University of South Carolina Scholar Commons

Theses and Dissertations

2018

Forensic Patient Flow: An Imbalance Between Capacity And Demand

Versie J. Bellamy University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the <u>Family Practice Nursing Commons</u>

Recommended Citation

Bellamy, V. J. (2018). Forensic Patient Flow: An Imbalance Between Capacity And Demand. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4643

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

FORENSIC PATIENT FLOW: AN IMBALANCE BETWEEN CAPACITY AND DEMAND

by

Versie J. Bellamy

Bachelor of Science in Nursing University of South Carolina, 1985

Master of Nursing University of South Carolina, 1990

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Nursing Practice in

Nursing Practice

College of Nursing

University of South Carolina

2018

Accepted by:

Ronda Hughes, Major Professor

Patricia Handley, Committee Member

Abbas Tavakoli, Committee Member

Carolyn Harmon, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

© Copyright by Versie J. Bellamy, 2018

All Rights Reserved.

DEDICATION

In honor of God, I would like to dedicate this manuscript to my mother, Mrs. Clara Jones, for her unconditional love, encouragement, support, and sacrifice throughout my being so that I could not only desire but have the courage to attain my goals and embrace a commitment to life-long learning. And, to my family and friends for believing in me. Despite the circumstances in balancing school, corporate demands, and life, you continued to remind me that "failure is not an option." Your love, support, and encouragement remained consistent throughout this season of my life, and to you I am grateful. To my niece, Mikaela, and Goddaughter, Tristan Marie, for your love, prayers, and expressions of kindness throughout the journey. I look forward to spending more time together supporting your growth and development. Finally, to my executive team and colleagues for your unwavering support, trust, and loyalty throughout this endeavor. You reminded me why the need to complete this project greatly surpassed my educational goals.

ACKNOWLEDGEMENTS

I would like to acknowledge my chair, Dr. Ronda Hughes, and committee members (Dr. Patricia Handley, Dr. Abbas Tavakoli, and Dr. Carolyn Harmon) for the guidance and support afforded me. I would also like to acknowledge the Faculty and Staff of the University of South Carolina for their support throughout my educational endeavor. A special acknowledgement to Dr. Patricia A. Handley for the invaluable support and preceptorship afforded me throughout the DNP journey. To the staff and leadership of the South Carolina Department of Mental Health, and the Forensic Hospital Leadership, I am grateful for your invaluable contributions and commitment to this project. Thanks to my executive team and special thanks to Mr. Doug Glover, Mrs. Jessica Suber, and Mrs. Irene Thornley.

ABSTRACT

Background: The United States (U.S.) has an ever-growing incarcerated population. The sheer volume of this population coupled with inefficient patient flow through the judicial and health care systems, create a large imbalance between the high demand for services and the capacity to deliver them. The delay in criminal defendants accessing mental health services is impacted by the lack of patient flow, which creates barriers to entering and exiting the forensic hospital system. The increasing demand for inpatient forensic services, coupled with a static supply of resources, warrants further intervention by treatment and service providers. Identifying and removing barriers to patient flow can reduce the imbalance between capacity and demand and result in lower wait times to access inpatient treatment and care.

Purpose: The purpose of this evidence-based quality improvement project was to identify barriers to the patient flow process that lead to inefficient treatment for forensic psychiatric patients and to implement a plan for removing those barriers.

Methods: A nonexperimental evidence-based quality improvement study was conducted at a forensic psychiatric hospital in the Southeastern region of the U.S. utilizing Lean Methodology and Plan-Do-Study-Act (PDSA) to identify barriers (communication, legal, active treatment, discharge process) to patient flow and improve timely treatment by reducing wait time and length of stay for forensic psychiatric patients.

V

Results: Statistically significant reductions in the forensic waitlist (51%) and wait time (50%) were achieved. During the study period, the average length of stay was reduced, and the number of admissions and discharges were increased.

Conclusions: Maximization of efficiencies within the forensic psychiatric hospital patient flow process, through the minimization and elimination of non-value-added waste (waiting, over-processing, defects and skills) resulted in a reduction in the waitlist and wait times due to improved patient flow. Such improvements increased the state's treatment capacity for defendants awaiting inpatient services at the forensic psychiatric hospital.

Keywords: forensic psychiatric hospital, patient flow, waitlist, wait time, quality improvement, lean methodology, plan-do-study-act.

TABLE OF CONTENTS

Dedication	iii
Acknowledgements	iv
Abstract	v
List of Tables	ix
List of Figures	X
List of Abbreviations	xi
Chapter 1: Introduction	1
Chapter 2: Forensic Patient Flow: A Mismatch Between Capacity and Demand	37
Chapter 3: Findings and Conclusions	58
References	73
Appendix A: Model of Change	79
Appendix B: Evidence Table	80
Appendix C: Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal	103
Appendix D: Johns Hopkins Nursing Evidence-Based Practice Non-Research Evidence Appraisal	104
Appendix E: Institutional Review Board Approval UofSC	105
Appendix F: Institutional Review Board Approval SCDMH	106
Appendix G: Executive Summary	
Appendix H: Project Problem	115

Appendix I: Project Scope	118
Appendix J: Project Measurement	130
Appendix K: Gantt Chart	132
Appendix L: Poster Abstract	134
Appendix M: Waitlist Standard Deviation	135
Appendix N: Wait Time Standard Deviation	136
Appendix O: JHQ Manuscript Guidelines	137
Appendix P: Manuscript Abstract Submission and Correspondence with JHQ	145

LIST OF TABLES

Table 1.1 PICOT Question Components	5
Table 1.2 Volume of Results	10
Table 1.3 Key Words and Combinations	11
Table 1.4 Key Word Combinations	13
Table 1.5 Evidence Level and Quality Rating of Selected Articles for Analysis	15
Table 1.6 Timeframe & Milestones	28
Table 1.7 Risk Identification	31
Table 1.8 DNP Project Measurement	33
Table 2.1 Statistical Measures Related to Waitlist	50
Table 2.2 Average Days on Waitlist	52
Table 3.1 Statistical Measures Related to Waitlist	64
Table 3.2. Waitlist Standard Deviation	65
Table 3.3 Average Days on Waitlist	66
Table 3.4. Wait Time Standard Deviation	68

LIST OF FIGURES

Figure 2.1 Conceptual Framework	43
Figure 2.2 Forensic Patient Flow Barriers	48
Figure 2.3 Forensic Patient Waitlist Numbers	49
Figure 2.4 Average Days on Waitlist	53
Figure 2.5 Distribution of Wait Time	54
Figure 3.1 Forensic Patient Flow Barriers	62
Figure 3.2 Forensic Waitlist Numbers	63
Figure 3.3 Average Days on Waitlist	68
Figure 3.4 Distribution of Wait Time	69

LIST OF ABBREVIATIONS

BPH	G. Werber Bryan Psychiatric Hospital
DE	Designated Examiner
DIS	Division of Inpatient Services
DMH	Department of Mental Health
DNP	Doctor of Nursing Practice
FES	Forensic Evaluation Services
FRB	Forensic Review Board
IRB	Institutional Review Board
MUSC	Medical University of South Carolina
PDSA	Plan-Do-Study-Act
PPD	Purified Protein Derivative
QI	Quality Improvement
SCDMH	South Carolina Department of Mental Health
UofSC	University of South Carolina
SMI	Serious Mental Illness
SMI	Serious Mental Illness
SMI	Serious Mental Illness

CHAPTER 1

INTRODUCTION

Currently, the United States (U.S.) has the largest incarcerated population in the world with as many as 2.2 million adults incarcerated (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). Research consistently shows that people with mental illness make up a large proportion of the incarcerated population (Kennedy-Hendricks et al., 2016; Prins, 2014; Steadman, Osher, Robbins, Case, & Samuels, 2009). Individuals with mental illness, and specifically those in the criminal justice system, have complex health care needs that are often difficult to diagnose and treat (Abram, Teplin, & McClelland, 2003). Consequently, the health care system is greatly challenged to meet the needs of this vulnerable population (Kennedy-Hendricks, et al., 2016). Lack of appropriate treatment leads to exacerbation of mental health conditions, extended lengths of stay in hospitals, and an increase in health care costs (Kennedy-Hendricks, et al., 2016). Therefore, it is imperative that these individuals receive timely and appropriate treatment.

Description of Problem

Patient flow issues may be a significant barrier to receiving timely and appropriate treatment (Van Dyke, McHugh, Yonek, & Moss, 2011). The sheer volume of this population, coupled with inefficient patient flow through the health care system, create a large imbalance between the high demand for services and the capacity to deliver them. A review of the literature suggests that issues such as staff assignments, waitlist management, and patient triage may be barriers to patient flow (Elder, Johnston, & Crilly, 2015; Lee, & Franc, 2015; New, 2013; New, Andrianopoulos, Cameron, Olver & Stoelwinder, 2013; Van Dyke, et al., 2011). Patient flow issues need to be identified and corrected so that the treatment needs of the population can be met and capacity and demand imbalance reduced.

Scope of Problem

As previously noted, the U.S. has the largest incarcerated population in the world with as many as 2.2 million adults incarcerated (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). The state of South Carolina currently has approximately 20,951 incarcerated adults. Of that population, approximately 3,500 are diagnosed with a serious mental illness (SMI) (State of South Carolina, Department of Corrections, 2016). In accordance with South Carolina law, South Carolina Department of Mental Health (SCDMH) is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by order and state statute. Currently, the SCDMH is unable to meet the requirements under SC state statute.

The forensic unit has a capacity of 230 beds. At any given time, an additional 70-100 people are awaiting psychiatric treatment for restoration to competency or long-term psychiatric rehabilitation at the SCDMH forensic hospital. With an average length of stay of 200 days on the forensic units, patients waiting for a bed languish in jail while their psychiatric condition deteriorates. Consequently, there is a serious imbalance between the demand for treatment and treatment capacity in SC.

Currently, there are no plans to increase bed or staff capacity. Without change, the patient waitlist will continue to grow and access to treatment will continue to be prolonged. At present, increasing patient flow through the DMH forensic hospital is the

optimal option to increase capacity and get these patients to needed treatment. Importantly, identifying and removing barriers to patient flow could mean that capacity and demand mismatch could be reduced.

Best Practices to Address Problem

Two evidence-based approaches to quality improvement will be used in this project. Lean methodology is an evidence-based practice improvement approach adopted from the Toyota Company (Moran, Burson, & Conrad, 2017; Sullivan, Soefje, Reinhart, McGeary, & Cabie, 2014; Zhu, Lu, & Dai, 2014). Lean methodology is based on two key tenets, respect for all people and continuous improvement (Johnson, 2013). Lean methodology uses data from a variety of sources including research studies, patient satisfaction surveys, and quality improvement initiatives to drive organizational change (Johnson, 2013). Applied to the health care system, lean methodology helps create maximum value for patients by reducing waste and waits, and optimizing clinical processes (Lawal et al., 2014). Lean methodology targets unnecessary intermediate processes and retains only those that add value (Zhu, 2014). Specifically, lean methodology uses process mapping to identify areas for analysis and intervention.

Plan-Do-Study-Act (PDSA) is part of the Institute for Healthcare Improvement Model for accelerating quality improvement in healthcare. It is the scientific method adapted for action-oriented learning (Institute for Health Care Improvement, n.d.). PDSA consists of a systematic series of steps for planning and implementing change. The process begins with the Plan step that involves identifying a goal, formulating a theory, and defining success metrics. The Do Step involves implementing the plan. During the Study step, outcomes are monitored to assess the validity of the plan and to monitor signs

of progress and success, or problems that arise. The last step, the Act step, integrates the learning generated by the entire process and can be used to adjust the goal, change methods, or to reformulate the plan (Institute for Healthcare Improvement, n.d., The W. Edward Demings Institute, 2016)

Statement of Purpose

The overall purpose of this project is to use lean methodology and Plan-Do-Study-Act (PDSA) to identify barriers in the patient flow process that lead to inefficient treatment for forensic psychiatric patients and to implement a plan for removing those barriers.

PICOT Question

In the state of South Carolina, for adult patients requiring psychiatric treatment in the legislatively mandated, inpatient forensic hospital (P), does the implementation of quality improvement, using lean methodology and Plan-Do-Study Act (PDSA) to remove identified barriers (inadequate allocation of forensically trained physicians and psychologists to provide forensic evaluations, inadequate waitlist management, and lack of a patient triage system) to patient flow (I), reduce the forensic waitlist by 25%, and reduce the time on the forensic waitlist by 50% (C)(O) compared to pre-intervention existing data, over a 4 month period (T)? The purpose of the literature search was to find relevant, peer-reviewed evidence related to the quality improvement initiatives of lean methodology and Plan-Do-Study-Act (PDSA) to remove identified barriers to patient flow.

Table 1.1PICOT Question Components

Patient Population	Intervention	Outcome	Comparison/Time
Adult patients requiring psychiatric treatment in the legislatively mandated, inpatient forensic hospital	Implementation of quality improvement, using lean methodology and Plan-do-Study Act (PDSA) to remove barriers to patient flow	Reduction in the forensic waitlist by 25%, and a reduction in the time on the forensic waitlist by 50%	Compared to pre- intervention existing data from 2016, over the same four- month period in 2017.

Melnyk & Fineout-Overholt (2015)

Definitions

Lean methodology is defined as a quality-improvement method based on the Toyota Production System (Moran, Burson, & Conrad, 2017; Sullivan, Soefje, Reinhart, McGeary, & Cabie, 2014; Zhu, Lu, & Dai, 2014). Applied to the health care system, lean methodology helps create maximum value for patients by reducing waste and waits, and optimizing clinical processes (Lawal et al., 2014). Lean methodology targets unnecessary intermediate processes and retains only those that add value (Zhu, 2014). Specifically, lean methodology uses process mapping to identify areas for analysis and intervention.

Plan-Do-Study-Act (PDSA) is a systematic series of steps for planning and implementing change. The process begins with the Plan step that involves identifying a goal, formulating a theory, and defining success metrics. The Do step involves implementing the plan. During the Study step, outcomes are monitored to assess the validity of the plan and to monitor signs of progress and success, or problems that arise. The last step, the Act step, integrates the learning generated by the entire process and can be used to adjust the goal, change methods, or to reformulate the plan (The W. Edward Demings Institute, 2016).

Serious mental illness (SMI) is a condition that affects "persons aged 18 or older who currently or at any time in the past year have had a diagnosable mental, behavioral, or emotional disorder (excluding developmental and substance use disorders). The condition has to be of sufficient duration to meet diagnostic criteria and must result in serious functional impairment that interferes with at least one major life activity such as interpersonal relationships, activities of daily living, work, and recreation (Development Services Group, Inc., 2016, p. 2).

Forensic is defined as relating to or dealing with the application of scientific knowledge to legal problems (Forensic, n.d.). "Forensic" mental health services are services provided by mental health professionals or agencies for use in court or otherwise in connection with a legal matter (Fitch, 2014).

Literature Review

Search Process

The literature search process began with a review of the informative literature search tutorials prepared by the University of South Carolina (UofSC), Thomas Cooper Library. The initial search was conducted for scholarly, peer-reviewed articles using CINAHL Complete, PubMed-Medline, Business Source Complete, Psyc INFO and Web of Science. In addition, Google Scholar, a web-based free resource was accessed; however, the evidence found was duplicative from previous searches of CINAHL Complete, PubMed and Business Source Complete. The Cochrane Library, Joanna Briggs Institute, EconLit, and Public Affairs Information Service International (PAIS)

were also queried; however, PAIS and EconLit did not produce any relevant articles. The primary databases used for the literature review were CINAHL, PubMed-Medline, Web of Science, and Business Source Complete.

Sources of Evidence

A review of data bases is provided to further substantiate credibility of the literature search process. CINAHL is a global nursing and allied health database that indexes more than 3,000 journals, and comprises more than 2.3 million records dating back to 1981, including a complete coverage of English-language nursing journals and publications. The literature coverage includes health care books, nursing dissertations, conference proceedings, book chapters and standards of practice (Dearholt & Dang, 2012, p. 74).

Pub Med-Medline, is a premier worldwide database of biomedical literature that includes research, clinical practice, administration, policy issues, and health care services. PubMed searches Medline as well as articles that are not indexed in Medline and provides over 18 million references to journal articles in the life sciences with a focus on biomedical research. Medline provides a controlled vocabulary that allows for search precision through the use of Medical Subject Headings (MeSH) to eliminate irrelevant articles. PubMed also has clinical queries, with evidence-based filters for clinical categories and systematic reviews (Dearholt & Dang, 2012, pp. 74-75).

The Web of Science includes three indexes: Arts & Humanities Citation Index (1975 to present), Social Sciences Citation Index (1900 to present), and a Science Citation Index Expanded (1899 to present). The Web of Science indexes thousands of the most prestigious, high impact research journals in the world and has cited reference

searching and ways to refine and analyze the search results. Web of Science allows cited reference searching, a feature enabling tracking of how a work is cited after initial publication (UofSC, 2013).

The proposed intervention, Lean Methodology, was developed as a business model and adapted to health care settings. Consequently, the Business Source Complete database was queried. Business Source Complete offers full text articles and abstracts for the most important scholarly business journals, dating back as far as 1886 (UofSC, 2013). Several other data bases were accessed as follows: PAIS, Cochrane library, Joanna Briggs Institute, PsycInfo, and EconLit. However, the searches from these databases did not yield as much evidence with relevancy for the research initiative (UofSC, 2013).

Search Terms

The first major search strategy is KEYWORD searching. Keywords are generated from the PICOT question (Melnyk & Fineout-Overholt, 2015, p. 50). According to Dearholt and Dang (2012), the initial step in discovering evidence is selecting searchable keywords from the answerable evidence-based practice (EBP) question (p. 72). A literature search was conducted using the following key words: "quality improvement," "lean methodology," "lean management," "Plan-Do-Study-Act," PDSA, "Plan-Do-Check-Act," PDCA, "Six Sigma," "6S," "waiting list," "time," "barriers," "patient flow," and "hospitals." The initial broad search yielded many extraneous results that did not answer my study question. Therefore, the search mode, using the Boolean operators "OR" and "AND" in the following amalgamations was performed to narrow the search to obtain more relevant data: (Quality Improvement OR Lean management OR Lean Methodology OR PDSA OR "Plan Do Study Act" OR "PDCA," OR "Plan-Do-Check-

Act," Six Sigma OR 6S) AND (wait* list OR time OR barriers OR patient flow) AND (hospitals OR Psych*). The keywords or synonyms of keywords were also searched singularly to ensure the inclusion of relevant evidence. The change in search still yielded a limited number of articles. Finally, the search was expanded to include the combination of additional keywords as follows: (waiting lists OR Waiting time OR wait time) AND Veterans Administration; (waiting lists OR Waiting time OR wait time) AND emergency departments; (waiting lists OR Waiting time OR wait time) AND emergency departments; (waiting lists OR Waiting time OR wait time) AND surg*, (waiting lists OR Waiting time OR wait time) AND psych* admission, (waiting lists OR Waiting time OR wait time) AND psychiatry, (waiting lists OR waiting time OR wait time) AND forensic, (waiting lists OR waiting time OR wait time) AND forensic, (waiting lists OR waiting time OR wait time) AND forensic, time OR wait time) AND Britain, and (waiting lists OR waiting time OR wait time) AND England. The results of the refined search produced many articles; yet, the evidence failed to address the specific research question. However, additional evidence was found in non-forensic hospital settings to support the proposed evidence-based project.

Inclusion and Exclusion Criteria

The initial search strategy identified thousands of articles that might be relevant to this project; however, it did not produce evidence regarding patient flow studies in forensic psychiatric hospitals. For that reason, the search was broadened to include relevant patient flow studies from other settings such as, tertiary hospital emergency departments, as well as business and industry. In addition, a final search was conducted to include studies focused on hospital departments that are known for their long waiting list and wait times. Those departments included the following: Veterans Administration,

emergency departments, surgery, psych admissions, psychiatry, forensic, Canada, Britain, and England.

To be included in the final selection for this project, articles had to meet the following inclusion criteria: (1) be available in full text or full text accessible through interlibrary loan; (2) be written in English language; (3) be published in scholarly, peer reviewed journals in the past 12 years; (4) meet the grade of A or B on The Johns Hopkins Hospital Evidence Level and Quality Guide in Dearholt & Dang (2012) for quality of evidence; and (5) directly address at least one part of the PICOT question. In addition to meeting inclusion criteria, articles were excluded if they only tangentially addressed aspects of the PICOT question so that clear conclusions could not be derived. Refer to Tables 1.2-1.3 for search results.

