansion components are 

increasing in specialization in ornamental production: Growers earning greater shares of revenue 

from greenhouse and nursery operations are willing to pay more for a base system and are 

willing to purchase larger numbers of expansion components at any given price.  We estimate 

that growers who are willing to purchase a sensor network expect investment in this technology 

to generate significant profit, consistent with findings from experimental studies. 
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Introduction 

Current trends on water supply and demand indicate that the importance of greater water 

use efficiency is likely to grow, especially for agricultural uses, which account for 70 percent or 

more of consumptive use worldwide and over 90 percent in some locations (Sauer et al.; 2010; 

Schaible and Aillery, 2012).  Population growth is increasing water demand for urban uses and 

for energy production (Sauer et al., 2010; Schaible and Aillery, 2012; Gleick, 2013).  Expansion 

of irrigated acreage has intensified competition among agricultural users, between agricultural 

and other users, and between states and nations (Evans and Sadler, 2008; Sauer et al., 2010; 

Gleick, 2013; Kuwayama and Brozovic, 2013).  Climate change is expected to shrink available 

freshwater supplies throughout much of the world (Evans and Sadler, 2008; Mote et al., 2005). 

Growing water scarcity can be mitigated by increases in irrigation efficiency by 

combining more precise application equipment and decision support systems (Evans and Sadler, 

2008). Automated wireless sensor networks, an emerging technology on the verge of commercial 

introduction, offer this kind of decision support.  These systems upload data wirelessly into 

irrigation management software, allowing irrigation managers to monitor moisture status and 

match water application with plant uptake needs in real time.  This technology differs from 

moisture sensors currently on the market in its integration of user-friendly software and control 

capabilities that permit real time information access and automated irrigation control.  Research 

studies conducted in actual production environments indicate that these systems can reduce 

irrigation costs—including labor and energy in addition to water—substantially (Belayneh et al., 

2013).  Other documented benefits include lower plant loss rates, shorter production times, less 

need for pesticide application, and higher yield and quality (Lichtenberg et al., 2013).  These 

research studies all indicate that adoption can be extremely profitable. 
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This paper uses an original survey of nursery and greenhouse farmers nation-wide to 

investigate likely initial acceptance, diffusion rates, and ultimate ceiling adoption rates of this 

new sensor network technology.  We focus on the greenhouse, nursery, and floriculture industry, 

a large and growing segment of US agriculture.  Sales of this sector totaled almost $17 billion in 

2007, more than vegetables ($15 billion), wheat ($11 billion), cotton ($5 billion), and almost as 

much as fruits, nuts, and berries ($19 billion) or soybeans ($20 billion) (US Department of 

Agriculture, 2009). The value of each acre-foot of water used for greenhouse and nursery 

products is 2-3 orders of magnitude greater than other crops (Ackerman and Stanton, 2011). 

States in the water-scarce Pacific, Mountain, and South Central regions account for 37 percent of 

greenhouse and nursery sales, suggesting that water savings are likely extremely important for 

this industry (Hall, Hodges and Palma, 2011).  The high market value of ornamental crops 

combined with their large footprint in water-scarce, high water cost regions makes them a likely 

market for sensor networks. 

We investigate two dimensions of demand for these sensor networks with an eye toward 

gauging likely initial grower acceptance of this technology, how rapidly it is likely to 

disseminate, and the ultimate size of market for wireless sensor networks.  We begin by 

estimating willingness to pay for a base system consisting of 5 sensors connected to a single 

transmission node plus software.  We use the willingness to pay estimates to discuss 

characteristics of likely base system adopters and to explore likely effects of changes in system 

prices and grower perceptions of system benefits on the speed at which this technology is likely 

to diffuse.  We then investigate potential system scale by estimating demand for additional 

transmission nodes, with each node holding up to 5 sensors.  We use this estimated demand 

relationship to investigate characteristics associated with demand for additional nodes. 
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Briefly, the estimated coefficients of the base system willingness to purchase model 

indicate that as many one-fifth of nursery and greenhouse operators might purchase a base 

system when it becomes commercially available while about 30% are unlikely to purchase a base 

system at any price.  The estimated price elasticity of demand for a base system suggests that this 

technology is likely to diffuse more rapidly than drip irrigation.  Our estimates of base system 

willingness to pay combined with our estimates of demand for additional nodes, indicate an 

average expected profit from adoption of about $11,000 annually, with substantial variation 

around that figure. 

We proceed as follows:  We begin with a review of the literature on adoption of irrigation 

technologies.  We then describe our survey of nursery and greenhouse operators and the data 

obtained from that survey.  The subsequent section discusses the specification and estimation of 

models of willingness to pay for a base system and demand for additional nodes.  We then 

discuss estimation results, followed by a discussion of implications for the initial adoption and 

subsequent diffusion of this technology.  A final section concludes. 

Economics of Precision Irrigation Adoption 

Traditional gravity-fed irrigation systems rely on soils to hold a reservoir of water in the 

root zone, which is available for plant uptake.  The efficiency of these systems is limited: Some 

of the water applied is lost via surface runoff, some percolates through the root zone into 

groundwater, and some groundwater drains into nearby streams and ditches.  Improving 

uniformity of application by land leveling can reduce—but not eliminate—these losses 

(Feinerman et al., 1983). 

Sprinkler and drip systems increase irrigation efficiency by substituting capital and 

energy for soil water holding capacity as well as by improving timing of application (Caswell 
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and Zilberman, 1986; Lichtenberg, 1989; Shani et al., 2009).  Farmers cultivating lower quality 

soils or land with greater slope are thus more likely to adopt more precise irrigation technologies 

than farmers cultivating better soils on level land, where the gains from increasing irrigation 

precision are lower (Lichtenberg, 1989; Dinar and Yaron, 1990; Negri and Brooks, 1990; 

Shrestha and Gopalakrishnan, 1993; Green et al., 1996; Green and Sunding, 1997; Moreno and 

Sunding, 2005; Koundouri et al., 2006; Schoengold et al., 2006).  Larger farm operations, which 

presumably have greater capacity to finance investment in irrigation equipment, are also more 

likely to adopt drip and sprinkler systems (Dinar et al., 1992; Shrestha and Gopalakrishnan, 

1993; Green et al., 1996).  The gains from increasing irrigation precision—and thus the 

likelihood of adoption of more efficient irrigation technologies—have also been shown to be 

greater when water is more expensive (Dinar and Yaron, 1990; Green et al., 1996; Pfeiffer and 

Lin, 2014) and when the marginal value of water is greater (Caswell and Zilberman, 1985; 

Lichtenberg, 1989; Dinar et al., 1992; Shrestha and Gopalakrishnan, 1993; Schoengold et al., 

2006). 

As noted above, irrigation efficiency is lower—and thus investments in more efficient 

irrigation equipment are more profitable—on farms whose soils vary more in terms of soil 

permeability, slope, and similar factors (Feinerman et al., 1983).  The same holds for investments 

in precision agriculture technologies more generally.  For instance, variable rate fertilizer 

application is more profitable on fields whose soils vary more in terms of natural fertility 

(Babcock and Pautsch, 1998; Pautsch et al., 1999; Griffin et al., 2000; Oriade and Popp, 2000; 

Bullock et al., 2005) and correspondingly less profitable on farms with more uniform soils 

(Hudson and Hite, 2003). 
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The key advantage of sensor networks is that they provide more accurate information 

about substrate moisture status in real time, allowing growers to make timely adjustments to 

irrigation water applications.  Sensor nodes collect data on environmental conditions, soil 

moisture, electrical conductivity, etc. from sensors and transmit those data to a base station 

connected to a personal computer.  Those data are fed into software which graphically displays 

the sensor information from each node.  The software can also be used to automate irrigation by 

transmitting instructions to nodes attached to latching solenoids that autonomously control 

irrigation (e.g., the node automatically turns the  irrigation valve on and off when soil moisture 

reaches predetermined set points; see Belayneh, et al. (2013) for a more detailed description).  

The potential value of more accurate information about the production environment has been 

demonstrated for variable rate fertilizer application (Pautsch et al., 1999; Bullock et al., 2005) as 

well as for sensor networks (Belayneh et al., 2013; Lichtenberg et al., 2013). 

Data 

We investigated potential willingness to pay for sensor networks using data from an 

original survey of greenhouse and nursery operations conducted from January 2012 through 

March 2013. The survey was administered in person to growers at the Mid-Atlantic Nursery 

Trade Show and the Georgia Green Industry Association annual meeting and online via 

invitations circulated through extension networks.  Incomplete surveys were followed-up with 

phone calls or emails.  Growers attending the Mid-Atlantic Nursery Trade Show and Georgia 

Green Industry Association annual meeting numbered 541 and 80, respectively.  The extension 

networks through which invitations were circulated have a potential reach of about 9,100 

commercial greenhouse and nursery operations.  A total of 268 surveys were completed, 35% of 

which were filled out at trade shows and 65% of which were completed online. The sample was 
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more representative of commercial operations—and thus likely purchasers of the wireless sensor 

systems we studied—than of the greenhouse and nursery industry as a whole. For example, the 

revenue distribution of the respondents in our sample was skewed towards operations with high 

gross revenues compared with the national revenue distribution of the nursery and greenhouse 

growers as reported in the U.S. Census of Agriculture (Table 1). The 47% of operations surveyed 

by the Census of Agriculture that gross less than $25,000 per year are unlikely to profit from 

wireless sensor networks since their profit margins are unlikely to justify the cost of system 

purchase and maintenance. The sample is also skewed towards larger operations in terms of 

acreage (Table 1).  Operations in Appalachia and the Southeast were over-represented relative to 

the share of operations reported by the Census of Agriculture while operations located in the 

Midwest were under-represented (Table 1). 

The survey focused on general characteristics of the operation and the respondent, as well 

as questions that were directed specifically towards water use practices such as water sources. 

Questions concerning general characteristics of the operation included income, total costs, size, 

zip code, and revenue sources.  Respondents were also asked to list the percent of total water 

used from surface water, deep wells, shallow wells, recycled water, rain, municipal water, and 

other water sources.  Questions concerning characteristics of the respondent included age, 

education level, and position in the company.  

Information about growers’ willingness to pay for a base system and for additional nodes 

was elicited in the following series of steps.  First, respondents were given the following 

background information: 

“As part of this project, we are developing and testing sensor 

networks that can monitor root zone moisture, weather and many 
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other variables for precision irrigation and nutrient management. 

These more advanced sensor networks can automatically turn 

irrigation on and off as needed, reducing or eliminating the need 

for manual irrigation control. The sensors decide when, where, and 

how much to irrigate based on set-points you determine. 

Answering the questions below will help us to better understand 

the extent of technology adoption in the nursery and greenhouse 

industry.” 

Respondents were then asked for their perceptions of potential benefits and limitations of sensor 

networks (Table 2). Next, respondents were asked to look at a schematic of a base sensor 

network system (Figure 1) and asked the following question: 

 “A basic sensor system contains a base station, software, and a 

single node (with up to 5 sensors), which monitors and controls 

irrigation in a single production area/irrigation zone. Would you 

purchase a basic sensor system if the price was $X?”  

The system price X was randomized across participants with values of $500, 

$1,000, $2,000, $3,000, $4,000, or $5,000.”1  Every offered price had nearly the 

same number of growers assigned to it (Table 3).  

To determine how large a sensor network respondents might be willing to purchase, 

respondents were again shown the sensor network schematic in Figure 1 and asked the following 

question: 

                                                           
1An earlier version of the survey also included a $1,500 bin, and there is one response with that price level. That 

observation is treated like the other price levels in the probit model.  
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“A basic sensor system is expandable, so you could buy additional 

nodes (5 sensors), and use the same base station and software 

package. Suppose you already purchased the basic system, how 

many additional nodes would you be willing to purchase for your 

operation if EACH node cost $X?”  

The price of an additional node X was randomized with values of $500, $1,000, $1,500 or 

$2,000. Respondents were to select the number of additional nodes from the following list: 0, 1, 

2, 3, 4, 5, 6-7, 8-10, 11-15, 16-20, and 21 or more. Prices were assigned close to evenly (Table 

3).  Note that the additional nodes question tells the respondent to assume they already owns the 

base system, allowing them to report a willingness to buy additional nodes even if they were not 

willing to buy a base system at the price offered (and thus accommodating the possibility that 

they may have been willing to purchase a base system at a price lower than the one offered).  

This framing allows us to use the entire sample to estimate demand for additional nodes. 

Thirty-seven percent of the growers included in the sample said they would be willing to 

buy a base system.  Assuming that they had already purchased a base system, growers were 

willing to purchase an average of 3.5 additional nodes at the expected price of $500 per node.  

The desired scale of a wireless sensor network varied substantially: Some growers were not 

willing to purchase any additional nodes while others were willing to purchase more than 20.  

Both the share of growers willing to purchase a base system and the average number of 

additional nodes purchased generally decreases with increasing price, albeit not monotonically 

(Table 3).  Differences in size of operation are the most likely source of this non-monotonicity: 

Growers who were quoted a price of $3000 for a base system and $1500 for each additional node 
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are substantially smaller on average than growers quoted prices of $2000 or $4000 for a base 

system and $1000 or $2000 for each additional node. 

Descriptive statistics of the variables used in the econometric analysis are shown in Table 

4.  The growers in the sample vary substantially in size as measured by both revenue and spatial 

extent of the operation.  Most respondents specialized heavily in greenhouse and nursery 

production.  About half of these growers had formal education at least through a bachelor’s 

degree.  Most growers had very positive perceptions of the capabilities of wireless sensor 

networks.  Cost was the most frequently cited concern about the technology, followed by 

reliability. 

Specification and Estimation 

As is standard with referendum format questions, which have dichotomous (yes/no) 

answers, a probit model was used to estimate the willingness to purchase the base system. A tobit 

model was used to estimate demand for additional nodes since large shares of respondents were 

unwilling to buy any additional nodes at each price offered.   

Estimating Willingness to Pay for a Base System 

Growers presumably answer the question of whether they are willing to buy the sensor 

system affirmatively if and only if they expect that using a sensor network to control irrigation 

would increase profit relative to their current irrigation methods.  The expected increase in profit 

from investing in a sensor network ∆𝜋∗ was not observed; instead, we observe the binary 

response of whether or not the grower would buy the system at the price quoted.  We assume that 

growers would buy the system if they expect the investment to be profitable:  

∆𝜋∗ = 𝛼𝑋 + 𝑍′𝛽 + 𝜀 

𝑦 = 1 𝑖𝑓 ∆𝜋∗ > 0 
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𝑦 = 0 𝑖𝑓 ∆𝜋∗ ≤ 0 

Here X is the randomized price assigned to each respondent, Z is a vector of controls and  is a 

mean zero random error capturing the influence of all unobserved factors that enter into the 

grower’s adoption decision. The probability that a grower would buy a base system is thus: 

Pr(𝑌 = 1|𝑋 , 𝑍) = Φ(𝛼𝑋 + 𝒁′𝜷) 

where Y =1 if the respondent answers affirmatively and Y=0 otherwise and Φ(∙)denotes the 

cumulative distribution of . We assume that  is distributed normally and thus estimate the 

parameters  and  using probit. 

The set of characteristics Z used in the probit model include measures of operation size, 

the share of ornamental production in the firm’s total revenue, the grower’s education level, the 

grower’s perception of the benefits and limitations of wireless sensor systems, and indicators for 

the operation’s water sources and the region in which the operation is located.  

There are three main types of ornamental production environments: greenhouse, 

container, and field.  Greenhouse production is labor and energy intensive but has the highest 

profit per area.  Typical operation size ranges are 0.1 to 10 acres of production area.  Container 

production is less intensive, and can be more easily managed on a larger scale, with typical sizes 

of 0.5 to 50 acres of production area.  Field operations tend to be the least intensive, with 

operation sizes typically in the range of 5 to 500 acres. Operations often have more than one 

production method being used at the same time (e.g., greenhouse and container production). 

We use two measures of size, gross income and acreage in ornamental production. Gross 

income of the operation was included to account for differences in available funds to purchase 

any given technology. Higher grossing operations are also more likely to hire labor that 

specializes in managing their irrigation systems, so sensor networks may provide a relatively 
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larger labor cost savings for them.  Size in acres was included to measure the ability of a firm to 

take advantage of economies of scale in sensor placement. Similarly, larger operations of any 

given type tend to have more irrigation zones, which make the irrigation systems more complex 

and therefore costly to manage. Since the sensor systems simplify irrigation systems by enabling 

automation of irrigation management, larger firms may expect to experience greater increases in 

profit than smaller firms. We expect that both the gross income and size in acres will be 

positively correlated with a respondent’s willingness to buy a sensor network. 

The percent of all revenue from ornamental production was included because ornamental 

crops typically irrigate more frequently than agronomic producers, and therefore operations with 

high portions of their revenues coming from ornamental crops may see the benefits of investing 

in sensor networks more quickly, particularly for greenhouse and container production.  

Operations that specialize more in ornamental production may also be more aware of new 

technological developments.  For example, producers specializing in ornamentals are likely to 

have more involvement in industry-specific information networks through trade-shows and 

targeted advertising. A sharper focus on the greenhouse and nursery industry also likely 

translates to more inputs focused on greenhouse and nursery production, including water, labor, 

and disease control measures. Sensor networks may reduce the cost of all these inputs, so we 

expect that willingness to buy a sensor network will increase with the percentage of revenue 

from greenhouse and nursery operations. 

Growers with more formal education levels likely have both greater human capital and 

greater technological sophistication.  Thus, higher educational attainment is likely correlated 

with both greater expected productivity increases and lower expected transition costs. Previous 

studies have indicated that individuals with higher levels of education are more willing to adopt 



 

17 
 

new agricultural technologies (Feder et al., 1985; Dinar and Yaron, 1990; Koundouri et al., 

2006). We expect that higher levels of education will correlate with a higher willingness to buy a 

sensor network. 

Previous studies also indicate that older growers are less likely to adopt new 

technologies, suggesting that willingness to adopt a sensor network should decrease as the age of 

the operator increases, a finding that has been attributed to a shorter time horizon and higher 

transition costs (Feder et al., 1985).  Research to date suggests that the payback period for 

investments in sensor networks is quite short (Belayneh et al., 2013; Lichtenberg et al., 2013) 

suggesting that a shorter time horizon should not be an impediment to adoption.  Once 

technological sophistication is taken into account (by controlling for education level, for 

instance), transition costs may not correlate with age.  There are thus reasons to believe that age 

may not be a factor in growers’ willingness to buy sensor networks.  We include it in our base 

specification regardless, in keeping with previous literature on this topic. 

We expect willingness to buy a sensor network to be greater for growers who express 

positive views of their benefits and lower for growers who express concerns about their cost, 

effectiveness, or reliability. We thus include indicators of whether respondents expressed beliefs 

about each potential advantage and limitation of wireless sensor networks. 

Water sources differ in terms of cost, quantity available, and quality.  We thus include 

indicators of whether growers obtained water from shallow wells, deep wells, surface sources, 

municipal water systems, or gray water as well as whether growers reused runoff water.  These 

sources are not mutually exclusive, as growers may use water from more than one source.  All 

else equal, water from deep wells and municipal sources tends to be more expensive than water 

from other sources.  Growers using water from these sources are likely to obtain greater 
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reductions in water expenditures than growers using water from cheaper sources; we thus expect 

growers getting water from deep wells or municipal sources to be willing to pay more for a 

sensor network.  Operations using surface water, recycled water, or gray water face a higher risk 

of growth reduction or plant death due to disease, phytotoxicity, etc.  Since sensor networks have 

been shown to reduce disease losses (Lichtenberg et al., 2013), we expect growers using these 

water sources to be willing to pay more for a sensor network. Conversely, operations that rely 

solely on rain water for irrigation stand to gain very little from using sensor networks, so we 

expect growers using rainfall to be willing to pay less for a sensor network. 

Finally, we include regional dummy variables to control for unobserved factors such as 

climate conditions, information networks, and water scarcity. We expect growers located in 

regions with higher levels of water scarcity (e.g., the Pacific, and South Central regions) to be 

willing to pay more for a wireless sensor network compared to growers located in regions where 

water is less scarce (e.g., the Northeast). 

Estimating Demand for Additional Nodes 

A single node gives information about substrate moisture status for a limited area.  

Growers with more extensive operations or those growing a larger number of plant species with 

different water requirements would likely need to use a larger number of nodes in order to 

benefit from greater irrigation precision.  We estimate demand for additional nodes—contingent 

on prior acquisition of a base system—in order to gauge variations in the scale at which sensor 

networks are likely to be used and in order to investigate operation characteristics correlated with 

those variations.  We use a double censored tobit model to estimate the demand for additional 

nodes.  Responses are censored at 0, while the number of additional nodes to be purchased are 

top coded at 21 or more.  Choices of the number of additional nodes greater than 5 were 
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presented as ranges: 6-7, 8-10, 11-15, and 16-20.  We use the midpoint of each range (6.5, 9, 13, 

and 18) as the observed number of additional nodes yi in our tobit model.  We observe the latent 

demand for additional nodes by grower i, yi*, only if it lies between 0 and 21, i.e., observed 

demand yi is: 

𝑦𝑖 = 21 𝑖𝑓 𝑦𝑖 ∗≥ 21 

𝑦𝑖 = 𝑦𝑖 ∗  𝑖𝑓 0 < 𝑦𝑖 ∗< 21 

𝑦𝑖 = 0 𝑖𝑓 𝑦𝑖 ∗≤ 0 

𝑦𝑖 ∗= 𝛾𝑊 + 𝑽′𝜹 + 𝜂 

where W is the randomized price, V is a vector of operation and grower characteristics, and  is 

a random error capturing the influences of all unobserved factors affecting a grower’s demand 

for additional nodes (which we assume to be distributed normally with mean zero). 

We expect that the same factors that influence willingness to pay for a base system to 

affect demand for additional nodes.  Those factors include size, share of income derived from 

ornamental production, water source, education, and perceptions of benefits and limitations of 

sensor networks. 

