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The early literature on common pool resources focused on the race for appropriation 

among users and its damaging effects on the resource stock and on the aggregate welfare 

of all users. The differential game framework was widely used to examine each user’s 

actions under non-cooperative management and to assess the losses from deviating from 

an optimal resource management under cooperation. Interest has recently shifted toward 

the effects of characteristics such as heterogeneity among users and level of commonality 

in the resource on the use of common resources.  



 

This article is interested in combining both effects: I consider a dynamic model of a 

common pool aquifer with a finite transmissivity used by two farmers with dissimilar 

efficiencies. I unravel the players’ behavior under different strategies and estimate their 

respective profits in order to evaluate the welfare effects of inequality and transmissivity.  

Solving for the aggregate profit of all players allowed me to revisit of a widespread result 

found in the common pool resource literature, which is that well enforced property rights 

are always associated with higher profitability; indeed, in the case of highly unequal 

players I reach a rather counterintuitive result as increasing transmissivity is proven to 

increase the overall profits. Such a result was never established in the literature at hand. 

However, on the distributional aspect, the model shows that the benefits of less efficient 

users always suffer from more transmissivity, even when the inequality is high enough to 

generate a raise in aggregate profits. 

For the validation of my theoretical results I carried out a series of experiments in the 

experimental laboratory at the Department of Agricultural and Resource Economics with 

volunteer subjects recruited from the University of Maryland. I used four experimental 

treatments. In the first two treatments the transmissivity is infinite; the players are highly 

differentiated in one treatment and identical in the other. The last two treatments are a 

replica of the earlier ones but with no transmissivity. 

The laboratory data were compared to the theoretical solution following four benchmark 

paths: the social optimum, the subgame perfect equilibrium, the semi-myopic, and the 

myopic. The results show that the decisions of a significant share of players follow the 

myopic path. All the theoretical findings were corroborated by the experimental results 

including the increasing effect of transmissivity in the presence of users highly unequal. 



 

In Chapter 5 on policy implications, I try to extend the analysis on the combined (or 

individual) effects of transmissivity and inequality on the aquifer use to the case when the 

possibility of communication between users, or the existence of a central agency, allows 

the emergence of alternative resource management modes. 

The first mode corresponds to the case of social optimum resource management; when 

users coordinate their actions to maximize the benefits to the community from the 

aquifer. The second mode of management corresponds to the case where, from a certain 

round, only one user, a priori the most effective, is allowed to use the resource, while the 

other user abandons extraction activities for the remaining duration of the game.  

Keywords: Common pool resources, CPR, aquifer, transmissivity, inequality, Subgame 

perfect equilibrium, SPE, experiment. 
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Chapter 1 Introduction 

1.1 Literature review 

The early work on common pool natural resources (hereafter CPR) highlighted the 

negative effects of common ownership on the use of CPR under a free entry regime such 

as fisheries (Gordon 1954) or resources with limited access like groundwater (Burt 1964; 

Brown and Deacon 1972), which results in the decline of their rents or even their 

destruction (Hardin 1968).  

The use of a game theory framework in the analysis of non-cooperative use of CPR 

provided more substantiation of the tragedy of the commons concept through a better 

understanding of decision making processes and ensuing evolution of stocks. Khalatbari 

(1977) showed that in the case of an oil field exploited by non-cooperative players, the 

seepage between the different sections of the field gave incentive for every player to 

extract more at any level of stock, leading to rapid field depletion and welfare loss for all 

players.  

A similar result was reached by Eswaran and Lewis (1984), as they used a discrete 

version of Khalatbari’s model and applied a backward induction program to construct the 

closed loop strategy for every player when they base their decision rule solely on the 

remaining stock. Backward dynamic programming was similarly used by Levhari and 

Mirman (1980) in the case of a multi-period fish war between two countries to obtain the 

decision rule for every player, based on this result they showed that with an infinite 

horizon a steady state is reached at a lower stock and lower aggregate utility than under a 

cooperative scheme. 
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Negri (1989) reaches the same result of lower stocks and smaller profits at the steady 

state in his study of a finite number of farmers using a common pool aquifer for 

agricultural production. The same outcome results under the two approaches – feedback 

strategies or open loop strategies – with the former strategies even more inefficient, as 

they integrate the extraction cost externality in addition to the appropriation externality 

incorporated in the open loop strategies. In the same paper, Negri briefly discusses the 

welfare effects of inequality in land ownership between farmers and concludes that 

inequality generates more incentives for water conservation. 

The repercussions of heterogeneity among users on CPR management and its various 

welfare effects received more attention in the past decade and have become a focal point 

of numerous studies (Schlager and Blomquist 1998; Bardhan and Dayton-Johnson 2000). 

In their study on the effect of inequality in wealth on the voluntary contribution to CPR 

conservation, Baland and Plateau (1997) show that wealth inequality has an increasing 

effect on conservation and on overall welfare when the production technology is concave 

in effort; however, in the cases where contributions are bounded, time-costs are variable, 

or production exhibits non-convexities, the effect of inequality is ambiguous. 

Aggarwal and Narayan (2004) use a two-stage model of a common pool aquifer where 

players decide on the level of investment in well depth in the first stage, and on the level 

of use over time in the second stage. The inequality derives from uneven access to the 

credit market. They show that the inequality effect is U-shaped. First it decreases welfare 

from aquifer use but, beginning at a certain threshold, more inequality increases welfare. 

A similar result was found by Dayton-Jhonson and Bardhan (2002) in a two-period game 

of common fishery exploitation. 
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Another feature of CPR that did not receive much attention in the early literature is the 

effect of a limited commonality of the CPR. The assumption of full or complete 

commonality simplifies the analysis since it allows for a CPR to be represented as a 

uniform body with the same (relevant) physical or biological properties, where the 

impacts of the agents’ actions on one another are instantaneous. In the case of 

groundwater, for instance, this would suggest an infinite transmissivity so that the aquifer 

can be treated as a single cell, with the surface of water at the same level at all times 

everywhere and such that all farmers face the same extraction cost (Brown and Deacon 

1972).  

In reality, transmissivity is finite, and the movement of water underground is a relatively 

slow process, which results in a lag in time and space of pumping effects, as shown in 

Brozovic et al. (2006), and attenuates the race-for-water predicted by Provencher and 

Burt (1993). An analogous outcome is observed in the case of near-shore fisheries, where 

the reduced mobility of species like clams creates conditions where limited property 

rights might emerge and provides incentives for fishermen to reduce their catch (Janmaat 

2005). 

1.2 Purpose of the Work and Main Results 

In this paper, I address the complex situation where an aquifer with finite transmissivity 

is exploited by farmers with heterogeneous efficiencies.  In my model, presented in the 

next section, I untangle the players’ comportment under different strategies to solve and 

estimate their decisions and subsequent profits. Using the results found here, I evaluate 

the welfare effects of inequality and transmissivity.  
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Special interest is given to the aggregate cumulative profits of all players. This outcome 

will allow challenging the commonly accepted principle in the CPR literature that well-

enforced property rights are always associated with higher profitability. This result is 

questionable in the case of heterogeneous users.  Indeed, resource commonality can have 

positive effects. Although the negative externalities of competition for the appropriation 

of more resources persist, a positive externality emerges due to heterogeneity; this 

externality arises by placing more resources at the more effective user’s disposal. 

Another interesting result is that the gains from making the resource “more common”, if 

any, are not generalized; indeed less-efficient users are always found to lose from 

increased transmissivity. 

For the empirical validation, I start by reworking my model for the discrete case, with 

multiple rounds. I use the backward solution to derive the players’ decisions following 

different strategies. I reaffirm my theoretical findings, with the continuous model, with an 

analytical proof for the one round game to, and I follow with the numerical evidence 

from the 10-round game. 

I use laboratory experiments to reproduce the special cases of common pool aquifer use – 

which are described in the theoretical model – and test for my theoretical findings. I 

investigate the effects on decision making of a shift in transmissivity in the presence of 

users with unequal and identical efficiencies under a time-dependent setting.  

Walker, Gardner, and Ostrom (1990) pioneered the use of experiments to validate the 

theoretical assumptions on rent dissipation in CPR. Their simply designed experiment 

was set up as a one-round game with no communication between subjects. Later 

experimental studies tried to handle more complex settings of CPR use. Ostrom and 
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Walker (1991) showed the potential for more efficient extraction from a CPR when 

communication between appropriators was allowed. Hackett, Schlager, and Walker 

(1994) closely studied one aspect of the problem – namely, communication – and the 

prospects for collective action in the presence of heterogeneous users. Herr et al. (1997) 

considered the case of a resource with a stock effect, and confirmed the time-dependent 

externality arising from non-cooperative use of a CPR.  

In the experimental literature, as in the general literature on CPR there is a clear lack of 

studies that focus on the combined effects of heterogeneity and (finite) transmissivity on 

the total and distributional welfare and on the resource conservation; this article is a first 

step to fill this gap. In this attempt it was possible to draw an interesting first lesson, 

which states that in the presence of unequal players, making the resource more common 

might increase total welfare. This result, established theoretically and validated by 

experimental results, goes against the common wisdom of less profits and lower stocks 

under open access.  

In the last section, I try to extend the analysis on the combined (or individual) effects of 

transmissivity and inequality on the aquifer use to the case when the possibility of 

communication between users, or the existence of a central agency, allows the emergence 

of alternative resource management modes. 

The first mode corresponds to the case of social optimum resource management, when 

users coordinate their actions to maximize the benefits to the community from the 

aquifer. 
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Another mode of management corresponds to the case where, from a certain round, only 

one user, a priori the most effective, is allowed to use the resource, while the other user 

abandons extraction activities for the remaining duration of the game. 

Comparing the profits with a single user to the total profits under non-cooperative 

management, helps to reveal the conditions, in transmissivity and inequality, under which 

a player is better off buying out the other player, these conditions are the requirements for 

water markets to emerge. 
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Chapter 2 The Continuous Model 

This chapter is particularly important for the rest of this dissertation, it introduces the 

general analytical model, that of an aquifer with a finite transmissivity, exploited by two 

unequal users with dissimilar efficiencies. 

In the case of non-cooperative users, given the continuous extraction game considered in 

this chapter, I differentiate between open loop and feedback strategies; I begin by solving 

for the players’ decisions and related stocks’ evolution, then work out the individual and 

aggregate cumulative (i.e. over time) profits.  

Under both strategies, the results support, in the case of identical users, the widely 

recognized negative effect of increased externalities and/or open access on aggregate 

welfare; the results also show that inequality across users has an unambiguous increasing 

effect on aggregate welfare. 

The most interesting result, however, relates to the combined effect of transmissivity and 

inequality among users; the model shows that with highly unequal users, the aggregate –

cumulative– profits increase with transmissivity. At low levels of inequality, the effect is 

decreasing, similar the case with identical users.  

On the distributional side, the analysis shows that the increase in aggregate profits, when 

it occurs, is not uniform, indeed, the profits of the less efficient user always drop as 

transmissivity goes up. 

Finally, I consider the case with cooperating users, I solve for the players’ decisions and 

the corresponding aggregate cumulative (i.e. over time) profits; I use these outcomes to 

draw some interesting remarks regarding the effect of inequality and transmissivity on the 
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aggregate profits, and on the difference between this last outcome and the aggregate 

cumulative profits under non-cooperative management. 

2.1 The Model 

I consider here the case of a groundwater aquifer commonly owned by two economic 

agents, h and l, endowed with fields of identical dimensions both at the same elevation E 

from a given point of reference (surface of the sea). For simplicity, I assume that the 

fields are of unitary surface sizes. Groundwater operates as a two-cell aquifer, where the 

surface of the water table beneath each agent is uniform but is not necessarily identical to 

the surface beneath the next agent (see Figure 1). Given my assumption on surface sizes, 

the stocks of water in the two compartments of the aquifer are equivalent to the height of 

the water table vis-à-vis the sea level. I also assume that the aquifer is sufficiently deep so 

that total depletion in one part or the other cannot take place.  
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Figure 1 The two cells aquifer 
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Under the assumption of no seepage between the two compartments, the equation of 

motion that defines stock adjustment to water use and recharge is given by:
1
 

ititit wRx  ,  i=h,l        

where itx is the change in itx , the level of water table beneath agent i at time t, wit is the 

rate of water extraction chosen by farmer i at time t, and itR corresponds to the rate of 

recharge of the aquifer at time t beneath agent i.
2
  

Allowing for Rit to differ from one cell to another would induce an interesting type of 

heterogeneity: heterogeneity in endowments. I will not consider this option in the present 

research. I will only examine the case where the recharge is uniform across farmers, and 

is exogenous and constant over time. This also means that the model does not consider 

the percolation of irrigation water. Extracted water is entirely consumed by the crops. 

This assumption does not affect the results compared to models that assume percolation 

is proportional to extraction. 

When it is “allowed” for water to move from one side of the aquifer to the other, the 

equation of motion becomes:
3
     

                                                      

1
 This result is straightforward when itw and itR are continuous and bounded. Between time t and t+dt the 

change in water stock is given by dtwdtRxx itititdtit 
 

2
 I assume that every agent can pump water directly underneath his/her field. Therefore the extracted 

amount is expressed as the equivalent change in the farmer’s “own stock”. 

3
 The subscript –i stands for the other player, i.e. when i=h then –i refers to l and vice versa. The formula in 

(1) is equivalent to saying that the total change in stock under communication is equal to the change when 

there is no communication augmented by the variation induced by the transfer (which is positive when 

water moves from j to i) :  ititsitit xxsxx  0
 . More formally, given the stock 

itx  at instant t, the stock 

at time t+dt is given by:    
dtdt

wR
xdt

wR
xsdtwdtRxx itit

it

itit

ititititdtit 














 








 
 


22

 where 
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 itititit xxswRx  
 ,    i=h,l    (1) 

where s is the transmissivity or seepage coefficient assumed to be between 0 and infinity. 

The transmissivity coefficient is the element of my model that allows control of the level 

of commonality in the resource’s use. It is an indication of the degree of commonality 

between the two “cells” of the aquifer, and reflects the magnitude by which the different 

agents impinge on each other.  

When s takes a value of 0, the problem corresponds to the case where there is a perfectly 

impermeable frontier between the two “cells” that water cannot cross. In this case, the 

problem simplifies to a sole owner optimization problem. As shown in figure 2 the stocks 

are higher since players have more incentives to conserve the resource in the absence of 

externality.   

  

 

 

 

 

 

For drastically large values of s the situation is analogous to an infinite transmissivity 

aquifer where water circulates from one side to the other instantaneously. If there is a 

                                                                                                                                                              

 







 
 dt

wR
x itit

it
2

 is the average stock of agent i between time t and t+dt. Finally, I derive: 


dt

xx itdtit  

   itititit xxswR     
dt

wRwR
s itititit








  

2
 where the last term vanishes as dt tends to zero. 

wh 

xh 

wl 

xl 

Water table level 

underneath user l 
Water table level 

underneath user h 

Sea level Sea level 

E-xh 

E-xl 

Ground level Ground level 

Figure 2 The zero transmissivity aquifer 
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difference in stocks, say xit > x-it, then itx is negative and itx is positive but both itx  and 

itx are of a great magnitude. Therefore, as long as xit > x-it there will be a continuous and 

rapid decline in xit and an increase in x-it until there is no difference between stocks in the 

two cells. This case is known as the bathtub aquifer (figure 3).  

 

 

 

 

 

 

 

 

I assume that there is no storage facility and that all extracted water is used for irrigation 

purposes. I also assume that the aquifer is the only source of water for both farmers. 

Agent i uses the extracted water, with proper levels of other inputs, in agricultural 

production and receives a revenue: 

)( itiit wFNR  ,      i=h,l    (2) 

where itNR is the revenue net of all expenses other than extraction costs and )( iti wF  is 

agent i’s production function, which is strictly concave in water use and 0)0( iF holds. In 

the rest of the paper, I will simply assume a quadratic production function of the form:
4
  

                                                      

4
 When the optimal choices are low enough, the quadratic form does not conflict with positive marginal 

productivity of water. 

wh 

xh 

wl 

xl 

Water table level 

underneath user l 

Water table level 

underneath user h 

Sea level Sea level 

E-xh E-xl 

Ground level Ground level 

Figure 3 Infinite transmissivity 
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2
)(

2

it
itiiti

w
wawF  .    i=h,l    (3) 

In the present model, Inequality is introduced under the presumption that different agents 

might have different efficiencies. The marginal revenue from water at the origin will be 

used as a proxy for efficiency. When ah > al for any amount of water wt, player h will 

derive more profits than player l. 

In the model, I will mostly focus on the effects related to level of inequality, as 

materialized by the difference ah - al; and explore how those effects evolve following 

mean preserving changes in efficiencies, including the case with identical users with the –

same– efficiency, (ah + al)/2. 

This provides the accurate comparative statics tool, allowing the observed results to be 

attributed solely to inequality, not to changes in the average efficiency.  

When agent i lifts an amount wit from the aquifer, s/he bears the corresponding extraction 

cost: 

 ititititit xEcwwxC ),(     i=h,l    (4) 

where: c is the cost of lifting one unit of water over one unit of depth.  (i.e. the cost is 

assumed linear) 

E is the level of the ground surface, assumed to be identical for both users, and calculated 

relative to the sea level.  

Thus, itxE   is the distance between the surface of groundwater beneath agent i and the 

ground; and  itxEc   is the unitary cost (per unit of water) faced by the farmer at 
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instant t. The assumption here is that the farmer pumps from the nearest point.
5
 The cost 

of extraction varies over time as stocks change and extracted quantities vary. 

The net payoff to agent i at time t is given by:  

 itit
it

itiit xEcw
w

waNP 
2

2

.      i=h,l  (5)  

Equations (1) and (5), along with the initial level(s) of water completely define the 

extensive form of my differential game. The objective of agent i is to maximize the sum 

of her net payoffs: 

dtNPe

T

it

rt




0

      i=h,l    (6) 

where T is the time horizon of the control problem, considered infinite for the rest of this 

section. 

2.2 The Game 

First, I will focus on the non-cooperative case where I assume that the two players do not 

communicate with each other and cannot engage in any form of cooperation.  

The sole objective of every player is to maximize the sum of her discounted net benefits 

with no consideration for the impacts of her actions on her neighbor’s payoff. Her 

strategy is, however, motivated by her beliefs about the characteristics of her rival’s 

strategy and course of action.  

                                                      

5
 Again, more formally, the actual total cost between instant t and instant t+dt is given by:  






















dtt

t

it
itit

dtt

t

ititit dtdt
x

xhcwdtwxC
2

),(
 , which justifies (4).  
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I assume that a central authority does not exist or, if it exists, does not intervene in any 

way to stop or restrain competition among players to establish higher revenues from the 

aquifer or safeguard the water table. 

The levels of water in the two sides of the aquifer are given at the start of the game. The 

other characteristics of the aquifer, recharge and transmissivity, are also known to both 

players with certainty.  

Finally, I assume that both players have the same discount rate (r > 0) and that they 

maximize their benefits over the entire extraction-game horizon (supposed infinite). 

Every player knows her efficiency and her rival’s efficiency. 

The maximization problem of player i is given by: 

  dtxEcw
w

waeMax itit
it

iti

rt

wit















0

2

2
    i=h,l  (6) 

subject to:  itititit xxswRx  
   i=h,l  

  0, ltht ww  (control variables are non-negative).
6
 

  Exx ltht ,  (the level of water cannot rise above the ground).
7
 

  xh0 and xl0, the stocks at t = 0, are given. 

Even with the assumption that there are no threats and that both players have perfect 

knowledge regarding the stock of water on both sides, this game can still have more than 

one Nash equilibrium depending on the players’ strategies.
8
 Indeed, every player’s 

                                                      

6
 This condition is rather undemanding in the non-cooperative game. 

7
 Requires some conditions on the efficiency and recharge. 

8
 Assuming no threats rules out trigger strategies. Perfect knowledge requirements depend on the strategy 

of the game. I introduce this assumption to rule out mixed strategies. 
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decision is dictated by her own strategy of extraction, which expands the entire game 

horizon:  ],0[, Ttwiti  . In the next section, I will present two particular kinds of 

Nash equilibrium, the open loop equilibrium and the closed loop equilibrium. This will 

help illustrate the issues that this research projects intends to explore. 

In the open loop equilibrium, every player observes the levels of water at the beginning 

of the game (xh0, xl0) and develops her strategy of extraction for the entire game. Her 

strategy becomes:  .],0[),( Tttww ititi   This approach presupposes that every 

player takes her opponent’s actions as given (as a function of time) and none react to any 

deviation in the opponent’s behavior. Every player picks an extraction strategy at the start 

of the game and commits to it for the entire time horizon. 

Under the open loop approach, the entire game takes a static form where the evolution of 

stocks is irrelevant and all actions are determined at the beginning. By assuming that the 

opponent will not base her intensity of extraction on the levels of stock, every player will 

end up herself lifting water at a lesser rate and the outcome for both players is higher.
9
 

Contrary to the open loop outcome, the closed loop equilibrium has a dynamic form since 

actions are made following a rule based on the in-progress state of the world. The 

player’s decision is wholly tied to the actual levels of water stock. She constantly 

observes the state variable and, based on her observations, decides the amount of water to 

extract. Her strategy can be written as  )),(),(( txtxfw iiiiti  .],0[ Tt  where 
if  is a 

stationary function.  

                                                      

9
 More on the topic in Clemhout and Wan (1994). 
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In the rest of this section, I will analyze the evolution of water extraction under the open 

loop equilibrium with a finite transmissivity and the closed loop equilibrium with an 

infinite transmissivity;
10

 for both strategies the primary interest is to derive the 

cumulative profits, defined as the discounted sum over time of individual users profits, as 

well as the aggregate cumulative profit, by summing up the cumulative profits (over 

time) for both players.
11

 

The other statistics that will be included in the present analysis are the net individual 

profits and the aggregate profit (summing the individual profits) at the steady state; these 

statistics are more pertinent when the concern is also about the survival of all users, 

resources are generally more abundant (at least relatively) early and rarer in the later 

stages of the game. The analysis at the steady state is also a means to draw some 

preliminary results that are more difficult to establish with cumulative profits. 

Finally, I will extend the analysis to the case where the two users coordinate their 

extraction decisions to maximize the Social Optimum, defined as the cumulative profits 

from the aquifer. 

2.2.1 The Open Loop Game 

In this subsection, I start by spelling out the optimality conditions under an open loop 

strategy, for my model; I then report the optimal path and the actual solution given the 

conditions in stock at the start of the game, the step-by-step mathematical analysis is 

presented in Appendices A and B. I also derive the system at the steady state, and use the 

                                                      

10
 The actual full solution for the general case, with a finite transmissivity, was not possible for feedback 

strategies due to computing limitations. 

11
 In what follows, cumulative (profits) will be used to refer to the sum (of profits) over time, while 

aggregate (profits) is used when summing profits across users. 
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computed (aggregate and individual) cumulative profits to derive my observations 

regarding the combined effects of transmissivity and inequality, under non-cooperative 

management. 

2.2.1.1 The Optimality Conditions for the Open Loop Nash Equilibrium 

In the open loop equilibrium, the present value Hamiltonian of player i is given as:
12

 

   )(
2

2

ititit

p

ititit
it

iti

rtp

it xxswRxEcw
w

waeH 







 

           i=h,l (8) 

 )( ititit

p

it xxswR     

where 
p

it  is the co-state variable (evaluated at time 0) associated with the state variable

itx , her own stock, and 
p

it  is the co-state variable (also evaluated at time 0) associated 

with the state variable itx , her neighbor’s stock. 

Under the open-loop solution, player i solves for –and commits to– the optimal profile 

over time of control variables wit to maximize her cumulative profits, over time, given the 

stocks’ evolution ( itx and itx in (7)) and the conditions at the start.  

With an interior solution, wit must satisfy the first order condition: 

C1    P

itititi

rt

it

P

it xEcwae
w

H





 0 .  i=h,l  (9.a) 

Following the Pontryagin’s Maximum Principle along the optimal path, the evolution 

over time of the co-state variables ( P

it and P

it ) fits the conditions: 

C2 P

it

P

itit

it

P

itP

it sscw
x

H
 




    i=h,l  (9.b) 

                                                      

12
 The Hamiltonian is similar to that of an unconstrained problem under the assumption that the optimal 

solution satisfies the conditions on state and control variables. 
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C3 P

it

P

it

it

P

itP

it ss
x

H
 








 .    i=h,l  (9.c) 

In addition to the equations of motion in both stocks (1).
13

  

The first condition of optimality requires every player to use her stock to the point where 

the (present) marginal benefit from one more unit of water lifted from (his side of) the 

aquifer and used in agricultural production (given the no storage assumption) is equal to 

the (present) shadow-value of one more unit of water in the aquifer.  

Conditions C2 and C3 reflect the transition over time of the (present) shadow-values (for 

player i) of stocks xit and x-it. The estimation of P
it

 

reflects the assumption that player i 

infers his/her opponents actions only as a function of time and not stock level.
14

 

It can be shown that the functions in the Hamiltonian meet the sufficiency conditions and 

that the solution is unique since Hit is strictly concave in wit (See Appendix A for the 

proof). 

Replacing P

it  and P

it  by their current values, respectively, it  and it  given by: 

it

rtP

it e              i=h,l   

it

rtP

it e           i=h,l   

and equations C1, C2 and C3 become: 

C1   itititi xEcwa 0     i=h,l  (9.a)’ 

                                                      

13
 The conditions on wit , w-it, xit and  x-it are not included under the assumption that the optimal solution 

meets those conditions for an appropriate choice of ah, al, and R. 

14
 That is, 0









it

it

x

w
 is assumed for player i=h,l. 
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C2 
ititititit sscwr       i=h,l  (9.b)’ 

C3   ititit srs        i=h,l  (9.c)’ 

2.2.1.2 Solving for the Optimal Open Loop Path 

The values of wit and w-it 
15

 along the optimal path are derived from the optimality 

condition C1, and substituted in the transition and the motion equations, to obtain a 

system of linear first order differential equations that can be rewritten in a matricial form 

as follows: 

BVAV  .          (10) 

where  itititititit xxV   ,,,,, ,  0,0,,,, 22

iiii acEcacEcEcaREcaRB   , 

and 

 
 








































srs

srs

scsrc

scsrc

scs

ssc

A

0000

0000

0)(00

00)(0

0010)(

0001)(

2

2

. 

The general solution to equation (10) is totally defined by the eigenvalues (and 

eigenvectors) of matrix A (Simon and Blume, 1994, p 678-81) derived from Det[A- α 

I6x6] =0, where I6x6 is the identity matrix and Det[A- α I6x6] is the determinant of [A- α 

I6x6] that can be written factorized as follows:    

Det[A- α I6x6] = EQ1(α) EQ2(α) 

where:     EQ1(α) =     22 )()( ssrcsrccsr   , and 

                                                      

15
 Explicitly,   ititiit xEcaw   for player i=h,l. 
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  EQ2(α) =     22 )2()( ssrcsrsccsr    

As detailed in Appendix B.1.1, matrix A has two eigenvalues, α1, the negative root of 

equation EQ1(α) = 0, and α2, the negative root of EQ2(α) = 0, with:
 16
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The corresponding eigenvectors (see Appendix B.1.2) are respectively v1 and v2: 
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and the general solution is hence derived as: 

2211
21 vecvecV

tt

P


 , 

where c1 and c2 are two arbitrary constants, that will be determined so as to satisfy the 

boundary conditions (relatively to the stock levels). It should mentioned here that in the 
                                                      

16
 The other roots are positive and do not carry an economically relevant meaning and certainly do not 

correspond to an optimum solution to the objective maximization problem. 
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case where s=0 both equations combine (EQ1(α) = EQ2(α)) and Det[A- α I6x6] =0 has only 

one (quadratic) root.
17

 

The solution to the original linear system of differential equations ( BVAV  ].[ ) is 

simply given by: 

BAvecvecBAVV
tt

P .][.][ 1

2211

1 21  
     (11) 

Given xi0 and x-i0, the state of the stocks at time 0, it is possible to solve for the unique 

pair of constants, c1 and c2: 
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2422
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ssrrcsrsr

scraa
xxc ii

ii
    (12.b) 

As mentioned earlier, the interest here is in looking into the effects of heterogeneity as it 

relates to efficiency of production of both players, it is therefore consistent to consider 

that the stocks of water, in both compartments of the aquifer, are equal at the start of the 

game: xi0 = x-i0 = x0.  

Failing to make this assumption would introduce another type of heterogeneity 

(heterogeneity in initial stock) that is beyond the scope of this research work. 

2.2.1.3 The Open Loop Solution 

The stock level of player i (i=h,l) can be derived from (11) as:  

                                                      

17
 In this case, the solution still has the same exponential form, but the math further simplifies to show that 

decisions and stock of player i are not affected by those of her opponent –i,  which is consistent with the 

extraction game with zero transmissivity.  
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Eececx iiiitt
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(13.a)  

where 
)24()2(2

)2(
)(

22 srsrcsrsr

srr
sF




 , a nonnegative function of s. 

Substituting the value of λit, provided by Equation (11), in condition C1 on the optimal 

level of water use (from Equation (9.a)’) yields: 

  )()(2 21

2211 sFsaaescecRw ii

tt

it 
      

(13.b)  

Given the values of xit and wit and the condition on stocks at the start of the game, xh0 = xl0 

= x0, it can be established that following the open loop game, at any time t:
18

 

)()(0 iiitit aaww   , and 

)()(0 iiitit aaxx  
 

The efficient user extracts more water and her stock is lower than that of her partner, 

therefore the necessary conditions in equation (6) can be simplified as: 

 0ltw
 
& Exlt   . 

The computed values of xit and wit are used (Equation (5)) to obtain NPit, the net payoff of 

player i at time t; after integration over time (as presented in Equation (6)), the 

cumulative profits of player i, noted  00

,

, , xxV OLs

aa ii 
 hereafter, are given as: 

                                                      

18
 The same result will be established at the steady state, with an interior solution, but with no conditions on 

the stocks at time zero. 
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with P1(s) and P2(s) two nonnegative functions of s,
19

 defined respectively as: 
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I then define   sxaaV lh

OL ,,, 0 , the sum of aggregate cumulative profits of both players 

following the open loop path:    
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19
 See Appendix B.1.4 
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2.2.1.4 The Steady State 

This section focuses on the steady state. In equation (11), as t tends to infinity, the two 

first terms in the RHS vanish ( t
e 1

 and t
e 2

 converge to zero given the negative sign of α1 

and α2), and the system V converges continuously toward SSV , the system at the steady 

state, such that:
20

 

BAV SS .][ 1          (16) 

The subsequent stock of player i, at the steady state, and level of use (more details in 

Appendix B.1.3) are, respectively: 

)(
2

)(

4222

)(
sF

aa

sr

R

r

R

c

R

c

aa
Ex iiiiSS

i
 







   i=h,l (17) 

)()( sFsaaRw ii

SS

i       i=h,l  (18) 

Where F(s), as defined before (13.a), a nonnegative function of s. 

I can already derive the following consequences of inequality: 

)()(0 ii

SS

i

SS

i aaww   ,  

which indicates that the agent with higher efficiency uses more water at the steady state; 

a higher transmissivity also stimulates greater transfer of water towards the more efficient 

agent, for any given level of inequality )( ii aa  .
21

 

0)()(   ii

SS

i

SS

i aaxx ,  

                                                      

20
 An alternative way to derive the steady state is by recognizing that it corresponds to the situation where 

the system stops moving, the motion and transition equations are set to zero: 0 itititx   , while the 

optimality conditions continue to hold. 
21

 Note that   )(2 sFsaaww SSii

SS

i

SS

i    is increasing in s (in absolute value). 
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which shows that the efficient agent endures higher extraction rates since her stock is the 

lowest (if 
lh aa  then SS

l

SS

h xx  ).
22

 This also means, since the efficient agent uses more 

water, that her extraction costs are higher.  

However, the difference in efficiency has no effect on the average stock of water in the 

aquifer   2/SS

l

SS

h xx  . The average stock is decreasing in transmissivity, which is 

consistent with the standard concept that more access to the resource leads to its physical 

depletion.  

The net profit of player i at the steady state, noted OLSSs

aa ii
NP 



,

,
, is given by: 
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with P3(s) and P4(s) two nonnegative functions of s, defined respectively as 
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Finally, the aggregate profit at the steady state is obtained by summing up the profits of 

the two players: 
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     (20) 

2.2.1.5 Preliminary Results under Open Loop Equilibrium 

Result OL1: Under Open Loop, the aggregate profits from the CPR for identical players 

are decreasing in the level of transmissivity. 

                                                      

22
 The overall use at the steady state is, however, unaffected by inequality since Rww SS

l

SS

h 2 , while the 
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The first two terms on the RHS of equation (20) correspond to the total profits at the 

steady state, when both players display the same levels of efficiency. Indeed, for identical 

players (ah = al = a) equation (20) suggests:  
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Thus,  saa,TNP OLSS ,  is a function only of s and, as portrayed in figure 4.a, 

transmissivity has a steady diminishing effect of on the total profits at the steady state for 

identical players.
23

 This is due to the fact that the only effect of a higher transmissivity 

for identical agents is to intensify the race to the bottom, decreasing the stocks of water 

(for both agents) and resulting in higher extraction costs. 

The same observation on the effect of transmissivity is valid with cumulative profits. 

With identical users, the change in aggregate cumulative profits, as transmissivity 

increases from zero to infinity, is given by:
24
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where PQ1, PQ2 and PQ3 are three positive variables (See Appendix B.1.5.1 for details).  

From the formula it can be concluded that the difference holds a negative sign when the 

stock at the start is at the maximum, E, given that the conditions for interior solution 

                                                      

23
 Its first derivative with respect to transmissivity is  

 
0

2

2,
2

2









 

sr

Rc

s

saa,TNP OLSS

. 

24
 For simplification I use  ,,, 0xaaV OL  to refer to the limit of  sxaaV OL ,,, 0

 as s approaches infinity. 



- 27 -  

(with zero transmissivity) entail 
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 In Appendix B.1.5.1, I 

provide the proof that the difference is always negative, for any level of stock at the start 

that corresponds to an interior solution; which shows the decreasing effect from a non-

incremental increase in transmissivity on the aggregate cumulative profits of identical 

users.
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 In the general case, with s=0, the condition on stock (the level of water cannot rise above the ground) at 

the steady state translates as 
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Result OL2: Under Open Loop, inequality has an increasing effect on the aggregate 

profits from the CPR. 

At the steady state, the last term on the RHS of equation (20), depicted in figure 4.b, is 

positive and increasing in s and in the degree of inequality.
26

 It shows that inequality 

generates extra payoffs that are proportional in magnitude to the square of (ah – al), and 

that more transmissivity boosts those additional benefits. For instance, when there is no 

transmissivity (s = 0), P4(s) is equal to zero and the benefits from inequality vanish.  

A similar increasing effect of inequality is depicted for the aggregate cumulative profits 

from the Open Loop game; based on the computed formula for aggregate cumulative 

profits (15) I obtain a net effect of inequality as follows: 
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with P1(s), as introduced in (14), a nonnegative function of s. 

Result OL3: In the case of highly unequal players, transmissivity has an increasing effect 

on aggregate profits. 

The first derivative of aggregate profits at the steady state with respect to transmissivity is 

given by: 
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where the first term is negative, while the second part is strictly positive and increasing 

(in magnitude) in the level of inequality.
27

  

A marginal increase in transmissivity has two opposite effects. It diminishes overall 

benefits due to amplified externalities (the first RHS term), as better circulation of water 

has the effect of decreasing the (average) stock at the steady state resulting in higher 

extraction costs for both players. 

On the other hand, it has a welfare increasing effect due to a greater benefits generated 

when allowing the efficient player to have more access to his/her neighbor’s stock 

(second RHS term). Indeed, as transmissivity increases so does the difference in the level 

of water use between the two players (in favor of the efficient solution) which translates 

into higher revenues from water use. 

Regarding the effect (of a non-incremental increase in transmissivity) on aggregate 

cumulative profits, a detailed analysis is presented in Appendix B.1.5.2;  for the two 

extreme cases when with the stock at the start is at the maximum, E, and when it is a the 

minimum level for an interior solution. In both cases, the effect displays the same 

tendency as established at the steady state, and depends, in the same way, on the average 

efficiency combined with the level of inequality. At higher levels of average efficiency, 

and higher levels of inequality, the effect is increasing. When the average efficiency is 

low and/or inequality is not high enough, a non-incremental increase in transmissivity 

causes a drop in aggregate cumulative profits. 

                                                      

27
 This is simply the derivative in the case of symmetric players, 
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Result OL4: Transmissivity always decreases profits for less efficient players and, in the 

case of a high inequality between players, increases benefits for the more efficient ones. 

The effect of a marginal increase in transmissivity on the individual profits of player i,
28

 

at the steady state, is given by: 
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where P3’(s) and P4’(s) are respectively, the derivatives of P3(s) and P4 (s), and hold a 

positive sign everywhere.  

Using the change of variables introduced in Appendix B.1.5.2 (ah = ā + ε and al = ā – ε), 

the effect on the less efficient user can be rewritten as: 
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The marginal effect of an increase in transmissivity holds a negative sign at the origin (at 

ε=0, with identical users); at the highest level of inequality with a non-negative solution 

SS

lw in equation (18), ε = εmaxW, the marginal effect is nil for the less efficient user:  

0 =,

,

OLSSs

aa mazXmazX
DNP 

 
 

Given that the marginal effect on the less efficient user is quadratic in ε, with a strictly 

positive coefficient in ε
2
, it is safe to conclude that the effect is negative for any level of 

inequality between 0 and εmaxW. 