Table 1.2
Volume of Results

KEY WORDS &	CINAHL	PUBMED	BUSINESS	WEB OF	PSYC
COMBINATIONS	COM-	MEDLINE	SOURCE	SCIENCE	INFO
	PLETE		COMP-		
			LETE		
Quality	34,930	125,820	21,638	28,220	156,914
Improvement OR					
Lean Management					
OR "Plan do study					
act" OR PDSA OR					
six sigma AND					
wait*list OR time					
AND Psych*					
Lean Management	31,431	58,268	16,322	47,561	59,831
OR PDSA OR six					
sigma AND					
wait*list OR					
barriers OR patient					
flow OR time					
AND hospitals					
Lean Management	1	69	5	46	1
AND Patient flow					

Lean Methodology AND Patient flow	2	114	1	26	0
Plan Do Study Act AND Patient flow	4	5	0	16	1
Plan Do Check	0	2	0	7	0
Act AND Patient					
low					
PDSA AND	1	17	0	15	1
Patient Flow					
PDCA AND	0	6	0	4	0
Patient Flow					
Six Sigma AND	0	199	3	4	3
Patient Flow					
6S AND Patient	2	0	0	11	0
Flow					
PDSA	44	266	12	61	33
PDCA	10	157	38	13	11
Six Sigma	122	16,388	832	265	58
Plan-Do-Check- Act	20	94	33	48	20
Plan-Do-Study- Act	111	802	11	198	52
Lean Management	47	1,517	691	467	110
Lean Methodology	46	8,230	75	172	40

Table 1.3Keywords and Combinations

KEY WORDS & COMBINATIONS	COCHRANE LIBRARY	ECONLIT	PAIS	JOANNA BRIGGS INSTITUTE
Quality Improvement OR Lean Management OR "Plan do study act" OR PDSA OR six sigma AND wait*list OR time AND Psych*	47	1,227	2,387	0
Lean Management OR PDSA OR six sigma	802	4,230	3,829	657

AND wait*list OR barriers OR patient flow				
OR time AND hospitals				
Lean Management AND	0	0	1	0
Patient flow				
Lean Methodology AND	0	0	0	0
Patient flow				
Plan Do Study Act AND	7	1	1	0
Patient flow				
Plan Do Check Act AND	0	0	0	0
Patient Flow				
PDSA AND Patient Flow	0	0	0	0
PDCA AND Patient	0	0	0	0
Flow				
Six Sigma AND Patient	1	0	0	0
flow				-
6S AND Patient Flow	7	0	0	0
			1	
PDSA	14	0	1	1
DDCA	0	0	0	1
PDCA	9	9	0	1
Six Sigma	2	82	1	2
Six Sigilia	2	02	4	2
Plan-Do-Check- Act	4	4	13	0
Than Do Check Het			15	0
Plan Do Study Act	10	50	50	2
Flail-DO-Study-Act	10	52	50	5
Lean Management	1	57	60	0
Lean Methodology	0	36	7	1

Table 1.4Key Word Combinations

KEY WORD COMBINATIONS	PubMed
Waiting list OR Waiting time OR Wait time AND Veteran Administration	189
Waiting list OR Waiting time OR Wait time AND Emergency Departments	932
Waiting list OR Waiting time OR Wait time AND Surg*	4,187
Waiting list OR Waiting time OR Wait time AND Psych* Admission	38
Waiting list OR Waiting time OR Wait time AND Psychiatry	353
Waiting list OR Waiting time OR Wait time AND Forensic	32
Waiting list OR Waiting time OR Wait time AND Canada	1,025
Waiting list OR Waiting time OR Wait time AND Britain	10
Lean Methodology	7

Summary of the Evidence

The identification of current, high quality evidence to answer the PICOT question was the main priority of the literature review. Johns Hopkins Nursing Evidence-Based Practice (JHNEBP) Evidence Rating Scale in Dearholt & Dang (2012) was utilized to guide the appraisal of the level and quality of the evidence. The level of evidence is determined by the type of research design used; whereas, the quality is based on a critical appraisal of study methods and execution. Finally, the strength of the evidence is determined by the synthesis of level and quality of the evidence that results in each practice recommendation (Dearholt & Dang, 2012, p.83). The JHNEBP rating scale provides five levels, ranging from highest to lowest (I-V) to determine the strength of the evidence. The guidelines for grading the quality of the literature range from A to C with "A" representing the highest possible grade and "C" depicting the lowest. In addition, A Measurement Tool to Assess Systematic Reviews (AMSTAR) and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines were employed to facilitate the appraisal of systematic reviews (Dearholt & Dang, 2012; Newhouse, Dearholt, Poe, Pugh & White, 2005). A review of each database was conducted, followed by the elimination of duplicate articles. Next, each article was screened by reviewing the abstract and using the inclusion/exclusion criteria for potential inclusion in the literature table. A total of nine articles met all of the inclusion criteria. The remainder of the articles were rejected primarily for failure to meet the criteria for quality ratings and failure to address the PICOT question in a direct manner so that clear conclusions could be derived.

Literature Analysis and Synthesis

The literature review showed that no research has been done on patient flow issues in forensic psychiatric units. Although there are large numbers of articles on patient flow issues in other hospital departments, the evidence is not strong. There were no Level II quasi- experimental trials on patient flow issues. The only Level II study with an A rating was a qualitative study. The literature review provided diverse, extrapolative studies that were relevant to the PICOT question; however, only nine met all inclusion criteria. The following table summarizes the level of evidence and quality grades of each of the 9 articles included in this project. Over 50% of the evidence is quality 'A;' most reviews identified were qualitative.

Table 1.5Evidence Level & Quality Rating of Selected Articles for Analysis

	Authors' Name & Type of Study	Evidence Level Rating	Quality Rating
1)	Article 1:	III	А
	Hung, D., Martinez, M., Yakir, M. &		
	Gray, C. (2015).		
	Type of study: Qualitative Study		
2)	Article 2:	II	А
	Flynn, G., O'Neill, C., & Kennedy, H.		
	G. (2011).		
	Type of study: Quantitative and		
	includes a naturalistic prospective		
	observational study		
3)	Article 3:	III	В
	Van Dyke, K. J., McHugh, M.,		
	Yonek, J., Moss, D. (2011).		
	Type of Study: Qualitative		
4)	Article 4:	V	В
	Sayah, A. Rogers, L., Devarajan, K.,		
	Kingsley-Rocker, L., & Lobon, L. F.		
	(2014).		
	Type of Study: QI Project		
5)	Article 5:	V	A
	Popovich, M. A., Boyd, C.,		
	Dachennaus, I., & Kusler, D. (2012).		
	Type of Study: Literature Review &		
6)	Autiolo 6	TV/	Δ
0)	Arucie o: Taylor M. I. MaNiahol as C	1 V	A
	Nicolay C Dari A Ball D &		
	Reed I F (2013)		
	Type of Study: Systematic Review		
	and Meta Analysis		
7)	Article 7:	III	В
,	Valsangkar N. P., Eppstein, A. C.,		
	Lawson, R. A., BSEE, Taylor, A. N.		
	(2017).		
8)	Article 8:	V	А
	Dammand, J., Horlick, M., Jacobsen,		
	T. L., Leg, R., Rock, R. L. (2014).		
	Type of Study: Case Study		

9)	Article 9:	V	В
	Michael, Schaffer, Egan, Little &		
	Pritchard		
	Type of Study: Qualitative/ Quality		
	Improvement Project		

The literature identified facilitators to the use of Lean Methods. Themes included (1) leadership engagement of staff and management; (2) sensitivity to professional values and culture of medicine; and (3) perceived adequacy of resources to support the change effort (Hung, Martinez, Yakir & Gray, 2015, p. 104). The literature also showed that Lean methods can be successfully used in a hospital setting. One study showed increased efficiency in patient treatment through reduced wait times, greater efficiency in patient treatment through reduced for staff (Dammand, Horlyck, Jacobsen, Lueg & Rock, 2014).

The literature review indicated that patient flow issues may be a significant barrier to receiving timely and appropriate treatment (Van Dyke, McHugh, Yonek, & Moss, 2011). The literature review also suggests that issues such as staff assignments, waitlist management, and patient triage may be barriers to patient flow (Elder, Johnston, & Crilly, 2015; Lee, & Franc, 2015; New, 2013; New, Andrianopoulos, Cameron, Olver & Stoelwinder, 2013; Van Dyke, et al., (2011). In addition, key facilitators and barriers of Lean were addressed in the literature, indicating that the potential to improve health care delivery using lean methodology can be maximized by understanding early facilitators and barriers. Staff engagement and performance management sensitivity to the professional values and organizational resources were also found to be important for the introduction of Lean changes (Hung, Martinez, Yakir & Gray, 2015). The resistance to standardization of practice as well as the staff time required for participation were found to be barriers to the implementation of Lean. It is suggested that due to the complexity of medicine, applying Lean methodology as created in other industry could present challenges in healthcare that would need to be anticipated early to have successful outcomes (Hung, Martinez, Yakir & Gray, 2015). Summarily, three themes as identified above provided for facilitators and barriers of implementing Lean in primary care. Quality improvement also provides recommendations for organizations attempting change (Dammand, Horlyck, Jacobsen, Lueg & Rock, 2014).

The literature documents the use of various Lean tools to include: the elimination of non-value adding activities, Kaizen tablets and Gemba mapping (Dammand, Horlyck, Jacobsen, Lueg & Rock, 2015). Although the literature found the successful implementation of Lean in a public hospital, there were several limitations to the research to include, the literature on Lean tending not to report positive examples and the studies of Lean not considering opportunity costs (Dammand, Horlyck, Jacobsen, Lueg & Rock, 2015).

In addition, the literature found that pre and post intervention analyses are used to describe system-wide process improvement aimed at optimizing the emergency department (ED) patient experience by expediting throughput and flow. EDs are operating at or above capacity and evidence is increasing regarding the capacity worldwide. Hospitals are experimenting to reduce ED crowding, yet little evidence or instructions exist on how to implement patient flow improvement strategies; specifically, the factors that facilitate or hinder implementation. One of the major barriers to implementation is staff resistance (Van Dyke, McHugh, Yonek & Moss, 2011). Quality

improvement (QI projects to develop volume-driven protocols, based on retrospective analysis of administrative data to improve early intervention and rapid treatment of stable patients in the ED also result in positive changes as a result of the implementation of such protocols which are useful to the ED as the volume and length of stay begin to increase (Popovich, Boyd, Dachenhaus & Kusler, 2012). The literature also found that QI projects using PDSA can be applied to improve wait times and patient satisfaction among primary care patients. Specifically, the implementation of one or more process improvements using the PDSA model for improvement, and evaluation of the impact on patient wait times, patient satisfaction with wait times, and overall satisfaction with the care experience resulted in patient satisfaction, positive medical practice outcomes and improved financial performance (Michael, Schaffer, Egan, Little & Pritchard, 2013).

Finally, the evidence found that systematic reviews are performed to address the application of quality improvement methodologies from the manufacturing industry to surgical healthcare. Such methodologies used are continuous quality improvement, Six Sigma, total quality management, PDSA and Lean Six Sigma. The most common endeavors are to decrease complications or improve outcomes. The literature suggests that QI methodologies from industry can be adapted for use in alternate settings and that a comparison of Lean with other management tools that are similar like Total Quality Management (TQM) is recommended for further study (Dammand, Horlyck, Jacobsen, Lueg & Rock, 2015). Summarily, based on the evidence, there is utility for Lean principles and PDSA in healthcare to improve efficiency in processes and engage staff in the process of designing and implementing improvement initiatives across the healthcare system.

Recommendations for practice

Upon review of the literature, there is support that Lean Methods and PDSA are evidence-based approaches to facilitate quality improvement projects. However, there has been no effort to implement these methods in a forensic psychiatric setting; therefore, their effectiveness in the forensic psychiatric setting will need to be assessed. The proposed project will implement Lean methodology and PDSA to address forensic patient flow and waitlist management issues. Lean tools of A3 and process mapping will be used to identify barriers to patient flow. The PDSA cycle will be used to plan, implement, and assess change based on the identified barriers to patient flow.

Methodology/ Study Design

The design and method of the evidence-based project should be aligned with its purpose and goals (Moran, Burson & Conrad, 2017). The design of the proposed study is non-experimental evidence-based quality improvement using Lean methods and PDSA (Moran, Burson & Conrad, 2017). The proposed study will assess the current state of waitlist management and review administrative as well as clinical processes that impact the flow and movement of patients in and out of the forensic unit. During the initial project implementation, Lean methods will be used to determine if additional barriers to patient flow exist. The next step is to implement the PDSA cycle. In the first step, a plan will be developed to reduce barriers to patient flow. Success metrics will also be identified in the first step. During the second step, the Do step, the plan will be implemented. During the third step, the Study step, outcomes will be analyzed to assess the validity of the plan and to monitor signs of progress, success, as well as any problems that arise. During the last step, the Act step, the learning generated by the process will be

analyzed and integrated. If necessary, the goals, change methods, and plan will be modified (Institute for Healthcare Improvement, n.d.).

Sample/Setting

The representativeness of the sample determines the generalizability of the results of a study. Therefore, determining the sample size is significant to the data collection process and should be done early in designing the study (Melnyk & Fineout-Overholt, (2015). The sample in this study will comprise the forensic waitlist, forensic waitlist data, and data related to forensic admissions, discharges, and length of stay. To increase representativeness, the study will comprise the total population of waitlist and total sample of admissions and discharges over two consecutive years. Although the project will not involve research of human subjects, the proposal will be presented for an IRB review within the South Carolina Department of Mental Health prior to initiating the study.

The setting for this project is the South Carolina Department of Mental Health (SCDMH) forensic program at G. Werber Bryan Psychiatric Hospital (BPH). SCDMH, Division of Inpatient Services (DIS) is a 1500 bed, state operated, multi-hospital and long-term care (nursing home) system, comprised of two psychiatric and one addictions treatment hospital, and three nursing homes. Of the two psychiatric hospitals, the Columbia-based, G. Werber Bryan Psychiatric Hospital (BPH), a 482-licensed bed acute care facility, operates a 230-bed forensic division for the treatment of defendants in need of inpatient psychiatric services for competency evaluation, restoration and long term psychiatric rehabilitation. BPH also has 200 acute hospital beds for adults and a 51-bed hospital program for children and adolescents. Patrick B. Harris Hospital is an Anderson,

South Carolina-based, adult acute care psychiatric facility. Finally, Morris Village is a 100-bed acute alcohol and drug addiction treatment center. The long-term care facilities consist of three veterans nursing homes located in Anderson, South Carolina, Walterboro, South Carolina and Columbia, South Carolina. There is one general skilled nursing facility (SNF) located in Columbia, South Carolina. DIS employs nurses, doctors, pharmacists, social workers, activity therapists, chaplains, administrative and clinical support staff, and has a labor force of over 3000 to support the operations of the multi-hospital and nursing home system.

The evaluation, treatment and care of forensic patients is led by an interdisciplinary team of forensic psychiatrists, psychologists, social workers and nurses trained to address the clinical and the legal aspects of the forensic process. Forensic evaluation occurs in the outpatient Forensic Evaluation Services (FES) program. The treatment and care of the patients during the acute phase are provided at the BPH forensic facility. As the patient progresses and no longer requires the level of therapeutic security provided at the forensic facility, individual treatment and care needs are provided in the DIS facilities described above.

Theory Model for Planning and Implementing Change

The framework chosen for this project is Deming's model, also known as PDSA, which is a systematic series of steps for acquiring knowledge for continual process improvement. This cycle is also known as the Deming Wheel, or Deming Cycle (Appendix A). The cycle begins with the Plan step. This involves identifying a goal or purpose, formulating a theory, defining success metrics and putting a plan into action. These activities are followed by the Do step, in which the components of the plan are

implemented, such as making a product. Next comes the Study step, where outcomes are monitored to test the validity of the plan for signs of progress and success, or problems and areas for improvement. The Act step closes the cycle, integrating the learning generated by the entire process, which can be used to adjust the goal, change methods or even reformulate a theory altogether. These four steps are repeated over and over as part of a never-ending cycle of continual improvement (The W. Edward Demings Institute, 2016). Deming's model is widely used across healthcare systems nationwide. It is also an easier concept to grasp which allows for frontline staff involvement to promote change throughout the organization. Another reason for selecting Deming's model is for its ease of incorporation into Lean methodology which is also broadly utilized in healthcare systems across the nation to promote process improvement change resulting in improved efficiencies in healthcare systems.

Feasibility

Issues that Promote the Feasibility of the Evidence-Based Project (EBP)

The South Carolina Department of Mental Health (SCDMH) is a multihospital and long-term care system that values the implementation of evidence-based practice because it leads to the highest quality of care and the best patient outcomes (Melnyk & Fineout-Overholt, 2015). Moreover, SCDMH has affiliation agreements with over 60 colleges and universities to include medicine, nursing, and other allied health professions for training and knowledge acquisition through the use of its facilities for clinical placements. In addition, SCDMH is currently the recipient of grants that require the support of research and evidence-based practice at the clinical site. SCDMH also has staff trained in accessing electronic databases to facilitate the acquisition of evidence for

incorporation into practice. Finally, and most urgent to this project, as a legislatively mandated program of SCDMH, and in accordance with state law, SCDMH is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by court order and state statute. Currently, SCDMH is unable to meet the requirements under SC statute due to an imbalance between capacity and demand. According to Melnyk & Fineout-Overholt (2015), external pressure exists on healthcare providers to provide the most up-to-date practices and health-related information (pp.7-8). All factors addressed promote an atmosphere supportive of research and qualitative improvement initiatives. Summarily, SCDMH endeavors to support an increase in the development and application of a scientific body of knowledge which ultimately leads to the highest quality of care and best patient outcomes (Melnyk & Fineout-Overholt, 2015).

Issues that Might Limit the Feasibility of the Evidence-Based Project (EBP)

Although the organization's mission, values and the urgency of need facilitate the implementation of this project, there are factors to consider as potential barriers both internal and external to the organization. Organizational culture, time and limited evidence-based practice knowledge and skills across all levels within the organization represent barriers that can lead to resistance as well as the lack of evidence in the literature of success, specific to the waitlist management in the forensic psychiatric hospital setting (Melnyk & Fineout-Overholt, 2015; White, Dudley-Brown & Terhaar, 2016). Resistance to change can be mitigated by ensuring that all stakeholders understand the benefits of the project. The development of a white paper can be helpful in providing succinct communication about the project to stakeholders to facilitate an understanding of the issue, problem solve or make decisions regarding the project (Moran, Burson &

Conrad, 2017). Additionally, the political climate as evidenced by judicial requirements, budgetary restrictions and legislative mandates are potential barriers that exist outside of the agency's locus of control (White, Dudley-Brown & Terhaar, 2016).

Strategies to reduce barriers and increase support

The plan to reduce barriers and increase support for this project is as follows: (1) prepare a white paper for senior leadership and other stakeholders to cast vision about the project and how it will benefit the organization by facilitating the organization's ability to perform the mission as required by statute; (2) develop a forensic leadership work group to facilitate the change by incorporating the project into the current infrastructure; (3) provide an orientation to staff about the project and request staff input in project planning to include identification of systemic issues using Lean methods; (4) request an ongoing list of staff concerns prior to and during project implementation, and address each of the concerns both verbally and in writing.

Summarily, successful project implementation begins and ends with effective communication and having a well-developed plan to address and overcome barriers. The identification of issues and barriers is part of the project monitoring process and can occur prior to or during implementation. Therefore, having a thoughtful project plan can avert most problems (Moran, Burson & Conrad, 2017).

Key Stakeholders:

- Patients awaiting admission (high impact; high influence over project)
- South Carolina Mental Health Commission (high impact; high influence over project)
- SCDMH State Director and Senior Management (Deputy Directors of Inpatient Services (project manager), Administration and Community/Outpatient; Agency Medical Director; Chief Financial Officer (CFO); General Counsel; Division of Inpatient Services (DIS) Medical Director) (high impact; high influence over project)
- DIS Executive Staff (Administrator/Controller; Medical Director; Chief Nursing Officer; Performance Improvement Director & Risk Manager; Director of Organizational Planning and Human Resources (high impact; high influence over project)
- Clinical Preceptor (high impact; high influence over project)
- Forensic Review Board (high impact; high influence over project)
- Judicial System Partners (high impact; high influence over project)
- Forensic hospital leadership (director, assistant directors, medical director, staff, and psychiatrists) (high impact; high influence over project)
- Forensic Admission Coordinator (high impact; high influence over project)
- UofSC and Medical University of South Carolina (MUSC) psychiatrists & psychologists (high impact; high influence over project)
- Community Mental Health Center liaisons (medium impact; medium influence over project)
- Community Residential Care Facilities (medium impact; medium influence over project)
- UofSC Faculty Advisors (high impact; high influence over project)
- Information Technology Leaders (high impact; high influence over project)

• DMH Statistician (high impact; high influence over project)

Other Players:

- Contracted Forensic Staff (medium impact; medium influence over project)
- Legislative Partners (Chair of Senate Finance and House Ways and Means subcommittees) (high impact; high influence over project)
- Patient Families (Low impact; low influence over project)
- Members of the community (Low impact; low influence over project)
- Advocacy & Victims Groups (medium impact; medium influence over project)
- Law Enforcement (high impact; high influence over project)

Organizational Requirements

The South Carolina Department of Mental Health (SCDMH) is the state's public mental health authority and operates the forensic program at G. Werber Bryan Psychiatric Hospital (BPH). The Division of Inpatient Services (DIS) is a 1500 bed, state operated (by SCDMH), multi-hospital and long-term care (nursing home) system, comprised of two psychiatric and one addictions treatment hospital and three nursing homes. The mission of SCDMH/DIS is to support the recovery of people with mental illnesses. Of the two psychiatric hospitals, the Columbia-based, G. Werber Bryan Psychiatric hospital (BPH), a 482- licensed bed acute care facility, operates a 230-bed forensic division for the treatment of defendants in need of inpatient psychiatric services for competency evaluation, restoration and long term psychiatric rehabilitation. The forensic program is identified as the agency's number one priority. BPH also has 200 acute hospital beds for adults and a 51-bed hospital program for children and adolescents. Patrick B. Harris hospital is an Anderson, South Carolina-based, adult, acute care psychiatric facility. Finally, Morris Village is a 100-bed acute alcohol and drug addiction treatment center. The long-term care facilities consist of three veterans nursing homes located in Anderson, South Carolina, Walterboro, South Carolina and Columbia, South Carolina. There is one general skilled nursing facility (SNF) located in Columbia, South Carolina. DIS employs nurses, doctors, pharmacists, social workers, activity therapists, chaplains, administrative and clinical support staff, and has a labor force of 3000 to support the operations of the multi-hospital and nursing home system.

The evaluation, treatment and care of forensic patients is led by an interdisciplinary team of forensic psychiatrists, psychologists, social workers and nurses trained to address the clinical and the legal aspects of the forensic process. Forensic evaluation occurs in the outpatient Forensic Evaluation Services (FES) program. The treatment and care of the patients during the acute phase are provided at the BPH forensic facility. Thus, the end users of the organizational system are the forensic patients awaiting access to forensic evaluation to determine competency to stand trial, criminal responsibility, and psychiatric treatment services for competency restoration or psychiatric rehabilitation. In addition, the judicial system components (detention centers, lawyers, judges) are also end users. As the patient progresses in treatment and no longer requires the level of therapeutic security provided at the forensic facility, individual treatment and care needs are provided in the DIS facilities described above. The customer requirements for the project are patient flow and waitlist management to allow individuals awaiting the legal process timely access to court ordered forensic evaluation and treatment in preparation for trial.

