
Western Michigan University
ScholarWorks at WMU

Master's Theses Graduate College

6-2014

Localization and System Identification of a
Quadcopter UAV
Kenneth Befus
Western Michigan University, kenny.m.befus@gmail.com

Follow this and additional works at: http://scholarworks.wmich.edu/masters_theses

Part of the Aeronautical Vehicles Commons, Navigation, Guidance, Control and Dynamics
Commons, and the Propulsion and Power Commons

This Masters Thesis-Open Access is brought to you for free and open access
by the Graduate College at ScholarWorks at WMU. It has been accepted for
inclusion in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please contact
maira.bundza@wmich.edu.

Recommended Citation
Befus, Kenneth, "Localization and System Identification of a Quadcopter UAV" (2014). Master's Theses. 499.
http://scholarworks.wmich.edu/masters_theses/499

http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/grad?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/219?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/225?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses/499?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:maira.bundza@wmich.edu
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages

LOCALIZATION AND SYSTEM IDENTIFICATION OF A QUADCOPTER UAV

by

Kenneth Befus

A thesis submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

Department of Mechanical and Aeronautical Engineering

Western Michigan University

June 2014

Doctoral Committee:

Kapseong Ro, Ph.D., Chair

Koorosh Naghshineh, Ph.D.

James W. Kamman, Ph.D.

LOCALIZATION AND SYSTEM IDENTIFICATION OF A QUADCOPTER UAV

Kenneth Befus, M.S.E.

Western Michigan University, 2014

The research conducted explores the comparison of several trilateration

algorithms as they apply to the localization of a quadcopter micro air vehicle (MAV).

A localization system is developed employing a network of combined ultrasonic/radio

frequency sensors used to wirelessly provide range (distance) measurements defining

the location of the quadcopter in 3-dimensional space. A Monte Carlo simulation is

conducted using the extrinsic parameters of the localization system to evaluate the

adequacy of each trilateration method as it applies to this specific quadcopter

application. The optimal position calculation method is determined.

Furthermore, flight testing is performed in which real range measurement data

are collected for the purpose of post-processing and evaluation of the quadcopter’s

high-level open-loop response to three basic inputs: pitch/roll, thrust, and yaw rate

(heading angle). The raw range measurement data allow for the calculation of

position data that are then brought into the System Identification Toolbox

environment within Matlab. This tool is then used to generate ‘best fit’ transfer

functions for each of the aforementioned dynamic responses.

3

Copyright by

Kenneth Befus

2014

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Kapseong Ro for the general

support and direction that he offered as I progressed with the research and writing for

my master’s thesis. He has been very patient and accommodating over the course of

this endeavor.

Secondly, I would also like to thank my parents for being incredibly

accommodating and supportive of my thesis work. Their encouragement and

provisions played a major role in allowing me to finish this thesis paper while

working full-time.

I would like to thank my co-worker, Paul Stoving, for his help regarding the

Monte Carlo Simulation that is presented in this thesis paper. His thoughts and

comments helped me drive to achieve meaningful, relevant results that heavily

contribute to the value of this research.

And finally, I would like to thank Dr. Koorosh Naghshineh for encouraging

me to participate in the Accelerated Master’s Program at WMU. His direction has

enabled me to expedite my pursuit of a master’s degree in mechanical engineering.

Kenneth Befus

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Literature Review ... 3

1.2.1 Numerical Trilateration Methods 3

1.2.2 Closed-Form Trilateration Methods............................... 4

1.2.3 Kalman Filtering Concepts for Localization 6

II. COMPARISON OF TRILATERATIONS METHODS 7

2.1 Trilateration Overview .. 7

2.2 Trilateration Calculations by Method .. 9

2.2.1 ‘Simple’ Method ... 9

2.2.2 Linear Least Squares Method .. 11

2.2.3 Nonlinear Least Squares Method 13

2.2.4 Efficient Closed Form Position Estimation 16

2.2.5 Trilateration Using Cayley-Menger Determinants 18

iv

Table of Contents - continued

CHAPTER

2.3 Monte Carlo Simulation and Error Analysis.............................. 22

2.3.1 Simulation Overview .. 23

2.3.2 Simulation Results .. 31

III. DATA COLLECTION, FLIGHT TESTING AND SYSTEM

IDENTIFICATION ... 54

3.1 System Hardware and Software .. 54

3.1.1 Ultrasonic RFID Range Sensor Network 54

3.1.2 Data Acquisition Program ... 56

3.2 Flight Testing and Data Post-Processing 57

3.2.1 Range Sensor Data .. 59

3.2.2 Filtering of Raw Range Data ... 60

3.2.3 Filtering of Position Data Using Kalman Filter 64

3.3 System Identification in Matlab .. 70

3.3.1 Thrust Modeling ... 71

3.3.2 Pitch Modeling .. 74

3.3.3 Yaw Rate Modeling .. 77

IV. CONCLUSIONS AND FUTURE WORK... 80

4.1 Conclusions .. 80

4.2 Future Work ... 81

REFERENCES ... 82

v

Table of Contents - continued

APPENDICES .. 83

A. Trilateration Calculations in Matlab .. 83

B. Monte Carlo Simulation Matlab Program .. 94

C. Data Post-Processing and Kalman Filter Matlab Programs 109

vi

LIST OF TABLES

2.1 Approximate coordinates for all receivers ... 24

2.2 Summary of simulation parameters ... 31

3.1 Filtering values for Kalman Filter ... 68

vii

LIST OF FIGURES

2.1 Trilateration without noise .. 8

2.2 X-Y receiver layout for ‘Simple’ method .. 9

2.3 Geometric representation for each range measurement, 10

2.4 Simplex defined by receiver and quadcopter locations ... 19

2.5 Simplex volume with added vectors ⃗ and ⃗ and point 20

2.6 Receiver configuration for simulation .. 26

2.7 2D bins on X-Y plane at Z = constant .. 27

2.8 10,000 points randomly generated in X-Y plane where Z = 2000mm 28

2.9 Distribution of measurement errors for each receiver ... 29

2.10 MSE, Z = 1000mm .. 33

2.11 MSE, Z = 1000mm .. 34

2.12 XY Error, Z = 1000mm.. 35

2.13 XY Error, Z = 1000mm.. 36

2.14 Z Avg Error, Z = 1000mm ... 37

2.15 MSE, Z = 3000mm .. 38

2.16 MSE, Z = 3000mm .. 39

2.17 XY Error, Z = 3000mm.. 40

2.18 XY Error, Z = 3000mm.. 41

2.19 Z Avg Error, Z = 3000mm ... 42

2.20 MSE, Z = 5000mm .. 43

viii

List of Figures - continued

2.21 MSE, Z = 5000mm .. 44

2.22 XY Error, Z = 5000mm.. 45

2.23 XY Error, Z = 5000mm.. 46

2.24 Z Avg Error, Z = 5000mm ... 47

2.25 Average error in X, Y, and Z directions ... 51

2.26 Mean squared error in X, Y, and Z directions ... 52

2.27 Total mean squared error ... 53

3.1 Hexamite ultrasonic RFID transmitter and receiver .. 55

3.2 Six sensor mobile platform .. 55

3.3 DJI F450 quadcopter platform with front/rear transmitters 56

3.4 Data acquisition program GUI ... 57

3.5 Data flow for quadcopter localization .. 58

3.6 Raw data logged using DAQ system .. 59

3.7 Histograms for change in consecutive range measurements 62

3.8 Range measurement data before and after filtering ... 63

3.9 X, Y, and Z position calculation for T20 .. 64

3.10 Iterative process for Kalman filtering ... 67

3.11 Position data filtered with Kalman Filter .. 69

3.12 Heading angle data filtered with Kalman Filter .. 69

3.13 Thrust command and altitude response ... 71

ix

List of Figures - continued

3.14 Measured and modeled response .. 72

3.15 Altitude step response .. 73

3.16 Pitch command and Y position response .. 74

3.17 Measured and modeled pitch response ... 75

3.18 Y position step response... 76

3.19 Yaw rate command and heading response .. 77

3.20 Measured and modeled response .. 78

3.21 Heading step response .. 79

1

CHAPTER I

INTRODUCTION

1.1 Introduction

The use of large unmanned aerial vehicles (UAVs) in today’s world is

becoming increasingly common, however, the efforts that have been made to utilize

this technology on a smaller scale are few. Most existing smaller unmanned aircraft,

often called micro air vehicles (MAV), require a human operator to actively navigate

the vehicle by way of a remote control. This dependency on a human operator

negates the potential benefits that could be observed from the automated flight of an

MAV. One primary requirement for the automated flight and navigation of an MAV

is an awareness of the vehicles location in space as well as its instantaneous dynamic

state. And while current systems employ techniques that locate a unit via GPS, this

type of location identification falls short in multiple ways. It lacks the ability to

accurately, responsively, and reliably provide a position feedback at all times and/or

anywhere. For these reasons, other methods of localization of an MAV are being

explored.

One such localization method to be used in the context of MAVs and other

automated vehicles is based on range measurements via radio frequency (RF) sensors.

Multiple range measurements allow trilateration, which involves the position

2

calculation of an object based on its distances from several points whose coordinates

are known. This thesis explores the use of five trilateration methods for calculation

of a quadcopter MAV’s position in space. Among these five methods, three are

numerical methods, while the remaining two are closed-form approaches to

estimating the spatial position of the quadcopter while in flight. Each of the methods

is evaluated in terms of accuracy and robustness when comparing their output

position coordinates to that of the known position. The trilateration method that most

adequately suits the quadcopter application is determined.

An ultrasonic RFID range measuring apparatus comprised of six stationary

receivers is configured for use with the quadcopter and used to collect real-time

distance measurements utilizing two transmitters located on the quadcopter. This

system is integrated with and operated by a computer data acquisition

system/program developed for the sole purpose of recording quadcopter data to be

used for system identification.

Data collected while performing a series of flight tests provide a basis for the

derivation of a system-level model describing the quadcopter’s open loop responses

to step inputs. Matlab’s System Identification Toolbox is used to process this data

and generate transfer functions that will serve as inputs to the control system model.

3

1.2 Literature Review

1.2.1 Numerical Trilateration Methods

This study compares multiple trilateration methods that are used to calculate

the quadcopter’s position in space. Three of these methods employ a numerical

approach – meaning that approximate solutions are arrived at by way of numerical

calculation. Of the three methods used, two of them utilize error minimization

principles.

Simple Position Calculation

The ‘Simple’ Method is one that is published by the manufacturer of the

ultrasonic RFID sensor system used, Hexamite and is outlined in [1]. This method of

position calculation requires that a minimum of three stationary receivers (also

referred to as ‘beacons’) be oriented in a ‘square’ manner in which one receiver

defines the origin of the coordinate system: (X, Y, Z) = (0, 0, 0). A simple

calculation is used to approximate the position of the transmitter (also referred to as

‘tag’) in space with respect to the coordinate system defined by the orientation of the

receivers. While computational demands are low for this method, the calculation

requires specific orientation of the receivers and is less robust than other methods.

4

Another trilateration method included in this study is the ‘Linear Least

Squares’ approach outlined in [2] by Hereman and Murphy. This approach stems

from the concept that the intersection of three spheres, whose radii are defined by the

range measurements observed from each of three sensors, defines the location of the

helicopter in space. The system of equations derived are linearized, and squared error

is minimized to arrive at a solution that is only accurate when range measurements

are exact. This method lacks the robustness necessary to produce an acceptable

calculated when range measurements are approximate.

Nonlinear Least Squares

Also presented in [2] by Hereman and Murphy, the ‘Nonlinear Least Squares’

trilateration method attempts to accommodate a system exhibiting inherent errors (as

all real systems do). An error-minimizing function is used to minimize squared errors

iteratively for one set of range values. For the exemplary application presented by

Hereman and Murphy, this method proves to be the most reliable for position

calculation using error-ridden range values.

1.2.2 Closed-Form Trilateration Methods

The remaining two trilateration methods can be classified as ‘closed-form’ in

which a finite number of mathematical operations are used to arrive at a solution.

These methods are preferred over most numerical methods as they minimize the time

Linear Least Squares

5

needed for computation and are capable of being equivalently or more robust to range

value inputs with error.

Efficient Closed Form Position Estimation

This approach minimizes computational load by exactly calculating the vector

describing the position of an object whose range from 3 beacons is measured. The

method that Manolakis outlines in [3] places a large emphasis on the height

calculation portion as the application in the context of this document is the height

calculation of an aerial vehicle independent from the barometric altimeter. We find

that this particular method does not adequately fit the application of a MAV

quadcopter for a number of reasons.

Robot Localization Using Cayley-Menger Determinants

In [4] a closed form position calculation method is presented that has been

derived entirely geometrically – meaning that all calculations describe geometric

relationships in a Euclidean space. Thomas and Ros approach the trilateration

problem based on the understanding that the 3-receiver/1-transmitter system creates a

simplex volume. The trilateration calculation derived from this principle concept is

unlike the others presented in this thesis. It proves to be the most generally adequate

for the application of the quadcopter MAV.

6

Not unlike most real-time data acquisition systems, data filtering is required

for the data collected using the RFID sensor network developed for the purpose of

this study. Kalman filtering concepts are adapted and applied similarly to that

outlined in [7] by Shareef and Zhu. Kalman filters utilize state-space models in order

to make data estimations and incorporate the consideration of known process and data

measurement errors. [7] is used as a basis for developing a Kalman filter that is tuned

for the quadcopter application presented in this study.

1.2.3 Kalman Filtering Concepts for Localization

7

CHAPTER II

COMPARISON OF TRILATERATION METHODS

2.1 Trilateration Overview

Prior to diving into the specific derivations for the calculations that make up

each of the trilateration methods compared in this thesis, it is important to understand

the general trilateration concept as it applies to an MAV. For each of the trilateration

methods that are evaluated, the receivers are assumed to be stationary. Each of these

receivers measures the range (distance, in millimeters) to the target object

(transmitter). The coordinates defining the location of each of these receivers are

known. Depending on the trilateration method being used, measurements from

between 3 and 6 of these receivers are used to determine the position of one

transmitter in space. A minimum of 3 measurements are needed in order to determine

the location of one transmitter. This requirement is dictated by the concept that the

intersection of 3 spheres defines a point in space where the radii are the distances

from each receiver to the transmitter and the center of each sphere is the respective

location of a receiver. This is visualized in Figure 2.1.1. However, the Linear and

Nonlinear Least Squares methods are accepting of as many distance measurements as

are available.

8

The sphere surrounding any one of the receivers is defined mathematically in

Equation 2.1:

()
 ()

 ()

 (2.1)

where i = 1, 2, …, n for n different receivers, () is the location of

receiver i, and is the range measurement received from receiver i (also defines

radius of sphere). Therefore, we have a system of n nonlinear equations for which

there is only one solution, (x,y,z), if n is equal to 3 or more and the range

measurements from each receiver are exact. The relationships defined by this system

of equations serves as a basis for most trilateration calculation methods.

Figure 2.1: Trilateration without noise

9

2.2 Trilateration Calculations by Method

2.2.1 ‘Simple’ Method

The first of the five methods considered in this paper is referred to as the

‘Simple Method’ and, as its name implies, is a simplified approach to solving the

position estimation problem of some target object in space. This method is presented

in [1] and is a basic approach recommended for use with the Hexamite HX19

RFID/USID sensor system (for which more details will be provided in latter portions

of this paper). This method imposes some constraints on the spatial configuration of

the receivers being used:

1) All receivers are located on the same plane defined by z = 0.

2) The locations of the receivers are such that they form at least 3 vertices of

a rectangle.

3) One receiver is located at the origin, (0,0,0).

Figure 2.2: X-Y receiver layout for 'Simple’ method [1]

9

10

Figure 2.2 shows an exemplary receiver layout where all receivers (4, total) are

located at the vertices of a 1m x 1m square in the XY plane [1].

The three geometric relationships illustrated in Figure 2.3 can be manipulated to

arrive at the following equations:

 (

) () (2.2)

 (

) () (2.3)

 (2.4)

This set of equations serves as a very simple way to calculate the spatial postion of a

target object in space. However, this method makes no effort to account for error in

the range measurement received from each receiver.

Figure 2.3: Geometric representation for each range measurement, 𝒓𝒊

11

2.2.2 Linear Least Squares Method

This trilateration approach, outlined in [2], suggests a calculation which builds

on the concept of intersecting spheres. It begins with a system of equations in which

each equation is defined by equation (2.1). For n receivers (whose location

coordinates are known), there are () equations that comprise the system. The

number of receivers is not limited for this calculation but must be greater than or

equal to four (this results from having three unknown variables and n-1 equations).

The number six is used because it is the maximum number of receivers in our system

available to provide range measurements. To begin, the system is linearized by

adding a constraint – adding and subtracting , , and :

()
 ()

 ()

After expanding and regrouping terms, this leads to

()() ()() ()()

[

] .

where

 √() () () (2.5)

is the distance between receivers and and is a calculated constant. Any of

the six available receivers can be used to serve as the linearizing constraint. The first

receiver is choosen, . This leaves a system of five equations:

12

()() ()() ()()

()() ()() ()()

()() ()() ()() .

This can be represented in matrix form:

 ⃗ , (2.6)

where

 [

],

 [

],

 ⃗ [

].

