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The research conducted explores the comparison of several trilateration 

algorithms as they apply to the localization of a quadcopter micro air vehicle (MAV).  

A localization system is developed employing a network of combined ultrasonic/radio 

frequency sensors used to wirelessly provide range (distance) measurements defining 

the location of the quadcopter in 3-dimensional space.  A Monte Carlo simulation is 

conducted using the extrinsic parameters of the localization system to evaluate the 

adequacy of each trilateration method as it applies to this specific quadcopter 

application.  The optimal position calculation method is determined. 

Furthermore, flight testing is performed in which real range measurement data 

are collected for the purpose of post-processing and evaluation of the quadcopter’s 

high-level open-loop response to three basic inputs: pitch/roll, thrust, and yaw rate 

(heading angle).  The raw range measurement data allow for the calculation of 

position data that are then brought into the System Identification Toolbox 

environment within Matlab.  This tool is then used to generate ‘best fit’ transfer 

functions for each of the aforementioned dynamic responses.
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

The use of large unmanned aerial vehicles (UAVs) in today’s world is 

becoming increasingly common, however, the efforts that have been made to utilize 

this technology on a smaller scale are few.  Most existing smaller unmanned aircraft, 

often called micro air vehicles (MAV), require a human operator to actively navigate 

the vehicle by way of a remote control.  This dependency on a human operator 

negates the potential benefits that could be observed from the automated flight of an 

MAV.  One primary requirement for the automated flight and navigation of an MAV 

is an awareness of the vehicles location in space as well as its instantaneous dynamic 

state.  And while current systems employ techniques that locate a unit via GPS, this 

type of location identification falls short in multiple ways.  It lacks the ability to 

accurately, responsively, and reliably provide a position feedback at all times and/or 

anywhere.  For these reasons, other methods of localization of an MAV are being 

explored. 

One such localization method to be used in the context of MAVs and other 

automated vehicles is based on range measurements via radio frequency (RF) sensors. 

Multiple range measurements allow trilateration, which involves the position 
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calculation of an object based on its distances from several points whose coordinates 

are known.  This thesis explores the use of five trilateration methods for calculation 

of a quadcopter MAV’s position in space.  Among these five methods, three are 

numerical methods, while the remaining two are closed-form approaches to 

estimating the spatial position of the quadcopter while in flight.  Each of the methods 

is evaluated in terms of accuracy and robustness when comparing their output 

position coordinates to that of the known position.  The trilateration method that most 

adequately suits the quadcopter application is determined. 

An ultrasonic RFID range measuring apparatus comprised of six stationary 

receivers is configured for use with the quadcopter and used to collect real-time 

distance measurements utilizing two transmitters located on the quadcopter.  This 

system is integrated with and operated by a computer data acquisition 

system/program developed for the sole purpose of recording quadcopter data to be 

used for system identification. 

Data collected while performing a series of flight tests provide a basis for the 

derivation of a system-level model describing the quadcopter’s open loop responses 

to step inputs.  Matlab’s System Identification Toolbox is used to process this data 

and generate transfer functions that will serve as inputs to the control system model. 
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1.2 Literature Review 

1.2.1 Numerical Trilateration Methods 

This study compares multiple trilateration methods that are used to calculate 

the quadcopter’s position in space.  Three of these methods employ a numerical 

approach – meaning that approximate solutions are arrived at by way of numerical 

calculation.  Of the three methods used, two of them utilize error minimization 

principles. 

Simple Position Calculation 

The ‘Simple’ Method is one that is published by the manufacturer of the 

ultrasonic RFID sensor system used, Hexamite and is outlined in [1].  This method of 

position calculation requires that a minimum of three stationary receivers (also 

referred to as ‘beacons’) be oriented in a ‘square’ manner in which one receiver 

defines the origin of the coordinate system: (X, Y, Z) = (0, 0, 0).  A simple 

calculation is used to approximate the position of the transmitter (also referred to as 

‘tag’) in space with respect to the coordinate system defined by the orientation of the 

receivers.  While computational demands are low for this method, the calculation 

requires specific orientation of the receivers and is less robust than other methods. 
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Another trilateration method included in this study is the ‘Linear Least 

Squares’ approach outlined in [2] by Hereman and Murphy.  This approach stems 

from the concept that the intersection of three spheres, whose radii are defined by the 

range measurements observed from each of three sensors, defines the location of the 

helicopter in space. The system of equations derived are linearized, and squared error 

is minimized to arrive at a solution that is only accurate when range measurements 

are exact.  This method lacks the robustness necessary to produce an acceptable 

calculated when range measurements are approximate. 

Nonlinear Least Squares 

Also presented in [2] by Hereman and Murphy, the ‘Nonlinear Least Squares’ 

trilateration method attempts to accommodate a system exhibiting inherent errors (as 

all real systems do).  An error-minimizing function is used to minimize squared errors 

iteratively for one set of range values.  For the exemplary application presented by 

Hereman and Murphy, this method proves to be the most reliable for position 

calculation using error-ridden range values. 

1.2.2 Closed-Form Trilateration Methods 

The remaining two trilateration methods can be classified as ‘closed-form’ in 

which a finite number of mathematical operations are used to arrive at a solution. 

These methods are preferred over most numerical methods as they minimize the time 

Linear Least Squares
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needed for computation and are capable of being equivalently or more robust to range 

value inputs with error. 

Efficient Closed Form Position Estimation 

This approach minimizes computational load by exactly calculating the vector 

describing the position of an object whose range from 3 beacons is measured.  The 

method that Manolakis outlines in [3] places a large emphasis on the height 

calculation portion as the application in the context of this document is the height 

calculation of an aerial vehicle independent from the barometric altimeter.  We find 

that this particular method does not adequately fit the application of a MAV 

quadcopter for a number of reasons. 

Robot Localization Using Cayley-Menger Determinants 

In [4] a closed form position calculation method is presented that has been 

derived entirely geometrically – meaning that all calculations describe geometric 

relationships in a Euclidean space.  Thomas and Ros approach the trilateration 

problem based on the understanding that the 3-receiver/1-transmitter system creates a 

simplex volume.  The trilateration calculation derived from this principle concept is 

unlike the others presented in this thesis.  It proves to be the most generally adequate 

for the application of the quadcopter MAV. 
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Not unlike most real-time data acquisition systems, data filtering is required 

for the data collected using the RFID sensor network developed for the purpose of 

this study.  Kalman filtering concepts are adapted and applied similarly to that 

outlined in [7] by Shareef and Zhu.  Kalman filters utilize state-space models in order 

to make data estimations and incorporate the consideration of known process and data 

measurement errors.  [7] is used as a basis for developing a Kalman filter that is tuned 

for the quadcopter application presented in this study.

1.2.3 Kalman Filtering Concepts for Localization
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CHAPTER II 

COMPARISON OF TRILATERATION METHODS 

2.1 Trilateration Overview 

Prior to diving into the specific derivations for the calculations that make up 

each of the trilateration methods compared in this thesis, it is important to understand 

the general trilateration concept as it applies to an MAV.  For each of the trilateration 

methods that are evaluated, the receivers are assumed to be stationary.  Each of these 

receivers measures the range (distance, in millimeters) to the target object 

(transmitter).  The coordinates defining the location of each of these receivers are 

known. Depending on the trilateration method being used, measurements from 

between 3 and 6 of these receivers are used to determine the position of one 

transmitter in space.  A minimum of 3 measurements are needed in order to determine 

the location of one transmitter.  This requirement is dictated by the concept that the 

intersection of 3 spheres defines a point in space where the radii are the distances 

from each receiver to the transmitter and the center of each sphere is the respective 

location of a receiver.  This is visualized in Figure 2.1.1.  However, the Linear and 

Nonlinear Least Squares methods are accepting of as many distance measurements as 

are available. 
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The sphere surrounding any one of the receivers is defined mathematically in 

Equation 2.1: 

(   )
  (    )

  (    )
     

 (2.1) 

where i = 1, 2, …, n for n different receivers, (        ) is the location of 

receiver i, and    is the range measurement received from receiver i (also defines 

radius of sphere).  Therefore, we have a system of n nonlinear equations for which 

there is only one solution, (x,y,z), if n is equal to 3 or more and the range 

measurements from each receiver are exact.  The relationships defined by this system 

of equations serves as a basis for most trilateration calculation methods. 

Figure 2.1: Trilateration without noise
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2.2 Trilateration Calculations by Method 

2.2.1 ‘Simple’ Method 

The first of the five methods considered in this paper is referred to as the 

‘Simple Method’ and, as its name implies, is a simplified approach to solving the 

position estimation problem of some target object in space.  This method is presented 

in [1] and is a basic approach recommended for use with the Hexamite HX19 

RFID/USID sensor system (for which more details will be provided in latter portions 

of this paper).  This method imposes some constraints on the spatial configuration of 

the receivers being used: 

1) All receivers are located on the same plane defined by z = 0.

2) The locations of the receivers are such that they form at least 3 vertices of

a rectangle. 

3) One receiver is located at the origin, (0,0,0).

Figure 2.2: X-Y receiver layout for 'Simple’ method [1] 

9
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Figure 2.2 shows an exemplary receiver layout where all receivers (4, total) are 

located at the vertices of a 1m x 1m square in the XY plane [1]. 

The three geometric relationships illustrated in Figure 2.3 can be manipulated to 

arrive at the following equations: 

 (  
    

   
 ) (   ) (2.2) 

  (  
    

    
 ) (   ) (2.3) 

     
      (2.4) 

This set of equations serves as a very simple way to calculate the spatial postion of a 

target object in space.  However, this method makes no effort to account for error in 

the range measurement received from each receiver. 

Figure 2.3: Geometric representation for each range measurement, 𝒓𝒊
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2.2.2 Linear Least Squares Method 

This trilateration approach, outlined in [2], suggests a calculation which builds 

on the concept of intersecting spheres.  It begins with a system of equations in which 

each equation is defined by equation (2.1).  For n receivers (whose location 

coordinates are known), there are (   ) equations that comprise the system.  The 

number of receivers is not limited for this calculation but must be greater than or 

equal to four (this results from having three unknown variables and n-1 equations).  

The number six is used because it is the maximum number of receivers in our system 

available to provide range measurements.  To begin, the system is linearized by 

adding a     constraint – adding and subtracting   ,   , and   : 

(       )
  (          )

  (          )
    

 

After expanding and regrouping terms, this leads to 

(   )(    )  (    )(     )  (    )(     )              

 
 

 
[  
    

     
 ]     . 

where 

    √(    )  (     )  (     ) (2.5) 

is the distance between receivers     and     and     is a calculated constant.  Any of 

the six available receivers can be used to serve as the linearizing constraint.  The first 

receiver is choosen,    .  This leaves a system of five equations: 
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(   )(    )  (   )(     )  (    )(     )       

(   )(    )  (   )(     )  (    )(     )     

  

(   )(    )  (   )(     )  (    )(     )     . 

This can be represented in matrix form: 

     ⃗  , (2.6) 

where 

  [
             
   

         

], 

  [

  

    
    

], 

 ⃗  [
   
 
   

]. 

A solution can be obtained by solving the linear system presented above; however, 

the solution is only valuable if all range measurements are exact.  As is true with any 

real-world system, some error is present in the range measure meants collected from 

each receiver.  In order to minimize the effect of this error the squared error is 

minimized: 

        ( ⃗     ) ( ⃗     ) 

which leads to the normal equation solved for the estimated position vector,  ⃗ : 

  (2.7) 
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This completes the overview of the Linear Least Squares trilateration method.  In [2], 

Hereman and Murphy comment that while being an improvement upon the linear 

system calculation (Equation 2.5) this method is still ‘unacceptable’ for use within the 

system presented. 

2.2.3 Nonlinear Least Squares Method 

The third trilateration method is one that is designed to be more robust than 

the previous two methods in the sense that it can more adequately handle range 

measurements that are error ridden [2].  It is recursive in nature and requires an 

interative loop when implemented using analytical software, such as Matlab, to 

converge on an acceptable solution.  Again, the max number of receivers available is 

six, and this is that number that is used for analysis with this method.  However, as 

few as four receivers could be used, and there is no upper limit to the number of 

receivers that could be used.  Following, is the presentatation of the Nonlinear Least 

Squares trilateration method provided in [2]. 

To begin, define the error looking to be minimized as 

 (     )  ∑( ̂    )
  ∑  (     )

  

 

   

 

   

 

where  ̂  denotes the exact distance from receiver i to the target object and    is the 

measured distance (includes error) and 

  (     )   ̂     √(   )  (    )  (    )     (2.8) 
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   is the error calculated for one range measurement based on the estimated 

coordinates of the target object (     ).  Therefore, for six receivers,  (     ) is the 

sum of six squared errors (each calculated as   
 
). 

Minimizing  (     ) requires that the derivative be taken with respect to 

     , respectively.  The result of this is 

  

  
  ∑  

   
  

 

   

  

  

  
  ∑  

   
  

 

   

    

  

  
  ∑  

   
  
 

 

   

 

Vectors    and  ⃗  are added as well a the Jacobian matrix,  , introduced: 

  

[
 
 
 
 
 
 
 
   

  

   

  

   

  

   

  

   

  

   

  

   

   

  

   

  

   

  ]
 
 
 
 
 
 
 

                      

[
 
 
 
 
 
  

  

 

  ]
 
 
 
 
 

                    ⃗   

[
 
 
 
 
 
  

  

  

  

  

  ]
 
 
 
 
 

  

and 

  ⃗        . 

Using Newton’s Method for finding minima gives 

 ⃗⃗      ⃗⃗     (    
     )
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where  ⃗⃗  (     ) and ()    and ()    denote calculations for previous and current 

iterations, respectively, and  

     

[
 
 
 
 
 
 
 
 ∑

(    )
 

(     )
 

 
   ∑

(    )(    )

(     )
 

 
   ∑

(    )(    )

(     )
 

 
   

∑
(    )(    )

(     )
 

 
   ∑

(    )
 

(     )
 

 
   ∑

(    )(    )

(     )
 

 
   

∑
(    )(    )

(     )
 

 
   ∑

(    )(    )

(     )
 

 
   ∑

(    )
 

(     )
 

 
   ]

 
 
 
 
 
 
 
 

  (2.9) 

     

[
 
 
 
 
 
 
 
 ∑

(    )  

(     )

 
   

∑
(    )  

(     )

 
   

∑
(    )  

(     )

 
   ]

 
 
 
 
 
 
 
 

. (2.10) 

Ideally, new approximations are iteratively generated for  ⃗⃗  until a solution is 

reached.  However, it is likely that no exact solution is arrived at by way of iterative 

calculation.  For this reason, the difference in magnitude of position vectors is 

evaluated for each iteration, and if the difference in this magnitude is reasonably 

small for consecutive iterations (in this case | ⃗⃗    |  | ⃗⃗    |      
  ) then the 

 ⃗⃗     position coordinates are used for the position estimation. 
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2.2.4 Efficient Closed Form Position Estimation 

 In [3], Manolakis presents a position calculation method that is intended to be 

‘exact, explicit, and computationally efficient.’  By isolating calculated portions that 

pertain to unchanging known values (such as receiver coordinates and the distance 

between receivers), the computational magnitude is minimized for each set of range 

measurement data.  Presented next is the high-level summary of calculations as they 

are applied to the range sensor system on hand.  This method is only accepting of 

three range measurements. 

We begin with the familiar equation 

   √(    )  (    )  (    )  (2.11) 

where    now refers to the distance measurement acquired from receiver i. Now we 

define   
 
 as 

  
    

    
    

 . 

Squaring Equation 2.11 and substituting   
 
 gives 

  
    

                  
       , (2.12) 

for i = 1,2,3.  By subtracting   
  from   

  we arrive at 

  
    

    
    

                     

for i = 2,3 and                                    

Then the following are defined: 

        , 
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where 

  [
  
 

  
 ], 

  [
   
   
], 

   [ ], 

  [
     
      

], 

and 

  
  (  

    
    

    
 )  . 

We now define the quadcopter’s horizontal position,   , as 

    
  (    ), (2.13) 

    [    ] , (2.14) 

and rewrite equation (2.4.4b) as 

  
    

      
           

     
 . (2.15) 

Equations (2.13) and (2.14) can be substituted into (2.15) to yield the quadratic 

equation 

           (2.16) 

where 

             , 

      
            

        , 

    
    

                
     . 