Operations that are larger in terms of acreage are likely to have more irrigation zones, and 

thus have a higher demand for additional nodes.  Larger grossing operations may also have more 

funds available and may thus experience fewer financial constraints in deciding how extensive a 

sensor network system to purchase. 

Operations that earn a greater percentage of revenue from ornamental crops typically 

grow a wider variety of plant species and are thus also likely to have a larger number of 

irrigation zones.  For that reason, we expect the share of revenue from nursery and greenhouse 

operations to be positively correlated with the number of nodes demanded. 
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We also expect that growers using more costly water sources such as deep wells and 

municipal water systems to be willing to buy more extensive sensor network systems, since their 

potential gains from irrigation cost savings are likely to be greater.  The same reasoning leads us 

to expect that operations in more water scarce regions such as the Pacific and the Southeast, 

where the costs of water are higher due to constraints on availability as well as direct acquisition 

expenses, will be willing to purchase larger numbers of nodes than growers in less water scarce 

regions such as the Northeast. 

We investigate the effect of human capital on sensor network system scale by including 

grower education levels in the additional node demand equation. 

The literature suggests that one mechanism for addressing uncertainty about the 

performance of a new agricultural technology is to experiment with it on a portion of the farm 

operation.  Experience with the technology reduces uncertainty about its potential; if the 

technology is truly more profitable, the share of the operation on which it is used should expand 

over time (Feder, Just, and Zilberman 1985).  We investigate the effects of uncertainty about 

performance by including indicator variables for whether a grower believed sensor networks to 

have the advantages and limitations presented in Table 1.  Belief in each potential advantage may 

indicate less uncertainty about potential benefits; if so, it should be correlated with a larger 

number of additional nodes demanded.  Belief in each potential limitation may indicate greater 

uncertainty about potential benefits and may thus be correlated with a smaller number of 

additional nodes demanded. 

Estimation Results 

Willingness to Purchase a Base System 
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We simplified our model for willingness to purchase a base system in two ways.  First, 

we aggregated education into two levels: (i) high school and some college and (ii) a post-

secondary degree (including associate, bachelors, masters, and doctoral degrees).  Wald tests 

indicated that the coefficients of the post-secondary degree categories (p = 0.549) were jointly 

not significantly different from zero and that none of the post-secondary degree categories were 

significantly different from each other (p = 0.082).  Aggregation of education levels had little or 

no effect on the remaining estimated coefficients.  Second, Wald tests indicated that the 

perceptions of benefits were jointly significant (p = 0.017) but that perceptions of limitations (p 

= 0.707), water source (p = 0.944), age category (p = 0.251), and region (p = 0.738) were not.  

We thus dropped these sets of indicators from the main model.  As a robustness check, we report 

estimated coefficients and marginal effects of the variables included in our main model from 

models including the complete set of regressors (Table 5). 

The coefficients of the variables included in the probit model, used to determine 

willingness to pay for a base system model, all have signs consistent with our expectations 

(Table 5).  They are also robust with respect to the inclusion of the additional control variables. 

The coefficient of price is negative and significantly different from zero, consistent with 

downward sloping demand.  The base system demand is not very sensitive to changes in price: A 

$100 reduction in price would increase the share of respondents willing to purchase a base 

system by only about 0.007 percentage points, on average (Table 6). 

The coefficient of the percentage of revenue from ornamental production is positive and 

significantly different from zero, consistent with our hypothesis that growers who rely on nursery 

and greenhouse crops more heavily are likely to benefit more from using sensor networks and 

are likely to be more aware of potential benefits of sensor networks as well.  Base system 
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demand is more sensitive to the degree of specialization in greenhouse and nursery crops than to 

price: A one percentage point increase in the percentage of revenue from ornamental production 

is associated with 0.5 percentage point in increase in the share of respondents willing to purchase 

a base system, on average. 

The coefficient of no post-secondary degree is negative and significantly different from 

zero, consistent with the hypothesis that farmers with more formal education are more likely to 

adopt new agricultural technologies.  The effect of formal schooling on willingness to purchase a 

base system is substantial: Respondents without a post-secondary degree are 23 percentage 

points less likely to be willing to purchase a base system than those with a post-secondary 

degree. 

The estimated coefficients of size in terms of acres and in terms of revenue are both 

positive but neither is significantly different from zero and both are quite small in magnitude, 

indicating a lack of scale effects influencing likely adoption of a base system.  The average semi-

elasticity of the likelihood of purchasing a base system with respect to income is significantly 

different from zero.  But it too, is quite small: on average, an increase in income of $100,000 is 

associated with only a 0.05 percentage point increase in the probability of a respondent being 

willing to purchase a base system. 

Willingness to purchase a base system was associated with some, but not all perceived 

benefits of sensor networks.  Growers who believe that sensor networks can increase irrigation 

efficiency, reduce irrigation management costs, and improve product quality are more likely to 

be willing to buy a sensor network at the quoted price than those who did not.  These beliefs are 

associated with substantial differences in base system demand.  Those who believe that sensor 

networks can increase irrigation efficiency, reduce irrigation management costs, and improve 
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quality are 12-15 percentage points more likely to be willing to purchase a base system.  The 

coefficients of believing that sensor networks can reduce monitoring costs and lower product 

losses were both positive, as expected, but not significantly different from zero.  Somewhat 

surprisingly though, growers who believe that sensor networks can reduce disease are 15 

percentage points less likely to be willing to buy a sensor network at the quoted price.  The 

coefficient of believing that sensor networks can increase ability to manage growth rates was 

also negative but was not significantly different from zero. 

Estimated Demand for Additional Nodes  

As with the probit model of willingness to purchase a base system, we simplified the tobit 

model of demand for additional nodes by dropping variables that were not significantly different 

from zero.  Wald tests indicated that education levels (p = 0.636), age category (p = 0.994), 

perceptions of potential benefits of sensor networks (p = 0.418), and perceptions of potential 

drawbacks of sensor networks (p = 0.122) were not significantly different from zero.  We thus 

removed these sets of indicators from the main model.  As a robustness check, we report 

estimated coefficients and marginal effects of the variables included in our main model from 

models including them as additional controls (Table 7).   

The coefficients of the variables included in the main model of demand for additional 

nodes all have signs consistent with our expectations (Table 7).  They are also robust with 

respect to the inclusion of the additional control variables. 

The coefficient of price is negative, consistent with downward sloping demand.  It is 

significantly different from zero when additional controls are included but not otherwise.  The 

effect of price on demand for additional nodes is quite small: a one percent increase in price 

decreases the unconditional expectation of the number of additional nodes demanded by 0.3 
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percent (Table 8).  The effect of a change in price is split fairly evenly between reductions in the 

number of nodes demanded by those purchasing a positive amount (as indicated by an elasticity 

of 0.1) and reductions in the probability that a grower is willing to purchase any additional nodes 

(as indicated by a semi-elasticity of 0.09). 

The coefficient of the percentage of revenue from ornamental production is positive and 

significantly different from zero, consistent with our hypothesis that growers who rely on nursery 

and greenhouse crops more heavily are likely to have a greater diversity of plant varieties and 

irrigation zones and thus need more nodes to obtain adequate coverage.  Demand for additional 

nodes is quite inelastic with respect to the degree of specialization in greenhouse and nursery 

crops. A one percentage point increase in the share of income from ornamental production is 

associated with a 0.02 percent increase in the unconditional expectation of the number of 

additional nodes demanded.  As with price, the effects of specialization in greenhouse and 

nursery crops are split fairly evenly between the extensive and intensive margins. A one 

percentage point increase in the share of income from ornamental crops is associated with a 0.6 

percentage point increase in the probability that a grower is willing to purchase at least one 

additional node, compared to a 0.7 percent increase in the expected number of additional nodes 

demanded by growers willing to purchase at least one. 

The estimated coefficients of size in terms of acres and in terms of revenue are both 

positive, as expected.  The coefficient of income is significantly different from zero while the 

coefficient of size in acres is not, suggesting that cash flow may constrain the size of system 

demanded. 

Growers obtaining water from deep wells and surface waters and those using gray water 

are willing to buy a larger number of nodes at any given price.  As noted earlier, water from deep 



 

25 
 

wells is more expensive to pump, so that growers using this source stand to save more in 

expenditures on energy for irrigation.  Growers using surface water may face limits on their 

ability to expand their operations or to respond to drought; the positive coefficient of the surface 

water indicator is consistent with water having a higher implicit cost due to such constraints.   

Growers in the Appalachian region are willing to buy fewer nodes at any given price than 

growers in other regions.  Possible explanations include less plant and irrigation zone diversity 

and less water scarcity among growers in this region. 

 

Implications for Initial Adoption and Diffusion of Sensor Network Technology 

The estimated coefficients of the probit model can be used to draw inferences about 

likely initial adoption and subsequent diffusion of sensor network technology in the greenhouse 

and nursery industry.  As is standard, we assume that growers whose willingness to pay for a 

base system is at least as great as the current price of a system will adopt the technology while 

those with a willingness to pay less than the current price will not.  We thus use estimates of 

willingness to pay to estimate the share of nursery and greenhouse operators likely to adopt this 

technology initially.  Growers who did not adopt the technology initially may do so later on, if 

the cost of the technology falls, as often occurs as producers of the technology benefit from 

economies of scale or from learning from experience in producing the technology.  Alternatively, 

growers who did not adopt the technology initially may do so later on as the benefits of the 

technology become better known and as uncertainty about the technology shrinks (Feder et al., 

1985).  We examine the effects of changes in price and perceptions about benefits and drawbacks 

of sensor networks by estimating their effects on the share of growers with a willingness to pay 

for a base system greater than or equal to the price of system. 
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Initial Adoption 

Predicted willingness to pay for each respondent is equal to max{0, 
𝑍′𝛽

𝛼
}.  On average, 

respondents were willing to pay $1905 for a base system, substantially less than the projected 

initial price of $3500.  There is substantial variability in willingness to pay for a base system, 

however, as indicated by a standard deviation slightly larger than the mean at $2015.  

Examination of the cumulative distribution of willingness to pay estimates (Figure 1) indicates 

that almost one fifth of our respondents were willing to pay at least the projected initial price of 

$3500.  That estimate suggests that initial adoption of sensor networks could be high relative to 

many other new agricultural technologies generally and irrigation technologies in particular.  For 

example, only 5.8% of irrigated farms used drip irrigation in 1978, the first year drip irrigation—

introduced in the US in the late 1960s—was reported by the Farm and Ranch Irrigation Survey 

(Census of Agriculture, 1979). 

At the other end of the spectrum, roughly 30% of our respondents were not willing to pay 

anything for a base system.  Respondents unwilling to pay anything for a base system differed 

from those with a positive willingness to pay in terms of size and reliance on nursery operations.  

The average income of those with an estimated willingness to pay of zero was lower than that of 

those with a positive willingness to pay (p = 0.103).  The average share of income from 

greenhouse and nursery operations of those with an estimated willingness to pay of zero was 

similarly lower than that of those with a positive willingness to pay (p = 0.009).  These 

differences are consistent with the notion that larger operations that specialize more in 

ornamental production are more likely to adopt sensor network technology. 

Impact of Changes in Network Price 
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As noted above, one factor that often drives diffusion of new technologies is falling 

prices that render the technology affordable to larger and larger numbers of potential buyers.  

While we cannot predict the rate of change in the price of the sensor networks, we can use the 

experience of similar types of products to estimate the range of rates at which sensor network 

costs might change over time.  For example, a comparison of the price index for farm durable 

equipment as estimated by the Economic Research Service of the US Department of Agriculture 

with the GDP deflator for the period 1990-2011 indicates that real prices of farm durable 

equipment fell at an average annual rate of about 1.2%, while a comparison of the Producer Price 

Indexes for communications equipment during 2006-2013 and for wireless telecommunications 

services during 2009-2013 with the Consumer Price Index for the corresponding periods of time 

indicates that prices of these goods and services fell at respective annual average rates of 1.4% 

and 4.4% in real terms.  The estimated coefficients of the probit model indicate that a 1% 

decrease in price results in an average 0.2 percentage point increase in the share of growers 

willing to purchase a base system (Table 6).  If sensor network prices decrease at comparable 

rates, one would expect the share of growers willing to purchase a base system to increase at 

rates of 0.3-0.8 percentage points a year.  This estimated rate of diffusion is comparable to that of 

drip irrigation, another precision irrigation technology: In 2008, 17.4% of irrigated farms used 

drip or trickle systems compared to 5.8% in 1978, corresponding to an average annual rate of 

increase of about 0.3%. 

Impact of Changes in Grower Perceptions 

Another factor known to drive diffusion of new technologies is the spread of information 

that increases expectations about profitability and reduces uncertainty about performance.  The 

example of drip irrigation—which, like sensor-controlled irrigation, is a form of precision 
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technology—provides a case in point.  Adoption rates were initially relatively low due to design 

problems (clogged emitters, installation problems, etc.), lack of information, and the need for 

growers to change irrigation practices.  Technological improvements by manufacturers 

(reductions in clogging, pressure-compensated emitters that increased application uniformity, 

designs for use with hard water and for frost protection, anti-siphon designs, etc.), combined with 

research that demonstrated increases in yields and quality in a number of crops, helped to change 

grower’s perceptions (Camp, 1998; Ayars et al, 1999).  The combination of technical 

improvements and greater information about performance increased growers’ confidence and 

helped promote diffusion of drip technology. 

Learning-by-doing derived from experience will likely lead to similar technical 

improvements in wireless sensor networks.  Current generations of sensors are connected to 

nodes by wire; conversion to wireless transmission of data from sensors should improve 

reliability by eliminating cut or disconnected wires.  Current configurations for fully automated 

irrigation require a node that is wired to a solenoid valve.  A more distributed system where each 

solenoid had its own actuator that could be controlled wirelessly would be beneficial in many 

situations.  Elimination of wiring would increase ease of installation, increase reliability, and 

remove limits on distance from sensors to nodes (currently 5 meters).  For greenhouse and 

nursery uses, sensors that measure moisture in smaller volumes of substrate (currently about 350 

ml) would increase usability.  These technical improvements, combined with information about 

performance and reliability from experiments and commercial experience (e.g., Belayneh et al;, 

2013; Lichtenberg et al., 2013) should help increase expectations about profitability and reduce 

uncertainty about performance. 
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To gauge the magnitude of the effect of information diffusion on rates of adoption of 

sensor networks, we conduct a set of simulations using the coefficients of current perceptions of 

the potential benefits of sensor networks.  We focus on diffusion of beliefs that sensor networks 

increase irrigation efficiency and reduce irrigation management costs, since our analysis 

indicates that these two beliefs have a statistically significant effect on the probability that a 

grower would purchase a base system. 

We model changes in adoption over time due to the spread of positive perceptions about 

sensor network performance as follows. Let Pjt be the number of growers who believe that sensor 

networks have benefits of type j in period t.  Assume that each grower who does not believe that 

sensor networks have benefits of type j in period t changes that perception with probability Ω, so 

that the number of growers whose perception of sensor network benefits changes from negative 

to positive is (1-Pjt). We draw from our set of respondents without replacement, so that growers 

change their beliefs about sensor network performance from negative to positive but not vice 

versa. In period T, we compare the adoption rate for every positive perception and several 

information dispersion rates Ω.  We compare diffusion rates for Ω =0.01, 0.1, and 0.2. We run 

1000 trials for each value of Ω over a period of 200 years and report average adoption rates at 

the expected base system price of $2,500 for each period. 

Our simulations indicate that diffusion of information about these benefits of sensor 

networks would have a very limited effect on rates of sensor network technology adoption (Table 

9).  Even after 50 years, of the 20% of non-adopters changing their beliefs about sensor network 

performance from negative to positive, the share of growers willing to purchase a base system 

increases by only 1-4 percentage points.  The main reason is that a majority of growers already 

believe that sensor networks have these benefits: Over four-fifths believe that sensor networks 
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can increase irrigation efficiency and almost three-fifths believe that sensor networks can reduce 

irrigation management costs (Table 4).  These positive perceptions of sensor network 

performance result in relatively high likely initial adoption rates coupled with relatively small 

effects of information diffusion on subsequent adoption rates. 

Sensor Network Profitability 

The estimated coefficients of the probit and tobit models can also be used to draw 

inferences about current grower perceptions of the respective profitability of investing in a 

sensor network and additional nodes.  Investing in a base system is profitable if the annual return 

on that investment is at least as great as the cost of system.  Thus, the estimated willingness to 

pay for a base system is a conservative estimate of the expected annual profit from investing in a 

sensor network.  The profit from a base station equals the difference between the grower’s 

estimated willingness to pay and the expected market price of $2500, if positive, and zero if 

expected willingness to pay is less than $2500.  If a grower’s willingness to pay is less than the 

expected market price, we assume she would not buy additional nodes and set total profit equal 

to zero.  For growers whose willingness to pay exceeds $2500, we add the profit from the 

purchase of a base station to the profit from the purchase of additional nodes.  The profit from 

additional nodes equals the consumer surplus under a grower’s demand curve for additional 

nodes (Just et al., 1984).  The estimated number of nodes that respondent i would purchase at 

price W is �̂�𝑖(𝑊) = max {0, 𝛾𝑊 + 𝑽𝒊
′𝜹}.  We calculate consumer surplus assuming that demand 

is linear between the choke price for each respondent, −
𝑽𝒊′𝜹

𝛾
 , and the expected market price of 

$500 per node.  Growers whose choke price is less than $500 would not buy any additional 

nodes and thus have consumer surplus from additional node purchases of zero, so that consumer 
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surplus for each grower is max {0,
(

𝑽𝒊
′𝜹

𝛾
−500)∗𝑁𝑖(500)̂

2
}, where 𝑁�̂�(500) is the expected number of 

nodes purchased by grower i at the price of $500. 

At the initial estimated price of $2500 for a base system and $500 per additional node, 

30% of the respondents have positive consumer surplus from the purchase of a base system 

together with additional nodes; an additional 7% would purchase a base system but no additional 

nodes.  The average consumer surplus for growers who would purchase a base system is 

$16,343.  There is considerable variability in estimated total consumer surplus from the purchase 

of additional nodes, as indicated by a standard deviation of $36,902 and a range of $0 to 

$215,024. 

The increase in estimated profit for growers whose expected benefits exceeded the cost of 

a base system plus any additional nodes purchased averaged 5.2% of annual revenue.  For 40% 

of these growers, estimated profit from investing in a sensor network amounted to 0.5% or less 

of annual revenue (Figure 3).  The estimated increase in profit was between 0.5% and 1% of 

annual revenue for 22% of these growers and between 1% and 5% of annual revenue for an 

additional 25% of these growers.  A few growers had estimated profits amounting to larger 

shares of revenue (Figure 3).  Since profit usually also amounts to a small share of revenue, these 

calculations suggest that investing in this technology can increase profit substantially, consistent 

with findings from experimental studies (Belayneh et al., 2013; Lichtenberg et al., 2013). 

Conclusion 

Water scarcity is likely to grow in the coming years, making improvements in irrigation 

efficiency increasingly important.  An emerging technology that promises to increase irrigation 

efficiency substantially is a network that uploads soil moisture and other sensor data into 
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irrigation management software, creating an integrated system that allows real-time monitoring 

and control of moisture status.  This technology, which is on the verge of commercial 

introduction, has been shown in experimental settings to reduce irrigation costs, lower plant loss 

rates, shorten production times, decrease pesticide application, and increase yield, quality, and 

profit (Lichtenberg et al., 2013).  

This paper uses an original survey to investigate likely initial acceptance, ceiling 

adoption rates, and profitability of this new sensor network technology in the nursery and 

greenhouse industry.  We find that adoption rates for a base system and demand for expansion 

components are decreasing in price, as expected.  The price elasticity of the probability of 

adoption suggests that sensor networks are likely to diffuse at a rate comparable to or possibly 

greater than that of drip irrigation.  Adoption rates for a base system and demand for expansion 

components are also increasing in specialization in ornamental production: Growers earning 

greater shares of revenue from greenhouse and nursery operations are willing to pay more for a 

base system and willing to purchase larger numbers of expansion components at any given price.  

Consistent with previous literature on adoption of new agricultural technologies, willingness to 

pay for a base system increases with education level and perceived benefits of sensor networks, 

notably increased irrigation efficiency, reduced irrigation management costs, and improved 

quality.  We estimate that growers who are willing to purchase a sensor network expect 

investment in this technology to earn significant profit, consistent with findings from 

experimental studies. 

While our study focuses on ornamental production, the lessons drawn from it are likely 

applicable more broadly.  The most obvious extension is to production of vegetables and small 

fruits, both in greenhouses and in field production.  Like ornamentals, these are high value crops 
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whose growers have been shown to be more likely to adopt technologically sophisticated 

irrigation methods.  Many growers of these crops already use some form of precision irrigation 

equipment, so adoption of wireless sensor technology would require less wholesale change in 

irrigation practices.  Like ornamentals, these crops are labor-intensive, making savings in 

irrigation labor from automation of irrigation especially valuable.  Like ornamentals, vegetables 

and small fruits are typically grown on smaller acreages than grains and oilseeds, making 

installation and maintenance less expensive and obviating potential problems with wireless data 

transmission.  Additionally, much is known about optimal water management for these crops, 

making it feasible to automate irrigation control.  Finally, these crops are grown worldwide 

under irrigation in areas where water scarcity is already a pressing concern, making the water 

saving potential of this technology especially valuable.  These considerations suggest that 

wireless sensor technology could contribute substantially to alleviating conflicts between 

production of high quality foods and competing uses of water, demand for both of which tend to 

increase with income and thus economic growth. 