A solution can be obtained by solving the linear system presented above; however,

the solution is only valuable if all range measurements are exact. As is true with any

real-world system, some error is present in the range measure meants collected from

each receiver. In order to minimize the effect of this error the squared error is

minimized:

 (⃗) (⃗)

which leads to the normal equation solved for the estimated position vector, ⃗ :

 (2.7)

13

This completes the overview of the Linear Least Squares trilateration method. In [2],

Hereman and Murphy comment that while being an improvement upon the linear

system calculation (Equation 2.5) this method is still ‘unacceptable’ for use within the

system presented.

2.2.3 Nonlinear Least Squares Method

The third trilateration method is one that is designed to be more robust than

the previous two methods in the sense that it can more adequately handle range

measurements that are error ridden [2]. It is recursive in nature and requires an

interative loop when implemented using analytical software, such as Matlab, to

converge on an acceptable solution. Again, the max number of receivers available is

six, and this is that number that is used for analysis with this method. However, as

few as four receivers could be used, and there is no upper limit to the number of

receivers that could be used. Following, is the presentatation of the Nonlinear Least

Squares trilateration method provided in [2].

To begin, define the error looking to be minimized as

 () ∑(̂)
 ∑ ()

where ̂ denotes the exact distance from receiver i to the target object and is the

measured distance (includes error) and

 () ̂ √() () () (2.8)

14

 is the error calculated for one range measurement based on the estimated

coordinates of the target object (). Therefore, for six receivers, () is the

sum of six squared errors (each calculated as

).

Minimizing () requires that the derivative be taken with respect to

 , respectively. The result of this is

 ∑

 ∑

 ∑

Vectors and ⃗ are added as well a the Jacobian matrix, , introduced:

[

]

[

]

 ⃗

[

]

and

 ⃗ .

Using Newton’s Method for finding minima gives

 ⃗⃗ ⃗⃗ (
)

15

where ⃗⃗ () and () and () denote calculations for previous and current

iterations, respectively, and

[

 ∑

()

()

 ∑

()()

()

 ∑

()()

()

∑
()()

()

 ∑

()

()

 ∑

()()

()

∑
()()

()

 ∑

()()

()

 ∑

()

()

]

 (2.9)

[

 ∑

()

()

∑
()

()

∑
()

()

]

. (2.10)

Ideally, new approximations are iteratively generated for ⃗⃗ until a solution is

reached. However, it is likely that no exact solution is arrived at by way of iterative

calculation. For this reason, the difference in magnitude of position vectors is

evaluated for each iteration, and if the difference in this magnitude is reasonably

small for consecutive iterations (in this case | ⃗⃗ | | ⃗⃗ |
) then the

 ⃗⃗ position coordinates are used for the position estimation.

16

2.2.4 Efficient Closed Form Position Estimation

 In [3], Manolakis presents a position calculation method that is intended to be

‘exact, explicit, and computationally efficient.’ By isolating calculated portions that

pertain to unchanging known values (such as receiver coordinates and the distance

between receivers), the computational magnitude is minimized for each set of range

measurement data. Presented next is the high-level summary of calculations as they

are applied to the range sensor system on hand. This method is only accepting of

three range measurements.

We begin with the familiar equation

 √() () () (2.11)

where now refers to the distance measurement acquired from receiver i. Now we

define

 as

 .

Squaring Equation 2.11 and substituting

 gives

 , (2.12)

for i = 1,2,3. By subtracting
 from

 we arrive at

for i = 2,3 and

Then the following are defined:

 ,

17

where

 [

],

 [

],

 [],

 [

],

and

 (

) .

We now define the quadcopter’s horizontal position, , as

 (), (2.13)

 [] , (2.14)

and rewrite equation (2.4.4b) as

 . (2.15)

Equations (2.13) and (2.14) can be substituted into (2.15) to yield the quadratic

equation

 (2.16)

where

 ,

 ,

 .

18

This allows us to solve for :

 ()

, (2.17)

and, by plugging z back into equation (2.13), x and y can be calculated:

 () ().

It should be noted that , , and are calculated from the stations’

locations coordinates only (one time calculation). Only is dependent on the range

measurements from each receiver. This aids substantially in reducing computational

complexity [3].

2.2.5 Trilateration Using Cayley-Menger Determinants

The fifth, and final, method for estimating the position of the quadcopter

discussed in this paper takes an altogether different approach. It is derived entirely

geometrically and allows the locations of three receivers and that of the target object

to define the vertices of a simplex volume in a Euclidean space. This method,

outlined in [4] by Thomas and Ros, avoids employing algebraic manipulation of the

governing system of equations. Instead, all mathematical manipulations have

geometric implications making it a somewhat more tangible trilateration approach.

Cayley-Menger determinants are utilized to define the relationship between the

volume of the simplex and the three range measurements.

Figure 2.4 shows the locations as the three receivers as while

the unknown location of the quadcopter is represented as ; are the

range measurements corresponding to receivers one, two, and three, respectively.

19

The derivation in its entirety is not shown here but can be found in [4]. The primary

calculations implemented in the Matlab program are provided.

To begin, once again we have a system of equations describing the

intersection of three spheres:

()
 ()

 ()

()
 ()

 ()

()
 ()

 ()

}. (2.18)

The number of points that make of the simplex volume in 3D space is (). The

Cayley-Menger bideterminant of two sequences of points [] and

[] is

 ()

Figure 2.4: Simplex defined by receiver and quadcopter locations

20

Figure 2.5: Simplex volume with added vectors �⃗� 𝟏 and �⃗� 𝟐 and point 𝐩

 (

)

|
|

 () () ()
 () () ()
 ()

 () () ()

|
|

(2.19)

where () represents the squared distance between points and . For cases

when the two sequences of points are the same, () is the

Cayley-Menger determinant and is defined for () as

 () ()

 ‖() ()‖
 (2.19)

Let us define vectors ⃗ and ⃗ as

 ⃗ () and ⃗ ().

Additionally, point is defined as the orthogonal projection of onto the base of the

tetrahedron (defined by points , , and). These are shown in Figure 2.5. Also,

21

 ⃗ ⃗ (2.20)

where

 ()

 ()

and

 ()

 ()

Furthermore, the height (z-component) can be included by

 (⃗ ⃗) (2.21)

where

 √ ()

 ()

Using the definition for the Cayley-Menger bideterminant (or determinant of

sequence if points are the same - i.e.: () ()),

 and are calculated as

 (

)

||

 ()

 ()

 ()

||

‖() ()‖
 (2.22)

 (

)

||

 ()

 ()

 ()

||

‖() ()‖
 (2.23)

 (

)

|

|

 () ()

 () ()

 () ()

|

|

‖() ()‖
 (2.24)

22

This allows for the computation of the coordinates describing the location of point

as

 (⃗ ⃗) () (2.25)

This method of trilateration is comparable to the Efficient Closed Form

Position Estimation method in its computational efficiency but proves to be more

robust in other ways. This is investigated later in this study.

2.3 Monte Carlo Simulation and Error Analysis

Any of the aforementioned trilateration methods provide equally acceptable

solutions if no error exists within the quadcopter position estimation system.

However, no real-world system operates in an error-free manner. While some general

error analyses have been presented pertaining to the trilateration methods examined in

[2], [3], and [4], the purpose of this portion of the study is to evaluate the

effectivenness of each method as it applies to the quadcopter application. In this

section, four of the five different trilateration methods outlined in the previous section

are evaluated by way of conducting a Monte Carlo Simulation.

 For this simulation system parameters are set to generally reflect the

characteristics and parameters of the ultrasonic RFID sensor system that is used with

the quadcopter. While the details pertaining to this system will be explained in

greater depth later in this paper, it is important to note that this simulation is generally

representative of the test system used for this study as the intention of this comparison

is to determine which of these methods best suits the quadcopter application.

23

2.3.1 Simulation Overview

Monte Carlo simulations are often used to understand how noise-inducing

factors of a system affect the output of the system. Often systems will have many

potential sources of variation. The effect of these sources, individually and

altogether, need to be fully understood in order to know the system will always

perform the way it is intended. This is known as designing for robustness – a major

primary concept in Design for Six Sigma practices. For the purpose of our

quadcopter localization system, a Monte Carlo simulation is conducted in order to

observe the effects of error in the range measurements made by each receiver on the

position estimation calculated using each trilateration method. Although there are

certainly other sources of error in the quadcopter system, the error in range

measurements from the receivers tend to be dominant and are the most capable of

impacting the proper functioning of the system. For this reason, only range

measurement error is simulated as it affects the calculated position.

Beginning with one point, ̂ (), in space whose coordinates are

randomly generated and known, the exact distance between ̂ and each receiver is

calculated as

 ̂ √() () () (2.26)

and

 ̂ (2.27)

24

where and are the location coordinates of receiver i and is the error in the

range measurement for for receivers. In this simulation, the

measurement error is assumed to be normally distributed with a mean of zero. This is

typical when using the Monte Carlo method. Approximate values for and are

shown in Table 2.1 and mimic the coordinates of the real system.

Table 2.1: Approximate coordinates for all receivers

Receiver #, i
 ,

(mm)

 ,
(mm)

 ,
(mm)

1 -325 158.572 22

2 325 158.572 22

3 0 -375.278 22

4 0 750.552 0

5 -650 -375.278 0

6 650 -375.278 0

 is defined as a random variable whose distribution is normal and is

characterized by a standard deviation of . The variation observed in range

measurements using the Hexamite HX19R receivers is relatively small (on the order

of 1-2 mm), but a conservative value is used here as error can increase over prolonged

use. For this simulation mm is used for all receivers (). If some

receivers were known to exhibit more or less variation in range measurements than

25

the others then could be valuated according to the individual receiver’s

performance characteristics.

Now that is available for all receivers, each trilateration method is used to

again calculate the position based on the range measurements that include added

error. This is done with all methods except the ‘Simple’ method. The reason for this

is that it is largely redundant as the Linear Least Square method is derived in a very

similar manner to that of the ‘Simple’ method. Thus,

 (),

 (),

 (),

 ().

where , and are the calculated positions using the Linear Least

Squares, Nonlinear Least Squares, Efficient Closed Form, and Cayley-Menger

Determinant methods, respectively. The reason for using range measurements ,

and for the latter two methods is that these are the outermost receiver locations

given the triangular configuration shown in Figure 2.6. Using these receivers helps to

minimize sensitivity to error by spanning a larger area.

26

In order to find the error associated with each position estimation, the

difference must be taken:

 ̂

 ̂

 ̂

 ̂

Knowing the amount of error in in the position estimation for one set of error-ridden

range measurements is not all that helpful, and it is not an effective way of comparing

trilateration methods. Performing a Monte Carlo simulation involves generating

sufficiently many points such that the mean error is zero for all points within any

localized volume of the 3D space being considered.

-2000

-1000

0

1000

2000

-2000

-1000

0

1000

2000

0

1000

2000

3000

4000

5000

X-CoordinateY-Coordinate

Z
-C

o
o
rd

in
a
te

Rx4
Rx2

Rx6

Rx3

Rx5

Rx1

Figure 2.6: Receiver configuration for simulation

27

Figure 2.7: 2D Bins on X-Y plane at Z = constant

Instead of simulating for a volume, points are randomly generated in an X-Y

plane where z is constant. An example of this is shown in Figure 2.8. These points

could also be generated in space, however, it would require that many more points be

used for the simulation. It is found to be more appropriate to perform the simulation

at multiple values of z and compare those results individually. These points are the

exact known locations of the quadcopter in space (̂). In order to analyze the results

of the simulation in a meaningful way, it is necessary to lump all these data (actual

positions and estimated positions) into 2D bins, called pixels, such that each 2D

segment of data can be statistically analyzed. This concept is visualized in Figure

2.7. A bin size of 1000mm is used for this simulation (pixel = 1000mm x 1000mm).

28

-5000
-4000

-3000
-2000

-1000
0

1000
2000

3000
4000

5000

-5000
-4000

-3000
-2000

-1000
0

1000

2000
3000

4000
5000

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

X-Coordinate

Randomly Generated Points, z = 2000mm

Y-Coordinate

Z
-C

o
o
rd

in
a
te

Figure 2.8: 10,000 points randomly generated in XY plane where Z = 2000mm

The assortment of histogram plots shown in Figure 2.9 serve as an example

for how added-error values are normally distributed (with mean of zero) for each

receiver.

29

Once all data points have been sorted into the aformentioned pixels (2D bins),

specific metrics can be obtained for each pixel as well as for the whole plane of

points. The metrics that are used to evauluate the average error in each directions

() are defined as

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx1

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx2

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx3

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx4

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx5

-30 -20 -10 0 10 20 30
0

1

2

3

4
x 10

4

Error BIN (mm)

F
re

q
u

e
n

c
y

Histogram of Error Values: Rx6

Figure 2.9: Distribution of measurement errors for each receiver

30

 () (
∑

)

,

 () (
∑

)

, (2.28)

 () (
∑

)

.

The same can be done for mean squared error in each direction:

 () (
∑

)

,

 () (
∑

)

, (2.29)

 () (
∑

)

.

Total MSE for a pixel is

 () (
∑

)

 (
∑

)

 (
∑

)

 () () (). (2.30)

where and specify the indices of the the pixel of interest within the XY plane of

pixels, is the number of points contained by that pixel, and , and are

the and components of the error vector . Furthermore, these metrics can be

used to obtain similar metrics for the whole set of points plotted in the XY plane

defined.

 This Monte Carlo simulation is performed for the parameters and respective

values summarized in Table 2.2. The Matlab program developed to perform this

simulation can be found in Appendix B.

31

Table 2.2: Summary of simulation parameters

Parameters for Monte Carlo Simulation

X-Span: -8000 to +8000 mm

Y-Span: -8000 to +8000 mm

Z-Value (height): 1000, 2000, 3000, 4000, 5000, and 7000 mm

Bin Size: 1000 mm

Number of Points: 100,000

Std Dev of Rx Error: 5 mm

2.3.2 Simulation Results

All parameters are held constant for these simulations except for the height

parameter. This parameter dictates how many simulations must be performed. In this

case, six simulations are run, and the same metrics are used to analyze the results of

each simulation. Surface, contour, and quiver plots are shown for the simulations

when Z = 1000mm, 3000mm, and 5000mm. By looking at Figures 2.10 – 2.24 it can

be seen that the four trilateration methods simulated perform very differently.

There are multiple eligible approaches evaluating the performance of each of

these trilateration methods individually. The interest of this study is to establish

which method will be the most appropriate and effective for the application of the

quadcopter UAV. Several general performance metrics are commonly used when

32

evaluating trilateration methods such as those simulated in this study. Among these

metrics are accuracy, precision, complexity, and robustness [5]. The two that are

used for analyzing the simulation results are accuracy and precision. Accuracy within

this context is defined as location error (where smaller location error equals a higher

accuracy). This metric translates as being a measure of systematic location bias

induced by the position calculation method used. Average error in each direction (x,

y, and z) is used to quantify this for each method (equation 2.3.1g). We would expect

the average error to be near zero in each localized space in the event that there is no

biasing. Precision is considered to measure the variation in results. In the case of the

position calculation, we can consider precision to be the variation in distance error

between the estimated position and the actual position for a constant actual position.

The mathematical metric used for this analysis is mean squared error (MSE). The

MSE can be calculated in each direction (x, y, and z) or as a total squared distance –

both are used here.

33

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - LS Method, Z=1000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000

-6000

-4000

-2000
0

2000

4000

6000

8000

-8000

-6000

-4000

-2000
0

2000

4000

6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - NLS Method, Z=1000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

Figure 2.10: MSE, Z = 1000mm

34

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - CFP Method, Z=1000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - CMD Method, Z=1000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

Figure 2.11: MSE, Z = 1000mm

35

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - LS Method, Z=1000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - NLS Method, Z=1000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.12: XY Error, Z = 1000mm

36

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CFP Method, Z=1000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CMD Method, Z=1000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.13: XY, Error, Z = 1000mm

37

-5000
0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - LS Method

Y Coordinate (mm)
-5000

0
5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - NLS Method

Y Coordinate (mm)

-5000
0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CFP Method

Y Coordinate (mm)
-5000

0
5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CMD Method

Y Coordinate (mm)

Figure 2.14: Z Avg Error, Z = 1000mm

38

-8000

-6000

-4000

-2000
0

2000

4000

6000

8000 -8000

-6000

-4000

-2000

0
2000

4000

6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Y Coordinate (mm)

Mean Squared Error - LS Method, Z=3000 mm

X Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000 -8000
-6000

-4000
-2000

0
2000

4000
6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Y Axis

Mean Squared Error - NLS Method, Z=3000 mm

X Axis

Figure 2.15: MSE, Z = 3000mm

39

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

10
8

10
9

X Coordinate (mm)

Mean Squared Error - CFP Method, Z=3000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Axis

Mean Squared Error - CMD Method, Z=3000 mm

Y Axis

Figure 2.16: MSE, Z = 3000mm

40

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - LS Method, Z=3000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - NLS Method, Z=3000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.17: XY Error, Z = 3000mm

41

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CFP Method, Z=3000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CMD Method, Z=3000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.18: XY Error, Z = 3000mm

42

-5000
0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - LS Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000
0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - NLS Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000
0

5000

-5000

0
5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CFP Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000
0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CMD Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

Figure 2.19: Z Avg Error, Z = 3000mm

43

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - LS Method, Z=5000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - NLS Method, Z=5000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

Figure 2.20: MSE, Z = 5000mm

44

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

-8000
-6000

-4000
-2000

0
2000

4000
6000

8000

10
9

X Coordinate (mm)

Mean Squared Error - CFP Method, Z=5000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10
4

10
5

10
6

10
7

10
8

10
9

X Coordinate (mm)

Mean Squared Error - CMD Method, Z=5000 mm

Y Coordinate (mm)

M
S

E
 (

m
m

2
)

Figure 2.21: MSE, Z = 5000mm

45

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - LS Method, Z=5000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - NLS Method, Z=5000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.22: XY Error, Z = 5000mm

46

\

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CFP Method, Z=5000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
XY MSE and XY Error Biasing - CMD Method, Z=5000 mm

X Coordinate (mm)

Y
 C

o
o
rd

in
a
te

 (
m

m
)

XY MSE

Avg XY Error Vectors

Receiver Locations

Figure 2.23: XY Error, Z = 5000mm

47

-5000

0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - LS Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000

0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - NLS Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000

0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CFP Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

-5000

0

5000

-5000

0

5000

-800

-600

-400

-200

0

200

400

X Coordinate (mm)

Avg Z-Error - CMD Method

Y Coordinate (mm)

E
rr

o
r

(m
m

)

Figure 2.24: Z Avg Error, Z = 5000mm

48

While not providing an exhaustive visual comparison of the four trilateration

methods, the plots shown at the three heights (Z = 1000, 3000, and 5000mm) allow

for sufficient visualization of each method’s performance within the 3D space

simulated. At Z = 1000mm, it can be seen that for all methods, precision decreases

dramatically as the quadcopter moves away from the origin. This can be explained

as approaching a singularity, in which the quadcopter would be located on the Z =

0mm plane. When this happens, no meaningful position estimation can be made.