Approach

The approach to my project will incorporate Deming's model, also known as PDSA.

- The cycle begins with the Plan step. This involves identifying a goal or purpose, formulating a theory, defining success metrics and putting a plan into action.
- These activities are followed by the Do step, in which the components of the plan are implemented, such as making a product.
- Next comes the Study step, where outcomes are monitored to test the validity of the plan for signs of progress and success, or problems and areas for improvement.
- The Act step closes the cycle, integrating the learning generated by the entire process, which can be used to adjust the goal, change methods or even reformulate a theory altogether.

These four steps are repeated over and over as part of a never-ending cycle of continual improvement (The W. Edward Demings Institute, 2016).

Project Stages (Milestones or Checkpoints)	START DATE	END DATE	MILESTON E
Work with Chair on Project Proposal	5/16/2017	8/15/2017	May 2017
Draft IRB Proposal	9/1/2017	9/15.2017	
Establish Dashboard	5/18/2017	6/30/ 2017	May 2017
Begin Draft Manuscript	4/9/2017	3/20/2018	April 2017
Send All Proposal Materials to Committee for review and feedback	July 2017	July 2017	
Prepare Project Proposal Defense	8/1/2017	9/5/2017	Sept 2017

Table 1.6.*Timeframe & Milestones*

Revisions to Proposal	9/1/2017	9/8/2017	
IRB Approval from UofSC & DMH Submit letter of successful proposal defense from UofSC School of Nursing and the Department of Mental Health's IRB to UofSC's IRB	9/5/2017	9/18/2017	Sept 2017
Project Start/ Intervention	9/13/2017	Sept 2017	Sept 2017
Project Start: Initiate Intervention/Practice Change with Weekly Assessments	9/18/2017	12/31/2017	Dec 2017
Evaluate Interventions and Practice Change	1/5/2018	2/20/2018	Feb 2018
Finalize DNP Project Manuscript	2/1/2018	March 2018	March 2018
Finalize Presentation	Jan 2018	March 2018	March 2018
Project Deliverables Dashboards; Statutory Compliance; Reduced Waitlist; Reduced Wait Times	Jan 2018	March 2018	March 2018
Send Manuscript & Presentation to Committee for Review	3/20/2018	3/20/2018	
Defend Final Project	March 2018	March 2018	Mar 2018
Make any Required Revisions & Send Paperwork to Graduate School	Mar 2018	Apr 2018	
Presentation to Organization	Apr 6, 2018	Apr 2018	
Graduation		May 2018	May 2018

Note: Refer to Gantt Chart in Appendix L

Inclusions & Deliverables

• Develop dashboards

- Replacement of manual processes utilizing electronic data bases to capture real time metrics and transition from person-dependent to systems-dependent data generation and analysis.
- Bring organization into statutory compliance

Exclusions

The opening of additional civil beds; availability of community placements

Critical Success Factors

Factors Impacting Project Success

- Support from key leadership
- DMH affiliation agreements with over 60 colleges and universities to include medicine, nursing, and other allied health professions for training and knowledge acquisition through the use of its facilities for clinical placements.
- Currently, DMH is a recipient of grants that require the support of research and evidence-based practice at the clinical site.
- DMH has staff trained in accessing electronic databases to facilitate the acquisition of evidence for incorporation into practice.
- As a legislatively mandated program of DMH, and in accordance with state law, DMH is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by court order and state statute.

Factors That Could Negatively Impact the Project's Success

- Inability to meet the statutory requirements under SC state statute due to a mismatch between capacity and demand.
- Organizational culture, time and limited evidence-based practice.

- Resistance to change
- Political Climate
- Budgetary Restrictions
- Legislative Mandates
- Personal Life Stressors
- Loss of Key Stakeholders

Assumptions

- The demand for forensic beds exceeds capacity.
- The agency's overall priority and focus will remain on forensic services.
- The Project is not time-limited.
- Inefficiencies in patient flow exist.

Constraints

Time; monetary; retention of key stakeholders; accessibility to automated forensic

metrics; people resources; state government regulations; other regulatory requirements.

Related Projects

A project is currently in the planning stages to determine the feasibility of adding

additional civil psychiatric beds. A DMH project that could impact forensic patient flow

is the opening of Crisis Stabilization Units (June, 2017).

Table 1.7		
Risk Identification	1-Low	5-High

Risk Description	Project Impact	Probability of
_		Occurrence
Loss of adequate state	5	3
funding impact		
Turnover of key	5	3
stakeholders		

Agency deemed to be in contempt of court	5	2
Infrastructure failure	5	1
Loss of contract services impact	5	3
Recidivism	4	2
Political Barriers	4	2
High profile forensic patient	3	2

Table 1.8DNP Project Measurement

Measure	Type of Measure	Purpose of Measure	Data Needed for Measure	Source of Data for Measure	Frequency of Data Collection	How will Data Be Tracked and Assessed Over Time
Number of patients on Waitlist	Outcome Measure	Indicator of trends to facilitate the management of fluctuations and project amount of capacity required	Inpatient Waitlists for 24 Months	Avatar (Patient Billing and management system)	Daily	Using Net Smart EHR Management Systems, Forensic Dash-board and Waitlist Steering Committee
Waitlist Disposition	Process Measure	To capture the disposition of forensic patients on the waitlist	Waitlist Disposition Summary Reports for 24 Months	Avatar(Patient Billing and management system)	Monthly (As we complete PDSAs data will be tracked weekly)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee.
Time on waitlist	Process Measure	To monitor and manage productivity and efficiencies that support forensic patient flow	Average Days Report which tracks data by month and type of admission	Avatar(Patient management system)	Weekly (As we complete PDSAs data will be tracked daily)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee
Average Length of Stay (ALOS)	Process Measure	To monitor and evaluate patient population,	Length of Stay Report for 24 Months	Avatar(Patient Management system)	Monthly	Using Net Smart EHR Systems, Forensic

		treatment, discharge process, and placement				Dashboard and Waitlist Steering Committee
Numbers of Discharges	Balancing Measure	To monitor and evaluate bed turnover & productivity	Admission & Discharge Reports for 24 Months	Avatar (Patient Billing and management system)	Weekly	Using Net Smart EHR Systems, Dashboard and Waitlist Steering Committee
Numbers of Admissions	Balancing Measure	To monitor and evaluate productivity	Admission & Discharge Report for 24 Months	Avatar(Patient Billing and management system)	Weekly	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee
Types of Admissions: Emergency Inpatient Evaluation Judicial Not Guilty by Reason of Insanity (NGRI) Restoration	Process Measure	To facilitate forensic patient triage and to drive service type and structure	Admission Type Report For 24 Months	Avatar(Patient Management system)	Monthly (As we complete PDSAs data will be tracked weekly)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee

Demographics:	Balancing	To ensure	Age, race, and	Avatar(Patient	Monthly	Using Net Smart
	Measure	healthcare	education level	Management		EHR Systems,
• Age		equity for all		system)		Forensic
• Sex		patients and to				Dashboard and
• Race		ensure the				Waitlist Steering
• Education		optimization of				Committee
Level		Medicaid and				
		Medicare				
		revenue for				
		patients age 21				
		& under or age				
		65 and older				

Sustainability Plan

Lean methodology is an evidence-based practice improvement approach adopted from the Toyota Company which targets unnecessary intermediate processes and retains only those that add value (Moran, Burson, & Conrad, 2017; Sullivan, Soefje, Reinhart, McGeary, & Cabie, 2014; Zhu, Lu, & Dai, 2014). PDSA is part of the Institute for Healthcare Improvement Model for accelerating quality improvement in healthcare to implementing change (Institute for Healthcare Improvement, n.d.). The overall purpose of this project is to use lean methodology and PDSA to identify barriers in the patient flow process that lead to delays in treatment for forensic psychiatric patients and to implement a plan for removing those barriers to improve psychiatric and physical health outcomes for patients. Ongoing monitoring of measures and goals will be established to manage capacity and demand. Data from the forensic dashboard will be used to drive tests of change.

Conclusion

The growing demand for inpatient forensic psychiatric treatment and services, coupled with a static supply of resources creates the need for innovation in practices that create efficiencies in the delivery of services for this challenging population. Patient flow in a forensic psychiatric hospital setting is an understudied topic. Additional study is needed. The removal of barriers to patient flow will result in a decrease in the delayed access to forensic psychiatric treatment due to the high demand for beds coupled with a limited supply, and consequently, a decrease in the imbalance between capacity and demand.

CHAPTER 2

FORENSIC PATIENT FLOW:

A MISMATCH BETWEEN CAPACITY AND DEMAND

Bellamy, V. J., Hughes, R. G., Tavakoli, A. S., & Handley, P. A. To be submitted to *The Journal for Healthcare Quality*.

ABSTRACT

Objective: To use lean methodology and Plan-Do-Study-Act (PDSA) to identify barriers to patient flow and improve timely treatment for forensic psychiatric patients.

Background: The United States (U.S.) has a growing incarcerated population. The volume, coupled with inefficient patient flow through the judicial and health care systems, create an imbalance between the high demand for services and the capacity to deliver health care.

Study Population: Criminal defendants with unmet psychiatric and chronic disease treatment needs.

Methods: A nonexperimental evidence-based quality improvement study was conducted at a forensic psychiatric hospital in the Southeastern region of the U.S. utilizing Lean Methodology and Plan-Do-Study-Act (PDSA) along with patient flow dashboards to identify barriers (communication, legal, active treatment and discharge process) in patient flow; and improve timely treatment by reducing the number of days on the waitlist and length of stay, for forensic psychiatric patients.

Results: Statistically significant reductions in the forensic waitlist and wait time were achieved. During the study period, the average length of stay was reduced, and both the number of admissions and discharges were increased.

Conclusions: Maximization of efficiencies within the forensic psychiatric hospital patient flow process, through the minimization and elimination of non-value-added waste (waiting, over-processing, defects, and skills), resulted in a reduction in the waitlist and wait times due to improved patient flow. Such improvements increased the state's

treatment capacity for defendants awaiting inpatient services at the forensic psychiatric hospital.

Keywords: forensic psychiatric hospital, patient flow, waitlist, wait time, quality improvement, lean methodology, plan-do-study-act.

INTRODUCTION

Currently, the United States (US) has the largest incarcerated population in the world with as many as 2.2 million adults incarcerated (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). Research consistently shows that people with mental illness make up a large proportion of the incarcerated population (Kennedy-Hendricks et al., 2016; Prins, 2014; Steadman, Osher, Robbins, Case, & Samuels, 2009). Individuals with mental illness, and specifically those in the criminal justice system, have complex health care needs that are often difficult to diagnose and treat (Abram, Teplin, & McClelland, 2003). Consequently, the health care system is greatly challenged to meet the needs of this vulnerable population (Kennedy-Hendricks, et al., 2016). Lack of appropriate treatment leads to exacerbation of mental health conditions, extended lengths of stay in hospitals, and an increase in health care costs (Kennedy-Hendricks, et al., 2016). Therefore, it is imperative that these individuals receive timely and appropriate treatment.

The state of South Carolina currently has approximately 20,951 incarcerated adults. Of that population, approximately 3,500 are diagnosed with a serious mental illness (SMI) (State of South Carolina, Department of Corrections, 2016). In accordance with South Carolina law, South Carolina Department of Mental Health (SCDMH) is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by order and state statute. A forensic psychiatric evaluation is a clinical assessment/judgment by a qualified, forensically trained provider of a criminal defendant's competency to stand trial, capacity to conform and responsibility for a committed felony (South

Carolina Department of Mental Health [SCDMH], 2017). Such clinical information is used to facilitate the adjudicative process. Currently, the SCDMH is unable to meet the requirements under SC state statute.

The forensic unit has a capacity of 230 beds. At any given time, an additional 70-100 people are awaiting psychiatric treatment for restoration to competency or long term psychiatric rehabilitation at the SCDMH forensic psychiatric hospital. With an average length of stay of 200 days on the forensic unit, patients waiting for a bed languish in jail while their psychiatric condition deteriorates. Consequently, there is a serious mismatch between the demand for treatment and treatment capacity in SC. Currently, there are no plans to increase bed capacity at the forensic hospital. Without change, the patient waitlist will continue to grow and access to treatment will continue to be prolonged. At present, increasing patient flow through the SCDMH forensic hospital is the optimal option to increase capacity and get these patients to needed treatment. Identifying and removing barriers to patient flow earlier could mean that the capacity and demand mismatch could be reduced.

The question answered by this evidence-based project was: In the state of South Carolina, for adult patients requiring psychiatric treatment in the legislatively mandated forensic, psychiatric hospital, does the implementation of quality improvement, using lean methodology and Plan-Do-Study -Act (PDSA) to remove identified barriers (inadequate allocation of forensically trained physicians and psychologists to provide forensic evaluations, inadequate waitlist management, and lack of a patient triage system) to patient flow, reduce the forensic waitlist by

25%, and reduce the time on the forensic waitlist by 50% compared to preintervention existing data, over a four month period?

Methods

Study Design

The intent of the design and method of the evidence-based project is to be aligned with its purpose and goals (Moran, Burson, & Conrad, 2017). This project was non-experimental, evidence-based quality improvement using Lean Methodology and PDSA (Moran et al., 2017). The study assessed the current state of waitlist management and reviewed administrative and clinical processes that impacted the flow and movement of patients in and out of the forensic units. During the initial project implementation, Lean methods were used to determine if additional barriers to patient flow existed (see Figure 2.1). The next step of the project entailed implementing the PDSA cycle. A plan was developed to reduce barriers to patient flow. Success metrics were also identified in this step. During the second step, the Do step, the plan was implemented. During the Do step the change was tested. Communication was vital in this step. During the third step, the Study step, outcomes were analyzed to assess the validity of the plan and to monitor signs of progress and success, as well as any problems that arose. During the last step, the Act step, the learning generated by the process was analyzed and integrated. The goals, change methods, and plan of the project were modified as appropriate (Institute for Healthcare Improvement, n.d.).

Theoretical/ Conceptual Framework

Figure 2.1. Conceptual Framework. This figure illustrates the integration of PDSA and population health theory adapted from CDC.gov.

Sample/Setting

The population in this project was comprised of incarcerated adults on the forensic waitlist, forensic waitlist data containing type of admission (pre-trial; not guilty by reason of insanity; emergency; psychosocial rehabilitation), and data related to forensic admissions, discharges, and length of stay. For comparison purposes, the study comprised the total population of waitlist and total sample of admissions and discharges over two consecutive years. The project was reviewed and deemed exempt by both the organization and participating University's Institutional Review Boards (IRBs) prior to initiating the study.

The setting for this project was a legislatively mandated forensic psychiatric hospital of the Department of Mental Health, Division of Inpatient Services (DIS), a 1500 bed, state-operated, multi-hospital and long-term care (nursing home) system, comprised of two psychiatric hospitals, an alcohol and drug addiction treatment hospital, and four nursing homes. Of the two psychiatric hospitals, the flagship psychiatric hospital, a 482-licensed bed acute care facility, operates a 230-bed forensic division for the treatment of defendants in need of inpatient psychiatric services for competency restoration and long-term psychiatric rehabilitation. This hospital also has 200 acute civil beds for adults and a 51-bed inpatient program for children and adolescents. DIS has a labor force of over 3000, including health care clinicians, administrators, and clinical support staff, to support the operations of the multi-hospital and nursing home system.

The evaluation, treatment and care of forensic patients is led by an interdisciplinary team of forensic psychiatrists, psychologists, primary care practitioners, social workers and nurses trained to address the clinical and legal aspects of the forensic process. Forensic evaluation occurs in the outpatient Forensic Evaluation Services (FES) program. The treatment and care of the patients during the acute phase are provided at the inpatient forensic facility. As the patient progresses and no longer requires the level of therapeutic security provided at the forensic facility, individual treatment, and care needs are provided in the DIS facilities described above.

Data Collection

A waitlist management application was modified to replace manual methods of data collection. The waitlist and wait time data were collected through the use of dashboards that were developed using Avatar which is a practice management system in conjunction with the waitlist management application. In addition, an excel database, designed for

waitlist management was utilized for data validation. Waitlist and wait time data were captured for the same weeks of 2016 and 2017 for statistical comparison. This method allowed for consistency and consideration of seasonal trends. The waitlist and wait time data for the same weeks of 2016 and 2017 captured the length of time on the waitlist in days as well as the actual number of persons awaiting inpatient admission to the forensic hospital. The average number of days on the waitlist (wait time) and the number of persons on the waitlist over 16 observational weeks of 2016 and 2017, were pulled for comparison to determine the results of interventions for statistical analysis. The analysis of data was conducted using descriptive and inferential statistics. *P* values of less than or equal to 0.0001 were considered significant.

Findings

Results

In an attempt to address the forensic waitlist challenges utilizing lean methodology and plan-do-study act (PDSA), four PDSA sessions were conducted to improve efficiencies in waitlist management (see Figure 2.2). The first PDSA focused on communication across the SCDMH system, shifting from person-centered to a system's database to facilitate waitlist management and the break-down of silos. To accomplish this paradigm shift required a multilevel change across various disciplines in collaboration with outpatient community mental health center partners. Weekly waitlist management meetings were developed for the purpose of addressing issues that affected both community and inpatient. Another silo piece about discharge readiness involved team members' perspectives of readiness. As a result, changes were made to the forensic review board (FRB). The development of guidelines for board participation as well as a

checklist was developed. The checklist was designed to ensure standard work in preparing patients for presentation to the FRB. Next, board training was required and provided for all members of the FRB. New policies, guidelines and timeframes for applying for human services benefits were established. Communication barriers also existed within the judicial system. Through multisystem collaboration, communication and flow were improved.

The second PDSA addressed legal issues that impacted the admission and discharge process. The organization was not receiving court orders timely. The solicitor has 15 days to file paperwork to initiate the probate process. A test of change was conducted to ameliorate the problem. The responsibility for getting the orders to the SCDMH had to be established. This was accomplished through collaboration with solicitors and education of legal partners (solicitors and public defenders). Through additional tests of change, it was determined that a team approach could improve communication through the use of forensic designated examiner (DE) teams. A forensic DE team comprised of a forensic psychiatrist, social worker and probate judge was formed to streamline the probate process and facilitate the triage of patients to the appropriate level of care. This involved partnering with probate judges and allowed for the jurisdictional transfer of defendants locally to facilitate the probate process through standard work. Next, a push-pull system was established to ensure receipt of the right court orders from the right solicitors. This process facilitated the development of a triage system to ensure the assignment of patients to the right area for maximal active treatment opportunities. Finally, the incorporation of the legal consultant as a member of the forensic leadership and as the FRB chair, with a cross trained backup was accomplished to ensure consistency in legal

representation with the clinical and support team. Consequently, utilizing lean methodology allowed for the identification and elimination of barriers to legal processes.

The third PDSA session focused on active treatment. Several tests of change were identified. The utilization of staffing resources was process mapped and the redeployment of forensically-trained staff was accomplished to increase active treatment. A patient triage system was developed to improve efficiency and access to the appropriate level of care and to effectively address the individualized needs of the patient across the care continuum. The expansion of treatment space and development of expectations for increasing active treatment improved discharge readiness and shortened lengths of stay in the hospital. The removal of the procedural barriers eliminated waste in time and duplication of services to increase the use of treatment space. To improve efficiencies in treatment, the application of an evidence-based practice model developed by Trestman at UCONN Health was adapted for use as a forensic psychotherapy model to address individualized patient needs (South Carolina Department of Mental Health, 2017).

The fourth PDSA collaboration focused on medical issues which slowed the discharge process. The placement of tuberculin skin tests and the ordering of discharge medications were identified as barriers to the discharge process which prevented the availability of beds for new admissions. Standard work was put in place to establish time frames for PPD placement based on refinements in discharge planning to include the development of a discharge readiness check list. Also, the delay in establishing human services benefits for community placement created a barrier to discharge. In collaboration with treatment teams, administration, and other state and federal stakeholders, barriers to discharge were removed/eliminated, allowing for the achievement of discharge goals.

Recognizing that discharge planning begins on admission, the development of a discharge coordinator was critical to the success of the initiatives. Creative strategies to improve timely approval of benefits, allocation of funding streams and increased active communication and collaboration with community partners, enhanced the successful discharge of the forensic patient.

Figure 2.2. Forensic Patient Flow Barriers. This is the fishbone diagram detailing barriers to forensic patient flow.

Statistical Findings:

The sample in this project comprised the forensic waitlist data. Forensic waitlist data over the same 16-week period of 2016 and 2017 during the months of September through December were captured as weekly averages of the number of persons on the waitlist and the amount of time each person spent in days on the waitlist (see Figure 2.3). The days associated with a particular defendant or observation week were excluded from

the sample if that defendant met the criteria for outlier (on bond and unable to be located by the judicial system; out of state or in custody in another state and unavailable). Three defendants originally on the waitlist, met the exclusion criteria for the 2016 observations. The same 3 defendants met the exclusion criteria for the 2017 observations.

Figure 2.3. Forensic Patient waitlist numbers pre-intervention (2016) as compared to post-intervention (2017).

Table 2.1 indicates that all proportion changes under the null (p value= 0.25) were statistically significant except for week nine. The results also showed that the total proportion under the null (p value = 0.5) was statistically significant (p -value < 0.0001). In addition, the result of one sample proportion under the null (p value = 0.5) revealed that only six weeks (weeks 1, 2, 3, 9,14 and 15) out of 16 weeks were statistically significant. Also, the results did not indicate that the total proportion under the null (p value = 0.5) was significant (p value = 0.30) (see Table 2.1). Consequently, the

improvement yielded statistically significant improvements in reducing the number on

the waitlist (see Table 2.1 and Appendix M.1).