                                                      

28
 Individual profits are provided in Equation (19). 
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For the efficient user, the marginal effect of an increase in transmissivity still holds a 

negative sign at the origin (at ε=0, with identical users); however, for ε = εmaxW, the 

marginal effect is strictly positive:  

   mazX

OLSSs

aa sPRDNP
mazXmazX

 '2 = 3

,

,




 

Result OL4 provides a clarification with regard to the interpretation of Result OL3, the 

increase in profits for highly unequal users, when it occurs, is not generalized, it is 

entirely taken by the efficient user, while the less efficient one sees her profits drop. 

2.2.2 The Closed Loop Game 

In this subsection, I will try to expand the analysis and solve for the players’ decisions, 

throughout the exploitation horizon, under feedback strategies. Due to the limitations of 

computer capacity (see Appendix F for full description of computing resources used in 

this research), I only present the complete solution in the case of infinite transmissivity; 

for finite levels of transmissivity, I only develop the general form of the solution in 

Appendix B.2.1. 

I use the Bellman Equation to derive the optimality conditions regarding the individual 

players’ decisions then I solve for the optimal path under feedback strategies and the 

related steady state. The computed (aggregate and individual) cumulative profits are then 

used to confirm the previously obtained results, under Open Loop strategies. 

2.2.2.1 The Closed Loop Nash equilibrium with Infinite transmissivity 

Given the assumption of infinite transmissivity and the equal (across compartments) 

stock of water x0 in the aquifer at time t = 0, I conclude that the level of water is –all the 

time– the same in both parts of the aquifer: 
tltht xxx  . 
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The condition on mass conservation dictates that, in a perfectly transmissive aquifer, the 

stock evolution follows a simplified equation of motion:  

2

ltht
t

ww
Rx
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,

,  designate player i’s maximal present value when the stock of water in the 

aquifer is xt, the Bellman equation corresponding to the dynamic maximization problem 

is given by: 
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is the first derivative of the value function  t
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2.2.2.2 Solving for the Closed Loop Nash equilibrium 

Solving for the maximal present value function, for the individual player, provides the 

optimal path and cumulative profits for any given level of stock xt, particularly at the start 

of the game, when xt = x0.  

The optimal level of extraction for player i (when she chooses to extract) follows: 
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substituting the new expressions of wit in (23) I obtain: 
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     i=h,l (25) 

From the last result, it can be concluded that the solution to player i dynamic 

programming problem is polynomial of second order in xt: 
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Substituting the new formula for individual cumulative profits for players h and l, 
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) in equation (25) 

generates a system of 6 equations in 6 unknowns: β0h, β1h, β2h, β0l, β1l, and β2l. I solve for 

all the betas
29

 and obtain finally the analytical expression for the value function 
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i=h,l (27)  

where PQV1, PQV2, PQV3, PQV4, PQVi1 and PQVi2 are all positive values, function only of r, 

c and R (See Appendix B.2.1). 
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 and replacing in (24) provides the decision rule for player i:

30
  

 

 ii

Vi

t

iiV

V

tit

CL

it

aa
PQ

x
r

R

c

R
E

c

aaPQ

PQ
xEcaxw



 














422

4
)(

23

2

   

(28) 

                                                      

29
 Obviously, there is more than one set of solutions; however, only one set is stable and holds a meaningful 

economic sense, it is therefore the only one kept. 
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 Can be rewritten as: 
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Finally, the aggregate cumulative profits with a closed loop game, denoted 
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2.2.2.3 The Steady State in the Closed Loop game 

At the steady state, the stock is constant and 0tx ; using the values of wht and wlt (from 

(28)) in (22) provides the stock at the steady state: 
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The corresponding extraction decisions are as follows: 
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The system specifications at the steady state reveal some direct consequences of 

inequality: 
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Similar to under Open Loop, the agent with higher efficiency uses more water at the 

steady state; a higher transmissivity stimulates greater transfer of water towards the more 

efficient agent, the increase is proportional to the level of inequality )( ii aa  .
32
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     t

CL

aat

CL

aatlh

CL xVxVxaaV
hllh ,,,,,   



- 35 -  

However, the difference in efficiency has no effect on the stock of water in the aquifer at 

the steady state, CLSSx  .  

Given the stock and the extraction levels at the steady state, it is possible to compute the 

individual net profit of each user i at the steady state, denoted 
CLSS

a,a ii
NP 


, as follows: 
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   i=h,l (31)  

where PQCL1, PQCL2 and PQCL3 are three positive variables (see Appendix B.2.3).  

Finally, the aggregate profits at the steady state, with an infinite transmissivity, are given 

by: 

   231 lhCLCLlh

CLSS aaPQPQa,aTNP        (32) 

2.2.2.4 Preliminary Results under Closed Loop Equilibrium 

Since the solution for the closed loop game was only provided for an aquifer with infinite 

transmissivity, it will not be possible to test the effect of a marginal change in 

transmissivity; however, it is always possible to test for the non-marginal effect when 

transmissivity shifts from zero to infinity. Keeping in mind that for a zero transmissivity 

aquifer, both feedback and open loop strategies converge to a single cell maximization 

problem provided, the solution with zero transmissivity is obtainable from the – already 

available – solution with Open Loop strategies, by computing the limits as s tends to 

zero. 
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Result CL1: Under Closed Loop, the aggregate profits from the CPR for identical 

players with an infinite transmissivity are lower than with zero transmissivity. 

To verify this result for a non-marginal increase in transmissivity, at the steady state, it 

suffices to compare, for identical users, the benefits with an infinite transmissivity (in 

equation (32)), to the benefits from the OL game (equation (20)) with zero transmissivity 

(s=0): 
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The negative sign is indicative of the loss from making the CPR more common under 

feedback strategies, the losses to identical users are increasing, in magnitude, in the rate 

of recharge and in the cost of extraction. 

The same approach is adopted to show negative effect of a non-marginal increase in 

transmissivity on the aggregate cumulative profits, the related difference is given by:
33
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where PQR11, PQR12 and PQR13 are three positive variables (See Appendix B.2.4.1).  

In Appendix B.2.4.1, I provide the proof that the difference is always negative. 

                                                      

33
 The Cumulative profits with zero transmissivity are taken, as discussed before, from the Open Loop 

Game. 
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Result CL2: Under Closed Loop, inequality has an increasing effect on the aggregate 

profits from the CPR. 

The result is easily established at the steady state, from equation (32) I can derive that  

the extra payoffs generated by inequality are proportional in magnitude to the square of 

(ah – al):  
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The marginal effect of transmissivity on inequality related gains is difficult to predict 

since the closed loop problem is only solved for an aquifer with an infinite transmissivity. 

Regarding the aggregate cumulative profits from the Closed Loop game, the same 

increasing effect of inequality is discernible; the computed formula for aggregate 

cumulative profits (29) suggests: 
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Result CL3: Under Closed Loop, and in the presence of a relatively high ratio r/c, 

making the resource more common has an increasing effect on the aggregate profits of 

highly unequal players. 

In the case of unequal users, the effect of a non-marginal increase in transmissivity, from 

zero to infinity, on the aggregate profits at the steady state is given by: 
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The difference shows, as discussed earlier, that the effect is strictly negative for identical 

users; it also shows that the effect is increasing in the level of inequality. In order to 

determine the effect of transmissivity on highly unequal users it suffices to check at the 

highest acceptable level –with an interior solution– of inequality.  

The maximum inequality depends on the average efficiency, for low values of ā the 

maximum inequality is given by εMaxX with zero transmissivity ( ̅  (   )  ⁄ ), when ā 

is higher than āmaxCL, the maximum inequality is εmaxCL,
34

 derived from the condition on 

the positive rate of extraction by the less efficient user, with an infinite transmissivity. In 

this last case, the effect of an increase in transmissivity on aggregate profits when 

inequality among users is at the highest level (εmaxCL) is as follows:
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CLSS aaTNPaaTNP 
(             )  
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The difference follows the sign of (             ) and has only one real root, (r/c)* 

=0.71; the difference is hence positive if (and only if) the ratio r/c is higher than (r/c)*.  

For lower levels of average efficiency (ā < āmaxCL), a somewhat analogous result emerges, 

the effect is always negative for low levels of r/c; for r/c higher than (r/c)*, the effect of 

                                                      

34
 εmaxCL  

(            ) 

        (   √         )
 is the maximum level of inequality corresponding to a strictly 

positive level of extraction by the less efficient user at the steady state, under closed loop (wl > 0), for s 

infinite.  ̅      
(                    ) 

 (               √         )
 is the level of efficiency at which  εmaxCL equals εmaxX 

with zero transmissivity.  
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an increase in transmissivity is negative for low levels of average efficiency and is 

positive for ā higher than āmaxX, such that:
35

 

    00,,, maxmaxmaxmaxmaxmaxmaxmax  

XXXX

OLSS

XXXX
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In summary, with feedback strategies, the increasing effect of a non-incremental increase 

in transmissivity, on aggregate profits at the steady state for highly unequal users, is only 

conceivable in the case of low costs of extraction (c low) combined with a low valuation 

of future gains and avoided future losses (high r). 

Regarding the aggregate cumulative profits, the effect of a non-marginal increase in 

transmissivity on the profits of unequal players is given by:
36
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where PQR31 is a positive variable. 

For identical users the effect of an increase in transmissivity is negative (as established in 

Result CL1) but the shift in aggregate cumulative profits is increasing in the level of 

inequality. To investigate the conditions for an overall increasing effect on the aggregate 
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, is always positive and higher than 
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, the minimum 

efficiency, however,  ̅    is lower than āmaxCL, if and only if, (             ) is positive. 

36
 The Cumulative profits with zero transmissivity are taken, as discussed before, from the Open Loop 

Game. 
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cumulative profits for highly unequal users, it suffices to check the sign of the effect 

when inequality is at the maximum acceptable level. 

In Appendix B.2.4.2, I show that, with feedback strategies, the effect of a non-

incremental increase in transmissivity on aggregate cumulative profits of highly unequal 

users is analogous to the effect on aggregate profits at the steady state. A positive 

increase in aggregate cumulative profits is only possible in the case of highly unequal 

users with a high average efficiency, engaging in an extraction game with limited 

extraction costs, as evidenced by a quotient r/c higher than (r/c)*.  

The main singularity with cumulative profits resides in the fact that the conditional 

quotient (r/c)* depends on the stock at the start of the game.
37

 

Result CL4: Under Closed Loop, transmissivity always decreases profits for the less 

efficient player and, in the case of a high inequality between players, the increase in 

benefits for the more efficient ones is only observed in the presence of a relatively high 

ratio r/c. 

The effect of a non-marginal increase in transmissivity, from zero to infinity, on the 

individual profits of player i, at the steady state, is given by:
38
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where PQR41 is a positive variable.
39

 

                                                      

37
 (r/c)* varies from 0.364266 when x0 is set at the maximum level, E, to 0.254542 when x0 is set at the 

minimum stock for an interior solution. 

38
 With an infinite transmissivity, equation (31) provides the closed loop solution for the individual profits 

at the steady state; for s=0, the solution is derived from the open loop game solution in Equation (19). 
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The effect on the less efficient user can be rewritten as: 
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The effect holds a negative sign at the origin (at ε=0, with identical users), and at the 

highest level of inequality; for instance, when ā is higher than āmaxCL, the effect at 

maximum inequality (ε = εmaxCL) is εmaxCL, the decreasing effect is straightforward:
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When ā is lower than āmaxCL, the maximum inequality is lower than εmaxCL, therefore, the 

increase in transmissivity as always a decreasing effect for the less efficient user.
41

 

For the effeicient user the effect is as follows: 
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The effect is negative at the origin, but the sign at higher levels of inequality is 

ambiguous, depending on the ratio r/c; indeed for ε = εmaxCL, the effect is as follows: 
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 By definition, at the highest level of inequality the less efficient user has a zero level of use at the steady 
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41
 The effect is quadratic in ε, with a strictly positive coefficient in ε

2
, in addition, the effect is negative at 

the origin and at ε = εmaxCL, thus, the effect is negative for any value of ε between zero and εmaxCL.   
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The difference follows the sign of (                      ) and has only one real 

root, (r/c)* =0.20; the difference is hence positive if (and only if) the ratio r/c is higher 

than (r/c)*.  

The condition on r/c for the efficient user to benefit from making the resource more 

common is less demanding than the condition for aggregate profits (r/c higher than 0.71); 

indeed, the increase in aggregate profits requires the efficient user, not only to benefit 

from the increase in transmissivity, but for his/her benefits to be high enough so as to 

outweigh the losses incurred by the less efficient user. 

The same analysis, completed with individual cumulative profits, leads to the same result, 

where the less efficient user sees his/her profits shrink as transmissivity goes up, while 

the efficient user suffers lower losses when inequality is low or moderate, and can even 

benefit from the shift in transmissivity when high inequality is combined with a high 

ration r/c.
42

  

 

2.3 The Social Optimum 

I will present in this section the solution for the optimal extraction path when both 

players coordinate their decisions to maximize the sum of their cumulative (over time) 

profits. The objective function under Social Optimum management is as follows: 

    dtxEcw
w

waxEcw
w

wae ltlt
lt

ltlhtht
ht

hth

rt

































0

22

22
 

  (35) 

                                                      

42
 The condition is for r/c to be higher than (r/c)*, that varies from  0.37 when x0 is set at the maximum 

level, E, to 0.09 when x0 is set at the minimum stock for an interior solution. 
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The pair h-l applies the Pontryagin’s Maximum Principle, and obtains the current value 

Hamiltonian
43
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Where λht (respectively λlt) denotes the co-state associated with player h stock xht 

(respectively her neighbor’s stock xlt), it reflects the shadow price value attributed by the 

pair h-l at time t, to a marginal change in xht (respectively in xlt).
44

 

Along the optimal path the following conditions need to be satisfied
45

: 
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In addition to the equations of motion in both stocks.
46

  

2.3.1 Solving for the Social Optimal Path 

Deriving wit and w-it from C1 and replacing in C2 and in the transition equations allows to 

finally obtain a system of linear first order differential equations that can be written as: 

2222 ].[ BVAV           (37) 

                                                      

43
 Again, the Hamiltonian is similar to that of an unconstrained problem; the assumption made here is that 

all optimal solution satisfies the conditions on state and control variables. 

44
 The same solution is reached when using the Bellman Equation. 

45
 The conditions on wit, w-it, xit and x-it are not included under the assumption that the optimal solution 

meets those conditions for an appropriate choice of ai, a-i and R. 

46
 Equation 1.a:  itititit xxswRx  

  for player i=h,l. 
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where  itititit xxV   ,,,2
,  iiii acEcacEcEcaREcaRB   22

2 ,,, , and 
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The general solution to equation (37) is totally defined by the eigenvalues (and 

eigenvectors) of matrix A2 (derived from Det[A2- α I4x4] =0, where I4x4 is the identity 

matrix and Det[A2- α I4x4] is the determinant of [A2- α I4x4] that can be factorized as 

follows:    

Det[A2- α I4x4] = EQ3(α) EQ4(α)  

where EQ3(α) =   2  cr , and EQ4(α) =    2222   rcsrscs . 

Only the negative eigenvalues of matrix A2 are considered here; α3, the negative root
47

 of 

equation EQ3(α) = 0, and α4 the negative root of EQ4(α) = 0, are given by:
48
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The corresponding eigenvectors (proof in Appendix B.3.1) are respectively v3 and v4: 
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47
 The other roots are strictly positive and do not carry an economically relevant meaning and certainly do 

not correspond to an optimum solution to the objective maximization problem. 

48
 For the extreme case with no transmissivity, s=0, both equations combine (EQ4(α)=EQ3(α)) and Det[A2- 

α I4x4]=0, has only one (quadratic) root, α3. 
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The general solution hence derived is: 

44332
43 vecvecV

tt
P


  

Where c3 and c4 are two arbitrary constants (to be determined so as to satisfy the 

boundary conditions).  

The solution to the original linear system of differential equations (
2222 ].[ BVAV  ) is 

simply given by: 
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      (38) 

Finally, the boundary conditions, i.e. the level of stocks at time zero, xi0 and x-i0, arrange 

for a unique solution for the pair of constants, c3 and c4: 
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2.3.2 The Social Optimum Solution 

Equation (38) provides the stock level of player i: 
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Substituting the value of λit, provided by Equation (38), in condition C1 on the optimal 

level of water use (from Equation (36.a)) yields: 
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The computed values of xit and wit are used (Equation (5)) to obtain NPit, the net payoff of 

player i at time t; after integration over time (as presented in Equation (6)), the 

cumulative profits of player i, given the same level of stocks at the start (x0), noted 

 00
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aa ii 
 hereafter, are given as:  
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with P5(s) and P6(s) two nonnegative functions of s (See Appendix B.3.2 for details).
49

 

The aggregate cumulative profits – of both players – under social optimum management, 

denoted  sxaaV lh

SO ,,, 0  hereafter, is derived as:
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(42) 

2.3.3 The Steady State under Social Optimum management 

Under social optimum management, as t continues to increase, the system moves toward 

a steady state, specified as follows:
51
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 From equation 35.a; given the sign of α3 and α4, as t tends to infinity, t

e 3  and t
e 4  converge to zero. 
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The subsequent stocks and players’ decisions are, respectively: 
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Some consequences of inequality already established under non-cooperative use seem to 

hold when users engage in social optimum management: 

)()(0 ii

SS
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SS

i aaww    

Which shows that the efficient agent uses more water at the steady state; higher levels of 

transmissivity and/or inequality stimulate greater transfer of water towards the more 

efficient agent. 

0)()(   ii

SS

i

SS

i aaxx ,  

which shows that the stocks are more depleted on the efficient user side, who endures 

higher rates and, given the previous result on the extraction decisions, higher costs of 

extraction. 

As under non-cooperative use, the steady state under Social Optimum also shows that the 

difference in efficiency has no effect on the average stock of water in the aquifer

  2/SS

l

SS

h xx  . However, the average stock is not affected by transmissivity, contrasting 

with the non-cooperative case, where more access to the resource seems to provoke its 

physical depletion.  
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The net profit of player i at the steady state, noted SOSSs

aa ii
NP 
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,
, is given by: 
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Finally, summing up the profits of the two players provides the aggregate profit at the 

steady state: 
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2.3.4 Preliminary Results under Social Optimum management 

Result SO1: Inequality increases the aggregate profits from the Social Optimum 

management of a CPR. 

Similar to the non-cooperative game, inequality is shown to boost aggregate profits, both, 

cumulative and at the steady state, under Optimum management; the extra payoffs from 

inequality are proportional to the square of (ah – al). 

Indeed, for aggregate cumulative profits, equation (42) shows that: 
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Similarly, at the steady state, the difference in total profits is strictly positive: 
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(49) 

Result SO2: For unequal players, transmissivity increases the aggregate profits from the 

Optimum management of a CPR. 
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For identical players, the extraction decision does not depend on transmissivity, implying 

that transmissivity has no effect on the aggregate profits, cumulative or at the steady 

state, of identical users.
52

 

With unequal users, as transmissivity increases, users adjust their extraction decisions; 

with more stocks available (in time) to the efficient user, she extracts a higher quantity, 

while the less efficient user lowers her decision by the same amount. The aggregate 

profits increase while the effect on individual users is mixed, as will be discussed in the 

next result. 

The extra payoffs from increased transmissivity, in aggregate cumulative profits and in 

aggregate profits at the steady state are proportional to the square of (ah – al), as 

confirmed by the corresponding derivatives: 
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P6’(s) is the derivative of P6(s) and is a nonnegative functions of s (See Appendix B.3.2). 

Finally, to draw the comparison with the non-cooperative case, the increasing effect of 

higher inequality on aggregate profit, under optimum management, is not conditional on 

a high level of inequality, it occurs at any level of inequality. 

                                                      

52
 For identical users, and given the assumption of equal stocks at the start of the game, c4 (equation 34.b) 

becomes null and wit (equation 35.b) simplifies as t

it ecRw 3

33

 , and is not a function of s. Practically, 

this means that at any given time t, the users make the same decisions (
itit ww  ), keeping the stocks at 

equal levels all the time, there are no externalities involved and the change in stocks is only affected by the 

players’ own actions. 
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Result SO3: Under Optimum management, transmissivity always increases profits for the 

efficient user and always decreases the benefits for the less efficient one. 

As discussed in Result SO2, with identical users, there are no aggregate or distributional 

effects that arise from an increased transmissivity. 

For unequal users under optimum management, making the resource more common 

comes with extra benefits for the pair of unequal users h-l; however, those benefits from 

increased transmissivity are not widespread, indeed the less efficient user always endures 

some losses. The overall benefits for the group are indicative of larger benefits made by 

the efficient user. 

2.3.5 Other Results under Social Optimum management 

In addition to results SO1-3, other very interesting results on the effects of transmissivity 

and inequality on the difference between Social Optimum and the Subgame Perfect 

Equilibrium are presented and verified in Chapter 5: 

 

2.4 Conclusion 

The main purpose of this chapter is to illustrate the importance of a comprehensive 

analysis that includes inequality between the CPRs users and the degree of transmissivity 

in (or free access to) the resource in depicting the effects on welfare and on stock levels.  

The commonly accepted principle of rapid decline in stocks and welfare loss as the 

CPR’s commonality increases is reproduced in my model for the case where the users are 

identical or slightly unequal. However, in the presence of a large inequality between 

players, the gains resulting from the availability of more reserves for use by efficient 
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users of the CPR can be important enough to offset the loss from free-riding behavior. 

Under such a condition, making the resource more common can result in a net total 

welfare gain. 

It should be pointed out, however, that the outcome is still suboptimal as the net total 

profit could be improved if the users were to cooperate. In addition, in my case the 

difference between net total profit under cooperation and net total profit under non-

cooperative use is found to increase with the level of inequality and the degree of 

transmissivity. There is also a need to emphasize that net welfare gains generated by 

more commonality in the resource is not generalized: in fact, the least efficient player 

sees her profits erode even (or especially) when the effect on the total profit is positive.  

In the model, I assume infinite transmissivity to establish some of the results in the Open 

Loop game and to derive the closed form solutions for the Closed Loop game; but this 

assumption is not a necessary condition for the results to hold, for instance, for the Open 

Loop, some of the results with cumulative profits and all results at the steady state are 

verified for with a finite level of transmissivity. 

However, there is another rationalization to this assumption, given the wide range of 

transmissivity values even among aquifers categorized as good aquifers; In fact, 

according to Fetter (2001), the hydraulic conductivity can vary between 10
2
 cm/s and 1 

cm/s in well sorted gravel aquifers and between 10
-1

 cm/s and 10
-3

 cm/s in well-sorted 

sands aquifers.53
 This doesn’t contradict that the so called “bath-tub model” is an 

                                                      

53
 A similar classification is provided by Bear (1972) provides hydraulic conductivity for good aquifers in 

the range of 10
2
 cm/s to 10 cm/s for well sorted gravel aquifers, and between 1 cm/s to 10

-2
 cm/s for well 

sorted sand or sand & gravel aquifers. 
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unrealistic depiction of the hydraulic flow in aquifers, even with very high levels 

transmissivity; but it allows in the present study to emulate the high range of 

transmissivity levels in nature, it also has the advantage of simplifying some of the 

theoretical results that would hold even for s finite. 

Based on my analysis I can already establish some key policy implications: 

 The incentive for the state/government to intervene is stronger given the higher 

gap in welfare between the cooperative and non-cooperative paths; 

The gains from cooperation computed as the aggregate profits following the SPE 

deducted from the profits under cooperation are increasing in transmissivity and in the 

difference in efficiency. The losses from cooperation are therefore larger for unequal 

users, providing more incentive for a central planner to put in place policies that would 

shift water extraction toward welfare maximizing levels. 

 The adverse distributional effects for the less efficient players may create 

environments where certain policies less acceptable to identical players may be 

acceptable to extremely unequal players. 

It would therefore be very interesting to extend this study to examine the case where 

there is a central planner that intervenes to enforce policies that aim at enhancing total 

welfare from the aquifer, and to investigate the effects of inequality and transmissivity on 

not only the outcome of this game but also the planner’s policy choices.  

In a following chapter, I consider the case for water markets where a user buys out her or 

his/her partner; with identical players such contracts have no economically sound reason 

to materialize, especially for low or moderate costs of extraction, but for unequal players 



- 53 -  

the less efficient player is more likely to accept his or her partner's offer to stop using 

water so that the efficient player can be the sole user.  

Other policies can include payments by the government to users to discontinue their 

extractions from the aquifer or shift production to less water intensive crops, in the 

presence of unequal players such policies will involve less money transfers and generate 

more profits. 

I must clarify at this point that the results obtained in this study are, for the most part, 

triggered by the choice of the type of inequality, and the type of production function; the 

same conclusions would not necessarily hold with a different model. 

For example, when considering a slight change in our model, where the two users have 

identical linear coefficient but different quadratic coefficients, the results do not reflect 

the same increasing effect of inequality on aggregate profits or increasing effect of 

transmissivity with highly unequal users (See Appendix B.4.1). I use another variation of 

the model, where users have the same production function but have different natural 

capital, as the rate of recharge is not the same in both compartments of the aquifer, and I 

show that inequality generates extra payoffs that are decreasing in transmissivity (See 

Appendix B.4.2). 
54

 

This does not affect the lesson from this study that good management of natural resources 

requires taking into account the effects of inequality and the degree of commonality of 

the resource.  

                                                      

54
 Appendix B.4.3 presents the conditions for an increasing effect of inequality at the steady state, in the 

case of a general production function, and where the inequality is either intrinsic or extrinsic. 
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Chapter 3 The Discrete Model 

This chapter will be devoted to introduce the discrete version for the model of a CPR 

aquifer with a finite transmissivity and unequal users. 

There will be presented the adjusted general framework for the extraction game, 

highlighting the differences with the dynamic model; backward dynamic programming is 

then used to solve for the players’ decisions, following the different strategies, namely, 

the non-cooperative game, the myopic game and the social optimum management. 

Another novelty of this essay is to consider a new strategy, when each player makes her 

decisions rationally, but acts under the impression that her partner is myopic. 

The results presented in the previous chapter, for the non-cooperative game (Results 

OL1-4 and CL1-4), will be confirmed, with analytical proof for the one-round game, and 

numerical evidence for the 10-round game. 

The model’s numerical specifications and the dynamic solutions presented in this chapter 

will set the framework for the experimental validation that will be presented in the next 

chapter. 

3.1 The Discrete Model with Unequal Players 

I use a discrete game form adapted from the continuous model presented in the previous 

Chapter. The general structure is similar to the model developed by Gardner, Moore, and 

Walker (1997). Some necessary modifications were introduced to permit a broader 

framework for analysis, where I allow for inequality among users and test for different 

levels of transmissivity. 
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I consider an aquifer with the same physical specifications as described in the previous 

chapter, used by two agents h and l, as portrayed in Figure 1.  

During round r, agent i chooses the quantity of water wir to extract from the aquifer and 

uses it in agricultural production to receive the revenue net of all costs except water 

extraction:
55

  

2/)( 2

iririitir wwawNR  ,      i=h,l (3.1)  

where ai is, as defined before, the marginal productivity at the origin (wir = 0) and ah 

taken higher or equal to al ( lh aa  ).  

The equation of motion that defines stock adjustment to water use and recharge is given 

by:   

     Rwxwxswxx iririririririr  1
,   i=h,l  (3.2)  

where irx (respectively 1irx ) represents the level of the water table beneath agent i at the 

beginning of round r (respectively r+1), s is the transmissivity or seepage coefficient 

assumed to be between 0 and ½, and R corresponds to the rate of recharge. 

The transmissivity coefficient plays the same role as in the dynamic model; it continues 

to represent the level of commonality in the CPR, but with a small distinction. In the 

current model, s=½ is the value of s that corresponds to an infinite transmissivity, where 

                                                      

55
 As before, the extracted amount is expressed in this model as the equivalent change in stock.  
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the stocks in the following round (r+1) are always equal, regardless of the players’ 

extraction decisions whr and wlr.
56

  

But, s=0 is still analogous to the case where there is a perfectly impermeable frontier 

between the two “cells” that water cannot cross.  

When agent i lifts an amount wit from the aquifer, she faces an extraction cost: 
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E  is the average depth at which 

agent i extracts water during round r; and c, strictly positive, denotes the cost to lift a unit 

of water per unit of depth.  

The net payoff to agent i (h or l) during period r is therefore:  
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(3.4) 

Equations (3.2) and (3.4) define completely the extensive form of my differential game.  

3.2 The Unequal Discrete Game 

The solution to the problem defined by equations (3.2) and (3.4) will depend on the 

players’ strategy and their assumptions regarding their partner’s strategy. I will consider 

four situations: 

                                                      

56
 The difference in the levels of s stems from the fact that in the dynamic model, it affects stocks through 

the rates of change (in stocks), while in the discrete model it affects the –future– stocks directly. 
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 The case where each user attempts to maximize the sum of her own profits 

from the resource throughout the duration of the game. In this case, each 

player supposes that her partner strategizes in the same manner. This case is 

similar to the non-cooperative game cosidered in the continuous model. 

 The scenario where the decisions of both appropriators are aimed to maximize 

the sum of their cumulative profits from the resource throughout the game; 

similar to the Social Optimum in the previous chapter. 

 The instance where each user tries to maximize her profits from the resource 

during the current round and disregards the effects on the following rounds. 

Here again the player assumes that her counterpart will behave in the same 

manner. This scenario was not considered in the continuous model. 

 The case where each user tries to maximize the sum of her own profits from 

the resource throughout the duration of the game, presuming that her partner 

is interested solely in maximizing her profits from the current round and 

disregards the effects on the following rounds.  

The last case presents a unique property, as each player has a poor view of his/her 

partner’s strategy, indeed, in the first three cases, each player trusts her partner in the 

extraction game to adopt the same approach as that she adopts herself. In the latter case, 

each player thinks she is rational in considering present and future earnings, while her 

rival is myopic and only values immediate profits. The result is, as will be presented later, 

that the aggregate cumulative profits are higher if compared to those from the myopic 

case; but are lower than the profits from the first case, with rational players believing 

their partners to be rational as well. 
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3.2.1 The Non-cooperative Game 

First, I will focus on the non-cooperative case, where I assume that the two players do not 

communicate with each other and cannot engage in any form of cooperation. The sole 

objective of each player is to maximize the sum of her discounted net benefits, with no 

consideration for the impacts of her actions on her neighbor’s payoff. Her strategy is, 

however, motivated by her beliefs about her rival’s strategy and path of action.  

I assume that a central authority does not exist or, if it does exist, that it does not 

intervene in any way to stop or restrain the externalities from non-cooperative  use, to 

establish higher revenues from the aquifer or to safeguard the water table. The level of 

water in each side of the aquifer is given at the start of the game. Also, both players know 

the other characteristics of the aquifer – recharge and transmissivity – with certainty.  

I consider that both players have the same discount rate and that they maximize their 

benefits over the entire game duration. T, the number of rounds, is assumed finite 

(equates 10 for the numerical example). For practical reasons I will present here only the 

results for the case with no discounting; the results stand when the discount rate is strictly 

positive.  

Under such conditions, the maximization problem of player i is given by: 
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subject to:      Rwxswxsxx iriririririr   11
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  0irw  (extraction decisions are non-negative)
57

 

  Exir   (the level of water cannot rise above the ground)
58

 

  xi0 = x-i0 = x0, the stocks at t = 0, are equal and given. 

Finally, I also assume that there are no threats and that both players have perfect 

knowledge regarding the stock of water on both sides, their efficiency, and their rivals’ 

efficiency.
59

 Under such conditions, the maximization problem of player i has a unique 

subgame perfect equilibrium (SPE) corresponding to the case where all players act 

rationally and selfishly. To obtain the SPE characteristics, I solve for the system of 

equations combining equations (3.2) and (3.4) over time via the backward dynamic 

programming approach developed by Levhari and Mirman (1980) and Eswaran and 

Lewis (1984).
60

 The solution in the case of groundwater use in a laboratory is provided in 

Gardner et al. (1997) and Herr et al. (1997) for identical players, perfect transmissivity, 

and no recharge. 

3.2.1.1 The Subgame Perfect Equilibrium dynamic programming 

In the last round (noted T) and knowing that the aquifer has no future residual value to 

both players the maximization problem of each player simplifies as:  

),,,( iTiTiTiTi
w

xwxwNPMax
iT


      i=h,l (3.6) 

                                                      

57
 This condition is rather undemanding in the non-cooperative game. 

58
 This is a superfluous condition in the case of non-cooperative users. 

59
 Assuming no threats rules out trigger strategies. Perfect knowledge requirements depend on the strategy 

of the game. I introduce this assumption to rule out mixed strategies. 

60
 However, if I use a two-period horizon I would not need much to go through. I will just rewrite the whole 

system as one single equation. 
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Assuming an interior solution, the optimal extraction decisions in i=h,l the last round 

must satisfy the simultaneous equations: 

         

    
,0

2

21),,,(








 




  iTiTiTiTiT
iTi

iT

iTiTiTiTi wxswxsx
Ecwa

w

xwxwNP  (3.7) 

The extractions decisions satisfying the above system of equations are linear in the 

stocks:  
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where α1T, α2T and α3Ti are given by: 
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Replacing for the values of *

hTw  and *

lTw  in equation (3.4) I get that the stock value to 

player i at the last round (equal to the net profit for the last round) is quadratic in the 

stock levels: 
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  i=h,l   (3.9) 

where D1T, D2T and D3T depend on c and s, while  D4Ti, D5Ti and D6Ti depend on ai and a-i as 

well: 
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At any given round r, every player uses the resources weighing in her immediate profits 

from the extracted water and her benefits from the stock in the subsequent rounds (null in 

the last round) she solves the following problem: 

 )),,,(),,,,((),,,( 111 iririririririririririririririri
w
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    (3.10) 

),( 111  iririr xxV refers to the stock value for player i in the next round (r+1), i.e. her profits 

from the stock ),( 11  irir xx  when there are T-r+1 rounds left in the game.  

The decisions by both players, h and l, need to satisfy the optimality condition: 
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Every player extracts to the point where her extra profit from the current use of one more 

unit of water equals her losses from the subsequent decrease in stocks (hers and her 

neighbor’s) in the following round. 
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If I assume that the value of groundwater in the next round n=r+1 is quadratic in the 

level of stocks during that round and can be written as:  
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  i=h,l   (3.12) 

Solving for the optimality condition expressed in (3.11) shows that the decisions of 

players h and l during round r are, as established for the last round, linear in the stocks:  
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      i=h,l   (3.13) 

where α1r, α2r and α3ri, provided in Appendix C.1, are functions of  D1n, D2n, D3n, D4ni, D5ni 

and D6ni. 

Replacing for the values of optimal extraction decisions in (3.10) I conclude that the 

stock value function at round r for player i is equally quadratic in both stocks: 
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  i=h,l (3.14) 

where D1r, D2r, D3r, D4ri, D5ri and D6ri (See Appendix C.1) are function of the decision 

coefficients from the current round, α1r, α2r and α3ri, and the coefficients of the value 

function from the next round, D1n, D2n, D3n, D4ni, D5ni and D6ni. 

Given the value function at the last round (T or 10) and the relationships established 

above it is easy to derive the extraction decisions, the stock levels, and the profits at every 

round for both players. 

3.2.2 The Social Optimum, the Myopic, and the Semi-myopic Strategies 

3.2.2.1 The Social Optimum  



- 63 -  

In the Social Optimum (also referred to as the cooperative) case, the two players 

coordinate their extraction decisions in order to maximize their collective cumulative 

profits. The maximization problem thus becomes: 
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subject to the same conditions as in equation (3.5). Similar to the non-cooperative game, 

the maximization problem for players under Social Optimum management has a unique 

solution obtained using the backward dynamic programming approach. 

3.2.2.1.1 The Social Optimum dynamic programming 

In the last round (noted T) and assuming that the aquifer has no future residual value the 

maximization problem of each player becomes:  
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In the case of an interior solution, the optimal extraction decisions in the last round must 

satisfy the simultaneous conditions: 
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The extractions decisions satisfying the above system of equations are linear in the 

stocks:  
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Replacing for the values of SO

hTw  and SO

lTw  in equation (3.17) I get that the stock value at 

the last round (equal to the net aggregate profit for the last round) is quadratic in the stock 

levels: 
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where SO

TD1 , SO

TD2 and SO

TD3 depend on c and s, while  SO

TiD4  and SO

TD6 depend on ai and a-i as 

well: 
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At any given round r, the players’ decisions need to take into consideration the 

immediate aggregate profits from the extracted water and the benefits from the stocks in 

the subsequent rounds (null in the last round), they solve the following problem: 
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),( 111  irir

SO

r xxV denotes the stock aggregate value in the next round (r+1), i.e. the 

aggregate cumulative profits from the stock ),( 11  irir xx  when there are T-r+1 rounds left 

in the game.  

The decisions by players h and l, need to satisfy the optimality conditions: 
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i=h,l  (3.21) 

Every player extracts to the point where the sum of extra profits to both users, from her 

current use of one more unit of water, equals the loss, to the two users, from the 

subsequent decrease in stocks (of both users) in the following round. 

