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Abstract
In this thesis, we study Bayesian games with two players and two actions (2 by 2

games) in realistic settings where private information is correlated or players have

scarcity of attention. The contribution of this thesis is to shed further light on strategic

interactions in realistic settings.

Chapter 1 gives an introduction of the research and contributions of this thesis. In

Chapter 2, we study how the correlation of private information affects rational agents’

choice in a symmetric game of strategic substitutes. The game we study is a static 2 by

2 entry game. Private information is assumed to be jointly normally distributed. The

game can, for some parameter values, be solved by a cutoff strategy: that is enter if the

private payoff shock is above some cutoff value and do not enter otherwise. Chapter

2 shows that there is a restriction on the value of correlation coefficient such that the

game can be solved by the use of cutoff strategies. In this strategic-substitutes game,

there are two possibilities. When the game can be solved by cutoff strategies, either,

the game exhibits a unique (symmetric) equilibrium for any value of correlation co-

efficient; or, there is a threshold value for the correlation coefficient such that there is

a unique (symmetric) equilibrium if the correlation coefficient is below the threshold,

while if the correlation coefficient is above the threshold value, there are three equi-

libria: a symmetric equilibrium and two asymmetric equilibria. To understand how

parameter changes affect players’ equilibrium behaviour, a comparative statics analy-

sis on symmetric equilibrium is conducted. It is found that increasing monopoly profit

or duopoly profit encourages players to enter the market, while increasing information

correlation or jointly increasing the variances of players’ prior distribution will make

players more likely to choose entry if the equilibrium cutoff strategies are below the

unconditional mean, and less likely to choose entry if the current equilibrium cutoff

strategies are above the unconditional mean.

In Chapter 3, we study a 2 by 2 entry game of strategic complements in which

players’ private information is correlated. As in Chapter 2, the game is symmetric and

private information is modelled by a joint normal distribution. We use a cutoff strategy

as defined in Chapter 2 to solve the game. Given other parameters, there exists a crit-

ical value of the correlation coefficient. For correlation coefficient below this critical

value, cutoff strategies cannot be used to solve the game. We explore the number of

equilibria and comparative static properties of the solution with respect to the correla-
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tion coefficient and the variance of the prior distribution. As the correlation coefficient

changes from the lowest feasible (such that cutoff strategies are applicable) value to

one, the sequence of the number of equilibrium will be 3 to 2 to 1, or 3 to 1. Alterna-

tively, under some parameter specifications, the game exhibits a unique equilibrium for

all feasible value of the correlation coefficient. The comparative statics of equilibrium

strategies depends on the sign of the equilibrium cutoff strategies and the equilibrium’s

stability.

We provide a necessary and sufficient condition for the existence of a unique

equilibrium. This necessary and sufficient condition nests the sufficient condition

for uniqueness given by Morris and Shin (2005). Finally, if the correlation coeffi-

cient is negative for the strategic-complements games or positive for the strategic-

substitutes games, there exists a critical value of variance such that for a variance

below this threshold, the game cannot be solved in cutoff strategies. This implies that

Harsanyi’s (1973) purification rationale, supposing the perturbed games are solved by

cutoff strategies and the uncertainty of perturbed games vanishes as the variances of

the perturbation-error distribution converge to zero, cannot be applied for a strategic-

substitutes (strategic-complements) game with dependent perturbation errors that fol-

low a joint normal distribution if the correlation coefficient is positive (negative). How-

ever, if the correlation coefficient is positive for the strategic-complements games or

negative for the strategic-substitutes games, the purification rationale is still applica-

ble even with dependent perturbation errors. There are Bayesian games that converge

to the underlying complete information game as the perturbation errors degenerate to

zero, and every pure strategy Bayesian Nash equilibrium of the perturbed games will

converge to the corresponding Nash equilibrium of the complete information game in

the limit.

In Chapter 4, we study how scarcity of attention affects strategic choice behaviour

in a 2 by 2 incomplete information strategic-substitutes entry game. Scarcity of at-

tention is a common psychological characteristic (Kahneman 1973) and it is modelled

by the rational inattention approach introduced by Sims (1998). In our game, players

acquire information about their own private payoff shocks (which here follows a high-

low binary distribution) at a cost.

We find that, given the opponent’s strategy, as the unit cost of information ac-
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quisition increases a player’s best response will switch from acquiring information to

simply comparing the ex-ante expected payoff of each action (using the player’s prior).

By studying symmetric Bayesian games, we find that scarcity of attention can generate

multiple equilibria in games that ordinarily have a unique equilibrium. These multi-

ple equilibria are generated by the information cost. In any Bayesian game where

there are multiple equilibria, there always exists one pair of asymmetric equilibria in

which at least one player plays the game without acquiring information. The num-

ber of equilibria differs with the value of the unit information cost. There can be 1,

5 or 3 equilibria. Increasing the unit information cost could encourage or discourage

a player from choosing entry. It depends on whether the prior probability of a high

payoff shock is greater or less than some threshold value. We compare the rational

inattention Bayesian game with a Bayesian quantal response equilibrium game where

the observation errors are additive and follow a Type I extreme value distribution. A

necessary and sufficient condition is established such that both the rational inattention

Bayesian game and quantal response game have a common equilibrium.
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Chapter 1

Strategic Choices in Realistic

Settings: Introduction

In this thesis, we study how Bayesian players strategically interact in real settings.

The real settings refer to correlated private information and scarcity of attention. We

introduce the two features into a conventional 2× 2 Bayesian game and study how

these features affect a player’s strategic choice behaviour. The contributions of this

thesis shed further lights on the essence of strategic interactions in the real world and

provide us with fresh insight into modelling strategic interactions in a realistic setting.

1.1 Introduction

A 2-player entry game is one of the standard Bayesian games that has been widely

studied in economics. Its basic form can be expressed as shown in Table 11:

Player i∗

inactive (0) active (1)

i

inactive

(0)

0

0

M+ ε∗

0

Pl
ay

er active

(1)

0

M+ ε

D+ ε∗

D+ ε

1In this thesis, we use ∗ to denote any variable of the opponent. Particularly, i = (i∗)∗.

1



2 Chapter 1. Strategic Choices in Realistic Settings: Introduction

Table 1: The strategic form of a conventional incomplete information entry game

After observing their respective private payoff shocks ε and ε∗, the players make

their individual action decisions simultaneously. ε and ε∗ have a joint distribution

F(ε,ε∗). Player i’s payoff of choosing action 1 is additively composed by a determin-

istic payoff (M or D) and the private payoff shock ε, and player i’s payoff of choosing

action 0 is 0. Both players collect their payoffs at the end of the game.

The entry game that we have described here makes some strong simplifying as-

sumptions, which this thesis seeks to relax. Specifically, in almost all existing literature

related to such a game, either theoretical or empirical, ε and ε∗ are assumed indepen-

dent and players can always pay full attention to their observations. In this thesis,

we modify the standard Bayesian game by introducing two ‘grains of sands’—private

information correlation and scarcity of attention. Private information correlation mod-

ifies the information environment and scarcity of attention introduces humanity into

rational agents. In this thesis, our main objectives are as follows: (i) to examine ra-

tional agents’ strategic choice behaviour in a realistic information environment, which

is modelled by correlated private information (Chapters 2 and 3), and (ii) to study

how rational agents with scarcity of attention make strategic choices in the standard

independent-type private information environment (Chapter 4).

1.2 Correlated Private Information (Chapters 2 and 3)

1.2.1 Chapter 2

In Chapter 2, we develop and present a simple model of duopoly entry with correlated

private information based on the 2-player static version of the dynamic entry game

studied by Pesendorfer and Schmidt-Dengler (2008). In a 2-player static entry game,

two identical competing firms simultaneously decide whether to enter a market after

observing their respective private payoff shocks. However, unlike conventional entry

games, these shocks are not idiosyncratic in this game. This is because there are com-

mon and idiosyncratic components of each payoff shock, and each firm only observes

its own aggregate shock without knowing its components. An example of this situa-

tion is two firms that produce the same good competing for the same market. Each firm
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expects the private payoff shocks of entry to be correlated with each other, especially

when these shocks depend on some common factors of the market.

In Pesendorfer and Schmidt-Dengler’s (2008) dynamic entry game where payoff

shocks are independent, cutoff strategies are always assumed to be used.2 We show

that in the correlated-information static game, there is a restriction on the value of in-

formation correlation. If the value of the given correlation coefficient does not satisfy

this restriction, a cutoff strategy cannot be used to solve the static game. This is de-

termined by the normality of the joint prior distribution and the definition of the cutoff

strategy. The intuition is that if the correlation coefficient is greater than this critical

value, the expected payoff function is no longer monotonic with respect to a player’s

own private payoff shock, given any strategy of the opponent. For some strategies of

the opponent, there are multiple (three) best responses. One of the three best responses

will make a player choose entry if the payoff shock is below the best response cutoff

value, which contradicts the definition of the cutoff strategy.

Pesendorfer and Schmidt-Dengler’s (2008) numerical analysis of a dynamic duopoly

entry game with idiosyncratic normally distributed payoff shocks have at least five

equilibria. The game assumes that players adopt a cutoff strategy. We analytically

prove that for a static correlated-information duopoly entry game, in which payoff

shocks are not only normally distributed but also linked by the correlation coefficient,

there are at most three equilibria, and hence, for the static version of Pesendorfer and

Schmidt-Dengler’s (2008) numerical example also (assuming a discount factor equal to

zero), in which payoff shocks are independent and normally distributed, there should

be at most three equilibria. Furthermore, we provide the comparative statics of the

number of equilibria with respect to the correlation coefficient.3 It is found that for

higher degree of information correlation, it is more likely that asymmetric equilibria,

i.e. one firm on average prefers entry more than the opponent does, arise. The intuition

is that the uncertainty between the players’ private payoff shocks is measured by the

2Cutoff strategies are defined as when a player’s private payoff shock is above a threshold value,
they choose entry, or vice versa.

3In an independent econometrics paper, Xu (2014) finds a sufficient condition to ensure a unique
equilibrium for a 2-player static entry game with flexible payoff specification and positively correlated
players’ types in order to identify such type of games. We find that his sufficient condition to ensure
a unique equilibrium by using a joint normal distribution as the prior distribution is equivalent to the
necessary and sufficient condition to ensure that the best response function is a contraction function;
this is provided by our Proposition 2. For details, please see Section 2.3. By far, Xu (2014) is the only
literature that is the most relevant to this chapter.



4 Chapter 1. Strategic Choices in Realistic Settings: Introduction

correlation coefficient, and this uncertainty determines whether a player’s conditional

density function of the opponent’s payoff shock, given the player’s own private pay-

off shock, can approximately or imprecisely reflect the opponent’s private information

(private payoff shock).4 5 If the uncertainty between the players’ private payoff shocks

is low (high), then the conditional density function can approximately (imprecisely)

reflect the opponent’s private payoff shock given the player’s own shock . If the con-

ditional density function can approximately reflect the opponent’s private information,

multiple equilibria arise. If the conditional density function is imprecise to reflect the

opponent ’s private information, the game exhibits a unique equilibrium. In the strate-

gic substitutes game, high (low) value of the information correlation coefficient usually

represents low (high) uncertainty between the players’ private information. However,

it is also possible that given certain parameter specifications, the uncertainty between

players’ private information is high for high values of the correlation coefficient, and

so the conditional density function imprecisely reflects the opponent’s private infor-

mation. Accordingly, the game exhibits a unique equilibrium in this situation. These

intuitions are established when the best response functions are not contraction function.

If the best response functions are contraction function, each player is more focused on

the knowledge of himself and the opponent’s information becomes less important in

a player’s decision making. This situation is close to that of an individual decision

problem, and hence the game exhibits a unique equilibrium.

Introducing information correlation into an entry game is motivated by the follow-

ing considerations. First, it is consistent with the widely observed fact that private

information, in any form, is hard to be independent. Two entities’ private information

often depends on some fundamental factors such as the custom of a society or climate.

Therefore, each entity has some power of learning or inferring the other entity’s private

information through the fundamentals. Second, to understand how information corre-

lation affects rational agents’ behaviour itself is an interesting topic and few studies

about this topic are conducted from the perspective of game theory. Third, and perhaps

most importantly, solving the game analytically to understand the inherent structure of

4Suppose two random variables ε and ε∗. If ε and ε∗ are subject to the relation ε∗ = aε+b+η, where
a and b are real numbers and η is a random variable, then we say there exists uncertainty between ε and
ε∗ and this uncertainty is given by η. Suppose the correlation coefficient between ε and ε∗ is given by
ρ. Because the relation ε∗ = aε+b+η holds as long as the correlation coefficient ρ ∈ (−1,1), we can
consider using ρ to measure the uncertainty between players’ private information.

5To understand how the density function can reflect the opponent’s private information given a
player’s own private information, please refer to Section 2.4.
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the game, i.e. how many equilibria exist and what they are, is technically challenging

and is crucial for some further technical application, e.g. identification and estimation

of games. This study is also the first step to solve a 2-player correlated-information

dynamic entry game. Furthermore, it is a technical preparation to analytically under-

stand a dynamic entry game.

The simplicity of the proposed model makes it well suited for exploring how pa-

rameter changes, especially the information correlation coefficient, impact players’

equilibrium behaviour. To show this, we calculate the comparative statics of monopoly

profit, duopoly profit, variances of prior distribution and the information correlation co-

efficient, on firms’ equilibrium entry threshold in the symmetric equilibrium. We find

that increasing the monopoly profit or duopoly profit can always encourage players to

adopt lower cutoff strategies and so they are more likely to choose entry. If the present

cutoff strategies are positive, then increasing the information correlation or jointly in-

creasing the variances of type distribution will make both players adopt higher cutoff

strategies, i.e. they become less likely to choose entry. In contrast, if the present cutoff

strategies are negative, then increasing the information correlation or the variances of

prior distribution will encourage players to adopt lower cutoff strategies, i.e. they be-

come more likely to choose entry. If the present cutoff strategies equal zero, changing

the correlation coefficient or jointly varying the variances of prior distribution does not

affect the cutoff strategies.

The intuition is that, if we increase monopoly profit or duopoly profit, the payoff

of entry increases and it thereby encourages a player to choose entry. If we change

the correlation coefficient, the mean of the conditional distribution of the opponent’s

payoff shock given a player’s own payoff shock changes and the mean has a dominant

impact on the player’s belief towards the opponent’s strategy given their own strat-

egy. The change of mean depends on the sign of the symmetric equilibrium strategies.

If we jointly change the variances of the prior distribution, only the variance of the

conditional distribution of the opponent’s payoff shock given the player’s own shock

changes. Increasing the variances will assign higher likelihood on low and high pay-

off shocks in the conditional distribution of the opponent’s payoff shock, or vice versa,

and the sign of a symmetric equilibrium strategy determines whether this strategy is lo-

cated in the high payoff shock area or the low payoff shock area in the distribution. The

different location determines the different impacts of changing variances on a player’s
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belief.

1.2.2 Chapter 3

In Chapter 3, we develop and exhibit a simple model of duopoly entry with correlated

private information in a 2-player static strategic complements game. In this game,

D > M and is represented as shown in Table 1. The game is symmetrically specified.

In the game, after observing their respective private payoff shocks, the two player firms

simultaneously decide whether to enter a market. The private payoff shocks are sta-

tistically correlated, and the correlation coefficient of players’ joint type distribution

measures the degree of information correlation. An example of this situation is two

firms that produce complementary inputs entering a local market. One firm expects its

private payoff shocks of entry to be correlated with the other firm’s because the shocks

depend on some common factors of the market. Each firm observes its own aggregated

shock without knowing its components, for example, the common factors and idiosyn-

cratic noises if they additively form the aggregated shock.

