
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Document: ANALYZING MILLET PRICE REGIMES 

AND MARKET PERFORMANCE IN NIGER 

WITH REMOTE SENSING DATA 

  

 Timothy Michael Essam, Doctor of Philosophy, 

2013 

  

Directed By: Professor Kenneth L. Leonard, Department of 

Agricultural and Resource Economics 

 

 

This dissertation concerns the analysis of staple food prices and market 

performance in Niger using remotely sensed vegetation indices in the form of 

normalized differenced vegetation index (NDVI).  By exploiting the link between 

weather-related vegetation production conditions, which serve as a proxy for spatially 

explicit millet yields and thus millet availability, this study analyzes the potential 

causal links between NDVI outcomes and millet market performance and presents an 

empirical approach for predicting changes in market performance based on NDVI 

outcomes. Overall, the thesis finds that inter-market price spreads and levels of 

market integration can be reasonably explained by deviations in vegetation index 

outcomes from the growing season. Negative (positive) NDVI shocks are associated 

with better (worse) than expected market performance as measured by converging 

inter-market price spreads.  As the number of markets affected by negatively 

abnormal vegetation production conditions in the same month of the growing season 



  

increases, inter-market price dispersion declines. Positive NDVI shocks, however, do 

not mirror this pattern in terms of the magnitude of inter-market price divergence.  

Market integration is also found to be linked to vegetation index outcomes as below 

(above) average NDVI outcomes result in more integrated (segmented) markets. 

Climate change and food security policies and interventions should be guided by 

these findings and account for dynamic relationships among market structures and 

remotely sensed vegetation indices outcomes. 
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Chapter 1: Introduction 

Cereal Markets in Niger and Normalized Difference Vegetation Index (NDVI)  

 This dissertation concerns the analysis of staple food prices in Sub-Saharan 

Africa using National Aeronautics Space Administration’s (NASA) remote sensing 

data, in the form of Normalized Difference Vegetation Index (NDVI).  In this study, 

we1 propose a novel method for linking NDVI to changes in millet prices for the 

purpose of understanding cereal market behavior in Niger. By exploiting the link 

between weather-related vegetation production conditions, which serve as a proxy for 

spatially explicit millet yields (Rasmussen, 1997, 1998) and thus likely production, 

and are highly correlated with  millet prices (Brown, Pinzon and Prince, 2006), we 

propose a series of models to 1) understand better the explicit links between NDVI 

and millet market outcomes, 2) examine potential causal relationships between 

extreme NDVI outcomes (shocks) and cereal market performance for the most food 

insecure areas of Niger, and 3) predict changes in market performance based on 

observed NDVI outcomes for food security related outcomes.  

The sheer size of Niger, nearly three times the size California, combined with 

general state of development in the country, where average GDP is around $900 per 

capita2, means that high quality and timely data on specific market-level factors such 

as household demographics and income aggregates, trade volumes and transactions 

costs, and other time-varying market heterogeneities simply do not exist or are 

                                                 
1 The term “we” and “our” is used throughout this dissertation instead of of “I” or “my”. All work 

presented has been done solely by the author and all errors are my responsibility. 
2 https://www.cia.gov/library/publications/the-world-factbook/geos/ng.html 

https://www.cia.gov/library/publications/the-world-factbook/geos/ng.html
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measured with significant error.  Thus, the construction of a comprehensive cereal 

price forecasting model is not the purpose of this study. Instead, we seek to exploit 

and understand the links between NDVI outcomes and millet prices using the myriad 

tools of economic and statistical analysis in order to inform food security analysts and 

policy makers of the analytical usefulness of NDVI as it relates to millet market 

performance in Niger. 

This study demonstrates that NDVI can help food security analysts and policy 

makers develop a more complete understanding of market conditions than may be 

afforded by production data and millet prices alone, particularly when markets are 

inefficient and the appropriate price signal is not being fully transmitted down the 

marketing chain (Baulch, 1997a). NDVI data are reported in near real-time and can 

provide a rich time series about the state of vegetation production conditions when 

data are objectively and consistently measured and processed, and appropriate 

corrections are made to account for factors that can lead to erroneous NDVI values 

(Goward et al., 1991). Production estimates, on the other hand, are normally not 

available until many months after the growing season, contain a great deal of 

measurement error, and may face upward revisions later in the year due to political 

pressures (Araujo, Bonjean and Burnelin, 2010). Prices are available in a timelier 

manner, but may not contain the appropriate signal when market inefficiencies exist. 

Moreover, prices are subject to measurement error, limited to a spatial range of 

markets, and not collected or published in a timely or consistent manner over space 

and time. By complementing prices and production data (and other data when 

available) with NDVI data, we can bridge many of these informational gaps and 
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achieve a better understanding of what the appropriate price signal should look like 

and how markets are expected to function before, during and after production shocks. 

This research is among the few studies (Brown, Hintermann and Higgins, 

2009) to link explicitly remotely-sensed agricultural production monitoring indicators 

with millet prices at the market-level to provide market-wide predictions regarding 

the nature of market connectedness and to assess market performance. The ability to 

predict accurately staple food price movements and market responses in the presence 

of market inefficiencies is crucial for combating food security and ensuring the timely 

delivery of food aid. Knowing how markets will function and move staple food 

supplies in times of production shortfalls has direct policy implications for food aid 

interventions. Moreover, by incorporating lessons on the relationship between NDVI 

outcomes and market performance, this research provides insights into flexible 

methods of specifying and estimating regime switching, price forecasting models in 

sub-Saharan Africa.   

Overview of Findings 

Our approach relies on a blend of methods to provide an objective assessment 

of the analytical usefulness of NDVI and to extract maximum information from the 

NDVI data. We start by analyzing the relationship between cumulative, monthly 

NDVI anomalies, defined as observed NDVI values subtracted from their long-term 

mean, and potential millet price bubbles. Analysis of NDVI data reveals many 

consecutive months of below average outcomes leading up to the 2004-05 food 

security crises, suggesting that vegetation production conditions were far below what 

one would expect on average. To investigate further this finding, we estimate the 
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relationship between NDVI outcomes and millet production statistics over a 14-year 

period for Niger. We show that aggregate NDVI anomalies have a strong, positive 

correlation with official millet production statistics. We also find that NDVI 

anomalies, aggregated pixel-by-pixel at the regional level, from as early as June are 

positively correlated with production outcomes. However, our full analysis 

demonstrates that the phenological events of the millet growing season complicate the 

creation of an optimal NDVI metric for analyzing and predicting market performance. 

In order to understand better the temporal and geospatial economic 

relationships in our millet price data, we turn to the tools of spatial price analysis. We 

first consider if marketing years can be divided into different regime types by looking 

at how prices deviate from fundamentals across marketing years. Our price 

correlation analysis shows that in years following production shocks, market prices 

appear to move more closely in tandem than years of abundant production. Paying 

close attention to the evolving nature of millet market relationships, we test for both 

static and dynamic Granger-causing relationships. The results suggest that markets in 

major food production zones, as indicated by the spatial intensity of millet 

production, tend to generate leading price signals to periphery markets located in less 

connected and less intensive production zones. The temporal nature of these 

relationships appears to be varied but recent trends point towards improvements in 

overall market integration.  

To investigate how millet market performance varies with NDVI outcomes, 

we estimate a price dispersion model that analyzes the impact of exogenous NDVI 

shocks, defined as NDVI outcomes based on a 50 kilometer buffer that depart +/- two 
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standard deviations from their 11-year smoothed, moving average,, on absolute price 

spreads between markets using a difference-in-difference estimation approach. Our 

analysis reveals an uneven temporal distribution of NDVI shocks, with the majority 

of positive shocks occurring prior to the year 2000, and negative shocks clustering in 

the years 2000-2010. Our empirical estimates indicate that negative (positive) NDVI 

shocks are associated with better (worse) than expected market performance as 

measured by converging inter-market price spreads.  As the number of markets 

affected by  negatively abnormal vegetation production conditions in the same month 

of the growing season increases, measured by the percent of markets with NDVI 

shocks (as defined above), price dispersion declines between nearly 6 to 10 CFA. 

Positive NDVI shocks, however, do not mirror this pattern in terms of the magnitude 

of inter-market price divergence. The results are robust across standard fixed-effects 

models and specifications that include a dynamic adjustment factor. We also correct 

standard errors to account for general forms of cross-sectional and temporal 

dependence (Hoechle, 2007; Driscoll and Kraay, 1998). 

Building off our price dispersion results, we investigate how market 

connectedness varies across millet marketing years by analyzing the relationship 

between NDVI outcomes, which we use as a proxy for millet supply (and implied 

trade flows), and the influence of neighboring prices on a central market. Specifically, 

we assess if millet markets are characterized by different types of price regimes in 

years of excessively good or bad millet production, as predicted by NDVI anomalies. 

Econometric analysis of historical price data suggests that markets are more 

segmented in years with above average vegetation production condition, when 
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compared to years with average and far below average vegetation production 

conditions. Using model fit criteria (Akaike Information criterion and Bayesian 

Information criterion), our analysis shows that including binary or tertiary regime 

variables interacted with lagged price bands from neighboring markets improves the 

overall fit of a base millet price model. This insight suggests that millet price 

prediction models for Niger should explore the inclusion of multiple switches to 

account for different types of marketing year price regimes. Building off our 

conclusions about market performance and connectedness, we finish our analysis by 

analyzing how well NDVI anomalies can predict marketing year price regimes. Our 

results suggest that NDVI anomalies from May, June and July have a limited ability 

to predict future price regimes. However, as we include additional monthly NDVI 

anomalies, our prediction accuracy improves.  

As a final exercise, we test how our NDVI-based regime estimates perform in 

our base model. Our predictions suggest that in bad years, on average, markets appear 

to be better connected when compared with average or good years.  Thus, in bad 

years, on average, food aid policies should focus on making food available to the 

market and letting spatial arbitrage opportunities drive food deliveries, while at the 

same time monitoring the financial capacity of households to purchase food. In 

aggregate good years, spatial arbitrage incentives are less pronounced and weak 

spatial market integration means that surplus food cannot be fully absorbed by distant 

markets, so food security policies should prioritize local food availability and storage 

systems for improved consumption smoothing opportunities. Localized production 

shortfalls in isolated markets should be monitored closely to ensure that food reaches 
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these markets, households have adequate access to food supplies, and household 

purchasing power remains adequate to afford food. Overall, improving the quality 

and quantity of local granaries and establishing micro-credit systems so that farmers 

are not forced into selling their harvest when prices are low and later repurchasing 

millet during the hungry season when prices are high would help rural households 

regardless of the type of market regime encountered. 

This study reinforces the point that outcomes of using models forced by NDVI 

are closely linked to millet price realizations, market performance, and ultimately 

household well-being throughout Niger. With an evolving climate, extreme weather 

outcomes that drive variation in vegetation production are likely to grow in 

magnitude and frequency resulting in potentially new geospatial production patterns 

and changes in food trading patterns, thus necessitating food security policies that 

address short-term food insecurities, long-term food availability, and overall market 

performance. Because Nigeriens already face the realities of an extreme climate and 

have developed coping strategies for surviving on marginal lands, we can learn much 

from studying how this population has currently adapted to extreme weather and 

production variability.  Understanding the structure and reaction of market systems to 

extreme climate and production outcomes today may provide insight into the impacts 

of climate change in other places and the role of markets in adaptation planning.  

Focusing on crop resilience and/or new crop varieties may be beneficial for exploiting 

new climatic patterns and improving yield potentials.  And even if seed varieties and 

production patterns are appropriately modified (adapted) to exploit fully a changing 

climate, rural households may still not fully reap the rewards if markets fail to 
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function well.  Based on historical assessment, major crop failures will occur and 

markets will be the primary mechanism by which food and resources are delivered to 

vulnerable households throughout the region. A better understanding of the current 

relationship between market structures and environmental shocks in one of the 

harshest climates of today can help inform researchers, policy makers, and planners 

of the potential of markets in mitigating the deleterious effects climate change in the 

future. 

In addition to the understanding the potential benefits of NDVI, we also 

highlight some of its limitations and offer practical tips for its use in food security 

analysis. One of the main empirical difficulties with NDVI is that the phenological 

events of the millet growing seasons fluctuate widely from year to year, so no two 

growing seasons look exactly the same. While the study finds that August NDVI is 

positively correlated with millet production outcomes, it does not necessarily imply a 

fixed and linear relationship between the two variables.  

It is also important to remember that NDVI is a processed metric, which may 

be measured with error or perturbed by varying factors, used to detect variations in 

vegetation production conditions over a pixel of land measured remotely from a 

satellite orbiting above the earth. NDVI data cannot tell us if an area is actually being 

cultivated or in which crop – only vegetation conditions of a swath of land, which we 

use as a surrogate for millet availability and indirect trade flows. NDVI tells us 

nothing about the expectations of traders, the income, asset, and demographic profiles 

of consumers, the current volume of food in storage, the trade networks of a town or 

village, the political situation of country, or other characteristics of a location that can 
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influence how prices are determined, how markets behave and whether or not these 

outcomes are a threat to household well-being. 

For food security analyst, who are overwhelmed by data from the Early 

Warning System (EWS) monitoring pillars and are often asked to make policy 

recommendations based on imperfect information, knowing where and when to focus 

their analytical efforts is critical for delivering actionable information to food security 

policymakers.  Brown and Brickley (2012) point out that Famine Early Warning 

System Network (FEWSNET) analysts rely  on rainfall data 84 percent of the time, 

remote sensing data 28% of the time, and gridded crop models 10% of the time for 

assessment of food security problems. We advocate for intensifying the use of NDVI 

data in food security analysis along at least three lines.  

First, NDVI data should be exploited to develop local and regional vegetation 

production condition balance sheets for the short and long-term. A ranking system 

would enable analysts to quickly contextualize outcomes and draw initial conclusions 

regarding the spatial nature of NDVI, likely millet availability, and expected trading 

patterns. This could be referenced against historical NDVI and economic data to 

understand how markets may function given historical outcomes. 

Second, NDVI data should be analyzed regularly to detect and monitor 

extreme vegetation production conditions at the market-level and to track their 

potential impact on market performance. Developing a metric to reflect the geospatial 

extent and potential production impact of NDVI shocks would help in distinguishing 

among local, national, and regional shocks. National and regional shocks will likely 

result in different market regimes and levels of market integration.   
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Finally, incorporating current and recent NDVI data into food security 

assessments when price signals are abnormal due to bubble-like conditions, herding 

behavior, and/or inadequate information flows will enable analysts to develop a better 

understanding of what the appropriate price signal should look like, how it is likely to 

move up or down, and what impact this may have on scheduled or current food aid 

deliveries. Collectively, we feel that these three actions can add value, at little cost, to 

existing food security assessment methods. A full set of suggestions is discussed in 

Chapter 9. 
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Outline of Dissertation 

This dissertation is organized as follows. The second chapter reviews early 

warning systems (EWS) and the role of NDVI, production data and commodity prices 

in food security analysis. The final part of chapter two introduces the reader to the 

myriad factors that affect millet production, consumption, and trade in Niger. Chapter 

three demonstrates the usefulness of NDVI in food security analysis and assessment 

when traditional price signals are of poor quality, missing or questionable due to 

speculative behavior or informational inefficiencies. While NDVI is not a substitute 

for price or production data, it can be viewed as a complement that can provide an 

objective measure of vegetation production conditions prevailing in agricultural 

production zones.  Chapter four presents a brief literature review of NDVI studies, 

spatial price analysis methods, and cereal market performance in Niger.  Chapter five 

describes the millet price data used in the analysis, the various manipulations and 

statistical tests conducted on the data in preparing them for analysis, and the results 

from our spatial price analysis summary. We then turn to a discussion of the NDVI 

data in Chapter six, providing a similar statistical analysis. Chapter seven reviews 

historical NDVI shocks and presents a price dispersion model to test the impact of 

these shocks on cereal market performance. Chapter eight considers the relationship 

between NDVI outcomes and price regimes. The final chapter presents conclusions, 

recommendations, study limitations, and a research agenda extending some of the 

initial analysis and proposing new lines of investigation.  
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Chapter 2: Early Warning Systems, Food Security Monitoring 

and Millet in Niger 
 

 This chapter provides a review of the primary tools used by food monitoring 

systems as well as an overview of millet production, consumption and trading in 

Niger. The second half focuses on the determinants of millet prices. 

Review of Early Warning Systems 

As a result of the horrific famines of the 1970s and 1980s, the international 

development community has increasingly turned to early warning systems (EWS) for 

monitoring food security situations around the world. Emphasis has been placed on 

monitoring food production systems and markets in Sub-Saharan Africa and the horn 

of Africa, which historically have faced some of the worst food shortages. Typically, 

an EWS is composed of three to five monitoring pillars (FAO, 2000):  

i) Agricultural production monitoring (agro-climatic) and harvest forecasts;  

ii) Market information monitoring (prices, storage, transportation costs, etc.) 

iii) Livelihoods assessments or vulnerability profiles;  

iv) Food and nutrition surveillance; and  

v) Direct food aid monitoring  

In practice, many of the pillars are difficult to put into operation due to local 

and international infrastructural, institutional, and capacity constraints. For example, 

detailed market information such as transaction costs and trade flows are difficult to 

track, even in the most developed markets. Because most production systems 

monitored are highly dependent on local weather and environmental conditions, and 

limited data are available on regional area planted or yields, many EWS rely heavily 
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on remotely-sensed data such as Normalized Difference Vegetation Index (NDVI) 

(see Hutchinson, 1991) or rainfall data to make timely harvest forecasts. These 

projections are analyzed through vulnerability profiles to make food security 

assessments and predictions.  

Less emphasis has been placed on analyzing and understanding remote 

sensing outcomes and how they relate to market performance and exceptional price 

movements, which is somewhat surprising as prices alone may be one of the best 

indicators of famine-like conditions. This trend appears to be changing as USAID’s 

Famine Early Warning System Network (FEWSNET) Markets and Trade Strategy for 

2005-2010 explicitly calls for methods and models analyzing the behavior of market 

systems (FEWSNET, 2008). While this change is welcomed, the process faces 

considerable challenges. Economic models available to study and diagnose market 

behavior are greatly limited by the data availability and quality. For generating 

forecasts at the micro-level, there are few panel-based forecasting models (Baltagi, 

2007), particularly for developing countries of the Sahel. Traditional spatial price 

analysis itself may only provide confirmation or rejection of whether or not data 

exhibit certain statistical properties (Barrett, 1996; McNew and Fackler, 1997; 

Fackler and Goodwin, 2000; Rashid and Minot 2010). Moreover, because West 

African millet markets are weakly integrated with world cereal markets, popular food 

price indices such as the FAO food index are not appropriate for monitoring and 

forecasting the impacts of local and global production shocks (Brown et al., 2012). 

In Niger (see Figure 1 below), one of the poorest countries in the world, millet 

prices exhibit tremendous inter and intra annual variation, which may well be an 
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indicator of poorly functioning or inefficient markets. Spatial price analysis tools, 

such as correlation analysis, Granger-causality tests, and co-integration models, may 

help confirm or reject the presence, in a statistical sense, of market integration. But 

test results alone may be of limited use to policy makers and EWS analysts (Rashid 

and Minot, 2010). EWS analysts and policymakers are likely more interested in 

models that can link remote sensing data to economic outcomes, help forecast 

exceptional price movements, and explain how markets respond to localized and 

regional production shocks. Aker (2010b) echoes this latter point suggesting that 

disaggregated crop monitoring at the market-level will help analysts better understand 

the extent of droughts and the subsequent effects on market performance.  

Figure 1. Continental and country-level map of Niger 

 
Source: Central Intelligence Agency: The World Factbook 

This explicit link between the agro-climatic monitoring pillar and the market 

information systems pillar, at both the macro and micro-level, appears to be a vital 

missing link in the EWS toolkit. FAO (2000) notes this shortcoming attesting that one 

of the constraints of EWS is that data from different pillars are often monitored 
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independently and not appropriately linked. Previous work has shown that NDVI data 

can be used to detect deviations in vegetation conditions and has been shown to be 

correlated with net primary production and crop yields (Tucker et al., 1981; Prince, 

1991; Fuller, 1998). But there remains a gap in understanding the relationship 

between NDVI outcomes and millet price movements (market behavior) and whether 

the relationship can be exploited to generate accurate price and market performance 

forecasts, particularly in isolated markets located in or near weather-driven 

production zones. Because prices are one of the best indicators of famine-like 

conditions, research is needed to document this link and to propose models that can 

ingest real-time remote sensing data and accurately convey how price signals are 

linked to market performance based on relationships among past NDVI outcomes. 

We now turn a discussion of millet in Niger.  

Millet Consumption and Production in Niger 

In rural areas of Niger, millet is the primary crop of consumption and 

production for households. It is widely grown by rural households because of its 

ability to withstand harsh climatic conditions and thrive in the sandy soils of sub-

Saharan Africa.  Specifically, pearl millet has the highest yield potential of all millet 

varieties under extreme heat and irregular moisture conditions, largely due to its deep 

rooting system and short life cycle (Léder, 2004). In fact, the cereal alone provides 75 

percent of the total calories consumed by Niger’s population (ibid, 2004).  On a per 

capita basis, millet consumption in Niger is the highest in all of Western Africa 

(Obliana, 2003). Anecdotal evidence from rural households also suggests that millet 

may be preferred over wheat or rice because its rich nutritional content allows 
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individuals to sustain hard physical labor for long periods of time. Because cereal 

production conditions are less than ideal throughout Niger, the country imports millet 

from neighboring countries such as Nigeria. 

Generally, millet is grown in areas with rainfall of about 125-900 millimeters 

and grows better than sorghum in dry conditions (Rachie and Majmudar, 1980). Its 

growing cycle can range from 80-120 days in West Africa (Maiti and Bidinger, 

1981). Under ideal conditions, millet planting occurs after the first major rain 

(occurring in May-July), which flushes the topsoil and activates organic matter near 

the surface. Because rains are sporadic in the Sahel, farmers rush to their fields to 

plant at the first signs of precipitation during the months of May, June and July. 

Across of many parts of Niger, the best conditions for planting and growing millet 

occur in May when the days are long and the sun is intense (Hash, C.T. 2011). 

Households likely have two motivations for early planting. First, in terms of 

optimizing plant health, early planting decreases millet’s susceptibility to harmful 

weeds (striga) and molds that commonly affect crops planted later in the growing 

season. A farmer who can plant in late April or early May can sharply reduce the risk 

of striga and mold outbreaks, while also improving potential millet grain quality and 

quantity. Second, in terms of optimizing economic returns, early planting means a 

farmer may harvest his/her crop ahead of the harvest cycle and thus fetch a higher 

farm gate price by delivering before other farmers. Early planting is not without risk. 

If a farmer does choose to sow early and the crop does not withstand the occasional 
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dry spells of May and June (false rainy starts)3, they may be forced to replant in July, 

given they have adequate financial and agricultural resources. Because millet can 

reach full height in 60 days, one could technically plant as late as August and still 

have an October harvest. However, the plant biomass is likely to be small and the 

yield low (Hash, C.T. 2011). 

In reality, most rural Nigerien households do not have the luxury of early 

planting because they lack access to high quality millet seeds, face considerable credit 

constraints, possess only rudimentary agricultural inputs and limited land holdings, 

and may not have the necessary assets to recover from a rainy season false start. Even 

under some of the best conditions, many households must rely on loans to purchase 

agricultural inputs (seeds) at the beginning of the growing season when prices are 

high. The consequences of these actions are pernicious over time as households who 

borrow at the start of the growing season (near the peak of the lean season) are often 

forced to repay loans at the end of the growing season when millet prices are 

remarkably low. Because many of the loans are repaid by selling millet, households 

face unfavorable terms-of-trade at the time of repayment.  

Further compounding the problem is the fact that most rural areas lack proper 

storage facilities and have less than ideal infrastructure through which they can 

purchase food and market their own production. Collectively, these issues force 

households to buy millet for consumption later in the year when prices are higher. 

Unfortunately, millet is the most frequently purchased grain when a household’s own 

stocks are depleted (Brown, 2008). Because of the uncertainty of crop production and 

                                                 
3 In neighboring Burkina Faso researchers have documented multiple false starts in the rainy season 

and suggest that plant growth is strongly correlated with the number and frequency of dry days (Prouda 

& Rasmussena, 2011). 
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the extreme price volatility of millet, many households supplement their income with 

livestock production, seasonal migration (the Exode4) and low paying, rural income 

generating activities. 

The millet harvest typically occurs in October and November depending on 

the rain cycle. In some years, the process may start earlier or later depending on 

planting dates, the variety of millet (mainly pearl millet), and the prevailing weather 

conditions. Threats to fully grown millet include birds, insects, and molds. Rachie and 

Majmudar (1980) note that unless bristles (Figure 2, below) are present on the millet 

heads, birds will feast on millet seeds. In fact, birds can be a major problem if the 

millet grain ripens at the wrong time. Agrarian laborers harvest the plant by cutting 

the millet stalk in half and keeping the upper half where the grains are contained. 

Post-harvest, bundled millet may be stored on its head in granaries or moved to a 

threshing area for debranning. Traditional millet processing involves debranning the 

millet head in a wooden mortar with a wooden pestle. After breaking the seed from 

the stalk, the seed is gently tossed until it separates from the chaff. The debranned 

grain can then be stored or continually processed for consumption.  

Figure 2. Millet bristles, processing, and storage 

 
Source: Author’s photos 

                                                 
4 The Exode (French for exodus) is a pattern of seasonal migration which generally involves rural 

populations travelling to neighboring countries for work during the dry season (January – April). 

Millet bristles Millet storage 

      

Millet processing 
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All parts of the millet plant are used throughout Niger. After harvest, some 

millet may be dried (stover) and left in the fields for livestock grazing. Near urban 

centers, millet stalks are sold or used for a variety of building materials, such as mats, 

fences, granaries materials, or burned as fuel (Lamers & Feil, 1993). Because the 

majority of the population depends on millet products throughout the year, poor 

agricultural outcomes can influence household consumption, production and income 

through multiple on and off-farm channels. 

At a macroeconomic level, millet production constitutes nearly 80 percent of 

all cereal output in Niger (Cornea and Deotti, 2008). Despite the historical growth in 

area planted and overall millet production (as show in below in Table 1) yields have 

remained flat and far below that of neighboring countries.  Part of this can be 

attributed to poor long-term agricultural policies of the last 20 years (Cornia, Deotti, 

and Sassi, 2012) and part may be due to the fact that input use is extremely limited.  

Thus, millet yields are highly correlated with weather conditions prevailing during the 

growing season. What is troubling about these practices is that if yields remain flat, 

millet availability will only keep pace with population growth (3 percent per year) by 

expanding the base area planted or increasing imports. Given that many marginal 

lands have already been introduced into the production process, the marginal gains 

from additional lands planted are likely to be decreasing (and likely at an increasing 

rate). This troubling trend may only exacerbate the effects of production shocks, 

especially when coupled with Niger’s fertility rate of over 7 children per woman.5 

From a broad international trade perspective, millet is unique in that it is not traded 

globally and thus there are few trans-oceanic trade channels through which domestic 

                                                 
5 https://www.cia.gov/library/publications/the-world-factbook/rankorder/2127rank.html 

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2127rank.html
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prices are affected (Brown et al, 2012). In fact, nearly all of the millet that is 

consumed in West Africa is produced and traded within the area.  

The major millet producing regions of Niger are shown below.   Figure 3 

depicts the regions of Niger overlaid with agro-ecological zones from FEWSNET and 

spatial production maps from Harvest Choice’s Spatial Production Allocation Model 

(SPAM) model. The red circles indicate a market that is in the study sample. A 

review of the figure shows that markets are reasonably well-distributed spatially and 

by production zones. The major millet producing regions of Zinder and Maradi are 

represented by eight markets, a few of which are major cereal collection points, such 

as the market of Maradi. The red lines represent major transportation routes. Most 

markets are connected to infrastructure points, though the quality of the infrastructure 

may be less than ideal. The distribution of markets by agro-ecological zone is also 

balanced with 10 markets falling in the rainfed agricultural zone.6 

                                                 
6For the most recent information on the livelihood zones see: 

http://www.fews.net/docs/Publications/Niger%20Livelihoods%20zoning%20report%20Final.pdf 

http://www.fews.net/docs/Publications/Niger%20Livelihoods%20zoning%20report%20Final.pdf
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Figure 3. Map of markets analyzed and major production zones 
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Table 1. Official millet production statistics 1996-2009  

 
Source: FEWSNET Niger/Government of Niger; Area planted measured in hectares and production measured in metric tonnes. 

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Millet Millet Millet Millet Millet Millet Millet Millet Millet Millet Millet Millet Millet Millet

DIFFA Area 76,537      62,253      76,156      93,515      77,785      90,675      110,368    106,324    53,166      140,718    139,520    140,885    156,977    152,583    

yield 417           59             560           518           55             488           434           367           169           319           451           545           470           196           

Production 31,896      3,670        42,665      43,394      4,251        44,263      47,895      3,921        9,010        44,895      62,974      76,749      67,882      29,968      

DO SSO Area 639,029    737,069    838,732    826,085    833,554    809,839    910,558    945,264    1,003,051 941,953    1,051,581 1,053,928 1,183,105 1,136,316 

yield 508           339           419           501           370           583           559           513           484           496           581           485           606           552           

Production 324,396    249,776    351,650    413,531    308,597    471,974    508,864    484,804    485,913    466,775    610,725    511,667    716,567    627,520    

MARADI Area 1,209,583 1,086,510 1,254,567 1,224,150 994,286    1,050,626 1,200,072 1,128,302 1,094,049 1,181,100 1,345,041 1,351,371 1,515,601 1,476,109 

yield 319           339           462           347           384           404           457           564           395           444           495           467           512           417           

Production 386,175    368,689    579,954    424,254    381,764    424,270    548,409    635,987    432,693    524,407    665,836    630,981    776,289    615,704    

TAHO UA Area 920,372    758,737    878,450    883,527    921,975    899,726    989,682    1,067,147 1,050,723 1,094,329 1,152,375 1,165,885 1,254,941 1,242,518 

yield 446           370           501           478           351           472           426           464           317           447           538           501           578           370           

Production 410,726    280,504    439,751    422,335    323,925    424,573    421,757    495,100    333,604    489,226    620,233    584,606    725,914    460,066    

TILLABERY Area 857,441    911,144    1,104,230 1,071,799 1,074,134 1,110,093 1,237,152 1,400,000 1,342,557 1,321,563 1,372,653 1,341,970 1,512,073 1,278,550 

yield 348           174           507           443           274           472           452           424           290           473           431           390           447           382           

Production 298,331    158,675    559,423    474,442    294,500    524,045    559,784    592,986    389,763    625,552    591,476    523,215    676,113    488,084    

ZINDER Area 1,079,086 927,951    1,195,052 1,236,122 1,232,093 1,251,657 1,111,685 1,104,586 1,040,080 1,197,883 1,149,352 1,098,923 1,181,570 1,199,950 

yield 281           307           343           410           293           368           425           441           363           412           389           405           430           365           

Production 302,911    284,707    410,443    506,533    360,597    460,797    472,074    487,482    377,130    493,140    446,525    445,433    508,272    437,481    

Agadez/NiameyArea 7,763        19,971      18,868      16,005      17,568      19,320      16,606      19,670      20,729      16,383      19,426      17,217      24,617      27,118      

Yield 460           295           392           268           284           457           508           484           463           513           557           539           746           702           

Production 3,570        5,897        7,396        4,297        4,997        8,820        8,436        9,528        9,601        8,397        10,815      9,276        18,354      19,032      

Niger Area 4,789,811 4,503,635 5,366,055 5,351,203 5,151,395 5,231,936 5,576,123 5,771,293 5,604,355 5,893,929 6,229,948 6,170,179 6,828,884 6,513,144 

yield 367           300           446           428           326           451           460           476           364           450           483           451           511           411           

Production 1,758,005 1,351,918 2,391,282 2,288,786 1,678,631 2,358,742 2,567,219 2,744,908 2,037,714 2,652,392 3,008,584 2,781,927 3,489,391 2,677,855 

Yield = production/area 

planted*100
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 In a typical production year, cereal harvests from the surplus zones of Maradi, 

Zinder are gathered and transported across the country to cereal deficit zones in the 

north and west.7 Millet imports from Nigeria also make their way into Niger through 

Gaya and other border towns. Mali and Burkina Faso typically supply cereal to 

Western Niger, whereas cereal supplies from central and southern Niger are 

augmented by imports from Nigeria. The markets of Zinder and Maradi are central 

reference markets for the surplus regions and points of major agribusiness activities. 

Determinants of Millet Price Outcomes  

Figure 4, below, summarizes major food supply and demand events that occur 

throughout the year and their relative relationship to long-term average millet prices 

and NDVI outcomes. The graphic is presented on a month-by-month basis to 

demonstrate the myriad fixed factors that influence cereal supply, cereal demand, and 

overall market performance. For most of our analysis we use NDVI and price 

anomalies so that predictable seasonal events (or market fundamentals) are already 

accounted for. That is, we focus on whether observed NDVI and price outcomes are 

above or below what we normally expect at that time of the year, for any given year 

after controlling for expected market fundamentals. As is depicted in the graphic, 

average (raw) NDVI values rise continuously throughout the growing season, 

reflecting the growth of vegetative cover, until reaching a normal peak in September. 

While this behavior is normal and reflects average NDVI, the extreme weather 

variability of Niger means that NDVI values in some years deviate far from average, 

and early or late growing seasons may occur depending on the rainfall patterns. 

                                                 
7 See http://www.fews.net/docs/Publications/ne_fullmap_millet_norm.pdf for an full example of 

typical millet flows. 

http://www.fews.net/docs/Publications/ne_fullmap_millet_norm.pdf
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Outside of the growing season, NDVI declines steadily until the following growing 

season starts. 

Figure 4. Events calendar for Niger 

 
Source: FEWSNET & Author’s calculations. 

In reviewing the figure above it is easy to gain a sense of the pattern millet 

prices follow throughout the agricultural marketing season. The actors in the cereal 

marketing chain consist of smallholders, primary and secondary cereal collectors, 

wholesalers, transporters, retailers and a cadre of large traders who are responsible for 

many exports and imports (World Food Program, 2005). The typical marketing 

season commences with harvest in October through December and runs through 

September of the following year. In terms of millet price fluctuations, the largest 

percentage decline normally occurs between August and September and between 

September and October as central markets aggregate cereal supplies, traders begin to 

restock their storage facilities, and information on remaining harvest volumes comes 
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to light. Collectively, these factors put downward pressure on local and national 

millet prices. 