If I assume that the value of groundwater in the next round n=r+1 is quadratic in the 

level of stocks during that round and can be written as:  
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Solving for the optimality condition expressed in (3.21) shows that the decisions of 

players h and l during round r are, as established for the last round, linear in the stocks:  



- 66 -  

SO

riir

SO

rir

SO

r

SO

ir xExEw 321 )()(   
     i=h,l  (3.23) 

where SO

r1 , SO

r2  and SO

ri3  provided in Appendix C.1, are functions of  SO

nD1 , SO

nD2 , SO

nD3 , 

SO

niD4 , SO
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nD6 . 

Replacing for the values of optimal extraction decisions in (3.20) I conclude that the 

stock value function at round r for player i is equally quadratic in both stocks: 

))(()()(),( 2

2

2

1 irir

SO

ir

SO

rir

SO

rjririr xExEDxEDxEDxxV    

SO

riir

SO

irir

SO

ri DxEDxED 644 )()(  
    i=h,l  (3.24) 

Where SO

rD1 , SO

rD2 , SO

rD3 , SO

riD4 , SO

irD 4  and SO

rD6  (See Appendix C.1) are function of the 

decision coefficients from the current round, SO

r1 , SO

r2  and SO

ri3 , and the coefficients of 

the value function from the next round, SO

nD1 , SO

nD2 , SO

nD3 , SO

niD4 , SO

inD 4  and SO

nD6 . 

Given the value function at the last round (T or 10) and the relationships established 

above it is possible to derive the extraction decisions, the stock levels, and the social 

optimum profits at every round. 

3.2.2.2 The Myopic path  

For the myopic path, every player maximizes her profits for the current round, and the 

maximization problem of player i is given by: 
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,      i=h,l (3.25) 

subject to the same conditions as in equation (3.5). The solution to the myopic problem is 

forward and is similar to the solution at the last round of a non-cooperative game. 

3.2.2.3 The Semi-myopic programming 
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Finally, under the semi-myopic path, each player maximizes her profits for the current 

round. The maximization problem of player i is given by: 
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subject to the same conditions as in equation (5). m

irw
reflects the belief of every user that 

her partner uses the resource following a myopic path. The solution to the semi-myopic 

problem is also obtained by backward dynamic programming approach. (The solution is 

available but not included in the present draft).  

In number of economic experiments studying CPRs, the participants’ decisions do not 

reflect a strategic behavior as defined under the SPE; the introduction of a Semi-Myopic 

path here is a means to investigate if the deviations from the SPE can be explained by 

participants’ beliefs not matching those following the SPE. Under the SPE, participants 

assume that their partners are strategic users; the semi-myopic path addresses the case 

where the players are strategic, but believe that the other users are myopic users.  

For a resource with zero transmissivity (s=0), the Social Optimum, the SPE, and the 

Semi-Myopic, strategies are equivalent and will be referred to as maximizing behavior. 

3.3 Theoretical Results Following the Non-Cooperative Game 

I now present basic results concerning the net profits, over time, for the different 

treatments; these results were obtained by assuming that all users behave following the 

subgame perfect equilibrium. In this section, I provide the analytical proof for all results 

in the case of a one-period non-cooperative game; for the ten-round SPE, I present only 

the numerical evidence of my findings in the next section.  
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Individual and Aggregate profits in the one round non-cooperative game  

In the case of a one round game the maximization problem of players h and l is 

equivalent to that at the last period of a multiple rounds game, with the slight difference 

that the level of stock x is now taken as the same for both players. From equation (3.8) I 

obtain the extraction decisions and the net individual profits: 
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For convenience, in the rest of the section I will note  xx,NP s

a,a ii 

 

the net profit of player i 

when transmissivity equals s, and  xxV s

aa lh
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the sum of net profits to players h and l, 
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Result NC1: Inequality increases the aggregate cumulative profits from the common-

pool resource. 

Our theoretical model shows that the aggregate (summing up across both players) 

cumulative (over the entire duration of the game) net profits are increasing in 

transmissivity and in the difference in efficiency (
lh aa  ); the same observation applies 

for the social optimum and myopic paths.  

This can be shown by comparing the  00, , xxV s

aa lh
, the aggregate cumulative profits of 

players h and l when their respective efficiencies are ah and al, with initial stock x0, and s 
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is the level of transmissivity, to the aggregate cumulative profits of identical players with 

an efficiency that equals the average efficiency of players h and l, with the same initial 

stock x0, and the same level of transmissivity; the difference is given by: 
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Inequality generates extra payoffs, as evidenced by the positive sign on the RHS, that are 

proportional in magnitude to the square of (ah - al) and are increasing in transmissivity. 

This result is in concordance with the findings of Negri (1989) and Baland and Plateau 

(1997), but differs from that of Aggarwal and Narayan (2004) and Dayton-Jhonson and 

Bardhan (2002), as it suggests an increase in aggregate cumulative profits even at low 

levels of inequality.  

Result NC2: Transmissivity decreases the aggregate cumulative profits from the 

common-pool resource for identical or slightly unequal players. 

In the case of identical players, I reach result that increasing the transmissivity leads to 

lower net profits as evidenced by the negative derivative of  00, , xxV s

aa  w.r.t. s: 
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The commonly accepted premise that profits are lowered and stock rapidly depleted as a 

resource becomes more common (Gordon 1954; Burt 1964; Hardin 1968; Brown and 

Deacon 1972; Eswaran and Lewis 1984) is corroborated in my model in the case of 

identical or slightly unequal players.  
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Result NC3: In the case of highly unequal players, higher transmissivity tends to 

increase the aggregate cumulative profits.
 
 

In the case of unequal players, the two opposite effects of transmissivity pointed out in 

Result NC 1 and 2 are put simultaneously at play. In fact, the marginal change in the 

aggregate profits following a change in transmissivity equals: 
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(3.31) 

When the difference in efficiency is higher than ΔNC3, the increasing effect (first term on 

the right hand side) outweigh the losses from more non-cooperative use, and I reach the 

counterintuitive result of higher profits from a marginal increase in transmissivity, where: 
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Increasing the aquifer’s transmissivity has two effects: the first effect is to give more 

incentive for free-riding for all users, which diminishes profits and exacerbates the race to 

the bottom. The second effect – positive this time – is that the efficient user is granted 

more access to more stocks. In the presence of strong inequality between the two players, 

the second effect is stronger and outweighs the first. This result is established here only in 

the case of two players and does not necessarily hold as the number of users increases. 

The potential positive effects of heterogeneity in the provision of public goods (Olson 

1965), limiting resource degradation and total welfare at the steady state (Negri 1989), or 

improving aggregate profits from a common pool resource (Baland and Plateau 1997) are 

well known, other studies (Varughese and Ostrom 2001, Poteete and Ostrom, 2004) 

emphasize the effect of heterogeneity on the collective management of the commons. My 
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result differs in that it suggests that when a large inequality between users prevails, the 

benefits from common access may be of such magnitude as to overcome the losses due to 

the CPR non-cooperative use. In such a case, property rights enforcement becomes 

detrimental. In my model, imposing – if such a thing were even possible – a zero 

transmissivity to eliminate the circulation of water between the aquifer’s two 

compartments would reduce the total profits for highly unequal users. 

The same mechanics are at play when I consider a non-marginal change in transmissivity 

as I move from a zero transmissivity resource (s=0) to a resource with infinite 

transmissivity (s=½): 
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High inequality leads to higher benefits as will be shown in the numerical examples and 

tested for in the experiment. 

An interesting near result that I will not test for in my experiment is that, for any strictly 

positive level of inequality, at low levels of transmissivity, a marginal increase in 

transmissivity has always an increasing effect on total net benefits: 
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Result NC4: Transmissivity always decreases the cumulative profits for less efficient 

players and, in the case of a high inequality between players, increases the cumulative 

profits for the more efficient ones. 

The derivative of a player’s net profit with regard to transmissivity can be written as: 
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It follows that for the less efficient player the derivative has a negative sign in all 

configurations since both terms between brackets on the RHS are negative. 

For the more efficient user the derivative is negative for small levels of inequality and 

positive when the difference in efficiency is higher than ΔNC4: 
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This last result shows that individual welfare effects are not always the same as the 

aggregate welfare effects. Indeed, for the less efficient player, higher transmissivity 

always translates into lower profits; for more efficient players, the effect is positive if 

inequality is higher than a certain threshold and negative otherwise. Also, predictably, the 

threshold for net gains for the most efficient player is lower than that for an aggregate 

cumulative net welfare gain.
62

 

Similar welfare effects ensue from a non-marginal change in transmissivity that allows 

for a shift from a resource with zero transmissivity (s=0) to a perfectly transmissive 

resource (s=½), in this case I obtain  

                                                      

61
 Notice that:   

 
 

   .
322

12
0 000 xE

 c

a
xE

scc c

scascca
xE

 c

a hiil 



   

62
 1

32+2

2+234+4

4

3 









scc 

scc

sc

scc

NC

NC  



- 73 -  

    ,,, 00

0

,00

2/1

, iiaaaa = xxNPxxNP
iiii




   i=h,l  

where:   
    

 

  

  





















 

cc

xEcaac

cc

cccaa
= iiii

i
3+4122

2

+414

218258 0

 

and

 

    
 

  

 
.

3+4122

2

+414

218258 0























 

cc

xEcaac

cc

cccaa iiii
i

 

For the more efficient player the first term
h  is positive

63
 while the sign of the second 

term depends on the extent of inequality (ah-al). 

For player l the second term 
l is negative while the first term can be shown to be 

positive for all values of al that satisfy the interior solution conditions.
64

 

3.4 Numerical Illustration for the Ten-round Non-Cooperative 

Game 

3.4.1 Numerical specifications and solutions  

I consider two levels of inequality: the case where the two players are highly unequal and 

the case where they are identical. In the unequal setting, I consider a player with a high 

efficiency ah = 20, sharing the CPR aquifer with a player with a low efficiency al = 10. In 

the setting with identical players I use ah = al = 15; the efficiency in the identical case is 
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 cc 7162   ) 

64
 It is easy to notice that Γl is increasing in al , since for the smallest acceptable value of al , al min = 

   
c

xhcac h

2+4

+4   , Γl is given by:         ccxEcaccc= hl  1+44/214234  strictly 

positive given the positive sign of   ccc  214234 , to show this last statement it suffices to 

multiply by   ccc  214234   and obtain 22 c . 
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set equal to the average efficiency from the unequal setting to control for the effect of 

inequality. 

Regarding transmissivity, I consider the two extreme situations: the case where the 

resource displays zero transmissivity (s = 0), and the case where it has an infinite 

transmissivity, which in the discrete case translates as s = ½. 

Matching together the two levels of inequality and the two degrees of transmissivity 

yields four cases to investigate: 

 The Unequal Infinite Transmissivity case: ah = 20, al = 10 and s = ½, 

 The Identical Infinite Transmissivity case: ah = 15, al = 15 and s = ½, 

 The Unequal Zero Transmissivity case: ah = 20, al = 10 and s = 0, and 

 The Identical Zero Transmissivity case: ah = 15, al = 15 and s = 0. 

The other parameters of the game are kept constant, the stocks on the first round are set at 

73(xh0 = xl0 = 73), while the elevation of the ground is E=100. The unitary cost of 

extraction is taken c = 0.15, and the aquifer recharge is R=3. 

The numerical solutions for players’ decisions, for the different cases, are regrouped in 

tables 1 to 4, following the different paths. The solutions are based on the algorithms 

described earlier. 
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Table 1: The Numerical solution for the 10-round game following the (SPE) path 

 Round Decisions Stocks Profits Stock Values 

Case r whr wlr xhr xlr NPhr NPlr NPh+l r Vhr Vlr Vh+l r 

The Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

 

 

 

 

 

 

1 9.8 4.0 73.0 73.0 103.

3 
13.7 117.0 810.5 56.4 866.9 

2 9.7 3.6 69.1 69.1 97.2 11.1 108.3 707.2 42.7 749.9 

3 9.7 3.3 65.4 65.4 91.8 8.8 100.6 610.0 31.6 641.6 

4 9.6 3.0 62.0 62.0 86.8 6.9 93.7 518.2 22.8 541.0 

5 9.7 2.7 58.6 58.6 82.2 5.3 87.6 431.4 15.8 447.3 

6 9.8 2.4 55.5 55.5 78.0 4.0 82.0 349.2 10.5 359.7 

7 9.9 2.0 52.4 52.4 73.9 2.8 76.8 271.2 6.5 277.7 

8 10.1 1.7 49.4 49.4 69.9 1.9 71.8 197.3 3.7 201.0 

9 10.4 1.4 46.5 46.5 65.8 1.2 67.0 127.4 1.8 129.1 

10 10.7 1.1 43.6 43.6 61.5 0.6 62.1 61.5 0.6 62.1 

The Identical 

Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 

 

 

 

 

 

 

 

 

 

1 6.9 6.9 73.0 73.0 48.2 48.2 96.3 318.5 318.5 637.1 

2 6.7 6.7 69.1 69.1 43.6 43.6 87.1 270.4 270.4 540.8 

3 6.5 6.5 65.4 65.4 39.5 39.5 78.9 226.8 226.8 453.6 

4 6.3 6.3 62.0 62.0 35.8 35.8 71.5 187.4 187.4 374.7 

5 6.2 6.2 58.6 58.6 32.4 32.4 64.8 151.6 151.6 303.2 

6 6.1 6.1 55.5 55.5 29.3 29.3 58.6 119.2 119.2 238.4 

7 6.0 6.0 52.4 52.4 26.4 26.4 52.9 89.9 89.9 179.8 

8 5.9 5.9 49.4 49.4 23.7 23.7 47.5 63.5 63.5 126.9 

9 5.9 5.9 46.5 46.5 21.1 21.1 42.3 39.7 39.7 79.4 

10 5.9 5.9 43.6 43.6 18.6 18.6 37.2 18.6 18.6 37.2 

The Unequal 

Zero 

Transmissivity  
(ah = 20, al = 10, s = 

0) 

 

 

 

 

 

 

 

 

 

 

1 5.2 1.2 73.0 73.0 67.0 6.2 73.2 654.6 135.6 790.1 

2 5.6 1.6 70.8 74.8 69.6 8.6 78.2 587.5 129.4 716.9 

3 6.1 2.1 68.2 76.2 71.2 10.8 82.1 517.9 120.8 638.8 

4 6.5 2.5 65.2 77.2 71.8 12.9 84.7 446.7 110.0 556.7 

5 7.0 3.0 61.6 77.6 71.3 14.7 86.0 374.8 97.1 471.9 

6 7.4 3.4 57.7 77.7 69.6 16.0 85.6 303.5 82.5 386.0 

7 7.9 3.9 53.3 77.3 66.6 16.9 83.5 233.9 66.5 300.4 

8 8.3 4.3 48.4 76.4 62.2 17.2 79.3 167.3 49.6 216.9 

9 8.8 4.8 43.1 75.1 56.3 16.8 73.1 105.1 32.4 137.5 

10 9.2 5.2 37.3 73.3 48.8 15.6 64.5 48.8 15.6 64.5 

The Identical 

Zero 

Transmissivity 
(ah = 15, al = 15, s = 

0) 

 

 
 
 
 
 
 
 
 
 

1 3.2 3.2 73.0 73.0 28.9 28.9 57.8 345.1 345.1 690.1 

2 3.6 3.6 72.8 72.8 32.0 32.0 64.0 316.2 316.2 632.3 

3 4.1 4.1 72.2 72.2 34.5 34.5 69.1 284.2 284.2 568.4 

4 4.5 4.5 71.2 71.2 36.5 36.5 72.9 249.6 249.6 499.3 

5 5.0 5.0 69.6 69.6 37.7 37.7 75.4 213.2 213.2 426.3 

6 5.4 5.4 67.7 67.7 38.1 38.1 76.2 175.5 175.5 351.0 

7 5.9 5.9 65.3 65.3 37.6 37.6 75.3 137.4 137.4 274.8 

8 6.3 6.3 62.4 62.4 36.2 36.2 72.3 99.7 99.7 199.5 

9 6.8 6.8 59.1 59.1 33.6 33.6 67.3 63.6 63.6 127.1 

10 7.2 7.2 55.3 55.3 29.9 29.9 59.9 29.9 29.9 59.9 
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Table 2: The Numerical solution for the 10-round game following the myopic path 

 Round Decisions Stocks Profits Stock Values 

Case r whr wlr xhr xlr NPhr NPlr NPh+l r Vhr Vlr Vh+l r 

The Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

 

 

 

 

 

 

1 14.7 5.0 73.0 73.0 115.5 13.6 129.1 749.5 36.4 785.9 

2 13.7 4.1 66.2 66.2 101.5 9.0 110.5 634.0 22.8 656.8 

3 12.9 3.3 60.2 60.2 90.0 5.9 95.9 532.5 13.8 546.3 

4 12.3 2.6 55.1 55.1 80.7 3.7 84.3 442.5 7.9 450.5 

5 11.7 2.0 50.7 50.7 73.0 2.2 75.2 361.8 4.3 366.1 

6 11.1 1.5 46.9 46.9 66.7 1.2 67.9 288.9 2.1 290.9 

7 10.7 1.1 43.5 43.5 61.4 0.6 62.0 222.2 0.9 223.1 

8 10.3 0.7 40.7 40.7 57.0 0.2 57.3 160.8 0.3 161.1 

9 10.0 0.3 38.2 38.2 53.4 0.1 53.5 103.7 0.1 103.8 

10 9.7 0.0 36.0 36.0 50.3 0.0 50.3 50.3 0.0 50.3 

The Identical 

Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 

 

 

 

 

 

 

 

 

 

1 9.8 9.8 73.0 73.0 52.1 52.1 104.1 268.1 268.1 536.3 

2 8.9 8.9 66.2 66.2 42.8 42.8 85.5 216.1 216.1 432.1 

3 8.1 8.1 60.2 60.2 35.5 35.5 70.9 173.3 173.3 346.6 

4 7.4 7.4 55.1 55.1 29.7 29.7 59.4 137.8 137.8 275.7 

5 6.8 6.8 50.7 50.7 25.1 25.1 50.2 108.2 108.2 216.3 

6 6.3 6.3 46.9 46.9 21.4 21.4 42.9 83.1 83.1 166.1 

7 5.9 5.9 43.5 43.5 18.5 18.5 37.0 61.6 61.6 123.2 

8 5.5 5.5 40.7 40.7 16.2 16.2 32.3 43.1 43.1 86.2 

9 5.1 5.1 38.2 38.2 14.2 14.2 28.5 26.9 26.9 53.9 

10 4.9 4.9 36.0 36.0 12.7 12.7 25.4 12.7 12.7 25.4 

The Unequal 

Zero 

Transmissivity  
(ah = 20, al = 10, s = 

0) 

 

 

 

 

 

 

 

 

 

 

1 13.9 5.2 73.0 73.0 110.6 15.4 126.0 529.7 105.5 635.2 

2 12.5 4.9 62.1 70.8 89.2 13.8 102.9 419.1 90.1 509.2 

3 11.2 4.6 52.7 68.9 72.4 12.4 84.8 330.0 76.4 406.3 

4 10.1 4.4 44.5 67.3 59.2 11.3 70.5 257.6 64.0 321.6 

5 9.2 4.2 37.3 65.9 48.8 10.4 59.2 198.4 52.7 251.1 

6 8.4 4.1 31.1 64.6 40.6 9.6 50.2 149.6 42.3 191.9 

7 7.7 3.9 25.7 63.5 34.1 8.9 43.0 109.0 32.7 141.7 

8 7.1 3.8 21.0 62.6 28.9 8.4 37.3 74.9 23.8 98.7 

9 6.6 3.7 16.9 61.8 24.7 7.9 32.6 46.0 15.4 61.5 

10 6.1 3.6 13.4 61.1 21.3 7.5 28.9 21.3 7.5 28.9 

The Identical 

Zero 

Transmissivity 
(ah = 15, al = 15, s = 

0) 

 

 
 
 
 
 
 
 
 
 

1 9.5 9.5 73.0 73.0 52.1 52.1 104.3 275.8 275.8 551.5 

2 8.7 8.7 66.5 66.5 43.2 43.2 86.5 223.6 223.6 447.3 

3 7.9 7.9 60.8 60.8 36.2 36.2 72.3 180.4 180.4 360.8 

4 7.3 7.3 55.9 55.9 30.5 30.5 61.1 144.2 144.2 288.5 

5 6.7 6.7 51.6 51.6 26.0 26.0 52.1 113.7 113.7 227.4 

6 6.2 6.2 47.9 47.9 22.4 22.4 44.8 87.7 87.7 175.3 

7 5.8 5.8 44.6 44.6 19.5 19.5 38.9 65.3 65.3 130.5 

8 5.5 5.5 41.8 41.8 17.1 17.1 34.2 45.8 45.8 91.6 

9 5.1 5.1 39.3 39.3 15.1 15.1 30.3 28.7 28.7 57.4 

10 4.9 4.9 37.2 37.2 13.5 13.5 27.1 13.5 13.5 27.1 
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Table 3: The Numerical solution for the 10-round game following the semi-myopic path 

 Round Decisions Stocks Profits Stock Values 

Case r whr wlr xhr xlr NPhr NPlr NPh+l r Vhr Vlr Vh+l r 

The Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

 

 

 

 

 

 

1 10.1 4.2 73.0 73.0 104.6 13.9 118.5 808.1 55.4 863.5 

2 9.9 3.8 68.9 68.9 97.7 11.0 108.7 703.5 41.5 745.0 

3 9.8 3.4 65.1 65.1 91.6 8.7 100.3 605.8 30.5 636.3 

4 9.7 3.0 61.5 61.5 86.3 6.7 93.0 514.2 21.8 536.0 

5 9.7 2.6 58.2 58.2 81.6 5.1 86.7 427.9 15.1 443.0 

6 9.8 2.3 55.0 55.0 77.3 3.8 81.1 346.3 10.0 356.3 

7 9.9 2.0 52.0 52.0 73.2 2.7 75.9 269.0 6.2 275.2 

8 10.1 1.7 49.1 49.1 69.3 1.8 71.1 195.8 3.5 199.3 

9 10.3 1.3 46.2 46.2 65.4 1.1 66.5 126.5 1.7 128.2 

10 10.7 1.0 43.4 43.4 61.1 0.6 61.7 61.1 0.6 61.7 

The Identical 

Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 

 

 

 

 

 

 

 

 

 

1 7.1 7.1 73.0 73.0 48.8 48.8 97.7 316.5 316.5 633.0 

2 6.8 6.8 68.9 68.9 43.7 43.7 87.4 267.7 267.7 535.4 

3 6.6 6.6 65.1 65.1 39.3 39.3 78.5 224.0 224.0 447.9 

4 6.3 6.3 61.5 61.5 35.4 35.4 70.7 184.7 184.7 369.4 

5 6.2 6.2 58.2 58.2 31.9 31.9 63.8 149.4 149.4 298.7 

6 6.0 6.0 55.0 55.0 28.8 28.8 57.7 117.4 117.4 234.9 

7 5.9 5.9 52.0 52.0 26.0 26.0 52.0 88.6 88.6 177.2 

8 5.9 5.9 49.1 49.1 23.4 23.4 46.8 62.6 62.6 125.2 

9 5.8 5.8 46.2 46.2 20.9 20.9 41.7 39.2 39.2 78.5 

10 5.9 5.9 43.4 43.4 18.4 18.4 36.7 18.4 18.4 36.7 

NB: With zero transmissivity (s=0) the decisions under the Semi-myopic are identical to those 

from SPE and Social Optimum. 
 

Table 4: The Numerical solution for the 10-round game following the social optimum path 

 Round Decisions Stocks Profits Stock Values 

Case r whr wlr xhr xlr NPhr NPlr NPh+l r Vhr Vlr Vh+l r 

The Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

 

 

 

 

 

 

1 8.0 0.0 73.0 73.0 93.2 0.0 93.2 922.3 14.2 936.5 

2 8.4 0.0 72.0 72.0 95.1 0.0 95.1 829.1 14.2 843.3 

3 8.9 0.0 70.8 70.8 96.4 0.0 96.4 734.0 14.2 748.2 

4 9.3 0.0 69.3 69.3 97.0 0.0 97.0 637.6 14.2 651.8 

5 9.8 0.0 67.7 67.7 96.8 0.0 96.8 540.6 14.2 554.8 

6 10.3 0.3 65.8 65.8 95.8 1.1 96.9 443.8 14.2 458.0 

7 10.7 0.7 63.5 63.5 93.6 2.6 96.2 348.0 13.1 361.1 

8 11.2 1.2 60.8 60.8 90.1 3.5 93.7 254.4 10.5 264.9 

9 11.6 1.6 57.7 57.7 85.3 3.8 89.1 164.3 6.9 171.2 

10 12.1 2.1 54.1 54.1 79.0 3.2 82.2 79.0 3.2 82.2 

The Identical 

Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 

 

 

 

 

 

 

 

 

 

1 3.2 3.2 73.0 73.0 28.9 28.9 57.8 345.1 345.1 690.1 

2 3.6 3.6 72.8 72.8 32.0 32.0 64.0 316.2 316.2 632.3 

3 4.1 4.1 72.2 72.2 34.5 34.5 69.1 284.2 284.2 568.4 

4 4.5 4.5 71.2 71.2 36.5 36.5 72.9 249.6 249.6 499.3 

5 5.0 5.0 69.6 69.6 37.7 37.7 75.4 213.2 213.2 426.3 

6 5.4 5.4 67.7 67.7 38.1 38.1 76.2 175.5 175.5 351.0 

7 5.9 5.9 65.3 65.3 37.6 37.6 75.3 137.4 137.4 274.8 

8 6.3 6.3 62.4 62.4 36.2 36.2 72.3 99.7 99.7 199.5 

9 6.8 6.8 59.1 59.1 33.6 33.6 67.3 63.6 63.6 127.1 

10 7.2 7.2 55.3 55.3 29.9 29.9 59.9 29.9 29.9 59.9 

NB: With zero transmissivity (s=0) the decisions under the Social Optimum are identical to those 

from SPE and Social Optimum. 
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3.4.2 Discussion of numerical results for the Ten-round Game 

The numerical results presented in Tables 1-4 were used to construct Figures 5, 6 

portraying respectively the players’ decisions and the stock evolution, and Figures 7, 8 

and 9 on the players’ individual, aggregate and aggregate cumulative profits, following 

the different paths. 

In the case of unequal users with an infinite transmissivity (figure 5.a), the Myopic 

solution involves higher levels of extraction in the early rounds, for both users, that 

decrease steadily over time.  

With the Social Optimum solution, the opposite trend is observed, where the efficient 

user starts with lower levels of extraction and the less efficient user only starts to extract 

on the sixth round, indicating that the solution, in this specific case, is a corner solution. 

The extraction decisions under Social Optimum increase over time and, on the seventh 

round, compare to those following the Myopic path; in the following rounds the Social 

Optimum involves higher extractions by both users than the respective levels of 

extractions with Myopic users.    

The figures also show the substantial discrepancy between the extraction decision of 

unequal users, the efficient player average level of extraction is 5.67 times that of the less 

efficient user for the Myopic solution, and 17 times for the Social Optimum. 

Regarding the SPE, and the Semi-Myopic paths, the figure shows that both solutions are 

quasi-equivalent for unequal users; for the efficient player, the two paths involve 

relatively steady levels of use over the entire game. 
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Figure 5: Extraction decisions in the ten-round game 
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Figure 5.a Extraction decisions in the ten-round game with infinite transmissivity and unequal users 
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Figure 5.b Extraction decisions in the ten-round game with infinite transmissivity and identical users 
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Figure 5.c Extraction decisions in the ten-round game with zero transmissivity and unequal users 
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Figure 5.d Extraction decisions in the ten-round game with zero transmissivity and identical users 
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For the less efficient player, the figures show a tendency to slowly reduce the levels of 

extraction, they are lower than the levels from the Myopic path in the early rounds, but 

become higher for the rest of the game, given the sharper drop in the Myopic levels of 

use. 

In the case of identical users with an infinite transmissivity (figure 5.b), the same trends 

reported in the previous case for the efficient user are maintained for the identical users. 

In the early rounds, the extraction decisions under Social Optimum are lower than those 

under SPE, marginally lower than the Semi-Myopic, while the Myopic solution provides 

the highest levels of extraction.  

At the seventh round, the extraction decisions following all solutions merge (around 5.9), 

and the order is reversed in the following rounds, the Optimum solution involves higher 

extractions, than the extractions under SPE and Semi-Myopic, both virtually equal and 

higher than the extractions following the Myopic path. 

For every round, the extraction decision for the identical users –with an infinite 

transmissivity– matches the average decision for the same round, by the two unequal 

users, from the previous case with unequal users; however, this remark does not hold for 

the decisions following the Social Optimum, since the solution for unequal users is a 

corner solution.  

In the cases with zero transmissivity, the Social Optimum, the SPE and the Semi-Myopic 

merge together, and the related solution (to all three strategies) will be referred to as the 

Maximum path. With unequal users (figure 5.c) and with identical users (figure 5.d), the 

Maximum solution involves lower extraction at the start that increase steadily in the 

following rounds, similar to the pattern recorded with the Social Optimum path in the  
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Figure 6: Stock evolution in the ten-round game 
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Figure 6.a Stock evolution in the ten-round game with infinite transmissivity and unequal users 
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Figure 6.b Stock evolution in the ten-round game with infinite transmissivity and identical users 
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Figure 6.c Stocks evolution in the ten-round game with zero transmissivity and unequal users 
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previously discussed cases, with infinite transmissivity. On the other hand, with zero 

transmissivity, the Myopic path is connected with higher extraction levels at the start that 

decrease gradually in the following rounds (figures 5.c & 5d) and, on the seventh 

round,fall slightly below the extraction levels following the Maximum path, but the 

discrepancy between the two paths widens in the following rounds. 

In the case with unequal users and zero transmissivity (figure 5.c), the increase in the 

extraction levels following the Maximum solution is uniform across users, while the 

decrease in the extraction levels following the Myopic path is greater for the efficient 

user, in absolute and relative terms. The average decisions by unequal users following 

one path –Myopic or Maximum– equate those by identical users following the same path. 

Regarding the evolution of stocks, Figures 6.a and 6.b show that the stocks are the same 

with infinite transmissivity for the Myopic, the Semi-Myopic and the SPE paths, this is in 

agreement with the previously established fact that the level of extraction by identical 

users matches the average extraction by unequal users. For the Social Optimum, the 

stocks are slightly higher for identical users with an infinite transmissivity. 

Figures 6.a and 6.b also confirm that the stocks are always declining, in accord with the 

fact that the rates of extraction are higher than the rate of renewal. The stock at the start is 

fixed at 73 for all four paths, but the cumulative rates of extraction are higher under the 

Myopic regime, and lower under the Social Optimum, the cumulative rates of extraction 

following the SPE and the Semi-Myopic are very close and lay in the middle.  

At the end of the game, Myopic users end up with a stock at 36.0, the users following the 

Semi-Myopic and the SPE paths finish the game with stocks respectively at 43.6 and 

43.4, and the highest stock at the end is related to the Social Optimum path at 54.1. 
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With zero transmissivity, Figure 6.c shows dissimilarity in the evolution of stocks 

following the Social Optimum in the case of unequal players, the less efficient user 

extraction levels are lower than the rate of renewal, the Maximization solution involves 

building the stock levels to gain from lower costs of extraction. However, following the 

Myopic path, the levels of extraction by less efficient user are higher than the extraction 

rates and the stock levels are always lower than those with the Maximization path. For 

the efficient user the stock is always declining following both paths, the Maximization 

and the Myopic, the cumulative levels of extraction are higher following the Myopic path 

leading to lower levels of stock. 

For identical users, the level of stock is relatively stable in the early rounds following the 

Maximization path (Figure 6.d), then it starts to decline steadily in the rest of the game; 

with Myopic users, the drop in the level of stock is high throughout the game especially 

in the early rounds. At the end of the game, the stock is at 37.2 for Myopic users and 55.3 

for Maximizing users. 

In terms of individual profits, figure 7.a shows that with unequal users and infinite 

transmissivity, the profits for the efficient user from the Myopic extraction game are 

always decreasing, while those following the Social Optimum are increasing gradually in 

the first half of the game then decrease slowly in the second half; in the first two rounds, 

the individual profits –for the efficient user– are higher following the Myopic path, but 

starting on the third round, the Social Optimum guarantees higher profits, and the gap 

even widens in the next rounds. The SPE and Semi-Myopic paths engender practically 

the same profits for the efficient user, progressively decreasing over time and always at 

halfway between the profits from Social Optimum and those from the Myopic path. 



- 84 -  

 

 

 

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9 10

SO-NPht

SO-NPlt

SPE-NPht

SPE-NPlt

SemiMc-NPht

SemiMc-NPlt

Mc-NPht

Mc-NPlt

Figure 7.a Individual profits in the ten-round game with infinite transmissivity and unequal users 
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Figure 7.b Individual profits in the ten-round game with infinite transmissivity and unequal users 
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Figure 7.c Individual profits in the ten-round game with infinite transmissivity and identical users 
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Figure 7.d Individual profits in the ten-round game with zero transmissivity and unequal users 
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Figure 7 Individual profits in the ten-round game 

As a result, as displayed in Figure 9, the cumulative profits for the efficient user are 

higher under the Social Optimum, and lower when the Myopic extraction prevails. 

In the same setting, with unequal users and infinite transmissivity, Figure 7.b shows that 

the SPE and Semi-Myopic paths engender practically the same profits for the less 

efficient user that are always higher, even in the early rounds, than the profits from the 

Myopic use. The corner solution following the Social Optimum, as pointed out earlier, 

implies zero profits in the 5 first rounds. Despite the less efficient user’s higher profits, in 

the last rounds, from Social Optimum, the cumulative profits –from Social Optimum– fall 

below those under SPE and Semi-Myopic paths, and even those from the Myopic path 

(figure 9). This is an important result, as it shows that the Social Optimum does not 

benefit the less efficient user.  

Finally, Figure 8.a shows that, for unequal users with infinite transmissivity, the overall 

evolution of aggregate profits is greatly influenced by the efficient user’s profits, and 

most of the observations previously outlined for the efficient user apply for aggregate 

profits, for all four considered extraction strategies. This is especially true for the 

aggregate cumulative profits, as shown in figure 9, where the aggregate cumulative 

profits for unequal users –with infinite transmissivity– are lower following the Myopic 
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Figure 7.e Individual profits in the ten-round game with zero transmissivity and identical users 
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path and higher for the Social Optimum, while the SPE and Semi-Myopic paths are in the 

middle. 

For identical users with infinite transmissivity, the individual (and aggregate) profits are 

declining following the Myopic path and progressively decreasing following the SPE and 

Semi-Myopic paths (figure 7.c). The profits from the Social Optimum are lower in the 

first rounds, but they increase progressively in the early rounds to equate the profits 

following the Myopic path and the SPE and Semi-Myopic paths, respectively on the third 

and fourth rounds, then exceed them for the rest of the game, despite the slowly 

decreasing tendency of Social Optimum profits in the last rounds. The cumulative 

aggregate profits for identical users –with infinite transmissivity– replicate the same trend 

observed in the previous case with unequal users (figure 9), but are lower in value. 

With zero transmissivity, Figure 7.d shows that the profits following the maximizing path 

tend to increase in the early rounds, a little sharper, in relative terms, for the less efficient 

user, then decrease in the last rounds, especially for the efficient user. 

The profits following the Myopic path, on the other hand, present a tendency to decrease 

during the entire game, at a stronger rate in the early rounds for the efficient user.  

The aggregate profits (for the two paths) are heavily influenced by the efficient user’s 

profits and present the same evolution (Figure 8.c).    
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Figure 8: Aggregate profits in the ten-round game 

20.0

40.0

60.0

80.0

100.0

120.0

140.0

1 2 3 4 5 6 7 8 9 10

SO-TNP

SPE-TNP

SemiMc-TNP

Mc-TNP

Figure 8.a Aggregate profits in the ten-round game with infinite transmissivity and unequal users 
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Figure 8.b Aggregate profits in the ten-round game with infinite transmissivity and identical users 
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Figure 8.c Aggregate profits in the ten-round game with zero transmissivity and unequal users 
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Figure 8.d Aggregate profits in the ten-round game with zero transmissivity and identical users 
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For identical users –with infinite transmissivity–, figures 7.e shows that the profits follow 

the same tendency for the efficient user in the previous case, the profits resulting from a 

Myopic use  are decreasing, at a greater rate in the early rounds, while the profits from 

the Maximizing use increase slowly to reach a maximum (at the sixth round) then 

decrease slowly. 

Regarding aggregate cumulative profits, figure 9 shows that the Maximizing path leads to 

the same profits for identical users as in the case with identical users with infinite 

transmissivity following the Social Optimum. The Myopic solution brings about higher 

profits for identical users than in the case of Myopic identical users with infinite 

transmissivity. Further results will be discussed in the next subsection that looks 

especially into validating the theoretical results SPE1-4. 
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3.4.3 Numerical validation of results SPE 1-4 for the 10-round game 

Result SPE1: Inequality increases the aggregate cumulative profits from the common-

pool resource. 

In the case of an infinite transmissivity (s = 1/2), table 1 shows that aggregate cumulative 

profits from the resource, following the SPE path, come to 866.9 (  

10

1t htNP 810.5 and 

 

10

1t hlNP 56.4) for unequal users, while the aggregate cumulative profits for identical 

users are only 637.0 (  

10

1t itNP 318.5 for every user). 

