University of South Carolina Scholar Commons

Theses and Dissertations

2017

Simulation-Based Interprofessional Education in a Rural Setting

Ann D. Scott University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd Part of the <u>Nursing Commons</u>

Recommended Citation

Scott, A. D.(2017). Simulation-Based Interprofessional Education in a Rural Setting. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/4286

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

SIMULATION-BASED INTERPROFESSIONAL EDUCATION IN A RURAL SETTING

by

Ann D. Scott

Bachelor of Science in Nursing Clemson University, 1987

Master of Science in Nursing University of Virginia, 1994

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Nursing Practice in

Nursing Practice

College of Nursing

University of South Carolina

2017

Accepted by:

Robin Dawson Estrada, Major Professor

Sheryl Mitchell, Committee Member

Courtney Catledge, Committee Member

Cheryl L Addy, Vice Provost and Dean of the Graduate School

© Copyright by Ann D. Scott, 2017 All Rights Reserved.

DEDICATION

First and foremost, I would like to thank my husband who supported and encouraged me throughout this journey. He edited all of my work and was a shoulder to lean and rely on when I needed him. I also want to give a shout out to my children who encouraged me to go back to school (even at my age), as my family was my biggest cheerleader and supporter. I also would like to thank all my extended family, friends, and peers for believing in my and encouraging me throughout this journey. And to my students that motivated me along the way, thank you. I only wish my mom and dad could have been a part of this incredible journey, but I know they were looking down at me from heaven. I am thankful to God for directing each and every step of my journey, and for carrying me when I needed Him most.

ACKNOWLEDGEMENTS

I am forever indebted to my mentor Dr. Robin Estrada and my committee members, Dr. Courtney Catledge and Dr. Sheryl Mitchell for your time, guidance, and encouragement through this long and challenging process. Their knowledge is unsurpassed and their vision unequalled, and I value their advice, critique, and ability to share life experiences with me along this journey. Dr. Estrada kept me on track and focused on my goal of an August graduation, and I cannot thank you enough for the time you spent from late Friday afternoons at the university to evenings at Waffle House helping me put my thoughts onto paper. I could not have asked for a better chair and mentor for my project.

I would also like to express a deep thank you to Michael Wirth who helped with the statistical analysis, and to Cheri Plyler, Julie Ghent, and Dr. Betsy Blake for helping recruit students. Without you all I may still be trying to find willing volunteers. I would also like to acknowledge the J. Marion Sims Foundation and the Herbert and Anna Lutz Foundation which assisted the USC Lancaster Nursing Simulation Lab with grant money that was used to purchase much of the equipment needed for the lab and the project.

I am also grateful to my peers as well as other faculty that provided encouragement, direction, and insight during this educational process. I can only hope that I will be able to assist others as I have been assisted through this journey.

ABSTRACT

The purpose of this project was to examine the feasibility and acceptability of a simulation-based IPE experience for pre-licensure nursing, pharmacy, and medical students on a rurally-located campus. Using a mixed-methods, explanatory sequential approach, this project: 1) examined the feasibility of implementing a simulation-based IPE experience using telehealth tools; and 2) evaluated student perceptions of interprofessional teamwork, roles and responsibilities, and patient outcomes for collaborative practice, both pre- and post-scenario.

Quantitative data were analyzed using SPSS. Results revealed 94% agreed/strongly agreed the IPE experience resembled a real-life situation. 100% of nursing/medical students and 80% of the pharmacy students indicated they would recommend this experience to their peers. Significant positive changes in attitudes towards using an inter-professional team approach were noted for pharmacy students, especially in regards to patient outcomes, reduced costs, and improved patient-centered care. Qualitative data were transcribed and analyzed using thematic analysis. Four themes emerged: 1) better understanding of technology; 2) improved communication among team members; 3) benefit of true to life experience; and 4) increased knowledge level and confidence. Participant suggestions for improvement included: 1) improve the simulation/telehealth equipment orientation; 2) consider a grand round-type simulation; and 3) address technical challenges with the robot.

v

Although limited by a small sample size, this project confirmed it is feasible and acceptable to offer simulation-based IPE in a rural setting facilitated by the use of telehealth tools, and collaborative teamwork is enhanced by using "remote in" technology during a simulation-based IPE activity. Complex healthcare now requires a collaborative and team approach to patient care. A simulation-based IPE approach using "remote in" technology allows for the development and mastery of these competencies. Future work will incorporate student suggestions to improve the experience, as well as integrate students from other healthcare disciplines, such as physician assistant students.

Keywords: Interprofessional education, simulation, teamwork, collaboration, rural, and telehealth

PREFACE

The goal of any Evidence-Based Practice Project is to integrate best research into clinical practice evidence thereby enhancing the knowledge base thus improving quality care and patient outcomes. The project is designed to identify the scope of the clinical practice problem, analyze the current evidence, synthesize the research as it relates to the issue, and subsequently determine recommendations for best practices for clinical care. Additionally, the Evidenced-based Practice Project has been identified as a requirement for partial fulfillment of the Doctor of Nursing Practice Program. The intent is to examine the feasibility and acceptability of a simulation-based IPE experience for pre-licensure nursing, pharmacy, and medical students on a rurally-located campus using telehealth tools, and to evaluate student perceptions of inter-professional teamwork, roles and responsibilities, and patient outcomes for collaborative practice, both pre- and postscenario.

TABLE OF CONTENTS

DEDICATION	iii
ACKNOWLEDGEMENTS	iv
Abstract	V
PREFACE	vii
Chapter 1 Introduction	1
CHAPTER 2 PROJECT RESULTS	
CHAPTER 3 CONCLUSION	
References	
Appendix A – Evidence Table	
Appendix B – Levels and Quality of Evidence	
APPENDIX C– SPICE-R2 INSTRUMENT	
APPENDIX D – SIMULATION DESIGN SCALE (STUDENT VERSION)	
APPENDIX E – DISSEMINATION	

CHAPTER 1

INTRODUCTION

Introduction and Background

Historically, healthcare education has been delivered in isolated silos of care. Nursing students learned from a nursing perspective, and likewise medical, pharmacy, and other healthcare professionals learned about patient care in clinical settings individualized to those disciplines. Students were not afforded the opportunity to learn effective communication and teamwork collaboration between the various professions during their educational experience (Smithburger, Kane-Gill, Kloet, Lohr, & Seybert, 2013). When students approach a situation from these single points of view, their perspective of the roles and contributions of others may be limited and lacking in scope. It is no longer acceptable to deliver isolated healthcare education, as complex patient care now requires a collaborative and team approach. Interprofessional education (IPE) addresses this need by training professional healthcare students to work as part of a healthcare team. The premise of IPE is that students who learn from one another, about one another, and with one another will develop competencies needed to work together in teams to provide higher quality care to their patients improving overall outcomes (Pippitt, Moloney-Johns, Jalilibahabadi, & Gren, 2015). Traditionally, IPE experiences are administered face to face, with students from different disciplines coming together to

clinical simulation labs to practice patient scenarios. However, the logistics of coordinating student schedules and travel times present challenges for faculty of rurally located training programs. Technology-based tools currently used to address healthcare access issues for rural patients may be an innovative approach to offering IPE experiences for students in these programs.

Telehealth is a technology-based tool designed to increase access to care for isolated rural residents. According to the Center for Connected Health Policy (CCHP) and the Health Resources and Services Administration (HRSA), telehealth is defined as: "The use of electronic information and telecommunications technologies to support longdistance clinical healthcare, patient and professional health-related education, public health and health administration" (CCHP, 2014, para 3; HRSA, 2015). One telehealth format referred to as remote patient monitoring (RPM) or "remoting in", uses audio and video equipment permitting two-way live, real time interactive communication between a patient in a distance site and the practitioner (CCHP, 2017; HRSA, 2015). Telehealth increases access to care and improves rural health in many ways. Through telehealth, patients and other healthcare professionals, can gain access to providers through a virtual network. Utilizing telehealth technology for consultations saves both time and money as neither the patient nor the provider have to travel long distances to access services (HRSA, 2014).

Preparing students to work in interprofessional teams with technology such as telehealth is a crucial skill for rural settings, as rural primary practitioners often coordinate care for patients with multiple specialists. While the concept of telehealth has been incorporated into nursing curricula to educate students how this technology can

bridge the access gaps in patient care (Gallagher-Lepak, Scheibel, & Gibson,2009), the components have not been integrated into a comprehensive IPE learning experience. A collaborative IPE experience combined with simulation activities using telehealth technology can not only provide nursing students skills needed to care for rural populations, but also address issues inherent in providing IPE experiences to students in rurally located educational programs.

Scope of the Clinical Problem

Although IPE and simulation have existed for some time, research involving each field is relatively new but continues to evolve over time (Palaganas, Epps, & Raemer, 2014). In the traditional education model, learning takes place in an individual clinical or classroom setting using traditional educational methods of teaching (Palaganas et al., 2014). Traditional IPE centered around groups of students, led by one or more faculty members, in which discussion of case-based scenarios in a classroom setting is facilitated by lectures, power-point presentations, and other faculty-centered models of education. Additionally, McGahie, Issenberg, Cohen, Barsuk, and Wayne (2011) compared traditional clinical education, specifically the Halstedian approach, which is "see one, do one, teach one" to simulation-based education with deliberate practice. Deliberate practice involves effortful activity with the goal of maximizing performance. According to the World Health Organization (WHO), this siloed approach to education has fostered a culture of poor collaboration among team members (WHO, 2010). The research comparisons concluded that simulation-based education using deliberate practice was superior to traditional educational methods (McGahie et al., 2011). Studies indicate that active, experiential learning facilitates the educational process, and patient simulators

require learners to incorporate several actions into learning, including knowing, doing, and being in the learning process (Baker, Pulling, McGraw, Dagnone, Hopkins-Rosseel, & Medves, 2008). Simulation-enhanced IPE materialized as early as the 1950s using standardized patients (i.e., human actors playing the role of patients or family members), low technology mannequins such as task trainers, and computerized simulations in the behavioral sciences (Palaganas et al., 2014). In the 1980s, computerized screen-based anesthesia training simulators were used to train staff in emergency management of crisis situations. Training was focused on capitalizing on teamwork and enhancing collaboration (Palaganas et al., 2014). Propelled by the 1999 Institute of Medicine (IOM) report, To Err is Human (2010), the trend of team-based training continues. The Agency for Healthcare Research and Quality (AHRQ) also released TeamSTEPPS in 2006 which again focused on the importance of quality collaborative team training (AHRQ, 2008). This trend now includes using high fidelity human patient simulation, (HFHPS), or a controlled and structure learning experience using computerized life-like mannequins with advanced technology (Hicks, Coke, & Li, 2009). Students are challenged to think critically while using HFHPS in an environment similar to the clinical setting. As the scenario unfolds, instructors control the HFHPS responses based on the student interventions (Hicks et al., 2009).

IPE is proven to promote teamwork and enhance interprofessional attitudes towards one another. Previous research demonstrated using simulation-based IPE developed teamwork, communication skills and changed stereotype perceptions that exist between professional healthcare undergraduates, especially between nursing and medical students (Liaw et al., 2014). Improved collaboration among simulation team members has

also been associated with reduction in medical errors, with a potential to improve patient outcomes. For example, researchers at the University of Virginia used a simulation "room of errors" to explore the issue of patient safety. In this mock-up of a pediatric intensive care room, participants (representing several professional healthcare roles) were given seven minutes to identify as many of the purposely placed errors as possible. When the participants worked as teams, they could identify many more errors than individually. The researchers concluded that when teams work together and collaborate effectively, patient care is improved and quality of care is enhanced (Haizlip & Neumayr, 2016; Hausman, 2014).

There are barriers to incorporation of simulation into IPE, including a lack of administrative support, multiple learner needs, lack of qualified faculty to lead the experience, and lack of structured reflection after the experience (Palaganas et al., 2014). Administrative support is critical in scheduling students and coordinating the various professions. Matching students and faculty with different levels of experience and various curriculum can be logistically challenging. An experienced and dedicated faculty with expertise in writing scenario takes time to develop, and without a structured debriefing process post-simulation, student engagement is minimized (Palaganas et al., 2014). Other barriers to IPE include budgeting constraints, varying timetables, and it is resource intensive to implement correctly (Lawlis, Anson, &Greenfield, 2014). Additionally, in a rural setting, barriers to IPE are even more apparent as fewer opportunities exist for undergraduate nursing, medical and pharmacy program students to work and learn together in preparing for team based practice (Whelan, Spencer, & Dalton, 2008a). It is difficult finding interprofessional opportunities for various

healthcare students to come together in one place to problem solve case studies, work on group projects, or work in teams during simulation-based activities due to the geography in a rural landscape.

Significance

The IOM has charged academic institutions to incorporate interprofessional education into the curriculum focused on developing and sustaining collaborative skills (IOM, 2010). Additionally, accreditation agencies such as the Commission on Collegiate Nursing Education, the Accreditation Council for Pharmacy Education, and the Liaison Committee on Medical Education recognize IPE as a vital form of education to achieve safe, quality patient-centered care (Decker et al., 2015). Patient simulation, using both high-fidelity simulators and standardized patients, has proven to be an operative tool for spanning the gap between didactic material learned in the classroom and its application in the clinical setting. Patient safety and quality healthcare depends on the ability of the healthcare team to collaborate (cooperate, communicate), and share skills and knowledge appropriately (Decker et al., 2015). In simulation activities, the student uses a hand on approach through various learning modes simultaneously. With a simulation-based experiential learning approach, IPE allows for the development and mastery of these competencies, which promotes collaboration and teamwork while protecting patients when practicing.

Shortages in the workforce, limited access to care, and sky rocketing healthcare costs continues to be a national issue and even more so in rural areas. As these trends continue, faculty must find new ways to train healthcare students to work more efficiently and collaboratively (Whelan et al., 2008a). Collaborative teamwork is defined as two or

more people working together to create or produce something (Webster, 2016). In rural areas, the shortage in healthcare professionals continues to increase as access to specialists and specialty services is limited, resulting in a broader case-mix of patients. More collaborative teamwork is needed to care for these patients; the development of remote IPE experiences to train healthcare professionals to work collaboratively and be prepared to use technology designed to enhance access for rurally located patients is even more critical (Whelan et al., 2008a).

Literature Review

Introduction

A wide variety of types and quality of evidence were reviewed to answer the PICOT question "Among pre-licensure interprofessional education students (nursing, medical, pharmacy, and other allied healthcare students) in a rural setting, can an IPE simulation based scenario using "remote in" technology enhance collaborative teamwork among team members?" An evidence table (see Appendix A) was generated to organize the critical aspects of the study findings including source, design, limitations, findings and conclusions. Next, *John Hopkin's Nursing Evidence-Based Practice: Model and Guidelines* by Dearholt and Dang (2012) was used to categorize the various sources of evidence into levels and by quality rating (see Appendix B). The method of literature analysis, the outcomes of the type and strength of evidence, and limitations to the studies are explained below.

Description of Search Process

A thorough search of the literature was conducted in 2016 to uncover evidence on the topic of IPE with simulation-based training for interprofessional students. The initial

database included CINAHL (2006-2016), MEDLINE, PubMed-Medline, Joanna Briggs Institute, and Cochrane Library database. To further enhance the search, several IPE websites were reviewed. The searches were conducted using combinations of the following key words: interprofessional education, simulation, and rural. The modifiers of collaboration and teamwork were added as a means of refining and targeting the findings.

Inclusion criteria were established to determine which evidence would be evaluated and utilized in the evidenced-based table. In addition, exclusion criteria were also established which included simulation studies which did not include some form of human patient simulation using medium to high fidelity simulation. Since the target population was pre-licensure interprofessional students, IPE simulation studies targeting post-licensure personnel were excluded. The search was also limited to articles written in English and those written before 2006 were excluded in an attempt to disclose the most current and up to date information. Articles from other countries and regions were included to provide a diverse viewpoint and expanded application. Each article was analyzed for inclusion and based on the population (professional healthcare students), the intervention (simulation – using human patient simulation), and the outcome (improved collaboration and teamwork among team members), 22 articles were used in the literature review. Because interprofessional education is being driven by accrediting bodies and finding new ways to deliver IPE is relatively new in healthcare curriculum, IPE with simulation-based training continues to be a growing body of literature to explore.

The initial CINAHL search limited to 2006-2016 using interprofessional education and simulation revealed 106 articles. When the additional modifiers of collaboration and teamwork were added, the results were narrowed to 42 articles. Of

those, five articles provided information about improved collaboration because of IPE with simulation-based training. Of those five articles, two were quasi-experimental; two were pilot studies including an experimental feasibility study and a cohort study; and one was a retrospective qualitative case report. PubMed provided a variety of useful resources; 509 results were returned initially when using the search terms interprofessional education and simulation. When adding the modifiers, collaboration and teamwork as in earlier research, the results narrowed to 357. Of those, 17 were found to be useful to the PICOT question including two systematic reviews of the literature, one randomized control trial (RCT), four quasi-experimental studies, five pilot studies, three case reports, and two action research studies. One RCT supported the use of simulation as providing a positive impact on learning (Wang, Shi, Bai, Zheng, & Zhao, 2015). Two systematic reviews concluded simulation provides students with a learning environment where mistakes can be made and learned from and patient safety is not jeopardized (Lawlis et al., 2014; Lewis et al., 2012). An evidence table is included for complete listing of research (Appendix A).

A search of Joanna Briggs Institute Evidence Based Practice (EBP) returned three results but none that pertained to the PICOT question as they did not meet inclusion criteria. The Cochrane search yielded 17 results of which 2 quasi-experimental studies pertained to the PICOT question. An Ovid database search limited to 2006-2016 using interprofessional education and simulation returned 344 articles, narrowing to 42 when the additional modifiers of collaboration and teamwork was added. Of those, two articles provided information about improved collaboration because of IPE with simulation-based training using a quasi-experimental study design.

Finally, several IPE websites were reviewed including The University of Virginia ASPIRE Institute, the Canadian Interprofessional Health Collaborative Practice, and the Interprofessional Education Collaborative. These websites were searched for various recommendations regarding implementation of IPE with simulation-based training using various combinations of the search terms "interprofessional education", "simulation", collaboration", and "teamwork" and many high-quality studies were found. The results included two case study reports, and the information on current best practices for implementing IPE with simulation-based training was helpful in incorporating IPE with simulation into curriculum.