 

18 

This allows us to solve for  : 

  
   (      )

 
 

  
, (2.17) 

and, by plugging z back into equation (2.13), x and y can be calculated: 

    ( )          ( ). 

It should be noted that  ,  , and     are calculated from the stations’ 

locations coordinates only (one time calculation).  Only   is dependent on the range 

measurements from each receiver.  This aids substantially in reducing computational 

complexity [3]. 

2.2.5 Trilateration Using Cayley-Menger Determinants 

The fifth, and final, method for estimating the position of the quadcopter 

discussed in this paper takes an altogether different approach.  It is derived entirely 

geometrically and allows the locations of three receivers and that of the target object 

to define the vertices of a simplex volume in a Euclidean space.  This method, 

outlined in [4] by Thomas and Ros, avoids employing algebraic manipulation of the 

governing system of equations.  Instead, all mathematical manipulations have 

geometric implications making it a somewhat more tangible trilateration approach.  

Cayley-Menger determinants are utilized to define the relationship between the 

volume of the simplex and the three range measurements. 

Figure 2.4 shows the locations as the three receivers as              while 

the unknown location of the quadcopter is represented as   ;               are the 

range measurements corresponding to receivers one, two, and three, respectively.  
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The derivation in its entirety is not shown here but can be found in [4].  The primary 

calculations implemented in the Matlab program are provided. 

To begin, once again we have a system of equations describing the 

intersection of three spheres: 

(   )
  (    )

  (    )
     

 

(   )
  (    )

  (    )
     

 

(   )
  (    )

  (    )
     

 

}. (2.18) 

The number of points that make of the simplex volume in 3D space is (   ).  The 

Cayley-Menger bideterminant of two sequences of   points [       ] and 

[       ] is 

 (                ) 

Figure 2.4: Simplex defined by receiver and quadcopter locations 
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Figure 2.5: Simplex volume with added vectors �⃗� 𝟏 and �⃗� 𝟐 and point 𝐩

  (
  

 
)
 

|
|

     
  (     )  (     )   (     )
  (     )  (     )   (     )
     (     )

  (     )  (     )   (     )

|
|

(2.19) 

where  (     ) represents the squared distance between points    and   .  For cases 

when the two sequences of points are the same,  (                ) is the 

Cayley-Menger determinant and is defined for (   ) as 

 (                  )   (        ) 

 ‖(     )  (     )‖
 (2.19) 

Let us define vectors  ⃗   and  ⃗   as 

 ⃗   (     ) and  ⃗   (     ). 

Additionally, point   is defined as the orthogonal projection of    onto the base of the 

tetrahedron (defined by points   ,   , and   ).  These are shown in Figure 2.5.  Also, 
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        ⃗      ⃗  (2.20) 

where 

   
 (                  )

 (        )

and 

   
 (                  )

 (        )

Furthermore, the height (z-component) can be included by 

        ( ⃗    ⃗  ) (2.21) 

where 

   
 √ (           )

 (        )

Using the definition for the Cayley-Menger bideterminant (or determinant of 

sequence if points are the same - i.e.:  (        )   (                 )), 

        and    are calculated as 

   

 (
  

 
)
 

||

    

   (     )   
 

  (     )    
 

  (     )    
 

||

‖(     ) (     )‖
 (2.22) 

   

 (
  

 
)
 

||

    

   (     )   
 

  (     )    
 

  (     )    
 

||

‖(     ) (     )‖
 (2.23) 

   

 (
  

 
)
 

|

|

     

   (     )  (     )   
 

  (     )   (     )   
 

  (     )  (     )    
 

   
   

   
  

|

|

‖(     ) (     )‖
 (2.24) 
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This allows for the computation of the coordinates describing the location of point   

as 

       ( ⃗    ⃗  )  (     ) (2.25) 

This method of trilateration is comparable to the Efficient Closed Form 

Position Estimation method in its computational efficiency but proves to be more 

robust in other ways.  This is investigated later in this study. 

2.3 Monte Carlo Simulation and Error Analysis 

Any of the aforementioned trilateration methods provide equally acceptable 

solutions if no error exists within the quadcopter position estimation system. 

However, no real-world system operates in an error-free manner.  While some general 

error analyses have been presented pertaining to the trilateration methods examined in 

[2], [3], and [4], the purpose of this portion of the study is to evaluate the 

effectivenness of each method as it applies to the quadcopter application.  In this 

section, four of the five different trilateration methods outlined in the previous section 

are evaluated by way of conducting a Monte Carlo Simulation. 

  For this simulation system parameters are set to generally reflect the 

characteristics and parameters of the ultrasonic RFID sensor system that is used with 

the quadcopter.  While the details pertaining to this system will be explained in 

greater depth later in this paper, it is important to note that this simulation is generally 

representative of the test system used for this study as the intention of this comparison 

is to determine which of these methods best suits the quadcopter application. 
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2.3.1 Simulation Overview 

Monte Carlo simulations are often used to understand how noise-inducing 

factors of a system affect the output of the system.  Often systems will have many 

potential sources of variation.  The effect of these sources, individually and 

altogether, need to be fully understood in order to know the system will always 

perform the way it is intended.  This is known as designing for robustness – a major 

primary concept in Design for Six Sigma practices.  For the purpose of our 

quadcopter localization system, a Monte Carlo simulation is conducted in order to 

observe the effects of error in the range measurements made by each receiver on the 

position estimation calculated using each trilateration method.  Although there are 

certainly other sources of error in the quadcopter system, the error in range 

measurements from the receivers tend to be dominant and are the most capable of 

impacting the proper functioning of the system.  For this reason, only range 

measurement error is simulated as it affects the calculated position. 

Beginning with one point,  ̂  (     ), in space whose coordinates are 

randomly generated and known, the exact distance between  ̂ and each receiver is 

calculated as 

 ̂  √(    )  (    )  (    )  (2.26) 

and 

    ̂      (2.27) 
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where      and    are the location coordinates of receiver i and     is the error in the 

range measurement for           for   receivers.  In this simulation, the 

measurement error is assumed to be normally distributed with a mean of zero.  This is 

typical when using the Monte Carlo method.  Approximate values for      and    are 

shown in Table 2.1 and mimic the coordinates of the real system. 

Table 2.1: Approximate coordinates for all receivers 

Receiver #, i 
 , 

(mm) 

  , 
(mm) 

  , 
(mm) 

1 -325 158.572 22 

2 325 158.572 22 

3 0 -375.278 22 

4 0 750.552 0 

5 -650 -375.278 0 

6 650 -375.278 0 

    is defined as a random variable whose distribution is normal and is 

characterized by a standard deviation of   .  The variation observed in range 

measurements using the Hexamite HX19R receivers is relatively small (on the order 

of 1-2 mm), but a conservative value is used here as error can increase over prolonged 

use.  For this simulation     mm is used for all receivers (         ).  If some 

receivers were known to exhibit more or less variation in range measurements than 
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the others then    could be valuated according to the individual receiver’s 

performance characteristics. 

Now that    is available for all receivers, each trilateration method is used to 

again calculate the position based on the range measurements that include added 

error.  This is done with all methods except the ‘Simple’ method.  The reason for this 

is that it is largely redundant as the Linear Least Square method is derived in a very 

similar manner to that of the ‘Simple’ method.  Thus, 

       (                 ), 

         (                 ), 

         (        ), 

         (        ). 

where              , and      are the calculated positions using the Linear Least 

Squares, Nonlinear Least Squares, Efficient Closed Form, and Cayley-Menger 

Determinant methods, respectively.  The reason for using range measurements      , 

and    for the latter two methods is that these are the outermost receiver locations 

given the triangular configuration shown in Figure 2.6.  Using these receivers helps to 

minimize sensitivity to error by spanning a larger area. 
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In order to find the error associated with each position estimation, the 

difference must be taken: 

          ̂ 

            ̂ 

            ̂ 

            ̂ 

Knowing the amount of error in in the position estimation for one set of error-ridden 

range measurements is not all that helpful, and it is not an effective way of comparing 

trilateration methods.  Performing a Monte Carlo simulation involves generating 

sufficiently many points such that the mean error is zero for all points within any 

localized volume of the 3D space being considered. 
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Figure 2.6: Receiver configuration for simulation 
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Figure 2.7: 2D Bins on X-Y plane at Z = constant

Instead of simulating for a volume, points are randomly generated in an X-Y 

plane where z is constant. An example of this is shown in Figure 2.8. These points 

could also be generated in space, however, it would require that many more points be 

used for the simulation.  It is found to be more appropriate to perform the simulation 

at multiple values of z and compare those results individually.  These points are the 

exact known locations of the quadcopter in space ( ̂).  In order to analyze the results 

of the simulation in a meaningful way, it is necessary to lump all these data (actual 

positions and estimated positions) into 2D bins, called pixels, such that each 2D 

segment of data can be statistically analyzed.  This concept is visualized in Figure 

2.7.  A bin size of 1000mm is used for this simulation (pixel = 1000mm x 1000mm). 
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Figure 2.8: 10,000 points randomly generated in XY plane where Z = 2000mm 

The assortment of histogram plots shown in Figure 2.9 serve as an example 

for how added-error values are normally distributed (with mean of zero) for each 

receiver. 
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Once all data points have been sorted into the aformentioned pixels (2D bins), 

specific metrics can be obtained for each pixel as well as for the whole plane of 

points.  The metrics that are used to evauluate the average error in each directions 

(     ) are defined as 
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Figure 2.9: Distribution of measurement errors for each receiver 
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The same can be done for mean squared error in each direction: 
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Total MSE for a pixel is 
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        (   )        (   )        (   ). (2.30) 

where   and   specify the indices of the the pixel of interest within the XY plane of 

pixels,   is the number of points contained by that pixel, and          , and      are 

the      and   components of the error vector    .  Furthermore, these metrics can be 

used to obtain similar metrics for the whole set of points plotted in the XY plane 

defined. 

 This Monte Carlo simulation is performed for the parameters and respective 

values summarized in Table 2.2.  The Matlab program developed to perform this 

simulation can be found in Appendix B. 
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Table 2.2: Summary of simulation parameters 

Parameters for Monte Carlo Simulation 

X-Span:  -8000 to +8000 mm 

Y-Span:  -8000 to +8000 mm 

Z-Value (height):  1000, 2000, 3000, 4000, 5000, and 7000 mm 

Bin Size:  1000 mm 

Number of Points:  100,000 

Std Dev of Rx Error:  5 mm 

 

2.3.2 Simulation Results 

All parameters are held constant for these simulations except for the height 

parameter.  This parameter dictates how many simulations must be performed.  In this 

case, six simulations are run, and the same metrics are used to analyze the results of 

each simulation.  Surface, contour, and quiver plots are shown for the simulations 

when Z = 1000mm, 3000mm, and 5000mm.  By looking at Figures 2.10 – 2.24 it can 

be seen that the four trilateration methods simulated perform very differently. 

There are multiple eligible approaches evaluating the performance of each of 

these trilateration methods individually.  The interest of this study is to establish 

which method will be the most appropriate and effective for the application of the 

quadcopter UAV.  Several general performance metrics are commonly used when 
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evaluating trilateration methods such as those simulated in this study.  Among these 

metrics are accuracy, precision, complexity, and robustness [5].  The two that are 

used for analyzing the simulation results are accuracy and precision.  Accuracy within 

this context is defined as location error (where smaller location error equals a higher 

accuracy).  This metric translates as being a measure of systematic location bias 

induced by the position calculation method used.  Average error in each direction (x, 

y, and z) is used to quantify this for each method (equation 2.3.1g).  We would expect 

the average error to be near zero in each localized space in the event that there is no 

biasing.  Precision is considered to measure the variation in results.  In the case of the 

position calculation, we can consider precision to be the variation in distance error 

between the estimated position and the actual position for a constant actual position.  

The mathematical metric used for this analysis is mean squared error (MSE).  The 

MSE can be calculated in each direction (x, y, and z) or as a total squared distance – 

both are used here. 
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Figure 2.10: MSE, Z = 1000mm 
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Figure 2.11: MSE, Z = 1000mm 
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Figure 2.12: XY Error, Z = 1000mm 
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Figure 2.13: XY, Error, Z = 1000mm 
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Figure 2.15: MSE, Z = 3000mm 
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Figure 2.16: MSE, Z = 3000mm 
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Figure 2.17: XY Error, Z = 3000mm 
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Figure 2.18: XY Error, Z = 3000mm 
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Figure 2.19: Z Avg Error, Z = 3000mm 
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Figure 2.20: MSE, Z = 5000mm 
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Figure 2.21: MSE, Z = 5000mm 
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Figure 2.22: XY Error, Z = 5000mm 
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Figure 2.23: XY Error, Z = 5000mm 
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Figure 2.24: Z Avg Error, Z = 5000mm 
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While not providing an exhaustive visual comparison of the four trilateration 

methods, the plots shown at the three heights (Z = 1000, 3000, and 5000mm) allow 

for sufficient visualization of each method’s performance within the 3D space 

simulated.  At Z = 1000mm, it can be seen that for all methods, precision decreases 

dramatically as the quadcopter moves away from the origin.   This can be explained 

as approaching a singularity, in which the quadcopter would be located on the Z = 

0mm plane.  When this happens, no meaningful position estimation can be made.  

Some methods exhibit asymptotic behavior at Z = 0mm   Among all methods, the 

CMD method appears to be the most robust at Z = 1000mm. 

Average Position Error Results 

The average position error results are summarized in Figure 2.25 for all 

simulations.  It should be noted that CMD and CFP methods are combined (only one 

plot for both) for the ‘Average X Error’ and ‘Average Z Error’ plots.  The reason for 

this is that the results for these methods are identical in the X and Z directions.  

However, this is not the case for the Y direction.  It can be seen that no error bias 

exists in the X direction for any of the trilateration methods.  A mean of zero error is 

maintained for all simulations.  In the Y direction only the CFP method (uses 

secondary vertical axis) exhibits non-zero error bias.  Figures 2.13, 2.18, and 2.23 

show this as the XY error vectors are consistently pointing in the negative Y 

direction.  This indicates that some inherent bias exists in the Y direction for the CFP 

method.  The ‘Average Z Error’ plot suggests that most all methods exhibit minimal 
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error bias in the Z direction except the NLS method.  For this method, The Z error 

tends to increase as the height increases.  At Z = 7000mm, the error has been reduced 

to nearly 0. 

Mean Squared Error Results 

The mean squared error (MSE) results are summarized in Figure 2.26 for all 

simulations.  Once again, results for CFP and CMD methods are represented as one 

line for X MSE and Y MSE as the results are identical for both methods.  Also, the Y 

MSE results for the CFP method correspond to the secondary vertical axis (similar to 

that in Figure 2.25).  MSE is an appropriate representation of total error as it 

measures both accuracy and precision.  Here we find that X MSE and Y MSE 

generally increase as Z increases for all methods.  This is not surprising as the system 

becomes increasingly sensitive to error as the quadcopter moves farther away from 

the origin.  Mixed results are observed among the the four trilaterations for Z MSE.  

While the error becomes increasingly large with increasing Z when using the LS 

method, the NLS method shows a maximum error near Z = 2000mm then tends 

towards 0 as Z continues to increase.  Both the CFP and CMD methods show 

identical results for Z MSE and are near zero for all simulated Z values. 

The total MSE is shown for each method in Figure 2.27.  This is simply a 

summation of X, Y, and Z MSE and serve as an overall representation of error at each 

height, Z.  Again, the CFP plot corresponds with the scale shown on the secondary 

vertical axis.  This comparison very clearly shows that the CMD method exhibits the 
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least overall error and is the least sensitive to error based on the postion of the 

helicopter in in the space simulated. 
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Figure 2.25: Average error in X, Y, and Z directions
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Figure 2.26: Mean squared error in X, Y, and Z directions



53 

Figure 2.27: Total mean squared error



54 

CHAPTER III 

DATA COLLECTION, FLIGHT TESTING, AND SYSTEM IDENTIFICATION 

3.1 System Hardware and Software 

A prototype test setup has been developed using the Hexamite RFID sensor 

network and the DJI F450 radio controlled quadcopter platform.  Additionally, a data 

acquisition system was developed to allow for data collection that was later used to 

generate transfer functions describing the quadcopter’s response to several basic 

inputs. 