Under the assumption of zero transmissivity (s = 0), the aggregate cumulative profits 

from the resource with unequal users sum up to 790.2 (  

10

1t htNP 654.6 and  

10

1t hlNP

135.6) and only reach 690.2 for identical users (345.1 each). 

Result SPE2: Transmissivity decreases the aggregate cumulative profits from the 

common-pool resource for identical or slightly unequal players. 

As pointed out in the above paragraph the aggregate cumulative profits from a resource 

exploited by identical users diminishes from 690.2 to 637.0 as I move from a zero-

transmissivity resource to a resource with infinite transmissivity. 

Result SPE3: In the case of highly unequal players, higher transmissivity tends to 

increase the aggregate cumulative profits.
 
 

When transmissivity is infinite (s = 1/2) the aggregate cumulative profits from a resource 

used by unequal appropriators is 866.9, with a zero-transmissivity resource (s=0), the 

same profits are reduced to 790.2.   
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Result SPE4: Transmissivity always decreases the cumulative profits for less efficient 

player and, in the case of a high inequality between players, increases the cumulative 

profits for the more efficient ones. 

As confirmed in Result SPE2, in the case of identical players transmissivity decreases the 

cumulative profits of both players, when the resource is used by unequal appropriators 

transmissivity decreases the profits of the lower efficiency player from 135.6 when s=0 to 

56.4 for s=1/2. For the user with high efficiency, the opposite trend prevails, and 

cumulative profits increase from 654.6 to 866.9.  

 

3.5 Conclusion 

This chapter is key to understanding the rest of this research project; it introduces the 

discrete version of the model of a CPR aquifer with a finite transmissivity and unequal 

users.  

Backward dynamic programming was then used to solve for the players’ decisions, 

following the non-cooperative game, the myopic game, the semi-myopic game, and the 

social optimum management. 

The semi-myopic game refers to a new strategy, introduced in this essay, when each 

player makes her decisions rationally, but acts under the impression that her partner is 

myopic. 

For the one-round game, the analytical proof is provided to validate the first four results 

established in the previous chapter, for the non-cooperative game: 
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 Result SPE1: Inequality increases the aggregate cumulative profits from the 

common-pool resource. 

 Result SPE2: Transmissivity decreases the aggregate cumulative profits from the 

common-pool resource for identical or slightly unequal players. 

 Result SPE3: In the case of highly unequal players, higher transmissivity tends to 

increase the aggregate cumulative profits.
 
 

 Result SPE4: Transmissivity always decreases the cumulative profits for less efficient 

players and, in the case of a high inequality between players, increases the 

cumulative profits for the more efficient ones. 

Those results are confirmed, with numerical evidence, for the 10-round game; the 

numerical specifications used here and the related dynamic solutions will set the 

framework for the experimental validation that will be presented in the next chapter. 

The same discrete model is applied to establish the theoretical results in Chapter 5 

devoted to policy analysis. 

In the model, I assume infinite transmissivity for the numerical validation in the discrete 

model, but the proof can be established even with finite transmissivity (s less than ½ in 

this case); this choice is solely dictated by the fact that the numerical example presented 

is also replicated in the experimental design, where the assumption of infinite 

transmissivity facilitates participants’ understanding of the game. 
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Chapter 4 The Experimental Validation for the Extraction 

Game 

4.1 The Experimental Design 

4.1.1 Parameterization 

In my experimental design, I use four treatments corresponding to the four cases 

previously presented in the numerical validation in Chapter 3: 

 The Unequal Users - Infinite Transmissivity treatment: ah = 20, al = 10 and s = ½, 

 The Identical Users - Infinite Transmissivity treatment: ah = 15, al = 15 and s = ½, 

 The Unequal Users - Zero Transmissivity treatment: ah = 20, al = 10 and s = 0, 

and 

 The Identical Users - Zero Transmissivity treatment: ah = 15, al = 15 and s = 0. 

The four treatments are the matching of two levels of inequality (highly unequal and 

identical players) and two levels of transmissivity (Infinite and zero transmissivity) which 

will allow investigating the effects of inequality and transmissivity. For all other 

parameters of the game,    I use the same specifications as in Chapter 3, constant across 

treatments: 

 xh0 = xl0 = 73, the stocks at the start of round one, 

 E = 100, Elevation of the fields’ surface, 

 c = 0.15, Cost to lift a unit of water per unit of height, and  

 R = 3, the aquifer natural recharge, uniform across users. 
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4.1.2 The Experiment 

The experimental sessions were held in the experimental laboratory of the Department of 

Agricultural and Resource Economics at the University of Maryland. Volunteer subjects 

were recruited from undergraduate classes in economics, business, and civil engineering. 

They were informed that they would participate in an experiment where they would be 

asked to make economic decisions and receive payments based on their decisions and 

those of other participants. They were also informed of the average length of a session. 

I ran seven experimental sessions. Each session was dedicated entirely to one of the four 

treatments presented earlier. For treatments with infinite transmissivity, at the beginning 

of each session the subjects were randomly assigned into different groups (of two each). 

Each subject was informed of her own efficiency, ai, and, when applicable, that of her 

partner’s, a-i. The subjects were also informed of the other parameters that define the 

game: s, c, E, xi0, x-i0, and R, the rate of renewal. The efficiencies and pairings of the 

players were kept secret, as were the individual decisions made throughout the 

experiment.  

Instructions were read aloud while subjects followed on the instructions text that they 

were provided, and formulas for production and cost were given (See appendix D for the 

full instructions text). In each round, participants were asked to choose (simultaneously) 

the quantities to be extracted from a given range [0, ai] (Figure 10.a).  

Once the two partners made their decisions, they were informed of the total order (per 

group) and the subsequent costs (Figure 10.b). At the end of each round they were 

updated on their earnings, in laboratory dollars, and on the level of water in the aquifer 

available at the beginning of the next period (to evaluate the cost).  
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Figure10.a Decision table from the Extraction game experiment 

 

Figure10.b Results table from the Extraction game experiment 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Decision and Results tables from the Extraction game experiment 
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The participants were awarded $10 ($5 in the early sessions) for their participation and 

were given the conversion rate that would be used for each type to convert the computer 

dollars earned during the experiment to real dollars. At the end of the experiment they 

were given, privately, their earnings in cash. 

Every experimental session consisted of four series of 10 rounds each and lasted 15 and 

20 minutes.
65

 For infinite-transmissivity resource treatments, during the first two sessions 

subjects were matched with the same partner, and during the two last sessions they were 

matched with another partner with the same efficiency (a-i) as their previous partner 

(therefore they always participated in the same treatment). This way I got more data for 

my (in-between) analysis and I can expect more power for the statistical tests. The 

subjects were informed of this (random) change of partner. 

Table 5: Summary of experimental sessions.
66

 

Treatment 
Experimental 

Sessions 
Type Subjects Observations 

Average profits 

per subject 

Unequal Users - 

Infinite Transmissivity 
4 

h 12 41 $31.4 

l 12 41 $30.2 

Identical Users - 

Infinite Transmissivity 
2  24 76 $28.1 

Unequal Users –  

Zero Transmissivity 
1 

h 12 48 $29.3 

l 12 47 $29.1 

Identical Users –  

Zero Transmissivity 
1  20 79 $28.2 

 

To help participants make their decisions, they were invited to use the decision support 

window that was provided to them on screen (See Figure 11). Based on the current stocks 

                                                      

65
 The total length of experimental sessions was between one and a half hour and two hours. 

66
 The average profits reported in the Table 5 include the show-up fees. 
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(xir, x-ir), their decision, wir, and their assumption about their partner’s decision, w-ir, the 

players were able to compute their hypothetical profits for the current round, the stocks at 

the start of the next round, and the ensuing hypothetical profits of their partners. 

Figure 11: Support Sheet from the Extraction game experiment 

 

NB: The spreadsheet was protected and subjects were only allowed to modify the yellow cells.    
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4.2 Analysis of Experimental Results 

4.2.1 Analysis of Individual Behavior 

For the analysis of data from the experiment, I proceed here with a primary phase, 

inspired by the work of Herr et al. (1997), where experimental data are measured up 

against markers corresponding to the theoretical predictions following the different paths. 

I will use as markers sequences of decisions over the 10-rounds, based on the decisions 

following the four paths previously introduced (the Social Optimum, the SPE, the Semi-

Myopic and the Myopic). For every treatment, I will compare the participants’ extraction 

decisions from every experimental treatment to markers corresponding to the same 

experimental settings in terms of transmissivity, inequality and, when appropriate, the 

type of player. The objective of this first step is to get a better perception of individual 

subjects’ behavior during the experiment.
67

  

Table 6 recaps the individual extraction decisions following the different paths, as 

defined in the theoretical section.
68

 The figures in Table 6 were used in Figures 5a-d 

presented and discussed in the Chapter 3. In summary, Table 6 illustrates a tendency to 

conserve in the early stages and to extract more in the last rounds, following the social 

optimum path. The Myopic path presents the opposite trend, as extractions are high in the 

first round and drop continuously over the entire duration of the game.  

                                                      

67
 Theoretical Results SPE 1-4 are based on the assumption that players will act following the SPE. I 

therefore need to test that hypothesis before trying to test for the changes in subjects’ behavior from one 

treatment to another. 

68
 For the two last treatments, I will only have two markers — maximum and myopic — since they 

correspond to the case with zero transmissivity. In that case, the Social Optimum, the SPE and the Semi-

myopic paths converge. 
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Table 6: Players’ theoretical decisions following the Social Optimum, SPE, Semi-Myopic and Myopic 

paths 

 Round   Social Optimum SPE Semi-Myopic Myopic 

 
r whr wlr whr wlr whr wlr whr wlr 

Unequal users - 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

 

 

 

 

 

 

1 8.0 0.0 9.8 4.0 10.1 4.2 14.7 5.0 

2 8.4 0.0 9.7 3.6 9.9 3.8 13.7 4.1 

3 8.9 0.0 9.7 3.3 9.8 3.4 12.9 3.3 

4 9.3 0.0 9.6 3.0 9.7 3.0 12.3 2.6 

5 9.8 0.0 9.7 2.7 9.7 2.6 11.7 2.0 

6 10.3 0.3 9.8 2.4 9.8 2.3 11.1 1.5 

7 10.7 0.7 9.9 2.0 9.9 2.0 10.7 1.1 

8 11.2 1.2 10.1 1.7 10.1 1.7 10.3 0.7 

9 11.6 1.6 10.4 1.4 10.3 1.3 10.0 0.3 

10 12.1 2.1 10.7 1.1 10.7 1.0 9.7 0.0 

Identical Users 

- Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 

 

 

 

 

 

 

 

 

 

1 3.2 3.2 6.9 6.9 7.1 7.1 9.8 9.8 

2 3.6 3.6 6.7 6.7 6.8 6.8 8.9 8.9 

3 4.1 4.1 6.5 6.5 6.6 6.6 8.1 8.1 

4 4.5 4.5 6.3 6.3 6.3 6.3 7.4 7.4 

5 5.0 5.0 6.2 6.2 6.2 6.2 6.8 6.8 

6 5.4 5.4 6.1 6.1 6.0 6.0 6.3 6.3 

7 5.9 5.9 6.0 6.0 5.9 5.9 5.9 5.9 

8 6.3 6.3 5.9 5.9 5.9 5.9 5.5 5.5 

9 6.8 6.8 5.9 5.9 5.8 5.8 5.1 5.1 

10 7.2 7.2 5.9 5.9 5.9 5.9 4.9 4.9 

Unequal Users 

- Zero 

Transmissivity  
(ah = 20, al = 10, s = 0) 

 

 

 

 

 

 

 

 

 

 

1   5.2 1.2   13.9 5.2 

2   5.6 1.6   12.5 4.9 

3   6.1 2.1   11.2 4.6 

4   6.5 2.5   10.1 4.4 

5   7.0 3.0   9.2 4.2 

6   7.4 3.4   8.4 4.1 

7   7.9 3.9   7.7 3.9 

8   8.3 4.3   7.1 3.8 

9   8.8 4.8   6.6 3.7 

10   9.2 5.2   6.1 3.6 

Identical Users 

- Zero 

Transmissivity 
(ah = 15, al = 15, s = 0) 

 

 
 
 
 
 
 
 
 
 

1   3.2 3.2   9.5 9.5 

2   3.6 3.6   8.7 8.7 

3   4.1 4.1   7.9 7.9 

4   4.5 4.5   7.3 7.3 

5   5.0 5.0   6.7 6.7 

6   5.4 5.4   6.2 6.2 

7   5.9 5.9   5.8 5.8 

8   6.3 6.3   5.5 5.5 

9   6.8 6.8   5.1 5.1 

10   7.2 7.2   4.9 4.9 

NB: With zero transmissivity (s=0) the decisions under the Social Optimum are identical to those 

from SPE and Semi-Myopic. 
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The same decreasing tendency, but less pronounced, is observed with identical and less 

efficient users of an infinite transmissivity resource, following the Semi-Myopic and SPE 

paths. In the case of a resource with infinite transmissivity used by unequal players, under 

both strategic and semi-myopic regimes the more efficient player tends to decrease 

extraction slightly, in the early rounds, before increasing it moderately in the final rounds. 

At first, I start by comparing the extraction decisions data, by the laboratory subjects, to 

the theoretical results (in Table 6) following the four strategies, used here as 

unconditional markers. Next, the laboratory extraction decisions will be judged against 

the extraction decisions obtained based on the decisions rules following the different 

paths.  

As established for all considered strategies (See Chapter 3), with an interior solution, the 

theoretical extraction decisions are linear functions of current level(s) of stock, where 

coefficients (for a given path) depend on the current round. The decisions based on the 

current level of stock will be referred to as conditional markers. 

This analysis will be carried by sequence of 10-rounds. A first analysis of experimental 

data shows a significant correlation between the players’ decisions and the corresponding 

round (when the decision is made) while the stock level at the start of the round does not 

have any significant effect.
69

  

When the dummies for the sequences of ten rounds are included in regression;  the stock 

level is shown to have a strong effect on the players decisions; in addition, out of the 329 

                                                      

69
 The other variables included in the regression are efficiency and transmissivity. 
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sequences used in the regression (2 sequences eliminated for collinearity) 300 have are 

statistically significant at the 1% level (p<0.01). 

4.2.1.1 Best Describing Unconditional Marker 

In each experimental session, subjects participated in four 10-round sequences. The 

decisions made by each player in every round of every sequence were compared to the 

Social Optimum, SPE, Semi-Myopic and Myopic paths decisions corresponding to the 

same treatment and for the same player’s type h or l (see Table 6). 

For each sequence, the sum of square deviations (SSD) of all rounds was calculated for 

every marker; the marker that corresponds to the lowest SSD was recognized as the best 

describer of the player’s behavior for that sequence.
70

  

The results from this first step helped compile the partition of players by best describing 

unconditional marker, presented in Table 7;
71

 the table also displays the average (across 

players) SSD for each unconditional marker. 

Analysis of the results in Table 7 shows that myopic behavior is clearly the most 

common best-describing marker; indeed 56% of all sequences, across all four treatments, 

are best described by the myopic behavior. However, in the case of unequal users with 

zero transmissivity, a -slim- majority of efficient users follows the maximizing path. 

                                                      

70
 For example, for the Myopic –unconditional– marker I evaluate the SSD for player i during sequence S 

as:       
      

 ∑ (   
     

      
)
   

   
, where    

  denotes the decision taken by player i,on round r of 

the considered sequence S; the Best Describing Unconditional Marker is the marker corresponding to the 

minimum of       
      

,       
           

,       
              

              
. 

71
 In fact, the result is the partition of 10-round sequences by best describing marker, the use of partition of 

players is a reminder that the calculations and following analysis are carried by type of player. 
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Table 7 Partition of Players per Best Unconditional Describing Marker & Average SSD. 

   
Partition of players per best 

describing marker 

Average Sum of Square 

Deviations 

Treatment Sequence Type Obs. Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic 

 

Unequal users 

& Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 
 
 
 
 
 
 
 
 

 

1 
h 12 8.3% 25.0% 16.7% 50.0% 161.4 130.9 129.5 174.0 

l 12 0.0% 25.0% 33.3% 41.7% 135.5 36.1 35.5 44.0 

2 
h 11 9.1% 18.2% 18.2% 54.5% 163.1 134.3 132.6 168.7 

l 11 0.0% 27.3% 27.3% 45.5% 106.0 23.8 23.5 32.0 

3 
h 7 0.0% 28.6% 0.0% 71.4% 185.0 149.1 147.1 182.6 

l 7 0.0% 42.9% 0.0% 57.1% 98.2 17.8 17.4 23.4 

4 
h 11 27.3% 0.0% 9.1% 63.6% 161.8 135.3 133.7 172.8 

l 11 0.0% 36.4% 0.0% 63.6% 106.0 20.3 19.8 26.7 

Total 

per type 

h 41 12.2% 17.1% 12.2% 58.5% 166.0 136.1 134.5 173.7 

l 41 0.0% 31.7% 17.1% 51.2% 113.3 25.4 25.0 32.6 

Total   82 6.1% 24.4% 14.6% 54.9% 139.6 80.8 79.7 103.2 

 

Identical users 

& Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

1/2) 

 
 

 

1   22 27.3% 18.2% 4.5% 50.0% 96.4 48.2 48.0 60.4 

2   24 12.5% 12.5% 12.5% 62.5% 120.4 48.0 46.3 41.4 

3   12 16.7% 16.7% 8.3% 58.3% 119.1 50.3 49.0 47.0 

4   18 0.0% 11.1% 5.6% 83.3% 124.3 42.9 41.1 30.6 

Total   76 14.5% 14.5% 7.9% 63.2% 114.2 47.2 46.0 45.2 

 

Unequal users 

& Zero 

Transmissivity 
(ah = 20, al = 10, s = 

0) 

 
 
 
 
 
 
 
 
 

  

1 
h 12   41.7%   58.3%   149.3   135.0 

l 12   33.3%   66.7%   49.3   29.2 

2 
h 12   33.3%   66.7%   127.1   97.9 

l 11   36.4%   63.6%   37.2   22.7 

3 
h 12   50.0%   50.0%   87.4   131.9 

l 12   58.3%   41.7%   30.8   21.0 

4 
h 12   83.3%   16.7%   73.7   173.4 

l 12   50.0%   50.0%   29.9   19.3 

Total 

per type 

h 48   52.1%   47.9%   109.4   134.5 

l 47   44.7%   55.3%   36.8   23.1 

Total   95   48.4%   51.6%   73.5   79.4 

 

Identical users 

& Zero 

Transmissivity 
(ah = 15, al = 15, s = 

0) 

 
 

 

1   19   21.1%   78.9%   92.9   47.7 

2   20   45.0%   55.0%   75.3   54.2 

3   20   50.0%   50.0%   86.9   79.6 

4   20   55.0%   45.0%   80.4   86.0 

Total   79   43.0%   57.0%   83.8   67.1 

NB: With zero transmissivity (s=0) the decisions under the Social Optimum are identical to those 

from SPE and Semi-Myopic. 
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Table 7 also shows that the share of sequences following the myopic path is higher with 

infinite transmissivity, but this observation is not valid -in treatments with unequal users- 

for the less efficient users. 

The myopic path is followed by strategic behavior (along SPE) for treatments with 

transmissivity, and by the maximizing
72

 behavior for treatments without transmissivity. 

However, when I recreate Table 7 without the myopic marker, in order to accurately 

compare the three other paths, for the treatments with infinite transmissivity, the Semi-

Myopic behavior emerges as the best-describing path (Table 8). 

Table 8: Partition of Players per Best Unconditional Describing Marker without Myopic path 

Treatment Sequence Type Obs. 
Social 

Optimum 

Subgame 

Perfect Eq. 

Semi-

Myopic 

Unequal users & Infinite 

Transmissivity (ah = 15, al = 15, s = 1/2) 

Total per 

type 

h 41 12.20% 17.10% 70.70% 

l 41 0.00% 31.70% 68.30% 

Total   82 6.10% 24.40% 69.50% 

Unequal users & Infinite 

Transmissivity (ah = 15, al = 15, s = 1/2) 
Total   76 14.50% 14.50% 70.00% 

 

A look at the sum of square deviations in Table 7 confirms the previous findings in the 

case of treatments with identical players, as the sum of square deviations from the 

myopic path is found to be lower. For treatments with unequal players, the lowest 

deviations correspond to the semi-myopic path for a zero transmissivity resource; for an 

infinite transmissivity resource, both the partition table and the square deviations show 

that the maximizing path is the best describing marker for efficient players and the 

myopic path is the best one for less efficient players. 

4.2.1.2 Best Describing Conditional Marker 

                                                      

72
 In the case where s = 0, the semi-myopic, strategic (SPE) and social optimum (SO) paths are one and the 

same and correspond to the single user maximization path. 
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In this section, an exercise similar to the one conducted for unconditional markers is 

conducted using the conditional markers for the Social Optimum, SPE, Semi-Myopic and 

Myopic paths. The conditional markers are calculated using the same approach described 

in the theoretical section, readjusted to the actual levels of stock and to the number of 

rounds left in the game.  

For example, in the fifth round the maximization is reviewed for the last six rounds using 

the actual level of stocks at the beginning of round five. This of course implies that the 

calculations were done for every player at every round for every sequence, instead of one 

table per treatment as in the previous subsection.
73

  

As shown in Table 9, taking into consideration the actual stocks emphasizes even further 

the share of players following the –conditional– myopic path, especially for treatments 

with transmissivity, where 67% of all sequences for identical players and 74% of 

sequences for unequal players are best described by the myopic marker. In treatments 

with zero transmissivity, 44% of sequences with identical players and 48% of sequences 

with unequal players are best described by the conditional maximizing marker (the rest of 

the sequences follow the myopic path). The effect of transmissivity on the share of 

sequences best described by the myopic marker is greater than with unconditional 

markers. 

 

 

                                                      

73
 Thirty-eight or more tables with nine rounds each were calculated for every treatment (since the stock at 

the first round is fixed at 73 for all treatments there was no difference for this round from the unconditional 

markers). To do so I took advantage of the fact that, in the case of interior solutions, the solution takes the 

form: riirrirrir xExEw 321 )()(    . 
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Table 9: Partition of Players per Best Conditional Describing Marker & Average SSD 

   
Partition of players per best 

describing marker 

Average Sum of Square 

Deviations 

Treatment Sequence Type Obs. Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic 

 

Unequal users 

& Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 
 
 
 
 
 
 
 
 

 

1 
h 12 25.0% 8.3% 16.7% 50.0% 181.2 171.8 170.7 247.7 

l 12 0.0% 0.0% 8.3% 91.7% 136.3 34.5 33.4 29.1 

2 
h 11 27.3% 0.0% 18.2% 54.5% 188.3 175.1 173.5 239.0 

l 11 0.0% 9.1% 9.1% 81.8% 107.0 15.6 15.1 12.4 

3 
h 7 28.6% 0.0% 0.0% 71.4% 213.5 202.5 200.8 274.9 

l 7 0.0% 14.3% 0.0% 85.7% 93.8 5.1 4.5 2.1 

4 
h 11 27.3% 0.0% 0.0% 72.7% 188.5 177.6 176.2 245.1 

l 11 0.0% 9.1% 0.0% 90.9% 103.1 11.5 10.8 8.2 

Total 

per type 

h 41 26.8% 2.4% 9.8% 61.0% 190.5 179.5 178.1 249.3 

l 41 0.0% 7.3% 4.9% 87.8% 112.3 18.3 17.5 14.4 

Total   82 13.4% 4.9% 7.3% 74.4% 151.4 98.9 97.8 131.8 

 

Identical users 

& Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

1/2) 

 
 

 

1   22 18.2% 18.2% 9.1% 54.5% 125.9 66.3 66.0 88.8 

2   24 12.5% 12.5% 12.5% 62.5% 157.0 72.3 70.5 70.6 

3   12 16.7% 8.3% 8.3% 66.7% 143.8 57.3 55.8 55.0 

4   18 0.0% 11.1% 0.0% 88.9% 157.5 51.4 49.1 31.1 

Total   76 11.8% 13.2% 7.9% 67.1% 146.0 63.3 61.8 64.1 

 

Unequal users 

& Zero 

Transmissivity 
(ah = 20, al = 10, s = 

0) 

 
 
 
 
 
 
 
 
 

  

1 
h 12   41.7%   58.3%   182.2   186.2 

l 12   33.3%   66.7%   58.2   32.4 

2 
h 12   33.3%   66.7%   161.7   152.5 

l 11   36.4%   63.6%   44.7   32.9 

3 
h 12   50.0%   50.0%   106.4   196.4 

l 12   58.3%   41.7%   36.6   29.5 

4 
h 12   75.0%   25.0%   84.7   262.2 

l 12   58.3%   41.7%   35.8   32.0 

Total 

per type 

h 48   50.0%   50.0%   133.7   199.3 

l 47   46.8%   53.2%   43.8   31.7 

Total   95   48.4%   51.6%   89.3   116.4 

 

Identical users 

& Zero 

Transmissivity 
(ah = 15, al = 15, s = 

0) 

 
 

 

1   19   21.1%   78.9%   114.0   64.9 

2   20   50.0%   50.0%   89.5   86.9 

3   20   50.0%   50.0%   100.3   110.9 

4   20   55.0%   45.0%   94.8   114.4 

Total   79   44.3%   55.7%   99.5   94.6 

NB: With zero transmissivity (s=0) the decisions under the Social Optimum are identical to those 

from SPE and Semi-Myopic. 
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Similarly to the analysis with conditional markers, when I drop the myopic path and 

reconstruct Table 9 with only three markers, the semi-myopic behavior comes out as the 

new most common Best Describing Conditional Marker.
74

  

Table 9 also shows that, the lowest SSD is always related to the conditional myopic for 

less efficient players, with only 14.4 in average with an infinite transmissivity and 31.7 

with zero transmissivity. On the other hand, for the efficient users, the lowest SSD is 

related to the conditional Semi-Myopic (178.1 in average) with an infinite transmissivity, 

and to the Maximizing path with zero transmissivity. For identical users, the lowest SSD 

switches from that with conditional Semi-Myopic (61.8 in average) with an infinite 

transmissivity, to that with the Myopic path with zero transmissivity (94.6 in average). 

Table 10: Partition of players’ per Best Conditional Describing Marker & SSD 

   
Partition of players per best 

describing marker 

Average Sum of Square 

Deviations 

Treatment Type Sequence Obs. Social 

Optimum 

Subgame 

Perfect Eq. 

Semi-

Myopic 

Myopic Social 

Optimum 

Subgame 

Perfect Eq. 

Semi-

Myopic 

Myopic 

Unequal users 

& Infinite 

Transmissivity 

h 
1+2 23 26.2% 4.2% 17.5% 52.3% 184.8 173.5 172.1 243.4 

3+4 18 28.0% 0.0% 0.0% 72.1% 201.0 190.1 188.5 260.0 

l 
1+2 23 0.0% 4.6% 8.7% 86.8% 121.7 25.1 24.3 20.8 

3+4 18 0.0% 11.7% 0.0% 88.3% 98.5 8.3 7.7 5.2 

Identical users 

& Infinite 

Transmissivity 

 1+2 46 15.4% 15.4% 10.8% 58.5% 141.5 69.3 68.3 79.7 

 3+4 30 8.4% 9.7% 4.2% 77.8% 150.7 54.4 52.5 43.1 

Unequal users 

& Zero 

Transmissivity 

h 
1+2 24  37.5%  62.5%  172.0  169.4 

3+4 24  62.5%  37.5%  95.6  229.3 

l 
1+2 23  34.9%  65.2%  51.5  32.7 

3+4 24  58.3%  41.7%  36.2  30.8 

Identical users 

& Zero 

Transmissivity  

 1+2 39  35.6%  64.5%  101.8  75.9 

 3+4 40  52.5%  47.5%  97.6  112.7 

 

                                                      

74
 Without the Conditional Myopic Marker, the shares of players following the Conditional SPE and Social 

Optimum paths stay the same as in Table 9, while the share of players following the Conditional Semi-

Myopic path is the sum of those following the Conditional Semi-Myopic and Myopic paths in table 9. 
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Table 10, obtained by combining the results from the two first sequences and the two last 

sequences, suggests a noticeable learning effect in the case with zero transmissivity; the 

share of players with the conditional maximum marker as best describing marker 

increases from 37.5% in the first sequences for efficient users (respectively 34.9% for 

less efficient users and 35.6% for identical users) to 62.5% (respectively 58.3% for less 

efficient users and 52.5% for identical users) in the last sequences. 

However, in treatments with infinite transmissivity, the players’ seem to be more inclined 

to follow the Conditional Myopic path in the last sequences than in the first two 

sequences, especially for the efficient and identical users. 

4.2.2 A Treatment Effect on the First Round  

The difficulty in analyzing the changes in players’ decisions from one treatment to 

another resides in the fact that the stocks at every round depend on the players’ decisions 

in the previous rounds and are different from one treatment to another. Therefore, the 

decisions cannot be compared. For the first round, however, all stocks in the different 

treatments are set to the same level (xh0=xl0=x0=73). Figure 12 provides the results from 

the experiment together with the theoretical predictions.  

The results from the first round show that with infinite transmissivity, the average 

laboratory decision in the treatment with unequal users (8.24 the mean of 4.84 and 11.65, 

the average laboratory decisions on the 1
st
 round of respectively less efficient and 

efficient users) is practically the same as in the treatment with identical users (8.37). With 

zero transmissivity, I witness a substantial and statistically significant decrease in the 

players’ decisions on the first round, the average decision drops by around two units for 

both unequal players (6.28, the mean of 3.98 and 8.59) and identical players (6.30). 
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A t-test shows that –infinite– transmissivity is associated with a 2.02 increase in the 

players’ average decision during the first round, with a 95 percent confidence interval 

[1.33-2.71]; a one sided t-test shows that the probability of the increasing effect of 

transmissivity on the average decision on the first round (βtransmissivity  ≥ 0) is p-value = 

0.99999967. 

For the treatment with unequal users and zero transmissivity, there is a substantial gap in 

the players’ average decision (4.61) between high-efficiency players (8.59 in average) 

and low-efficiency players (3.98 in average); but the difference is even greater (6.81) 

with infinite transmissivity, since the increase in the level of use by the high-efficiency 

player (the average decision increases by 3.06, from 8.59 to 11.65) is more than three 

times that by the low-efficiency player (an average increase of 0.86, from 3.98 to 4.84). 

The aforementioned remarks, based on experimental data, replicate qualitatively the 

predictions following the SPE path, even though the actual laboratory extraction 

decisions are -on average- higher than the decisions following the SPE path (see Figure 

11.65 
8.37 8.59 

6.3 

4.84 
8.37 

3.98 
6.3 
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Figure 12: Theoretical and Average Laboratory Decisions on the First Round 
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12).  Indeed, an important percentage of players opted, on the first round, for extraction 

levels that are closer to the myopic path.  

Table 11: First round Partition per best describing marker & Mean squared deviations 

   
Partition of players per best 

describing marker 
Mean Square Deviations 

Treatment Type Obs. Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic Social 
Optimum 

Subgame 
Perfect Eq. 

Semi-
Myopic 

Myopic 

Unequal users & 

Infinite 

Transmissivity 

h 47 19.1% 0.0% 21.3% 59.6% 32.5 22.1 21.1 27.2 

l 47 2.1% 12.8% 0.0% 85.1% 26.6 2.6 2.3 1.7 

h+l 94 10.6% 6.4% 10.6% 72.3% 29.6 12.4 11.7 14.5 

Identical users & 

Infinite 

Transmissivity 
 94 20.2% 6.4% 12.8% 60.6% 36.1 10.4 9.8 10.2 

Unequal users & 

Zero Transmissivity 

h 48  62.5%  37.5%  30.2  46.3 

l 47  44.7%  55.3%  12.0  6.1 

h+l 95  53.7%  46.3%  21.2  26.4 

Identical users & 

Zero Transmissivity   79  57.0%  43.0%  20.0  20.0 

 

Table 11 provides the mean squared deviation of experimental first round data  from the 

extraction decisions (for the first round) following the different theoretical paths, for the 

same settings (in transmissivity and inequality), and the same type of player. The table 

also provides the partition of players by best describing marker for the different 

treatments, based, in this instance, solely on the path corresponding to the lowest squared 

deviation on the first round. The table shows that a majority of players follow the myopic 

path in treatments with infinite transmissivity, especially for low-efficiency players (even 

with zero transmissivity). 

Regarding profits, Figure 13 shows that the individual and aggregate profits on the first 

round are higher in treatments with infinite transmissivity -for all players, in comparison 

to the profits with zero transmissivity. For example, with an infinite transmissivity, the 

efficient user earns 101 computer dollars in average, on the first round, versus 84 

computer dollars in the treatment with zero transmissivity; this effect is consistent with 
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the higher extraction levels with infinite transmissivity. The figure also reveals that 

treatments with identical players generate lower profits even though the extracted 

quantities are the same as in treatments with unequal users: this result is valid with and 

without transmissivity. These findings follow the predictions from the SPE path solution. 

 

 

For treatments with unequal users, high-efficiency players capture most of the increase in 

aggregate profits (in value and in percentage) from transmissivity. This last outcome is 

mainly due to the fact that the less efficient players’ decisions are closer to those of the 

myopic path. 

4.2.3 Testing the Hypotheses 

Contrary to the previous test where I considered solely the first round, in this section I 

will consider the aggregate cumulative (from all ten rounds) earnings of the two players 

within each pair, as this represents the appropriate statistic to use to test the theoretical 

Results SPE1-3 presented in Chapter 3.3 (and validated with a numerical example in 0). 
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Figure 13: Theoretical and Average Laboratory Profits on the First Round 
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Each group provided one data point per every 10-round sequence – a total of 38 or more 

statistics per treatment. For the distributional effects in Result SPE4, I used the 

cumulative earnings over the 10-round sequence for player h and l separately. 

Table 12: Experimental average cumulative profits per 10-round game 

 

Cumulative 

Profits for 

player h 

Cumulative 

Profits for 

player l 

Aggregate 

Cumulative 

Profits (h+l) 

Observations 

Unequal users & Infinite 

Transmissivity (ah = 20, al = 10, s = ½) 

690.2 49.2 739.4 
41/41 

(104.0) (38.1) (78.0) 

Identical users & Infinite 

Transmissivity (ah = 15, al = 15, s = 1/2) 

266.9 266.9 533.9 
38/38 

(27.0) (27.0) (54.0) 

Unequal users & Zero 

Transmissivity (ah = 20, al = 10, s = 0) 

581.6 111.9 693.6 
47/47 

(52.3) (18.1) (64.3) 

Identical users & Zero 

Transmissivity (ah = 15, al = 15, s = 0) 

291.4 291.4 582.8 
39/39 

(32.2) (32.2) (64.4) 

 

Table 12 provides the average cumulative earnings per sequence per treatment and per 

type of players and, between brackets, the corresponding standard deviations.  

The experimental results confirm the theoretical conclusions as illustrated in Figure 14, 

where I depict the changes in profits from one treatment to another: 

 

 

 

 

 

 

 

 Figure 14: Experimental observations on aggregate and individual cumulative profits 
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The green arrows indicate an increase in profits while the blue arrows denote an increase 

under the condition of high inequality between players and a decrease otherwise.  

Observation 1: Inequality increases the aggregate cumulative profits from the common-

pool resource. 

For treatments with zero transmissivity, Table 12 shows that the aggregate cumulative 

profits (from a 10-round game) increase from 582.8 computer dollars with identical 

players to 693.6 with unequal players, an increasing effect of inequality of around 19%. 

With infinite transmissivity, the effect of inequality is even greater (in absolute and 

relative terms) as the average aggregate cumulative profits expands from 533.9 with 

identical users to 739.4 with unequal users, a net growth of 38.5%. 

Combining all experiments (zero/infinite transmissivity), the average aggregate 

cumulative profits increases from 558.6 for identical players to 714.9 for unequal users 

(mean difference = 156.2, n = 165, two sample Wilcoxon rank sum test, P = 0.0000). 

Observation 2: Transmissivity decreases the aggregate cumulative profits from the 

common-pool resource for identical or slightly unequal players. 

The average aggregate cumulative profits for unequal users falls from 582.8 with zero 

transmissivity to 533.9 with infinite transmissivity, an 8.4% decrease that is in line with 

the predicted 7.7% following the SPE solution.
75

 The drop in profits is substantial and 

statistically significant (mean difference = 49.0, n = 77, two sample Wilcoxon rank sum 

test, P = 0.0000), even though the actual profits are noticeably lower than with the SPE. 

                                                      

75
 As presented in Table 1, the aggregate cumulative profits of identical users following the SPE fall from 

690.1 with zero transmissivity to 637.1 with infinite transmissivity.  
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The higher share of players following the –conditional– myopic path with infinite 

transmissivity (67.1% in Table 9), than with zero transmissivity (55.7%), as evidenced in 

the first part of this analysis, is also an element that contributed to this result. 

Observation 3: In the case of highly unequal players, higher transmissivity tends to 

increase the aggregate cumulative profits. 

As indicated in Table 12, for treatments with unequal players, the average aggregate 

cumulative profits witnesses a moderate, but statistically significant, increase following a 

move from a perfectly impermeable resource with zero transmissivity to a perfectly 

transmissive resource. The average aggregate profit is 693.6 with s=0 and 739.4 when 

s=1/2 (mean difference = 45.84, n = 88, two-sample Wilcoxon rank sum test, P = 

0.0002), an increase in the range of 6.6%. 