However, because storage facilities are limited, particularly at the micro level, 

and other market inefficiencies emerge throughout the year, prices tend to fluctuate 

both intra and inter-annually.  From October-December, millet prices typically fall to 

some of their lowest levels and exhibit the least amount of volatility (standard 

deviation) due to sufficient cereal supplies and less uncertainty across markets.  This 

is also the time during which traders begin to rebuild their stocks for the coming year. 

In rural areas, farmers may start restocking millet in local granaries, and at the 

wholesale level stocks are rebuilt after harvest, but usually held for short periods. In 

fact, Aker (2010b) suggests these periods generally do not exceed two months. At the 

national level, government stocks are replenished at the end of harvest. However, 

official figures may not be published until the first trimester of the following year, 

and are thought to suffer a serious upward bias (Araujo-Bonjean and Simonet, 2011).  

Depending on the quality and quantity of the harvest, the volume of existing 

millet stocks, the flow of millet from surrounding countries, the supply of millet 

substitutes, and the degree of market inefficiencies, millet prices typically start to 

increase at the beginning of the dry season. In marketing years with below average 

production (1997-98 and 2004-05), prices may increase as early as February or 

March. On the other hand, in marketing years with abundant production, prices tend 

to remain flat throughout the winter months. Typically, the largest, pre-hungry season 

percentage change in millet prices occurs between March and April. Towards the end 

of the dry season, imports from surrounding markets start to make their way into the 
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Nigerien markets.  By April and May, millet prices are elevated as land preparation 

starts, the hungry season approaches, and rural households continue to draw down 

their local supplies of millet.  

At the peak of the hungry season, June to August, millet prices climb to their 

highest levels and exhibit the greatest amount of volatility. This is partially due to the 

lack of proper storage facilities, the uncertainty of future crop production, the 

changing expectations of traders about available cereal supplies, and increased 

demand from households who have exhausted their own millet supplies.  

Collectively, these events put tremendous pressure on households that are down to 

their final grains of millet. For example, during the poor marketing years of 1997-98 

and 2004-05 millet prices reached historical high points in these months. In July of 

2005 prices were nearly 100 CFA above average. To ease the pressure caused by 

rising prices on households, the Government of Niger may introduce subsidized sales 

of millet during the peak of the hungry season. As the growing season reaches its 

final months, millet prices start on a downward path as more and more information 

regarding the quality and quantity of harvest is revealed to the markets. Depending on 

the timing of the growing season and the nature of the harvest, the decline may start 

as early as July (such as in 2002-03 marketing season) or as late as September.  

As documented in our review, millet production, consumption, and trade are 

affected by numerous factors that take many forms (fixed, stochastic, observed, and 

unobserved) and are difficult to collect data on in a timely manner.  Moreover, market 

inefficiencies and imprecise measurement of data mean that price and production 

statistics alone may not convey the appropriate message for making food security 
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assessments and ultimately decisions. What is needed is an objective, apolitical, 

metric that is measured in real-time and can be used to detect vegetation production 

conditions, and thus likely millet production outcomes and inferred trade flows. This 

is the primary advantage of NDVI.  In the following section we demonstrate its 

usefulness for contextualizing millet price and production outcomes in a period of 

great food insecurity, the 2004-05 food security crises which affected an estimated 

2.4 million Nigeriens, of which 800,000 were classified as critically food insecure 

(FEWSNET 2005) 
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Chapter 3: Using NDVI to Improve Spatial Price Analysis 

 This chapter demonstrates the usefulness of NDVI in analyzing and 

contextualizing price outcomes in Niger during the 2004-05 food security crises. We 

start by briefly discussing why market imperfections that are likely present in Niger 

can distort price signals. We then turn to a discussion of how NDVI can be used to 

add value to price analysis for the purpose of food security assessments. The final 

part of the chapter focuses on the benefits and limitations of remote sensing data for 

food security assessment.  

Using NDVI to Analyze the 2004-2005 Food Security Crises  

In developing countries, Niger in particular, markets are often not well 

integrated due to inadequate provision of public goods, such as infrastructure and 

telecommunication systems, inefficient flows of information, and missing institutions 

(Rashid and Minot, 2010). Markets may also be inefficient in that prices at a given 

point in time may not reflect the current state of knowledge of food availability and 

expectations regarding future food scarcity. When these types of market failures 

and/or inefficiencies are present, the appropriate price signal may not be fully 

transmitted down the marketing chain (Baulch, 1997a). Storage facilities, where they 

exist, may be of poor quality and actual data on storage volumes may be missing, 

incomplete, or even manipulated for political purposes (Araujo, Bonjean and 

Burnelin, 2010). Expectations about future price movements may be more dependent 

on rumors (informational failures) than on stylized facts and underlying data. Under 

these conditions, satellite-based remote-sensing data that reflect actual vegetation 
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production conditions on the ground (given there is adequate remote sensing 

resolution) are available in a timely basis, are objective and consistent when 

appropriate processing corrections are made, and are not subject to the influence of 

rumors or political manipulation, can be powerful tools for informing an analyst of 

impending price movements and even food aid starting or stopping points. This issue 

is particularly relevant in Niger where millet prices exhibit extreme variation often 

associated with pricing bubbles, production shocks are common, and cereal market 

performance fluctuates widely and appears to fall into different types of pricing 

regimes.  

The theoretical conditions associated with competitive spatial market 

equilibrium and spatial price integration allow for multiple types of price regime 

outcomes (Barrett and Li, 2002). The first concept, which is concerned with long-run 

competitive equilibrium, is typically defined by conditions from Enke-Samuelson-

Takayama-Judge spatial equilibrium model. The model states that two markets are in 

long-run equilibrium either when trade occurs, and rents to spatial arbitrage are 

exhausted, or when no trade occurs and rents to spatial arbitrage are less than or equal 

to zero.  Thus, even if markets are in equilibrium, no trade may occur and millet 

prices may not be highly correlated across space. One could plausibly see this 

scenario unfolding when millet production is abundant throughout the Sahel and 

spatial arbitrage incentives are greatly diminished, so that local prices follow different 

patterns. 

Spatial price integration differs in that it is usually concerned with the 

physical flow of commodities and/or the degree by which a shock is transmitted 
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between two markets. Even if trade does not occur, two markets may be integrated as 

long as arbitrageurs face zero marginal returns (Barrett and Li, 2002). Because both 

concepts typically rely on three variables for analysis: prices, transactions costs and 

trade volumes, the overlap of conditions generated by the two concepts can be used to 

define different types of market conditions. As presented by Barrett and Li (2002), six 

types of regimes, all shown in the table below, may be observed in spatial price data.  

Table 2. Types of price regimes 

 
Arbitrage conditions bind 

Positive profits to 

spatial arbitrage 

Negative profits to 

spatial arbitrage 

Trade 

occurs 

Perfect  

integration (1) 

Imperfect  

integration (3) 

Imperfect  

integration (5) 

No trade 

occurs 

Equilibrium / 

Unexercised tradability 

(2) 

Segmented 

disequilibrium (4) 

Segmented  

equilibrium (6) 

Adopted from Barret and Li (2002). 

 

 Under each scenario, trade may or may not occur which leads to different 

conclusions regarding the characterization of spatial market equilibrium and 

integration. When arbitrage conditions bind and trade occurs (1), markets would be 

classified as being perfectly integrated and in equilibrium, or if no trade occurs (2), 

markets may still be in equilibrium and integrated, but not exercising tradability. 

Moving to the middle of the table, we observe what happens when positive profits 

remain from spatial arbitrage opportunities. When trade occurs (3) markets are said to 

be imperfectly integrated, because through trade arbitrageurs can earn positive profits. 

On the other hand, if no trade occurs (4) markets are characterized as being in a 

segmented disequilibrium because arbitrage opportunities that are profitable are not 

fully exploited.  The last column describes a scenario (5) under which traders actually 
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earn negative profits from trade and markets are characterized as being imperfectly 

integrated. On the other hand, no trade may occur (6) and markets are in a categorized 

as being in a segmented equilibrium.   

To determine accurately the nature of the price regime which characterizes 

millet markets in Niger at a given point in time requires millet prices, inter-market 

millet trade volumes, and inter-market transactions costs of spatial arbitrage.  While 

we do not observe trade flows or transportation costs, we do observed spatially 

explicit NDVI outcomes which may serve as a proxy for local millet availability 

(millet supply), which in itself can reveal information about potential trade flows 

between markets.  When vegetation production conditions are above normal during 

the growing season, we assume this indicates greater local availability of millet and 

thus less trade flow from normal food surplus markets to normal food deficit markets. 

Moreover, NDVI also correlates well with rainfall in semi-arid regions (Nicholson, 

2011), which means it potentially can serve as a crude indicator for transactions costs 

under the assumption that below (above) average precipitation outcomes decrease 

(increase) normal transportation costs. While there is error in these correlations and 

NDVI data are by no means are a substitute for prices, NDVI does have the advantage 

over prices of not being affected by market inefficiencies and failures. When the 

appropriate price signal is not being transmitted down the marketing chain, the 

objectiveness of NDVI may reveal information not contained in the price signal. This 

point is illustrated through an analysis of the 2004-05 food security crises in Niger. 

Figure 5, below, depicts real millet price anomalies (in black) and a rolling, 

twelve-year, monthly deviation of cumulative NDVI for millet production zones (in 
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green and brown) in Niger.  Major production zones are derived by intersecting pixels 

from the NDVI database with Harvest Choice’s Spatial Production Allocation Model 

(SPAM). NDVI pixels falling within areas where SPAM crop production is greater 

than zero hectares are considered to be active production zones. While only data from 

2003 through 2006 are shown, the cumulative anomalies are calculated over the entire 

period of study.  To create the price anomalies we remove all seasonal and market 

fixed-effects (pricing fundamentals) that normally influence millet prices. That is, for 

each market we regress the observed prices on a vector of monthly dummy variables, 

a continuous set of temporal variables (period and period squared), and a market 

fixed-effect. We then calculate a monthly residual for each market. This residual 

represents the price anomaly, or how far prices have deviated from predictable 

fundamentals for a given market, in a given month. To generate a national-level 

anomaly, we calculate the mean of the estimated price residuals across all markets. 

For NDVI anomalies, we follow a similar procedure, but at the pixel-level 

using a rolling window with monthly and pixel-level fixed effects removed. The 

NDVI monthly anomaly is smoothed (or updated every month) in order to incorporate 

only the last twelve years of monthly NDVI data. Twelve year NDVI windows are 

used because NDVI data start in July of 1981 and millet price data are most 

consistent starting in 1993.  We aggregate all anomalies across space to construct a 

single cumulative NDVI metric for Niger. When reading Figure 5, prices and NDVI 

values can be interpreted as follows: millet prices or NDVI outcomes that are close to 

the vertical axis at zero represent normal conditions, or that the values are close to 

what one would expect on average. When millet prices are above the vertical axis at 
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zero, this indicates that prices, on average, have deviated from expected market 

fundamentals.  On the other hand, NDVI values above (below) the vertical axis at 

zero indicate an above (below) average period of aggregated vegetation production 

conditions. The shaded green bars in Figure 5 represent the annual growing season, 

which runs from May to October.  

We start by focusing our attention on May 2003, during which we notice a 

strong correlation between the NDVI and price signals. First, average, aggregated 

NDVI anomalies were far above what we would have expected for a normal millet 

growing season. Aggregated NDVI anomalies for May suggest not only an early start 

to the growing season but also above average vegetation production conditions and 

thus more millet availability earlier in the year. Millet price deviations reflect this 

early start and promising millet harvest as they remained well below average 

throughout the growing season. In fact, the deviations actually grew in magnitude 

from May through September which may reflect the early offloading of millet stocks 

by traders and/or the early harvest of millet. Only in October of 2004 did prices reach 

their expected value, indicating a likely abundance of millet throughout Niger.   

 As markets continued to incorporate information from the 2004 harvest, price 

deviations increased in magnitude throughout the beginning of 2005. Price anomalies 

steadily increase in value throughout the spring months and then exploded in the 

summer of 2005. In fact, by July 2005, price anomalies were more than 100 CFA 

above their long-run, expected value. At this point in time, no purely price-driven 

econometric model could provide an adequate picture as to how prices would move in 

the future, given how far off the expected path prices already were. Moreover, from a 
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food security standpoint, it would have been tremendously difficult to know whether 

the extreme price levels accurately represented the availability of millet in the 

markets, or were associated with a pricing bubble that may have been due to rumors 

or expectations of millet traders in Niger. 
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Figure 5. Long-term millet price and cumulative NDVI anomalies in Niger (2003-2006) 

 
 Source: Author’s calculations 
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Media outlets, institutional researchers, and EWS personnel have proposed 

many competing hypothesis to explain why millet prices reached such extreme 

values. At one end of the spectrum, some international media outlets hypothesize that 

the rapid rise in millet prices was a figment of the international community, 

perpetuated to raise humanitarian funds (Sultbløffen “The Famine Scam”, March 

2008, TV2). Other media outlets and think tanks posit that the price hikes were due to 

the locust invasion, excessive trader hoarding (the Oakland Institute), and lower 

national food reserves (Aker 2010b). USAID FEWSNET characterizes the rapid rise 

in prices as a localized food security crisis caused by impoverishment among 

landholders in the southern districts (Eilerts, 2006). Aker (2008), and to some extent 

Rubin (2008), suggest that unfavorable terms of trade with Nigeria reduced incentives 

to import millet into Niger and that a majority of Nigerien regions were actually 

affected by production shocks. What appears to be missing from the debate is an 

objective assessment of the variation in vegetation production conditions across Niger 

during the same period. 

Shifting focus to the green and yellow shaded areas, which represent NDVI 

anomalies, we can see three clear messages emerge: i) an early growing season 

occurred in 2003 that put substantial downward pressure on millet prices during the 

hungry season, and increased the amount of time between normal food production 

periods; ii) cumulative NDVI anomalies for late 2003, all of 2004, and half of 2005 

that were far below normal levels and likely contributed to the deterioration in food 

prices during the spring and summer of 2005; and iii) NDVI anomalies were far 
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above their expected values in July of 2005, and foreshadowed the bumper harvest 

experienced later that year.  

Regarding the first point, the positive NDVI anomalies in May and July of 

2003 suggest an early start to the growing season, an early harvest, and an atypical 

amount of time between production periods. Because household and community level 

storage facilities are less than ideal and government and wholesale storage actors tend 

not to store millet for long periods of time due to high storage costs, credit 

constrained households are not able to adequately smooth consumption across 

growing seasons. An early growing season followed by a poor growing season and 

very bad non-growing season, may have exacerbated this problem.  Moreover, 

reviewing NDVI anomalies for August through November 2003, we see that 

cumulative NDVI anomalies are far below where one would expect. This may be 

interpreted as evidence of an early harvest, given the above average NDVI outcomes 

from early in the growing season. 

At the start of the 2004 growing season (May/June/July), NDVI remained far 

below average, suggesting a poor or delayed start to the growing season. The 

remaining months of 2004 growing season did not fare better as each month, staring 

with June, was progressively worse through November of 2004. This sharp 

downward trend continued into the first part of 2005 with a substantial number of 

negative NDVI shocks recorded in January and February of 2005.8 However, it is 

unclear how to interpret these shocks as they occurred in the dry season during which 

NDVI should have limited analytical value. Analyzing the same period with 

                                                 
8 The study recommends additional research regarding the NDVI outcomes from January and February 

of 2005 in order to determine the values can be explained by other sources of error found in the NDVI 

data. The extent of shock is observed across a wide geographic space in our NDVI database. 
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alternative NDVI anomalies (long-term and short-term anomalies), we reach largely 

the same conclusion. Using a long-term cumulative NDVI anomaly, we calculate that 

Niger experienced 15 consecutive months (April 2004 – June 2005) of below average 

NDVI outcomes. The number would have been 20 consecutive months were it not for 

the normal levels recorded in March of 2004. In terms of short-term NDVI anomalies, 

the results are comparable as the 13 out of 15 months were far below average for the 

entire region. Also, particularly relevant is the fact that in neighboring Burkina Faso, 

Mali and Nigeria, NDVI levels were far below normal for seven consecutive months 

suggesting a regional-wide phenomenon. Average NDVI levels from the breadbaskets 

of these countries are depicted below in Figure 6. 

Finally, regarding our third point, returning to Figure 1 and focusing on the 

2005 growing season, particularly July and August, we see that the aggregated NDVI 

anomaly variable was far above its expected value. In fact, when we rank average 

NDVI anomalies from that point in time against values from the past 12 years, 

anomalies from July of 2005 rank second overall. At the same time, in the Malian and 

Nigerian zones of intensive millet production NDVI readings were at their highest 

levels in the past 12 years. These above average NDVI outcomes, which we interpret 

to be an indicator of above average yield potential (millet production) and declining 

millet prices, occurred well before millet prices actually fell in the fall of 2005.  
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Figure 6. NDVI anomalies for production zones of Burkina Faso, Mali, and Nigeria 

 
Source: Author’s calculations 
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Advantages of NDVI Data 

In this situation, incorporating NDVI into a food security assessment and 

millet price forecasting model appears to deliver benefits in a couple of ways. 9 First, 

in terms of providing additional information on millet price levels, NDVI data could 

have informed analysts of three important points: i) that there was a substantial time-

lag between production periods from 2003 to 2004, ii) that the vegetation production 

conditions from late in the 2003 growing season through early 2005 were  far below 

normal both during and outside of the growing season (and particularly bad in 

January and February of 2005), and iii) that cumulative, monthly NDVI anomalies for 

the 2005 growing season were far above average and this was known as early as July 

of 2005. NDVI appears to help predict in a timely manner the precipitous decline in 

millet prices following the 2005 harvest. While analysts would have known the 

vegetation production conditions of given pixels from the satellite data, conducting 

analysis only with the prices coming across their desks in July and August of 2005 

may have resulted in vastly different conclusions. 

Additionally, because official millet price data typically take weeks to collect 

and process and are often only available on government websites with a considerable 

lag, the actual prices available for analysis at the height of the crises may have been 

dated or inaccurate. As for official production estimates, Araujo, Bonjean and 

Burnelin (2010) point out that these are not available until late fall, or even early 

winter. These authors also note that official statistics are often biased and may face 

                                                 
9 Currently, the primary use of NDVI within FEWSNET is to compare the current state of vegetation 

with previous time periods. This may be done by looking at a reference year and comparing current 

conditions to the same seasonal progression in all previous years 

(http://www.fews.net/pages/imageryhome.aspx?pageID=1&l=en). It is unclear how this is integrated 

with analysis of millet prices or market performance metrics. 

http://www.fews.net/pages/imageryhome.aspx?pageID=1&l=en
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upward revisions if millet prices start to rise too early in the year. NDVI data, on the 

other hand, can be processed in near real-time, in front of an analyst’s eyes in a matter 

of hours, and are less subject to revision post-delivery. But these are not the only 

advantages of NDVI data. 

In terms of food aid logistics, knowing that NDVI data had been abnormal, 

across the entire region, throughout 2004 and into 2005 may have provided better 

insight into the urgency of food aid needed during the early part of 2005. The NDVI 

anomalies from the winter of 2005 potentially suggest that the 2004 locust invasion 

was quite severe and may have adversely affected a household’s ability to derive 

income from secondary channels. Conversely, knowing that farmers across the entire 

Sahel were experiencing above average vegetation production conditions in July and 

August of 2005 would have been tremendously useful in informing donor agencies of 

the need for additional food aid shipments to the region, particularly if pending 

shipments only arrive with a substantial lag. If a subsistence farmer were to 

experience a bumper harvest at the same time that international food aid saturated a 

local market, then that farmer may be even worse off, depending on the magnitude of 

the endowment income effect.10 Instead of being rewarded for a bumper crop, a 

farmer may face lower millet prices because of the oversupply in local cereals caused 

by the untimely delivery of food aid. Thus, NDVI may not only be useful in 

predicting impending prices movements and when and where to start food aid 

deliveries, but it can also be valuable in determining when and where to stop planned 

                                                 
10 Recall from the Slutsky equation that a price shock to a seller will have three effects, the substitution 

effect, the ordinary income effect, and the income endowment effect. Depending on the magnitude of 

the endowment income effect, farmers may be worse or better off after a change in prices during the 

harvest months. 
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food aid deliveries to prevent market distortions and preserve the livelihoods of rural 

households. 

From a data perspective, using NDVI alongside prices delivers other benefits. 

Price data alone are fraught with missing observations and measurement error, and 

are confined to a fixed geographic space, all features which can limit the conclusions 

drawn from their analysis. For example, price data from two markets that are 

separated by geographical features (mountains or a lake) and have no trade history 

may appear to co-move because of similar weather (drought). In reality, the markets 

may not be at all integrated, but because vegetation production conditions are not 

immediately available, we may draw incorrect conclusions by looking only at co-

movements of prices. NDVI, on the other hand, can allow us to control for the 

vegetation production conditions surrounding markets and can help in detecting the 

influence of varying conditions on price changes and market performance when 

measured with adequate spatial, temporal, radiometric and spectral resolution.  NDVI 

can provide a rich time series when it is objectively and consistently processed and 

appropriate corrections are made to account potential sources of error such as 

atmospheric effects (aerosols and dust), cloud cover, soil effects, orbital effects 

(anisotropic), and sensor degradation (Goward et al., 1991). Thus, when corrections 

are made in a consistent and objective manner NDVI data are available over a long 

time horizon, cannot be manipulated politically to establish a desired trend or mask 

bad news, and are not influenced by the presence of geo-political borders or the 

availability of environmental observations of growing conditions. The latter point 

means that a food security analyst can readily assess other productive zones of the 
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Sahel and rapidly develop a sense of the state of regional vegetation production 

conditions. This is particularly relevant, given that during 2000-2004, 75-85 percent 

of millet and sorghum imports into Niger originated from northern Nigeria (Cornea & 

Deotti, 2008). 

Disadvantages of NDVI Data 

While NDVI has many analytical benefits, it also has numerous limitations. 

NDVI is simply a metric used to detect vegetation production conditions over a pixel 

of land remotely sensed from a satellite orbiting above the earth. Studies (Rasmussen 

1997, 1998) have shown that it is highly correlated with millet yields.  However, 

many potential sources of error (as mentioned above) can affect the spectral signal 

used to calculate NDVI. Moreover, because in semi-arid areas NDVI correlates well 

with many parameters, such as percentage of surface cover, biomass and leaf area 

index, as well as rainfall, there may be temptation to over-use NDVI for analysis, 

some of which NDVI was never designed  (Nicholson, 2011).  NDVI cannot tell us if 

an area is actually being cultivated or in which crop – only the spectral signature of 

live vegetation which is related to the vegetation production conditions and by 

implication the moisture conditions of plants. NDVI tells us nothing about the 

expectations of traders, the income and asset profiles of consumers, the current 

volume of food in storage, the trade networks of a town or village, the political 

situation of country, or other characteristics of a location that can influence how 

prices are determined, how markets behave and whether or not these outcomes are 

threats to household well-being. Satellite remote sensing is not embedded in 

economic theory through any formal framework. We know that prices will generally 
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be the best food availability indicator because when markets are efficient prices will 

reflect all information available to the market as well as expectations regarding future 

food scarcity. If given the choice between NDVI or price data, price data are 

generally better as an indicator of food availability when available in a timely and 

consistent manner. Thus, NDVI data are not a substitute for prices.  

But, NDVI data do serve as a complement to price data in that when the 

quality of price data is poor, unavailable, or questionable due to bubble-like 

conditions and herding mentality, NDVI data can greatly aid in understanding and 

forecasting how prices are likely to change, and as we show in the following chapters, 

what future market performance may look like. While we may not be able to 

disentangle or control for all the factors that influence prices, we can start to 

disentangle what we observe in the NDVI data.  Knowing in advance whether NDVI 

outcomes have substantially departed from historical averages can help in interpreting 

price signals, forecasting market conditions, and providing policy makers an objective 

view of the production and environmental conditions on the ground.   

 



 

 45 

 

Chapter 4: Literature Review 

 In this chapter we review the literature on NDVI studies, spatial price 

analysis, and market performance in Niger. While numerous studies have examined 

the linkages among NDVI and vegetative outcomes or crop yields, there have been 

few attempts to explicitly link NDVI anomalies to millet price outcomes for the 

purposes of analyzing cereal market performance. With that said, this literature 

review is by no means comprehensive, but instead illustrative and focuses on 

highlighting the major bodies of work related to topics in this dissertation. 

A Review NDVI Studies 

 The use of satellite data in forming vegetation indices dates back to the 1970s 

when researchers demonstrated that combinations of red and photographic infrared 

radiances could be employed to monitor photosynthetically active biomass (Rouse et 

al. 1974; Tucker 1979). In the 1980s, Tucker et al. (1981) demonstrated that NDVI 

was directly related to wheat yields. Many studies, focusing on the remote sensing of 

biomass production in the Sahel, followed (Tucker et al., 1983; Tucker et al., 1985; 

Prince & Tucker, 1986). Prince (1991), focusing on three Sahelian countries, 

concludes that satellite observations of vegetative indices and seasonal primary 

production are strongly linked. Using a longer time series of NDVI and rangeland and 

agricultural data, Fuller (1998) asserts that correlations between trends in maximum 

NDVI and field measures of rangeland and crop production are positive and 
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statistically significant. Others (Nicholson, 1994; Tucker and Nicholson, 1999) 

suggest that NDVI is correlated with precipitation.11 

 Within the food security community, NDVI has long been part of monitoring 

programs (see Hutchinson, 1991). In particular, when FEWSNET was launched in 

1985 it included the United States Geological Survey (USGS) USGS and NASA as 

implementing partners due to the importance of remote sensing to the monitoring task 

in Sub-Sahara Africa (USGS, 2010). Despite the popularity of NDVI in the EWS 

community, few attempts have been made to link explicitly NDVI anomalies to 

commodity price movements and/or market performance. Brown, Pinzon and Prince 

(2006) appear to be the first to document a negative linear relationship between 

NDVI anomalies and millet prices in Burkina Faso, Mali and Niger using price data 

from the 1980s and 1990s. Later work (Brown, Pinzon and Prince, 2008) highlights 

the importance of rainfall variations, as captured by NDVI, on the evolution of millet 

prices. However, the study stops short of providing an econometric-based forecasting 

model and does not explore the time-series properties or spatial dynamics among 

NDVI and millet prices. We now turn to a discussion of spatial price analysis. 

Spatial Price Analysis  

 Spatial price analysis is concerned with examining how markets perform over 

time and space. At the heart of the analysis is the law of one price (LOP), which 

posits that if regional markets are linked by trade and arbitrage, they will have a 

common, unique price (Fackler and Goodwin, 2001). In developing countries, price 

analysis is often concerned with investigating two other concepts, market integration 

                                                 
11 This literature review is not meant to be exhaustive, rather illustrative, as numerous studies on NDVI 

and crop production exist.  
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and market efficiency, linked to the LOP. Following Fackler and Goodwin (2001), 

this study considers market integration as the degree to which a shock in one market 

is transmitted to another market. For example, if two markets are highly integrated, 

we would expect that a supply shock in one market would have a strong effect on 

prices in another market. In mathematical notation, we can think of this as a 

transmission ratio (TR) denoted: 

 
𝑇𝑅𝐴𝐵 =

𝜕𝑃𝐵 𝜕𝜀𝐴⁄

𝜕𝑃𝐴 𝜕𝜀𝐴⁄
 (1)  

Where PA and PB are the prices in each region and εA is the supply shock that has 

occurred. If markets are perfectly integrated, the transmission ratio will be one. The 

concept of market efficiency is different in that it normally considers the allocation of 

resources and aggregate welfare. If a market is efficient, then the “allocation of 

resources is such that aggregate welfare cannot be further improved upon through a 

reallocation of resources” (Fackler and Goodwin, 2001). In a spatial sense, one can 

think of this as implying that no further arbitrage opportunities exist for spatial 

traders.  

 Researchers have proposed many empirical tools to test market performance. 

Early studies relied on correlation analysis to determine the degree of co-movement 

between prices. It was posited that if spatial markets were integrated, then their prices 

would tend to move together. However, this approach was criticized as many 

common components (inflation, climate patterns and population growth) can exert 

similar influence over of prices, even if markets are not linked. At the opposite end of 

the spectrum, a monopolistic market structure may yield correlation coefficients of 

1.0, regardless of the degree of interaction between markets (Harriss, 1979). The 
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technique also cannot distinguish between markets in which delivery lags produce a 

lag in the price response between markets (Barrett, 1996). In the 1980s, analysts 

turned to more advanced techniques such as Granger-causality, dynamic regression 

tests (such as Ravallion’s 1986 model), vector autoregressive (VAR) models, co-

integration analysis, and switching regression models. An advantage of these 

approaches is that they better capture the dynamics of agricultural commodity prices. 

We briefly review some of the commonly used techniques: Granger-causality, 

cointegration methods, and switching regime models. 

 One technique that has been used to study Nigerien grain market integration is 

Granger-causality. If lagged prices from a market (j here) are useful in forecasting 

prices in another market (i here), even after controlling for own-lagged prices in the 

market i, then market j is said to Granger-cause price movements in market i. The 

procedure is usually carried out within the framework of a bivariate regression, a 

vector autoregressive or error-correction model and confirmed or rejected with an F-

test on estimated coefficients. Some analysts have taken the presence of Granger-

causality to mean that shocks to prices in one market may induce a significant 

response in another, with a lag. Others have considered it as an indicator of the flow 

direction of information between markets. Baulch (1997) adds that if two-way 

Granger-causality exists, then prices are simultaneously determined. However, 

Fackler and Goodwin (2001) point out the test only allows inferences about lead/lag 

relationships and little can be said about the causal framework that underlies the 

dynamic adjustments.  
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 In her 2010 study on the impact of drought on grain market performance, 

Aker uses an error correction model and pairwise Granger-causality tests between 42 

millet markets in Niger. She finds that markets in millet deficit regions are Granger-

caused more often than they Granger-cause and that markets in surplus regions tend 

to Granger-cause more than they are Granger-caused. This leads her to conclude that 

price movements in Niger respond to supply shocks and that food security programs 

should carefully monitor price movement in key Granger-causing markets. Using a 

VAR framework, Araujo, Bonjean, and Brunelin (2010) conduct a series of Granger-

causality tests on millet prices from Burkina Faso, Mali and Niger and assert that the 

markets of Maradi and Gaya are the main Granger-causing markets in Niger. 

 Cointegration analysis is another commonly used empirical tool. The concept 

is built on the idea that prices, on their own, may trend or wander extensively over 

time and thus may be nonstationary.12 If a data series is found to be nonstationary and 

the spatial analyst does not account for this data property, statistical inference may be 

wrong, as standard regression tests will results in inconsistent standard errors. To 

overcome these limitations, cointegration tests have been developed over the years 

(see Fackler and Goodwin for a summary listing, 2001). Cointegration tests consider 

if two or more nonstationary data have a stable long-run (equilibrium) relationship. 

For prices, the test is conducted by the estimating the following co-integrating 

regression: 

 𝑃𝑖𝑡 = 𝑎 + 𝛽𝑃𝑗𝑡 + 𝜀𝑡 (2)  

                                                 
12 Formally, a data series is considered to be covariance-stationary if its first and second moments are 

time invariant.  

𝐸(𝑌𝑡) = 𝐸(𝑌𝑡+1) =  𝜇      ∀ 𝑡

𝑉𝑎𝑟(𝑌𝑡) =  𝛾𝑡 < ∞          ∀ 𝑡

𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑘) =  𝛾𝑘                ∀ 𝑡, ∀ 𝑘
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where the Ps are the prices for market i and j, and 𝜀𝑡 is the error term. The estimated 

residual is checked for stationarity using the augmented Dickey-Fuller test (Dickey 

and Fuller, 1979).13 If the residual is found to be stationary then the markets are said 

to be cointegrated. Moreover, if two time series are cointegrated, then one of the 

series must Granger-cause the other according to the Granger representation theorem 

(Engel and Granger 1987 cited in Baulch, 1997). One of the drawbacks of the 

technique is that it only answers whether or not two markets are cointegrated, it does 

not reveal anything about the nature of market interconnection. Moreover, the fact 

that both Granger-causality and cointegration methods assume a linear relationship 

between prices is inconsistent with the “discontinuities in trade implied by the spatial 

arbitrage conditions” (Baulch, 1997). Many other critiques have also been leveled 

about the conclusions that can be drawn from cointegration analysis (Barrett, 1996; 

McNew and Fackler, 1997; Rashid and Minot 2010, for example).  

 In many developing countries trade flows themselves are dynamic as 

transportation costs fluctuate, exogenous shocks (bridge outages, extreme weather) 

deter trade, and seasonality influences arbitrage opportunities. For instance, in 2005 

in Niger, some observed that millet was being exported to Nigeria, which is a reversal 

of normal trade flows. To account for these market characteristics, researchers 

developed varying types of switching regime models (Spiller and Wood, 1988; 

Baulch 1997; Obsfeld and Taylor, 1997, Barrett and Li, 2002). The basic idea behind 

these models is that movement between different regimes is based on either 

observable characteristics or thresholds found within the data. The main criticism of 

these methods is that results are often sensitive to the underlying distributional 

                                                 
13 Cointegration can also be tested for in a VAR framework. 
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assumption (Fackler, 1996). Preliminary analysis of the Niger price data suggests that 

prices may behave rather differently in growing seasons with below average NDVI 

than in growing seasons with above average NDVI. Thus, the idea of multiple 

regimes is investigated in detail in the study.   

 Spatial price analysis is a framework for testing hypotheses about market 

integration and efficiency. Using different empirical models, an analyst can uncover 

important insights into how markets are linked and perform. If prices are found to be 

non-stationary, cointegration analysis can be investigated to examine long-run 

relationships. As it pertains to this study, the goal of spatial analysis is to provide 

guidance on which markets are important for price discovery, how price shocks are 

transmitted across time and space, and to understand how these details can be 

incorporated into food security assessment.  

Determinants of Market Performance 

To examine spatial market equilibrium through a theoretical lens, we consider 

the Enke-Samuelson-Takayama-Judge (ETSJ) spatial equilibrium model (Enke, 1951, 

Samuelson 1952, Stigler 1966, and Takayama and Judge 1981) as reviewed by 

Fackler and Goodwin (2001), Barrett (2005) and presented by Aker (2010b). Applied 

to millet in Niger, a basic trade model for millet (a homogenous good) can be 

summarized as: 

 𝑃𝑖𝑡 − 𝑃𝑗𝑡 + 𝑇𝐶𝑖𝑗,𝑡 = 0, 𝑄𝑖𝑗,𝑡 > 0      𝑇𝑟𝑎𝑑𝑒 𝑂𝑐𝑐𝑢𝑟𝑠   (3)  

 𝑃𝑖𝑡 − 𝑃𝑗𝑡 + 𝑇𝐶𝑖𝑗,𝑡 ≤ 0,         𝑄𝑖𝑗,𝑡 = 0  𝑁𝑜 𝑇𝑟𝑎𝑑𝑒 𝑂𝑐𝑐𝑢𝑟𝑠   (4)  

where 𝑃𝑖𝑡 , 𝑃𝑗𝑡 are the autarky prices in two spatially distinct markets at time t, i and j, 

respectively, and 𝑇𝐶𝑖𝑗,𝑡 are the transactions costs associated with moving millet from 
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market i to market j. Equations three and four represent the no spatial arbitrage 

conditions, at which point two markets are in long-run competitive equilibrium. 