Analysis and Limitations of Evidence

The 22 studies included in the search were divided into three categories based on the John Hopkins rating system (see Appendix B for full explanations of the scales). This system rates the type of study, ranging from Level I-C to Level III-B, as well as the quality of the evidence ranging from A to C (Dearholt and Dang, 2012). Level I studies are experimental and include randomized control trials (RCT) or a systematic review of RCTs with or without meta-analysis. Level II evidence includes quasi-experimental studies or systematic review in combination of RCTs and quasi-experimental with or without meta-analysis. Level III studies include non-experimental studies, systematic review of a combination of RCTs and quasi-experimental studies with or without meta-analysis. Level III also includes qualitative studies or systematic reviews with or without meta-synthesis. A quality rating of A is considered high quality with consistent evidence, generalizable results, sufficient sample size, definitive conclusions, and adequate control. A good quality rating (B) is given when results are

reasonably consistent, sample size is adequate, some control seen, and fairly definitive results; whereas a low-quality rating (C) is given when results are inconsistent, sample size is small, and conclusions are not drawn.

One study was rated as a Level I-C (Wang et al., 2015). The RCT was well conducted, but the sample size was small for the study design. There were six Level II-A studies conducted. These quasi-experimental designs demonstrated consistent results, adequate sample size, and definitive conclusions (Dearholt & Dang, 2012). There was one Level II-B and two Level II-C studies as well. All were quasi-experimental designs with reasonably consistent results and fairly definitive conclusions. However, the Level II-C studies were graded poor due to sample size for the design (Dearholt & Dang, 2012). The review of literature revealed ten Level III-B studies. These non-experimental designs were studies with reasonably consistent results, fairly definitive conclusions, and adequate sample size. Also noted were two Level III-C studies. These non-experimental designs were studies with reasonably consistent results but very small sample size.

The highest level of research used was a Level I-C randomized controlled trial supporting the use of simulation in IPE as providing a positive impact towards learning including better teamwork, improved communication, and enhanced clinical knowledge (Wang et al., 2015). A low quality C-rating was given as the sample size was small for the study, and the authors did note that further longitudinal studies were needed to see if interprofessional simulation education (IPSE) would translate into enhanced workplace improvements.

Several Level II – A studies were found and classified as highest quality based on consistent and generalizable results with a sufficient sample size (Dearholt & Dang,

2012). As mentioned, several quasi-experimental studies were analyzed, and Vyas, McCulloh, Dyer, Gregory, and Higbee (2012) concluded after a simulated IPE experience, student's scores on team building improved over pre-simulation scores, and 90% of student commented simulation increased their understanding of professional roles and the importance of interprofessional education. The results were significant (p < .0001) on knowledge, skills, and attitudes towards IPE. Students felt their training in IPE did not dilute their own training (p < 0.001), determined competent professionals do not make errors leading to harm (p < 0.001), felt staff should be reprimanded when an error occurs (p < 0.001), and sensed increased comfort when disclosing an error (p < 0.002). This study also found simulation provided an opportunity to recognize and react to patient safety issues and to enhance their interprofessional collaboration. Of note, in order to be successful in implementing IPSE, faculty must be well-rounded, become involved early in the process, have adequate faculty and staff to support the program, and be flexible when it comes to coordinating all the discipline schedules (Vyas et al., 2012). Watters, Reedy, Ross, Morgan, Handslip, and Jaye (2015) Level II-A study also concluded simulation training enhances self-efficacy and leads to increases in perceived ability to communicate/work as a team and leadership/management of clinical situations. However, time limitations during the study did not allow for measuring nurses in-depth as it did for physicians. Another Level II-A pilot study looking at 6 universities over a 1-year time frame, found schools using IPE with simulation can better prepare students to work in interprofessional teams that deliver improved and safer care. They also concluded schools that participated in the Retooling for Quality and Safety initiative made major progress toward the integrations of healthcare improvement and safety when

incorporating IPE and simulation into their curricula (Headrick et al., 2012). Shrader, McRae, King, and Kern (2011) also concluded improved teamwork and increased student satisfaction occurred when using simulation as a component of IPE.

Other Level II-A studies support simulation-based IPE as having an impact on collaborative patient centered care with significant correlations in positive attitudes, increased competency and autonomy, and actual collaboration of students (Liaw et al., 2014; Mohaupt, van Soeren, Andrusyszyn, MacMillan, Devlin-Cop, & Reeves, 2012). Whelan, Spencer, and Rooney (2008) conducted a Level II-B study called the "RIPPER" project which focused on a multi-station learning circuit using team based IPE scenarios. The authors concluded the program is an effective IPE model resulting in increased awareness and importance of collaboration among team members. Sustainability of the project was deemed difficult as resources, time constraints, and commitments were ongoing issues (Whelan et al., 2008).

Le et al. (2008) conducted a Level II-C quasi-experimental design pilot program and found through factor analysis three aspects were identified as keys to enhancing clinical practice to include: appreciation of professional roles, improved teamwork, and importance of working together. They concluded that all three factors were enhanced through the use of simulation-based IPE. Smithburger et al. (2013) also concluded improved teamwork, enhanced communication, and increased student satisfaction occurred when using simulation as a component of IPE. This study was classified as a Level II-C as confounding factors might have occurred as improvements in scores increased due to factors outside the control of the investigators. Over the four-week

feasibility study, they noted students became more comfortable with one another because of working together previously in teams (Smithburger et al., 2013).

In analyzing the literature review of IPE with a simulation-based educational component, it is evident that collaboration among team members is enhanced, which translates to improved patient outcomes. As previously mentioned, two Level III-B systematic literature reviews were conducted. Lewis et al. (2012) found simulation was associated with significantly improved communication skills which enhanced team performance and management in crisis situations. Lawlis et al. (2014) concluded programs must attain several key essential components (funding, institutional support, good communication, and shared vision) for programs to be successful in implementing and sustaining IPE. Both studies were rated as Level III-B due to the array of studies included which lead to lack of uniformity. In a Level III-B non-experimental longitudinal cohort study of 312 students, improved confidence in crisis communication (91.7%), situational awareness (85.7%), safe practice (85.2%), triage (85.2%), and crisis leadership (79.2%) were identified by the students when simulation-based IPE occurred (Miller, Rambeck, & Snyder, 2014). The authors did conclude possible maturation of students occurred with repeated simulations as the fourth time around, scores improved due to repetition in anchoring behaviors (Miller, et al., 2014).

Several other Level III-B studies supported using simulation-based IPE experiences to enhance student awareness of maintaining patient safety and improving communication among students as team roles were better understood after a simulated experience (Bolesta & Chmil, 2014; Booth & McMullen-Fix, 2012; Neville, Petro, Mitchell, & Brady, 2013; Robins et al., 2008). In these non-experimental studies, the

investigators concluded students demonstrated positive attitudes towards IPE allowing students to work in a team environment contributing to better patient outcomes (Haizlip & Neumayr, 2016). IPE with simulation provided a realistic teaching opportunity demonstrating the importance of being able to communicate and practice as a team as critical elements to any patient care encounter (Bolesta & Chmil, 2014; Booth & McMullen-Fix, 2012; Neville et al., 2013; Robins et al., 2008). Other non-experimental studies also concluded simulation as an effective technique in teaching interprofessional teams the art of difficult communications, in reinforcing the importance of collaboration and teamwork in delivering effective care, and preparing students to bridge the gap across silos of care (Baker et al., 2008; Balogun, Rose, Thomas, Owen, & Brasher, 2014; Marken, Zimmerman, Kennedy, Schremmer, & Smith, 2010; Shoemaker, Platko, Cleghorn, & Booth, 2014).

Synthesis of Literature and Recommendations

A review of the existing research on collaborative teamwork advocates the presence of collaboration can result in improved patient outcomes, and simulation-based IPE has proven to provide students with a learning environment in which skills can be developed, mistakes can be made and learned from, and patient safety is not jeopardized (Lewis et al., 2012). One study using simulation found patient safety improves when nurses and pharmacists collaborate in relation to drug prescription (Walters, Robertson-Malt, & Stern, 2015). This study also found collaborative teamwork is a key communication strategy of effective healthcare delivery as it helps to minimize errors and increase patient safety. Healthcare policy makers and administrators are increasingly promoting the importance of IPE, and using simulation is an effective way to measure

collaboration. Liaw et al. (2014) found after an IPE simulated clinical experience, there was a significant improvement on the medical students' perception of the nursing profession in terms of decision making and academic abilities and the nursing students' opinion of the medical profession on interpersonal skills and team-player capabilities.

Also noted there was a positive correlation in IPE with simulation in terms of improved collaboration and communication among team members which translates to better patient care and outcomes (Baker et al., 2008; Balogun et al., 2014; Booth & McMullen-Fix, 2012; Headrick et al., 2012; Le et al., 2008; Lewis et al., 2012; Liaw et al., 2014; Marken et al., 2010; Mohaupt et al., 2012; Neville et al., 2013; Shoemaker et al., 2014; Smithburger et al., 2013; Wang et al., 2015; Watters et al., 2015; Whelan et al., 2008; Vyas et al., 2012). The literature suggests for an IPE program to be successful, several key elements are necessary including funding, institutional support, good communication, and shared vision among the key stakeholders and interprofessional teams (Lawlis et al., 2014). In terms of stakeholders, the faculty involved from the School of Nursing, Medicine, and Pharmacy schools must work together in a coordinated effort to support the simulation-based IPE program. These are critical elements needed to implement and sustain a program over time.

Several other key factors such as flexibility in scheduling, motivated faculty to facilitate, and early involvement of stakeholders (faculty, local partners, and students) are required when employing and maintaining a simulation-based IPE program (Vyas et al., 2012). Studies also concluded schools using IPE with simulation can better prepare students to work in interprofessional teams delivering safer patient care (Baker et al.,

2008; Headrick et al., 2012; Mohaupt et al., 2012; Neville et al., 2013; Shrader et al., 2011).

Statement of the Purpose

During my experiences as an educator interested in best practices, my students reported to me they wished they had more opportunity to work in interprofessional teams in activities. Based on the review of the literature, simulation-based IPE enhances the educational experience and leads to improved collaboration among team members, which translates to improved quality care and better patient outcomes. To address the challenges of delivering this educational experience on a rural distance campus, this project addressed pre-licensure students in nursing, pharmacy, and medicine, and explored the question "In a rural setting, can an IPE simulation-based scenario using "remote in" technology enhance collaborative teamwork among team members?"

PICOT Questions and Definitions

The PICOT design for scientific inquiry as identified by Melnyk and Fineout-Overholt (2015) was used to create the clinical question as well as provide best evidence for this project. The five components incorporated in the PICOT format include population of interest, intervention of interest, comparison intervention, outcome, and time (Melnyk and Fineout-Overholt, 2015, p. 28-29). The PICOT question is "Among pre-licensure interprofessional education students (nursing, medical, pharmacy, and other allied healthcare students) in a rural setting, can an IPE simulation-based scenario using "remote in" technology enhance collaborative teamwork among team members?"

The population of interest was IPE students in nursing, medical, and pharmacy disciplines. The intervention of interest was conducting simulation-based training as an

adjunct component to IPE in rural settings. The comparison of interest was looking at the perceptions of IPE students prior to a simulation–based training as compared to post simulation-based training. The outcome was the expected result achieved from the introduction of the intervention on the group and in this study, is improved collaborative teamwork among team. The time frame was from completion of the pre-questionnaire to completion of the post-questionnaire post simulation.

Methodology

This project 1) examined the feasibility of adding an IPE component to current simulation experiences in the rural setting at USCL; 2) determined necessary resources to implement simulation as a component to IPE; and 3) measured student perception of interprofessional teamwork, roles and responsibilities, and patient outcomes for collaborative practice. Challenges included 1) participant recruitment, 2) potential student and lab scheduling conflicts, and 3) adequate clinical resources to meet the multidisciplinary team needs. This chapter describes the theoretical framework underlying this project; setting, sample, and methods of participant recruitment; project design; instrumentation; data analysis; and feasibility.

Theoretical Framework

The Stetler Model for evidenced based practice (EBP) has five phases including preparation, validation, decision making, translation/application, and evaluation (Melnyk & Fineout-Overholt, 2015). Phase I (preparation phase) consists of identifying potential barriers or catalysts, reaffirming the current problems with practice at hand, considering influences on timelines, prioritizing the issues, developing a team of stakeholders, defining outcomes, and selecting research sources. Phase II (validation) involves

assessing the literature review for credibility of evidence, rating the level and quality of evidence, and determining the qualifiers and limiters for the research. Phase III (decision making) is a critical phase and addresses the synthesis of the findings to determine recommendations of the criteria as they relate to feasibility and applicability. Phase IV (translation into practice) considers how the research will be used either informally in practice or formally through EBP documents or protocols. Phase V (evaluation) obtains evidence regarding the implementation approach (system change, change of practice, end result) to obtain outcome results of the identified goals. Based on Stetler's model, the project described in this paper was implemented.

Description of the Setting, Sample, and Participant Recruitment

This project was conducted in the University of South Carolina (USCL) Nursing Simulation Lab on the USCL campus. At present the University of South Carolina (USC) College of Nursing (CON) has two distance campuses. USCL is located in a rural setting and students must travel to USC Columbia to participate in case-study based IPE exercises without a simulation component. In the study, simulation was introduced as a component of IPE to a group of interprofessional students consisting of fourth year nursing students, third year medical students, and third year pharmacy students that were placed in the local rural clinical setting in the surrounding counties. Based on the review of literature, scheduling and coordination of groups of students from three different disciplines in three separate colleges is challenging (Lawlis et al., 2014). In a rural setting where students are spread out in various clinical sites, "remote in" technology via telehealth was used by the medical students during the simulation. This allowed for the

medical students to be a part of the simulation without being there in person. They were able to utilize two-way audio and video capability during the simulation activity.

CON students enrolled at USCL during their last semester of senior year were study participants. The sample also included rurally placed medical and pharmacy students recruited through Mid-Carolina Area Health Education Consortium (AHEC). All students were recruited on a voluntary basis, with the goal of having ten senior nursing students from USCL, five fourth year medical students, and five third year pharmacy students. Both the pharmacy and medical students were recruited with the help of Mid-Carolina AHEC representatives, who schedule clinical rotations for healthcare students in the Lancaster area. These representatives have already agreed to participate. A total of 29 students participated, including 16 senior nursing students from USCL, 8 third-year VCU medical students, and 5 fourth-year USC pharmacy students. Five IPE groups consisting of 5-6 students (3-4 nursing, 1 medical, and 1 pharmacy student) participated in a simulated advanced cardiac IPE scenario held in the USCL Nursing Simulation Lab. The medical students attended remotely via a robot and the other students were present in person during the simulation exercise.

Project Design

The design of the project was a non-experimental feasibility study using an explanatory sequential mixed methods approach (Creswell, 2015). In this approach, quantitative data are collected first; qualitative data gathered subsequently are used to more thoroughly explain the quantitative results, especially if there are unexpected findings (Ivankova, Creswell, & Stick, 2006). The results from both phases are then

integrated during the analysis process to more robustly represent the process under evaluation.

Instrumentation

A pre- and post-simulation questionnaire was utilized to gather quantitative and qualitative data about student's perceptions of the experience in regards to their understanding and view of collaborative teamwork among the team members. Student experiences were assessed using the Student Perceptions of Interprofessional Clinical Education-revised (SPICE-R2) instrument (Appendix C), a 10-item questionnaire using a five-point Likert scale. This scale contains three factors dedicated to interprofessional teamwork and team-based practice, roles and responsibilities for collaborative practice, and patient outcomes for collaborative practice (Dominquez, Fike, MacLaughlin, & Zorek, 2016). Additionally, students were given a 20 item National League for Nursing (NLN) Simulation design scale (**Appendix D**), and were asked to rate the simulated- IPE experience on a five-point Likert scale. The survey addresses five categories including information, support, problem-solving, feedback/guided reflection, and realism (NLN, 2005). Both questionnaires are proven to be valid and reliable (Dominquez et al., 2016 & NLN, 2005). Each simulation was video recorded for review later.

Data Analysis

Quantitative

Pre- and post-scenario SPICE-R2 survey results were analyzed using SPSS (version 21). Non-parametric Wilcoxon signed-rank tests were calculated to assess improvements in students' scores in relation to interprofessional teamwork and teambased practice, roles and responsibilities for collaborative practice, and patient outcomes

for collaborative practice. Wilcoxon signed-rank tests are appropriate for small samples in which data comes from repeated measures such as pre- and post-test data from the same subjects, and is not normally distributed. For the normally distributed data, we employed a t-test, as this approach has more power to test statistically significant differences between groups than non-parametric tests.

Qualitative

Qualitative data were used to inform more robust understanding of the quantitative results. A qualitative descriptive approach using a thematic analysis as described by Clarke and Braun (2013) was used to analyze the debriefing session video data and post-scenario narrative responses. First, the audio from the debriefing sessions were transcribed verbatim and de-identified by the first author. The first two authors then independently read and coded the transcripts; subsequently they met to reconcile the minor differences in coding and identify relevant themes.

Data integration

The final phase of a mixed-methods approach is data integration, in which the quantitative and qualitative data are brought together, usually in the form of a joint display (Creswell, 2015). The strength of this approach is that the statistical information provides a general understanding of the problem under analysis, while the qualitative information explores the participants' perceptions of that problem.

Feasibility

The feasibility of a project is determined by reasonability of time frame for project, recruiting adequate numbers of participants, accessibility of recruitment setting, qualifications of the investigator, adequate time allotted for investigator to conduct the

study, ethical or legal considerations, and availability of adequate resources (Melnyk and Fineout-Overholt, 2015). If the answer is no to any of these questions, then the feasibility of the project is in question. In terms of this project, time frame and resources are the most feasible.

USCL houses a new nursing simulation lab, although it was lacking some key equipment. A grant was submitted to the J. Marion Sims Foundation and \$36,000 was secured for the necessary items. These items included emergency equipment such as crash carts, defibrillators, and advanced airway management items. Other items included advanced cardiac monitoring, intravenous therapy equipment, and robotics items used for remoting in. At present the equipment and items have been ordered and have either arrived or are in the process of being shipped to the lab and tested for functionality.