Observation 4: Transmissivity always decreases the cumulative profits for less efficient 

player and, in the case of a high inequality between players, increases the cumulative 

profits for the more efficient ones. 

For treatments with unequal players, a move from the no-transmissivity regime to an 

infinite transmissivity resource engenders an 18.7% increase in the average cumulative 

profits for the high-efficiency users, from 581.6 to 690.2, at the same time, the less 

efficient users see their average cumulative profits drop by 56% (from 111.9 to 49.2).  

In treatments with identical users, transmissivity has the same decreasing effect on the 

individual cumulative profits, as discussed in Observation 2, with aggregate profits.  
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4.2.4 Efficiency Across Treatments 

Efficiency of a given path, expressed as a percentage, is obtained by dividing the profits 

achieved following that path by the profits following the social optimum path. The 

efficiency results from the laboratory experiment are presented in the table 13, along with 

the efficiency results from the strategic, semi-myopic, and myopic paths. 

The experimental data show that there is a significant increase in efficiency, with regard 

to aggregate cumulative profits, as I move from a resource with infinite transmissivity to 

a resource with zero transmissivity. The gain in efficiency amounts to 7% for treatments 

with identical players (from 77.4% to 84.4%), and approaches 9% in the case of unequal 

players (from 79.0% to 87.8%).  

This last result with unequal users is in fact the accumulation of two opposite effects. For 

treatments with infinite transmissivity, the efficiency in individual profits is particularly 

high for low efficiency players, 346.2% in average, a reminder that the social optimum 

entails for the less efficient user to reduce his/her extraction decisions in order to increase 

the aggregate –cumulative– profits, and consistent with the high theoretical efficiencies 

following the strategic, semi-myopic, and myopic paths. In a setting with zero 

transmissivity, the social optimum (maximum path) is directly linked to the users’ own 

profits and the efficiency levels, from the experiment and from the other theoretical 

markers, are back to normal levels below 100%,   

For the high efficiency user (in treatments with unequal users) the gain in efficiency in 

individual cumulative profits is even higher and reaches 14.1% (from 74.8% with infinite 

transmissivity to 88.9% with zero transmissivity). 
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The table also shows that in both settings (zero/infinite transmissivity) the efficiency is 

higher with unequal players; the P value from the Mann-Whitney test is 0.02 with infinite 

transmissivity and 0.00 with zero transmissivity. 

Table 13: Average Experimental & Theoretical efficiencies 

  Experiment Theoretical efficiency 

Treatment  Type Efficiency Standard 

Deviation 

Subgame 

Perfect Eq. 

Semi-

Myopic 

Myopic 

Unequal users & 

Infinite Transmissivity 

h 74.8% 11.3% 87.9% 87.6% 81.3% 

l 346.2% 268.4% 396.9% 390.1% 256.3% 

h+l 79.0% 8.3% 92.6% 92.2% 83.9% 

Identical users & 

Infinite Transmissivity 
 77.4% 7.8% 92.3% 91.7% 77.7% 

Unequal users & Zero 

Transmissivity 

h 88.9% 7.9% 100.0% 100.0% 80.9% 

l 82.6% 13.3% 100.0% 100.0% 77.8% 

h+l 87.8% 8.1% 100.0% 100.0% 80.4% 

Identical users & Zero 

Transmissivity  
 84.4% 9.3% 100.0% 100.0% 79.9% 

 

For the treatments with infinite transmissivity, the efficiency results from the laboratory 

experiment are found to be always lower than the efficiency results from the SPE path 

(for identical, efficient and less efficient players), and even lower than the results from 

the Myopic path with unequal players (79.0% efficiency in aggregate profits from the 

experiment versus 83.9% following the myopic), while treatments with a zero 

transmissivity perform better than the Myopic path.   

4.3 Conclusion 

The experimental part was successful in providing the needed empirical substantiation for 

all theoretical results; indeed, all four results based on the non-cooperative management 

were corroborated with strong statistical significance. 

The analysis of best conditional and unconditional indicators shows that a great 

proportion of subjects follow the myopic path, particularly with an infinite-transmissivity 
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resource; when there is no transmissivity, the maximizing behavior stands as the best 

describing marker. 

The analysis with the sum of square deviations favors the semi-myopic behavior in the 

case of an infinite-transmissivity resource, both with conditional and unconditional 

markers; with no transmissivity, the lowest sum of square deviations relate to the 

maximizing behavior.
76

 

In concordance with the two previous results, transmissivity is shown to have a 

significant effect on efficiency; the data shows that treatments with an an infinite-

transmissivity resource where the players’ behavior is best described by myopic and semi 

myopic strategies, are less efficient than treatments with a zero-transmissivity resource, 

where the maximizing behavior is more common. 

                                                      

76
 All three paths, Social Optimum, SPE and semi-myopic converge to the maximizing behavior as s tends 

to zero. 
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Chapter 5 The Policy Implications 

5.1 Introduction 

In this section I use the same discrete model introduced in Chapter 3.1 to extend the 

analysis on the combined (and individual) effects of transmissivity and inequality on the 

aquifer use to the case when the possibility of communication between users, or the 

existence of a central agency, allows the emergence of alternative resource management 

modes. 

The first mode corresponds to the case of social optimum resource management; as 

described before, under this mode of management the resource users coordinate their 

actions to maximize the benefits to the community from the aquifer. 

In the model, the only benefits considered are the players’ profits from water user, and 

the social optimum management would translate into maximizing the aquifer users’ 

aggregate profits, over the entire duration of the game. 

Another mode of management corresponds to the case where, from a certain round, only 

one user, a priori the most effective, is allowed to use the resource, while the other user 

abandons extraction activities for the remaining duration of the game. 

Comparing the profits with a single user to the aggregate profits under a non-cooperative 

use, helps to reveal the conditions, in transmissivity and inequality, under which a player 

is better off buying out the other player, these conditions are the requirements for water 

markets to emerge. Indeed, the exclusive use of the aquifer is only desirable for a –

rational– player if her/his profits under this mode of CPR management match or exceed 
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her/his own profits from the collective use, after fully compensating the partner for 

her/his profits from the collective use. 

For example, in the case of a resource with zero transmissivity, the decisions and profits 

of any –rational– player are the same under single user management as under non-

cooperative mode, and therefore, he/she has no incentive to seek the exclusive use of the 

aquifer, when there are no additional earnings to expect and no externalities to prevent. 

Our analysis will be conducted in three stages, first I will provide the backward solutions 

to the multi-period game under Single User management; the solution for the Social 

Optimum management is already presented in Chapter 3.2.2.1. I will derive some 

important observations with analytical evidence for the one period game and numerical 

examples from a multi-period game. Finally, for the case of water markets, an 

experimental session will be organized to provide empirical validation to the theoretical 

observations. 

5.2 The Single User & Water Markets Emergence 

Under Single User management only one player is granted access to both compartments 

of the aquifer, she manages her extraction decisions in order to maximize her cumulative 

(over time ) profits. I present basic results concerning the net cumulative profits time, for 

the single user management, and compare them to the aggregate (both users) cumulative 

profits under non-cooperative management to reveal the conditions, in inequality and 

transmissivity, under which institutions for water markets can emerge. I also provide the 

analytical proof for all results in the case of a one-period game; for the ten-round game I 

present only the numerical evidence for some interesting results, using the same 

parameterization that was used for the non-cooperative game. Finally I present the results 
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from the experimental sessions carried (using the same parameterization) to validate 

some of the theoretical results. 

5.2.1 The Multi-period Single User Path 

The maximization problem for player i, the single user, granted exclusive access to the 

aquifer, is obtained by incorporating the condition on her parner’s (player -i) level of use, 

set to zero (w-ir = 0 throughout the duration of the game), in the general maximization 

problem presented in Equation 3.5 in Chapter 3.2.1, to get the new maximization 

problem: 
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(5.2) 

The solution to the single user maximization problem is obtained using the backward 

dynamic programming approach; in the last round (noted T) and assuming that the 

aquifer has no future residual value the maximization problem becomes:  
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                                     (5.3) 
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In the case of an interior solution, the optimal extraction decision in the last round must 

satisfy the first order condition: 
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The extraction decision satisfying the last equation is linear in the stocks:  
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Replacing for the value of SU

iTw  in equation (5.3) I get that the stock value at the last round 

(equal to the net profit for the last round) is quadratic in the stock levels: 
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where SU

TD1
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TD2
and SU

TD3
depend on c and s, while  SU
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well: 
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At any given round r, the player’s decision need to take into consideration the immediate 

profits from the extracted water and the benefits from the stocks in the subsequent rounds 

(zero in the last round), she solves the following problem: 
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r xxV denotes the stock value in the next round (r+1), i.e. the profits from the 

stock (xir+1, x-ir+1) when there are T-r+1 rounds left in the game.  

The decision by the single user needs to satisfy the optimality condition: 
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The player extracts to the point where her extra profits, from her current use of one more 

unit of water, equals the loss from the subsequent decrease in stocks in the following 

round. 

If I assume that the value of groundwater in the next round n=r+1 is quadratic in the 

level of stocks during that round and can be written as:  
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Solving for the optimality condition expressed in (5.6) shows that the decision during 

round r is, as established for the last round, linear in the stocks:  
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where    
  ,    

   and     
  , provided in Appendix E.1, are functions of    

  ,    
  ,    

  ,     
  , 

    
  , and     

  . 

Replacing for the values of optimal extraction decisions in (5.7) I conclude that the single 

user stock value function at round r for player i is equally quadratic in both stocks: 
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where    
  ,    

  ,    
  ,     

  ,     
  , and     

   (See Appendix E.1) are function of the decision 

coefficients from the current round,    
  ,    

   and     
  , and the coefficients of the value 

function from the next round,    
  ,    

  ,    
  ,     

  ,     
  , and     

  . 

Given the value function at the last round (T or 10) and the relationships established 

above it is possible to derive the extraction decisions, the stock levels, and the social 

optimum profits at every round. 

5.2.2 Analytical Evidence for the One Round Single User Game  

In the one round game, player i, the single user, is faced with the same problem as at the 

last period of a multi-period single-user maximization problem, with an additional 

condition on the levels of stock at the start of the round, that need to be the same for both 

compartments of the aquifer. Denoting x the level of stock at the start of the one round 

game, and replacing (xiT = x-iT = x) in Equations (5.5) and (5.2), provides the extraction 

decision and net profit, for an interior solution, for the one round game single user game: 
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For convenience, I will note  xx,NP SUs

a,a ii

,



 

the net profit of player i under single user 

management when transmissivity equals s, which in this case (single user) equates the 

value of the stock (noted  ),,

, xxV SUs

aa ii 
. 

5.2.2.1 Welfare Effects of Inequality and Transmissivity on the Single User   

From equations (5.12) and (5.13) it can be easily proven that when the single user is the 

more efficient player, she drafts more water from the aquifer and generates greater 

profits, than in the case with the less efficient user as sole user of the CPR.
77

 In most of 

the current analysis, I will focus on the case where the single user is the more efficient, 

but for the sake of completeness, I will treat the general case, where the single user can 

be either one of the two players.   

Result SU1: Inequality increases the -single user’s- profits from the Common Pool 

Resource with an efficient single user. 

The increasing effect of inequality can be easily validated by comparing the benefits in 

the case with unequal players, where the efficient player is the single user of the resource 

(a scenario that will be referred to as efficient single user hereafter), to the benefits in the 

case with identical players under single user management, where both unequal and 

identical players have the same average efficiency: 

                                                      

77
 The result regarding profits can be easily extended for the multi-period case, keeping in mind that for any 

level of use of water the more efficient player makes more profits. 
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The quantity on the right side is always positive, which shows that inequality has a 

positive effect on the profits from single user management, as long as the efficient player 

is the single user. 

For more clarity on the role of inequality, I will introduce two parameters,  ̅  
     

 
, the 

average efficiency of players h and l, and        ̅, the efficiency deviation of player i, 

i.e. the difference between her efficiency and the average.  

The efficiency deviation can be rewritten as    
      

 
 to show that        ; The 

absolute value of εi, that will be denoted ε hereafter, equals the efficiency average 

deviation (ah - al)/2, and will be used as a proxy for the level of inequality.
 
 

When only the efficient user is allowed to extract from the aquifer, the marginal change 

in her profits following a change in the level of inequality is always positive: 
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The profit from single user management with the (respectively the less) efficient single 

user, as shown in Equation 5.13, is increasing in her own efficiency, which is increasing 

(respectively decreasing) in inequality for any mean preserving change in efficiencies. 

Result SU2: Transmissivity increases the profits from the Common Pool Resource under 

single user management. 

Higher transmissivity translates into more availability of water to every user from the 

compartment beneath the other user, which in the case of exclusive access to a single user 
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leads to higher extractions from the aquifer and higher profits as shown by the positive 

sign of both derivatives: 
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The positive sign of the derivative of profits w.r.t. transmissivity is not contingent on the 

efficiency of the single user, but it is worth noticing that the effect is stronger (in 

magnitude) when the player with exclusive access is the efficient one. 

Evidently, the same increasing effect on the profits of single user is observable with a 

non-incremental change in transmissivity, from zero to infinity (s = ½), as evidenced by 

the always-positive sign of the change in profits: 
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5.2.2.2 Effects on the difference between Single User and Non-cooperative 

management 

In this part I attempt to analyze the difference between the profits under single user 

management and the aggregate profits under non-cooperative extraction game; the goal is 

to determine the effect of inequality and transmissivity on the difference between the 

profits under both modes of management. This analysis is essential in defining the 

conditions under which it is possible for the single user to fully compensate the other 

user, for leaving the extraction game, and be left with greater profits for herself, than her 
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expected profits under non-cooperative extraction. This is particularly true as the present 

set-up does not take into consideration the transaction costs and other expenses to enforce 

the agreements.  

Under such conditions on inequality and transmissivity and in the presence of a water 

market institution, a framework that allows the players to communicate and make binding 

agreements, it is possible for the two players to reach an understanding that would grant 

one player the exclusive use of the aquifer, in exchange of an income transfer to the 

player exiting the resource.
78

 

In the case of an interior solution
79

 the difference between the single user profits and the 

aggregate profits under non-cooperative extraction game, that I assume follows the SPE, 

is given by: 
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   (5.15)           

 

Result SU3: In the case with a high transmissivity (s > 0.453) and high costs of 

extraction (  
 

   (  √ )  
), a single user generates more profits than the aggregate 

profits of identical users in the non-cooperative extraction game. 

                                                      

78
 In the case of water markets where the contracts involve the amounts to extract rather than the right to the 

exclusive use of the aquifer, there is always potential for additional gains from coordinating the extraction 

decisions to maximize the aggregate profits, following the Social Optimum path. In that case, the difference 

between individual and aggregate profits following the Social Optimum and those following the SPE would 

be the appropriate measures to assess the gains and individual potential losses from water markets, and the 

–set of– income transfers for the agreements to be acceptable to both players. 

79
 The binding condition for an interior solution is the one related to non-cooperative management, more 

constraining with regard to the level of inequality.     
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In the case with zero transmissivity (s = 0), the difference function in Equation 5.15 is 

strictly negative, regardless of the level of inequality or the value of unitary cost; the loss 

matches in magnitude the full profits of the player leaving the resource:  
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Since there are no externalities involved, the extraction decision under single user 

management, for the player still using the aquifer, is the same as her decision following 

the SPE, and she receives the same profit. The only change from the move (from SPE) to 

Single User management is related to the –other– player leaving the extraction game. 

As pointed out in Result SU1, increasing transmissivity leads to an improved access to 

the aquifer and more availability of water to the single user, the single user adjusts by 

increasing her extraction decisions from the aquifer, for which she earns greater profits, 

this is true for unequal and identical users.  

At the same time, for identical users following the SPE, Result SPE2 states that the 

increase in the level of transmissivity engenders more free riding behavior and thereby a 

drop in aggregate profits. 

With identical users, the difference between the profits from Single User management 

and the aggregate profits following the SPE simplifies as:  
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For a transmissivity level higher than shSing= 0.453, and a unitary cost (c) higher than 

chSing= 
 

   (  √ )   
   the numerator in equation (5.16) is positive, which indicates that 

more profits are generated under single user management.  

High levels of transmissivity trigger large physical externalities, combined with high 

costs of extraction, they engender substantial financial externalities; to the point where it 

becomes possible for (even) the identical single user to gain more profits than the 

aggregate profits of the two non-cooperating identical players, following the SPE. The 

combined effects described in Results SU1 and SPE2, culminate into reversing the 

observation at s = 0. 

Result SU4: The effect of inequality on the difference between the profits under Single 

User management and the aggregate profits from the non-cooperative game has an 

overall inverted U-shaped pattern. The difference between the profits from the two 

regimes in increasing in inequality at low levels of inequality, it reaches a maximum with 

a positive sign, then starts to diminish in inequality; the difference becomes zero at levels 

of inequality higher than  
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Replacing with the alternative expressions for ai and a-i, respectively ā+εi and ā-εi, in 

Equation 5.15, the difference between the single user profits and the aggregate profits 

under the non-cooperative extraction game becomes: 
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Equation 5.17 shows that the difference is a quadratic function of εi, with a negative 

coefficient; it follows that the difference has a unique maximum (See Figure 15).  

The difference function  xxV SPESUs
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 reaches its maximum at Max

SPE-SU , the unique root of 

equation   0 =,,
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The positive sign of Max

SPE-SU  (keeping in mind that 0 ≤ s ≤ 1/2) confirms that the maximum 

is reached with player h –the high efficient user– as the sole user under single user 

management. 

In the following few paragraphs I will limit the analysis to the case where single user 

management (in the difference function  xxV SPESUs

aa ii
,,

,



 
) involves player h having 

exclusive access and player l exiting the resource. 

The maximum (at Max

SPE-SU ) is strictly positive, which suggests that equation 

  0 =,,

, xxV SPESUs

aa ii



 
 has two roots, given the negative coefficient in   

 ; 
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SPE  is the larger root, and corresponds to the level of 

inequality at which the extraction decision of player l, the less efficient user, following 

the SPE interior solution, is   
     .  
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Figure 15: Effect of inequality on the difference in profits between single user and SPE 

 

Figure 16: Effect of inequality on the difference in profits between single user and SPE in the case 

with high transmissivity and high unitary cost 
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At levels of inequality higher than Max

SPE ,  the solution under non-cooperative management 

(following the SPE) is a corner solution that entails player l to not extract from the 

aquifer,   
     , while player h makes her extraction decisions as the “De facto” sole 

user, with ε > Max

SPE  the difference between profits becomes:   0 =,,

, xxV SPESUs

aa



 
. 

The smaller root, denoted 0

SPE-SU , is given by: 
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The sign of 0

SPE-SU  is positive when (s<shSing) and/or (c<chSing) as presented in Figure 15.
80

 

For higher levels on transmissivity (s>shSing) combined with a high unitary cost (c>chSing), 

the difference between the aggregate profits is positive even with zero inequality, as 

already discussed in Result SU3 (   0 ,,

,   xxV SPESUs

aa
), and the smaller root is negative as 

presented in Figure 16. 

In the case of Single User management, increasing inequality (ε) -with player h as single 

user- increases the profits from the Common Pool Resource, as discussed in Result SU1: 
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Result SPE2 establishes the same increasing effect of inequality on the aggregate profits 

under Non-cooperative of management, for players following the SPE path: 
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80
 shSing= 0.453, and chSing= 

 

   (  √ )   
 as introduced in Result SU3. 
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At low levels of inequality ( Max

SPE-SU   ), the derivative of  xxV SPESUs

aa ii
,,

,



 
 w.r.t inequality, 

the effect of an incremental change in inequality on the profits of the Single User are 

higher than its effect on the aggregate profits following the SPE; for instance, at the 

origin, the effects are as follows: 
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At the maximum ( Max

SPE-SU  ) the two effects are equal and cancel one another out and 

  0,,

,  

 xxV SPESUs

aa ii 
; for higher levels of inequality, the effect of an incremental change in 

inequality on the profits of the Single User drops below the effect on the aggregate profits 

following the SPE and the derivative of  xxV SPESUs

aa ii
,,

,



 
 w.r.t inequality is negative. At 

the maximum level of inequality with an interior solution, Max

SPE-SU , the right derivative is 

zero, while the left derivative is strictly negative: 
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A fundamental result from the above discussion is that, for any set of parameters of the 

game (ā, h, x, c, s) there exists a level of inequality leading to a higher outcome with a 

single user, and allowing therefore for a water market to emerge. Following on the 

previous assumption that there are no transaction costs, or only negligible costs, it is 

conceivable for any two users with an inequality level that falls in the interval [ 0

SPE-SU , 

Max

SPE-SU ] to engage in negotiations, and reach an agreement, where one player exits the 

extraction game -in exchange of an agreed payment, while the other player obtains the 

exclusive use of the aquifer. 
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Given the positive sign of difference in gains  xxV SPESUs

aa ii
,,

,



 
, it is possible for player h to 

fully compensate the other user for forsaken profits from the non-cooperative game, if the 

latter were to decide to leave the extraction, while maintaining (after payment of the 

agreed compensation) a net profit that equals or exceeds his/her own profits following the 

SPE. 

The shape of the difference in gains  xxV SPESUs

aa ii
,,

,



 
 is very indicative of the “unnecessary 

nuisance” that player l is causing to player h, and the value of  xxV SPESUs

aa ii
,,

,



 
 can be 

viewed as a window of opportunities for both players to reach an agreement allowing 

player h exclusive use of the aquifer. At low levels of inequality  Max

SPE-SU  , the 

difference is negative showing that there are no prospects for rational users to reach any 

agreement regarding Single Use management; at higher levels of inequality  Max

SPE-SU  , 

any money transfer –from player h to player l– in amount (higher than zero and) lower 

than  xxV SPESUs

aa ii
,,

,



 
 to leave extraction, presents an opportunity for profits for both users, 

in that regard,  xxV SPESUs

aa ii
,,

,



 
 is the extent of the window for trade. 

 

Finally, in the specific case where high transmissivity (s>shSing) is combined with a high 

unitary cost (c>chSing), the smaller root is negative (Figure 16), and the difference between 

profits under the two modes of management,  xxV SPESUs

aa ii
,,

,



 
 is positive at low levels of 

inequality ( 0

SPE-SU  ) for both users and the two players can play either role, seller or 

buyer. The financial externalities are so high, that even player l, is able, if provided 

exclusive use of the aquifer, to remunerate player h for forgone earnings following the 

SPE, and secure more net profits for herself than following the SPE. 
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Result SU5: The derivative with regard to transmissivity of  xxV SPESUs
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, the difference 

between the profits under Single User management and the aggregate profits from the 

non-cooperative game, has an overall inverted U-shaped pattern. The derivative is 

positive and increasing in inequality at low levels of inequality, it reaches a maximum, 

then starts to decrease and becomes negative at higher levels of inequality. 

In this part I attempt to analyze the effect of transmissivity on  xxV SPESUs
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, by 

analyzing its derivative with regard to s, that will be denoted  xxV SPESUs
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In the case of identical players the derivative of  xxV SPESUs
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The derivative’s positive sign (keeping in mind that s <1/2) is explained by the benefit to 

the single user from a marginal increase in the level of transmissivity (result SU2), 

augmented by the net “savings” in terms of avoided additional externalities from the non-

cooperative extraction game with identical users; as established in Chapter 3.3, higher 

transmissivity has a strictly negative effect on the aggregate profits of non-cooperative 

identical users.
81

  

With unequal players, the derivative is as follows: 

                                                      

81
 Result SPE1: Inequality increases the aggregate cumulative profits from the common-pool resource. 
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(5.19)            

Equation 5.19 shows that the derivative is a quadratic function of εi, with a negative 

coefficient; it follows that the derivative of the difference also has a unique maximum 

(Green line in Figure 17).  

 

Figure 17: Effect of inequality on the derivative of the difference in profits between single user and 

aggregate SPE profits 
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Given the positive sign of  xxV SPESUs
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 ) is strictly positive; it is also clear, taking into account the 

negative coefficient in   
 , that  xxV SPESUs
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 has two roots, of opposite signs, that will 

be denoted s

SPE-SU  for the smaller root, and s

SPE-SU  for the larger root. Appendix E.2  

provides the actual values for the maximum and the two roots of  xxV SPESUs
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  with  

of s

SPE-SU , and supporting proof for the aforementioned results; the Appendix also shows 

that, as suggested in the figure: 0
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The key result from this discussion is that for any levels of inequality lower than s

SPE-SU , 

the derivative  xxV SPESUs
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 is positive and the increasing effect of transmissivity on 

the difference  xxV SPESUs
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, as established at the origin (Equation 5.18), continues to 

hold. For levels of inequality higher than s

SPE-SU , but lower than Max

SPE ,  xxV SPESUs
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 is 

negative, and an incremental increase  transmissivity decreases the actual gains from 

moving to the Single User management. When inequality is higher than Max

SPE , the 

difference is zero (  xxV SPESUs

aa ii
,,

,



 
=0) and the incremental increase in transmissivity has 

no effect.  

To understand the effect of transmissivity it suffices to rewrite  xxV SPESUs
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The first term on the right hand is always positive (Result SU2) while the sign of the 

second term is negative for low levels of inequality and positive for higher levels (Result 

SPE3).  

Another aspect of the effect of the transmissivity is its influence on the general shape of 

the difference function (  xxV SPESUs

aa ii
,,

,



 
), indeed, the corresponding roots ( 0

SPE-SU  and 

Max

SPE ) and maximum ( Max

SPE-SU ) are all decreasing in the level transmissivity. 

In the rest of this discussion the analysis is shifted toward the effect of a non-marginal 

change in transmissivity, from a zero-transmissivity resource (s=0) to a infinite-

transmissivity resource (s=1/2). With a zero-transmissivity, the single user management 

is not a plausible option since it results in one user giving away her benefits with no gains 

to the other user. In the analysis of a non-marginal change in transmissivity I will rather 

compare the profits from an infinite-transmissivity resource used by an efficient player to 

those from a zero-transmissivity resource used by maximizing players. 

The benefits of identical players are always harmed from the considered non-marginal 

shift in transmissivity; for unequal players however, the single efficient user management 

generates a higher profit than the aggregate profits for the two users with a zero-

transmissivity resource, for any level of inequality higher than NM

SPE-SU  given by: 

 
2

SPE-SU

21 ccc

xEca
 NM




  

With a high unitary cost of extraction (c higher than 3/4 ), NM

SPE-SU  falls within the 

interval where single user management brings higher profits than non-cooperative 
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management (with an infinite-transmissivity resource), and single user management is 

indeed a better option to generate higher profits.  

When c is low,  moderate levels of inequality (higher than NM

SPE-SU  but lower than 0

SPE-SU ) 

are still associated with higher profits under single user management for an infinite-

transmissivity resource, but the aggregate profits under non-cooperative management 

(with an infinite-transmissivity resource) are even higher. The low cost of extraction 

makes it possible for the gains from more availability of water to the efficient user with 

an infinite-transmissivity resource to outweigh the losses from the non-cooperative use 

even at moderate levels of inequality, where Single User management generates less 

profits than the SPE outcome. For high levels of inequality, single user management is 

reestablished as the more profitable management. 

The main result from this discussion is that for highly unequal players, using an infinite-

transmissivity resource, single efficient user management carries out more profits than 

the maximum aggregate (to the two users) profits from a zero-transmissivity resource. 

5.2.2.3 Water Conservation Under the Single User 

Result SU6: The aggregate amount of water used by the two users under non-

cooperative management is higher than the Single User use, but the savings in water use 

are decreasing in transmissivity. 

The extraction decision of player i, following the SPE, is given by (Equation 3.27): 

 c s c

aa

c s c

xEcaa
=w -ii-iiSPE

i
32222

)(2









,    i=h,l 
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Given the extraction decision following the Single User path (Equation 5.12), the savings 

in –aggregate– water use resulting from the switch from SPE to Single User management, 

with player i as sole user, are computed as follows: 

    
    scc

aa

sccscc

xEcaascc
www iiiiSU

i

SPE

i

SPE

i
2221222

2322
)(









 


 (5.20) 

Player i, with exclusive access to the resource under single user management, extracts 

more water than she does under non-cooperative management, but there is a net reduction 

in water use as the amount used by her partner is taken into consideration.
83

 Indeed, the 

savings in Equation 5.20 are decreasing in the level of inequality, and completely vanish 

as inequality reaches the level ( Max

SPE  ) at which player l is deterred entry to the non-

cooperative game.
84

   

Increasing the level of transmissivity has an increasing effect on the aggregate extractions 

by the non-cooperative users; the same increasing effect, and even stronger, is observed 

in the case of a single user; this leads to a net decrease in water savings from single user 

management at higher levels of transmissivity, as suggested by the sign of the derivative 

with regard to s: 
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 The difference in Player i level of use,   

     
    

  

(      )
(

 

        
 
   (   )

       
)   is strictly 

increasing in the level of inequality, it is negative at the origin (   )   and equals zero when Max

SPE  .  

84
 When the solution to the maximization problem is a corner solution. 
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5.2.3 Numerical Illustration for the Ten-round Single User Game 

5.2.3.1 Numerical specifications and solutions  

I use the same numerical specifications presented in Chapter 3.4.1, with two levels of 

inequality: unequal players (ah = 20, al = 10) and identical players (ah = al = 15); and for 

transmissivity, I consider the two extreme situations: zero transmissivity (s = 0), and 

infinite transmissivity (s = ½). For completeness, with unequal players, I will consider the 

two assumptions regarding the Single User, the case with player h as Single User and the 

case with player l. 

Matching together the two levels of inequality, the two degrees of transmissivity, and the 

two assumptions regarding the Single User (when relevant i.e. for unequal players), 

yields six cases to investigate: 

 The Player h Single User - Unequal Infinite Transmissivity case: ah = 20, al = 10 

and s = ½, with player h as Single User. 

 The Player l Single User - Unequal Infinite Transmissivity case: ah = 20, al = 10 

and s = ½, with player l as Single User. 

 The Identical Infinite Transmissivity case: ah = 15, al = 15 and s = ½. 

 The Player h Single User - Unequal Zero Transmissivity case: ah = 20, al = 10 and 

s = 0, with player h as Single User. 

 The Player l Single User - Unequal Zero Transmissivity case: ah = 20, al = 10 and 

s = 0, with player l as Single User. 

 The Identical Zero Transmissivity case: ah = 15, al = 15 and s = 0. 
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Table 14: The single user path with infinite transmissivity 

 Round Decisions Stocks Profits Stock Values 

Case t wht wlt xht xlt NPht NPlt Vh+l t 

Player h 

Single User - 

The Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

 

1 
8.2 

 
73.0  95.0 

 931.5 

2 8.7  71.9  96.6  836.5 

3 
9.1 

 
70.5  97.5 

 
739.9 

4 9.6  69.0  97.7  642.4 

5 
10.0 

 
67.2  97.2 

 
544.7 

6 10.5  65.1  95.8  447.5 

7 
10.9  62.9  93.6  351.7 

8 11.4  60.4  90.4  258.1 

9 
11.8  57.7  86.4  167.6 

10 12.3  54.8  81.3  81.3 

Player l Single 

User - The 

Unequal 

Infinite 

Transmissivity 
(ah = 20, al = 10, s = 

½) 

 

 

 

1 
 2.5  73.0  11.6 190.1 

2 
 3.0  74.7  13.7 178.4 

3  3.4  76.2  15.8 164.7 

4 
 3.9  77.5  17.6 149.0 

5 
 4.3  78.6  19.3 131.3 

6  4.8  79.4  20.8 112.0 

7 
 5.2  80.0  21.9 91.2 

8 
 5.7  80.4  22.8 69.3 

9  6.1  80.6  23.2 46.5 

10 
 6.6  80.5  23.3 23.3 

Player h or l 

Single User - 

The Identical 

Infinite 

Transmissivity 
(ah = 15, al = 15, s = 

½)  
 
 
 

 

 

 

1 5.4 73.0 43.4 489.4 

2 5.8 73.3 45.9 446.0 

3 6.3 73.4 48.0 
400.1 

4 6.7 73.2 49.6 352.1 

5 7.2 72.9 50.8 
302.5 

6 7.6 72.3 51.5 251.7 

7 8.1 71.5 51.5 
200.2 

8 8.5 70.4 51.0 148.7 

9 9.0 69.1 49.8 
97.7 

10 9.4 67.6 47.9 47.9 
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Table 15: The single user path with zero transmissivity 

 Round Decisions Stocks Profits Stock Values 

Case t wht wlt xht xlt NPht NPlt Vh+l t 

Player h 

Single User - 

The Unequal 

Zero 

Transmissivity 
(ah = 20, al = 10, s = 

0) 

 

 

 

 

1 5.2  73.0  67.0  654.6 

2 5.6  70.8  69.6  587.5 

3 6.1  68.2  71.2  517.9 

4 6.5  65.2  71.8  446.7 

5 7.0  61.6  71.3  374.8 

6 7.4  57.7  69.6  303.5 

7 7.9  53.3  66.6  233.9 

8 8.3  48.4  62.2  167.3 

9 8.8  43.1  56.3  105.1 

10 9.2  37.3  48.8  48.8 

Player l Single 

User - The 

Unequal Zero 

Transmissivity 
(ah = 20, al = 10, s = 

0) 

 

 

 

1  1.2  73.0  6.2 135.6 

2  1.6  74.8  8.6 129.4 

3  2.1  76.2  10.8 120.8 

4  2.5  77.2  12.9 110.0 

5  3.0  77.6  14.7 97.1 

6  3.4  77.7  16.0 82.5 

7  3.9  77.3  16.9 66.5 

8  4.3  76.4  17.2 49.6 

9  4.8  75.1  16.8 32.4 

10  5.2  73.3  15.6 15.6 

Player h or l 

Single User - 

The Identical 

Zero 

Transmissivity 
(ah = 15, al = 15, s = 

0)  
 
 
 

 

 

 

1 3.2 73.0 28.9 345.1 

2 3.6 72.8 32.0 316.2 

3 4.1 72.2 34.5 284.2 

4 4.5 71.2 36.5 249.6 

5 5.0 69.6 37.7 213.2 

6 5.4 67.7 38.1 175.5 

7 5.9 65.3 37.6 137.4 

8 6.3 62.4 36.2 99.7 

9 6.8 59.1 33.6 63.6 

10 7.2 55.3 29.9 29.9 
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 The other parameters of the game are kept constant, the stocks on the first round 

are set at 73 (xh0 = xl0 = 73), while the elevation of the ground is E=100. The 

unitary cost of extraction is taken c = 0.15, and the aquifer recharge is R=3. 

 The numerical solutions for the Single User’ decisions are displayed in table 14 

for the cases with infinite transmissivity and table 15 for the cases with zero 

transmissivity. With infinite transmissivity, the solution for the Single User 

decisions are based on the algorithms described earlier; with zero transmissivity, 

the Single User decisions, earnings and costs are the same as following the 

maximizing path, even though the partner leaves the extraction game, the 

decisions of the player with exclusive access are not affected, as there were no 

externalities involved. 

5.2.3.2 Discussion of numerical results for the Ten-round Game 

The numerical results presented in Table 14, together with other data from Tables 1-2 and 

4, are used to construct figures 18 and 19 portraying respectively the players’ decisions 

and the stock evolution, and figures 20, 21 and 22 representing the players’ individual, 

aggregate and aggregate cumulative profits, following the Single User, the Social 

Optimum, the SPE and the Myopic paths. The last three paths were already discussed in 

Chapter 3.4.2 and are included only for comparison, in addition, the analysis is limited to 

the case with infinite transmissivity; with zero transmissivity the Single User decisions 

and profits are the same as from the maximizing path, discussed in Chapter 3.4.2. 

In the case of unequal users, with player h as Single User (red solid line SU-wht in figure 

18.a), the decisions are very close to those following the Social Optimum (for player h), 

the extraction decisions are moderate in the early rounds (8.2 on the first round) but 
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increase gradually throughout the game to reach 12.3 on the last round; with player l as 

Single User (red dashed line SU-wht), the decisions are substantially higher than those 

following the Social Optimum (for player l), the extraction starts at lower levels and 

increases steadily, but the actual values are much lower than those with player h, and the 

difference is maintained constant at 5.7. 

In the case with identical players, the Single User decisions (red solid line SU-wit in 

figure 18.b) reproduce the same increasing evolution as the decisions following the 

Social Optimum, the moderately low levels of extraction in early rounds (5.4 on the first 

round) rise gradually to reach higher levels in the last rounds (9.4 on the 10
th

 round), 

however, the decisions under single user are always 2.2 units higher than those from the 

Social Optimum. 

Regarding the evolution of stocks, with player h as single user, figure 19.a shows that the 

stock levels are practically the same for the Single User and the Social Optimum paths, 

this is in agreement with the previous observation on the uniformity of decisions of 

player h following the two paths, given the low levels of extraction by player l following 

the Social Optimum (no extraction in the first five rounds). With player l as single user, 

the figure indicates the opposite trend, especially in the early rounds, where the stock 

levels increase, as of consequence of rates of use that are even lower than the rate of 

recharge, before stabilizing in the last rounds. 
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Figure 18: Single User (SU) Extraction decisions in the ten-round game 

 

 

Figure 19: Single User (SU) Stock evolution in the ten-round game 
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Figure 18.a Single User (SU) Extraction decisions in the ten-round game with unequal users (s=1/2) 
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Figure 18.b Single User (SU) Extraction decisions in the ten-round game with identical users (s=1/2) 
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Figure 19.a Single User (SU) Stock evolution in the ten-round game with unequal users (s=1/2) 

30.0

50.0

70.0

90.0

1 2 3 4 5 6 7 8 9 10

SO-xit

SPE-xit

SU-l-xit

Mc-xit

Figure 19.b Single User (SU) Stock evolution in the ten-round game with identical users (s=1/2) 
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With identical users, figure 19.b shows that there is little evolution in stock levels under 

Single User management, the stocks increase slowly in the two first rounds then start 

decreasing at a moderate rate in the following rounds, on the 10
th

 round the stock is at 

67.6, much higher than the stock level from any other path, including the Social 

Optimum that shows a 55.3 stock level on the last round. 