Equation three states that if trade occurs freely between the markets, then each 

additional trader who enters the market will earn zero marginal profits. Equation four 

reflects the conditions under which marginal profits are less than or equal to zero, and 

no trade occurs. This basic model can be manipulated to derive basic comparative 

static predictions for the impact of environmental conditions on market performance. 

As Aker (2010b) points out, if transportation costs remain constant and a negative 

production shock induces a supply shock that affects a market pair simultaneously, 

but increasing the prices in each market at different rates, then equilibrium price 

dispersion could decrease.  However, if a production shock only occurs in a single 

market, the comparative static predictions are ambiguous. There may be a decrease in 

price dispersion if the other market is not affected. If an observed shock affects 

transportation costs, such as an oil shock, we would expect price dispersion to 

increase in equilibrium. As our NDVI anomalies capture extreme deviations from 

expected vegetation production conditions, we discuss different possible scenarios 

that we observe in the data at different times of the marketing year.  

A Review of Market Performance and Millet Price Forecasting 

 In terms of relevant empirical studies that have analyzed market performance, 

Aker (2010a) considers the impact of mobile phones on millet price dispersion in 

Niger. She finds that the introduction of mobile phone services reduces millet price 

dispersion across markets by about 10 percent. In a related paper, also discussed 

above, Aker (2010b) considers how extreme rainfall affects grain markets during 
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1996-2006. The study finds that drought reduces grain price dispersion. However, the 

construction of the rainfall variable only incorporates rainfall data from July through 

September. This may misrepresent the changing dynamics of the rainy season 

(particularly if it starts earlier or later than expected such as was the case in May 

2003) and only allows the study to consider how price dispersion changes during the 

rainy season (3 months of the year). What appears to be missing is analysis on if and 

how anomalous vegetation production condition outcomes, both positive and negative 

in nature, affect price dispersion throughout the entire growing season.  

 On a related note, Araujo, Araujo-Bonjean, and Brunelin (2011) reach an 

opposing conclusion, using a KPSS unit root test, regarding the time series nature of 

Nigerien millet price data. They find that the data are integrated of order 0, I(0), or do 

not contain a unit root, which may have an effect on the inference that is drawn from 

related time-series analysis (i.e. Granger-Causality, cointegration tests). The authors 

continue and develop a model for identifying crises periods showing that it is possible 

to identify crises using only observation of past price movements. However, out-of-

sample simulations derived from the model are satisfactory. Araujo-Bonjen and 

Simonet (2011) consider the volatility of millet prices in Niger and ask if they are due 

to rational or partially collapsing speculative bubbles. Their econometric results are 

suggestive of the existence of speculative bubbles, but are sensitive to their 

econometric specifications.   

 Turning to NDVI and price forecasting models, Brown, Hintermann and 

Higgins (2009) propose an autoregressive millet price forecasting model that 

incorporates NDVI to control for local production conditions across Burkina Faso, 
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Mali and Niger. The authors allow for market dynamics by including lagged prices 

and for market interaction by using lagged prices from surrounding markets. Millet 

prices are estimated using a fixed-effect, panel model which allows them to make 

predictions at the market-level after controlling for unobserved, time-invariant 

heterogeneity. While the model’s overall fit is impressive, it is plagued by many 

problems. It is highly driven by lagged prices, the impact of NDVI is small, and the 

model does a poor job of forecasting peaks and valleys. Furthermore, the NDVI 

anomaly used in the study is based on a long-term anomaly rather than a rolling-

anomaly. This essentially allows the model to “cheat” by incorporating NDVI data 

from the future.14 Finally, the proposed model produces only a single forecast 

whereas the forecasting literature advocates combining forecasts (Timmerman 2006; 

Armstrong 2001).  The model predictions also are not tested against a simple 

benchmark auto-regressive model, which should be done to determine the value 

added by NDVI. 

Literature Review Conclusions and Our Contribution to the Literature 

Based on the assessment of the literature, we envision our research 

contributing to the literature linking NDVI anomalies to commodity price movements 

in many ways. First, at a high level, we anticipate this research contributing to the 

debate on the 2004-05 food security crises by discussing the economic implications of 

below average NDVI outcomes associated with the event. To our knowledge, no prior 

studies have documented how deteriorating vegetation production conditions may 

                                                 
14 For example, if the model were to generate a prediction for 2005 prices the NDVI anomalies used in 

the predictions are based on a deviation from a long-term deviation that incorporates future NDVI 

readings. A more appropriate method may be to construct a rolling NDVI anomaly that only 

incorporates past and current information. 
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have affected millet production and household incomes.  At lower level, we seek to 

establish an updated statistical link between rolling, filtered NDVI anomalies and 

economic outcomes for the most productive areas of Niger through the use of explicit 

spatial production maps that are used to filter NDVI data in order to isolate 

productive and non-productive pixels. We also extend traditional spatial analysis 

beyond a static window of time and analyze the dynamics of price correlations and 

Granger-causality results. This exercise demonstrates the effects of potential trade 

discontinuities, shows which markets exhibit stable trade patterns over time, and 

provides a methodology for rolling analysis for food security assessment.  

We also propose a method for understanding the effect of NDVI shocks on 

market performance by looking at the effects of both positive and negative NDVI 

shocks and we demonstrate the temporal clustering of shocks. Econometrically, our 

model tests and accounts for cross-sectional dependence in the standard errors, 

showing that clustered standard errors may be downwardly biased leading to 

potentially incorrect inference.   

In terms of forecasting models, we demonstrate that explicitly modeling price 

regimes can lead to improved model fit. We also introduce a two-step method for 

using NDVI to predict price regimes and degrees of market connectedness. Regarding 

the price data, we rely on a longer time series (1993-2012) of millet prices than 

previously analyzed. This enables us to capture better the changing nature of millet 

markets across Niger. Finally, the research produces an operational, probability 

forecasting model that can ingest real-time data to make projections on future market 
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performance for early warning systems. We now turn to a discussion of data used in 

the analysis, starting with a discussion of the millet price database. 



 

 57 

 

Chapter 5: Millet Prices, Millet Production and Consumption, 

and Price Dynamics 

 This chapter reviews the millet price data used in the analysis. The first part of 

the chapter focuses on the methods applied to create the price database used in the 

study.  The second half of the chapter discusses the empirical properties of millet 

prices in detail, proposes a methodology for classifying historical millet price regimes 

as determined by price anomalies, and presents a spatial price analysis summary. 

Overview of the Millet Price Database 

A series of steps were undertaken to create the price database used in the 

study. Figure 7 below, summarizes the process. All millet prices are from USAID’s 

FEWSNET and the Systéme d’Information sur les Marchés Agricoles Niger (SIMA-

Niger). We assembled price data initially from FEWSNET and augmented the 

database through a site visit conducted in the May and June of 2011 and subsequent 

internet downloads from the SIMA website.  The latest update to the price database 

was from the April 2012 (Bulletin mensuel cereals) bulletin.15 To match the historic 

prices from FEWSNET with the current prices available from SIMA, each market 

name is assigned a unique identity. Prices are matched to markets using the market 

name, the unique identifier, and a time variable. After merging all price data together, 

an outlier check is performed on each market price series. Each market is also 

assigned a latitude and longitude point using Google Earth and past datasets from 

SIMA.16  

                                                 
15 http://www.sima-niger.net/publications-mois.php 
16 Markets with irregular spellings and/or coordinates were verified using 

http://www.nationsonline.org/oneworld/map/google_map_niger.htm 

http://www.sima-niger.net/publications-mois.php
http://www.nationsonline.org/oneworld/map/google_map_niger.htm
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Figure 7. Millet price database construction process 

 
 

All raw price data are recorded in nominal West African CFA franc. To adjust 

for the influence of inflation and other macro-level factors, a number of modifications 

are made. We use the consumer price index for Niger, available from the 

International Monetary Fund’s International Financial Statistics database, to convert 

all prices to 2008 terms. Because of the irregularity of price data prior to 1993 and the 

liberalization of markets near that time, this study focuses on prices from 1993-2012. 
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In total, price data are available for 79 markets. However, at the market-level 

many of the price series are irregular, missing for consecutive periods, or take on 

constant values for many consecutive periods. A series of tasks are undertaken to find 

reasonable substitutes for the missing price points. First, all price series are exported 

into MATLAB along with the corresponding market latitude and longitude. We 

calculate the Euclidean distance between each market and store the results in a 

matrix, from which we construct concentric price bands at the market level, with a 

buffer size running from 10 to 100 kilometers. Each price band consists of the 

average of all price points falling within a buffer surrounding a market. Price buffers 

are created for each market, over all time periods. The resulting data are exported into 

Stata and matched to the corresponding market as a new variable. Missing price 

points at the market-level are replaced with the average price of all markets falling 

within a 10 kilometer price buffer. That is, period-by-period, the average price of all 

markets within a 10 kilometer band of the market with missing prices is substituted 

for the missing price point. This modification affects about 1,200 prices points, or 

about 7 percent of the universe of price points. A final round of data modifications are 

carried out using two-period lags and leads to smooth out missing periods across each 

market.  

After completing these steps the data are tabulated and sorted by the number 

of price points per market. All markets (29 in total) with more than 200 price points 

are reserved for analysis. All markets with fewer than 200 price points are excluded 

from the price analysis, but used in portions of the NDVI analysis to ensure adequate 

geospatial coverage.   
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One potential issue in using a subset of markets is that the subset may be 

biased toward a particular geographic region, agro-climatic zone, population or other 

feature. To investigate this problem, the sub-population of markets are organized 

across region, agro-climatic zone, and compared to the overall population of markets 

for which data are available. Table 3, below, summarizes the number of markets in 

the original price database, as well as each regions share of the overall population of 

the country. 

Table 3. Distribution of all markets in price database by region 

Region 
Number of markets in 

original database 
Share Est. 2010 Population Share 

Maradi 17 22% 3,021,169 20% 

Zinder 12 15% 2,824,468 19% 

Tahoua 13 16% 2,658,099 17% 

Tillabéry 12 15% 2,500,454 16% 

Dosso 10 13% 2,016,690 13% 

Niamey 5 6% 1,222,066 8% 

Agadez 5 6% 487,313 3% 

Diffa 5 6% 473,563 3% 

Total 79 100% 15,203,822 100% 

 As shown, the population of Niger tends to be relatively well distributed 

among the regions, with the largest share falling in Maradi and the smallest in the 

rural regions of Agadez and Diffa. Table 4, below, summarizes similar information 

focusing only on the 29 markets that are part of the final price database. The table 

shows that the sub-set of markets is distributed in nearly the same manner as the 

larger, 79-market database. The Maradi region is somewhat underrepresented and the 

Tillabéry region somewhat overrepresented in the smaller database, but the 

differences are not great.  
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Table 4. Distribution of selected markets in price database by region 

Region 
Number of markets in 

analysis database 
Share of sub-population 

Tillabéry 7 24% 

Tahoua 5 17% 

Dosso 4 14% 

Maradi 4 14% 

Zinder 4 14% 

Agadez 2 7% 

Diffa 2 7% 

Niamey 1 3% 

Total 29 100% 

Source: Author’s calculations 

  We now turn to the distribution of the 29 markets across the agro-ecological 

zones, and compare that to the 79-market database across the same zones. Table 5, 

below, summarizes the two datasets. Similar to the regional-level analysis, the 

distribution of the analysis database at the agro-ecological level appears to mirror 

closely the original price database.  

Table 5. Distribution of markets by agro-ecological zone 

 

Markets in 

original 

database 

Share 

of total 

Markets in 

analysis 

database 

Share 

of total 

Rainfed agriculture zone 31 39% 10 34% 

Southern irrigated cash crop zone 17 22% 5 17% 

Agro-pastoral zone 12 15% 5 17% 

Niger River irrigated rice zone 5 6% 1 3% 

Sub-zones of high work out-migration 5 6% 4 14% 

Pastoral zone 4 5% 1 3% 

Aïr mountains cultivation zone 2 3% 1 3% 

Komadougou River & Lake Chad zone 2 3% 1 3% 

Desert 1 1% 1 3% 

 

79 100% 29 37% 
Source: Author’s calculations 

In addition to the panel-based millet price database, we also create a dyadic 

matched price database for use in our analysis of market performance. This is 

accomplished by exporting the price series to MATLAB and implementing a 
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matching algorithm. The matching algorithm creates the number of desired 

permutations, or in this case:  

 
(

𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
=

29!

2! (29 − 2)!
= 406 (5)  

where n is the number of markets, and k is the number of elements in each subset (or 

unique market pairs). We then match prices from each market pair to arrive at a panel 

dataset populated by market-pair prices, NDVI deviations, distance and other binary 

indicators reflecting geographical features. A series of coding checks are conducted 

on a random subset of data to ensure that data have been accurately matched for each 

of the 406 market pairs/dyads.  

Review of Millet Prices & Price Regimes  

Through statistical analysis of the millet price data we can learn more about 

patterns of annual price variation.  Table 6, below, summarizes millet prices at the 

market-level for the growing season and non-growing season months. Reviewing the 

table we see that millet prices during the growing season are higher than levels 

observed from September through April. The same is true for the standard deviations 

presented. Many factors contribute to the observed volatility. Production shocks, 

particularly those related to droughts and pest infestations, can greatly affect yields 

and thus millet supplied to the market. Consumer demand, which peaks just before 

the onset of the rainy seasons when households own food stocks near depletion, tends 

to put upward pressure on staple food prices (Cornia, Deotti, and Sassi, 2012). 

Because both supply and demand drivers may be affected by production shocks, there 

is a tendency for prices to rise more rapidly in years with negative production shocks.  
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Whereas other internationally traded staple food prices may be regulated by their 

degree of integration into international trade markets, millet prices in Western Africa 

are primarily driven by production in Burkina Faso, Mali, Nigeria, and Niger and 

there is little evidence that international food prices drive domestic millet prices 

(Cornia, Deotti, and Sassi, 2012). Moreover, the regional trade that does occur is 

often unobserved and not adequately captured by regional trade statistics (Brown, 

Hinterman & Higgins, 2009). 

Table 6. Summary of millet prices from markets studied 

  Overall May-Aug Sep-Apr   

Market Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Obs 

BAKIN-BIRGI 140 44 160 50 131 36 230 

KOUNDOUMAWA 145 47 168 53 134 39 226 

TCHADOUA 145 43 161 50 137 37 230 

TESSAOUA 146 47 166 53 136 41 230 

DAN-ISSA 147 48 167 58 138 40 230 

DUNGASS 148 51 169 62 137 41 230 

MARADI 153 44 170 51 144 37 230 

DOGONDOUTCHI 164 43 185 49 153 36 230 

BADAGUICHIRI 168 48 191 55 156 39 230 

BIRNI KONNI 171 46 191 53 161 38 230 

GOURE 171 47 188 56 162 38 230 

BOUZA 173 44 193 49 164 38 229 

TORODI 177 45 192 51 169 40 230 

LOGA 178 46 203 49 166 39 230 

GAYA 184 54 207 61 172 46 227 

KIRTATCHI 184 48 205 50 174 44 230 

TERA 184 47 200 49 176 43 226 

FILINGUE 190 50 214 55 179 43 230 

AGADEZ 196 47 211 54 189 41 230 

DIFFA 197 53 212 60 189 48 230 

BALEYARA 198 43 216 48 189 38 230 

GOTHEYE 200 55 218 64 191 48 230 

COMPLEX/Bonkaney 201 40 214 46 195 35 230 

DOSSO 202 48 222 54 191 42 229 

ARLIT 205 41 217 45 199 38 230 

TAHOUA 209 52 228 61 200 44 227 

TCHINTABARADEN 209 51 226 60 201 44 230 

OUALLAM 214 51 235 54 203 47 230 

N'GUIGMI 216 57 228 63 210 52 230 

Total 180 53 198 58 171 48 230 

Source: Author’s calculations 

To investigate the underlying temporal differences in observed price and 

volatility levels, we create three price anomaly variables to classify marketing-year 

price regimes. In creating the anomalies we aim to remove the fundamentals of the 
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price signal in order to focus on deviations from what would be considered normal. 

Our main concern is creating a metric that best captures exceptional deviations (these 

can also be thought of as bubbles) in millet prices from what fundamentals would 

predict. We create our first anomaly variable by estimating a fixed-effects model over 

a rolling five-year window, controlling for monthly effects, temporal effects, and 

market-specific effects. We then calculate the residuals from the model to obtain one 

set of price anomalies. Because we use a rolling five-year window for estimation, this 

metric better accounts for shorter term price fluctuations and may be more 

appropriate for current food security assessment as it enables a comparison with price 

deviations from recent periods. To assess how well our short-term price anomaly 

compares with a longer look back window, we create a second price anomaly which 

takes the observed millet price in each period and differences them from the long-

term monthly mean for each market. This metric enables us to make general 

comparisons to price deviations from all past periods, regardless of when they 

occurred. Our final metric blends the two previous approaches to arrive at an 

intermediate anomaly.  To compute the third price anomaly, we first estimate a fixed-

effects regression model at the market level on millet prices using monthly binary 

variables and a monthly trend variable to remove seasonal and temporal effects. We 

then create our anomaly by calculating the residual for each market.   

By construction, each anomaly represents a slightly different perspective 

regarding the nature of price deviations at a given point in time. For example, the 

five-year burn-in period of the first anomaly means that it does a poor job of 

capturing price deviations observed in the early 1990s.  This is particularly important 
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for the 1997-98 marketing year which was exceptionally bad in terms of abnormally 

high price levels. The long-term anomaly variable does not suffer from this problem 

though, as it is based on a deviation from a longer-term monthly mean. At the same 

time, the long-term mean can be influenced by extreme values observed in the past 

that may have no bearing on current price realizations.  This may cause the over or 

under-adjustment of recent anomalies, whereas our rolling-five year anomaly 

variables will not suffer from this problem as they are continually updated based on 

the rolling-window. The blend of the two approaches seems reasonable as it mitigates 

the weaknesses of the each prior approach. Figure 8 compares each of the anomaly 

variables over time. As shown below, the long-term anomaly does a better job of 

highlighting extreme deviations from a single historical average. However, the 

rolling-anomaly appears to be better for comparing prices at any given point in time 

relative to the past five years, a metric which may be more appropriate for food 

security analysis and decision making.  

Figure 8. Price anomaly comparison over time 

 
Source: Author’s calculations 
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With the anomaly variables created, we then propose a typology for 

marketing-year price regimes based on departures from market fundaments. Our 

regime assignments are based on the following rules: 

 𝑅𝑒𝑔𝑖𝑚𝑒 = 0 𝑖𝑓 𝑎𝑗𝑖𝑡 ≤ 25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (Good) (6)  

 𝑅𝑒𝑔𝑖𝑚𝑒 = 1 𝑖𝑓 25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 < 𝑎𝑗𝑖𝑡 < 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (Average) (7)  

 𝑅𝑒𝑔𝑖𝑚𝑒 = 2 𝑖𝑓 𝑎𝑗𝑖𝑡 ≥ 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (Bad) (8)  

where ajit is the anomaly from each model (j=1, 2, 3) described above, i indexes the 

market, t indexes the marketing-season (October-September), and the percentiles 

refer to the 25th and 75th percentile values of the overall distribution associated with 

each anomaly. If an average anomaly value for the marketing-seasons is less than the 

value of the 25th percentile associated with the overall anomaly value for a given 

market, then that marketing year is categorized as a “Good” marketing year for the 

respective market. The process is repeated for marketing-year anomaly values falling 

between the 25th and 75th percentile (“Average” years), and those above the 75th 

percentile (“Bad” years).   

Table 7, below, summarizes the result of this exercise. Our final regime 

characterization is based on the results from the third anomaly model (fixed-effect 

long-term 1993-2012).  The motivation for categorizing growing years into different 

regimes is that we want to explore the correlation between NDVI outcomes and 

market dynamics for each year. By knowing how similar good marketing years are to 

one another, and how different they are from bad years we hope to glean insight into 

how we can forecast future outcomes based on observed price levels and NDVI. 
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Table 7. Millet price anomaly by regime type 

 
Source: Author’s calculations 

One way to visualize price anomaly differences from the various marketing 

years is to plot the average value for each regime at each month of the marketing 

season. As discussed earlier, many predictable events have a bearing on how prices 

evolve throughout a marketing season. Once we control for these predicable events, 

as we have done through the creation of anomalies, we can peel back additional 

details on what characterizes good years from bad years. Figure 9, below, compares 

the average anomaly values for each price regime. Of interest to us is the fact that 

during good price regimes, anomalies are well below average and the magnitude of 

the anomaly increases each month of the marketing seasons, but at a smooth pace. On 

Marketing 

Year

Cumulative 

5-year fixed-

effect anomaly

Long-term 

anomaly 

(1993-2012)

Fixed-effect 

long-term 

(1993-2012)

Regime Type Good Average Bad

1992-93 -15.47 -44.83 -12.05 Average 5 24 0

1993-94 1.88 -53.23 -23.49 Good/Average 11 18 0

1994-95 6.08 -72.75 -46.54 Good 28 1 0

1995-96 23.34 -35.13 -12.45 Average 0 29 0

1996-97 2.76 10.25 29.4 Bad 0 4 25

1997-98 -11.01 63.64 79.26 Bad 0 0 29

1998-99 -56.49 -41.3 -29.5 Good/Average 15 14 0

1999-00 34.47 -32.81 -24.26 Good/Average 13 16 0

2000-01 53.70 31.08 36.05 Bad 0 3 26

2001-02 -17.01 40.11 41.6 Bad 0 2 27

2002-03 -46.06 -1.47 -3.51 Average 0 29 0

2003-04 15.08 -19.46 -25.02 Good/Average 7 22 0

2004-05 47.02 53.06 43.96 Bad 0 2 27

2005-06 -36.31 13.46 0.83 Average 0 26 3

2006-07 -20.07 -7.23 -23.39 Good/Average 14 14 1

2007-08 26.12 6.88 -12.81 Average 2 26 1

2008-09 9.94 21.19 -2.03 Average 0 27 2

2009-10 -14.99 30.25 3.5 Average 0 29 0

2010-11 -17.64 -0.52 -30.8 Good/Average 19 10 0

2011-12 33.06 47.69 15.41 n.a.* - - -

*Data missing for most of 2012. All values reported in 2008 CFA.
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the other hand, average price anomalies in bad years follow a different pattern and 

tend to increase continuously throughout the year, with noticeable jumps from one 

month to the next.  For example, by February, average price anomalies from bad 

regimes are already 40 CFA from their expected value and the figure climbs to 60 

CFA by April and May. At the peak of the hungry season, price anomalies reach a 

high point at 80 CFA above their expected value.  

Figure 9. Average millet prices by regime and marketing season 

 
Source: Author’s calculations 

It is also important to note that the general pattern of price anomalies in bad 

years is not a mirror reflection of good years. Large deviations may be observed as 

early as April in bad marketing years, whereas they remain within a narrow band in 

good years. Because the consequences of these price deviations are magnified during 

the lean season, it is important to understand how markets function during these times 

and to determine whether or not NDVI can be exploited to forecast market behavior 

and price levels. 

Another way to analyze general patterns of market performance across the 

different types of price regimes is to consider the minimum, maximum and average 
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coefficients of variation across the entire market. In an ideal world where markets are 

well integrated and transactions costs fixed, the standard deviation of prices across 

regions should reflect transportation costs. Thus, when prices are higher, say due to 

production shocks, we would expect that spatial arbitrage opportunities will drive the 

standard deviation of prices to be lower than in normal times (O Grada, 1997). One 

possible way to infer the nature of market behavior is to consider the coefficient of 

variation of prices across the entire market. If markets are segmented, we would 

expect the coefficient of variation to be larger than in the case where markets are well 

connected. Figure 10, below, presents the average, monthly coefficient of variation 

for millet prices across the three types of regimes created. The gray bars represent the 

minimum and maximum for a given month of a given regime.  

Figure 10. Coefficient of variation by price regime 

 
Source: Author’s calculations 

 The general story told by the coefficients of variation is that early in 

marketing seasons the price signal relative to the price noise is larger indicating 

uncertainty across markets. This is intuitive as there is substantial information 

flowing to markets during the harvest months due to the unknown quality and 

quantity of food available to the market. As one would expect, in bad years the 

relative speed at which this information makes its way into the market appears to be 
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somewhat faster as depicted by the steeper negative slope in the third figure and the 

narrower upper and lower bounds. The general shape of the coefficient of variation 

line suggests that market performance improves throughout the year as price signals 

narrow in terms of their dispersion. However, the abrupt jump from August to 

September reveals the impending uncertainty of the harvest. At this moment, NDVI 

may add value by revealing timely and accurate information on the vegetation 

production conditions of a village, a region, or a neighboring country. Turning to the 

first figure, on the left, the wide boundaries of dispersion are more indicative of a 

fragmented market structure. As one might expect, the middle figure is a blend of the 

two extremes and represents average conditions.  In the following section, we 

investigate the structure of the markets in more detail by looking at pairwise price 

correlations and Granger-causality tests.    

Time Series Properties of Millet Price Data 

Failure to account for unit roots in time-series data can seriously distort 

statistical inference and may lead in improper conclusions being drawn. To test for 

unit roots in each of the 29 markets selected for analysis we use a procedure outlined 

by Enders (1995), who suggests estimating the least restrictive model possible first 

(usually one with a trend and drift term) and then incrementally increasing the 

restrictions in the model if unit roots are detected. Enders’ reasoning is based on the 

fact that most unit root tests have low power to reject the null hypothesis (near 

observation equivalence problem), and thus if it is initially rejected, there is little 

reason to proceed with additional restrictions in the in the model. Formally, we use 

the augmented Dickey-Fuller (1979) (ADF) test to check for unit roots: 
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∆𝑦𝑡 = 𝛼0 + 𝛾𝑦𝑡−1 + 𝛼1𝑡 + ∑ 𝛽𝑝∆𝑦𝑡−𝑝

3

𝑝=1

+ 𝜀𝑡 (9)  

where the ∆ indicates a first-differencing of the data, 𝑝 is the lag order (3 in our 

specifications), and 𝛼 is the coefficient on the time trend. The above regression is ran 

and we test the null hypothesis, that the data contain a unit root, by testing whether or 

not 𝛾 = 0. The results of the ADF test, presented below in Table 8, suggest that the 

individual price series for each markets does not contain a unit root. I also test for 

panel unit roots and find the panel to be stationary. 
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Table 8. Summary of unit root tests following Enders (1995) 

Market ID Market Name 
Test Statistic 

(𝜸 = 𝟎) 

Critical Value  

1% 

Critical Value 

5% 

Critical Value 

10% 

325001 AGADEZ -14.181 -4.003 -3.435 -3.135 

325003 ARLIT -14.551 -4.003 -3.435 -3.135 

325004 BADAGUICHIRI -15.447 -4.003 -3.435 -3.135 

325005 BAKIN-BIRGI -14.656 -4.003 -3.435 -3.135 

325006 BALEYARA -14.728 -4.003 -3.435 -3.135 

325008 BIRNI KONNI -14.810 -4.003 -3.435 -3.135 

325009 BOUZA -15.247 -4.003 -3.435 -3.135 

325011 DAN-ISSA -14.232 -4.003 -3.435 -3.135 

325012 DIFFA -14.016 -4.003 -3.435 -3.135 

325013 DOGONDOUTCHI -15.260 -4.003 -3.435 -3.135 

325014 DOSSO -14.721 -4.003 -3.435 -3.135 

325015 DUNGASS -15.424 -4.003 -3.435 -3.135 

325018 FILINGUE -15.551 -4.003 -3.435 -3.135 

325019 GAYA -14.777 -4.003 -3.435 -3.135 

325020 GOTHEYE -15.473 -4.003 -3.435 -3.135 

325022 GOURE -14.591 -4.003 -3.435 -3.135 

325027 KIRTATCHI -15.157 -4.003 -3.435 -3.135 

325030 KOUNDOUMAWA -15.007 -4.003 -3.435 -3.135 

325031 LOGA -15.633 -4.003 -3.435 -3.135 

325034 MARADI -14.607 -4.003 -3.435 -3.135 

325036 N'GUIGMI -14.451 -4.003 -3.435 -3.135 

325043 OUALLAM -15.355 -4.003 -3.435 -3.135 

325049 TAHOUA -15.037 -4.003 -3.435 -3.135 

325051 TCHINTABARADEN -14.647 -4.003 -3.435 -3.135 

325053 TERA -14.691 -4.003 -3.435 -3.135 

325054 TESSAOUA -15.094 -4.003 -3.435 -3.135 

325129 TCHADOUA -14.725 -4.003 -3.435 -3.135 

325132 TORODI -14.356 -4.003 -3.435 -3.135 

325134 COMPLEX/Bonkaney -14.414 -4.003 -3.435 -3.135 

Source: Author’s calculations 
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Price Correlation Analysis 

 With the time-series properties of our dataset diagnosed, we return our 

attention to the spatial relationships in our data.  As a starting point for our analysis 

we consider the degree of millet price correlation across markets. In its simplest form, 

price correlation can provide insight into how well millet prices move in tandem or 

how well markets appear to be integrated. Table 9, below, summarizes the analysis. 

Table 9. Summary of rolling price correlations 

  

Marketing Year 

3-month rolling correlation 1-year rolling correlation 10-year 

Diff.  

Dept. 

Same 

Dept. 

Diff. 

Dept. 

Same  

Dept. 

Diff. 

Dept. 

Same 

Dept. 

1993-94 0.321 0.357 0.461 0.516 
  

1994-95 0.247 0.266 0.573 0.588 
  

1995-96 0.433 0.483 0.566 0.607 
  

1996-97 0.489 0.549 0.679 0.747 
  

1997-98 0.492 0.558 0.743 0.781 
  

1998-99 0.222 0.301 0.792 0.831 
  

1999-00 0.156 0.225 0.368 0.518 
  

2000-01 0.517 0.581 0.716 0.760 
  

2001-02 0.442 0.463 0.764 0.777 
  

2002-03 0.437 0.476 0.735 0.787 0.886 0.917 

2003-04 0.418 0.502 0.759 0.827 0.880 0.916 

2004-05 0.643 0.694 0.752 0.771 0.865 0.906 

2005-06 0.371 0.444 0.796 0.844 0.853 0.902 

2006-07 0.275 0.345 0.578 0.682 0.851 0.904 

2007-08 0.381 0.445 0.611 0.635 0.847 0.897 

2008-09 0.421 0.506 0.547 0.696 0.822 0.875 

2009-10 0.376 0.461 0.572 0.708 0.790 0.854 

2010-11 0.265 0.321 0.674 0.734 0.769 0.820 

2011-12 0.529 0.533 0.507 0.495 0.764 0.819 

Total  0.385 0.424 0.648 0.695 0.833 0.880 

Overall Correlation 0.390 0.654 0.838 

Source: Author’s calculations 

Our hypothesis underlying the analysis is that prices in well-integrated 

markets should display reasonably large, positive correlation coefficients whereas in a 

segmented market structure, we would expect lower or even negative correlation 

coefficients unless millet was so abundant that prices hit a floor across the region and 

trading completely stopped. In the latter scenario, we would expect correlations to be 

positive due to prices all approaching the floor. Relying on correlation analysis on its 
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own to draw conclusions concerning market performance can pose problems (as 

discussed above). However, when used in conjunction with other spatial price 

analysis tools, price correlations can help triangulate conclusions that can be drawn 

about general market integration over time and space. 

We use a series of correlation metrics in order to analyze market integration in 

the short-term (3-month), medium-term (12-month) and long-term (10-year). A few 

interesting patterns emerge from the table. First, working bottom to top we see that 

the overall correlations are 0.39 for the short-term, 0.65 for the medium-term, and 

about 0.84 for the long-term. The medium-term figures are consistent with the price 

correlations calculated by Aker (2010b). However, the short-term correlations suggest 

that price transmission is far from instantaneous, which may be due to lack of 

information flows, late shipments, general uncertainty or other trade frictions 

common in developing countries.  

Focusing on the 2004-05 marketing season, the 3-month rolling price 

correlations are the highest of all years analyzed.  This may well be suggestive of a 

market structure in which price signals were transmitted faster than average due to 

shortages in the market or simply bad news traveling at a faster rate than normal or 

good news. If we contrast this outcome with the 3-month rolling price correlations for 

the 1999-2000 marketing season, we observe correlations of 0.16, or levels indicative 

of fragmented markets. To further investigate these extreme outcomes, we account 

for the distance between each market pair and plot the evolution of price correlations.  

Figure 11 presents the resulting figure. If the price transmission relationships are 
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stable over space and time, we would expect a horizontal line for the distance deciles.  

This is clearly not the case.  
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Figure 11. Summary of rolling 12-month millet price correlations by distance deciles 

 
*Dotted lines indicate harvest periods (Oct. 1999, Oct 2005, Oct 2009). Source: Author’s calculations 
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 The graphical depiction of the rolling price correlations demonstrate that 

levels of market integration, at least as measured by correlations alone, is far from 

static and appears to ebb and flow in terms of the speed at which price signals adjust 

across time and space.  

One noticeable trough is observed around the harvest of 1999, suggesting 

segmentation among markets over the prior 12 months (the 1998/99 marketing year). 

To investigate how NDVI outcomes correlate with this fracturing in market ties, we 

plot the average NDVI anomalies from January 1998 through December of 1999 for 

Niger and its neighboring countries, shown below in Figure 12.  

Figure 12. Summary of NDVI outcomes across regions 1998-1999 

 Source: Authors calculations 

Initially, what stands out in the graphic are the above average NDVI outcomes 

in October of 1998, and then again in August, September and October of the 

following year. Not only did Niger NDVI spike, but all of the neighboring countries 

also appear to have above average NDVI outcomes for both 1998 and 1999. We 
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interpret these above average vegetation production conditions as being suggestive of 

an exceptional growing season and plentiful millet harvest across the entire Sahelian 

region. What this could suggest is that spatial arbitrage opportunities were likely far 

and few for millet products during the second half of the 1998/1999 marketing 

season. Moreover, the back-to-back positive NDVI outcomes for the entire region 

likely reduced the incentives for millet trade, resulting in many fragmented markets 

where prices followed local paths rather than a primary signal emerging from the 

overall market. This outcome is particularly interesting because it demonstrates the 

additional inference that one can start to make by cross-referencing NDVI outcomes 

with indicators of market integration. In order to peel back another layer on what may 

be driving price transmission signals, we turn our attention to an analysis of Granger-

Causality testing in the next section. 