The game is solved by a cutoff strategy, which is defined as if a player’s private

payoff shock is above a threshold value, they choose entry, or vice versa. By solving

the game, we find a critical value of the correlation coefficient. For correlation coeffi-

cients below this critical value, a cutoff strategy cannot be used to solve the game. This

result is determined by the normality of the joint prior distribution and the definition

of the cutoff strategy. The intuition is that if the correlation coefficient is smaller than

this critical value, the expected payoff function is no longer monotonic with respect to

the player’s own strategies, given any strategy of the opponent. For some strategies of

the opponent, there are multiple (three) best responses. One of the three best responses

will make a player choose entry if the payoff shock is below the best response cutoff

value, which contradicts the definition of cutoff strategies.

Under some parameter specifications, the game exhibits a unique equilibrium. Un-

der other parameter specifications, there may exist two or three equilibria and the num-

ber of equilibria changes in the following order as the correlation coefficient increases

from the lowest feasible value to 1: 3→ 2→ 1 or 3→ 1. The intuition is that the

uncertainty between players’ private payoff shocks is measured by the correlation co-
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efficient, and the uncertainty between players’ private information determines whether

a player’s conditional density of the opponent’s payoff shocks given the player’s own

payoff shock can approximately or imprecisely reflect the opponent’s private infor-

mation.6 7 If the uncertainty between players’ private payoff shocks is low (high),

then the conditional density function can approximately (imprecisely) reflect the op-

ponent’s private information. If the density function can approximately reflect the

other players’ private information, then players can obtain enough information to help

them match their action strategies, hence leading to multiple equilibria. Otherwise,

players cannot obtain enough information to help them match their action strategies

and hence the game exhibits a unique equilibrium. In the strategic complements game,

high (low) value of correlation coefficient usually represents high (low) uncertainty

between players’ private information. However, it is also possible that for certain pa-

rameter specifications, the game has a unique equilibrium for all feasible values of the

correlation coefficient. This is because due to the concerned payoff specification, the

two players’ ex ante expectations of the opponent’s behaviour are unique, irrespective

of what payoff shocks will be drawn. Ex ante in this chapter means the expectation is

formed before the payoff shocks are drawn, and hence, the expectation is taken for all

possible values of payoff shocks. Therefore, we call it ex ante expectation. The ex-

pectations are that both players are more likely to choose being inactive, active or not

sure whether the opponent is more likely to choose being inactive or active, or more

likely to be indifferent to either action choice. Accordingly, the game exhibits a unique

equilibrium to echo the respective expectations.8

6As in Chapter 2, the uncertainty between players’ payoff shocks (random variables) indicate that for
two random variables ε and ε∗, the relation ε∗ = aε+b+η holds, where a and b are two real numbers
and η is a random variable that is used to reflect the uncertainty between players’ private information.
Still, we can consider to use the correlation coefficient between the two random variables to measure
the uncertainty between them.

7To understand how the density function can reflect the opponent’s private information given a
player’s own private information, please refer to Section 2.4 of Chapter 2

8Specifically, if the expectation is that both players are more likely to choose being inactive or that
both players are more likely to choose being active, the expectation is dominant in a player’s decision
making and the uncertainty between players’ private information takes a minor role in his decision
making. However, if the expectation is that players are not sure whether the opponent is more likely
to choose being inactive or active, or more likely to be indifferent to either action choice, only when
the uncertainty between players’ private information is high, the expectation is dominant in a player’s
decision making. These intuitions are established when the best response functions are not contraction
function. If the best response functions are contraction function, each player is more focused on the
knowledge of himself and the opponent’s information becomes less important in a player’s decision
making. This situation is close to that of an individual decision problem, and hence the game exhibits a
unique equilibrium.
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The equilibrium strategies are represented by the cutoff strategies, which take all

real numbers. The comparative statics of the correlation coefficient or variances of

prior distribution on players’ equilibrium strategies depend on the sign of the equilib-

rium strategy and the stability of the equilibrium.9 For a stable equilibrium, increasing

the payoff of entry will make a player more likely choose entry. If the given equilibrium

cutoff strategies are negative, increasing the information correlation or jointly increas-

ing the variances of the joint prior distribution will make players less likely choose

entry. If the given equilibrium cutoff strategies are positive, increasing information

correlation or jointly increasing the variances of the joint prior distribution will make

players more likely choose entry. If the given equilibrium cutoff strategies equal zero,

changing the information correlation or variances of the joint prior distribution does

not have any impact on the equilibrium strategies. For unstable equilibrium, increas-

ing the payoff of entry will make a player less likely choose entry, which contradicts

our common sense. Because we use a cutoff strategy to solve the game, if the payoff of

entry increases, then given the opponent’s strategy, a player will more likely choose en-

try. Because the game exhibits positive externalities in payoffs, the opponent will also

be more likely to choose entry as the best response to the player’s change of strategies

more favouring entry. Given this best response dynamics, no strategy will converge

to an equilibrium in which increasing the payoff of entry makes a player less likely to

choose entry. This situation satisfies the Lyapunovian instability of an equilibrium and

hence such an equilibrium is unstable.

In this symmetric game, the variances of players’ prior distribution are assumed to

be identical. There is an equivalence relationship between how the number of equilib-

ria varies with the variances and with the correlation coefficient. We find that under

certain parameter specifications, the game exhibits a unique equilibrium. Under other

parameter specifications, the number of equilibria changes in the following order as

variances increase from the lowest feasible value to +∞: 3→ 2→ 1 or 3→ 1. The

intuition is that the uncertainty of a player’s private payoff shock is determined by

the variance of the player’s prior distribution, and the uncertainty of both players’

private payoff shocks determines whether the conditional density of the opponent’s

payoff shocks given the player’s own payoff shock can approximately or imprecisely

reflect the opponent’s private information.10 If the uncertainty of both players’ private

9The stability concept adopted in this chapter is Lyapunov stability.
10In this chapter, no matter how the variances change, they are always assumed to be identical. There-
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payoff shocks is low (high), then the conditional density function can approximately

(imprecisely) reflect the opponent’s private information. Still, multiple equilibria arise

when the density function can approximately reflect the opponent’s private informa-

tion given the player’s own private information. Otherwise, the game exhibits a unique

equilibrium when the density function is imprecise to reflect the opponent’s private

information given the player’s own private information. The low (high) value of the

variance usually represents low (high) uncertainty of a player’s private information in

the strategic complements game. However, it is also possible that for certain parameter

specifications, the game has a unique equilibrium for all feasible values of variances.

Similar to the corresponding case for the uncertainty between players’ private infor-

mation, this is also because due to the concerned payoff specification, the two players’

ex ante expectations of the opponent’s behaviour are unique, irrespective of what pay-

off shocks will be drawn, and the expectations are that both players are more likely to

choose being inactive, active or not sure whether the opponent is more likely to choose

being inactive or active, or more likely to be indifferent to either action choice.11

The comparative statics of the number of equilibria with respect to variances is also

the necessary and sufficient condition to differentiate unique equilibrium and multiple

equilibria. Morris and Shin (2005) study an identically specified game and provide a

sufficient condition for unique equilibrium. They focus on how introducing strategic

uncertainty can reduce the number of equilibria of a complete information game. The

complete information game is symmetric and strategic complements. They also use

the cutoff strategy defined in this chapter to solve the game. They argue that when

the strategic uncertainty (belief) is sufficiently invariant with respect to all possible

strategies, there is a unique equilibrium. Based on this insight, they obtain a suffi-

cient condition to ensure the game exhibits a unique equilibrium. We find that their

sufficient condition is essentially the necessary and sufficient to ensure that the best

response functions are contraction functions. If both players’ best response functions

are contractions, then the game is dominance solvable and hence there exists a unique

equilibrium. Therefore, we nest Morris and Shin’s (2005) result.

fore, we consider the uncertainty of both players’ private information (payoff shocks).
11Specifically, if the expectation is that both players are more likely to choose being inactive or that

both players are more likely to choose being active, the expectation is dominant in a player’s decision
making and the uncertainty of the player’s private information takes a minor role in his decision making.
However, if the expectation is that players are not sure whether the opponent is more likely to choose
being inactive or active, or more likely to be indifferent to either action choice, only when the uncertainty
of each player’s private information is high, the expectation is dominant in a player’s decision making.
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The incomplete information entry game can be viewed as a perturbed game of a

complete information entry game. According to Harsanyi (1973)’s purification ratio-

nale, if the perturbation errors on each player’s payoff are independent, a Bayesian

Nash equilibrium exists that will converge to the mixed strategy equilibrium as pertur-

bation errors tend to zero. In our game, we specify that the variances of the perturbation-

error distribution converge to zero, as the process that uncertainty of perturbed games

vanishes. We find that, for the strategic complements complete information games if

the perturbation errors are negatively correlated, or for the strategic substitutes com-

plete information games if the perturbation errors are positively correlated, there does

not exist a Bayesian game that can be solved by the cutoff strategy as perturbation

errors tend to zero. Hence, Harsanyi’s purification rationale cannot be applied to this

situation. The intuition is that by assuming the variances of both players’ type distri-

butions are identical, for negative information correlation in the strategic complements

game or the positive correlation in the strategic substitutes game, there exists a critical

value of variances, below which the expected payoff function is not monotonic with

respect to a player’s own private payoff shock, and it is possible that given some of the

opponent’s strategies, the player can have multiple (three) best responses; around one

of the best responses, a payoff shock that is below the best response cutoff value can

make the player choose entry, which contradicts the definition of the cutoff strategy.

Therefore, for negative information correlation in the strategic complements game or

positive information correlation in the strategic substitutes game, only if the variances

are above the cutoff value, the game can be solved by cutoff strategies.

However, if the information correlation is positive for the strategic complements

games or negative for the strategic substitutes games, the purification rationale is still

applicable. We find that in these situations, the Bayesian games that are supposed to

converge to the complete information game as the perturbation errors that degener-

ate to zero exist, and during the process, the pure-strategy Bayesian Nash equilibrium

will converge to the corresponding Nash equilibrium of the underlying complete in-

formation game. Therefore, we extend Harsanyi’s purification rationale to dependent

perturbation-error situations.
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1.3 Scarcity of Attention (Chapter 4)

In Chapter 4, we study how scarcity of attention affects players’ strategic behaviour

in an incomplete information environment with strategic substitutes. The interac-

tion paradigm and sequence of actions still follow Table 1. In this game, we assume

M > D and payoff shocks ε (and ε∗) follows a bivariate distribution: ε ∈ {u,d}, where

Pr(u) = p ∈ (0,1) and u > d. Further, to ensure that the underlying game is domi-

nance solvable, we assume M +d < 0 and D+u > 0.12 The only difference between

this game and the conventional Bayesian games is that both players cannot pay full

attention to their observations of private payoff shocks. However, both players can

acquire information about their private payoff shocks at a cost, and the information

acquisition process in this game is modelled by the rational inattention approach. Psy-

chologists have found that scarcity of attention can account for randomized choice,

and in economics literature, Woodford (2008, 2009) and Matějka and Mckay (2015)

independently develop the randomized choice theory in the rational inattention frame-

work. The objective of Chapter 4 is to investigate how agents with scarcity of attention

strategically interact in an incomplete information environment.

The analysis in this chapter is in line with the literature of entry games. Entry

games have been widely studied in industrial organization literature, and it is the most

typical form for modelling strategic substitutes behaviour. However, no literature ex-

ists that study how psychological factors affect firms’ competition. There is a void

related to this topic in the industrial organization literature, which this chapter is ini-

tially motivated to fill.

Assuming both players’ information costs are identical, we first find that there ex-

ists a critical value of information cost.13 If the given information costs of both players

are below this value, the game is a Bayesian game. If the given information costs of

both players are above or equal to this value, the game becomes a complete information

game, in which the players make their best responses without acquiring information,

given any strategy of the opponent.

Next, by studying symmetric games, we find that scarcity of attention can generate

12The underlying games are the Bayesian games in which players have full attention to their observa-
tion.

13In this chapter, for simplicity, we refer to information cost to indicate the unit information cost.
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multiple equilibria, and different values of information costs lead to different num-

bers of equilibria.14 A general rule is that jointly increasing both players’ information

costs first increases and then decreases the number of equilibria. Specifically, in the

symmetric rational inattention Bayesian games, we find that given other primitives,

by jointly increasing the information costs from 0 to +∞, the number of equilibria

appears in the following sequence: 1→ 3→ 5→ 3 if multiple equilibria can arise. Al-

ternatively, there always exists a unique equilibrium for any value of information cost.

In addition, we find that in any multiplicity situation, there always exists one pair of

asymmetric equilibria in which at least one player plays without acquiring information

and relies on his prior knowledge. These results about the game’s equilibria are mainly

caused by the concavity–convexity property of the part of the second iteration of the

best response functions in which both players play the game by acquiring information.

Furthermore, the concavity–convexity property is ultimately induced by the structure

of entropy functions.15

For comparative statics of equilibrium strategies, we find that in the symmetric

equilibrium and outer asymmetric equilibrium, any improvement in players’ expected

payoff of entry can increase the probability of entry.16 If we jointly increase both play-

ers’ information costs, its impact depends on the relative magnitude between the prior

probability of high payoff shock and a threshold value. If the prior probability of high

payoff shock is higher (or lower) than the threshold value, increasing the information

cost will increase (or decrease) the probability of entry. If the prior probability of high

payoff shock equals the threshold value, increasing the information cost does not have

any impact on the probability of entry. There is no conclusive result about comparative

statics of inner asymmetric equilibrium without particular parameter specification. Fi-

nally, in any equilibrium, if we change only one player’s information cost, its impacts

on both players’ equilibrium strategies are not clear without particular parameter spec-

ification, but its impact on a player’s strategy is found to be always opposite to that on

the opponent’s strategy.

14A symmetric game is defined as a game in which the parameter specifications of both players are
identical, particularly the information costs of both players.

15The concavity–convexity property means that as the value of a player’s strategy increases, the part
of the second iteration of the best response functions in which both players acquire information first
exhibits concavity and then exhibits convexity. For details, please refer to Section 4.7 of Chapter 4.

16In this game, there are three types of equilibrium: symmetric equilibrium, outer asymmetric equilib-
rium and inner asymmetric equilibrium. They are named according to their location at the best response
functions.
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We also study how information cost affects a player’s expected payoff. A player’s

information cost does not have any impact on the player’s expected payoff, but the op-

ponent’s information cost can affect the player’s expected payoff through the player’s

belief towards the opponent’s behaviour. Except particular parameter specification,

there is no conclusive result about at what value of the opponent’s information cost,

the player’s expected payoff reaches its highest value.

Finally, we study a game in which the players observe their private payoff shocks

with an additive noise that follows Type I extreme value distribution. The solution con-

cept is therefore (Bayesian) Quantal Response Equilibria. The similar-looking strate-

gic choice models motivate us to further consider under what conditions the two games

can be identical. It is found that there exists a specific set of parameter specification

under which both games have a common equilibrium (1
2 ,

1
2). Except this situation, the

two games will not coincide.
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Chapter 2

Strategic Entry with Correlated Private

Information

This chapter studies how correlation of players’ private information affects their strate-

gic behaviour. We introduce information correlation into a static 2-player strategic

substitutes entry game. The degree of information correlation is measured by the cor-

relation coefficient of a symmetric joint normal distribution, which is used to model

players’ prior distribution. It is found that a cutoff strategy cannot be used for all

values of correlation coefficient to solve the game and there exists a threshold correla-

tion coefficient value to differentiate the unique-equilibrium and the multiple (three)-

equilibria situations given other parameters. Finally, by comparative statics analysis

of symmetric equilibrium strategies, we find that increasing the payoff of entry en-

courages players to adopt a lower entry threshold, while increasing the information

correlation or jointly increasing the variances of prior distribution increases the posi-

tive entry threshold and lowers the negative entry threshold.