Limiting factors included recruiting the needed volunteers at USCL. USC currently offers an IPE course and USCL nursing students are taught in the spring semester. At present, USC does incorporate IPE into the curriculum, but there is limited exposure on the rural campus with simulation as a component in the course. To address this limitation, recruitment of the other healthcare team students (medicine and pharmacy) was enhanced by partnering with AHEC. Successful implementation of simulation- based IPE requires buy-in from all stakeholders with flexibility and adaptability of key players a must. Partnerships were in place including a strong working relationship with Dr. Sizemore, a local surgeon who precepts many of the medical students. In addition, Mid-Carolina's AHEC was excited and committed to work with USCL in developing simulation-based IPE experiences with locally placed healthcare students. Creativity was also required in coordinating all the various discipline

schedules. Using the robot to "remote in" medical students assisted with coordination efforts as this allowed the medical student to stay at their assigned rural clinical setting and to "remote in" once the consultation was initiated by the other team members of the group. In addition, adding a "buffer period" into the time frame allowed for extra time in case recruitment of these participants took longer than anticipated (Melnyk and Fineout-Overholt, 2015).

Chapter 1 presented an overview of the problem, a review and synthesis of the literature, a description of the methodology, including theoretical framework, project design, participant recruitment, data collection, data analysis, and project feasibility. Chapter 2 presents the project results in manuscript form. CHAPTER 2

PROJECT RESULTS

MANUSCRIPT ONE

SIMULATION-BASED INTERPROFESSIONAL EDUCATION IN A RURAL SETTING USING

REMOTE-IN TECHNOLOGY

¹Scott, A. D., Estrada, R. D., Catledge, C. B., & Mitchell, S. Submitted to *The Journal of Interprofessional Care*

ABSTRACT

The purpose of this project was to examine the feasibility and acceptability of a simulation-based IPE experience for pre-licensure nursing, pharmacy, and medical students on a rurally-located campus. Using a mixed-methods, explanatory sequential approach, this project: 1) examined the feasibility of implementing a simulation-based IPE experience using telehealth tools; and 2) evaluated student perceptions of interprofessional teamwork, roles and responsibilities, and patient outcomes for collaborative practice, both pre- and post-scenario.

Quantitative data were analyzed using SPSS. Results revealed 94% agreed/strongly agreed the IPE experience resembled a real-life situation. 100% of nursing/medical students and 80% of the pharmacy students indicated they would recommend this experience to their peers. Significant positive changes in attitudes towards using an inter-professional team approach were noted for pharmacy students, especially in regards to patient outcomes, reduced costs, and improved patient-centered care.

Qualitative data were transcribed and analyzed using thematic analysis. Four themes emerged: 1) better understanding of technology; 2) improved communication among team members; 3) benefit of true to life experience; and 4) increased knowledge level and confidence.

Participant suggestions for improvement included: 1) improve the simulation/telehealth equipment orientation; 2) consider a grand round-type simulation; and 3) address technical challenges with the robot.

Although limited by a small sample size, this project confirmed it is feasible and acceptable to offer simulation-based IPE in a rural setting facilitated by the use of telehealth tools, and collaborative teamwork is enhanced by using "remote in" technology during a simulation-based IPE activity.

Complex healthcare now requires a collaborative and team approach to patient care. A simulation-based IPE approach using "remote in" technology allows for the development and mastery of these competencies. Future work will incorporate student suggestions to improve the experience, as well as integrate students from other healthcare disciplines, such as physician assistant students.

Keywords: Interprofessional education, simulation, teamwork, collaboration, rural, and telehealth
Introduction and Background

A single-disciplinary approach to healthcare education does not give students the opportunity to practice effective communication and collaborative strategies essential to complex, real-world patient care (Smithburger, Kane-Gill, Kloet, Lohr, & Seybert, 2013). To address this need, healthcare educators use interprofessional education (IPE), an interdisciplinary educational approach. Students from a variety of healthcare disciplines, including nursing, medicine, and pharmacy, work collaboratively to develop skills necessary for efficient healthcare teamwork, which can lead to higher quality patient care and improved patient outcomes (Pippitt, Moloney-Johns, Jalilibahabadi, & Gren, 2015). Traditional IPE centers around groups of students, led by one or more faculty members, in which discussion of case-based scenarios in a classroom setting is facilitated by lectures, power-point presentations, and other faculty-centered models of education. Shifting to a student-centered model, healthcare educators are beginning to employ experiential learning through the incorporation of patient simulators. Simulation-based education with deliberate practice (effortful activity with the goal of maximizing performance) requires students to incorporate several actions, including knowing, doing, and being in the learning process (Baker, Pulling, McGraw, Dagnone, Hopkins-Rosseel, & Medves, 2008), and has been demonstrated as superior to traditional clinical education methods (McGahie, Issenberg, Cohen, Barsuk, & Wayne, 2011). IPE combined with simulation-based experiential patient scenarios represents an innovative approach in enhancing learning, as hands-on practice allows students to develop and master core competencies, promotes interdisciplinary collaboration and communication skills, and protects patients. However, implementation of this approach may be challenging for programs serving certain student populations.

Currently simulation-based IPE experiences are administered face-to-face, with students from different disciplines coming together in clinical simulation labs to practice patient scenarios. However, the logistics of coordinating student schedules and travel times may be problematic for faculty at regional campuses, who often must utilize clinical simulation labs located on the main campus. New and innovative training approaches may overcome these barriers, and may be especially beneficial for rural healthcare students (Whelan et al., 2008), as workforce shortages and access barriers to care are particularly pronounced in rural areas (Rural Health Information Hub, 2017). Additionally, as healthcare students in rurally-located training programs are more likely to live and eventually practice in the rural community (RHI Hub, 2017), IPE experiences that prepare healthcare students to use technology designed to enhance access for rurally-located patients is even more critical (Whelan et al., 2008).

Telehealth is remote healthcare provision to patients at distant sites using technology-based tools. Remote patient monitoring (RPM), or "remoting in", uses audio and video equipment to permit two-way live, real time interactive communication between a patient in a distance site and the practitioner (Center for Connected Health Policy, 2017; Health Resources and Services Administration, 2014). Through telehealth, patients and other healthcare professionals can gain access to providers and specialists through a virtual network, saving time and money (HRSA, 2014). Preparing students to work in interprofessional teams with technology such as telehealth is a crucial skill for rural settings. Though the concept of telehealth has been incorporated into nursing curricula to educate students on how this technology can bridge the access gaps in patient care (Gallagher-Lepak, Scheibel, & Gibson, 2009), the components have not been

integrated into a comprehensive IPE learning experience. A simulation-based IPE experience using telehealth tools not only provides students the opportunity to work with the technology, but addresses issues inherent in providing IPE experiences to rurallylocated students. The purpose of this project was to examine the feasibility and acceptability of a simulation-based IPE experience for pre-licensure nursing, pharmacy, and medical students on a rurally-located, regional campus.

Methods

Research Design

Using a mixed-methods, explanatory sequential approach (Fetters, Curry, and Creswell, 2013), this feasibility study 1) examined the feasibility of adding an IPE component to current simulation experiences in a rurally-located program; 2) determined necessary resources to implement simulation as a component to IPE; and 3) measured student perception of interprofessional teamwork, roles and responsibilities, and patient outcomes for collaborative practice (**Figure 2.1**).

Setting and Sample

This project was conducted in Lancaster, SC, a rural setting 70 miles north of Columbia, SC. SC in general is rural and poor; in Lancaster County, twenty percent of residents live in poverty. Healthcare access is problematic for rural SC residents, including Lancaster. For example, 21 of 46 SC counties only have between 1 and 2.9 family practice physicians per 10,000 residents. Further, there are 8.9 nurses per 1000 residents, but in rural areas, only 36 percent of nurses are bachelor's prepared (Bureau of Labor Statistics, 2017).

The University of South Carolina (USC) College of Nursing (CON), located in

Figure 2.1: Study Overview

Columbia, SC, offers a collaborative nursing program on two distance campuses, including USC Lancaster (USCL). Students attending these regional campuses can stay on their local campus all four years and earn a Bachelor's of Science in Nursing (BSN) in collaboration with USC Columbia. USCL is unique in that it houses a clinical simulation lab, minimizing the need to travel to the main campus for some of the experiential learning activities.

After obtaining Institutional Review Board approval (exempt-status), a convenience sample of pre-licensure healthcare students were recruited through 1) USCL nursing program; 2) USC School of Pharmacy; and 3) Mid-Carolinas Allied Health Education Consortium (AHEC), which helps to arrange rotation sites for Virginia Commonwealth University (VCU) medical students. A total of 29 students participated, including 16 senior nursing students from USCL, 8 third-year VCU medical students, and 5 fourth-year USC pharmacy students. The students were randomly assigned to one of five IPE groups consisting of 5-7 students comprised of 3-4 nursing, 1-2 medical, and 1 pharmacy student.

Five of the nursing students had experience with telehealth in the local facilities since they precepted in the local Intensive Care Unit or the Emergency Department. Seven of the rurally placed medical students had no experience with telehealth. Many students had some form of IPE during school, but the experiences varied by discipline and by college. The medical students reported that in their previous IPE experiences, they simulated the roles of the other professions while participating in the IPE scenario though they were unsure of the specifics of the role. For instance, if they drew an index card labeled "RN", they administered medications, or if they pulled the card labeled "respiratory therapy" they were responsible for administering oxygen. The pharmacy students did have two simulation-based IPE experiences during their third year of school in which 6 pharmacy students were paired with 1 medical and 1 nursing student to run various scenarios. During the simulation, it was necessary to role-play at times as not all of the medical equipment was functional. None of the nursing students had any simulation-based IPE; their previous experiences were traditional in nature.

Data Collection

Quantitative Instrumentation. Student experiences were assessed pre- and postscenario using the Student Perceptions of Interprofessional Clinical Education-revised (SPICE-R2), a 10-item questionnaire using a five-point Likert scale (Dominquez, Fike, MacLaughlin, & Zorek, 2016). This scale measures three factors dedicated to

interprofessional teamwork and team-based practice, roles and responsibilities for collaborative practice, and patient outcomes for collaborative practice. The SPICE-R2 addresses the teamwork domain by evaluating participant's assessment of enhanced educational and teamwork factors. The roles and responsibility domain is evaluated using criteria that looks at role definition, training requirements of others, and understanding of others' roles. Using an interprofessional team approach, the patient outcome domain is assessed by measuring factors addressing patient centeredness of care, improved care delivery, and reduced cost of care.

Additionally, students were also asked to rate the simulated IPE experience using the five category, 20 item National League for Nursing (NLN) Simulation design scale, a five-point Likert scale addressing information, support, problem-solving, feedback/guided reflection, and realism (NLN, 2005). Both questionnaires have been proven to be valid and reliable.

Qualitative Instrumentation. Student perceptions of the IPE experience were explored through a faculty-led, video-recorded debriefing exercise addressing 1) first thoughts regarding the experience, 2) what went right and why, and 3) what would you do differently and why. Additionally, the post-assessment, the SPICE-R2 questionnaire included narrative response questions.

Simulation Scenario

An informational packet containing an overview of the project, a consent to participate, a link to a brief video on team communication to view prior to attending, and pre-simulation information including simulation tips and an advanced cardiac life support (ACLS) pocket guide was emailed to all participants two weeks prior to the simulation.

On the day of the project, the participants attended a brief orientation to the lab, robot, simulation room and emergency equipment, then completed the pre-scenario, SPICE-R2 questionnaire.

To ensure integrity of the simulation and to avoid influencing the results, students were asked to wait in the assigned areas including a pre-simulation waiting area, a simulation ready room, and a debriefing area. For the simulation, three faculty members assisted with the project: one faculty member facilitated the simulation, one facilitated the debriefing sessions, and one served as the overall communication facilitator making sure each group was in the assigned area. Once all groups completed the orientation, group one remained in the simulation area, and the other groups went to a pre-simulation waiting area.

The simulation was designed to mimic how telehealth might be utilized in a reallife, emergent situation, with each student performing their disciplinary roles. In the scenario, the simulation patient experiences an acute cardiac event while the nursing students are at the bedside gathering information and performing a general assessment. Approximately two minutes into the scenario, the faculty facilitator initiates cardiac arrest, requiring the nursing students to call a code. The other nursing students and pharmacy students (code team members), waiting in a simulation ready room, respond with resuscitation equipment. The code team members then consult with the medical students, located in a room outside the lab. The medical students utilized two-way audio and video via a commonly-used telehealth robot (**Figure 2.2**), simulating how distance healthcare providers typically provide consults in SC. Each simulation was video recorded via Simview and ran for approximately twelve minutes.

Figure 2.2: Double Robotics robot

The entire group, including the "code team" and remotely-located medical students, performed CPR, defibrillated the patient twice, and gave emergency drugs including epinephrine (**Figure 2.3**). At the conclusion of the scenario, each student attended the faculty-facilitated, video-recorded debriefing session and completed both the post-scenario SPICE-R2 and NLN questionnaires.

Figure 2.3. Simulation scenario view from Simview

Data Analysis

Quantitative. Pre- and post-scenario SPICE-R2 survey results were analyzed using SPSS (version 21). A t-test was run on normally distributed data, as this provided more power to test for statistically significant difference between groups. Non-parametric Wilcoxon signed-rank tests were calculated to assess improvements in students' scores in relation to interprofessional teamwork and team-based practice, roles and responsibilities for collaborative practice, and patient outcomes for collaborative practice for data that was not normally distributed. Wilcoxon signed-rank tests are appropriate for small samples in which data comes from repeated measures such as pre- and post-test data from the same subjects.

Qualitative. Qualitative data were used to inform more robust understanding of the qualitative results. A qualitative descriptive approach using a thematic analysis as described by Clarke and Braun (2013) was used to analyze the debriefing session video data and post-scenario narrative responses. First, the audio from the debriefing sessions were transcribed verbatim and de-identified by the first author. The first two authors then independently read and coded the transcripts; subsequently they met to reconcile the minor differences in coding and identify relevant themes.

Data integration. The final phase of a mixed-methods approach is data integration, in which the quantitative and qualitative data are brought together, usually in the form of a joint display (Creswell, 2015). The strength of this approach is that the statistical information provides a general understanding of the problem under analysis, while the qualitative information explores the participants' perceptions of that problem. After quantitative and qualitative data analysis, the first two authors reconvened to

explore how the qualitative themes mapped to the factors examined by the quantitative surveys.

Results

Quantitative Results

All students completed both pre- and post-scenario SPICE-R2 surveys. The NLN Simulation Design Scale evaluates in two parts: 1) elements in the simulation; and 2) student-perceived importance of these elements. For example, in section A of the survey, one question asked "the scenario resembled a real-life situation"; in the corresponding question in section B, the participant ranked the importance of that element to him/her. 100 percent of the students completed section A of the NLN survey and 96.5 percent completed section B. For the purposes of this study, questions on the fidelity of the simulation equipment and the scenario content and process were evaluated. Descriptive statistics were used to characterize the sample and summarize the findings including age, race, gender, and discipline (**Table 2.1**).

	All Students (N=29)	Medical Students N (%)	Pharmacy Students N (%)	Nursing Students N (%)
Discipline		8 (27.5%)	5 (17.2%)	16 (55.1%)
Mean Age	23.8 years	26.3 years	23.4 years	22.6 years
Race				
White	20 (69%)	2 (25%)	4 (80%)	14 (87.5%)
African American	3 (11%)	3 (37.5%)	0	0
Other	6 (21%)	6 (37.5%)	1(20%)	2 (12.5%)
Gender				
Male	6 (20.7%)	5 (62.5%)	1 (20%)	2 (12.5%)
Female	23 (79.3%)	3 (37.5%)	4 (80%)	14 (87.5%)

 Table 2.1. Participant Demographics

SPICE-R2. Correlational statistics did not reveal any significant gender or race/ethnicity-based differences in the pre- and post-scenario SPICE-R2 surveys. However, notable findings were observed when the modifier of discipline was added.

While there was no statistical difference between the nurse-medicine groups or between the pharmacy-medicine groups outcomes using an interprofessional team approach. Pharmacy students reported improved care, reduced costs, and patient centered care increases when an interprofessional team delivers the care to patients. Additionally, the ttest showed a marginal significance for the same group in response to roles and responsibilities for collaborative practice. Again, the pharmacy students reported higher scores in role definitions of self and others, and increased understanding of the training requirements of others, and increased understanding of others roles after the intervention. In the nursing students, no significant difference was appreciated.

NLN Simulation Design Scale. The NLN Simulation Design Scale was used for purposes of determining feasibility and acceptability of the simulation equipment, as well as the scenario enacted with the equipment. First, students were asked to rate, using a 5-point Likert-type scale (1= "strongly disagree", 5 = "strongly agree") the statement "the scenario resembled a real life situation", an item which measured the fidelity, or realism, of the advanced cardiac scenario. They were then asked, using a similar Likert-type scale (1= "not important", 5 = "very important"), how important it was to them that the scenario resemble real life. The second statement, "real life factors, situations, and variables were built into the simulation", was then evaluated by the students in a similar fashion. This statement measured the realism of the equipment (manikins, monitors, defibrillator, and medications).

All students rated it was "important" or "very important" to have real-life factors, situations, and variables built into the simulation. Ninety-four percent of students surveyed post-simulation rated "agree" or "strongly agree" that the simulation included

all three items. Additionally, all students rated it was important or very important to them that the scenario resembled a real-life situation. Ninety-three percent of students surveyed post-simulation rated agree or strongly agree that the scenario resembled a real-life

situation (Table 2.2).

All Students (N=29) N (%)	Importance of item to you	Simulation design elements delivered
Scenario resembled real-life situation Agree Strongly Agree Overall	4 (17.4%) 25 (82.8%) 29 (100%)	4 (13.8%) 23 (80%) 27 (94%)
Real life factors, situations, and variables were built into the simulation Agree Strongly Agree Overall	4 (86%) 25 (14%) 29 (100%)	3 (10%) 24 (82.8) 27 (93%)

Table 2.2. NLN Simulation Design Scale responses forFidelity of Simulation

Qualitative Results

Thematic analysis of the debriefing sessions and the post-survey responses revealed the following four themes: 1) Better understanding of technology, 2) Improved communication among team members, 3) Benefit of true to life experience, and 4) Increased knowledge level and confidence.

Better understanding of technology. In the debriefing process students commented that initially they wished they had a better orientation as they felt nervous, lost, but still liked the experience. They also commented on the technical challenges that came with the robot and equipment. For instance, the students commented they felt lost and nervous because they did not know their team members and did not feel fully oriented to the rooms, robots, and equipment.