Table 2.1	
Statistical Measures Related to Waitlist $(n=16)$	

Week	Number on Waitlist	Number on waitlist	Proportion Change	<i>p</i> Value Under Null =.25	p Value Under Null =.50
1	Pre 73	Post 22	-69.86	.00	.00
2	68	27	-60.29	.00	.04
3	64	24	-62.50	.00	.02
4	59	25	-57.63	.00	.12
5	57	24	-57.89	.00	.11
6	51	30	-41.18	.01	.10
7	56	31	-44.64	.00	.21
8	56	33	-41.07	.01	.09
9	57	39	-31.58	.14	.00
10	62	32	-48.39	.00	.40
11	66	31	-53.03	.00	.31
12	68	32	-52.94	.00	.31
13	73	42	-42.46	.00	.10
14	74	44	-40.54	.00	.05
15	78	48	-38.46	.01	.02
16	87	49	-43.68	.00	.12
Total	1049	533	508	.00	.30

Note. Forensic Patient waitlist numbers pre-intervention (2016) as compared to postintervention (2017).

The average number of people on the waitlist before intervention was 65.56 with a standard deviation of 9.69, whereas after intervention the average number on the waitlist was 33.31 with a standard deviation of 8.64. Also, the results indicated the average of percentage change on a variable (number of people on waitlist) was -49.13 with a standard deviation of 10.43. The results indicated that there were statistically significant differences for the number of people on the waitlist by pre and post intervention using both parametric test (two independent T-test) and non-parametric test (Wilcoxon Two Sample test) *p* value < 0.0001(see Appendix M.1). The interventions yielded statistically significant improvement.

Table 2.2 indicated that all proportion changes of the average days on the waitlist under the null (p = 0.25) were statistically significant except for week five. The results also showed the total proportion under the null (p = 0.25) was statistically significant. In addition, the result of one sample proportion under the null (p = 0.5) revealed that only five (weeks 3, 5, 6, 9, 10) out of 16 weeks were statistically significant. Also, the results did not indicate that the total proportion under the null (p = 0.5) was significant (p = 0.34) The overall sample did not show a decrease of 50% of average days; however, 5 weeks out of 16 weeks did show a significant decrease of average days by 50% (see Table 2.2).

Table 2.2Average Days on Waitlist

Week	Average Days on Waitlist Pre- Intervention	Average Days on Waitlist Post- Intervention	Proportion Change	<i>p</i> Value Under Null =.25	<i>p</i> Value Under Null =.50
1	37	20	-45.94	.01	.31
2	38	16	-57.89	.00	.16
3	54	19	-64.81	.00	.01
4	54	29	-46.30	.00	.29
5	49	38	-22.44	.33	.00
6	60	38	-36.67	.03	.02
7	67	37	-44.78	.00	.19
8	79	33	-58.23	.00	.07
9	80	30	-62.50	.00	.01
10	87	27	-68.96	.00	.00
11	107	47	-56.07	.00	.10
12	100	54	-46.00	.00	.21
13	93	49	-47.31	.00	.30
14	91	50	-45.05	.00	.17
15	98	50	-48.98	.00	.42
16	94	50	-46.81	.00	.27
Total	1188	587	494	.00	.34

Note: Average number of days on waitlist pre-intervention (2016) as compared to post-intervention (2017), *p* value for one sample proportion test (one-sided test).

The average number of days on the waitlist (wait time) before intervention was

74.25 with a standard deviation of 23.03, whereas after intervention, the average number of days on the waitlist (wait time) was 36.69 with a standard deviation of 12.45. The results showed the average of percentage change on the average days on the waitlist (wait time) was -49.92 with a standard deviation of 11.42. The results indicated a statistically significant difference for the average number of days on the waitlist by pre and post-intervention using both parametric (two independent T-test) and non-parametric test (Wilcoxon Two sample test) p < 0.0001 (see Appendix N.1 and Figures 2.4 and 2.5).

Figure 2.4. Average days on waitlist Average number of days on waitlist pre-intervention (2016) as compared to post-intervention (2017).

Figure 2.5. Distribution of wait time in days pre-intervention and post-intervention. **Discussion**

The project successfully achieved a reduction in both the number on the waitlist (50%) and the average number of days (time) on the waitlist (51%). The quality improvement project was a cost-neutral initiative to decrease the imbalance between capacity and demand. Through determining the processes and practice inefficiencies that negatively impacted the forensic patient flow, and conducting tests of change to remove barriers through the implementation of PDSA, the appropriate movement of patients across the continuum of care was achieved. The project aims were met as evidenced by a significant decrease in the waitlist and wait times for accessing inpatient, forensic psychiatric treatment. The results did indicate the achievement of statistically significant

outcomes. The use of multiple PDSAs resulted in improved organizational efficiency; the results are as follows: 1) reduction in the forensic waitlist; 2) decrease in wait time; 3) decrease in time from admission to discharge and 4) increase in active treatment by addressing the medical issues to improve the discharge process. The use of Lean tools and the organization of teams allowed for the critical review of current processes. PDSAs facilitated the development of plans and tests of change which resulted in overall process improvement.

By narrowing the waitlist, new barriers have been created. Currently, defendants are on the waitlist for shorter time periods. This improvement coupled with the solicitor having up to 15 days to file orders and schedule court hearings, has created additional bottlenecks. Future PDSA cycles could focus on enhancing the push-pull system of communication between SCDMH and judicial/community partners; thereby, further reducing the forensic waitlist.

Conclusions

The lack of adequate throughput and patient flow across the continuum of care impacts access to inpatient mental health services and creates barriers to entering and exiting the forensic psychiatric hospital. The results of this study illustrate how the identification and removal of barriers to patient flow, by increasing efficiencies in the flow process, lead to a decrease in wait times for criminal defendants to access inpatient forensic psychiatric treatment. The use of lean methods and PDSA to improve patient flow results in a decrease in the imbalance between the demand for inpatient forensic psychiatric services and the capacity to deliver them, resulting in shorter wait times to access inpatient treatment and care.

Implications for Practice

The growing demand for inpatient forensic psychiatric treatment and services, coupled with a static supply of resources, warrant the need for innovation in practices that create efficiencies in the delivery of services for this challenging population. The identification and removal of barriers to patient flow using lean methodology and PDSA significantly decreased the delay in access to forensic psychiatric treatment.

A literature review of five databases indicated support for the use of Lean Methods and PDSA as evidence-based approaches to facilitate quality improvement projects. However, there was no evidence found in the peer-reviewed literature of prior effort to implement these methods in a forensic psychiatric setting; therefore, their effectiveness in the forensic psychiatric hospital would benefit from continued assessment.

The use of PDSAs to develop and test change significantly improved administrative and clinical processes that facilitated the efficient treatment and flow of forensic patients across the care continuum. The aims of the study were not just met but were exceeded. With the increasing demand for psychiatric treatment of the forensic patient population, more initiatives to address the sociocultural aspects of change in the practice setting are needed. In addition, the use of technology to facilitate the integration of clinical, legal and administrative processes is significant to the future needs of healthcare.

Future Research

Due to the paucity of literature, patient flow in a forensic psychiatric hospital setting is an understudied topic. Evidence that addresses the use of lean methodology and PDSA to examine patient flow in a forensic psychiatric hospital could not be located;

therefore, a study of patient flow in a forensic hospital setting is recommended for future research. Although evidence was found to address patient flow in other hospital settings to include emergency departments and operating rooms, additional study is needed. Research and study of flow relative to both psychiatric hospitals as well as other settings to include components of the judicial system are warranted and would allow for the acquisition of new knowledge for application to the forensic psychiatric hospital setting.

Acknowledgments

The authors wish to express gratitude for the invaluable support from the South Carolina Department of Mental Health, judicial partners, professional colleagues, and the University of South Carolina Faculty and Staff.

CHAPTER 3

FINDINGS AND CONCLUSIONS

Introduction

The purpose of this chapter is to address the findings from data collected during the Doctor of Nursing Practice (DNP) quality improvement (QI) project. The following findings from the evidence-based project concluded that the implementation of quality improvement, using lean methodology and Plan-Do-Study Act (PDSA) to remove identified barriers (inadequate allocation of forensically trained physicians and psychologists to provide forensic evaluations, inadequate waitlist management, and lack of a patient triage system) to patient flow, reduced the forensic waitlist and reduced the time on the waitlist. The project successfully achieved the predefined goals.

Process mapping resulted in four common themes that impacted the waitlist and wait times. The four themes included: communication, active treatment, legal issues, and discharge process issues. The main theme with communication centered around shifting from person-dependent to system-dependent processes. The focus with active treatment was two-fold; the first being the identification of forensically-trained staff and the redeployment of staff to effectively meet the patients' needs; the second was the expanded use of treatment space. The identified legal issues were associated with getting timely orders from solicitors to ensure compliance with statutory time frames. The final theme involved the discharge process. A need was identified for a new organizational role of a forensic discharge coordinator.

Data Collection:

A waitlist management application was modified to replace manual methods of data collection. The waitlist and wait time data were collected through the use of dashboards that were developed using Avatar which is a practice management system in conjunction with the waitlist management application. In addition, an excel database, designed for waitlist management was utilized for data validation. Waitlist and wait time data were captured for the same weeks of 2016 and 2017 for statistical comparison. This method allowed for consistency and consideration of seasonal trends. The waitlist and wait time data for the same weeks of 2016 and 2017 captured the length of time on the waitlist in days as well as the actual number of persons awaiting inpatient admission to the forensic hospital. The average number of days on the waitlist (wait time) and the number of persons on the waitlist over 16 observational weeks of 2016 and 2017, were pulled for comparison to determine the results of interventions for statistical analysis. The analysis of data was conducted using descriptive and inferential statistics. *P* values of less than or equal to 0.0001 were considered significant.

Findings

Results

In an attempt to address the forensic waitlist challenges utilizing lean methodology and plan-do-study act (PDSA), four PDSA sessions were conducted to improve efficiencies in waitlist management (see figure 3.1). The first PDSA focused on communication across the SCDMH system, shifting from person-centered to a system's database to facilitate waitlist management and the break-down of silos. To accomplish this paradigm shift required a multilevel change across various disciplines in

collaboration with outpatient community mental health center partners. Weekly waitlist management meetings were developed for the purpose of addressing issues that affected both community and inpatient. Another silo piece about discharge readiness involved team members' perspectives of readiness. As a result, changes were made to the forensic review board (FRB). Guidelines and a checklist were established to facilitate board participation. The checklist was designed to ensure standard work in preparing patients for presentation to the FRB. Next, board training was required and provided for all members of the FRB. New policies, guidelines and timeframes to apply for human services benefits were established. Communication barriers also existed within the judicial system. Through multisystem collaboration, communication and flow were improved.

The second PDSA addressed legal issues that impacted the admission and discharge process. The organization was not receiving court orders timely. The solicitor has 15 days to file paperwork to initiate the probate process. A test of change was conducted to ameliorate the problem. The responsibility for getting the orders to the SCDMH had to be established. This was accomplished by collaborating with solicitors and educating legal partners (solicitors and public defenders). Through additional tests of change, it was determined that a team approach could improve communication through the use of forensic designated examiner (DE) teams. A forensic DE team comprised of a forensic psychiatrist, social worker and probate judge was formed to streamline the probate process and facilitate the triage of patients to the appropriate level of care. This involved partnering with probate judges and allowed for the jurisdictional transfer of defendants locally to facilitate the probate process through standard work. Next, a push-
pull system was established to ensure receipt of the right court orders from the right solicitors. This process facilitated the development of a triage system to ensure the assignment of patients to the right area (outpatient, inpatient forensic restoration versus psychiatric rehabilitation unit or an inpatient civil facility) for maximal active treatment opportunities. Finally, the incorporation of the legal consultant as a member of the forensic leadership and as the FRB chair, with a cross trained backup was accomplished to ensure consistency in legal representation with the clinical and support team. Consequently, utilizing lean methodology allowed for the identification and elimination of barriers to legal processes.

The third PDSA session focused on active treatment. Several tests of change were identified. The utilization of staffing resources was process mapped and the redeployment of forensically-trained staff was accomplished to increase active treatment. A patient triage system was developed to improve efficiency and access to the appropriate level of care and to effectively address the individualized needs of the patient across the care continuum. The expansion of treatment space and development of expectations for increasing active treatment improved discharge readiness and shortened lengths of stay in the hospital. The removal of procedural barriers eliminated waste in time and the duplication of services to increase the use of treatment space. To improve efficiencies in treatment, the application of an evidence-based practice model developed by Trestman at UCONN Health was adapted for use as a forensic psychotherapy model to address individualized patient needs (South Carolina Department of Mental Health, 2017).

The fourth PDSA collaboration focused on medical issues which slowed the discharge process. The placement of tuberculin skin tests and the ordering of discharge

medications were identified as barriers to the discharge process which prevented the availability of beds for new admissions. Standard work was put in place to establish time frames for PPD placement based on refinements in discharge planning to include the development of a discharge readiness check list. Also, the delay in establishing human services benefits for community placement created a barrier to discharge. In collaboration with treatment teams, administration, and other state and federal stakeholders, barriers to discharge were removed/eliminated, allowing for the achievement of discharge goals. Recognizing that discharge planning begins on admission, the development of a discharge coordinator was critical to the success of the initiatives. Creative strategies to improve timely approval of benefits, allocation of funding streams and increased active communication and collaboration with community partners, enhanced the successful discharge of the forensic patient (see figure 3.1).

Figure 3.1. Forensic Patient Flow Barriers. This is the fishbone diagram detailing barriers to forensic patient flow. The four themes identified were communication, legal issues, active treatment and discharge process.

Statistical Findings

The sample in this study comprised the forensic waitlist data. Forensic waitlist data over the same 16-week period of 2016 and 2017 during the months of September through December were captured as weekly averages of the number of persons on the waitlist and the amount of time each person spent in days on the waitlist (see Figure 3.1 and Table 3.1). The days associated with a particular defendant or observation week were excluded from the sample if that defendant met the criteria for outlier (on bond and unable to be located by the judicial system; out of state or in custody in another state and unavailable). Three defendants originally on the waitlist, met the exclusion criteria for the 2016 observations. The same 3 defendants met the exclusion criteria for the 2017 observations.

Figure 3.2. Forensic Patient waitlist numbers pre-intervention (2016) as compared to post-intervention (2017).

Table 3.1 indicates that all proportion changes under the null (p value = 0.25) were statistically significant except for week nine. The results also showed that the total proportion under the null (p value= 0.5) was statistically significant (p -value < 0.0001). In addition, the result of one sample proportion under the null (p -value = 0.5) revealed that only six weeks (weeks 1, 2, 3, 9, 14 and 15) out of 16 weeks were statistically significant. Also, the results did not indicate that the total proportion under the null (p value= 0.5) was significant (p value= 0.30) (see Table 3.1). Consequently, the improvement yielded statistically significant improvements in reducing the number of defendants on the waitlist.

Table 3.1 Statistical Measures Related to Waitlist (n=16)

Week	Number on Waitlist Pre	Number on waitlist Post	Proportion Change	p Value Under Null =.25	<i>p</i> Value Under Null =.50
1	73	22	-69.86	.00	.00
2	68	27	-60.29	.00	.04
3	64	24	-62.50	.00	.02
4	59	25	-57.63	.00	.12
5	57	24	-57.89	.00	.11
6	51	30	-41.18	.01	.10
7	56	31	-44.64	.00	.21
8	56	33	-41.07	.01	.09
9	57	39	-31.58	.14	.00
10	62	32	-48.39	.00	.40

11	66	31	-53.03	.00	.31
12	68	32	-52.94	.00	.31
13	73	42	-42.46	.00	.10
14	74	44	-40.54	.00	.05
15	78	48	-38.46	.01	.02
16	87	49	-43.68	.00	.12
Total	1049	533	508	.00	.30

Note. Forensic Patient waitlist numbers pre-intervention (2016) as compared to post-intervention (2017).

Table 3.2 results presents the average number of people on the waitlist before intervention was 65.56 with a standard deviation of 9.69, whereas after intervention the average number on the waitlist was 33.31 with a standard deviation of 8.64. Also, the results indicated the average of percentage change on a variable (number of people on waitlist) was -49.13 with a standard deviation of 10.43. The results indicated that there were statistically significant differences for the number of people on the waitlist by pre and post intervention using both parametric test (two independent T-test) and nonparametric test (Wilcoxon Two Sample test) p value < 0.0001(see Table 3.2). The interventions yielded statistically significant improvement.

Table 3.2Waitlist Standard Deviation (n=16)

Variable	N	Mean	Standard Deviation	Minimum	Maximum
Number of people on waitlist pre- intervention	16	65.56	9.69	51.00	87.00

Number of people on waitlist post- intervention	16	33.31	8.64	22.00	49.00
Percentage change	16	-49.31	10.43	-69.86	-31.58

Note: Percentage change of waitlist pre-intervention (2016) as compared to post-intervention (2017). N, mean, standard deviation, and range for selected variables

Table 3.3 indicated that all proportion changes of the average days on the waitlist under the null (p = 0.25) were statistically significant except for week five. The results also showed the total proportion under the null (p = 0.25) was statistically significant. In addition, the result of one sample proportion under the null (p = 0.5) revealed that only five (weeks 3, 5, 6, 9, 10) out of 16 weeks were statistically significant. Also, the results did not indicate that the total proportion under the null (p = 0.5) was significant (p = 0.34). The overall sample did not show a decrease of 50% of average days; however, five weeks out of 16 weeks did show a significant decrease of average days by 50% (see Table 3.3).

Table 3.3	
Average Days on	Waitlist

Week	Average Days on Waitlist Pre- Intervention	Average Days on Waitlist Post- Intervention	Proportion Change	<i>p</i> Value Under Null =.25	<i>p</i> Value Under Null =.50
1	37	20	-45.94	.01	.31
2	38	16	-57.89	.00	.16
3	54	19	-64.81	.00	.01
4	54	29	-46.30	.00	.29
5	49	38	-22.44	.33	.00
6	60	38	-36.67	.03	.02

14 15	91	50	-45.05	.00	.17
13	93	49	-47.31	.00	.30
12	100	54	-46.00	.00	.21
11	107	47	-56.07	.00	.10
10	87	27	-68.96	.00	.00
9	80	30	-62.50	.00	.01
8	79	33	-58.23	.00	.07
7	67	37	-44.78	.00	.19

Note: Average number of days on waitlist pre-intervention (2016) as compared to post-intervention (2017), p value for one sample proportion test (one-sided test).

Table 3.4 revealed the average number of days on the waitlist (wait time) before intervention was 74.25 with a standard deviation of 23.03, whereas after intervention, the average number of days on the waitlist (wait time) was 36.69 with a standard deviation of 12.45. The results showed the average of percentage change on the average days on the waitlist (wait time) was -49.92 with a standard deviation of 11.42. The results indicated a statistically significant difference for the average number of days on the waitlist by pre and post-intervention using both parametric (two independent T-test) and non-parametric test (Wilcoxon Two sample test) p < 0.0001 (see Table 3.4).

Variable	N	Mean	Standard Deviation	Minimum	Maximum
Average days on waitlist pre- intervention	16	74.25	23.03	37.00	107.00
Average days on waitlist post-intervention	16	36.69	12.45	16.00	54.00
Percentage Change	16	-49.92	11.42	-68.97	-27.45

Table 3.4 *Wait Time Standard Deviation* (n = 16)

Note: N, mean, standard deviation, and range for selected variables.

Percentage change of average days on waitlist pre-intervention (2016) as compared to post-intervention (2017), p value for testing average days on waitlist (p < 0.0001) (Parametric and non- parametric test).

Average number of days on waitlist pre-intervention (2016) as compared to post-intervention (2017).

Figure 3.4. Distribution of wait time in days pre-intervention and post-intervention.

Discussion

The project successfully achieved a reduction in both the number on the waitlist (50%) and the average number of days (time) on the waitlist (51%). The quality improvement project was a cost-neutral initiative to decrease the imbalance between capacity and demand. Through determining the processes and practice inefficiencies that negatively impacted the forensic patient flow, and conducting tests of change to remove barriers through the implementation of PDSA, the appropriate movement of patients across the continuum of care was achieved. The project aims were met as evidenced by a significant decrease in the waitlist and wait times for accessing inpatient, forensic psychiatric treatment. The results did indicate the achievement of statistically significant

outcomes. The use of multiple PDSAs resulted in improved organizational efficiency; the results are as follows: 1) reduction in the forensic waitlist; 2) decrease in wait time; 3) decrease in time from admission to discharge and 4) increase in active treatment by addressing the medical issues to improve the discharge process. The use of Lean tools and the organization of teams allowed for the critical review of current processes. PDSAs facilitated the development of plans and tests of change which resulted in overall process improvement.

By narrowing the waitlist, new barriers have been created. Currently, defendants are on the waitlist for shorter time periods. This improvement coupled with the solicitor having up to 15 days to file orders and schedule court hearings, has created additional bottlenecks. Future PDSA cycles could focus on enhancing the push-pull system of communication between SCDMH and judicial/community partners; thereby, further reducing the forensic waitlist.

Conclusions

The lack of adequate throughput and patient flow across the continuum of care impacts access to inpatient mental health services and creates barriers to entering and exiting the forensic psychiatric hospital. The results of this study illustrate how the identification and removal of barriers to patient flow, by increasing efficiencies in the flow process, lead to a decrease in wait times for criminal defendants to access inpatient forensic psychiatric treatment. The use of lean methods and PDSA to improve patient flow results in a decrease in the imbalance between the demand for inpatient forensic psychiatric services and the capacity to deliver them, resulting in shorter wait times to access inpatient treatment and care.

Implications for Practice

The growing demand for inpatient forensic psychiatric treatment and services, coupled with a static supply of resources, create the need for innovation in practices that create efficiencies in the delivery of services for this challenging population. The identification and removal of barriers to patient flow using lean methodology significantly decreased the delay in access to forensic psychiatric treatment.

A literature review of five databases indicated support for the use of Lean Methods and PDSA as evidence-based approaches to facilitate quality improvement projects. However, there was no evidence found in the peer-reviewed literature of prior effort to implement these methods in a forensic psychiatric setting; therefore, their effectiveness in the forensic psychiatric hospital would benefit from continued assessment.