Granger-Causality Tests 

 While Granger-causality cannot reveal the exact casual mechanism of how 

price transmission signals spread across all markets simultaneously, it can help tell us 

whether or not a particular market leads or lags in price discovery. We test each 

market pair for Granger-causality using a series of bivariate regressions. Because we 

have 29 markets, a vector autoregressive model (VAR) is not feasible due degrees of 

freedom constraints and the unknown structure of all potential restrictions needed to 

model correctly all market interactions.17 For the analysis we estimate the following 

model in levels: 

                                                 
17 A single lag VAR for our 29 markets would require the estimation and interpretation of over 840 

parameters. Future research may consider panel-based Granger-causality tests. 
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𝑃𝑖𝑡 = 𝑐1 + ∑ 𝛼𝑖𝑃𝑖,𝑡−𝑖 +

𝑘

𝑖=1

∑ 𝛽𝑖𝑃𝑗,𝑡−𝑖 + 𝑢𝑡

𝑘

𝑖=1

       (12) (10)  

where 𝑃𝑖𝑡 and 𝑃𝑗𝑡 are the prices in markets i and j at time t, and k is the lag order. To 

assess the dynamics of Granger-causality relationships, we conduct both static and 

rolling tests, setting the lag lengths at 3 months to make comparisons simple.18 To test 

for Granger-causality we conduct an F-test on the following null hypothesis using the 

coefficients from above: 

 𝐻𝑜 = 𝛽1 = 𝛽2 = . . . 𝛽𝑘 = 0           (13) (11)  

We do this by estimating the following restricted model on market i prices only. 

 
𝑃𝑖𝑡 = 𝑐1 + ∑ 𝜃𝑖𝑃𝑖,𝑡−𝑖 +

𝑘

𝑖=1

𝑒𝑡        (14) (12)  

Then we calculate the sum of squared residuals from the restricted (𝑅𝑆𝑆0 = ∑ 𝑒̂𝑡
𝑇
𝑡=1 ) 

and non-restricted model (𝑅𝑆𝑆1 = ∑ 𝑢̂𝑡
𝑇
𝑡=1 ) for use in a joint F-test, depicted below 

where 𝑞 is the number of parameters in the model and 𝑇 is the number of time 

periods: 

  

𝑠1 =
(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1) 𝑞⁄

𝑅𝑆𝑆1 (𝑇 − 2𝑞 − 1)⁄
 ~ 𝐹𝑝,𝑇−2𝑞−1 

(13)  

If the calculated test statistic is greater than the specified critical values (normally 1% 

for this analysis) we can reject the null hypothesis and can conclude that market j 

Granger-causes market i. To test if market i Granger-causes market j, the process is 

repeated with data from market j placed on the left-hand side of the regression and the 

𝛼 coefficients are checked for joint significance.  

                                                 
18 Further analysis could be conducted on the lag length to determine how robust results are to varying 

parameters in the estimating equation. 
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 Our review of millet prices revealed substantial variation in terms of the price 

level, as well as variance throughout the year. Moreover, the rapid price rise in the 

summer of 2005 could have been associated with a structural change in the 

underlying dynamics of millet markets and trading patterns. In order to investigate 

how periods of volatility affect market-pair price dynamics, we conduct a series of 

rolling Granger-Causality tests. For the rolling tests we select a window of millet 

price data (120 periods or 10 years) for each market pair and we test for Granger-

Causality. We then iterate forward 1 month, and repeat the same test using a 120 

period window. We repeat the process for each market-pair until our 120 period 

window reaches the end of our data (occurring in March 2012). In total, we estimate 

over 100 rolling windows for each market pair, across all market-pairs.19 The purpose 

of the exercise is to determine the stability of the results overtime and gain a sense of 

how network ties may change across space and time. 

Granger-Causality Results  

A summary table of the results for the static test is presented below in Figure 

13.  Green squares represent dyads with significant test statistics and white ones 

reflect insignificant test statistics, indicating that the null hypothesis could not be 

rejected at 1% level. 

                                                 
19 We do not explicitly make an alpha adjustment for critical values given the multiple outcomes (i.e. 

Bonferroni correction), but we do require statistical significance to be at 1% for the relationship to be 

considered statistically valid. 
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Figure 13. Granger-causality results for all market pairs (static) 

 
Source: Author’s calculations 

The layout in the figure above reads left-to-right for Granger-causing results 

(for example, prices from Gotheye are not useful in forecasting price movements in 

any other markets), and top-to-bottom for Granger-caused results (prices from 

Gotheye tend to lag behind prices from all other markets). The static Granger-caused 

results clearly show that millet prices in certain markets lag behind others, and that a 

few markets appear to be reference points of price discovery. For example, Agadez, 

Gotheye, N’Guigimi and Ouallam tend to be Granger-caused, or millet prices lag 

behind,  whereas markets such as Maradi, Tessaoua, and Tchadoua tend to not be 

Granger-caused (reflected by the large number of white space vertically below the 

market), indicating that millet prices in the respective market pairs tend not to lead 
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AGADEZ 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

BAKIN-BIRGI 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

COMP LEX/Bo nkaney 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

GOURE 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

DOGONDOUTCHI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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TESSAOUA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
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Granger Causality: Static Results (3-lag specification)
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prices from these reference markets. Turning to the Granger-causing results, we see 

that Agadez, Gotheye, and Ouallam Granger-cause few markets whereas Maradi, 

Tahoua, Tessaoua, and Tchadoua tend to Granger-cause many.  

Generally, the results suggest that markets not connected to main roads or 

semi-isolated are weakly integrated, or integrated with a substantial lag, whereas the 

Granger-causing markets are the main points of price discovery, and likely emergence 

points for price shocks. Most of the dominant Granger-causing markets lie in 

production zones which is consistent with Aker’s (2010b) conclusion. When we cross 

reference the major Granger-causing markets with Table 10, which reports the 

number of productive, SPAM-filtered NDVI pixels surrounding each market, we see 

that many of the Granger-causing markets are in geographic areas with large potential 

for millet production, whereas most of the Granger-caused markets tend to be in 

rather isolated agro-ecological and infrastructural zones, with low potential for millet 

production. Gotheye (and somewhat Tera) appears to be an anomaly here as it is 

surrounded by productive lands, yet price signals from this location have little use in 

helping forecast prices from other markets. That aside, the results generally support 

the notion that price shocks are likely to be driven by production/supply shocks 

emerging in the main production zones rather than demand shocks from urban or 

rural areas. Moreover, the results also suggest the need to closely monitor peripheral 

markets because information and supplies may only flow to these places with a 

substantial delay. 
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Table 10. Summary of markets and NDVI pixels falling in selected buffers 

 
Source: Author’s calculations 

This initial analysis is based on a snapshot of the data over a fixed period of 

time. Varying the lag structure or the included covariates in the model could well 

affect the stability results. To get a sense of the temporal robustness of these initial 

findings, we construct a monthly, rolling 10-year window and calculate the Granger-

causality test statistics for 110 points in time, for each market-pair. Figure 14 

summarize the results and can be thought of as a dynamic assessment of the stability 

of the lead/lag structure discussed above. 
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Figure 14. Summary Granger-Causality results (rolling regression, 3-month lag) 

 

Source: Author’s calculations 

The figure in each grid represents the total number of times that a market 

Granger-causes/is caused, based on a statistical cutoff of 1 % (p-value of 0.01). If the 

matrix were to be completely green or white, we interpret this as being indicative of a 

stable, long-run relationship in Granger-causality dynamics. However, the shades of 

green suggest dynamic linkages between market pairs, at least in a statistical sense. 

The periphery markets discussed above, Agadez and N’Guigimi, appear to have 

somewhat stable long-term relationships with their respective Granger-causing 

markets. However, Ouallam (and to some extent Tahoua and Tchadoua) appears to 

have a less stable relationship which suggests that, at least in the statistical sense, the 

market is not as isolated as one may conclude from static analysis. Gotheye has a 
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similar outcome, where the figure shows that during certain periods it actually 

Granger-causes Filingue for 60 periods. This may be due to its location in a semi-

productive zone, proximity to flow points of Tera and Nimary, or changing trade 

dynamics.  The varied colors suggest that the trade networks, at least as measured by 

price leads and lags, within Niger are dynamic. This should come as no surprise as 

our price regime and correlation analysis portrayed a picture of a market structure that 

exhibits great ebbs and flows in market integration and segmentation. One of the 

major takeaways from this analysis is that models that fail to account for these 

dynamics of market structure may to misestimate prices and/or the influence of local 

and national prices on a single market, because these evolve over time and do not 

exhibit a stable, uniform pattern. 

While the figures above are informative for making comparisons between 

market-pairs, another way to look at the dynamics is to consider the total number of 

markets that Granger-cause and the number of markets that are Granger-caused at 

each point in time. Figure 15, below, summarizes the results of this exercise for all 

market pairs under consideration. In an ideal situation where markets are perfectly 

integrated (prices are simultaneously determined), we would expect the number of 

Granger-causing markets roughly to be equal to the number of Granger-caused 

markets.  
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Figure 15. Rolling Granger-Causality results by period (3-month lag) 

 
Source: Author’s calculations 

The figure above suggests that this is not the case. In fact, of the 406 potential 

pairs that may exhibit Granger-causality relationships, the actual number falls 

between about 130 and 220 across the entire period of analysis. Between May 2005 

and November 2005 the total number of market-pair relationships that were classified 

as being Granger-caused, based on the statistical properties of the millet prices, was 

below the number of market-pair relationships that were classified as Granger-

causing. Post 2005 harvest, the upward trend in Granger-caused relationships 

increases slightly until August 2010 (period 350), where after that the number of 

market pairs with statistically significant Granger-caused results grows rapidly. The 

graph suggests that market integration is improving as the number of Granger-causing 

and Granger-caused markets are growing at similar paces post-May 2010. What is not 
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clear from the graphic is if this growth is caused by a few markets emanating leading 

price signals to the rest of the market, or if improved communications and trade 

networks are causing gradual improvements among all markets. Given the dramatic 

expansion in cell phone use over the last 10 years, is plausible that increased 

information flows and commercialization have improved spatial and inter-temporal 

arbitrage opportunities in cereal markets.  

Summary of Price Differences 

 To close out our descriptive analysis of market performance, we consider 

summary statistics from our price dispersion database, which calculates the spatial 

price spread (absolute value of the price difference) between all dyads. O Grada 

(2007) points out that the Law of One Price, under constant transportation costs, 

implies that food price volatility across markets should decline during famines. While 

we cannot ensure that transportation costs are constant across our period of analysis, 

we can look at simple patterns in price dispersion to see if such an argument is 

supported. On average, if price spreads between markets are large, we interpret this as 

a sign of a fragmented market structure and if dispersion is low, we interpret this as 

evidence that markets are well-functioning.20 Table 11 summarizes average price 

dispersion by marketing year.  

                                                 
20 Of course a full analysis of price dispersion would control for buyer and seller characteristics as well 

as product heterogeneity, information costs, and other factors that may affect dispersion. We do not 

have data on any of these factors, thus they are omitted from analysis and discussion. 
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Table 11. Average millet price differences between markets (absolute value) 

  All market pairs Market pairs in same region 

Marketing Year Mean Std. Dev. Mean Std. Dev. 

1992-93 32.48 24.07 22.89 18.74 

1993-94 33.37 23.59 21.23 16.28 

1994-95 27.97 20.05 18.62 14.38 

1995-96 29.97 22.28 22.12 19.43 

1996-97 34.16 24.97 28.90 21.90 

1997-98 40.07 30.83 28.26 22.31 

1998-99 31.46 22.31 21.84 16.47 

1999-00 27.49 21.45 22.40 20.35 

2000-01 36.15 27.05 29.70 23.85 

2001-02 36.16 28.30 31.28 24.40 

2002-03 36.07 25.95 24.32 19.74 

2003-04 28.41 20.69 22.17 16.59 

2004-05 40.82 31.34 34.49 25.67 

2005-06 36.80 27.86 21.89 18.18 

2006-07 34.93 27.85 23.13 19.59 

2007-08 38.01 30.29 26.96 21.64 

2008-09 39.94 29.29 29.72 22.38 

2009-10 31.87 24.87 24.79 19.11 

2010-11 35.79 25.75 28.29 20.87 

2011-12 32.42 22.94 22.40 15.88 

Total 34.29 26.21 25.38 20.63 

Source: Author’s calculations 

When interpreting these initial results it is important to remember that they do 

not control for other fixed-factors which may affect the magnitude of dispersion 

(product heterogeneity, monopoly pricing, variable transportation costs, buyer and 

seller characteristics, see Hopkins 2008 for a full discussion). However, an initial 

glimpse into average dispersion may provide some initial insights into how market 

performance changes over time in Niger.  Price dispersion appears to be a little higher 

than average following periods of below average NDVI outcomes (1997-98, 2004-05, 

and 2008-09), whereas years with above average NDVI outcomes (1993-94, 1998-99, 

and 2002-03) is about normal. However, when we compare the price spreads from 

market dyads in the same region to all market pairs we see that markets presumably 

closer to one another have lower price spreads. These preliminary remarks should be 

taken with caution as they are based on unconditional statistical averages of annual, 



 

 89 

 

dyadic-based price differences.  In our empirical approach we control for time 

invariant heterogeneities that may influence this metric and consider how NDVI 

shocks affect changes in price spreads across environmentally stressed and unstressed 

markets. 
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Chapter 6:  NDVI & Millet Production Data 

 This chapter reviews the remote sensing concepts underlying the vegetation 

index used in this study (NDVI) and the various procedures used for processing the 

data. The second half of the chapter includes a preliminary analysis of the NDVI data 

and highlights the changing nature of phenological events associated with the millet 

growing seasons in Niger. 

Overview of Remote Sensing and Vegetation Indices 

In large underdeveloped regions, remote sensing can be a cost-effective and 

especially useful means for deriving consistent and objective information regarding 

changes in vegetative cover and environmental conditions. Remotely sensed data, by 

definition, are data that are observed and measured from a distance, often using aerial 

platforms such as satellites or aircraft. Generally, remote sensing involves using 

sensors to detect how much energy is absorbed, reflected or transmitted by a surface, 

captured by electromagnetic radiation, from many parts of the electromagnetic 

spectrum including visible light, infrared and ultraviolet light. Because patterns of 

reflectance and absorption over different wavelengths varies across Earth surface 

materials, one can use spectral signatures to distinguish among soil, water, vegetation 

and other land covers. Vegetation, in particular, has a spectral signature that allows 

scientist to distinguish it readily from other Earth surface materials.  

Nicholson (2011) notes that the spectral signature of vegetation is unique in 

that “while most natural substances show a gradual increase in reflectivity with 

wavelength in the solar bands of the spectrum, green vegetation shows a dramatic 
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increase between the red and near-infrared wavelengths (pp. 12).” Using the 

differential reflection between the two spectral bands, scientists have developed a 

number of indices to monitor and track vegetation.  The most commonly used index 

is the normalized difference vegetation index which can be defined as: 

𝑁𝐷𝑉𝐼 =  
𝐶𝐻2 − 𝐶𝐻1

𝐶𝐻1 + 𝐶𝐻2
 

where 𝐶𝐻1 is the reflectance in channel 1 of the electromagnetic spectrum (0.6-

0.7μm), or the visible/red portion and 𝐶𝐻2 is the reflectance in channel 2 (0.7–

1.1μm), or the near-infrared portion. Nicholson (2011) notes that, “NDVI ultimately 

is a  measure of the total absorption of photosynthetically active radiation (PAR), but 

in semi-arid regions it correlates well with such parameters as percentage surface 

cover, biomass, and leaf areas index as well as rainfall (pp. 12).”   

 Numerous studies conclude that NDVI is strongly correlated with net primary 

production, crop yields (Tucker, 1985, Prince 1991, Rasmussen, 1997, 1998; also see 

Table 1 in Funk and Budde, 2009) and even precipitation (Nicholson, 1994; Tucker 

and Nicholson, 1999). In regions with stable agricultural management, much of the 

interannual variability of yield can be explained through vegetation index data 

derived from the Advanced Very High Resolution Radiometer (AVHRR).  

Differences in yield due to non-weather parameters such as use of high yielding crop 

varieties, agricultural inputs such as fertilizer, pesticides and herbicides, and the use 

of variable rate application of these inputs cannot be easily seen from space. Although 

the use of NDVI as a correlate to yield is widespread in both developed and 

developing countries, it cannot capture significant changes in agriculture management 

or the impact of weather on crops with different genetic potential (Bin, 2013; 
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Haboudane, 2004). 

 While there appears to be no single, ideal NDVI metric for modelling crop 

yields, a variety of approaches have been documented.  In their review of NDVI-yield 

studies, Funk and Budde (2009) report that mid-to-late season NDVI tends to capture 

yield better than seasonal integrations of maximum NDVI values. They also note that 

phenological adjustments, such as start of season, may also be made to assist analysis 

of NDVI. Crop masks are also used to reduce the influence of non-agricultural 

vegetation signals, and the subtraction of pre-season NDVI values (Rasmussen, 1997) 

has also been shown to increase estimation accuracy.  

 In the context of Western Africa, Rasmussen (1992) finds that in Burkina 

Faso millet yields can be estimated from regression models that use an integral of 

AVHRR NDVI from the phonological stage of the reproduction period of millet.  In 

Senegal, Rasmussen (1997) reaches a similar conclusion noting that yield variance for 

millet is best explained using an NDVI integral corresponding to the reproduction 

period of the plant. The study also advocates for the use of soil and vegetation classes 

as covariates in NDVI crop forecasting models, as well as the application of pre-rainy 

season NDVI to control for non-crop vegetation that may be found in agricultural 

lands. Later work (Rasmussen, 1998) suggests that the inclusion of environmental 

variables (livestock density) to the millet yield-integrated NDVI model improves the 

level of explained yield variance. However, both studies are based on small sample 

sizes (ranging from 12 to 27 observations).  Throughout our study we primarily use 

NDVI as a proxy for agricultural millet production, and thus millet availability.  Since 

there has been little change in the agricultural system in Niger during the period of 
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this study, we do not need to take into account changing seed varietals or large scale 

increases in agricultural inputs.  This study does attempt to reduce the influence of 

non-agricultural vegetation signals in the NDVI by applying Harvest Choice crop 

masks, as discussed below. 

Remotely Sensed Data Properties and Potential Sources of Error 

While NDVI data may not suffer from the common problems that plague the 

collection and processing of economic data in developing countries, the manner in 

which the remotely sensed data are collected and processed gives rise to other 

potential sources error, inconsistency or mis-measurement.  Data resolution can affect 

the level of detailed analysis that may be conducted on remotely sensed data.  The 

spatial, spectral, radiometric, and temporal resolution of the remote sensing 

instrument will affect the information that can be derived and ultimately the 

vegetation indices that can be computed.21  Spatial resolution, or the ground surface 

area that falls into a pixel being monitored, determines the spatial detail of remotely 

sensed data. Remotely sensed data that has coarse spatial resolution will limit the 

level of geographic specific analysis that can be conducted. Spectral resolution, or the 

number and width of spectral bands that are defined by a sensor, will determine the 

range of spectral discrimination (or range of vegetation indices). Data used 

throughout this study are derived from the AVHRR sensor, which is a broad-band 

scanner with five bands.22 Radiometric resolution refers to the ability of a sensor to 

discriminate small differences in the magnitude of reflected or emitted energy. The 

AVHRR instrument has a high 10-bit radiometric resolution, which store sensor data 

                                                 
21 See Sanderson (2000) or Canada Center for Remote Sensing (2007) for a basic overview. 
22 http://pubs.er.usgs.gov/djvu/FS/2005_3114.pdf 

http://pubs.er.usgs.gov/djvu/FS/2005_3114.pdf
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into 1024 levels per sensor pixel value.23  Finally, the temporal resolution of a sensor, 

or the frequency with which a sensor passes over the same swath of Earth’s surface, 

may determine how precisely one can track changes in patterns of light reflectance 

and absorption. Temporal resolution is important to this study as we are interested in 

changes of maximum NDVI values on a month-to-month basis.  

Even if remote sensing instruments have adequate resolution among the 

domains described above, other factors such as atmospheric effects, off-nadir 

viewing, and instrument precision and calibration can result in deviations in NDVI 

values that are not related to vegetation dynamics (Goward et al., 1991). Atmospheric 

effects, such as water vapors and aerosols, and clouds can distort measurements of 

sensors and need to be accounted for in processing spectral signals.  Rasmussen 

(1998) describes how cloud masking procedures can lead to a severe deterioration in 

the measured correlation among integrated NDVI values and millet yields.  

Corrections are needed to account for the measurements because the AVHRR 

satellites have orbital drift in the instruments from before the year 2000. The satellite 

drift changes the time of overpass from early in the afternoon to later and later times 

as the orbit degrades. Soil effects in arid and semi-arid regions can also have a large 

impact on the vegetation indices due to light scattering and may result in inaccurate 

NDVI values (as reviewed in Nicholson, pp. 12, 2011).  To address many of these 

perturbing influences, the Maximum Value Composite (MVC) technique developed 

by Holben (1986) is commonly applied to NDVI data.  To create a consistent and 

comparable times-series of NDVI, data adjustments are also made to account for the 

calibration and temporal performance of the observations.  
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AVHRR NDVI Data  

The AVHRR NDVI data used in this study are from the NASA Global 

Inventory Monitoring and Modeling Systems (GIMMS) group at the Goddard Space 

Flight Center. The data are the combination of data from six AVHRR instruments on-

board five different NOAA satellites and have been processed and adjusted to account 

for potential sources of inconsistencies, error, and/or other perturbing factors (see 

Tucker et al. 2005 for complete discussion).  This data was used because it was the 

only sensor that has continuously available and corrected observations from 1981 to 

the present. The NDVI data are an 8-km equal-area dataset from July 1981 through 

December 2011. The data are formed based on maximum value NDVI composites 

(Holben, 1986) with a 15-day composite NDVI for Africa. The fifteen data composite 

takes the maximum value from days 1 to 15, and the days 16 to the end of the month. 

The technique also addresses atmospheric corrections for volcanic effects, provides 

cloud screening, and minimizes atmospheric and directional reflectance effects 

(Tucker et al., 2005). With regard to orbital drift and sun-target-sensor geometry, the 

data were corrected using a solar zenith angle correction based on Pinzon et al. 

(2005). The GIMMS also group carried out numerous radiometric calibration 

assessments to ensure precision within and among surface trend data from the 

different instruments. Robustness checks were made on the combined data series by 

comparing values with targets through time.  Dr. Molly Brown of NASA provided bi-

monthly subsets of the GIMMS group processed data to the study using latitude and 

longitude boundaries covering 12°W - 15°E and 12°N - 25°N. Over 93,600 pixels 

covering 365 months (July 1981-December 2011) were provided to the study. 
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To construct the NDVI anomalies used in the study we first pass the raw 

AVHRR NDVI data through Harvest Choice’s spatially explicit Spatial Production 

Allocation Model database24 (SPAM), which contains estimates of crop distribution 

(Yu et al., 2000).  The Spatial Production Allocation Model uses a cross-entropy 

minimization approach, that accounts for prior knowledge regarding actual crop 

distribution and factors that influence the distribution, to estimate plausible 

disaggregated estimates of crop production distribution on a pixel basis (MapSpaM, 

2010). The SPAM database contains four types of crop distribution estimates, 

harvested area, physical area planted, production, and yield. The model incorporates 

spatially explicit input data including crop production statistics from the Food and 

Agriculture Organization (FAO), aggregated land cover and land use data from 

Boston University-MODIS Land Cover, Joint Research Center Global Land 

Cover2000 Project (JRC GLC2000) and United States Geological Survey  Global 

Land Cover Characteristics (USGS GLCC), biophysical crop suitability assessments 

from the FAO and International Institute for Applied Systems Analysis (IIASA) in 

the form of agro-ecological zones, population density  estimates from Gridded 

Population of the World (GPW) Version 2, and distances to urban centers and any 

prior knowledge concerning the spatial distribution of crop systems in a country 

(MapSpaM, 2010). The data are in the form of 5 x 5 minutes crop distribution maps. 

 

 

                                                 
24 http://mapspam.info/ 

http://mapspam.info/
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Table 12. Summary of NDVI filtering and processing 

Data Product  AVHRR NDVI SPAM (Production Maps) 

Time series July 1981-December 2011 Based on year 2000 inputs 

Data projection 
8km x 8km resolution 

Geographical coordinates 
9km x 9km resolution* 

Raw pixel number 93,661 x 365 periods n.a. 

Pixel numbers 

after filtering 
33,296 x 365 periods n.a. 

Source: Author’s calculations; * Maps are 5 X 5 minute or about 9km X 9km on the equator. 

Specifically, we use the physical area planted variable from SPAM to tag 

pixels containing millet producing plots from those with no plausible production 

estimates. This initial filtering reduces the number of NDVI pixels considerably. The 

effect of the filtering exercise should help reduce distortions introduced into the 

NDVI signal by non-productive areas. However, the method will not completely 

isolate millet production regions as other crops and vegetative cover may also be 

grown within the same pixel. The SPAM maps also likely contain some measurement 

error.  Once filtered, we create a series of buffers, in 10 kilometer increments, around 

each of the 29 markets in the study. As some markets are located near one another, 

the market-level buffers may include overlapping pixels.  We use 10 kilometer 

increments in order to be able to test the sensitivity to area of NDVI pixels used and 

to allow for varying extent of an area surrounding a given market. The smallest buffer 

we calculate is 20 kilometers and the largest is 100 kilometers.  Figure 16 below, 

shows a map of millet producing zones in Niger. On the left-hand side of the figure 

we present the distribution of the SPAM data and on the right hand side we present 

the market buffers for a selected market in Southern Niger. At the center of the 

picture is the market and the ring of concentric circles represents the NDVI buffer. 

The size of the circles in the buffer indicates the intensity of millet production 
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contained within each pixel. The color of the circles are associated with the size of the 

buffer (dark red = 100 km). This figure represents how the study filters the data at the 

market level. 

NDVI Buffers are calculated by taking the location of each market and 

calculating concentric circles around each market. We keep all pixels that are tagged 

millet producing zones and record weights on the intensity of production. Larger 

buffers reflect a greater cultivated area.  Table 13, below, summarizes the average 

values of raw NDVI at the regional  level composed of all 50 kilometer buffers from 

the 29 markets.  Niger has seven major administrative regions and the capital, 

Niamey, includes a capital district.
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Figure 16. NDVI Buffers by millet physical area planted intensity from SPAM 

 
Source: Author’s calculations
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Table 13. Summary of raw NDVI values by region using 50 kilometer buffer (July 1981 – December 2011) 

 
Color ramp = coefficient of variation for NDVI   

Source: Author’s calculations 

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Agadez

mean 1,320 1,308 1,291 1,227 1,401 1,281 1,242 1,514 1,678 1,278 1,299 1,308

std. dev. 157 149 148 154 271 241 276 507 481 222 190 161

coef. var. 0.12 0.11 0.11 0.13 0.19 0.19 0.22 0.33 0.29 0.17 0.15 0.12

Diffa

mean 2,286 2,183 2,168 2,073 2,348 2,277 2,987 3,947 3,620 2,525 2,456 2,385

std. dev. 174 160 156 175 200 304 663 705 674 369 241 217

coef. var. 0.08 0.07 0.07 0.08 0.09 0.13 0.22 0.18 0.19 0.15 0.10 0.09

Dosso

mean 2,647 2,465 2,298 2,123 2,487 2,713 3,433 4,253 4,516 3,659 3,139 2,881

std. dev. 403 349 292 339 486 831 974 928 973 983 703 522

coef. var. 0.15 0.14 0.13 0.16 0.20 0.31 0.28 0.22 0.22 0.27 0.22 0.18

Maradi

mean 2,471 2,300 2,210 2,018 2,256 2,217 2,909 3,771 3,987 3,320 2,905 2,662

std. dev. 205 173 181 185 228 316 455 469 469 485 347 256

coef. var. 0.08 0.08 0.08 0.09 0.10 0.14 0.16 0.12 0.12 0.15 0.12 0.10

Niamey

mean 2,225 2,068 1,968 1,812 2,035 2,079 2,585 3,340 3,501 2,746 2,529 2,354

std. dev. 143 172 136 169 261 277 340 254 216 258 172 128

coef. var. 0.06 0.08 0.07 0.09 0.13 0.13 0.13 0.08 0.06 0.09 0.07 0.05

Tahoua

mean 2,106 2,011 1,931 1,766 2,045 1,918 2,433 3,290 3,443 2,646 2,353 2,221

std. dev. 226 207 193 192 229 263 358 443 509 499 346 264

coef. var. 0.11 0.10 0.10 0.11 0.11 0.14 0.15 0.13 0.15 0.19 0.15 0.12

Tillabéry

mean 2,103 1,977 1,892 1,757 2,009 1,990 2,448 3,168 3,304 2,539 2,335 2,204

std. dev. 408 377 322 336 403 609 811 934 942 774 587 473

coef. var. 0.19 0.19 0.17 0.19 0.20 0.31 0.33 0.29 0.29 0.30 0.25 0.21

Zinder

mean 2,307 2,191 2,140 2,012 2,275 2,203 2,859 3,643 3,694 2,926 2,624 2,470

std. dev. 298 258 269 288 284 349 605 648 591 556 424 349

coef. var. 0.13 0.12 0.13 0.14 0.12 0.16 0.21 0.18 0.16 0.19 0.16 0.14
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To ease in interpreting the table, the normalized measure of dispersion 

(coefficient of variation calculated from monthly values from July 1981-December 

2011) is shaded for each month and region using a green bar. The length of the bar 

indicates the coefficient of variation of NDVI outcomes for a given month. Dosso and 

Tillabery appear to exhibit the greatest variability, particularly during the growing 

season (May-October), whereas Maradi and Tahoua have lower levels of dispersion.  

With our data filtered and buffers created, we construct a rolling 11-year 

NDVI anomaly around each market.  Eleven years was selected in order to match the 

NDVI data with the post-1993 price data.25 Each NDVI anomaly is estimated by 

calculating the monthly average of all NDVI pixels within a given buffer and 

regressing the resulting value on a set of monthly dummy variables and a time trend, 

and a squared time trend. The information not absorbed by the predictable factors in 

the regression captures the deviation (anomaly) from the expected value, at each point 

in time. To ensure that the anomaly does not incorporate more information than is 

available at a given point in time (as would be the case if we were to use the entire 

time series to construct the anomalies), we use a rolling regression model which 

incorporates moving window of monthly  NDVI data from the previous 11 years. 

Given that we are primarily interested in forecasting market performance, we seek a 

variable, that at each point in time, only contains as information as is available to an 

analyst at that moment in time. 

To aid in our preliminary analytical description of the NDVI data we create a 

set of NDVI ranking variables at the market level, and then average them into a single 

ranking system. The ranked values consider how NDVI anomalies rank across time 

                                                 
25 Recall, our NDVI data span July 1981 through April 2012, whereas our price data run 1993-2012. 



 

 102 

 

and within the same growing seasons. The results from this exercise are described 

below and demonstrate the annual variability in the NDVI data.  

Analysis of NDVI Rankings  

In order to get a sense of how an observed NDVI outcome compares to past 

outcomes we create a set of monthly rankings for each NDVI anomaly, focusing on 

NDVI for May-November. The first ranking, depicted in Figure 17, is created by 

taking all monthly NDVI outcomes from the previous years and ranking them against 

each other in a rolling manner. For example, the May 2003 NDVI ranking is 

calculated by looking at all NDVI anomalies for May 1992-2003 and assigning 2003 

a ranking from 1 to 12, with 1 being far above average (the highest average NDVI  

value observed over the 12 year span) and 12 being far below average.  The analytical 

advantage of such a ranking system is that each rank can be used to make assessment 

as to how current levels compare to historical values.   

In analyzing the rankings, we break the data into three time segments that 

demonstrate similar NDVI patterns.  Figure 17, below, depicts the rankings for 1993-

1999 for the months of May through November. Working left to right, it is readily 

apparent that each May and June, over the past 6 years, is about the same in terms of 

their average ranking. As we move to July, we start to see a divergence in the 

outcomes with average NDVI from July of 1994 looking rather different from other 

years. As we continue to transition through the growing season, the patterns of NDVI 

in 1994 and 1999 take on a much different path than other years. By October, the 

years 1994, 1998 and 1999 have distinguished themselves as having much better 

average NDVI outcomes than the twelve years prior. What is also interesting is that 
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the NDVI signal appears to be the highest ranked in October for those three years. 

These later than average anomalies may be suggestive of a growing season that is 

different from normal. However, we need to compare NDVI within the growing 

season to confirm this point.  

Figure 17. NDVI monthly rankings by growing season 1993-1999 (1=best, 12=worst) 

 
Source: Author’s calculations 

Moving towards the middle part of NDVI sample, shown in Figure 18, the 

outcomes appear to change quite a bit. The month of May looks remarkably different 

from year to year with 2004 being the worst of the batch and 2003 being the best. The 

high ranking for May 2003 NDVI suggests an early start to the growing season.  June 

NDVI rankings are different from the previous figure in that they are more widely 

distributed and, for the most part, worse than average when compared to each 12-year 

cohort. July NDVI rakings follow a somewhat similar pattern but 2003 and 2005 

appear to have had much better average NDVI outcomes. The remaining months fit in 

a tighter distributional window and appear to be mostly average, except for 2005 

outcomes.   
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Figure 18. NDVI monthly rankings by growing season 2000-2005 (1=best, 12=worst) 

 
Source: Author’s calculations 

 

Moving to the final graphic for the year-by-year comparison we see outcomes 

that are more in light with what we observed for1993-1999. The early part of the 

growing season appears to fit within a small distributional window and, on average, 

may be slightly worse than each month from the respective 12-year comparison 

group. Where things take a different turn is in August, September and October, with 

each of these months being somewhat above average for 2006-2011. NDVI outcomes 

for 2009 are the exception here, with each month taking on a ranking of 8 or higher. 

The years 2007, 2010, and 2011 appear to have late green-ups as shown by the low 

rankings for September and October.  
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Figure 19. NDVI monthly rankings by growing season 2006-2011 (1=best, 12=worst) 

 
Source: Author’s calculations 

While the twelve-year comparison is useful for assigning rankings on a 

historical basis, it tells us little about how concurrent monthly NDVI outcomes 

compare to each other. That is, we may also be interested in knowing within a 

growing season how May NDVI outcomes compare to July NDVI outcomes, and so 

forth. To create this metric we assign a value of 1 to 6 to each month (with 1 being 

the best and 6 being the worst) within a single growing season based on the average 

NDVI rankings from all markets. The primary disadvantage of this metric is that one 

needs data from the entire growing season to construct a seasonal ranking. The results 

of this exercise are presented in Figure 20 - Figure 22.  