In terms of individual profits, with unequal users, figure 20.a shows that with player h as 

single User, the profits are practically equal to those following the Social Optimum; they 

are increasing gradually in the first half of the game to reach a maximum of 97.7 on the 

fourth round, and then decrease slowly in the second half. When player l is the Single 

User, the profits are much lower; they start at 13.6 on the first round and increase at a 

slow rate during the course of the game. 

For identical users, figure 20.b shows that the Single User profits are higher than 

following the Social Optimum, even though they present the same tendency over the 

duration of the game. The –Single User– profits increase gradually in the first half of the 

game, the maximum is reached on rounds 6 and 7 at about 51.5, and then the profits 

decrease slowly in the second half.  

Finally, in figures 21.a and 21.b, I compare the –individual– profits from Single User to 

the aggregate profits from the other paths, this of course is justified by the fact the 

aggregate profits under Single User management are the same as the individual profits of 

the Single User. 
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Figure 20: Single User (SU) Individual profits in the ten-round 

 

 

Figure 21: Aggregate profits in the ten-round game – including Single User 
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Figure 20.a Single User (SU) Individual profits in the ten-round game with unequal users (s=1/2) 
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Figure 20.b Single User (SU) Individual profits in the ten-round game with Identical users (s=1/2) 
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Figure 21.a Aggregate profits in the ten-round game with unequal users (s=1/2) 
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Figure 21.b Aggregate profits in the ten-round game with identical users (s=1/2) 
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With unequal users, figure 21.a shows that with player h as Single user, the profits are 

practically equal to the aggregate profits following the Social Optimum, they increase 

slowly to reach a maximum of 97.7 on the fourth round then decrease slowly in the 

following rounds. More importantly, the figure shows that aggregate profits following the 

SPE and the Myopic paths are only higher than the Single User profits in the two first 

rounds. With player l as Single User, the results are much less interesting as the aggregate 

profits are much lower than those from the other paths, at any given round. 

For identical users (figure 21.b), the profits for the Single User are always lower than the 

aggregate profits following the Social Optimum path, they are lower than those from the 

SPE game for all seven first rounds. With regard to the Myopic path, the Single User 

profits are substantially below the profits of myopic users in the first four rounds (on the 

first round the aggregate profits following the myopic path equal 104.1 while the Single 

User only earns 43.4) but are higher in the last five rounds.  

Because of the evolution of Single User profits, the resulting cumulative profits are 

higher than those following the SPE and Myopic paths in the case of unequal users, when 

player h is the Single User, but much lower when player l is the user benefiting from 

exclusive access to the resource. With identical users, the data shows that the cumulative 

profits from Single User management are lower than those following the SPE or even 

those with myopic users; given that the level of transmissivity is at the highest, one can 

only assume that this result stems from a not high enough unitary cost c.  
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For the case with zero transmissivity, the figure shows that cumulative profits of unequal 

users following the myopic path are below those from Single User management, when 

player h is the Single User, this result does not hold any economic significance, since 

nothing prevents the players from following the same path, with or without exclusive 

access or right of use of the resource, given the zero transmissivity, it is not clear how the 

Single User status would affect the player’s behavior.  

5.2.3.3 Numerical validation of results SU1-6 for the 10-round game 

Result SU1: Inequality increases the -single user’s- profits from the Common Pool 

Resource with an efficient single user. 

In the case of a resource with infinite transmissivity (s = 1/2), Table 14 shows that the 

cumulative profits of player h as single user amount to $931.5 with a high inequality (ah 
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Figure 22: Aggregate cumulative profits in the ten-round game 
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= 20, al = 10),
85

 while the cumulative profits from single user management are only 

$489.4 with identical players (ah = al = 15). 

With zero transmissivity (s = 0), the results (Table 15) show that with unequal users, the 

cumulative profits of player h as single user add up to $654.6, those for the identical 

single user come shorter, at $345.1. 

Result SU2: Transmissivity increases the profits from the Common Pool Resource under 

single user management. 

In the case of unequal users, with player h (ah = 20) as single user, the aggregate profits 

increase from $654.6 to $931.5 as transmissivity shifts from 0 to ½, at the same time, for 

identical users, the profits of the single user grow from  $345.1 to $489.4. 

Result SU3: In the case with a high transmissivity (s > 0.453) and high costs of 

extraction (  
 

   (  √ )  
), a single user generates more profits than the aggregate 

profits of identical users in the non-cooperative extraction game. 

This result cannot be validated with the specifications for the 10-rounds game, but an 

example is provided in Appendix E.3 for the one-round game. 

Result SU4: The effect of inequality on the difference between the profits under Single 

User management and the aggregate profits from the non-cooperative game has an 

overall inverted U-shaped pattern. 

                                                      

85
 Referred to as “Player h Single User - The Unequal Infinite Transmissivity” in the table. 
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Since I only use two levels of inequality, the 10-periods solution cannot validate the 

nonlinear effect of inequality; however, given that one of the two instances involves 

identical users, the data can be used to show the increasing effect of inequality. 

In the case of an infinite transmissivity (s = 1/2), for identical users (ah = al = 15), the 

difference between the aggregate profits, under single user management (by either one of 

the identical users), and the aggregate (both users) cumulative profits, following the SPE 

path, is equal to –$147.7 (from Figure 22, obtained as $489.4 minus twice $318.5).  For 

unequal users (ah = al = 15), the difference between the aggregate profits, under single 

user management by player h, and the aggregate cumulative profits, following the SPE 

path, is $64.6 (from Figure 22, obtained as $931.5 minus the sum of $810.5 and $56.4).
 

This last figure is evidence of the prospect for net gains from the switch from non-

cooperative to single user management, in the case of unequal users and infinite 

transmissivity, that is of course on condition that player h is the one granted exclusive 

access to the resource. 

The increasing effect of inequality can also be shown to hold with zero transmissivity (s 

= 0). As previously supported, the move from the non-cooperative management 

(equivalent to the maximizing path when s = 0) to the Single User management, with 

player h as single user, results in net losses equaling the profits of player l following the 

maximizing path, since there are no involved benefits (in terms of change of behavior or 

avoided externalities) to player h. From Table 1 it can be concluded that the difference in 

profits is –$345.1 with identical users and –$135.6 with unequal users. 
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 Result SU5: The derivative with regard to transmissivity of  xxV SPESUs

aa ii
,,

,



 
, the 

difference between the profits under Single User management and the aggregate profits 

from the non-cooperative game, has an overall inverted U-shaped pattern. 

As discussed before, since I only use two levels of inequality, one of them been the 

identical users, the 10-periods solution can only to check the increasing effect of 

inequality, keeping in mind that the derivative is negative at high levels of inequality.
86

  

First, for unequal appropriators, the difference between the cumulative profits under 

single user management (for player h) and the aggregate cumulative profits, following the 

SPE path, is –$135.6 with zero transmissivity and $64.6 with infinite transmissivity; the 

increase from the shift in the level of transmissivity is therefore $200.2. 

For identical users, the difference between the cumulative profits under single user 

management and the aggregate cumulative profits, following the SPE path increases from 

–$345.1 with zero transmissivity to –$147.7; the increase from the shift in the level of 

transmissivity is therefore $197.4. 

Result SU6: The aggregate amount of water used by the two users under non-

cooperative management is higher than the amount used by the Single User, but the 

savings in water use are decreasing in transmissivity. 

For the unequal users, the savings in –cumulative– water use from single user 

management, when compared to the aggregate –cumulative– water following the SPE is 

31.8 (total use of player l in Table 1) with zero transmissivity, and decreases to 21.8 with 

                                                      

86
 At levels between the root of the derivative and Max

SPE . 
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an infinite transmissivity (obtained as the sum of 99.4, the total use by Player h, and  

25.1, the total use of player l in Table1, minus 102.7, the total use of player h in table 14). 

The same decreasing trend is observed with identical users, as the savings in aggregate 

water use associated with the shift from the non-cooperative management to single user 

management, decrease from 51.9 (total use by the identical user in Table 1) with zero 

transmissivity, to 50.4 with an infinite transmissivity (twice 62.3, the use by each 

identical player in Table1, minus 74.1, the total use in table 14). 

 

5.3 The Social Optimum 

To reach the Social Optimum the players’ extraction decisions are coordinated in order to 

maximize their aggregate cumulative profits. I will present basic results concerning the 

net profits, over time, for the social optimum treatment. I provide the analytical proof for 

all results in the case of a one-period game; for the ten-round game I present only the 

numerical evidence of my findings, using the same parameterization used for the non-

cooperative game and the Single User solution.  

5.3.1 The Multi-period Social Optimum Path  

The maximization problem is given by: 

 





Tr

r
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lrhr 1

,
),,,(),,,( ,             (5.21) 

subject to:      Rwxswxsxx iriririririr   11
  

  0irw  (extraction decisions are non-negative)  

  Exir   (the level of water cannot rise above the ground) 
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  xi0 = x-i0 = x0, the stocks at t = 0, are equal and given. 

Similar to the non-cooperative game, the solution to the Social Optimum problem is 

unique and is obtained using the backward dynamic programming approach. The solution 

is presented in Chapter 3.2.2.1; numerical results are presented later in this section to 

substantiate the theoretical findings. 

5.3.2 Analytical Evidence for the One Round Game 

In the one round game, players h and l face the same maximization problem as at the last 

period of a multiple rounds Social Optimum solution, with an additional condition on the 

level of stock x, taken now as the same for both players. Equations (3.18) and (3.19) in 

3.2.2.1.1 provide the extraction decisions and the net profits under Social Optimum for an 

interior solution: 
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Since I only consider the current round, there is only one condition for an interior 

solution: the extraction of player l in equation (5.22) needs to be non-negative; this 

condition is only satisfied when inequality, measured by the efficiency average deviation 

ε, is below a certain limit    
    given as: 
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At higher levels of inequality, social optimum entails player l leaving the extraction game 

while player h acts as the sole user of the CPR. 
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It is important to notice at this point that the level of inequality that would deter entry to 

the resource, to the less efficient user, in the non-cooperative game (    
   ), is higher than 

the level that would deter her entry under cooperation; this suggests that in the present 

model it is never socially beneficial to maintain a user who is unable to compete.
87
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the net profit under Social Optimum of player i 

when transmissivity equals s, and  xxV SOs
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, the sum of net profits to players h and l, 

computed as: 
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It can be easily derived from Equations (5.22) and (5.23) that, under cooperation, the 

efficient player uses more water and earns more profits. As shown in the previous 

section, this observation holds even for a high level of inequality inducing a single 

efficient user solution to the social optimization problem. 

5.3.2.1 Welfare Effects of Inequality and Transmissivity on the Social Optimum   

Result SOD1: Inequality increases the aggregate cumulative profits from the Social 

Optimum management of a CPR. 

In the case of an interior solution, the total net profit is given by  xxV SOs

aa lh
,,

,  in Equation 

5.24, and is composed of two terms, the first term depends on the average efficiency and 

the last term depends on, and is increasing in, the level of inequality; more formally, the 
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increasing effect of inequality can be shown by comparing the total net profit for unequal 

players to that of identical players with the same average efficiency: 
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Inequality generates extra payoffs that are proportional in magnitude to the square of (ah - 

al) and are increasing in transmissivity. The same result holds when considering a 

marginal increase in inequality, as evidenced by the positive derivative of the social 

optimum outcome w.r.t ε: 
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When inequality is high and Social Optimum corresponds to the single efficient user 

solution, the increasing effect of inequality is still valid as reported in Result SU1. 

This is an interesting result as it shows that inequality affects positively the social 

optimum, but it also raises an interesting question regarding its effect on the incentive to 

shift from non-cooperative to social optimum management. Since inequality has the same 

increasing effect on aggregate profits in the non-cooperative game, the full answer is only 

achievable through further analysis as will be provided in Result SOD4. 

Result SOD2: For unequal players, transmissivity increases the aggregate cumulative 

profits from the socially optimal management. 

For identical players, the level of use and individual net profits are not affected by 

transmissivity (equations 5.22 & 5.23), therefore, the aggregate benefits are the same for 

any level of transmissivity s between 0 and ½. 
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For unequal players, higher transmissivity translates, under social optimum management, 

in an increased level of water used by the more efficient player, at the same time, the less 

efficient user decreases her use of water in the same amount. The larger share of water 

available to the more efficient user leads to higher aggregate profits as can be shown by 

its positive derivative: 
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Result SU2 shows that the increasing effect of transmissivity under Social Optimum 

management is maintained even when the solution is not interior and the efficient player 

is the sole user. 

Result SOD3: Under Social Optimum management, transmissivity increases the efficient 

player profits and decreases those of the less efficient user. 

The derivative of player i net profit w.r.t. transmissivity is given by: 
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The derivative has a negative sign for the player l and a positive sign for the player h; the 

overall increasing effect of transmissivity on the sum of profits (Result SOD2) follows 

from the stronger effect on player h. 

This result shows that individual welfare effects do not necessarily follow aggregate 

welfare effects. Indeed, for player h, higher transmissivity always translates into higher 

profits, while its effect on player l is opposite in sign and lower in magnitude; as a result, 

the overall effect on aggregate welfare is a net gain. 
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In the case of high inequality triggering a single efficient user solution to the Social 

Optimum maximization problem, the effect on player h is still increasing, for player l, it 

has no effect.
88

 

5.3.2.2 Effects on the Difference Between Social Optimum and Non-Cooperative 

Management 

This part is dedicated to the analysis of the difference between the players’ aggregate and 

individual profits following the move from a non-cooperative extraction game to a social 

optimum management, the goal is to determine the effect of inequality and transmissivity 

on this difference and thereby on the players’ motivation to move toward a socially 

optimal use. In the case of an interior solution, the difference in total profits under Social 

Optimum management and following the SPE path is as follows: 
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Result SOD4: With an interior solution, inequality has an increasing effect on the 

difference between aggregate cumulative profits under Social Optimum and those from 

the non-cooperative game.  

At levels of inequality allowing for an interior solution, inequality has the same 

increasing effect on aggregate profits under the non-cooperative and the socially optimal 

solutions, but its effect is stronger under social optimum management.  

                                                      

88
 For the general case, the Result SOD3 can be rewritten as “the effect of a (non-marginal) change in 

transmissivity is increasing for the efficient player, and non-increasing for the less efficient”.    
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The second term in Equation (5.26), strictly positive, is in fact the difference between the 

net benefit from moving to the Social Optimum for unequal players and that for identical 

players with the same average efficiency: 
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This result is also valid for a marginal increase in inequality since the derivative of 
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  w.r.t ε, the efficiency average deviation, is always positive: 
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Figure 23: Effetct of inequality on the difference in aggregate profits between Social Optimum and 

SPE 

For a level of inequality superior to    
   , the Social Optimum solution is reached when 

the less efficient user suspends her extraction and the difference in profits follows the 

trend already established for the difference between the Single Efficient User and non-
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cooperative management, it is increasing in inequality (   
           

   ), reaches the 

maximum, then starts to diminish and vanishes when inequality reaches     
   , the level 

of inequality at which the less efficient user quits the non-cooperative extraction game. 

Result SOD5: With an interior solution, transmissivity has an increasing effect on the 

difference between aggregate profits under Social Optimum and those under non-

cooperative management. 

 xxV SPESOs

aa lh
,,

,

 , that will be referred to as the SO difference hereafter, and its derivative 

w.r.t. the level of transmissivity, both equal zero with a zero-transmissivity resource 

(s=0). With s > 0, the transmissivity has an increasing effect on both terms of 
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  (Equation 5.26), as shown by the derivative:  
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The effect on the first term replicates a previous result, result SPE2, stating that 

externalities from the noo-cooperative (removed under social optimum) increase with the 

transmissivity in the case of identical users.  

The effect on the second term implies that the benefits from inequality are increasing 

with transmissivity, as the players move from non-cooperative to socially optimal 

management. The gains from inequality under Social Optimum (Result SOD1) equal 

those under SPE (Result SPE1) with a zero-transmissivity resource, and the difference 

increases as more water becomes available to player h with higher levels of 

transmissivity. 
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For higher levels of inequality (higher than    
   ), the solution to the Social Optimum 

maximization problem is no longer interior, and the socially optimal outcome requires 

player l to exit the extraction game, leaving player h as the single user, the effect of 

transmissivity on the SO difference is as described in the previous section (Result SU5).  

Result SOD6: With an interior solution, the efficient player profits increase following the 

move toward the Social Optimum while the effect on the profits of the less efficient player 

is increasing for a the level of inequality lower than 0

SPE-SO , and decreasing otherwise. 

This result relates to the distributional effects of cooperation. Figure 24 displays the 

difference in individual profits between social optimum and non-cooperative use (line in 

blue, solid for interior solution and dashed otherwise). For identical players, the figure 

shows the – obvious – net gains from switching to the social optimum.  

With an interior solution for the Social Optimum (which entails that the solution for the 

SPE is also interior), the difference between player i individual profits following the 

social optimum and those from the non-cooperative use, denoted as  xxNP SPESOs

aa ii
,,

,



 
, is 

given as:
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Figure 24: Effect of inequality on the difference in profits between Social Optimum and SPE 
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For unequal users, the gains are increasing in the level of inequality for the efficient 

player; for the less efficient user, the effect is opposite, the gains are decreasing in 

inequality and beyond a certain level of inequality ( 0

SPE-SO ) she starts to sustain losses 

from a move toward the social optimum, where:
90

 

0

SPE-SO
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(       )

(       )(   (   ))

 (      ) √ (      )      
 

This is an interesting result as it shows that with a level of inequality high enough, the 

social optimum is not a welfare improving strategy for the less efficient user; and that her 

own interest collides with the social optimum. In such a case, the less efficient user will 

not depart voluntarily from the non-cooperative use, and the social optimum is only 

reachable if enforceable through a command and control policy, or via agreeable transfers 

of revenues by the efficient user to compensate the less efficient one. 

This result does not contradict with the fact that the social optimum is the best strategy if 

the aim is to maximize the aggregate profits, it merely shows that under inequality, it is 

not necessarily the best for each and everyone involved in the extraction game.  

For higher levels of inequality where the socially optimal path is associated with the 

efficient player as Single User, the effect of inequality is generally similar to that 

described with aggregate profits. For the less efficient user, the difference is equal in 

magnitude to her benefits under non-cooperative use, which are decreasing in inequality. 

                                                      

90
  0

SPE-SO This is the only root of eq 5.27, with an absolute value that falls in the interval with interior 

solutions:  Max

SO,0  . 
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Result SOD7: With an interior solution, transmissivity has an increasing effect on the 

profits of the efficient player; for the less efficient player the effect is positive with low 

levels of inequality and negative for levels higher than 0,s

SPESO



  . 

With an interior solution (See solid line in gree in figure 24), the derivative with regard to 

transmissivity of the difference in individual profits of player i,  xxNP SPESOs

aa ii
,,

,



 
, is given by:  

 
=

,,

,

s

xxNP SPESOs

aa ii



 

                             
  

Where where PQSOD7a, PQSOD7b, and PQSOD7c, are three positive variables given by: 
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The effect of an increase in transmissivity on the difference between individual profits 

following the Social Optimum and the SPE is always positive for identical users (  =0). 

With unequal users, increasing transmissivity has a positive effect on the efficient user 

(  >0) difference of profits, for the less efficient user, the effect is positive with low 

levels of inequality and negative with levels higher than 0,s

SPESO
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Where where PQSOD7d and PQSOD7e, are two positive variables given by: 
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absolute value that falls in the interval with interior solutions:  Max

SO,0  .  

5.3.2.3   Water Conservation Under the Social Optimum 

Result SOD8: With an interior solution, the total amount of water used by the two users 

is higher under non-cooperative management, and the savings from Social Optimum are 

increasing in transmissivity. 

Given the extraction decision following the Social Optimum path (Equation 5.22) and the 

extraction decision following the SPE (Equation 3.27), the savings in –aggregate– water 

use resulting from the switch from SPE to Social Optimum are as follows: 
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This result is very interesting as it shows that the level of stocks under social optimum, 

are higher, even after the last round. In a multi-period game, conservation is also driven 

by future benefits in the form of lower costs of extraction in the following rounds; in the 

one-period game, current savings in the costs of extraction are the sole motivation for 

conservation. 

The effect of an increase in transmissivity on savings is increasing as shown by the 

positive sign of: 
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The positive effect of transmissivity is driven by the increasing effect of transmissivity on 

water use in the non-cooperative game. 

5.3.3 Numerical validation for the Ten-round Social Optimum Game 

For the numerical validation, I use the same specification used in Chapter 3.4.1, then in 

the laboratory experiment in Chapter 4.1.1. The numerical solutions for players’ 

decisions and profits, following the SPE and the SO are regrouped in (respectively) Table 

1 and Table 4.  

Result SOD1: Inequality increases the aggregate cumulative profits from the Social 

Optimum management of a CPR. 

With infinite transmissivity, Table 4 shows that the aggregate cumulative profits under 

Social Optimum are $936.5 for unequal users and $690.1for identical users. 

With zero transmissivity, Table 1 shows that aggregate cumulative profits under Social 

Optimum (following the maximizing path in this case with s=0) is $790.1 for unequal 

users and $690.1 for identical users.
91

 

Result SOD2: For unequal players, transmissivity increases the aggregate cumulative 

profits from the socially optimal management. 

For unequal users, the aggregate cumulative profits under Social Optimum increase from 

$790.1 with zero transmissivity to $936.5 with infinite transmissivity (s= to ½ ).  

                                                      

91
 The solution for Social Optimum with unequal users is not interior, player l extraction decisions are set to 

zero on the first five rounds, but this does not affect any of the results. 



- 166 -  

Following the Social Optimum, the profits of identical users stay unchanging (at $690.1) 

as transmissivity shifts from 0 to ½. 

Result SOD3: Under Social Optimum management, transmissivity increases the efficient 

player profits and decreases those of the less efficient user. 

For unequal users, the individual profits of player h following the Social Optimum 

increase from $654.6 to $922.3 as the level of transmissivity goes from 0 to ½. At the 

same time, the profits of player l fall from $135.6 to $14.2. 

Under Social Optimum, the individual profits of identical players stay unchanging (at 

$345.1) as the level of transmissivity shifts from 0 to ½. 

Result SOD4: With an interior solution, inequality has an increasing effect on the 

difference between aggregate cumulative profits under Social Optimum and those from 

the non-cooperative game.  

For unequal users, Table 4 shows that, with an an infinite-transmissivity resource, the 

aggregate cumulative profits from the Social Optimum amount to $936.5, while those 

following the SPE only add up to $866.9, resulting in a $69.6 difference between Social 

Optimum and non-cooperative use. 

For identical users, the aggregate cumulative profits under Social Optimum are $690.1, 

and $637.1 under non-cooperative management, resulting in a $53.0 difference between 

Social Optimum and the non-cooperative use, lower than the $69.6.  
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Result SOD5: With an interior solution, transmissivity has an increasing effect on the 

difference between aggregate profits under Social Optimum and those under non-

cooperative management.
92

 

For unequal users, the difference in aggregate cumulative profits between Social 

Optimum and non-cooperative management increases from $0 with no transmissivity 

(s=0), to $69.6 when s reaches 1/2. At the same time, the difference in aggregate profits 

for identical players increases from $0 to $53.0.
 93

 

Result SOD6: With an interior solution, the efficient player profits increase following the 

move toward the Social Optimum while the effect on the profits of the less efficient player 

is increasing for a the level of inequality lower than 0

SPE-SO , and decreasing otherwise. 

For identical users, the individual profits increase from $318.6 under SPE to $345.1 

under social optimum.  

In the case of unequal users, with an infinite-transmissivity resource, the total profits for 

player h increase from $654.6 under SPE to $922.3 under Social optimum, for player l, 

the total profits fall from $135.6 under SPE to $14.2 under the Social optimum. 

Result SOD7: With an interior solution, transmissivity has an increasing effect on the 

profits of the efficient player; for the less efficient player the effect is positive with low 

levels of inequality and negative for levels higher than 0,s

SPESO



  . 

                                                      

92
 The solution for Social Optimum with unequal users is not interior, player l extraction decisions are set to 

zero on the first five rounds, but this does not affect any of the results. 

93
 With s = 0, the non-cooperative and Social Optimum merge with the maximizing path. 
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With a zero-transmissivity resource, there is no loss or gain from switching from non-

cooperative use to the social optimum, the two paths are one at s = 0. 

With an infinite-transmissivity resource, identical users secure a $26.5 net –individual– 

gain following the switch from the SPE to social optimum; for unequal users, player h 

makes a net gain of $267.8 from the switch in the CPR management, while the less 

efficient user suffers a net loss of –$121.3. 

Result SOD8: With an interior solution, the total amount of water used by the two users 

is higher under non-cooperative management, and the savings from Social Optimum are 

increasing in transmissivity. 

For unequal users, the savings in water use from social optimum (vs. non-cooperative) 

management increase from 0 when s=0, to 18.5 (106, the sum of 100.2 and 5.7, minus 

124.5, the sum of 99.4 and 25.1) when s=1/2. 

For identical users, the savings in water use from social optimum increase from 0 when 

s=0, to 20.7 (twice 51.9 minus twice 62.3) with an infinite-transmissivity resource. 

 

5.4 Experimental validation 

5.4.1 Parameterization 

In this part, I only use two treatments with an infinite-transmissivity resource, the case(s) 

with a zero-transmissivity resource were already considered in the previous experiment, 

with no buy-out alternative; I assume that the results are still relevant since, players have 

no incentive to take advantage of the buy-out alternative; there are no externalities to 

avoid with a zero-transmissivity resource.  
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Regarding the level of inequalities, I carry on with the same cases considered in the 

previous set of experiments of extraction game –with no buy-out– and in the numerical 

examples; I consider two levels of inequality: a treatment with unequal players and 

another with identical ones. In the treatment with unequal players, one player displaying 

a high efficiency ah = 20 is paired with a player with low efficiency al = 10. In the 

treatments with identical players I use ah = al = 15, to preserve the average efficiency in 

the two treatments. 

5.4.2 The Experiment 

The experimental sessions were held in the experimental laboratory of the Department of 

Agricultural and Resource Economics at the University of Maryland. Volunteer subjects 

were recruited from undergraduate classes in economics, business, and civil engineering. 

They were informed that they would participate in an experiment where they would be 

asked to make economic decisions and receive payments based on their decisions and 

those of other participants. They were also informed of the average length of a session. 

I ran two experimental sessions, one session dedicated to the treatment with identical 

players and the second to the treatment with unequal users. At the beginning of each 

session, the subjects were randomly assigned into different groups (of two each). Each 

subject was informed of her own efficiency, ai, and that of her partner’s, a-i. The subjects 

were also informed of the other parameters that define the game: s, c, E, xi0, x-i0, and R, 

the rate of renewal. The efficiencies and pairings of the players were kept secret, as were 

the individual decisions made throughout the experiment.  
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Instructions were shown on the screen of the computer (See figures 25a-c), and formulas 

for production and cost were given. In each round, participants were asked to make 

(simultaneously) three choices: 

 Their OFFER, to “buy out” their partner; it represents the amount of money that 

the player is willing to pay to his/her partner in exchange of this latter  stopping 

his/her use of the stock during the current round and all following rounds.  

 Their DEMAND, the amount of money for which the player would be willing to 

leave the stock, it represents the price that the partner needs to pay to the player in 

order to accept to depart from the extraction stock during the current round and all 

following rounds. 

 The quantities to be extracted from a given range [0, ai], if no transaction is 

passed.  

 A transaction takes place when, at least,
94

 one OFFER by one player is larger than 

the DEMAND (price) set by her partner in the group; the transaction amount is 

then set equal to the average of the OFFER and DEMAND, it is deducted from 

the buyer whose OFFER was accepted and awarded to the seller, who made the 

DEMAND. 

 

 

 

 

                                                      

94
 When the demand of every player within the group is satisfied by the offer by her partner in the group, 

then priority is given to the transaction that generates the highest value i.e. the transaction with the larger 

difference between offer and demand. 
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Figure 25.a Decision table from the Buy- out experiment 

 

 

Figure 25.b Results table from the Buy- out experiment 

 
 

Figure 25.c Transaction Results table from the Buy- out experiment 

 

Figure 25: Decision, Results and Transaction results tables from the Buy- out experiment 
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 Once the two partners have entered their decisions, they were informed on their 

partner’s decisions (See figure 25.b); they were also informed whether a 

transaction was passed or not (See figure 25.c). If a transaction was passed, the 

seller received the transaction price and waited for the next session while the 

buyer was asked to re-enter her decision for the current round, and continue the 

extraction game as a sole user for the rest of the session. 

 When no transaction was passed, the extraction decisions were carried, and the 

players were updated on their earnings, in laboratory dollars, and on the level of 

water in the aquifer available at the beginning of the next period. 

The participants were awarded $8 for their participation and were given the conversion 

rate that would be used, for each type of players, to convert the computer dollars earned 

during the experiment to real dollars. At the end of the experiment they were given, 

privately, their earnings in cash. Every experimental session consisted of four series of 10 

rounds each.  

To help participants make their decisions, they were invited to use the decision support 

window that was provided to them on screen. Based on the current stock (xt), their 

decision, wit, and their assumption about their partner’s decision, w-it, the players were 

able to compute their hypothetical profits for the current round, the stocks at the start of 

the next round, and the ensuing hypothetical profits of their partners. 
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Figure 26: Support Sheet from the Buy-out game experiment 

 

NB: The spreadsheet was protected and subjects were only allowed to modify the yellow cells.    

The window also helped the players to decide on their OFFER by providing them with 

the maximum total profits for the sole user based on the current round and current stock. 

Finally, the players were provided with the actual average cumulative profits (from the 

entire session) from previous experiments where no transaction was allowed (Table 12 in 

Chapter 4.2.3). 

Table 16: Summary of Buy-out experimental results. 

Treatment 
Experimental 

Sessions 
Type Subjects Observations 

Average profits 

per subject 

Unequal users 1 
h 5 20 $25.1 

l 5 20 $27.4 

Identical users 1   10 19 $24.3 
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5.4.3 Theoretical Analysis of Individual Behavior 

5.4.3.1 Single User Versus SPE 

I present here the summary of theoretical results when one player exits the extraction 

game at round r, leaving the resource to the other user. The assumption here is that both 

players use the resource following the SPE until round r, at the start of round r one player 

exits the extraction game and the other user becomes the sole user of the resource, 

following the Single User path, the results from this approach are included in Table 17. 

In the case of unequal players, Table 17 presents the –individual and aggregate– 

cumulative profits when player l exits the extraction game at round r, and the efficient 

user becomes the sole user for round r and all remaining rounds. The figures show that 

there are net gains, in aggregate –cumulative– profits, when player l exits the resource in 

any one of the eight first rounds, but the gains are diminishing over time, and, on the 9
th

 

and 10
th

 rounds, there is a net loss from the less efficient user exiting the extraction game.  

Table 17 also shows that there are net losses, in terms of cumulative aggregate profits, 

when player h exits the resource, in any round; the losses are diminishing (in absolute 

value) over time. Player l makes higher profits following his/her partner’s exit, but this 

latter endures much larger losses. 

The same conclusion is reached in the case of identical users, in the current numerical 

specification, the externalities related to extraction costs are not high enough to make it 

advantageous to the group to deviate from the SPE toward the Single User path. The 

player granted exclusive use of the aquifer makes higher profits that decrease as the 

round when the partner player is postponed; but the increase in the his/her profits are not 

high enough to overweigh the losses to the player exiting the resource.     
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Table 17: Gains and losses from Single User versus the SPE path 

 

Exit 

Round 

Individual cumulative 

profits when player -i 

exits on round r 

Aggregate 

cumulative 

profits 

Nominal individual 

win/loss from exit 

Group 

win/loss 

from exit 

 
  Vir V-ir h+l 

Single 

user 
Partner h+l 

                                      

Unequal users, 

player l exits 
(ah = 20, al = 10) 

 

1 931.50 0.00 931.50 120.97 -56.38 64.60 

2 901.03 13.69 914.72 90.50 -42.68 47.82 

3 876.40 24.76 901.16 65.87 -31.61 34.26 

4 856.80 33.60 890.40 46.27 -22.78 23.50 

5 841.55 40.54 882.09 31.02 -15.83 15.19 

6 830.03 45.87 875.90 19.50 -10.50 9.00 

7 821.70 49.85 871.55 11.18 -6.53 4.65 

8 816.06 52.69 868.75 5.54 -3.68 1.85 

9 811.82 54.60 866.43 1.30 -1.77 -0.47 

10 810.95 55.77 866.72 0.43 -0.61 -0.18 

No exit 810.52 56.38 866.90 0.00 0.00 0  

                                      

Unequal users, 

player h exits 
(ah = 20, al = 10) 

 

1 190.07 0.00 190.07 133.69 -810.52 -676.83 

2 157.72 103.31 261.03 101.35 -707.22 -605.87 

3 131.11 200.53 331.64 74.73 -609.99 -535.26 

4 109.54 292.29 401.83 53.16 -518.23 -465.07 

5 92.43 379.10 471.53 36.06 -431.43 -395.37 

6 79.27 461.34 540.62 22.90 -349.18 -326.28 

7 69.59 539.33 608.92 13.21 -271.19 -257.98 

8 62.93 613.24 676.18 6.56 -197.28 -190.72 

9 58.70 683.15 741.85 2.33 -127.37 -125.05 

10 56.88 748.99 805.86 0.50 -61.54 -61.04 

No exit 56.38 810.52 866.90 0.00 0.00 0  

                                       

Identical users   
(ah = 15, al = 15) 

 

1 489.35 0.00 489.35 170.81 -318.55 -147.74 

2 451.87 48.16 500.03 133.33 -270.38 -137.06 

3 420.33 91.72 512.05 101.78 -226.82 -125.04 

4 394.02 131.17 525.19 75.47 -187.37 -111.90 

5 372.38 166.93 539.31 53.83 -151.62 -97.78 

6 354.91 199.33 554.24 36.37 -119.22 -82.85 

7 341.23 228.64 569.87 22.69 -89.90 -67.22 

8 331.00 255.08 586.09 12.46 -63.46 -51.00 

9 323.47 278.82 602.29 4.92 -39.72 -34.80 

10 319.86 299.96 619.82 1.32 -18.59 -17.27 

No exit 318.55 318.55 637.09 0.00 0.00  0 

 

 



- 176 -  

5.4.3.2 Single User Versus Myopic path 

The assumption now is that both players are engaging in a myopic game until the start of 

round r, when one player exits the extraction game and the other user becomes the sole 

user of the resource, following the Single User path; the results from this approach are 

included in Table 18. 

Table 18 presents the cumulative profits of unequal players, when player l exits and 

player h becomes the sole user on round r and all remaining rounds. Similarly to the 

previous discussion with strategic players, the table shows that there are net gains, in 

aggregate –cumulative– profits, when player l exits the resource in any one of the eight 

first rounds, but the gains are diminishing over time, and, on the 9
th

 round, there is a net 

loss following the player’s exit. The main difference with the previous observations 

related to the comparison to the SPE path is that the potential profits from tplayer l exit 

are higher when players are myopic.
95

 

When player h exits the resource, the cumulative aggregate profits always shrink; the 

losses are diminishing (in absolute value) over time. The profits of player l, following the 

exit, are much lower than the losses to player h. Even though the drops in aggregate 

cumulative profits are lower in comparison to those with strategic users, they are still 

very important in absolute terms.  