Our estimates are based on responses to hypothetical choice questions for a technology 

that is not yet on the market.  They suggest that a relatively large share of nursery and 

greenhouse operators could be early adopters and that diffusion of this technology could be at 

least as rapid than other precision irrigation technologies (or precision agricultural technologies 

more generally).  Once this technology has been on the market for a few years, it would be 

interesting to compare actual adoption rates to the predictions made here. 
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Table 1. Comparison of Sample with National Statistics on Nursery and Greenhouse 

Operations 

Category 

Percentage of Growers in Category 

Census of 

Agriculture 

2007 Survey Sample 

Revenue 

$1,000,000 or more 6.56 35.26 

$500,000 to $999,999 4.69 16.84 

$250,000 to $499,999 6.29 14.21 

$100,000 to $249,999 12.86 11.58 

$50,000 to $99,999 10.16 5.79 

$25,000 to $49,999 12.56 5.79 

$10,000 to $24,999 17.91 7.89 

$5,000 to $9,999 11.49 2.11 

$2,500 to $4,999 8.78 0.00 

$1,000 to $2,499 6.24 0.53 

Less than $1,000 2.47 0.00 

Acreage 

1 to 9 38.29 32.17 

10 to 49 36.03 27.71 

50 to 69 6.01 5.1 

70 to 99 5.4 3.18 

100 to 139 4.18 5.41 

140 to 179 2.36 3.18 

180 to 219 1.51 3.18 

220 to 259 1.06 2.55 

260 to 499 2.71 6.37 

500 to 999 1.55 6.05 

1000 to 1999 0.56 2.55 

2000 or more 0.34 2.55 

Region 

Pacific 18.81 21.31 

North East 21.19 19.34 

South East 14.41 20.98 

Appalachia 12.26 19.34 

Midwest 20.58 10.49 

Great Plains 1.66 3.28 

South Central 7.16 3.61 

Mountain 3.72 1.64 
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Table 2. Potential Benefits and Drawbacks of Sensor Networks 

Potential Benefits Increase efficiency 

Reduce monitoring time/costs 

Reduce irrigation management costs 

Increase ability to manage growth rates 

Increase quality 

Reduce disease occurrence 

Potential Drawbacks The sensors would not control irrigation correctly 

The cost would be too high 

The sensors would not be reliable 

There would be too much maintenance involved 

The sensors would not be as efficient as our current system 
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Table 3. Distribution of Responses by Offered Price 

Price Level for Number of Responses  

Base System   Number Who Would Buy a Base System 

$1000 59 32 

$2000 50 19 

$3000 52 26 

$4000 58 15 

$5000 49 14 

Additional Node  Average Number of Additional Nodes 

Purchased 

$  500 62 4.5 

$1000 52 3.9 

$1500 57 2.0 

$2000 56 3.8 
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Table 4. Descriptive Statistics of Variables Used in the Probit and Tobit Models 

Variable Mean Standard Deviation Minimum Maximum 

Farm Operation 

Operation Size (Acres) 222.8773 610.8162 0 6000 

Annual Income ($1000) 2252.068 11279.64 0 150000 

Percent of Income from 

Greenhouse and Nursery Crops 

83.97398 33.51402 0 100 

Located in Appalachian Region 0.197026 0.398494 0 1 

Located in Midwest 0.096654 0.296037 0 1 

Located in Northeast 0.193309 0.395629 0 1 

Located in Pacific Region 0.230483 0.421927 0 1 

Located in Southeast 0.189591 0.392708 0 1 

Located in South Central 

Region 

0.037175 0.189542 0 1 

Use Water from Shallow Well 0.29368 0.456296 0 1 

Use Water from Deep Well 0.460967 0.499403 0 1 

Use Surface Water 0.301115 0.459598 0 1 

Use Recycled Water 0.215613 0.412014 0 1 

Use Rain Water 0.182156 0.386693 0 1 

Use Municipal Water 0.193309 0.395629 0 1 

Use Gray Water 0.048327 0.214856 0 1 

Use Water from Other Sources 0.04461 0.20683 0 1 

Farm Operator 

High School Graduate 0.063197 0.243771 0 1 

Some College 0.107807 0.310714 0 1 

Associate Degree 0.078067 0.268777 0 1 

Bachelor’s Degree 0.360595 0.481068 0 1 

Post-Graduate Degree 0.122677 0.328677 0 1 

Age 20-29 0.033457 0.180163 0 1 

Age 30-39 0.118959 0.324344 0 1 

Age 40-49 0.197026 0.398494 0 1 

Age 50-59 0.260223 0.439574 0 1 

Age 60+ 0.122677 0.328677 0 1 

Perceptions of Wireless Sensor Networks 

Sensor Networks Can Reduce 

Product Loss 

0.609665 0.488735 0 1 

Sensor Networks Can Improve 

Increase Quality 

0.70632 0.456296 0 1 

Sensor Networks Can Improve 

Irrigation Efficiency 

0.825279 0.380436 0 1 

Sensor Networks Can Reduce 

Disease 

0.572491 0.495639 0 1 
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Sensor Networks Can Reduce 

Irrigation Management Cost 

0.587361 0.493227 0 1 

Sensor Networks Can Increase 

Ability to Manage Growth 

Rates 

0.550186 0.498402 0 1 

Sensor Networks Can Reduce 

Monitoring Cost 

0.505576 0.500901 0 1 

Sensor Cost Would Be Too 

High 

0.825279 0.380436 0 1 

Sensors Would Not Control 

Irrigation Correctly 

0.431227 0.496171 0 1 

Sensors Would Not Be 

Reliable 

0.516729 0.500652 0 1 

Sensors Would Require Too 

Much Maintenance 

0.330855 0.471398 0 1 

Sensors Would Not Be as 

Efficient as Current System 

0.148699 0.356455 0 1 
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Table 5. Estimated Coefficients of the Probit Willingness to Purchase Base System Model 

Variable Base Model Model with 

Additional 

Controls 

Base System Price -0.000204*** 

(0.001) 

-0.000211*** 

(0.002) 

Operation Size (Acres) 0.000206 

(0.198) 

0.000165 

(0.386) 

Operation Size Missing (0/1) 0.548 

(0.579) 

0.772 

(0.538) 

Annual Income ($1000) 0.0000155 

(0.167) 

0.0000145 

(0.178) 

Annual Income Missing (0/1) -0.490 

(0.101) 

-0.637** 

(0.047) 

Percent of Income from Greenhouse and Nursery 

Crops (0-100) 

0.0160** 

(0.035) 

0.0150* 

(0.080) 

Percent of Income from Greenhouse and Nursery 

Crops Missing (0/1) 

1.427* 

(0.079) 

1.341 

(0.144) 

High School Diploma/Some College (0/1) -0.714*** 

(0.005) 

-0.781*** 

(0.006) 

Education Level Missing (0/1) 0.290 

(0.332) 

0.435 

(0.366) 

Sensor Networks Can Reduce Product Loss (0/1) 0.152 

(0.477) 

0.171 

(0.447) 

Sensor Networks Can Improve/Increase Quality (0/1) 0.405* 

(0.069) 

0.398* 

(0.093) 

Sensor Networks Can Improve Irrigation Efficiency 

(0/1) 

0.448* 

(0.098) 

0.493 

(0.114) 

Sensor Networks Can Reduce Disease (0/1) -0.435** 

(0.033) 

-0.381* 

(0.089) 

Sensor Networks Can Reduce Irrigation Management 

Cost (0/1)  

0.385** 

(0.049) 

0.408* 

(0.059) 

Sensor Networks Can Increase Ability to Manage 

Growth Rates (0/1) 

-0.142 

(0.488) 

-0.187 

(0.406) 

Sensor Networks Can Reduce Monitoring Cost (0/1) 0.119 

(0.552) 

0.172 

(0.428) 

Constant -1.847** 

(0.018) 

-1.951** 

(0.048) 

Number of Observations 268 268 
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p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 

10% levels, respectively.  Additional controls include region indicators, indicators of beliefs 

about drawbacks of sensor networks, water source indicators, and age. 
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Table 6. Average Partial Effects of Independent Variables on the Probability of Purchasing 

a Base System 

Independent Variable Change in Probability of Purchasing a Base 

System due to 

One unit increase in 

independent 

variable 

One percent increase in 

independent variable 

Base System Price -0.0000665*** 

(0.000) 

-0.190*** 

(0.000) 

High School Diploma/Some College (0/1) -0.232*** 

(0.004) 

 

Operation Size (Acres) 0.0000671 

(0.195) 

0.0147 

(0.205) 

Annual Income ($1000) 0.00000503 

(0.163) 

0.00842*** 

(0.003) 

Percent of Income from Greenhouse and 

Nursery Crops (0-100) 

0.00521** 

(0.031) 

 

Sensor Networks Can Reduce Product Loss 

(0/1) 

0.0494 

(0.475) 

 

Sensor Networks Can Improve/Increase 

Quality (0/1) 

0.132* 

(0.064) 

 

Sensor Networks Can Improve Irrigation 

Efficiency (0/1) 

0.146* 

(0.094) 

 

Sensor Networks Can Reduce Disease (0/1) -0.142** 

(0.029) 

 

Sensor Networks Can Reduce Irrigation 

Management Cost (0/1)  

0.125** 

(0.044) 

 

Sensor Networks Can Increase Ability to 

Manage Growth Rates (0/1) 

-0.0463 

(0.487) 

 

Sensor Networks Can Reduce Monitoring 

Cost (0/1) 

0.0387 

(0.551) 

 

Observations 268 268 

p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 

10% levels, respectively.   
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Table 7. Estimated Coefficients of the Two-Limit Tobit Additional Node Demand Model 

Variable Base Model Model with 

Additional Controls 

Additional Node Price -0.00159 

(0.113) 

-0.00174* 

(0.083) 

Operation Size (Acres) 0.00109 

(0.294) 

0.00111 

(0.302) 

Operation Size Missing (0/1) -6.212 

(0.308) 

-8.589 

(0.164) 

Annual Income ($1000) 0.000138*** 

(0.003) 

0.000152*** 

(0.002) 

Annual Income Missing (0/1) -2.791** 

(0.046) 

-2.468 

(0.181) 

Percent of Income from Greenhouse and Nursery 

Crops (0-100) 

0.122** 

(0.013) 

0.120** 

(0.014) 

Percent of Income from Greenhouse and Nursery 

Crops Missing (0/1) 

12.20** 

(0.024) 

11.56** 

(0.034) 

Located in Appalachian Region (0/1) -4.900** 

(0.030) 

-5.284** 

(0.023) 

Located in Midwest (0/1) 0.872 

(0.716) 

0.568 

(0.815) 

Located in Northeast (0/1) -3.498 

(0.117) 

-3.273 

(0.160) 

Located in Pacific Region (0/1) -0.208 

(0.921) 

-0.716 

(0.740) 

Located in Southeast (0/1) -2.372 

(0.274) 

-2.746 

(0.209) 

Use Water from Shallow Well (0/1) 0.561 

(0.701) 

0.400 

(0.791) 

Use Water from Deep Well (0/1) 3.262** 

(0.025) 

2.741* 

(0.065) 

Use Surface Water (0/1) 2.509* 

(0.071) 

2.773** 

(0.046) 

Use Recycled Water (0/1) 0.771 

(0.568) 

0.183 

(0.891) 

Use Rain Water (0/1) 0.888 

(0.554) 

-0.212 

(0.890) 

Use Municipal Water (0/1) 1.170 

(0.492) 

0.986 

(0.559) 

Use Gray Water (0/1) 9.105*** 

(0.001) 

8.117*** 

(0.002) 
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Use Water from Other Sources (0/1) -0.238 

(0.932) 

-1.339 

(0.647) 

Constant -9.575* 

(0.063) 

-7.977 

(0.167) 

Sigma  7.432*** 

(0.000) 

6.991*** 

(0.000) 

Number of Observations 233 233 

p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 

10% levels, respectively.  Additional controls include indicators of education level, indicators 

of beliefs about benefits of sensor networks, indicators of beliefs about drawbacks of sensor 

networks, and age. 
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Table 8. Average Partial Effects of Independent Variables on the Demand for Additional Nodes 

Independent 

variable 

Expected number of additional 

nodes demanded 

Expected number of additional 

nodes demanded conditional on 

positive demand 

Probability of positive 

demand 

Average 

absolute 

change due 

to a one unit 

increase 

Average 

percent 

change 

due to a 

one 

percent 

increase 

Average 

percent 

change 

due to a 

one unit 

increase 

Average 

absolute 

change due 

to a one unit 

increase 

Average 

percent 

change 

due to a 

one 

percent 

increase 

Average 

percent 

change 

due to a 

one unit 

increase 

Average 

absolute 

change due to 

a one unit 

increase 

Average 

absolute 

change 

due to a 

one 

percent 

increase 

Additional Node 

Price 

-0.000855 

(0.110) 

-0.320 

(0.121) 

 -0.000572 

(0.110) 

-0.109 

(0.111) 

 -0.0000748 

(0.107) 

-0.0919 

(0.109) 

Operation Size 

(Acres) 

0.000586 

(0.292) 

0.0354 

(0.260) 

 0.000392 

(0.292) 

0.0131 

(0.283) 

 0.0000513 

(0.291) 

0.00968 

(0.280) 

Annual Income 

($1000) 

0.0000742**

* 

(0.002) 

0.0265**

* 

(0.000) 

 0.0000496**

* 

(0.002) 

0.0135**

* 

(0.000) 

 0.00000650**

* 

(0.003) 

0.00693**

* 

(0.000) 

Percent of Income 

from Greenhouse and 

Nursery Crops (0-

100) 

0.0655** 

(0.012) 

 0.0194*

* 

(0.014) 

0.0438** 

(0.012) 

 0.00685*

* 

(0.012) 

0.00574*** 

(0.010) 

 

Located in 

Appalachian Region 

(0/1) 

-2.630** 

(0.029) 

 -

0.777** 

(0.031) 

-1.759** 

(0.029) 

 -0.275** 

(0.030) 

-0.230** 

(0.026) 

 

Located in Midwest 

(0/1) 

0.468 

(0.715) 

 0.138 

(0.715) 

0.313 

(0.715) 

 0.0490 

(0.715) 

0.0410 

(0.715) 

 

Located in Northeast 

(0/1) 

-1.877 

(0.115) 

 -0.555 

(0.117) 

-1.256 

(0.115) 

 -0.196 

(0.116) 

-0.164 

(0.112) 

 

Located in Pacific 

Region (0/1) 

-0.112 

(0.921) 

 -0.0330 

(0.921) 

-0.0747 

(0.921) 

 -0.0117 

(0.921) 

-0.00978 

(0.921) 
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Located in Southeast 

(0/1) 

-1.273 

(0.273) 

 -0.376 

(0.274) 

-0.852 

(0.274) 

 -0.133 

(0.274) 

-0.112 

(0.271) 

 

Use Water from 

Shallow Well (0/1) 

0.301 

(0.700) 

 0.0890 

(0.700) 

0.201 

(0.700) 

 0.0315 

(0.700) 

0.0264 

(0.700) 

 

Use Water from Deep 

Well (0/1) 

1.751** 

(0.023) 

 0.517** 

(0.025) 

1.171** 

(0.023) 

 0.183** 

(0.024) 

0.153** 

(0.022) 

 

Use Surface Water 

(0/1) 

1.347* 

(0.068) 

 0.398* 

(0.071) 

0.901* 

(0.069) 

 0.141* 

(0.070) 

0.118* 

(0.067) 

 

Use Recycled Water 

(0/1) 

0.414 

(0.568) 

 0.122 

(0.568) 

0.277 

(0.568) 

 0.0433 

(0.568) 

0.0363 

(0.568) 

 

Use Rain Water (0/1) 0.477 

(0.553) 

 0.141 

(0.553) 

0.319 

(0.553) 

 0.0499 

(0.553) 

0.0417 

(0.553) 

 

Use Municipal Water 

(0/1) 

0.628 

(0.491) 

 0.186 

(0.492) 

0.420 

(0.491) 

 0.0657 

(0.492) 

0.0550 

(0.491) 

 

Use Gray Water (0/1) 4.886*** 

(0.000) 

 1.444**

* 

(0.001) 

3.268*** 

(0.001) 

 0.511*** 

(0.001) 

0.428*** 

(0.000) 

 

Use Water from 

Other Sources (0/1) 

-0.128 

(0.932) 

 -0.0377 

(0.932) 

-0.0854 

(0.932) 

 -0.0134 

(0.932) 

-0.0112 

(0.932) 

 

N 233 233 233 233 233 233 233 233 

p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 10% levels, respectively.   
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Table 9. Effects of Information Diffusion on the Share of Growers Willing to Purchase a 

Sensor Network at the Current Price 

Year Sensors Can Increase Irrigation 

Efficiency 

Sensors Can Reduce Irrigation 

Management Cost 

Annual Rate of Information 

Diffusion () 

Annual Rate of Information 

Diffusion () 

1% 10% 20% 1% 10% 20% 

0 0.369 0.369 0.369 0.369 0.369 0.369 

1 0.370 0.373 0.377 0.370 0.372 0.375 

2 0.370 0.376 0.384 0.370 0.374 0.379 

3 0.371 0.380 0.389 0.370 0.376 0.382 

4 0.371 0.383 0.393 0.370 0.378 0.385 

5 0.372 0.386 0.396 0.370 0.379 0.387 

6 0.372 0.388 0.399 0.371 0.381 0.389 

7 0.373 0.391 0.401 0.371 0.382 0.390 

8 0.373 0.393 0.403 0.371 0.384 0.391 

9 0.373 0.395 0.405 0.371 0.385 0.392 

10 0.374 0.397 0.406 0.371 0.386 0.393 

20 0.377 0.405 0.410 0.374 0.392 0.395 

30 0.380 0.409 0.410 0.376 0.394 0.396 

40 0.383 0.410 0.410 0.378 0.395 0.396 

50 0.385 0.410 0.410 0.380 0.395 0.396 
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Chapter 2: Yield, Quality and Profitability of Sensor-Controlled 

Irrigation: A Case Study of Snapdragon (Anthirinum majus L.) 

Production 

Monica Saavoss, John Majsztrik, Bruk Belayneh, John Lea-Cox and Erik Lichtenberg 

Abstract  

Advanced wireless irrigation sensor networks that can monitor and control irrigation are 

only recently commercially available, but on-farm research has found a number of advantages 

compared with current irrigation practices including reduced water application, disease 

incidence, production time and labor together with increased profitability.  We examined the 

effects of wireless sensor networks to control irrigation in greenhouse production of snapdragons 

(Antirrhinum majus) using grower data on production, expenditures and sales which included 

three years of data before and after implementation of sensor irrigation networks.  We calculated 

changes in yield, production time, quality, cost, revenue and profit.  Sensor-based irrigation was 

found to increase revenue by 62% ($65,173) and profit by 65% ($35,327) per year.  Sensor-

based irrigation was also found to increase quality and the number of stems harvested per crop.  

The time to first harvest and time to last harvest were reduced for all cultivar groups, indicating 

that the plants grew faster using sensor networks.  Production time per crop was decreased, 

allowing 2.5 additional production rows per year.  Electricity usage was also reduced, likely due 

to less frequent irrigation using sensor networks.  These results are in line with other benefits we 

have seen by installing sensor networks in other types of ornamental operations.   

 

The Authors gratefully acknowledge funding support for this project from USDA–NIFA 

Specialty Crops Research Initiative; Award #2009-51181-05768.  We thank Charles and Richard 

Bauer for their assistance with conducting this experiment and providing historical production, 

sales and expenditure data. 

  



 

52 
 

Introduction 

Population expansion, economic growth, global climate change and depletion of 

groundwater reserves are putting increasing pressure on ground and surface water supplies 

(Sauer et al., 2010; Evans et al., 2013; Gleick, 2013).  That pressure is likely to have an 

especially large effect on agriculture; in the United States, for instance, agriculture accounts for 

80 percent of consumptive water use nationally and up to 90 percent or more in many western 

states (Schaible and Aillery, 2012).  Irrigated agriculture is more productive than dryland 

farming, so shrinking water supplies could have a disproportionately large effect on food and 

fiber production (Evans et al., 2013). 

The potential for droughts, changing rainfall patterns and increasing pressure on 

freshwater resources makes it vital to improve irrigation efficiency.  There are a number of ways 

that irrigation can be improved, for example by switching from overhead to drip irrigation and by 

properly designing and maintaining an irrigation system. Irrigation can be further made more 

efficient by better matching water application rates with crop uptake in real time, which can be 

accomplished by combining equipment that monitors moisture status and weather conditions 

with decision support systems that apply water as needed (Evans et al., 2013).  While precision 

irrigation equipment has become available, adoption rates remain low, due in part to a lack of 

decision support systems that can help growers make sense of data to determine optimal 

irrigation timing and application rates (Evans et al., 2013). 

Recent developments in sensor technology and associated software offer a means to 

overcome these barriers.  New wireless sensor systems upload sensor data on moisture status, 

humidity, solar radiation and other environmental data into irrigation management software, 

giving irrigation managers real-time information on plant moisture demand, which are also able 

to automate irrigation application.  Research conducted in ornamental production environments 
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indicates that these systems can reduce irrigation water application substantially, along with 

labor and energy used for irrigation (Belayneh et al., 2013).  These systems have also been 

shown to lower plant loss rates, shorten production times and reduce pesticide applications 

(Chappell et al., 2013; Lichtenberg et al., 2013).  As a result, adoption can be extremely 

profitable. 

This paper examines the yield, quality and profitability effects of using a wireless sensor 

network to control irrigation in continuous greenhouse production of snapdragons (Antirrhinum 

majus L.).  The greenhouse, nursery and floriculture industry is a large and growing segment of 

United States agriculture, with sales totaling almost $17 billion in 2007, comparable to the sales 

of vegetables ($15 billion) and soybeans ($20 billion) (U.S. Department of Agriculture, 2009).  

This industry is especially large in Western states, which continue to face growing water scarcity 

(Hall et al., 2011).  Although greenhouses and nurseries typically occupy much less land than 

agronomic crops, their consumptive water use is relatively high (Beeson, 2004). Moreover, the 

value of water used for greenhouse and nursery products is substantially higher than agronomic 

crops (Ackerman and Stanton, 2011). 