Some methods exhibit asymptotic behavior at Z = 0mm Among all methods, the

CMD method appears to be the most robust at Z = 1000mm.

Average Position Error Results

The average position error results are summarized in Figure 2.25 for all

simulations. It should be noted that CMD and CFP methods are combined (only one

plot for both) for the ‘Average X Error’ and ‘Average Z Error’ plots. The reason for

this is that the results for these methods are identical in the X and Z directions.

However, this is not the case for the Y direction. It can be seen that no error bias

exists in the X direction for any of the trilateration methods. A mean of zero error is

maintained for all simulations. In the Y direction only the CFP method (uses

secondary vertical axis) exhibits non-zero error bias. Figures 2.13, 2.18, and 2.23

show this as the XY error vectors are consistently pointing in the negative Y

direction. This indicates that some inherent bias exists in the Y direction for the CFP

method. The ‘Average Z Error’ plot suggests that most all methods exhibit minimal

49

error bias in the Z direction except the NLS method. For this method, The Z error

tends to increase as the height increases. At Z = 7000mm, the error has been reduced

to nearly 0.

Mean Squared Error Results

The mean squared error (MSE) results are summarized in Figure 2.26 for all

simulations. Once again, results for CFP and CMD methods are represented as one

line for X MSE and Y MSE as the results are identical for both methods. Also, the Y

MSE results for the CFP method correspond to the secondary vertical axis (similar to

that in Figure 2.25). MSE is an appropriate representation of total error as it

measures both accuracy and precision. Here we find that X MSE and Y MSE

generally increase as Z increases for all methods. This is not surprising as the system

becomes increasingly sensitive to error as the quadcopter moves farther away from

the origin. Mixed results are observed among the the four trilaterations for Z MSE.

While the error becomes increasingly large with increasing Z when using the LS

method, the NLS method shows a maximum error near Z = 2000mm then tends

towards 0 as Z continues to increase. Both the CFP and CMD methods show

identical results for Z MSE and are near zero for all simulated Z values.

The total MSE is shown for each method in Figure 2.27. This is simply a

summation of X, Y, and Z MSE and serve as an overall representation of error at each

height, Z. Again, the CFP plot corresponds with the scale shown on the secondary

vertical axis. This comparison very clearly shows that the CMD method exhibits the

50

least overall error and is the least sensitive to error based on the postion of the

helicopter in in the space simulated.

51

Figure 2.25: Average error in X, Y, and Z directions

52

Figure 2.26: Mean squared error in X, Y, and Z directions

53

Figure 2.27: Total mean squared error

54

CHAPTER III

DATA COLLECTION, FLIGHT TESTING, AND SYSTEM IDENTIFICATION

3.1 System Hardware and Software

A prototype test setup has been developed using the Hexamite RFID sensor

network and the DJI F450 radio controlled quadcopter platform. Additionally, a data

acquisition system was developed to allow for data collection that was later used to

generate transfer functions describing the quadcopter’s response to several basic

inputs.

3.1.1 Ultrasonic RFID Range Sensor Network

Six ultrasonic RFID receiver sensors (Rx) and two ultrasonic RFID

transmitters (Tx) are used to provide range measurements (up to 14 meters) from the

quadcopter to the stationary receivers. The Rx/Tx sensor combination used is the

Hexamite HX19 system. Each of these is shown in Figure 3.1. A mobile wooden

platform was built to mount each of the six receivers. The location of each receiver is

known and not subject to variation in position as a result. The configuration of the

six receivers on this platform is shown in Figure 3.2. The two transmitters are

secured to the front and rear of the F450 quadcopter as shown in Figure 3.3. Using

two transmitters (as opposed to only one) allows for the heading angle to be

calculated and also yields a more reliable estimation of the quadcopter’s position.

55

Figure 3.1: Hexamite ultrasonic RFID transmitter (left) and receiver (right)

The Hexamite HX19 system was chosen for this study for its high advertised range

measurement accuracy (several millimeters), rather light weight components (most

critical for the transmitters), low cost, and ease of integration with a data acquisition

system.

Figure 3.2: Six sensor mobile platform

56

3.1.2 Data Acquisition Program

A customized program was developed for the purpose of: 1) integrating with

the HX19 sensor system to facilitate the acquisition and logging of range

measurement data and 2) integrating with the the Futaba 2.4GHz radio system to send

controlled, automated, and isolated commands to the quadcopter using the ‘buddy

box’ capability included on most modern hobby radio systems. Some of the basic

functions of the program developed include the following:

1) Data acquisition, logging, and report generation

Figure 3.3: DJI F450 quadcopter platform with front/rear transmitters

57

2) Trim adjustment (all channels)

3) Instantaneous position calculation and visualization (X, Y, Z, & heading)

4) Control command impulse delivery for flight testing and system

identification

A screenshot of the program’s user interface is shown in Figure 3.4.

3.2 Flight Testing and Data Post-Processing

A series of flight tests were conducted to verify that the data acquisition

program was functioning properly and collecting data there were accurate,

Figure 3.4: Data acquisition program GUI

58

meaningful, and useful. Ultimately, the goal is to have a system that provides real-

time position feedback for the quadcopter. However, for the purpose of this study,

data were recorded and post-processed in order to learn more about the system and

characterize the high-level operation of the quadcopter. An overview of the data

collection system and post-processing operations is shown in Figure 3.5.

Figure 3.5: Data flow for quadcopter localization

59

3.2.1 Range Sensor Data

The data collected using the HX19 sensor system is compiled using the

aforementioned data acquisition (DAQ) program where timestamps are assigned to

range measurements received from each receiver. The system consists of six

receivers and two transmitters (on quadcopter). This allows for a total of 12 range

measurements to be available at any given time. The DAQ program updates the

range measurement for each Tx/Rx pair as often as possible, and an example of the

resulting time-series data is shown in Figure 3.6.

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R40 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R41 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R42 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R43 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R44 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

0 10 20 30 40 50 60 70
0

5000

10000

15000
T20-R45 Raw Data

Time (s)

D
is

ta
n
c
e

 (
m

m
)

Figure 3.6: Raw data logged using DAQ system

60

The data set shown represents the measured distance between transmitter

‘T20’ and each of the six receivers, ‘R40,’ ‘R41,’ ‘R42,’ ‘R43,’ ‘R44,’ and ‘R45.’ A

similar set of data is also available for the second of two transmitters, ‘T21.’ The

receivers are found to produce occasionally error-ridden measurements. This is

indicated in Figure 3.6 by the large spikes in the data stream. However, due to the

nature of these errors some simple filtering can be applied in order to minimize their

impact on the position calculation.

3.2.2 Filtering of Raw Range Data

The errors that are observed in the raw data streams can be filtered out by way

of ensuring that a few known physical constraints of the system are adhered to. These

will serve as a ‘check’ to evaluate whether a particular set of range measurements

make physical sense in the context of our system. The two simple constraints used

for this filtering pertain to 1) the maximum possible speed of the quadcopter and 2)

the fixed separation of the two transmitter mounted on the quadcopter.

Filter 1: Velocity Constraint

The quadcopter is simply not capable of moving at high speeds. And although

the exact speed of the quadcopter is not known prior to calculating and comparing

positions from consecutive sets of range measurements, it is known that the range

measurement provided by a particular Tx/Rx pair can not change at a rate that is

greater than the maximum speed of the quadcopter. Even this assumption is

61

conservative as the quadcopter would have to be moving along a path which is

collinear with line defined by the initial coordinates of the receiver and that of the

transmitter. Figure 3.7 shows six histograms for the difference in consecutive range

measurement values for the same data sets shown in Figure 3.6. As expected, the

majority of the values are near zero. The values that fall to the left and right of the

center column on each plot are indicative range measurement errors. The value of

1000mm is used as the cutoff for maximum quadcopter speed. This translates as

roughly 10 m/s (or 22.3 mph) given that the maximum sampling interval is roughly

0.1 seconds (data is not an evenly spaced time-series). The filter implemented, ‘Filter

1,’ removes all range measurement values indicating that the quadcopter is moving

faster than 10 m/s. For these errors, the previous range measurement is simply

adopted.

Filter 2: Fixed Transmitter Separation

The second physical constraint is that the physical distance between the two

transmitters mounted on the quadcopter is fixed. This means the difference between

range measurements from any one receiver to each of the transmitters should not

exceed a certain value. The distance used here is 0.5 m. The physical distance

between the two transmitters (see Figure 3.3) when measured with a tape measure.

The filter implemented evaluates the data such that if the difference between the two

measurements for one receiver to each of the transmitters is larger than 500 mm then

62

the previous measurement values are used. Figure 3.8 shows the plotted time-series

data before and after filtering.

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R40

Change in Range Measurement (mm)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R41

Change in Range Measurement (mm)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R42

Change in Range Measurement (mm)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R43

Change in Range Measurement (mm)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R44

Change in Range Measurement (mm)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

200

400

600

800

1000

1200
Histogram of Change in Range Values: T20R45

Change in Range Measurement (mm)

Figure 3.7: Histograms for change in consecutive range measurements

63

0 10 20 30 40 50 60 70
0

5000

10000

15000

Time (s)

T20-R40 Data Before and After Filtering

Raw Data

Filtered Data

0 10 20 30 40 50 60 70
0

5000

10000

15000

Time (s)

T20-R41 Data Before and After Filtering

Raw Data

Filtered Data

0 10 20 30 40 50 60 70
0

5000

10000

15000

Time (s)

T20-R42 Data Before and After Filtering

Raw Data

Filtered Data

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

Time (s)

T20-R43 Data Before and After Filtering

Raw Data

Filtered Data

0 10 20 30 40 50 60 70
0

5000

10000

15000

Time (s)

T20-R44 Data Before and After Filtering

Raw Data

Filtered Data

0 10 20 30 40 50 60 70
0

5000

10000

15000

Time (s)

T20-R45 Data Before and After Filtering

Raw Data

Filtered Data

Figure 3.8: Range measurement data before and after filtering

64

3.2.3 Filtering of Position Data Using Kalman Filter

Following the filtering of the raw data, a position calculation is made for each

set of set of range measurements. The CMD trilateration method is used to calculate

position as it was previously evaluated using a Monte Carlo Simulation error analysis

and determined to be the most accurate and robust method among the several

evaluated. An exemplary plot of calculated X, Y, and Z position is shown in Figure

3.9. Evidently, the calculation yields a noise signal that requires filtering in order to

be used. At this point, a Kalman filter is used similar to that described in [7]. The

data is filtered in each direction (X, Y, and Z) independently as summarized below.

The concept
10 20 30 40 50 60 70

-1000

-500

0

500

1000

1500

2000

2500

Time (s)

C
o
o

r
d

in
a

te
 (

m
m

)

Calculated X, Y, and Z Position - T20

X Position

Y Position

Z Position

Figure 3.9: X, Y, and Z position calculation for T20

65

employed by the Kalman filter is estimating the future state of a system based upon

the current state of the system and some input to the system given the physics and

inherent error of both the system itself and the measurement of the system’s state. As

applied to the quadcopter UAV, an estimation of position is needed given some error-

ridden measured position (calculated from range measurements) and the physical

state of the system. Three general models can be used for the state of the system:

position (P), position and velocity (PV), and position, velocity, and acceleration

(PVA). The PV model is used for the application of the quadcopter position

estimation. It is also important to note that it is assumed that both the system

(process) noise and measurement noise are independent from each other and are

normally distributed.

To begin, the state estimation is defined as

 ̅ (̅) (3.1)

where ̅ is the predicted state based on the previous state, is the actual

measurement made (calculated position), ̅ is the predicted measurement, and is

the Kalman Gain. Initially, the state prediction is made based on the previous state:

 ̅ (3.2)

where is the system of physics equations defining the dynamics of the quadcopter,

 is the previous state of the quadcopter, is a constant associated with the

control input, , and is a state error term. The control term is unknown, however,

and can be dropped from the equation. For a PV model, ̅ takes the form of

 ̅ [

] [

] [

] (3.3)

66

where and represent the position and velocity at time t, respectively, and

 respresent the position and velocity at the time of the previous estimation, and

is the time elapsed since the previous estimation was made. The measurement

prediction is defined as

 ̅ ̅ (3.4)

where [] and is the error associated with the measurement prediction.

The error terms are defined as

 [

], (3.5)

 (3.6)

where and are the standard deviations associated with the postion and velocity

error, respectively. These values are derived from process error:

 (3.7)

and

 (3.8)

where is the standard deviation defining the error distribution (with zero

mean) for the process. This error is considered to be that induced by the factors that

are unaccounted for, such as the acceleration of the quadcopter [7]. is simply the

standard deviation describing the distribution of measurement error. Both of these

values must be estimated. Next, a covariance estimation, ̅ , is made as follows:

 ̅
 (3.2.3i)

67

where

 ̅
 [

]

and is the updated covariance estimation from the previous sample. The Kalman

gain is now defined as

 ̅
 (

)
 . (3.2.3j)

This gain is then used to calculate a new position estimaion using equation (3.2.3a).

The final step is to update the covariance matrix with the newly calculated Kalman

gain value:

 () ̅ (3.2.3k)

where is the 2x2 identity matrix. This sequence of calculations is performed for

each set of data (timestamp and data value pair). Figure 3.10 generally summarizes

this iterative process.

Figure 3.10: Iterative process for Kalman filtering [7]

68

The Kalman filter outlined here is programmed in Matlab (see Appendix C) as

a universal filter that can independently be used for X, Y, or Z position data as well as

for heading data. The filter uses two parameters that can be tuned to achieve optimal

results based on the data being filtered. These parameters are and . The

ratio of these values determines how the filter ‘weights’ the state predictions and

measurement predictions made. Two sets of these parameters are used, one for the

position filter (same for X, Y, and Z positions) and one for the heading filter.

Although the filter is designed to physically represent the X, Y, and Z positions of the

quadcopter, it is applied to the calculated heading data as the observed result is

acceptable. The filtering values used for each of the two filters are summarized in

Table 3.1

Table 3.1: Filtering values for Kalman Filter

Filter

Position (X, Y, & Z) 3 2 1.5

Heading 1 1 1

Figures 3.11 and 3.12 show the position data and heading data, respectively,

before and after the Kalman filter is applied. In both cases, the filter effectively

filters out the majority of the noise that exists and yields a waveform which is more

continuous and manageable. Additional filters (averaging or frequency filtering)

could be applied at this point, but for the purpose of this study, they are unnecessary.

69

0 10 20 30 40 50 60 70
-1000

0

1000

2000

3000

Time (s)

C
o
o

r
d

in
a

te
 (

m
m

)

T20 - X Position

Before Kalman Filter

After Kalman Filter

0 10 20 30 40 50 60 70
500

1000

1500

2000

2500

Time (s)

C
o
o

r
d

in
a

te
 (

m
m

)

T20 - Y Position

Before Kalman Filter

After Kalman Filter

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Time (s)

C
o
o

r
d

in
a

te
 (

m
m

)

T20 - Z Position

Before Kalman Filter

After Kalman Filter

Figure 3.11: Position data filtered with Kalman Filter

0 10 20 30 40 50 60 70
-40

-20

0

20

40

60

80

100

120

140

160
Heading Angle

Time (s)

H
e
a

d
in

g
 A

n
g

le
 (

d
e
g

)

Before Kalman Filter

After Kalman Filter

Figure 3.12: Heading angle data filtered with Kalman Filter

70

3.3 System Identification in Matlab

The final portion of this study involves the characterization of the system

responses for the three most basic commands to the quadcopter. These are roll/pitch,

throttle, and yaw/heading angle. The intention is to understand the system-level

responses to step inputs for each of these types of movement. It should be noted that

due to the symmetry of the quadcopter platform, it is assumed that the pitch response

for front-to-back and side-to-side movements are identical. For this reason, it is only

necessary to understand the system’s response to one of these inputs in order to be

able to model each of these similar responses. The front/back movement (Channel 2)

is used.