3.1.1 Ultrasonic RFID Range Sensor Network 

Six ultrasonic RFID receiver sensors (Rx) and two ultrasonic RFID 

transmitters (Tx) are used to provide range measurements (up to 14 meters) from the 

quadcopter to the stationary receivers.  The Rx/Tx sensor combination used is the 

Hexamite HX19 system.  Each of these is shown in Figure 3.1.  A mobile wooden 

platform was built to mount each of the six receivers.  The location of each receiver is 

known and not subject to variation in position as a result.  The configuration of the 

six receivers on this platform is shown in Figure 3.2.  The two transmitters are 

secured to the front and rear of the F450 quadcopter as shown in Figure 3.3.  Using 

two transmitters (as opposed to only one) allows for the heading angle to be 

calculated and also yields a more reliable estimation of the quadcopter’s position. 
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Figure 3.1: Hexamite ultrasonic RFID transmitter (left) and receiver (right)

The Hexamite HX19 system was chosen for this study for its high advertised range 

measurement accuracy (several millimeters), rather light weight components (most 

critical for the transmitters), low cost, and ease of integration with a data acquisition 

system. 

Figure 3.2: Six sensor mobile platform
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3.1.2 Data Acquisition Program 

A customized program was developed for the purpose of:  1) integrating with 

the HX19 sensor system to facilitate the acquisition and logging of range 

measurement data and 2) integrating with the the Futaba 2.4GHz radio system to send 

controlled, automated, and isolated commands to the quadcopter using the ‘buddy 

box’ capability included on most modern hobby radio systems.  Some of the basic 

functions of the program developed include the following: 

1) Data acquisition, logging, and report generation 

Figure 3.3: DJI F450 quadcopter platform with front/rear transmitters 
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2) Trim adjustment (all channels) 

3) Instantaneous position calculation and visualization (X, Y, Z, & heading) 

4) Control command impulse delivery for flight testing and system 

identification 

A screenshot of the program’s user interface is shown in Figure 3.4. 

 

3.2 Flight Testing and Data Post-Processing 

A series of flight tests were conducted to verify that the data acquisition 

program was functioning properly and collecting data there were accurate, 

Figure 3.4: Data acquisition program GUI 
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meaningful, and useful.  Ultimately, the goal is to have a system that provides real-

time position feedback for the quadcopter.  However, for the purpose of this study, 

data were recorded and post-processed in order to learn more about the system and 

characterize the high-level operation of the quadcopter.  An overview of the data 

collection system and post-processing operations is shown in Figure 3.5. 

 

Figure 3.5: Data flow for quadcopter localization 
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3.2.1 Range Sensor Data 

The data collected using the HX19 sensor system is compiled using the 

aforementioned data acquisition (DAQ) program where timestamps are assigned to 

range measurements received from each receiver.  The system consists of six 

receivers and two transmitters (on quadcopter).  This allows for a total of 12 range 

measurements to be available at any given time.  The DAQ program updates the 

range measurement for each Tx/Rx pair as often as possible, and an example of the 

resulting time-series data is shown in Figure 3.6.   
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Figure 3.6: Raw data logged using DAQ system 
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The data set shown represents the measured distance between transmitter 

‘T20’ and each of the six receivers, ‘R40,’ ‘R41,’ ‘R42,’ ‘R43,’ ‘R44,’ and ‘R45.’  A 

similar set of data is also available for the second of two transmitters, ‘T21.’  The 

receivers are found to produce occasionally error-ridden measurements.  This is 

indicated in Figure 3.6 by the large spikes in the data stream. However, due to the 

nature of these errors some simple filtering can be applied in order to minimize their 

impact on the position calculation. 

3.2.2 Filtering of Raw Range Data 

The errors that are observed in the raw data streams can be filtered out by way 

of ensuring that a few known physical constraints of the system are adhered to.  These 

will serve as a ‘check’ to evaluate whether a particular set of range measurements 

make physical sense in the context of our system.  The two simple constraints used 

for this filtering pertain to 1) the maximum possible speed of the quadcopter and 2) 

the fixed separation of the two transmitter mounted on the quadcopter. 

Filter 1: Velocity Constraint 

The quadcopter is simply not capable of moving at high speeds.  And although 

the exact speed of the quadcopter is not known prior to calculating and comparing 

positions from consecutive sets of range measurements, it is known that the range 

measurement provided by a particular Tx/Rx pair can not change at a rate that is 

greater than the maximum speed of the quadcopter.  Even this assumption is 



 

61 

conservative as the quadcopter would have to be moving along a path which is 

collinear with line defined by the initial coordinates of the receiver and that of the 

transmitter.  Figure 3.7 shows six histograms for the difference in consecutive range 

measurement values for the same data sets shown in Figure 3.6.  As expected, the 

majority of the values are near zero.  The values that fall to the left and right of the 

center column on each plot are indicative range measurement errors.  The value of 

1000mm is used as the cutoff for maximum quadcopter speed.  This translates as 

roughly 10 m/s (or 22.3 mph) given that the maximum sampling interval is roughly 

0.1 seconds (data is not an evenly spaced time-series).  The filter implemented, ‘Filter 

1,’ removes all range measurement values indicating that the quadcopter is moving 

faster than 10 m/s.  For these errors, the previous range measurement is simply 

adopted.    

Filter 2: Fixed Transmitter Separation 

The second physical constraint is that the physical distance between the two 

transmitters mounted on the quadcopter is fixed.  This means the difference between 

range measurements from any one receiver to each of the transmitters should not 

exceed a certain value.  The distance used here is 0.5 m.  The physical distance 

between the two transmitters (see Figure 3.3) when measured with a tape measure.  

The filter implemented evaluates the data such that if the difference between the two 

measurements for one receiver to each of the transmitters is larger than 500 mm then 
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the previous measurement values are used.  Figure 3.8 shows the plotted time-series 

data before and after filtering. 
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Figure 3.8: Range measurement data before and after filtering 
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3.2.3 Filtering of Position Data Using Kalman Filter 

Following the filtering of the raw data, a position calculation is made for each 

set of set of range measurements.  The CMD trilateration method is used to calculate 

position as it was previously evaluated using a Monte Carlo Simulation error analysis 

and determined to be the most accurate and robust method among the several 

evaluated.  An exemplary plot of calculated X, Y, and Z position is shown in Figure 

3.9.  Evidently, the calculation yields a noise signal that requires filtering in order to 

be used.  At this point, a Kalman filter is used similar to that described in [7].  The 

data is filtered in each direction (X, Y, and Z) independently as summarized below. 
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employed by the Kalman filter is estimating the future state of a system based upon 

the current state of the system and some input to the system given the physics and 

inherent error of both the system itself and the measurement of the system’s state.  As 

applied to the quadcopter UAV, an estimation of position is needed given some error-

ridden measured position (calculated from range measurements) and the physical 

state of the system.  Three general models can be used for the state of the system: 

position (P), position and velocity (PV), and position, velocity, and acceleration 

(PVA).  The PV model is used for the application of the quadcopter position 

estimation.  It is also important to note that it is assumed that both the system 

(process) noise and measurement noise are independent from each other and are 

normally distributed. 

To begin, the state estimation is defined as 

      ̅   (    ̅ ) (3.1) 

where  ̅  is the predicted state based on the previous state,    is the actual 

measurement made (calculated position),  ̅  is the predicted measurement, and   is 

the Kalman Gain.  Initially, the state prediction is made based on the previous state: 

 ̅               (3.2) 

where   is the system of physics equations defining the dynamics of the quadcopter, 

    is the previous state of the quadcopter,   is a constant associated with the 

control input,   , and    is a state error term.  The control term is unknown, however, 

and can be dropped from the equation.  For a PV model,  ̅  takes the form of 

 ̅  [
  
  
]  [

  
  

] [
    
    

]    (3.3) 
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where    and    represent the position and velocity at time t, respectively,      and 

     respresent the position and velocity at the time of the previous estimation, and   

is the time elapsed since the previous estimation was made.  The measurement 

prediction is defined as 

 ̅     ̅     (3.4) 

where   [  ] and    is the error associated with the measurement prediction.  

The error terms are defined as 

   [
  
     

      
 ], (3.5) 

     
  (3.6) 

where    and    are the standard deviations associated with the postion and velocity 

error, respectively.  These values are derived from process error: 

           
  

 
 (3.7)  

and 

              (3.8) 

where          is the standard deviation defining the error distribution (with zero 

mean) for the process.  This error is considered to be that induced by the factors that 

are unaccounted for, such as the acceleration of the quadcopter [7].     is simply the 

standard deviation describing the distribution of measurement error.  Both of these 

values must be estimated.  Next, a covariance estimation,  ̅ , is made as follows: 

 

 ̅          
     (3.2.3i) 
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where 

 ̅               
  [

  

 

  

 

  

 
  
]  

and      is the updated covariance estimation from the previous sample.  The Kalman 

gain is now defined as 

    ̅   
  (      

    )
  . (3.2.3j) 

This gain is then used to calculate a new position estimaion using equation (3.2.3a).  

The final step is to update the covariance matrix with the newly calculated Kalman 

gain value: 

   (      )   ̅  (3.2.3k) 

where   is the 2x2 identity matrix.  This sequence of calculations is performed for 

each set of data (timestamp and data value pair).  Figure 3.10 generally summarizes 

this iterative process. 

Figure 3.10: Iterative process for Kalman filtering [7] 
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The Kalman filter outlined here is programmed in Matlab (see Appendix C) as 

a universal filter that can independently be used for X, Y, or Z position data as well as 

for heading data.  The filter uses two parameters that can be tuned to achieve optimal 

results based on the data being filtered.  These parameters are          and   .  The 

ratio of these values determines how the filter ‘weights’ the state predictions and 

measurement predictions made.  Two sets of these parameters are used, one for the 

position filter (same for X, Y, and Z positions) and one for the heading filter. 

Although the filter is designed to physically represent the X, Y, and Z positions of the 

quadcopter, it is applied to the calculated heading data as the observed result is 

acceptable.  The filtering values used for each of the two filters are summarized in 

Table 3.1 

Table 3.1: Filtering values for Kalman Filter 

Filter                      

Position (X, Y, & Z) 3 2 1.5 

Heading 1 1 1 

Figures 3.11 and 3.12 show the position data and heading data, respectively, 

before and after the Kalman filter is applied.  In both cases, the filter effectively 

filters out the majority of the noise that exists and yields a waveform which is more 

continuous and manageable.  Additional filters (averaging or frequency filtering) 

could be applied at this point, but for the purpose of this study, they are unnecessary. 
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Figure 3.11: Position data filtered with Kalman Filter 
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Figure 3.12: Heading angle data filtered with Kalman Filter 
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3.3 System Identification in Matlab 

The final portion of this study involves the characterization of the system 

responses for the three most basic commands to the quadcopter.  These are roll/pitch, 

throttle, and yaw/heading angle.  The intention is to understand the system-level 

responses to step inputs for each of these types of movement.  It should be noted that 

due to the symmetry of the quadcopter platform, it is assumed that the pitch response 

for front-to-back and side-to-side movements are identical.  For this reason, it is only 

necessary to understand the system’s response to one of these inputs in order to be 

able to model each of these similar responses.  The front/back movement (Channel 2) 

is used. 

For each movement type, an impulse command was sent to the quadcopter 

using one of the four available channels that corresponds to that particular response.  

Here the response to each of these inputs is brought into the System Indentification 

Toolbox within Matlab.  Using this environment, a model is fitted to each response 

and a transfer function derived describing the response in terms of the input.  These 

transfer functions are general and derived from data that is not entirely free from 

error.  Therefore, these transfer functions serve as a basis for understanding the 

system-level operation of the F450 quadcopter, however, a more in-depth study is 

needed to fully characterize and model this system. 

 

 



 

71 

3.3.1 Thrust Modeling 

Figure 3.13 shows the altitude response to a thrust command.  These datasets 

are used as the input and output waveforms for the System Identification Toolbox.  It 

can be seen that there is some delay in the response and also that some error exists in 

the measured responses.  The best fit model of low order (low complexity) is shown 

in Figure 3.14. 
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These coefficients define the overall gain, locations of the real poles, and the time 

delay that characterize this response.  Also notice that the denominator contains an 

integrator (s = 0).  This is because the response must be integrated in order for an 

altitude to be output from the system (command is a thrust command not an altitude 
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Figure 3.14: Measured and modeled response 
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command).  The resulting transfer function that describes the altitude response to a 

given thrust command is 

       ( )  
      

 (          )(          )
          (3.3.1a) 

The step response is shown in Figure 3.15. 
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Figure 3.15: Altitude step response 
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3.3.2 Pitch Modeling 

The F450 quadcopter is capable of moving almost entirely laterally, and 

therefore, the term ‘pitch’ is not particularly accurate but will be used to describe both 

the side-to-side and front-to-back movements of the quadcopter.  As previously 

noted, these movements are all expected to be the same or similar due to the 

symmetry of the architecture of the quadcopter platform.  An impulse command of 

duration 0.5s is applied and the response measured.  The command and response are 

shown in in Figure 3.16.  The fitted model is shown in Figure 3.17. 
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More error exists in the measure response for this type of movement, but a 

general transfer function can still be generated based on the measured response and 

know command impulse.  This transfer function takes the form of 

 ( )  
  

 (        (   )
 )
     

where 

         , 

         , 

         , and 

          . 
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Figure 3.17: Measured and modeled pitch response
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The form for this transfer function is different from that derived for thrust.  The poles 

are underdamped and complex.  Again, an integrator (1/s) is necessary in order to 

generate and output in terms of position as the command specifies a velocity.  The 

final transfer function describing the position (X or Y) response to any ‘pitch’ 

command is 

      ( )  
      

 (                    (       ) )
          . 

The associated step response is shown in Figure 3.18. The underdamped nature of this 

transfer function is visible in the step response plot as a slight oscillation about the 

commanded position. 
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Figure 3.18: Y position step response
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3.3.3 Yaw Rate Modeling 

Finally, the response to a yaw rate command is modeled based on the 

measured heading response to a known impulse command. The command and 

measured response are shown in Figure 3.19.  The yaw rate command is roughly 1s in 

duration.  Again, some error is prevalent in the measured heading (calculated from 

position measurement).  However, a general transfer function can be found to model 

the response at hand.  The modeled response is shown in Figure 3.20. 
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The transfer function generated for this response takes the form of 

 ( )  
  

 (      )
     

where 

         , 

          , and 

         . 

This is the most simple of the transfer functions generated yet.  Being only a first 

order transfer function (with only one pole), it indicates a very stable heading 
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Figure 3.20: Measured and modeled heading response
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response to a yaw rate input.  The final transfer function modeling heading response 

to a yaw rate command is 

        ( )  
      

 (         )
         , 

and the associated heading response to a step input is shown in Figure 3.21.
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Figure 3.21: Heading step response
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

This study presented the development of a quadcopter MAV localization 

system and the comparison of a variety of trilateration algorithms used to estimate the 

quadcopter’s position in space.  A physical system was developed and tested in 

parallel with the development of a a theoretical model using the Matlab software 

platform.  A Monte Carlo simulation was performed and used to evaluate the 

accuracy and robustness of several trilateration algorithms, and the method 

employing Cayley-Menger Determinants was determined to be the most effective for 

the applicaton of the quadcopter MAV and six sensor localization system being used. 

This trlateration algorithm was further used to process real data acquired from flight 

testing. 

Multiple controlled flight tests were conducted in order to gather data that 

were used to further understand both the positioning system and the high-level 

dynamics of the quadcopter MAV.  Mulitple data filters were developed for purpose 

of handling the errors that are inherent to the sensor system used.  Additionally, the 
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use of a tunable Kalman filter was developed and implemented and showed to 

effectively increase the robustness of the position estimation. 

Finally, three of the quadcopter’s fundamental dynamic responses were 

modeled using data from flight testing and the Matlab System Identification Toolbox. 

Simple linear transfer functions were fitted to the measured responses for thrust, 

pitch, and yaw rate commands (impulses).  These modeled responses provide a basis 

for the control system that will need to be developed in order to automated the flight 

of the quadcopter MAV. 