Irrigation management in greenhouse production of ornamental plants is in many ways 

more challenging than in agronomic crops.  Crops are often grown year-round, with crop mixes 

changing seasonally.  Moisture demand typically varies daily due to changing weather 

conditions.  Container-grown plants lack the water storage capacity that soils provide for field-

grown crops.  Also, qualitative grower observation of soil surface or plant growth and 

development gives very imprecise measures of water availability in the root zone.  Growers tend 

to avoid under-irrigation, which can stress plants and slow growth.  But over-irrigation can also 

have adverse effects, including nutrient leaching (Cabrera et al. 1993, Chen et al. 2001, Ross et 
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al. 2002, Ristvey et al. 2004), slowed growth (Beeson and Haydu 1995, Lichtenberg et al. 2013), 

higher denitrification rates (Myrold and Tiedje 1985), lower root zone oxygen levels (Groffman 

and Tiedje 1991, Daum and Schenk 1996) and increased risk of disease (Parke and Grunwald 

2012, Lichtenberg et al. 2013).  To take one example, Brennan (2007) found that the negative 

economic consequences of overwatering lettuce were large enough to offset costly investments 

in uniform sprinkler systems. 

We examined the effects of greater irrigation precision achieved through the use of 

wireless sensor networks to control irrigation in greenhouse production of snapdragons.  We 

used data on production, expenditures and sales before and after implementation of sensor-based 

irrigation from a commercial growing operation to estimate changes in yield, production time, 

quality, cost, revenue and profit.   

 

Materials and Methods 

Snapdragon production 

In order to understand the impact of sensor networks on yield, quality and profitability, 

we used production and sales records from a commercial greenhouse which focuses primarily on 

year-round production of snapdragon (Antirrhinum majus) for fresh-cut flowers.  Production 

records were kept beginning in 2000.  Sales and expenditure records were available from 2007-

2012.  The greenhouse is located in Jarrettsville, MD, USA (39° 36' N, 76° 28' W) and had 0.15 

ha under continuous production.  Plants were grown using hydroponic production methods 

following standard operation practices for all aspects of production except irrigation. 

Typical practices for the grower were as follows.  Seedlings were germinated and grown 

in open 25.4 cm x 50.8 cm trays (Landmark Plastic Corp., Akron, OH) with Pro-Mix Flex media 
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(Premier Tech, Quebec, Canada) for 2-5 weeks depending on the season.  Plastic bags that are 25 

cm (diameter) by 1.8 meter (length) were filled completely with perlite and placed on rolling 

benches.  Nine rectangular holes of size 6.3 cm by 13.3 cm were cut, evenly spaced, into the top 

and running along the middle of the bag.  Bags were planted with six plants per hole, when the 

seedlings reached approximately 7-8 cm in height.   Eighteen bags were placed end to end in a 

row, with six/seven rows of bags per bench. Benches were 190 cm wide and 33 m long, with a 

planting density of 5832 or 6804 plants per bench.2  Plants were irrigated using one Chapin BTF 

drip tape per bag with 1.33 gallons per minute flow per 100 foot length and 15 cm emitter 

spacing (Jain Irrigation, Inc., Fresno, CA).  The drip tape was treaded through the holes and 

placed in direct contact with the perlite substrate.  Irrigation water is pumped from a nutrient 

tank, with fresh water added from a perennial spring as needed.  Irrigation varied depending on 

the season and conditions, but was typically applied 3-12 times per day using a QCOM controller 

(QCOM Controls, Lake Forest, CA). Plastic bags drained freely through holes made at the 

bottom of the bag into troughs to increase substrate aeration and reduce disease incidence.  All 

runoff was collected into a small lined pit, particulates were filtered and water was pumped back 

into the irrigation tank (recirculated).  Water quality parameters (pH, EC) were adjusted 

automatically using Hanna pH and EC sensors (Hanna Instruments, Woonsocket, RI) connected 

to a Crop King controller (Crop King, Inc., Lodi, OH).  Nutrients were adjusted based on tissue 

analysis, as per typical grower practice.  The typical production time, from sowing seeds to 

harvesting the first flowers, ranged from 16 to 40 weeks depending on the season (mainly due to 

differences in photosynthetically active radiation). 

 

                                                           
2 The grower briefly varied plant density to increase yields, but discontinued changes in density after they did not 

appreciably increase marketable yield. 
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Starting in 2009 and continuing through 2010, a sensor network composed of ten CMU 

(Carnegie Mellon University, Pittsburg, PA) and Em50R (Decagon Devices Inc., Pullman, WA) 

data loggers was installed in the greenhouse. EC5 sensors (Decagon Devices Inc., Pullman, WA) 

were used to indicate substrate water status over the growing period across the greenhouse. Five 

EC5 sensors were connected to each data logger, which transmitted data to a base station 

(Carnegie Mellon University, Pittsburgh, PA) connected to the grower’s computer. The data was 

visualized and displayed using a prototype Sensorweb program (Carnegie Mellon University, 

Pittsburgh, PA). During this period, the sensor network allowed the grower to have an effective 

way to monitor substrate water status in the greenhouse based on raw outputs of the EC5 

capacitance soil moisture sensors. Starting in 2011, the sensor network implemented in the 

greenhouse was used to control duration and frequency of irrigation.  An improved version of the 

Sensorweb program, in addition to providing improved functions (for example irrigation 

scheduling) allowed researchers to access the site remotely over the internet.  Prototype nR5 

control nodes (Decagon Devices, Pullman, WA) allowed the grower and researchers to program 

the nodes via Sensorweb to open and close solenoid valves based on VWC set-points and 

automate irrigation.  

The VWC set-points were selected based on a substrate-specific calibration done for the 

perlite substrate and the EC5 capacitance sensors and ranged between 0.29-0.33 m3• m-3 (29-

33%) depending on the plant growth stage. A lower set-point was used when seedlings were 

transplanted and the set-point was generally increased to provide more irrigation water as the 

plant development and water uptake increased. 

Since benches in the greenhouse had a 2% slope, EC5 sensors were installed at the 

higher/upper side of the benches to measure VWC in the direst section of the benches. Five EC5 
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sensors were distributed across rows on a bench in order to get a precise VWC reading. These 

readings were averaged on 15-minute basis and compared to the set-points used by the grower in 

Sensorweb. When the averaged VWC reading dropped below the set-point VWC, irrigation was 

applied for a duration specified by the grower.  

As the greenhouse pump capacity was limited, 8-12 staggered irrigation periods of 10 

minute length were set for each bench in the greenhouse per day. When a set-point VWC has 

been reached, the nR5 nodes would turn on solenoids and apply irrigation for 3-3.5 minutes. As 

the irrigation function was implemented on a 5-minute basis in Sensorweb, an additional 

irrigation event would be triggered after a wait period of 1.5-2 minutes when the VWC set-point 

has not been reached. When the set-point VWC was reached after an irrigation period set for a 

bench, irrigation was applied at the next irrigation period available for the bench. 

Since all VWC data was logged at 15 minute intervals by the nodes, the wireless sensor 

network installed at the greenhouse allowed a continuous monitoring of the VWC to capture 

temporal variation in the benches. The precision of VWC readings was also increased by 

installing multiple sensors that were averaged and compared to a set-point to trigger irrigation 

events. Sensorweb allowed the grower to program times when irrigation could and could not be 

applied, set the irrigation length and prioritize which blocks were irrigated first. During irrigation 

events, the nR5 nodes could turn on solenoids and apply irrigation for a specified amount of 

time, which can be as short as few seconds. Irrigation events could also be micro-pulsed such 

that there is a set amount of wait time between consecutive pulses. The Sensorweb program 

could also determine if an additional irrigation event would be triggered based on the VWC set-

point.  The ability to apply micro-pulses with the drip irrigation system was particularly useful, 
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allowing the applied water time to diffuse through the substrate. Two benches were controlled 

using nR5 nodes in 2011 and 2012, with the remaining areas controlled by the grower. 

Different snapdragon cultivars are grown in different seasons.  Varieties are grouped 

according to photoperiod (daylength), heat tolerance and other factors: Group 1/2 is grown in the 

fall (September 1-November 30), Group 2 in the late summer and early winter (August 8-25, 

December 1-15), Group 2/3 in mid-summer and mid-winter (July 20-August 7, December 20-

January 7) and Group 3 in mid-summer and mid-winter (July 7-20, January 7-25) and Group 3/4 

from late winter through early summer (January 25-July 7). 

Except for irrigation, production was conducted using the grower’s standard practices.  

Production records maintained by the grower for each crop include information on the sow date, 

transplant date, each of the multiple dates on which stems were harvested and the number of 

stems harvested on each date.  The grower’s sales records reported the number of stems of each 

quality grade sold by date and historical records of labor and energy costs for the period 2007-

2012.  The years 2007-2008 correspond to the period prior to the installation of the wireless 

sensor network. The years 2011-2012 correspond to the period when irrigation was controlled by 

the wireless sensor network. The intermediate years 2009-2010 constitute a transition period 

during which the sensor network was initially installed and calibrated and substrate moisture was 

monitored in preparation for automated control by the network. 

The average number of stems harvested per crop, the average number of days to first and 

last harvest of each crop, the shares of crops from each cultivar group and the share of crops 

grown when irrigation was managed using sensor-based information are shown in Table 1. Time 

series plots of the number of days to first harvest, number of days to last harvest and number of 

stems harvested for each crop of snapdragons are shown in Figures 1-3, respectively. 
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Statistical Methods 

Sensor networks can affect profit by altering yield, quality and production costs of an 

operation. This section presents the methods used to estimate each of these effects.  We then 

discuss the methods used to estimate the impact of adopting a sensor network on profitability.  

Yield 

Wireless sensor networks can affect annual yield in two ways: (1) by altering yield per 

crop and (2) by changing the number of crops harvested per year.  Annual yield is the product of 

these two.  We estimate them separately, using a different method for each. 

We used ordinary least squares regression (equivalent in this case to analysis of variance) 

to determine the effect of sensor networks on the number of stems harvested per crop j.  

Specifically, we regressed the number of stems per crop on an indicator for cultivar group m, an 

indicator for whether the sensor system was in use and interactions between the cultivar group 

and the sensor indicator: 

Stemsj = a0 + m bm Cultivarmj + c0 1[Sensor = 1] + m dm Cultivarmj*1[Sensor=1] + ej (1) 

We dropped data from the transition years 2009-2010 in order to obtain a clean comparison 

between pre- and post-sensor irrigation control. 

We then used the estimated coefficients of equation (1) to calculate the average number 

of stems harvested for each cultivar group before and after installation of the sensor network. 

Stems per Crop from Cultivar Group m without Sensors = a0 + bm (2) 

Stems per Crop from Cultivar Group m with Sensors = a0 + bm + c0 + dm (3) 

The effect of using a wireless sensor network on the number of crops harvested per year 

was investigated in two ways.  We first used ordinary least squares regression to verify the effect 

of sensor networks on production time. Specifically, we regressed the number of days elapsed 
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between the sow date and the first and last harvest dates for each crop j on the cultivar group m, 

an indicator for whether the sensor system was in use and interactions between the cultivar group 

and the sensor indicator: 

Daysj = f0 + m gm Cultivarmj + h0 1[Sensor = 1] + m im Cultivarmj*1[Sensor=1] + uj (4) 

As with the yield regression, we dropped data from the transition years 2009-2010 in order to 

obtain a clean comparison between pre- and post-sensor irrigation control. 

We then used the estimated coefficients to compare time to initial and final harvest for 

each cultivar group before and after the installation of the sensor network: 

Days to Initial/Final Harvest of a Crop from Cultivar Group m without Sensors = f0 + gm  (5) 

Days to Initial/Final of a Crop from Cultivar Group m with Sensors = f0 + gm + h0 + im  (6) 

To calculate profitability with and without the sensor network, we used the average 

number of crops of each cultivar group harvested during the three years prior to and succeeding 

installation of the wireless sensor network, 2007-2008 and 2011-2012, respectively. 

Crop Quality  

Snapdragon quality is determined by two features: length of the flower spike and 

straightness of the stem.  Stems are divided into three grades.  Those with flower spikes equal to 

20 cm or longer are the highest quality, grade 1.  Those with flower spikes of 15 – 20 cm long 

are classified as grade 2.  Snapdragon plants with flower spikes less than 15 cm long or with 

stems that are crooked rather than straight are classified as the lowest quality, grade 3.  Grade 1 

stems command the highest price, followed by grades 2 and 3 respectively. 

We used ordinary least square regression to evaluate the effect of the sensor networks on 

the distribution of stem quality. Unfortunately, the sales records that reported flower grade were 

not matched to the cultivar that produced them, so we were not able to directly link cultivars to 



 

61 
 

sales. We therefore aggregated sales into the number of stems in each grade classification per 

week. Stems sold were linked to cultivar groups using data on days to first harvest and days to 

last harvest and, in cases where harvest data were lacking, the date at which each crop was 

removed from the bench (the “cutout date”). Only one crop of cultivar Group 3 was grown 

during 2011-2012, so we merged cultivar Group 3 into Group 2/3, which is typically grown right 

before or right after Group 3. 

For each grade k and week t, we calculated the share of weekly sales in that grade and 

regressed it on the share of each cultivar group m harvested in that week plus interaction terms 

between the share of the cultivar group and the share of the plants produced using sensors3:  

Share of Grade kt= m wkm  Share of Cultivarkmt + m xkm Share of Cultivarkmt*Share of Harvest 

Using Sensorskmt + vt  (7) 

As with the yield and time to harvest regressions, we dropped data from the transition years 

2009-2010 in order to obtain a clean comparison between pre- and post-sensor irrigation control. 

We combined the regression coefficients with information obtained from the grower 

about the average price received for each grade to calculate the average price received for a stem 

from each cultivar group m before and after installation of the sensor network: 

Average Pre-sensor Price per Stem of Cultivar m =k wkm*pricek (8) 

Average Post-sensor Price per Stem of Cultivar m =k (wkm + xkm)*pricek (9) 

Production Costs 

Major production costs are labor, electricity and the costs of the sensor system.  Labor 

and electricity costs Lt and Et were taken directly from the grower’s historical records and 

                                                           
3 There were three weeks in which harvests contained both plants that used sensors and plants that did not. For all 

other weeks, the sensor variable is binary. 
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measured by the average annual amount spent on the category before and after the sensor 

systems were installed (the periods 2007-2009 and 2010-2012, respectively). The annual cost of 

the sensor network K was estimated from equipment list prices and annualized assuming 

equipment lifetimes of 3 years and an interest rate of 6% (Table 2). 

Profitability 

The yield, quality and production costs measurements were combined to assess the 

average annual profit before the sensor systems were installed and after the sensor systems were 

installed.  The average number of stems and price per cultivar group were estimated using 

regression coefficients.  Annual labor and electricity costs and the number of crops harvested 

from each cultivar annually were averaged for the two years before and after the sensor control 

of irrigation was implemented (the periods 2007-2008 and 2011-2012, respectively).  Profit was 

calculated as follows: 

Pre-Sensor Profit=m Average Number of Crops of Cultivar Group m * Stems per Crop of 

Cultivar Group m * Average Price of Cultivar Group m - Lt - Et (10) 

Post-Sensor Profit=m Average Number of Crops of Cultivar Group m * Stems per Crop of 

Cultivar Group m * Average Price of Cultivar Group m - Lt - Et – K (11) 

Results 

Use of the sensor network to control irrigation increased yield per crop, reduced 

production time (and thus increased the number of crops harvested per year), increased quality, 

reduced electricity usage and increased profitability.  Expenditures on labor increased due to 

increased harvesting. 

Yield 
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The estimated coefficients of the yield regression (equation (1)) indicate that the sensor 

network increased the number of stems harvested from each cultivar group (Table 3 and Figure 

1).  The largest increase was experienced by cultivar Group 1/2, whose average yield per crop 

rose by 80%.  The smallest increase occurred in Group 3/4, whose yield rose by 10%.  Sensor 

controlled irrigation increased average yields of Groups 2, 2/3 and 3 between 25 and 40%. 

Group 1/2 also experienced the greatest acceleration of production, as sensor-controlled 

irrigation reduced the time to first harvest by almost 25% and time to final harvest by 15% 

(Table 3 and Figures 2 and 3).  Group 2/3 experienced the greatest compression of the harvest 

period overall, as sensor-controlled irrigation reduced the time to first harvest by 30% and the 

time to final harvest by 20%.  Sensor-controlled irrigation had the smallest effect on production 

time of cultivar Group 3, whose time to first and final harvests fell only by 1 and 9%, 

respectively.  Time to first harvest of Group 2 fell by 23% while time to final harvest fell by 24% 

and time to first and last harvests of Group 3/4 each fell by 12% and 10%, respectively. 

These reductions in production time led to changes in the crop mix (due to altered timing 

of production) as well as to an increase the number of crops grown annually (Table 4).  Overall, 

sensor-controlled irrigation allowed the grower to harvest 2.5 extra crops per year, an increase of 

7%. 

Increases in yield per crop and the number of crops per year combined with these 

changes in crop mix resulted in an increase in annual average output of 47% (Table 4). 

Quality 

Sensor-controlled irrigation improved snapdragon quality for all cultivar groups (Tables 5 

and 6).  The share of grade 1 stems harvested increased substantially for cultivar Groups 2 and 

3/4, less substantially for cultivar Group 1/2 and remained roughly the same for cultivar Group 
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2/3.  The increases in the shares of grade 1 stems in Groups 1/2 and 2/3 were due to decreases in 

the shares of grade 3 stems, as the shares of grade 2 stems increased in both groups.  The average 

price received for a crop of Group 2 snapdragons increased by almost 17%, while the average 

price received for a crop of Group 3/4 snapdragons increased by almost 14%.  Overall quality 

rose for Group 1/2 as well, due to increases in the shares of both grade 1 and grade 2 stems and a 

corresponding decrease in grade 3 stems, resulting in an increase in average price of 7%.  The 

average price received for a crop of Group 2/3 snapdragons increased by almost 4% due to a 

lower share of grade 3 stems and higher shares of grade 1 and 2 stems. 

Production Costs 

After implementation of sensor controlled irrigation, average electricity costs fell by an 

average of $300 per year, a decrease of 8%, while labor costs rose by $3986, or 27%.  The 

annualized cost of the sensor network was estimated at $7147 (Table 7). 

Profitability 

Estimates of yield and quality derived using equations (11) and (12) were combined with 

estimates of the average number of crops of each cultivar group per year, average expenditures 

on labor and electricity and the cost of the sensor network to determine annual revenue, cost and 

profit with and without the sensor network (Table 7).  Use of the sensor network to control 

irrigation increased revenue by 62% annually due to both greater yield and higher average price 

(increased quality).  Annual costs were higher (58%) since the cost of the sensor network and 

labor costs outweighed reductions in electricity expenditures.  Annual profit increased by 65% as 

the increase in revenue outweighed the increase in cost. 

Discussion 
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Using sensor networks to control irrigation increased profit by increasing yield per crop 

(Figure 6), reducing production time (Figures 4 and 5) thus increasing the number of crops 

harvested per year (Table 4) and reducing electricity use (Table 7).  These effects are in line with 

previous studies of sensor networks.  Shortening production time is extremely valuable in 

continuous production systems like greenhouse crops, since it frees up space for additional crops 

that could not otherwise be produced.  In a study using sensor networks to control irrigation in 

Gardenia (Gardenia augusta), production time was cut roughly in half, which more than doubled 

annual profit (Chappell et al., 2013; Lichtenberg et al., 2013).  The impact of sensor controlled 

irrigation was perhaps not as dramatic in our case but was nevertheless quite sizeable: an 

additional crop per year, combined with changes in the mix of cultivars grown, increased output 

by two-fifths and profit by almost two-thirds. 

Sensor networks have also been shown to reduce irrigation water application in gardenia 

(van Iersel et al. 2009) and ornamental tree production (Belayneh et al., 2013).  For this 

operation, water was pumped from a perpetual spring and fertigation water recirculated 

continuously, so water savings were not as important for the grower compared with municipal or 

well sources that are not reused.  However, pumping water through the greenhouse likely 

accounts for a large share of electricity usage at the operation and reductions in pumping volume 

likely account for most of the differences in electricity use pre- and post-sensor implementation 

(Table 7).  Thus, our finding of a reduction in electricity use is an indication of water savings.  

Although water savings did not increase profitability substantially, this is mainly due to the water 

being unpriced and the irrigation system being efficient.  Even with a low cost of water, 

profitability was increased through improvements in flower quality and reductions in growing 

period.  Water savings on the order of those indicated by the reduction in electricity usage here 
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could however, increase profit more substantially for more water-intensive crops or for crops 

grown in locations with higher water prices.  In open production systems (greenhouse, container 

and field), lower application rates of both water and nutrients, would also reduce leaching, 

providing environmental benefits through reduced water withdrawals and reduced nutrient 

leaching to surface and groundwater (Lichtenberg et al. 2013). 

The average annual stem output was increased from 106,173 stems per year before 

sensors to 156,320 stems per year after sensors (Table 4).  This increase per crop and increase in 

the total number of crops adds to the growers profit (Table 7).  Sensor networks have also been 

shown to increase harvested yields per crop in gardenia by reducing losses, likely through 

reductions in disease incidence (Lichtenberg et al., 2013).   

Higher yields should also lead to higher labor costs due to increased harvesting activity, 

as was found in the case of gardenia production (Lichtenberg et al., 2013) as well as in this 

analysis.  In both cases, the increase in revenue from greater productivity outweighed the 

increase in labor cost, as one would expect from any crop that is profitable to grow. 

One effect of sensor controlled irrigation not previously documented is a change in 

product quality.  Based on grower records, quality effects were mixed.  Sensor controlled 

irrigation improved quality for all cultivar groups and (Tables 5 and 6 and Figure 7).  It is 

interesting to note that sensors increased quality the most for Groups 2 and 3/4, which are grown 

during summer, when high heat and humidity at the operation make it difficult to grow 

snapdragons.  This highlights the precision aspect of sensor networks for controlling irrigation. 