The use of PDSAs to develop and test change significantly improved administrative and clinical processes that facilitated the efficient treatment and flow of forensic patients across the care continuum. The aims of the study were not just met but were exceeded. With the increasing demand for psychiatric treatment of the forensic patient population, more initiatives to address the sociocultural aspects of change in the practice setting are needed. In addition, the use of technology to facilitate the integration of clinical, legal and administrative processes is significant to the future needs of healthcare.

Future Research

Due to the paucity of literature, patient flow in a forensic psychiatric hospital setting is an understudied topic. Evidence that addresses the use of lean methodology and PDSA to examine patient flow in a forensic psychiatric hospital could not be located;

therefore, the study of patient flow in a forensic hospital setting is recommended for future research. Although evidence was found to address patient flow in other hospital settings to include emergency departments and operating rooms, additional study is needed. Research and study of flow relative to both psychiatric hospitals as well as other settings to include components of the judicial system are warranted and would allow for the acquisition of new knowledge for application to the forensic psychiatric hospital setting.

Dissemination

The literature review and findings from this evidence-based, quality improvement project are scheduled to be presented at the Seventeenth Annual Research and Scholarship Day 2018 and Mary Ann Parsons Lectureship at the University of South Carolina College of Nursing on April 18, 2018. An introduction to the problem, the purpose of the project and study design will be presented. Results include a reduction in the waitlist and wait time for forensic psychiatric treatment. An abstract of the quality improvement project and a poster were submitted (see Appendices H and I). Study findings and results will be presented to the SCDMH leadership, and South Carolina Mental Health Commission. A manuscript will be submitted for publication in the Journal for Healthcare Quality (JHQ). JHQ is the official journal of the National Association for Healthcare Quality (NAHQ).

REFERENCES

- Abram, K. M., Teplin, L. A., & McClelland, G. M. (2003). Comorbidity of severe psychiatric disorders and substance use disorders among women in jail. *American Journal of Psychiatry*, 160, 1007-1010. doi:
- Dammand, J., Horlyck, M., Jacobsen, T. L., Rainer, L., & Rock, R. L. (2014). Lean management in hospitals: Evidence from Denmark. *Administration and Public Management*, 23, 19-35.
- Dearholt, S. L., & Dang, D. (2012). Evidence-based practice: Model and guidelines. (2nd ed.). Indianapolis, IN: Sigma Theta International.
- Development Services Group, Inc. (2016). NREPP SAMHSA's National Registry of Evidence-based Programs and Practices. Behind the term: Serious mental illness. Retrieved from

http://www.nrepp.samhsa.gov/Docs/Literatures/Behind_the_Term_Serious%20% 20Mental%20Illness.pdf.

- Elder, E., Johnston, A. N., & Crilly, J. (2015). Review article: Systematic review of three key strategies designed to improve patient flow through the emergency department. *Emergency Medicine Australasia*, 27 (5), 394-404. Doe: 10. 1111/1742-6723.12446.
- Fawcett, S., Shultz, J., Watson-Thompson, J., Fox, M. & Bremby, R. (2010). Building multisectoral partnerships for population health and health equity, 7(6). Retrieved from https://www.cdc.gov/pcd/issues/2010/nov/10_0079.html

Fitch, W. L., (2014). Forensic mental health services in the United States: 2014.National Association of State Mental Health Program Directors. Retrieved from

https://www.nasmhpd.org/sites/default/files/Assessment%203%20 -%20Updated%20Forensic%20Mental%20Health%20Services.

- Flynn, G., O'Neill, C., & Kennedy, H. (2011). DUNDRUM-2: Prospective validation of a structured professional judgment instrument assessing priority for admission from the waiting list for a forensic mental health hospital. *BMC Research Notes 4* (230), 1-10.
- Forensic. (n.d.). In *Merriam-Webster online*. Retrieved on January 29, 2017 from https://www.merriam-webster.com/dictionary/forensic
- Hung, D., Martinez, M., Yahir, M., Gray, C. (2015). Implementing a lean management system in primary care: Facilitators and barriers from the front lines. *Wolters Kluwer Health, Inc.*, 24(3), 103-108.
- Institute for Health Care Improvement. (n.d.). Science of improvement: How to improve. Retrieved from: http://www.ihi.org/resources/Pages/HowtoImprove/ScienceofImprovementHowto Improve.aspx

Johnson, P. M. (2013). Lean methodology: An evidence-based practice solution. Virginia Henderson Global Nursing e-repository. Retrieved from http://www.nursinglibrary.org/vhl/handle/10755/303995?mode=full

Kennedy-Hendricks, A., Huskamp, H. A., Rutkow, L., & Barry, C. L. (2016). Improving access to care and reducing involvement in the criminal justice system for people

with mental illness. *Health Affairs*, 35(6), 1076-1083 1078p. doi:10.1377/hlthaff.2016.0006

- Lawal, A. K., Rotter, T., Kinsman, L., Sari, N., Harrison, L., Jeffery, C., Kutz, M., Khan, M. F., & Flynn. (2014). Lean management in health care: definition concepts, methodology and effects reported (systematic review protocol). *Systematic Review, 3*, 103. doi: 10.1186/2046-4053-3-103.
- Lee, J. S., & Franc, J. M. (2015). Two-step emergency department triage model with START, then CTAS, on patient flow during a simulated mass-casualty incident. *Prehospital and Disaster Medicine*, *30*(4), 390-396.
- Melnyk, B. M., & Fineout-Overholt, E. (Eds.) (2015). Evidence-based practice in nursing & healthcare: A guide to best practice. (3rd ed.). Philadelphia, PA: Lippincott Williams & Wilkins.
- Michael, M., Schaffer, S. D., Egan, P. L., Little, B. B., & Pritchard, P. S. (2013).
 Improving wait times and patient satisfaction in primary care. *Journal for Healthcare Quality*, 35(9), 1-17. Doi: 10.1111/jhq.12004.
- Moran, K., Burson, R., & Conrad, C. (2017). The scholarly project toolbox. In K.
 Moran, R. Burson, & D. Conrad (Eds.). *The doctor of nursing practice scholarly project: A framework for success (2nd ed.)*, pp. 287-327, Burlington, Ma: Jones & Bartlett.
- New, P. W. (2013). Defining barriers to discharge from inpatient rehabilitation, classifying their causes, and proposed performance indicatory for rehabilitation patient flow. *Archives of Physical Medicine and Rehabilitation*, *94*(1), 201-208. doi: 0.1016./j.apmr.2012.07.026

- New, P. W., Andrianopoulos, N., Cameron, P. A. Cameron, P. A., Olver, J. H., & Stoelwinder, J.U. (2013). Reducing the length of stay for acute hospital patients needing admission into inpatient rehabilitation: A multicenter study of process barriers. *Internal Medicine Journal*, 43(9), 1005-1011. doi: 10.1111/imj.12227.
- Newhouse R., Dearholt S., Poe S., Pugh L. C., White K. (2005). The Johns Hopkins nursing evidence-based practice rating scale. Baltimore, MD. The Johns Hopkins Hospital: Johns Hopkins University School of Nursing.
- Nicolay, C. R., Purkayastha, S., Greenhalgh, A., Benn, J., Chaturvedi, S., Phillips, N., & Darzi, A. (2011). Systematic review of the application of quality improvement methodologies from the manufacturing industry to surgical healthcare. *British Journal of Surgery*. Wiley Online Library. doi: 10.1002/bjs.7803.
- Popovich, M. A., Boyd, C., Dachenhaus, T., Kusler, D. (2012). Improving stable patient flow through the emergency department by utilizing evidence-based practice:One hospital's journey. *Journal of Emergency Nursing*, *38*(5), 474-478.
- Prins, S. J. (2014). Prevalence of mental illnesses in U.S. state prisons: A systematic review. *Psychiatric Services*, 65(7), 862-872. doi: 10.1176/appi.ps.201300166.
- Sayah, A., Rogers, L., Devarajan, K., Kingsley-Rocker, L., & Lobon, L. (2014). Minimizing ED waiting times and improving patient flow and experience of care. *Emergency Medicine International*, 2014 (2014). Retrieved from http://dx.doi.org/10.1155/2014/981472.

South Carolina Department of Mental Health (2017). Forensic Waitlist. South Carolina Department of Mental Health (2017). Start Now. State of South Carolina Department of Corrections (2016). Behind the wire. Retrieved from http://www.doc.sc.gov/news/behind_the_wire_q2_2016.pdf

- Steadman, H. J., Osher, F. C., Robins, P. C., Case, B., & Samuels, S. (2009). Prevalence of serious mental illness among jail inmates. *Psychiatric Services*, 60(6), 761-765. doi: 10.1176/appi.ps.60.6.761.
- Sullivan, P., Soefje, S., Reinhart, D., McGeary, C., & Cabie, E.D. (2014). Using lean methodology to improve productivity in a hospital oncology pharmacy. *American Journal of Health System Pharmacy*, *71*, 1491-1498. doi: 10.2146/ajhp130436
- Taylor, M. J., McNicholas, C., Nicolay, C., Darzi, A., Bell, D., & Reed, J. E. (2013). Systematic review of the application of the plan-do-study-act method to improve quality in healthcare. *BMJ Quality & Safety Online*, Retrieved from http://dx.doi.org/10.1136/bmjqs2013-001862. pp. 1-8.
- The W. Edwards Deming Institute (2016). Retrieved on January 28, 2017 from https://deming.org/management-system/pdsacycle
- University of South Carolina (UofSC). (2013). Electronic resources. Retrieved from http://library.SC.edu/p/Research/Resources All#letter-W
- Valsangkar, N. P., Eppstein, A. C., Lawson, R. A., BSEE, Taylor, A. N. (2016). Effect of lean processes on surgical wait times and efficiency in a tertiary care Veterans Affairs Medical Center. JAMA Surgery 52(1), pp. 42-47. doi:10.1001/jamasurg 2016.2808
- Van Dyke, K. J., McHugh, M., Yonek, J., & Moss, D. (2011). Facilitators and barriers to the implementation of patient flow improvement strategies. Quality Management in Health Care, 20(3), 223-233. doi: 10.1097/QMH.0b013e318222a3b0.

White, K. M., Dudley-Brown, S., & Terhaar, M. F. (2016). Translation of evidence into

nursing and health care. (2nd ed.). New York: Springer Publishing Company.

Zhu, Y., Lu, Z., & Dai, H. (2014). Improving efficiency and patient satisfaction in a peripherally inserted central catheter center using lean-based methodology.
 JAVA, *19*(4), 244-255. Retrieved from

http://dx.doi.org.pallas2.tcl.sc.edu/10.1016/j.java.2014.07.004

APPENDIX A

MODEL OF CHANGE

PDSA Cycle Institute for Healthcare Improvement www.ihi.org/resources/Pages/Tools/PlanDoStudyActWorksheet.aspx

APPENDIX B

EVIDENCE TABLE

Brief Reference, Type of	Methods	Threats to Validity/	Study Findings	Conclusions
study, Quality rating		Reliability		
Hung, D., Martinez, M.,	Design: Qualitative	Although the	Staff engagement and	Whereas Lean provides
Yakir, M. & Gray, C.	research design	researchers used	performance	a new approach to
(2015). Implementing a		qualitative methods,	management, sensitivity	delivering care, the
Lean Management	Sample: Snowball &	they did not discuss	to the professional values	implementation process
System in Primary	Purposive sampling	their study in light of	and culture of medicine,	is complex and crucial
Care: Facilitators and	techniques were used	any of the criteria	and perceived adequacy	to success.
Barriers from the Front	to identify participants	usually used to evaluate	of organizational	Understanding early
Lines.	that included 34	qualitative research	resources were critical	facilitators and barriers
Q Manage Health Care,	primary care	including credibility,	when introducing Lean	can maximize Lean's
24(3), 103-108. doi:	physicians and staff.	dependability,	changes.	potential to improve
10.1097/QMH.0000000		confirmability, and		health care delivery.
0000062	Setting:	member checks.	Staff empowerment, the	
	An 86,000-	They did address	visual display of	To achieve
Type of Study:	patient base,	reliability by engaging	performance metrics and	improvements in
Qualitative Study	multispecialty clinic	in independent parallel	having a culture of	performance using Lean
	of a large, not-for-	coding, where another	innovation and	techniques, a reversal of
Quality Rating: A	profit, ambulatory	researcher	collaboration were	perspective on work
	care delivery system	independently coded	identified as the specific	processes and
Evidence Level : III	in California	randomly selected	drivers of change.	continuous
		transcripts. Any		improvement may be

Purpose:	Instruments used:	discrepancies were	Barriers to change	required.
To highlight key	Semi-structured	discussed and	included physician	
facilitators and barriers	interview guides	reconciled	resistance to standardized	
to implementing Lean			work, difficulty	
among frontline	Data Collection: All		transferring management	
primary care providers	data collection		responsibilities to non-	
	activities were		physician staff, and time	
	approved by the IRB;		and staffing required to	
	participation was		participate in	
	voluntary and written,		improvement efforts.	
	informed consent was			
	obtained prior to each			
	interview or focus			
	group. Audio-recorded			
	sessions (interviews			
	and focus groups) of			
	approximately 60			
	minutes were			
	transcribed verbatim			
	by a professional			
	transcription service.			
	Data analysis : All			
	transcripts were			
	entered into Atlas.ti			
	software.			
	Transcripts were			
	analyzed and coded			
	using an inductive			
	approach.			
Flynn, G., O'Neill, C., &	Design:	The numbers included	The DUNDRUM-2 triage	There is a distinction
Kennedy, H. G. (2011).	Naturalistic	in this prospective	urgency scale has good	between the items

DUNDRUM-2:	prospective	naturalistic outcome	psychometric properties.	assessing need for
Prospective validation of	observational study	study are small when	It has good inter-rater	admission to various
a structured	was conducted where	some sub-groups are	reliability and high	levels of therapeutic
professional judgment	the researcher rated	considered, particularly	internal consistency.	security such as the
instrument assessing	referrals using the	for those waiting for	The DUDRUM -1 triage	medium and high
priority for admission	DUNDRUM-1 triage	admission from less	security score and the	secure forensic hospital
from the waiting list for	security scale and the	secure hospitals. All	DUNDRUM -2 triage	studied and the items
a forensic mental health	DUNDRUM-2 triage	other analyses had	urgency score correlated	assessed to decide the
hospital. <i>Research</i>	urgency scale. The	sufficient power to	r=0.683. At the time of	prioritization of those
Notes, 4 (230), 1-10.	key outcome measure	reach statistical	admission, after a mean	on a waiting list for
	was whether or not the	significance and there	of 23.9 (SD 35.9) days on	admission to a medium
Type of Study:	individual was	does not appear to be	the waiting list, those	or high secure forensic
Qualitative Study	admitted.	any evidence of	admitted had higher	hospital.
		possible error due to	scores on the	
Quality Rating: A	This study consisted	lack of statistical power.	DUNDRUM -2 triage	
	of three phases. The	It is believed that the	urgency scale than those	
Evidence Level : I	first was an iterative	item content is likely to	not admitted, with no	
	drafting process	be generalizable.	significant difference	
Purpose:	followed by		between locations	
The aim of this study	observational study of		(remand or sentenced	
was to draft and test	decision making in		prisoners, less secure	
criteria in a prospective	practice at the weekly		hospitals) at the time of	
"real life" observational	referrals meeting		admission. Those	
study over a 6-month	when all referrals are		admitted also had higher	
period	discussed, accepted		DUNDRUM	
	for admission or dealt		-1 triage security scores.	
	with in some other		At the time of admission,	
	way, and those		the DUNDRUM	
	accepted are		- 2 triage urgency score	
	prioritized.		had the largest AUC	
			(0.912, 95% CI	

Sample:	0.838 to 0.986).	
During the six month		
observation period, 66		
individuals were		
placed on the waiting		
list and 38 were		
eventually admitted.		
10 women were		
placed on the waiting		
list and 6 were		
admitted; 56 men		
were placed on the list		
of whom 32 were		
admitted.		
Setting:		
The Central Mental		
Hospital provides		
high, medium and low		
therapeutic security		
and community		
follow-up services for		
a population of 4.4		
million. At the time of		
the study there were		
93 in- patient beds at		
varying levels of		
therapeutic security.		
I he service also		
provides extensive		
mental health in-reach		

	services to the busiest			
	remand and sentenced			
	committals prisons in			
	the state, and to the			
	other prisons. Patients			
	are admitted to the			
	hospital from the			
	prisons under the			
	Criminal law			
	(Insanity) Act 2006 if			
	medically certified.			
	Instruments:			
	The DUNDRUM –			
	2 a triage urgency			
	scale and DUNDRUM			
	-1 triage security scale			
	were used.			
Van Dyke, K. J.,	Design:	There are several	There were facilitators	Management initiation
McHugh, M., Yonek, J.,	Qualitative Research	limitations	and	and enforcement of
Moss, D. (2011).	design	to this study. First the	Challenges to	work processes would
Facilitators and	~ .	study included only 6	implementation reported	need to be replaced
Barriers to the	Sample:	hospitals. While the 6	by patient flow	with more direct
Implementation of	6 Hospitals	participating hospitals	improvement teams from	involvement from the
Patient Flow	participating in the	are diverse, they are not	2 or more of the 6	workforce. As found in
Improvements	UM Learning network	nationally	hospitals.	the study, the
Strategies. Q Manage	129 Interviews	representative. In		perspectives and
Health Care, 20 (3), 223-	~ •	addition, these 6	In some cases, the teams	contributions of
233.	Setting:	hospitals self-selected	developed successful	frontline providers will
	Emergency	into the collaborative	approaches for addressing	be critical to Lean as a
Type of Study:	departments at 6	and as a result might	the challenges	transformative solution

Qualitative Research	hospitals in the US	possess characteristics,	encountered.	in health care.
Design	participating in Urgent	including an openness		
	Matters Learning	to change, that	The most common	
Quality Rating: B	Network.	differentiate them from	facilitators encountered	
-		hospitals that either did	during implementation	
Evidence Level: III	Data Collection:	not choose to	were participation in the	
	Conducted 2 rounds of	participate or were not	UM learning network (the	
Purpose:	individual interviews	selected to participate.	most frequently cited	
Identify and describe	of all members of the	The improvement	facilitator), strategic	
facilitators and barriers	flow teams and other	strategies included do	selection of planning	
to patient flow in 6	staff by 3 researchers	not represent a full	team	
hospitals that	in 2 teams. First round	menu of possible	members, executive	
implemented strategies	of interviews in	strategies. Also, the	support and the	
to improve flow and	person second by	patient flow	availability of resources,	
reduce crowding.	phone.	improvement team's	staff-driven improvement	
		experiences were	strategies, an aligned	
	Analysis:	shaped by their	reporting structure,	
	Inductive approach.	participation in the	implementation of simple	
	Codes derived after	learning network, which	process changes, and a	
	initial review of	further limits the	flexible and robust	
	transcripts. High level	external validity of our	information technology	
	of agreement.	findings. Findings from	system. Barriers to the	
		this small sample are	implementation of	
		not meant to be	strategies included: staff	
		generalized to all	resistance, entrenched	
		hospitals. One of the	organizational culture,	
		challenges to	lack of staffing resources,	
		conducting	previous failures to	
		implementation	improve patient flow, and	
		research is the literature	lack of data to monitor	
		bias-implementation	progress. Participation in	

		failures are rarely reported. Although factors that facilitate or hinder the implementation of quality improvement projects, evidence specific to the implementation of efforts to improve patient flow and reduce ED crowding is limited.	the learning network was the most commonly cited facilitator to implementation. Working within the network compelled the participating hospitals to be accountable for results, making it difficult to abandon or change the strategic direction once it decided on a particular improvement strategy. Unfortunately, the learning network was open to only 6 hospitals.	
Sayah, A. Rogers, L.,	Design:	These changes were	The ED operational	Inefficiencies in the ED
Devarajan, K.,	Qualitative Research	implemented in a	changes had a significant	throughput process and
Kingsley-Rocker, L., &	design A pre and post-	medium- sized, urban	positive impact on all	delays of care may
Lobon, L. F. (2014).	intervention analysis	ED and some of the	measured metrics.	negatively impact
Minimizing ED waiting	was conducted to	initiatives described and	Ambulance diversion	patient satisfaction and
times and improving	assess the impact of a	results derive may not	decreased from a record	patient outcomes.
patient flow and	patient flow	be applicable to EDs	high mean of 148 hours	During the ED
experience of care.	improvement project.	operating under	per fiscal quarter before	operations overhaul,
Emergency Medicine	с I	different constraints and	changes to 0 hours after	this problem was
International. 2014	Sample:	with different patient	changes.	tackled by improving
(Article ID 981472), 1-8.	Patients that entered	populations. The	Press Ganey Patent	the ED flow process,
Ketrieved from	the ED from January	institution of the	satisfaction scores rose	changing the staff
http://dx.doi.org/10.1155	2005 December 2011	electronic health record	trom 12th percentile	culture, and placing the

/2014/98142	(mean = 7,221 - 8,044)	in the ED was another	before changes to the	patient first.
	patients per quarter)	confounding factor.	59th percentile after	Ultimately, the
Evidence Level: V	was included as a	_	implementation of	Cambridge ED could
	study participant		changes.	meet and sustain their
Quality Rating: B			ED total length of stay	target outcomes and
	Setting:		decreases from a mean of	goals. TCH became a
Purpose:	The emergency		204 minutes to mean of	best practice institution
To describe a system-	department of an		132 minutes.	based on patient
wide process	academic public		Wait time decreased from	satisfaction, reduced the
improvement project	institution located in		a mean of 63 minutes to a	door-to-provider time,
aimed at optimizing the	Cambridge		mean of 18 minutes,	and increased total ED
ED patient experience	Massachusetts		Compliance with ED	volume and capacity.
by expediting			specific quality core	Improving ED
throughput and flow.	Instruments Used:		Measures (AMI and	operational efficiency
	For data analysis, a		CAP)	allowed TCH to
	two-		Improved from a mean of	accommodate
	Sample independent t-		71% to 97%. The mean	increasing volume
	test was used to		rate of ED patients that	while simultaneously
	compare the		LWBS (before treatment)	improving the quality of
	mean of the "before"		was completely dropped	care and satisfaction of
	data,		from 4.1% to 0.9%. All	ED patients. This
	to the mean of the		improvements were	implementation served
	"after" data, of the		statistically significant	to demonstrate that
	following		with a $P < or = 0.001$.	outcomes and cultural
	parameters:		These improvements	traditions can be
	(1) median ambulance		were	improved through
	hours on diversion per		Sustained amidst an 11%	strategy rather than
	fiscal quarter,		Increase (from a mean of	heavy capital
	(2) Press Ganey		7,221 to 8,044) in	investment.
	Patient		quarterly patient volume	
	Satisfaction Percentile		between 2005 and 2011.	