4.2 Future Work 

The simulation and modeling performed in this study will serve as the 

foundation for control system design and localization system refinement in order to 

automate the navigation and flight of the quadcopter MAV.  Additional design 

iterations of both software and hardware will allow for improved postion estimation 

reliability and accuracy which will, in turn, enable the development of a robust 

quadcopter controller. 
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APPENDIX A - Trilateration Calculations in Matlab 

function [R_Simple]    =   SimpleMethod(NOR,RCM,MR) 

  
% function  [R_Simple]   =   SimpleMethod(NOR,RCM,MR) 
% inputs    :   NOR (number of receivers) 
%           :   RCM (reciever coordinate matrix, NOR by 3 matrix) 
%           :   MR  (measured range, NOR by 1 matrix) 
% output    :   R_Simple (calculated x,y,z position using Simple 

method 

  

%-- input condition check 
[r1,c1]     =   size(RCM); 
[r2,c2]     =   size(MR); 

  
if r1 ~= NOR || c1 ~= 3 
    error('Receiver Coordinate Matrix must %d by %d',NOR,3) 
elseif r2 ~= 1 || c2 ~= NOR 
    error('Measured Range Matrix must be %d by %d',1,NOR') 
elseif NOR ~= 3 
    error('Simple Method only needs 3 receiver readings')   
end 

  

 

 
function [R_OP,i_count]     =   LeastSquare(NOR,RCM,MR,method) 

  
% function [R_OP,i_count]    =   LeastSquare(NOR,RCM,MR) 
% inputs    :   NOR (number of receivers) 
%           :   RCM (reciever coordinate matrix, NOR by 3 matrix) 
%           :   MR  (measured range, NOR by 1 matrix) 
%           :   method -> 'nls' for nonlinear, 'ls' for linear 
% outputs   :   R_OP (calculated x,y,z position based on 'method' 

input) 
%           :   i_count  (no. of iterations required to arrive at 

position) 

  

  
%-- input dimension check 
[r1,c1]     =   size(RCM); 
[r2,c2]     =   size(MR); 

  
if NOR < 4 
    error('Linear least square method not valid for NOR less than 

4') 
end 
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if r1 ~= NOR || c1 ~= 3 
    error('Receiver Coordinate Matrix must %d by %d',r1,c1) 
end 

     
if r2 ~= 1 || c2 ~= NOR 
    error('Measured Range Matrix must be %d by %d',r2,c2') 
end 

  
%-- linear least square method for initial guess 
A   =   zeros(NOR-1,3); 
b   =   zeros(NOR-1,1); 

  
for i = 1:(NOR-1) 
    A(i,1:3)    =   RCM(i+1,:) - RCM(1,:); 
    b(i,1)      =   0.5*(MR(1)^2 - MR(i+1)^2 + norm(RCM(i+1,:)-

RCM(1,:))^2); 
end 

  
X           =   (A'*A)\(A'*b);      % linear least square solution 
R_OP_LLS    =   X' + RCM(1,1:3);    % estimated position coordinate 

  
i_count_ls = 1; % always 1 for linear least squares 

  
%-- nonlinear least square method 
i_count_nls = 0; % iterations before convergence 

  
i   =   0; 
tol =   1e-3; 
while    tol > 1e-6 & i_count_nls <= 15 

     
    i_count_nls = i_count_nls + 1; 

     
    if i == 0 
        Rold    =   R_OP_LLS; 
    else 
        Rold    =   Rnew; 
    end 

     
    x       =   Rold(1); 
    y       =   Rold(2); 
    z       =   Rold(3); 

     
    JtJ     =   zeros(3,3); 
    Jtf     =   zeros(3,1); 

         
    if NOR == 4 

         
        R1  =   MR(1);   
        R2  =   MR(2);   
        R3  =   MR(3);   
        R4  =   MR(4); 
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        x1  =   RCM(1,1);   y1  =   RCM(1,2);   z1  =   RCM(1,3); 
        x2  =   RCM(2,1);   y2  =   RCM(2,2);   z2  =   RCM(2,3); 
        x3  =   RCM(3,1);   y3  =   RCM(3,2);   z3  =   RCM(3,3); 
        x4  =   RCM(4,1);   y4  =   RCM(4,2);   z4  =   RCM(4,3); 
        f1      =   sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1; 
        f2      =   sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2; 
        f3      =   sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3; 
        f4      =   sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4; 
        JtJ(1,1)    =   (x-x1)^2/(f1 + R1)^2 +... 
                        (x-x2)^2/(f2 + R2)^2 +... 
                        (x-x3)^2/(f3 + R3)^2 +... 
                        (x-x4)^2/(f4 + R4)^2; 
        JtJ(1,2)    =   (x-x1)*(y-y1)/(f1 + R1)^2 +... 
                        (x-x2)*(y-y2)/(f2 + R2)^2 +... 
                        (x-x3)*(y-y3)/(f3 + R3)^2 +... 
                        (x-x4)*(y-y4)/(f4 + R4)^2; 
        JtJ(1,3)    =   (x-x1)*(z-z1)/(f1 + R1)^2 +... 
                        (x-x2)*(z-z2)/(f2 + R2)^2 +... 
                        (x-x3)*(z-z3)/(f3 + R3)^2 +... 
                        (x-x4)*(z-z4)/(f4 + R4)^2; 
        JtJ(2,1)    =   JtJ(1,2); 
        JtJ(2,2)    =   (y-y1)^2/(f1 + R1)^2 +... 
                        (y-y2)^2/(f2 + R2)^2 +... 
                        (y-y3)^2/(f3 + R3)^2 +... 
                        (y-y4)^2/(f4 + R4)^2; 
        JtJ(2,3)    =   (y-y1)*(z-z1)/(f1 + R1)^2 +... 
                        (y-y2)*(z-z2)/(f2 + R2)^2 +... 
                        (y-y3)*(z-z3)/(f3 + R3)^2 +... 
                        (y-y4)*(z-z4)/(f4 + R4)^2; 
        JtJ(3,1)    =   JtJ(1,3); 
        JtJ(3,2)    =   JtJ(2,3); 
        JtJ(3,3)    =   (z-z1)^2/(f1 + R1)^2 +... 
                        (z-z2)^2/(f2 + R2)^2 +... 
                        (z-z3)^2/(f3 + R3)^2 +... 
                        (z-z4)^2/(f4 + R4)^2; 
        Jtf(1,1)    =   (x-x1)*f1/(f1+R1) +... 
                        (x-x2)*f2/(f2+R2) +... 
                        (x-x3)*f3/(f3+R3) +... 
                        (x-x4)*f4/(f4+R4); 
        Jtf(2,1)    =   (y-y1)*f1/(f1+R1) +... 
                        (y-y2)*f2/(f2+R2) +... 
                        (y-y3)*f3/(f3+R3) +... 
                        (y-y4)*f4/(f4+R4); 
        Jtf(3,1)    =   (z-z1)*f1/(f1+R1) +... 
                        (z-z2)*f2/(f2+R2) +... 
                        (z-z3)*f3/(f3+R3) +... 
                        (z-z4)*f4/(f4+R4); 

     

    elseif NOR == 5 

         
        R1  =   MR(1);   
        R2  =   MR(2);   
        R3  =   MR(3);   
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        R4  =   MR(4); 
        R5  =   MR(5); 
        x1  =   RCM(1,1);   y1  =   RCM(1,2);   z1  =   RCM(1,3); 
        x2  =   RCM(2,1);   y2  =   RCM(2,2);   z2  =   RCM(2,3); 
        x3  =   RCM(3,1);   y3  =   RCM(3,2);   z3  =   RCM(3,3); 
        x4  =   RCM(4,1);   y4  =   RCM(4,2);   z4  =   RCM(4,3); 
        x5  =   RCM(5,1);   y5  =   RCM(5,2);   z5  =   RCM(5,3); 
        f1      =   sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1; 
        f2      =   sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2; 
        f3      =   sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3; 
        f4      =   sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4; 
        f5      =   sqrt((x-x5)^2 + (y-y5)^2 + (z-z5)^2) - R5; 
        JtJ(1,1)    =   (x-x1)^2/(f1 + R1)^2 +... 
                        (x-x2)^2/(f2 + R2)^2 +... 
                        (x-x3)^2/(f3 + R3)^2 +... 
                        (x-x4)^2/(f4 + R4)^2 +... 
                        (x-x5)^2/(f5 + R5)^2; 
        JtJ(1,2)    =   (x-x1)*(y-y1)/(f1 + R1)^2 +... 
                        (x-x2)*(y-y2)/(f2 + R2)^2 +... 
                        (x-x3)*(y-y3)/(f3 + R3)^2 +... 
                        (x-x4)*(y-y4)/(f4 + R4)^2 +... 
                        (x-x5)*(y-y5)/(f5 + R5)^2; 
        JtJ(1,3)    =   (x-x1)*(z-z1)/(f1 + R1)^2 +... 
                        (x-x2)*(z-z2)/(f2 + R2)^2 +... 
                        (x-x3)*(z-z3)/(f3 + R3)^2 +... 
                        (x-x4)*(z-z5)/(f4 + R4)^2 +... 
                        (x-x5)*(z-z5)/(f5 + R5)^2; 
        JtJ(2,1)    =   JtJ(1,2); 
        JtJ(2,2)    =   (y-y1)^2/(f1 + R1)^2 +... 
                        (y-y2)^2/(f2 + R2)^2 +... 
                        (y-y3)^2/(f3 + R3)^2 +... 
                        (y-y4)^2/(f4 + R4)^2 +... 
                        (y-y5)^2/(f5 + R5)^2; 
        JtJ(2,3)    =   (y-y1)*(z-z1)/(f1 + R1)^2 +... 
                        (y-y2)*(z-z2)/(f2 + R2)^2 +... 
                        (y-y3)*(z-z3)/(f3 + R3)^2 +... 
                        (y-y4)*(z-z4)/(f4 + R4)^2 +... 
                        (y-y5)*(z-z5)/(f5 + R5)^2;  
        JtJ(3,1)    =   JtJ(1,3); 
        JtJ(3,2)    =   JtJ(2,3); 
        JtJ(3,3)    =   (z-z1)^2/(f1 + R1)^2 +... 
                        (z-z2)^2/(f2 + R2)^2 +... 
                        (z-z3)^2/(f3 + R3)^2 +... 
                        (z-z4)^2/(f4 + R4)^2 +... 
                        (z-z5)^2/(f5 + R5)^2;       
        Jtf(1,1)    =   (x-x1)*f1/(f1+R1) +... 
                        (x-x2)*f2/(f2+R2) +... 
                        (x-x3)*f3/(f3+R3) +... 
                        (x-x4)*f4/(f4+R4) +... 
                        (x-x5)*f5/(f5+R5); 
        Jtf(2,1)    =   (y-y1)*f1/(f1+R1) +... 
                        (y-y2)*f2/(f2+R2) +... 
                        (y-y3)*f3/(f3+R3) +... 
                        (y-y4)*f4/(f4+R4) +... 
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                        (y-y5)*f5/(f5+R5); 
        Jtf(3,1)    =   (z-z1)*f1/(f1+R1) +... 
                        (z-z2)*f2/(f2+R2) +... 
                        (z-z3)*f3/(f3+R3) +... 
                        (z-z4)*f4/(f4+R4) +... 
                        (z-z5)*f4/(f5+R5);    
    else 

         

        R1  =   MR(1);   
        R2  =   MR(2);   
        R3  =   MR(3);   
        R4  =   MR(4); 
        R5  =   MR(5); 
        R6  =   MR(6); 
        x1  =   RCM(1,1);   y1  =   RCM(1,2);   z1  =   RCM(1,3); 
        x2  =   RCM(2,1);   y2  =   RCM(2,2);   z2  =   RCM(2,3); 
        x3  =   RCM(3,1);   y3  =   RCM(3,2);   z3  =   RCM(3,3); 
        x4  =   RCM(4,1);   y4  =   RCM(4,2);   z4  =   RCM(4,3); 
        x5  =   RCM(5,1);   y5  =   RCM(5,2);   z5  =   RCM(5,3); 
        x6  =   RCM(6,1);   y6  =   RCM(6,2);   z6  =   RCM(6,3); 
        f1      =   sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1; 
        f2      =   sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2; 
        f3      =   sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3; 
        f4      =   sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4; 
        f5      =   sqrt((x-x5)^2 + (y-y5)^2 + (z-z5)^2) - R5; 
        f6      =   sqrt((x-x6)^2 + (y-y6)^2 + (z-z6)^2) - R6; 
        JtJ(1,1)    =   (x-x1)^2/(f1 + R1)^2 +... 
                        (x-x2)^2/(f2 + R2)^2 +... 
                        (x-x3)^2/(f3 + R3)^2 +... 
                        (x-x4)^2/(f4 + R4)^2 +... 
                        (x-x5)^2/(f5 + R5)^2 +... 
                        (x-x6)^2/(f6 + R6)^2; 
        JtJ(1,2)    =   (x-x1)*(y-y1)/(f1 + R1)^2 +... 
                        (x-x2)*(y-y2)/(f2 + R2)^2 +... 
                        (x-x3)*(y-y3)/(f3 + R3)^2 +... 
                        (x-x4)*(y-y4)/(f4 + R4)^2 +... 
                        (x-x5)*(y-y5)/(f5 + R5)^2 +... 
                        (x-x6)*(y-y6)/(f6 + R6)^2; 
        JtJ(1,3)    =   (x-x1)*(z-z1)/(f1 + R1)^2 +... 
                        (x-x2)*(z-z2)/(f2 + R2)^2 +... 
                        (x-x3)*(z-z3)/(f3 + R3)^2 +... 
                        (x-x4)*(z-z4)/(f4 + R4)^2 +... 
                        (x-x5)*(z-z5)/(f5 + R5)^2 +... 
                        (x-x6)*(z-z6)/(f6 + R6)^2; 
        JtJ(2,1)    =   JtJ(1,2); 
        JtJ(2,2)    =   (y-y1)^2/(f1 + R1)^2 +... 
                        (y-y2)^2/(f2 + R2)^2 +... 
                        (y-y3)^2/(f3 + R3)^2 +... 
                        (y-y4)^2/(f4 + R4)^2 +... 
                        (y-y5)^2/(f5 + R5)^2 +... 
                        (y-y6)^2/(f6 + R6)^2; 
        JtJ(2,3)    =   (y-y1)*(z-z1)/(f1 + R1)^2 +... 
                        (y-y2)*(z-z2)/(f2 + R2)^2 +... 
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                        (y-y3)*(z-z3)/(f3 + R3)^2 +... 
                        (y-y4)*(z-z4)/(f4 + R4)^2 +... 
                        (y-y5)*(z-z5)/(f5 + R5)^2 +... 
                        (y-y6)*(z-z6)/(f6 + R6)^2; 
        JtJ(3,1)    =   JtJ(1,3); 
        JtJ(3,2)    =   JtJ(2,3); 
        JtJ(3,3)    =   (z-z1)^2/(f1 + R1)^2 +... 
                        (z-z2)^2/(f2 + R2)^2 +... 
                        (z-z3)^2/(f3 + R3)^2 +... 
                        (z-z4)^2/(f4 + R4)^2 +... 
                        (z-z5)^2/(f5 + R5)^2 +... 
                        (z-z6)^2/(f6 + R6)^2; 
        Jtf(1,1)    =   (x-x1)*f1/(f1+R1) +... 
                        (x-x2)*f2/(f2+R2) +... 
                        (x-x3)*f3/(f3+R3) +... 
                        (x-x4)*f4/(f4+R4) +... 
                        (x-x5)*f5/(f5+R5) +... 
                        (x-x6)*f6/(f6+R6); 
        Jtf(2,1)    =   (y-y1)*f1/(f1+R1) +... 
                        (y-y2)*f2/(f2+R2) +... 
                        (y-y3)*f3/(f3+R3) +... 
                        (y-y4)*f4/(f4+R4) +... 
                        (y-y5)*f5/(f5+R5) +... 
                        (y-y6)*f6/(f6+R6); 
        Jtf(3,1)    =   (z-z1)*f1/(f1+R1) +... 
                        (z-z2)*f2/(f2+R2) +... 
                        (z-z3)*f3/(f3+R3) +... 
                        (z-z4)*f4/(f4+R4) +... 
                        (z-z5)*f5/(f5+R5) +... 
                        (z-z6)*f6/(f6+R6); 
    end 

     
    Rnew    =   Rold' - JtJ\Jtf; 
    Rnew    =   Rnew'; 
    tol     =   abs(norm(Rnew - Rold)); 
    i = i + 1; 
end 

  
R_OP_NLS = Rnew; 

  
if strcmp(method,'ls') 
    R_OP    =   R_OP_LLS; 
    i_count = i_count_ls; 
elseif strcmp(method,'nls') 
    R_OP    =   R_OP_NLS; 
    i_count = i_count_nls; 
end 
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function    [R_OP_CFP]   =   ExplicitMethod_CFP(NOR,RCM,MR) 