Overall average quality, as measured by the production-weighted average price received, 

increased using sensor networks.  It proved feasible to increase overall average quality even 

more by altering timing of production, specifically, growing more crops of the cultivar groups 
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for which quality increased at the expense of cultivar groups experiencing less marked 

improvements in quality.  In actuality, the grower reduced the number of crops of one cultivar 

group whose quality increased modestly while increasing the number of crops whose quality 

increased the most. 

Conclusion 

As climate change, population growth and unsustainable extraction of groundwater 

exacerbate water shortages in large portions of the United States and abroad, policymakers face 

challenges allocating increasingly scarce water resources efficiently. With over 80 percent of all 

consumptive water uses going to agriculture, on-farm irrigation technologies may prove to be an 

important tool in addressing water scarcity. Wireless sensor networks are an emerging 

technology that has been shown to reduce water usage, while maintaining growth and quality. 

They have also been shown to provide a number of other benefits, including reduced production 

time, reduced product loss and reduced leaching. 

This study used wireless sensor networks to control irrigation in continuous hydroponic 

snapdragon cut flower production and found that sensor controlled irrigation increased profit by 

reducing growing time (thereby allowing production of an additional crop per year), increasing 

yield per crop, improving cut flower quality and reducing electricity costs.  The increase in profit 

was substantial, more than one-third greater than pre-sensor levels even after subtracting sensor 

system costs.  Similar benefits have been observed under a variety of ornamental production 

situations, suggesting that sensor controlled irrigation can increase profitability while saving 

water under a variety of growing conditions.  Increases in irrigation efficiency achieved by the 

use of sensor networks have important environmental benefits as well, such as reducing pressure 

on water supplies, reducing greenhouse gas emissions by reducing energy and fertilizer use and 
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reducing nutrient leaching into waterways.  Benefits in terms of grower profitability and 

reductions in environmental impacts are likely to be greater in crops that require higher water 

inputs and in areas with water quality or quantity concerns.  For that reason, additional research 

on the use of sensor networks to control irrigation in fruits, vegetables and other crops should be 

of great interest.  
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Table 1. Descriptive statistics of production data for hydroponic production of greenhouse 

grown snapdragon (Antirrhinum majus) using a recirculating fertigation system.  Both pre- and 

post-sensor data are averaged. 

Variable Mean Standard 

Deviation 

Minimum Maximum 

Stems Harvested Per Crop 3196 1789 60 11,740 

Number of Days to First Harvest 113 46 42 361 

Number of Days to Last Harvest 149 80 67 536 

Share of Crops When Sensor 

System in Use 

0.33 NA NA NA 

Share of Crops from Cultivar 

Group ½ 

0.28 NA NA NA 

Share of Crops from Cultivar 

Group 2 

0.15 NA NA NA 

Share of Crops from Cultivar 

Group 2/3 

0.12 NA NA NA 

Share of Crops from Cultivar 

Group 3 

0.05 NA NA NA 

Share of Crops from Cultivar 

Group ¾ 

0.38 NA NA NA 
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Table 2. Configuration and cost of a wireless sensor network that controlled irrigation at a 

greenhouse operation growing snapdragons (Antirrhinum majus) in continuous hydroponic 

production. 

 Number Price Total Lifetime 

(years) 

Annualized Cost 

@ 6% Interest 

Nodes 15  $ 675   $10,125  3  $ 3,688  

Soil Moisture Sensors 50  $ 70   $3,500  3  $ 1,275  

Additional Sensors 25  $ 150   $3,750  3  $ 1,366  

Sensorweb Base Station plus 

Computer 

1  $ 600   $600  3  $ 219  

4G Internet Access 1  $ 600   $600  1  $ 600  

Annual Total    $18,575    $ 7,147  
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Table 3. Estimated coefficient of regression analyses for hydroponic production of greenhouse 

grown snapdragon (Antirrhinum majus) using a recirculating fertigation system.  This system 

was used to compare pre- and post-sensor data collected by the grower to determine the impact 

of wireless sensor networks on plant growth, quality, yield and profitability. Standard errors 

clustered by crop year are in parentheses. 

 

Regressor Dependent Variable 

Number of Days Until Number of 

Stems 

Harvested 
First 

Harvest 

First 

Harvest 

Last 

Harvest 

Last 

Harvest 

Sensor System in Use (1 = 

Yes) 

-50.05*** 

(9.009) 

-28.05*** 

(5.371) 

-36.73** 

(17.43) 

-32.44*** 

(7.772) 

2005*** 

(417.2) 

Cultivar Group 2 -34.19*** 

(10.11) 

-24.97** 

(8.373) 

18.16 

(19.55) 

13.286 

(16.45) 

-16.31 

(468.1) 

Cultivar Group 2/3 -49.95*** 

(9.825) 

-38.05*** 

(9.388) 

22.02 

(19.00) 

15.91 

(24.31) 

474.2 

(454.9) 

Cultivar Group 3 -46.80*** 

(12.71) 

-34.57*** 

(12.18) 

-41.71* 

(24.58) 

-38.07** 

(15.12) 

270.2 

(588.4) 

Cultivar Group 3/4 -79.34*** 

(7.599) 

-64.46*** 

(7.663) 

-73.68*** 

(14.70) 

-65.93*** 

(8.362) 

629.4* 

(351.9) 

Sensor System in 

Use*Cultivar Group 2 

20.07 

(15.42) 

 -12.12 

(29.39) 

 -970.0 

(713.8) 

Sensor System in 

Use*Cultivar Group 2/3 

31.07 

(19.21) 

 -34.68 

(37.15) 

 -1,235 

(889.46) 

Sensor System in 

Use*Cultivar Group 3 

48.41 

(39.68) 

 24.55 

(76.76) 

 -1,211 

(1838) 

Sensor System in 

Use*Cultivar Group 3/4 

39.67*** 

(12.52) 

 25.40 

(24.21) 

 -1,7041*** 

(575.7) 

Constant 167.4*** 

(6.083) 

156.0*** 

(12.81) 

184.9*** 

(11.77) 

182.9*** 

(8.059) 

2506*** 

(281.7) 

Observations 236 236 236 236 236 

R-squared 0.386 0.357 0.229 0.216 0.119 

*** p <0.01, ** p < 0.05, * p < 0.1 
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Table 4. Number of crops harvested and estimated yield by cultivar, pre- and post-sensor for 

hydroponic production of greenhouse grown snapdragon (Antirrhinum majus) using a 

recirculating fertigation system and a wireless sensor network.   

Cultivar Group Number of 

cropsa 

Stems per 

cropb 

Total stem 

outputc 

Pre-Sensor-Controlled  

Group 1/2 26 2,506 65,156 

Group 2 4 2,490 9,959 

Group 2/3 11 2,980 32,782 

Group 3 6 2,776 16,657 

Group 3/4 28 3,135 87,791 

Annual Average  37.5  106,173 

Post-Sensor-Controlled 

Group 1/2 32 4,511 144,352 

Group 2 15 3,525 52.870 

Group 2/3 6 3,750 22,501 

Group 3 1 3,570 3,570 

Group 3/4 26 3,436 89,346 

Annual Average 40  156,320 
a Totals for 2007-2008 (pre-sensor) and 2011-2102 (post-sensor). 
b Estimated from regression coefficients reported in Table 2. 
c Calculated as number of crops times estimated yield per crop. 
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Table 5. OLS regression of weekly grade shares for snapdragon (Antirrhinum majus) production.  

This system was used to compare pre- and post-sensor data collected by the grower to determine 

the impact of wireless sensor networks on plant growth, quality, yield and profitability. 

Regressor Share of 

Grade 1 

Share of 

Grade 2 

Share of 

Group 3 

Share of Group 1/2 0.701*** 

(0.037) 

0.134*** 

(0.031) 

0.165*** 

(0.024) 

Share of Group 2 0.358*** 

(0.123) 

0.451** 

(0.116) 

0.0191*** 

(0.053) 

Share of Group 2/3 0.655*** 

(0.036) 

0.202** 

(0.028) 

0.143*** 

(0.023) 

Share of Group 3 0.528*** 

(0.046) 

0.248*** 

(0.031) 

0.225*** 

(0.031) 

Share of Group 3/4 0.090* 

(0.046) 

0.037 

(0.039) 

-0.128*** 

(0.025) 

Sensor System in Use*Cultivar 

Group 1/2 

0.460*** 

(0.127) 

-0.345*** 

(0.119) 

-0.115** 

(0.055) 

Sensor System in Use*Cultivar 

Group 2 

0.013 

(0.076) 

0.077 

(0.071) 

-0.090*** 

(0.026) 

Sensor System in Use*Cultivar 

Group 2/3 

0.246*** 

(0.055) 

-0.065 

(0.044) 

-0.181*** 

(0.033) 

Sensor System in Use*Cultivar 

Group 3 

174 174 174 

Sensor System in Use*Cultivar 

Group 3/4 

0.701*** 

(0.037) 

0.134*** 

(0.031) 

0.165*** 

(0.024) 

Observations 0.358*** 

(0.123) 

0.451** 

(0.116) 

0.0191*** 

(0.053) 

Standard errors in parentheses 

* p < 0.10 

 ** p < 0.05 

 *** p < 0.01 
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Table 6. Impact of wireless sensor network controlled irrigation on the distribution of quality 

and average price received per stem by cultivar type for snapdragon (Antirrhinum majus), grown 

using a recirculating hydroponic production system.   Results are estimated from regression 

coefficients reported in Table 4. 

 Grade 1 Grade 2 Grade 3 Average 

Price 

Price per Stem  $0.665   $0.535   $0.300   

Pre-Sensor-Controlled 

Group 1/2 70% 13% 17%  $0.587  

Group 2 36% 45% 19%  $0.537  

Group 2/3 65% 20% 14%  $0.586  

Group 3 53% 25% 22%  $0.551  

Group 3/4 Post-

Sensor-

Controlled 

   

Post-Sensor-Controlled 

Group 1/2 82% 11% 8%  $0.624  

Group 2 67% 28% 5%  $0.609  

Group 2/3 77% 18% 4%  $0.625  

Group 3 70% 13% 17%  $0.587  

Group 3/4 36% 45% 19%  $0.537  
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Table 7. Comparison of profitability pre- and post-sensor for a wireless soil moisture sensor 

network for hydroponic production of greenhouse grown snapdragon (Antirrhinum majus) using 

a recirculating fertigation system. Average yearly values are reported. 

 Pre-Sensor-Controlled Post-Sensor-Controlled 

Revenue  $40,316.86   $65,173.00  

Labor Cost  $14,975.83   $18,961.33  

Electricity Cost  $3,837.98   $3,538.02  

Sensor System Cost   $7,147.09  

Annual Profit $21,503.06  $35,526.58  



 

77 
 

 

Figure 1. Length of time from planting to first harvest for each crop of greenhouse grown 

snapdragon (Antirrhinum majus) using a recirculating fertigation system.  Red lines demarcate 

the initial installation of a wireless irrigation sensor network and the initiation of sensor-

controlled irrigation.  
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Figure 2. Length of time from planting to last harvest for each crop of greenhouse grown 

snapdragon (Antirrhinum majus) using a recirculating fertigation system.  Red lines demarcate 

the initial installation of a wireless irrigation sensor network and the initiation of sensor-

controlled irrigation.  
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Figure 3. Number of stems harvested for each crop of greenhouse grown snapdragon 

(Antirrhinum majus) using a recirculating fertigation system.  Red lines demarcate the initial 

installation of a wireless irrigation sensor network and the initiation of sensor-controlled 

irrigation.  
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Figure 4. Length of time from planting to first harvest for hydroponic production of greenhouse 

grown snapdragon (Antirrhinum majus) using a recirculating fertigation system.  This system 

was used to determine the impact of wireless irrigation sensor networks on plant growth, quality, 

yield and profitability. 
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Figure 5. Length of time from planting to final harvest for hydroponic production of greenhouse 

grown snapdragon (Antirrhinum majus) using a recirculating fertigation system.  This system 

was used to determine the impact of wireless irrigation sensor networks on plant growth, quality, 

yield and profitability. 
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Figure 6. Total number of stems harvested per crop during continuous hydroponic production of 

greenhouse grown snapdragon (Antirrhinum majus) using a recirculating fertigation system.  

This system was used to determine the impact of wireless irrigation sensor networks on plant 

growth, quality, yield and profitability. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Group 1/2 Group 2 Group 2/3 Group 3 Group 3/4

St
e

m
s 

h
ar

ve
st

ed

Pre-Sensor

Post-Sensor



 

83 
 

 

Figure 7. Quality-adjusted average price per stem by group for continuous hydroponic 

production of greenhouse grown snapdragon (Antirrhinum majus) using a recirculating 

fertigation system.  This system was used to determine the impact of wireless irrigation sensor 

networks on plant growth, quality, yield and profitability. 
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Chapter 3: Quarantines Evasion and Plant Disease Control: The Case of 

Sudden Oak Death 
 

Monica Saavoss 

 

Abstract 

Governments frequently use quarantines to limit the spread of an infectious disease. 

However, such policies may incentivize agents to expend resources towards hiding disease status 

rather than preventing disease. This paper investigates greenhouse nursery growers’ response to 

a quarantine imposed on the west coast of the United States from 2002 to present for the plant 

pathogen that causes Sudden Oak Death. I investigate whether growers choose to 1) improve 

their sanitation practices, which reduces the underlying risk of disease without increasing the 

difficulty of detecting the pathogen, 2) increase fungicide use, which also prevents disease but 

makes existing infections much harder to detect, or 3) change their crop composition towards 

more resistant species.  To test whether growers respond in any of these three ways, I use fixed-

effects panel data regression models and data from the USDA-NASS Floriculture and Chemical 

Use Survey, the California Department of Agriculture Pesticide Use Reporting data, the USDA-

NASS Floriculture Survey, and the USDA-NASS Census of Horticultural Specialties. I do not 

find evidence that growers improve their sanitation practices in response to the quarantine. I do, 

however, find evidence that growers heavily increase their fungicide use in response to a 

quarantine policy that requires visual (as opposed to laboratory) inspection for the disease before 

every crop shipment, suggesting that the quarantine may have the adverse effect of making the 

pathogen harder to identify. I also do find evidence that growers shift away from susceptible 

crops and towards resistant crops. These findings suggest that policymakers should consider 

incentives to hide disease that result from quarantines. In the case of Sudden Oak Death, the 
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findings suggest that policymakers should use laboratory rather than visual inspections for plant 

pathogens, or at least randomize between the two methods. 

 

Introduction 

During a disease outbreak, governments can control the spread of infection by imposing a 

quarantine, which restricts the movement of infected individuals.  In order for quarantines to be 

effective, it must be possible to identify infected individuals so that compliance with the 

restrictions on the movement can be assured. However, the effectiveness of quarantines can be 

undermined if infected individuals avoid detection. This same dynamic has been observed in 

human disease and livestock disease. For instance, incentives to avoid screening hinders progress 

on a wide range of contagious diseases including SARS (Samaan et al. 2004 ), Tuberculosis 

(Paralkar  2008), and HIV (Chesney 1999; Kalichman and Simbayi 2003; Ti et al. 2013).  

This essay examines the case of a quarantine imposed by to control the spread of a plant 

disease caused by the pathogen Phytophthora ramorum.  The quarantine is an example of a 

policy that risks a potentially harmful behavioral response. P. ramorum is currently killing trees 

in tanoak, redwood, and coastal evergreen forests in the West Coast of the United States. The 

economic impact of this disease has been estimated to range between $100 and $300 million per 

year in the ornamental crops industry alone (Kliejunas 2010). The quarantine imposes export 

restrictions and other negative consequences on greenhouse nurseries infested with P. ramorum. 

While these policies likely contain the disease among growers correctly identified as being 

infested, they may also encourage growers to preemptively take actions to obscure disease status. 

In particular, growers may use agricultural chemicals in a manner that makes detection of the 
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disease less likely. This behavior could partially or completely offset benefits from the 

quarantine, by complicating disease monitoring efforts.  

In this paper, I assess how the risk of P. ramorum and associated government restrictions 

affect grower behavior through increased chemical use, sanitation practices, and market 

composition of host and non-host plants. I first present a theoretical model that explores grower 

choice of fungicide use and crop composition in response to the inspection regime. Next, I 

empirically investigate whether growers alter chemical use and management practices in 

response to the quarantine using the California Department of Agriculture Pesticide Use 

Reporting data Nursery. I then estimate the degree to which farmers change their sanitation 

practices in response to the inspection regime using data from the Floriculture Chemical Use 

Survey. Finally, I empirically examine how growers respond in terms of their crop composition 

using data from The USDA Census of Horticultural Specialties and the USDA-NASS 

Floriculture Survey.  

This paper proceeds as follows. Section 2 provides background information on P. 

ramorum, section 3 reviews evidence of similar behavior from the literature, section 4 presents a 

theoretical model, section 5 explains the available data, section 6 presents empirical models, 

section 7 presents the empirical results, and section 8 concludes. 

Phytophthora ramorum Background 

Phytophthora ramorum was first documented in Marin County, California in April 1995 

when homeowners reported an unusual die off of tanoak trees (Svihra 1999, 2001). As tanoak 

trees were initially considered a weed, the pathogen was not seriously investigated until it began 

infecting higher valued coast live oak trees in 1998 (Frankel 2008). By then, the pathogen was 

established in six counties on the central coast of California. Shortly after, the pathogen was 
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discovered to infect a wide range of hosts, including oak, rhododendrons, camellias, and Douglas 

firs. The pathogen is now established in fourteen counties on the central California coast.  

P. ramorum was originally introduced to the United States through greenhouse nurseries 

in western California during the late 1990s (Parke and Grunwald, 2012; Davidson and Shaw 

2003). Genetic microsatellite mapping has provided very strong evidence that Sudden Oak Death 

in the United States not only originated from nurseries, but also that nurseries continue to be a 

contributing factor in its spread (Croucher, Mascheretti, and Garbelotto 2013). Several other 

studies have traced the origins of p. ramorum in several areas of the United States to a single 

nursery (Frankel 2008, Garbelotto and Rizzo 2005, Stokstad 2004). 

P. ramorum generally spreads through water transmission. Usually, rain moves infected 

sporangia from nearby plants. Other mechanisms for dispersal are irrigation splashing, plant-to-

plant contact, the movement of infested debris (through wind or other means), and water runoff 

(Kliejunas 2010).  

In an attempt to halt the spread of this disease, state and federal agencies enacted a 

number of restrictions on the movement of plants. The state governments has authority to restrict 

movement of plants within the state and the federal government is allowed to restrict movement 

of plants between states. However, the only state to restrict intra-state movement of plants was 

California, and the restricted area aligned exactly with the federal government’s restriction on 

out-of-state movement. Thus, all counties either face both intra-states shipping restrictions and 

out-of-state shipping restriction or neither level of restriction. The USDA Animal and Plant 

Inspection Service (APHIS) certifies inspectors that can perform inspections for both state and 

federal regulations. 
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 In 2001, the agencies established two regulatory areas with varying requirements for 

exporting nursery products out of the area. The first regulatory area is referred to as the 

quarantined area and originally consisted of nine coastal counties in California (Santa Clara, 

Marin, Sonoma, Napa, Santa Cruz, San Mateo, Monterey, Solano, and Alameda). Additional 

coastal counties in California were added in 2001 (Mendocino), 2004 (Humboldt and Contra 

Costa), and 2005 (Lake and San Francisco). The second regulatory area is referred to as the 

restricted area and consists of the portions of Oregon, Washington, and California that are not 

quarantined. Since 2001, three different policies were imposed to regulated areas, with the more 

stringent inspection requirements in the quarantined area and the less stringent inspection 

requirements in the restricted area. The least stringent policy required that all nurseries be 

visually inspected annually to make any shipments. All inventory are visually inspected by an 

APHIS-certified inspector. If any inventory appear symptomatic, they are sent to a laboratory for 

testing. If more than 40 plants appear symptomatic, then 40 plants are selected and sent to a 

laboratory for testing. This policy was implemented in the restricted area in 2004. The second 

least stringent policy required that all nurseries selling host and associated products be inspected 

annually in a laboratory in order to make any shipments. Under this policy, all plants are first 

visually inspected. A sample of 40 plants are sent to a laboratory for testing. The inspector first 

selects for plants with visual symptoms. If there are fewer than 40 symptomatic plants, then the 

inspector selects the remaining plants at random. This policy was implemented in the 

quarantined counties from 2001 to present day and in the restricted area from 2005 to 2007.4 The 

most stringent policy required that all nurseries selling host and associated products be visually 

                                                           
4 The initial export restriction was issued by the California Department of Food and Agriculture (Frankel 2008). All 
subsequent regulations were issued by the USDA Animal and Plant Health Inspection Service (APHIS). 
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inspected before every shipment and was implemented in the quarantined counties in 2005. The 

timeline on page 34 provides additional details on these policies. 

Most operations obtain the vast majority of their revenue through wholesale shipments of 

inventory (National Nursery Survey, 2013). In the Pacific region, which includes Washington, 

Oregon, California, Alaska, and Hawaii, 11 percent of the inventory in the horticultural 

inventory is sold outside the region (National Nursery Survey, 2013). When an operation tests 

positive for p. ramorum in an inspection, the operation must stop all shipments from that 

operation, including local shipments. Operations are not allowed to begin shipments again until 

an inspector declares the operation free of p. ramorum. Doing so often requirement burning the 

entire inventory and soil in the operation. The operation is then subject to more frequent 

inspections following a positive p. ramorum screening.  