 

 

                                                      

95
 This is true for all first 8 rounds, in the 9

th
 round, the loss from the exit with myopic users is lower than 

that with strategic users, finally, the exit in the 10
th

  translates into a tiny increase in aggregate cumulative 

profits for myopic users and into a tiny loss for the strategic users. 
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Table 18: Gains and losses from Single User versus the Myopic path (s=1/2) 

 

Exit 

Round 

Individual cumulative 

profits when player -i 

exits on round r 

Aggregate 

cumulative 

profits 

Nominal individual 

win/loss from exit 

Group 

win/loss 

from exit 

 
  Vir V-ir h+l 

Single 

user 
Partner h+l 

                                      

Unequal users, 

less efficient 

exits 
(ah = 20, al = 10) 

 

1 931.50 0.00 931.50 181.96 -36.41 145.55 

2 873.00 13.56 886.56 123.46 -22.84 100.62 

3 830.49 22.60 853.09 80.95 -13.81 67.15 

4 800.24 28.47 828.71 50.71 -7.94 42.76 

5 779.36 32.13 811.49 29.82 -4.28 25.54 

6 765.55 34.31 799.87 16.02 -2.09 13.92 

7 757.02 35.52 792.54 7.48 -0.89 6.59 

8 752.29 36.11 788.41 2.75 -0.30 2.46 

9 749.43 36.35 785.77 -0.11 -0.06 -0.17 

10 749.55 36.41 785.96 0.01 0.00 0.01 

No exit 749.54 36.41 785.95 0.00 0.00   

                                      

Unequal users, 

efficient exits 
(ah = 20, al = 10) 

 

1 190.07 0.00 190.07 153.66 -749.54 -595.88 

2 141.09 115.55 256.64 104.68 -633.99 -529.31 

3 105.55 217.01 322.56 69.14 -532.53 -463.38 

4 80.23 307.03 387.26 43.82 -442.51 -398.69 

5 62.65 387.70 450.35 26.24 -361.84 -335.60 

6 50.91 460.68 511.59 14.50 -288.85 -274.35 

7 43.51 527.34 570.85 7.10 -222.20 -215.10 

8 39.25 588.75 628.01 2.85 -160.79 -157.94 

9 37.11 645.80 682.91 0.70 -103.74 -103.04 

10 36.48 699.20 735.68 0.08 -50.34 -50.27 

No exit 36.41 749.54 785.95 0.00 0.00   

                                       

Identical users   
(ah = 15, al = 15) 

 

1 489.35 0.00 489.35 221.22 -268.14 -46.92 

2 427.40 52.07 479.47 159.26 -216.06 -56.80 

3 380.55 94.84 475.39 112.42 -173.30 -60.88 

4 345.41 130.30 475.71 77.27 -137.84 -60.57 

5 319.35 159.98 479.33 51.21 -108.16 -56.95 

6 300.36 185.08 485.44 32.22 -83.06 -50.83 

7 286.90 206.53 493.43 18.76 -61.61 -42.84 

8 277.78 225.05 502.82 9.64 -43.09 -33.45 

9 271.66 241.20 512.86 3.52 -26.93 -23.41 

10 269.04 255.45 524.49 0.90 -12.69 -11.79 

No exit 268.14 268.14 536.27 0.00 0.00   
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All previous remarks –with identical strategic users– apply to the case with identical 

myopic users, when one player exits the extraction game, the aggregate cumulative 

profits drop, indicating that the extra profits generated by a Single identical User are 

lower than the losses to the player exiting the game; however, the losses from the exit are 

lower than with strategic players. 

5.4.4 Analysis of Experimental Results 

Table 19 summarizes the results from the buy-out experiment, the profits are reported as 

earnings from the use of water from the aquifer, while the actual profits are computed 

based on profits and gains or losses from the transaction, where trade has occurred.  

Table 19: Experimental results from the buy-out game. 

Treatment Transaction 

Round 

Obs. Buyer 

cumulative 

Profits. 

Seller 

cumulative 

Profits. 

Transaction Offer Demand Actual 

Buyer 

Profits. 

Actual 

Seller 

Profits. 

Aggregate 

Profits 

 

Unequal users 

& Infinite 

Transmissivity 
(ah = 20, al = 10, s 

= ½) 

 
 
 
 
 
 

 

1 7 771.2 0.0 279.6 365.0 194.3 491.5 279.6 771.2 

2 1 614.7 10.9 390.0 500.0 280.0 224.7 400.9 625.6 

3 1 730.4 19.6 41.5 50.0 33.0 688.9 61.1 750.0 

4 2 556.7 15.9 59.8 65.0 54.5 496.9 75.6 572.5 

5 1 690.6 25.8 40.0 40.0 40.0 650.6 65.8 716.4 

6 1 662.5 46.3 200.0 200.0 200.0 462.5 246.3 708.8 

7 1 681.7 -25.8 25.0 25.0 25.0 656.7 -0.8 655.8 

8 2 721.7 27.5 25.0 25.0 25.0 696.7 52.5 749.2 

9 1 754.7 38.1 10.0 10.0 10.0 744.7 48.1 792.8 

 No trade 3 700.8 -14.1       700.8 -14.1 686.7 

 

Identical users 

& Infinite 

Transmissivity 
(ah = 15, al = 15, s 

= 1/2) 

 
 

  

1 8 447.3 0.0 299.1 296.9 301.4 148.1 299.1 447.3 

2 2 308.9 48.0 291.3 305.0 277.5 17.6 339.3 356.9 

4 1 254.7 115.6 185.5 170.0 201.0 69.2 301.1 370.2 

5 2 350.9 124.0 154.0 165.0 143.0 196.9 278.0 474.9 

6 1 403.6 149.3 194.5 199.0 190.0 209.1 343.8 552.9 

8 1 290.2 236.5 85.0 80.0 90.0 205.2 321.5 526.7 

 No trade 8 302.4 286.0       302.4 286.0 588.4 

 

For the Unequal treatment, the experimental data, as presented in Table 19, shows that in 

most sessions (11 out of 20), a transaction was passed in the first four rounds, and only in 
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three instances did the whole session proceed with no transaction been passed. In all 

transactions the buyer was a player type h.  

In accordance with the theoretical deductions, the aggregate cumulative profits display a 

negative correlation with the transaction round. In the same course, the sessions where no 

transaction was passed generate lower profits (36.33 lower in average) than those where a 

transaction was passed, but both observations do not hold a strong statistical 

significance.
96

 However, if the comparison is limited to the aggregate profits from the 

sessions where a transaction was passed on the first round, making the whole game as a 

Single User game, the difference in profits is significantly higher than in the sessions 

with no trade.  

The data also indicates a visible learning effect during the experiment, as evidenced by 

the improvement in terms of increased aggregate profits, as the players advance in the 

game, across the 4 sessions: 

 

Figure 27: Learning effect with Unequal users 

                                                      

96
 The average is 686.67for sessions with no transaction versus 723.01for sessions with transactions. 
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Figure 28. OFFER, DEMAND and values of passed Transaction with unequal users 

 

 

Figure 28.b OFFER, DEMAND and values of passed Transaction with identical users 

Figure 28: OFFER, DEMAND and values of passed Transactions from the Buy-Out game 
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Finally, the data from unequal users shows a clear tendency to overbid by buyers and to 

overprice by sellers; figure 28.a shows that in most sessions where a transaction was 

passed, the DEMAND, OFFER and the transaction values, are higher, in some instances 

much higher, than the maximum offer following the SPE or even the Myopic path. For 

the seven transactions passed on round one for example, the average OFFER is 365.0 and 

the average DEMAND is 194.3 (See Table 19), when the maximum OFFER is 

respectively 120.97 following the SPE (Table 17), and 181.96 following the Myopic path. 

This result might be attributed to the complexity of the experiment, and, maybe, the lack 

of clearness of some instructions; another explanation relates to some unfounded risk 

aversion behavior by subjects, where players would be willing to overbid, to have the 

exclusivity over the resource and not depend on other users decisions. 

For the identical treatment, and contrarily to the theoretical predictions, the experimental 

data shows a high occurrence of buy-outs, transactions were indeed passed in a majority 

of sessions (79%). This result is related to the same tendency to overbid by buyers and 

overprice by sellers, figure 28.b shows that in 13 (out of 15) of transactions, the 

transaction value was higher than the maximum OFFER following the SPE. As a result, 

the actual cumulative profits are significantly higher for sellers than for the buyers: 

 

Figure 29: Individual actual profits with identical users 
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The experimental data also shows that, just as predicted in theory, with identical users, 

games where a transaction was passed generate significantly lower aggregate profits than 

sessions where no transaction is approved; indeed the profits drop from an average of 

588.4 computer dollars, for games with no approved transaction, to 446.1 in games with 

transaction. 

5.4.5 Testing the Hypotheses 

For results analysis I will only use the data from sessions of the buy-out experiment 

where the transaction occurred on the first round, this doesn’t mean necessarily that the 

observations that will arise from the discussions do not apply to all the sessions. The 

motivation from this restriction is the obvious fact that the sessions where the transaction 

occurred later in the game or did not occur at all are not truly Single User games. 

Table 20: Experimental average cumulative profits per 10-round game from all experiments 

 

 

Cumulative 

Profits for 

player h 

Cumulative 

Profits for 

player l 

Aggregate 

Cumulative 

Profits (h+l) 

Observations 

Buy-Out 

Experiment 

– Single 

User 

Sessions 

Unequal users & Infinite 

Transmissivity (ah = 20, 

al = 10, s = ½) 

771.2 0.0 771.2 7 

Identical users & Infinite 

Transmissivity (ah = 15, 

al = 15, s = 1/2) 

447.3 0.0 447.3 8 

Extraction 

Game 

Experiment 

Unequal users & Infinite 

Transmissivity (ah = 20, 

al = 10, s = ½) 

690.2 49.2 739.4 41 

Identical users & Infinite 

Transmissivity (ah = 15, 

al = 15, s = 1/2) 

266.9 266.9 533.9 38 

Unequal users & Zero 

Transmissivity (ah = 20, 

al = 10, s = 0) 

581.6 111.9 693.6 47 

Identical users & Zero 

Transmissivity (ah = 15, 

al = 15, s = 0) 

291.4 291.4 582.8 39 
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Result SU1: Inequality increases the -single user’s- profits from the Common Pool 

Resource with an efficient single user. 

The data from the buy-out experiment with unequal users (Table 20) shows that the 

average cumulative profits of player h in the sessions where the transaction was passed 

on the first round (making player h the single user for the whole game) amount to 771.2.
 

In sessions form the buy-out experiment with identical players where a transaction was 

passed on the first round, the cumulative profits for the buyer average to only 447.3. 

With zero transmissivity (s = 0), the results (Table 19 ) show that with unequal users, the 

cumulative profits of player h as single user add up to 581.6, those for the identical single 

user come shorter, at 291.4. 

Result SU2: Transmissivity increases the profits from the Common Pool Resource under 

single user management. 

In the case of unequal users, with player h (ah = 20) as single user, the aggregate profits 

increase from 581.6 in the extraction game experiment with zero-transmissivity, to 771.2 

in the Single User sessions from the buy out experiment (with s= ½); at the same time, 

for identical users, the profits of the single user grow from  291.4 to 447.3. 

Result SU3: In the case with a high transmissivity (s > 0.453) and high costs of 

extraction (  
 

   (  √ )  
), a single user generates more profits than the aggregate 

profits of identical users in the non-cooperative extraction game. 

This result cannot be validated with the specifications for the 10-rounds game. 
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Result SU4: The effect of inequality on the difference between the profits under Single 

User management and the aggregate profits from the non-cooperative game has an 

overall inverted U-shaped pattern. 

Since I only use two levels of inequality, the experimental results cannot validate the 

nonlinear effect of inequality; however, given that one of the two treatments involves 

identical users, the data can be used to show the increasing effect of inequality. 

For identical users, the difference between the buyer’s cumulative profits in the “single 

user sessions” (sessions where transaction is passed on the first round) in the buy out 

experiments, 447.3, and the aggregate cumulative profits from the extraction game 

experiment, 533.9, is equal to –86.6. 

For unequal users, the difference between the player h cumulative profits profits in the 

single user sessions in the buy out experiments, 771.2, and the aggregate cumulative 

profits from the extraction game experiment, 739.4, is 31.8, higher than –86.6.
 
The 

difference is strictly positive, substantiating the experimental evidence of the prospect for 

net gains from the switch from non-cooperative to single user management, in the case of 

unequal users and infinite transmissivity, that is of course on the condition that player h is 

the one granted exclusive access to the resource. The difference is even stronger and 

more significant when comparing the profits from the single user sessions to those from 

the no trade sessions (sessions where no transaction was passed) from the buy-out 

experiment, 686.7. 

The increasing effect of inequality can also be shown to hold with zero transmissivity (s 

= 0). From the extraction game experiment data (with s = 0), it can inferred that the loss 

from the shift from the non-cooperative extraction to the single user management will 
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result in a loss in the amount of –291.4 with identical users and –111.9 in the case of 

unequal users with player h as single user. 

Result SU5: The derivative with regard to transmissivity of  xxV SPESUs

aa ii
,,

,



 
, the 

difference between the profits under Single User management and the aggregate profits 

from the non-cooperative game, has an overall inverted U-shaped pattern. 

As discussed before, the data from the experiment can only check the increasing effect of 

inequality, since the derivative is strictly positive at the origin and can be negative at 

levels of inquality higher than the higher root (and lower than Max

SPE ).  

First, for unequal appropriators, the data from the extraction game experiment with zero 

transmissivity shows that difference between the cumulative profits under single user 

management (for player h) and the aggregate cumulative profits, is –111.9 when s=0. The 

data on cumulative profits from the single user sessions from the buy-out experiment and 

the aggregate cumulative profits from the extraction game experiment provide the same 

difference with s=1/2 to be 31.8. The increase from the shift in the level of transmissivity 

is therefore 143.7. 

Following the same approach, for identical users, the difference between the cumulative 

profits under single user management and the aggregate cumulative profits from non-

cooperative use, increases from –291.4 with zero transmissivity to –88.6 (447.3 minus 

533.9) with infinite transmissivity; the increase from the shift in the level of 

transmissivity is therefore 204.8. 

The failure to check result SU5 can be attributed, in part, to the high gap between 

theoretical and experimental data in the case of Single User with unequal players (771.2 
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in lab versus 931.5 achievable or 83%) while for identical players the buyers’ profits are 

much closer to the theoretical figures (447.3 in lab versus 489.4 achievable or 91%). 

Result SU6: The aggregate amount of water used by the two users under non-

cooperative management is higher than the amount used by the Single User, but the 

savings in water use are decreasing in transmissivity. 

For the unequal users, the cumulative water use in single user sessions from buy-out 

experiment is 126.4 in average, while the aggregate cumulative use from the extraction 

game experiment with infinite transmissivity is 127.2 (98.0 for player h and 29.6 for 

player l); the savings average to only 1.2 with an infinite transmissivity. With zero 

transmissivity, the savings from the shift to Single user management are equal to the total 

use of player l, from the extraction game with zero transmissivity, 38.7 in average. 

 

 

Figure 30: Aggregate water use per 10-round session in the buy out experiment 
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The same decreasing trend is observed with identical users, as the savings in aggregate 

water use decrease from 60.4 (total use by the identical user in the extraction game with 

s=0) with zero transmissivity, to 47.3 with an infinite transmissivity (twice the difference 

between 65.7, the average use identical players in the extraction game experiment with 

s=1/2, and 84.1 the total use in single user sessions in buy out experiments). 

The data from buy-out experiments confirms (Figure 30) that water use is increasing in 

the transaction round, the tendency is even more significant with identical users. 

 

5.5 Conclusion 

This section is of particular importance to this research project, it aims to draw 

conclusions on the effect of inequality and transmissivity on the performance and 

implementability of alternative policies –to the non-cooperative use– for the management 

of CPRs. 

The results, based on theoretical evidence and numerical examples show that inequality 

has a increasing effect on the aggregate profits from the social optimum; transmissivity 

has an increasing effect on the efficient user profits, and a decreasing but weaker effect 

on the less efficient player profits, the resultant effect of transmissivity on aggregate 

profits is therefore welfare increasing. 

With regard to the difference between the profits following the social optimum and those 

generated under a non-cooperative regime, inequality was shown to have an increasing 

effect on the difference; the same observation holds for the effect of transmissivity when 

the solution to the social optimum maximization problem is interior; however, the effect 
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is not uniform, indeed, the less efficient user may suffer losses, following the shift from 

noon-cooperative use to the social optimum, when the level of inequality is higher than 

0

SPE-SO . 

This result, somewhat counterintuitive, is very important; number of studies on CPRs 

management focused on the problem of communication (or lack of it), or the 

enforceability of agreements, as the main barriers to CPRs users’ partaking in a socially 

optimal type of management that would maximize the aggregate (across users) profits 

from the CPR; the result related to the effect of transmissivity on the difference between 

the profits from the Social Optimum and those following the SPE suggests otherwise. 

Indeed, in the case where inequality between users is higher than a certain threshold, the 

switch from noon-cooperative use to the social optimum, results in net losses for the less 

efficient user, in such situation, policies that rely on voluntary participation of resource 

users to increase the aggregate profits from the CPR are no longer viable, unless they are 

accompanied by mechanisms for money transfers to compensate the less efficient users, 

and to ensure the participation of all users in the social optimum. 

Finally, it is also shown that the stock(s) of water in the aquifer is best preserved under 

the social optimum; even as the very definition of social optimum in the model is 

formulated in terms of profits’ maximizing, the solution favors resource conservation. 

In the case of single user management, transmissivity has an obvious positive effect on 

the profits of the single user, and the same observation applies to the effect of inequality 

when the efficient user is the one granted exclusive use. 
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Comparing the profits from Single User management to the aggregate (by the two users) 

profits under non-cooperative management, shows that, for identical users, the difference 

is only positive in the very special case, where the aquifer is very transmissive and the 

unitary cost of extraction is very high. The simultaneous conditions on unitary cost and 

level of transmissivity, when observed, would lead to high financial costs associated with 

the intensified physical externalities in water extraction, to the point where the use of a 

single parcel by one of the identical users generates more profits than the aggregate 

profits of the two –identical– users following the SPE. 

With unequal users, inequality has an inverted U-shaped effect on the difference in 

profits between the two regimes (Single User and SPE); the difference is increasing in the 

level of inequality, reaches a positive maximum, then decreases until it vanishes at 

inequality level     
   , beyond which the solution to the SPE is a corner solution, 

requiring the less efficient user to exit the extraction game; the SPE path merges with the 

Single User, with the efficient user (player h in the model) as sole user. 

This result is important as it shows that the profits from (and implementability of) a “buy-

out” water market are more marked for relatively moderate inequality levels, that 

correspond to higher –positive– gains from the shift in the mode of management.  

Regarding the aquifer exploitation, as one might expect, the results show that Single User 

management leads to more conservation of the groundwater common pool.  

In addition to the theoretical evidence and the numerical examples, a series of 

experiments were conducted to validate the aforementioned observations in the buy-out 

market. The results of the experiments carried out at the University of Maryland 

presented a somewhat mixed set of results. 
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On the one hand, buy-out transactions were frequently passed with identical users, when 

the theoretical predictions, following the strategic or myopic paths, suggest that buy-out 

transactions involve lower profits to the player staying in the game than the aggregate 

profits following the SPE, for all ten rounds. This theoretical insight was validated by the 

experimental data, since sessions with identical users where no transaction was passed 

generated significantly higher profits than sessions with transaction. 

With unequal users, experimental results show that sessions where a buy-out transaction 

was reached are very frequent, and that the corresponding aggregate profits are higher 

than in sessions where no transaction was passed, the results are significant when 

considering only the sessions where transactions were passed on the first round.  
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

The key lesson from this research project is to emphasize the importance of a thorough –

prior–knowledge of the CPR’s physical characteristics and the users’ production 

technology for an accurate assessment of the present situation, in terms of revenues from 

the CPR use and related levels of depletion; this knowledge is even more critical in 

providing better visibility regarding the prospects and means to improve the CPRs’ 

governance.  

The complex situation that was considered in the study, where an aquifer with finite 

transmissivity is exploited by farmers with unequal efficiencies, presented an appropriate 

framework to revisit and even challenge some of the widely accepted beliefs in CPR 

literature. 

The most striking result from the study relates to the case with highly unequal users, 

where well-enforced property rights, illustrated in the model with a zero-transmissivity 

resource, are no longer associated with higher profitability from the resource, even 

though, the increased profits from higher transmissivity come at a high cost, in even 

lower profits for the disadvantaged users and more depletion of groundwater stocks. 

The model also highlighted another “perverse effect” of high inequality, as it shows that 

the social optimum solution is no longer associated with an advantageous outcome, 

compared to  the non-cooperative outcome, for all users, and the best interest of less 

efficient users is not aligned with the community. 
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Those results are even more important as they indicate that some of the most promoted 

policies for the efficient governance of CPRs may have very limited success if 

implemented in the wrong setting.  

For example, the model shows that a water market institution will have little impact if the 

users are somewhat alike in their production capabilities, that is, unless the financial 

externalities from the resource overexploitation are very high, but even then, the fact that 

both users can play either role, buyer or seller, can limit the success of the water market.  

Another trend in water management is the “aquifer contract”, where all the aquifer users 

get together, with supervision from the water authority, to agree on a set of rules and 

agreed change or restraint in water use that would lessen the stress on the resource; the 

model shows that in the case of highly ineffective users, this approach might fail to win 

the level of approval among users, that is much needed for it to work. 

6.2 Future Work 

This work would feel incomplete if some important aspects are not fully included in the 

analysis; the model offers a good framework to investigate the importance that some 

parameters can have in shaping the users’ decisions and related outcomes, in profits and 

stock levels. One of the most significant parameters that deserves attention is certainly 

the rate of recharge, especially since groundwater exhaustion is more common in areas 

with limited water resources. The analysis of effects related to the cost of extraction can 

also be revealing on the real cost of government policies to support farmers. 

Another addition to the present study would consist in addressing the obvious criticism to 

this type of models that consider users’ efficiency as an exogenous parameter, rather than 

an endogenous item of the model, contingent on the users’ previous decision to invest or 
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not invest in improved technologies. The idea here is to consider the same two-stage 

approach used in Aggarwal and Narayan (2004), with players deciding on the type of 

technology in the first stage and on the level of use over time in the second stage. In 

Aggarwal and Narayan (2004), inequality has a U-shaped effect, decreasing welfare from 

aquifer use at first, but beginning at a certain threshold, more inequality increases 

welfare. It would be interesting to see if the theoretical results from the present model 

would lead to the same conclusions, and eventually, if experimental data would 

reproduce the theoretical results. 
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Appendix A Sufficiency Conditions 

I reproduce here the maximization problem of player i: 

  dtxEcw
w

waeMax itit
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and the corresponding Hamiltonian: 
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This optimization problem satisfies the Mangasarian sufficiency conditions for an infinite 

horizon (Seierstad and Sydsaeter, 1987, Theorem 13, p. 234-5) since: 

The Hamiltonian is linear in itx and concave in itw , therefore concave in ( itx , itw ). 

The set of possible values for itw (nonnegative) is convex (it can also be add that the set 

is bounded since any optimal choice needs to satisfy  itiit xhcaw  , given the 

condition on itx it is possible to derive that iit aw 0 ). 

itx is linear in itw . 
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Appendix B Solving for the Continuous Model 

B.1 Open Loop Nash Equilibrium 

B.1.1 Deriving the Eigenvalues 

B.1.1.1 The Negative Eigenvalue of Equation EQ1(α) 

     )2(2)(2)( 23

1 srrcsrrsrcsrEQ  
 

EQ1(α) is a degree three polynomial function of α therefore the equation EQ1(α)  has 

either one or three real roots. The coefficient for the term in α
3 

(the unity) is strictly 

positive, consequently, the limit of EQ1(α) as α approaches infinity is infinity and the 

limit is minus infinity as α approaches minus infinity.  

EQ1’(α), the derivative of EQ1(α), has two roots noted Rt1L and Rt1H with Rt1L<Rt1H.
97

 It is 

possible to show that EQ1(Rt1H)< 0, given that Rt1H is strictly positive and given the sign 

of  EQ1(0)>0, it is concluded that equation EQ1(α)=0 has three real roots, one negative 

and two positives.
 98
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 Given the sign of the limit of EQ1(α) at minus infinity and the sign of EQ1(0), there is at least one 

negative root; given the sign of EQ1(0) and the sign of EQ1(Rt1H) there is at least one root in the interval [0, 

Rt1H] and given the sign of the limit of EQ1(α) at infinity there is at least one root strictly higher than Rt1H. 

Finally, knowing that the number of real roots cannot exceed three, it becomes clear that that there is 

exactly one root in every specified interval. 
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To derive the closed form solution of equation EQ1(α)=0, I start by rewriting EQ1(α) as:  
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I operate a first change in variable and continue with the new equation: 
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I proceed with a second change of variable by rewriting: 
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If I note w3 = w
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 then α is solution to EQ11(α)=0 if and only if the corresponding w3 is 
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From w31 I derive the three solutions
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 to the original equation EQ1(α)=0: 
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w31 can be rewritten as 1
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refers to the inverse function of cosine; and the three solutions become:
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 and the three solutions corresponding to w31’ are 

shown to be a duplication of the three previous solutions: 
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I will now show that α12 is the negative root of equation EQ1(α)=0. 
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 Notice that the three roots are real. 
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Case1: q1 < 0   (roughly for s small) 
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In this case it is clear that α11 and α13 are both strictly positive, and α12 is therefore the 

only negative root.  

Case2: q1 > 0 (s high)  
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In such case α11 is strictly positive. Also, 
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therefore  α12 < α13 and α12 is the negative root. 
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B.1.1.2 The Negative Eigenvalue of Equation EQ2(α) 

      222223
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Similarly to the previous analysis for EQ1(α)=0, equation EQ2(α)=0 has either one or 

three real roots. I also observe the same trends at infinity and minus infinity. 

EQ2’(α)=0 has two roots noted Rt2L and Rt2H with Rt2L<Rt2H.
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 I show that Rt2H>0, while 

EQ2(Rt2H)<0. Since EQ2(0)>0 I can conclude that equation EQ2(α)=0 has three real roots, 

one negative and two positives. 
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I operate a first change in variable and continue with the equation:  
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Similarly to the solution for EQ11(α)=0, using the change of variable 
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From w32 I derive the three solutions to equation EQ2(α)=0 as follows: 
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w32 can be rewritten as 2
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 and the three solutions corresponding to w31’ can be 

shown to be a replication of the previous solutions from w32. 

To show that α22 is always the negative root of equation EQ2(α)=0 it suffice to notice that q2 is 

negative, and conclude that α21 and α23 are strictly positive. 
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B.1.2 Deriving the Eigenvectors 

If V = [y1, y2, y3, y4, y5, y6] is the eigenvector associated with α, eigenvalue of matrix A, 

then V needs to satisfy the condition AV = αV, which can be written as a system of six 

linear equations: 

1321)( yyysysc 
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The values of y3 and y4, as functions of y5 and y6, are drawn from (B.5) and (B.6): 
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Multiplying (B.1)’ and (B.2)’ by 
2c and using the last results from (B.3)” and (B.4)” 

yields: 
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Adding and subtracting (B.1)” and (B.2)” provides an equivalent system of equations: 
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I differentiate two cases; in the first case, α is the negative root of equation EQ1(α) = 0 

and equation (B.1)”” is valid for any pair of variables, while the second equality (B.2”’) 

is only true if y5 = y6. This result, together with the previous results in (B.5)’, (B.6)’, 

(B.3)” and (B.4)” shows that the eigenvector associated with α1 is any multiple of v1: 
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For the case with α = α2, the negative root of equation EQ2(α) = 0, (B.1)”” is only true if 

y6 = -y5. Compiling all results shows that the eigenvector in this instance is v2: 
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B.1.3 The Steady State following the Open Loop path 

I rewrite the conditions at the steady state in a Matricial form as follows: 
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The solution is given by: 

)(1

ssssss BAV    

where 1

ssA  is the inverse of matrix ssA . 

The solution, after simplification, is as follows: 
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B.1.4 Showing the positive sign of P1(s) and P2(s) 

B.1.4.1 The positive sign of P1(s) 

To show the positive sign of P1(s) I start by rewriting the numerator as the product of 

 22 2sr  , and  21 NFP , where  NFP 1
 is a function of α, defined as: 

            rsrsrrsrcssrrrcP NF  2422242
222

1
  

Both the denominator and  22 2sr   are –always– positive, leading to the conclusion 

that P1(s) has the same sign as  21 NFP .  

 NFP 1
 has two roots, a negative root noted

NR2 , and a positive root,
PR2 .given by: 
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where 
sq2 , 

1.2R , 
2.2R , and 

3.2R  are all positive quantities as shown below: 
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     432234222244

2 324824848424 s+sr+sr+sr+rrc+s+sr+r+rs+rcsq  ,
 

sqR sr+sr+src+r+rc 2

2232

1.2 8482   , 
 

  sqR srcsr+sr+r 2

2223

2.2 2284   , and 

   22

3.2 2422 s+sr+rc+srsrR  .  

As displayed in Figure B.5,  NFP 1  
holds a positive sign between the two roots and is 

negative everywhere;102 therefore, to show the positive sign of  21 NFP , it suffices to 

show that 
2  is higher than the negative root, 

NR2 .
103

  

The proof will conducted in two steps, first I show that NR2  is lower than a given 

negative variable, (     ), then I show that (     ) is lower than 
2 . 

Indeed, the difference between NR2  and  (     ), is always negative:
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Where 
4.2 , 

5.2R , and 
6.2R  are all positive quantities: 
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 To reach this conclusion it suffices to notice that the function has a negative limit at infinity and at 

minus infinity; in addition, it takes a positive value at the origin: 
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2  is negative, thus lower than the positive root  
PR2 . 
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 An alternative way would be to remark that  csP NF  41

 is positive: 
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To show that that (     ) is lower than 
2 , I compute EQ2 (     ): 

          s+r c+sr+sr+s+s+rsc+ccsEQ 9642564 23

2  . 

Since for the negative values of α, EQ2(α) is only positive between α2 and 0, the negative 

sign of EQ2 (     ), is evidence that (     ) is lower than 
2 . 

 

 

B.1.4.2 The positive sign of P2(s) 

The denominator of  sP2
 is always positive, while the numerator of  sP2

 can be 

rewritten as the sum of two functions of α2,  22 PFP  
and
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      112 2   rsrrP NF  

To show the positive sign of  sP2
, I start by showing that α2 is higher than (     ), as 

evidenced by the negative sign of EQ2 (     ): 

   s+rccscEQ 32 2

2  . 

This result, combined to the fact that  NFP 2
 is increasing in α –given the negative sign 

of α1–, leads to the result: 

       scPPPP NFPFNFPF 22222222    

This last inequality simplifies as I replace for the term on the right to: 
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All three terms on the right side are positive and so is  sP2
.  

 

B.1.5 Analytical Proofs of Preliminary Results 

B.1.5.1 Analytical Proof of Result OL1 

To establish the negative effect of an increase of transmissivity on the aggregate 

cumulative profits of identical users I will consider the case of a non-incremental shift in 

transmissivity, s, from zero to infinity. The effect of an incremental increase in 

transmissivity is particularly difficult to analyze, given that α1 and α2 are complex 

functions of s. 
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For simplicity, I note  ,,, 0xaaV OL , the limit at infinity of aggregate cumulative profits; 

and the effect on aggregate cumulative profits, with interior solutions,
105

 is computed as: 
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where PQ1, PQ2 and PQ3 are all positive:
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To demonstrate the negative effect of transmissivity with identical users I will first show 

that the effect is negative at the lowest and higher acceptable levels of initial stock, that 

satisfy the conditions for an interior solution; I will then show that the difference is 

decreasing in the initial level of stock. 

At the minimum level of stock xMin0,
106

 the effect simplifies as: 

                                                      

105
 I only conduct the calculations when the –most stringent- conditions for an interior solution are satisfied 

for both levels of transmissivity, this does not mean necessarily that the conclusions cannot be extended to 

the cases with corner solutions.  
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with PQ4 and PQ5 both positive: 
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The difference between PQ4 and PQ5 is always negative,
107

 implying a negative effect of 

a non-incremental change in transmissivity. 

When the level of stock at the start of the extraction game is at the highest level, E, the 

difference becomes: 
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The effect is negative since   rRcRca   is positive.  

The derivative of the difference in aggregate cumulative profits from a non-incremental 

increase in transmissivity, with regard to the initial level of stock x0, noted  0, xaVxOL , is 

computed as: 
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level of use by both users when transmissivity is equal to zero; when s tends to infinity the minimum level 
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 , lower than xMin0. 

107
 This result is obtained through lengthy but straightforward calculations. 
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At the minimum level of stock xMin0,
108

 the derivative has a negative sign: 
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where PQ6 and PQ7 are two positive quantities: 
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When the initial level of stock is E, the derivative is also negative: 
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The derivative with regard to the initial level of stock been linear, I can conclude that 

 haVxOL ,  has a negative sign for any level of stock within the interval of acceptable 

stocks, given the negative effect at the lowest level of stock, to determine that the effect 

on aggregate cumulative profits from a non-incremental increase in transmissivity is 

negative.    
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corresponds to the minimum level of stock with a positive level 

of use when transmissivity is equal to zero, and is higher than the equivalent level when s tends to infinity. 
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B.1.5.2 Analytical Proofs of Result OL3 

B.1.5.2.1 Proof with aggregate profits at the steady state 

If I note ā, the average efficiency, and εi, the efficiency deviation of player i, i.e. the 

difference between her efficiency and the average, the absolute value of εi, that will be 

denoted ε hereafter, equals the efficiency average deviation ((ah - al)/2), and will be used 

as a proxy for the level of inequality. The first derivative of aggregate profits at the 

steady state with respect to transmissivity becomes: 

 
 sP
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The necessary conditions on xl and wl, for an interior solution, imply that the level of 

inequality needs to be less than εMinMax, the minimum of εMaxX and εMaxW , respectively the 

solutions to xl=E and wl=0. εMaxX and εMaxW are given by:
 109
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It can be easily shown that εMaxX is increasing in transmissivity while εMaxW is decreasing; 

furthermore, εMaxW tends to infinity at very low levels of transmissivity, and ε < εMaxX 

becomes the binding condition while at very high levels of transmissivity, εMaxX tends to 

infinity and ε < εMaxW becomes the binding condition.
110
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 Given the higher efficiency of player h it is clear that the two conditions are sufficient for an interior 

solution at the steady state. 
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For a level of transmissivity lower than sMaxXW, where εMaxX = εMaxW , εMinMax, the highest 

acceptable level of inequality, equals εMaxX; as transmissivity exceeds sMaxXW, εMinMax 

equals εMaxW.
111

 

 

 

 

 

 

 

 

 

The derivative of aggregate profits with regard to transmissivity is strictly increasing in 

the level of inequality, for identical users the derivative is always negative: 
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For higher levels of transmissivity, the derivative at the highest acceptable level of 

inequality is strictly positive: 
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Figure B.6 
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At lower levels of transmissivity, the derivative at the highest acceptable level of 

inequality has an ambiguous sign: 

           
      2242
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The derivative sign for highly unequal users depends on the level of transmissivity; at 

low levels of transmissivity, the derivative is strictly negative,
112

 as transmissivity 

approaches sMaxXW, the derivative is strictly positive for any level of average efficiency 

higher than āMin0, the minimum efficiency for an interior solution when s=0.
 113

  

In summary, the effect of a marginal increase in transmissivity on aggregate profits 

depends on the level of transmissivity combined with the level of inequality: at higher 

levels of transmissivity and higher levels of inequality, the effect (on aggregate profits) is 

increasing; when transmissivity is low and/or inequality is not high enough, a marginal 

increase in transmissivity causes a drop in aggregate profits. 

A similar result can be reached when considering the effect of a non-incremental increase 

in transmissivity, shifting from a zero transmissivity to a resource with infinite 

transmissivity.  lh

OLSS a,aTNP  , the change in aggregate profits at the steady state is 

given by: 
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  is the minimum individual efficiency for an interior solution (at the steady state) when 

s=0. 
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Assuming an interior solution under both levels of transmissivity I obtain: 
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 lh

OLSS a,aTNP   is unambiguously negative for identical users and is strictly increasing 

in the level of inequality. To investigate the sign of  lh

OLSS a,aTNP   with highly unequal 

users, I distinguish two cases, depending on the range of average efficiency. In the case 

where the average efficiency is higher than āmaxOL,
114

 the condition for an interior solution 

is given by the limit of εMaxW at infinity, for which a non-incremental increase in 

transmissivity prompts a net increase in aggregate profits: 

  2Ra,aTNP MaxWMaxW
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For a lower average efficiency, the condition for an interior solution is given by the limit 

of εMaxX  at zero transmissivity, and the effect of an increase in transmissivity reads as: 
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The sign of  MaxXMaxX

OLSS a,aTNP     is still positive for ā higher than āΔTNP, the lower 

root of   0 

MaxXMaxX

OLSS a,aTNP  , and negative below.
115

 

In summary, the effect of a non-incremental increase in transmissivity on aggregate 

profits depends on the average efficiency combined with the level of inequality. At higher 

levels of average efficiency, and higher levels of inequality, the effect is increasing. 

When the average efficiency is low and/or inequality is not high enough, a non-

incremental increase in transmissivity causes a drop in aggregate profits. 

 

B.1.5.2.2 Proof with aggregate cumulative profits 

With unequal users, a non-incremental increase in transmissivity, from zero to infinity, 

brings about a change in aggregate cumulative profits as follows:  
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where PQ8 positive and given as: 
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I will first consider the case where the initial stock is at the highest level, E, operating the 

change of variables introduced earlier (ah = ā + ε and al = ā – ε), the effect becomes: 
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As established before, the difference is negative for identical users (ε = 0). Noting that the 

difference is increasing in ε
2
 I will check the sign of the difference at the highest 

acceptable level of inequality for an interior solution. 