For each movement type, an impulse command was sent to the quadcopter

using one of the four available channels that corresponds to that particular response.

Here the response to each of these inputs is brought into the System Indentification

Toolbox within Matlab. Using this environment, a model is fitted to each response

and a transfer function derived describing the response in terms of the input. These

transfer functions are general and derived from data that is not entirely free from

error. Therefore, these transfer functions serve as a basis for understanding the

system-level operation of the F450 quadcopter, however, a more in-depth study is

needed to fully characterize and model this system.

71

3.3.1 Thrust Modeling

Figure 3.13 shows the altitude response to a thrust command. These datasets

are used as the input and output waveforms for the System Identification Toolbox. It

can be seen that there is some delay in the response and also that some error exists in

the measured responses. The best fit model of low order (low complexity) is shown

in Figure 3.14.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2000

2500

3000

3500

4000

4500

5000

Time (s)

y
1

Altitude Response (mm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

Time (s)

u
1

Thrust Command

Figure 3.13: Thrust command and altitude response

72

The transfer function generated for this response is of the form

 ()

 ()()

where

 ,

 ,

 , and

 .

These coefficients define the overall gain, locations of the real poles, and the time

delay that characterize this response. Also notice that the denominator contains an

integrator (s = 0). This is because the response must be integrated in order for an

altitude to be output from the system (command is a thrust command not an altitude

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2000

2500

3000

3500

4000

4500

5000

Time (s)

A
lt
it

u
d
e

 (
m

m
)

Measured and Modeled Thrust Response

Measured Response

Modeled Response

Figure 3.14: Measured and modeled response

73

command). The resulting transfer function that describes the altitude response to a

given thrust command is

 ()

 ()()
 (3.3.1a)

The step response is shown in Figure 3.15.

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Time (s)

A
lt
it

u
d
e

 (
m

m
)

Altitude Step Response

Figure 3.15: Altitude step response

74

3.3.2 Pitch Modeling

The F450 quadcopter is capable of moving almost entirely laterally, and

therefore, the term ‘pitch’ is not particularly accurate but will be used to describe both

the side-to-side and front-to-back movements of the quadcopter. As previously

noted, these movements are all expected to be the same or similar due to the

symmetry of the architecture of the quadcopter platform. An impulse command of

duration 0.5s is applied and the response measured. The command and response are

shown in in Figure 3.16. The fitted model is shown in Figure 3.17.

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

y
1

Y Position Response (mm)

0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

Time (s)

u
1

'Pitch' Command

Figure 3.16: Pitch command and Y position response

75

More error exists in the measure response for this type of movement, but a

general transfer function can still be generated based on the measured response and

know command impulse. This transfer function takes the form of

 ()

 (()
)

where

 ,

 ,

 , and

 .

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

Y
 P

o
s
it
io

n
 (

m
m

)

Measured and Modeled Pitch Response

Measured Response

Modeled Response

Figure 3.17: Measured and modeled pitch response

76

The form for this transfer function is different from that derived for thrust. The poles

are underdamped and complex. Again, an integrator (1/s) is necessary in order to

generate and output in terms of position as the command specifies a velocity. The

final transfer function describing the position (X or Y) response to any ‘pitch’

command is

 ()

 (())
 .

The associated step response is shown in Figure 3.18. The underdamped nature of this

transfer function is visible in the step response plot as a slight oscillation about the

commanded position.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Time (s)

Y
 P

o
s
it
io

n
 (

m
m

)

Y Position Step Response

Figure 3.18: Y position step response

77

3.3.3 Yaw Rate Modeling

Finally, the response to a yaw rate command is modeled based on the

measured heading response to a known impulse command. The command and

measured response are shown in Figure 3.19. The yaw rate command is roughly 1s in

duration. Again, some error is prevalent in the measured heading (calculated from

position measurement). However, a general transfer function can be found to model

the response at hand. The modeled response is shown in Figure 3.20.

0 1 2 3 4 5 6 7
40

50

60

70

80

90

100

110

Time (s)

y
1

Heading Response (deg)

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

Time (s)

u
1

Figure 3.19: Yaw rate command and heading response

78

The transfer function generated for this response takes the form of

 ()

 ()

where

 ,

 , and

 .

This is the most simple of the transfer functions generated yet. Being only a first

order transfer function (with only one pole), it indicates a very stable heading

0 0.5 1 1.5 2 2.5 3 3.5 4
40

50

60

70

80

90

100

110

Time (s)

H
e
a

d
in

g
 (

d
e

g
)

Measured and Modeled Heading Response

Measured Response

Modeled Response

Figure 3.20: Measured and modeled heading response

79

response to a yaw rate input. The final transfer function modeling heading response

to a yaw rate command is

 ()

 ()
 ,

and the associated heading response to a step input is shown in Figure 3.21.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Time (s)

H
e
a

d
in

g
 (

d
e

g
)

Heading Step Response

Figure 3.21: Heading step response

80

CHAPTER IV

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

This study presented the development of a quadcopter MAV localization

system and the comparison of a variety of trilateration algorithms used to estimate the

quadcopter’s position in space. A physical system was developed and tested in

parallel with the development of a a theoretical model using the Matlab software

platform. A Monte Carlo simulation was performed and used to evaluate the

accuracy and robustness of several trilateration algorithms, and the method

employing Cayley-Menger Determinants was determined to be the most effective for

the applicaton of the quadcopter MAV and six sensor localization system being used.

This trlateration algorithm was further used to process real data acquired from flight

testing.

Multiple controlled flight tests were conducted in order to gather data that

were used to further understand both the positioning system and the high-level

dynamics of the quadcopter MAV. Mulitple data filters were developed for purpose

of handling the errors that are inherent to the sensor system used. Additionally, the

81

use of a tunable Kalman filter was developed and implemented and showed to

effectively increase the robustness of the position estimation.

Finally, three of the quadcopter’s fundamental dynamic responses were

modeled using data from flight testing and the Matlab System Identification Toolbox.

Simple linear transfer functions were fitted to the measured responses for thrust,

pitch, and yaw rate commands (impulses). These modeled responses provide a basis

for the control system that will need to be developed in order to automated the flight

of the quadcopter MAV.

4.2 Future Work

The simulation and modeling performed in this study will serve as the

foundation for control system design and localization system refinement in order to

automate the navigation and flight of the quadcopter MAV. Additional design

iterations of both software and hardware will allow for improved postion estimation

reliability and accuracy which will, in turn, enable the development of a robust

quadcopter controller.

82

REFERENCES

[1] "HX19 Ultrasonic Positioning System." HX19 Ultrasonic Positioning System.

Hexamite, 1999. Web. 2013. <http://www.hexamite.com/hx19.htm>.

[2] Hereman, Willy, and William S. Murphy, Jr. "Determination of a Position in

Three Dimensions Using Trilateration and Approximate Distances."Decision

Sciences (1995): 1-21.

[3] Manolakis, Di Metris E. "Efficient Solution and Performance Analysis of 3-D

Position Estimation by Trilateration." IEEE Transactions on Aerospace and

Electronic Systems 32.4 (1996): 1239-248.

[4] Hereman, Willy, and William S. Murphy, Jr. "Determination of a Position in

Three Dimensions Using Trilateration and Approximate Distances." Decision

Sciences (1995): 1-21.

[5] Liu, Hui, Houshang Darabi, Pat Banerjee, and Jing Liu. "Survey of Wireless

Indoor Positioning Techniques and Systems." IEEE Transactions on Systems, Man

and Cybernetics, Part C (Applications and Reviews) 37.6 (2007): 1067-080.

[6] Sobers, D. Michael, Jr., Girish Chowdhary, and Eric N. Johnson. "Indoor

Navigation for Unmanned Aerial Vehicles." Proc. of AIAA Guidance, Navigation,

and Control Conference, Chicago, IL. Reston, VA: American Institute of Aeronautics

and Astronautics, 2009. 1-29.

[7] Shareef, Ali, and Yifeng Zhu. "Localization Using Extended Kalman Filters in

Wireless Sensor Networks." www.intechweb.org. N.p., Apr. 2009.

83

APPENDIX A - Trilateration Calculations in Matlab

function [R_Simple] = SimpleMethod(NOR,RCM,MR)

% function [R_Simple] = SimpleMethod(NOR,RCM,MR)
% inputs : NOR (number of receivers)
% : RCM (reciever coordinate matrix, NOR by 3 matrix)
% : MR (measured range, NOR by 1 matrix)
% output : R_Simple (calculated x,y,z position using Simple

method

%-- input condition check
[r1,c1] = size(RCM);
[r2,c2] = size(MR);

if r1 ~= NOR || c1 ~= 3
 error('Receiver Coordinate Matrix must %d by %d',NOR,3)
elseif r2 ~= 1 || c2 ~= NOR
 error('Measured Range Matrix must be %d by %d',1,NOR')
elseif NOR ~= 3
 error('Simple Method only needs 3 receiver readings')
end

function [R_OP,i_count] = LeastSquare(NOR,RCM,MR,method)

% function [R_OP,i_count] = LeastSquare(NOR,RCM,MR)
% inputs : NOR (number of receivers)
% : RCM (reciever coordinate matrix, NOR by 3 matrix)
% : MR (measured range, NOR by 1 matrix)
% : method -> 'nls' for nonlinear, 'ls' for linear
% outputs : R_OP (calculated x,y,z position based on 'method'

input)
% : i_count (no. of iterations required to arrive at

position)

%-- input dimension check
[r1,c1] = size(RCM);
[r2,c2] = size(MR);

if NOR < 4
 error('Linear least square method not valid for NOR less than

4')
end

84

if r1 ~= NOR || c1 ~= 3
 error('Receiver Coordinate Matrix must %d by %d',r1,c1)
end

if r2 ~= 1 || c2 ~= NOR
 error('Measured Range Matrix must be %d by %d',r2,c2')
end

%-- linear least square method for initial guess
A = zeros(NOR-1,3);
b = zeros(NOR-1,1);

for i = 1:(NOR-1)
 A(i,1:3) = RCM(i+1,:) - RCM(1,:);
 b(i,1) = 0.5*(MR(1)^2 - MR(i+1)^2 + norm(RCM(i+1,:)-

RCM(1,:))^2);
end

X = (A'*A)\(A'*b); % linear least square solution
R_OP_LLS = X' + RCM(1,1:3); % estimated position coordinate

i_count_ls = 1; % always 1 for linear least squares

%-- nonlinear least square method
i_count_nls = 0; % iterations before convergence

i = 0;
tol = 1e-3;
while tol > 1e-6 & i_count_nls <= 15

 i_count_nls = i_count_nls + 1;

 if i == 0
 Rold = R_OP_LLS;
 else
 Rold = Rnew;
 end

 x = Rold(1);
 y = Rold(2);
 z = Rold(3);

 JtJ = zeros(3,3);
 Jtf = zeros(3,1);

 if NOR == 4

 R1 = MR(1);
 R2 = MR(2);
 R3 = MR(3);
 R4 = MR(4);

85

 x1 = RCM(1,1); y1 = RCM(1,2); z1 = RCM(1,3);
 x2 = RCM(2,1); y2 = RCM(2,2); z2 = RCM(2,3);
 x3 = RCM(3,1); y3 = RCM(3,2); z3 = RCM(3,3);
 x4 = RCM(4,1); y4 = RCM(4,2); z4 = RCM(4,3);
 f1 = sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1;
 f2 = sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2;
 f3 = sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3;
 f4 = sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4;
 JtJ(1,1) = (x-x1)^2/(f1 + R1)^2 +...
 (x-x2)^2/(f2 + R2)^2 +...
 (x-x3)^2/(f3 + R3)^2 +...
 (x-x4)^2/(f4 + R4)^2;
 JtJ(1,2) = (x-x1)*(y-y1)/(f1 + R1)^2 +...
 (x-x2)*(y-y2)/(f2 + R2)^2 +...
 (x-x3)*(y-y3)/(f3 + R3)^2 +...
 (x-x4)*(y-y4)/(f4 + R4)^2;
 JtJ(1,3) = (x-x1)*(z-z1)/(f1 + R1)^2 +...
 (x-x2)*(z-z2)/(f2 + R2)^2 +...
 (x-x3)*(z-z3)/(f3 + R3)^2 +...
 (x-x4)*(z-z4)/(f4 + R4)^2;
 JtJ(2,1) = JtJ(1,2);
 JtJ(2,2) = (y-y1)^2/(f1 + R1)^2 +...
 (y-y2)^2/(f2 + R2)^2 +...
 (y-y3)^2/(f3 + R3)^2 +...
 (y-y4)^2/(f4 + R4)^2;
 JtJ(2,3) = (y-y1)*(z-z1)/(f1 + R1)^2 +...
 (y-y2)*(z-z2)/(f2 + R2)^2 +...
 (y-y3)*(z-z3)/(f3 + R3)^2 +...
 (y-y4)*(z-z4)/(f4 + R4)^2;
 JtJ(3,1) = JtJ(1,3);
 JtJ(3,2) = JtJ(2,3);
 JtJ(3,3) = (z-z1)^2/(f1 + R1)^2 +...
 (z-z2)^2/(f2 + R2)^2 +...
 (z-z3)^2/(f3 + R3)^2 +...
 (z-z4)^2/(f4 + R4)^2;
 Jtf(1,1) = (x-x1)*f1/(f1+R1) +...
 (x-x2)*f2/(f2+R2) +...
 (x-x3)*f3/(f3+R3) +...
 (x-x4)*f4/(f4+R4);
 Jtf(2,1) = (y-y1)*f1/(f1+R1) +...
 (y-y2)*f2/(f2+R2) +...
 (y-y3)*f3/(f3+R3) +...
 (y-y4)*f4/(f4+R4);
 Jtf(3,1) = (z-z1)*f1/(f1+R1) +...
 (z-z2)*f2/(f2+R2) +...
 (z-z3)*f3/(f3+R3) +...
 (z-z4)*f4/(f4+R4);

 elseif NOR == 5

 R1 = MR(1);
 R2 = MR(2);
 R3 = MR(3);

86

 R4 = MR(4);
 R5 = MR(5);
 x1 = RCM(1,1); y1 = RCM(1,2); z1 = RCM(1,3);
 x2 = RCM(2,1); y2 = RCM(2,2); z2 = RCM(2,3);
 x3 = RCM(3,1); y3 = RCM(3,2); z3 = RCM(3,3);
 x4 = RCM(4,1); y4 = RCM(4,2); z4 = RCM(4,3);
 x5 = RCM(5,1); y5 = RCM(5,2); z5 = RCM(5,3);
 f1 = sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1;
 f2 = sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2;
 f3 = sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3;
 f4 = sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4;
 f5 = sqrt((x-x5)^2 + (y-y5)^2 + (z-z5)^2) - R5;
 JtJ(1,1) = (x-x1)^2/(f1 + R1)^2 +...
 (x-x2)^2/(f2 + R2)^2 +...
 (x-x3)^2/(f3 + R3)^2 +...
 (x-x4)^2/(f4 + R4)^2 +...
 (x-x5)^2/(f5 + R5)^2;
 JtJ(1,2) = (x-x1)*(y-y1)/(f1 + R1)^2 +...
 (x-x2)*(y-y2)/(f2 + R2)^2 +...
 (x-x3)*(y-y3)/(f3 + R3)^2 +...
 (x-x4)*(y-y4)/(f4 + R4)^2 +...
 (x-x5)*(y-y5)/(f5 + R5)^2;
 JtJ(1,3) = (x-x1)*(z-z1)/(f1 + R1)^2 +...
 (x-x2)*(z-z2)/(f2 + R2)^2 +...
 (x-x3)*(z-z3)/(f3 + R3)^2 +...
 (x-x4)*(z-z5)/(f4 + R4)^2 +...
 (x-x5)*(z-z5)/(f5 + R5)^2;
 JtJ(2,1) = JtJ(1,2);
 JtJ(2,2) = (y-y1)^2/(f1 + R1)^2 +...
 (y-y2)^2/(f2 + R2)^2 +...
 (y-y3)^2/(f3 + R3)^2 +...
 (y-y4)^2/(f4 + R4)^2 +...
 (y-y5)^2/(f5 + R5)^2;
 JtJ(2,3) = (y-y1)*(z-z1)/(f1 + R1)^2 +...
 (y-y2)*(z-z2)/(f2 + R2)^2 +...
 (y-y3)*(z-z3)/(f3 + R3)^2 +...
 (y-y4)*(z-z4)/(f4 + R4)^2 +...
 (y-y5)*(z-z5)/(f5 + R5)^2;
 JtJ(3,1) = JtJ(1,3);
 JtJ(3,2) = JtJ(2,3);
 JtJ(3,3) = (z-z1)^2/(f1 + R1)^2 +...
 (z-z2)^2/(f2 + R2)^2 +...
 (z-z3)^2/(f3 + R3)^2 +...
 (z-z4)^2/(f4 + R4)^2 +...
 (z-z5)^2/(f5 + R5)^2;
 Jtf(1,1) = (x-x1)*f1/(f1+R1) +...
 (x-x2)*f2/(f2+R2) +...
 (x-x3)*f3/(f3+R3) +...
 (x-x4)*f4/(f4+R4) +...
 (x-x5)*f5/(f5+R5);
 Jtf(2,1) = (y-y1)*f1/(f1+R1) +...
 (y-y2)*f2/(f2+R2) +...
 (y-y3)*f3/(f3+R3) +...
 (y-y4)*f4/(f4+R4) +...