2.1 Introduction

This chapter develops and presents a simple model of duopoly entry with correlated

private information based on a 2-player static version of the dynamic entry game stud-

ied by Pesendorfer and Schmidt-Dengler (2008). In a 2-player static entry game, two

identical competing firms simultaneously decide whether to enter a market after ob-

serving their respective private payoff shocks. However, unlike conventional entry

games, these shocks are not idiosyncratic in this game. This is because there are com-

15
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mon and idiosyncratic components of each payoff shock, and each firm only observes

its own aggregate shock without knowing its components. An example of this situa-

tion is two firms that produce the same good competing for the same market. Each firm

expects the private payoff shocks of entry to be correlated with each other, especially

when these shocks depend on certain common factors of the market.

In Pesendorfer and Schmidt-Dengler’s (2008) dynamic entry game where payoff

shocks are independent, cutoff strategies are always assumed to be used.1 We show

that in the correlated-information static game, there is a restriction on the value of in-

formation correlation. If the value of the given correlation coefficient does not satisfy

this restriction, a cutoff strategy cannot be used to solve the static game. This is de-

termined by the normality of the joint prior distribution and the definition of the cutoff

strategy. The intuition is that if the correlation coefficient is greater than this critical

value, the expected payoff function is no longer monotonic with respect to a player’s

own private payoff shock, given any strategy of the opponent. For some strategies of

the opponent, there are multiple (three) best responses. One of the three best responses

will make a player choose entry if the payoff shock is below the best response cutoff

value, which contradicts the definition of the cutoff strategy.

Pesendorfer and Schmidt-Dengler’s (2008) numerical analysis of a dynamic duopoly

entry game with idiosyncratic normally distributed payoff shocks have at least five

equilibria. The game assumes that players adopt a cutoff strategy. We analytically

prove that for a static correlated-information duopoly entry game, in which payoff

shocks are not only normally distributed but also linked by the correlation coefficient,

there are at most three equilibria, and hence, for the static version of Pesendorfer and

Schmidt-Dengler’s (2008) numerical example also (assuming a discount factor equal to

zero), in which payoff shocks are independent and normally distributed, there should

be at most three equilibria. Furthermore, we provide the comparative statics of the

number of equilibria with respect to the correlation coefficient.2 It is found that for

1Cutoff strategies are defined as when a player’s private payoff shock is above a threshold value,
they choose entry, or vice versa.

2In an independent econometrics paper, Xu (2014) finds a sufficient condition to ensure a unique
equilibrium for a 2-player static entry game with flexible payoff specification and positively correlated
players’ types in order to identify such type of games. We find that his sufficient condition to ensure
a unique equilibrium by using a joint normal distribution as the prior distribution is equivalent to the
necessary and sufficient condition to ensure that the best response function is a contraction function;
this is provided by our Proposition 2. For details, please see Section 2.3. By far, Xu (2014) is the only
literature that is the most relevant to this chapter.
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higher degree of information correlation, it is more likely that asymmetric equilibria,

i.e. one firm on average prefers entry more than the opponent does, arise. The intuition

is that the uncertainty between the players’ private payoff shocks is measured by the

correlation coefficient, and this uncertainty determines whether a player’s conditional

density function of the opponent’s payoff shock, given the player’s own private pay-

off shock, can approximately or imprecisely reflect the opponent’s private information

(private payoff shock).3 4 If the uncertainty between the players’ private payoff shocks

is low (high), then the conditional density function can approximately (imprecisely)

reflect the opponent’s private payoff shock given the player’s own shock . If the con-

ditional density function can approximately reflect the opponent’s private information,

multiple equilibria arise. If the conditional density function is imprecise to reflect the

opponent ’s private information, the game exhibits a unique equilibrium. In the strate-

gic substitutes game, high (low) value of the information correlation coefficient usually

represents low (high) uncertainty between the players’ private information. However,

it is also possible that given certain parameter specifications, the uncertainty between

players’ private information is high for high values of the correlation coefficient, and

so the conditional density function imprecisely reflects the opponent’s private infor-

mation. Accordingly, the game exhibits a unique equilibrium in this situation. These

intuitions are established when the best response functions are not contraction function.

If the best response functions are contraction function, each player is more focused on

the knowledge of himself and the opponent’s information becomes less important in

a player’s decision making. This situation is close to that of an individual decision

problem, and hence the game exhibits a unique equilibrium.

Introducing information correlation into an entry game is motivated by the follow-

ing considerations. First, it is consistent with the widely observed fact that private

information, in any form, is hard to be independent. Two entities’ private information

often depends on some fundamental factors such as the custom of a society or climate.

Therefore, each entity has some power of learning or inferring the other entity’s private

information through the fundamentals. Second, to understand how information corre-

3Suppose two random variables ε and ε∗. If ε and ε∗ are subject to the relation ε∗ = aε+b+η, where
a and b are real numbers and η is a random variable, then we say there exists uncertainty between ε and
ε∗ and this uncertainty is given by η. Suppose the correlation coefficient between ε and ε∗ is given by
ρ. Because the relation ε∗ = aε+b+η holds as long as the correlation coefficient ρ ∈ (−1,1), we can
consider using ρ to measure the uncertainty between players’ private information.

4To understand how the density function can reflect the opponent’s private information given a
player’s own private information, please refer to Section 2.4.
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lation affects rational agents’ behaviour itself is an interesting topic and few studies

about this topic are conducted from the perspective of game theory. Third, and perhaps

most importantly, solving the game analytically to understand the inherent structure of

the game, i.e. how many equilibria exist and what they are, is technically challenging

and is crucial for some further technical application, e.g. identification and estimation

of games. This study is also the first step to solve a 2-player correlated-information

dynamic entry game. Furthermore, it is a technical preparation to analytically under-

stand a dynamic entry game.

The simplicity of the proposed model makes it well suited for exploring how pa-

rameter changes, especially the information correlation coefficient, impact players’

equilibrium behaviour. To show this, we calculate the comparative statics of monopoly

profit, duopoly profit, variances of prior distribution and the information correlation co-

efficient, on firms’ equilibrium entry threshold in the symmetric equilibrium. We find

that increasing the monopoly profit or duopoly profit can always encourage players to

adopt lower cutoff strategies and so they are more likely to choose entry. If the present

cutoff strategies are positive, then increasing the information correlation or jointly in-

creasing the variances of type distribution will make both players adopt higher cutoff

strategies, i.e. they become less likely to choose entry. In contrast, if the present cutoff

strategies are negative, then increasing the information correlation or the variances of

prior distribution will encourage players to adopt lower cutoff strategies, i.e. they be-

come more likely to choose entry. If the present cutoff strategies equal zero, changing

the correlation coefficient or jointly varying the variances of prior distribution does not

affect the cutoff strategies.

The intuition is that, if we increase monopoly profit or duopoly profit, the payoff

of entry increases and it thereby encourages a player to choose entry. If we change

the correlation coefficient, the mean of the conditional distribution of the opponent’s

payoff shock given a player’s own payoff shock changes and the mean has a dominant

impact on the player’s belief towards the opponent’s strategy given their own strat-

egy. The change of mean depends on the sign of the symmetric equilibrium strategies.

If we jointly change the variances of the prior distribution, only the variance of the

conditional distribution of the opponent’s payoff shock given the player’s own shock

changes. Increasing the variances will assign higher likelihood on low and high pay-

off shocks in the conditional distribution of the opponent’s payoff shock, or vice versa,
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and the sign of a symmetric equilibrium strategy determines whether this strategy is lo-

cated in the high payoff shock area or the low payoff shock area in the distribution. The

different location determines the different impacts of changing variances on a player’s

belief.

This chapter proceeds as follows: Section 2.2 presents the model. Section 2.3 ex-

hibits the best response function. Section 2.4 describes how the conditional density

function of the opponent’s payoff shock given a player’s own payoff shock can be

used to reflect the opponent’s private information. Section 2.5 studies the comparative

statics of the number of equilibria with respect to the correlation coefficient and the

stability property of equilibrium. Section 2.6 studies the comparative statics of sym-

metric equilibrium strategies. Section 2.7 provides a summary of all main results and

intuitions of this game. Section 2.8 concludes this chapter.

2.2 The Game

Consider a 2-player entry game. Each player has two choices, activity (or equivalently

in), or inactivity (or equivalently out). They make their decisions after observing their

respective private payoff shocks. Then they implement their actions, simultaneously

which can be observed by each other. The active firm engages in production, and if

both firms are active, a Cournot competition will occur. At the end of the period, each

firm collects their own payoffs. The private payoff shocks are assumed to be subject

to a bivariate normal distribution (ε,ε∗) ∼ N(0,0,ς,ς∗,ρ). Therefore, the correlation

coefficient ρ is a natural measure of the dependence between the two players’ private

payoff shocks. We call it the information correlation coefficient. Hereafter, we use ‘*’

to denote variables of the opponent. Besides, we assume ς = ς∗ to ensure the game is

symmetric. Since a Cournot competition will happen if both firms are active, monopoly

profit (denoted by M) must exceed duopoly profit (denoted by D). The strategic form

of this game is depicted as follows:
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Firm i∗

inactive (0) active (1)
i

inactive

(0)

0

0

M+ ε∗

0

Fi
rm active

(1)

0

M+ ε

D+ ε∗

D+ ε

It is natural to think that the strategies of the firm may involve a cutoff value: that

is, it enters if the privately observed value of ε is above the cutoff value ε̄ and does not

enter otherwise. Suppose that a firm believes that the opponent plays such a strategy

with a cutoff x∗. Then, the firm forms a belief that the opponent plays out given its

own shock ε. The belief is exhibited by the following function:

σ(x∗,ε) =
∫ x∗

−∞

f (ε∗|ε)dε
∗

where f (ε∗|ε) is the conditional density of ε∗ given ε. It is easy to show that

σx∗(x∗,ε)> 0, σε(x∗,ε)< 0 if ρ > 0, and σε(x∗,ε)> 0 if ρ < 0. σε(x∗,ε) = 0 at ρ = 0.

σx∗(x∗,ε) is the first-order partial derivative of σ(x∗,ε) with respect to x∗, and σε(x∗,ε)

is the first-order partial derivative of σ(x∗,ε) with respect to ε.

However, it is found that, given M, D, ς2 and ς∗2, the cutoff strategy concept cannot

be applied for all values of correlation coefficient ρ from -1 to 1. Let us first look at

the player’s expected payoff of entry, which is given by

EΠ(x∗,ε) = σ(x∗,ε)(M+ ε)+(1−σ(x∗,ε))(D+ ε)

= σ(x∗,ε)M+(1−σ(x∗,ε))D+ ε (2.1)

Equation (2.1) indicates that a player’s expected payoff is composed of two parts,

namely, the payoff induced by strategic uncertainty, σ(x∗,ε)M +(1−σ(x∗,ε))D, and

the realised payoff shock, ε. If ρ ≤ 0, given ρ, M, D, ς2 and ς∗2, both parts are non-

decreasing with respect to ε. Intuitively, if both firms’ private payoff shocks are neg-

atively correlated, a high payoff shock ε for one firm would on average imply a low

payoff shock ε∗ for the opponent, which provides an incentive that encourages the

player to be active. Therefore, the expected payoff should be non-decreasing with re-
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spect to ε for ρ ≤ 0. Thus, for negatively correlated private information situation, a

cutoff strategy can always be applied.

However, if ρ is positive, then given all parameter values, the payoff induced by

strategic uncertainty σ(x∗,ε)M+(1−σ(x∗,ε))D is decreasing with respect to ε. Thus,

whether the expected payoff EΠ(x∗,ε) is monotonically increasing with respect to ε

depends on the trade-off between the payoff induced by strategic uncertainty and by

the realized payoff shock. For positive ρs, if one firm draws a high payoff shock, it can

be expected that the opponent also draws a high payoff shock, and hence, it is highly

probable that both players will prefer being active, which provides strategic disincen-

tives for entry in a strategic substitutes context. It is also known that ε itself is a part of

the payoff and it incentivizes entering. Therefore, whether the firm will choose to be

active essentially depends on the trade-off between the two contrasting effects.

If the correlation between players’ private information is loose, i.e. ρ is slightly

positive, it can be deduced that the positive incentive generated by a high value of ε

dominates its negative impact, and hence, in total, its expected payoff should increase

with respect to ε. However, if the correlation coefficient between the players’ private

information is tight, i.e. ρ is close to 1, then it can be reasonably expected that the

strategic disincentive induced by the realization of a high value of ε will be strong,

and hence, a high payoff shock does not necessarily bring a high expected payoff

EΠ(x∗,ε). In fact, it is found that there exists a unique boundary ρ̃ > 0 in the strategic

substitutes discrete game such that if ρ≤ ρ̃, given the opponent’s expected cutoff strat-

egy x∗ ∈R, the expected payoff EΠ(x∗,ε) increases with respect to ε, and if ρ > ρ̃, the

expected payoff is no longer monotonic; it is also certain that for some x∗, equation

EΠ(x∗,ε) = 0 has multiple (three) solutions (best responses) of ε and there is one so-

lution below which a payoff shock can make a player choose entry, which contradicts

the definition of the cutoff strategy (see Appendix). Therefore, given M, D, ς2 and

ς∗2, a player can legitimately use the cutoff strategy to play the game if and only if

ρ ∈ (−1, ρ̃] in the game, and ρ̃ =
√

2πς2

2πς2+(M−D)2 .5 Thus, for each player, there exists a

boundary of ρ below which a cutoff strategy can be used to play the game. Due to the

assumption ς = ς∗, the boundary for both players are same, i.e. ρ̃ = ρ̃∗, and therefore,

this boundary defines the legitimate range of ρ in which a cutoff strategy can be used

5For the opponent, ρ̃∗ =
√

2πς∗2

2πς∗2+(M−D)2 .



22 Chapter 2. Strategic Entry with Correlated Private Information

to solve the game. This result is formally given by the following proposition:

Proposition 1 (Restricions for Implementing Cutoff Strategy in Strategic Sub-
stitutes Game): Suppose M > D and ς∗ = ς. The game can be solved by a cutoff

strategy if and only if ρ ∈ (−1, ρ̃], where ρ̃ =
√

2πς2

2πς2+(M−D)2 .

Proof: See Appendix. �

π = 3.14... is the ratio of a circle’s circumference to its diameter. Given ρ ∈ (0, ρ̃]

and an x∗ ∈ R, if EΠ(x∗,ε) increases with respect to ε, it indicates that

∂EΠ(x∗,ε)
∂ε

= σε(x∗,ε)(M−D)+1≥ 0

for all x∗ ∈ R, and hence,

1≥−σε(x∗,ε)(M−D)

Because σε(x∗,ε) =−ρ f (x∗|ε) (see Appendix A), the above inequality can be writ-

ten as

1≥ ρ f (x∗|ε)(M−D)

and hence

f (x∗|ε)≤ 1
ρ(M−D)

(2.2)

As ς increases, the variance of the distribution f (.|ε), which equals ς2(1−ρ2), in-

creases and so the density function flattens.6 Particularly, the maximum value of f (.|ε),
which equals 1√

2π(1−ρ2)ς
and is taken at the mean x∗ = ρε, decreases. Hence, (2.2) is

easier to be satisfied and it is more certain that at the given value of ρ, EΠ(x∗,ε) in-

creases with respect to ε for all x∗ ∈ R. Therefore, the range of ρ that makes the

expected payoff increase with respect to ε should be broadened as ς increases, and ac-

cordingly, ρ̃ increases.

If M−D decreases, the right-hand side (RHS) of (2.2) increases. Hence, (2.2)

is easier to be satisfied and it is more certain that at the given value of ρ, EΠ(x∗,ε)

6The density function f (.|ε) refers to f (ε∗|ε). For the explicit expression, please refer to Appendix
A.