The quarantine and regulations surrounding p. ramorum may introduce incentives for growers to 

evade detection through the use of fungicides. Most fungicides generally do not kill the targeted 

pathogen in an infected plant. Rather, the fungicide creates an environment where the pathogen 

does not thrive but remains present at low inoculum levels. As a result, the growth of the disease 

slows and symptoms are reduced even though the pathogen is still present.  The pathogen can 

later spread and cause symptoms to manifest once fungicide use ends. Growers use fungicides to 

prevent the disease, but fungicide use may also be a mechanism for hiding the disease from 

buyers and inspectors. (Shishkoff 2005, 2010, 2014; Chastagner et al. 2010).  

The supply chain of the greenhouse nursery industry begins with growers. Growers sell 

wholesale quantities of plants to either large market vendors such as chain store retailers or 

landscaping companies. Over recent decades, the consolidation of retail vendors such as Home 

Depot and Lowes has driven the consolidation of growers towards larger operations. The retailer 
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or landscaper then delivers the product directly to the consumer. If a retailer finds a diseased 

batch of plants, it is able to send it back to the grower for a refund. However, plants are generally 

in a retail setting for a short period of time, so if a disease manifests, it often will not do so until 

the consumer has purchased it from the retailer. (Hall et al. 2005; Parke and Grunwald, 2012) 

Consumers are typically unaware of which growers or retailers use fungicides in excess 

and which do not. For this reason, the buyer generally does not know whether minimizing the 

risk of a dormant disease manifesting requires routine fungicide application. In addition to the 

lack of information, the probability of their particular tree being diseased is low, property owners 

may lack the economies of scale that make applications cost-effective, and homeowners may 

have health and environmental concerns about excess fungicide application. The social costs of a 

diseased tree also do not fall on the owner alone—they fall on the owner’s neighbors, so the 

owner may not be properly incentivized to control plant disease on her property. Thus the 

consumer typically does not apply enough fungicide and when a disease is present, symptoms 

develop. 

If plants with undetectable disease continue to be sold, information asymmetry could 

eventually lead to a market break down analogous to the market for lemons in the used car 

industry. Even if buyers were well informed about the risks of the disease, the knowledge that 

some growers use fungicides heavily can create increased uncertainty about the disease status of 

an individual plant. An alternative to a quarantine is a mandatory label for all host plants, but that 

policy could also cause a market breakdown or reduction in demand because individual 

homeowners may not want to treat plants preventatively. Since the costs of purchasing a diseased 

plant and having it spread are high, buyers may be wary to invest in potential host plants at all. 
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This potential breakdown serves as a justification for the government interventions that followed 

the outbreak. 

Effective alternatives to fungicide use are available. Growers use a Hazard Analysis of 

Critical Control Points (HACCP) system to identify areas that may grow or spread disease and 

directly address the sanitation of these areas. In the context of nursery production, critical control 

points include direct contact between containers and contaminated ground, movement of 

contaminated soil by tools and equipment, and contamination of plants by use of infested 

irrigation water. To prevent infestation at these critical control points, growers can use best 

management practices such as raising containers off the ground, sanitizing equipment, and 

treating irrigation water before applying it. While HACCP is most effective when applied in its 

entirety, nursery growers can benefit from adopting only some of the best management practices 

that are recommended. Although it is not known how many U.S. nursery growers have adopted 

the practice, HACCP is widely used in food processing industries in the U.S. and in the 

horticultural industry in Australia. (Parke and Grunwald, 2012). Absent a third party certification 

system that effectively differentiates operations with good sanitation practices from those 

without good sanitation, a HACCP system may not benefit the farmer enough to justify the costs. 

For this reason, growers may still rely on the use of fungicide to prevent disease and hide 

diseases when they do occur. 

Evidence from the Literature 

Growers have used agricultural chemicals to strategically evade other regulations. For 

instance, Lichtenberg et al. (1993) modeled growers’ incentives to use pesticides in response to 

restrictions on the period after application in which workers are allowed to re-enter the field. 

Although the re-entry time restrictions were intended to reduce workers’ exposure to agricultural 
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chemicals, the authors showed that they actually incentivized an increase in total pesticide 

application. Sunding and Zivin (2000) also examined the incentives for farmers under re-entry 

restrictions, but explicitly modeled insect growth and allowed the amount of pesticide applied to 

vary. Using this approach, they concluded that re-entry restrictions have an ambiguous effect on 

farm worker health, but may increase the total pesticide amount applied in some cases. This 

precedent demonstrates a willingness among growers to bypass regulatory intent through 

adaptive behavior. 

Some recent examples of hiding infection status in response to quarantines and similar 

negative consequences such as stigmatization in the case of human disease include tuberculosis, 

HIV, and meningococcal disease. Paralkar (2008) notes that social stigmatization associated with 

tuberculosis in India frequently delays treatment by months, causing the disease to spread. CDC 

(2000) notes that stigma serves as a similar barrier to screening for individuals with HIV. 

Governments have been documented under-reporting human disease incidence for fear of 

sanctions, despite receiving medical aid in response to reporting. For example, every year 

millions of Muslims travel to Mecca, Saudi Arabia as part of their religious practice. Malani and 

Laxminarayan (2011) documented strong evidence that many countries with high Muslim 

populations systematically under-reported the incidence of meningococcal disease when Saudi 

Arabia barred travelers from countries with high rates of the disease. 

Disease detection avoidance occurs both in the form of under-reporting and in actively 

attempting circumvent the test among animal diseases as well. Gramig et al (2005), for example, 

outline how under-reporting of disease occurs in livestock operations and makes disease 

eradication more difficult. Cattle farmers in the United States during the bovine tuberculosis 

outbreak responded to cattle testing even more deceptively than under-reporters during a 
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government eradication program in 1917. Cattle could develop resistance to the tuberculosis 

testing chemical, Tuberculin, for several weeks. Some farmers intentionally injected their cattle 

with Tuberculin prior to inspection in order to pass inspection regardless of infection status. The 

practice became known as “plugging the test” and became a major impediment for eradicating 

the disease (Olmstead and Rhode 2004).  

Model 

This section presents a theoretical model that formalizes predictions about how the 

testing regime affects fungicide use and crop composition. The testing regime in the model 

reflects the restrictions in place in infested counties in California. Affected greenhouse nurseries 

can largely still operate provided that they submit to regular inspections for P. ramorum.  

Consider a grower with capacity to grow K individual plants, N of which consist of 

species susceptible to a disease and the rest of which are species resistant to the disease. The 

grower can choose the distribution of resistant and susceptible plants to grow, with exogenous 

prices for susceptible plants p. The marginal profit from each resistant plant is constant at πr, 

with the total profit from all sales of resistant plants equal to πr(K-N).  

  The grower faces an ex ante disease risk R, with a higher value of R indicating a higher 

level of risk. Risk levels are determined by the climate, density of host species, and existence of 

a likely entry path of the disease, all of which are treated as exogenous. The grower can then 

choose the amount of fungicide F to apply and the composition of the crop in terms of 

susceptible plants N and resistant plants K-N.  

The probability that an individual plant will show symptoms and thus test positive for the 

disease, µ(F, R,N), is decreasing in fungicide use due to decreased symptoms and decreased 
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disease such that 
𝜕µ

𝜕𝐹
< 0. Fungicide use exhibits diminishing returns so that that 

𝜕2µ

𝜕𝐹2
> 0.  The 

probability of testing positive for the disease µ(F, R,N) is increasing in the risk level R due to 

higher incidence of disease and increasing in the number of susceptible plants N due to 

susceptible plants serving as host for other susceptible plants, i.e., 
𝜕µ

𝜕𝑁
> 0 and 

𝜕µ

𝜕𝑅
> 0.  I assume 

that the number of susceptible plants has an increasing effect on the probability of failing 

inspection such that 
𝜕2µ

𝜕𝑁2 > 0: As the number of susceptible plants rises, space between them 

becomes smaller, making disease transmission more likely.  I further assume that the cross 

partial 
𝜕2µ

FN 
 is equal to zero because the fungicide use level F relates to the amount used per 

individual suceptible plant N. Also, fungicide effectiveness does not vary based on the number of 

plants that it is applied to, as evidenced by the constant dosage reccomendations on fungicide 

labels. Thus, there is no reason to think that its effectiveness would change as N changes. Since I 

assume the disease is the only source of losses, no losses are possible when there are no 

susceptible plants such that (F,R,0) = 0. 

Inspectors test a random sample of λ plants where a higher λ is indicative of a stricter 

inspection regime. A policy regime with no inspections is characterized by λ = 0. If a plant 

shows symptoms, I assume it will test positive for the disease, but otherwise will not. 

Symptomatic plants cannot be sold regardless of whether they are diseased because symptoms 

are generally unaesthetic and indicate some kind of underlying poor health of the plant. Once the 

inspector chooses the sample to test in a lab, I also assume that the test is perfectly accurate. Both 

the number of susceptible plants planted N and the level of fungicide use F are chosen prior to 

inspection. 
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Inspection results are publicized, and failing an inspection can damage the reputation of 

an operation. Several operations which failed inspection in California went out of business 

shortly after (Palmieri et al. 2010).  Given these regulations, I assume that failed operations are 

not able to sell any plants. The grower takes the per plant price p as given and chooses how many 

plants to grow, how much fungicide to apply at per unit cost c, and how much of other inputs to 

apply at unit cost w to maximize profit. The expected number of plants from the susceptible 

species which are asymptomatic is (1-μ(F,R,N))N. In the absence of an inspection regime, the 

grower can earns a revenue of (1-μ(F,R,N))Np. The probability of passing inspection is (1-

μ(F,R))λ. Growers that fail inspection will not be able to sell any plants of susceptible species 

and will thus earn no revenue from susceptible plants. The total expected revenue from sales of 

susceptible plants is thus pN(1-μ(F,R,N))λ+1.  

Profit for the grower π is equal to the expected value of sales susceptible crop sales net of 

production costs plus the profit from sales of the resistant crop. I assume that the marginal profit 

from the resistant crops πr is such that p(1-μ(F*,R, K))λ+1-w-cF*<πr< p-w-cF*, where F* is the 

profit-maximizing level of fungicide used. 

(1) Π=pN(1-μ(F,R, N))λ+1-wN-cFN+πr(K-N)  

Optimization Conditions 

The grower chooses fungicide use F such that the marginal benefits of fungicide use are 

equal to the marginal cost of fungicide use c in the case of an interior solution or less than the 

marginal costs of fungicide use in the corner solution where no fungicide is applied. The 

marginal benefit of fungicide use is the product of the price per plant p, the marginal increase in 
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sales from passing inspections(λ + 1)(1 −  μ(F, R, N))
λ
, and the reduction in the probability that 

a plant shows symptoms due to fungicide use  
𝜕µ

𝜕F
: 

(2) −p(λ + 1)(1 −  μ(F, R, N))
λ 𝜕µ

𝜕F
− 𝑐 ≤ 0 

Similarly, the grower sets the number of susceptible plants N such that the marginal 

benefit of an additional susceptible plant is equal to or less than the marginal cost of an 

additional susceptible species plant. The marginal benefit of a susceptible plant include the 

marginal revenue from sales of the susceptible plants p (1 − μ(F, R, N))
λ+1

minus the marginal 

revenue lost from susceptible plants through the increased risk of getting caught, due to having a 

larger number of susceptible species plants, pN(λ + 1)(1 − μ(F, R, N))
λ 𝜕µ

𝜕N
.  The marginal costs 

of a susceptible species plant include the non-fungicide cost of growing it w, the fungicide-

related costs cF, and the marginal opportunity costs of growing a resistant plant π𝑟 . 

(3) −pN(λ + 1)(1 − μ(F, R, N))
λ 𝜕µ

𝜕N
+  p (1 − μ(F, R, N))

λ+1
− 𝑤 − 𝑐𝐹 − π𝑟 ≤ 0 

The second order conditions for (2) and (3) to be determine a maximum are listed in 

inequalities (1.1), (1.2), and (1.3) in the appendix. 

Imposition of a quarantine can be represented as a shift from having no inspection 

requirement at all ( = 0) to requiring some positive number of plants inspected ( > 0). In the 

model, this means that I am most interested in the directional change in the variables of interest 

due to a change in λ from an initial value of 0. When λ = 0 and the first order conditions hold 

with equality, (1.1), (1.2), and (1.3) simplify to 

(4) − 
𝜕2𝜇

𝜕𝐹2
𝑝 ≤ 0  
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(5) 𝑝 [−2
𝜕𝜇

𝜕𝑁
− 𝑁

𝜕2𝜇

𝜕𝑁2
] ≤ 0 

(6) −
𝜕2𝜇

𝜕𝐹2 𝑝2𝑁 [−2
𝜕𝜇

𝜕𝑁
− 𝑁

𝜕2𝜇

𝜕𝑁2] ≥ 0 

In this case, the necessary conditions for an interior solution are also sufficient.  

Impact of Quarantine Imposition on Fungicide Use 

The model implies that a profit maximizing grower responds to imposition of a 

quarantine regime by increasing fungicide applications per plant in an attempt to reduce 

detectable disease symptoms. Let Ω denote the determinate of the Hessian matrix defined by (6). 

When λ = 0 and the first order conditions hold with equality, 
𝜕𝐹

𝜕𝜆
 simplifies5 to: 

(7)  

𝜕𝐹

𝜕𝜆
=

− [
𝜕𝜇
𝜕𝐹

+ 𝑙 𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁))]

𝜕2𝜇
𝜕𝐹2

 

 The right hand side of equation (7) is unambiguously positive, indicating that fungicide 

use increases when a quarantine regime is imposed on a previously unregulated operation. 

Intuitively, fungicide use increases because the costs of displaying symptoms of an infection 

increases the likelihood of getting caught, so growers are willing to spend more on avoiding 

displaying symptoms. The increase in the fungicide application rate is greater when fungicides 

are more effective in suppressing symptoms (
𝜕𝜇

𝜕𝐹
 is larger in absolute value). It is also greater 

when the ex ante risk level R is large, since the gains from the reduction in risk are greater.  

Impact of Quarantine Imposition on Crop Diversification 

                                                           
5 The general form of equation (7) can be found in equation (1.4) in the appendix 
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When a quarantine is imposed on unregulated growers, growers may respond by shifting 

production towards a resistant crop that does not risk failing inspections. To verify this, I am 

interested in the sign of  
𝜕𝑁

𝜕𝜆
. 

When λ=0, and the first order conditions hold with equality, 
𝜕𝑁

𝜕𝜆
 simplifies6 to: 

(8) 

𝜕𝑁

𝜕𝜆
=

−𝑝2𝑁2 𝜕2𝜇
𝜕𝐹2 [

𝜕𝜇
𝜕𝑁

− 𝑙𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁)) [1 −
(1 −  𝜇(𝐹, 𝑅, 𝑁))

𝑁 ]]

Ω
 

 Under a non-inspection regime, 
𝜕𝑁

𝜕𝜆
 is negative. Under such conditions, an implementation 

of a quarantine regime will incentivize farmers to reduce the number of susceptible plants that 

they grow, and increase the number of resistant plants.  

Summary: Hypotheses for Empirical Investigation 

The model has produced two hypotheses, namely that when a testing regime is imposed, 

growers will: (1) increase fungicide use; and (2) shift their crop composition away from 

susceptible plant species towards resistant species. I test these hypotheses empirically in the 

subsequent sections. 

Data 

I use several data sources on the chemical use, management practices, composition, and 

costs of crop sales in the greenhouse nursery industry. Sources include California Department of 

Agriculture Pesticide Use Reporting data, the Pacific Northwest Plant Disease Management 

                                                           
6 The general form of equation (8) can be found in equation (1.5) in the appendix 
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Handbook, the Western Regional Climate Center database, the USDA-NASS Nursery and 

Floriculture Chemical Use Survey, the USDA-NASS Floriculture Survey, and the USDA Census 

of Horticultural Specialties.  

The California Department of Agriculture Pesticide Use Reporting data provides 

application level data for all greenhouse nurseries in the state of California between 1991 and 

2012. Data include grower IDs, acres planted, date of chemical application, pounds of active 

ingredient, chemical name, chemical code, location by county and zip code, and broad crop 

categories. Crop categories include nursery greenhouse flowers, nursery greenhouse plants in 

containers, nursery greenhouse transplants, nursery outdoor flowers, nursery outdoor plants in 

containers, and nursery outdoor transplants. Within each nursery and greenhouse category are 

subcategories that specify the genus or species to which the fungicide is being applied. 

The California Department of Agriculture Pesticide Use Reporting data report on 

hundreds of different chemicals.  To categorize these chemicals in a systematic manner, I use the 

Pacific Northwest Plant Disease Management Handbook, which discusses the use for nearly all 

agricultural chemicals used in California. Only oomycete-specific fungicides are effective at 

targeting P. ramorum, so I use the Pacific Northwest Plant Disease Management Handbook’s 

fungicide use descriptions to categorize fungicides as oomycete-specific or not. The handbook 

also reports the active ingredients as well as the brand name of each chemical. . See Table 1 for 

fungicide use summary statistics. 

To control for weather related factors that influence the risk of disease, I use the Western 

Regional Climate Center Database, which reports daily precipitation, temperature minimums, 

temperature maximum, and growing degree days for monitoring stations in all fifty-eight 

counties in California. 



 

100 
 

The USDA NASS Agriculture Chemical Usage- Nursery and Floriculture Program 

surveyed greenhouse nurseries in the states of Michigan, Florida, Pennsylvania, Texas, 

California, and Oregon in each of the years 2000, 2003, 2006, and 2009 about pest management 

practices. The survey reports the percent of operations stating that they engage in each pest 

management practice by state and year. The survey asks whether the participant engages in 

fourteen specific sanitation practices that would be relevant to the prevention of P. ramorum. 

These management practices cover proper sanitation of equipment, proper spacing of host plants 

from the ground and other host plants, and management of greenhouse humidity and 

temperature.7 Proper sanitation reduces disease pressure by killing pathogens before they are 

able to infect the plants. Proper spacing isolates infected plants before the grower knows that the 

plant is infected, so that the infection does not spread. Proper management of greenhouse 

humidity and temperature reduce disease pressure by ensuring that plants are not stressed. See 

Table 2 for summary statistics for management practices.  

The last two data sets relate to crop composition of nursery sales and production in the 

United States.  The USDA Census of Horticultural Specialties, conducted most recently in 1998 

and 2009, contains sales by total revenue and number of plants sold by genus and state and 

number of stems sold by genus and state. It also includes expenditures of horticultural operation 

by state and category of expense (e.g. utilities, chemical use, and containers). The USDA-NASS 

Floriculture Survey publishes the sales in terms of dollars and number of plants by state and 

                                                           
7 The full list of management practices is: Plant density adjusted; row spacing or row directions adjusted; sterilized 
growing media used; diagnostic laboratory services used for pest detection via plant tissue analysis; Diagnostic 
Laboratory Services Used for Pest Detection Via Soil Analysis; Benches or Other Platform Devices Sanitized 
Between Uses; Containers Sanitized Between Uses; Ground Covers Sanitized Between Uses; Incoming Stock 
Inspected; Infected Plants or Plant Parts Removed or Pruned; Water Management Practices Used; Greenhouse 
Relative Humidity Modified; Greenhouse Temperature Modified; and Greenhouse Ventilated. 
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genus for common cut and potted flowers by state for fifteen participating states annually. The 

three affected states—Washington, California, and Oregon—are all included in this survey. 

Azaleas are the only host genus included in the survey.  Descriptive statics for the two crop 

composition surveys are in Table 3.  

Empirical Strategy 

I use several empirical models to test the hypotheses derived from the theoretical 

analysis. I use data from the California Pesticide Use Reporting System and the Pacific 

Northwest Plant Disease Management Handbook to examine the effects of quarantine 

restrictions on fungicide use in California. I use four different measures of fungicide use: (1) the 

share of total pounds of active ingredients applied that could target P. ramorum, (2) the per acre 

application rate of active ingredient, (3) the absolute number of pounds of active ingredients in 

fungicides that could target P. ramorum applied, and (4) the number of fungicide acre-treatments 

per acre for host species using. I repeat all the regressions with only non-host species (which are 

unaffected by quarantine restrictions) as a falsification test. Next, I use data from the USDA-

NASS Nursery and Floriculture Chemical Use Survey to test whether quarantine restrictions 

affect broader sanitation efforts using a difference-in-difference model of the percentage of 

growers using number of different sanitation practices before and after quarantine imposition. 

Finally, I use state-level data from the USDA Floriculture Survey and the Census of 

Horticultural Specialties to test the effects of quarantines on crop composition in terms of 

number of plants sold, dollar value of plants sold, and destination of plants sold .  

Fungicide Use across Growers in California 
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The theoretical model predicts that under a shift from a non-quarantine regime to a 

quarantine regime will increase fungicide use and decrease the number of susceptible plants 

grown relative to the resistant plants. Pesticide use data are from the California Department of 

Agriculture. 

Only oomycete-specific fungicides work on P. ramorum, which makes them uniquely 

relevant when studying the effect of policies relating to P. ramorum. I consider fungicides to be 

oomycete-specific if the Pacific Northwest Plant Disease Management Handbook lists 

oomycetes in the description of the fungicide’s targeted pathogens. I use four different metrics of 

the level of oomycete-specific fungicide use. Let Wgt indicate the metric of fungicide use that 

will vary across regressions where Wcgt will represent: 

 the share of all fungicides applied which are oomycete-targeting in terms of pounds of 

active ingredient in month t by grower g; 

 the absolute amount of oomycete-specific fungicides applied for each grower in month t 

by grower g in terms of pounds of active ingredient; 

 the rate of oomycete-specific fungicides applied in terms of pounds of active ingredient 

per acre treated in month t by grower g;  and 

  the number of treatments per acre applied by grower g in month t. 