S	scores,	In reviewing the
(3)median ED total	administrative data, an
10	ength of	average TLOS for the
s	stay time,	pilot period when the
(4)median door-to-	protocol was
d	loor	implemented was 127.5
q	provider time (or ED	minutes.
ī	'wait	Patient volumes during
t	ime"),	the analysis period in
	(5)	2009 and
C	uality core	2010 consistently
n	neasurements	averaged 200 patients per
	(6) percent of volume	day.
t	hat left without being	Although the average
s	een (LWBS).	time of 127.5 minutes
		during the
Ι	Data Collection:	implementation of the
Г	The data was collected	protocol was slightly
u	using the electronic	higher than the internal
n	nedical record	benchmark
s	systems (Meditech	
a	und EPIC).	
Г	Timestamps were used	
te	o compute the total	
10	ength of stay (TLOS)	
t	ime. Flags and patient	
r	ecords were used to	
d	letermine whether a	
q	patient left without	
b	being seen (LWBS).	
F	Patient records were	

	reviewed to access if			
	acute myocardial			
	infarction (AMI) and			
	Community acquired			
	pneumonia (CAP)			
	patients met the			
	appropriate quality			
	core measures.			
	Patient Satisfaction			
	Surveys were sent and			
	data compiled by			
	Press Ganey			
	associates			
Popovich, M. A., Boyd,	Design:	The limitations of this	In reviewing the	Positive changes
C., Dachenhaus, T., &	The Iowa Model of	project for application	administrative data, an	occurred because of the
Kusler, D. (2012).	Evidence-Based	to other practice	average TLOS for the	implementation of this
Improving stable	Practice to Promote	settings include the	pilot period when the	protocol. The protocol
patient flow through the	Quality Care was used	requirement of a	protocol was	provided a tool for
emergency department	as a framework for	physical space to utilize	implemented was 127.5	making clinical
by utilizing evidence-	this project. With use	as a separate patient	minutes.	decisions that was
based practice: One	of this framework, a	care area, appropriate	Patient volumes during	based on objective data.
hospital's journey.	volume-driven	staffing, and the support	the analysis period in	The protocol was useful
Journal of Emergency	protocol was	of administration to	2009 and	to the emergency
Nursing. 3 (5), 474-478.	developed from a	improve patient flow of	2010 consistently	department as volume
	retrospective	stable patients.	averaged 200 patients per	and TLOS began to
Type of Study:	administrative data	Also, the pilot study	day.	increase.
Literature Review &	analysis which sought	was short in duration	Although the average	
Quality Improvement	volume triggers that	because of time	time of 127.5 minutes	
	could be used to	constraints. Bias that	during the	
Quality Rating: A	determine when to	could be introduced by	implementation of the	

	staff a satellite area of	changing other	protocol was slightly	
Evidence Level: V	the ED to promote	processes during the	higher than the internal	
	early intervention and	time of the pilot study	benchmark set by	
Purpose:	rapid treatment of	could be another	Nationwide Children's	
The purpose of this	stable patients.	limitation. Finally,	Hospital, the number of	
project was to develop a		inconsistencies	patients who LWBS	
volume- driven protocol	Sample:	occurred in	decreased. According to	
based on retrospective	820,000 visits with	documentation of the	pre-pilot data, in 2009, 62	
analysis of	16,247 inpatient	data related to triage	persons LWBS, whereas	
administrative data to	admissions. 4	and provider contact.	during implementation of	
improve early	individual months that	As a result, this	the protocol, only 49	
intervention and rapid	provided 40 occasions	measure was excluded	LWBS.	
treatment of stable	in	from data analysis.	These data showed a	
patients in a pediatric	which the satellite was		29% reduction, even	
emergency department.	staffed without the use		though the TLOS was	
	of a		greater than the	
	protocol		internal benchmark	
			of 120 minutes. The	
	Setting:		number of days that	
	A Columbus Ohio-		the satellite was	
	based		staffed when	
	Children's Hospital		compared with data	
	(Nationwide		from the previous	
	Children's		year during the same	
	Hospital), which is the		4- month period.	
	fifth largest		Another important	
	freestanding		outcome was that	
	pediatric hospital in		decisions were being	
	the		made based on the	
	US that provides		protocol, which	
	wellness,		eliminated personal	

proventative		bias regarding	
diagnastia trastr	ant	staffing of the	
		starting of the	
and renabilitative	care	satellite.	
for infants, childr	en,		
and adults.			
	_		
Instruments Use	d:		
The Emergency			
Severity Index (E	SI)		
was developed to			
include a 5-tier tr	iage		
system. Tanabe a	nd		
colleagues estima	ted		
inter- rater reliabi	lity		
on the use of ESI			
version 3 which w	vas		
validated for use	in		
pediatric settings	was		
also used. This gi	ves		
ED administration	n the		
ability to predict			
resource intensity	and		
benchmark length	n of		
stay (LOS) accord	ling		
to acuity level bu	t		
does not provide			
benchmarking for			
volumes of patier	its		
presenting to the	ED		
Proteining to the			
Framework:			

The Iowa Model of		
Evidence-Based		
Practice to Promote		
Quality Care		
Data Collection:		
Data were collected		
from a random		
sampling of months		
from January 2009		
through July 2010.		
Observing, describing,		
and documenting a		
phenomenon through		
a retrospective review		
of administrative data		
was the basis for the		
development of the		
protocol addressing		
acuity, volume, and		
TLOS. The data		
reviewed included		
data collected 3 hours		
prior to staffing of the		
satellite area to review		
volume triggers,		
acuity, TLOS and the		
number of patients		
who LWBS.		

Taylor, M. J.,	Design:	The review aimed to	73 of 409 individual	The application and
McNicholas, C., Nicolay,	Systematic review and	assess the reported	articles identified met the	reporting of PDSAs is
C., Dari, A., Bell, D. &	Meta-Analyses	application of the PDSA	inclusion criteria. Of the	varied and lacks
Reed, J. E. (2013).		method and the results	73 articles, 47	compliance with the
Systematic review of the	Sample:	of individual studies	documented PDSA cycles	principles that underpin
application of the plan-	A total of 73 articles	were not analyzed in	in sufficient detail for full	its design as a
do-study-act method to	that met the inclusion	the review.	analysis against the whole	pragmatic scientific
improve quality in	criteria:		framework. Less than	method. Therefore, the
healthcare. BMJ	42 used 'PDSA' as	Despite the review	20% (14/73) studies fully	variation in practice
Quality & Safety Online	terminology and 31	being focused on	documented the	compromises the
First September 11,	used 'PDCA'	reported application,	application of a sequence	effectiveness of PDSA
2013.		rather than success of	of iterative cycles.	as a method for
doi:10.1136/bmjqs-2013-	Setting:	the interventions, it may		improvement and
001862	Healthcare	still be possible that	Moreover, a lack of	cautions against studies
		publication bias	adherence to the notion of	that view QI or PDSA a
Type of Study:	Instruments Used:	affected the results of	small-scale change is	'black box'
Non-experimental study	A search was designed	the study.	apparent and only 15%	intervention.
	to identify peer-		(7/47) reported the use of	
Quality Rating: A	reviewed publications	Research that used	quantitative data at	The need exists for
	that described	PDSA methodology, but	monthly or more frequent	greater scientific rigor
Evidence Level: IV	empirical studies that	did not yield successful	data intervals to inform	in the application and
	applied the PDSA	results, may be less	progression of cycles.	reporting of PDSA and
Purpose:	method	likely to get published		QI to advance the
The purpose of this		than reports of	To advance the	understanding of the
paper is to propose a		successful PDSA	development of the	science of improvement
theoretical framework	Data Collection:	interventions.	science of improvement,	and efficacy of the
for assessing the quality	NHS Evidence and		a greater understanding of	PDSA method.
of application of PDSA	Cochrane databases		the use of improvement	The application of
cycles and explore the	were searched by		methods, including	PDSA should have
quality and consistency	three independent		PDSA, is essential to	greater consistency and
of PDSA cycle	reviewers.		draw reliable conclusions	compliance with

application against this framework as documented in peer- reviewed literature.			about their effectiveness. The development of systematic and rigorous standards is needed for the application and reporting of PDSAs.	guidelines provided by founders and commentators.
Valsangkar N. P.,	Design:	This study has several	In this systematic review	Multidisciplinary
Eppstein, A. C., Lawson,	Systematic Review of	limitations. First, the	of institutional wait list	system redesigns using
R. A., BSEE, Taylor, A.	wait list data from	study only addressed a	data from fiscal years	lean principles may
N. (2017). Effect of lean	2012 to 2014	few factors that were	2012 to 2014, the	decrease patient wait
processes on surgical		monitored over 3 fiscal	implementation of lean	times by addressing and
wait times and efficiency	Sample:	years.	system redesigns was	correcting systemic
in a tertiary care	All patients	Additional years may	associated with	inefficiencies. By
Veterans Affairs medical	evaluated by the	need to be studied	significant and sustained	reducing systemic
center.	general surgery	before long- term	waitlist reduction from	inefficiencies, we
	department through	results can be validated.	33.4 days to 12.0 days for	achieve increased
Evidence Level: IV	outpatient clinics,	Furthermore, although	patients waiting for	patient throughput,
	clinical video	there were no changes	elective general surgical	decreased wait lists, and
Type of Study:	conferencing, and	in the number of	procedures.	improved patient access
Systematic Review	e- consultations	surgeons during the		in a cost-neutral
	from October 2011	study period, one OR		manner.
Quality Rating: B	through September	was shut down during		
	2014 were	2014, resulting in the		
Purpose:	included.	loss of block time. This		

To identify whether lean		confounded the results	
processes ca be used to	Setting:	to some extent;	
improve wait times for	The Richard L.	however, operative	
surgical procedures in	Roudebush Veterans	volume remained	
Veterans Affairs	Affairs (VA) Medical	higher than baseline	
hospitals	Center, a tertiary care	from FY 2012.	
	referral center within		
	the VA, serving more		
	than 60,000 patients		
	with a 200 mile radius		
	catchment area		
	Instruments Used:		
	Databases in		
	the Veterans integrated		
	Service Network 11		
	data warehouse,		
	Veterans health		
	Administration		
	Support Service		
	Center, and Veteran's		
	Information Systems		
	and technology		
	Architecture/		
	Dynamic Host		
	Configuration		
	Protocol were queried		
	to assess changes in		
	wait times for elective		
	general surgical		
	procedures and		
	clinical volume		

1	before, during and			
	after implementation			
	of lean processes over			
	3 fiscal years.			
	Also, a Value Stream			
	Analysis was			
	conducted in 2013.			
	Data Collection:			
	Per VHA policy,			
	Handbook 1200.05,			
	Appendix A, the			
	article presents			
	information that			
	involves the collection			
	or study of existing			
	deidentified data and			
1	therefore does not			
1	require informed			
	consent or institutional			
1	review board			
	approval.			
-	Data Analysis: All			
	data were calculated			
1	using Microsoft Excel			
	2015 and SPSS			
	Statistics version 15			
	(SPSS) Inc).			
	Continuous variables			
	were compared using t			
---------------------------	--------------------------	---------------------------	----------------------------	--------------------------
	test of means when 2			
	variables were			
	compared or analysis			
	of variables when			
	more than 2 variables			
	were compared.			
	Categorical variables			
	were compared using			
	the X2 test.			
	Statistical significance			
	was set at			
	P<.05.			
Dammand, J., Horlick,	Design:	Literature on Lean	Efficiency in patient	The study illustrates a
M., Jacobsen, T. L., Leg,	A single organization	tends to report positive	treatment increased, for	successful
R., Rock, R. L. (2014).	case study (a	examples. As to the	example through	implementation of Lean
Lean management in	longitudinal study)	concepts addressed by	reduction in waiting	in a public hospital.
hospitals: Evidence	was conducted to	this study, it is	times, higher process	Thereby, it contributes
from Denmark.	perform an in-depth	questioned if the	cycle efficiency when	that practices from the
Administration and	description of findings	distinction of value-	patients were treated at	private sector can be
Public Management, 23,	in a real-life context.	adding from non-value	the hospital, and shorter	successfully transferred
19-35.		activities is as clear in	walking distances for	if they are adapted to
	Study design was	healthcare as it is in	staff. This was achieved	the quite different
Type of Study:	recorded in	manufacturing. Cause	through the use of various	business models of
Case Study	concordance with the	and effect are much less	lean tools, such as Kaizen	organizations in the
	Quality Improvement	clear in life science	tablets, elimination of	public sector.
Quality Rating: A	(QI) literature as a	compared to	non-value adding	The study further
	randomized design	engineering. There is	activities, and Gemba	evaluated how Lean
Purpose:	(individual- patient	still no universally	mapping.	thinking can improve
This single-case study	randomized controlled	accepted definition for	Success factors in the	efficiency in patient
explores whether Lean	trial (RCT) or cluster	value in healthcare as	implementation of Lean	treatment and found

management can	randomized trial) or as	opposed to the clear	were financial pressure	that many different
improve efficiency in	a non- randomized	measurable profit	from the government	Lean tools could
patient treatment at	design (stepped wedge	maximization goal of	under increasing	successfully optimize
hospitals.	design, time series	most businesses. The	expectations from	processes at OUH.
1	design, controlled	study could be	patients.	These include the
	before-after study or	replicated on a larger	Openness of the hospital'	inclusion of employees
	uncontrolled before-	scale.	s top management toward	as well as eliminating
	after study). The		practices from the private	waste through such
	preceding order		sector, thorough	initiatives as value
	represents the hierarch		employee involvement,	stream mapping and
	of methodological		provision of the necessary	Kaizen tablets.
	strength.		funding for the change	However, implementing
			toward Lean, and a better	Lean also had its
	Sample:		definition of the business	challenges which
	Studies included in		model.	included employee
	qualitative analysis			reluctance to the
	n=34 Continuous			visualization of their
	Quality Improvement			work. Also, some of
	(CQI) = 9; Six Sigma			the initiatives were time
	(6S) n=5; Total			consuming to maintain,
	Quality Management			and at a certain point
	(TQM) n=5;			the employees stopped
				functioning the way
	Statistical Process			they were initially
	Control/Statistical			supposed to.
	Quality Control			Without involvement,
	(SPC/SQC)			employees tend to see
	n=5; Plan –Do-			Lean simply as a cost
	Check- Act/Plan-Do-			cutting exercise.
	Study-Act			Therefore, Lean tools
	(PDCA/PDSA) n = 5;			should be explained and

Lean n=4; Lean Six		visualized to staff
Sigma Lean (6S) n=1		members. The
		reduction of waiting
Setting:		times for patients has
Odense University		positive side effects on
Hospital in Denmark		the health of the
1		patients and the hospital
Instruments Used:		staff. Finally, hospitals
MEDLINE, the		can refine their business
Cochrane Database,		model through Lean.
Allied and		Lean helps hospitals
Complementary		prioritize in a way that
Medicine Database,		resources are used most
British Nursing Index,		efficiently by avoiding
Cumulative Index to		waste before cutting
Nursing and Allied		into the quality of
Health Literature,		treatments and can be a
Embassy, Health		strong tool to balance
Business Elite, the		ethics with business.
Health Management		
Information		
Consortium and		
PsycINFO were		
searched according to		
the Preferred		
Reporting Items for		
Systematic Reviews		
and Meta-analyses		
statement.		
Empirical studies were		
included that		

i	mplemented a	
	lescribed QI	
1	nethodology to	
S	surgical care and	
8	inalyzes a named	
	outcome statistically.	
1	Data Collection:	
]	Raw data were	
	collected and	
t	abulated	
i	ndependently by two	
1	eviewers on to a data	
e	extraction sheet	
	Microsoft Excel	
	2009; Microsoft	
	Corporation,	
]	Redmond,	
	Washington, USA)	
Į	guided by the	
	Cochrane Handbook.	
]	Data collected	
i	ncluded first author,	
2	year of publication,	
	country in which	
S	tudy was performed,	
S	tudy setting, length of	
5	tudy (before and after	
i	ntervention), aim of	
s	tudy, study design,	
1	number of patients or	

	observations, interventions and outcomes. Data Analysis: Reliance on both qualitative and quantitative data for analysis			
Michael, Schaffer, Egan,	Design:	The use of a pre-	Although the mean	The results of the
Little & Pritchard	Pre-experimental	experimental	waiting room wait time	project provide
(2013). Improving wait	pretest/posttest design	pretest/posttest design,	was reduced by 5.33 min,	additional support in
times and patient	Quality Improvement	convenience sampling	the 20-min wait target	favor of the DMIC
satisfaction in primary	Project	strategy and lack of	established for this	framework and PDSA
care. Journal for		historical information	category was not met	improvement method as
Healthcare Quality,	Sample:	on the psychometric	during the first PDSA	viable options for
35(2), 1-17. Doi:	Convenience sampling	properties of the patient	cycle. Qualitative	conducting QI and
10.1111/jhq.12004	1,500 primary care	satisfaction survey	feedback from unit staff	achieving wait time
	patients	instrument.	suggests that process	process improvements
Evidence Level: V			improvements may have	
	Setting:		resulted in a calmer and	
Type of Study:	The study was		less chaotic work	
Qualitative	conducted in the		environment in the	
	Ambulatory Primary		Patient reception and	
Quality Rating: B	Care Unit at the		Registration areas.	
	Health Department's		Important upstream and	
Purpose:	central practice		Downstream impacts	
To increase patient	location of the Florida		reported by APCU team	
satisfaction by	Department of Health		Members include:	

minimizing wait times in		improved	
a Florida county health		front-end patient flow and	
department Ambulatory		fewer delays in relay of	
Primary Care Unit		charts between the	
(APCU) practice using		registration and clinical	
the Dartmouth		areas, elimination of	
Microsystem		congestion in the APCU	
Improvement		entrance area, enhanced	
Curriculum frame		patient privacy, improved	
(DMIC) and the Plan-		access to information and	
Do-Study-Act (PDSA)		reception assistance for	
improvement process.		patients, fewer	
		distractions	
		and interruptions for	
		registration staff, and	
		fewer registration process	
		errors.	

APPENDIX C

JOHNS HOPKINS NURSING EVIDENCE-BASED PRACTICE RESEARCH

EVIDENCE APPRAISAL

Level 1	Experimental study (randomized controlled trial or RCT)Meta-analysis of RCTs
Level 2	Quasi-Experimental Study
Level 3	Non-Experimental Study Qualitative Study
A	High Quality: Consistent results, sufficient sample size, adequate control, and definitive conclusions; consistent recommendations based on extensive literature review that includes thoughtful reference to scientific evidence.
В	Good Quality: Reasonably consistent results, sufficient sample size, some control, and fairly definitive conclusions; reasonably consistent recommendations based on fairly comprehensive literature review that includes some reference to scientific evidence
С	Low Quality or Major Flaws: Little evidence with inconsistent results, insufficient sample size, conclusions cannot be drawn.

(Dearholt & Dang, 2014)

APPENDIX D

JOHNS HOPKINS NURSING EVIDENCE-BASED PRACTICE NON-

RESEARCH EVIDENCE APPRAISAL

Level 4	Systematic Review Clinical Practice Guidelines
Level 5	Organizational Expert Opinion, Case Study, Literature Review
A - summative reviews	High quality: Well-defined, reproducible search strategies; consistent results with sufficient numbers of well-designed studies; criteria-based evaluation of overall scientific strength and quality of included studies, and definitive conclusions
B - summative reviews	Good quality: Reasonably thorough and appropriate search; reasonably consistent results, sufficient numbers of well- designed studies, evaluation of strengths and limitations of included studies, with fairly definitive results
C - summative reviews	Low quality or major flaws: Undefined, poorly defined, or limited search strategies; insufficient evidence with inconsistent results, conclusions cannot be drawn
A - expert opinion	High quality: Expertise is clearly evident
B - expert opinion	Good quality: Expertise appears to be credible
C - expert opinion	Low quality or major flaws: Expertise is not discernible or is dubious

(Dearholt & Dang, 2014)

APPENDIX E

INSTITUTIONAL REVIEW BOARD APPROVAL UofSC

OFFICE OF RESEARCH COMPLIANCE

INSTITUTIONAL REVIEW BOARD FOR HUMAN RESEARCH DECLARATION of NOT RESEARCH

Versie Bellamy College of Nursing 1601 Greene Street Columbia, SC 29208

Re: Pro00071209

This is to certify that research study entitled, "Forensic Patient Flow: An Imbalance Between Capacity and Demand," was reviewed on 9/13/2017, by the Office of Research Compliance, which is an administrative office that supports the University of South Carolina Institutional Review Board (USC IRB). The Office of Research Compliance, on behalf of the Institutional Review Board, has determined that the referenced research study is not subject to the Protection of Human Subject Regulations in accordance with the Code of Federal Regulations 45 CFR 46 et. seq.

No further oversight by the USC IRB is required. However, the investigator should inform the Office of Research Compliance prior to making any substantive changes in the research methods, as this may alter the status of the project and require another review.

If you have questions, contact Arlene McWhorter at arlenem@sc.edu or (803) 777-7095.