2.3. The Best Response Function 23

increases with respect to ε for all x∗ ∈ R. Therefore, the range of ρ that makes the

expected payoff of entry increases with respect to ε should be broadened as M−D

decreases, and accordingly, ρ̃ increases.

2.3 The Best Response Function

Given the opponent’s cutoff strategy x∗ ∈R, a firm’s best response g(x∗) is determined

by EΠ(x∗,g(x∗)) = 0. That is,

σ(x∗,g(x∗))(M−D)+D+g(x∗) = 0

It is found that g(x∗) ∈ [−M,−D] because as long as M > D, the maximum of

σ(x∗,ε)(M−D)+D equals M when σ(x∗,ε) = 1 and the minimum of σ(x∗,ε)(M−
D)+D equals D when σ(x∗,ε) = 0. We define Φ(.) as the cummulative density func-

tion of the standard normal distribution and φ(.) as the probability density function of

the standard normal distribution. Given the joint normal distribution, we obtain the

best response function in its reverse form:

x∗ = ρ
ς∗

ς
g(x∗)+ ς

∗
√

1−ρ2Φ
−1(

D+g(x∗)
D−M

) (2.3)

We can then obtain the derivative of g(x∗) with respect to x∗

g′(x∗) =− σx∗(x∗,g(x∗))(M−D)

σε(x∗,g(x∗))(M−D)+1
(2.4)

In this game, the best response functions are divided into two types: contraction

and non-contraction.7 If the best response functions are contraction functions, accord-

ing to Zimper (2004), it indicates that the game is dominance solvable, and hence,

there exists a unique equilibrium. If the best response functions are non-contraction

functions, then the game may contain multiple equilibria. Figure 1 exhibits a numeri-

cal example of contraction and non-contraction best response functions . For the prop-

7For the description and properties of contraction and non-contraction best response functions,
please refer to Appendix H.
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erties of the best response functions, they are summarized in the following proposition.

Proposition 2 (Properties of Best Response Functions): Given that ς = ς∗ and

M > D, there exists a ρ̂ = 2πς∗2−(M−D)2

2πς∗2+(M−D)2 , which differentiates contraction and non-

contraction best response function:

1) for ρ ∈ (−1, ρ̂), −1 < g′(x∗)< 0 globally;

2) for ρ ∈ [ρ̂, ρ̃],

I. if g(x∗) ∈ [−M,−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D), −1 < g′(x∗)< 0;

II. if g(x∗) =−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D, g′(x∗) =−1.

III. if g(x∗)∈ (−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D,−(M−D)Φ(−

√
ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−

D), g′(x∗)<−1;

IV. if g(x∗) =−(M−D)Φ(−
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D, g′(x∗) =−1.

V. if g(x∗) ∈ (−(M−D)Φ(−
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D,−D], −1 < g′(x∗)< 0;

Proof: see Appendix. �

Due to the negative externalities of payoff specification, the game exhibits strategic

substitutes; therefore it is not surprising that the best response function in this game

is decreasing. For the opponent, ρ̂∗ = 2πς2−(M−D)2

2πς2+(M−D)2 . If both players’ best response

functions are contractions, the game is dominance solvable, and hence, a unique equi-

librium exists. We consider a symmetric game, ρ̂= ρ̂∗; therefore, a sufficient condition

for the game to have a unique equilibrium is that ρ ∈ (−1, ρ̂]. This sufficient condition

can be generalized to asymmetric payoff settings, where each player has different M

and D. Therefore, the generalized sufficient condition to ensure a unique equilibrium

is ρ ∈ (−1,min{ρ̂, ρ̂∗}]. If we further assume that ρ̂ and ρ̂∗ are positive, then the con-

dition ρ ∈ (0,min{ρ̂, ρ̂∗}] is identical to Xu’s (2014) sufficient condition to ensure a

unique equilibrium by using a normal distribution to model the prior.
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Figure 1: A numerical example of a contraction best response function and a

non-contraction best response function. M = 1, D = −1, ς (and ς∗)=1 and ρ = 0.1

(for the solid curve) and 0.3 (for the dashed curve). In this case, ρ̂ = 0.2220.The solid

curve represents a contraction best response function, and the dashed curve represents

a non-contraction best response function.

If the best response functions are contraction functions and therefore the game is

dominance solvable, then it follows from the implicit function theorem that for all

x∗ ∈ R, a player’s expected payoff responds more to their own strategy than to the op-

ponent’s strategy, i.e.

∂g(x∗)
∂x∗

=−
∂EΠ(x∗,ε)

∂x∗
∂EΠ(x∗,ε)

∂ε

|ε=g(x∗) >−1

and hence

∂EΠ(x∗,ε)
∂ε

|ε=g(x∗) >
∂EΠ(x∗,ε)

∂x∗
|ε=g(x∗) (2.5)

Equation (2.5) can be explicitly written as

σε(x∗,g(x∗))(M−D)+1 > σx∗(x∗,g(x∗))(M−D)

Furthermore, the above inequality can be written as
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−ρ f (x∗|g(x∗))(M−D)+1 > f (x∗|g(x∗))(M−D)

and we obtain

1 > (1+ρ)(M−D) f (x∗|g(x∗))

Finally, we find that (2.5) exactly implies the following restriction on the condi-

tional density function:

f (x∗|g(x∗))< 1
(1+ρ)(M−D)

(2.6)

From (2.6), it can be seen that as ρ→−1, the RHS of (2.6) increases to +∞ and

hence (2.6) is certainly satisfied. In this situation, it is certain that the best response

functions are contraction functions and hence the game is dominance solvable.

Given ρ ∈ (−1, ρ̂], as ς increases, the variance of f (.|g(x∗)), which is equal to

ς2(1−ρ2), increases, and hence, the density function flattens.8 Particularly, the max-

imum value of f (.|g(x∗)), which equals 1√
2π(1−ρ2)ς

and is taken at the mean ρg(x∗)

of the distribution f (.|g(x∗)), decreases. Hence, (2.6) is easier to be satisfied and it

is more certain that at the given value of ρ, g′(x∗) > −1 for all x∗ ∈ R. Therefore,

the range of ρ that ensures g(x∗) is a contraction function should be broadened as ς

increases, and accordingly ρ̂ increases.

If M−D decreases, the RHS of the inequality increases. Hence, (2.6) is easier to be

satisfied and it is more certain that at the given value of ρ, g′(x∗)>−1 for all x∗ ∈ R.

Therefore, if M−D decreases, the range of ρ that ensures g(x∗) is a contraction func-

tion should also be broadened, and accordingly ρ̂ increases.

2.4 f (ε∗|ε) as a Device to Reflect the Opponent’s Pri-

vate Information

In the case of jointly normal variables, if player i gets a draw ε, the mean of the distribu-

tion of i∗’s payoff shocks ε∗ changes to ρε and the variance is reduced to ς2(1−ρ2) (we

8The density function f (.|g(x∗)) still refers to the function f (ε∗|ε), where ε = g(x∗). For its explicit
expression, please refer to Appendix A.
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only consider symmetric cases where ς = ς∗). The density function f (ε∗|ε) remains

normal. Thus, f (ε∗|ε) shifts (left or right depending on the sign of ρ) and becomes

more precise to reflect i∗’s private information ε∗. An extreme situation is that if ρ = 1

or −1, ς2(1−ρ2) reduces to 0 and ε∗ = ε or −ε, respectively. Therefore, in the case

of ρ = 1 or −1, we say that a player can perfectly predict the opponent’s private infor-

mation according to the player’s own private information. Obviously, in this context,

the density function f (ε∗|ε) is a more useful device to predict the opponent’s private

information ε∗ than the belief σ(x∗,ε). The latter measures the probability that the op-

ponent chooses being inactive given ε and a possible entry threshold of the opponent x∗.

For ρ ∈ (−1,1), the variance ς2(1−ρ2) > 0. Therefore, given ε, player i cannot

predict ε∗ as precisely as in the case of ρ→±1. The variance ς2(1−ρ2) is composed

by ς, which by definition measures the uncertainty of a player’s private information,

and ρ, which measures the uncertainty between players’ private information. In Chap-

ter 3, for a strategic complements game, we obtain a specific result of how ς divides

high and low uncertainty of players’ private information, which is given by the intu-

ition underlying Corollary 1 in Chapter 3. For specific results of how ρ divides high

and low uncertainty between players’ private information, please refer the intuition

underlying Theorem 1 in Chapter 2 for strategic substitutes games and the intuition

underlying Theorem 1 in Chapter 3 for strategic complements games.

Therefore, as ς increases or ρ tends to 0, ς2(1− ρ2) will increase. If ς2(1− ρ2)

is low, i’s density function f (ε∗|ε) can approximately reflect i∗’s private information

ε∗ given ε. It might be because the uncertainty of players’ private information is low

or the uncertainty between players’ private information is low. This situation is close

to the case where ρ→ 1 in the strategic substitutes game or ρ→−1 in the strategic

complements game. Therefore, we obtain three equilibria when the uncertainty of or

between ε and ε∗ is low.

If ς2(1−ρ2) is high, f (ε∗|ε) is imprecise to reflect the other player’s private infor-

mation. It is either because the uncertainty of players’ private information is high, or

the uncertainty between players’ private information is high. In this situation, players

cannot have enough information to assist them to mismatch their action strategies in

strategic substitutes games or match their action strategies in strategic complements

games in which D > 0 > M; hence, they only have an unclear expectation of the oppo-
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nent’s propensity of action choice.9 Thus, only one equilibrium exists to capture this

situation, and it is symmetric.

2.5 Comparative Statics of the Number of Equilibria with

respect to the Correlation Coefficient

The equilibria of the game are intersection points of the best response functions. Be-

cause the game is symmetrically specified, the two players’ best response functions

are symmetrically located around the 45◦ line. Therefore, with the decreasing property

of g(x∗), it is reasonable to expect that in the strategic substitutes game, a symmetric

equilibrium always exists, which is the intersection point between 45◦ line and either

player’s best response function.

We are interested in the stability property of equilibrium. The stability concept

adopted in this chapter is Lyapunov stability. An equilibrium is stable (unstable) if and

only if it is a stable (unstable) fixed point of the game.

In this symmetric game, an cutoff strategy equilibrium (x, x∗) should simultane-

ously satisfy the following two equations:

x = ρx∗+ ς

√
1−ρ2Φ

−1(
D+ x∗

D−M
)

and

x∗ = ρx+ ς

√
1−ρ2Φ

−1(
D+ x
D−M

)

where x = g(x∗) and x∗ = g∗(x). g(.) and g∗(.) are player i’s and player i∗’s best

response functions, respectively. Therefore, the corresponding Jacobian matrix is

9In the strategic complements games, if D > M > 0 or 0 > D > M, players are still able to match
their action strategies based on their ex ante expectations of the opponent’s behaviour. For details, please
refer to Chapter 3.
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J =

(
g∗
′
(x) 0

0 g′(x∗)

)

Hence, the eigenvalues of the Jacobian matrix are g∗
′
(x) and g′(x∗), respectively.

Thus, if we know the first-order derivative of best response functions at an equilibrium,

we can judge the stability of this equilibrium.

According to Zimper (2004), if each player’s best response function is a contrac-

tion function, i.e. ρ ∈ (−1, ρ̂] in our context, then the game is dominance solvable.

Hence, there exists an equilibrium that is unique, symmetric and stable.

If g(x∗) is no longer a contraction function, it may contain a unique equilibrium

for all ρ ∈ (ρ̂, ρ̃], or alternatively, for some value of ρ ∈ (ρ̂, ρ̃], there exists a unique

equilibrium, but for other values of ρ ∈ (ρ̂, ρ̃], there are three equilibria. In the follow-

ing, we derive the comparative statics of the number of equilibria with respect to ρ and

the stability of equilibrium. We will provide a complete description of these results in

Theorem 1.

Recall the best response function g(x∗) (equation (2.3)). We can express equation

(2.3) in polar coordinates. Define x∗ = r cosθ and g(x∗) = r sinθ, where θ ∈ [−π

4 ,
7
4π)

and r ≥ 0. Recall that ς = ς∗. By substituting r cosθ and r sinθ in equation (2.3), we

find that an equilibrium (θ,r) is a solution of the following equation:

r sinθ

M−D
+Φ(

cosθ−ρsinθ

ς
√

1−ρ2
r) =

D
D−M

We define p(θ,r) = r sinθ

M−D +Φ(cosθ−ρsinθ

ς

√
1−ρ2

r). In this symmetric game, asymmetric

equilibria always appear in pairs because we can always find an equilibrium’s corre-

sponding equilibrium by switching players’ identities. Therefore, a pair of asymmetric

equilibria symmetrically locate around the 45◦ line. The radius of a pair of asymmetric

equilibria is denoted by r = ra. In polar coordinates, a pair of asymmetric equilibria

have the same radius r = ra > 0. A pair of asymmetric equilibria is denoted by (θ1,ra)

and (θ2,ra), where θ1 < θ2. They satisfy either θ2− 5
4π = 5

4π−θ1 or θ2− π

4 = π

4 −θ1.

The symmetric equilibrium is denoted by (s,s). Figure 2 exhibits the two possible
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Case I θ ∈ [3
4π, 7

4π) Case II θ ∈ [−π

4 ,
3
4π)

Figure 2: The two possible locations of best response functions. The set of radian

value is dichotomized according to the sign of the symmetric equilibrium (s,s). In

Case I, s < 0 and hence θ ∈ [3
4π, 7

4π). In Case II, s≥ 0 and hence θ ∈ [−π

4 ,
3
4π).

locations of best response functions. They are classified according to the sign of the

symmetric equilibrium, whether s < 0 or s≥ 0.

The sign of the symmetric equilibrium dichotomizes the set of radian θ into two

subsets (cases). In Case I, θ∈ [3
4π, 7

4π). In Case II, θ∈ [−π

4 ,
3
4π). Hence, the radians of

a pair of asymmetric equilibria accordingly belong to one of the two subsets. Specifi-

cally, in Case I, θ1+θ2
2 = 5

4π, and in Case II, θ1+θ2
2 = π

4 .

We define q(θ,r) = p(π

2 −θ,r) = r cosθ

M−D +Φ( sinθ−ρcosθ

ς

√
1−ρ2

r). Irrespective of whether

Case I or Case II, an equilibrium (θ,r) is also a solution of the following equation

group:

p(θ,r) = D
D−M

q(θ,r) = D
D−M

(2.7)

The radius of the symmetric equilibrium is denoted by r = rs. It should be empha-

sized that 1) given r, the shapes of p(θ,r) and q(θ,r) with respect to θ are determined

by M, D, ς and ρ; 2) p(θ,r) and q(θ,r) are symmetrically located around θ = 5
4π or

θ = π

4 ; and 3) the symmetric equilibrium is always on the 45◦ line, i.e. given r = rs,

θ = π

4 or 5
4π.
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For the relationship between rs and ra, it is found that

Lemma 1: In the symmetric strategic substitutes entry game where M > D and

ς = ς∗, rs < ra for all θ ∈ [−π

4 ,
7
4π).

Proof: Consider a pair of asymmetric equilibria (θ1,ra) and (θ2,ra), where the

radians θ1 and θ2 ∈ [−π

4 ,
3
4π) and θ1 < θ2. Geometrically, they are the intersection

points between x∗2 + g(x∗)2 = r2 and g(x∗) because g(x∗) decreases. Therefore, for

any function x∗2 +g(x∗)2 = r2, where r > ra, its left intersection point with g(x∗) will

be on the left side of (θ1,ra), and its right intersection point with g(x∗) will be on the

right side of (θ2,ra). Therefore, these new intersection points are located away from

the 45◦ line, and hence, rs ≥ ra is impossible. Recall that a symmetric equilibrium is

always located on the 45◦ line. The same analysis applies to the case where the radians

of a pair of asymmetric equilibrium belong to [3
4π, 7

4π) and we get the same result.