87

 (y-y5)*f5/(f5+R5);
 Jtf(3,1) = (z-z1)*f1/(f1+R1) +...
 (z-z2)*f2/(f2+R2) +...
 (z-z3)*f3/(f3+R3) +...
 (z-z4)*f4/(f4+R4) +...
 (z-z5)*f4/(f5+R5);
 else

 R1 = MR(1);
 R2 = MR(2);
 R3 = MR(3);
 R4 = MR(4);
 R5 = MR(5);
 R6 = MR(6);
 x1 = RCM(1,1); y1 = RCM(1,2); z1 = RCM(1,3);
 x2 = RCM(2,1); y2 = RCM(2,2); z2 = RCM(2,3);
 x3 = RCM(3,1); y3 = RCM(3,2); z3 = RCM(3,3);
 x4 = RCM(4,1); y4 = RCM(4,2); z4 = RCM(4,3);
 x5 = RCM(5,1); y5 = RCM(5,2); z5 = RCM(5,3);
 x6 = RCM(6,1); y6 = RCM(6,2); z6 = RCM(6,3);
 f1 = sqrt((x-x1)^2 + (y-y1)^2 + (z-z1)^2) - R1;
 f2 = sqrt((x-x2)^2 + (y-y2)^2 + (z-z2)^2) - R2;
 f3 = sqrt((x-x3)^2 + (y-y3)^2 + (z-z3)^2) - R3;
 f4 = sqrt((x-x4)^2 + (y-y4)^2 + (z-z4)^2) - R4;
 f5 = sqrt((x-x5)^2 + (y-y5)^2 + (z-z5)^2) - R5;
 f6 = sqrt((x-x6)^2 + (y-y6)^2 + (z-z6)^2) - R6;
 JtJ(1,1) = (x-x1)^2/(f1 + R1)^2 +...
 (x-x2)^2/(f2 + R2)^2 +...
 (x-x3)^2/(f3 + R3)^2 +...
 (x-x4)^2/(f4 + R4)^2 +...
 (x-x5)^2/(f5 + R5)^2 +...
 (x-x6)^2/(f6 + R6)^2;
 JtJ(1,2) = (x-x1)*(y-y1)/(f1 + R1)^2 +...
 (x-x2)*(y-y2)/(f2 + R2)^2 +...
 (x-x3)*(y-y3)/(f3 + R3)^2 +...
 (x-x4)*(y-y4)/(f4 + R4)^2 +...
 (x-x5)*(y-y5)/(f5 + R5)^2 +...
 (x-x6)*(y-y6)/(f6 + R6)^2;
 JtJ(1,3) = (x-x1)*(z-z1)/(f1 + R1)^2 +...
 (x-x2)*(z-z2)/(f2 + R2)^2 +...
 (x-x3)*(z-z3)/(f3 + R3)^2 +...
 (x-x4)*(z-z4)/(f4 + R4)^2 +...
 (x-x5)*(z-z5)/(f5 + R5)^2 +...
 (x-x6)*(z-z6)/(f6 + R6)^2;
 JtJ(2,1) = JtJ(1,2);
 JtJ(2,2) = (y-y1)^2/(f1 + R1)^2 +...
 (y-y2)^2/(f2 + R2)^2 +...
 (y-y3)^2/(f3 + R3)^2 +...
 (y-y4)^2/(f4 + R4)^2 +...
 (y-y5)^2/(f5 + R5)^2 +...
 (y-y6)^2/(f6 + R6)^2;
 JtJ(2,3) = (y-y1)*(z-z1)/(f1 + R1)^2 +...
 (y-y2)*(z-z2)/(f2 + R2)^2 +...

88

 (y-y3)*(z-z3)/(f3 + R3)^2 +...
 (y-y4)*(z-z4)/(f4 + R4)^2 +...
 (y-y5)*(z-z5)/(f5 + R5)^2 +...
 (y-y6)*(z-z6)/(f6 + R6)^2;
 JtJ(3,1) = JtJ(1,3);
 JtJ(3,2) = JtJ(2,3);
 JtJ(3,3) = (z-z1)^2/(f1 + R1)^2 +...
 (z-z2)^2/(f2 + R2)^2 +...
 (z-z3)^2/(f3 + R3)^2 +...
 (z-z4)^2/(f4 + R4)^2 +...
 (z-z5)^2/(f5 + R5)^2 +...
 (z-z6)^2/(f6 + R6)^2;
 Jtf(1,1) = (x-x1)*f1/(f1+R1) +...
 (x-x2)*f2/(f2+R2) +...
 (x-x3)*f3/(f3+R3) +...
 (x-x4)*f4/(f4+R4) +...
 (x-x5)*f5/(f5+R5) +...
 (x-x6)*f6/(f6+R6);
 Jtf(2,1) = (y-y1)*f1/(f1+R1) +...
 (y-y2)*f2/(f2+R2) +...
 (y-y3)*f3/(f3+R3) +...
 (y-y4)*f4/(f4+R4) +...
 (y-y5)*f5/(f5+R5) +...
 (y-y6)*f6/(f6+R6);
 Jtf(3,1) = (z-z1)*f1/(f1+R1) +...
 (z-z2)*f2/(f2+R2) +...
 (z-z3)*f3/(f3+R3) +...
 (z-z4)*f4/(f4+R4) +...
 (z-z5)*f5/(f5+R5) +...
 (z-z6)*f6/(f6+R6);
 end

 Rnew = Rold' - JtJ\Jtf;
 Rnew = Rnew';
 tol = abs(norm(Rnew - Rold));
 i = i + 1;
end

R_OP_NLS = Rnew;

if strcmp(method,'ls')
 R_OP = R_OP_LLS;
 i_count = i_count_ls;
elseif strcmp(method,'nls')
 R_OP = R_OP_NLS;
 i_count = i_count_nls;
end

89

function [R_OP_CFP] = ExplicitMethod_CFP(NOR,RCM,MR)

% function [R_OP_CFP] = ExplicitMethod_CFP(NOR,RCM,MR)
% inputs : NOR (number of receivers)
% : RCM (reciever coordinate matrix, NOR by 3 matrix)
% : MR (measured range, NOR by 1 matrix)
% output : R_OP_CFP (calculated x,y,z position using CFP method

%-- input condition check
[r1,c1] = size(RCM);
[r2,c2] = size(MR);

if r1 ~= NOR || c1 ~= 3
 error('Receiver Coordinate Matrix must %d by %d',NOR,3)
elseif r2 ~= 1 || c2 ~= NOR
 error('Measured Range Matrix must be %d by %d',1,NOR')
elseif NOR ~= 3
 error('Explicit Method only needs 3 receiver readings')
end

%-- constants for Closed-Form Solution

R1 = MR(1);
R2 = MR(2);
R3 = MR(3);

x1 = RCM(1,1);
x2 = RCM(2,1);
x3 = RCM(3,1);

y1 = RCM(1,2);
y2 = RCM(2,2);
y3 = RCM(3,2);

z1 = RCM(1,3);
z2 = RCM(2,3);
z3 = RCM(3,3);

x21 = x2 - x1;
x31 = x3 - x1;

y21 = y2 - y1;
y31 = y3 - y1;

z21 = z2 - z1;
z31 = z3 - z1;

W = zeros(2,2);
d = zeros(2,1);
rh = zeros(2,1);
beta = zeros(2,1);

90

W(1,1) = x21;
W(2,1) = x31;
W(1,2) = y21;
W(2,2) = y31;

W_inv = inv(W);

w1 = (W_inv(1,:))';
w2 = (W_inv(2,:))';

d(1) = z21;
d(2) = z31;

rh1 = [x1; y1];

S1 = norm(RCM(1,:));
S2 = norm(RCM(2,:));
S3 = norm(RCM(3,:));

S = [S1 S2 S3];

a_cf = 1 + ((d'/W')/W)*d;

delta2 = sqrt(S(1)^2 - S(2)^2);
delta3 = sqrt(S(1)^2 - S(3)^2);

delta = [delta2^2; delta3^2];

G = ((W')^(-1))/W;
e = (((1/2)*delta'/W')/W + rh1'/W)';

g11 = G(1,1);
g12 = G(1,2);
g21 = G(2,1);
g22 = G(2,2);

e1 = e(1);
e2 = e(2);

lam0 = -(2*rh1'/W*d - 2*z1 + d'/W'/W*delta)/(2*a_cf);
lam1 = (z21*(g11 + g12) + z31*(g22 + g12))/(2*a_cf);
lam2 = -(z21*g11 + z31*g12)/(2*a_cf);
lam3 = -(z31*g22 + z21*g12)/(2*a_cf);

lambda = [lam0; lam1; lam2; lam3];

lambda1 = [-w1'*d*lambda + (-w1'*delta)/2; ...
 -w1'*d*lambda + (y31 - y21)/(2*det(W)); ...
 -w1'*d*lambda + (-y31)/(2*det(W)); ...

91

 -w1'*d*lambda + y21/(2*det(W))];

lambda2 = [-w2'*d*lambda + (-w2'*delta)/2; ...
 -w2'*d*lambda + (x21 - x31)/(2*det(W)); ...
 -w2'*d*lambda + (-x31)/(2*det(W)); ...
 -w2'*d*lambda + (-x21)/(2*det(W))];

lambda3 = lambda;

Lambda_ = [lambda1(1) lambda1(6) lambda1(10) lambda1(14); ...
 lambda2(1) lambda2(6) lambda2(10) lambda2(14); ...
 lambda3'];

zeta0 = lam0^2 - (delta'/W'/W*delta/4 + rh1'/W*delta + S1^2)/a_cf;
zeta1 = 2*lam0*lam1 + (1 + e1 + e2)/a_cf;
zeta2 = 2*lam0*lam2 - e1/a_cf;
zeta3 = 2*lam0*lam3 - e2/a_cf;
zeta4 = lam1^2 - (g11 + 2*g12 + g22)/(4*a_cf);
zeta5 = lam2^2 - g11/(4*a_cf);
zeta6 = lam3^2 - g22/(4*a_cf);
zeta7 = 2*lam1*lam2 + (g11 + g12)/(2*a_cf);
zeta8 = 2*lam1*lam3 + (g22 + g12)/(2*a_cf);
zeta9 = 2*lam2*lam3 - g12/(2*a_cf);

zeta = [zeta0; zeta1; zeta2; zeta3; zeta4; ...
 zeta5; zeta6; zeta7; zeta8; zeta9];

mu = [(-w1'*d) (-w2'*d) 1];

%% Closed Form Solution

% Original Position Calculation:
beta2 = (R1^2 - R2^2 - S1^2 + S2^2)/2;
beta3 = (R1^2 - R3^2 - S1^2 + S3^2)/2;

beta(1) = beta2;
beta(2) = beta3;

b_cf = 2*(rh1'/W)*d - 2*z1 - ((2*d'/W')/W)*beta;
c_cf = S1^2 - R1^2 + ((beta'/W')/W)*beta - (2*rh1'/W)*beta;

z_cf = (-b_cf + sqrt(b_cf^2 - 4*a_cf*c_cf))/(2*a_cf);

rh = W\(beta - d*z_cf);

R_cfp1 = [rh(1) rh(2) z_cf];

% Improved Position Calculation (z calc):
u_cf = [1; R1^2; R2^2; R3^2];
v_cf = [1; R1^2; R2^2; R3^2; R1^4; R2^4; R3^4; ...
 R1^2*R2^2; R1^2*R3^2; R2^2*R3^2];

92

R_cfp2 = (Lambda_*u_cf)' + mu*(zeta'*v_cf)^(1/2);

R_OP_CFP = R_cfp2;

function [R_OP_CMD] = ExplicitMethod_CMD(NOR,RCM,MR)

% function [R_OP_CMD] = ExplicitMethod_CMD(NOR,RCM,MR)
% inputs : NOR (number of receivers)
% : RCM (reciever coordinate matrix, NOR by 3 matrix)
% : MR (measured range, NOR by 1 matrix)
% output : R_OP_CMD (calculated x,y,z position using CMD

method)

%-- input condition check
[r1,c1] = size(RCM);
[r2,c2] = size(MR);

if r1 ~= NOR || c1 ~= 3
 error('Receiver Coordinate Matrix must %d by %d',NOR,3)
elseif r2 ~= 1 || c2 ~= NOR
 error('Measured Range Matrix must be %d by %d',1,NOR')
elseif NOR ~= 3
 error('Explicit Method only needs 3 receiver readings')
end

%-- constants for Cayley-Menger Determinants
P1 = RCM(1,:);
P2 = RCM(2,:);
P3 = RCM(3,:);
v1 = P2 - P1;
v2 = P3 - P1;
l1 = MR(1);
l2 = MR(2);
l3 = MR(3);
%-- Cayley-Menger Determinant calculations
CMD_p12 = (norm(P2 - P1))^2;
CMD_p13 = (norm(P3 - P1))^2;
CMD_p23 = (norm(P3 - P2))^2;
CMD_k = (norm(cross(P2 - P1,P3 - P1)))^2;
%-- Cayley-Menger Bi-determinant solution
CMBD_k1 = -(1/4)*det([0 1 1 1; ...
 1 0 CMD_p13 l1^2; ...
 1 CMD_p12 CMD_p23 l2^2; ...
 1 CMD_p13 0 l3^2]);

CMBD_k2 = -(1/4)*det([0 1 1 1; ...
 1 0 CMD_p12 l1^2; ...

93

 1 CMD_p12 0 l2^2; ...
 1 CMD_p13 CMD_p23 l3^2]);

CMBD_k3 = (1/8)*det([0 1 1 1 1;

...
 1 0 CMD_p12 CMD_p13

l1^2; ...
 1 CMD_p12 0 CMD_p23

l2^2; ...
 1 CMD_p13 CMD_p23 0

l3^2; ...
 1 l1^2 l2^2 l3^2 0]);

k1 = -(CMBD_k1/CMD_k);
k2 = CMBD_k2/CMD_k;
k3 = sqrt(CMBD_k3)/CMD_k;
P = P1 + k1*v1 + k2*v2;
P4 = P + k3*(cross(v1,v2));

R_OP_CMD = P4;

94

APPENDIX B – Monte Carlo Simulation Matlab Program

%% Trilateration Error Analysis - Monte Carlo Simulation

clc
clear

addpath('H:\Masters Thesis\Matlab\Test Data Processing');
addpath('H:\Masters Thesis\Matlab\Test Data

Processing\Trilateration');

%% Set Parameters for Analysis:

% Specify z location of slice for analysis:
Z_Plane_Value = 5000; % in mm, height at which slice is taken

% Specify number of points:
Num_Norm_Pts = 100000; % Number of random points for simulation

% Specify BIN size for error analysis:
BIN_Size = 1000; % This dictates the BIN size for XYZ Pixels (round

to nearest 'BIN_Size')

% Define space (in mm):
Xmin = -8000;
Xmax = 8000;
Ymin = -8000;
Ymax = 8000;
% Zmin = Z_Plane_Value - BIN_Size;
% Zmax = Z_Plane_Value + BIN_Size;
Zmin = Z_Plane_Value;
Zmax = Z_Plane_Value;

% Define max error for each receiver (in mm):
E40max = 15;
E41max = 15;
E42max = 15;
E43max = 15;
E44max = 15;
E45max = 15;

%% Define Sensor System, Helicopter Space & Other Parameters:

% Define Sensor Position Coordinates:

NOR = 6; % Number of receivers

95

Rx40 = [325.00, 533.85, 22.00];
Rx41 = [975.00, 533.85, 22.00];
Rx42 = [650.00, 0.00, 22.00];
Rx43 = [650.00, 1125.83, 0.00];
Rx44 = [0.00, 0.00, 0.00];
Rx45 = [1300.0, 0.00, 0.00];

% Alter sensor position (pseudo position) for Simple Method:

Rx1_SM = [0, 0, 0];
Rx2_SM = [1295.4, 0, 0];
Rx3_SM = [0, 1295.4, 0];

RCM = [Rx40;Rx41;Rx42;Rx43;Rx44;Rx45];
RCM_SM = [Rx1_SM; Rx2_SM; Rx3_SM]; % for Simple Method calculation

only
RCM_3 = [Rx43; Rx44; Rx45]; % for algorithms that only use 3

receivers

% Apply translation to center receivers at (0,0,0):
T_RCM = [-650 -375.278 0; ...
 -650 -375.278 0; ...
 -650 -375.278 0; ...
 -650 -375.278 0; ...
 -650 -375.278 0; ...
 -650 -375.278 0];

T_RCM_3 = [-650 -375.278 0; ...
 -650 -375.278 0; ...
 -650 -375.278 0];

RCM = RCM + T_RCM;

RCM_3 = RCM_3 + T_RCM_3;

% Redefine

Xavg = (Xmin + Xmax)/2;
Yavg = (Ymin + Ymax)/2;
Zavg = (Zmin + Zmax)/2;

Xrange = Xmax - Xmin;
Yrange = Ymax - Ymin;
Zrange = Zmax - Zmin;

% Define std deviation for each receiver:
Sigma_Per_Band = 3; % number of sigmnas per band (upper & lower

symmetrical over mean)

96

Sigma40 = E40max/Sigma_Per_Band;
Sigma41 = E41max/Sigma_Per_Band;
Sigma42 = E42max/Sigma_Per_Band;
Sigma43 = E43max/Sigma_Per_Band;
Sigma44 = E44max/Sigma_Per_Band;
Sigma45 = E45max/Sigma_Per_Band;

%% Generate Actual Distances and Sensor Output:

% Generate random actual position of quadcopter by coordinate (x, y,

& z)
Actual_Pos_X = ((Xmax-Xmin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Xmin

Xmax]);
Actual_Pos_Y = ((Ymax-Ymin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Ymin

Ymax]);
Actual_Pos_Z = ((Zmax-Zmin))*(rand(Num_Norm_Pts,1)-0.5) + mean([Zmin

Zmax]);

Actual_Pos = [Actual_Pos_X Actual_Pos_Y Actual_Pos_Z];

% Generate normally distributed error
Error_Dist_R40 = Sigma40*randn(Num_Norm_Pts,1); % Mean of 0 with Std

Dev specified above for each receiver
Error_Dist_R41 = Sigma41*randn(Num_Norm_Pts,1);
Error_Dist_R42 = Sigma42*randn(Num_Norm_Pts,1);
Error_Dist_R43 = Sigma43*randn(Num_Norm_Pts,1);
Error_Dist_R44 = Sigma44*randn(Num_Norm_Pts,1);
Error_Dist_R45 = Sigma45*randn(Num_Norm_Pts,1);

% Plot histogram of error distribution for each receiver:
figure(1); clf;
subplot(321); hist(Error_Dist_R40); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx1');
axis([-30 30 0 40000]);
subplot(322); hist(Error_Dist_R41); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx2');
axis([-30 30 0 40000]);
subplot(323); hist(Error_Dist_R42); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx3');
axis([-30 30 0 40000]);
subplot(324); hist(Error_Dist_R43); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx4');
axis([-30 30 0 40000]);
subplot(325); hist(Error_Dist_R44); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx5');
axis([-30 30 0 40000]);
subplot(326); hist(Error_Dist_R45); xlabel('Error BIN (mm)');

ylabel('Frequency'); title('Histogram of Error Values: Rx6');
axis([-30 30 0 40000]);

Error_Dist = [Error_Dist_R40 Error_Dist_R41 Error_Dist_R42

Error_Dist_R43 ...