When the average efficiency is higher than āmaxOL, introduced in the previous section, the 

maximum level of inequality for an interior solution is given by the value of εMaxW for s 

infinite, and the corresponding effect of an increase in transmissivity is as follows: 
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where PQ9 is strictly positive and given by:
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At the lowest level of efficiency in the considered category, the effect of making the 

resource more common is strictly welfare increasing as shown below:  
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where PQ10 is strictly positive:
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However, as the average efficiency increases, the benefits from making the resource more 

common vanish, given the negative sign in the square of average efficiency in the general 

formula. This result however needs to be interpreted in the context of this analysis and 

the imposed constraint on inequality, increasing efficiency while keeping the maximum 

inequality constant translates into lower inequality in relative terms. 
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When the average efficiency is lower than āmaxOL, the maximum level of inequality for an 

interior solution is given by the value of εMaxX for s=0, 
 

R
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 , and the corresponding 

effect of an increase in transmissivity (at the highest level of inequality) simplifies as: 
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At low levels of average efficiency the effect of an increase in transmissivity is clearly 

negative, indeed, for  ̅   (   )  ⁄ ,
118

 a non-incremental increase in transmissivity 

results in a net loss in total welfare in the amount of PQ1, in absolute value; and a 

marginal increase in average efficiency results in even greater losses. But the positive 

sign of PQ11 suggests that the increase in transmissivity can be welfare increasing at high 

levels of average efficiency,
119

 indeed, at the highest level of average efficiency –in this 

category–, when  ̅   āmaxOL , the effect is strictly positive: 
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At the highest level of stock at the start, the effect of a non-incremental increase in 

transmissivity on aggregate cumulative profits displays the same tendency as established 

at the steady state, and depends, in the same way, on the average efficiency combined 

with the level of inequality. At higher levels of average efficiency, and higher levels of 

inequality, the effect is increasing. When the average efficiency is low and/or inequality 

is not high enough, a non-incremental increase in transmissivity causes a drop in 

aggregate cumulative profits. 

I consider now the extraction game where the initial stock is at the lowest acceptable 

level for an interior solution; such stock, noted 0Minx in the case of unequal users, 

corresponds to the level with a positive level of use by the less efficient user when 

transmissivity is equal to zero, and is given by:
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The corresponding effect of an increase in transmissivity simplifies as: 
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where PQ12, PQ13 and PQ14 are all positive quantities.
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 The solution for the extraction decisions in an Open Loop game show that for any level of stock, the 

more efficient user extracts more, also, the minimum level of stock with a positive level of use when 

transmissivity is equal to zero is higher than the equivalent level when s tends to infinity. 

121
         

                            (    )(    ) √ √     (    ) (     )√           ; 



- 221 -  

For identical users (ε = 0), the difference is negative confirming the decreasing effect of 

making the resource more common on aggregate cumulative profits. The difference is 

quadratic ε, and is increasing in ε
2
 , therefore, to investigate the effect on high levels of 

inequality, it will suffice to check the sign of the difference at the highest acceptable level 

of inequality for an interior solution. 

When the average efficiency is higher than āmaxOL, the maximum inequality is given by 

(the limit of) εMaxW for s infinite, 
r

Rc
R

2
 , and the corresponding effect of an increase in 

transmissivity is as follows: 
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PQ15 is positive,
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 evidencing the increasing effect on the aggregate cumulative profits of 

highly unequal users.   

When the average efficiency is lower than āmaxOL, the maximum inequality is given by 

εMaxX for s=0,  ̅   (   )  ⁄ , and the corresponding effect of an increase in transmissivity 

is as follows: 
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All three quantities can be shown to be positive. 
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At low levels of average efficiency the effect of an increase in transmissivity is clearly 

negative, indeed, for  ̅   (   )  ⁄ , a non-incremental increase in transmissivity results 

in a net loss in total welfare in the amount of      
    ⁄ , in absolute value; and a 

marginal increase in average efficiency results in even greater losses. But the positive 

sign of PQ12 suggests that the increase in transmissivity can be welfare increasing at high 

levels of average efficiency, indeed, at the highest level of average efficiency –in this 

category–, when  ̅   āmaxOL , the effect is strictly positive: 
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In summary, at the minimum level of stock at the start, the effect of a non-incremental 

increase in transmissivity on aggregate cumulative profits displays the same tendency as 

established with the maximum stock, and depends on the average efficiency combined 

with the level of inequality. At higher levels of average efficiency, and higher levels of 

inequality, the effect is increasing. When the average efficiency is low and/or inequality 

is not high enough, a non-incremental increase in transmissivity causes a drop in 

aggregate cumulative profits. 
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B.2 Solving for the Closed Loop Nash Equilibrium 

B.2.1 The General solution with finite transmissivity 

In this section, I will try to expand the analysis and unravel players’ decisions throughout 

the exploitation horizon under feedback strategies in the general case, i.e. with s 

anywhere between zero and infinity. User i (similarly user -i) is interested in maximizing 

his net payoff: 
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 Given the stock of water x0 in the aquifer at time t = 0 and the stock evolution 

given the simplified form of the equation of motion for a perfectly transmissive aquifer:  
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        (B2.1) 
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,,  designate player i maximal present value when the stocks of water in 

the aquifer are (xit, x-it), the Bellman equation corresponding to the dynamic 

maximization problem -with two state variables- is given by: 
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ii xxVx ,,
 in (B2.2) is the first derivative of the value function of player i,   itit
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aa xxV
ii 

,,
  

with regard to her own stock, xit, and  itit

CL

ii xxVx  ,,
 the derivative with regard to her 

partner’s stock, x-it. The optimal level of extraction for player i (when she chooses to 

extract) is as follows: 
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substituting the new expressions of wit in (R.2) to obtain: 
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From the last result it can be concluded that the solution to player i dynamic 

programming problem is polynomial of second order in xit and x-it: 
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Substituting the new formula for individual cumulative profits for players h and l, 
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 (and the subsequent derivatives with regard to xht, 
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) in 

equation (R.4) generates a system of 12 non-linear equations in 12 unknowns: β0h, β1h, 

β2h, β3h, β4h, β5h, β0l, β1l, β2l, β3l, β4l, and β5l. It was not possible for me to solve for the 

system with s variable. 

The system can be further simplified by noticing that the it can be solved in two stages, 

where the first stage consisted in solving six equations in six unknown: β2h, β4h, β5h, β2l, 

β4l, and β5l: 
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      ( (           )  (          )          )   , 

     ( 
                  

               )     , 

     (  (        )             
 
)     , and 

     ( (           )  (          )          )    . 

The solution to this system is then used to solve the 6 other equations in 6 unknowns, in 

the second stage. But it was not possible to solve for this simplified system in β2h, β4h, 

β5h, β2l, β4l, and β5l. 

B.2.2 The Individual Value Function- Cumulative profits 

In equation (27), the individual value functions are given by: 
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PQV1, PQV2, PQV3, PQV4, PQVi1 and PQVi2 are as follows: 
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,  

with:            (   
                                             

                                                √         (                    ))    

                            (    )(  
          )(                     

                                          (   )√         ) 

It is clear that all six variables are positive and depend only on c, r and R. 

B.2.3 The Individual and Aggregate profits at the Steady State 

In equation (31), the individual profits of player i, at the steady state, amount to: 
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PQCL1, PQCL2 and PQCL3 are as follows: 
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All three variables are positive, and their values depend only on c, r and R. 
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B.2.4 Analytical Proofs of Preliminary Results 

B.2.4.1 Analytical Proof of Result CL1 with cumulative aggregate profits 

Under feedback strategies, the difference in aggregate cumulative profits of identical 

users, following non-marginal increase in transmissivity from zero to infinity, is given by 

(33), that writes as follows:  
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where PQR11, PQR12 and PQR13 are three positive variables given by: 
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with:    ̃   (    )( 
         )   (            )√  √      (        

                                                 )√           (    )√  √     √           

The proof that the difference is always negative will be conducted in two steps; the first 

part shows that the difference is negative at the lowest and highest acceptable levels of 

stock, x0. The acceptable levels of stock here refer to the levels for which the assumption 

of interior solution holds.
123

  

                                                      

123
 For equation (33) to express the change in aggregate cumulative profits, the solution needs to be interior 

at the two considered levels of transmissivity, zero and infinite. 
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In a second step, I will show that the derivative of    0,,,,,, 00 xaaVxaaV CLCL   w.r.t x0 is 

negative everywhere, therefore, the are no “nonlinear effects” and the difference, 

confirmed negative on the boundaries, is negative everywhere. 

When the stock at start is at the highest acceptable level, E, the quantity 
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 R

rcc

a 11 , that needs to be positive for the 

assumption on interior solution with zero transmissivity to hold;
124

 therefore, with x0 = E, 

all terms between brackets on the RHS of equation (33) are positive and the difference is 

negative. 

When the stock at the start is at xMin0,
125

 the minimum level that allows for an interior 

solution, equation (33) delivers: 

   
 
 

2

161514

22

18

102

1617

2

00
43

44
 =0,,,,,, R

 PQ PQ PQ rc  r

 PQ r c PQPQ  c
xaaVxaaV

RRR

RRR

Min

CL

Min

CL




















 
where PQR14, PQR15, PQR16, PQR17 and PQR18 are all positive variables: 
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124
 For the condition on the level of stock (below the ground) to hold at the steady state, it needs the 

condition:  R
r

ca  1  to hold, a high extraction cost and/or a low discount rate, encourage the users to 

save water, only a high efficiency will guarantee an interior solution.  
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, as introduced earlier, corresponds to the minimum level of stock 

with a positive level of use when transmissivity is equal to zero, and is higher than the equivalent level 

when s tends to infinity. 
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Now regarding the derivative w.r.t. x0, the formulation is derived from equation (33): 
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The sign for a stock at the start x0 = E, is always negative; when the stock at the start is 

xMin0, the derivative can be rewritten as: 
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where PQR19 is a positive variable, function of r and c, given as: 

        
               (          )√ √       (    )√         

   √ √    √          

The derivative of the difference is linear and decreasing in x0 and its negative sign when 

x0 = xMin0 shows that the derivative is negative for the entire range of stocks under 

consideration, the difference is negative at x0 = xMin0 and is decreasing in the level of 

stock, therefore, the difference is always negative when conditions for an interior solution 

hold.   
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B.2.4.2 Analytical Proof of Result CL3 with cumulative aggregate profits 

Regarding the aggregate cumulative profits, the effect of a non-marginal increase in 

transmissivity on the profits of unequal players is given by:
126
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where PQR31 is a positive variable.
 127

 

The effect is strictly negative for identical users, but it is increasing in the level of 

inequality. In order to determine the effect of transmissivity on highly unequal users it 

suffices to check at the highest acceptable level –with an interior solution– of inequality.  

B.2.4.2.1 At the Maximum Initial Stock 

I will first consider the case where the initial stock is at the highest level, E; operating the 

change of variables introduced earlier (ah = ā + ε and al = ā – ε), the effect becomes: 

                                                      

126
 The Cumulative profits with zero transmissivity are taken, as discussed before, from the Open Loop 

Game. 
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The maximum inequality depends on the average efficiency, when ā is lower than āmaxCL, 

the maximum inequality is given by εMaxX with zero transmissivity ( ̅  (   )  ⁄ ), and 

the corresponding effect is as follows: 
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where PQR32 is a positive variable.
128

 

At the lowest level of acceptable average efficiency level, ̅   (   )  ⁄ , the (non-

incremental) increase in transmissivity results in a net loss in total welfare in the amount 

of PQR11, in absolute value; and a marginal increase in average efficiency results in even 

greater losses. However, the positive sign of PQR32 suggests that the increase in 

transmissivity can be welfare increasing at high levels of average efficiency.  

At the highest level of average efficiency in this category, when  ̅   āmaxCL , the effect is 

given by: 

                                                      

128
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PQR32 can also be rewritten as a product of positive variables. 
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FR3(c, r) is a function of c and r;
129

 its sign depends solely on the ratio r/c, and has only 

one real root, (r/c)* = 0.36. The effect –on aggregate cumulative profits– of an increased 

transmissivity, at the highest level of inequality, follows the sign of FR3(c, r), it is 

negative for low ratios r/c, and positive when the ratio is higher than (r/c)* = 0.36. 

For the levels of average efficiency higher than āmaxCL, the maximum inequality is 

εmaxCL,
130

 derived from the condition on the positive rate of extraction by the less efficient 

user, with an infinite transmissivity, and the corresponding effect from an increase in 

transmissivity is as follows: 
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where PQR33 is a positive variable.
131
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 as introduced earlier in Chapter 2.  
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PQR33 can also be rewritten as a product of positive variables. 
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At the lowest level of average efficiency in the considered category, the sign of the effect 

of making the resource more common on the aggregate cumulative profits of highly 

unequal users depends solely on the ratio r/c:  
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At higher levels of average efficiency, making the resource more common has a negative 

effect on aggregate cumulative profits; this outcome is rather the consequence of the 

conditions for an interior solution, since increasing ā while keeping the maximum 

inequality fixed (εmaxCL) translates into lower levels of inequality in relative terms. 

In summary, under feedback strategies, and with the stock at the start (x0) set at the 

maximum, the increasing effect of a non-incremental increase in transmissivity on the 

aggregate cumulative profits of highly unequal users is only conceivable in the case of 

low costs of extraction (c low), combined with a low valuation of future gains and 

avoided future losses (high r). In other terms, the financial externalities from making the 

resource more common to be limited, for the benefits from inequality to outweigh the 

losses from non-cooperative use.  
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B.2.4.2.2 At the Minimum Initial Stock 

I consider now the extraction game where the initial stock is set at xMin0ε, the lowest 

acceptable level for an interior solution;
132

 in this situation, the effect of an increase in 

transmissivity simplifies as: 
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where PQR34, PQR35, and PQR36 are all positive variables.
133

 

When ā is lower than āmaxCL, the maximum inequality is given by εMaxX, and the related 

effect of an increase in transmissivity simplifies as: 
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, as introduced earlier is the minimum stock with a 

positive level of use by the less efficient user when transmissivity is equal to zero. 
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At the lowest level of acceptable average efficiency level,  ̅   (   )  ⁄ , the (non-

incremental) increase in transmissivity results in a net loss in total welfare;
134

 a marginal 

increase in average efficiency results in even greater losses. However, the positive sign of 

PQR34 suggests that the increase in transmissivity can be welfare increasing at high levels 

of average efficiency.  

At the highest level of average efficiency in this category, when  ̅   āmaxCL , the effect is 

given by: 
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where FR3b(c, r) is a function of c and r;
135

 its sign depends solely on the ratio r/c, and has 

only one real root, (r/c)* = 0.25. The effect –on aggregate cumulative profits– of an 

increased transmissivity, at the highest level of inequality, follows the sign of FR3b(c, r), it 

is negative for low ratios r/c, and positive when the ratio is higher than (r/c)* = 0.25. 

When ā is higher than āmaxCL, εmaxCL becomes the maximum acceptable inequality, and the 

corresponding effect from an increase in transmissivity is as follows: 
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The sign of the effect of making the resource more common on the aggregate cumulative 

profits of highly unequal users depends solely on the ratio r/c:  

In summary, when stock at the start is set at the minimum, the increasing effect from 

making the resource more common on the aggregate cumulative profits of highly unequal 

users is only possible under the condition of a ratio r/c higher than (r/c)* = 0.25. This 

result portrays the same requirement drawn in the case of a maximum stock at the start, 

where the benefits from inequality are only expected to outweigh the losses from non-

cooperative use when the financial externalities from making the resource more common 

are limited, but the condition is less stringent with the minimum stock.  

B.2.4.2.3 The Effect of the Starting Stock  

In this subsection, the aim is to provide more insight on the previous result, by showing 

that the effect of an increase in transmissivity on the aggregate cumulative profits is 

declining in the level of stock at the start, x0, as evidenced by the negative sign, 

everywhere, of  0,, xaaxV lh

CL , its derivative w.r.t x0, given by:
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At the minimum stock, the derivative is always negative and writes as follows: 
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where PQR37 and PQR38 are both positive.
137

 

The derivative is linear and decreasing in the level of stock, in addition, it is negative at 

the minimum acceptable level of stock, therefore the derivative is negative 

everywhere.
138

 This result reinforces the previous result regarding the lesser requirement 

on the ratio at the minimum stock, for a shift in transmissivity to produce an increase in 

profits, in comparison to the requirement at the maximum stock. 
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PQR37 is positive everywhere (for r and c positive).  

138
 At the maximum stock, for instance, the derivative is negative for any acceptable level efficiency:  
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B.3 Solving for the Social Optimum 

B.3.1 Deriving the Eigenvectors 

If V = [y1, y2, y3, y4] is the eigenvector associated with α, eigenvalue of matrix A2, then V 

needs to satisfy the condition A2 V = α V, that can be written as a system of four linear 

equations: 

1321)( yyysysc    (B3.1) 

2421 )( yyyscys    (B3.2) 

3431

2 )( yysycsryc    (B3.3) 

4432

2 )( yycsrysyc    (B3.4) 

The values of y3 and y4, as functions of y1 and y2, are drawn from (B3.1) and (B3.2): 

213 )( ysycsy           (B3.1b) 

214 )( ycsysy 

      

(B3.2b) 

Substituting the new values for y3 and y4 in (B3.3) and (B3.4) and factorizing in y1 and y2 

gives:  

       

   

    0)()()()()(

0)()()())((

1

22

2

2

22

1





scsrscssycscscsrscy

scsscsrsycsscscsrcy





 

Adding and subtracting the two last equations provides, after simplification, an 

equivalent system of equations: 
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I differentiate two cases, depending on the value of the eigenvalue; When α is the 

negative root of equation EQ3(α) = 0,
139

 the first equality (B3.3b) is valid for any pair of 

variables while the second equality (B3.4b) is only true if y2 = y1. This result, together 

with the previous results in (B3.1b) and (B3.2b) shows that the eigenvector associated with 

α3 is any multiple of v3: 
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For the case with α = α4, the negative root of equation EQ4(α) = 0, (B3.3b) is only true if 

y2 = -y1. Compiling all results shows that the eigenvector in this instance is v4: 
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B.3.2 Showing the positive sign of P5(s) and P6’(s) 

P5(s) is a nonnegative function of s defined as:
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P6’(s) the derivative of P6 (s) w.r.t s, and is given by:  
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 EQ3(α) =   2  cr , and EQ4(α) =    2222   rcsrscs . 
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with:      2222

1 3244681046 ssrrcssrrsrPQ SO 
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B.4 Alternative categories of inequality 

B.4.1 Inequality in the derivative of marginal productivity 

In this sub-section, I use the same continuous model as in Chapter 2, with one variation: 

the production function of player i, given her level of extraction of water wit, is now given 

by: 
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where bh , bl > 0 

In the new setting, the two users have identical linear coefficient but different quadratic 

coefficients, which leads to inequality in productivity; when bh < bl, for any amount of 

water wt, player h will derive more profits than player l.   

With an interior solution for the corresponding maximization problem, the stocks and 

extraction decisions at the steady state are given by: 
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The aggregate profit of players h and l at the steady state is obtained by summing up the 

profits of the two players as: 
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where the last term is negative and increasing, in absolute value, in s and in the degree of 

inequality. It shows that inequality causes losses that are proportional in magnitude to the 

square of (bh – bl), and that more transmissivity enhances those losses.  

B.4.2 Inequality in the Natural Capital 

In this sub-section, I use the same continuous model as in Chapter 2, where the two users 

have the same production function: 
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I assume now that the two users have different rates of recharge: 

  itititiit xxswRx  
        i=h,l 

where Rh , Rl > 0 

With the new specification and assuming the solution to the –new– maximization 

problem implies an interior solution at the steady state, the corresponding stocks and 

extraction decisions are given by:  
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The aggregate profit of players h and l at the steady state is obtained by summing up the 

profits of the two players as: 
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In this case, inequality in natural capital has an increasing effect on the aggregate profits, 

and the extra benefits from inequality are proportional in magnitude to the square of (Rh – 

Rl). On the other hand, transmissivity has a decreasing effect on the profits from 

inequality, as a consequence, higher transmissivity always decreases the aggregate 

profits. 

B.4.3 Further discussion of the effect of inequality 

Extrinsic Inequality 

In this part I consider the effects of inequality on the non-cooperative use of an aquifer 

by two farmers i and j for a general concave function f(w).  The inequality is introduced by 

considering that the production function of players i and j is such that: 

     iii wfwf  1         (1.a) 

     jjj wfwf  1         (1.b) 
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where 0 ≤ α ≤ 1. 

Given s the transmissivity of water, the stocks of water xit and xjt beneath players i and j evolve 

following the equations of motion previously established: 

 
itjtitit xxswRx         (2.a) 

 jtitjtjt xxswRx         (2.b) 

User i (similarly user j) maximizes his net payoff: 

    dtxhcwwfeMax itititi

rt

wit



 
0

      (3) 

If we denote by λit the value attributed by player i, at time t to a unit increase in her own 

stock xit, and µit the value the same player attributes at time t to a marginal increase in her 

neighbor’s stock xjt, then, at any time t, player i’s problem is to pick wit that maximizes the 

current value Hamiltonian: 

       )()( jtitjtititjtitititititiit xxswRxxswRxhcwwfH    (4)  

With an interior solution, wit needs to satisfy: 

C1       ititit
it

it xhcwf
w

H
 




 10 .    (5) 

Following the Pontryagin’s Maximum Principle along the optimal path, the evolution 

over time of the co-state variables ( it and it ) satisfies the conditions: 

C2 
ititit

it

it
itit ssrcw

x
H

r  



 )(     (6) 

C3   itit
jt

it
itit srs

x
H

r  



 .     (7) 

In addition to the equations of motion in both stocks.  
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Player j faces a similar maximization problem and decides to strategize in the same 

manner, she establishes her own current Hamiltonian Hjt: 

        )()( itjtitjtjtitjtjtjtjtjtjjt xxswRxxswRxhcwwfH    (8) 

Her optimal path is restricted by the same transition equations (using the current time 

formulations this time) in stocks and satisfies similar conditions in wjt , jt and jt  : 

C4:           jtjtjt
jt

jt xhcwf
w

H
 




 10        (9) 

C5  
jtjtjtjt

jt

jt
jtjt sscwr

x

H
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C6      jtjt
it

jt
jtjt srs

x

H
r  




     (11) 

 

Steady state 

The steady state is reached when the system stops moving which means:   

   0 jtitjtjtitit xx       (12) 

From C2, C3, C5 and C6 we derive that at the steady state:   
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  (13) 

From C1 we solve for xi:  
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Given the equation of motion in 2.a we draw xj:  
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And given 2.b we solve for wj:  ij wRw  2     (16) 

Finally, using all the previous results we rewrite C4:  
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If we define the function constrainte(α, wi): 

         
  

 srsr

Rwssrrc
wfwRfw i

iii
2

24
121,econstraint

22




   

wi is therefore defined as:     0,econstraint/  iii www  . When α = 0 the equation 

constrainte(α, wi) = 0 has a unique solution wi = R
140

.  

Completely differentiating the condition at the optimum (   0,econstraint iw ) we find: 
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which allows us to derive the derive 
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  (18) 

The aggregate profits of players i and j at the steady state is given by: 

       )()(, jjjjiiiiiT xhwcwfxhwcwfw   

                                                      

140
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wfwRfweconstraint i

iii
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22




 . f’ is decreasing therefore 

for wi > R constrainte(α, wi) > 0 while constrainte(α, wi) < 0 when wi < R. 
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The derivative of  iT w, with regard to α is given by: 
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The change in total welfare at the steady state due to an incremental level of inequality is given 

by
 




d

wd iT ,
at the origin, α = 0, but for α null wi equals R and from (21): 0
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Given that 0
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d

d T  the sign of the aggregate welfare change can be derived by totally 

differentiating 
 




d
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with regard to α and calculating 
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d

wd iT at the origin (α = 0 and 

wi = R). 

To show that: 
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(22) 

Therefore the change in welfare depends on the sign and magnitude of )(RfR  ; all other terms 

are positive and favor an increase in welfare for a low level of inequality. If f(.)is a quadratic 

function then 0)(  Rf , and the introduction of a low enough level of inequality leads 

unequivocally to the increase of aggregate welfare.  
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For s infinite: 

 
  

 
 
 

  



































)(
2

8

2

8

0

2

2

RfRrRfrc
Rfrc

Rfr
RfR

Rfrc

Rfr

d

d T




  (23) 

Intrinsic Inequality 

In this part the inequality is introduced by considering that the production function of players i 

and j is such that: 

    iii wfwf  1         (24.a) 

    jjj wfwf  1         (24.b) 

An analysis similar to the one done with extrinsic inequality leads to the same 

conclusion, 0
0






d

d T , it is therefore the sign of 
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d

d T that will indicate the change in 

welfare resulting from a low level of inequality. 

The formula for s finite is rather complicated I will only present here 
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Appendix C Solving for the Discrete Model 

C.1 Subgame Perfect Equilibrium Dynamic Programming 
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C.2 Social Optimum Dynamic Programming 

     





















2

3131

1
21221

1

21

1
2

2

1

sDDscc

sc 

DDc
α

SO

n

SO

n

SO

n

SO

n

SO

n

 

     





















2

3131

2
21221

1

21

1

2

1

sDDscc

sc 

DDc
α

SO

n

SO

n

SO

n

SO

n

SO

n

 

 
 

  
   






















 

2

31

44

31

3144
3

21221

21

21

22

2

1

sDDscc

DDsa a

DDc

RDDDDaa
α

SO

n

SO

n

SO

in

SO

nii

SO

n

SO

n

SO

n

SO

n

SO

in

SO

niiSO

ni

  

 

         

       

    2

221

11

2

2

2

21

22

21

2

11212213

2

2

2

11

121

121212

121112
2

1

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

n

SO

r

SO

r

SO

r

SO

r

SO

r

SO

n

SO

r

SO

r

SO

r

αsααs

αssαcαααsααs

αDαsαsαααsDαα=D







 
      

 

SO

r

SO

r D=D 12
;  

 

        

        
  2

2

2

21

2

2

21

2

132121

21212211213

12

121121

1114  2

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

n

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

r

SO

n

SO

r

SO

r

SO

r

αααs

ααsαDαααα

αsαscαsαsαααsDαα=D







 

      SO

r

SO

r

SO

in

SO

ri

SO

r

SO

n

SO

n

SO

ri

SO

n

SO

n

SO

ri ααsDαaαRDDαaRDD=D 21421311314 14  2 2  

       SO

ri

SO

r

SO

r

SO

n

SO

ri

SO

r

SO

r

SO

r

SO

ni

SO

r αααRDαcααsαDα 3223321142 2
2

1
114 

 
      SO

ir

SO

r

SO

ir

SO

ir

SO

ri

SO

r

SO

r

SO

ir

SO

ri

SO

r

SO

r αααααααsααααs   3133321

2

3321 1212

 
       SO

ri

SO

r

SO

r

SO

r

SO

r

SO

n

SO

ir

SO

r

SO

ri

SO

r αααssααRDαααα 3211213231 112142  

 

 
         SO

ir

SO

ri

SO

r

SO

r

SO

ir

SO

r

SO

r

SO

r ααααscααααss   33213221 1112   

 
 SO

ir

SO

r

SO

ri

SO

r αααα  32312         i=h,l      
 

      sDααRDDDDRD=D SO

n

SO

ir

SO

ri

SO

n

SO

n

SO

in

SO

ni

SO

n

SO

r   121
2

1
 2 133314466

 

             ssDssDcααDsDsc SO

n

SO

n

SO

ir

SO

ri

SO

n

SO

n   1211424 31

2

3

2

331

 
 

    SO

ri

SO

in

SO

ni

SO

nii

SO

ir

SO

in

SO

ni

SO

ini

SO

ir

SO

ri αDsDsDaαDsDsDaαα 3444344433    



- 252 -  

Appendix D Experimental Validation for the Extraction 

Game 

 

D.1 Experiment Instructions (Unequal Users – Infinite 

Transmissivity) 

Welcome 

This is an experiment in decision making. Please, do not close your internet explorer 

during the experiment. If you have any questions during the experiment or if your 

internet explorer is accidentally logged off, please raise your hand and an experimenter 

will come to you. You are participating in this experiment on a voluntary basis and you 

are allowed to stop at any time. 

Please, make sure that the number on your computer matches the Id number on the top of 

this page (that was assigned to you randomly when entering the lab). Your identity will 

be kept secret during the experiment. During the experiment, you will be invited to fill in 

and sign a consent form and to report your decisions in a record sheet, the information 

provided and the decisions made will be kept secret. Please do not engage in any 

conversation with the other participants.  

You will participate in 4 series of 10-rounds each; every 10-rounds sequence will last 

between 20 and 30 minutes. In every round you will be asked to make an economic 

decision. During the first two sessions, you will be matched with the same partner, and 

during the two last sessions you will be matched with another partner with the same type 

as your previous partner. 
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You will receive a 5$ for your participation. Additional earnings can be gained during the 

experiment. Your earnings will depend on your decisions and on the decisions of another 

participant you will randomly be paired with. If you follow the instructions cautiously 

and make good decisions you can earn up to thirty dollars. Your earnings will be paid to 

you, privately, at the end of the experiment, in cash. 

The computer screen in front of you shows the current stock. In every round you will be 

asked to make three decisions. The first decision, noted WP, is your offer to “buy out” 

your partner; it represents the amount of money that you are willing to pay to your 

partner in exchange of her stopping her use of the stock during the current round and all 

following rounds. 

The second decision, noted WA, represents your own buy out price; WA is the amount of 

money for which you would be willing to leave the stock, it represents the price that your 

partner needs to pay to you in order for you to accept to depart from the extraction stock 

during the current round and all following rounds. 

The last decision is the quantity to extract from the stock if there is no transaction during 

the current round. A transaction takes place when your offer is larger than the price set by 

your partner or vice versa - your price is lower than the partner's offer. When the price of 

every player within the group is satisfied by the offer by her partner in the group, then 

priority is given to the transaction that generates the highest value i.e. the transaction with 

the larger difference between price and offer. For all transactions, the transaction cost is 

set equal to the average of the offer and price, it is deducted from the buyer whom offer 

was accepted and awarded to the seller. 
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The extraction decision will only be carried out when there is no transaction. In the case 

where there is a transaction and your offer is accepted, your earnings will be reduced by 

the transaction cost and you will be given a chance to review your decision knowing that 

you are the sole user of the stock. If there is a transaction but this time it is your price that 

was matched by your partner, you receive the transaction cost and your decision is set to 

zero for the current and all following rounds. 

The net earnings from the extraction for the current round are given by:   NP = Revenue – 

Cost. 

The revenue depends solely on your decision and is given by: Revenue = 
2

D
D E 

2


 

D is the amount you decide to extract from the stock, D needs to be positive lower than 

the stock. E is an efficiency coefficient, in every group there are two different players: a 

high efficiency player with efficiency is E= 20 and a low efficiency player with E= 10.  

You are a high efficiency player. [You are a low efficiency player] 

The cost of extraction depends on the current level of stocks and on your decision and the 

decision of your partner:    Cost = 









4

SD
XHD C  

C=0.15 is the unitary cost of extraction (in dollars per unit of stock per meter). H=100 is 

the elevation to which the extracted stock needs to be lifted up it also marks the 

maximum stock allowed, X is the current stock and SD stands for the sum of extraction 

decisions made by the two players within the same group, 









4

SD
XH can be 

perceived as an average depth of extraction. 
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The net earnings, in computer dollars, are therefore given by the formula: 

NE = 









4
D C 

2

D
D E

2 SD
XH

 

Given your decision and the decision of your partner the stock evolves in the next round 

following the equation of motion: R
SD

X = NX 
2

 

R= 3 reflects a fixed rate of renewability/recharge of the stock at the beginning of every 

period. In the case where NX is higher than H then NX is replaced by this later
141

. The 

stock at the beginning of the first round will always be taken as 73.  

To help you with the calculations you have been provided a calculation support box in an 

excel spreadsheet. At the beginning of every round, make sure to copy the current stock 

level as provided in the explorer screen, enter the updated value in the appropriate cell of 

your calculation box. You will then enter your trial decision in the corresponding cell and 

your speculation regarding your partner’s decision in the proper cell. The cells 

corresponding to the three entries are highlighted in a yellow color as shown in the figure 

below.   

 

                                                      

141
 In mathematical terms and more completely:

 







 H R,
SD

Xinf = NX 
2

 

1- Enter the updated stock for this round as provided in the explorer program 

90.00

2- Enter your decision and your "best guess" for your partner's decision

3.00

2.00

 The current stock

 High efficiency player decision

 Low efficiency player decision
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Please note that the stock level in the calculation support box is not updated automatically 

and needs to be entered for every round, also note that your partner will make his/her 

own decision that may or may not match your speculation. 

Based on the entries you make the calculator box will display your earnings and the 

earnings of your partner, along with the stock at the beginning of the next period. 

[Meaningless for the last period]. 

 

The calculator box will also display an earnings-table and future-stock-table for an array 

of decisions centered on the values that you entered, this table is meant to help refine 

your choice.  

 

In every round you can change the entries in the calculation support sheet as many times 

as you need (note that you only review the decisions since the stock is updated once for 

3- Outcomes and next round stock

The high efficiency earnings for this round are: 16.13 (revenue: 19.50  and cost: 3.38 )

The low efficiency earnings for this round are: 3.75 (revenue: 6.00  and cost: 2.25 )

The stock in next period : 89.00

4- Tables of Extended Outcomes and next round stock

1.00 2.00 3.00 4.00 5.00 1.00 2.00 3.00 4.00 5.00

0.00 6.48 11.90 16.28 19.60 21.88 0.00 0.00 0.00 0.00 0.00 0.00

1.00 6.45 11.85 16.20 19.50 21.75 1.00 2.45 2.43 2.40 2.38 2.35

2.00 6.43 11.80 16.13 19.40 21.63 2.00 3.85 3.80 3.75 3.70 3.65

0.00 6.48 11.90 16.28 19.60 21.88 3.00 4.20 4.13 4.05 3.98 3.90

0.00 6.48 11.90 16.28 19.60 21.88 4.00 3.50 3.40 3.30 3.20 3.10

1.00 2.00 3.00 4.00 5.00

0.00 91.00 90.50 90.00 89.50 89.00

1.00 90.50 90.00 89.50 89.00 88.50

2.00 90.00 89.50 89.00 88.50 88.00

3.00 89.50 89.00 88.50 88.00 87.50

4.00 89.00 88.50 88.00 87.50 87.00

Low 

efficiency 

type 

decision

Low 

efficiency 

type 

decision

Low 

efficiency 

type 

decision

Next round stock table

High efficiency type decision  High efficiency player decision

High efficiency type decision

High Efficiency player earnings table Low Efficiency player earnings table
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every round); there are no limits on the number of trials, however all participants are 

recommended to make their decisions in no more than 3 minutes. 

Once you reach an acceptable choice for your extraction decision, switch to the explorer 

page and enter your decision then press the accept key, remember, your decision needs to 

be a nonnegative value below the stock level 
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Appendix E Policy Implications  

E.1 Deriving the Multi-period Path Under Single User 

management 
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E.2 The effects of transmissivity on the Difference Between 

Single User profits and SPE Aggregate Profits  

The maximum of the derivative of the difference is given by:
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Given the value of ax s
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M is positive  
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where     , is a positive variable: 

     
             (        )(      )

 (        )      (       )        (       )        
 
   (   )

(       ) 
 

Where       is a positive variable given as: 

      √(        )(       )√       

       been a positive variable:  
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       (       )
    (        )       (        )       (        )       

From the previous calculations it is clear that      is strictly positive, and, consequently, 

       
    is strictly positive; but the negative sign of        

    cannot be drawn from (E.3), an 

alternative approach to show that is to rewrite        
    as: 
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Now I will try to show that, as suggested in the Figure 17, 0
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Given the positive sign of Max

SPE , and the fact that  xxV SPESUs
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 is of positive sign 

for any level of inequality within the  interval [       
   ,        

   ], where         
   <0, it is 

clear that the only deduction is Max

SPE

s

SPE-SU   .  

To show that  s
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SPE-SU   it suffices to notice that: 
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To show that 0

SPE-SU

s

SPE-SU   , the difference,        
         

    , is rewritten as a product of 

positive variables:  
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where PQSU4, PQSU6, PQSU7 and PQSU8 are all positive variables: 
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E.3 Numerical Example for Result SU3 

The numerical specifications used here are built on those in Chapter 3.4.1, fairly modified 

to substantiate the theoretical result SU3. I consider the case of an infinite-transmissivity 

resource (s = ½), the highest level of transmissivity is evidently in compliance with the 

condition on the level of transmissivity (s>0.453) expressed in Result SU3. 

The unitary cost c, is taken equal to 15, which satisfies the condition on c (  

 

   (  √ )  
). The stocks at the start of the one-round game are set at 82 (xh0 = xl0 = 82), 

and the efficiency of both –identical– players is set to 300 (ah = al = 300); while the 

elevation of the ground is kept at E=100 and the aquifer recharge is R=3. 
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Following the SPE, every user extracts 2.45, she receives a net profit in the amount of 

25.49; adding up the profits of both users provides the aggregate profit, 50.98. With only 

one of the two identical users been granted access to the resource, she follows the Single 

User path as solved for previously and chooses to extract 3.53, for which she receives a 

net profit of 52.94, higher than the  aggregate profit following the SPE. 
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Appendix F Computing Resources  

I used the computing resources available at the computer center at the Department of 

Agricultural and Resource Economics at UMD:  

Processor: Intel® Xeon ® CPU E5-2690 0 @ 2.90GHz 2.90 

GHz (2 processors) 

Installed Memory (RAM): 2.00 GB 

System type:    64-bit Operating System  

For the statistical analysis, I used the version of Stata available at AREC: 

Stata/MP 11.2 for Windows (64-bit x86-64) 

4-user 6-core Stata network perpetual license: 

Serial number:  50110589403 

Licensed to:  AREC Dept. U. of Maryland 

For the mathematical computations, I used the Mathematica package available at AREC: 

Version Number: 8.0.0.0 

Platform:  Microsoft Windows (64-bit) 
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Appendix G Mathematica Program for the Discrete 

Game 

See under supplementary documents. 
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