Therefore, in this game, rs < ra for all θ ∈ [−π

4 ,
7
4π). Q.E.D.

In the following, we explain the comparative statics of the number of equilibria

with respect to the correlation coefficient by focusing on Case I, i.e. θ ∈ [3
4π, 7

4π).

For radians (τ1,τ2) = (π, 3
2π) or (3

4π, 7
4π), p(τ1,r)> p(τ2,r) for r > 0. There exists a

τ ∈ (π, 3
2π), p′

θ
(θ,r)< 0 for all θ ∈ (3

4π,τ] and p′
θ
(θ,r)> 0 for all θ ∈ (τ, 7

4π). It could

be that τ R 5
4π. According to the comparison relationship between τ and 5

4π, p(θ,r)

and q(θ,r) have either 1 or 3 intersection points. All possible situations are described

in Figure 3. Given r > 0, the shape of p(θ,r) and q(θ,r) and intersections between

p(θ,r) and q(θ,r) are determined by M, D and the prior distribution (see Figure 3).

It is found that for all θ ∈ [π, 5
4π), ∂q(θ,r)

∂r < ∂p(θ,r)
∂r < 0 and for all θ ∈ (5

4π, 3
2π],

∂p(θ,r)
∂r < ∂q(θ,r)

∂r < 0. For all θ ∈ [3
4π,π), ∂p(θ,r)

∂r > ∂q(θ,r)
∂r , 0 > ∂p(π,r)

∂r > ∂q(π,r)
∂r and

∂p( 3
4 π,r)
∂r > 0 >

∂q( 3
4 π,r)
∂r . For all θ ∈ [3

2π, 7
4π), ∂q(θ,r)

∂r > ∂p(θ,r)
∂r , 0 >

∂q( 3
2 π,r)
∂r >

∂p( 3
2 π,r)
∂r

and ∂q( 7
4 π,r)
∂r > 0 >

∂p( 7
4 π,r)
∂r . Besides, for all θ ∈ (3

4π,π), ∂2 p(θ,r)
∂r∂θ

< ∂2q(θ,r)
∂r∂θ

< 0, and for

all θ ∈ (3
2π, 7

4π), ∂2q(θ,r)
∂r∂θ

< ∂2 p(θ,r)
∂r∂θ

< 0. Therefore, given θ ∈ [3
4π, 5

4π), as r increases,

q(θ,r) always decreases and it decreases relatively faster than p(θ,r). In addition,

given θ ∈ [5
4π, 7

4π), as r increases, p(θ,r) always decreases and it decreases relatively

faster than q(θ,r).
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τ > 5
4π τ = 5

4π τ < 5
4π

Figure 3: Given r > 0, p(τ1,r)> p(τ2,r), where (τ1,τ2) = (π, 3
2π) or (3

4π, 7
4π).

According to the comparison between τ ∈ (π, 3
2π) and 5

4π, we obtain three situations

describing the relationship between p(θ,r) and q(θ,r). The relationship is

determined by M, D and the prior distribution. Because a Bayesian Nash equilibrium

always exists, we can always find a suitable radius r to locate at least one intersection

point on the line y = D
D−M . This intersection point is hence an equilibrium according

to equation group (2.7).

Because a symmetric equilibrium always exists, given M, D and the prior, we can

always find an r = rs to make (5
4π,rs) satisfy equation group (2.5). As r increases away

from rs, for cases of τ ≥ 5
4π, |p(θ,r)− q(θ,r)| will increase given θ ∈ [3

4π, 5
4π) and

θ ∈ (5
4π, 7

4π). Therefore, for τ ≥ 5
4π, new intersection points will not appear between

p(θ,r) and q(θ,r) for r > rs. Hence, in these cases, except the symmetric equilibrium,

it is impossible to obtain additional equilibrium. Therefore, for cases of τ≥ 5
4π, there

is a unique equilibrium (5
4π,rs).

For the case of τ < 5
4π, there are three intersection points. As r increases away

from rs, because given θ ∈ [3
4π, 5

4π), q(θ,r) decreases relatively faster than p(θ,r), the

left intersection point decreases vertically and moves towards 5
4π horizontally. Figure

4 illustrates how the left (and the right) intersection point moves towards the middle

intersection point.

In Figure 4, given r > 0, at θ = c, p(c,r) = q(c,r). For all θ ∈ (3
4π,c), p(θ,r) >

q(θ,r) and for all θ ∈ (c, 5
4π), q(θ,r) > p(θ,r). Given θ, as r increases to r′, at

θ = c, p(θ,r′) > q(θ,r′) because q(θ,r) decreases relatively faster than p(θ,r) given

θ. For all θ ∈ (3
4π,c), p(θ,r′)> q(θ,r′). Therefore, for the new left intersection point

(c′,q(c′,r′)) where q(c′,r′) = p(c′,r′), c < c′ < 5
4π. Because for all θ ∈ (3

4π, 5
4π),

∂q(θ,r)
∂r < 0, q(c′,r′) < q(c′,r). Therefore, as r increases, the left intersection point
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Figure 4: An illustration of how intersection points (c,r) and (d,r) move towards

the middle intersection point as r increases for τ < 5
4π. (τ1,τ2) = (π, 3

2π) or (3
4π, 7

4π),

and p(τ1,r)> p(τ2,r).

(c,r) moves towards 5
4π horizontally and downward vertically. Thus, the aggregate

movement as r increases is towards the middle intersection point. Symmetrically, the

right intersection point (d,r), where d ∈ (5
4π, 7

4π), moves towards 5
4π horizontally and

downward vertically. The aggregate movement is therefore still toward the middle in-

tersection point as r increases.

From Lemma 1, it is known that ra > rs. For the case of τ < 5
4π, at r = rs, the

two outer intersection points are denoted by (θs
1,rs) and (θs

2,rs), where θs
1 <

5
4π < θs

2.

p(θs
1,rs) = p(θs

2,rs) >
D

D−M . In addition, it is known that as r increases, the middle

intersection point moves downward because ∂p( 5
4 π,r)
∂r =

∂q( 5
4 π,r)
∂r < 0, and the two outer

intersection points moves towards the middle intersection point. Thus, as r increases

away from rs, finally the two outer intersection points will be below y = D
D−M , i.e. for

new intersection points (θ′1,r
′) and (θ′2,r

′), p(θ′1,r
′) = p(θ′2,r

′)< D
D−M , where r′ > rs

and θ′1 < 5
4π < θ′2. Therefore, there exists a unique value ra > 0 such that at r = ra,

the two outer intersection points locate on y = D
D−M , i.e. p(θ,ra) = q(θ,ra) =

D
D−M ,

where θ ∈ {θ1,θ2}. Hence, in this situation, given M, D and the prior distribution,

we get asymmetric equilibria (θ1,ra) and (θ2,ra), and symmetric equilibrium (5
4π,rs).

Therefore, for the case of τ < 5
4π, there are three equilibria.
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According to the above analysis, for θ ∈ [3
4π, 7

4π), if τ ≥ 5
4π, there is a unique

equilibrium, and if τ < 5
4π, there are three equilibria. Following the same analysis

approach, we find that for θ ∈ (−π

4 ,
3
4π), if τ, which now is the global maximum of

p(θ,r), is greater than or equal to π

4 , there is a unique equilibrium. If τ < π

4 , there are

three equilibria (see Appendix). It is found that for τ > 5
4π or τ > π

4 , the symmetric

equilibrium is unstable. For τ = 5
4π or τ = π

4 , the stability of the symmetric equilibrium

is not determined. For τ < 5
4π or τ < π

4 , the symmetric equilibrium is stable, because

the inequalities τ R 5
4π or τ R π

4 can be equivalently transformed into the inequalities

g′(s)Q−1. Therefore, we can differentiate the unique-equilibrium and three-equilibria

situations according to the stability of the symmetric equilibrium.

It has been known that for ρ ∈ (−1, ρ̂], the game is dominance solvable, and hence,

the symmetric equilibrium is stable. Therefore, given other parameters, as ρ increases

from -1 to ρ̃, the comparative statics of the stability of the symmetric equilibrium per-

forms in the following sequence: stable → not determined (→ unstable). The game

can have a unique equilibrium for all ρ ∈ (−1, ρ̃] and, hence, in this situation, the

symmetric equilibrium cannot be unstable. Therefore, we place a parenthesis at the

unstable part of the sequence.

It is found that there exists a unique ρ = ρ̄, where the stability of (s,s) is not deter-

mined. ρ̄ could be greater than ρ̃, or smaller than or equal to ρ̃. If and only if ρ̄ ≤ ρ̃,

the solution (s,s) of the equation group g(x∗) and g∗(x) at ρ = ρ̄ can be regarded as an

equilibrium. If ρ̄ < ρ̃, then for all ρ ∈ (ρ̄, ρ̃], the game has three equilibria. Therefore,

if the game can exhibit multiple equilibria, i.e. ρ̄ < ρ̃, as ρ increases from -1 to ρ̃,

the number of equilibria changes from one to three. Otherwise, the game has a unique

equilibrium for all ρ ∈ (−1, ρ̃].

The analytical expression of ρ̄ depends on the sign of M + D. Specifically, if

M+D > 0, then ρ̄ is a unique solution of the following equation:

Φ(−

√
ln
(M−D)2(1+ ρ̄)

2πς2(1− ρ̄)
) =

D−
√

ς2(1+ρ̄)
(1−ρ̄) ln (M−D)2(1+ρ̄)

2πς2(1−ρ̄)

D−M

where ρ̄ > ρ̂. If M+D < 0, then ρ̄ is the unique solution of the following equation:
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Φ(

√
ln
(M−D)2(1+ ρ̄)

2πς2(1− ρ̄)
) =

D+
√

ς2(1+ρ̄)
(1−ρ̄) ln (M−D)2(1+ρ̄)

2πς2(1−ρ̄)

D−M

where ρ̄ > ρ̂. If M+D = 0, then ρ̄ = ρ̂.

By summarizing the analysis of both cases of θ ∈ [3
4π, 7

4π) and θ ∈ [−π

4 ,
3
4π), we

obtain the comparative statics of the number of equilibria with respect to ρ and the

stability of equilibrium. It is given by the following theorem.

Theorem 1 (Comparative Statics of the Number of Equilibria with respect to ρ

and Stability of Equilibrium in the Strategic Substitutes Game): For a static 2×2

entry game, suppose M > D and ς = ς∗. If ρ̄≥ ρ̃, then for all ρ∈ (−1, ρ̃], the game has

a unique equilibrium. Conversely, if for all ρ ∈ (−1, ρ̃], the game has a unique equilib-

rium, then ρ̄≥ ρ̃. The equilibrium is stable, except the situation that for M+D 6= 0, at

ρ = ρ̄ = ρ̃, its stability is not determined.

If ρ̄ < ρ̃, then for all ρ ∈ (−1, ρ̄), there exists a unique equilibrium. This equilib-

rium is symmetric and stable. If and only if M+D = 0, it is (0,0).

At ρ = ρ̄, there exists a unique symmetric equilibrium. If M +D = 0, it is (0,0)

and is stable. If M+D 6= 0, it is not (0,0) and its stability is not determined.

For all ρ ∈ (ρ̄, ρ̃], there exist three equilibria. The symmetric equilibrium is un-

stable. If and only if M +D = 0, it is (0,0). The stability of asymmetric equilibrium

depends on particular parameter specification.

Proof: see Appendix. �

The equilibria can be described as solutions of a system of both players’ best re-

sponse functions g(x∗) and g∗(x). As ρ→ 1, the limit of g(x∗) is given by 10

10The game at ρ→ 1 does not coincide with the game at ρ = 1. The game at ρ→ 1 is exhibited
in the following part in the main context of this chapter. For games at ρ = 1, ε = ε∗ and both players
are affected by a common payoff shock which is not known ex ante. However, if it is obtained, the
two players play a complete information game. For ε ∈ (−M,−D), there are three equilibria: (1,0),
(0,1) and a mixed strategy (− D+ε

M−D ,−
D+ε

M−D ), which is the probability of choosing action 0. Given
the cutoff strategy equilibria of games at ρ→ 1, for ε ∈ (−M,−D), the cutoff strategy equilibrium
(−M,−D) implies the action strategy (1,0). Cutoff strategy equilibrium (−D,−M) implies the ac-
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g(x∗) =


−D x∗ <−M+D

2

−M+D
2 x∗ =−M+D

2

−M x∗ >−M+D
2

Because the game is symmetric, g(x∗) and g∗(x) are symmetrically located around

the 45◦ line. The solutions of the equation system of g(x∗) and g∗(x) are the intersec-

tion points of the two functions. It is found that there are three solutions at ρ→ 1.

They are (−M,−D), (−D,−M) and (−M+D
2 ,−M+D

2 ). Figure 5 shows how these re-

sults arise.

Now we intuitively analyze the formation of the best response function. The aver-

age known payoff of entry is M+D
2 . Therefore, if a firm wants to choose entry, from an

ex ante perspective, at least it should obtain a payoff shock ε=−M+D
2 .11 As ρ→ 1, the

player is almost sure that the opponent gets the same payoff shock as theirs. Therefore,

if player i gets a payoff shock ε =−M+D
2 such that they are indifferent to being active

or inactive, then as ρ→ 1, player i can almost surely expect the opponent i∗ to get the

same shock ε∗ =−M+D
2 . Because i and i∗ are identically specified, at ε∗ =−M+D

2 , i∗

is also indifferent to being active or inactive. Therefore, if the opponent’s strategy x∗

is given by −M+D
2 , a player’s best response will be −M+D

2 as well.

If the opponent’s strategy x∗ < −M+D
2 , it implies that even if a payoff shock ε∗,

where ε∗ > x∗, is smaller than −M+D
2 , which is the average payoff shock that makes

i∗ indifferent to being active or inactive, i∗ will still be expected to choose entry.12

Therefore, from an ex ante perspective, player i∗ becomes more likely to choose entry

if x∗ <−M+D
2 . Given such expectation, player i is more likely to get duopoly profit D

if the player chooses entry, and hence, from an ex ante perspective, if i’s payoff shock

tion strategy (0,1), and the cutoff strategy equilibrium (−M+D
2 ,−M+D

2 ) implies the action strategy

(
∫ −M+D

2
−M

1
ς
φ( ε

ς
)dε,

∫ −M+D
2

−M
1
ς
φ( ε

ς
)dε), which is the unconditional choice probability of choosing action 0

and is independent from the ex post realization of ε. This choice probability is not equal to the mixed
strategy equilibrium of the game at ρ = 1. Therefore, the incomplete information game at ρ→ 1 does
not coincide with the game at ρ = 1. g(x∗) is continuous with respect to ρ ∈ (−1,1). Therefore, in this
section, the natural benchmark to compare the number of equilibria for games with ρ ∈ (−1, ρ̃] is the
game at ρ→ 1. φ(.) is the density function of the standard normal distribution.

11Ex ante in this chapter means before the payoff shocks are drawn.
12We call −M+D

2 the average payoff shock that makes i∗ indifferent to their action choices because it
corresponds to the average known payoff of entry M+D

2
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0 x*

g(x*)

-M

-D

-(M+D)/2

-(M+D)/2-M -D

Figure 5: The solid curve (the two horizontal lines and the point in the middle)

represents g(x∗) at ρ→ 1 and the dashed curve (the two vertical dashed lines and the

point in the middle. The point coincides with the one for g(x∗) at ρ→ 1) represents

g∗(x) at ρ→ 1. The dashed-dot line represent the 45◦ line. Because the game is

symmetric, g(x∗) and g∗(x) are symmetrically located around the 45◦ line. By drawing

a graph of g(x∗) and g∗(x), there are always three intersection points, which are

solutions of the equation system of g(x∗) and g∗(x).