Technical challenges with the robot included that at times it was both hard to hear what the robot was saying and hard to see from the robot perspective. The students in the room complained the sound from the robot was not loud enough to hear the medical student over the noise of the room, and the medical students using the robot felt it was hard to visualize the others roles in the room which they felt delayed care. Two medical students stated "because we had to rely on other members of the team to help us identify what was happening (due to technical issues), this made us feel vulnerable and uncomfortable because we had to ask for information we did not feel was readily accessible to us". The same students also commented "they like the robot and felt that if they had more practice using it, they would master the learning curve and could embrace technology because this is the future". When the students were asked if the robot added to the simulation the responses were mixed. Almost all students commented "not in this scenario because of the technical difficulties...but it could have been good if the robot sound and view were improved". Many students commented that the robot was beneficial as it "added to real life experience especially in a rural area where the provider is not always there".

Despite the technical challenges with the equipment, faculty allowed the simulation to continue without intervention or modification as these challenges mimic real-life scenarios. One benefit of allowing the students to work through the technical challenges was being able to observe collaborative teamwork and creative critical thinking used by each of the teams. They had to be creative in problem-solving, and had to trust and rely on the other team members.

Improved Communication Among Team Members. Students reported enhanced communication among team members despite technology challenges, better understanding of the roles of others, and increased value of the experience of learning outside their silo of care, which reinforced the importance of collaborative teamwork. A student commented "patient care requires a team approach and it is not done in isolation (silos). It requires good communication and this experience allowed for that to happen." Other comments were "it made me get out of my silo and I was able to see what others did as I interacted with them...it was great having other team members at the same clinical level to work with as we had like experiences to draw from."

Benefit of True to Life Experience. Overall, 100 percent of nursing and medical students and 80% of the pharmacy students indicated they would recommend this experience to other students in their profession. In the debriefing session and in the post-simulation survey questions, students commented "this should be required... loved it... it was great!" "This experience allowed me to see the whole picture of the patient... I wish we did more of this... in the past we pretended and role played the other roles, today we observed the other roles first hand". Many of the students had participated in IPE experiences in the past through group discussions of case-based scenarios in a classroom setting. They felt the simulation-based IPE scenario was superior to just talking about a case because they could have hands-on practice and see the whole picture unfolding as they worked with other disciplines first hand.

Increased knowledge Level and Confidence. Most students reported feeling increased trust among the team members and felt as a team that participants were prepared which led to quick responses and the correct decisions were made for the patient. One student

shared "because we all relied on one another, it helped us to realize what we know and now I feel prepared for the workforce". Another reported "the simulation strengthened my trust in other professions, because you got to see three disciplines in one scenario providing team-based care to one patient...and they lived".

The student responses confirm the utility of a simulation-based IPE experience as it enhances teamwork and facilitates expertise among team members. Using the robot enhanced the credibility of the other professions in the room as the provider was able to visualize and hear the interventions implemented by the participants in the room and it confirmed the e of the other team members. Overall, the experience allowed for and reinforced an appreciation of collaborative teamwork as students reported increased selfawareness and efficacy. Additionally, having students at similar clinical levels enhanced the activity as each discipline was able to bring forth their clinical expertise and add to the richness of the experience.

Data Integration

Once analysis of the quantitative and qualitative data was complete, the process of data integration began. The integrated results, found in **Table 2.3**, are organized by qualitative theme. Direct quotes are used to give insight into the participants' quantitative survey responses, allowing for a more robust understanding of the student experience with simulation-based IPE.

Discussion

Lessons Learned

There were several lessons learned from the conduct of this feasibility, simulation-based IPE project. First, the orientation process to the simulation equipment should be more deliberate. Providing an instruction link to using the robot prior to the

Table 2.3. Joint	display supporti	ing mixed methods approad	ch of student ex	sperience during IPE simulation:
Theme 1: Better	Understanding	of Technology		
Instrument	Response Format	Item Content	Sample Debriefing Question	Direct Quotes
NLN – Fidelity/ Realism Domain (2 items)	Evaluative (Strongly disagree – strongly agree)	The scenario resembled a real-life situation, and real life factors, situations, and variables were built into the simulation.	Did you feel the robot added to the simulation? If so, how?	"It helped by advancing my understanding of advances in healthcare technology" "It was better than getting a phone call because I could see what was happening with my eyes and can visualize teamwork" "Yes, I liked it helps to train with this for times when MD or specialist is not always on site" "Liked the robot and felt that if had more practice using it, I would master the learning curve and could embrace technology because this is the future"
Theme 2: Impro	ved Communica	ation Among Team Membe	ers	
SPICE- R2 Teamwork Domain (4 –items)	Evaluative (Strongly disagree – strongly agree)	Working with students from different disciplines enhances education and ability to work on an interprofessional team. And to establish collaborative relationships with one another, and understand other's roles	Would you recommend this experience to other students in your professions?	"Yes, because we had to rely on other members of the team to help us identify what was happening (due to technical difficulties) this made us feel vulnerable and uncomfortable because we had to ask for information and did not feel like to information we needed was readily accessible" "Yes, helped me to be able to have better communication with other disciplines"
SPICE- R2 Roles/ Responsibilities	Evaluative (Strongly disagree –	Evaluated using criteria that looks at role definition, training		"Liked it, helped me to work in teams with other professions and to understand their roles"

Domain (3 –items) SPICE- R2 Outcomes	strongly agree) Evaluative (Strongly	requirements of others, and understanding of others roles. Assessed by measuring factors addressing patient		"Appreciation of other disciplines" "Helped me to know the scope of other professions and how to use this knowledge for the patient's benefit" "Yes, Yes, Yes, I will never underestimate the importance of teamwork"
(3-items)	disagree – strongly agree)	centeredness of care, improved care delivery, and reduced cost of care when using an interprofessional team approach		"Helped me identify areas of improvement for my practice"
Theme 3: Benefi	t of True to Life	Experience		
NLN – Fidelity/ Realism Domain (2-item)	Evaluative (Strongly disagree – strongly agree)	The scenario resembled a real-life situation, and real life factors, situations, and variables were built into the simulation.	How will this experience impact your future healthcare practice?	 "Appreciation of other disciplines" "Helped me identify areas of improvement for my practice" "It helped me to work as a team with other professional and prepared me for real world experiences" "Prepared me for real life great practice in preparing for real life"
Theme 4: Reinfo	rced Knowledge	e Level and Confidence		
SPICE- R2 Teamwork Domain (4 –items)	Evaluative (Strongly disagree – strongly agree)	Working with students from different disciplines enhances education and ability to work on an interprofessional team, and enhances collaborative relationships with one another, and	How will this experience impact your future healthcare practice?	"It helped me to be more comfortable and confident in working with other disciplines" "Because we all relied on one another, it helped us to realize what we know and I feel prepared to enter the workforce" "May help me to feel more comfortable in running a code in the future"

understanding other's	"It helped me to be better prepared and
roles	confident in talking and working with a
	team of other disciplines "

activity, coupled with a longer, more in-depth on-site orientation to the equipment prior to the actual simulation scenario, would allow students to be more proficient at the mechanics of operating the equipment. Students and faculty alike were distracted by the challenges of operating or working with the robot (e.g., low speaker volume, difficulty zooming in on the patient and monitor, maneuvering the room) rather than solely focusing on the patient scenario at hand.

To refine future IPE experiences, the faculty will consider trialing a grand round simulation scenario, as the chaotic nature of a cardiac arrest simulation was inherently loud and less conducive to using the robot. Many of the nursing students wanted the medical student to be in the room in person with an ACLS scenario, and commented when learning to use the robot a calmer situation such as a simulated grand round might be more effective.

Additionally, there is additional technology that could address the technical challenges the students experienced with the robot that would improve sound and view of the room. Adding a blue-tooth speaker to the robot may improve the sound, and having a split-screen view of the room (patient and vital sign monitor) would be beneficial to the student using the robot. Furthermore, allowing for more practice time with the robot would also allow for the students to master the learning curve in regards to robotic capabilities.

In any simulation, to make it realistic, students need to do and not pretend. Therefore, students need real working equipment and supplies. For this project, critical equipment and supplies were available; however, the scenarios would have been enhanced if items were restocked between scenarios.

Finally, the technical challenges with the equipment ended up being a learning opportunity for the students. As a result, students had to work more collaboratively as a team to problem solve the issue and rely on one another's expertise. Allowing these technical challenges in the simulation did mimic real life scenarios in the hospital setting, as the rooms can be chaotic, equipment fails, and mistakes happen which forces teams to pull together and work collaboratively to optimize patient outcomes.

For an IPE program to be successful, several key elements are necessary, including funding, institutional support, good communication, and shared vision among the key stakeholders and interprofessional teams (Lawlis, Anson, & Greenfield, 2014). In terms of stakeholders, inter-disciplinary faculty must work together in a coordinated effort to support the simulation-based IPE program. Several other key factors such as flexibility in scheduling, motivated faculty to facilitate, and early involvement of stakeholders (faculty, local partners, and students) are required when employing and maintaining a simulation-based IPE program (Vyas, McCulloh, Dyer, Gregory, & Higbee, 2012). Other positive lessons learned reinforced the importance of maintaining strong partnerships within the university system and the community. For example, the initial recruitment goal was to have a total of 20 volunteers, but as a result of strong partnerships, our recruitment efforts exceeded our expectations as we had a total of 29 participants. Additionally, it was learned that even on a rural campus, it is possible to have a successful simulation-based IPE experience despite the technical challenges.

Implications for Interprofessional Healthcare Education and Future Research

IPE is an excellent tool used to promote teamwork and enhance interprofessional attitudes towards one another, and collaborative teamwork has been associated with

reduction in medical errors, with a potential to improve patient outcomes (Haizlip & Neumayr, 2016; Hausman, 2014). Schools using IPE with simulation can better prepare students to work in interprofessional teams delivering safer patient care (Baker et al., 2008; Headrick et al., 2012; Mohaupt, Van Soeren, Andrusyszyn, MacMillan, Devlin-Cop, & Reeves, 2012; Neville, Petro, Mitchell, & Brady, 2013; Shrader, McRae, King, & Kern, 2011). Improved teamwork and enhanced trust among team members were demonstrated in this simulation-based IPE project. When students worked together to problem solve a clinical issue, patient care and patient outcomes are improved which supports previous research. Several future implications for education were identified, including developing clinical scenarios designed to enhance students' soft skills, using simulation-based scenarios designed to use "remote in" technology, and designing IPE experiences tailored to similar educational levels.

As educators, it is important to reinforce soft skills such as communication clarity, active listening, and conflict resolution. By designing and implementing scenarios around the soft skills vital to effective and efficient interprofessional teams, simulation has the potential to be an effective technique in teaching the difficult art of communication, bridging the gap across silos of care (Baker et al., 2008; Balogun, Rose, Thomas, Owen, & Brasher, 2014; Marken, Zimmerman, Kennedy, Schremmer, & Smith, 2010; Shoemaker, Platko, Cleghorn, & Booth, 2014). One such scenario designed to enhance soft skills learning and reinforce collaborative teamwork could be a simulated grand round involving students from multiple disciplines discussing the clinical case from their professional perspective, as students must learn how to clearly communicate a clinical issue with the various disciplines so accurate treatment can be implemented in a timely

fashion. Better training focused on developing solid communication skills is vital to improving patient outcomes, as research has shown many medical errors are related to poor communication among team members (Haizlip & Neumayr, 2016; Hausman, 2014). Finally, IPE could be used in pairing a novice student with a senior-level student to promote mentorship; novice students could observe how simulation-based IPE should be conducted, maximizing student success in future IPE experiences.

Another novel use of simulation-based IPE could be the inclusion of family members into a scenario to mimic real life clinical scenarios, allowing the student to practice translating medical terminology into plain language that patients and families can understand. Simulation-based IPE could also be used to practice the delivery of bad news to patients and families, while promoting empathy and understanding. Future research should focus on the effect of simulation-based IPE on quality of patient-provider interactions.

Simulation involving "remote in" technology using telehealth machinery is also an important, as providers will continue to heavily rely on these technologies to provide quality care and access to the patients in rural communities. Allowing students to practice with this technology allows for mastery of skills needed to provide care to rurally located patients, and it allows for students to experience real-world situations they will likely encounter in the workforce upon graduation. Research should examine how best to incorporate these telehealth tools into different IPE scenarios to enhance rural health care delivery.

IPE is a critical component to include when educating healthcare professionals. To make the most of the experience, it is key to include students from the various

professions that are at the same level in their clinical experiences. Students that are at the same level can learn from one another, with one another, and about one another, enhancing the educational experience. When novice students from one discipline are paired with senior-level students from another, the novice students may not yet understand their role adequately enough to be able to participate meaningfully in the scenario.

Limitations

While demonstrating feasibility and acceptability, this project did have some limitations. The small sample size limits generalizability. Additionally, pre and postsurveys were conducted the day of the exercise; we were not able to evaluate retention of effect.

Conclusion

Complex healthcare now requires a collaborative and team approach to patient care. IPE trains students to work as part of a healthcare team. The IOM (2010) charged academic institutions to make a real obligation to incorporate IPE into the curriculum, and accreditation agencies identified IPE as essential form of education to achieving safe, quality patient-centered care (Decker et al., 2015). Human patient simulation has proven to be an effective tool for bridging the gap between classroom didactic material and its application in the clinical setting. Healthcare professionals must work as a collaborative team to ensure patient safety, provide quality healthcare, and share skills and knowledge appropriately (Decker et al., 2015). Through a hands-on approach using various learning modes simultaneously, IPE with a simulation-based experiential learning approach allows for the development and mastery of these competencies, which promotes collaborative teamwork while protecting patients. Using "remote-in" technology in a simulation-based IPE activity is one way to foster IPE in a rural setting. This project confirmed it is feasible to offer simulation-based IPE in a rural setting and collaborative teamwork is enhanced using "remote in" technology during a simulation-based IPE activity.

REFERENCES

- Agency for Healthcare Research and Quality. (2008) TeamSTEPPS: Team strategies & tools to enhance performance & patient safety instructor guide. Washington, DC: AHRQ Publications. Retrieved from <u>https://www.ahrq.gov/teamstepps/index.html</u>
- Baker, C., Pulling, C., McGraw, R., Dagnone, J., Hopkins-Rosseel, D., & Medves, J. (2008). Simulation in interprofessional education for patient centered collaborative care. *Journal of Advanced Nursing*, 64(4), 372-379. Retrieved from <u>http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2008.04798.x/full</u>
- Balogun, S. A., Rose, K., Thomas, S., Owen, J., & Brashers, V. (2014). Innovative interprofessional geriatric education for medical and nursing students: Focus on transitions in care. *QJM: An International Journal of Medicine*, *108*(6), 465-471. doi: <u>http://dx.doi.org/10.1093/qjmed/hcu226</u>
- Booth, T. L. & McMullen-Fix, K. (2012). Innovation center: Collaborative interprofessional simulation in a baccalaureate nursing education program. *Nursing Education Perspectives*, 33(2), 127-129. Retrieved from http://dx.doi.org/10.5480/1536-5026-33.2.127
- Bureau of Labor Statistics. (2017). Occupational employment statistics. Retrieved from https://www.bls.gov/oes/current/oes291141.htm#nat

Center for Connected Health Policy. (2017). What is telehealth. Retrieved from http://www.cchpca.org/what-is-telehealth

Clarke, V. & Braun, V. (2013) Teaching thematic analysis: Overcoming challenges and developing strategies for effective learning. *The Psychologist*, 26(2), 120-123.Retrieved from

http://www.thepsychologist.org/uk/archive/archive_home.cfm?volumeID=26&edi tionID=222&article

Creswell, J. W. (2015). *A concise introduction to mixed methods research*. Thousand Oaks, Ca.: SAGE Publications.

Decker, S. I., Anderson, M., Boese, T., Epps, C., McCarthy, J., Motola, I., ... & Scolaro, K. (June, 2015). Standards of best practice: Simulation standard VII: Simulationenhanced interprofessional education. *Clinical Simulation in Nursing*, 11(6). 293-297. Retrieved from <u>http://nursing.iupui.edu/development/conferencesinstitutes/pneg/friday-</u>

presentations/Breakout3F_AckermannINACSL_Standards%20presentation.pdf

Dominquez, D. G., Fike, D. S., MacLaughlin, E. J., and Zorek, J. A. (November 30, 2016). *Students perception of interprofessional education revised (SPICE-R2)*.
 Retrieved from <u>https://nexusipe.org/advancing/assessment-evaluation/students-perceptions-interprofessional-clinical-education-revised</u>

- Fetters, M. D., Curry, L., A., & Creswell, J. W. (2013, December). Achieving integration in mixed methods designs- Principles and practices. *Health Services Research*, 48(6Pt2), 2134-2156. Doi:10.1111/1475-6673.12117
- Gallagher-Lepak, S., Scheibel, P., Gibson, C. (June, 2009). Integrating telehealth in nursing curricula: Can you hear me now? *Online Journal of Nursing Informatics*, 13 (2). Retrieved from <u>http://ojni.org/13_2/GallagherLepak.pdf</u>
- Haizlip, J. & Neumayr, S. (2016). Room of errors. Retrieved from University of Virginia, ASPIRE Center website:

https://ipe.virginia.edu/educationalactivities/clinicalprograms/roomoferrors/

- Hausman, S. (June 2, 2014). Room of errors saves lives. National Public Radio. Podcast retrieved from: <u>http://wvtf.org/post/room-errors-saves-lives#stream/0</u>
- Headrick, L. A., Barton, A. J., Ogrinc, G., Strang, C., Aboumatar, H. J. Aud, M. A.,
 ...Patterson, J. E. (2012). Results of an effort to integrate quality and safety into medical and nursing school curricula and foster joint learning. *Health Affairs*, *31*(12), 2669-2680. doi: 10.1377/hlthaff.2011.0121
- Health Resources and Services Administration (March, 2015). Telehealth in rural America. [policy brief]. Retrieved from <u>https://www.hrsa.gov/advisorycommittees/rural/publications/telehealthmarch2015</u> <u>.pdf</u>
- Hicks, F. D., Coke, L., Li, S. (June, 2009). The effect of high-fidelity simulation on nursing students' knowledge and performance: A pilot study. Retrieved from <u>https://www.ncsbn.org/09_SimulationStudy_Vol40_web_with_cover.pdf</u>
- Institute of Medicine (2010). The future of nursing: Focus on education. Retrieved from http://iom.nationalacademies.org/~/media/Files/Report%20Files/2010/The-Future-of-Nursing%20Education%202010%20Brief.pdf
- Ivankova, N. V., Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential explanatory design: From theory to practice. *Field methods*, *18*(1), 3-20.