Sincerely,

Somla

Lisa M. Johnson ORC Assistant Director and IRB Manager

> University of South Carolina • 1600 Hampton Street, Suite 414 • Columbia, South Carolina 29208 • 803-777-7095 An Equal Opportunity Institution

APPENDIX F

INSTITUTIONAL REVIEW BOARD APPROVAL SCDMH

State of South Carolina Department of Mental Health

MENTAL HEALTH COMMISSION: Alison Y. Evans, PayD, Chair Joan North Mither Bob Hiott, Med Bob Hiott, MEd Everard Rutledge, PhD J. Buxton Terry Sharon L. Wilson 2414 Bull Street• P.O. Box 485 Columbia, SC 29202 Information: (803) 898-8581 John H. Magill State Director of Mental Health

MEMORANDUM

TO: Versie Bellamy

FROM: Patricia Handley, DNP SCDMH IRB Administrator

SUBJECT: Approval of Proposed Project

DATE: 7/13/2017

The proposed project "Forensic Patient Flow: An Imbalance Between Capacity and Demand," was screened by the SC Department of Mental Health Institutional Review Board. The SCDMH IRB has determined that your proposed project does not meet criteria for human subjects research as defined by Code of Federal Regulations: Title 45, Part 46, PROTECTION OF HUMAN SUBJECTS Definitions. This project does not require review or oversight by the SCDMH IRB.

SCDMH IRB Study Assigned Number: 2017-07-13

We wish you success in your project.

cc: Monica McConnell, Chair SCDMH IRB

MISSION STATEMENT To support the recovery of peop le with mental illnesses.

APPENDIX G

EXECUTIVE SUMMARY

Forensic Patient Flow: An Imbalance Between Capacity and Demand

Versie J. Bellamy

University of South Carolina

INTRODUCTION

Lack of appropriate treatment leads to the exacerbation of mental health conditions, extended lengths of stay in hospitals, and an increase in health care costs (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). Therefore, it is imperative that individuals receive timely and appropriate treatment. Patient flow issues may be a significant barrier to receiving timely and appropriate treatment (Van Dyke, McHugh, Yonek, & Moss, 2011). The sheer volume of the forensic population coupled with inefficient patient flow through the health care system create a large imbalance between the high demand for services and the capacity to deliver them. It is vital that patient flow issues be identified and corrected so that the treatment needs of the population can be met and capacity and demand imbalance reduced.

Identified Issues

The state of South Carolina (SC) has approximately 20,951 incarcerated adults. Of that population, approximately 3,500 are diagnosed with a serious mental illness (State of South Carolina, Department of Corrections, 2016). In accordance with state law, the SC Department of Mental Health (SCDMH) is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by order and state statute. SCDMH is unable to meet the requirements under SC statute due to an imbalance between capacity and demand.

Root Cause

The root cause of the problem is the demand for inpatient forensic psychiatric treatment and services exceeds the capacity of the state of SC. Research has not been identified on patient flow issues in forensic psychiatric units. There are large numbers of studies on patient flow issues in other hospital settings. There is support that Lean Methodology and Plan-Do-Study-Act (PDSA) are evidence-based approaches to facilitate quality improvement projects (Elder, Johnston, & Crilly, 2015; Lee, & Franc, 2015; New, 2013; New, Andrianopoulos, Cameron, Olver & Stoelwinder, 2013; Van Dyke, et al., 2011). The proposed project will implement Lean methodology and PDSA to address forensic patient flow and waitlist management issues. The PDSA cycle will be used to plan, implement, and assess change based on the identified barriers to patient flow. The proposed study will assess the current state of waitlist management and review administrative as well as clinical processes that impact the flow and movement of patients in and out of the forensic unit.

Aggregate Data

The forensic hospital has a capacity of 230 beds. At any given time, an additional 70-100 people are awaiting psychiatric treatment for restoration to competency or long term psychiatric rehabilitation at the SCDMH forensic hospital. With an average length of stay of 200 days on the forensic units, patients waiting for a bed languish in jail while their psychiatric condition deteriorates. Without change, the patient waitlist will continue to grow and access to treatment will continue to be prolonged. Increasing patient flow through the SCDMH forensic hospital is the optimal option to increase capacity.

The project seeks to answer: In the state of South Carolina, for adult patients requiring psychiatric treatment in the legislatively mandated, inpatient forensic hospital (P), does the implementation of quality improvement, using lean methodology and Plan-Do-Study Act (PDSA) to remove identified barriers (inadequate allocation of forensically trained physicians and psychologists to provide forensic evaluations, inadequate waitlist management, and lack of a patient triage system) to patient flow (I), reduce the forensic waitlist by 25% (from 100 to 75), and reduce the time on the forensic waitlist by 50% (from 180 days to 90 days) (O) over a 3 month period (T)?

Barriers and Facilitators

Primary barriers to the successful implementation of this project include: lack of leadership support and ineffective communication. The plan to mitigate barriers and increase support for this project is as follows: (1) prepare a white paper for senior leadership and other stakeholders to cast vision about the project and how it will benefit the organization by facilitating the organization's ability to perform the mission as required by statute; (2) develop a forensic leadership work group to facilitate the change by incorporating the project into the current infrastructure; (3) provide an orientation to staff about the project and request staff input in project planning to include identification of systemic issues using Lean methods; (4) request an ongoing list of staff concerns prior to and during project implementation, and address each of the concerns both verbally and in writing.

Recommendations

• Process map forensic patient flow and identify barriers impacting waitlist and wait times.

- Remove barriers to patient flow that impact the forensic waitlist and wait times.
- Create a forensic dashboard consisting of measures to monitor system improvements.
- Establish an enhanced oversight group and an interdisciplinary team of inpatient and outpatient stakeholders to collaborate on discharge planning.

Sustainability Plan

Lean methodology is an evidence-based practice improvement approach adopted from the Toyota Company which targets unnecessary intermediate processes and retains only those that add value (Moran, Burson, & Conrad, 2017; Sullivan, Soefje, Reinhart, McGeary, & Cabie, 2014; Zhu, Lu, & Dai, 2014). PDSA is part of the Institute for Healthcare Improvement Model for accelerating quality improvement in healthcare to implementing change (Institute for Healthcare Improvement, n.d.). The overall purpose of this project is to use lean methodology and PDSA to identify barriers in the patient flow process that lead to delays in treatment for forensic psychiatric patients and to implement a plan for removing those barriers to improve psychiatric and physical health outcomes for patients. Ongoing monitoring of measures and goals will be established to manage capacity and demand. Data from the forensic dashboard will be used to drive tests of change.

Conclusion

The growing demand for inpatient forensic psychiatric treatment and services, coupled with a static bed supply creates the need for innovation in practices that create efficiencies in the delivery of services for this challenging population. Patient flow in a forensic psychiatric hospital setting is an understudied topic. Additional study is needed.

The anticipated outcome of this project focuses on the removal of barriers to patient flow. The removal of barriers to patient flow will result in a decrease in the delayed access to forensic psychiatric treatment due to the high demand for beds coupled with a limited supply, and consequently, a decrease in the imbalance between capacity and demand.

References

- Elder, E., Johnston, A. N., & Crilly, J. (2015). Review article: Systematic review of three key strategies designed to improve patient flow through the emergency department. *Emergency Medicine Australasia*, 27(5), 394-404. Doe: 10. 1111/1742-6723.12446.
- Institute for Health Care Improvement. (n.d.). Science of improvement: How to improve. Retrieved from:

http://www.ihi.org/resources/Pages/HowtoImprove/ScienceofImprovementHowto Improve.aspx

- Kennedy-Hendricks, A., Huskamp, H. A., Rutkow, L., & Barry, C. L. (2016). Improving access to care and reducing involvement in the criminal justice system for people with mental illness. *Health Affairs*, 35(6), 1076-1083 1078p. doi:10.1377/hlthaff.2016.0006
- Lee, J. S., & Franc, J. M. (2015). Two-step emergency department triage model with START, then CTAS, on patient flow during a simulated mass-casualty incident. *Prehospital and Disaster Medicine*, *30*(4), 390-396.
- Moran, K., Burson, R., & Conrad, C. (2017). The scholarly project toolbox. In K.
 Moran, R. Burson, & D. Conrad (Eds.) *The doctor of nursing practice scholarly* project: A framework for success (2nd ed.), pp. 287-327, Burlington, Ma: Jones & Bartlett.
- New, P. W. (2013). Defining barriers to discharge from inpatient rehabilitation, classifying their causes, and proposed performance indicatory for rehabilitation

patient flow. *Archives of Physical Medicine and Rehabilitation*, *94*(1), 201-208. doi: 10.1016./j.apmr.2012.07.026

New, P. W., Andrianopoulos, N., Cameron, P. A. Cameron, P. A., Olver, J. H., & Stoelwinder, J. U. (2013). Reducing the length of stay for acute hospital patients needing admission into inpatient rehabilitation: A multicenter study of process barriers. *Internal Medicine Journal*, 43(9), 1005-1011. doi: 10.1111/imj.12227.

State of South Carolina Department of Corrections (2016). Behind the wire. Retrieved from http://www.doc.sc.gov/news/behind_the_wire_q2_2016.pdf

- Sullivan, P., Soefje, S., Reinhart, D., McGeary, C., & Cabie, E. D. (2014). Using lean methodology to improve productivity in a hospital oncology pharmacy. *American Journal of Health System Pharmacy*, 71, 1491-1498. doi: 10.2146/ajhp130436.
- Van Dyke, K. J., McHugh, M., Yonek, J., & Moss, D. (2011). Facilitators and barriers to the implementation of patient flow improvement strategies. Quality Management in Health Care, 20(3), 223-233. doi: 10.1097/QMH.0b013e318222a3b0.
- Zhu, Y., Lu, Z., & Dai, H. (2014). Improving efficiency and patient satisfaction in a Peripherally inserted central catheter center using lean-based methodology. *JAVA*, 19(4), 244-255. Retrieved on January 28, 2017 from http://dx.doi.org.pallas2.tcl.sc.edu/10.1016/j.java.2014.07.004

APPENDIX H

PROJECT PROBLEM

Project Purpose Statement

The overall purpose of this project is to use lean methodology and Plan-Do-Study-Act (PDSA) to identify barriers in the patient flow process that lead to delays in treatment for forensic psychiatric patients and to implement a plan for removing those barriers to improve psychiatric and physical outcomes for patients.

Background

The U.S. has the largest incarcerated population in the world with as many as 2.2 million adults incarcerated (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). The state of South Carolina currently has approximately 20,951 incarcerated adults. Of that population, approximately 3,500 are diagnosed with a serious mental illness (SMI) (State of South Carolina, Department of Corrections, 2016). In accordance with South Carolina law, South Carolina Department of Mental Health (SCDMH) is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by order and state statute. Currently, the SCDMH is unable to meet the requirements under SC state statute.

The forensic hospital has a capacity of 230 beds with an average length of stay of 200 days. At any given time, an additional 70-100 people are awaiting psychiatric treatment for restoration to competency or long term psychiatric rehabilitation at the SCDMH forensic hospital. Patients awaiting admission to the forensic hospital, languish

in jail while their psychiatric condition (schizophrenia, depression, and psychosis, bipolar, etc.) and physical health deteriorates because they are not getting their psychiatric needs (medication and therapy) addressed. Moreover, when these patients are admitted to the hospital, the exacerbation of symptoms to include violent and disruptive behaviors, suicidal and homicidal thoughts/ behaviors require longer hospital stays and more aggressive treatment and therapy, and unnecessarily delays discharge (which prevents other potential patients from receiving needed psychiatric care).

Project Topic/ Problem

Forensic Patient Flow: An Imbalance Between Capacity and Demand What are you trying to accomplish to improve organizational outcomes?

• I am trying to accomplish a reduction in the forensic waitlist and wait time for the legislatively mandated forensic hospital (G. Werber Bryan Psychiatric Hospital) under the auspices of the South Carolina Department of Mental Health.

How will you (and the organization) know that a change is an improvement?

• The organization and I will know that a change is an improvement when the forensic waitlist is reduced by 25% (75 patients) and forensic wait time is reduced by 50% (90 days); (baseline waitlist is 100 patients and baseline wait time is 180 days).

What change can you (with support from key individuals within the organization) make that will result in improvement?

• With support from key individuals within the organization, I endeavor to reduce the number of patients on the forensic waitlist by 25% and decrease the average

number of days on the waitlist by 50% using lean methodology and PDSA to identify and eliminate barriers to patient flow.

Reference

Kennedy-Hendricks, A., Huskamp, H. A., Rutkow, L., & Barry, C. L. (2016). Improving access to care and reducing involvement in the criminal justice system for people with mental illness. *Health Affairs*, 35(6), 1076-1083 1078p. doi:10.1377/hlthaff.2016.0006

APPENDIX I

PROJECT SCOPE

Project Problem: Barriers to patient flow exist in a legislatively mandated forensic psychiatric hospital (G. Werber Bryan Psychiatric Hospital) under the auspices of the South Carolina Department of Mental Health.

1. Project Purpose Statement

The overall purpose of this project is to use lean methodology and Plan-Do-Study-Act (PDSA) to identify barriers in the patient flow process that lead to delays in treatment for forensic psychiatric patients and to implement a plan for removing those barriers to improve psychiatric and physical outcomes for patients.

2. Background

The US has the largest incarcerated population in the world with as many as 2.2 million adults incarcerated (Kennedy-Hendricks, Huskamp, Rutkow, & Barry, 2016). The state of South Carolina currently has approximately 20,951 incarcerated adults. Of that population, approximately 3,500 are diagnosed with a serious mental illness (SMI) (State of South Carolina, Department of Corrections, 2016). In accordance with South Carolina law, the South Carolina Department of Mental Health (SCDMH) is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by order and state statute. Currently, the SCDMH is unable to meet the requirements under SC state statute.

The forensic hospital has a capacity of 230 beds with an average length of stay of 200 days. At any given time, an additional 70-100 people are awaiting psychiatric treatment for restoration to competency or long term psychiatric rehabilitation at the SCDMH forensic hospital. Patients awaiting admission to the forensic hospital languish in jail while their psychiatric condition (schizophrenia, depression, and psychosis, bipolar, etc.) and physical health deteriorates because they are not getting their psychiatric needs (medication and therapy) addressed. Moreover, when these patients are admitted to the hospital, the exacerbation of symptoms to include violent and disruptive behaviors, suicidal and homicidal thoughts/ behaviors require longer hospital stays and more aggressive treatment and therapy, and unnecessarily delays discharge (which prevents other potential patients from receiving needed psychiatric care).

3. Objectives

- Using lean methodology, process map forensic patient flow by September 15, 2017
- Using the developed process map, identify barriers to patient flow that impact the forensic waitlist and wait times by October 15, 2017.
- Using Plan Do Study Act (PDSA), remove barriers to patient flow that impact the forensic waitlist and wait times by December, 15,2017
- Create a dashboard to present data in a format to visualize, continuously monitor, and track progress toward organizational strategic goals, and to engage staff/stakeholders in progress toward removal of barriers to patient flow by June 30, 2017.

- Establish an enhanced oversight group to include a legal representative (present) for the review/vetting of each patient recommended for discharge by June 30, 2017
- Establish an interdisciplinary team of inpatient and outpatient stakeholders to collaborate on discharge planning and placements as well as safety and risk management issues associated with high profile discharges by June, 2017

4. Key Stakeholders and Other Players

Key Stakeholders

- Patients awaiting admission (high impact; high influence over project)
- South Carolina Mental Health Commission (high impact; high influence over project)
- SCDMH State Director and Senior Management (Deputy Directors of Inpatient Services (project manager), Administration and Community/Outpatient; Agency Medical Director; Chief Financial Officer (CFO); General Counsel; Division of Inpatient Services (DIS) Medical Director) (high impact; high influence over project)
- DIS Executive Staff (Administrator/Controller; Chief Nursing Officer; Performance Improvement Director & Risk Manager; Director of Organizational Planning and Human Resources (high impact: high influence over project)
- Clinical Preceptor (high impact; high influence over project)
- Forensic Review Board (high impact; high influence over project)
- Judicial System Partners (high impact; high influence over project)

- Forensic hospital leadership (director, assistant directors, medical director, staff, and psychiatrists) (high impact; high influence over project)
- Forensic Admission Coordinator (high impact; high influence over project)
- USC and MUSC psychiatrists & psychologists (high impact; high influence over project)
- Community Mental Health Center liaisons (medium impact; medium influence over project)
- Community Residential Care Facilities (medium impact; medium influence over project)
- USC Faculty Advisors (high impact; high influence over project)
- Information Technology Leaders (high impact; high influence over project)
- DMH Statistician (high impact; high influence over project)

Other Players

- Contracted forensic staff (medium impact; medium influence over project)
- Legislative Partners (Chair of Senate Finance and House Ways and Means subcommittees) (high impact; high influence over project)
- Patient families (Low impact; low influence over project)
- Members of the community (Low impact; low influence over project)
- Advocacy & Victims Groups (medium impact; medium influence over project)
- Law Enforcement (high impact; high influence over project)

5. Organizational Requirements

The South Carolina Department of Mental Health (SCDMH) is the state's public mental health authority and operates the forensic program at G. Werber Bryan Psychiatric Hospital (BPH). The Division of Inpatient Services (DIS) is a 1500 bed, state operated (by SCDMH), multi-hospital and long-term care (nursing home) system, comprised of two psychiatric and one addictions treatment hospital and three nursing homes. The mission of SCDMH/DIS is to support the recovery of people with mental illnesses. Of the two psychiatric hospitals, the Columbia-based, G. Werber Bryan Psychiatric hospital (BPH), a 482- licensed bed acute care facility, operates a 230-bed forensic division for the treatment of defendants in need of inpatient psychiatric services for competency restoration and long term psychiatric rehabilitation. The forensic program is identified as the agency's number one priority. BPH also has 200 acute hospital beds for adults and a 51-bed hospital program for children and adolescents. Patrick B. Harris hospital is an Anderson, South Carolina-based, adult, acute care psychiatric facility. Finally, Morris Village is a 100-bed acute alcohol and drug addiction treatment center. The long-term care facilities consist of three veterans nursing homes located in Anderson, South Carolina, Walterboro, South Carolina and Columbia, South Carolina. There is one general skilled nursing facility (SNF) located in Columbia, South Carolina. DIS employs nurses, doctors, pharmacists, social workers, activity therapists, chaplains, administrative and clinical support staff, and has a labor force of 3000 to support the operations of the multi-hospital and nursing home system.

The evaluation, treatment and care of forensic patients is led by an interdisciplinary team of forensic psychiatrists, psychologists, social workers and nurses

trained to address the clinical and the legal aspects of the forensic process. Forensic evaluation occurs in the outpatient Forensic Evaluation Services (FES) program. The treatment and care of the patients during the acute phase are provided at the BPH forensic facility. Thus, the end users of the organizational system are the forensic patients awaiting access to forensic evaluation to determine competency to stand trial, criminal responsibility, and psychiatric treatment services for competency restoration or psychiatric rehabilitation. In addition, the judicial system components (detention centers, lawyers, judges) are also end users. As the patient progresses in treatment and no longer requires the level of therapeutic security provided at the forensic facility, individual treatment and care needs are provided in the DIS facilities described above. The customer requirements for the project are patient flow and waitlist management to allow individuals awaiting the legal process timely access to court ordered forensic evaluation and treatment in preparation for trial.

6. Approach

The approach to my project will incorporate Deming's model, also known as PDSA.

- The cycle begins with the Plan step. This involves identifying a goal or purpose, formulating a theory, defining success metrics and putting a plan into action.
- These activities are followed by the Do step, in which the components of the plan are implemented, such as making a product.
- Next comes the Study step, where outcomes are monitored to test the validity of the plan for signs of progress and success, or problems and areas for improvement.

• The Act step closes the cycle, integrating the learning generated by the entire process, which can be used to adjust the goal, change methods or even

reformulate a theory altogether.

These four steps are repeated over and over as part of a never-ending cycle of continual improvement (The W. Edward Demings Institute, 2016).

Project Stages (Milestones or	START	END	MILESTONE
Checkpoints)	DATE	DATE	
Work with Chair on Project Proposal	5/16/2017	8/15/2017	May 2017
Draft IRB Proposal	9/1/2017	9/15.2017	
Establish Dashboard	5/18/2017	6/30/ 2017	May 2017
Begin Draft Manuscript	4/9/2017	3/20/2018	April 2017
Send All Proposal Materials to Committee for review and feedback	July 2017	July 2017	
Project Proposal Defense	Prepare Project Proposal Defense using a power point presentation of a two- page Executive Summary, and Chapters 1- 3 of manuscript	8/1/2017	August 2017
Revisions to Proposal	9/1/2017	9/8/2017	
IRB Approval from USC & DMH	Submit letter of successful proposal defense from USC School of Nursing and the Department of Mental Health's IRB to USC's IRB	9/18/2017	Sept 2017
Project Start/ Intervention	Process Map Pt. flow using 5W2H to identify barriers;	Sept 2017	Sept 2017

7. Timeframe & Milestones

	start PDSA Cycles		
Project Start: Initiate	9/18/2017	12/31/2017	Dec 2017
Intervention/Practice Change with			
Weekly Assessments			
Evaluate Interventions and Practice	Outcomes Analysis	2/20/2018	Feb 2018
Change			
Finalize DNP Project Manuscript	DNP Project	Feb 2018	Feb 2018
	Manuscript:		
	Chapters 1-3		
	completed.		
Finalize Presentation	Jan 2018	Feb 2018	Feb 2018
Project Deliverables	Dashboards;	Feb 2018	Feb 2018
	Statutory		
	Compliance;		
	Reduced Waitlist;		
	Reduced Wait		
	Times		
Send Manuscript & Presentation to	3/20/2018	3/20/2018	
Committee for Review			
Defend Final Project	Defense of Final	Mar 2018	Mar 2018
	Project		
Make any Required Revisions &	Mar 2018	Apr 2018	
Send Paperwork to Graduate		_	
School			
Presentation to Organization	Apr 6, 2018	Apr 2018	
_	_	_	
Graduation		May 2018	May 2018

8. Inclusions & Deliverables

- Develop dashboards
- Replacement of manual processes utilizing electronic data bases to capture real time metrics and transition from person-dependent to systems-dependent data generation and analysis.
- Bring organization into statutory compliance

9. Exclusions

The opening of additional civil beds; availability of community placements

10. Critical Success Factors

Factors Impacting Project Success

- Support from key leadership
- DMH affiliation agreements with over 60 colleges and universities to include medicine, nursing, and other allied health professions for training and knowledge acquisition through the use of its facilities for clinical placements.
- Currently, DMH is a recipient of grants that require the support of research and evidence-based practice at the clinical site.
- DMH has staff trained in accessing electronic databases to facilitate the acquisition of evidence for incorporation into practice.
- As a legislatively mandated program of DMH, and in accordance with state law, DMH is court ordered to provide forensic evaluation and treatment for defendants within specified time frames as outlined by court order and state statute.