Starting with the figure immediately below, we see a different pattern play out 

in the rankings. NDVI from 1994 is probably the clearest example of a year in which 

NDVI anomalies increasingly improved throughout the growing season as shown by 

the downward sloping line. Following a similar pattern was also 1999 and to a certain 

degree, 1998. On the other hand, 1995 NDVI rankings depict a story of a growing 
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season that was either off to a good start in the beginning, as shown by the low 

rankings for May and June, or a year that simply had below average NDVI outcomes 

which were increasingly worse throughout the year. If we cross reference this year 

with the figure above for the same corresponding time we learn that 1995 was a 

below average year overall and a point reflected in the price data.  

Figure 20. NDVI Rankings within growing season 1993-1999 (1=best, 6=worst) 

 
Source: Author’s calculations 

 Transitioning to the second cluster of time, 2000-2005 shown below, the 

pattern of NDVI outcomes is different from above, with the months of May and July 

taking on widely different rankings. If we cross-reference the rankings for 2005 from 

above, a nice story unfolds. May and June of 2005 take on NDVI rankings higher 

than any other months, suggesting that average NDVI was at its lowest levels during 

these months, relative to the other months of the growing season. However, looking at 

the annual rankings from above, we see that these NDVI levels were average, for 

each month, compared to the NDVI rankings for the previous 12-years. By July we 

observe a month with the best ranked NDVI outcome for the entire growing season, 
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and when cross-referenced with Figure 18 above, it is a month with one of the best 

ranked outcomes over the past twelve years. From these two different perspectives, 

we can confidently conclude that NDVI from July of 2005, average across our 29 

markets in Niger, was much higher than one would have expected.  

Figure 21. NDVI Rankings within growing season 2000-2005 (1=best, 6=worst) 

 
Source: Author’s calculations 

 The final figure, below, presents seasonal NDVI rankings for 2006-2011. The 

main observation that can be made from this figure is that the downward sloping 

shape of each year’s ranking suggests NDVI outcomes increase, on average, from 

month-to-month throughout the growing season. While NDVI rankings for 2009 

appear to be about the same for each month, when we cross-reference these values 

with those from the annual rankings above, we can see that on average, each month 

had similar NDVI outcomes, but these outcomes were bad across the board.  This 

point highlights the importance of using the two proposed ranking metrics in tandem 

to determine not only what NDVI outcomes look like within a growing seasons, but 

also to how the monthly NDVI rankings look overtime.  
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Figure 22. NDVI Rankings within growing season 2006-2011 (1=best, 6=worst) 

 
Source: Author’s calculations 

From an econometric modeling perspective these graphs provide a few 

insights into the evolving nature of NDVI outcomes. The graphs show that NDVI 

anomalies are dynamic both inter and intra-annually. What the metrics above do not 

reflect is how the spatial distribution of these patterns play out, which introduces an 

additional dimension to consider when trying to model millet price outcomes with 

NDVI. However, when rankings are averaged across space, we can get a sense of 

what a year looks like relative to past years and whether or not NDVI outcomes for a 

given month look substantially different from what we would expect.   

The advantage of our inter-annual NDVI ranking metric is that we can detect 

anomalous months early in the growing season. NDVI outcomes that are far above 

average early in the growing season are of direct use to food security analysts as they 

suggest an early start to the growing season which in turn means earlier offloading of 

cereal stocks by traders and less pressure on credit and cereal constrained households. 

For modeling, this point is important because the normal price spike we expect in 
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July and August will be less marked due to the additional supply to the markets and 

the impending early harvest.  

On the other hand, in years where NDVI anomalies do not peak until late in 

the year (1998 for example) the story is different, as is the appropriate ranking metric. 

In these circumstances, both rankings should be analyzed to determine what the late 

part of the growing looks like compared the past, and how September and October 

NDVI outcomes rank compared to those from June, July and August. From a pure 

modeling perspective, the failure to account for a late green-up, would likely lead to 

incorrect price predictions and market performance assessments (because of the 

assumption of a poor harvest) when peak NDVI (a proxy for millet production) may 

have simply shifted to later parts of the growing season. In these situations, an 

econometric model should be flexible enough to account for late green-ups and have 

the ability to recalibrate its prediction mechanism to account for shifting of 

phenological events of the growing season and the potential impact on market 

performance. This latter lesson suggests that traditional, fixed lag structures for NDVI 

variables and price data may not be appropriate inputs to a price forecasting model. 

More flexible methods should be explored -- particularly ones with learning 

algorithms that account for spatial, inter and intra-annual dynamics of vegetation 

production conditions and that can historically contextualize current NDVI outcomes 

as they relate to millet price outcomes. 

NDVI Outcomes and Millet Production 

Next, we consider the relationship between NDVI anomalies and official 

millet production outcomes to test some of our initial impressions about the seasonal 
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variation in NDVI outcomes. One of the most influential and successful models for 

estimating agricultural supply response is the Nerlovian model (Nerlove, 1958) which 

estimates output as a function of price, output adjustment and other exogenous 

covariates. Due to data limitations and our desire to understand the links between 

NDVI and observed production, we resort to a linear fixed-effects regression model.   

Previous studies that have analyzed the relationship between NDVI and crop 

yield in Niger include Maselli et al. (1991) and Wylie et al. (1991), who use NDVI to 

predict total herbaceous biomass in Niger over 1986-1988. Rasmussen (1992) and 

Groten (1993) consider a similar relationship for areas of Burkina Faso, with the latter 

study finding that NDVI signals from the month of August to be highly correlated 

with millet yields. Other studies have used maximum NDVI deviation from June 

through September (Brown et al. 2009), the summation of NDVI deviations over the 

growing season (Jiang et al., 2004; Rasmussen, 1998) and the maximum deviation 

from the growing season (Fuller, 1998) to analyze the relationship between NDVI 

outcomes and crop production or yields.  In reality, the growth of millet is a function 

of numerous factors including water, sunlight, temperature, and soil fertility. Our 

simplified analysis considers the relationship among pixel-level, regionally 

aggregated NDVI anomalies and official millet production estimates. We use monthly 

NDVI anomalies, aggregated to the regional-level, and limit our dataset to areas of 

intensive millet production.26 The purpose of the exercise is to determine how well 

our NDVI anomalies correlate with production outcomes.  

                                                 
26 Niamey and Agadez have extremely low millet production figures and including them in the analysis 

only introduces additional noise. Regions included in the analysis are Dosso, Maradi, Tahoua, 

Tillabery and Zinder. 
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To account for any time-invariant, unobserved region-level heterogeneities 

that may influence production outcomes, such as soil type, we estimate a fixed-effects 

model shown below in equation 14. We test combinations of NDVI variables in order 

to assess the how NDVI from different stages of the growing season correlate with 

production outcomes. Our basic model is as follows: 

 𝑀𝑖𝑙𝑙𝑒𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛼 + 𝛽1𝑁𝐷𝑉𝐼𝑖𝑡 + 𝜑𝑋𝑖𝑡
′ + 𝛿𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡   (14)  

where 𝑀𝑖𝑙𝑙𝑒𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡 is the first differenced value of millet produced in region 

𝑖 at time 𝑡, 𝑁𝐷𝑉𝐼𝑖𝑡 is the corresponding NDVI anomalies/levels that were observed 

across regions, 𝑋𝑖𝑡
′  represents a vector of other NDVI variables (lagged NDVI values 

from October of the previous year, and off-season NDVI outcomes) and the 

remaining variables are 𝛼, an intercept, 𝛿𝑖 a region fixed-effect, and 𝜃𝑡 a time variable 

to account for unobserved temporal changes that may affect millet production. The 

model is estimated with a fixed-effects estimator using robust standard errors. 

 In modeling the relationship between NDVI outcomes and millet production, 

we test if an increase in NDVI is correlated with an increase of total production of 

millet, as opposed to an increase in non-crop vegetation. We use first differences to 

address the potential non-stationary of the millet production data.27  Millet production 

data at the region level comes from the USAID Niger FEWSNET team stationed in 

Niamey. The data represents millet production estimates from the Government of 

Niger for the years 1996-2010. 

The three figures below depict bivariate plots for NDVI metrics and 

production outcomes. The first graphic, Figure 23, plots the average NDVI anomaly 

                                                 
27 Results from an augmented Dickey-Fuller test on each set of production statics at the department-

level could not reject the null hypothesis that the data contained a unit root.  
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from the five regions for each month of the growing season. The outcomes are 

centered near zero because they represent the aggregated, demeaned NDVI anomalies 

from each region for the 14 years of analysis. The vertical bars on the graph represent 

the upper and lower bounds on the NDVI variables. A review of the graphic suggests 

that anomalies from May and June have the lowest variability with exceptions 

occurring in 2009 and 2010. Moving to July through October, we see a much 

different pattern with much more variability and a somewhat see-saw pattern. 

However, this pattern is not stable from year-to-year. For August, September and 

October of 2000-2004, the NDVI anomalies follow a similar shape with a mean 

slightly below zero. The month that appears to be driving variability is July, which 

shows large peaks in 2003 and 2005.  Even the lower bounds in these years were 

above what we would have expected across the five regions. 
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Figure 23. NDVI Anomalies over time 

Source: Author’s calculations 

Figure 24, below, plots NDVI outcomes against the official production 

stataistcs for each year, by region. Focusing on the monthly NDVI anomalies, we see 

that NDVI deviations in May and June appear to have little or even negative 

correlations with production outcomes. Because of this it is difficult to ascertain a 

priori if May or June NDVI outcomes will be useful in predicting production, even 

during an early growing season which appear to be rare. Moving to July through 

October we see that the slope of the fitted correlation line improves compared May 

and June. This is somewhat expected as the normal growing season starts in July and 

ends in September or October. 
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Figure 24. Correlation between millet production and monthly NDVI anomalies 

 
Source: Author’s calculations 

Figure 25 presents a graph of the data focusing on cumulative NDVI 

deviations created by taking a combination of top performing NDVI months or 

different segments of NDVI from consecutive months. The relationships between 

NDVI and millet production throughout is generally positive, with no clear winner in 

terms of which metric, from an ocular analysis, appears to be excessively good at 

capturing the relationship between NDVI and production.  Because these graphs do 

not control for other confounding factors, we turn to regression analysis to determine 

the robustness of these correlations. 
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Figure 25. Correlation between millet production and aggregated NDVI anomalies 

 
Source: Author’s calculations 

  Table 14 and 15 present the results from the modeling exercise. When 

interpreting the coefficients, one should be aware of the small sample size of the 

production data and that all NDVI anomalies have been rescaled to reduce the space 

needed for presentation. The relative value of the coefficient is more important than 

its actual value (and also explains why the constants take on such large values). The 

results are generally consistent with our expectations from the graphical analysis and 

the literature review.  NDVI from the primary part of the growing season is 

statistically significantly and positively associated with millet production outcomes.  

The left-hand side presents results for a month-by-month analysis of NDVI on 

production outcomes. It shows that August NDVI (and sometimes June) appears to be 

the best predictor of production outcomes in terms of the size of the coefficient. The 
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right-hand side of the table presents the results for specifications estimated with the 

full set of NDVI covariates. NDVI from August still appears to have the strongest 

correlation with production outcomes, even after controlling for other months NDVI. 

Interestingly, the final specification reveals that NDVI anomalies from June have a 

statistically significant and positive relationship with production outcomes while 

positive NDVI anomalies in September appear to have an inverse relationship with 

production outcomes.  Lagged NDVI values from the previous growing season have a 

negative effect on production indicating a year-to-year see-saw motion in production, 

and NDVI anomalies from the non-growing months (NDVI off season) appear have a 

positive relationship with crop production.   
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Table 14. Regression results for first differenced millet production and monthly 

NDVI outcomes 
  Major Production Zones 

Dependent variable Prod. Prod. Prod. Prod. Prod. Prod. 

October NDVI           4.27*** 

            1.165 

September NDVI         3.28**   

          1.296   

August NDVI       4.43***     

        1.321     

July NDVI     2.36*       

      1.227       

June NDVI   8.61***         

    3.196         

May NDVI 0.68           

  1.973           

Lagged top 3 months NDVI -4.18*** -4.85*** -3.93*** -4.15*** -4.06*** -3.72*** 

  0.607 0.637 0.643 0.576 0.566 0.547 

NDVI off season 1.99*** 1.71** 2.22*** 1.75*** 1.65** 1.33* 

  0.747 0.693 0.717 0.657 0.761 0.76 

Year 24.77 73.48* 16.94 21.13 8.85 19.48 

  42.72 40.72 39.44 35.04 39.56 33.22 

Constant -48291 -145,326* -32656 -41074 -16539 -37949 

  85,597 81,539 79,087 70,274 79,268 66,536 

Observations 70 70 70 70 70 70 

R-squareda 0.369 0.448 0.408 0.485 0.429 0.509 

Number of regions 5 5 5 5 5 5 

# Stars represent significant level (*** = 1 percent, ** = 5 percent, * = 10 percent); All results based 

on fixed-effects model with robust standard errors). a - R-squared statistic calculated using Stata's areg 

regression command. All production values are estimated in ‘000s of metric tonnes. 
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Table 15. Regression results for first differenced millet production and monthly 

NDVI outcomes full specification 

  Major Production Zones 

Dependent variable Prod. Prod. Prod. Prod. Prod. Prod. 

October NDVI           6.72*** 

            1.792 

September NDVI         -1.47 -8.93*** 

          1.868 2.863 

August NDVI       4.93*** 6.41*** 6.88*** 

        1.705 2.338 2.372 

July NDVI     1.86 -2.02 -2.51 -0.93 

      1.46 1.937 1.886 1.562 

June NDVI   9.26*** 7.56* 8.61** 8.59** 5.27* 

    3.48 3.925 3.636 3.695 3.028 

May NDVI 0.68 -1.24 -2.69 0.14 0.21 -2.37 

  1.973 1.801 1.83 1.872 1.835 1.68 

Lagged top 3 months NDVI -4.18*** -5.00*** -4.75*** -5.00*** -5.10*** -4.44*** 

  0.607 0.617 0.703 0.717 0.753 0.723 

NDVI off season 1.99*** 1.80** 2.13*** 1.22 1.26 1.49** 

  0.747 0.688 0.702 0.796 0.785 0.724 

Year 24.77 68.65 45.31 78.42* 84.76* 68.08 

  42.72 41.973 41.48 41.71 43.20 41.19 

Constant -48291 -135639 -89053 -155,267* -167,925* -134939 

  85,597 84,035 83,023 83,435 86,425 82,392 

Observations 70 70 70 70 70 70 

R-squareda 0.369 0.452 0.465 0.544 0.547 0.634 

Number of regions 5 5 5 5 5 5 

# Stars represent significant level (*** = 1 percent, ** = 5 percent, * = 10 percent); All results based on 

fixed-effects model with robust standard errors). a - R-squared statistic calculated using Stata's areg 

regression command. All production values are estimated in ‘000s of metric tonnes. 

 

Collectively, the regression results confirm the link between observed NDVI 

outcomes and millet production levels. NDVI anomalies from June and August 

appear to be some of the best predictors of good millet production years, while 

positive NDVI anomalies from September may be indication of a later than normal 

growing season which is correlated with a lower millet production. Table 16, below, 

summarizes the results from alternative NDVI specifications using the cumulative 

variables discussed above. The results are generally consistent with the previous ones.  
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Table 16. Estimates for millet production and alternative NDVI variables 

  Major Production Zones 

Dependent variable Prod. Prod. Prod. Prod. Prod. 

Top 3 months NDVI         1.91*** 

          0.58 

Cumulative NDVI (Aug-Oct)       1.74***   

        0.461   

Cumulative NDVI (Jul-Oct)     1.44***     

      0.368     

Cumulative NDVI (Jul-Sep)   1.67***       

    0.481       
Lagged top 3 months NDVI -10.51*** -9.86*** -9.61*** -10.03*** -9.60*** 

  1.661 1.668 1.541 1.386 1.648 

NDVI off season 1.88** 1.73** 1.52** 1.32* 1.58** 

  0.794 0.679 0.677 0.719 0.695 

Year 32.5 24.29 24.77 25.96 15.43 

  43.295 36.104 34.252 34.455 37.185 

Constant -63,076 -46,771 -47,807 -50,156 -29,561 

  86,763 72,413 68,671 69,054 74,483 

Observations 70 70 70 70 70 

R-squareda 0.35 0.462 0.497 0.499 0.457 

Number of regions 5 5 5 5 5 

# Stars represent significance level (*** = 1 percent, ** = 5 percent, * = 10 percent); All results based 

on fixed-effects model with robust standard errors); a - R-squared statistic calculated using Stata's areg 

regression command. All production values are estimated in ‘000s of metric tonnes. 

 

For completeness, we also present results for the above analysis conducted 

with yields instead of production volume. The results are largely consistent with our 

findings above.  
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Table 17. Estimates for millet yield differences and monthly NDVI 

outcomes  

 

Major Production Zones 

Dependent Variable Yield Yield Yield Yield Yield Yield 

October NDVI 

     

0.53*** 

  
     

0.157 

September NDVI 

    

-0.05 -0.64** 

  
    

0.147 0.24 

August NDVI 

   

0.37** 0.42** 0.45** 

  
   

0.147 0.2 0.198 

July NDVI 

  

0.13 -0.16 -0.17 -0.05 

  
  

0.122 0.183 0.177 0.15 

June NDVI 

 

0.30 0.18 0.25 0.25 -0.01 

  
 

0.303 0.348 0.335 0.338 0.293 

May NDVI 0.06 -0.01 -0.11 0.1 0.1 -0.1 

  0.151 0.16 0.168 0.183 0.181 0.161 

Lagged top 3 months NDVI -0.29*** -0.31*** -0.29*** -0.31*** -0.32*** -0.26*** 

  0.057 0.063 0.072 0.078 0.079 0.073 

NDVI off season 0.12** 0.12** 0.14** 0.07 0.07 0.09 

  0.05 0.054 0.054 0.06 0.063 0.059 

Year 0.77 2.18 0.52 2.98 3.19 1.88 

 
3.366 3.48 3.55 3.73 3.89 3.74 

Constant -1,469.54 -4,269.98 -944.38 -5,869.94 -6,296.32 -3,696.45 

 
6,746.36 6,968.01 7,113.02 7,467.13 7,773.04 7,479.26 

Observations 70 70 70 70 70 70 

R-squared 0.288 0.302 0.314 0.389 0.39 0.482 

Number of regions 5 5 5 5 5 5 

# Stars represent significance level (*** = 1 percent, ** = 5 percent, * = 10 percent); All results based 

on fixed-effects model with robust standard errors reported below the coefficient estimate. a - R-

squared statistic calculated using Stata's areg regression command. 
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Chapter 7:  NDVI Shocks and Market Performance 

The analysis of millet prices and NDVI above suggested two theories worthy 

of further investigation. Firstly, millet prices exhibit tremendous intra and inter-

annual variation, large price increases are frequently observed during the summer 

months, and by marketing-year prices appear to conform to different distributional 

shapes. Secondly, the analysis of NDVI revealed substantial departures from normal 

vegetation production conditions across multiple periods of time.  Given that we have 

established a close relationship between NDVI anomalies and millet production, and 

millet production and millet prices are inversely related (ceteris paribus), a natural 

question is to ask is if there is an impact from abnormal NDVI outcomes on market 

performance throughout Niger.  

O Grada (2007) notes that, based on the Law of One Price (LOP), we should 

expect variations in food prices to decline during famines, as long as transport costs 

remain constant. While we cannot ensure that transportation costs remain fixed during 

NDVI shocks, we can investigate this claim by analyzing if and how NDVI shocks 

influence price spreads among market dyads in Niger.  We start by reviewing three 

hypotheses of how markets may function during times of extreme food production 

shortfalls. We then turn to a discussion of the potential effects of negative and 

positive NDVI shocks, with a special discussion of the 2005 growing year. The 

second half of the chapter outlines our estimation strategy for analyzing market 

performance and discusses our estimation results. 
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Markets and Production Shocks 

 Ó Gráda (1997) attests that the LOP dictates that in a well-integrated market, 

price differences that remain persistent over a geographic space are largely due to 

transportation costs. Thus, the LOP implies that variation (standard deviation) in 

prices will reflect the transportation costs. In periods of excessive production 

shortfalls (famine like conditions), if transactions costs remain fixed, the observed 

price variation across space will tend to be equal to or smaller than price variations in 

periods of normal production. However, if transportation costs vary with production 

outcomes, as may be the case when there is excessive rainfall or drought, then it is 

less clear on how we may expect price variation to compare across situations.  

Historically, the interactions between markets and famines are varied and can 

be divided into three camps (Ó Gráda, 2005). A first theory posits that during times of 

harvest failures markets can minimize damage through spatial and inter-temporal 

arbitrage. Clear lines of communication, well developed infrastructure systems, and 

frictionless trade can ensure that food supplies are traded until margins equalize and 

no further gains can be realized through spatial arbitrage. This should ensure that food 

insecure areas have access to food. However, a well-integrated market will have little 

power over whether or not households are in possession of the appropriate 

endowments to command food. In this situation, the same well-functioning market 

could exacerbate bouts of food insecurity by removing food from locations with 

insufficient purchasing power to areas where households are better off. Under these 

conditions, well-integrated markets would harm those in need of food the most.  
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The third line of thought posits that during food production shocks, myriad 

factors affect the functioning of markets resulting in fragmented trading patterns. 

Producers and traders can misestimate the volume of food needed by cereal markets 

or households and create inefficiencies in the way food is allocated across time and 

space. Combined with rumors of shortages and hopes of cashing in when prices are 

high, these actions can create pricing bubbles or herding behavior. Alternatively, the 

breakdown in communication channels either due to weather, government policies, 

inadequate infrastructure, or even conflict, can lead to balkanized markets in which 

price signals do not reflect market fundamentals (Ó Gráda, 2005).  

With limited information on these dynamic factors it is difficult to know what 

theory will characterize market behavior. Without additional information on 

transactions costs, trade volumes, and household demographics and income profiles, 

we cannot precisely describe the exact type of market we are likely to encounter. 

However, we can gain useful insight into how spatial price spreads have reacted to 

abnormal vegetation production conditions as measured by NDVI.  

Potential Effects of Negative NDVI Shocks 

A natural starting point when considering the impact of NDVI shocks on 

market performance is to consider the potential effects of  extremely low vegetation 

production conditions (which may be correlated with production shocks) on price 

dispersion.  Aker (2010b) concludes that drought has a heterogeneous impact on grain 

price dispersion, namely reducing price dispersion between two markets that are 

affected by drought at the same time. However, as pointed out above, the drought 

variables used in her study only span the months of July-September. Our analysis of 
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NDVI data reveals that phenological events associated with the growing season are 

not static and measures of vegetation production conditions fluctuate greatly from 

year to year. Thus, the point at which traders form expectations about local millet 

supplies may fluctuate from month-to-month within the growing season and across 

marketing years. To capture better the vegetation production conditions that are 

available to the market in a given month, we consider the impact of negative NDVI 

shocks throughout the growing season (defined as May-October). While it is plausible 

that negative shocks in July, August and September may strongly affect local millet 

supplies, we cannot rule out the scenario in which an early growing season changes 

the market’s interpretation of a prolonged dry spell occurring in late in the growing 

season.  

Recalling the theoretical trade model discussed in Chapter 4, and assuming 

constant transactions costs, we interpret negative NDVI shocks to be associated with 

a potential reduction in the local supply of millet. If both markets experience a 

negative supply shock that increases local prices at different rates, we may see a 

decrease in equilibrium price dispersion (a convergence in prices). However, if the 

NDVI shock also affects transactions costs, then a slightly different scenario is 

plausible. Because below average NDVI is strongly correlated with the lack of 

rainfall (see figure below), it is entirely reasonable that roads and bridges that are 

impassable during the rainy season may become traversable. This, in theory, could 

decrease the transactions costs between two markets. Instead of being washed away 

during the rainy season, infrastructure may remain intact or road conditions may 

simply improve due to the lack of rainfall. Depending on the magnitude of the supply 
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shock and the transactions cost shock, we may witness improvements in grain market 

performance (convergence in prices) as profit margins (arbitrage opportunities) are 

widened by increasing prices and decreasing transactions costs.  

Figure 26. Select historical rainfall anomalies 1993-2006 

 
Source: Author’s calculations based on Climate Research Unit Precipitation data 

(http://www.cru.uea.ac.uk/data) 

Outside of the growing season in Niger the impact of negative NDVI shocks 

are likely to be less severe, but still may affect price dispersion. Normally, NDVI 

offers limited analytical value outside of the growing season in Niger but may be of 

value in assessing vegetation production conditions as we move further and further 

south where the growing season is longer.  Where the shocks may be important is 

through secondary channels such as livestock production, off-farm income generating 

activities, or seasonal migration in search of work (the Exode). If NDVI is far below 

average (such as in January and February of 2005), this would likely decrease the 

overall food sources and inputs that are available for animal grazing rural, non-farm 

http://www.cru.uea.ac.uk/data
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income generating activities, and demand for labor. As the cost of animal production 

grows, it is plausible that pressure may be exerted on millet prices at a local level (if 

millet grains are a substitute for animal products). A large enough effect may induce a 

response from the other node of the market pair where traders may find arbitrage 

opportunities in selling grain or millet-based goods to the stressed market. For these 

reasons it may be important to track NDVI outcomes outside of the growing season. 

However, in doing this we must be careful not to confuse excessively low NDVI 

outcomes with errors in the NDVI signal. Studies have shown surface bareness may 

be linked to dust emissions (Kim et al., 2013) rather than lack of vegetative cover. 

Potential Effects of Positive NDVI Shocks 

Positive NDVI shocks occurring during the growing season may have a 

different effect than outlined above. Two markets that simultaneously receive a 

positive shock may experience an apparent increase in price differences (or 

divergence in prices), given the positive shock affects the clearing price in each 

market at different rates. Trade may even stop between two markets if the local 

supply shocks are large enough to eliminate any gains from trade. Under these 

conditions we would expect market performance to degrade in the sense that price 

spreads may diverge between market-pairs (markets fragment). These shocks may 

also be associated with abundant rainfall which could increase transactions costs. 

Markets that are not connected to main roads may find themselves more isolated as 

trade routes become impassable due to poor or environmentally sensitive 

infrastructure (roads, bridges). If the production lag from the NDVI shock is 

significant and the immediate transactions cost effect large, this type of shock could 
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actually increase local prices in the short-term because of the additional pressure on 

local supplies of cereal. However, in the longer-term we would expect that positive 

NDVI outcomes would decrease local millet prices by boosting local cereal 

production and supplies. Eventually, these lower prices would affect the spatial trade 

between markets and may even lead to little to no trade as arbitrage opportunities 

disappear or prices approach a floor across the entire region. 

A special case, caused by a positive NDVI shock, may have unfolded during 

the peak of the growing season in 2005. According to satellite  data, July 2005 NDVI 

levels were far above normal levels for the month, yet local millet prices continued to 

rise, likely due to the production shortfall from the previous harvest and offseason 

NDVI shocks at the start of the year. Some blamed the rapid rise in millet prices on 

the sensational media reports being broadcast to the world in July of 2005. However, 

other print news reports suggested that villagers remained hungry, despite the fact 

that their fields were green, because the elevated levels of rainfall had washed away 

many of the roads or made them difficult to transverse.28 Thus, under certain 

conditions it is plausible that the immediate economic effects that correlate with 

positive NDVI shocks may increase price dispersion due to temporary transactions 

costs increases. If these effects occur at the earlier stages of the growing season, 

before the millet grains have set, the implications can be profound as benefits from 

the NDVI shock will be experienced with a lag, while the transactions cost effect is 

immediate. Should this occur at the peak of the hungry season, when local millet 

supplies do not keep pace with demand, prices are likely to increase due to reduced 

trade volumes caused by rising transactions costs. The irony is that even though 

                                                 
28 “Rain threatens delivery of food aid in Niger”, The Toronto Star August 2, 2005. 
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greening millet fields may foreshadow an impending bumper harvest, the local 

population may actually experience greater disutility due to the immediate effects of 

the transactions price shock. 

Outside the growing season, a positive NDVI shock will likely have a similar 

effect, but again through secondary food source channels and increased income 

generating opportunities. Elevated NDVI levels may be associated with a longer than 

expected growing season resulting in decreases in grazing costs and increases in the 

supply of healthy animals, animal-based food products, and off-farm income 

generating activities. If the effect is large enough, local millet prices may also decline, 

but at different rates, as caloric substitutes fall in price. From a general environmental 

perspective, multiple positive NDVI shocks outside the growing season should 

improve general plant and tree quality thus increasing the availability of secondary 

food sources. This would tend to put downward pressure on millet prices, potentially 

at different rates, and likely reduce the incentives for trade depending on how 

localized the shock is.  

A Review of Observed NDVI Shocks 

To review the various shocks that have played out in Niger since 1993, we 

create a variable which captures major departures in NDVI from normal levels. We 

calculate a rolling mean of a 50 kilometer NDVI buffer for each market, as well as 

the rolling standard deviation using an 11-year, moving window.  An 11-year window 

is selected so that we can align our NDVI anomalies with our price variables. We 

define an NDVI shock as a significant departure from the average NDVI value 

observed for a given window. Specifically, we tag a value as a shock if the observed 
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rolling anomaly for a given market is two standard deviations above or below the 

rolling average at that point in time.  

Table 18, below, summarizes the calculated NDVI shocks by marketing 

season alongside average NDVI anomalies combined from Burkina Faso, Mali, and 

Nigeria as well as price summary statistics.  First, focusing on the marketing seasons 

1992-93 through 2002-2003, the majority of shocks recorded were positive with the 

maximum number of positive shocks occurring in the growing season of 1993-94. In 

fact, this year was remarkably good for Niger as over 60 percent of markets in our 

sample experienced a positive NDVI shock in October and November of 1994.  This 

run of exceptionally high NDVI outcomes continued through May of 1995 where 

over 20 percent of markets had positive shocks.   
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Table 18. Summary of NDVI shocks 

Marketing Season 

Negative NDVI Shocks 

(2 std. dev) 

Growing Season  

(May-Oct) 

Positive NDVI Shocks 

(2 std. dev) 

Growing Season  

(May-Oct) 

Average NDVI 

Deviation from 

Neighboring 

Countries (Growing 

Season) 

Average Millet 

Price (real) 

Average 

Standard 

Deviation 

1992-93 0 3 91 142 30 

1993-94 2 27 425 123 29 

1994-95 0 70 -134 106 27 

1995-96 1 27 -96 142 40 

1996-97 3 2 -213 188 47 

1997-98 5 0 17 238 53 

1998-99 0 14 60 136 32 

1999-00 2 9 -39 146 28 

2000-01 0 1 -20 210 49 

2001-02 19 0 -237 218 47 

2002-03 3 59 175 176 37 

2003-04 57 0 31 159 31 

2004-05 8 11 120 230 62 

2005-06 18 0 119 190 32 

2006-07 6 3 24 170 31 

2007-08 0 2 132 181 40 

2008-09 75 0 -127 197 39 

2009-10 63 9 18 210 33 

2010-11 4 24 -11 173 32 

2011-12 - - - 212 36 

Total/Average 266 261 - 177 52 

Source: Author’s calculations 
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Neighboring countries also experienced high NDVI outcomes as the average 

deviations from the growing and non-growing seasons were above 400 and 300, 

respectively. The effects of these positive outcomes appear to be borne out in millet 

prices as average, real millet prices were below their long-term average.  Throughout 

the rest of the 1990s the number of NDVI shocks from the growing season was 

minimal, with 1998 being the best year with 14 shocks.  From 1999 through 2002 the 

majority of positive shocks occurred during the non-growing season.  

One interesting data point is the substantial increase in average millet prices 

and standard deviations in 1997-98. Prices, on average, were about 60 CFA higher 

than normal. While few NDVI shocks were recorded leading up to this time, many of 

the NDVI outcomes from Niger were well below average, as were the values for 

surrounding countries. NDVI levels in the major millet producing zones of Burkina 

Faso and Mali, on average, were below average for 11 consecutive months and nearly 

the entire 1997 growing season. This widespread occurrence of below average NDVI 

across the entire region likely resulted in decreased cereal production and stressed 

millet markets. This point is important as it demonstrates the importance of blending 

NDVI shock data and NDVI anomaly data to understand potential production 

shortages across the entire region.   

Moving into the 2000s, a different picture emerges regarding the frequency 

and direction of extreme NDVI outcomes. In 2001-02, average NDVI levels from the 

surrounding countries were far below their expected value and there were 19 negative 

shocks recording during the 2002 growing season.   Moving to 2002-03 marketing 

year, we see that NDVI outcomes in May of 2003 were far above normal as nearly 60 
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percent of markets recorded a positive shock in that month.  Overall, the 2003 

growing season produced 59 total positive shocks rivaling the 1994 growing season. 

Moreover, of the markets that had above average NDVI, 22 were in situated in the 

rainfed agricultural zones and 14 in the southern irrigated cash crop zones, the major 

production centers of millet in Niger.  

Moving to the 2003-04 growing season NDVI outcomes reverse direction. 

During the 2004 growing season 57 negative shocks are observed with nearly 33 

percent of markets affected in May, and nearly 18 percent of markets affected in June 

and July.29  The 2005 growing season brought a return to normalcy and a few positive 

NDVI shocks to markets in the rainfed agricultural zone and the southern irrigated 

cash crop zone. One average, 2005 NDVI levels were greater than expected across 

most of the markets, agro-ecological zones, and also in neighboring countries. 

Surpassing 2003-04, the 2008-09 and 2009-10 growing seasons were some of 

the worst on record in terms of the number of extreme negative NDVI outcomes. 

Over 104 shocks are observed in 2008-09, the majority occurring during the growing 

season, and over 140 in 2009-10.  NDVI in neighboring countries was, for the most 

part, below average, yet when we look at average millet prices they deviated little 

from their average value. Because Nigeria imported massive volumes of cereal into 

Niger, and the Nigerien government responded to the production shortfall with a 

multipronged approach, millet prices remained at near normal levels (Cornea, Deotti, 

and Sassi, 2012). This result is important as it demonstrates that increased trade and 

                                                 
29 NDVI levels remained below normal and the extent of poor NDVI outcomes resulted nearly 100 

shocks clustered in January and February of 2005. In January alone, over 70 percent of markets 

experienced a negative NDVI shock, and in February 53 percent of markets experienced a negative 

shock. However, it is unclear if these shocks have any meaning due to their occurrence during the dry 

season. 
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spatial arbitrage opportunities coupled with proper government response can smooth 

out domestic production shocks. 

Figure 27. Graphical summary of NDVI shocks and proportion of markets affected 

Source: Author’s calculations 

Figure 27, above, repackages the shock information from Table 18 as a 

graphic depicting the overall share of markets with NDVI shocks month-by-month. 