  

% function  [R_OP_CFP]   =   ExplicitMethod_CFP(NOR,RCM,MR) 
% inputs    :   NOR (number of receivers) 
%           :   RCM (reciever coordinate matrix, NOR by 3 matrix) 
%           :   MR  (measured range, NOR by 1 matrix) 
% output    :   R_OP_CFP (calculated x,y,z position using CFP method 

  
%-- input condition check 
[r1,c1]     =   size(RCM); 
[r2,c2]     =   size(MR); 

  
if r1 ~= NOR || c1 ~= 3 
    error('Receiver Coordinate Matrix must %d by %d',NOR,3) 
elseif r2 ~= 1 || c2 ~= NOR 
    error('Measured Range Matrix must be %d by %d',1,NOR') 
elseif NOR ~= 3 
    error('Explicit Method only needs 3 receiver readings')   
end 

  
%-- constants for Closed-Form Solution 

  
R1 = MR(1); 
R2 = MR(2); 
R3 = MR(3); 

  
x1 = RCM(1,1); 
x2 = RCM(2,1); 
x3 = RCM(3,1); 

  
y1 = RCM(1,2); 
y2 = RCM(2,2); 
y3 = RCM(3,2); 

  
z1 = RCM(1,3); 
z2 = RCM(2,3); 
z3 = RCM(3,3); 

  
x21 = x2 - x1; 
x31 = x3 - x1; 

  
y21 = y2 - y1; 
y31 = y3 - y1; 

  
z21 = z2 - z1; 
z31 = z3 - z1; 

  
W = zeros(2,2); 
d = zeros(2,1); 
rh = zeros(2,1); 
beta = zeros(2,1); 
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W(1,1) = x21; 
W(2,1) = x31; 
W(1,2) = y21; 
W(2,2) = y31; 

  
W_inv = inv(W); 

  

w1 = (W_inv(1,:))'; 
w2 = (W_inv(2,:))'; 

  
d(1) = z21; 
d(2) = z31; 

  

rh1 = [x1; y1]; 

  
S1 = norm(RCM(1,:)); 
S2 = norm(RCM(2,:)); 
S3 = norm(RCM(3,:)); 

  

S = [S1 S2 S3]; 

  
a_cf = 1 + ((d'/W')/W)*d; 

  
delta2 = sqrt(S(1)^2 - S(2)^2); 
delta3 = sqrt(S(1)^2 - S(3)^2); 

  
delta = [delta2^2; delta3^2]; 

  
G = ((W')^(-1))/W; 
e = (((1/2)*delta'/W')/W + rh1'/W)'; 

  
g11 = G(1,1); 
g12 = G(1,2); 
g21 = G(2,1); 
g22 = G(2,2); 

  
e1 = e(1); 
e2 = e(2); 

  
lam0 = -(2*rh1'/W*d - 2*z1 + d'/W'/W*delta)/(2*a_cf); 
lam1 = (z21*(g11 + g12) + z31*(g22 + g12))/(2*a_cf); 
lam2 = -(z21*g11 + z31*g12)/(2*a_cf); 
lam3 = -(z31*g22 + z21*g12)/(2*a_cf); 

  

lambda = [lam0; lam1; lam2; lam3]; 

  
lambda1 = [-w1'*d*lambda + (-w1'*delta)/2; ... 
        -w1'*d*lambda + (y31 - y21)/(2*det(W)); ... 
        -w1'*d*lambda + (-y31)/(2*det(W)); ... 
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        -w1'*d*lambda + y21/(2*det(W))]; 

  

lambda2 = [-w2'*d*lambda + (-w2'*delta)/2; ... 
        -w2'*d*lambda + (x21 - x31)/(2*det(W)); ... 
        -w2'*d*lambda + (-x31)/(2*det(W)); ... 
        -w2'*d*lambda + (-x21)/(2*det(W))]; 

  
lambda3 = lambda; 

  
Lambda_ = [lambda1(1) lambda1(6) lambda1(10) lambda1(14); ... 
            lambda2(1) lambda2(6) lambda2(10) lambda2(14); ... 
            lambda3']; 

  
zeta0 = lam0^2 - (delta'/W'/W*delta/4 + rh1'/W*delta + S1^2)/a_cf; 
zeta1 = 2*lam0*lam1 + (1 + e1 + e2)/a_cf; 
zeta2 = 2*lam0*lam2 - e1/a_cf; 
zeta3 = 2*lam0*lam3 - e2/a_cf; 
zeta4 = lam1^2 - (g11 + 2*g12 + g22)/(4*a_cf); 
zeta5 = lam2^2 - g11/(4*a_cf); 
zeta6 = lam3^2 - g22/(4*a_cf); 
zeta7 = 2*lam1*lam2 + (g11 + g12)/(2*a_cf); 
zeta8 = 2*lam1*lam3 + (g22 + g12)/(2*a_cf); 
zeta9 = 2*lam2*lam3 - g12/(2*a_cf); 

  
zeta = [zeta0; zeta1; zeta2; zeta3; zeta4; ... 
    zeta5; zeta6; zeta7; zeta8; zeta9]; 

  

mu = [(-w1'*d) (-w2'*d) 1]; 

  
%% Closed Form Solution 

  
% Original Position Calculation: 
beta2 = (R1^2 - R2^2 - S1^2 + S2^2)/2; 
beta3 = (R1^2 - R3^2 - S1^2 + S3^2)/2; 

  
beta(1) = beta2; 
beta(2) = beta3; 

  
b_cf = 2*(rh1'/W)*d - 2*z1 - ((2*d'/W')/W)*beta; 
c_cf = S1^2 - R1^2 + ((beta'/W')/W)*beta - (2*rh1'/W)*beta; 

  
z_cf = (-b_cf + sqrt(b_cf^2 - 4*a_cf*c_cf))/(2*a_cf); 

  
rh = W\(beta - d*z_cf); 

  
R_cfp1 = [rh(1) rh(2) z_cf]; 

  
% Improved Position Calculation (z calc): 
u_cf = [1; R1^2; R2^2; R3^2]; 
v_cf = [1; R1^2; R2^2; R3^2; R1^4; R2^4; R3^4; ... 
        R1^2*R2^2; R1^2*R3^2; R2^2*R3^2]; 



 

92 

  
R_cfp2 = (Lambda_*u_cf)' + mu*(zeta'*v_cf)^(1/2); 

  
R_OP_CFP   =    R_cfp2; 

  

 

 

 
function    [R_OP_CMD]   =   ExplicitMethod_CMD(NOR,RCM,MR) 

  
% function  [R_OP_CMD]   =   ExplicitMethod_CMD(NOR,RCM,MR) 
% inputs    :   NOR (number of receivers) 
%           :   RCM (reciever coordinate matrix, NOR by 3 matrix) 
%           :   MR  (measured range, NOR by 1 matrix) 
% output    :   R_OP_CMD (calculated x,y,z position using CMD 

method) 

  
%-- input condition check 
[r1,c1]     =   size(RCM); 
[r2,c2]     =   size(MR); 

  
if r1 ~= NOR || c1 ~= 3 
    error('Receiver Coordinate Matrix must %d by %d',NOR,3) 
elseif r2 ~= 1 || c2 ~= NOR 
    error('Measured Range Matrix must be %d by %d',1,NOR') 
elseif NOR ~= 3 
    error('Explicit Method only needs 3 receiver readings')   
end 

  
%-- constants for Cayley-Menger Determinants 
P1  =   RCM(1,:); 
P2  =   RCM(2,:); 
P3  =   RCM(3,:); 
v1  =   P2 - P1; 
v2  =   P3 - P1; 
l1  =   MR(1); 
l2  =   MR(2); 
l3  =   MR(3); 
%-- Cayley-Menger Determinant calculations 
CMD_p12 =   (norm(P2 - P1))^2;     
CMD_p13 =   (norm(P3 - P1))^2; 
CMD_p23 =   (norm(P3 - P2))^2; 
CMD_k   =   (norm(cross(P2 - P1,P3 - P1)))^2; 
%-- Cayley-Menger Bi-determinant solution 
CMBD_k1 =   -(1/4)*det([0   1       1       1; ... 
                        1   0       CMD_p13 l1^2; ... 
                        1   CMD_p12 CMD_p23 l2^2; ... 
                        1   CMD_p13 0       l3^2]); 

    
CMBD_k2 =   -(1/4)*det([0   1       1       1; ... 
                        1   0       CMD_p12 l1^2; ... 
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                        1   CMD_p12 0       l2^2; ... 
                        1   CMD_p13 CMD_p23 l3^2]); 

  
CMBD_k3 =   (1/8)*det([ 0   1           1           1           1; 

... 
                        1   0           CMD_p12     CMD_p13     

l1^2; ... 
                        1   CMD_p12     0           CMD_p23     

l2^2; ... 
                        1   CMD_p13     CMD_p23     0           

l3^2; ... 
                        1   l1^2        l2^2        l3^2        0]); 

     
k1  =   -(CMBD_k1/CMD_k);                 
k2  =   CMBD_k2/CMD_k; 
k3  =   sqrt(CMBD_k3)/CMD_k; 
P   =   P1 + k1*v1 + k2*v2; 
P4  =   P + k3*(cross(v1,v2)); 

  
R_OP_CMD   =    P4;    
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APPENDIX B – Monte Carlo Simulation Matlab Program 

%% Trilateration Error Analysis - Monte Carlo Simulation 
 

 

clc 
clear 

  
addpath('H:\Masters Thesis\Matlab\Test Data Processing'); 
addpath('H:\Masters Thesis\Matlab\Test Data 

Processing\Trilateration'); 

  
%% Set Parameters for Analysis: 

  
% Specify z location of slice for analysis: 
Z_Plane_Value = 5000; % in mm, height at which slice is taken 

  

% Specify number of points: 
Num_Norm_Pts = 100000; % Number of random points for simulation 

  
% Specify BIN size for error analysis: 
BIN_Size = 1000; % This dictates the BIN size for XYZ Pixels (round 

to nearest 'BIN_Size') 

  

% Define space (in mm): 
Xmin = -8000; 
Xmax = 8000; 
Ymin = -8000; 
Ymax = 8000; 
% Zmin = Z_Plane_Value - BIN_Size; 
% Zmax = Z_Plane_Value + BIN_Size; 
Zmin = Z_Plane_Value; 
Zmax = Z_Plane_Value; 

  
% Define max error for each receiver (in mm): 
E40max = 15; 
E41max = 15; 
E42max = 15; 
E43max = 15; 
E44max = 15; 
E45max = 15; 

  
%% Define Sensor System, Helicopter Space & Other Parameters: 

  
% Define Sensor Position Coordinates: 

  
NOR = 6; % Number of receivers 
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Rx40    =   [325.00,  533.85,  22.00]; 
Rx41    =   [975.00,  533.85,  22.00];     
Rx42    =   [650.00,    0.00,  22.00]; 
Rx43    =   [650.00, 1125.83,   0.00]; 
Rx44    =   [  0.00,    0.00,   0.00]; 
Rx45    =   [1300.0,    0.00,   0.00]; 

  

  
% Alter sensor position (pseudo position) for Simple Method: 

  
Rx1_SM  = [     0,       0,      0]; 
Rx2_SM  = [1295.4,       0,      0]; 
Rx3_SM  = [     0,  1295.4,      0]; 

  
RCM     = [Rx40;Rx41;Rx42;Rx43;Rx44;Rx45]; 
RCM_SM  = [Rx1_SM; Rx2_SM; Rx3_SM]; % for Simple Method calculation 

only 
RCM_3   = [Rx43; Rx44; Rx45]; % for algorithms that only use 3 

receivers 

  

% Apply translation to center receivers at (0,0,0): 
T_RCM = [-650   -375.278    0; ... 
         -650   -375.278    0; ... 
         -650   -375.278    0; ... 
         -650   -375.278    0; ... 
         -650   -375.278    0; ... 
         -650   -375.278    0]; 

          
T_RCM_3 = [-650   -375.278    0; ... 
           -650   -375.278    0; ... 
           -650   -375.278    0]; 

      

RCM = RCM + T_RCM; 

  
RCM_3 = RCM_3 + T_RCM_3; 

  
% Redefine  

  
Xavg = (Xmin + Xmax)/2; 
Yavg = (Ymin + Ymax)/2; 
Zavg = (Zmin + Zmax)/2; 

  
Xrange = Xmax - Xmin; 
Yrange = Ymax - Ymin; 
Zrange = Zmax - Zmin; 

  
% Define std deviation for each receiver: 
Sigma_Per_Band = 3; % number of sigmnas per band (upper & lower 

symmetrical over mean) 
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Sigma40 = E40max/Sigma_Per_Band; 
Sigma41 = E41max/Sigma_Per_Band; 
Sigma42 = E42max/Sigma_Per_Band; 
Sigma43 = E43max/Sigma_Per_Band; 
Sigma44 = E44max/Sigma_Per_Band; 
Sigma45 = E45max/Sigma_Per_Band; 

  
%% Generate Actual Distances and Sensor Output: 

  
% Generate random actual position of quadcopter by coordinate (x, y, 

& z) 
Actual_Pos_X = ((Xmax-Xmin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Xmin 

Xmax]); 
Actual_Pos_Y = ((Ymax-Ymin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Ymin 

Ymax]); 
Actual_Pos_Z = ((Zmax-Zmin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Zmin 

Zmax]); 

  
Actual_Pos = [Actual_Pos_X Actual_Pos_Y Actual_Pos_Z]; 

  
% Generate normally distributed error 
Error_Dist_R40 = Sigma40*randn(Num_Norm_Pts,1); % Mean of 0 with Std 

Dev specified above for each receiver 
Error_Dist_R41 = Sigma41*randn(Num_Norm_Pts,1); 
Error_Dist_R42 = Sigma42*randn(Num_Norm_Pts,1); 
Error_Dist_R43 = Sigma43*randn(Num_Norm_Pts,1); 
Error_Dist_R44 = Sigma44*randn(Num_Norm_Pts,1); 
Error_Dist_R45 = Sigma45*randn(Num_Norm_Pts,1); 

  
% Plot histogram of error distribution for each receiver: 
figure(1); clf;  
subplot(321); hist(Error_Dist_R40); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx1'); 
axis([-30 30 0 40000]); 
subplot(322); hist(Error_Dist_R41); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx2'); 
axis([-30 30 0 40000]); 
subplot(323); hist(Error_Dist_R42); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx3'); 
axis([-30 30 0 40000]); 
subplot(324); hist(Error_Dist_R43); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx4'); 
axis([-30 30 0 40000]); 
subplot(325); hist(Error_Dist_R44); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx5'); 
axis([-30 30 0 40000]); 
subplot(326); hist(Error_Dist_R45); xlabel('Error BIN (mm)'); 

ylabel('Frequency'); title('Histogram of Error Values: Rx6'); 
axis([-30 30 0 40000]); 

  
Error_Dist = [Error_Dist_R40 Error_Dist_R41 Error_Dist_R42 

Error_Dist_R43 ... 