Lawlis, T. R., Anson, J., & Greenfield, D. (2014). Barriers and enablers that influence sustainable interprofessional education: A literature review. *Journal of Interprofessional Care, 28*(4), 305-310. Retrieved from <u>http://www.tandfonline.com/doi/abs/10.3109/13561820.2014.895977?journalCod</u> <u>e=ijic20</u>

- Liaw, S. K., Siau, C., Zhou, W. T., & Lau, T. C. (November, 2014). Interprofessional simulation-based education program: A promising approach for changing stereotypes and improving attitudes toward nurse-physician collaboration. *Applied Nursing Research* [serial online]. November 2014; 27(4) 258-260. Retrieved from <u>http://dx.doi.org/10.1016/j.apnr.2014.03.005</u>
- Marken, P. A., Zimmerman, C., Kennedy, C., Schremmer, R., & Smith, K. V. (2010).
 Human simulators and standardized patients to teach difficult conversations to interprofessional healthcare teams. *American Journal of Pharmaceutical Education*, 74(7), 120-130. Retrieved from http://www-ncbi-nlm-nih-gov.pallas2.tcl.sc.edu/pmc/articles/PMC2972514/
- McGahie, W. C., Issenberg, S. B., Cohen, E. R., Barsuk, J. H., Wayne, D. B. (June, 2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. *Academic Medicine*, 86(6), 706-711. doi:

10.1097/ACM.0b013e318217e119

- Mohaupt, J., van Soeren, M., Andrusyszyn, M., A., MacMillan, K., Devlin-Cop, S., & Reeves, S. (2012). Understanding interprofessional relationships by the use of contact theory. *Journal of Interprofessional Care, 26*(5), 370-375. doi: 10.3109/13561820.2012.673512
- National League for Nursing (2005). Simulation design scale student version. Retrieved from <u>http://www.nln.org/docs/default-source/professional-development-</u> programs/nln-instrument_simulation-design-scale.pdf?sfvrsn=0

Neville, C. C., Petro, R., Mitchell, G. K., & Brady, S. (2013). Team decision making:

Design, implementation and evaluation of an interprofessional education activity for undergraduate health science students. *Journal of Interprofessional Care*, 27(6), 523-525. doi:10.3109/13561820.2013.784731

- Palaganas, J. C., Epps, C., & Raemer, D. B. (2014). A history of simulation-enhanced interprofessional education. *Journal of Interprofessional Care*, 28(2) 110-115 6p. doi:10.3109/13561820.2013.869198.
- Pippitt, K., Moloney-Johns, A., Jalilibahabadi, S. & Gren, L. H. (April, 2015).
 Collaboration versus competition: An interprofessional education experience. *Family Medicine*, 47(4). Retrieved from: <u>http://www-ncbi-nlm-nih-</u>gov.pallas2.tcl.sc.edu/pubmed/25853601
- Rural Health Information Hub. (2017). Education and training of the rural healthcare workforce. Retrieved from <u>https://www.ruralhealthinfo.org/topics/workforce-</u> education-and-training
- Shoemaker, M. J., Platko, C. M., Cleghorn, S. M., & Booth, A. (2014). Virtual patient care: An interprofessional education approach for physician assistant, physical therapy and occupational therapy students. *Journal of Interprofessional Care*, 28(4), 365-367. doi: 10.3109/13561820.2014.891978
- Shrader, S., McRae, L., King, W. M., & Kern, D. (2011). A simulated interprofessional rounding experience in a clinical assessment course. *American Journal of Pharmaceutical Education*, 75(4), 61. Retrieved from <u>http://www-ncbi-nlm-nih-gov.pallas2.tcl.sc.edu/pmc/articles/PMC3138354/</u>

Smithburger, P. L., Kane-Gill, S. L., Kloet, M. A., Lohr, B., & Seybert, A. L. (2013).

Advancing interprofessional education through the use of high fidelity human patient simulators. *Pharmacy Practice*, *11*(2), 61-65. Retrieved from <u>http://eds.a.ebscohost.com.pallas2.tcl.sc.edu/ehost/pdfviewer/pdfviewer?sid=dcf5</u> 8deb-5d28-4040-a94c-f5816ecbec0e%40sessionmgr4005&vid=3&hid=4211

 Whelan, J. J., Spencer, J. F., & Dalton, L. (2008). Building rural healthcare teams through Interprofessional simulation-based education. [paper] 10th National Rural Health Conference]. Retrieved from <u>https://www.ruralhealth.org.au/10thNRHC/10thnrhc.ruralhealth.org.au/papers/doc</u> <u>s/Spencer_Judy_C4.pdf</u>

Vyas, D., McCulloh, R., Dyer, C., Gregory, G., & Higbee, D. (2012). An interprofessional course using human patient simulation to teach patient safety and teamwork skills. *American Journal of Pharmaceutical Education*, 76(4), 71. Retrieved from <u>http://doi.org/10.5688/ajpe76471</u>

CHAPTER 3

CONCLUSION

The results of this project provided insight into best practice guidelines for implementing IPE simulation-based education into the curriculum in rural settings. Schools that incorporate IPE with simulation into the curriculum can better prepare students to work in interprofessional teams delivering safer patient care (Baker et al., 2008; Headrick et al., 2012; Mohaupt, Van Soeren, Andrusyszyn, MacMillan, Devlin-Cop, & Reeves, 2012; Neville, Petro, Mitchell, & Brady, 2013; Shrader, McRae, King, & Kern, 2011). Improved teamwork and enhanced trust among team members were demonstrated in this simulation-based IPE project. When students collaboratively problem solved a clinical issue, patient care and patient outcomes were improved which supports previous research. Several future implications for nursing practice/education, health policy, leadership, and directions for future research were identified including developing clinical scenarios designed to enhance students' soft skills, using simulationbased scenarios designed to use "remote in" technology, and designing IPE experiences tailored to similar educational levels.

Implications for Nursing Practice/Education

IPE is an excellent tool used to promote teamwork and enhance interprofessional attitudes towards one another, and collaborative teamwork has been associated with reduction in medical errors, with a potential to improve patient outcomes (Haizlip & Neumayr, 2016; Hausman, 2014). Schools using IPE with simulation can better prepare

students to work in interprofessional teams delivering safer patient care (Baker et al., 2008; Headrick et al., 2012; Mohaupt, Van Soeren, Andrusyszyn, MacMillan, Devlin-Cop, & Reeves, 2012; Neville, Petro, Mitchell, & Brady, 2013; Shrader, McRae, King, & Kern, 2011). Improved teamwork and enhanced trust among team members were demonstrated in this simulation-based IPE project. When students worked together to problem solve a clinical issue, patient care and patient outcomes are improved which supports previous research. Several future implications for education were identified, including developing clinical scenarios designed to enhance students' soft skills, using simulation-based scenarios designed to use "remote in" technology, and designing IPE experiences tailored to similar educational levels.

As educators, it is important to reinforce soft skills such as communication clarity, active listening, and conflict resolution. By designing and implementing scenarios around the soft skills vital to effective and efficient interprofessional teams, simulation has the potential to be an effective technique in teaching the difficult art of communication, bridging the gap across silos of care (Baker et al., 2008; Balogun, Rose, Thomas, Owen, & Brasher, 2014; Marken, Zimmerman, Kennedy, Schremmer, & Smith, 2010; Shoemaker, Platko, Cleghorn, & Booth, 2014). One such scenario designed to enhance soft skills learning and reinforce collaborative teamwork could be a simulated grand round involving students from multiple disciplines discussing the clinical case from their professional perspective, as students must learn how to clearly communicate a clinical issue with the various disciplines so accurate treatment can be implemented in a timely fashion. Better training focused on developing solid communication skills is vital to improving patient outcomes, as research has shown many medical errors are related to

poor communication among team members (Haizlip & Neumayr, 2016; Hausman, 2014). Finally, IPE could be used in pairing a novice student with a senior-level student to promote mentorship; novice students could observe how simulation-based IPE should be conducted, maximizing student success in future IPE experiences.

Another novel use of simulation-based IPE could be the inclusion of family members into a scenario to mimic real life clinical scenarios, allowing the student to practice translating medical terminology into plain language that patients and families can understand. Simulation-based IPE could also be used to practice the delivery of bad news to patients and families, while promoting empathy and understanding. Future research should focus on the effect of simulation-based IPE on quality of patient-provider interactions.

Simulation involving "remote in" technology using telehealth machinery is also important, as providers will continue to heavily rely on these technologies to provide quality care and access to the patients in rural communities. Allowing students to practice with this technology allows for mastery of skills needed to provide care to rurally located patients, and it allows for students to experience real-world situations they will likely encounter in the workforce upon graduation. Research should examine how best to incorporate these telehealth tools into different IPE scenarios to enhance rural health care delivery.

IPE is a critical component to include when educating healthcare professionals, including nurses. To make the most of the experience, it is key to include students from the various professions that are at the same level in their clinical experiences. Students that are at the same level can learn from one another, with one another, and about one

another, enhancing the educational experience. When novice students from one discipline are paired with senior-level students from another, the novice students may not yet understand their role adequately enough to be able to participate meaningfully in the scenario.

Implications for Health Policy

The IOM has charged academic institutions to incorporate interprofessional education into the curriculum focused on developing and sustaining collaborative skills (IOM, 2010). Additionally, accreditation agencies recognize IPE as a vital form of education to achieve safe, quality patient-centered care (Decker et al., 2015). IPE *combined* with simulation-based experiential patient scenarios represents an innovative approach in enhancing learning, as hands-on practice allows students to develop and master core competencies, promotes interdisciplinary collaboration and communication skills, and protects patients. Health policy focusing on team collaboration aimed at reducing medical errors and enhancing patient safety will drive healthcare and subsequent healthcare education in the future.

Implications for Leadership

As previously stated, IPE is a critical component to include when educating healthcare professionals; leadership opportunities arise when groups of students work together. Pairing a novice student with a senior level student to observe how simulationbased IPE should be conducted helps to maximize novice student success in the future. When novice students observe senior students during a simulation, they have the opportunity to discern effective leadership strategies, glean understanding of how simulation works, and develop and understanding of how to communicate with other

disciplines. Pairing students together is a win-win for both as the senior student can teach and demonstrate effective leadership skills to the novice student, while the novice gains valuable insight and experience that will enhance their educational opportunities in the future and help make them a better clinician in practice.

Implications for Future Research

Healthcare is a team approach and in rural areas, the interdisciplinary team is not always physically present and must be brought in via technology. Future research in simulation could involve "remote in" technology using telehealth machinery as an important design element in the simulation. Providers continue to heavily rely on these available technologies in order to provide quality care and access to the patients located in rural communities. Allowing students to practice with this technology allows for mastery of skills needed to provide care to rurally located patients, and it allows for students to experience real-world situations they will likely encounter in the workforce upon graduation. Additionally, research using a simulated-based grand round scenario could also provide insight into communication strategies and collaborative teamwork skills.

Sustainability of the project

To make the most of the IPE experience, it is vital to include students from various professions that are at the same level in their clinical experiences. Students that are at the same level, can learn from one another, with one another, about one another, enhancing the educational experience. Having students at the same level in the clinical arena allows for each students to fully participate in the activity adding to the richness of the experience by fostering trust and collaborative teamwork among the team members.

USCL continues to partner with local agencies including the J. Marion Sims Foundation that has supported USCL for many years through educational grants. Grant money from J. Marion Sims Foundation was used to purchase needed equipment, including the Double Robotics robot, defibrillator and code cart, that was critical to the success of this project. With buy in from stakeholders at the CON, local agencies such as Mid-Carolinas AHEC, and other USC schools, the goal is to pilot simulation-based IPE with the USCL CON senior students and locally placed medical students recruited from AHEC. USCL senior nursing students as well as the faculty are excited, willing, and motivated to see what the future will bring to simulation-based IPE on a rural campus.

Conclusion

Complex healthcare now requires a collaborative and team approach to patient care. IPE trains students to work as part of a healthcare team. The IOM (2010) charged academic institutions to make a real obligation to incorporate IPE into the curriculum, and accreditation agencies identified IPE as essential form of education to achieving safe, quality patient-centered care (Decker et al., 2015). Human patient simulation has proven to be an effective tool for bridging the gap between classroom didactic material and its application in the clinical setting. Healthcare professionals must work as a collaborative team to ensure patient safety, provide quality healthcare, and share skills and knowledge appropriately (Decker et al., 2015). Through a hands-on approach using various learning modes simultaneously, IPE with a simulation-based experiential learning approach allows for the development and mastery of these competencies, which promotes collaborative teamwork while protecting patients when practicing. Thus, after careful consideration of the literature review, analysis of the research, and implementation of the feasibility
project, it was concluded that simulation-based IPE using remote-in technology could be successfully conducted at the USCL Simulation Lab using senior nursing students in their last semester, and students from a School of Medicine and a School of Pharmacy associated and recruited through Mid-Carolinas AHEC.

References

- Agency for Healthcare Research and Quality. (2008) TeamSTEPPS: Team strategies & tools to enhance performance & patient safety instructor guide. Washington, DC: AHRQ Publications. Retrieved from <u>https://www.ahrq.gov/teamstepps/index.html</u>
- Baker, C., Pulling, C., McGraw, R., Dagnone, J., Hopkins-Rosseel, D., & Medves, J. (2008). Simulation in interprofessional education for patient centered collaborative care. *Journal of Advanced Nursing*, 64(4), 372-379. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2008.04798.x/full
- Balogun, S. A., Rose, K., Thomas, S., Owen, J., & Brashers, V. (2014). Innovative interprofessional geriatric education for medical and nursing students: Focus on transitions in care. *QJM: An International Journal of Medicine*, *108*(6), 465-471. doi: <u>http://dx.doi.org/10.1093/qjmed/hcu226</u>
- Bolesta, S. & Chmil, J. V. (2014). Interprofessional education among student health professionals using human patient simulation. *American Journal of Pharmaceutical Education*, 78(5), 94. Retrieved from http://doi.org/10.5688/ajpe78594
- Booth, T. L. & McMullen-Fix, K. (2012). Innovation center: Collaborative interprofessional simulation in a baccalaureate nursing education program. *Nursing Education Perspectives*, 33(2), 127-129. doi: http://dx.doi.org/10.5480/1536-5026-33.2.127

- Canadian Interprofessional Health Collaborative Practice (2017). [website]. Retrieved from <u>http://www.cihc.ca/</u>
- Center for Connected Health Policy. (2017). What is telehealth. Retrieved from http://www.cchpca.org/what-is-telehealth

Dearholt, S. & Dang, D. (2012). John Hopkins nursing evidence-based practice: Models and guidelines. (2nd ed.). Retrieved from <u>http://site.ebrary.com.pallas2.tcl.sc.edu/lib/southcarolina/reader.action?docID=10</u> <u>540866&ppg=56</u>

Decker, S. I., Anderson, M., Boese, T., Epps, C., McCarthy, J., Motola, I., ... & Scolaro, K. (June, 2015). Standards of best practice: Simulation standard VII: Simulationenhanced interprofessional education. *Clinical Simulation in Nursing*, 11(6). 293-297. Retrieved from <u>http://nursing.iupui.edu/development/conferencesinstitutes/pneg/friday-</u>

presentations/Breakout3F_AckermannINACSL_Standards%20presentation.pdf

Dominquez, D. G., Fike, D. S., MacLaughlin, E. J., and Zorek, J. A. (November 30, 2016). *Students perception of interprofessional education revised (SPICE-R2)*.
 Retrieved from https://nexusipe.org/advancing/assessment-evaluation/students-perceptions-interprofessional-clinical-education-revised

Gallagher-Lepak, S., Scheibel, P., Gibson, C. (June, 2009). Integrating telehealth in nursing curricula: Can you hear me now? *Online Journal of Nursing Informatics*, 13 (2). Retrieved from <u>http://ojni.org/13_2/GallagherLepak.pdf</u>

Haizlip, J. & Neumayr, S. (2016). Room of errors. Retrieved from University of Virginia,

ASPIRE Center website:

https://ipe.virginia.edu/educationalactivities/clinicalprograms/roomoferrors/

- Hausman, S. (June 2, 2014). Room of errors saves lives. *National Public Radio*. Podcast retrieved from: http://wvtf.org/post/room-errors-saves-lives#stream/0
- Headrick, L. A., Barton, A. J., Ogrinc, G., Strang, C., Aboumatar, H. J. Aud, M. A.,
 ...Patterson, J. E. (2012). Results of an effort to integrate quality and safety into medical and nursing school curricula and foster joint learning. *Health Affairs*, *31*(12), 2669-2680. doi: 10.1377/hlthaff.2011.0121
- Health Resources and Services Administration (March, 2015). Telehealth in rural America. [policy brief]. Retrieved from <u>https://www.hrsa.gov/advisorycommittees/rural/publications/telehealthmarch2015</u> <u>.pdf</u>
- Hicks, F. D., Coke, L., Li, S. (June, 2009). The effect of high-fidelity simulation on nursing students' knowledge and performance: A pilot study. Retrieved from <u>https://www.ncsbn.org/09_SimulationStudy_Vol40_web_with_cover.pdf</u>
- Institute of Medicine (2010). The future of nursing: Focus on education. Retrieved from http://iom.nationalacademies.org/~/media/Files/Report%20Files/2010/The-Future-of-Nursing/Nursing%20Education%202010%20Brief.pdf

Interprofessional Education Collaborative (2017). Retrieved from

https://ipecollaborative.org/

Lawlis, T. R., Anson, J., & Greenfield, D. (2014). Barriers and enablers that influence sustainable interprofessional education: A literature review. *Journal of Interprofessional Care*, 28(4), 305-310. Retrieved from http://www.tandfonline.com/doi/abs/10.3109/13561820.2014.895977?journalCod e=ijic20

- Le, Q., Spencer, J., & Whelan, J. (2008). Development of a tool to evaluate health science students' experience of an interprofessional education (IPE) programme. *Annals Academy of Medicine Singapore, 37*(12), 1027-1033. Retrieved from http://europepmc.org/abstract/MED/19159037
- Lewis, R., Strachan, A., & Smith, M. M. (2012). Is high fidelity simulation the most effective method for the development of non-technical skills in nursing? A review of the current evidence. *The Open Nursing Journal*, *6*, 82-89. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415625/</u>
- Liaw, S. K., Siau, C., Zhou, W. T., & Lau, T. C. (November, 2014). Interprofessional simulation-based education program: A promising approach for changing stereotypes and improving attitudes toward nurse-physician collaboration. *Applied Nursing Research* [serial online]. November 2014; 27(4) 258-260. Retrieved from http://dx.doi.org/10.1016/j.apnr.2014.03.005
- Marken, P. A., Zimmerman, C., Kennedy, C., Schremmer, R., & Smith, K. V. (2010). Human simulators and standardized patients to teach difficult conversations to interprofessional healthcare teams. *American Journal of Pharmaceutical Education*, 74(7), 120-130. Retrieved from <u>http://www-ncbi-nlm-nih-gov.pallas2.tcl.sc.edu/pmc/articles/PMC2972514/</u>
- McGahie, W. C., Issenberg, S. B., Cohen, E. R., Barsuk, J. H., Wayne, D. B. (June, 2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative

review of the evidence. Academic Medicine, 86(6), 706-711. doi:

10.1097/ACM.0b013e318217e119

- Melnyk, B.M. & Fineout-Overholt, E. (2015). Evidence-based practice in nursing and healthcare. A guide to best practice. (3rd ed.). Philadelphia, PA: Wolters Kluwer Lippincott Williams & Wilkins, pp. 24-39.
- Miller, J. L., Rambeck, J. H., & Snyder, A. (2014). Improving emergency preparedness system readiness through simulation and interprofessional education. *Public Health Reports, 129* (Suppl 4), 129-135. Retrieved from <u>http://www-ncbi-nlmnih-gov.pallas2.tcl.sc.edu/pmc/articles/PMC4187316/</u>
- Mohaupt, J., van Soeren, M., Andrusyszyn, M., A., MacMillan, K., Devlin-Cop, S., & Reeves, S. (2012). Understanding interprofessional relationships by the use of contact theory. *Journal of Interprofessional Care*, *26*(5), 370-375. doi: 10.3109/13561820.2012.673512
- National League for Nursing (2005). Simulation design scale student version. Retrieved from <u>http://www.nln.org/docs/default-source/professional-development-</u> programs/nln-instrument_simulation-design-scale.pdf?sfvrsn=0
- Neville, C. C., Petro, R., Mitchell, G. K., & Brady, S. (2013). Team decision making:
 Design, implementation and evaluation of an interprofessional education activity
 for undergraduate health science students. *Journal of Interprofessional Care*,
 27(6), 523-525. doi:10.3109/13561820.2013.784731
- Palaganas, J. C., Epps, C., & Raemer, D. B. (2014). A history of simulation-enhanced interprofessional education. *Journal of Interprofessional Care*, 28(2) 110-115 6p. doi:10.3109/13561820.2013.869198.