Factors That Could Negatively Impact the Project's Success

- Inability to meet the statutory requirements under SC state statute due to a mismatch between capacity and demand.
- Organizational culture, time and limited evidence-based practice.
- Resistance to change
- Political Climate
- Budgetary Restrictions
- Legislative Mandates
- Personal Life Stressors
- Loss of Key Stakeholders

11. Assumptions

- The demand for forensic beds exceeds capacity.
- The agency's overall priority and focus will remain on forensic services.
- The project is not time-limited.
- Inefficiencies in patient flow exist.

12. Constraints

Time; monetary; retention of key stakeholders; accessibility to automated forensic metrics; people resources; state government regulations; other regulatory requirements

13. Related Projects

A project is currently in the planning stages to determine the feasibility of adding additional civil psychiatric beds.

A DMH project that could impact forensic patient flow is the opening of Crisis

Stabilization Units (June, 2017).

14. Risks

RISK IDENTIFICATION	1-Low	5-High
----------------------------	-------	--------

Risk Description	Project Impact	Probability of Occurrence
Loss of adequate state funding impact	5	3
Turnover of key stakeholders	5	3
Agency deemed to be in contempt of court	5	2
Infrastructure failure	5	1
Loss of contract services impact	5	3

Recidivism	4	2
	4	
Political Barriers	4	2
High profile forensic	3	2
patient		

References

- Kennedy-Hendricks, A., Huskamp, H. A., Rutkow, L., & Barry, C. L. (2016). Improving access to care and reducing involvement in the criminal justice system for people with mental illness. Health Affairs, 35(6), 1076-1083 1078p.
 doi:10.1377/hlthaff.2016.0006
- State of South Carolina Department of Corrections (2016). Behind the wire. Retrieved from http://www.doc.sc.gov/news/behind_the_wire_q2_2016.pdf
- The W. Edwards Deming Institute (2016). Retrieved on January 28, 2017 from https://deming.org/management-system/pdsacycle

APPENDIX J

PROJECT MEASUREMENT

Measure	Type of Measure	Purpose of Measure	Data Needed for Measure	Source of Data for Measure	Frequency of Data Collection	How will Data Be Tracked and Assessed Over Time
Number of patients on Waitlist	Outcome Measure	Indicator of trends to facilitate the manage- ment of fluctuations and project amount of capacity required	Inpatient Waitlists for 24 Months	AVATAR (Patient Billing and manage- ment system)	Daily	Using Net Smart EHR Management Systems, Forensic Dashboard and Waitlist Steering Committee
Waitlist Dispositio n	Process Measure	To capture the disposition of forensic patients on the waitlist	Waitlist Disposition Summary Reports for 24 Months	AVATAR (Patient Billing and manageme nt system)	Monthly (As we complete PDSAs data will be tracked weekly)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee.
Time on waitlist	Process Measure	To monitor and manage producti- vity and efficiencies that support forensic patient flow	Average Days Report which tracks data by month and type of admission	AVATAR (Patient manage- ment system)	Weekly (As we complete PDSAs data will be tracked daily)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee
Average Length of Stay (ALOS)	Process Measure	To monitor and evaluate patient population, treatment, discharge process, and placement	Length of Stay Report for 24 Months	AVATAR (Patient Manage- ment system)	Monthly	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee

Numbers of Discharges	Balancing Measure	To monitor and evaluate bed turnover & producti- vity	Admission & Discharge Reports for 24 Months	AVATAR (Patient Billing and manage- ment system)	Weekly	Using Net Smart EHR Systems, Dashboard and Waitlist Steering Committee
Numbers of Admissions	Balancing Measure	To monitor and evaluate producti- vity	Admission & Discharge Report for 24 Months	AVATAR (Patient Billing and manage- ment system)	Weekly	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee
Types of Admissions: Emergenc y Inpatient Evaluatio n Judicial Not Guilty by Reason of Insanity (NGRI) Restoratio n	Process Measure	To facilitate forensic patient triage and to drive service type and structure	Admission Type Report For 24 Months	AVATAR (Patient Manage- ment system)	Monthly (As we complete PDSAs data will be tracked weekly)	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee
Demographics: • Age • Sex • Race • Education Level	Balancing Measure	To ensure healthcare equity for all patients and to ensure the optimi- zation of Medicaid and Medicare revenue for patients age 21 & under or age 65 and older	Age, race, and education level	AVATAR (Patient Manage- ment system)	Monthly	Using Net Smart EHR Systems, Forensic Dashboard and Waitlist Steering Committee

APPENDIX K

GANTT CHART

Task	Start Date	Duration	End Date
Work with Chair on Project Proposal	5/16/2017	108	9/1/2017
Draft IRB Proposal	5/17/2017	107	9/1/2017
Establish Dashboard	5/18/2017	58	7/15/2017
Begin Draft Manuscript	4/9/2017	236	12/1/2017
Send All Proposal Materials to Committee for review and feedback	7/1/2017	14	7/15/2017
Project Proposal Defense Prepare Project Proposal Defense using PowerPoint presentation of a 2-page Executive Summary, and Chapters 1- 3 of manuscript	1-Sep-17	1	9/2/2017
Revisions to Proposal	9/1/2017	30	10/1/2017
IRB Approval from USC & DMH: Submit letter of successful proposal defense from USC CON and SCDMH IRB to USC's IRB	5/17/2017	137	10/1/2017
Project Start/ Intervention: Process Map Pt. flow using 5W2H to Identify Barriers; Start PDSA Cycles	9/1/2017	91	12/1/2017
Initiate Intervention/Practice Change with Weekly Assessments	9/18/2017	74	12/1/2017
Project Deliverables: Dashboards; Statutory Compliance; Reduced Waitlist; Reduced Wait Times	5/29/2017	186	12/1/2017
Evaluate Interventions and Practice Change: Outcomes Analysis	9/24/2017	68	12/1/2017
Finalize DNP Project Manuscript: DNP Project Manuscript: Chapters 1-5 completed.	1/1/2018	73	3/15/2018
Finalize Presentation	2/2/2018	41	3/15/2018
--	-----------	----	-----------
Send Manuscript & Presentation to Committee for Review	3/20/2018	10	3/30/2018
Defend Final Project	3/26/2018	0	3/26/2018
Make any Required Revisions & Send Paperwork to Graduate School	3/31/2018	6	4/6/2018
Presentation to Organization	6-Apr-18	9	15-Apr-18

APPENDIX L

POSTER ABSTRACT

Methods

Conclusions

The maximization of

efficiencies within the forensic

Forensic Patient Flow: An Imbalance Between Capacity and Demand

Versie J. Bellamy, MN, RN

DNP Candidate, Nurse Executive Leadership, University of South Carolina jequittab72@aol.com

Background

- ≻The United States (U.S.) has a growing incarcerated population.
- The volume of this population, coupled with inefficient patient flow through the judicial and health care system, create an imbalance between the high demand for services and the capacity to deliver health care. An increasing demand for
- inpatient forensic services with a static supply of resources, warrants further intervention by treatment and service
- providers. Identifying and removing barriers to patient flow can reduce the imbalance between capacity and demand and result in lower wait times to access inpatient treatment and care.

Purpose

- The purpose of this evidencebased quality improvement project was to:
- >identify barriers in the patient flow process that lead to inefficient treatment for forensic psychiatric patients
- >to implement a plan for removing those barriers.

A nonexperimental evidence-based quality improvement study was conducted. Lean Methodology and Plan-Do-Study-Act (PDSA) were used along with patient flow dashboards to identify barriers in patient flow and improve timely treatment for forensic psychiatric patients.

Results

A fifty percent reduction in the forensic waitlist and a fifty-one percent reduction in time on waitlist were achieved. During the study period, the average length of stay was reduced and both admissions and discharges were increased.

psychiatric hospital patient flow process, through the minimization and elimination of non-value added waste (waiting, over processing, defects and skills) resulted in: > a reduction in the waitlist and wait times due to improved patient flow. > an increase in the state's treatment capacity for defendants awaiting inpatient services at the forensic psychiatric hospital. Acknowledgements Project Chair: Ronda Hughes, PhD., MHS, RN, CLNC, FAAN

- > Project Committee Member: Abbas S Tavakoli, Dr.PH, MPH, ME
- Project Committee Member : Carolyn S.Harmon, DNP, RN-BC
- > Outside Member: Patricia A. Handley DNP, MSN, RN, CNO SCDMH DIS
- SCDMH Executive Leadership
 SCDMH Forensic Hospital Tear

le Upon

APPENDIX M

WAITLIST STANDARD DEVIATION

Table M.1 *Waitlist Standard Deviation (n=16)*

Variable	Ν	Mean	Standard Deviation	Minimum	Maximum
Number of people on waitlist pre-intervention	16	65.56	9.69	51.00	87.00
Number of people on waitlist post-intervention	16	33.31	8.64	22.00	49.00
Percentage change	16	-49.13	10.43	-69.86	-31.58

Note: Percentage change of waitlist pre-intervention (2016) as compared to post-intervention (2017). N, mean, standard deviation, and range for selected variables

APPENDIX N

WAIT TIME STANDARD DEVIATION

Table N.1 Wait Time Standard Deviation (n = 16)

Variable	Ν	Mean	Standard Deviation	Minimum	Maximum
Average days on waitlist pre-intervention	16	74.25	23.03	37.00	107.00
Average days on waitlist post-intervention	16	36.69	12.45	16.00	54.00
Percentage Change	16	-49.92	11.42	-68.97	-27.45

Note: N, mean, standard deviation, and range for selected variables. Percentage change of average days on waitlist pre-intervention (2016) as compared to post-intervention (2017), p value for testing average days on waitlist (p < 0.0001) (Parametric and non- parametric test).

APPENDIX O

JHQ MANUSCRIPT GUIDELINES

Guidelines for Reviewers

"How to Respond to Invitations and Submit Reviews using Editorial Manager"

Table of Contents

Introduction	2
Understanding your main menu	3
Responding to invitations	.4
Submitting a recommendation	4
Help	.6
1	

Need more help with Editorial Manager? Click Hereto Search the Online Knowledge Base

Introduction

This guide, developed by Wolters Kluwer Health, is intended to make your experience as a Reviewer using Editorial Manager (EM) as simple and straightforward as possible. What follows are some suggestions for simplifying your duties as a Reviewer while using the Editorial Manager online submission and review system.

This guide is designed to boil down the reviewer responsibilities into two main skill sets:

- Answering Invitations
- Submitting Recommendations

Software requirements

As a Reviewer using Editorial Manager, you must have Adobe Acrobat Reader (a PDF reader) installed on your computer. If you need to install this software, you can download the free Adobe Acrobat Reader at the following address: http://get.adobe.com/reader/

If you experience difficulty installing or utilizing this software, Adobe offers support via their website: <u>http://www.adobe.com/support/reader/</u>.

To view the general Software and Hardware requirements for Editorial Manager, please see: <u>http://www.editorialmanager.com/homepage/homefaq10.htm1</u>.

Understanding your main menu

There are three key folders in your account. You can think of them as a 'filing cabinet' containing all of your current and past assignments.

Example Review Assignments:

<u>New Reviewer Invitations</u> (1) <u>Pending Assignments</u> (2) <u>Completed Assignments</u> (8)

Key Folders that Manage your Work:

- a. <u>New Reviewer Invitations</u> Click here to see new reviewer invitations. You may view the abstract, agree to take on the assignment, or decline to review.
- b. <u>Pending Assignments</u> Click here to see all manuscripts you have agreed to review. You may view the due date, view the submission, search for similar articles in Medline, and submit a recommendation.
- c. <u>Completed Assignments</u> Click here to see all of your past assignments. You may view your previous comments. The decision letter and other reviewer comments to the author may be available for your reference after the decision is reached.
 - NOTE: It is up to the journal office's discretion to grant access to these materials. Contact the journal office with any questions.

Responding to invitations

Invitations to review submissions will be sent to you via email. There are two ways to answer any invitation.

- Accept or Decline by Logging into Editorial Manager You can answer every invitation by logging into Editorial Manager as a Reviewer and checking your_ <u>New Invitations</u> folder.
- Accept or Decline from within Email Invitations When you receive an email invitation, you can view the abstract within the email and then respond immediately by clicking the links to Accept or Decline. These are embedded directly within the invitations.
 - O NOTE: This is an optional feature configured at the discretion of the journal office. If you see the links but are unable to use them, please see the <u>HELP</u> section (below).

If you agree to review a manuscript for the journal, you will automatically be sent an email that includes a due date by which the review should be completed online and detailed instructions for submitting your review.

• **NOTE**: Many Journal Offices limit the number of days Reviewers are given to respond to an invitation to review. Be aware that if you do not respond within the time allotted, you may be automatically un-invited. Should this occur, the submission will no longer be available in the New Reviewer Invitations folder on your main menu.

Submitting a recommendation

Submissions you have agreed to review will be waiting in your <u>Pending Assignments</u> folder. First, click <u>View Submission</u> to view the submission in FDF format (for questions about FDF files, see the HELP section below). Once you've viewed the submission and are ready to complete your review, follow the steps below.

NOTE: If, after beginning a review, you would like to exit Editorial Manager and submit the review later, first save your changes by clicking "**Save and Submit Later**". This will allow you to exit Editorial Manager without losing your work. If you exit Editorial Manager without saving, your work will be lost.

Steps to Follow:

- 1. Click 'Submit Recommendation' to open the review interface.
- 2. Click "Reviewer Instructions" to view instructions from the journal office.

3. Pick a recommendation term from the drop down box at the top of the form.

4. Complete the Reviewer Rating Questions (if applicable).

• NOTE: This step is journal-specific and may not appear on your review form.

5. Enter Blind Comments to the Author.

- Comments entered in this box will be included in the decision letter that is sent to the author.
- Do not include your name or any other revealing information about yourself.
- · Do not indicate your acceptance or rejection in these comments.

6. Enter Confidential Comments to the Editor.

- Provide answers to the 'yes' or 'no' questions and include any frank comments to the editor that you wish to make.
- Enter any message you'd like to send to the editorial office.
 NOTE: These comments will NOT be shared with the authors or other reviewers.
- 7. Click "Proceed" to see a proof of the review.
- 8. Click "Submit Review to Journal Office" to send the review to the journal.

Help

A few common Frequently Asked Questions are included below. If you experience problems not addressed herein, please contact the journal's Editorial Office or search Editorial Solutions' Online Knowledge Base.

Frequently Asked Questions from Reviewers Using Editorial Manager™

Q: Why can't I view the submission?

Unable to view submission Unable to view REVISED submission Unable to View PDF file in Browser Setting AdobeReadertoopenFDF files.

Q: I completed all of the rating questions. Why can't I submit my review?

The most likely cause is that you have selected 'N/A' as the answer to one of the rating questions. This option is merely a placeholder and cannot be selected as a response.

Q: I received an email regarding a review assignment and was not given an option to accept or decline. Why is this the case?

Some journals are configured to 'Assign' reviews, rather than inviting a person to review. If you were not provided the option to accept or decline, and the submission appeared first in your Pending Assignments folder, the paper has been Assigned to you for review. If you have any questions regarding your assignment, contact the Editorial Office. This can be done using the 'Contact Us' link in the menu bar at the top of any Editorial Manager page.

Q: Where did my review go?

A: When you are entering a review, Editorial ManagerTM does not save your comments until you either 1) complete the review form and submit the review to the journal office **or** 2) click "Save and Submit Later".

If you exit Editorial Manager[™] or close your web browser, or if your computer crashes while you are in the midst of working on your review, the review will be lost. It is highly recommended that you first write your comments in a word processing program, such as MS Word, save them to your hard drive. When ready, log in to Editorial Manager to submit your review. You can copy and paste your review from an MS Word document straight into the Editorial Manager[™] review form.

Q: Can I read the comments submitted by the other reviewer?

A: This depends on the review policy of the journal. To determine if a journal has configured this capability: log in to EM, go to 'Completed Assignments' and click on 'View Reviewer Comments'.

Q: I received an invitation to review by email but there is nothing in my 'New Invitations' or 'Pending Assignments' folders.

A: Some journals automatically 'un-invite' reviewers who do not respond to invitations after a certain amount of time. If you received an email invitation but the assignment does not show up in your 'New Invitations' folder, contact the Editorial Office. This can be done using the 'Contact Us' link in the menu bar at the top of any Editorial Manager page.

Q: I accepted an invitation to review, but the submission is no longer in my 'Pending Assignments' folder.

A: Some journals automatically 'un-invite' Reviewers who have accepted an invitation but who have not submitted the review by the due date. This may also happen if you have a partially saved review but it has not been submitted to the journal office. If you have any questions regarding your assignment, contact the Editorial Office. This can be done using the 'Contact Us' link in the menu bar at the top of any Editorial Manager page.

Need more help with Editorial Manager? <u>Search the Online Knowledge Base</u>

APPENDIX P

MANUSCRIPT SUBMISSION AND CORRESPONDENCE WITH JHQ

Abstract

Objective: To use lean methodology and Plan-Do-Study-Act (PDSA) along with patient flow dashboards to identify barriers in patient flow and improve timely treatment for forensic psychiatric patients.

Background: The United States (US) has an ever-growing incarcerated population. The sheer volume of this population coupled with inefficient patient flow through the judicial and health care system create a large imbalance between the high demand for services and the capacity to deliver health care. There are significant delays that criminal defendants experience accessing mental health services, attributable to patient flow barriers throughout the forensic, psychiatric inpatient hospital system. An additional limiting factor of a static supply of resources, results in longer treatment once a forensic patient is finally able to access the hospital. Identifying and removing barriers to patient flow, could mean that capacity and demand mismatch could be reduced, resulting in lower wait times to access inpatient treatment and care.

Study Design: Lean methodology and Plan-Do-Study-Act (PDSA) cycles will be used, along with patient flow dashboards to improve waitlist and times, time to treatment, and time to discharge for forensic psychiatric patients needing care at a 236-bed state run psychiatric mental health hospital in Southeastern region of the U.S. Information on

patient disposition, average length of stay within the psychiatric hospital, type of admission, and demographics will also be monitored.

Study Population: Incarcerated criminal defendants with both unmet psychiatric and chronic disease treatment needs.

Versie Bellamy

From:

Sent:

Versie Bellamy <jequittab72@aol.com>

Friday, March 16, 2018 6:27 PM

To: Versie Bellamy

Subject: Re: Potential Manuscript Submission

On Sep 18, 2017, at 1:10 PM, JHQ <jhq@jjedilorial. om> wrote:

Dear Dr. Bellamy,

Thank you for your recent presubmission inquiry to the Journal for Healthcare Quality.

The editor has reviewed your

abstract and would encourage you to formally submit your manuscript to the journal.

Please submit your new manuscript via our Editorial Manager submission system. You

may access the site via this

link:http://www.editorialmanager.com/jhg/default.asp

If you have submitted or reviewed with the journal before, you will have received a letter welcoming you to Editorial

Manager with information on how to log in. Please do not create a duplicate account. If you have any issues logging in,

try the "Forgot Password" link on the Editorial Manager home page. If you are a firsttime submitter, please click

"Register" from the menu at the top of the page to create a Username and Password.

Please note that encouragement of your presubmission inquiry does not guarantee that

your complete manuscript will

be accepted for review or accepted for publication; your manuscript will be subjected to the same rigorous process that

every manuscript undergoes in our journal.

Thank you for thinking of JHQ. We look forward to receiving your submission. If you

have any further questions, please

do not hesitate to be in touch!

All the best,

Aquila Blackwell

From: Versie Bellamy [rnailto:jequittab72@aol.com]

Sent: Saturday, September 09, 2017 3:02 AM

To: JHQ <jhq@jjeditorial.com>

Subject: Re: Potential Manuscript Submission

Dear Ms. Blackwell-

I am submitting the attached abstract at your request and in follow-up to my inquiry

regarding a potential manuscript submission.

Please let me know if my topic fits within your journal's interest.

Thank you!

Versie J. Bellamy

> On Sep 6, 2017, at 12:07 PM, JHQ < lhq@jjedltorial.com> wrote:

>

```
> Hello Dr. Bellamy,
```

>

> Thank you for your message and interest in submitting to JHQ. In order to better assist

you, may you please provide us with an

1

abstract?

>

> All the best,

> Aquila Blackwell

>

>-----Original Message-----

> From: Versie Bellamy [mailto:jequittab72@aol.com]

> Sent: Friday, September 01, 2017 8:25 PM

> To: ihq@nahq.org

> Subject: Potential Manuscript Submission

>

```
> Dear Editor-
```

> I am currently working on a DNP proposal project, implementing lean methodology and PDSA in a large forensic hospital environment located in the South Eastern United States. Specifically, the project will focus on reducing wait time and removal of other barriers impacting patient flow. Many of the articles listed in my evidence table are from previously published articles. I anticipate completing my project by January, 2018 and will have a manuscript ready for submission by February, 2018.

>

> Does this topic fit within your journal's interest?

>

> Versie J. Bellamy, MN, RN, DNP Candidate, Deputy Director, South Carolina
 Department of Mental Health