What is clear from the graphic is the unequal temporal distribution of shocks. From 

May 1993 through May of 2003 there were numerous positive NDVI shocks and few 

negative ones. The trend reverses from May 2004 through May 2011.  

NDVI Shocks and Market Performance 

To assess the impact of NDVI shocks on market performance we follow the 

lead of Aker (2010b) and estimate a difference-in-difference model, where NDVI 
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shocks are represented by binary variables. As NDVI is an exogenous measurement 

reflecting the vegetation production conditions surrounding a market at a given point 

in time, it can plausibly be used to identify the effects of local production shocks on 

millet market performance. We interpret shocks occurring during the growing season 

to be production shocks and shocks occurring during the non-growing season to be 

indirect shocks, which may affect millet price dispersion through secondary sources 

(as discussed above).  In order to estimate empirically the impact of a shock on 

market performance we consider the effect of NDVI on absolute price differences.  

That is, we exploit the temporal and cross-sectional variation in price spreads to 

identify the effects of exogenous NDVI shocks. We have little reason to believe that 

causality may run in the opposite direction given the nature of crop production in 

Niger and the ability of farmers to respond to sudden price spread changes by 

increasing vegetation production conditions.  

Our basic model for analyzing NDVI shocks on market performance takes the 

form of:  

 𝑌𝑖𝑗,𝑡 = 𝛼 + 𝛽1𝑁𝐷𝑉𝐼_𝑆ℎ𝑜𝑐𝑘𝑖𝑗,𝑡 + 𝜑𝑋𝑖𝑗,𝑡
′ + 𝛿𝑖𝑗 + 𝜃𝑡 + 𝜀𝑖𝑗,𝑡  (15)  

where 𝑌𝑖𝑗,𝑡 = |𝑝𝑖𝑡 − 𝑝𝑗𝑡|, the absolute value of the price difference between market i 

and market j at time t, 𝑁𝐷𝑉𝐼_𝑆ℎ𝑜𝑐𝑘 is an indicator variable reflecting whether or an 

NDVI shock is present (defined as NDVI anomalies that are two standard deviations 

above or below the rolling average), 𝑋𝑖𝑗,𝑡 is a vector of exogenous variables including 

transportation costs measured by the IMF price of oil multiplied by the distance 

between two markets, 𝛿𝑖𝑗 captures all time-invariant fixed-effects common to both 

markets, 𝜃𝑡 is a general time trend which captures unobserved temporal changes that 
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may affect price dispersion among the markets, and finally 𝜀𝑖𝑗,𝑡 is a market-pair 

disturbance term.   

In order to assess the effect of shocks on price dispersion the model is 

estimated first with only negative NDVI shocks and then with both positive and 

negative shocks. We do this to determine if the effects of positive NDVI shocks 

mirror those of negative ones or if markets interpret extreme positive NDVI outcomes 

different than extreme negative outcomes. We consider the timing of the exogenous 

variation, looking at extreme outcomes that occur during the growing season (May-

October) and across the entire year. To look at the heterogeneity of NDVI shocks on 

market performance we consider two additional variables. One captures whether or 

not a shock occurs in either of the markets at a given point in time, and the second 

variable is a ratio capturing the total share of markets experiencing an NDVI shock at 

a given point in time. The former variable allows us to analyze how market 

performance may be affected by localized shocks (increase/decrease in local millet 

supplies), while the latter captures how the extent of shocks affect market 

performance. 

In addition to a base model, we also consider a dynamic panel data model 

where the dependent variable is lagged by a period to account for the fact that the 

current price spreads may be affected by unobserved or latent influences not captured 

by our exogenous covariates. With a small time-series (small T) and large number of 

cross-sectional observation (large N), one would normally account for endogeneity 

(see Nerlove, 1967; Nerlove 1971; and Nickell, 1981) that may be introduced by 

including a lagged dependent variable in a fixed-effects model through the use of an 
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Arellano-Bond Generalized Method of Moments (GMM) type estimator (Arellano 

and Bond, 1991).30 However, Attanansio, Picci and Scoru (2000) contend that when 

the length of time (T) is greater than 30, then the bias that may be introduced by the 

lagged dependent variable with the fixed-effect estimator can be more than offset by 

its precision compared to instrumental variable and GMM estimators. Beck and Katz 

(2009) advocate a similar position in the context of time-series cross-section models 

(TSCEs) arguing that many of the proposed fixes are not worth their empirical costs.  

Because our time dimension is large (well over 200 periods) we do not explicitly 

employ an instrumental variables approach. We estimate a dynamic panel data model 

with a fixed-effects estimator using one lag in absolute price differences. 

Regarding our standard error estimates, one of the standard assumptions of the 

fixed-effects model is that the error terms are independent across cross-sections. 

Given the nature our data, it is likely that the estimated error terms are correlated both 

temporally and spatially (cross-sectionally). Failure to correct for these two types of 

correlation will impart a downward bias on our estimated standard errors (Peterson, 

2008). Thus, our confidence intervals will likely be too small and we may risk 

committing a Type I error. With our fixed-effects models, we can account for within 

market-pair temporal correlations by clustering at the market-pair level (Bertrand, 

Duflo & Mullainathan, 2004). This clustering should also help account for the dyadic 

nature of our data.  

Cross-sectional dependence, however, will likely remain in the estimated 

residuals because of the spatial nature of the data. In order to check for spatial 

                                                 
30 Beck and Katz (2009) note that the Nickell’s derivation of the asymptotic bias is of order T-1. Thus 

the bias should get smaller as T increases or one moves from the typical panel world to a time-series 

cross-section world. For most of our modeling, T = 225 and T-1 =0.004 or T=131 and T-1 =0.008. 
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dependence we conduct a cross-sectional dependence test following the methods 

show in Pesaran (2004). Pesaran’s test is appropriate for our data as it is suitable for 

panels where N and T tend to infinity in any order (Hoechle, 2007). The null 

hypothesis for the test is that the estimated residuals are cross-sectionally 

uncorrelated.31 Hoechle (2007) suggests that if one finds cross-sectional dependence, 

then the Driscoll and Kraay (1998) standard errors are more appropriate as they are 

robust to general forms of cross-sectional and temporal dependence. Using Stata’s 

xtscc program, we correct for potential correlation of the disturbances. Driscoll and 

Kraay-based standard errors can be thought of as a cluster on time periods across 

cross-sections. We compare the Driscoll-Kraay standard errors to those generated by 

a fixed-effect estimator with robust (clustered at the market-pair level) standard 

errors, and an OLS model estimated with a large set of dummy variables as fixed-

effects.   

NDVI Shocks and Market Performance Estimation Results 

 Results from the estimation approach are presented below in the tables below.  

We start with a discussion of the results from the first table (Table 19), which reports 

the effect of all NDVI shocks, from both growing and non-growing season months, 

on price dispersion. Focusing on the first specification in the table, we see that across 

both models (partial and full) a negative NDVI shock in both markets, of a market 

pair, decreases price spreads between markets by nearly 3 CFA. However, when the 

standard errors are adjusted to account for general forms of cross-sectional 

                                                 

31 The formal test statistic is: 𝐶𝐷 = √
2

𝑁(𝑛−1)
(∑ ∑ √𝑇𝑖𝑗𝜌̂𝑖𝑡

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 ) where 𝑇𝑖𝑗  is the number of 

common time-series observations and 𝜌̂𝑖𝑡  is the sample estimate of the pairwise correlation of the 

residuals for the common time-series observations. 
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dependence, the estimated coefficient is not statistically different than zero. This 

pattern is mirrored in the second specification (third column). Including a metric 

(Table 20 specification 3) which captures the extent of an NDVI shock (percent of 

markets with a NDVI shock), yields a stronger affect. As the share of markets with 

negative NDVI shocks increase, price spreads between markets declines by over 4 

CFA. Positive shocks appear to have a weaker effect in the opposite direction, 

suggesting that the market response is not symmetric.  However, after we account for 

spatial dependence in the errors, the Driscoll-Kraay results suggest that the finding is 

not statistically different than zero.  

The fourth specification introduces a dynamic factor (lagged price dispersion) 

and we see again that as the extent of an NDVI shock increases, price spreads on 

average appear to decline suggesting enhanced market performance. Moreover, if we 

look at the fourth specification and focus on the full model we see that as the extent 

of positive NDVI shocks grow (percent of markets with positive shocks), price 

spreads increase as indicated by the positive coefficient (1.64 CFA) on the variable. 

Thus, in periods of widespread negative NDVI shocks, markets appear to behave 

differently in that price spreads tend to converge, or overall market performance 

improves. In periods of positive NDVI shocks, the divergence of price spreads points 

toward a market segmentation but at a slower rate.32 

Table 21 reports the results from the price dispersion analysis for all shocks 

that occur during the growing season.  Reviewing the results from specification 1 and 

2, we see that the impact of a negative shock in both markets appears to increase price 

                                                 
32 These results should be caveated, however, by noting that the errors from fixed-effects models 

appear to be cross-sectionally dependent as shown by the Pesaran test statistic. When standard errors 

are adjusted to account for this, the estimated coefficients are not statistically different from zero.   
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dispersion, whereas the impact of a positive shock in both markets actually decreases 

price spreads. However, as we found in the previous estimation, when we control for 

cross-sectional dependence the coefficients are not statistically different than zero. 

Only in the third and fourth specification (Table 22), for both the partial and full 

model, do we find significant coefficients.  As the extent of a negative NDVI shock 

grows, average price dispersion declines by nearly 6 CFA. This result is robust at the 

5 percent level.  

We interpret this as evidence that NDVI shocks experienced during the 

growing season months actually improve overall market performance by lowering the 

price spreads between markets. As discussed earlier, this may be due to declining, 

unobserved transactions costs and/or additional arbitrage opportunities across 

markets. The clear policy relevance to food aid officials is that if one observes a 

widespread negative NDVI shock during the growing season, the best policy may be 

to rely on markets to move food and smooth prices, given that food is available 

somewhere in the market (as was apparently done in 2009-10) and that transactions 

costs are not adversely affected by the shock.  On the other hand, if one observes 

widespread positive NDVI shocks, food security analysts would be wise to pay close 

attention to isolated markets with below average NDVI outcomes. Our results suggest 

that increased price dispersion may be a signal that markets are unable to move food 

as effectively during these times.  Thus, food aid may need to be targeted to 

underperforming markets in good years, particularly if a market is isolated and/or 

only connected through weather-prone infrastructure.  
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Table 19. Price dispersion analysis for all shocks specifications 1 and 2 

  
Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. Standard errors below coefficient estimates. All estimates include monthly and  

marketing-year fixed-effects. Linear FE indicates a linear regression model with large dummy variable set.  F.E. indicates standard errors were based on 

clustering at the market-pair level. F.E. D-K indicates Driscoll-Kraay standard errors using Stata's  xtscc, fe procedure.  

*Footnote applies throughout tables presented immediately below.  
  

Estimator: Linear F.E. F.E. F.E. D-K Linear F.E. F.E. F.E. D-K

Dependent variable: |Pit-Pij|

Negative Shocks Only (partial model)

Negative  shock both markets -2.78*** -2.78*** -2.78 -1.91** -1.91** -1.91

0.778 0.819 2.729 0.829 0.891 2.284

Negative shock one market -1.06*** -1.06*** -1.06

0.346 0.344 1.124

Transportation costs 2.69*** 2.69*** 2.69 2.75*** 2.75*** 2.75

0.702 0.598 3.324 0.702 0.598 3.325

All Shocks (full model)

Negative  shock both markets -2.78*** -2.78*** -2.78 -1.90** -1.90** -1.9

0.778 0.819 2.731 0.829 0.891 2.287

Negative shock one market -1.07*** -1.07*** -1.07

0.346 0.345 1.126

Positive shock 50 KM both markets -0.84 -0.84 -0.84 -0.17 -0.17 -0.17

0.714 0.553 2.176 0.776 0.638 2.474

Positive shock one market -0.75** -0.75** -0.75

0.341 0.364 0.957

Transportation costs 2.69*** 2.69*** 2.69 2.78*** 2.78*** 2.78

0.702 0.598 3.321 0.702 0.598 3.321

Marking season effects Yes Yes Yes Yes Yes Yes

Monthly effects Yes Yes Yes Yes Yes Yes

Time 1993-2011 1993-2011 1993-2011 1993-2011 1993-2011 1993-2011

Observations 91,365 91,365 91,365 91,365 91,365 91,365

R-squared (full model) 0.361 0.061 - 0.361 0.061 -

Pesaran test of cross-sectional dependence - Reject - - Reject -

Average absolute value of correlation - 0.134 - - 0.134 -

Number of market pairs 406 406 406 406 406 406

Specification 1 Specification 2
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Table 20. Price dispersion analysis for all shocks specifications 3 and 4 

 

Estimator: Linear F.E. F.E. F.E. D-K Linear F.E. F.E. F.E. D-K

Dependent variable: |Pit-Pij|

Negative Shocks Only (partial model)

Lagged price difference 0.55*** 0.55*** 0.55***

0.003 0.008 0.026

Negative  shock both markets -0.94 -0.94 -0.94 0.12 0.12 0.12

0.844 0.898 2.237 0.704 0.705 1.106

Negative shock one market 0.13 0.13 0.13 0.13 0.13 0.13

0.399 0.408 1.057 0.333 0.277 0.598

Percent of markets with negative shocks -4.46*** -4.46*** -4.46 -2.66*** -2.66*** -2.66

0.743 0.686 2.783 0.62 0.515 2.243

Transportation costs 2.98*** 2.98*** 2.98 4.14*** 4.14*** 4.14

0.703 0.597 3.357 0.587 0.595 3.581

All Shocks (full model)

Lagged price difference 0.55*** 0.55*** 0.55***

0.003 0.008 0.026

Negative  shock both markets -0.93 -0.93 -0.93 0.12 0.12 0.12

0.844 0.898 2.238 0.704 0.706 1.107

Negative shock one market 0.13 0.13 0.13 0.13 0.13 0.13

0.399 0.408 1.058 0.333 0.277 0.599

Percent of markets with negative shocks -4.46*** -4.46*** -4.46 -2.61*** -2.61*** -2.61

0.743 0.682 2.768 0.62 0.513 2.237

Positive shock 50 KM both markets -0.5 -0.5 -0.5 -0.02 -0.02 -0.02

0.81 0.687 2.491 0.676 0.553 1.537

Positive shock one market -1.13*** -1.13*** -1.13 -0.82** -0.82*** -0.82

0.402 0.411 1.017 0.335 0.288 0.629

Percent of markets with positive  shocks 1.08 1.08* 1.08 1.64*** 1.64*** 1.64

0.703 0.632 1.808 0.587 0.487 1.269

Transportation costs 2.98*** 2.98*** 2.98 4.10*** 4.10*** 4.1

0.704 0.595 3.352 0.588 0.597 3.581

Marking season effects Yes Yes Yes Yes Yes Yes

Monthly effects Yes Yes Yes Yes Yes Yes

Time 1993-2011 1993-2011 1993-2011 1993-2011 1993-2011 1993-2011

Observations 91,365 91,365 91,365 91,227 91,227 91,227

R-squared (full model) 0.361 0.062 - 0.556 0.347 0

Pesaran test of cross-sectional dependence - Reject - - Reject -

Average absolute value of correlation - 0.134 - - 0.117 -

Number of market pairs 406 406 406 406 406 406

Specification 3 Specification 4
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Table 21. Price dispersion analysis for all growing season shocks (May-October) specifications 1 and 2 
 Specification 1 Specification 2 
Estimator Linear F.E. F.E. F.E. D-K Linear F.E. F.E. F.E. D-K 

Negative Shocks Growing Season 

(partial model)             

Negative  shock 50 KM both markets 1.79* 1.79 1.79 2.19** 2.19* 2.19 

  1.047 1.188 2.232 1.101 1.208 1.632 

Negative shock one market       -0.49 -0.49 -0.49 

        0.421 0.444 1.362 

Transportation costs 2.59*** 2.59*** 2.59 2.62*** 2.62*** 2.62 

  0.702 0.597 3.317 0.702 0.598 3.318 

All Shocks Growing Season (full model)             

Negative  shock both markets 1.78* 1.78 1.78 2.20** 2.20* 2.2 

  1.047 1.188 2.233 1.101 1.209 1.634 

Negative shock one market       -0.53 -0.53 -0.53 

        0.421 0.446 1.363 

Positive shock both markets -3.29*** -3.29*** -3.29 -2.63** -2.63*** -2.63 

  1.125 0.852 3.422 1.199 0.967 2.937 

Positive shock one market       -0.76 -0.76* -0.76 

        0.465 0.444 1.248 

Transportation costs 2.64*** 2.64*** 2.64 2.69*** 2.69*** 2.69 

  0.702 0.598 3.314 0.702 0.599 3.313 

Marking season effects Yes Yes Yes Yes Yes Yes 

Monthly effects Yes Yes Yes Yes Yes Yes 

Time 1993-2011 1993-2012 1993-2013 1993-2014 1993-2015 1993-2016 

Observations 91,365 91,365 91,365 91,365 91,365 91,365 

R-squared (full model) 0.361 0.061 0.061 0.361 0.061 0.061 

Pesaran test of cross-sectional dependence - Reject - - Reject - 

Average absolute value of correlation - 0.133 - - 0.133 - 

Number of market pairs 406 406 406 406 406 406 
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Table 22. Price dispersion analysis for all growing season shocks (May-October) specifications 3 and 4 

 

 

Estimator Linear F.E. F.E. F.E. D-K Linear F.E. F.E. D-K

Negative Shocks Growing Season

Lagged price difference 0.55***

0.003 0.026

Negative  shock 50 KM both markets 3.53*** 3.53*** 3.53** 1.89** 1.89

1.111 1.217 1.614 0.926 1.152

Negative shock one market 1.58*** 1.58*** 1.58 0.73* 0.73

0.479 0.495 0.991 0.399 0.586

Percent of markets with negative shocks -8.59*** -8.59*** -8.59*** -6.00*** -6.00**

0.946 0.851 3 0.789 2.578

Transportation costs 3.08*** 3.08*** 3.08 4.31*** 4.31

0.704 0.598 3.249 0.588 3.517

All Shocks Growing Season (full model)

Lagged price difference 0.55*** 0.55***

0.003 0.026

Negative  shock both markets 3.55*** 3.55*** 3.55** 1.88** 1.88

1.111 1.22 1.62 0.927 1.158

Negative shock one market 1.57*** 1.57*** 1.57 0.73* 0.73

0.479 0.495 0.991 0.399 0.588

Percent of markets with negative shocks -8.62*** -8.62*** -8.62*** -5.97*** -5.97**

0.95 0.852 2.973 0.793 2.551

Positive shock both markets -3.20*** -3.20*** -3.2 -1.91* -1.91

1.242 1.039 2.364 1.036 1.408

Positive shock one market -1.39*** -1.39*** -1.39 -0.38 -0.38

0.536 0.534 1.239 0.447 0.875

Percent of markets with positive shocks 1.62 1.62* 1.62 0.98 0.98

0.993 0.864 2.924 0.829 2.465

Transportation costs 3.12*** 3.12*** 3.12 4.31*** 4.31

0.704 0.601 3.241 0.588 3.523

Marking season effects Yes Yes Yes Yes Yes

Monthly effects Yes Yes Yes Yes Yes

Time 1993-2017 1993-2018 1993-2019 1993-2020 1993-2022

Observations 91,365 91,365 91,365 91,227 91,227

R-squared (full model) 0.361 0.062 0.062 0.556 0.347

Pesaran test of cross-sectional dependence - Reject - - -

Average absolute value of correlation - 0.134 - - -

Number of market pairs 406 406 406 406 406

0.347

Reject

0.117

406

4.31***

0.601

Yes

Yes

1993-2021

91,227

-1.91**

0.795

-0.38

0.386

0.98

0.666

1.88**

0.932

0.73**

0.341

-5.97***

0.602

0.603

4.31***

0.598

0.55***

0.008

0.008

1.89**

0.931

0.73**

0.341

-6.00***

Specification 3 Specification 4

F.E.

0.55*** 0.55***
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Table 23. Price dispersion analysis for all growing season shocks (select years) 

Dependent variable: |Pit-Pjt| 

 

1996-

2006 

F.E. 

 

1996-

2006 

F.E. D-K 

 

1996-

2006 

F.E. 

 

1996-

2006 

F.E. D-

K 

 

2000-

2011 

F.E. 

 

2000-

2011 

F.E. D-K 

 

2000-

2011 

F.E. 

 

2000-

2011 

F.E. D-

K 

Lagged price difference     0.49*** 0.49***     0.53*** 0.53*** 

      0.008 0.031     0.008 0.031 

Negative  shock 50 KM both markets 1.54 1.54 3.37* 3.37 3.43*** 3.43** 1.79* 1.79 

  2.209 3.214 1.888 2.269 1.213 1.667 0.94 1.168 

Negative shock one market 2.77*** 2.77* 1.97*** 1.97* 1.76*** 1.76* 0.98*** 0.98 

  0.696 1.499 0.577 1.089 0.524 1.05 0.364 0.652 

Percent of markets with negative shocks 0.79 0.79 2.66** 2.66 -8.85*** -8.85*** -6.56*** -6.56** 

  1.456 4.518 1.192 4.869 0.822 3.252 0.615 2.7 

Positive shock 50KM both markets -0.17 -0.17 -0.98 -0.98 1.85 1.85 0.99 0.99 

  1.359 1.277 1.039 1.581 1.662 1.571 1.107 1.867 

Positive shock one market -1.60** -1.6 -0.49 -0.49 -0.64 -0.64 0.07 0.07 

  0.775 1.967 0.605 1.573 0.729 1.417 0.546 1.039 

Percent of markets with positive shocks 6.60*** 6.60** 6.32*** 6.32** 4.73*** 4.73 3.74*** 3.74 

  1.071 2.723 0.926 3.153 1.3 3.903 1.055 4.195 

Transportation costs 6.74*** 6.74* 7.68*** 7.68* 2.64*** 2.64 4.17*** 4.17 

  0.808 3.527 0.912 4.328 0.688 3.463 0.651 3.99 

Constant 14.80*** 14.80*** 8.50*** 8.50*** 17.50*** 17.50*** 8.46*** 8.46** 

  1.933 2.745 1.157 2.271 2.09 4.938 1.233 3.516 

Marketing season effects yes yes yes yes yes yes yes yes 

Monthly effects yes yes yes yes yes yes yes yes 

Observations 53,285 53,285 53,175 53,175 58,241 58,241 58,159 58,159 

R-squared 0.33 0.33 0.49 0.49 0.39 0.39 0.56 0.56 

Number of market pairs 406 406 406 406 406 406 406 406 
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 While our results thus far have focused on 1993-2011, the analysis of shocks 

showed an unequal temporal distribution of good and bad outcomes.  Positive shocks 

appear to cluster in periods up to 2000 and it is plausible that this clustering effect 

may influence our overall estimate.  In order to understand the stability of our 

estimates over time, we also consider how price dispersion varies over 1996-2006 and 

2000-2011. We focus on NDVI outcomes occurring during the growing season as 

these appear to be most policy relevant. The tables below present the results from our 

analysis. 

Focusing on the middle part of the table above we see that a negative outcome 

in one market of the market pair appears to increase price dispersion by nearly 2 CFA 

over the period 1996-2006. As the extent of markets with NDVI shocks grows, there 

does not appear to be a discernible effect on price spreads. However, as the percent of 

markets with positive NDVI shocks increases, average price dispersion grows by 

between 6 to 7 CFA. The results are robust even after adjusting standard errors for 

cross-sectional dependence. This result is likely driven by the large number of 

positive NDVI shocks that occurred over 1996-2006, and the changing incentives for 

spatial arbitrage.  As we move to 2000-2011, we see the opposite effect play out. 

Extensive negative NDVI shocks decrease price dispersion between 6 to 8 CFA, with 

the result likely driven by the large number of negative outcomes from 2000-2011. 

When we combine the data for the entire period, the effect of the extent of negative 

NDVI shocks is greater than all other coefficient estimates (shown above in  

Table 23). We interpret this result as evidence that negative production outcomes tend 

to affect market behavior to a greater degree than positive ones. 
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Collectively, our empirical results suggest that food security analysts should 

consider in detail the relative nature and extent of extreme NDVI outcomes.  If one 

observes a larger than average NDVI outcomes in either direction, it may be prudent 

to calculate how many markets have deviations that fall outside of a two standard 

deviation bound. If the extent of markets with positive or negative NDVI shocks is 

large, this is a good indication that market performance will be different than one 

would normally expect, with different food aid policy implications. At the same time, 

food security analysts and policy makers should keep in mind that while decreased 

price spreads may indicate a well-functioning market system, higher than average 

price levels may mean that households still cannot afford to purchase food given their 

asset base and income level. If an intervention is required, this outcome may require a 

blend of food aid and cash transfers. 

 With our models above we have documented a link between NDVI shocks 

and market performance in Niger. Historically, NDVI shocks have not been equally 

distributed in a temporal sense. The past 10 years have produced some of the worst 

NDVI outcomes observed in our dataset, yet only during the 2004/05 marketing 

seasons did prices reach extreme levels. That 2008/09 and 2009/10 extensive NDVI 

shocks did not result in millet price spikes may be a testament to the improving nature 

of government response and spatial arbitrage.  Our analysis above has only focused 

on the immediate impact of shocks on price dispersion. In the next section we 

consider how market performance and market integration interact, looking at whether 

or not market connectedness is empirically different in good, average and bad 
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marketing years. To expand on this latter point, we also attempt to predict the type of 

price regime we are likely to encounter post-harvest using pre-harvest NDVI data.  
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Chapter 8:  Using NDVI to Predict Price Regimes 

In the previous chapter, our price dispersion model results suggest that NDVI 

shocks affect price convergence and overall market performance. As the share of 

market-pairs affected by NDVI shocks grows, prices converge faster, suggesting that 

markets perform better in the short-run. In order to investigate how market integration 

may change across entire marketing years, we consider how market connectedness 

varies by price regimes.  Specifically, we construct a metric to measure the influence 

of neighboring millet prices on a central market in the form of a spatial price buffer. 

We then test whether or not the coefficient estimates are statistically different across 

price regimes, or that market connectedness differs by marketing year. In the second 

half of the chapter we build a prediction model to assess the ability of NDVI data to 

predict future marketing-year price regimes. We then incorporate the predicted 

regime values into our market connectedness model to determine how well NDVI-

based forecasts can predict market connectedness. The goal of this chapter is to 

develop a methodology for predicting the type of marketing year encountered and the 

likely form of market connectedness using NDVI as our primary input.  

Price Regimes and Market Integration 

Our spatial price analysis, reviewed in Chapter 5, suggests that millet markets 

function in different manners depending on the nature of millet production in the 

region. In years with abundant production, we noted that price correlations were 

lower, suggesting fewer arbitrage opportunities, less connected markets, and thus 

likely lower levels of market integration. On the other hand, in years with negative 

production shocks, we observe the opposite effects. Price correlations were higher 
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suggesting that the lack of local food availability stimulated arbitrage opportunities 

resulting in better integrated markets. In the last chapter, we empirically demonstrated 

that prices converge faster during extensive negative NDVI shocks.   

Combining these two insights, we focus our attention on empirically 

estimating the relationship between market connectedness in surplus (good) and 

shortage (bad) years.  The null hypothesis that we test is that spatial price buffers, 

measured by the degree of price influence from neighboring markets, have the same 

influence on central market prices across marketing years. We also seek to determine 

whether or not empirical specifications that explicitly account price regimes fit millet 

price data better than models estimated without regime variables. In some ways, our 

model may be thought of as a primitive switching model, where the switch is the type 

of price regime and the level of market connectedness associated with that regime 

type is measured as the interaction of the switch and the influence of prices from 

neighboring markets. While we could, in theory, estimate VAR to capture better the 

dynamic interactions of the market system, the sheer number of coefficients that 

would need to be estimated and interpreted may limit the utility of such an exercise.33 

Formally, we test our null hypothesis using the following approach: 

 
𝑃𝑖,𝑡 = 𝛼 + 𝛽1𝑃𝑖𝑡−1 + 𝛽2(𝑃̅𝑗,𝑡−1 ∗ 𝑅𝑖𝑡−1) + 𝐵3𝑅𝑖𝑡 + 𝐵4𝑃̅𝑗,𝑡−1 + 𝜑𝑋𝑖𝑡

′ + 𝛿𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡 (16)  

where 𝑃𝑖𝑡 is the price of millet in market i at time t, 𝑃̅𝑗𝑡−1 is the lagged average millet 

price from the market-level price buffer, and 𝑅𝑖𝑡 is the price regime observed in the 

data. We consider both binary and tertiary regime specifications. If markets are less 

connected in good years, compared to other years, then we expect 𝐵2 (lagged 

                                                 
33 An alternative approach may also consider a VAR with lagged prices only for markets falling within 

the 50 kilometer price buffer for each market, across each equation.  
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interaction term) to be negative and statistically different than zero.  To control for 

time-invariant heterogeneities, we include included market (𝛿𝑖) and time (𝜃𝑡) fixed 

effects. A vector of temporal control variables (𝑋𝑖𝑡) is included to account for other 

time varying factors that may influence price levels. The error term (𝜀𝑖𝑡) is the 

market-level disturbance term.   

We control for unobserved, potentially time-varying effects by including 

lagged prices (𝑃𝑖,𝑡−1) on the right hand side of our model. Not including the lagged 

dependent variable would likely result in a serious omitted variable bias. Because our 

time dimension is large (229), we expect that the potential bias introduced by the 

lagged dependent variable with the fixed-effect estimator to be offset by its precision 

when compared to other estimators (as discussed in Chapter 7; see also Beck and 

Katz, 2009).  

Because we have a relatively small cross-sectional dimension (N < T), a more 

appropriate estimator that we plan to consider in future research is a Zellner’s (1962) 

seemingly unrelated regression (SUR) approach. The SUR model treats each market 

as having its own equation to explain the evolution of millet prices. In fact, if each 

equation contains the same set of regressors the model is equivalent to OLS on each 

equation alone. If the equations do differ, the estimator can yield more efficient 

estimates by exploiting the correlation in the error terms across equations through 

feasible generalized least squares (FGLS). As a robustness check on our current 

model, we re-estimate the current model specifications using the dependent variable 

lagged two periods (as well as the market connectedness variable) as an instrumental 

variable. Our results are robust with the instruments and are available upon request. 
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To correct for cross-sectional (spatial) correlation in the errors we again estimate 

Driscoll-Kraay adjusted standard errors.  

In order to assess the fit of our regime specification models versus a nested 

model that does not contain a switching variable, we calculate and compare the 

Akaike Information criterion (AIC) and the Bayesian Information criterion (BIC) for 

each model specification. The former measure is defined as: 

where k is the number of parameters in the model and L is the maximized value of the 

likelihood function for the estimated model. The latter criterion is calculated as: 

where 𝑝(𝑥|𝑘) is the likelihood of the parameters given the dataset, x is the observed 

data, 𝑘 is the number of parameters estimated, 𝑛 is the number of observations, and 𝐿 

is as follows above.  The results of the modeling exercise are presented below in 

Table 24 and the model fit results are shown in Table 25. 

We first consider results from a regime variable that collapses average and 

bad years into a single value. As shown in the table below, we consider various 

specifications in order to assess the robustness of our estimates. The first point to note 

is that, as expected, average price levels in good price regimes are anywhere between 

8 to 10 CFA lower than other types of marketing years. This should come as no 

surprise given the construction of the regime variable.  Transitioning to the 

coefficient on the lagged spatial price buffer, we see even that after for controlling of 

the influence of own price lags (columns 2-3, 5-6, 8-9), the influence of the spatial 

price buffer, on average, is anywhere between 0.07 – 0.11. However, when we 

 𝐴𝐼𝐶 = 2𝑘 − 2 ln (𝐿) (17)  

 −2 ∗ ln 𝑝(𝑥|𝑘) ≈ 𝐵𝐼𝐶 =  −2 ∗ 𝑙𝑛𝐿 + 𝑘 ln (𝑛) (18)  
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interact the spatial price buffer with our regime variable we see that the coefficient is 

negative and statistically different than zero. Moreover, in some specifications (5-6, 

and 8-9) the size of the coefficient from the interacted term is greater than the 

coefficient on the lagged price buffer term alone. Together, these results suggest 

segmentation in markets at moderate distances (50 kilometer spatial price buffer) in 

good years.  The results are robust across several specifications which account for 

varying price buffers and lagged prices. As the spatial price buffer increases in 

distance, the effect diminishes as reflected by the positive, but insignificant 

coefficient estimates for the 200km and 400km lagged interaction terms.34 Overall, 

we interpret the results to mean that, on average in good marketing years, the 

influence of neighboring market prices on central markets weakens or markets 

become more fragmented compared to the base case. This is likely correlated with the 

increased supplies of local cereal and relatively more expensive transactions costs, 

both which reduce the incentives of spatial arbitrage.

                                                 
34 We also estimated the model using a 100 kilometer (instead of 50 kilometer) price buffer and find 

similar results. 
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Table 24. Market integration and price regime analysis results 

 

I II III IV V VI VII VIII IX

Dependent variable: Millet price Millet price Millet price Millet price Millet price Millet price Millet price Millet price Millet price

Millet price one lag 0.55*** 0.58*** 0.54*** 0.58*** 0.53*** 0.58***

0.04 0.04 0.04 0.04 0.04 0.04

Millet price two lags -0.12*** -0.13*** -0.13***

0.03 0.03 0.03

Millet price three lags 0.08*** 0.08*** 0.07***

0.02 0.02 0.02

Good regime* -9.75*** -8.70*** -8.16*** -10.94*** -9.59*** -9.08*** -11.69*** -10.30*** -9.77***

2.44 2.43 2.25 2.55 2.5 2.31 2.53 2.48 2.3

Lagged good regime 11.56** 9.66** 9.52** 8.52* 7.8 7.64* 6.66 5.7 5.79

4.96 4.7 4.44 4.97 4.94 4.53 5.99 5.85 5.34

Lagged 50KM price buffer 0.63*** 0.10*** 0.11*** 0.58*** 0.06** 0.06* 0.58*** 0.07** 0.07**

0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

Lagged good regime X lagged 50KM price buffer -0.08*** -0.06*** -0.06*** -0.12*** -0.08** -0.08** -0.12*** -0.09** -0.08**

0.03 0.02 0.02 0.05 0.04 0.04 0.05 0.04 0.04

Lagged 200KM price buffer 0.09** 0.07* 0.08** -0.07 -0.07* -0.06*

0.04 0.04 0.04 0.04 0.04 0.04

Lagged good  X lagged 200km price buffer 0.07 0.04 0.04 0.05 0.01 0.01

0.04 0.04 0.04 0.06 0.05 0.05

Lagged 400KM price buffer 0.18*** 0.16*** 0.17***

0.06 0.06 0.05

Lagged good  X lagged 400km price buffer 0.04 0.05 0.04

0.07 0.07 0.06

Time effect (period variable) yes yes yes yes yes yes yes yes yes

Marketing season effects yes yes yes yes yes yes yes yes yes

Monthly effects (January base) yes yes yes yes yes yes yes yes yes

Estimator F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K

Observations 6,592 6,591 6,527 6,592 6,591 6,527 6,592 6,591 6,527

R-squared* 0.854 0.863 0.864 0.855 0.863 0.864 0.855 0.863 0.865

Number of markets 29 29 29 29 29 29 29 29 29

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. All estimates include monthly and marketing-year fixed-effects. F.E. D-K indicates Driscoll-Kraay standard 

errors using Stata's  xtscc, fe procedure with four lags. Standard errors below coefficient estimates.
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In order to evaluate how our primitive switching model compares to a base 

model that does not explicitly account for price regimes, we compare the model 

criterion for a subset of models, using similar specifications. Because the base model 

is nested within the switching model, we can use the Akaike Information Criterion 

(AIC) and the Bayesian Information Criteria (BIC) to compare the two. Table 25 and 

Figure 28, both below, summarize the results of this exercise. 