Pippitt, K., Moloney-Johns, A., Jalilibahabadi, S. & Gren, L. H. (April, 2015).
Collaboration versus competition: An interprofessional education experience. *Family Medicine*, 47(4). Retrieved from: <u>http://www-ncbi-nlm-nih-</u>gov.pallas2.tcl.sc.edu/pubmed/25853601

Robins, L., Brock, D. M., Gallagher, T., Kartin, D., Lindhorst, T., Odegard, P. S., ...
Belza, B. (2008). Piloting team simulations to assess interprofessional care. *Journal of Interprofessional Care*, 22(3), 325-328. doi:

10.1080/13561820801886438

- Shoemaker, M. J., Platko, C. M., Cleghorn, S. M., & Booth, A. (2014). Virtual patient care: An interprofessional education approach for physician assistant, physical therapy and occupational therapy students. *Journal of Interprofessional Care*, 28(4), 365-367. doi: 10.3109/13561820.2014.891978
- Shrader, S., McRae, L., King, W. M., & Kern, D. (2011). A simulated interprofessional rounding experience in a clinical assessment course. *American Journal of Pharmaceutical Education*, 75(4), 61. Retrieved from <u>http://www-ncbi-nlm-nih-</u> gov.pallas2.tcl.sc.edu/pmc/articles/PMC3138354/
- Smithburger, P. L., Kane-Gill, S. L., Kloet, M. A., Lohr, B., & Seybert, A. L. (2013).
 Advancing interprofessional education through the use of high fidelity human patient simulators. *Pharmacy Practice*, *11*(2), 61-65. Retrieved from http://eds.a.ebscohost.com.pallas2.tcl.sc.edu/ehost/pdfviewer/pdfviewer?sid=dcf5
 <u>8deb-5d28-4040-a94c-f5816ecbec0e%40sessionmgr4005&vid=3&hid=4211</u>
 University of Virginia Interprofessional Education (2017). The Center for ASPIRE.
- [website]. Retrieved from <u>https://ipe.virginia.edu/</u>

- Walters, S. J. Robertson-Malt, S. & Stern, C. (2015). The measurement of collaboration within healthcare settings: a systematic review protocol of measurement properties of instruments. *JBI Database of Systematic Reviews & Implementation Reports*, *13*(7):24-43. [PM:26455844]. Retrieved from http://ovidsp.tx.ovid.com.pallas2.tcl.sc.edu/sp-3.18.0b/ovidweb.cgi#
- Wang, R., Shi, N, Bai, J., Zheng, Y, & Zhao, Y. (2015). Implementation and evaluation of an interprofessional simulation-based education program for undergraduate nursing students in operating room nursing education: A randomized control trail. *BMC Medical Education*, *15*. 115. Retrieved from <u>http://doi.org/10.1186/s12909-015-0400-8</u>
- Watters, C., Reedy, G., Ross, A., Morgan, N. J., Handslip, R., & Jaye P. (January, 2015).
 Does interprofessional simulation increase self-efficacy: A comparative study? *BMJ Open*, 5(1). Retrieved from

http://bmjopen.bmj.com/content/5/1/e005472.full

 Whelan, J. J., Spencer, J. F., & Dalton, L. (2008a). Building rural healthcare teams through Interprofessional simulation-based education. [paper] 10th National Rural Health Conference]. Retrieved from <u>https://www.ruralhealth.org.au/10thNRHC/10thnrhc.ruralhealth.org.au/papers/doc</u> <u>s/Spencer_Judy_C4.pdf</u>

Whelan, J. J., Spencer, J. F., & Rooney, K. (2008). A 'RIPPER' project: Advancing rural interprofessional health education at the University of Tasmania. *Rural and Remote Health*, 8(3), 1-11. Retrieved from http://eds.b.ebscohost.com.pallas2.tcl.sc.edu/ehost/detail/detail?vid=9&sid=814ac

<u>b35-ed66-4af5-b5f8-</u>

<u>02b6505d96ce%40sessionmgr113&hid=120&bdata=JnNpdGU9ZWhvc3QtbGl2</u> <u>ZQ%3d%3d#AN=105698710&db=ccm</u>

World Health Organization. (2010). Framework for action on interprofessional education & collaborative practice. Geneva, Switzerland: World Health Organization

Vyas, D., McCulloh, R., Dyer, C., Gregory, G., & Higbee, D. (2012). An

interprofessional course using human patient simulation to teach patient safety and teamwork skills. *American Journal of Pharmaceutical Education*, *76*(4), 71. Retrieved from <u>http://doi.org/10.5688/ajpe76471</u>

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
Wang et al. (2015)	55 females (3 rd) year	Validity: (potential	Students in the IPE	Integrated course with
Implementation and	nursing students and 46	threats include setting	group with simulation	IPE and simulation
evaluation of an	(4 th) year medical	selection, patient	showed statistically	provided a positive
interprofessional	students were randomly	selection, characteristics	significant responses to	impact toward
simulation-based	assigned to IPE (N=28)	of randomized patients,	four of nineteen	learning.
education program for	or traditional group	protocol differences,	questions on the RIPLS,	Further longitudinal
undergraduate nursing	(N=27). In the IPSE	etc.) Small sample size	reflecting a more	studies are needed to
students in operating	group 1-2 nursing and	nursing students (n=55);	positive attitude toward	see if IPSE can
room nursing	3-4 medical students	but it is in sample range	IPE (teamwork,	translate into enhanced
education: a	were arranged in 1	for IPSE studies.	communication, and	workplace
randomized controlled	group and were asked to	Observations were also	clinical knowledge) as	improvements
trail	perform surgical	done immediately after	shown below:	
	procedures on animals	the simulation. Due to	Cronbach alpha reported	
Level I – C	as a team. In the	small sample size,	as:	
RCT	traditional (control)	quality rating is poor	Content validity was	
	group only nursing	(C)	(0.91)	
Pre-and post- survey	students were asked to	Reliability: (refers to	RIPLS (0.92)	
	practice surgical skills	repeatability of the test)		

APPENDIX A - EVIDENCE TABLE

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
55 students (nursing	under the instructor's	The English version	Teamwork and	
and medical)	supervision. Students	RIPLS tool was found	collaboration (0.86)	
	were assigned Pre-and	reliable and valid.	Professional identity	
	post-surveys were done	Content validity was	(0.80)	
	using RIPLS scale	0.91	Roles and responsibility	
	3 simulated scenarios	Could have possible	(0.71)	
	lasting three hours over	detection bias as one		
	2 weeks (each student	group was nursing and		
	participated in 2	medical students and		
	scenarios)	one group was nursing		
		only lead by an		
		instructor leading to		
		better prepared group		
		lead by instructor		
		Randomization		
		minimizes threats to		
		internal validity.		
		However, blinding or		
		masking of the subjects		
		and providers was not		
		done due to logistics of		
		the study.		
		RIPLS (0.92) since no		
		Chinese version was		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		available it was		
		translated into Chinese,		
		with results translated		
		back to English. Both		
		English translations		
		were compared to		
		distinguish for changes		
		in meaning. 5 experts		
		confirmed the validity		
		of the Chinese version		
		to ensure cultural		
		competence		
		Cronbach alpha reported		
		as:		
		Content validity of		
		questionnaire was		
		excellent (0.88)		
		Reliability was (0.86)		
Vyas et al. (2012)	Pre/post Pilot Study	Internal Validity:	Score on 8 of 30 items	Simulation provided an
An interprofessional	compared (Pre-licensure	(Threats include	improved over pre-	opportunity to
course using human	group) of	maturation, testing,	simulation scores	recognize and react to
patient simulation to	208 students (pharmacy,	instrumentation, history,	Score on 3 of 10 items	patient safety issues
	medical and nursing)	and selection) Learners	on team building also	and to enhance their

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
teach patient safety	total in 2009 when	had varied levels of	improved after	interprofessional
and teamwork skills	simulation added to a	clinical experience.	participating in a	collaboration.
Level II - A	group prior to that in	Increased apprehension	simulation exercise	PDSA cycles are
Quasi-experimental,	2007-2008 (no	if students had never	90% said simulation	integral to developing
non-randomized	simulation)	had simulation	increased their	simulations
	11% pharmacy, 46%	experience (no	understanding of	Involving all
	medical, and 26%	orientation)	professional roles and	stakeholders is key to
	nursing students	Confusion about roles	the importance of	well-rounded
	Each group of 10-12	and responsibilities	interprofessional	experience for students
	students (all disciplines)	(could have been	education	in simulations
	received 5 patient cases	clearer)	Significant positives on	Early involvement of
	and conducted their role	Analysis was group data	KSA	CSL staff is critical and
	in a 10-minute time	only and not matched to	Training did not dilute	adequate numbers of
	frame to determine the	de-identified individuals	their own training	faculty and staff to run
	best course of action in	Non-randomization	(p<0.001)	simulations is needed
	providing safe and	poses threat to internal	Competent	Flexibility is a must in
	effective care.	validity through bias.	professionals don't	coordinating all the
	Students' completed30	Reliability: Likert scale	make errors leading to	discipline schedules
	item Likert scale on	and survey proved	harm (p<0.001)	
	KSA regarding	reliable as a testing tool	Staff should be	
	teamwork and QI.		reprimanded when an	
	Completed a 10-item		error occurs (p<0.001)	
	team building and			
	interprofessional			

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	communication survey		Student's felt increased	
	and general course		comfort when disclosing	
	evaluation		an error (p<0.002)	
Watters et al. (2015)	Quasi-experimental,	Validity:	Qualitative analysis	Simulation training
Does interprofessional	non-randomized	Nonrandomized student	showed improvements	enhances self-efficacy
simulation increase	(Post-licensure group/ in	group poses threat to	in	and leads to increases
self-efficacy: a	early years post	validity. Time	communication/teamwo	in perceived ability to
comparative study	graduate education)	limitations did not allow	rk and leadership	communicate/work as a
Level II -A	156 doctors and 115	for measuring nurses in-	through thematic	team and
Quasi-experimental,	nurses and midwives	depth as it did for	analysis	leadership/management
non-randomized	participated in a 1-day	physicians	Confidence ratings	of clinical situations
	simulation course	Reliability: Evaluation	improved overall for	
	incorporating five	tool developed by a	both doctors and nurse	
	clinical and one	learning scientist with	(p<0.001) from (N=115,	
	communication scenario	expertise in education	nurses with 63% pre)	
	assigned to IP or UP	research for this study	compared to post (N=	
	groups based on	proved reliable (see	57 with 77% post)	
	demand for course	results of the study) but		
	Mixed methods	has yet to be validated.	Improved nurse	
	approach using pre-and	The instrument was felt	(N=115, p<0.001))	
	post-course	to have face validity and	outcomes observed for	
	questionnaires	high content validity	uniprofessional (12%,	
		(designed by experts	N=64)) versus	
		and proven robust over		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		thousands of	interprofessional (20%,	
		simulations) but	n=66)	
		concurrent and		
		predictive validity is not		
		proven	Destars with	
		Retention rate was 70%	interprofessional	
		for nurses 30% for	training was	
		doctor post	significantly associated	
		measurement rate which	with better outcomes for	
		can mean attrition bias	communication/teamwo	
		The doctors second	rk (n=156; n=0.05)	
		comparison was post	1K(n=150, p<0.05)	
		course response only		
		and not compared to a		
		pre-intervention		
		Challenges in running		
		multiple groups over		
		time		
Headrick et al. (2012)	2009-2010 - 6	Validity: Non-	Findings were collected	Results showed that in
Results of an effort to	University sites created	randomization poses	via monthly reports	clinical and simulation
integrate quality and	new educational	threat to internal	from the sites, site	setting, they could
safety into medical	experiences that	validity through bias;	visits, and final site	evaluate changes in
and nursing school	involved 1374 student	student selection was	reports.	student behavior and
	encounters overall			organizational practice.