 

97 

              Error_Dist_R44 Error_Dist_R45]; 

  

Error_Dist_3 = [Error_Dist_R43 Error_Dist_R44 Error_Dist_R45]; 

  
Actual_Distance     = zeros(Num_Norm_Pts,NOR); 

  
Pos_LS              = zeros(Num_Norm_Pts,3); 
Error_LS            = zeros(Num_Norm_Pts,3); 
Pos_NLS             = zeros(Num_Norm_Pts,3); 
Error_NLS           = zeros(Num_Norm_Pts,3); 
Pos_CMD             = zeros(Num_Norm_Pts,3); 
Error_CMD           = zeros(Num_Norm_Pts,3); 
Pos_CFP             = zeros(Num_Norm_Pts,3); 
Error_CFP           = zeros(Num_Norm_Pts,3); 

  
for i=1:Num_Norm_Pts 
    Actual_Distance(i,1) = norm(Actual_Pos(i,:) - RCM(1,:)); 
    Actual_Distance(i,2) = norm(Actual_Pos(i,:) - RCM(2,:)); 
    Actual_Distance(i,3) = norm(Actual_Pos(i,:) - RCM(3,:)); 
    Actual_Distance(i,4) = norm(Actual_Pos(i,:) - RCM(4,:)); 
    Actual_Distance(i,5) = norm(Actual_Pos(i,:) - RCM(5,:)); 
    Actual_Distance(i,6) = norm(Actual_Pos(i,:) - RCM(6,:)); 
end 

  
Actual_Distance_3 = [Actual_Distance(:,4) Actual_Distance(:,5) 

Actual_Distance(:,6)]; % Simply use Actual_Distance calc for Rx43, 

Rx44, & Rx45 

  
Sensor_Output = Actual_Distance + Error_Dist; 

  
Sensor_Output_3 = Actual_Distance_3 + Error_Dist_3; 

  
% Initiate iteration counting variabls for 'ls' and 'nls' methods: 
i_count_ls = zeros(Num_Norm_Pts,1); 
i_count_nls = zeros(Num_Norm_Pts,1); 

  
%% Calculate positions using different methods: 

  
for i = 1:Num_Norm_Pts 

     

    [Pos_LS(i,:), i_count_ls(i)]    = 

LeastSquare(NOR,RCM,Sensor_Output(i,:),'ls'); 
    Error_LS(i,:)                   = Pos_LS(i,:) - Actual_Pos(i,:); 

     
    [Pos_NLS(i,:), i_count_nls(i)]  = 

LeastSquare(NOR,RCM,Sensor_Output(i,:),'nls'); 
    Error_NLS(i,:)                  = Pos_NLS(i,:) - 

Actual_Pos(i,:); 

     
    Pos_CMD(i,:)                    = 

ExplicitMethod_CMD(3,RCM_3,Sensor_Output_3(i,:)); 
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    Error_CMD(i,:)                  = Pos_CMD(i,:) - 

Actual_Pos(i,:); 

     
    Pos_CFP(i,:)                    = 

ExplicitMethod_CFP(3,RCM_3,Sensor_Output_3(i,:)); 
    Error_CFP(i,:)                  = Pos_CFP(i,:) - 

Actual_Pos(i,:); 

    
end 

  
%% Define Pixel Size for Error Analysis (NxNxN cube): 

  
XYZ_BIN = FindBIN(Actual_Pos, BIN_Size); %  

  

% Shift BIN values so none are negative and all are real: 
XYZ_BIN = real(XYZ_BIN); % Isolate real components 
XYZ_BIN = [XYZ_BIN(:,1) - Xmin/BIN_Size + 1, ... % Shift BINs so 

mininmum is zero: 
           XYZ_BIN(:,2) - Ymin/BIN_Size + 1, ... 
           XYZ_BIN(:,3) - Zmin/BIN_Size + 1]; 

  

X_BIN = XYZ_BIN(:,1); 
Y_BIN = XYZ_BIN(:,2); 
Z_BIN = XYZ_BIN(:,3); 

  
% Calculate number of pixels: 
Num_Pixels = (Xrange/BIN_Size + 1)*(Yrange/BIN_Size + 

1)*(Zrange/BIN_Size + 1); 

  
ErrorMatrix_Pixel = zeros(Xrange/BIN_Size + 1,Yrange/BIN_Size + 

1,Zrange/BIN_Size + 1); 

  
%% Analyze LS Error: 
X_ErrorSum_Pixel_LS = ErrorMatrix_Pixel; 
Y_ErrorSum_Pixel_LS = ErrorMatrix_Pixel; 
Z_ErrorSum_Pixel_LS = ErrorMatrix_Pixel; 

  
X_MSE_Error_Pixel_LS = ErrorMatrix_Pixel; 
Y_MSE_Error_Pixel_LS = ErrorMatrix_Pixel; 
Z_MSE_Error_Pixel_LS = ErrorMatrix_Pixel; 

  
MSE_Error_Pixel_LS = ErrorMatrix_Pixel; 
NumPts_Pixel_LS = ErrorMatrix_Pixel; 

  
for i = 1:Num_Norm_Pts 

  

    X_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

X_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,1); 
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    Y_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

Y_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,2); 
    Z_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

Z_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,3); 

  
    X_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

X_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,1)^2; 
    Y_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

Y_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,2)^2;                                                 
    Z_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

Z_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_LS(i,3)^2;                                                 

                                                     
    MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))... 
                                                        + 

sum(Error_LS(i,:).^2); 

  
    NumPts_Pixel_LS(X_BIN(i),Y_BIN(i)) = 

NumPts_Pixel_LS(X_BIN(i),Y_BIN(i)) + 1;                                                     

     
end 

  
X_ErrorAvg_Pixel_LS = X_ErrorSum_Pixel_LS./NumPts_Pixel_LS; 
Y_ErrorAvg_Pixel_LS = Y_ErrorSum_Pixel_LS./NumPts_Pixel_LS; 
Z_ErrorAvg_Pixel_LS = Z_ErrorSum_Pixel_LS./NumPts_Pixel_LS; 

  
X_MSE_Error_Pixel_LS = X_MSE_Error_Pixel_LS./NumPts_Pixel_LS; 
Y_MSE_Error_Pixel_LS = Y_MSE_Error_Pixel_LS./NumPts_Pixel_LS; 
Z_MSE_Error_Pixel_LS = Z_MSE_Error_Pixel_LS./NumPts_Pixel_LS; 

  

MSE_Error_Pixel_LS = MSE_Error_Pixel_LS./NumPts_Pixel_LS; 
MSE_Error_Total_LS = sum(sum(MSE_Error_Pixel_LS))/Num_Pixels; 

  
%% Analyze NLS Error 

  
X_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel; 
Y_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel; 
Z_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel; 

  
X_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel; 
Y_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel; 
Z_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel; 
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MSE_Error_Pixel_NLS = ErrorMatrix_Pixel; 
NumPts_Pixel_NLS = ErrorMatrix_Pixel; 

  
for i = 1:Num_Norm_Pts 

  
    X_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

X_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,1); 
    Y_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

Y_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,2); 
    Z_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

Z_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,3); 

  
    X_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

X_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,1)^2; 
    Y_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

Y_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,2)^2;                                                 
    Z_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

Z_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_NLS(i,3)^2;                                                 

  
    MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))... 
                                                        + 

sum(Error_NLS(i,:).^2); 

  
    NumPts_Pixel_NLS(X_BIN(i),Y_BIN(i)) = 

NumPts_Pixel_NLS(X_BIN(i),Y_BIN(i)) + 1;                                                     

     

end 

  
X_ErrorAvg_Pixel_NLS = X_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS; 
Y_ErrorAvg_Pixel_NLS = Y_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS; 
Z_ErrorAvg_Pixel_NLS = Z_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS; 

  
X_MSE_Error_Pixel_NLS = X_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS; 
Y_MSE_Error_Pixel_NLS = Y_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS; 
Z_MSE_Error_Pixel_NLS = Z_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS; 

  
MSE_Error_Pixel_NLS = MSE_Error_Pixel_NLS./NumPts_Pixel_NLS; 
MSE_Error_Total_NLS = sum(sum(MSE_Error_Pixel_NLS))/Num_Pixels; 
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%% Analyze CMD Error 

  
X_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel; 
Y_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel; 
Z_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel; 

  
X_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel; 
Y_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel; 
Z_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel; 

  
MSE_Error_Pixel_CMD = ErrorMatrix_Pixel; 
NumPts_Pixel_CMD = ErrorMatrix_Pixel; 

  

for i = 1:Num_Norm_Pts 

  
    X_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

X_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,1); 
    Y_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

Y_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,2); 
    Z_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

Z_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,3); 

  
    X_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

X_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,1)^2; 
    Y_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

Y_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,2)^2;                                                 
    Z_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

Z_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CMD(i,3)^2;                                                 

  
    MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))... 
                                                        + 

sum(Error_CMD(i,:).^2); 

  
    NumPts_Pixel_CMD(X_BIN(i),Y_BIN(i)) = 

NumPts_Pixel_CMD(X_BIN(i),Y_BIN(i)) + 1;                                                     

     
end 
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X_ErrorAvg_Pixel_CMD = X_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD; 
Y_ErrorAvg_Pixel_CMD = Y_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD; 
Z_ErrorAvg_Pixel_CMD = Z_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD; 

  
X_MSE_Error_Pixel_CMD = X_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD; 
Y_MSE_Error_Pixel_CMD = Y_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD; 
Z_MSE_Error_Pixel_CMD = Z_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD; 

  
MSE_Error_Pixel_CMD = MSE_Error_Pixel_CMD./NumPts_Pixel_CMD; 
MSE_Error_Total_CMD = sum(sum(MSE_Error_Pixel_CMD))/Num_Pixels; 

  
%% Analyze CFP Error 

  

X_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel; 
Y_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel; 
Z_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel; 

  
X_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel; 
Y_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel; 
Z_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel; 

  
MSE_Error_Pixel_CFP = ErrorMatrix_Pixel; 
NumPts_Pixel_CFP = ErrorMatrix_Pixel; 

  
for i = 1:Num_Norm_Pts 

  
    X_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

X_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,1); 
    Y_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

Y_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,2); 
    Z_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

Z_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,3); 

                                                     
    X_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

X_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,1)^2; 
    Y_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

Y_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,2)^2;                                                 
    Z_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

Z_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

Error_CFP(i,3)^2;                                                 
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    MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))... 
                                                        + 

sum(Error_CFP(i,:).^2); 

  
    NumPts_Pixel_CFP(X_BIN(i),Y_BIN(i)) = 

NumPts_Pixel_CFP(X_BIN(i),Y_BIN(i)) + 1;                                                     

     
end 

  
X_ErrorAvg_Pixel_CFP = X_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP; 
Y_ErrorAvg_Pixel_CFP = Y_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP; 
Z_ErrorAvg_Pixel_CFP = Z_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP; 

  
X_MSE_Error_Pixel_CFP = X_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP; 
Y_MSE_Error_Pixel_CFP = Y_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP; 
Z_MSE_Error_Pixel_CFP = Z_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP; 

  
MSE_Error_Pixel_CFP = MSE_Error_Pixel_CFP./NumPts_Pixel_CFP; 
MSE_Error_Total_CFP = sum(sum(MSE_Error_Pixel_CFP))/Num_Pixels; 

  
%% Sum MSE for each method: 

  
MSE_Error_Total_All = [MSE_Error_Total_LS; ... 
                       MSE_Error_Total_NLS; ... 
                       MSE_Error_Total_CMD; ... 
                       MSE_Error_Total_CFP]; 

  
MSE_Error_Normalized_All = 

MSE_Error_Total_All/min(MSE_Error_Total_All); 

  
figure(2); clf; title('Comparison of Normalized MSE for All 

Methods'); 
bar(MSE_Error_Normalized_All); 

  
%% Define Z value (height) at which to observe XY plan & XY 

meshgrid: 

  

Z_Index = (Z_Plane_Value-Zmin)/BIN_Size + 1; 
[X_Mesh,Y_Mesh] = meshgrid(Xmin:BIN_Size:Xmax,Ymin:BIN_Size:Ymax); 

  
% Find max MSE for scaling plots: 
MSE_Max_LS = max(max(MSE_Error_Pixel_LS(:,:,Z_Index))); 
MSE_Max_NLS = max(max(MSE_Error_Pixel_NLS(:,:,Z_Index))); 
MSE_Max_CMD = max(max(MSE_Error_Pixel_CMD(:,:,Z_Index))); 
MSE_Max_CFP = max(max(MSE_Error_Pixel_CFP(:,:,Z_Index))); 

  
MSE_Max = max([MSE_Max_LS,MSE_Max_NLS,MSE_Max_CMD,MSE_Max_CFP]); 

  
%% LS Plots 
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Z_Str = int2str(Z_Plane_Value); 

  

figure(10); clf; hold on; grid on; xlabel('X Coordinate (mm)'); 

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)'); 
title(strcat('Mean Squared Error - LS Method, Z= ',Z_Str,' mm')); 
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_LS(:,:,Z_Index)); 
surf(X_Mesh,Y_Mesh,MSE_Error_Pixel_LS(:,:,Z_Index)); 
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]); 
plot3(RCM(:,1),RCM(:,2),RCM(:,3),'.'); 
LS_Handle = get(gcf,'CurrentAxes'); 
set(gca,'ZScale','log'); 

  
% figure(11); clf; hold on; 
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_LS(:,:,Z_Index))); 
% [U_MSE_LS, V_MSE_LS] = 

gradient(real(MSE_Error_Pixel_LS(:,:,Z_Index)),BIN_Size); 
% quiver(X_Mesh,Y_Mesh,U_MSE_LS,V_MSE_LS); 

  
figure(12); clf; hold on; grid on; 
title(strcat('XY MSE and XY Error Biasing - LS Method, Z= ',Z_Str,' 

mm')); 
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_LS(:,:,Z_Index)+Y_MSE_E

rror_Pixel_LS(:,:,Z_Index))); 
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_LS,Y_ErrorAvg_Pixel_LS); 
plot(RCM(:,1),RCM(:,2),'Color','black','Marker','.','LineStyle','non

e','MarkerSize',15); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 
legend('XY MSE','Avg XY Error Vectors','Receiver Locations'); 

  
%% NLS Plots 

  
figure(20); clf; hold on; grid on; xlabel('X Coordinate (mm)'); 

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)'); 
title(strcat('Mean Squared Error - NLS Method, Z=',Z_Str,' mm')); 
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_NLS(:,:,Z_Index)); 
surf(X_Mesh,Y_Mesh,MSE_Error_Pixel_NLS(:,:,Z_Index)); 
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]); 
plot3(RCM(:,1),RCM(:,2),RCM(:,3),'.'); 
NLS_Handle = get(gcf,'CurrentAxes'); 
set(gca,'ZScale','log'); 

  

% figure(21); clf; hold on; 
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_NLS(:,:,Z_Index))); 
% [U_MSE_NLS, V_MSE_NLS] = 

gradient(real(MSE_Error_Pixel_NLS(:,:,Z_Index)),BIN_Size); 
% quiver(X_Mesh,Y_Mesh,U_MSE_NLS,V_MSE_NLS); 

  

figure(22); clf; hold on; grid on; 
title(strcat('XY MSE and XY Error Biasing - NLS Method, Z=',Z_Str,' 

mm')); 
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_NLS(:,:,Z_Index)+Y_MSE_

Error_Pixel_NLS(:,:,Z_Index))); 
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quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_NLS,Y_ErrorAvg_Pixel_NLS); 
plot(RCM(:,1),RCM(:,2),'Color','black','Marker','.','LineStyle','non

e','MarkerSize',15); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 
legend('XY MSE','Avg XY Error Vectors','Receiver Locations'); 

  

  
%% CFP Plots 

  
figure(30); clf; hold on; grid on; xlabel('X Coordinate (mm)'); 

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)'); 
title(strcat('Mean Squared Error - CFP Method, Z=',Z_Str,' mm')); 
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CFP(:,:,Z_Index)); 
surf(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CFP(:,:,Z_Index))); 
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]); 
plot3(RCM_3(:,1),RCM_3(:,2),RCM_3(:,3),'.'); 
CFP_Handle = get(gcf,'CurrentAxes'); 
set(gca,'ZScale','log'); 

  
% figure(31); clf; hold on; 
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CFP(:,:,Z_Index))); 
% [U_MSE_CFP, V_MSE_CFP] = 

gradient(real(MSE_Error_Pixel_CFP(:,:,Z_Index)),BIN_Size); 
% quiver(X_Mesh,Y_Mesh,U_MSE_CFP,V_MSE_CFP); 

  
figure(32); clf; hold on; grid on; 
title(strcat('XY MSE and XY Error Biasing - CFP Method, Z=',Z_Str,' 

mm')); 
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_CFP(:,:,Z_Index)+Y_MSE_

Error_Pixel_CFP(:,:,Z_Index))); 
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CFP,Y_ErrorAvg_Pixel_CFP); 
plot(RCM_3(:,1),RCM_3(:,2),'Color','black','Marker','.','LineStyle',

'none','MarkerSize',15); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 
legend('XY MSE','Avg XY Error Vectors','Receiver Locations'); 

  
%% CMD Plots 

  
figure(40); clf; hold on; grid on; xlabel('X Coordinate (mm)'); 

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)'); 
title(strcat('Mean Squared Error - CMD Method, Z=',Z_Str,' mm')); 
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CMD(:,:,Z_Index)); 
surf(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CMD(:,:,Z_Index))); 
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]); 
plot3(RCM_3(:,1),RCM_3(:,2),RCM_3(:,3),'.'); 
CMD_Handle = get(gcf,'CurrentAxes'); 
set(gca,'ZScale','log'); 