Table 25. Comparison of regime model fit to base models 

 

 From the table above, we can see that in nearly every specification the 

inclusion of the regime variable improves the overall fit of our model. This result is 

intuitive as the regime variable allows for an intercept switch across marketing years, 

or is simply a more flexible way of modeling the starkly different price outcomes.  

The figure below provides a visual summary of the results. Only in the final 

Description Ll Ll AIC = BIC ≈ 

Short (null) (model)  2k-2(L)
-2*ln L + k 

ln(n)

One price lag, one price buffer (base) Model A 6591 -34,839 -28,352 33 56,771 56,995

One price lag, one price buffer, 

regime variables

One price lag, two price buffers (base) Model B 6591 -34,839 -28,348 34 56,764 56,995

One price lag, two price buffers, 

regime variable

One price lag, one price buffer (base) Model C 6591 -34,839 -28,341 35 56,752 56,989

One price lag, three price buffers, 

regime variables

Three price lags, one price buffer (base) Model D 6527 -34,507 -28,059 35 56,188 56,426

Three price lags, one price buffer,

 regime variables

Three price lags, two price buffers (base) Model E 6527 -34,507 -28,053 36 56,178 56,422

Three price lags, two price buffers, 

regime variable

Three price lags, one price buffer (base) Model F 6527 -34,507 -28,045 28 56,146 56,336

Three price lags, three price buffers, 

regime variables

Source: Author’s calculations

56,344

Model F1 6527 -34,507 -27,984 42 56,051 56,336

Model E1 6527 -34,507 -27,996 40 56,073

56,906

Model D1 6527 -34,507 -28,006 38 56,088 56,346

Model C1 6591 -34,839 -28,277 40 56,635

56,665 56,910

Model B1 6591 -34,839 -28,289 38 56,654 56,912

Model Description O bs df

Model A1 6591 -34,839 -28,296 36
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specifications (Models F and F1) does the BIC not improve with the inclusion of the 

regime variables. However, the AIC does improve slightly in the same specification. 

Overall, the largest gains in the model fit appear to come from the inclusion of the 

lagged dependent variables which is not surprising. 

Figure 28. Observed binary price regime model fit comparison 

 
Source: Author’s calculations  

 

While a simple two-regime switching model demonstrates the need to account 

for marketing-year classes, a more appropriate model may be one that permits prices 

to fall in bad, average, and good marketing years. Our price regime analysis in 

Chapter 5 showed that after controlling for predictable market fundamentals, prices 

across Niger tended to cluster within three types of regimes. Table 26, below, 

estimates a tertiary regime model in which we are able to compare how market 

connectedness varies by regimes. Bad regimes are the base case, so all coefficient 

estimates should be interpreted with this in mind.  
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Table 26. Market integration and price regime analysis results (specification 2) 

 

I II III IV V VI VII VIII IX

Dependent variable: Millet price (I) Millet price (II) Millet price Millet price Millet price Millet price Millet price Millet price Millet price

Millet price one lag 0.52*** 0.56*** 0.51*** 0.56*** 0.51*** 0.56***

0.034 0.036 0.034 0.036 0.034 0.036

Millet price two lags -0.12*** -0.13*** -0.13***

0.03 0.03 0.03

Millet price three lags 0.08*** 0.07*** 0.07***

0.019 0.018 0.018

Average -13.92*** -13.23*** -11.33*** -16.66*** -15.45*** -13.51*** -18.81*** -17.51*** -15.49***

2.905 2.735 2.402 2.914 2.694 2.436 3.087 2.83 2.538

Lagged average 4.94 5.56 3.54 3.35 3.37 1.03 -0.1 -0.13 -2.53

6.096 5.839 6.233 6.59 6.224 6.542 7.911 7.486 7.856

Good -23.33*** -21.44*** -19.20*** -27.42*** -24.83*** -22.61*** -30.63*** -27.95*** -25.62***

3.402 3.309 3.03 3.532 3.361 3.166 3.675 3.447 3.23

Lagged Good 13.74** 12.98** 10.91* 10.75 10.38 7.93 6.38 5.7 3.45

6.437 6.172 6.548 6.789 6.562 6.764 8.545 8.139 8.268

Lagged 50 km price buffer 0.62*** 0.12*** 0.12*** 0.54*** 0.07* 0.06* 0.54*** 0.07** 0.07*

0.041 0.039 0.039 0.036 0.035 0.037 0.039 0.037 0.039

Lagged ave regime X lagged 50 km buffer -0.03 -0.03 -0.03 -0.02 -0.04 -0.04 -0.03 -0.05 -0.04

0.029 0.028 0.028 0.032 0.031 0.033 0.035 0.034 0.036

Lagged good regime X lagged 50 km buffer -0.10*** -0.08** -0.08*** -0.11** -0.08** -0.08* -0.11** -0.09** -0.09*

0.032 0.03 0.03 0.047 0.042 0.044 0.049 0.043 0.045

Lagged 200 km price buffer 0.12*** 0.09** 0.10** -0.06 -0.08 -0.07

0.045 0.042 0.04 0.053 0.05 0.049

Lagged ave regime X lagged 50 km buffer 0.01 0.03 0.03 -0.01 0.01 0.01

0.036 0.032 0.032 0.069 0.067 0.064

Lagged good regime X lagged 50 km buffer 0.04 0.03 0.03 0 -0.02 -0.01

0.047 0.042 0.042 0.079 0.073 0.071

Lagged 400 km price buffer 0.20*** 0.18*** 0.19***

0.071 0.069 0.067

Lagged ave regime X lagged 50 km buffer 0.05 0.06 0.05

0.079 0.075 0.072

Lagged good regime X lagged 50 km buffer 0.08 0.09 0.08

0.093 0.088 0.082

Time effect (period variable) yes yes yes yes yes yes yes yes yes

Marketing season effects yes yes yes yes yes yes yes yes yes

Monthly effects (January base) yes yes yes yes yes yes yes yes yes

Estimator F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K F.E. D-K

Observations 6592 6591 6527 6592 6591 6527 6592 6591 6527

R-squared* 0.857 0.865 0.866 0.858 0.865 0.866 0.859 0.866 0.867

Number of markets 29 29 29 29 29 29 29 29 29

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. All estimates include monthly and marketing-year fixed-effects. F.E. D-K indicates Driscoll-Kraay 

standard errors using Stata's  xtscc, fe procedure with four lags. All binary variables are relative to the bad regime base.  Standard errors below coefficient estimates.
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Similar to our first model, we estimate a variety of specifications in order to 

assess robustness. The first estimates of interest are those for the average and good 

regime variables which demonstrate the base difference in price levels for average 

years (13-18 CFA lower) and good years (23 – 30 CFA lower). Moving to the spatial 

price buffer and the regime interaction variable, we see that market connectedness in 

average years is negative in sign, but not statistically different than zero in any of the 

specifications. This suggests the ways in which markets interact is not fundamentally 

different across average and bad regimes.  However, estimates for good regimes 

largely support the results from above, showing that market connectedness is negative 

and statistically different from zero when compared to bad price regimes. Again, in 

some specification (5-6, and 8-9) the magnitude of coefficient is greater than that of 

the standalone lagged spatial price buffer 

Figure 29, below, depicts the comparison of model fit criteria from the base 

(Models A-F) and a subset of tertiary (Models A1-F1) regime model. Similar to 

above, in all cases the regime-based model fits the data better than the base model. 
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Figure 29. Observed tertiary price regime model fit comparison  

 
Source: Author’s calculations  

The modeling exercise above provides support to our existing hypothesis 

governing price regimes and market integration: market behavior changes in a 

statistically meaningful manner across marketing-year regimes in that good marketing 

years are characterized from bad years by apparent market segmentation. We have 

also shown that by explicitly modeling price regimes, we can improve the overall fit 

of a base millet price model. While these findings are beneficial in improving our 

understanding market performance and how to specify price forecasting models for 

Niger, they are based on outcomes that have already occurred and statistical 

properties of the price data. To be policy relevant and useful to food security analysts, 

we need to leverage information contained within our NDVI data into a forecasting 

framework that can inform analysts of the type of price regime likely to be 

encountered and the expected degree of market connectedness. Previous research 

(Brown, Hinterman & Higgins, 2010) has focused on market price level forecasts 

through the explicit inclusion of various NDVI variables into a fixed-effect, auto-
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regressive forecasting model. We opt for a two-stage approach in which we first 

attempt to predict the type of marketing-year price regime using only NDVI and past 

price information. We then use predictions from our probability model in our regime-

augmented price model (from above) to assess the accuracy of our predictions in 

assessing market connectedness. The purpose of this exercise is to determine how 

well we can forecast price regimes and to assess how well the predicted regimes can 

capture market connectedness as estimated above.  

Using NDVI to Predict Price Regimes  

In order to examine the usefulness of NDVI in predicting price regimes, we 

estimate a probability model where regimes are categorized as binary outcomes.  We 

collapse our good and average regime variables into a single value which allows us to 

use NDVI to predict whether or not we are likely to encounter a bad marketing-year 

price regime.35 First, we assess how far in advance we can accurately predict the type 

of regime that will unfold in the months following the growing season (October-

September of the following year).  Second, we then take our predicted regime value 

and use it in our model of market integration to assess how well our NDVI-based 

regimes can predict market connectedness for a given year.  

To generate price regime predictions at the market-level we estimate a probit 

model.36  Our set of exogenous explanatory variables include  NDVI anomalies for 

May through October, calculated at the market level using a 50 kilometer buffer, as 

                                                 
35 We considered using an ordered logistic model to predict good, bad and average outcomes, however 

we were not able to obtain estimates that satisfied the proportional odds assumption and produced 

reasonable forecasts.  
36 Because of the temporal ordering of our regime data we conducted a Hausman test to determine if 

we should pool the data or estimate panel-based probability model. The results pointed towards 

pooling the data. Results are available upon request. 
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well as average, rescaled NDVI anomalies for the major millet producing zones of 

Burkina Faso, Mali and Nigeria. To control for localized NDVI shocks encountered 

during the growing season we include two variables reflecting the number of markets 

with shocks aggregated to the region-level.37 Market-level explanatory variables 

include a market’s proximity to the nearest major road, maximum price from the 

previous year, region-level population, a time variable to capture macro-level changes 

among millet markets, and aggregated local and national-level NDVI anomalies for 

non-growing months. Because our primary focus is on generating accurate forecasts 

of impending price regimes, we estimate four specifications of our model. We also 

combine each prediction and generate an average, overall prediction for each market. 

In order to assess the relative fit of each model we compute a pseudo R-squared, we 

plot the receiver operating characteristics and finally, we generate graphs of our 

predictions (shown in the appendix) for visual review.38 

Model Results for Price Regime Predictions 

 The full set of probit model results are display below in Table 27 - Table 30. 

All coefficients reported are marginal effects which reflect the change in probability 

for an infinitesimal change in exogenous, continuous variables. P-values are reported 

below the coefficient estimates.  For each model, we also estimate (but do not report) 

a base model excluding all NDVI variables. In all cases, models that included NDVI 

covariates outperformed the base models in terms of receiver operating characteristics 

                                                 
37 All variables were created as temporal steps, so all variables only include information that was 

available at a given point in time.  
38 We also calculated link tests (available upon request) to determine how well specified our models 

were. In some cases, the link test suggested that our dependent variable did not adequately link to our 

exogenous variables. With time, we plan to do additional research to resolve this model inefficiency.  
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and pseudo R-squared estimates.  

Starting with the first specification we note a few points of interest. First, our 

coefficient estimates for May, June and July NDVI deviations are positive and 

generally not statistically different than zero. As we incorporate additional months of 

NDVI, the coefficient estimates take on the expected sign for the months of August, 

September and October. The sign on the coefficient estimates for maximum prices 

from the previous months, population and distance to roads take the expected 

direction. The negative coefficient on the year variable suggests that with time, the 

probability of encountering a bad marketing year is declining. This is a positive sign 

overall as it suggest that markets are improving overtime and not clustering into 

certain types of regimes. 

It is also worth noting that we see the largest drop in the log likelihood (from -

231.1 to -151.1) between the specifications including August and September NDVI. 

In terms of a best fit, the specification that includes the full set of NDVI variables has 

the lowest log likelihood. This is not surprising as the complete signal representing 

millet production potential has been fully accounted for in this model. The model 

diagnostics, presented in Figure 36, depict the story in a visual manner.  

Moving to the second specification, which takes into account NDVI from 

surrounding countries along with additional NDVI covariates reflecting the number of 

positive and negative shocks at the region level, we see a similar story unfold. NDVI 

values for May through September are not statistically different than zero.  October 

NDVI takes on the expected sign and is significant. The positive and significance of 

July NDVI is somewhat puzzling as we would expect positive anomalies to be 
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associated with better than expected millet production. For NDVI shock variable 

estimates, an increase in the number of positive shocks reduces the probability of 

entering into a bad marketing-year regime. NDVI anomalies from Nigeria and Mali 

are inversely related as we would expect. However, NDVI anomalies from Burkina 

Faso are positively associated with negative regimes. 

Table 27. Probability models results for regime predictions (1) 

 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. Reporting results are marginal 

effects reported at the mean value of the corresponding independent variable. P-value reported below 

coefficient estimate. NDVI variables for neighboring countries have been rescaled.  

Regime Type Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad

Best NDVI -0.00007*

0.062

October -0.00003

0.782

September -0.00012 -0.00006

0.263 0.642

August -0.00016 -0.00001 0.00006

0.155 0.957 0.665

July 0.0001 0.00011 0.00015* 0.00012

0.235 0.231 0.085 0.168

June 0.00061*** 0.00054*** 0.00038** 0.00024* 0.00030***

0.000 0.001 0.016 0.071 0.008

May 0.00024* 0.00011 0.00014 0.00016 0.00040*** 0.00040***

0.072 0.433 0.281 0.24 0.001 0

Dry season NDVI -0.00010*** -0.00013*** -0.00014*** -0.00008** -0.00006 -0.00007** 0.00001

0.001 0.000 0.000 0.031 0.103 0.044 0.546

Year -0.00108 -0.00114 -0.00153* -0.00257*** -0.00281*** -0.00108 -0.00114

0.230 0.205 0.083 0.001 0.000 0.230 0.205

Maximum price previous year 0.00173*** 0.00178*** 0.00213*** 0.00311*** 0.00563*** 0.00577*** 0.00646***

0.000 0.000 0.000 0.000 0.000 0.000 0.000

Distance to nearest road -0.03185 -0.01681 -0.01606 -0.00249 0.08341*** 0.08445*** 0.05262**

0.294 0.596 0.608 0.935 0.003 0.001 0.036

Population (logged) -0.00010*** -0.00013*** -0.00014*** -0.00008** -0.00006 -0.00007** 0.00001

0.001 0.000 0.000 0.031 0.103 0.044 0.546

Observations 493 493 493 493 493 493 493

Psuedo-R2 0.083 0.132 0.152 0.217 0.488 0.604 0.555

Log Likelihood -270.6 -256 -250.2 -231.1 -151.1 -116.8 -131.3
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Regarding the comparison of model fit for Specification 2, the model that 

includes only May and June NDVI produces a log likelihood of -140.6, which is 

lower than models that include only May or May-July NDVI. As was the case with 

the first specification, as we include additional NDVI information into the model, we 

see a reduction in the computed pseudo R-squared for nearly every specification. The 

largest jump occurs between July and August. This should come as no surprise as we 

find a similar result in Chapter 6. 

Table 28. Probability models results for regime predictions (2) 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. Reporting results are marginal 

effects reported at the mean value of the corresponding independent variable. P-value reported below 

coefficient estimate. NDVI variables for neighboring countries have been rescaled. 

Regime Type Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad

Best NDVI -0.00009**

0.012

October -0.00013**

0.035

September 0.00011 0.00009

0.274 0.311

August -0.00003 -0.00017 -0.00001

0.557 0.124 0.94

July 0 0.00007*** 0.00019** 0.00015**

0.969 0.007 0.03 0.036

June 0.00023* 0.0002 -0.00002 -0.00019** 0.00009

0.096 0.188 0.740 0.038 0.140

May -0.00027 -0.00052*** -0.00013 -0.00009 0.00011 0.00009

0.21 0.003 0.501 0.197 0.482 0.429

Burkina Faso NDVI 0.07227*** 0.03395*** 0.01561 0.03895*** 0.04596*** 0.00493 0.01697***

0.000 0.000 0.194 0.000 0.009 0.257 0.002

Mali NDVI -0.04948*** -0.02645*** -0.00701 -0.02624*** 0.00287 -0.00827** -0.00891**

0.000 0.003 0.594 0.000 0.687 0.014 0.05

Nigeria NDVI -0.05094*** -0.12907*** -0.02459** -0.00568** 0.00033 -0.00357 -0.00131

0.000 0.000 0.031 0.020 0.972 0.543 0.89

Region negative shocks 0.06157*** 0.01492** 0.01066 -0.00328 -0.00699 -0.0027 -0.00518

0.000 0.019 0.110 0.111 0.200 0.238 0.145

Regions positive shocks -0.02317** -0.02103** -0.01278 -0.00538*** -0.01610** -0.01086*** -0.01179**

0.018 0.015 0.116 0.009 0.017 0.003 0.048

Dry season NDVI -0.00001 0.00001 -0.00010*** 0.00001 -0.00003 -0.00002 0.00001

0.782 0.668 0.003 0.325 0.243 0.212 0.477

Year -0.04372*** 0.00326 -0.03073*** -0.01363*** -0.00278 -0.01983*** -0.03151***

0.000 0.633 0.000 0.000 0.761 0.000 0.000

Maximum price previous year 0.00228*** 0.00083** 0.00210*** 0.00089*** 0.00321*** 0.00319*** 0.00448***

0.000 0.019 0.000 0.000 0.000 0.000 0.000

Distance to nearest road -0.00186** -0.00118* -0.00158* -0.00088*** -0.00202*** -0.00188*** -0.00280***

0.048 0.099 0.058 0.000 0.000 0.000 0.000

Population (logged) 0.02292 0.00805 0.02523 0.02312*** 0.06986*** 0.06102*** 0.08831***

0.488 0.794 0.472 0.001 0.002 0.000 0.000

Observations 493 493 493 493 493 493 493

Psuedo-R2 0.308 0.523 0.259 0.733 0.708 0.772 0.764

Log Likelihood -204 -140.6 -218.6 -78.92 -86.02 -67.26 -69.62
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Table 29. Probability models results for regime predictions (3) 

 

  

Regime Type Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad

-0.00005*

0.055

-0.00012**

0.013

0.00009 0.00006

0.322 0.326

0.00001 -0.00015 0.000

0.641 0.147 0.98

0.00005 0.00006*** 0.00021** 0.00010**

0.644 0.007 0.012 0.035

0.00032** 0.00008 0.00001 -0.00018** 0.00007

0.02 0.485 0.712 0.03 0.103

0.00006 -0.00043*** -0.00009 -0.00005 0.00008 -0.00002

0.731 0.009 0.562 0.243 0.542 0.776

-0.00000*** -0.00000* -0.00001*** 0.0000 -0.00000** -0.00000*** 0.000

0.000 0.094 0.000 0.266 0.045 0.001 0.127

-0.04550*** -0.03932*** 0 -0.02315*** 0.000 -0.00568* -0.01

0.000 0.000 0.73 0.000 0.64 0.07 0.22

-0.00147* -0.00117 -0.00133* -0.00075*** -0.00191*** -0.00169*** -0.00259***

0.071 0.157 0.097 0.000 0.001 0.001 0.000

0.0055 -0.00218 0.0193 0.01960*** 0.07058*** 0.05936*** 0.08669***

0.86 0.947 0.562 0.003 0.002 0.000 0.000

0.07786*** 0.03498*** -0.00926 0.03456*** 0.04934** 0.00661* 0.01366**

0.001 0.000 0.477 0.000 0.024 0.066 0.015

-0.04550*** -0.03932*** 0.00499 -0.02315*** 0.00399 -0.00568* -0.00588

0.000 0.000 0.729 0.000 0.636 0.066 0.221

-0.03889*** -0.11875*** -0.02661** -0.00446* 0.00253 -0.00803 -0.00505

0.000 0.000 0.03 0.051 0.786 0.18 0.62

0.02390** 0.00719 -0.01562** -0.00214 -0.01634** -0.00517** -0.00778**

0.018 0.309 0.015 0.304 0.029 0.043 0.033

-0.00853 -0.01203 0.00065 -0.00508*** -0.01377** -0.01007*** -0.00919

0.339 0.116 0.917 0.008 0.038 0.006 0.101

0.00141*** 0.00056 0.00152*** 0.00088*** 0.00297*** 0.00282*** 0.00422***

0.0000 0.2390 0.0010 0.0000 0.0000 0.0000 0.0000

493 493 493 493 493 493 493

0.363 0.522 0.362 0.731 0.718 0.786 0.766

-187.9 -141.1 -188.1 -79.43 -83.32 -63.15 -69.01

Psuedo-R2

Log Likelihood

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. Reporting results are marginal effects reported at the mean value 

of the corresponding independent variable. P-value reported below coefficient estimate.

Region positive shocks

Maximum price previous year

Observations

Mali NDVI

Nigeria NDVI

Region negative shocks

Distance to nearest road

Population (logged)

Burkina Faso NDVI

Country NDVI offseason

Year

July

June

May

October

September

August

Best NDVI
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Table 30. Probability models results for regime predictions (4) 

 

 Table 29 and Table 30 report two additional specifications with similar 

results. We see the largest gains, in terms of how well we fit the data, between models 

that include May-July NDVI and models that include May-August NDVI. In most 

cases, average NDVI anomalies from surrounding countries are inversely related to 

bad regime outcomes (the better the production potential the less likely we are to be a 

bad regime).  Also, NDVI shocks, measured at the region-level, appear to have an 

effect on the type of regime we are likely to encounter. For nearly every specification, 

Regime Type Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad Good/Bad

-0.00005

0.134

-0.00013***

0.01

0.00005 0.00005

0.474 0.423

0.00001 -0.00014 0.000

0.63 0.13 0.98

0.00004 0.00006** 0.00020*** 0.00011**

0.679 0.012 0.002 0.023

0.00024* 0.00008 0.00001 -0.00015** 0.00007

0.073 0.487 0.708 0.025 0.102

0.00005 -0.00047*** -0.0001 -0.00005 0.00007 -0.00002

0.77 0.008 0.549 0.243 0.484 0.745

0.00820* 0.02188*** 0.00638 0.00016 -0.01249*** -0.00287 -0.00054

0.093 0.000 0.214 0.957 0.005 0.143 0.847

-0.00000*** 0.000 -0.00001*** 0.000 -0.00000** -0.00000*** 0

0.006 0.353 0.000 0.317 0.019 0.001 0.126

-0.05134*** -0.00864 -0.04219*** -0.01221*** 0.00793 -0.02121*** -0.02990***

0.000 0.136 0.000 0.000 0.377 0.000 0.000

-0.00161** -0.00149* -0.00140* -0.00074*** -0.00153*** -0.00166*** -0.00260***

0.049 0.052 0.085 0.000 0.001 0.001 0.000

-0.005 -0.004 0.014 0.01987*** 0.06142*** 0.04675*** 0.04643***

0.745 0.788 0.166 0.000 0.003 0.001 0.001

0.07714*** 0.03128*** -0.00701 0.03439*** 0.05116*** 0.00572 0.01354**

0.000 0.000 0.609 0.000 0.002 0.11 0.015

-0.04637*** -0.03724*** 0.00309 -0.02302*** 0.00435 -0.00515* -0.00572

0.000 0.000 0.835 0.000 0.514 0.092 0.238

-0.04284*** -0.12704*** -0.02470* -0.00439* -0.00233 -0.00502 -0.00448

0.000 0.000 0.054 0.056 0.756 0.402 0.673

0.01931* -0.00948 -0.02035*** -0.00227 -0.0019 -0.00363* -0.00752**

0.067 0.216 0.002 0.55 0.719 0.094 0.031

-0.00873 -0.00947 0.00136 -0.00507*** -0.01227** -0.01017*** -0.0092

0.328 0.194 0.833 0.007 0.04 0.006 0.1

0.00169*** 0.00124** 0.00164*** 0.00088*** 0.00253*** 0.00283*** 0.00423***

0.0000 0.0130 0.0000 0.0000 0.0000 0.0000 0.0000

493 493 493 493 493 493 493

0.368 0.55 0.364 0.731 0.729 0.788 0.766

-186.5 -132.7 -187.5 -79.43 -80.03 -62.67 -69

Psuedo-R2

Log Likelihood

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1. Reporting results are marginal effects reported at the mean 

value of the corresponding independent variable. P-value reported below coefficient estimate.

Region positive shocks

Maximum price previous year

Observations

Mali NDVI

Nigeria NDVI

Region negative shocks

Distance to nearest road

Population (logged)

Burkina Faso NDVI

Off season NDVI shock

Country NDVI offseason

Year

July

June

May

October

September

August

Best NDVI
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as the proportion of positive NDVI shocks increases a market is less likely to fall into 

a bad regime. Intuitively this makes sense, as more and more markets experience 

positive production shocks they are more likely to have greater local millet 

production and fall under a good or average price regime. 

Figure 36-39, located in the appendix, summarize the receiver operating 

characteristics (ROC) for each model, the average, market-wide, year-by-year 

predictions generated for each model specification, and a summary graph of the 

combined, average predictions. The ROC graphs suggest that models including more 

NDVI covariates are better at predicting regime outcomes as indicated by the 

clustering of lines near the left, upper-axis of the graph. The graphs also demonstrate 

how incrementally adding NDVI outcomes observed during the growing improves the 

true positives predicted versus the false positives predicted.  Turning to the regime 

predictions, we can see the general distribution of predictions for each year for each 

specification. Model 1 appears to have the largest clustering of predictions around 

0.50, whereas the remaining models appear to have more clustering near the 0.10-

0.00 range and the 0.80-1.00 range. It is somewhat surprising that models 2-4 do not 

offer variation in terms of predictions for 2006 through 2011. However, in recalling 

our distribution of regimes, there has not been a bad regime observed since 2004-05. 

As a note of closing, despite the poor fit of monthly NDVI covariates the general 

patterns in the model are consistent with what we may expect. Predictions based on 

May NDVI are generally not that useful, however, as we incorporate additional 

monthly NDVI into our model, predictions tend to move toward the correct regime 

quite consistently.  
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Assessing Market Connectedness using NDVI-based Regime Predictions 

 With the price regime predictions generated from our probability model 

above, we now examine how well the predicted regimes capture true levels of market 

connectedness. In order to conduct this assessment, we take our market integration 

model (described above in equation 16) and we insert our predicted regime variables 

for the actual observed regimes and then re-run the model. We then test the sign and 

significance on the predicted market connectedness coefficient. The null hypothesis is 

that our predicted regime variable (𝐵2) is not statistically different than zero, or that 

market connectedness does not vary by forecasted regime types. Formally, we 

estimate the following model: 

 
𝑃𝑖𝑡 = 𝛼 + 𝛽1𝑃𝑖𝑡−1 + 𝛽2𝑃̅𝑗𝑡−1 ∗ 𝑅̂𝑖𝑡−1 + 𝐵3𝑅̂𝑖𝑡 + 𝜑𝑋𝑖𝑡

′ + 𝛿𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡  (19)  

We apply similar corrections as above to our standard errors and we estimate 

dynamic panel models to account for potentially omitted variables. The results for all 

predictions generated by our probability models are presented below in Table 31-34. 

We report three types of estimators to determine the robustness of our results under 

different model assumptions.39  

                                                 
39 We also estimate a linear regression with panel-corrected standard error for comparison. The model 

is estimated under the assumption of first-order autocorrelation within panels (see Beck & Katz, 2004). 
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Table 31. Market integration prediction results (1 & 2) 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1; Estimates based on regime predictions from rolling NDVI anomalies created using 50 

kilometer buffer. Standard errors below coefficient estimates.  

Rolling NDVI Deviations May Jun Jul Aug Sep Oct Best May Jun Jul Aug Sep Oct Best

Fixed-effects

Lagged price band 50km 0.68*** 0.61*** 0.63*** 0.65*** 0.66*** 0.65*** 0.65*** 0.61*** 0.64*** 0.62*** 0.65*** 0.65*** 0.65*** 0.65***

0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03

Good regime predicted 3.55 -3.62 -5.72 -12.46** -9.90*** -16.51*** -21.00*** 1.5 -3.02 -12.37** -12.96** -13.12*** -16.46*** -17.39***

6.74 6.57 6.5 5.35 2.98 2.39 2.61 4.85 5 4.57 5.58 4.27 2.56 2.92

Lagged good regime predicted -6.95 -22.11** -17.10* -7.52 10.26* 11.57** 12.72** -19.03** -7.09 -18.33** 6.48 8.91** 11.04** 9.88*

10.98 9.39 8.73 7.16 5.7 5.22 5.55 6.94 5.29 7.46 4.12 4.2 5.16 5.14

Lagged good regime predicted 

X lagged 50km price buffer

0.06 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.02 0.03 0.02

Fixed-effects (Driscoll-Kraay)

Lagged good regime predicted 

X lagged 50km price buffer

0.08 0.07 0.07 0.07 0.05 0.04 0.05 0.06 0.04 0.07 0.03 0.04 0.03 0.03

PCSE with Fixed-effects

Lagged price band 50km 0.58*** 0.51*** 0.53*** 0.54*** 0.53*** 0.52*** 0.51*** 0.49*** 0.52*** 0.53*** 0.52*** 0.53*** 0.52*** 0.52***

0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.03 0.03 0.03

Good regime predicted -0.24 -3.53 -5.92 -10.33 0.05 -8.82* -14.38*** 6.67 0.38 -11.97 -5.18 -3.8 -9.44** -10.35**

11.33 8.49 8.53 7.91 5.09 4.52 4.83 7.33 6.83 8.82 5.59 5.03 4.4 4.47

Lagged good regime predicted -0.4 -18.06 -13.99 -8.08 1.27 1.75 1 -24.44* -8.95 -13.97 -0.94 0.82 2.67 1.18

21.46 16.78 16.35 14.54 9.92 9.51 9.92 13.03 10.75 14.36 9.3 9.04 8.56 8.747

Lagged good regime predicted 

X lagged 50km price buffer

0.09 0.07 0.07 0.06 0.04 0.04 0.04 0.05 0.05 0.06 0.04 0.04 0.04 0.04

Lagged dependent variable No No No No No No No No No No No No No No

Time effect (period variable) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Marketing season effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Monthly effects (January base) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876

Periods 202 202 202 202 202 202 202 202 202 202 202 202 202 202

Number of markets 29 29 29 29 29 29 29 29 29 29 29 29 29 29

-0.02 -0.02 -0.06 -0.07* -0.07* -0.06

-0.06* -0.05*

-0.08 0.01 -0.01 -0.06 -0.09** -0.07* -0.07* 0.04

-0.08* 0.05 0 0.02 -0.04 -0.05-0.06 0.04 0.01 -0.04 -0.08* -0.07

0 0.02 -0.04* -0.05** -0.06** -0.05**

Predictions from Probability Model 1 Predictions from Probability Model 2

-0.06 0.04 0.01 -0.04 -0.08** -0.07** -0.08*** 0.05
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Table 32. Market integration prediction results (3 & 4) 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1; Estimates based on regime predictions from rolling NDVI anomalies created using 50 

kilometer buffer. Standard errors below coefficient estimates. 

  

Rolling NDVI Deviations May Jun Jul Aug Sep Oct Best May Jun Jul Aug Sep Oct Best

Fixed-effects

Lagged price band 50km 0.61*** 0.63*** 0.62*** 0.65*** 0.65*** 0.65*** 0.65*** 0.61*** 0.64*** 0.62*** 0.65*** 0.65*** 0.65*** 0.65***

0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03

Good regime predicted -4.49 0.94 -18.29** -11.88** -12.73*** -16.35*** -17.89*** -3.1 2.63 -16.55** -11.87** -11.01** -15.77*** -16.03***

6.42 5.13 6.85 5.63 4.25 2.19 3.07 5.41 3.55 6.32 5.61 4.79 2.34 2.31

Lagged good regime predicted -19.78*** -8.27 -16.20*** 6.14 7.25* 9.93* 8.99* -16.80*** -3.54 -15.06** 6.15 6.04 10.13** 9.84*

6.16 5.26 5.67 4.08 4.02 4.85 5.19 5.67 4.9 5.49 4.08 3.71 4.79 4.82

Lagged good regime predicted 

X lagged 50km price buffer

0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

Fixed-effects (Driscoll-Kraay)

Lagged good regime predicted 

X lagged 50km price buffer

0.06 0.05 0.07 0.03 0.04 0.03 0.03 0.06 0.05 0.07 0.03 0.04 0.03 0.03

PCSE with Fixed-effects

Lagged price band 50km 0.49*** 0.52*** 0.52*** 0.52*** 0.53*** 0.52*** 0.52*** 0.50*** 0.52*** 0.52*** 0.52*** 0.52*** 0.52*** 0.52***

0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.03

Good regime predicted 2.3 5.17 -12.78 -3.89 -3.25 -9.57** -10.78** 3.6 8.27 -11.07 -3.87 -1.42 -8.88** -9.26**

8.81 7.66 8.82 5.61 5.13 4.36 4.62 8.03 6.34 8.79 5.6 4.98 4.39 4.42

Lagged good regime predicted -21.90* -9.66 -14.29 -1.11 -0.47 1.71 0.39 -20.04 -6.2 -13.65 -1.09 -1.39 1.99 1.66

13.09 10.79 12.65 9.28 9.05 8.54 8.78 12.74 10.26 12.58 9.27 8.92 8.54 8.571

Lagged good regime predicted

 X lagged 50km price buffer

0.06 0.05 0.06 0.04 0.04 0.04 0.04 0.06 0.05 0.06 0.04 0.04 0.04 0.04

Lagged dependent variable No No No No No No No No No No No No No No

Time effect (period variable) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Marketing season effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Monthly effects (January base) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876 5,876

Period 202 202 202 202 202 202 202 202 202 202 202 202 202 202

Number of markets 29 29 29 29 29 29 29 29 29 29 29 29 29 29

-0.06**

Predictions from Probability Model 3 Predictions from Probability Model 4

0.05 0.01 0.04 -0.04* -0.04** -0.05** -0.05* 0.04 -0.01 0.04 -0.04* -0.04* -0.06**

-0.040.05 0.01 0.04 -0.04 -0.04 -0.05*

-0.07*

-0.06* -0.06*

0.02 -0.02 -0.01 -0.06 -0.06 -0.07* -0.06 0.02

-0.05 0.04 -0.01 0.04 -0.04

-0.03 -0.01 -0.06 -0.06 -0.07*



 

 170 

 

Table 33. Market integration prediction results (1A and 2A) 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1; Estimates based on regime predictions from rolling NDVI anomalies created using 50 

kilometer buffer. Standard errors below coefficient estimates. 