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
curricular and foster	(classroom, clinical and	based on clinical course	The repeat of test	This study found that
joint learning	simulation activities)	requirements	approach helped faculty	schools using IPE with
Level II - A	51% were nursing and	Lack of available	members use their	simulation can better
Quasi-experimental	48% medical and	critical mass – hard to	evaluation results to	prepare students to
Pilot study generating	remainder 1% were	find clinical based	improve the educational	work in
insights/opinion	pharmacy and physical	faculty members who	experience, once	interprofessional teams
1374 students	therapy students.	were ready to teach	established, set	that deliver safer care.
(medical and nursing)	Each school was	about improvement of	interventions were	Also, found that
from 6 universities	assisted and supported	care	implemented.	schools that
over a 1 year time	by expertly trained	Each site created their		participated in the
frame (2009-2010)	coaches from the	own pilot study, but all		Retooling for Quality
	Retooling for Quality	included IP teams of		and Safety initiative
	and Safety Initiative of	students		made major progress
	the Josiah Macy Jr.	Reliability: Able to		toward the integrations
	Foundation and the	measure the student's		of healthcare
	Institute for Healthcare	reactions to the learning		improvement and
	Improvement	but unable to measure		safety into their
		changes in student's		curricula. This this
		behavior, changes in		approach would be
		organizational practice,		beneficial to other
		or benefits to patients		schools
		(expect in simulation or		
		clinical activities) - this		
		was because there was		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		no available tool to		
		evaluate the education		
		innovations		
		(interventions)		
		With each interaction,		
		faculty used a repeated		
		tests of change approach		
		adjusting the experience		
		based on lessons learned		
		which threatens		
		reliability		
Shrader et al. (2011)	114 Students (medical,	Validity: Non-	Overall, students	Incorporating a
A simulated	pharmacy, and	randomization poses	reported the experience	simulated IPE
interprofessional	physician assistant)	threat to internal	improved their attitudes	experience improved
rounding experience	completed a pre-and	validity through bias.	regarding teamwork and	student attitudes
in a clinical	post-survey to assess	Data collection was	increased their	regarding teamwork
assessment course	interprofessional	attitudinal and self-	satisfaction with	and increased student
Level II - A	attitudes and satisfaction	reported	simulation with mean	satisfaction. Other
Experimental	before and after	(87-91% pre-and post-	scores of 65-75% for	schools should
nonrandomized	participation in an IPE	response rate)	each experience for	consider
(pilot study)	simulation experience.	Groups were	pharmacy students but	implementation of IPE
	Students were divided	imbalanced (3 pharmacy	not the other disciplines.	with simulations
	into 22 groups with 5	and 2 non-pharmacy		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
114 Students	students (3 from	students) may create	Pre-and post-survey	
(medical, pharmacy,	pharmacy and 1 from	bias	results were analyzed	
and physician	each of the other	Also, there was no	using Wilcoxon rank	
assistant)	disciplines)	control group to	sum tests stratified by	
	Each team participated	compare to, and medical	student discipline.	
	in one 75-minute	and physician assistant	Significant	
	simulation using	student's data were not	improvement in	
	anonymous, voluntary	separated for data	confidence after	
	survey instruments and	collection purposes due	simulated activity	
	clinical performance	to different numbers		
	scores	participating		
		Reliability: The 5 point		
		Likert scale survey used		
		was developed by the		
		interprofessional		
		institute and is widely		
		used on MUSC campus.		
Liaw et al. (2014)	Prospective, quasi-	Validity: Evidence was	SSRQ scores: Both	At the pre-licensure
Interprofessional	experimental pre-and	limited to pre-and post-	groups rated the other	level has a great
simulation-based	post-test design study.	test design	group significantly	potential for impact on
education program: A	Students were divided	Non-randomization as	higher (p<0.001) for	collaborative patient
promising approach	into 10 groups (6-7	program was required	perception of the other	centered care
for changing	nursing and 2-3 medical	for nursing students and	health profession after	
stereotypes and	students per group).	optional for medical	simulation than before.	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
improving attitudes	Each group completed	students which could	JSATPNC scores: Both	
toward nurse-	two 15 minute	affect the	groups demonstrated	
physician	simulations	generalizability of the	significant	
collaboration	A 9-item SSRQ with a 5	findings	improvements	
Level II - A	point Likert scale was	Non-randomization	(p<0.001) in scores for	
Prospective, quasi-	used to measure	poses threat to internal	attitudes toward	
experimental pre-and	student's perception of	validity through bias	collaboration between	
post-test design study	one another health	Reliability: 9-item	nurse-physician after	
	profession.	SSRQ with 5 point	simulation	
102 students (medical	A 14-item JSATPNC	Likert scale was		
and nursing)	with a 4-point scale was	evaluated in a previous		
participated with 23	used to measure	study for content		
(100%) medical and	collaboration	validity and test-retest		
73 (92.4%) nursing	Pre-and post-analysis of	reliability.		
completed the	were completed using a	Content validity was		
questionnaire	paired T test.	established by a panel of		
		academics, health and		
		social care professional		
		and pre-registration		
		students. Reported high		
		internal consistency		
		with Cronbach alpha of		
		0.76 to 0.88		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		The 14-item JSATPNC		
		with 4 point Likert scale		
		has a Cronbach alpha of		
		0.85 to 0.87 high		
		internal consistency for		
		this study		
Mohaupt et al. (2012)	Each student was	Validity: Circumstances	Statistically significant	Planning initiatives that
Understanding	randomly assigned to a	did not allow for control	increases in positive	promote an atmosphere
interprofessional	small IPE group	groups so there was no	attitudes in three of four	conducive to
relationships using	consisting of 1 student	comparison group	subscales were found:	intergroup contact are
contact theory	from each discipline.	Voluntary participation	competency and	important in IPE
Level II - A	Each group participated	and those more anxious	autonomy, perceived	education and can
Quasi-experimental	in 3 scenarios lasting 90	to learn about IPE	need for collaboration	foster improved
design pre-and post-	minutes each over the	volunteered which could	and actual collaboration.	collaboration among
test	course of 1 day.	influence bias as those	ANOVA revealed	students.
		more anxious to learn	significant effect for	Targeting student in
84 students (nursing,		about IPE volunteer	time for competency	their final semesters
pharmacy tech, OT		Non-randomization	and autonomy scales	also promotes equality
assistant, PT assistant,		poses threat to internal	within groups (p=0.004)	
and paramedic)		validity through bias	but no difference	
		50% of the students	between professions	
		were from nursing	(p=0.885), for	
		Reliability: The IEPS	"perceived need for	
		measurement scale has a	collaboration"	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		Cronbach's alpha	(P=0.026) within group	
		reliability value of 0.87	and (p=0.753) between	
		which is high and has	groups, for "perception	
		been widely used.	of actual collaboration"	
			(p=0.004) for within and	
			(p=0.193) for between	
			groups.	
Whelan et al. (2008)	The RIPPER program	Validity: Non-	98 and 96 pre-and post-	The RIPPER is an
A "RIPPER" project:	focused on a multi-	randomization poses	response rate.	effective model for IPE
advancing rural	station learning circuit	threat to internal	Multiple categorizations	and practice and
interprofessional	using IPE scenarios	validity through bias	using chi-squared tests	resulted in an increased
health education at the	where students worked	Reliability: 13-item	where p 0.05) were	awareness and
university of	in teams. Students were	questionnaire using 5	noted especially under	importance of
Tasmania	evaluated using 2	point Likert scale and 8	collaboration and	collaboration among
Level II - B	questionnaires before	-item qualitative	understanding roles and	team members.
Pilot study	and after the simulation.	questions were asked.	responsibilities.	It also mentioned that
Pre-and post-Quasi-	60 students volunteered	No information about	70% of students	sustainability of the
experimental design	over 2 weekends in	the validity or reliability	identified interactive	project is difficult as
	2006 and 2007	of the instrument tools	and authentic case-	resources, time
60 students (medicine,	Quantitative data	was mentioned.	based learning as a	constraints, and
nursing, and	collected on a 13-item		positive aspect	commitment to the
pharmacy)	questionnaire		80% of students noted	program are ongoing
			themes of positive	issues to combat
			mentoring guidance and	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	Qualitative data		support as crucial to	
	collected on an 8-item		learning	
	questionnaire			
Le et al. (2008)	Pre-and Post-quasi	Validity was tested	Factor analysis of the 12	Evidence supports this
Development of a tool	experimental design	using experts in the field	statements measured	tool to adequately
to evaluate health	studying 29 students	and construct using	identified 3 main factors	measure student's
science students'	(pharmacy, nursing,	exploratory factor	including appreciation	attitudes and identified
experience of an	medicine)	analysis (KMO values	of professional roles,	3 main factors
interprofessional	RIPPER program is a	>0.5 are acceptable) and	improved practice based	including appreciation
education (IPE)	health education pilot	pre-questionnaire	on teamwork, and	of professional roles,
program	program using	(KMO = 0.699) and	importance of working	improved practice
Level II - C	interprofessional case	post-questionnaire	together to enhance	based on teamwork,
Pre-and Post-quasi	based scenarios using	(KMO = 0.453). The	clinical practice.	and importance of
experimental design	simulation	post -questionnaire	Factor analysis showed	working together to
	RIPPER used pre/post	leads one to rethink the	that 2 factors explained	enhance clinical
	quasi-experimental	variables to include in	67% of the total	practice. All were
	design to evaluate	the data or collect more	variance.	enhanced with
	students understanding	data.	All 3 factors were	simulation
	and experience of	Weakness: small sample	loaded and used as the	
	interprofessional	size (n=29) and non-	3rd factor had emerged	
	practice conducted	randomization poses	on the pre-questionnaire	
	during a weekend	threat to internal	data and was considered	
	retreat	validity through bias	a key reason for doing	
			IPE	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		Reliability of instrument		
		was tested using		
		Cronbach alpha and		
		values above 0.6 were		
		considered acceptable.		
		Cronbach alpha pre		
		(0.903) and post		
		questionnaire (0.928) =		
		satisfactory reliability		
Smithburger et al.	Students (pharmacy,	Validity: Non-	The CATS scores	The feasibility project
(2013)	nursing, physician	randomized group	improved from HFS	proved that successful
Advancing	assistant, medical, and	selection and possible	sessions 1 to 2 (p=0.01),	implementation of this
interprofessional	social work students)	confounding factors that	2 to 3 ((p=0.035) and	design can improve
education using high	were included if they	could impact CATS	overall from 1 to 4	teamwork and
fidelity human patient	volunteered for	assessment scores may	(P=0.001).	communication
simulation	feasibility study	have occurred as	Inter-rater reliability	between the cohort of
Level II - C	Once weekly for 4-week	improvements in scores	between evaluators was	IP students
Quasi-experimental	time periods, teams of	may have increased	high (0.085, 95% CI	
pilot study, feasibility	students worked	because of factors that	0.71, 0.99).	
study nonrandomized	together using	were unable to be	Students perceived HFS	
	simulation to complete	controlled for by	improved:	
	complex scenarios.	investigators such as	communication ability,	
	Four simulations lasting	students became more	confidence in patient	
	for three hour sessions	comfortable with one		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	occurred weekly over a	another because of	care, stimulated interest	
	four-week period.	working together	in IP work	
	Communication was	previously in teams.		
	evaluated using the	Small number of		
	CATS assessment by 2	students participated but		
	independent evaluators	feel this IPE teaching		
	external to the project.	method can be applied		
		to larger scale IP studies		
		Generalizability maybe		
		limited as this was		
		conducted at one		
		university with all		
		health sciences schools		
		in close proximity		
		Reliability CATS is a		
		proven tool with		
		reliability		
Lewis et al. (2012)	Databases: Web of	Validity of the study:	Simulation is positively	Applicability: HFS is
Is high fidelity	Science, Ebsco host	All studies agreed that	associated with	proven to provide
simulation the most	(CINAHL Plus, ERIC,	simulation has benefits,	significantly improved	students with a
effective method for	Embase, Medline),	but each study looked at	communication skills	learning environment
the development of	Cochrane Library,	benefits slightly	which improve team	in which skills can be
non-technical skills in	SCOPUS, Science	differently. In other	performance and	developed, mistakes

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
nursing? A review of	Direct, ProQuest and	words, each study	management in crisis	can be made and
the current evidence	ProQuest Dissertations	analyzed and presented	situations.	learned from, and
Level III - B	and Theses Database)	the data differently so it	This review found that	patient safety is not
Systematic Review of	between 2000-2011.	was hard to draw	some studies found	jeopardized.
Literature between	Only included were	conclusions based on	significant differences	The team agreed that
2000-2011	quantitative pre- and	the data. The robustness	between the impact of	simulation has benefits,
medical and nursing	post-test studies, quasi-	of the studies maybe	simulation and other	but each study looked
students	experimental and single-	questions as there was	educational methods	at benefits slightly
	test studies with 16	no uniform measure for	and some did not.	differently. In other
	articles used for review	robustness.	One reason was	words, each study
			different methods in	analyzed and presented
		Inclusion criteria was	measuring produced	the data differently so
		established (only	varied results. They also	it was hard to draw
		included were	found that maybe	conclusions based on
		quantitative pre- and	researchers are not	the data.
		post-test studies, quasi-	asking the right	
		experimental and single-	questions or looking at	
		test studies)	things in the wrong	
		Exclusion criteria (all qualitative and descriptive papers)	way.	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		The inclusion and		
		exclusion criteria in this		
		study help to minimize		
		threats to validity		
		because they include		
		only experimental		
		studies		
		16 articles used for		
		review with 3 RCTS, &		
		pre-and post/test		
		experiments (quasi-		
		experiments) and 6		
		other studies using		
		single intervention (not		
		considered as robust).		
		Because of the array of		
		types of studies		
		included in the review,		
		the study lacked		
		uniformity which lowers		
		he quality rating to good		
		(B)		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		0 1 1 1 .		
		Sample sizes tended to		
		be small <100 in most		
		studies. Sample size is		
		compensated by		
		richness of the data and		
		use of mixed methods		
		approach		
Lawlis et al. (2014)	Systematic Review if	When the ROL was	Concluded there are five	Concluded there are
Barriers and enablers	the literature	conducted, the	key "fundamental	five key "fundamental
that influence	Searches conducted	systematic ROL was not	elements" across the	elements" across the
sustainable	across 8 Databases:	the intent; thus, some	three stakeholders	three stakeholders
interprofessional	Medline, Medline-In	elements/details may	(Government funding,	(Government funding,
education: a literature	Process, CINAHL,	have been missed or	Institutional (HEI	Institutional (HEI
review	PyschINFO, Embase,	overlooked	funding and support for	funding and support for
Level III - B	Cochrane Library,	The inclusion and	the programs), and	the programs), and
Systematic review of	Social Work Abstracts,	exclusions criteria were	individual	individual
literature between	and ProQuest	set initially and articles	(communication and	(communication and
2010-2012	Sociological Abstracts	were analyzed for	shared visions)	shared visions)).
	between 4/2010-	barriers and enablers.		For programs to be
	12/2012 using 21 search	The author did not		successful in
	terms revealed 1570	identify the types of		implementing and
	articles which was	research included in the		sustaining IPE, they
		40 articles (as a review		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	refined to 40 articles for	of the literature was not		must have more of the
	analysis.	the initial intent).		key elements
	Additionally, 10 key	Therefore, validity may		
	international and	be compromised;		
	Australian IPE	therefore, the quality		
	organizational websites	rating is only good (B)		
	were searched			
Miller et al. (2014)	Collected both	Validity: Flexibility	On knowledge items	312 students enrolled
Improving emergency	quantitative and	required for the	alone students	in 9 workshops during
preparedness system	qualitative data about	intervention created	demonstrated 31.9%	a 24-month period
readiness through	individual and team	inconsistency in the	improvement over	indicated the
simulation an	knowledge, skills and	intervention	pretest scores.	curriculum to be
interprofessional	attitudes. Measured	Participants were	When measured post	effective and efficient
education	immediately after	recruited in multiple	intervention there was	in improving skills.
Level III – B	simulation and at 6 -12	ways, participant	decay in scores (with	D101 (course studied)
Non-experimental	months later	numbers varied from	the biggest decay in	can address several
Longitudinal Cohort	312 students enrolled in	26-55, and student	students with the	needs in emergency
study	9 workshops during a	representation changed	longest lag time	preparedness training -
312 students (9	24-month period	with each workshop.	between measurements).	and using simulation
cohorts)	indicated the curriculum	Non-randomization	No student returned to	can address all four
between Oct 2009 -	to be effective	poses threat to internal	pre-intervention scores	ION research priorities
Feb 2012)	Multiple strategies	validity through bias.	though.	meeting PHEP and
	(multiple-choice	Also, possible	With repeated	IPEC competencies.
	questions, performance	maturation of students	simulations (4 th time	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	checklists, and pre-and	with repeated	around, different	
	post-surveys) were used	simulations (4 th time	scenario, scores	
	to assess knowledge,	around, different	improved due to	
	skill, attitudinal, and	scenario, scores	repetition in anchoring	
	behavior outcomes	improved due to	behaviors).	
	throughout the training	repetition in anchoring	In all 79% indicated	
	and at 6 and 12 months	behaviors)	improved confidence in	
	after completion.	Wide range of	the following areas:	
	Each student was	performances created	Crisis communication	
	trained for a limit of 10	large CI which calls into	(91.7%); situational	
	hours (2 introductory	question the precision	awareness (85.7%); safe	
	online training and 8	(not accuracy) of	practice (85.2%); triage	
	hours of face to face	particular measurements	(85.2%); and crisis	
	workshops and	This created challenges	leadership (79.2%).	
	simulation.	for comparability across		
		cohorts.		
		Each group of student		
		was interprofessional		
		with at least 3		
		professions represented.		
		Reliability: Trained		
		content experts rated the		
		participants using tools		
		that had been field		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		tested in a pilot		
		workshop		
Bolesta and Chmil	Pre-and post-study with	Validity: Unable to	Scores from the RIPLS	In summary student
(2014)	55 students (Junior	directly assess IPE	(19-point item	felt more positive
Interprofessional	nursing students and 3rd	experience on student	instrument using a 5	about the other
education among	year pharmacy students)	learning which would	point Likert scale)	professional and felt
student health	analyzed (started with	be a key factor in	instrument and	they became better
professionals using	121 but due to attrition	determining future use	additional survey	team members as they
human patient	and failure to complete	of IPE in curricular	instrument items	understood one
simulation	all surveys only 55 were	No prep was given to	showed students gained	another's roles better
Level III - B	used)	students so help	an appreciation for IPE	after simulation.
Non-experimental	CSL was used using	decrease potential bias	and that communication	
Pre-and post-pilot	simulation with students	Low participation of	improved because of the	
cohort study	working in groups of 2-	nursing students so	IPE	
55 students analyzed	3 students from both	extrapolation of the data		
(started with 121 but	disciplines working	to them is limited (48		
due to attrition and	together to gather	pharmacy and 7 nursing		
failure to complete all	needed data to diagnose	students) and limits		
surveys only 55 were	and treat the patient in a	validity.		
used)	20-minute time frame	Reliability: RIPLS (19-		
		point item instrument		
		using a 5 point Likert		
		scale) is a proven and		
		reliable tool		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
Booth and McMullen	Students in pairs (2	Validity: Not random	91 % of the students	Overall, faculty found
– Fix (2012)	nursing students)	assignment, students	reported objectives to be	this teaching strategy
Collaboration	rounded on students and	chose their preferred	understood.	(IPE simulation)
interprofessional	the scenario required the	group and time, which	98% said it was realistic	enhanced student
simulation in a	students to call the	increases threat to	and 96% said they could	awareness of
baccalaureate nursing	physician (medical	validity.	problem solve better.	maintaining patient
education program	students).	Reliability: Evaluation		safety, and improved
Level III - B	Each scenario lasted 30	tool selected was NLN		problem solving of
Non-experimental	minutes and students	Simulation Design Scale		when to notify
Case study/cohort	were evaluated on the	- which has proven		physician. Also,
(nursing and medical	SDS (20- item	reliability and validity		communication was
students) of the	evaluation tool using a	however in-depth		improved within IPE
nursing school	5-point scale)	statistical analysis was		teams.
experience to		not performed.		
implement IPE				
Neville et al. (2013)	Cross-sectional study	Validity: There was a	RIPLS – results were	Overall students
Team decision	between April –October	70% completion rate of	significant (p<.001)	demonstrated positive
making: design,	2011 of 94 enrolled with	the post survey.	Showed a positive	attitudes towards IPE
implementation, and	a final sample (n=61)	Some students were	perception of their own	which allows students
evaluation of an	students using pre-and	unable to complete all	role and the role of the	to work in teams
interprofessional	post-survey (64.8%	parts due to scheduling	team members in all	providing better patient
education activity for	completion)	issues	except for 2 items	outcomes. The
undergraduate health		Dropout rates limit	IEPS – results showed	experience
science students		validity and non-	students had	demonstrated the

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
Level III – B		randomization limits	professionally oriented	importance of being
Non-experimental		validity as well	perceptions related to	able to communicate
Cross-sectional cohort		Reliability: All	the affective domain	and practice as a team.
study		evaluation tools are	GRPQ and NRPQ	
94 Students (nursing,		proven tools in the	(generic and nurse role	
medicine, and		industry and are peer	perception	
midwifery)		reviewed and tests for	questionnaire) - showed	
		validity and reliability.	a positive role	
			perception of their own	
			role and that of the other	
			professions. Some	
			fluctuations were seen	
			for each profession	
			All evaluation tools are	
			proven tools in the	
			industry and are peer	
			reviewed and tests for	
			validity and reliability.	
Haizlip and Neumayr	Case Study with a	Validity: Post ad hoc	Found students alone	IPE and teamwork can
(2016)	simulated ICU "Room	analysis with	could identify errors,	enhance patient safety
Room of Errors	of Errors" where	professional opinion	but when they came	when others speak up
Level III - B	participants were asked	only	together as a group,	and collaborate
Non-experimental	to work alone and then	Threats to validity and	almost twice as many	
Case study	compare findings with	reliability as non-		