ε≥−D, player i will choose entry. Therefore, if i∗’s strategy x∗ <−M+D
2 , then i’s best

response entry threshold g(x∗) =−D.

If the opponent’s strategy x∗ > −M+D
2 , it implies that even if a payoff shock ε∗,

where ε∗ < x∗, is greater than −M+D
2 , which is the average payoff shock that makes i∗

indifferent to being active or inactive, i∗ will still be expected to choose being inactive.

Therefore, from an ex ante perspective, i∗ becomes more likely to choose being inac-

tive if x∗ >−M+D
2 . Given such expectation, i is more likely to get monopoly profit M

if the player chooses entry, and hence, from an ex ante perspective, if i’s payoff shock

ε ≥ −M, player i will choose entry. Therefore, if i∗’s strategy x∗ > −M+D
2 , then i’s

best response entry threshold g(x∗) =−M.

The intuition of the cutoff strategy equilibrium for the game at ρ→ 1 is as follows.

If a player expects the opponent to choose entry, then the player will get payoff D

if they also choose entry. Thus, the player will adopt a cutoff strategy −D at which
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they are indifferent to being active or inactive. In this game, M > D, so −M < −D.

Therefore, as the best response, the opponent will adopt a strategy −M at which the

opponent is indifferent to the two action choices.

Otherwise, if a player expects the opponent to choose being inactive, the player

will get payoff M if they choose to enter. Thus, the player will adopt a cutoff strategy

−M at which they are indifferent to being active or inactive. In this game, −M <−D,

and therefore, as the best response, the opponent will adopt a strategy −D at which

the opponent is indifferent to the two action choices. Therefore, we have the equilibria

(−M,−D) and (−D,−M).

If a player expects that the opponent is ex ante indifferent to the two action choices,

then i thinks that i∗ must adopt an entry threshold −M+D
2 such that the total average

payoff of entry (M+D
2 + ε∗) equals 0. As the best response, player i adopts a cutoff

strategy−M+D
2 . Symmetrically, the opponent will think in the same way and adopt the

same strategy. Therefore, we have the equilibrium (−M+D
2 ,−M+D

2 ).

For games with ρ≤ ρ̃, if given other parameters, at ρ = ρ̃, the uncertainty between

each other’s private information is low such that f (ε∗|ε) can approximately reflect ε∗

given ε, then like the situation of ρ→ 1, where player i can perfectly predict ε∗ given ε,

asymmetric equilibria arise. The reason is as follows. In a strategic substitutes game,

players always tend to mismatch their action strategies. At ρ = ρ̃ > 0, if f (ε∗|ε) can

approximately reflect ε∗ given ε, then players can obtain enough information to assist

them to mismatch their action strategies and similar to the ρ→ 1 situation, players

can show explicit preferences to each action. However, due to the uncertainty between

players’ private information, the preference to each action is not deterministic. There-

fore, in this situation, we can obtain two equilibria. In each equilibrium, one player is

more probable to choose entry, and the other player is more probable to choose being

inactive. If we translate the representation of these action strategy equilibria into the

representation of the cutoff strategy equilibrium, the translated cutoff strategy equilib-

ria should be close to (−M,−D) and (−D,−M), respectively.

In the case of ρ→ 1, where players can perfectly predict the other player’s private

information, it is possible that players are ex ante expected to be indifferent to being

active or inactive and this situation is captured by the symmetric equilibrium. At ρ= ρ̃,
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the uncertainty between players’ private information can make a player more uncertain

about the other player’s propensity of action choice, hence making the indifference sit-

uation more reasonable to exist. Symmetrically, the opponent will think and behave

in the same way. Thus, this situation is again captured by a symmetric equilibrium.

Therefore, at ρ = ρ̃, if f (ε∗|ε) can approximately reflect ε∗ given ε, the game has three

equilibria.

However, if other parameters are given, at ρ = ρ̃, the uncertainty between each

other’s private information is high and f (ε∗|ε) imprecisely reflects ε∗ given ε, it can

be expected that only a symmetric equilibrium exists. Because f (ε∗|ε) is imprecise to

reflect ε∗ given ε and hence each player does not have enough information to assist

them to mismatch each other’s action strategies; therefore, an asymmetric equilibrium

cannot exist. Still, because the uncertainty between players’ private information is

high such that f (ε∗|ε) imprecisely reflects ε∗ given ε, each player has an unclear ex-

pectation of the opponent’s propensity of action choice.13 Conditional on this unclear

expectation, a player accordingly chooses a strategy as the best response. Symmetri-

cally, the opponent will think in the same way and adopt the same strategy. Therefore,

only the symmetric equilibrium can exist in this situation. The intuition of the games

with M > D at ρ = ρ̃ as discussed above applies to games for all ρ∈ (ρ̄, ρ̃] with M > D.

Similarly, irrespective of whether there are 3 equilibria or a unique equilibrium at

ρ ∈ (ρ̄, ρ̃], for ρ taking values that are far away from 1 and -1, or specifically for all

ρ ∈ (ρ̂, ρ̄], the correlation between ε and ε∗ is much lower and hence the uncertainty

between players’ private information reasonably becomes much higher. Therefore, it

can be expected that f (ε∗|ε) imprecisely reflects ε∗ given ε. In this situation, follow-

ing the same intuition in the last paragraph, only a symmetric equilibrium can exist.

In addition, as we have discussed in Section 2.3, for ρ ∈ (−1, ρ̂], it is certain that the

best response functions are contraction functions and hence the game exhibits a unique

equilibrium. In this situation, as indicated by inequality (2.5), player i’s expected pay-

off of entry is more sensitive to his own strategy than to his opponent’s strategy. It

means player i is more self-focused and the opponent’s private information is less im-

portant in player i’s decision making, no matter whether f (ε∗|ε) can approximately

or imprecisely reflect i∗’s private information given ε. Therefore, in this situation, the
13An unclear expectation of the opponent’s propensity of action choice implies that before the payoff

shocks are drawn, player i is not sure whether i∗ is more likely to choose being active or being inactive,
or more likely to be indifferent to the two action choices.
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game is close to an individual decision problem, and hence there exists a unique equi-

librium.

Therefore, all of above discussions explain why for all ρ ∈ (−1, ρ̃], the game can

contain a unique equilibrium, or if there are multiple equilibria for some ρ∈ (−1, ρ̃], as

ρ decreases from ρ̃ to−1, the number of equilibria will change from 3 to 1. All of these

results are due to the uncertainty between players’ private information. Hence, ρ̄ is a

threshold such that for ρ > ρ̄, the uncertainty between players’ private information is

low, and hence f (ε∗|ε) can approximately reflect ε∗ given ε and both players can obtain

enough information to mismatch their action strategies. For ρ̂ < ρ≤ ρ̄, the uncertainty

between each other’s private information is high such that f (ε∗|ε) imprecisely reflects

ε∗ given ε, and both players have an unclear expectation of the opponent’s propensity

of action choice.

Finally, we provide two numerical examples to conclude this section. They exhibit

how the number of equilibrium changes with respect to different parameter specifica-

tions (see Figures 6 and 7).
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Figure 6: An example of unique equilibrium. The solid curve represents a player’s

best response function, and the dashed curve represents the opponent’s best response

function. In this case, M = 1.6, D = 0.3, ς = ς∗ = 1 and ρ = 0.3.
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Figure 7: An example of multiple equilibria. The solid curve represents a player’s

best response function, and the dashed curve represents the opponent’s best response

function. In this case, M = 1.6, D = 0.3, ς = ς∗ = 1 and ρ = 0.7.

2.6 Comparative Statics of Symmetric Equilibrium Strate-

gies

In this game, a symmetric equilibrium always exists and is unique. Hence, for tech-

nical convenience, it is natural to adopt the symmetric equilibrium for comparative

statics analysis. Assume that players only play the symmetric equilibrium no matter

how parameters change. The comparative statics of exogenous parameters on the sym-

metric equilibrium strategies is given by the following proposition.

Proposition 3: Assume M > D and ς = ς∗. Denote a symmetric equilibrium of the

game by (s,s) where −M < s < −D. It is found that ∂s
∂M < 0 and ∂s

∂D < 0. If s ≤ (or

>) 0, ∂s
∂ρ
≤ (or >) 0 and ∂s

∂ς2 +
∂s

∂ς∗2
≤ (or >) 0, where the equalities are taken when s= 0.

Proof : see Appendix. �

We are interested in the intuition underlying the results in Proposition 3. We begin

from analyzing how a player’s best response changes as exogenous parameters change

given the opponent’s strategy. First, to emphasize the dependence on some parame-

ter ζ, we write h(x∗,x;ζ) := EΠ(x∗,x), where x is the best response towards x∗ and
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h(x∗,x;ζ) = 0. Therefore, according to implicit function theorem, we obtain,

x′(ζ;x∗) =−
h′

ζ
(x∗,x;ζ)

h′x(x∗,x;ζ)

where x′(ζ;x∗) := ∂x(x∗)
∂ζ

. For the jointly changing ς and ς∗ case, x′(ς,ς∗;x∗) =
∂x(x∗)

∂ς
+ ∂x(x∗)

∂ς∗ , and correspondingly, h′
ζ={ς,ς∗}(x

∗,x;ς,ς∗)= h′ς(x
∗,x;ς,ς∗)+h′

ς∗(x
∗,x;ς,ς∗).

For ρ≤ ρ̃, ∂EΠ(x∗,ε)
∂ε

= σ′ε(x
∗,ε)(M−D)+D+1 > 0, hence h′x(x

∗,x;θ)> 0. Therefore,

the sign of x′(ζ;x∗) is opposite to the sign of h′
ζ
(x∗,x;ζ).

For parameters M and D, h′M(x∗,x;M)=σ(x∗,x)> 0 and h′D(x
∗,x;D)= 1−σ(x∗,x)>

0. Thus, x′(M;x∗) < 0 and x′(D;x∗) < 0. Hence, given x∗, an increase in the profit

of entry will make a firm deviate to a lower threshold. Therefore, if both firms are

playing symmetric equilibrium (s,s), they will ultimately deviate to a lower equi-

librium strategy s′ < s after an increase in the profit of entry. Hence, by increas-

ing M or D, players become more likely to choose entry in the new equilibrium, i.e.∫ +∞

s′
1
ς
φ( ε

ς
)dε >

∫ +∞

s
1
ς
φ( ε

ς
)dε, where 1

ς
φ( ε

ς
) is the density function of the type distribu-

tion ε∼ N(0,ς2).

We write σ(x∗,x;ρ) = Φ(
x∗
ς∗−ρ

x
ς√

1−ρ2
). Because ς = ς∗,

σ
′
ρ(x
∗,x;ρ) =−

ρ( x
ρ
− x∗)

ς(1−ρ2)
3
2

φ(
x∗−ρx

ς
√

1−ρ2
)

and h′ρ(x
∗,x;ρ) = σ′ρ(x

∗,x;ρ)(M−D). A marginal increase of ρ is to lower the

mean ρx if x < 0 and raise it if x > 0, and thus increasing the variance if ρ < 0 and

decreasing the variance if ρ > 0.

Suppose x < 0. If x∗ > x
ρ

for ρ > 0, or x∗ < x
ρ

for ρ < 0, the dominating effect of

increasing ρ is the effect from the conditional mean ρx of the opponent’s type distri-

bution (See Figures 8 and 9). Intuitively, as the conditional mean decreases, it means

that, from one firm’s perspective, the opponent’s payoff shock on average will become

lower. Hence, it is more likely that the opponent chooses inactivity. Therefore, the

belief σ(x∗,x;ρ) increases, and correspondingly x′(ρ;x∗)< 0.



2.6. Comparative Statics of Symmetric Equilibrium Strategies 43

Figure 8: Suppose x < 0 and ρ > 0. If x∗ > x
ρ

, the dominant effect by increasing ρ

on the belief σ(x∗,x) is from the mean ρx. Supposing ρ is increased to ρ′, the mean

of the conditional distribution ρx decreases and the variance ς2(1−ρ2) decreases as

well. Without loss of generality, this figure shows that as long as x∗ is fixed, the new

belief of choosing inactivity by the opponent (the area under the grey curve and on the

left-hand side (LHS) of ε∗ = x∗) must be higher than the original belief of choosing

inactivity by the opponent (the area under the black curve and on the LHS of ε∗ = x∗).

Both curves represent the conditional density functions of the opponent’s type.

For symmetric equilibrium (s,s), where s < 0, it must satisfy s > s
ρ

for ρ > 0 or

s < s
ρ

for ρ < 0. Hence, given the opponent’s strategy, an increase in ρ will make

a firm deviate to a lower strategy. Consequently, it is reasonable to expect that the

new symmetric equilibrium threshold s′ must be lower than s. Therefore, in the new

equilibrium, players will become more likely to choose entry, i.e.
∫ +∞

s′
1
ς
φ( ε

ς
)dε >∫ +∞

s
1
ς
φ( ε

ς
)dε.

Suppose x > 0. If x∗ < x
ρ

for ρ > 0 or x∗ > x
ρ

for ρ < 0, the dominating effect of

increasing ρ is still from the conditional mean ρx of the opponent’s type distribution

(see Figures 10 and 11). Intuitively, since the conditional mean increases, from one

firm’s perspective, the opponent’s average payoff shock will increase, and hence, it is

more likely that the opponent chooses entry. Therefore, the belief σ(x∗,x;ρ) decreases,

and consequently x′(ρ;x∗)> 0.
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Figure 9: Suppose x < 0 and ρ < 0. If x∗ < x
ρ

, the dominant effect by increasing ρ

on the belief σ(x∗,x) is from the mean ρx. Supposing ρ is increased to ρ′, the mean

of the conditional distribution of the opponent’s type ρx decreases and the variance

ς2(1−ρ2) increases. Without loss of generality, this figure shows that as long as x∗ is

fixed, the new belief of choosing inactivity by the opponent (the area under the grey

curve and on the LHS of ε∗ = x∗) must be higher than the original belief of choosing

inactivity by the opponent (the area under the black curve and on the LHS of ε∗ = x∗).

Both curves represent the conditional density function of the opponent’s type.

For symmetric equilibrium (s,s), where s > 0, it must satisfy s < s
ρ

for ρ > 0 or

s > s
ρ

for ρ < 0. Hence, given the opponent’s strategy, an increase in ρ will make the

opponent deviate to a higher strategy. Consequently, the new equilibrium threshold s′

must be higher than s. Therefore, players will become more likely to choose inactivity

in the new equilibrium, i.e.
∫ s′
−∞

1
ς
φ( ε

ς
)dε >

∫ s
−∞

1
ς
φ( ε

ς
)dε.

Finally, for symmetric equilibrium (s,s), if s = 0, then the conditional mean ρs

equals 0. Irrespective of how ρ changes, the belief always keeps 1
2 , and therefore, in

this case, the symmetric equilibrium is always (0,0).

Hence, in conclusion, if a firm’s original equilibrium strategy s < 0, then by in-

creasing ρ, the new equilibrium strategy s′ < s < 0, while if a firm’s original equilib-

rium strategy s > 0, then by increasing ρ, the new equilibrium strategy s′ > s > 0.
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Figure 10: Suppose x > 0 and ρ > 0. If x∗ < x
ρ

, the dominant effect by increasing ρ on

the belief σ(x∗,x) is from the mean ρx. Supposing ρ is increased to ρ′, the mean of the

conditional distribution of opponent’s type ρx increases and the variance ς2(1−ρ2)

decreases. Without loss of generality, this figure shows that as long as x∗ is fixed, the

new belief of choosing entry by the opponent (the area under the grey curve and on

the RHS of ε∗ = x∗) must be higher than the original belief of choosing entry by the

opponent (the area under the black curve and on the RHS of ε∗ = x∗). Both curves

represent the conditional density functions of the opponent’s type.