Each metric of oomycete-specific fungicide has different advantages. The portion of total 

fungicide use that is oomycete-specific in terms of pounds of active ingredients is useful because 

it reveals whether absolute changes in fungicide use are the result of an increase of total 

fungicide use or a shift in composition of fungicides. The absolute number of pounds of 

oomycete-specific fungicides applied provides information about whether growers actually apply 
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more fungicide in total, or just adjust the composition of chemicals used. The rate of oomycete-

specific fungicide applications provides information on the intensity of use, rather than the 

amount so that the estimation coefficients can help distinguish whether growers are applying 

fungicides in different doses or whether they are applying fungicides at different intervals at the 

same doses. Finally, treatments per acre measures the fungicide application while adjusting for 

the variation in typical concentration between different types of fungicides. Since some active 

ingredients are typically applied in much greater quantities than others, this metric allows for a 

more consistent comparison. 

Treatments per acre are ideally calculated by dividing the rate of fungicide used by the 

recommended dose as provided by the manufacturer, adding the number of doses within a 

grower, and dividing by the total number of acres grown by the grower. The California Pesticide 

Use Reporting Data do not contain the actual recommended dose amount per acre, and the 

official label recommendations vary across brands, partially depending on interactions with other 

chemicals. To substitute for the recommended maximum doses, I calculate the number of acre-

treatments per acre by normalizing each chemical code by the maximum rate observed in the 

data for that chemical code excluding unrealistic rates as flagged by the California Department of 

Food and Agriculture (CDFA). The California Pesticide Use Reporting flags outliers based on a 

survey of scientists who consider the distribution of reported application rates as well as other 

factors. The documentation for the data reports that it would ideally use the maximum label rates 

to flag outliers but the label rates were not available. Their outlier flagging may therefore serve 

as a reasonable proxy for maximum label rates. 
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The USDA and the CDFA have imposed several different types of restrictions on nursery 

growers relating to P. ramorum since 2002 (See the California policy timeline). The policies 

represented in the sample were: 

 Nurseries selling host and associated products8 must be inspected annually in a laboratory 

to ship interstate or intrastate, which affected restricted counties starting in 2001 

 All nurseries must be visually inspected annually to ship interstate, which affected 

restricted counties starting in 2006 and all California counties starting in 2007 

 All nurseries selling host and associated products must be visually inspected before every 

shipment to ship interstate, which affected restricted counties starting in 2005  

Since the different restrictions may induce different responses by the growers, I include each 

separately in the California county regressions.  

I include several control variables that may influence the use of fungicides. The dummy 

variable Rct corresponds to R in the theoretical model because it is an indicator that the area is at 

high risk for P. ramorum. The variable Rct is equal to 1 if the most recent United States Forest 

Service P. ramorum risk maps label any part of the county c as having a medium or high risk of 

P. ramorum as of time t. The theoretical model hypothesis indicates that the coefficient of Rct 

will be positive. The average rainfall amount, the minimum temperature, the maximum 

temperature, and the average number of growing degree days both increase the overall risk for 

fungal plant diseases (as opposed to the risk of P. ramorum specifically). For this reason, the 

sign of both variables is ambiguous, but their inclusion will serve to isolate the risk of P. 

                                                           
8 The USDA classifies host plants as plants that have been fully documented to pass Koch’s postulates for P. 
ramorum. Associated products are suspected of being host plants on the basis that P. ramorum has been detected 
using PCR (Polymerase Chain Reaction), but Koch’s postulates for P. ramorum have not yet been fully documented. 
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ramorum. The number of acres planted directly affects fungicide use because growers who plant 

more acres generally have higher volumes of plants that they need to protect against disease. I 

expect that higher number of acres planted is associated with higher levels of fungicide 

applications. The increase in fungicide use could occur through growers increasing the absolute 

amount of fungicides used, increasing the application rate, or increasing the number of acre-

treatments per acre. 

      For fungicides for grower g in county c and time t, each fungicide use equation is specified 

as: 

Wcgt=α0 + α1GDD40ct + α2GDD50ct + α3 Pct + α4 Rct + α5 APg+ ∑ 𝛾𝑝𝑄𝑐𝑡
7
𝑝=1 +ηg+ εcgt, 

where Wcg is the metric fungicide use as specified above; the variable GDD40ct represents the 

number of growing degree days in county c and month t with a base line of forty degrees  

Fahrenheit and the variable GDD50ct represents the number of growing degree days in county c 

and month t with a base line of fifty degrees  Fahrenheit; Pct represents the precipitation in inches 

in county c and time t; Rct is a dummy variable for whether any area in the county is considered 

at an elevated risk for P. ramorum at time according to the forest service risk maps. APgc is the 

number of acres planted by grower g in month t. 𝛾𝑝 are a series of dummy variables for whether 

each of the three policy restrictions listed in the California policy timeline are in place in county 

c and time t. ηg are grower fixed effects and εcgt is the error term. 

If the hypothesis that the quarantine increased the fungicide use, particularly within 

susceptible species, is correct, then I would expect the coefficients on the dummy variables 𝛾𝑝  in 

the above equation to be large and positive. In particular, I would expect the dummy variables 

for the more stringent policies, such as the requirement that nurseries must be visually inspected 
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before every interstate shipment, to have the largest magnitude. I would also expect policies that 

involve visual inspection to have a larger effect than those that involve laboratory testing because 

fungicides are more effective in hiding the visual symptoms of disease than influencing 

laboratory testing.   

Management Practices 

Growers in quarantined counties might use more fungicides to reduce losses of 

unsaleable (symptomatic) plants or to decrease the chance of failing inspection. Controlling for 

disease risk levels partially separates these two reasons. Further, if the underlying disease risk is 

driving fungicide use, then growers would not use more fungicide for annual visual inspections 

than they would for annual laboratory inspections. Policymakers are not likely to systematically 

implement laboratory inspections over visual inspections for lower risk areas. Fungicides, 

however, are more effective at masking the visual symptoms of disease than they are at stopping 

the disease from being detected in a laboratory. Finally, if growers are primarily motivated by 

stopping disease spread rather than avoiding failing an inspection, they would likely implement 

other best management practices for preventing disease such as good sanitation practices.  

Let Sst represent the percent of operations in each state that use each of fourteen 

sanitation practices. I test the effect of inspections on sanitary practices with the following 

specification: 

Sst= β0+ β 1QsQt+τs+ηt+ εst, 

where QsQt is a dummy for a quarantine state and quarantine year, which equals one if the state 

is California and the year is after 2001 or if the state Oregon and the year is after 2004. It equals 

zero otherwise. τs are the sate fixed effects, ηt are the year fixed effects, and εst is the error term. 
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If states prioritize preventing disease itself over preventing failing an inspection, I expect the 

coefficient on the interaction term β 1 to be positive and large.   

Crop Composition 

The theoretical model predicts that as the intensity of inspections increase, growers shift 

to more resistant crops. I use data from the USDA-NASS Floriculture Survey and the USDA 

Census of Horticultural Specialties to examine how the quarantine has affected crop composition 

in terms of both the absolute number of host plants sold and the of sales of host plants in dollars, 

and the percent of all sales that are of host rather than resistant species.  

The specification for assessing the quarantine on crop composition is as follows: 

Ast=δ0+ δ 1QsQt + δ 2Pst+τs+ηt+ εst, 

where Ast represents the sales of azaleas in state s and year t, in terms of both dollars and number 

of plants in two separate regressions; QsQ is a dummy for a quarantine state and quarantine year, 

which equals one if the state is California and the year is after 2001 or if the state Oregon and the 

year is after 2004 and equals zero otherwise; Pst represents the average price of the azaleas in 

states and the year t; τs are state fixed effects; ηt are year fixed effects; and εst is the error term. If 

the quarantine is driving sales of host plants down in quarantined states, I would expect δ 1 to be 

large and negative.   

The Census of Horticultural Specialties crop categories that have at least one genus 

which has only host species are Christmas trees, broad leaf evergreens, and deciduous shrubs. 

Within each category, I regress the difference in the portion of plants sold and dollars sold that 

are hosts between 2009 and 1998 on whether or not the state was affected. The genera contain 

both host and non-host species were excluded entirely from the model: 
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∆Hst=θ0+ θ 2Qs,  

where ∆Hst is the difference in portion of plants sold that are hosts between 1998 and 2009 (such 

that ∆H𝑠𝑡 =
Host Plants Sold in 2009

Total Plants Sold in 2009
−

Host Plants Sold in 1998

Total Plants Sold in 1998
) and Q is a dummy for a quarantine 

state, which equals one if the state is Oregon or California or Washington and zero otherwise. 

If the quarantine does incentivize growers to switch to more resistant crops, then Qs will 

be negative. 

Results 

Growers appear to have changed their behavior in terms of fungicide use and crop 

composition in response to the quarantine, but not in terms of their management practices Tables 

4-8). The estimated coefficients suggest that growers do apply more oomycete-specific 

fungicides to host plants in response to policy changes both as a percentage of total fungicide use 

and in terms of absolute pounds of active ingredient applied, but they do not increase fungicide 

use on non-host plants (see Table 4 and Table 5). Growers achieve this higher level of fungicide 

use by applying oomycete-specific fungicides more often rather than increasing application rates.  

I did not find evidence that growers increase the use sanitation measures such as cleaning 

containers between uses (Table 6). However, growers have shifted production from host species 

to resistant species in the affected states (Tables 7 and 8). 

Fungicide Use across Growers in California 

The estimated coefficients support the hypothesis that growers do use fungicides to evade 

quarantine restrictions: Visual inspections are associated with greater use of more oomycete-

specific fungicides, while laboratory inspections are not. This finding is consistent with the fact 



 

109 
 

that fungicides are more capable of reducing visual symptoms than they are of evading 

laboratory tests. Falsification tests using only fungicide application on non-host plants do not 

show any effect of quarantine policies on fungicide use, supporting the hypothesis that the results 

are in fact driven by the p. ramorum quarantine policies rather than other unobserved changes. 

The requirement that all host and associated nursery products be visually inspected 

before every interstate shipment, with follow-up laboratory tests for symptomatic plants, is 

associated with a 28 percentage point increase in the portion of total fungicide use that is 

oomycete-specific on host plants.  The effect of visual rather than laboratory inspections on 

fungicide use may be because fungicides are more likely to mask visual symptoms than to 

prevent P. ramorum from detection in laboratory tests, so fungicides would be useful for growers 

to evade detection under such a policy. The effect is also likely large because the requirement 

pertains to individual shipments rather than a single annual requirement. 

In the regression model for the portion of fungicide use that in oomycete-specific, the 

coefficient for the policy variable requiring annual visual inspection of host plants is -0.000001 

and the coefficient for the policy variable requiring annual laboratory inspection of host plants is 

0.01. The small magnitude and lack of statistical significance of both coefficients indicates that 

annual inspections of any kind do not appear to affect the portion of fungicide use that is 

oomycete-specific. The fact that inspections on every shipment have a much larger influence on 

the amount of fungicide used than annual inspections do is consistent with the model prediction 

that fewer inspections will lead to less fungicide use. No policy has either a large or a statistically 

significant on the portion of fungicides applied that are oomycete-specific on non-hosts plants 

(Table 5). 
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None of the policies included in the regression have either a large or a statistically 

significant effect on the average rate at which oomycete-specific fungicides are applied on either 

the host plants or the non-host plants. This implies that growers tend to respond to inspection 

with an increased frequency of fungicide use rather than an increase in intensity per usage. 

There is a large increase in the absolute number of pounds of the active ingredient in 

oomycete-specific fungicides under the policy requiring visual inspections before each shipment 

in host products. Although the coefficient is not statistically significant, the magnitude is quite 

large. On average, there is a 1.02 pounds of active ingredient per grower per month estimated 

increase under the policy for host plants, when the average number of pounds of active 

ingredient per grower per month for the whole sample of host plants was 4.65 pounds per month, 

or a 22 percent increase. In contrast, the estimated coefficient for the same policy for non-host 

plants is zero and the average number of oomycete-specific pounds of active ingredient applied 

to non-hosts is 2.16 per grower per month. 

 The requirement that nurseries be visually inspected before every shipment is associated 

with a positive and statistically significant at the .1 level effect on the acre-treatments per acre.  

No policy has either a large or statistically significant effect on the acre-treatments per acre for 

non-host plants (Table 5).  

  The hypotheses that growers rely primarily on fungicides to mask symptoms and avoid 

detection where possible is supported by the estimated impact of quarantine status on sanitation 

practices that reduce disease incidence but not symptoms of affected plants (Table 6). 

Difference-in-difference regressions do not yield a positive interaction term for the quarantine 

state and year for any of fourteen best management practices included in the USDA-NASS 

Floriculture Survey. Although the negative coefficients on the interaction terms are unlikely to 
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be responsible for the disproportionate decrease in best management practices in quarantine 

states, there is no indication that growers have improved such practices. 

 Several factors suggest that growers alter fungicide use in response to the threat posed by 

inspection rather than to an underlying risk of disease when altering their fungicide use regime. 

First, visual inspections tend to have a larger effect on fungicide use than laboratory inspections, 

consistent with the fact that fungicides tend to be more effective at masking the visual symptoms 

of disease than they are at decreasing the probability of a disease being detected in a laboratory 

(Table 4). Second, the dummy variable for elevated risk as reported by USDA forest service risk 

maps is very small and close to zero in all regressions (Table 4). Third, a wide variety of 

management practices reduce disease prevalence but do not affect the probability of avoiding 

detection once a disease arises (Table 6). 

Crop Composition 

The estimated coefficients of the crop composition models suggest that the imposition of 

quarantines does affect the crop composition chosen, consistent with the theoretical model 

(Table 7 and Table 8). Estimated coefficients using both the USDA-NASS Floriculture Survey 

and the USDA Census of Horticultural Specialties indicate that the market responded to the P. 

ramorum quarantine by producing fewer host plants. The USDA-NASS Floriculture Survey 

indicates that the absolute sales of azaleas, which is the only host product in the survey, have 

declined disproportionately in quarantine states during quarantine years. The coefficients from 

the regressions using the difference in the total of plants sold that are hosts from the Census of 

Horticultural Specialties indicate that for every host plant category, the estimated coefficients of 

the model indicate that there have been disproportionate declines in quarantine states during 

quarantine years in the share of crops that are potential P. ramorum hosts (Table 7). Both sources 
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indicate that the price of host plants have disproportionately increased in quarantine states during 

the quarantine years.  

The USDA-NASS Floriculture Survey separates sales of azaleas into small pots which 

are less than five inches in diameter and large pots which are more than five inches in diameter. 

The survey indicates that the sales of azaleas have disproportionately decreased by 437,900 small 

plants per year and by 581,900 large plants per year in quarantine states during quarantine years 

compared to twelve non-quarantine states (Table 8). These figures represent a 40 percent 

increase in average annual sales small azaleas and a 32 percent increase in the sales of large 

azaleas per state in the three affected states before the quarantine. The coefficient on the 

interaction term between quarantine year and quarantine state was statistically significant for 

both large and small azaleas. There was also a disproportionate decrease in sales of azaleas as a 

percent of total floriculture revenue in the quarantine states relative to the other states over the 

quarantine time period by more than 4 percent.  

The coefficients from the regressions using the USDA Census of Horticultural Specialties 

is consistent with those of the Floriculture survey, but with a smaller magnitude. The USDA 

Census of Horticultural specialties had three categories of plants in which there were both genera 

that were composed of only host species and genera that were composed of only non-host 

species: broadleaf evergreens, deciduous shrubs, and Christmas trees. Within each category, 

genera that had both host and non-host species were excluded. The percent of plants sold that 

were hosts disproportionately decreased in quarantine states between 1998 and 2009 between 4 

percent for deciduous shrubs and 10 percent for Christmas trees (Table 8).  
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Conclusion 

Correctly assessing the infection status of individuals is important for containing the 

spread of any contagious disease. When negative consequences for harboring a disease are 

imposed, agents are frequently empowered and incentivized to take actions than reduce the 

probability of detection. In human and livestock disease, reducing the probability of detection 

can take the form of fever-reducing drugs or failure to report suspicious symptoms. In the case of 

certain plant diseases, growers can influence the probability of detection through their choice of 

chemical use.  

In this paper, I investigate how growers respond to increased inspections and regulations 

in the context of the plant pathogen that causes Sudden Oak Death. I approach this question in 

three ways. First, I create a theoretical model to formally predict how greenhouse nursery 

operators change their fungicide use patterns and their crop composition in response to the 

implementation of mandatory disease inspections. My model predicts that when a testing regime 

is imposed, growers will increase their fungicide use and shift their production away from 

susceptible plant species towards resistant species. Second, I provide empirical evidence 

consistent with the hypothesis that growers increased their fungicide use targeting the disease in 

response to the inspections using data on the grower level for California. However, based on 

state-level data, I do not find evidence that growers improved their management practices in 

response to increased inspection or increased disease prevalence. Third, I provide empirical 

evidence consistent with the hypothesis that growers changed their crop composition in response 

to the inspection regime using state level data from the USDA Census of Horticultural 

Specialties and the USDA-NASS Floriculture Survey. 
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 The estimated coefficients have two policy implications for the reduction of P. ramorum.  

First, since the findings support the hypothesis that growers respond with greater fungicide use to 

visual inspections but not to laboratory inspections, movement restrictions should be based on 

laboratory inspections only. Although fungicides may also affect the accuracy of laboratory 

inspections, the increased probability of avoiding detection is not as well documented. Second, 

since growers usually increase fungicide use by applying more frequently rather than increasing 

quantities per application, mandatory waiting periods between fungicide application and 

inspection may be an effective tool in improving detection rates. For a mandatory waiting period 

to be effective, further research must estimate optimal waiting times and proper enforcement 

must be available through laboratory testing. 

 The policy implications of this paper extend beyond the greenhouse nursery industry. 

Fungicides specifically are a major line of defense against major pathogens affecting coffee 

plants (Hemileia vastatrix), cocoa plants (Moniliophthora perniciosa, Moniliophthora roreri, 

Oncobasidium theobroma, Phytophthora palmivora, Phytophthora megakarya and Phytophthora 

capsici), rice (Magnaporthe oryzae), and wine grapes (Botrytis cinerea). Regulators typically 

address the spread of disease through some sort of testing regimen, but fungicides suppress the 

symptoms, so the effectiveness of such regulations is limited. In addition to other crops that are 

at risk of fungal disease, disease detection evasion is a serious concern among other agricultural 

industries, including livestock, and in the containment of human disease. 

In the case of fungal plant diseases, policymakers can reduce their reliance on visual 

symptoms in favor of laboratory testing. Waiting periods, in which growers are required to 

temporarily suspend pesticide use immediately prior to testing, can improve disease detection 

accuracy.  Waiting period compliance can be assessed through laboratory testing.  Optimal 
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duration of waiting periods should be informed through research on the magnitude of symptom 

masking potential across plants and specific fungicides. 

To achieve the goal of accurately assessing disease status, policymakers can use a variety 

of tests to determine whether or not an operation is infested in order to minimize the effect of any 

one test. In the case of P. ramorum, this may mean using multiple laboratory testing procedures. 

If actors are able to evade detection in all available testing procedures, policymakers can either 

construct a uniform policy across an entire region that is deemed infested rather than on an 

individual basis. 

 

 



 

116 
 

References 

Barrett, Ron and Peter J. Brown. Stigma in the Time of Influenza: Social and Institutional Responses to 

Pandemic Emergencies. Journal of Infectious Diseases. 197 (2008) 

Centers for Disease Control and Prevention. “HIV-Related Knowledge and Stigma—United States 2000.” The 

Journal of the American Medical Association. 284.24 (2000) 3118-3119 

Chastagner, G.; DeBauw, A.; Riley, K. “Effect of fungicides on the isolation of Phytophthora ramorum from 

symptomatic and asymptomatic rhododendron leaf tissue.” Proceedings of the sudden oak death fourth 

science symposium. Albany, CA: U.S. Department of Agriculture, Forest Service, (2010): 302–304 

Chesney, Margaret. “Critical Delays in HIV Testing and Care: The Potential Role of Stigma.” American 

Behavioral Scientist. 42.7 (1999) 1162-1174 

Croucher, P., Mascheretti, S., Garbelotto, M. “Combining field epidemiological information and genetic data to 

comprehensively reconstruct the invasion history and the microevolution of the sudden oak death 

agent Phytophthora ramorum (Stramenopila: Oomycetes) in California.” Biological Invasions (2013) 

Davidson, J.M.; Shaw, C.G. “Pathways of movement for Phytophthora ramorum, the causal agent of sudden 

oak death. Sudden oak death online symposium. (2003) 

Frankel, S.J. “Sudden oak death and Phytophthora ramorum in the USA: a management challenge.” 

Australasian Plant Pathology. 37 (2008) 19–25 

Garbelotto, M.; Rizzo, D.M.. “A California-based chronological review (1995–2004) of research on 

Phytophthora ramorum, the causal agent of sudden oak death.” Phytopathologia Mediterranea. 44.2 

(2005) 127–143 

Gramig, Benjamin M., Richard D. Horan, and Christopher A. Wolf. "Livestock Disease Indemnity Design 

When Moral Hazard Is Followed by Adverse Selection." American Journal of Agricultural 

Economics. 91.3 (2009) 627-41 

Hall, Charles; Alan Hodges, and John Haydu. "Economic Impacts of the Green Industry in the United States." 

Final Report to the National Urban Community Forestry Advisory. (2005) 

Kalichman, Seth; and L Simbayi. “HIV Testing Attitudes, AIDS Stigma, and Voluntary HIV Counseling and 

Testing in a Black Township in Cape town, South Africa.” Sexually Transmitted Infections. 79 (2003) 

442-447 

Laxminarayan, Ramanan; Malani, Anup. “Incentives for Reporting Infectious Disease Outbreaks.” The Journal 

of Human Resources 46.1 (2011) 

Lichtenberg, Erik; Robert Spear; and David Zilberman. “The Economics of Reentry Regulations of Pesticides.” 