97

 Error_Dist_R44 Error_Dist_R45];

Error_Dist_3 = [Error_Dist_R43 Error_Dist_R44 Error_Dist_R45];

Actual_Distance = zeros(Num_Norm_Pts,NOR);

Pos_LS = zeros(Num_Norm_Pts,3);
Error_LS = zeros(Num_Norm_Pts,3);
Pos_NLS = zeros(Num_Norm_Pts,3);
Error_NLS = zeros(Num_Norm_Pts,3);
Pos_CMD = zeros(Num_Norm_Pts,3);
Error_CMD = zeros(Num_Norm_Pts,3);
Pos_CFP = zeros(Num_Norm_Pts,3);
Error_CFP = zeros(Num_Norm_Pts,3);

for i=1:Num_Norm_Pts
 Actual_Distance(i,1) = norm(Actual_Pos(i,:) - RCM(1,:));
 Actual_Distance(i,2) = norm(Actual_Pos(i,:) - RCM(2,:));
 Actual_Distance(i,3) = norm(Actual_Pos(i,:) - RCM(3,:));
 Actual_Distance(i,4) = norm(Actual_Pos(i,:) - RCM(4,:));
 Actual_Distance(i,5) = norm(Actual_Pos(i,:) - RCM(5,:));
 Actual_Distance(i,6) = norm(Actual_Pos(i,:) - RCM(6,:));
end

Actual_Distance_3 = [Actual_Distance(:,4) Actual_Distance(:,5)

Actual_Distance(:,6)]; % Simply use Actual_Distance calc for Rx43,

Rx44, & Rx45

Sensor_Output = Actual_Distance + Error_Dist;

Sensor_Output_3 = Actual_Distance_3 + Error_Dist_3;

% Initiate iteration counting variabls for 'ls' and 'nls' methods:
i_count_ls = zeros(Num_Norm_Pts,1);
i_count_nls = zeros(Num_Norm_Pts,1);

%% Calculate positions using different methods:

for i = 1:Num_Norm_Pts

 [Pos_LS(i,:), i_count_ls(i)] =

LeastSquare(NOR,RCM,Sensor_Output(i,:),'ls');
 Error_LS(i,:) = Pos_LS(i,:) - Actual_Pos(i,:);

 [Pos_NLS(i,:), i_count_nls(i)] =

LeastSquare(NOR,RCM,Sensor_Output(i,:),'nls');
 Error_NLS(i,:) = Pos_NLS(i,:) -

Actual_Pos(i,:);

 Pos_CMD(i,:) =

ExplicitMethod_CMD(3,RCM_3,Sensor_Output_3(i,:));

98

 Error_CMD(i,:) = Pos_CMD(i,:) -

Actual_Pos(i,:);

 Pos_CFP(i,:) =

ExplicitMethod_CFP(3,RCM_3,Sensor_Output_3(i,:));
 Error_CFP(i,:) = Pos_CFP(i,:) -

Actual_Pos(i,:);

end

%% Define Pixel Size for Error Analysis (NxNxN cube):

XYZ_BIN = FindBIN(Actual_Pos, BIN_Size); %

% Shift BIN values so none are negative and all are real:
XYZ_BIN = real(XYZ_BIN); % Isolate real components
XYZ_BIN = [XYZ_BIN(:,1) - Xmin/BIN_Size + 1, ... % Shift BINs so

mininmum is zero:
 XYZ_BIN(:,2) - Ymin/BIN_Size + 1, ...
 XYZ_BIN(:,3) - Zmin/BIN_Size + 1];

X_BIN = XYZ_BIN(:,1);
Y_BIN = XYZ_BIN(:,2);
Z_BIN = XYZ_BIN(:,3);

% Calculate number of pixels:
Num_Pixels = (Xrange/BIN_Size + 1)*(Yrange/BIN_Size +

1)*(Zrange/BIN_Size + 1);

ErrorMatrix_Pixel = zeros(Xrange/BIN_Size + 1,Yrange/BIN_Size +

1,Zrange/BIN_Size + 1);

%% Analyze LS Error:
X_ErrorSum_Pixel_LS = ErrorMatrix_Pixel;
Y_ErrorSum_Pixel_LS = ErrorMatrix_Pixel;
Z_ErrorSum_Pixel_LS = ErrorMatrix_Pixel;

X_MSE_Error_Pixel_LS = ErrorMatrix_Pixel;
Y_MSE_Error_Pixel_LS = ErrorMatrix_Pixel;
Z_MSE_Error_Pixel_LS = ErrorMatrix_Pixel;

MSE_Error_Pixel_LS = ErrorMatrix_Pixel;
NumPts_Pixel_LS = ErrorMatrix_Pixel;

for i = 1:Num_Norm_Pts

 X_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) =

X_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,1);

99

 Y_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) =

Y_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,2);
 Z_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i)) =

Z_ErrorSum_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,3);

 X_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) =

X_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,1)^2;
 Y_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) =

Y_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,2)^2;
 Z_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) =

Z_MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

Error_LS(i,3)^2;

 MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i)) =

MSE_Error_Pixel_LS(X_BIN(i),Y_BIN(i))...
 +

sum(Error_LS(i,:).^2);

 NumPts_Pixel_LS(X_BIN(i),Y_BIN(i)) =

NumPts_Pixel_LS(X_BIN(i),Y_BIN(i)) + 1;

end

X_ErrorAvg_Pixel_LS = X_ErrorSum_Pixel_LS./NumPts_Pixel_LS;
Y_ErrorAvg_Pixel_LS = Y_ErrorSum_Pixel_LS./NumPts_Pixel_LS;
Z_ErrorAvg_Pixel_LS = Z_ErrorSum_Pixel_LS./NumPts_Pixel_LS;

X_MSE_Error_Pixel_LS = X_MSE_Error_Pixel_LS./NumPts_Pixel_LS;
Y_MSE_Error_Pixel_LS = Y_MSE_Error_Pixel_LS./NumPts_Pixel_LS;
Z_MSE_Error_Pixel_LS = Z_MSE_Error_Pixel_LS./NumPts_Pixel_LS;

MSE_Error_Pixel_LS = MSE_Error_Pixel_LS./NumPts_Pixel_LS;
MSE_Error_Total_LS = sum(sum(MSE_Error_Pixel_LS))/Num_Pixels;

%% Analyze NLS Error

X_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel;
Y_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel;
Z_ErrorSum_Pixel_NLS = ErrorMatrix_Pixel;

X_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel;
Y_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel;
Z_MSE_Error_Pixel_NLS = ErrorMatrix_Pixel;

100

MSE_Error_Pixel_NLS = ErrorMatrix_Pixel;
NumPts_Pixel_NLS = ErrorMatrix_Pixel;

for i = 1:Num_Norm_Pts

 X_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

X_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,1);
 Y_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

Y_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,2);
 Z_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

Z_ErrorSum_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,3);

 X_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

X_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,1)^2;
 Y_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

Y_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,2)^2;
 Z_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

Z_MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

Error_NLS(i,3)^2;

 MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

MSE_Error_Pixel_NLS(X_BIN(i),Y_BIN(i))...
 +

sum(Error_NLS(i,:).^2);

 NumPts_Pixel_NLS(X_BIN(i),Y_BIN(i)) =

NumPts_Pixel_NLS(X_BIN(i),Y_BIN(i)) + 1;

end

X_ErrorAvg_Pixel_NLS = X_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS;
Y_ErrorAvg_Pixel_NLS = Y_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS;
Z_ErrorAvg_Pixel_NLS = Z_ErrorSum_Pixel_NLS./NumPts_Pixel_NLS;

X_MSE_Error_Pixel_NLS = X_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS;
Y_MSE_Error_Pixel_NLS = Y_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS;
Z_MSE_Error_Pixel_NLS = Z_MSE_Error_Pixel_NLS./NumPts_Pixel_NLS;

MSE_Error_Pixel_NLS = MSE_Error_Pixel_NLS./NumPts_Pixel_NLS;
MSE_Error_Total_NLS = sum(sum(MSE_Error_Pixel_NLS))/Num_Pixels;

101

%% Analyze CMD Error

X_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel;
Y_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel;
Z_ErrorSum_Pixel_CMD = ErrorMatrix_Pixel;

X_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel;
Y_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel;
Z_MSE_Error_Pixel_CMD = ErrorMatrix_Pixel;

MSE_Error_Pixel_CMD = ErrorMatrix_Pixel;
NumPts_Pixel_CMD = ErrorMatrix_Pixel;

for i = 1:Num_Norm_Pts

 X_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

X_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,1);
 Y_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

Y_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,2);
 Z_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

Z_ErrorSum_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,3);

 X_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

X_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,1)^2;
 Y_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

Y_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,2)^2;
 Z_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

Z_MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

Error_CMD(i,3)^2;

 MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

MSE_Error_Pixel_CMD(X_BIN(i),Y_BIN(i))...
 +

sum(Error_CMD(i,:).^2);

 NumPts_Pixel_CMD(X_BIN(i),Y_BIN(i)) =

NumPts_Pixel_CMD(X_BIN(i),Y_BIN(i)) + 1;

end

102

X_ErrorAvg_Pixel_CMD = X_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD;
Y_ErrorAvg_Pixel_CMD = Y_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD;
Z_ErrorAvg_Pixel_CMD = Z_ErrorSum_Pixel_CMD./NumPts_Pixel_CMD;

X_MSE_Error_Pixel_CMD = X_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD;
Y_MSE_Error_Pixel_CMD = Y_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD;
Z_MSE_Error_Pixel_CMD = Z_MSE_Error_Pixel_CMD./NumPts_Pixel_CMD;

MSE_Error_Pixel_CMD = MSE_Error_Pixel_CMD./NumPts_Pixel_CMD;
MSE_Error_Total_CMD = sum(sum(MSE_Error_Pixel_CMD))/Num_Pixels;

%% Analyze CFP Error

X_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel;
Y_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel;
Z_ErrorSum_Pixel_CFP = ErrorMatrix_Pixel;

X_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel;
Y_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel;
Z_MSE_Error_Pixel_CFP = ErrorMatrix_Pixel;

MSE_Error_Pixel_CFP = ErrorMatrix_Pixel;
NumPts_Pixel_CFP = ErrorMatrix_Pixel;

for i = 1:Num_Norm_Pts

 X_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

X_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,1);
 Y_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

Y_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,2);
 Z_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

Z_ErrorSum_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,3);

 X_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

X_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,1)^2;
 Y_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

Y_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,2)^2;
 Z_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

Z_MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

Error_CFP(i,3)^2;

103

 MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

MSE_Error_Pixel_CFP(X_BIN(i),Y_BIN(i))...
 +

sum(Error_CFP(i,:).^2);

 NumPts_Pixel_CFP(X_BIN(i),Y_BIN(i)) =

NumPts_Pixel_CFP(X_BIN(i),Y_BIN(i)) + 1;

end

X_ErrorAvg_Pixel_CFP = X_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP;
Y_ErrorAvg_Pixel_CFP = Y_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP;
Z_ErrorAvg_Pixel_CFP = Z_ErrorSum_Pixel_CFP./NumPts_Pixel_CFP;

X_MSE_Error_Pixel_CFP = X_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP;
Y_MSE_Error_Pixel_CFP = Y_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP;
Z_MSE_Error_Pixel_CFP = Z_MSE_Error_Pixel_CFP./NumPts_Pixel_CFP;

MSE_Error_Pixel_CFP = MSE_Error_Pixel_CFP./NumPts_Pixel_CFP;
MSE_Error_Total_CFP = sum(sum(MSE_Error_Pixel_CFP))/Num_Pixels;

%% Sum MSE for each method:

MSE_Error_Total_All = [MSE_Error_Total_LS; ...
 MSE_Error_Total_NLS; ...
 MSE_Error_Total_CMD; ...
 MSE_Error_Total_CFP];

MSE_Error_Normalized_All =

MSE_Error_Total_All/min(MSE_Error_Total_All);

figure(2); clf; title('Comparison of Normalized MSE for All

Methods');
bar(MSE_Error_Normalized_All);

%% Define Z value (height) at which to observe XY plan & XY

meshgrid:

Z_Index = (Z_Plane_Value-Zmin)/BIN_Size + 1;
[X_Mesh,Y_Mesh] = meshgrid(Xmin:BIN_Size:Xmax,Ymin:BIN_Size:Ymax);

% Find max MSE for scaling plots:
MSE_Max_LS = max(max(MSE_Error_Pixel_LS(:,:,Z_Index)));
MSE_Max_NLS = max(max(MSE_Error_Pixel_NLS(:,:,Z_Index)));
MSE_Max_CMD = max(max(MSE_Error_Pixel_CMD(:,:,Z_Index)));
MSE_Max_CFP = max(max(MSE_Error_Pixel_CFP(:,:,Z_Index)));

MSE_Max = max([MSE_Max_LS,MSE_Max_NLS,MSE_Max_CMD,MSE_Max_CFP]);

%% LS Plots

104

Z_Str = int2str(Z_Plane_Value);

figure(10); clf; hold on; grid on; xlabel('X Coordinate (mm)');

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)');
title(strcat('Mean Squared Error - LS Method, Z= ',Z_Str,' mm'));
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_LS(:,:,Z_Index));
surf(X_Mesh,Y_Mesh,MSE_Error_Pixel_LS(:,:,Z_Index));
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]);
plot3(RCM(:,1),RCM(:,2),RCM(:,3),'.');
LS_Handle = get(gcf,'CurrentAxes');
set(gca,'ZScale','log');

% figure(11); clf; hold on;
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_LS(:,:,Z_Index)));
% [U_MSE_LS, V_MSE_LS] =

gradient(real(MSE_Error_Pixel_LS(:,:,Z_Index)),BIN_Size);
% quiver(X_Mesh,Y_Mesh,U_MSE_LS,V_MSE_LS);

figure(12); clf; hold on; grid on;
title(strcat('XY MSE and XY Error Biasing - LS Method, Z= ',Z_Str,'

mm'));
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_LS(:,:,Z_Index)+Y_MSE_E

rror_Pixel_LS(:,:,Z_Index)));
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_LS,Y_ErrorAvg_Pixel_LS);
plot(RCM(:,1),RCM(:,2),'Color','black','Marker','.','LineStyle','non

e','MarkerSize',15);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');
legend('XY MSE','Avg XY Error Vectors','Receiver Locations');

%% NLS Plots

figure(20); clf; hold on; grid on; xlabel('X Coordinate (mm)');

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)');
title(strcat('Mean Squared Error - NLS Method, Z=',Z_Str,' mm'));
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_NLS(:,:,Z_Index));
surf(X_Mesh,Y_Mesh,MSE_Error_Pixel_NLS(:,:,Z_Index));
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]);
plot3(RCM(:,1),RCM(:,2),RCM(:,3),'.');
NLS_Handle = get(gcf,'CurrentAxes');
set(gca,'ZScale','log');

% figure(21); clf; hold on;
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_NLS(:,:,Z_Index)));
% [U_MSE_NLS, V_MSE_NLS] =

gradient(real(MSE_Error_Pixel_NLS(:,:,Z_Index)),BIN_Size);
% quiver(X_Mesh,Y_Mesh,U_MSE_NLS,V_MSE_NLS);

figure(22); clf; hold on; grid on;
title(strcat('XY MSE and XY Error Biasing - NLS Method, Z=',Z_Str,'

mm'));
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_NLS(:,:,Z_Index)+Y_MSE_