We now turn to the effect of jointly changing ς and ς∗. Because ς = ς∗,

σ
′
ς(x
∗,x;ς,ς∗)+σ

′
ς∗(x

∗,x;ς,ς∗) =−φ(
x∗−ρx

ς
√

1−ρ2
)

x∗−ρx

ς2
√

1−ρ2

and h′ς(x
∗,x;ς,ς∗)+h′

ς∗(x
∗,x;ς,ς∗)= [σ′ς(x

∗,x;ς,ς∗)+σ′
ς∗(x

∗,x;ς,ς∗)](M−D). Ap-

parently, jointly changing ς and ς∗ only affects the variance ς2(1−ρ2) of the condi-

tional density function of the opponent’s type. A marginal joint increase of ς and ς∗

is to increase the variance ς2(1−ρ2), or vice versa, irrespective of whether ρ ≷ 0 or

x ≷ 0 (see Figure 12). Intuitively, suppose x∗ < ρx. Since the direct consequence

of jointly increasing variances is to make the opponent’s conditional type distribu-

tion assign higher likelihood on low and high payoff shocks, given a low opponent’s

strategy x∗ < ρx, the belief that the opponent chooses inactivity increases, and hence

x′(ς∗,ς;x∗) < 0. However, if x∗ > ρx, since high payoff shocks have been assigned
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Figure 11: Suppose x > 0 and ρ < 0. If x∗ > x
ρ

, the dominant effect by increasing ρ

on the belief σ(x∗,x) is from the mean ρx. Supposing ρ is increased to ρ′, the mean

of the conditional distribution of the opponent’s type ρx increases and the variance

ς2(1−ρ2) increases as well. Without loss of generality, this figure shows that as long

as x∗ is fixed, the new belief of choosing entry by the opponent (the area under the grey

curve and on the RHS of ε∗ = x∗) must be higher than the original belief of choosing

entry by the opponent (the area under the black curve and on the RHS of ε∗ = x∗).

Both curves represent the conditional density functions of the opponent’s type.

with higher likelihood as well after ς and ς∗ are jointly increased, the belief that the

opponent chooses entry must increase, and thus x′(ς∗,ς;x∗)> 0.

For symmetric equilibrium (s,s), if s < 0, then irrespective of whether ρ ≷ 0, we

always have s < ρs. Therefore, given the opponent’s strategy, a joint increase in ς

and ς∗ will make a firm deviate to a lower strategy. Consequently, the new equilib-

rium threshold s′ must be lower than s. Therefore, players will become more likely to

choose entry in the new equilibrium, i.e.
∫ +∞

s′
1
ς
φ( ε

ς
)dε >

∫ +∞

s
1
ς
φ( ε

ς
)dε.

While for symmetric equilibrium (s,s), if s > 0, then irrespective of whether ρ≷ 0,

we always have s > ρs. Therefore, given the opponent’s strategy, a joint increase in ς

and ς∗ will make a firm deviate to a higher strategy. Consequently, the new symmetric

equilibrium threshold s′ must be higher than s. Therefore, players will become more

likely to choose inactivity in the equilibrium, i.e.
∫ s′
−∞

1
ς
φ( ε

ς
)dε >

∫ s
−∞

1
ς
φ( ε

ς
)dε.
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Figure 12: Given that ς = ς∗. If the standard deviations ς and ς∗ are jointly

increased, the variance of the conditional distribution of the opponent’s type will

increase. The grey curve represents the new conditional density function after ς and ς∗

are jointly increased, while the black curve represents the original conditional density

function. Therefore, by jointly increasing ς and ς∗, if x∗ < ρx, the belief that the

opponent chooses inactivity increases, while if x∗ > ρx, the belief that the opponent

chooses entry increases.

Finally, for symmetric equilibrium (s,s) = (0,0), no matter how ς and ς∗ change,

the belief always maintains 1
2 , and hence, the equilibrium strategy does not change.

2.7 Summary

In this section, we present an organized summary of all main results and intuitions of

the game. The game can be summarized by three parameters: ρ̃, ρ̂ and ρ̄. The relation-

ship between these are as follows: ρ̂≤ ρ̄, ρ̂ < ρ̃, and ρ̄ could be smaller than, equal to

or greater than ρ̃.

In Section 2.2, we derive ρ̃. Suppose the game is symmetric. Then, if and only if

ρ≤ ρ̃, the game can be solved by cutoff strategies. The intuition is that if ρ> ρ̃, the ex-

pected payoff EΠ(x∗,ε) is no longer monotonic with respect to ε, and for some x∗ ∈R,
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EΠ(x∗,ε) = 0 has three solutions for ε, and at one of the solutions, ∂EΠ(x∗,ε)
∂ε

< 0;

this contradicts the definition of the cutoff strategy used to solve the game. In fact,

by assuming ς = ς∗, this result can be extended to asymmetric payoff settings, where

each player has different M and D. In this situation, the game can be solved by cutoff

strategies if and only if ρ≤min{ρ̃, ρ̃∗}, where ρ̃∗ =
√

2πς2

2πς2+(M′−D′)2 and M′ and D′ are

player i∗’s known payoffs.

In Section 2.3, we derive ρ̂. For ρ≤ ρ̂, player i’s best response function is a contrac-

tion function. In this symmetric game, ρ ≤ ρ̂ is also the sufficient condition to ensure

that the game is dominance solvable. This condition can be generalized to asymmetric

payoff settings as described above. In this situation, the sufficient condition is gener-

alized to ρ≤min{ρ̂, ρ̂∗}, where ρ̂∗ = 2πς2−(M′−D′)2

2πς2+(M′−D′)2 .

For ρ̄, if ρ̄ < ρ̃, then ρ̄ is the threshold to differentiate low and high uncertainty be-

tween players’ private information. For ρ> ρ̄, the uncertainty between players’ private

information is low, which means the density function f (ε∗|ε) can approximately reflect

ε∗ given ε, and hence, the players can gather enough information to assist them to mis-

match their action strategies. For ρ̂ < ρ ≤ ρ̄, the uncertainty between players’ private

information is high such that f (ε∗|ε) imprecisely reflects ε∗ given ε, and hence, both

players can only have an unclear expectation of the opponent’s propensity of action

choice. If ρ̄≥ ρ̃, then for all ρ ∈ (ρ̂, ρ̃], the uncertainty between players’ private infor-

mation is high, and therefore, there exists only a symmetric equilibrium, reflecting the

fact that they only have an unclear expectation of the opponent’s propensity of action

choice. For ρ ∈ (−1, ρ̂], the best response functions are contraction function. In this

situation, each player is more focused on the knowledge of himself and the opponent’s

information becomes less important in a player’s decision making. This situation is

close to that of an individual decision problem, and hence the game exhibits a unique

equilibrium.

For the intuition of the comparative statics of symmetric equilibrium strategies, if

we increase M or D, the expected payoff of entry increases and it is not surprising that

in the new symmetric equilibrium, both players will adopt a lower entry threshold.

If we increase ρ, then the dominant effect on players’ strategies come from the

mean of the distribution of opponent’s payoff shock given a player’s own private pay-
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off shock. The mean is given by ρs, where s is the entry threshold in the symmetric

equilibrium. If s < 0, increasing ρ will decrease ρs, and hence, a player can expect

that the opponent will get a lower payoff shock on average, and hence, the player will

adopt a lower cutoff strategy as the best response. This best response adjustment pro-

cess continues and, consequently, in the new symmetric equilibrium (s′,s′), s′ < s. In

contrast, if s> 0, then increasing ρ will increase ρs, and hence, a player can expect that

the opponent will get a higher payoff shock on average, which discourages the player

from choosing entry. As this best response dynamics continues, in the consequent new

equilibrium (s′,s′), s′ > s.

If we jointly change ς and ς∗, the impact on players’ strategies come from the vari-

ance of the distribution of the opponent’s payoff shock given a player’s own private

payoff shock. If we jointly increase ς and ς∗, the tails of the opponent’s payoff shocks

distribution given a player’s own payoff shock will increase; hence, the likelihood of

very good payoff shocks or very bad payoff shocks of the opponent increases accord-

ingly. Therefore, if s < 0, then the belief will be mainly influenced by the increasing

likelihood of very bad payoff shocks of the opponent. In this situation, a player can

expect that the opponent becomes less likely to choose entry, which encourages the

player to adopt a lower entry threshold. Therefore, as this best response dynamics con-

tinues, in the consequent new symmetric equilibrium (s′,s′), s′ < s.

In contrast, if s > 0, the belief will be mainly influenced by the increasing likeli-

hood of very good payoff shocks of the opponent. In this situation, a player can expect

that the opponent to become more likely to choose entry, which motivates the player

to adopt a higher entry threshold. Therefore, as this best response dynamics continues

and, consequently, in the new symmetric equilibrium (s′,s′), s′ > s.

2.8 Conclusion

In this chapter, we study how private information correlation affects rational agents’

strategic behaviour by investigating a static 2-player entry game based on Pesendorfer

and Schmidt-Dengler’s (2008) dynamic entry game in their numerical analysis. This

game is symmetric, in which players are identically specified. The private information

is modelled by a joint normal distribution and the correlation coefficient is a natural
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measure of the degree of information correlation. This chapter shows that, after in-

troducing information correlation, there exists a restriction on the value of correlation

coefficient, allowing the use of a cutoff strategy to solve the game. Information cor-

relation can be used to select a unique equilibrium. In this strategic substitutes game,

for certain parameter specification, if the correlation coefficient is less than or equal

to a threshold value, a unique equilibrium (symmetric equilibrium) exists, while if

the correlation coefficient is above the threshold value, three equilibria will arise: one

symmetric equilibrium and two asymmetric equilibria. Alternatively, for the other pa-

rameter specifications, the game exhibits a unique equilibrium for any feasible value

of the correlation coefficient. To understand how parameter changes affect players’

equilibrium behaviour, a comparative statics analysis on the symmetric equilibrium is

conducted. It is found that increasing the monopoly profit or the duopoly profit en-

courages players to enter the market, while increasing the information correlation or

jointly increasing the variances of players’ type distribution will make players more

likely to choose entry if the current equilibrium strategies are negative, and less likely

to choose entry if the current equilibrium strategies are positive.

This chapter is also a technical preparation to analytically solve a 2-player dy-

namic entry game with information correlation. The game studied in this chapter can

be viewed as its static version by specifying a discount factor equal to zero. In the

static game, we have proven that there are at most three equilibria. In Pesendorfer and

Schmidt-Dengler’s (2008) numerical experiment of a 2-player dynamic entry game

with independent private payoff shocks, they find that their game contains at least five

equilibira. To determine the number of equilibria is crucial for identifying and estimat-

ing a game. Characterizing the equilibrium set of the static game is one of the major

contributions of this chapter, which prepares the research of the dynamic game. More-

over, to analytically understand how information correlation affects players’ behaviour

in a dynamic setting, this chapter can throw more light on information correlation’s

role in strategic interactions.
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Chapter 3

Information Correlation in a Strategic

Complements Game and an Extension

of Purification Rationale

In this chapter, we study a 2×2 strategic complements Bayesian entry game with cor-

related private information. The distribution of private information is modelled by a

joint normal distribution. We examine the comparative statics of the model, indicating

how the number of equilibria varies with the correlation coefficient and variances of

the prior distribution. We show that the purification rationale proposed by Harsanyi

(1973) can be extended to games with dependent perturbation errors that follow a nor-

mal distribution if the correlation coefficient is positive for the strategic complements

games or negative for the strategic substitutes games.

3.1 Introduction

This chapter develops a simple model of firm entry with correlated private informa-

tion in a 2-player static strategic complements game. This game is symmetric. In the

game, after observing their respective private payoff shocks, two firms simultaneously

decide whether to enter a market. The private payoff shocks are statistically correlated,

and the correlation coefficient of players’ joint type distribution measures the degree

of information correlation. That is, there are common and idiosyncratic components

of each payoff shock, and each firm only observes its own aggregate shock without

knowing its component. An example of this situation is two firms that produce com-

53
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plementary inputs entering a local market. Each firm expects its private payoff shocks

of entry to be correlated with the other firm’s, because the shocks depend on certain

common factors of the market.

The game is solved by a cutoff strategy, which is defined as if a player’s private

payoff shock is above a threshold value, they choose entry, or vice versa. By solving

the game, we find a critical value of the correlation coefficient. For correlation coeffi-

cients below this critical value, a cutoff strategy cannot be used to solve the game. This

result is determined by the normality of the joint prior distribution and the definition

of the cutoff strategy. The intuition is that if the correlation coefficient is smaller than

this critical value, the expected payoff function is no longer monotonic with respect to

the player’s own strategies, given any strategy of the opponent. For some strategies of

the opponent, there are multiple (three) best responses. One of the three best responses

will make a player choose entry if the payoff shock is below the best response cutoff

value, which contradicts the definition of cutoff strategies.

Under some parameter specifications, the game exhibits a unique equilibrium. Un-

der other parameter specifications, there may exist two or three equilibria and the num-

ber of equilibria changes in the following order as the correlation coefficient increases

from the lowest feasible value to 1: 3→ 2→ 1 or 3→ 1. The intuition is that the

uncertainty between players’ private payoff shocks is measured by the correlation co-

efficient, and the uncertainty between players’ private information determines whether

a player’s conditional density of the opponent’s payoff shocks given the player’s own

payoff shock can approximately or imprecisely reflect the opponent’s private infor-

mation.1 2 If the uncertainty between players’ private payoff shocks is low (high),

then the conditional density function can approximately (imprecisely) reflect the op-

ponent’s private information. If the density function can approximately reflect the

other players’ private information, then players can obtain enough information to help

them match their action strategies, hence leading to multiple equilibria. Otherwise,

players cannot obtain enough information to help them match their action strategies

1As in Chapter 2, the uncertainty between players’ payoff shocks (random variables) indicate that for
two random variables ε and ε∗, the relation ε∗ = aε+b+η holds, where a and b are two real numbers
and η is a random variable that is used to reflect the uncertainty between players’ private information.
Still, we can consider to use the correlation coefficient between the two random variables to measure
the uncertainty between them.

2To understand how the density function can reflect the opponent’s private information given a
player’s own private information, please refer to Section 2.4 of Chapter 2
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and hence the game exhibits a unique equilibrium. In the strategic complements game,

high (low) value of correlation coefficient usually represents high (low) uncertainty

between players’ private information. However, it is also possible that for certain pa-

rameter specifications, the game has a unique equilibrium for all feasible values of the

correlation coefficient. This is because due to the concerned payoff specification, the

two players’ ex ante expectations of the opponent’s behaviour are unique, irrespective

of what payoff shocks will be drawn. Ex ante in this chapter means the expectation is

formed before the payoff shocks are drawn, and hence, the expectation is taken for all

possible values of payoff shocks. Therefore, we call it ex ante expectation. The ex-

pectations are that both players are more likely to choose being inactive, active or not

sure whether the opponent is more likely to choose being inactive or active, or more

likely to be indifferent to either action choice. Accordingly, the game exhibits a unique

equilibrium to echo the respective expectations.3

The equilibrium strategies are represented by the cutoff strategies, which take all

real numbers. The comparative statics of the correlation coefficient or variances of

prior distribution on players’ equilibrium strategies depend on the sign of the equilib-

rium strategy and the stability of the equilibrium.4 For a stable equilibrium, increasing

the payoff of entry will make a player more likely choose entry. If the given equilibrium

cutoff strategies are negative, increasing the information correlation or jointly increas-

ing the variances of the joint prior distribution will make players less likely choose

entry. If the given equilibrium cutoff strategies are positive, increasing information

correlation or jointly increasing the variances of the joint prior distribution will make

players more likely choose entry. If the given equilibrium cutoff strategies equal zero,

changing the information correlation or variances of the joint prior distribution does

not have any impact on the equilibrium strategies. For unstable equilibrium, increas-

ing the payoff of entry will make a player less likely choose entry, which contradicts

3Specifically, if the expectation is that both players are more likely to choose being inactive or that
both players are more likely to choose being active, the expectation is dominant in a player’s decision
making and the uncertainty between players’ private information takes a minor role in his decision
making. However, if the expectation is that players are not sure whether the opponent is more likely
to choose being inactive or active, or more likely to be indifferent to either action choice, only when
the uncertainty between players’ private information is high, the expectation is dominant in a player’s
decision making. These intuitions are established when the best response functions are not contraction
function. If the best response functions are contraction function, each player is more focused on the
knowledge of himself and the opponent’s information becomes less important in a player’s decision
making. This situation is close to that of an individual decision problem, and hence the game exhibits a
unique equilibrium.