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
Students from nursing,	group to see how many	randomization poses	errors were identified	
pharmacy, medicine,	errors were identified	threat to internal	collectively	
and therapy services	Completed pre-and	validity through bias.	Each individual	
	post-questionnaire		identifies about 30	
	regarding roles and		problems, but	
	empowerment		collectively they spot	
			54 issues that could put	
			their patient at risk.	
Baker et al. (2008)	Action research pilot	Validity: Voluntary	Found simulation	IPE with simulation is
Simulation in	study with post pilot	participants, non-	provided IPE	a promising approach
interprofessional	survey of students after	randomization poses	experiences that	to preparing students
education for patient-	having IPE and	threat to internal	students felt relevant for	for collaborative
centered collaborative	simulation-based	validity through bias.	their future	healthcare delivery
care	learning activities was	Reliability: The IEPS		which in turn is
Level III- B	conducted in 2005-2007	scale has	Attitudinal scores were	bridging gaps across
Non-experimental	using a questionnaire	proven/published	positive.	silos of care.
action research pilot	based on the	reliability and validity	86.3% (medical	
study using mixed	interdisciplinary	Factor analysis reveals	students) and 90.3%	
methods both	education perception	accurate measurement	(nursing) students	
qualitative and	scale.	with a Cronbach alpha	agreed it was beneficial	
quantitative methods	Mixed methods were	for reliability of 0.87	to participate in the IPE	
Students (nursing,	used.	Descriptive statistics	sessions as it increased	
medicine, and		were used to analyze the	their perception of the	
residents)		Likert-type rating scale	others role	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
	1 st Pilot between 2005-	and thematic analysis		
	2006 and 2 nd Pilot	was carried out		
	between 2006-2007			
Balogun et al. (2014)	254 students were	Validity: large sample	90% of students were	Students improved
Innovative	enrolled in 90-minute	size, Not a comparison	able to describe	communication/collabo
interprofessional	interactive case-based	Descriptive and	necessary	ration and teamwork
geriatric education for	workshops with	nonparametric statistics	communication for	when exposed to IPE
medical and nursing	simulation over a year	only to determine	working in IPE teams.	
students: focus on	Post workshop survey	validity	Four of five students'	
transitions in care	data was analyzed using	Reliability: Qualitative	reports enhanced	
Level III - B	descriptive and	in nature allows for	appreciation for	
Single descriptive	nonparametric testing	multiple interpretations	working in teams.	
qualitative case study		of reality	75% were able to	
UVA			identify legal, financial,	
254 students			and social implications	
(medical and nursing)			in transition of care	
			Nursing rated the	
			workshop more valuable	
			than medical students	
Shoemaker et al.	Each of the 24 groups	Validity: Retrospective	Student responses to	Three themes revealed:
(2014)	were asked to submit a	analysis of an	reflective questions	Benefits to
Virtual patient care:	written submission of	assignment not designed	revealed three themes:	collaborative care; role
an interprofessional	reflective questions to a	or intended for research	Benefits to collaborative	clarification; and
education approach		purposes.	care; role clarification;	increased comfort and

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
for physician assistant,	virtual patient base- IPE	Non-randomization	and increased comfort	confidence in care after
physical therapy and	experience	poses threat to internal	and confidence in care	simulation.
occupational therapy		validity through bias,	after simulation	Programs should offer
students		and case report of a		other case-based IPE
Level III - B		single student cohort at		activities into their
Non-experimental		a single institution so		curriculum as well
Retrospective		maybe difficult to		
qualitative case report		generalize findings.		
		Subject to investigator		
100 students		bias; although the same		
(physician assistant,		themes were		
OT and PT students)		independently derived		
		from 2 authors		
Robins et al. (2008)	Pilot tested 2	Validity: Small sample	Student's performance	Team based simulation
Piloting team	standardized IP team	size, Students	such as advocating for	appears promising as a
simulations to assess	simulations	volunteered, so non-	their position,	means of program
interprofessional skills		randomization poses	addressing blaming	evaluation and
Level III - C		threat to internal	behavior, speaking up	provides a platform
Non-experimental		validity through bias.	against authority and	where students can
Pilot cohort study		Evaluation instrument	taking responsibility	practice and receive
using 15 students		was drafted from the	were highly variable.	feedback about their
(nursing, pharmacy,		literature	This may indicate	interprofessional
and medical students)		Interventions were	students need more	teamwork skills
		deliver by 2 sets of	practice in these areas.	

Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
Type of study,		reliability		
Quality rating				
		players (faculty and	Students did report	
		actors, but used	increase in ability to	
		standardized scripts to	communicate	
		follow	effectively within	
		Reliability: No actual	teams.	
		data was given for the		
		tool used and faculty		
		scored the evaluation		
		instrument at the time of		
		simulation and during		
		video review which		
		threatens reliability		
Marken et al. (2010)	Demonstration study	Validity: Small sample,	Students gained	Simulation is an
Human simulators and	held over 2 evening (4	volunteer, and were	confidence in dealing	effective technique to
standardized patients	hour sessions each) held	awarded gift card or	with difficult patients.	teach interprofessional
to teach difficult	3 weeks apart in	clinical hours for	Each student was asked	teams on how to
conversations to	September and October	participation	to write 3 statements	engage in difficult
interprofessional	2008 in a university	Non-randomization	that they believe about	conversations with
healthcare teams	CSL	poses threat to internal	difficult conversations	patients and families.
Level III - C	Pre/post qualitative	validity through bias.	at the end of the 2 nd	Results were positive
Non-experimental	questionnaire using	Reliability: Conscious	session. 75% could do	and students
Pilot Demonstration	those 12 students	Competency model was	this correctly. A faculty	demonstrated both
study with mixed	performed in	selected from the	member compared the	knowledge and skill
methods approach	interdisciplinary teams	literature to show if	accuracy of the	enhancement using the
Brief Reference,	Methods	Threats to validity/	Findings	Conclusions
---------------------	-------------------------	--------------------------	---------------------------	---------------------
Type of study,		reliability		
Quality rating				
12 volunteers	using simulation of	students gained	statements to content	assessment tool and
(pharmacy, nursing,	difficult conversations	awareness.	delivered.	they were satisfied
medical students)		Assessment tools that	Rubrics for simulation	with the program
		were used proved	performance session and	
		reliable and valid in	student satisfaction were	
		literature	also completed	
		The rubric that was used	For all items the student	
		for the debriefing was	moved at least one stage	
		not reported in this	higher in the matrix and	
		study as it had not been	significant changes were	
		validated and interrater	noted in only questions	
		reliability was not	1-5 and 9 based on	
		completed before this	Wilcoxon signed rank	
		session.	test	
		Content experts were		
		utilized to design the		
		content and simulations		

Note: Evidence ratings (Level I-VI) for the literature are based on Dearholt & Dang (2012) book, *John Hopkins Nursing Evidence-Based Practice: Model and Guidelines*

Evidence Levels	Quality Guides
Level I	A – High Quality:
Experimental study, randomized control trial (RCT),	Material officially sponsored by a professional, public, private
Systematic review if RCTs with or without meta-	organization, or government agency; documentation of a
analysis	systematic review of literature search strategy; consistent results
	with sufficient number of well-designed studies; criteria-based
Level II	evaluation of overall scientific strength and quality of included
Quasi-experimental study, Systematic review if a	studies and definitive conclusions; national expertise is clearly
combination of RCTs and quasi-experimental, or quasi-	evident; developed or revised within the last 5 years
experimental studies only, with or without meta-	
analysis	B – Good Quality:
	Material officially sponsored by a professional, public, private
Level III	organization, or government agency; reasonably thorough and
Non-experimental study	appropriate systematic literature search strategy; reasonably
Systematic review if a combination of RCTs, quasi-	consistent results with sufficient number of well-designed studies;
experimental and non-experimental study only, with or	evaluation of strengths and limitations of included studies with
without meta-analysis	fairly definitive conclusions; national expertise is clearly evident;
Qualitative study or systematic review with or without	developed or revised within the last 5 years
meta-synthesis	
Level IV	C – Low Quality:
	Material not sponsored by an official organization or agency;
	undefined, poorly defined, or limited literature search strategy; no

Appendix B-Levels and quality of evidence

Evidence Levels	Quality Guides
Opinion of respected authorities and/or nationally recognized expert committee's/consensus panels based on scientific evidence	evaluation of strengths and limitations of included studies; insufficient evidence with inconsistent results, conclusions cannot be drawn, not revised within the last 5 years
Includes:Clinical practice guidelinesConsensus panels	

Note: Evidence ratings (Level I-IV) and quality ratings (A-C) for the literature are based on Dearholt & Dang (2012) book, *John Hopkins Nursing Evidence-Based Practice: Model and Guidelines.*

$\label{eq:appendix} A \text{PPENDIX}\ C-S \text{PICE-R2}\ Instrument$

Dear Student: In this survey you are being asked about your attitudes toward interprofessional teams and the team approach to care. By *interprofessional team*, we mean two or more health professionals (e.g., nurse, occupational therapist, pharmacist, physical therapist, physician, social worker, veterinarian, etc.) who work together to plan, coordinate, and/or deliver care to patients/clients.

PLEASE NOTE:	The following	scale progresse	s from	"Strongly	Disagree	(1)" to	'Strongly
Agree (5)"							

INSTRUCTIONS: Please be candid as you indicate the extent of your disagreement/agreement with each of the following statements related to interprofessional teams and the team approach to care.		Strongly Disagree (1)	Disagree (2)	Neutral (3)	Agree (4)	Strongly Agree (5)
1.	Working with students from different disciplines enhances my education	1	2	3	4	5
2.	My role within an interprofessional team is clearly defined	1	2	3	4	5
3.	Patient/client satisfaction is improved when care is delivered by an interprofessional team	1	2	3	4	5
4.	Participating in educational experiences with students from different disciplines enhances my ability to work on an interprofessional team	1	2	3	4	5
5.	I have an understanding of the courses taken by, and training requirements of, other health professionals	1	2	3	4	5
6.	Healthcare costs are reduced when patients/clients are treated by an interprofessional team	1	2	3	4	5

7.	Health professional students from different disciplines should be educated to establish collaborative relationships with one another	1	2	3	4	5
8.	I understand the roles of other health professionals within an interprofessional team	1	2	3	4	5
9.	Patient/client-centeredness increases when care is delivered by an interprofessional team	1	2	3	4	5
10.	During their education, health professional students should be involved in teamwork with students from different disciplines in order to understand their respective roles	1	2	3	4	5

$\label{eq:appendix} Appendix \ D-Simulation \ Design \ Scale \ (Student \ Version)$

In order to measure if the best simulation design elements were implemented in your simulation, please complete the survey below as you perceive it. There is no right or wrong answers, only your perceived amount of agreement or disagreement. Please use the following code to answer the questions.

Use the following rating system when assessing the simulation design						Rate each item based						
elements:							upon how important that					
1- Strongly disagree with the statement							item	item is to you				
2- Disagree with the statement							1- Not important					
	3- Undecided – you neither agree	or d	isagre	ee wit	h the	state	ment		2- \$	Somev	what	
	4- Agree with the statement]	mpor	tant	
	5- Strongly agree with the stateme	ent							3- 1	Neutra	ıl	
NA	- Not applicable; the statement doe	s not	perta	in to	the sin	nula	tion		4- 1	mpor	tant	
act	ivity performed								5- v	Very I	mpor	tant
	Item	1	2	3	4	5	NA	1	2	3	4	5
Ol	jectives and Information											
1.	There was enough											
	information provided at the											
	beginning of the simulation											
	to provide direction and											
	encouragement.											
2.	I clearly understood the											
	purpose and objectives of											
	the simulation.											
3.	The simulation provided											
	enough information in a											
	clear matter for me to											
	problem-solve the situation.											
4.	There was enough											
	information provided to me											
	during the simulation.											
5.	The cues were appropriate											
	and geared to promote my											
	understanding.											
	Support											
6.	Support was offered in a											
	timely manner.											
7.	My need for help was											
	recognized.											

8. I felt supported by the						
faculty's assistance during						
the simulation.						
9. I was supported in the						
learning process.						
Problem Solving						
10. Independent problem-						
solving was facilitated.						
11. I was encouraged to explore						
all possibilities of the						
simulation.						
12. The simulation was						
designed for my specific						
level of knowledge and						
skills.						
13. The simulation allowed me						
the opportunity to prioritize						
assessments and care						
14. The simulation provided me						
an opportunity to goal set						
for my patient.						
Feedback/Guided Reflection						
15. Feedback provided was						
constructive.						
16. Feedback was provided in a						
timely manner.						
17. The simulation allowed me						
to analyze my own behavior						
and actions.						
18. There was an opportunity						
after the simulation to						
obtain guidance/feedback						
from the faculty in order to						
build knowledge to another						
level.						
Fidelity (Realism)						
19. The scenario resembled a						
real-life situation.	<u> </u>					
20. Real life factors, situations,						
and variables were built into						
the simulation scenario						

National League for Nursing (2005)

APPENDIX E -DISSEMINATION

This project is in the process of being disseminated for publication to an interprofessional journal, and an abstract of the presentation has been submitted to two professional meetings for podium presentation. One abstract has been approved and one is under review currently.

Article Submission – submitted

An article entitled "Simulation-based Interprofessional Education in a Rural Setting" has been submitted for review to *The Journal of Interprofessional Care* for review.

Scott, A. D., Estrada, R. D., Catledge, C. B., & Mitchell, S. (2017). Simulation-based interprofessional education in a rural setting. Submitted to *The Journal of Interprofessional Care*.

Abstract submission – under review

An abstract titled, Simulation-Based IPE in a Rural Setting Using Remote-in Technology has been submitted in the innovation project category to the 18th International Meeting on Simulation in Healthcare (IMSH 2018) conference to be held January 13-17, 2018 in Los Angeles, California.

Scott, A. D., Estrada, R. D., (2017). Simulation-based interprofessional education in a rural setting. Submitted to the 18th International Meeting on Simulation in Healthcare (IMSH 2018) conference to be held January 13-17, 2018 in Los Angeles, California. Podium presentation

Abstract submission – accepted

An abstract titled, Simulation-Based IPE in a Rural Setting Using Remote-in Technology has been accepted to the University of South Carolina Lancaster Faculty Colloquium Series to be presented in September 27, 2018 in Lancaster, South Carolina.

Scott, A. D., Estrada, R. D., (2017). Simulation-based interprofessional education in a

rural setting. Submitted to the University of South Carolina Lancaster Faculty Colloquium Series to be presented in September 27, 2018 in Lancaster, South Carolina. Podium presentation.

Simulation-Based IPE in a Rural Setting Using Remote-in Technology Abstract

Project Objective

Healthcare students benefit from inter-disciplinary learning opportunities, including the practice of communication and collaborative strategies essential for real-world patient care.¹ Faculty are increasingly using simulation-based inter-professional education (IPE) experiences to enhance inter-disciplinary practice. As students of rurally-located educational programs have specific barriers to IPE participation, an innovative solution may be the use of telehealth tools.² Telehealth is remote healthcare provision to patients at distant sites using technology-based tools.³ A simulation-based IPE experience using these tools not only provides students the opportunity to work with the technology, but addresses issues inherent in providing IPE experiences to rurally-located students. The purpose of this project was to examine the feasibility and acceptability of a simulation-based IPE experience for pre-licensure nursing, pharmacy, and medical students on a rurally-located campus.

Methods

Using a mixed-methods, explanatory sequential approach,⁴ this project: 1) examined the feasibility of implementing a simulation-based IPE experience using telehealth tools; and 2) evaluated student perceptions of inter-professional teamwork, roles and responsibilities, and patient outcomes for collaborative practice, both pre- and post-scenario. Twenty-nine participants included fourth year nursing (n=16), third year medical (n=8), and fourth year pharmacy (n=5) students. The students first completed a questionnaire regarding knowledge of and attitudes toward IPE, and were then randomly assigned to one of five IPE groups consisting of 5-7 students. Each group completed an advanced cardiac simulation scenario in which the nursing and pharmacy students were in the simulation lab, and the medical students "remoted in" using a telehealth robot. The scenario concluded with a video-recorded debriefing session; subsequently, the students completed post-surveys.

Results

Quantitative data were analyzed using SPSS. Results revealed 94% agreed/strongly agreed the IPE experience resembled a real-life situation. 100% of nursing/medical students and 80% of the pharmacy students indicated they would recommend this experience to their peers. Significant positive changes in attitudes towards using an interprofessional team approach were noted for pharmacy students, especially in regards to patient outcomes, reduced costs, and improved patient-centered care. Qualitative data were transcribed and analyzed using thematic analysis. Four themes emerged: 1) better understanding of technology; 2) improved communication among team members; 3) benefit of true to life experience; and 4) increased knowledge level and confidence. Participant suggestions for improvement included: 1) improve the simulation/telehealth equipment orientation; 2) consider a grand round-type simulation; and 3) address technical challenges with the robot, e.g., volume control.

Conclusion

Complex healthcare now requires a collaborative and team approach to patient care. A simulation-based IPE approach using "remote in" technology allows for the development and mastery of these competencies. Although limited by a small sample size, this project confirmed it is feasible and acceptable to offer simulation-based IPE in a rural setting facilitated by the use of telehealth tools, and collaborative teamwork is enhanced by using "remote in" technology during a simulation-based IPE activity. Future work will incorporate student suggestions to improve the experience, as well as integrate students from other healthcare disciplines, such as physician assistant students.

REFERENCES

- Smithburger, P. L., Kane-Gill, S. L., Kloet, M. A., Lohr, B., & Seybert, A. L. (2013). Advancing interprofessional education through the use of high fidelity human patient simulators. *Pharmacy Practice*, *11*(2), 61-65. Retrieved from <u>http://eds.a.ebscohost.com.pallas2.tcl.sc.edu/ehost/pdfviewer/pdfviewer?sid=dcf5</u> 8deb-5d28-4040-a94c-f5816ecbec0e%40sessionmgr4005&vid=3&hid=4211
- Whelan, J. J., Spencer, J. F., & Dalton, L. (2008). Building rural healthcare teams through interprofessional simulation-based education. [paper] 10th National Rural Health Conference]. Retrieved from <u>https://www.ruralhealth.org.au/10thNRHC/10thnrhc.ruralhealth.org.au/papers/doc</u>

<u>s/Spencer_Judy_C4.pdf</u>

- Center for Connected Health Policy. (2017). What is telehealth. Retrieved from <u>http://www.cchpca.org/what-is-telehealth</u>
- Fetters, M. D., Curry, L., A., & Creswell, J. W. (2013, December). Achieving integration in mixed methods designs- Principles and practices. *Health Services Research*, 48(6Pt2), 2134-2156. Doi:10.1111/1475-6673.12117