  
% figure(41); clf; hold on; 
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CMD(:,:,Z_Index))); 
% [U_MSE_CMD, V_MSE_CMD] = 

gradient(real(MSE_Error_Pixel_CMD(:,:,Z_Index)),BIN_Size); 
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% quiver(X_Mesh,Y_Mesh,U_MSE_CMD,V_MSE_CMD); 

  

figure(42); clf; hold on; grid on; 
title(strcat('XY MSE and XY Error Biasing - CMD Method, Z=',Z_Str,' 

mm')); 
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_CMD(:,:,Z_Index)+Y_MSE_

Error_Pixel_CMD(:,:,Z_Index))); 
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CMD,Y_ErrorAvg_Pixel_CMD); 
plot(RCM_3(:,1),RCM_3(:,2),'Color','black','Marker','.','LineStyle',

'none','MarkerSize',15); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 
legend('XY MSE','Avg XY Error Vectors','Receiver Locations'); 

  
%% Z Error Plots 

  
% figure(50); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS); 
% axis([-5000 5000 -5000 5000 -800 400]); 
% figure(51); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS); 
% axis([-5000 5000 -5000 5000 -800 400]); 
% figure(52); clf; surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CFP)); 
% axis([-5000 5000 -5000 5000 -800 400]); 
% figure(53); clf; surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CMD)); 
% axis([-5000 5000 -5000 5000 -800 400]); 

  
figure(54); clf; title(strcat('Average Z Error, Z=,',Z_Str,' mm')); 
subplot(221); surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS); 
axis([Xmin Xmax Ymin Ymax -800 400]); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
title('Avg Z-Error - LS Method'); 
subplot(222); surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS); 
axis([Xmin Xmax Ymin Ymax -800 400]); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
title('Avg Z-Error - NLS Method'); 
subplot(223); surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CFP)); 
axis([Xmin Xmax Ymin Ymax -800 400]); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
title('Avg Z-Error - CFP Method'); 
subplot(224); surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CMD)); 
axis([Xmin Xmax Ymin Ymax -800 400]); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
title('Avg Z-Error - CMD Method'); 

  

  

%% Other Plots 

  
% figure(60); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS); 
% Z_err_HandleLS = get(gcf,'CurrentAxes'); 
% set(gca,'ZScale','log'); 
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% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_LS)) 

max(max(Z_ErrorAvg_Pixel_LS))]); 
%  
% figure(61); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS); 
% Z_err_HandleNLS = get(gcf,'CurrentAxes'); 
% set(gca,'ZScale','log'); 
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_NLS)) 

max(max(Z_ErrorAvg_Pixel_NLS))]); 
%  
% figure(62); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_CFP); 
% Z_err_HandleCFP = get(gcf,'CurrentAxes'); 
% set(gca,'ZScale','log'); 
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_CFP)) 

max(max(Z_ErrorAvg_Pixel_CFP))]); 
%  
% figure(63); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_CMD); 
% Z_err_HandleCMD = get(gcf,'CurrentAxes'); 
% set(gca,'ZScale','log'); 
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_CMD)) 

max(max(Z_ErrorAvg_Pixel_CMD))]); 

  
%% Metrics 

  
% LS Metrics 
Metric_MSE_Total_LS = MSE_Error_Total_LS; 
Metric_X_MSE_LS = sum(sum(X_MSE_Error_Pixel_LS))/Num_Pixels; 
Metric_Y_MSE_LS = sum(sum(Y_MSE_Error_Pixel_LS))/Num_Pixels; 
Metric_Z_MSE_LS = sum(sum(Z_MSE_Error_Pixel_LS))/Num_Pixels; 

  
Metric_X_ErrorAvg_LS = sum(sum(X_ErrorAvg_Pixel_LS))/Num_Pixels; 
Metric_Y_ErrorAvg_LS = sum(sum(Y_ErrorAvg_Pixel_LS))/Num_Pixels; 
Metric_Z_ErrorAvg_LS = sum(sum(Z_ErrorAvg_Pixel_LS))/Num_Pixels; 

  
% NLS Metrics 
Metric_MSE_Total_NLS = MSE_Error_Total_NLS; 
Metric_X_MSE_NLS = sum(sum(X_MSE_Error_Pixel_NLS))/Num_Pixels; 
Metric_Y_MSE_NLS = sum(sum(Y_MSE_Error_Pixel_NLS))/Num_Pixels; 
Metric_Z_MSE_NLS = sum(sum(Z_MSE_Error_Pixel_NLS))/Num_Pixels; 

  
Metric_X_ErrorAvg_NLS = sum(sum(X_ErrorAvg_Pixel_NLS))/Num_Pixels; 
Metric_Y_ErrorAvg_NLS = sum(sum(Y_ErrorAvg_Pixel_NLS))/Num_Pixels; 
Metric_Z_ErrorAvg_NLS = sum(sum(Z_ErrorAvg_Pixel_NLS))/Num_Pixels; 

  
% CFP Metrics 
Metric_MSE_Total_CFP = MSE_Error_Total_CFP; 
Metric_X_MSE_CFP = sum(sum(X_MSE_Error_Pixel_CFP))/Num_Pixels; 
Metric_Y_MSE_CFP = sum(sum(Y_MSE_Error_Pixel_CFP))/Num_Pixels; 
Metric_Z_MSE_CFP = sum(sum(Z_MSE_Error_Pixel_CFP))/Num_Pixels; 

  
Metric_X_ErrorAvg_CFP = sum(sum(X_ErrorAvg_Pixel_CFP))/Num_Pixels; 
Metric_Y_ErrorAvg_CFP = sum(sum(Y_ErrorAvg_Pixel_CFP))/Num_Pixels; 
Metric_Z_ErrorAvg_CFP = sum(sum(Z_ErrorAvg_Pixel_CFP))/Num_Pixels; 
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% CMD Metrics 
Metric_MSE_Total_CMD = MSE_Error_Total_CMD; 
Metric_X_MSE_CMD = sum(sum(X_MSE_Error_Pixel_CMD))/Num_Pixels; 
Metric_Y_MSE_CMD = sum(sum(Y_MSE_Error_Pixel_CMD))/Num_Pixels; 
Metric_Z_MSE_CMD = sum(sum(Z_MSE_Error_Pixel_CMD))/Num_Pixels; 

  
Metric_X_ErrorAvg_CMD = sum(sum(X_ErrorAvg_Pixel_CMD))/Num_Pixels; 
Metric_Y_ErrorAvg_CMD = sum(sum(Y_ErrorAvg_Pixel_CMD))/Num_Pixels; 
Metric_Z_ErrorAvg_CMD = sum(sum(Z_ErrorAvg_Pixel_CMD))/Num_Pixels; 

  
% Summary of Metrics 
Metric_Summary = real([Metric_X_ErrorAvg_LS  Metric_X_ErrorAvg_NLS   

Metric_X_ErrorAvg_CFP   Metric_X_ErrorAvg_CMD; ... 
                       Metric_Y_ErrorAvg_LS  Metric_Y_ErrorAvg_NLS   

Metric_Y_ErrorAvg_CFP   Metric_Y_ErrorAvg_CMD; ... 
                       Metric_Z_ErrorAvg_LS  Metric_Z_ErrorAvg_NLS   

Metric_Z_ErrorAvg_CFP   Metric_Z_ErrorAvg_CMD; ... 
                       Metric_X_MSE_LS       Metric_X_MSE_NLS        

Metric_X_MSE_CFP        Metric_X_MSE_CMD;      ... 
                       Metric_Y_MSE_LS       Metric_Y_MSE_NLS        

Metric_Y_MSE_CFP        Metric_Y_MSE_CMD;      ... 
                       Metric_Z_MSE_LS       Metric_Z_MSE_NLS        

Metric_Z_MSE_CFP        Metric_Z_MSE_CMD;      ... 
                       Metric_MSE_Total_LS   Metric_MSE_Total_NLS    

Metric_MSE_Total_CFP    Metric_MSE_Total_CMD]); 

  

  
%% Format MSE Figure: 
figure(1); hold on; grid on; xlabel('X Coordinate (mm)'); ylabel('Y 

Coordinate (mm)'); zlabel('MSE (mm^2)'); 

  
%% Format Bias Figure: 
figure(1);  
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

  
%% Format Z Avg Figure: 
figure(1); hold on; 
h = get(gca,'Children'); 

  

%% 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
subplot(222); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
subplot(223); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)'); 
subplot(224); 
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)'); 

zlabel('Error (mm)');  
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APPENDIX C – Data Post-Processing and Kalman Filter Matlab Programs 

%% System ID Preprocess 
 

%% Set System and Analysis Parameters 

  
clc 
clear 

  
RootPath = 'H:\Masters Thesis\'; 

  
addpath(strcat(RootPath,'Matlab\')); 
addpath(strcat(RootPath,'Matlab\Test Data Processing\')); 

  
% System Parameters: 
NOR     =   6; 
Rx40    =   [339.6750,  540.2600,   22]; 
Rx41    =   [987.3615,  540.2600,   22];     
Rx42    =   [647.70,    0,          22]; 
Rx43    =   [679.35,    1080.52,    0]; 
Rx44    =   [0,         0,          0]; 
Rx45    =   [1295.4,    0,          0]; 
RCM     =   [Rx40;Rx41;Rx42;Rx43;Rx44;Rx45]; 

  
%% Import Data 

  
FlightData = importdata(strcat(RootPath,'Test Data\Sys ID 

Testing\West Hills_05_07_2013\05_07_2013_SysID_Ch3_Throttle.txt')); 
Input_Channel = 3; 

  
time = FlightData.data(:,1); 
T20_R40_Data = FlightData.data(:,8); 
T20_R41_Data = FlightData.data(:,9); 
T20_R42_Data = FlightData.data(:,10); 
T20_R43_Data = FlightData.data(:,11); 
T20_R44_Data = FlightData.data(:,12); 
T20_R45_Data = FlightData.data(:,13); 

  
T21_R40_Data = FlightData.data(:,14); 
T21_R41_Data = FlightData.data(:,15); 
T21_R42_Data = FlightData.data(:,16); 
T21_R43_Data = FlightData.data(:,17); 
T21_R44_Data = FlightData.data(:,18); 
T21_R45_Data = FlightData.data(:,19); 

  

Ch1_Input = FlightData.data(:,33); 
Ch2_Input = FlightData.data(:,34); 
Ch3_Input = FlightData.data(:,35); 
Ch4_Input = FlightData.data(:,35); 
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All_Data = [T20_R40_Data, T20_R41_Data, T20_R42_Data, T20_R43_Data, 

T20_R44_Data, T20_R45_Data, ... 
            T21_R40_Data, T21_R41_Data, T21_R42_Data, T21_R43_Data, 

T21_R44_Data, T21_R45_Data, ... 
            Ch1_Input, Ch2_Input, Ch3_Input, Ch4_Input]; 

  
%% Visualize data: 

  
figure(1); clf; 
subplot(321); plot(time,T20_R40_Data); title('T20-R40 Raw Data'); 
subplot(322); plot(time,T20_R41_Data); title('T20-R41 Raw Data'); 
subplot(323); plot(time,T20_R42_Data); title('T20-R42 Raw Data'); 
subplot(324); plot(time,T20_R43_Data); title('T20-R43 Raw Data'); 
subplot(325); plot(time,T20_R44_Data); title('T20-R44 Raw Data'); 
subplot(326); plot(time,T20_R45_Data); title('T20-R45 Raw Data'); 

  
figure(2); clf; 
subplot(321); plot(time,T21_R40_Data); title('T21-R40 Raw Data'); 
subplot(322); plot(time,T21_R41_Data); title('T21-R41 Raw Data'); 
subplot(323); plot(time,T21_R42_Data); title('T21-R42 Raw Data'); 
subplot(324); plot(time,T21_R43_Data); title('T21-R43 Raw Data'); 
subplot(325); plot(time,T21_R44_Data); title('T21-R44 Raw Data'); 
subplot(326); plot(time,T21_R44_Data); title('T21-R45 Raw Data'); 

  
figure(3); clf; 
subplot(321); plot(time,T20_R40_Data - T21_R40_Data); 

title('Difference T20R40 - T21R40'); 
subplot(322); plot(time,T20_R41_Data - T21_R41_Data); 

title('Difference T20R41 - T21R41'); 
subplot(323); plot(time,T20_R42_Data - T21_R42_Data); 

title('Difference T20R42 - T21R42'); 
subplot(324); plot(time,T20_R43_Data - T21_R43_Data); 

title('Difference T20R43 - T21R43'); 
subplot(325); plot(time,T20_R44_Data - T21_R44_Data); 

title('Difference T20R44 - T21R44'); 
subplot(326); plot(time,T20_R45_Data - T21_R45_Data); 

title('Difference T20R45 - T21R45'); 

  
% Histogram of change in consecutive range values for all Tx/Rx 

combos: 
XValues = [-10000:1000:10000]; 

  
figure(4); clf; 
subplot(321); hist(diff(T20_R40_Data),XValues); title('Histogram of 

Change in Range Values: T20R40'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(322); hist(diff(T20_R41_Data),XValues); title('Histogram of 

Change in Range Values: T20R41'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(323); hist(diff(T20_R42_Data),XValues); title('Histogram of 

Change in Range Values: T20R42'); 
xlabel('Change in Range Measurement (mm)'); 
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subplot(324); hist(diff(T20_R43_Data),XValues); title('Histogram of 

Change in Range Values: T20R43'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(325); hist(diff(T20_R44_Data),XValues); title('Histogram of 

Change in Range Values: T20R44'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(326); hist(diff(T20_R45_Data),XValues); title('Histogram of 

Change in Range Values: T20R45'); 
xlabel('Change in Range Measurement (mm)'); 

  
figure(5); clf; 
subplot(321); hist(diff(T21_R40_Data),XValues); title('Histogram of 

Change in Range Values: T21R40'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(322); hist(diff(T21_R41_Data),XValues); title('Histogram of 

Change in Range Values: T21R41'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(323); hist(diff(T21_R42_Data),XValues); title('Histogram of 

Change in Range Values: T21R42'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(324); hist(diff(T21_R43_Data),XValues); title('Histogram of 

Change in Range Values: T21R43'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(325); hist(diff(T21_R44_Data),XValues); title('Histogram of 

Change in Range Values: T21R44'); 
xlabel('Change in Range Measurement (mm)'); 
subplot(326); hist(diff(T21_R45_Data),XValues); title('Histogram of 

Change in Range Values: T21R45'); 
xlabel('Change in Range Measurement (mm)'); 

  
% Histogram of 'difference' values (T20 - T21): 
Num_Bins = 20; 

  
figure(6); clf; 
subplot(321); hist(T20_R40_Data - T21_R40_Data,Num_Bins); 

title('Histogram of Differences: T20R40 - T21R40'); 
subplot(322); hist(T20_R41_Data - T21_R41_Data,Num_Bins); 

title('Histogram of Differences: T20R41 - T21R41'); 
subplot(323); hist(T20_R42_Data - T21_R42_Data,Num_Bins); 

title('Histogram of Differences: T20R42 - T21R42'); 
subplot(324); hist(T20_R43_Data - T21_R43_Data,Num_Bins); 

title('Histogram of Differences: T20R43 - T21R43'); 
subplot(325); hist(T20_R44_Data - T21_R44_Data,Num_Bins); 

title('Histogram of Differences: T20R44 - T21R44'); 
subplot(326); hist(T20_R45_Data - T21_R45_Data,Num_Bins); 

title('Histogram of Differences: T20R45 - T21R45'); 

  
%% Filter Raw Range Data: 

  
addpath(strcat(RootPath,'Matlab\Test Data Processing\Filters')); 

  
% Apply filter 1 to all range data: 
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Delta_R = 1000; % Max speed of approx. 10 m/s (22.3 mph) 
Num_Lead_Pts = 40; 

  
T20R40_New = FilterRawData1(T20_R40_Data,Delta_R,Num_Lead_Pts); 
T20R41_New = FilterRawData1(T20_R41_Data,Delta_R,Num_Lead_Pts); 
T20R42_New = FilterRawData1(T20_R42_Data,Delta_R,Num_Lead_Pts); 
T20R43_New = FilterRawData1(T20_R43_Data,Delta_R,Num_Lead_Pts); 
T20R44_New = FilterRawData1(T20_R44_Data,Delta_R,Num_Lead_Pts); 
T20R45_New = FilterRawData1(T20_R45_Data,Delta_R,Num_Lead_Pts); 