American Journal of Agricultural Economics, 75.4 (1993) 946-58  

Palmieri, Katie; Janice Alexander, Chris Lee, and Susan Frankel. “Sudden Oak Death and Phytophthora 

ramorum Summary Report.” California Oak Mortality Task Force. (2010) 

Paralkar, Vikram. “Worlds Apart—Tuberculosis in India and the United States.” The New England Journal of 

Medicine. 358 (2008) 1092-1095 



 

117 
 

Samaan, Gina; Jenean Spencer; Leslee Roberts; and Mahomed Patel. “Border screening for SARS in Australia: 

What Has Been Learnt?” The Medical Journal of Australia 180.5 (2004) 220-223 

Shishkoff, Nina “The effect of systemic fungicides on detection by culturing of Phytophthora ramorum.” 

Phytopathology. 95 (2005) 596  

Shishkoff, Nina. “Growth-inhibiting Fungicides Affect Detection of Phytophthora ramorum from Infected 

Foliage and Roots.” Plant Health Progress. 15.1 (2014) 

Stokstad, E. “Nurseries may have shipped sudden oak death pathogen nationwide.” Science. 303 (2004) 1959. 

Svihra, P. “Tan oak and coast live oak under attack.” Oaks ’n’ folks. 14.2  (1999) 

Svihra, P. “Diagnosis of SOD: case study of a scientific process.” California Agriculture. 55.1 (2001) 12–14, 16 

Ti, Lianpin; Kanna Hayashi; Karyn Kaplan; Paisan Suwannawong; Evan Wood; Julio Montaner; and Thomas 

Kerr. “HIV Test Avoidance among People Who Inject Drugs in Thailand.” AIDS Behavior. 17 (2013) 

2472-2478 

Tjosvold, S.A.; Chambers, D.L.; Koike, S.; Fichtner, E. “Epidemiology of Phytophthora ramorum infecting 

rhododendrons under simulated nursery conditions. Proceedings of the sudden oak death second science 

symposium: the state of our knowledge.” Department of Agriculture, Forest Service. (2006): 459–461. 

 

 

 

 



 

118 
 

Policy Timeline for Quarantined California Counties 

 May 2001: The counties of Santa Clara, Marin, Sonoma, Napa, Santa Cruz, San Mateo, and Monterey are declared to be “quarantined” and 

nurseries selling host and associated articles must be inspected visually annually to ship intrastate 

 July 2001: Mendocino County is added to the list of quarantined counties 

 February 2002: Solano, and Alameda are added to the list of quarantined counties and all quarantined nurseries in quarantined counties selling 

host and associated products must be inspected annually in a laboratory to ship interstate 

 April 2004: Humboldt and Contra Costa Counties are added to the list of quarantined counties. The non-quarantined counties in California are 

declared “restricted” by a federal order and all nurseries selling host and associated products must be annually visually inspected to ship 

interstate 

 January 2005: Lake and San Francisco Counties are added to the list of quarantined counties. All nurseries selling host and associated 

products in quarantined counties must be visually inspected before every shipment to ship interstate 

 January 2006: : All nurseries in quarantine counties, regardless of whether they ship host and associated products, must be visually inspected 

annually to ship interstate 

 January 2007: All nurseries in California, regardless of whether they ship host and associated products, must be visually inspected annually to 

ship interstate 
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Table 1: Summary Statistics for Fungicide Use  

Host Plants 

 

Number of 

Observations Mean 

Standard 

Deviation Minimum Maximum 

Pounds of Active Ingredients 

that are Oomycete-Specific 14,358 4.65 42.20 0.00 2062.72 

Pounds of Active Ingredients 

that are Not Oomycete-

Specific 14,358 921.62 6698.76 0.00 283315.20 

Oomycete-Specific Pounds 

of Active Ingredient per Acre 14,358 0.04 0.32 0.00 8.54 

Oomycete-Specific Pounds 

of Active Ingredient per Acre 14,358 9.46 43.47 0.00 1055.89 

Non-Host Plants 

 

Number of 

Observations Mean 

Standard 

Deviation Minimum Maximum 

Pounds of Active Ingredients 

that are Oomycete-Specific 19,534 2.16 29.06 0.00 1858.32 

Pounds of Active Ingredients 

that are Not Oomycete-

Specific 19,534 521.32 4443.31 0.00 167317.20 

Oomycete-Specific Pounds 

of Active Ingredient per Acre 19,534 0.04 0.45 0.00 17.60 

Oomycete-Specific Pounds 

of Active Ingredient per Acre 19,534 4.71 28.24 0.00 1055.89 
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Table 2: Summary Statistics for Management Practices 

 

Number of 

Observations Mean 

Standard 

Deviation Minimum Maximum 

Plant Density Adjusted 24 52.71 12.08 23 74 

Row Spacing or Row Directions 

Adjusted 24 43.17 13.32 15 71 

Sterilized Growing Media Used 24 55.25 16.74 14 81 

Diagnostic Laboratory Services Used 

for Pest Detection via Plant Tissue 

Analysis 24 17.71 7.14 4 33 

Diagnostic Laboratory Services Used 

for Pest Detection Via Soil Analysis 24 20.42 8.36 3 37 

Benches or Other Platform Devices 

Sanitized Between Uses 24 56.75 16.85 16 83 

 Containers Sanitized Between Uses 24 47.00 12.94 15 65 

 Ground Covers Sanitized Between 

Uses 24 40.25 12.67 20 72 

 Incoming Stock Inspected 24 70.92 9.98 50 86 

 Infected Plants or Plant Parts 

Removed or Pruned 24 83.79 7.89 68 94 

 Water Management Practices Used 24 36.00 9.87 19 64 

 Greenhouse Relative Humidity 

Modified 24 51.54 14.28 23 74 

 Greenhouse Temperature Modified 24 51.83 15.63 22 79 

 Greenhouse Ventilated 24 67.00 15.29 37 86 
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Table 3: Summary Statistics for Host Plant Sales 

 

Number of 

Observations Mean 

Standard 

Deviation Minimum Maximum Source 

Azaleas: 1000s of 

small plants sold 196 163.94 389.05 1.00 3137.00 

USDA Floriculture 

Survey 

Azaleas: 1000s of 

large plants sold 334 247.43 589.64 2.00 4475.00 

USDA Floriculture 

Survey 

Portion of total 

floriculture sales 

that are Azaleas 293 0.01 0.03 0.00 0.24 

USDA Floriculture 

Survey 

Broadleaf 

Evergreens: Portion 

of Sales that were 

Host Plants 91 0.57 0.32 0.00 1.00 

USDA Census of 

Horticultural 

Specialties 

Deciduous Shrubs: 

Portion of Sales 

that were Host 

Plants 98 0.09 0.08 0.00 0.32 

USDA Census of 

Horticultural 

Specialties 

Christmas Trees: 

Portion of Sales 

that were Host 

Plants 72 0.23 0.31 0.00 1.00 

USDA Census of 

Horticultural 

Specialties 
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Table 4: Fungicide Use for Host and Associated Products 

 (1) (2) (3) (4) 

 Hosts: Portion 

of Pounds that 

are Oomycete-

Specific 

Hosts: 

Oomycete-

Specific 

Pounds/Acre 

Hosts: 

Oomycete-

Specific 

Pounds 

Hosts: Oomycete-

Specific Acre 

Treatments/Acre 

From Max 

Elevated Risk -0.0000221 -0.000174 0.00243 -0.0000181 

(-0.00) (-0.00) (0.00) (-0.00) 

Nurseries selling host and associated products must be 

inspected annually in a laboratory to ship interstate or 

intrastate 

0.00988 0.0262 -1.585 -0.00326 

(0.73) (0.74) (-0.31) (-0.28) 

All nurseries must be visually inspected annually to ship 

interstate 

-0.000000993 -0.00000783 0.000109 -0.000000814 

(-0.00) (-0.00) (0.00) (-0.00) 

All nurseries selling host and associated products must be 

visually inspected before every shipment to ship interstate 

0.281*** -0.000764 1.015 0.160* 

(3.52) (-0.00) (0.03) (2.29) 

Acres Planted -9.10e-08 -

0.000000718*

** 

0.0000100 -7.46e-08 

(-1.66) (-5.01) (0.48) (-1.55) 

Maximum Temperature 0.000755 0.00183 0.119 0.000345 

(1.89) (1.75) (0.77) (0.98) 

Minimum Temperature -0.00134* -0.00310* -0.162 -0.000872 

(-2.44) (-2.16) (-0.77) (-1.81) 

Precipitation in Inches 0.00277*** 0.00301 0.130 0.00167** 

(4.39) (1.82) (0.54) (3.01) 

Number of Growing Degree Days with a Base of 40 0.00198** 0.00205 0.0145 0.00139* 

(2.61) (1.03) (0.05) (2.08) 

Number of Growing Degree Days with a Base of 50 -0.000843* -0.00156 -0.0262 -0.000378 

(-2.41) (-1.70) (-0.19) (-1.23) 

Precipitation Missing 0.0157 0.00409 -0.646 0.0217* 

(1.26) (0.13) (-0.13) (1.98) 

Temperature Missing -0.00416 -0.0221 -1.795 -0.0155 

(-0.25) (-0.51) (-0.28) (-1.06) 
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Constant -0.0178 0.0679 5.607 0.00417 

(-0.36) (0.52) (0.30) (0.10) 

N 14367 14373 14373 14358 

Grower fixed effects are included in all models. 

* p<0.05    ** p<0.0   *** p<0.001 
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Table 5: Falsification Test for Fungicide Use in Non-Host and Associated Products 

 (1) (2) (3) (4) 

 

Non-Hosts: 

Portion of 

Pounds that 

are 

Oomycete-

Specific 

Non-Hosts: 

Oomycete-

Specific 

Pounds/Acre 

Non-Hosts: 

Oomycete-

Specific 

Pounds 

Non-Hosts: 

Oomycete-

Specific Acre 

Treatments/ 

Acre From 

Max 

Elevated Risk 

0.000 0.000 0.000 0.000 

(0.00) (0.00) (0.00) (0.00) 

Nurseries selling host and associated products must be 

inspected annually in a laboratory to ship interstate or 

intrastate 

-0.019** -0.005 

- 

2.439 -0.019* 

(-2.62) (-0.15) (-1.07) (-2.48) 

All nurseries must be visually inspected annually to ship 

interstate 

-0.001 -0.010 -0.570 -0.002 

(-0.02) (-0.04) (-0.03) (-0.04) 

All nurseries selling host and associated products must be 

visually inspected before every shipment to ship interstate 

0.000 0.000 0.000 0.000 

(0.00) (0.00) (0.00) (0.00) 

Acres Planted 

-2.46e-08 

-

0.0000006**

* 0.000 -2.46e-08 

(-0.67) (-3.87) (1.66) (-0.65) 

Maximum Temperature 

0.001*** 0.005*** 0.333*** 0.0007* 

(3.53) (4.17) (4.01) (2.42) 

Minimum Temperature 

-0.001** -0.004** -0.248* -0.0008* 

(-3.21) (-2.96) (-2.29) (-2.18) 

Precipitation in Inches 

0.001** 0.005** 0.360** 0.001** 

(3.04) (2.88) (2.64) (2.61) 

Number of Growing Degree Days with a Base of 40 

0.001 0.003 0.109 0.001* 

(1.94) (1.31) (0.68) (2.45) 

Number of Growing Degree Days with a Base of 50 

0.000 0.002 0.208** -0.000 

(0.21) (1.92) (2.95) (-0.19) 

Precipitation Missing 

0.015 0.042 3.733 0.014 

(1.75) (1.15) (1.44) (1.63) 
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Temperature Missing 

0.0108 0.125** 10.16** 0.011 

(1.01) (2.68) (3.03) (0.99) 

Constant 

-0.00723 -0.153 -14.53 -0.006 

(-0.22) (-1.07) (-1.41) (-0.17) 

N 19547 19557 19557 19534 

Grower fixed effects are included in all models. 

* p<0.05   ** p<0.01   *** p<0.001 
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Table 6: Percent of Growers Using Best Management Practices by State 

Dependent Variable: Percent 

of growers in state that use 

each practice Quarantine 

State  

Quarantine 

State x 

Quarantine 

Year  Constant  N 

Plant Density Adjusted 
-12.26 

(-

1.72) -5.176 (-0.59) 56.42*** (11.51) 24 

Row Spacing or Row 

Directions Adjusted -5.574 

(-

0.67) -11.88 (-1.17) 45.19*** (7.97) 24 

 Sterilized Growing Media 

Used -8.721 

(-

0.87) -13.65 (-1.11) 63.24*** (9.23) 24 

 Diagnostic Laboratory 

Services Used for Pest 

Detection via Plant Tissue 

Analysis 0.257 (0.06) -0.912 (-0.18) 20.41*** (7.25) 24 

Diagnostic Laboratory 

Services Used for Pest 

Detection Via Soil Analysis 2.316 (0.42) -3.206 (-0.47) 23.89*** (6.31) 24 

Benches or Other Platform 

Devices Sanitized Between 

Uses -4.596 

(-

0.44) -12.15 (-0.93) 64.70*** (8.95) 24 

 Containers Sanitized 

Between Uses 4.287 (0.57) -9.559 (-1.03) 51.07*** (9.88) 24 

 Ground Covers Sanitized 

Between Uses -4.632 

(-

0.66) -16.59 (-1.90) 42.04*** (8.68) 24 

 Incoming Stock Inspected 
-5.022 

(-

1.28) -14.26** (-2.95) 75.01*** (27.89) 24 

 Infected Plants or Plant 

Parts Removed or Pruned -3.449 

(-

0.67) -5.382 (-0.85) 86.65*** (24.53) 24 

 Water Management 

Practices Used 7.904 (1.19) -11.15 (-1.36) 28.03*** (6.16) 24 

 Greenhouse Relative 

Humidity Modified 4.500 (0.43) -13.00 (-1.00) 47.50*** (6.58) 24 

 Greenhouse Temperature 

Modified -0.294 

(-

0.03) -10.53 (-0.76) 53.43*** (6.94) 24 

 Greenhouse Ventilated 0.551 (0.05) -17.38 (-1.37) 70.65*** (10.04) 24 

Year fixed effects are included in all regressions 

t statistics are in parentheses 

* p<0.05   ** p<0.01   *** p<0.001 
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Table 7: Host Plant Sales by State and Year 

 (1) (2) (3) 

 

Broadleaf 

Evergreens 

Difference in Total 

Portion Plants Sold 

that are Hosts 

Deciduous Shrubs 

Difference in Total 

Portion Plants Sold 

that are Hosts 

Christmas Trees 

Difference in Total 

Number of Host 

Plants Sold 

Quarantine 

State -0.0743 -0.0380 -0.101 

 (-0.54) (-0.30) (-0.79) 

Constant -0.119** -0.0805* -0.0253 

 (-3.15) (-2.51) (-0.66) 

N 40 46 33 

t statistics in parentheses 

* p<0.05 ** p<0.01  *** p<0.001 
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Table 8: Azalea Sales by State and Year 

 (1) (2) (3) 

 

Number of 

Small Plants 

Sold 

Number of 

Large Plants 

Sold 

Portion of 

Sales in 

Dollars 

Quarantine State x 

Quarantine Year -437.9*** -581.9*** -0.0413*** 

 (-6.69) (-6.81) (-9.43) 

State Fixed 

Effects? Yes Yes Yes 

Year Fixed 

Effects? Yes Yes Yes 

Constant 0.307 66.31 0.00780* 

 (0.00) (0.85) (2.17) 

N 196 334 293 

t statistics in parentheses 

* p<0.05   ** p<0.01    *** p<0.001 
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Appendix  

(1.1) 

𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[ 𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1

(
𝜕𝜇

𝜕𝐹
)2 −  

𝜕2𝜇

𝜕𝐹2
] ≤ 0  

(1.2) 

𝑝(𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−2
𝜕𝜇

𝜕𝑁
+ 𝑁𝜆(1 − 𝜇(𝐹, 𝑅, 𝑁))

−1
 (

𝜕𝜇

𝜕𝑁
)

2

− 𝑁
𝜕2𝜇

𝜕𝑁2
] ≤ 0 

(1.3) 

𝑝𝑁 (𝜆 + 1) [ 𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆−1

 (
𝜕𝜇

𝜕𝐹
)

2

−
𝜕2𝜇

𝜕𝐹2
(1 −  𝜇(𝐹, 𝑅, 𝑁))

 𝜆
] ∗

[𝑝(𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−2
𝜕𝜇

𝜕𝑁
+ 𝑁𝜆(1 − 𝜇(𝐹, 𝑅, 𝑁))

−1
 (

𝜕𝜇

𝜕𝑁
)

2

− 𝑁
𝜕2𝜇

𝜕𝑁2
]] −

[𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−
𝜕𝜇

𝜕𝐹
+  𝑁𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))

−1 𝜕𝜇

𝜕𝑁

𝜕𝜇

𝜕𝐹
− 𝑁

𝜕𝜇

𝜕𝐹𝜕𝑁
] − 𝑐]

2

≥ 0
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(1.4) 

 

𝜕𝐹

𝜕𝜆
= −

−𝑝𝑁(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[
𝜕𝜇
𝜕𝐹

+ (𝜆 + 1)𝑙 𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁))] ∗

[𝑝(𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−2
𝜕𝜇
𝜕𝑁

+ 𝑁𝜆(1 − 𝜇(𝐹, 𝑅, 𝑁))
−1

 (
𝜕𝜇
𝜕𝑁

)
2

− 𝑁
𝜕2𝜇
𝜕𝑁2]] −

𝑝(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−𝑁
𝜕𝜇
𝜕𝑁

− 𝑁(𝜆 + 1) 𝑙𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁)) + (1 −  𝜇(𝐹, 𝑅, 𝑁))𝑙 𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁))] ∗

[𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−
𝜕𝜇
𝜕𝐹

+  𝑁𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1 𝜕𝜇

𝜕𝑁
𝜕𝜇
𝜕𝐹

− 𝑁
𝜕𝜇

𝜕𝐹𝜕𝑁
] − 𝑐]

𝑝𝑁 (𝜆 + 1) [ 𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆−1

 (
𝜕𝜇
𝜕𝐹

)
2

−
𝜕2𝜇
𝜕𝐹2 (1 −  𝜇(𝐹, 𝑅, 𝑁))

 𝜆
] ∗

[𝑝(𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−2
𝜕𝜇
𝜕𝑁

+ 𝑁𝜆(1 − 𝜇(𝐹, 𝑅, 𝑁))
−1

 (
𝜕𝜇
𝜕𝑁

)
2

− 𝑁
𝜕2𝜇
𝜕𝑁2]] −

[𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−
𝜕𝜇
𝜕𝐹

+  𝑁𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1 𝜕𝜇

𝜕𝑁
𝜕𝜇
𝜕𝐹

− 𝑁
𝜕𝜇

𝜕𝐹𝜕𝑁
] − 𝑐]

2
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(1.5) 

 

𝜕𝑁

𝜕𝜆
= −

𝑝2𝑁 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
 2𝜆

[ 𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1

 (
𝜕𝜇
𝜕𝐹

)
2

−
𝜕2𝜇
𝜕𝐹2] ∗

[−𝑁
𝜕𝜇
𝜕𝑁

− 𝑁(𝜆 + 1) 𝑙𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁)) + (1 −  𝜇(𝐹, 𝑅, 𝑁))𝑙 𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁))] +

[𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−
𝜕𝜇
𝜕𝐹

+  𝑁𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1 𝜕𝜇

𝜕𝑁
𝜕𝜇
𝜕𝐹

− 𝑁
𝜕𝜇

𝜕𝐹𝜕𝑁
] − 𝑐]

∗ 𝑝𝑁(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[
𝜕𝜇
𝜕𝐹

+ (𝜆 + 1)𝑙 𝑛(1 −  𝜇(𝐹, 𝑅, 𝑁))]

𝑝𝑁 (𝜆 + 1) [ 𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆−1

 (
𝜕𝜇
𝜕𝐹

)
2

−
𝜕2𝜇
𝜕𝐹2 (1 −  𝜇(𝐹, 𝑅, 𝑁))

 𝜆
] ∗

[𝑝(𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−2
𝜕𝜇
𝜕𝑁

+ 𝑁𝜆(1 − 𝜇(𝐹, 𝑅, 𝑁))
−1

 (
𝜕𝜇
𝜕𝑁

)
2

− 𝑁
𝜕2𝜇
𝜕𝑁2]] −

[𝑝 (𝜆 + 1)(1 −  𝜇(𝐹, 𝑅, 𝑁))
𝜆

[−
𝜕𝜇
𝜕𝐹

+  𝑁𝜆(1 −  𝜇(𝐹, 𝑅, 𝑁))
−1 𝜕𝜇

𝜕𝑁
𝜕𝜇
𝜕𝐹

− 𝑁
𝜕𝜇

𝜕𝐹𝜕𝑁
] − 𝑐]

2

 

 

 

 

 

 

 

 

  



 

132 
 

References  

Baumgart, G.A., P.L. Stalker, K. Floress.  (2012) “Why farmers adopt best management practice 

in the United States: a meta-analysis of the adoption literature.” J. Environ. Manag., 96, 

pp. 17–25 

 

Daberkow, S.G., and WD. McBride (2003). “Farm and operator characteristics affecting the 

awareness and adoption of precision agriculture technologies in the US” Precision 

Agriculture 4(2):I63-I77. 

 

Gleick,. P.H. 2010. “Roadmap for Sustainable Water Resources in Southwestern North 

America.” Proceedings of the National Academies of Science Journal. Vol. 107, No. 50. 

 

Martinez-Espinoza, Alfredo et al.  (2013). “Georgia Plant Disease Loss Estimates.” University of 

Georgia Extension  

 

Parke, J. L. and N. J. Grunwald (2012). "A systems approach for management of pests and 

pathogens of nursery crops." Plant Disease 96(9): 1236-1244. 

 

Schoengold, K. and D. L. Sunding (2014) “The Impact of Water Price Uncertainty on the 

Adoption of Precision Irrigation Systems” Agricultural Economics 45(6): 729-743, 

available online: 1-APR-2014, DOI: 10.1111/agec.12118 

 

 

 