Error_Pixel_NLS(:,:,Z_Index)));

105

quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_NLS,Y_ErrorAvg_Pixel_NLS);
plot(RCM(:,1),RCM(:,2),'Color','black','Marker','.','LineStyle','non

e','MarkerSize',15);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');
legend('XY MSE','Avg XY Error Vectors','Receiver Locations');

%% CFP Plots

figure(30); clf; hold on; grid on; xlabel('X Coordinate (mm)');

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)');
title(strcat('Mean Squared Error - CFP Method, Z=',Z_Str,' mm'));
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CFP(:,:,Z_Index));
surf(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CFP(:,:,Z_Index)));
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]);
plot3(RCM_3(:,1),RCM_3(:,2),RCM_3(:,3),'.');
CFP_Handle = get(gcf,'CurrentAxes');
set(gca,'ZScale','log');

% figure(31); clf; hold on;
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CFP(:,:,Z_Index)));
% [U_MSE_CFP, V_MSE_CFP] =

gradient(real(MSE_Error_Pixel_CFP(:,:,Z_Index)),BIN_Size);
% quiver(X_Mesh,Y_Mesh,U_MSE_CFP,V_MSE_CFP);

figure(32); clf; hold on; grid on;
title(strcat('XY MSE and XY Error Biasing - CFP Method, Z=',Z_Str,'

mm'));
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_CFP(:,:,Z_Index)+Y_MSE_

Error_Pixel_CFP(:,:,Z_Index)));
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CFP,Y_ErrorAvg_Pixel_CFP);
plot(RCM_3(:,1),RCM_3(:,2),'Color','black','Marker','.','LineStyle',

'none','MarkerSize',15);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');
legend('XY MSE','Avg XY Error Vectors','Receiver Locations');

%% CMD Plots

figure(40); clf; hold on; grid on; xlabel('X Coordinate (mm)');

ylabel('Y Coordinate (mm)'); zlabel('MSE (mm^2)');
title(strcat('Mean Squared Error - CMD Method, Z=',Z_Str,' mm'));
%surf(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CMD(:,:,Z_Index));
surf(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CMD(:,:,Z_Index)));
axis([Xmin Xmax Ymin Ymax 0 MSE_Max]);
plot3(RCM_3(:,1),RCM_3(:,2),RCM_3(:,3),'.');
CMD_Handle = get(gcf,'CurrentAxes');
set(gca,'ZScale','log');

% figure(41); clf; hold on;
% contour(X_Mesh,Y_Mesh,real(MSE_Error_Pixel_CMD(:,:,Z_Index)));
% [U_MSE_CMD, V_MSE_CMD] =

gradient(real(MSE_Error_Pixel_CMD(:,:,Z_Index)),BIN_Size);

106

% quiver(X_Mesh,Y_Mesh,U_MSE_CMD,V_MSE_CMD);

figure(42); clf; hold on; grid on;
title(strcat('XY MSE and XY Error Biasing - CMD Method, Z=',Z_Str,'

mm'));
contour(X_Mesh,Y_Mesh,real(X_MSE_Error_Pixel_CMD(:,:,Z_Index)+Y_MSE_

Error_Pixel_CMD(:,:,Z_Index)));
quiver(X_Mesh,Y_Mesh,X_ErrorAvg_Pixel_CMD,Y_ErrorAvg_Pixel_CMD);
plot(RCM_3(:,1),RCM_3(:,2),'Color','black','Marker','.','LineStyle',

'none','MarkerSize',15);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');
legend('XY MSE','Avg XY Error Vectors','Receiver Locations');

%% Z Error Plots

% figure(50); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS);
% axis([-5000 5000 -5000 5000 -800 400]);
% figure(51); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS);
% axis([-5000 5000 -5000 5000 -800 400]);
% figure(52); clf; surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CFP));
% axis([-5000 5000 -5000 5000 -800 400]);
% figure(53); clf; surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CMD));
% axis([-5000 5000 -5000 5000 -800 400]);

figure(54); clf; title(strcat('Average Z Error, Z=,',Z_Str,' mm'));
subplot(221); surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS);
axis([Xmin Xmax Ymin Ymax -800 400]);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
title('Avg Z-Error - LS Method');
subplot(222); surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS);
axis([Xmin Xmax Ymin Ymax -800 400]);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
title('Avg Z-Error - NLS Method');
subplot(223); surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CFP));
axis([Xmin Xmax Ymin Ymax -800 400]);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
title('Avg Z-Error - CFP Method');
subplot(224); surf(X_Mesh,Y_Mesh,real(Z_ErrorAvg_Pixel_CMD));
axis([Xmin Xmax Ymin Ymax -800 400]);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
title('Avg Z-Error - CMD Method');

%% Other Plots

% figure(60); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_LS);
% Z_err_HandleLS = get(gcf,'CurrentAxes');
% set(gca,'ZScale','log');

107

% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_LS))

max(max(Z_ErrorAvg_Pixel_LS))]);
%
% figure(61); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_NLS);
% Z_err_HandleNLS = get(gcf,'CurrentAxes');
% set(gca,'ZScale','log');
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_NLS))

max(max(Z_ErrorAvg_Pixel_NLS))]);
%
% figure(62); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_CFP);
% Z_err_HandleCFP = get(gcf,'CurrentAxes');
% set(gca,'ZScale','log');
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_CFP))

max(max(Z_ErrorAvg_Pixel_CFP))]);
%
% figure(63); clf; surf(X_Mesh,Y_Mesh,Z_ErrorAvg_Pixel_CMD);
% Z_err_HandleCMD = get(gcf,'CurrentAxes');
% set(gca,'ZScale','log');
% axis([Xmin Xmax Ymin Ymax min(min(Z_ErrorAvg_Pixel_CMD))

max(max(Z_ErrorAvg_Pixel_CMD))]);

%% Metrics

% LS Metrics
Metric_MSE_Total_LS = MSE_Error_Total_LS;
Metric_X_MSE_LS = sum(sum(X_MSE_Error_Pixel_LS))/Num_Pixels;
Metric_Y_MSE_LS = sum(sum(Y_MSE_Error_Pixel_LS))/Num_Pixels;
Metric_Z_MSE_LS = sum(sum(Z_MSE_Error_Pixel_LS))/Num_Pixels;

Metric_X_ErrorAvg_LS = sum(sum(X_ErrorAvg_Pixel_LS))/Num_Pixels;
Metric_Y_ErrorAvg_LS = sum(sum(Y_ErrorAvg_Pixel_LS))/Num_Pixels;
Metric_Z_ErrorAvg_LS = sum(sum(Z_ErrorAvg_Pixel_LS))/Num_Pixels;

% NLS Metrics
Metric_MSE_Total_NLS = MSE_Error_Total_NLS;
Metric_X_MSE_NLS = sum(sum(X_MSE_Error_Pixel_NLS))/Num_Pixels;
Metric_Y_MSE_NLS = sum(sum(Y_MSE_Error_Pixel_NLS))/Num_Pixels;
Metric_Z_MSE_NLS = sum(sum(Z_MSE_Error_Pixel_NLS))/Num_Pixels;

Metric_X_ErrorAvg_NLS = sum(sum(X_ErrorAvg_Pixel_NLS))/Num_Pixels;
Metric_Y_ErrorAvg_NLS = sum(sum(Y_ErrorAvg_Pixel_NLS))/Num_Pixels;
Metric_Z_ErrorAvg_NLS = sum(sum(Z_ErrorAvg_Pixel_NLS))/Num_Pixels;

% CFP Metrics
Metric_MSE_Total_CFP = MSE_Error_Total_CFP;
Metric_X_MSE_CFP = sum(sum(X_MSE_Error_Pixel_CFP))/Num_Pixels;
Metric_Y_MSE_CFP = sum(sum(Y_MSE_Error_Pixel_CFP))/Num_Pixels;
Metric_Z_MSE_CFP = sum(sum(Z_MSE_Error_Pixel_CFP))/Num_Pixels;

Metric_X_ErrorAvg_CFP = sum(sum(X_ErrorAvg_Pixel_CFP))/Num_Pixels;
Metric_Y_ErrorAvg_CFP = sum(sum(Y_ErrorAvg_Pixel_CFP))/Num_Pixels;
Metric_Z_ErrorAvg_CFP = sum(sum(Z_ErrorAvg_Pixel_CFP))/Num_Pixels;

108

% CMD Metrics
Metric_MSE_Total_CMD = MSE_Error_Total_CMD;
Metric_X_MSE_CMD = sum(sum(X_MSE_Error_Pixel_CMD))/Num_Pixels;
Metric_Y_MSE_CMD = sum(sum(Y_MSE_Error_Pixel_CMD))/Num_Pixels;
Metric_Z_MSE_CMD = sum(sum(Z_MSE_Error_Pixel_CMD))/Num_Pixels;

Metric_X_ErrorAvg_CMD = sum(sum(X_ErrorAvg_Pixel_CMD))/Num_Pixels;
Metric_Y_ErrorAvg_CMD = sum(sum(Y_ErrorAvg_Pixel_CMD))/Num_Pixels;
Metric_Z_ErrorAvg_CMD = sum(sum(Z_ErrorAvg_Pixel_CMD))/Num_Pixels;

% Summary of Metrics
Metric_Summary = real([Metric_X_ErrorAvg_LS Metric_X_ErrorAvg_NLS

Metric_X_ErrorAvg_CFP Metric_X_ErrorAvg_CMD; ...
 Metric_Y_ErrorAvg_LS Metric_Y_ErrorAvg_NLS

Metric_Y_ErrorAvg_CFP Metric_Y_ErrorAvg_CMD; ...
 Metric_Z_ErrorAvg_LS Metric_Z_ErrorAvg_NLS

Metric_Z_ErrorAvg_CFP Metric_Z_ErrorAvg_CMD; ...
 Metric_X_MSE_LS Metric_X_MSE_NLS

Metric_X_MSE_CFP Metric_X_MSE_CMD; ...
 Metric_Y_MSE_LS Metric_Y_MSE_NLS

Metric_Y_MSE_CFP Metric_Y_MSE_CMD; ...
 Metric_Z_MSE_LS Metric_Z_MSE_NLS

Metric_Z_MSE_CFP Metric_Z_MSE_CMD; ...
 Metric_MSE_Total_LS Metric_MSE_Total_NLS

Metric_MSE_Total_CFP Metric_MSE_Total_CMD]);

%% Format MSE Figure:
figure(1); hold on; grid on; xlabel('X Coordinate (mm)'); ylabel('Y

Coordinate (mm)'); zlabel('MSE (mm^2)');

%% Format Bias Figure:
figure(1);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

%% Format Z Avg Figure:
figure(1); hold on;
h = get(gca,'Children');

%%
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
subplot(222);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
subplot(223);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');
subplot(224);
xlabel('X Coordinate (mm)');ylabel('Y Coordinate (mm)');

zlabel('Error (mm)');

109

APPENDIX C – Data Post-Processing and Kalman Filter Matlab Programs

%% System ID Preprocess

%% Set System and Analysis Parameters

clc
clear

RootPath = 'H:\Masters Thesis\';

addpath(strcat(RootPath,'Matlab\'));
addpath(strcat(RootPath,'Matlab\Test Data Processing\'));

% System Parameters:
NOR = 6;
Rx40 = [339.6750, 540.2600, 22];
Rx41 = [987.3615, 540.2600, 22];
Rx42 = [647.70, 0, 22];
Rx43 = [679.35, 1080.52, 0];
Rx44 = [0, 0, 0];
Rx45 = [1295.4, 0, 0];
RCM = [Rx40;Rx41;Rx42;Rx43;Rx44;Rx45];

%% Import Data

FlightData = importdata(strcat(RootPath,'Test Data\Sys ID

Testing\West Hills_05_07_2013\05_07_2013_SysID_Ch3_Throttle.txt'));
Input_Channel = 3;

time = FlightData.data(:,1);
T20_R40_Data = FlightData.data(:,8);
T20_R41_Data = FlightData.data(:,9);
T20_R42_Data = FlightData.data(:,10);
T20_R43_Data = FlightData.data(:,11);
T20_R44_Data = FlightData.data(:,12);
T20_R45_Data = FlightData.data(:,13);

T21_R40_Data = FlightData.data(:,14);
T21_R41_Data = FlightData.data(:,15);
T21_R42_Data = FlightData.data(:,16);
T21_R43_Data = FlightData.data(:,17);
T21_R44_Data = FlightData.data(:,18);
T21_R45_Data = FlightData.data(:,19);

Ch1_Input = FlightData.data(:,33);
Ch2_Input = FlightData.data(:,34);
Ch3_Input = FlightData.data(:,35);
Ch4_Input = FlightData.data(:,35);

110

All_Data = [T20_R40_Data, T20_R41_Data, T20_R42_Data, T20_R43_Data,

T20_R44_Data, T20_R45_Data, ...
 T21_R40_Data, T21_R41_Data, T21_R42_Data, T21_R43_Data,

T21_R44_Data, T21_R45_Data, ...
 Ch1_Input, Ch2_Input, Ch3_Input, Ch4_Input];

%% Visualize data:

figure(1); clf;
subplot(321); plot(time,T20_R40_Data); title('T20-R40 Raw Data');
subplot(322); plot(time,T20_R41_Data); title('T20-R41 Raw Data');
subplot(323); plot(time,T20_R42_Data); title('T20-R42 Raw Data');
subplot(324); plot(time,T20_R43_Data); title('T20-R43 Raw Data');
subplot(325); plot(time,T20_R44_Data); title('T20-R44 Raw Data');
subplot(326); plot(time,T20_R45_Data); title('T20-R45 Raw Data');

figure(2); clf;
subplot(321); plot(time,T21_R40_Data); title('T21-R40 Raw Data');
subplot(322); plot(time,T21_R41_Data); title('T21-R41 Raw Data');
subplot(323); plot(time,T21_R42_Data); title('T21-R42 Raw Data');
subplot(324); plot(time,T21_R43_Data); title('T21-R43 Raw Data');
subplot(325); plot(time,T21_R44_Data); title('T21-R44 Raw Data');
subplot(326); plot(time,T21_R44_Data); title('T21-R45 Raw Data');

figure(3); clf;
subplot(321); plot(time,T20_R40_Data - T21_R40_Data);

title('Difference T20R40 - T21R40');
subplot(322); plot(time,T20_R41_Data - T21_R41_Data);

title('Difference T20R41 - T21R41');
subplot(323); plot(time,T20_R42_Data - T21_R42_Data);

title('Difference T20R42 - T21R42');
subplot(324); plot(time,T20_R43_Data - T21_R43_Data);

title('Difference T20R43 - T21R43');
subplot(325); plot(time,T20_R44_Data - T21_R44_Data);

title('Difference T20R44 - T21R44');
subplot(326); plot(time,T20_R45_Data - T21_R45_Data);

title('Difference T20R45 - T21R45');

% Histogram of change in consecutive range values for all Tx/Rx

combos:
XValues = [-10000:1000:10000];

figure(4); clf;
subplot(321); hist(diff(T20_R40_Data),XValues); title('Histogram of

Change in Range Values: T20R40');
xlabel('Change in Range Measurement (mm)');
subplot(322); hist(diff(T20_R41_Data),XValues); title('Histogram of

Change in Range Values: T20R41');
xlabel('Change in Range Measurement (mm)');
subplot(323); hist(diff(T20_R42_Data),XValues); title('Histogram of

Change in Range Values: T20R42');
xlabel('Change in Range Measurement (mm)');

111

subplot(324); hist(diff(T20_R43_Data),XValues); title('Histogram of

Change in Range Values: T20R43');
xlabel('Change in Range Measurement (mm)');
subplot(325); hist(diff(T20_R44_Data),XValues); title('Histogram of

Change in Range Values: T20R44');
xlabel('Change in Range Measurement (mm)');
subplot(326); hist(diff(T20_R45_Data),XValues); title('Histogram of

Change in Range Values: T20R45');
xlabel('Change in Range Measurement (mm)');

figure(5); clf;
subplot(321); hist(diff(T21_R40_Data),XValues); title('Histogram of

Change in Range Values: T21R40');
xlabel('Change in Range Measurement (mm)');
subplot(322); hist(diff(T21_R41_Data),XValues); title('Histogram of

Change in Range Values: T21R41');
xlabel('Change in Range Measurement (mm)');
subplot(323); hist(diff(T21_R42_Data),XValues); title('Histogram of

Change in Range Values: T21R42');
xlabel('Change in Range Measurement (mm)');
subplot(324); hist(diff(T21_R43_Data),XValues); title('Histogram of

Change in Range Values: T21R43');
xlabel('Change in Range Measurement (mm)');
subplot(325); hist(diff(T21_R44_Data),XValues); title('Histogram of

Change in Range Values: T21R44');
xlabel('Change in Range Measurement (mm)');
subplot(326); hist(diff(T21_R45_Data),XValues); title('Histogram of

Change in Range Values: T21R45');
xlabel('Change in Range Measurement (mm)');