Rolling NDVI Deviations May Jun Jul Aug Sep Oct Best May Jun Jul Aug Sep Oct Best

Fixed-effects

Lagged millet prices 0.58*** 0.58*** 0.57*** 0.56*** 0.56*** 0.56*** 0.56*** 0.58*** 0.58*** 0.57*** 0.58*** 0.57*** 0.57*** 0.57***

0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03

Lagged price band 50km 0.10** 0.05 0.06 0.09** 0.11*** 0.11*** 0.11*** 0.06** 0.08*** 0.07** 0.10*** 0.10*** 0.11*** 0.11***

0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Good regime predicted 11.78** 2.12 0.63 -4.91 -7.02** -15.03*** -18.72*** 4.32 -2.87 -2.22 -11.28** -10.67*** -15.42*** -15.56***

5.46 5.05 4.88 3.89 2.69 2.06 2.62 4.32 3.49 3.48 4.55 3.46 2.27 2.53

Lagged good regime predicted -15.68* -25.13*** -21.81*** -13.81** 5.51 7.95** 8.56** -15.25*** -5.36* -19.51*** 5.56** 7.76*** 9.14** 8.44**

8.41 6.51 6.5 5.72 3.37 3.4 3.67 5.06 2.78 5.2 2.61 2.8 3.44 3.55

Lagged good regime predicted 

X lagged 50km price buffer

0.04 0.04 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.02

Fixed-effects (Driscoll-Kraay)

Good regime predicted 

X lagged 50km price buffer

0.07 0.06 0.06 0.07 0.05 0.04 0.05 0.06 0.04 0.06 0.03 0.04 0.03 0.03

PCSE with Fixed-effects

Lagged millet prices 0.55*** 0.54*** 0.54*** 0.53*** 0.52*** 0.53*** 0.52*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54***

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Lagged price band 50km 0.12** 0.07 0.08* 0.11** 0.13*** 0.12*** 0.12*** 0.08** 0.10*** 0.09** 0.11*** 0.12*** 0.12*** 0.12***

0.06 0.05 0.05 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03

Good regime predicted 9.81 1.36 -0.23 -5.35 -4.93 -13.49*** -17.30*** 4.86 -2.08 -3.26 -9.77* -8.95* -14.04*** -14.24***

11.88 8.9 8.9 8.2 5.27 4.7 4.97 7.47 6.53 8.94 5.45 5.03 4.52 4.56

Lagged good regime predicted -13.02 -23.93 -20.57 -13.21 3.53 6 6.28 -16.35 -6.14 -18.39 3.87 6.01 7.49 6.74

19.53 15.15 14.8 13.27 9.13 8.81 9.19 12.08 9.98 13.16 8.65 8.36 7.94 8.09

Good regime predicted 

X lagged 50km price buffer

0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.03 0.03 0.03

Lagged dependent variable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time effect (period variable) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Marketing season effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Monthly effects (January base) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Period (T) 202 202 202 202 202 202 202 202 202 202 202 202 202 202

Number of markets (N) 29 29 29 29 29 29 29 29 29 29 29 29 29 29

-0.03* -0.02

Predictions from Probability Model 1 Predictions from Probability Model 2

-0.01 0.07* 0.05 0.01 -0.04* -0.03 -0.03* 0.04

-0.03

0.01 0.03 -0.02* -0.03*

-0.01 0.07 0.05 0.01 -0.04 -0.03 -0.02

-0.02 0.06 0.04 0.01 -0.04 -0.03 -0.03 0.04

-0.03 0.04 0.01 0.03 -0.02 -0.03

0 0.03 -0.02 -0.03 -0.03 -0.03
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Table 34. Market integration prediction results (3A and 4A) 

Stars indicate level of significance ***p<0.01, **p<0.05, *p<0.1; Estimates based on regime predictions from rolling NDVI anomalies created using 50 

kilometer buffer. Standard errors below coefficient estimates.

Rolling NDVI Deviations May Jun Jul Aug Sep Oct Best May Jun Jul Aug Sep Oct Best

Fixed-effects

Lagged millet prices 0.58*** 0.58*** 0.57*** 0.58*** 0.58*** 0.57*** 0.57*** 0.58*** 0.58*** 0.58*** 0.58*** 0.58*** 0.57*** 0.57***

0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03

Lagged price band 50km 0.06** 0.08*** 0.07*** 0.10*** 0.10*** 0.11*** 0.11*** 0.06** 0.08*** 0.07*** 0.10*** 0.10*** 0.11*** 0.11***

0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03

Good regime predicted 1.76 0.67 -8.75* -10.28** -9.74*** -14.95*** -15.45*** 1.62 1.87 -7.99* -10.26** -8.63** -14.62*** -14.85***

4.82 2.71 4.99 4.38 3.49 2.12 2.59 3.97 2.19 4.63 4.36 3.78 2.16 2.19

Lagged good regime predicted -16.02*** -6.91** -14.90*** 5.39** 6.35** 8.21** 7.50* -14.19*** -3.81 -14.13*** 5.39** 5.40** 8.27** 8.12**

4.27 2.76 3.96 2.6 2.7 3.27 3.68 4.11 2.73 3.87 2.6 2.54 3.22 3.24

Good regime predicted 

X lagged 50km price buffer

0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01

Fixed-effects (Driscoll-Kraay)

Good regime predicted 

X lagged 50km price buffer

0.06 0.04 0.06 0.03 0.04 0.03 0.03 0.05 0.05 0.06 0.03 0.03 0.03 0.03

PCSE with Fixed-effects

Lagged millet prices 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54*** 0.54***

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Lagged price band 50km 0.08** 0.10*** 0.09** 0.11*** 0.12*** 0.12*** 0.12*** 0.08** 0.10*** 0.09** 0.11*** 0.11*** 0.12*** 0.12***

0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03

Good regime predicted 2.39 1.66 -8.52 -8.75 -8.01 -13.64*** -14.16*** 2.42 3.17 -7.65 -8.73 -6.83 -13.26*** -13.51***

8.3 7.13 8.4 5.45 5.11 4.47 4.67 7.78 6.15 8.36 5.45 4.98 4.5 4.51

Lagged good regime predicted -16.86 -7.63 -14.93 3.72 4.6 6.57 5.81 -15.17 -4.72 -14.24 3.73 3.66 6.64 6.49

12.15 10.05 11.76 8.64 8.38 7.91 8.13 11.84 9.55 11.69 8.64 8.26 7.92 7.95

Good regime predicted 

X lagged 50km price buffer

0.05 0.04 0.05 0.04 0.03 0.03 0.03 0.05 0.04 0.05 0.04 0.03 0.03 0.03

Lagged dependent variable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time effect (period variable) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Marketing season effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Monthly effects (January base) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Period (T) 202 202 202 202 202 202 202 202 202 202 202 202 202 202

Number of markets (N) 29 29 29 29 29 29 29 29 29 29 29 29 29 29

-0.03* -0.03*

Predictions from Probability Model 3 Predictions from Probability Model 4

0.05** 0.02 0.04* -0.02 -0.02* -0.02* -0.02 0.04*

-0.02

0.01 0.04* -0.02 -0.02

0.05 0.02 0.04 -0.02 -0.02 -0.03 -0.03

0.04 0.01 0.04 -0.02 -0.03 -0.03 -0.02 0.04

-0.02 0.04 0.01 0.04 -0.02 -0.02

0 0.04 -0.02 -0.02 -0.03 -0.03
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 We begin our discussion with the results from Table 31 which shows the 

second stage estimates using the predicted values from the first and second 

probability model specifications. Directing ones attention to the middle part of the 

table we first note that the coefficient on the predicted regime variable takes on values 

larger than our base model. In fact, using predictions from our Best NDVI 

specification for model 1, we see that our forecast for being in a good regime shifts 

the price level estimates down by nearly 21 CFA. This is encouraging as our base 

binary model only produced switch of about 10 CFA. More importantly, our 

predicted regime variable is able to forecast declining market connectedness as early 

as September, a result that is robust across all the estimators. Moving to the right 

hand side of the table, the results are similar. The fixed-effects estimator with robust 

standard errors does produce a significant result as early as August, but when we 

correct the standard errors for general forms of spatial dependence the estimated 

coefficient is not statistically different than zero.  Table 32 summarizes the results for 

the third and fourth probability models for all estimated regimes. The predictions for 

market connectedness are similar in magnitude, but are only robust across all 

estimators in October.  

 Estimation results for our dynamic panel estimators are presented in Table 33 

and 34. The predicted regimes, from nearly all probability model specifications, do a 

good job of capturing the price switch that is associated with good regimes and 

largely take on the expected sign.  The fixed-effects estimator yields coefficient 

estimates that are significant at the 10 percent level, however, once we correct 

standard errors for potential spatial correlation the results are not statistically different 
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than zero. Moreover, the magnitude of the coefficient estimates does not approach the 

magnitude estimated above, thought the sign taken by the coefficients is largely 

consistent with what expect from above. Overall, it appears the earliest that our 

NDVI-based prediction models can reasonably predict price regimes and market 

connectedness is the month of August. This result is consistent with what we found 

when we considered NDVI and millet production outcomes.  

As a final exercise in model comparison, we plot the AIC and BIC for all 

models estimated above and compare them to our base regime model. Figure 30 

depicts the results of this exercise and allows for easy comparison across models. 

From the figure above it is easy to see that regardless of the specification, our 

forecasted price regime variable leads to a better fitting model. Although we did not 

demonstrate it empirically, this fit is likely due to the continuous nature of our 

prediction variables which take on values bounded by zero and one, instead of simple 

zero or one. Also, surprisingly, the best fit appears to be the most parsimonious model 

(Best (1)) which only includes an NDVI variable that captures the best three months 

of NDVI. While using this composite metric may be one of the ways to generate 

regime forecasts that fit the data well, it may only be created at the end of the growing 

season by construction. Future research on the optimal NDVI metric may consider 

creating an optimal rolling NDVI variable that is updated each month to include only 

the top months of NDVI within a given window.  
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Figure 30. NDVI-based regime predictions model fit comparison summary 

 
Source: Author’s calcuations
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Our analysis from this chapter provides insight in the nature of market 

connections across marketing-year price regimes. First, the model results indicate that 

the way in which markets interact in good and bad years is fundamentally different. 

On average, we found that in in good years market connectedness at local levels is 

weaker, as measured by the degree of price influence from neighboring markets, than 

in bad price regimes. This result is somewhat intuitive as good years are likely 

characterized by sufficient local supplies of millet and other cereals and likely thinner 

profit margins which reduce the incentives for inter-temporal spatial arbitrage. From a 

food security perspective, policies that enable households to better (more cheaply) 

store their excess production can help in smoothing consumption across different 

types of price regimes. Other policies that look into the international marketing and 

trading of excess production at the national level may also be beneficial if the policies 

can help put additional income in the pockets of rural households without affecting 

national cereal reserve levels. This may be a better alternative if storage facilities are 

scarce and storage costs expensive.  

In the second half of this chapter, we tested whether or not NDVI could be 

used to forecast the type of price regime observed and how well the predicted regime 

values could forecast the expected levels of market connectedness. Our probability 

analysis demonstrated that the NDVI signal between July and August appears to add 

the most value to prediction models. Stated alternatively, the August NDVI signal 

appears to contain the most useful information for making forecasts (for production or 

price regimes) early in the growing season. May, June and July NDVI did not appear 

to add substantial value and in some cases only introduced additional noise. 
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Moreover, our NDVI-based regime predictions were able to predict the lower levels 

of market connectedness associated with good price regimes, on average, as early as 

August. The results were somewhat consistent across different specifications and 

estimator and suggest that NDVI-based regime predictions can add value to 

prediction models, and that the information may be useful in forecasting market 

behavior. Exploring alternative econometric methods for modeling this phenomenon 

would help to triangulate our results and may point out existing deficiencies in our 

current models. 
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Chapter 9:  Discussion of Results, Policy Recommendations, 

Limitations, and a Future Research Agenda 

This study attempts to provide an objective assessment of the utility of NDVI 

data in analyzing millet market behavior for food security monitoring purposes in 

Niger. We have considered numerous techniques for analyzing the linkages among 

NDVI data and millet price outcomes. Our analysis has demonstrated NDVI can add 

additional economic value to food security assessments when price and production 

data are incomplete, purposely inaccurate, or measured with noise due to market 

imperfections. While we may not be able to disentangle or control for all the factors 

that influence prices, we can disentangle what we observe in the NDVI data.  

Knowing in advance whether vegetation production conditions have departed from 

where we expect them to be, on average, can aid us in interpreting price data, 

forecasting market conditions, and providing policy makers an objective view of 

production conditions on the ground.  This chapter reviews our major findings and 

offers analytical recommendations that we feel can enhance EWS analysis. This final 

part of the chapter discusses additional research topics that may be investigated using 

the satellite data from this study.  

Conclusions 

In the beginning of this dissertation we discussed some of the limitations of 

current EWS practices. Linking observed biophysical states to economic outcomes, in 

particular cereal prices, is not a simple task as it requires one to unpack the myriad 

factors that affect millet production, consumption and trade, as well as phonological 

events of the growing season.  Moreover, our analysis has demonstrated that the links 
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are likely not linear or static. Thus, conventional forecasting models that rely on fixed 

lag structures and linear specifications may be expected to underperform when 

compared to models that attempt to account for non-linearities and dynamic 

structures.  Current, EWS appear to focus more on rainfall outcomes (Brown and 

Brickley, 2012) and price levels rather than on how far from historical averages these 

values have departed, and whether or not they are within the range of what may be 

considered normal. Our analysis of NDVI outcomes from 2003-2005 demonstrated 

that aggregate NDVI anomalies across all of Niger were far worse than what we 

would have expected across multiple years. Tracking NDVI shocks across markets 

may shed light on the extent of likely production shortfalls and may help analysts 

determine how far from normal current conditions are. Moreover, augmenting this 

type of analysis with varying NDVI buffer sizes may also help pinpoint the spatial 

extent of potential vegetation production shocks. 

In Chapter 3, we document the numerous advantages that NDVI can bring to 

the table when food security analysis is conducted with prices, production and remote 

sensing data. Price and production data are superior to NDVI in the sense that they 

are observed outcomes and prices, at least, should reflect the current state of 

information available to the market as well as future expectations. However, as we 

noted, when markets are incomplete or missing, and institutions weak, the appropriate 

price signal may not be transmitted down the marketing chain. To help triangulate the 

signals emerging from these sources, NDVI can be used as tool to assess vegetation 

production conditions, which we show are correlated with production outcomes (as 

demonstrated in Chapter 6), it can be used to assess market performance by 
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accounting for the extent and type of NDVI shocks observed in a period of time, and 

it can be used to generate predictions regarding the type price regime likely to unfold 

and nature of market connectedness that accompanies that regime. These are just a 

few ways in which NDVI data can be used and many others likely exist.  

Chapter 5 reviews the spatial properties of millet prices and demonstrated that 

market linkages are dynamic in the sense that the observed patterns of Granger-

causality appear to ebb and flow over time. Markets located in productive zones (as 

measured by the number of pixels falling in the Harvest Choice SPAM map) tended 

to be the origination of millet price signals. Food security policy makers should 

continue to monitor these markets and use real-time price dashboards to assess if and 

how observed Granger-causing relationships are evolving. If a central market is 

suddenly lagging behind, in terms of price signals, this is likely a sign of trade 

reversals or even a weakly integrated market. Knowing which outcome is actually 

occurring has different food security implications. Trade reversals made indicate 

insufficient purchasing power and the flow of food towards better off areas. Cash 

transfers may be a more appropriate response than food under these conditions 

because the transfers will alleviate cash constraints and allow households to 

command local food whereas food infusions may actually distort market incentives 

for sellers.  On the other hand, balkanized markets will respond less kindly to market 

directed interventions because excessive spatial transactions costs may not permit the 

flow of food, regardless of the purchasing power of households.  Instead, food 

infusion activities at the micro-level may be needed to smooth food shortages. 

Chapter 5 also demonstrated that millet marketing years can be categorized into 
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different types of price regimes, in a distributional sense. Good years are not mirror 

reflections of bad years, in that prices hit a floor and remain there. On the other hand, 

bad years are generally characterized by large price anomalies as early as March or 

April. Prices also do not appear to hit a ceiling and often continue to rise throughout 

the hungry season when households are most vulnerable. While this outcome seems 

bleak, market performance, as measured by relative price spreads between markets, 

does appear to increase during times of excessive environmental shocks. Furthermore, 

market connectedness, captured by the degree of price influence from neighboring 

markets, appears to be better during bad years, on average, then during good years. 

Chapter 6 explores the statistical and temporal properties of NDVI anomalies. 

We demonstrate that the peak NDVI signal from the growing season changes from 

year to year. In the 1990s, above average production outcomes tended to be correlated 

with NDVI anomalies peaking later in the growing season, with 1994 being the 

exception. However, from 2000 through 2005, we observed two years with early 

green-ups, 2003 and 2005. In terms of a forecasting model, the effect of these early 

and late green-ups is important as they determine when traders start off loading 

previous years’ supplies of millet and forming expectations about the coming harvest. 

Furthermore, our within growing season NDVI ranking demonstrated that NDVI 

signals do not follow strict patterns over time. If anything, the trend has been for 

relative anomalies to reach peaks later and later in the growing season, thus 

complicating the ability to forecast production and price outcomes months in advance 

of the actual harvest. We concluded Chapter 6 with an empirical model and 

demonstrated that the NDVI signal from August appears to be the most important 
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month for forecasting production outcomes. Somewhat surprisingly, NDVI anomalies 

from September had a negative relationship with production and NDVI from June had 

a positive effect. We recommend more research on this latter finding to determine if 

and how June NDVI can be exploited to make production forecasts ahead of time. 

Chapters 7 and 8 focus on estimating the impact of extreme NDVI outcomes 

on market performance and on exploring how market connectedness varies with price 

regimes. Our analysis of market performance suggests that as the extent of a negative 

NDVI shock grows, market performance actually improves as reflected by declining 

price spreads among markets. Additionally, our market connectedness modeling 

efforts suggest that in years following production shocks, markets tends to be better 

connected than in than years of abundant production. These two outcomes have direct 

policy relevance for the food security community as they demonstrate that policies 

that are inflexible to market structures can produce unwanted results. For example, if 

millet production is abundant for most, but not all of Niger, policies that rely on the 

market to deliver food to deficit regions may be inappropriate. As we have shown 

with our model, market integration, on average, tends to become Balkanized in 

periods of excessive production and thus interventions that are solely market-based 

may not accomplish their desired task because the benefits from transporting food to 

deficit regions may not cover the costs. Direct intervention may be required, despite 

overall abundance in cereal production. 
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EWS Recommendations 

In the following section, we propose some analytical recommendations for 

enhancing the use NDVI and millet prices to complement current food security 

assessment and analysis practices. 

Expand the use of NDVI in conjunction with other data sources to 

contextualize price signals.  Food security analysis conducted on markets in the 

Sahel should be done in conjunction with price, production, and NDVI data, 

particularly when other data streams are limited or non-existent, such as trade flows, 

transactions costs, and market barrier costs. Analysts may benefit from comparing 

current NDVI outcomes to similar historical outcomes to contextualize outcomes.  

NDVI outcomes may also be analyzed alongside current and historical cereal prices 

for a given market to determine if the price signal appears to be capturing all the 

relevant information that is available to the market. If NDVI outcomes have deviated 

substantially from historical levels, analysts should track the degree of the deviation, 

benchmarking it to similar deviations in the past, as well as the geospatial extent to 

determine if the shock is local, regional, or international.40 This can be done by 

creating NDVI buffers around markets, testing how deviations vary across different 

buffer sizes, and comparing how current conditions compare to similar conditions 

from the past. Moreover, a millet marketing year NDVI balance sheet may help 

determine how aggregate NDVI measures up to what one would expect.  This would 

enable an analyst to track back-to-back years of NDVI shocks, or consecutive years 

with below average outcomes that may not be categorized as shocks.  

                                                 
40 Sharing these analyses across country-level FEWSNET offices may also be fruitful as each country 

can compare and contrast their analyst to determine the likely effects in aggregate. 



 

 183 

 

Explore the ranking of NDVI anomalies inter and intra-annually. In 

chapter 6 we demonstrated that the dynamics of the growing season can be largely 

summarized by ranking monthly NDVI against past years.  From an operational 

perspective, a ranking system may be easily interpreted and used to triangulate 

results. Moreover, while NDVI anomalies can tell us how far off vegetation 

production conditions are from normal, ranking the anomalies against historical 

values can tell us exactly what the year looks like, or at the least, how the year 

compares relative to past ones. Ranking NDVI anomalies against each other within 

the growing season can reveal important information related to the month in which 

NDVI signal peaks. This information can be useful, particularly in confirming early 

starts or highlighting years with late green-ups. When these data are cross-referenced 

with prices, one can start to examine if and how traders and markets are reacting to 

the early/late green-ups. 

Consider the calculation of NDVI shock counts to augment NDVI 

analysis and to track the number of markets with extreme outcomes. If multiple, 

extreme NDVI anomalies are recorded within the agricultural marketing year it may 

be beneficial to track the number of markets with one and/or two standard deviation 

departures from normal. Similar to the NDVI ranking variable, a shock variable can 

be easily communicated to policy makers and offers a relatively quick way to 

quantify geospatially the extent of significant departures from normal. Moreover, 

these variables can be calculated around key production markets for the entire the 

Sahel and can start to assess the extent of a potential production shortfall. Future 

research should consider historic geospatial patterns among NDVI shocks and look 
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into testing whether or not particular patterns are associated with specific region-wide 

price regimes and/or price levels.  

Explore the use of rolling Granger-causality tests to determine if market 

connections are normal or abnormal.  While Granger-causality tests alone do not 

reveal the theory of change related to the causal nature of a relationship, they do 

highlight important statistical information contained in data that can help in isolating 

locations of price discovery or locations that are isolated and slow to react. A rolling-

window approach to tracking these relationships can help determine if leading and 

lagging markets are following expected behavior. Trade flow maps appear to only 

exist for normal years.  Augmenting these with dynamic Granger-causality analysis 

may aid in the development of maps for bad and good production years. Furthermore, 

when plotted against time, this type of analysis can reveal important insights as to the 

nature and degree of changes in the strength of market integration. Deviations from 

normal, in the sense that markets of price discovery no longer Granger-cause 

surrounding markets, may indicate reversals in trade flows or simply less integrated 

or less connected markets. Augmenting Granger-causality analysis with information 

on trade flows  and prices from neighboring countries can help in making this 

distinction, but these data are difficult to collect in a timely manner, and even when 

collected they may not reflect the full volume of trade flows occurring in the informal 

market. Future research should consider exploring how the inclusion of NDVI 

variables in the estimating equation affects the results. This may reveal how sensitive 

trade relations are to localized and national production shocks. 
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Limitations  

While this study has produced a reasonable amount of detail on the analytical 

usefulness of NDVI, it is also important to understand the potential limitations 

associated with the results. The study and all the results are limited by the spatial 

density of markets available for analysis as well as data quality and quantity. 

Important determinants of millet prices, such as trade volumes, transaction and 

transportation costs, locations and periods of distributional bottlenecks, agricultural 

policies, and the quality and quantity of land planted with millet do not exist or are 

only available for short periods of time and may be measured imprecisely. As a result 

of this, many of our models contain lagged dependent price variables as a way to 

account for these unobserved determinants of millet prices and price spreads. Not 

including these determinants would like lead to an omitted variable bias, as most of 

these factors are time varying.  NDVI data also have limitations and the relationship 

between NDVI and yields (and thus millet availability) is not without error. These 

errors can be exacerbated if one has not carefully vetted the remotely sensed data and 

accounted for potentially distorting influences.  

From an econometric perspective, lagged dependent variables in fixed-effect 

models can introduce a host of problems as the lagged term may be correlated with 

the error term thereby creating endogeneity and biased estimates. With the fixed 

effects estimator, the bias should become less significant as T increases. However, in 

our review of the literature we could not find a satisfactory answer for what critical 

value of T is needed for the bias to be “negligible” enough.  Given we have over 200 

time periods in our fixed-effect models we anticipate that any remaining bias will be 
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relatively small.  Bruno (2005) does provide a method for computing bias-corrected 

dynamic panel data models and a bootstrapped variance-covariance for small cross-

sectional dimensions. We plan to consider these as an additional robustness check in 

future research.  

The spatial nature of our data also means that outcomes are likely correlated 

across space and time which may also impart a bias on our standard errors through 

cross-sectionally dependent error terms. While we have attempted to test and correct 

for the potential bias introduced by lagged dependent variables and cross-sectionally, 

temporally dependent error terms, we realize that our methods may not be satisfactory 

to all. The one lesson we have learned from this study is that there is not one 

preferred method in the literature discussing practical empirical solutions for 

estimating dynamic panel, cereal price models where the time dimension largely 

dominates the cross-sectional dimension (T > N). Instrumental variables or 

generalized method of moments (GMM) methods are  potential solutions for 

addressing the endogeneity introduced by the price lag, however, the literature 

suggests these may not be a satisfactory solution as it may decrease the efficiency of 

estimates as T increases (see Kivet, 1995; Judson and Owen, 1999; Beck and Katz, 

2009). Explicit spatial panel data models are another way move forward, but the 

methods tend to be cumbersome and are heavily reliant upon a weighting matrix that 

is assumed to be fixed overtime and of which the true form is not known. Mutl (2006) 

provides some guidance on the topic.  One could use try different types of weighting 

matrices and look for convergence in results, however our price regime and Granger-

causality analysis suggests that market linkages are dynamic and thus separate 
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weighting matrices may be needed for bad, average and good price regime. Future 

research may practically address these econometric issues by looking at a suite of 

estimators and comparing and contrasting the results in order to determine which 

method is “most” appropriate. However, this exercise would require substantial time 

and effort and is currently outside of the scope of the current study. We now conclude 

the dissertation with the presentation of a future research agenda. 

Future Research Agenda 

Explore the impact of NDVI shocks on regional millet markets. A simple 

extension of the work done in this study is an expansion of our market performance 

model to regional millet markets. NDVI data is readily available across the Sahel and 

a reasonable database of millet prices for Burkina Faso and Mali could be obtained 

from FEWSNET. Expanding the price dispersion model to a broader geographic area 

would allow one to estimate the regional impacts of spatially correlated NDVI shocks 

on market performance. The model would also enable one to determine the sensitivity 

our initial results to determine if they are limited to only markets in Niger, or if there 

is a larger, regional shift in overall market performance during times of abnormal 

NDVI outcomes. 

Analyze the relationship between NDVI and other cereal and livestock 

markets.  A natural extension of the work conducted above is to consider how NDVI 

outcomes commove with prices for other primary agricultural crops and livestock 

prices in Niger and the Sahel in general. Understanding additional patterns of market 

performance and connectedness across Niger and the region would afford food 

security analysts a more comprehensive picture into how future NDVI shocks may 
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ripple throughout markets in the region.  Harvest Choice’s SPAM maps are available 

for a wide range of crops and are continually updated with improved data sources. 

Integrating these into similar models as the ones developed above would help in 

creating a dashboard of overall food market performance and connectedness across 

multiple dimensions. Moreover, incorporating an analysis on livestock prices and 

estimating the effects of changing vegetation production conditions on fodder 

shortages could deliver insights into how policies may smooth out market 

fluctuations, and reveal additional insight into historical and geospatial patterns not 

currently known.  

Investigate the relationship between micro-level satellite data and 

households outcomes. Enhancements in satellite and sensor technology have 

increased the spatial resolution of available data.41 An interesting research path 

forward is to consider the micro analysis of NDVI shocks on household well-being 

indicators (production, consumption, health, etc.). The World Bank Living Standards 

Measurement Survey of 2011 and the 2014 follow-up will enable panel analysis at the 

household level.42 Moreover, because each household is georeferenced in the survey, 

outcomes could be matched to local NDVI outcomes.  The panel nature of the dataset 

would help control for time invariant unobservable factors that could influence 

outcomes of interest. Using retrospective NDVI data would enable one to investigate 

into how numerous shocks in vegetation production conditions affect household 

outcomes and/or well-being at later points in time. This line of research has promise 

                                                 
41 http://modis.gsfc.nasa.gov/data/ 
42 

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23331

219~menuPK:4196952~pagePK:64168445~piPK:64168309~theSitePK:3358997~isCURL:Y,00.html 

http://modis.gsfc.nasa.gov/data/
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23331219~menuPK:4196952~pagePK:64168445~piPK:64168309~theSitePK:3358997~isCURL:Y,00.html
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23331219~menuPK:4196952~pagePK:64168445~piPK:64168309~theSitePK:3358997~isCURL:Y,00.html
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along the health dimensions, particularly in looking at the impact of extensive and 

repeated environmental shocks on children’s health outcomes. The 2005 food security 

crises in Niger resulted in many malnourished children, many of which were likely 

unobserved or uncounted due to isolation, poor infrastructure, or other limiting 

factors. Combining household level data with historical and current NDVI outcomes 

may help researchers better understand the long-term influence of such types of 

shocks.  

Examine the impact of NDVI information on market performance. Our 

analysis of price volatility indicated that uncertainty in millet prices tended to be the 

greatest in August and September. While the introduction and rapid expansion in the 

use of cell phones has likely improved information flows during this period, 

uncertainty (excessive noise) may still remain regarding the quality and quantity of 

millet that is expected to arrive at market. If NDVI data does contain information that 

is not currently available to the market, it is plausible that one could test for this by 

introducing NDVI summaries to farmers, consumers, and traders in randomly 

selected markets. Each randomly selected market could be allocated a different packet 

of NDVI information or no information at all and then one could plausibly use the 

methods of experimental design to determine if the information packet had any effect 

on price spreads and/or price levels. Varying types of NDVI summaries from local, 

regional, and international zones could be introduced into the experiment to 

determine which information source has the largest effect, if any effect is detected.  

Use NDVI to assess fundraising activities in the Sahel. A final line of 

research steps away from markets and production and into the realm of using NDVI 
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to test the objectiveness of government and/or charity press releases. O Grada (2007 

citing Iriye 2002) notes that independent monitoring of NGO activities is important 

because the increasing dependence of NGOs on public funding may tempt them into 

exaggerating the risks of a crisis. The same line of thinking may apply to official 

government press releases which may tend to downplay the risk of a crisis to avoid 

negative press. Building and analyzing a historical database of agricultural or 

environmental focused press releases alongside NDVI data could provide insights 

into whether or not the rhetoric of a document matches the remotely sensed 

vegetation production conditions recorded over a similar period of time. Historical 

millet prices could also be used to demonstrate which NGOs tend to exacerbate price 

outcomes by comparing them with prior years rather than years which look the same 

from a production perspective.  To assess objectively whether or not NGOs or 

governments were exaggerating the risks or extent of a crisis, NDVI and price data 

could be analyzed alongside official releases to determine if language is justified or 

exaggerated. At the government level, these data sources could be used to determine 

how accurately (or inaccurately) official information reflects actual conditions on the 

ground. 
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Appendices 

The following pages contain additional figures and graphs on the data used in 

the analysis. Some of these figures and graphs are discussed in the main text, some 

are not. They are included to provide a complete picture into the nature of the data 

used in the analysis. 
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Normalized Difference Vegetation Index 

According to NASA (2009), NDVI can be calculated by measuring the visible 

and near-infrared light reflected by vegetation.  Healthy vegetation, shown on the left 

in the figure below, absorbs most of the visible light that it comes in contact with it.  

On the other hand, a large portion of the near-infrared light that reaches the plant is 

reflected.  For unhealthy vegetation the process is reversed.  Less visible light is 

absorbed, and more near-infrared light is reflected yielding a lower NDVI.  Bare soil 

and rock will reflect about the same levels of near-infrared and red thus resulting in 

NDVI values near zero, whereas clouds, water and snow yield negative NDVI 

values.43 

Figure 31: Visual Representation of NDVI 

 
Source: NASA 

NOAA’s Advanced Very High Resolution Radiometer (AVHRR) has been 

measuring and mapping the density of green vegetation over the Earth.  The actual 

                                                 
43 http://adde.itc.nl/idv/documentation/docs/workshop/dsa/thematic/psn/veg_indices_ndvi.html 

http://adde.itc.nl/idv/documentation/docs/workshop/dsa/thematic/psn/veg_indices_ndvi.html
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index part of NDVI is created by applying the following formula to process AVHRR 

data: 

𝑁𝐷𝑉𝐼 =  
𝑁𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 − 𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑙𝑖𝑔ℎ𝑡

𝑁𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 + 𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑙𝑖𝑔ℎ𝑡
 

 

Calculations will always result in a number that ranges from minus (-1) to plus (+1).  

When the index is zero this indicates no vegetation.  A reading near one indicates the 

highest possible density of green leaves. 

Figure 32. Example of interpolated NDVI anomalies 

 
Source: Author’s calculations  
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Figure 33. SPAM overlay of physical area planted  

 
Source: Author’s calculations  
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Figure 34. Distributions of NDVI anomalies 

 
Source: Author’s calculations. 
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Figure 35. Distributions of real millet prices 

  
Source: Author’s calculations.  
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Figure 36. Comparison of receiver operating curves for probit specifications 1-4 

 
Source: Author’s calculations
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Figure 37. Probit specification 1-2 predictions 

 
Source: Author’s calculations 
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Figure 38. Probit specifications 3-4 predictions 

 
Source: Author’s calculations 
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Figure 39. Average predictions across all specifications  

 
Source: Author’s calculations 
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