  
T21R40_New = FilterRawData1(T21_R40_Data,Delta_R,Num_Lead_Pts); 
T21R41_New = FilterRawData1(T21_R41_Data,Delta_R,Num_Lead_Pts); 
T21R42_New = FilterRawData1(T21_R42_Data,Delta_R,Num_Lead_Pts); 
T21R43_New = FilterRawData1(T21_R43_Data,Delta_R,Num_Lead_Pts); 
T21R44_New = FilterRawData1(T21_R44_Data,Delta_R,Num_Lead_Pts); 
T21R45_New = FilterRawData1(T21_R45_Data,Delta_R,Num_Lead_Pts); 

  
% Apply filter 2 to all range data: 
Max_Dist_Tx = 500; % Separation between T20 and T21 
%Num_Lead_Pts = 10; 

  

[T20R40_New2,T21R40_New2] = 

FilterRawData2(T20R40_New,T21R40_New,Max_Dist_Tx,Num_Lead_Pts); 
[T20R41_New2,T21R41_New2] = 

FilterRawData2(T20R41_New,T21R41_New,Max_Dist_Tx,Num_Lead_Pts); 
[T20R42_New2,T21R42_New2] = 

FilterRawData2(T20R42_New,T21R42_New,Max_Dist_Tx,Num_Lead_Pts); 
[T20R43_New2,T21R43_New2] = 

FilterRawData2(T20R43_New,T21R43_New,Max_Dist_Tx,Num_Lead_Pts); 
[T20R44_New2,T21R44_New2] = 

FilterRawData2(T20R44_New,T21R44_New,Max_Dist_Tx,Num_Lead_Pts); 
[T20R45_New2,T21R45_New2] = 

FilterRawData2(T20R45_New,T21R45_New,Max_Dist_Tx,Num_Lead_Pts); 

  

% Visualize data: 
figure(11); clf; 
subplot(321); plot(time,T20R40_New2,'b',time,T21R40_New2,'r'); 

title('R40 Data After Filtering'); 
legend('T20R40','T21R40'); 
subplot(322); plot(time,T20R41_New2,'b',time,T21R41_New2,'r'); 

title('R41 Data After Filtering'); 
legend('T20R41','T21R41'); 
subplot(323); plot(time,T20R42_New2,'b',time,T21R42_New2,'r'); 

title('R42 Data After Filtering'); 
legend('T20R42','T21R42'); 
subplot(324); plot(time,T20R43_New2,'b',time,T21R43_New2,'r'); 

title('R43 Data After Filtering'); 
legend('T20R43','T21R43'); 
subplot(325); plot(time,T20R44_New2,'b',time,T21R44_New2,'r'); 

title('R44 Data After Filtering'); 
legend('T20R44','T21R44'); 
subplot(326); plot(time,T20R45_New2,'b',time,T21R45_New2,'r'); 

title('R45 Data After Filtering'); 
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legend('T20R45','T21R45'); 

  

% Compare filtered data with raw data: 
figure(12); clf; 
subplot(321); plot(time,T20_R40_Data,time,T20R40_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R40 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(322); plot(time,T20_R41_Data,time,T20R41_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R41 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(323); plot(time,T20_R42_Data,time,T20R42_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R42 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(324); plot(time,T20_R43_Data,time,T20R43_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R43 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(325); plot(time,T20_R44_Data,time,T20R44_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R44 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(326); plot(time,T20_R45_Data,time,T20R45_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T20-R45 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 

  
figure(13); clf; 
subplot(321); plot(time,T21_R40_Data,time,T21R40_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R40 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(322); plot(time,T21_R41_Data,time,T21R41_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R41 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(323); plot(time,T21_R42_Data,time,T21R42_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R42 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(324); plot(time,T21_R43_Data,time,T21R43_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R43 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(325); plot(time,T21_R44_Data,time,T21R44_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R44 Data Before and 

After Filtering'); 
xlabel('Time (s)'); 
subplot(326); plot(time,T21_R45_Data,time,T21R45_New2,'.'); 
legend('Raw Data','Filtered Data'); title('T21-R45 Data Before and 

After Filtering'); 
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xlabel('Time (s)'); 

  

% Based on comparison of filtered data, choose receivers 
% to use for position calculation: 

  
RCM_3 = [Rx41; Rx42; Rx45]; 

     
%% Position Calculation: 

  
R_T20 = [T20R41_New2 T20R42_New2 T20R45_New2]; 
R_T21 = [T21R42_New2 T21R42_New2 T21R45_New2]; 

  
addpath(strcat(RootPath,'Matlab\Test Data 

Processing\Trilateration')); 

  
Pos_CMD_T20 = zeros(length(time),3); 
Pos_CMD_T21 = zeros(length(time),3); 

  
for i = 1:length(time) 
    Pos_CMD_T20(i,:) = ExplicitMethod_CMD(3,RCM_3,R_T20(i,:)); 
    Pos_CMD_T21(i,:) = ExplicitMethod_CMD(3,RCM_3,R_T21(i,:)); 
end 

  
figure(21); hold on; 
plot(time,Pos_CMD_T20(:,1),time,Pos_CMD_T20(:,2),time,Pos_CMD_T20(:,

3)); 
title('Calculated X, Y, and Z Position - T20'); legend('X 

Position','Y Position','Z Position'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); grid on; 

  
%% Use Kalman Filter to filter position data: 

  
% Set parameters for Kalman filter: 
Sigma_Process = 3;       % specify std dev for process noise/error 
Sigma_Measurement = 2;   % specify std dev for measurement 

noise/error 
Num_Lead_Pts = Num_Lead_Pts; 

  
% Remove lead points from waveform for filtering: 
Pos_CMD_T20_2 = Pos_CMD_T20((Num_Lead_Pts+1):length(time),:); 
Pos_CMD_T21_2 = Pos_CMD_T21((Num_Lead_Pts+1):length(time),:); 

  
time_filt = time(Num_Lead_Pts+1:length(time)); 

  
Pos_T20_Filt = zeros(size(Pos_CMD_T20_2)); 
Pos_T21_Filt = zeros(size(Pos_CMD_T21_2)); 

  
Pos_T20_Filt(:,1) = 

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,1),Sigma_Process,Sigma_M

easurement); 
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Pos_T20_Filt(:,2) = 

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,2),Sigma_Process,Sigma_M

easurement); 
Pos_T20_Filt(:,3) = 

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,3),Sigma_Process,Sigma_M

easurement); 

  
Pos_T21_Filt(:,1) = 

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,1),Sigma_Process,Sigma_M

easurement); 
Pos_T21_Filt(:,2) = 

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,2),Sigma_Process,Sigma_M

easurement); 
Pos_T21_Filt(:,3) = 

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,3),Sigma_Process,Sigma_M

easurement); 

  
figure(22); clf; title('T20 Position Before and After Kalman 

Filter'); 
subplot(311); 

plot(time_filt,Pos_CMD_T20_2(:,1),'b',time_filt,Pos_T20_Filt(:,1),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - X 

Position'); 
subplot(312); 

plot(time_filt,Pos_CMD_T20_2(:,2),'b',time_filt,Pos_T20_Filt(:,2),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - Y 

Position'); 
subplot(313); 

plot(time_filt,Pos_CMD_T20_2(:,3),'b',time_filt,Pos_T20_Filt(:,3),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - Z 

Position'); 

  
figure(23); clf; title('T21 Position Before and After Kalman 

Filter'); 
subplot(311); 

plot(time_filt,Pos_CMD_T21_2(:,1),'b',time_filt,Pos_T21_Filt(:,1),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - X 

Position'); 
subplot(312); 

plot(time_filt,Pos_CMD_T21_2(:,2),'b',time_filt,Pos_T21_Filt(:,2),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - Y 

Position'); 
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subplot(313); 

plot(time_filt,Pos_CMD_T21_2(:,3),'b',time_filt,Pos_T21_Filt(:,3),'r

'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - Z 

Position'); 

  
% Take average of T20 and T21 positions: 
Pos_T_Filt = (Pos_T20_Filt + Pos_T21_Filt)/2; 

  
figure(24); plot(time_filt,Pos_T_Filt); 
legend('X-Position','Y-Position','Z-Position'); 

  
%% Heading Calculation: 
Rad2Deg = 180/pi; 

  
PSI_CMD = zeros(length(time),1); 

  
for i = 1:length(time) 
    PSI_CMD(i) = atan2(real((Pos_CMD_T20(i,2) - Pos_CMD_T21(i,2))), 

... 
                       real((Pos_CMD_T20(i,1) - Pos_CMD_T21(i,1)))); 
end 

  
% figure(31); clf; 
% plot(time,PSI_CMD*Rad2Deg) 

  
Heading_CMD_Deg = PSI_CMD*Rad2Deg; 

  
% Apply Kalman Filter to Heading 
Sigma_Process       = 1;   % specify std dev for process noise/error 
Sigma_Measurement   = 1;   % specify std dev for measurement 

noise/error 

  
Heading_CMD_Deg_Filt = RangeKalmanFilter(time,Heading_CMD_Deg, ... 
                                         

Sigma_Process,Sigma_Measurement); 

  
figure(32); clf; 
plot(time,Heading_CMD_Deg,'b',time,Heading_CMD_Deg_Filt,'r'); 
title('Heading Angle'); legend('Before Kalman Filter','After Kalman 

Filter'); 
xlabel('Time (s)'); ylabel('Heading Angle (deg)'); 

  
%% Parse Data and Resample 

  

Impulse_Time        =   86.7; % in seconds 
Sampling_Interval   =   0.05; 
Time_Before_Impulse     =   1; % in seconds 
Time_After_Impulse      =   4; 
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Impulse_Tspan       = [(Impulse_Time-

Time_Before_Impulse):Sampling_Interval:(Impulse_Time+Time_After_Impu

lse)]'; 

  
%% Define Inputs and Outputs for System Identification 

  
Input_U         =   Ch3_Input; 

  

Input_Norm      =   (Input_U - median(Input_U))/max(abs(Input_U-

median(Input_U))); 
Impulse_Input   =   

interp1(time,Input_Norm,Impulse_Tspan,'nearest'); 

  
Pos_T20_Output  =   

interp1(time_filt,Pos_T20_Filt,Impulse_Tspan)+2500; 
Pos_T21_Output  =   interp1(time_filt,Pos_T21_Filt,Impulse_Tspan); 
Heading_Output  =   

interp1(time,Heading_CMD_Deg_Filt,Impulse_Tspan); 

  
Input       =   -Impulse_Input; 
Output_T20  =   real(Pos_T20_Output(:,3)); 
Output_T21  =   real(Pos_T21_Output(:,3)); 
Output_Heading  = Heading_Output; 

  
figure(34); clf; 
subplot(2,1,1); plot(Impulse_Tspan,Input,'green'); legend('Impulse 

Signal'); title('Ch3 Command'); 
xlabel('Time (s)'); 
subplot(2,1,2); 

plot(Impulse_Tspan,Output_T20,'blue',Impulse_Tspan,Output_T21,'red')

; legend('T20 Position','T21 Position'); 
xlabel('Time (s)'); ylabel('Coordinate (mm)'); 

  
%% Display Commands and Responses for All Channels 

  
Ch1_Norm = (Ch1_Input - median(Ch1_Input))/max(abs(Ch1_Input-

median(Ch1_Input))); 
Ch2_Norm = (Ch2_Input - median(Ch2_Input))/max(abs(Ch2_Input-

median(Ch2_Input))); 
Ch3_Norm = (Ch3_Input - median(Ch3_Input))/max(abs(Ch3_Input-

median(Ch3_Input))); 
Ch4_Norm = (Ch4_Input - median(Ch4_Input))/max(abs(Ch4_Input-

median(Ch4_Input))); 

  
figure(35); clf; 
subplot(2,1,1); plot(Impulse_Tspan,Input,'green'); legend('Heading 

Command Signal'); 
title('Heading Command'); xlabel('Time (s)'); 
subplot(2,1,2); plot(Impulse_Tspan,Output_Heading); legend('Heading 

Response'); 
title('Heading Response'); ylabel('Heading (deg)'); 
%% 
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figure(36); clf; 
subplot(211); plot(time,Ch1_Norm,'green'); 
title('Ch1 Command'); xlabel('Time (s)'); 
subplot(212); 

plot(time_filt,Pos_T20_Filt(:,1),'blue',time_filt,Pos_T21_Filt(:,1),

'red'); 
title('Position Response - Left/Right'); xlabel('Time (s)'); 

legend('T20 X Position','T21 X Position'); 

  
figure(37); clf; 
subplot(211); plot(time,Ch2_Norm,'green'); 
title('Ch2 Command'); xlabel('Time (s)'); 
subplot(212); 

plot(time_filt,Pos_T20_Filt(:,2),'blue',time_filt,Pos_T21_Filt(:,2),

'red'); 
title('Position Response - Front/Back'); xlabel('Time (s)'); 

legend('T20 Y Position','T21 Y Position'); 

  
figure(38); clf; 
subplot(211); plot(time,Ch3_Norm,'green'); 
title('Ch3 Command'); xlabel('Time (s)'); 
subplot(212); 

plot(time_filt,Pos_T20_Filt(:,3),'blue',time_filt,Pos_T21_Filt(:,3),

'red'); 
title('Position Response - Altitude'); xlabel('Time (s)'); 

legend('T20 Z Position','T21 Z Position'); 

  
figure(39); clf; 
subplot(211); plot(time,Ch4_Norm,'green'); 
title('Ch4 Command'); xlabel('Time (s)'); 
subplot(212); plot(time,Heading_CMD_Deg_Filt,'blue'); 
title('Heading Response (deg)'); xlabel('Time (s)'); 

legend('Heading'); 
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function    [Filtered_Distance]   =   

RangeKalmanFilter(Time_Vector,Distance_Vector,Process_Noise,Measurem

ent_Noise) 

  
% function  [Filtered_Distance]   =   

RangeKalmanFilter(Time_Vector,Disance_Vector) 
% inputs    :   Time_Vector (vector of time stamps corresponding to 

each 
%               data point 
%           :   Distance_Vector (vector of distance measurements) 
%           :   Process_Noise (std dev of process noise, aka-error) 
%           :   Measurement_Noise (std dev of measurement noise, 

aka-error) 
% outputs   :   Filtered_Distance (distance measurements after 

filtering) 

  
Num_Pts = length(Time_Vector); 

  
% Initialize estimation variables: 
dt_avg = mean(diff(Time_Vector)); 

  

X_initial = [mean(Distance_Vector(1:10)); 0]; 
X_estimate = []; 
P_mag_estimate = []; 
Predict_State = []; 
Predict_Var = []; 
R_estimate = []; % Range estimate (postion) 
V_estimate = []; % 'Velocity' estimate (change in range) 

  
Filtered_Distance = []; 

  
% Set noise parameters: 
Process_Noise = Process_Noise; % (10?) std dev, variability in 

process (acceleration) 
Measurement_Noise = Measurement_Noise; % (20?) std dev, variability 

in measurement system 
Error_Measurement = Measurement_Noise^2; % Measurement noise 

covariance 
Error_Process = Process_Noise^2 * [dt_avg^4/4 dt_avg^3/2; dt_avg^3/2 

dt_avg^2]; % Process noise covariance 
P = Error_Process; % Initialize P best guess (using dt_avg) 

  
for t = 1:Num_Pts 

     
    if t == 1 
        X_estimate = X_initial; 
    else 

         
        dt = Time_Vector(t) - Time_Vector(t-1); 
        Error_Process = Process_Noise^2 * [dt^4/4 dt^3/2; dt^3/2 

dt^2]; 
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        % Define governing equations: 
        A = [1 dt; 0 1]; 
        B = [0; 0]; % There is no known control input (U) 
        C = [1 0]; 

   
        % Define noise parameters dependent on dt: 

         

        X_estimate = A*X_estimate; % B is assumed to be 0 because U 

is unknown 
        Predict_State = [Predict_State; X_estimate(1)]; 
        P = A*P*A' + Error_Process; 
        Predict_Var = [Predict_Var; P]; % Predict covariance 
        K = P*C'*inv(C*P*C' + Error_Measurement); % Calculate Kalman 

Gain 

         
        % Update state estimation 
        X_estimate = X_estimate + K*(Distance_Vector(t) - 

C*X_estimate); 

         
        %Update covariance estimation 
        P = (eye(2) - K*C)*P; 
    end 

     
    Filtered_Distance = [Filtered_Distance; X_estimate(1)]; 

  
end 
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