% Histogram of 'difference' values (T20 - T21):
Num_Bins = 20;

figure(6); clf;
subplot(321); hist(T20_R40_Data - T21_R40_Data,Num_Bins);

title('Histogram of Differences: T20R40 - T21R40');
subplot(322); hist(T20_R41_Data - T21_R41_Data,Num_Bins);

title('Histogram of Differences: T20R41 - T21R41');
subplot(323); hist(T20_R42_Data - T21_R42_Data,Num_Bins);

title('Histogram of Differences: T20R42 - T21R42');
subplot(324); hist(T20_R43_Data - T21_R43_Data,Num_Bins);

title('Histogram of Differences: T20R43 - T21R43');
subplot(325); hist(T20_R44_Data - T21_R44_Data,Num_Bins);

title('Histogram of Differences: T20R44 - T21R44');
subplot(326); hist(T20_R45_Data - T21_R45_Data,Num_Bins);

title('Histogram of Differences: T20R45 - T21R45');

%% Filter Raw Range Data:

addpath(strcat(RootPath,'Matlab\Test Data Processing\Filters'));

% Apply filter 1 to all range data:

112

Delta_R = 1000; % Max speed of approx. 10 m/s (22.3 mph)
Num_Lead_Pts = 40;

T20R40_New = FilterRawData1(T20_R40_Data,Delta_R,Num_Lead_Pts);
T20R41_New = FilterRawData1(T20_R41_Data,Delta_R,Num_Lead_Pts);
T20R42_New = FilterRawData1(T20_R42_Data,Delta_R,Num_Lead_Pts);
T20R43_New = FilterRawData1(T20_R43_Data,Delta_R,Num_Lead_Pts);
T20R44_New = FilterRawData1(T20_R44_Data,Delta_R,Num_Lead_Pts);
T20R45_New = FilterRawData1(T20_R45_Data,Delta_R,Num_Lead_Pts);

T21R40_New = FilterRawData1(T21_R40_Data,Delta_R,Num_Lead_Pts);
T21R41_New = FilterRawData1(T21_R41_Data,Delta_R,Num_Lead_Pts);
T21R42_New = FilterRawData1(T21_R42_Data,Delta_R,Num_Lead_Pts);
T21R43_New = FilterRawData1(T21_R43_Data,Delta_R,Num_Lead_Pts);
T21R44_New = FilterRawData1(T21_R44_Data,Delta_R,Num_Lead_Pts);
T21R45_New = FilterRawData1(T21_R45_Data,Delta_R,Num_Lead_Pts);

% Apply filter 2 to all range data:
Max_Dist_Tx = 500; % Separation between T20 and T21
%Num_Lead_Pts = 10;

[T20R40_New2,T21R40_New2] =

FilterRawData2(T20R40_New,T21R40_New,Max_Dist_Tx,Num_Lead_Pts);
[T20R41_New2,T21R41_New2] =

FilterRawData2(T20R41_New,T21R41_New,Max_Dist_Tx,Num_Lead_Pts);
[T20R42_New2,T21R42_New2] =

FilterRawData2(T20R42_New,T21R42_New,Max_Dist_Tx,Num_Lead_Pts);
[T20R43_New2,T21R43_New2] =

FilterRawData2(T20R43_New,T21R43_New,Max_Dist_Tx,Num_Lead_Pts);
[T20R44_New2,T21R44_New2] =

FilterRawData2(T20R44_New,T21R44_New,Max_Dist_Tx,Num_Lead_Pts);
[T20R45_New2,T21R45_New2] =

FilterRawData2(T20R45_New,T21R45_New,Max_Dist_Tx,Num_Lead_Pts);

% Visualize data:
figure(11); clf;
subplot(321); plot(time,T20R40_New2,'b',time,T21R40_New2,'r');

title('R40 Data After Filtering');
legend('T20R40','T21R40');
subplot(322); plot(time,T20R41_New2,'b',time,T21R41_New2,'r');

title('R41 Data After Filtering');
legend('T20R41','T21R41');
subplot(323); plot(time,T20R42_New2,'b',time,T21R42_New2,'r');

title('R42 Data After Filtering');
legend('T20R42','T21R42');
subplot(324); plot(time,T20R43_New2,'b',time,T21R43_New2,'r');

title('R43 Data After Filtering');
legend('T20R43','T21R43');
subplot(325); plot(time,T20R44_New2,'b',time,T21R44_New2,'r');

title('R44 Data After Filtering');
legend('T20R44','T21R44');
subplot(326); plot(time,T20R45_New2,'b',time,T21R45_New2,'r');

title('R45 Data After Filtering');

113

legend('T20R45','T21R45');

% Compare filtered data with raw data:
figure(12); clf;
subplot(321); plot(time,T20_R40_Data,time,T20R40_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R40 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(322); plot(time,T20_R41_Data,time,T20R41_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R41 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(323); plot(time,T20_R42_Data,time,T20R42_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R42 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(324); plot(time,T20_R43_Data,time,T20R43_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R43 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(325); plot(time,T20_R44_Data,time,T20R44_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R44 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(326); plot(time,T20_R45_Data,time,T20R45_New2,'.');
legend('Raw Data','Filtered Data'); title('T20-R45 Data Before and

After Filtering');
xlabel('Time (s)');

figure(13); clf;
subplot(321); plot(time,T21_R40_Data,time,T21R40_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R40 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(322); plot(time,T21_R41_Data,time,T21R41_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R41 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(323); plot(time,T21_R42_Data,time,T21R42_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R42 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(324); plot(time,T21_R43_Data,time,T21R43_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R43 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(325); plot(time,T21_R44_Data,time,T21R44_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R44 Data Before and

After Filtering');
xlabel('Time (s)');
subplot(326); plot(time,T21_R45_Data,time,T21R45_New2,'.');
legend('Raw Data','Filtered Data'); title('T21-R45 Data Before and

After Filtering');

114

xlabel('Time (s)');

% Based on comparison of filtered data, choose receivers
% to use for position calculation:

RCM_3 = [Rx41; Rx42; Rx45];

%% Position Calculation:

R_T20 = [T20R41_New2 T20R42_New2 T20R45_New2];
R_T21 = [T21R42_New2 T21R42_New2 T21R45_New2];

addpath(strcat(RootPath,'Matlab\Test Data

Processing\Trilateration'));

Pos_CMD_T20 = zeros(length(time),3);
Pos_CMD_T21 = zeros(length(time),3);

for i = 1:length(time)
 Pos_CMD_T20(i,:) = ExplicitMethod_CMD(3,RCM_3,R_T20(i,:));
 Pos_CMD_T21(i,:) = ExplicitMethod_CMD(3,RCM_3,R_T21(i,:));
end

figure(21); hold on;
plot(time,Pos_CMD_T20(:,1),time,Pos_CMD_T20(:,2),time,Pos_CMD_T20(:,

3));
title('Calculated X, Y, and Z Position - T20'); legend('X

Position','Y Position','Z Position');
xlabel('Time (s)'); ylabel('Coordinate (mm)'); grid on;

%% Use Kalman Filter to filter position data:

% Set parameters for Kalman filter:
Sigma_Process = 3; % specify std dev for process noise/error
Sigma_Measurement = 2; % specify std dev for measurement

noise/error
Num_Lead_Pts = Num_Lead_Pts;

% Remove lead points from waveform for filtering:
Pos_CMD_T20_2 = Pos_CMD_T20((Num_Lead_Pts+1):length(time),:);
Pos_CMD_T21_2 = Pos_CMD_T21((Num_Lead_Pts+1):length(time),:);

time_filt = time(Num_Lead_Pts+1:length(time));

Pos_T20_Filt = zeros(size(Pos_CMD_T20_2));
Pos_T21_Filt = zeros(size(Pos_CMD_T21_2));

Pos_T20_Filt(:,1) =

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,1),Sigma_Process,Sigma_M

easurement);

115

Pos_T20_Filt(:,2) =

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,2),Sigma_Process,Sigma_M

easurement);
Pos_T20_Filt(:,3) =

RangeKalmanFilter(time_filt,Pos_CMD_T20_2(:,3),Sigma_Process,Sigma_M

easurement);

Pos_T21_Filt(:,1) =

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,1),Sigma_Process,Sigma_M

easurement);
Pos_T21_Filt(:,2) =

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,2),Sigma_Process,Sigma_M

easurement);
Pos_T21_Filt(:,3) =

RangeKalmanFilter(time_filt,Pos_CMD_T21_2(:,3),Sigma_Process,Sigma_M

easurement);

figure(22); clf; title('T20 Position Before and After Kalman

Filter');
subplot(311);

plot(time_filt,Pos_CMD_T20_2(:,1),'b',time_filt,Pos_T20_Filt(:,1),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - X

Position');
subplot(312);

plot(time_filt,Pos_CMD_T20_2(:,2),'b',time_filt,Pos_T20_Filt(:,2),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - Y

Position');
subplot(313);

plot(time_filt,Pos_CMD_T20_2(:,3),'b',time_filt,Pos_T20_Filt(:,3),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T20 - Z

Position');

figure(23); clf; title('T21 Position Before and After Kalman

Filter');
subplot(311);

plot(time_filt,Pos_CMD_T21_2(:,1),'b',time_filt,Pos_T21_Filt(:,1),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - X

Position');
subplot(312);

plot(time_filt,Pos_CMD_T21_2(:,2),'b',time_filt,Pos_T21_Filt(:,2),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - Y

Position');

116

subplot(313);

plot(time_filt,Pos_CMD_T21_2(:,3),'b',time_filt,Pos_T21_Filt(:,3),'r

');
xlabel('Time (s)'); ylabel('Coordinate (mm)');
legend('Before Kalman Filter','After Kalman Filter'); title('T21 - Z

Position');

% Take average of T20 and T21 positions:
Pos_T_Filt = (Pos_T20_Filt + Pos_T21_Filt)/2;

figure(24); plot(time_filt,Pos_T_Filt);
legend('X-Position','Y-Position','Z-Position');

%% Heading Calculation:
Rad2Deg = 180/pi;

PSI_CMD = zeros(length(time),1);

for i = 1:length(time)
 PSI_CMD(i) = atan2(real((Pos_CMD_T20(i,2) - Pos_CMD_T21(i,2))),

...
 real((Pos_CMD_T20(i,1) - Pos_CMD_T21(i,1))));
end

% figure(31); clf;
% plot(time,PSI_CMD*Rad2Deg)

Heading_CMD_Deg = PSI_CMD*Rad2Deg;

% Apply Kalman Filter to Heading
Sigma_Process = 1; % specify std dev for process noise/error
Sigma_Measurement = 1; % specify std dev for measurement

noise/error

Heading_CMD_Deg_Filt = RangeKalmanFilter(time,Heading_CMD_Deg, ...

Sigma_Process,Sigma_Measurement);

figure(32); clf;
plot(time,Heading_CMD_Deg,'b',time,Heading_CMD_Deg_Filt,'r');
title('Heading Angle'); legend('Before Kalman Filter','After Kalman

Filter');
xlabel('Time (s)'); ylabel('Heading Angle (deg)');

%% Parse Data and Resample

Impulse_Time = 86.7; % in seconds
Sampling_Interval = 0.05;
Time_Before_Impulse = 1; % in seconds
Time_After_Impulse = 4;

117

Impulse_Tspan = [(Impulse_Time-

Time_Before_Impulse):Sampling_Interval:(Impulse_Time+Time_After_Impu

lse)]';

%% Define Inputs and Outputs for System Identification

Input_U = Ch3_Input;

Input_Norm = (Input_U - median(Input_U))/max(abs(Input_U-

median(Input_U)));
Impulse_Input =

interp1(time,Input_Norm,Impulse_Tspan,'nearest');

Pos_T20_Output =

interp1(time_filt,Pos_T20_Filt,Impulse_Tspan)+2500;
Pos_T21_Output = interp1(time_filt,Pos_T21_Filt,Impulse_Tspan);
Heading_Output =

interp1(time,Heading_CMD_Deg_Filt,Impulse_Tspan);

Input = -Impulse_Input;
Output_T20 = real(Pos_T20_Output(:,3));
Output_T21 = real(Pos_T21_Output(:,3));
Output_Heading = Heading_Output;

figure(34); clf;
subplot(2,1,1); plot(Impulse_Tspan,Input,'green'); legend('Impulse

Signal'); title('Ch3 Command');
xlabel('Time (s)');
subplot(2,1,2);

plot(Impulse_Tspan,Output_T20,'blue',Impulse_Tspan,Output_T21,'red')

; legend('T20 Position','T21 Position');
xlabel('Time (s)'); ylabel('Coordinate (mm)');

%% Display Commands and Responses for All Channels

Ch1_Norm = (Ch1_Input - median(Ch1_Input))/max(abs(Ch1_Input-

median(Ch1_Input)));
Ch2_Norm = (Ch2_Input - median(Ch2_Input))/max(abs(Ch2_Input-

median(Ch2_Input)));
Ch3_Norm = (Ch3_Input - median(Ch3_Input))/max(abs(Ch3_Input-

median(Ch3_Input)));
Ch4_Norm = (Ch4_Input - median(Ch4_Input))/max(abs(Ch4_Input-

median(Ch4_Input)));

figure(35); clf;
subplot(2,1,1); plot(Impulse_Tspan,Input,'green'); legend('Heading

Command Signal');
title('Heading Command'); xlabel('Time (s)');
subplot(2,1,2); plot(Impulse_Tspan,Output_Heading); legend('Heading

Response');
title('Heading Response'); ylabel('Heading (deg)');
%%

118

figure(36); clf;
subplot(211); plot(time,Ch1_Norm,'green');
title('Ch1 Command'); xlabel('Time (s)');
subplot(212);

plot(time_filt,Pos_T20_Filt(:,1),'blue',time_filt,Pos_T21_Filt(:,1),

'red');
title('Position Response - Left/Right'); xlabel('Time (s)');

legend('T20 X Position','T21 X Position');

figure(37); clf;
subplot(211); plot(time,Ch2_Norm,'green');
title('Ch2 Command'); xlabel('Time (s)');
subplot(212);

plot(time_filt,Pos_T20_Filt(:,2),'blue',time_filt,Pos_T21_Filt(:,2),

'red');
title('Position Response - Front/Back'); xlabel('Time (s)');

legend('T20 Y Position','T21 Y Position');

figure(38); clf;
subplot(211); plot(time,Ch3_Norm,'green');
title('Ch3 Command'); xlabel('Time (s)');
subplot(212);

plot(time_filt,Pos_T20_Filt(:,3),'blue',time_filt,Pos_T21_Filt(:,3),

'red');
title('Position Response - Altitude'); xlabel('Time (s)');

legend('T20 Z Position','T21 Z Position');

figure(39); clf;
subplot(211); plot(time,Ch4_Norm,'green');
title('Ch4 Command'); xlabel('Time (s)');
subplot(212); plot(time,Heading_CMD_Deg_Filt,'blue');
title('Heading Response (deg)'); xlabel('Time (s)');

legend('Heading');

119

function [Filtered_Distance] =

RangeKalmanFilter(Time_Vector,Distance_Vector,Process_Noise,Measurem

ent_Noise)

% function [Filtered_Distance] =

RangeKalmanFilter(Time_Vector,Disance_Vector)
% inputs : Time_Vector (vector of time stamps corresponding to

each
% data point
% : Distance_Vector (vector of distance measurements)
% : Process_Noise (std dev of process noise, aka-error)
% : Measurement_Noise (std dev of measurement noise,

aka-error)
% outputs : Filtered_Distance (distance measurements after

filtering)

Num_Pts = length(Time_Vector);

% Initialize estimation variables:
dt_avg = mean(diff(Time_Vector));

X_initial = [mean(Distance_Vector(1:10)); 0];
X_estimate = [];
P_mag_estimate = [];
Predict_State = [];
Predict_Var = [];
R_estimate = []; % Range estimate (postion)
V_estimate = []; % 'Velocity' estimate (change in range)

Filtered_Distance = [];

% Set noise parameters:
Process_Noise = Process_Noise; % (10?) std dev, variability in

process (acceleration)
Measurement_Noise = Measurement_Noise; % (20?) std dev, variability

in measurement system
Error_Measurement = Measurement_Noise^2; % Measurement noise

covariance
Error_Process = Process_Noise^2 * [dt_avg^4/4 dt_avg^3/2; dt_avg^3/2

dt_avg^2]; % Process noise covariance
P = Error_Process; % Initialize P best guess (using dt_avg)

for t = 1:Num_Pts

 if t == 1
 X_estimate = X_initial;
 else

 dt = Time_Vector(t) - Time_Vector(t-1);
 Error_Process = Process_Noise^2 * [dt^4/4 dt^3/2; dt^3/2

dt^2];

120

 % Define governing equations:
 A = [1 dt; 0 1];
 B = [0; 0]; % There is no known control input (U)
 C = [1 0];

 % Define noise parameters dependent on dt:

 X_estimate = A*X_estimate; % B is assumed to be 0 because U

is unknown
 Predict_State = [Predict_State; X_estimate(1)];
 P = A*P*A' + Error_Process;
 Predict_Var = [Predict_Var; P]; % Predict covariance
 K = P*C'*inv(C*P*C' + Error_Measurement); % Calculate Kalman

Gain

 % Update state estimation
 X_estimate = X_estimate + K*(Distance_Vector(t) -

C*X_estimate);

 %Update covariance estimation
 P = (eye(2) - K*C)*P;
 end

 Filtered_Distance = [Filtered_Distance; X_estimate(1)];

end

	Western Michigan University
	ScholarWorks at WMU
	6-2014

	Localization and System Identification of a Quadcopter UAV
	Kenneth Befus
	Recommended Citation

	CHAPTER II