4The stability concept adopted in this chapter is Lyapunov stability.



56Chapter 3. Information Correlation in a Strategic Complements Game and an Extension of Purification Rationale

our common sense. Because we use a cutoff strategy to solve the game, if the payoff of

entry increases, then given the opponent’s strategy, a player will more likely choose en-

try. Because the game exhibits positive externalities in payoffs, the opponent will also

be more likely to choose entry as the best response to the player’s change of strategies

more favouring entry. Given this best response dynamics, no strategy will converge

to an equilibrium in which increasing the payoff of entry makes a player less likely to

choose entry. This situation satisfies the Lyapunovian instability of an equilibrium and

hence such an equilibrium is unstable.

In this symmetric game, the variances of players’ prior distribution are assumed to

be identical. There is an equivalence relationship between how the number of equilib-

ria varies with the variances and with the correlation coefficient. We find that under

certain parameter specifications, the game exhibits a unique equilibrium. Under other

parameter specifications, the number of equilibria changes in the following order as

variances increase from the lowest feasible value to +∞: 3→ 2→ 1 or 3→ 1. The

intuition is that the uncertainty of a player’s private payoff shock is determined by

the variance of the player’s prior distribution, and the uncertainty of both players’

private payoff shocks determines whether the conditional density of the opponent’s

payoff shocks given the player’s own payoff shock can approximately or imprecisely

reflect the opponent’s private information.5 If the uncertainty of both players’ private

payoff shocks is low (high), then the conditional density function can approximately

(imprecisely) reflect the opponent’s private information. Still, multiple equilibria arise

when the density function can approximately reflect the opponent’s private informa-

tion given the player’s own private information. Otherwise, the game exhibits a unique

equilibrium when the density function is imprecise to reflect the opponent’s private

information given the player’s own private information. The low (high) value of the

variance usually represents low (high) uncertainty of a player’s private information in

the strategic complements game. However, it is also possible that for certain parameter

specifications, the game has a unique equilibrium for all feasible values of variances.

Similar to the corresponding case for the uncertainty between players’ private infor-

mation, this is also because due to the concerned payoff specification, the two players’

ex ante expectations of the opponent’s behaviour are unique, irrespective of what pay-

off shocks will be drawn, and the expectations are that both players are more likely to

5In this chapter, no matter how the variances change, they are always assumed to be identical. There-
fore, we consider the uncertainty of both players’ private information (payoff shocks).
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choose being inactive, active or not sure whether the opponent is more likely to choose

being inactive or active, or more likely to be indifferent to either action choice.6

The comparative statics of the number of equilibria with respect to variances is also

the necessary and sufficient condition to differentiate unique equilibrium and multiple

equilibria. Morris and Shin (2005) study an identically specified game and provide a

sufficient condition for unique equilibrium. They focus on how introducing strategic

uncertainty can reduce the number of equilibria of a complete information game. The

complete information game is symmetric and strategic complements. They also use

the cutoff strategy defined in this chapter to solve the game. They argue that when

the strategic uncertainty (belief) is sufficiently invariant with respect to all possible

strategies, there is a unique equilibrium. Based on this insight, they obtain a suffi-

cient condition to ensure the game exhibits a unique equilibrium. We find that their

sufficient condition is essentially the necessary and sufficient to ensure that the best

response functions are contraction functions. If both players’ best response functions

are contractions, then the game is dominance solvable and hence there exists a unique

equilibrium. Therefore, we nest Morris and Shin’s (2005) result.

The incomplete information entry game can be viewed as a perturbed game of a

complete information entry game. According to Harsanyi (1973)’s purification ratio-

nale, if the perturbation errors on each player’s payoff are independent, a Bayesian

Nash equilibrium exists that will converge to the mixed strategy equilibrium as pertur-

bation errors tend to zero. In our game, we specify that the variances of the perturbation-

error distribution converge to zero, as the process that uncertainty of perturbed games

vanishes. We find that, for the strategic complements complete information games if

the perturbation errors are negatively correlated, or for the strategic substitutes com-

plete information games if the perturbation errors are positively correlated, there does

not exist a Bayesian game that can be solved by the cutoff strategy as perturbation

errors tend to zero. Hence, Harsanyi’s purification rationale cannot be applied to this

situation. The intuition is that by assuming the variances of both players’ type distri-

butions are identical, for negative information correlation in the strategic complements

6Specifically, if the expectation is that both players are more likely to choose being inactive or that
both players are more likely to choose being active, the expectation is dominant in a player’s decision
making and the uncertainty of the player’s private information takes a minor role in his decision making.
However, if the expectation is that players are not sure whether the opponent is more likely to choose
being inactive or active, or more likely to be indifferent to either action choice, only when the uncertainty
of each player’s private information is high, the expectation is dominant in a player’s decision making.
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game or the positive correlation in the strategic substitutes game, there exists a critical

value of variances, below which the expected payoff function is not monotonic with

respect to a player’s own private payoff shock, and it is possible that given some of the

opponent’s strategies, the player can have multiple (three) best responses; around one

of the best responses, a payoff shock that is below the best response cutoff value can

make the player choose entry, which contradicts the definition of the cutoff strategy.

Therefore, for negative information correlation in the strategic complements game or

positive information correlation in the strategic substitutes game, only if the variances

are above the cutoff value, the game can be solved by cutoff strategies.

However, if the information correlation is positive for the strategic complements

games or negative for the strategic substitutes games, the purification rationale is still

applicable. We find that in these situations, the Bayesian games that are supposed

to converge to the complete information game as the perturbation errors degenerate

to zero exist, and during the process, the pure-strategy Bayesian Nash equilibrium

will converge to the corresponding Nash equilibrium of the underlying complete in-

formation game. Therefore, we extend Harsanyi’s purification rationale to dependent

perturbation-error situations.

The rest of this chapter proceeds as follows. Section 3.2 presents the game. Sec-

tion 3.3 studies the best response function. Section 3.4 studies the comparative statics

of the number of equilibria with respect to the correlation coefficient and the stability

of equilibrium. Section 3.5 studies the comparative statics of equilibrium strategies.

Section 3.6 presents the comparative statics of the number of equilibria with respect

to variances. Section 3.7 explains how purification rationale can be extended to games

with dependent perturbation errors. Section 3.8 summarizes all the main results and

intuitions of the strategic complements game. Section 3.9 concludes this chapter.

3.2 The Game

Consider a 2-player entry game. Each player has two choices, activity or entry (here-

after, 1), or inactivity (hereafter, 0). Each firm makes its own decision after observing

its private payoff shock. Then, both firms implement their decisions, which can be ob-

served by each other. The active firm will enter the market. If both firms are active, a
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coordination will happen between them and the profit D if the opponent chooses to be

active strictly exceeds the profit M if the opponent chooses to be inactive. At the end

of the period, both firms collect their respective payoffs. The inactive firm gets payoff

zero and the active firm obtains the deterministic payoff (D or M) plus its private pay-

off shock. It is assumed that the private payoff shocks are subject to a bivariate normal

distribution (ε,ε∗)∼ N(0,0,ς,ς∗,ρ). In this chapter, we use ‘*’ to denote variables of

the opponent. It is always assumed that ς = ς∗ to ensure that the game is symmetric.

The strategic form of this game is depicted as follows:

Firm i∗

inactive (0) active (1)

i

inactive

(0)

0

0

M+ ε∗

0

Fi
rm active

(1)

0

M+ ε

D+ ε∗

D+ ε

Table 1: The incomplete information entry game where D > M

Firms adopt cutoff strategies: if payoff shock ε is above a threshold value ε̄, a

player chooses to be active, or vice versa. Therefore, the interim belief that the op-

ponent plays out given payoff shock ε is given by σ(x∗,ε) =
∫ x∗
−∞

f (ε∗|ε)dε∗, where

f (ε∗|ε) is the conditional density of ε∗ given ε. σx∗(x∗,ε) is the first-order partial

derivative of σ(x∗,ε) with respect to x∗, and σε(x∗,ε) is the first order partial derivative

of σ(x∗,ε) with respect to ε. It is found that σx∗(x∗,ε)> 0, σε(x∗,ε)< 0 if ρ > 0, and

σε(x∗,ε) > 0 if ρ < 0. σε(x∗,ε) = 0 at ρ = 0. So given a player’s own payoff shock

ε, if the opponent’s cutoff strategy becomes higher, then the belief that the opponent

chooses being inactive will increase. Given the opponent’s strategy, if the correla-

tion coefficient is positive, a high payoff shock of a player indicates that probably the

opponent also gets a high payoff shock; thus, the belief that the opponent chooses be-

ing inactive decreases. Given the opponent’s strategy, if the correlation coefficient is

negative, a high payoff shock of a player indicates that probably the opponent gets a

negative payoff shock; hence, the belief that the opponent chooses being inactive in-

creases. If the correlation coefficient equals 0, a player’s own payoff shock does not

have any impact on their belief of the opponent’s behaviour. Firm i’s expected payoff

of entry can be written as
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EΠ(x∗,ε) = σ(x∗,ε)(M+ ε)+(1−σ(x∗,ε))(D+ ε)

= σ(x∗,ε)M+(1−σ(x∗,ε))D+ ε (3.1)

Equation (3.1) indicates that a player’s expected payoff is composed of two parts:

the payoff induced by strategic uncertainty, σ(x∗,ε)M +(1−σ(x∗,ε))D, and the re-

alised payoff shock, ε. If ρ ≥ 0, given ρ, M, D, ς2 and ς∗2, both parts are non-

decreasing with respect to ε. Intuitively, if both firms’ private payoff shocks are pos-

itively correlated, a high payoff shock ε for one firm would on average imply a high

payoff shock ε∗ for the opponent, which provides an incentive that encourages the

player to be active in the strategic complements game. Therefore, the expected payoff

should be non-decreasing with respect to ε for ρ≥ 0. Thus, for a positively correlated

private information situation, the cutoff strategy can always be applied.

However, if ρ is negative, then given all parameter values, the payoff induced by

strategic uncertainty σ(x∗,ε)M+(1−σ(x∗,ε))D is decreasing with respect to ε. Thus,

whether the expected payoff EΠ(x∗,ε) is monotonically increasing with respect to ε

depends on the trade-off between the payoff induced by strategic uncertainty and by

the realized payoff shock. For negative ρs, if one firm draws a high payoff shock, it can

be expected that its opponent draws a low payoff shock, and hence, it is highly prob-

able that the opponent chooses being inactive, which provides strategic disincentives

for the firm to choose entry in the strategic complements context. It is also known that

ε itself is a part of the payoff and it incentivizes entering. Therefore, whether the firm

will choose to be active essentially depends on the trade-off between the two contrast-

ing effects.

If the correlation between players’ private information is loose, i.e. ρ is slightly

negative, it can be deduced that the positive incentive generated by a high value of

ε dominates its negative impact, and hence, in total, its expected payoff should in-

crease with respect to ε. However, if the correlation coefficient between the players’

private information is tight, i.e. ρ is close to -1, then it can be reasonably expected

that the strategic disincentive induced by the realization of a high value of ε will be

strong, and hence, a high payoff shock does not necessarily bring a high expected pay-

off EΠ(x∗,ε). In fact, it is found that there exists a unique boundary ρ̃ in the strategic
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complements discrete game such that if ρ ≥ ρ̃, given the expected opponent’s cutoff

strategy x∗ ∈ R, the expected payoff EΠ(x∗,ε) is increasing with respect to ε, but if

ρ < ρ̃, the expected payoff is no longer monotonic; it is then certain that for some x∗,

equation EΠ(x∗,ε) = 0 has multiple (three) solutions (best responses) of ε and there

is one solution below which a payoff shock can make a player choose entry, which

contradicts the definition of the cutoff strategy (see Appendix). Therefore, given D, M,

ς2 and ς∗2, a player can legitimately use a cutoff strategy to play the game if and only

if ρ ∈ [ρ̃,1) in the game and ρ̃ =−
√

2πς2

2πς2+(M−D)2 .7 Thus, for each player, there exists

a boundary of ρ and for the value of ρ above the boundary value, a cutoff strategy can

be used to solve the game. Due to the assumption ς = ς∗, the boundary for both players

are the same, i.e. ρ̃ = ρ̃∗, and therefore, this boundary defines the range of ρ for which

a cutoff strategy can be used to solve the game. This result is formally given by the

following proposition:

Proposition 1 (Restriction of Applying a Cutoff Strategy to Solve the Game) :
Suppose D > M and ς∗ = ς. A cutoff strategy can be applied to solve the game if and

only if ρ ∈ [ρ̃,1), where ρ̃ =−
√

2πς2

2πς2+(D−M)2 .

Proof: See Appendix. �

π = 3.14... is the ratio of a circle’s circumference to its diameter. Given ρ ∈ [ρ̃,0)

and an x∗ ∈ R, if EΠ(x∗,ε) increases with respect to ε, it indicates that

∂EΠ(x∗,ε)
∂ε

= σε(x∗,ε)(M−D)+1≥ 0

for all x∗ ∈ R; hence,

1≥ σε(x∗,ε)(D−M)

Because σε(x∗,ε) =−ρ f (x∗|ε) (see Appendix A), the above inequality can be writ-

ten as

1≥−ρ f (x∗|ε)(D−M)

and hence

7For the opponent, ρ̃∗ =−
√

2πς∗2

2πς∗2+(M−D)2 .
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f (x∗|ε)≤ 1
−ρ(D−M)

(3.2)

As ς increases, the variance of the distribution f (.|ε), which equals ς2(1−ρ2), in-

creases, and hence the density function flattens.8 Particularly, the maximum value of

f (x∗|ε), which equals 1√
2π(1−ρ2)ς

and is taken at the mean x∗ = ρε, decreases. Hence,

(3.2) is easier to be satisfied and it is more certain that at the given value of ρ, EΠ(x∗,ε)

increases with respect to ε for all x∗ ∈ R. Therefore, the range of ρ that makes the

expected payoff increase with respect to ε should be broadened as ς increases, and ac-

cordingly, ρ̃ decreases.

If D−M decreases, the RHS of (3.2) increases. Hence, (3.2) is easier to be satis-

fied, and it is more certain that at the given value of ρ, EΠ(x∗,ε) increases with respect

to ε for all x∗ ∈ R. Therefore, the range of ρ that makes the expected payoff of entry

increase with respect to ε should be broadened as D−M decreases, and accordingly, ρ̃

decreases.

3.3 The Best Response Function

Given the opponent’s cutoff strategy x∗ ∈ R, a firm’s cutoff best response g(x∗) is de-

termined by EΠ(x∗,g(x∗)) = 0. That is,

σ(x∗,g(x∗))(M−D)+D+g(x∗) = 0

It is found that g(x∗) ∈ [−D,−M] because as long as D > M, the maximum of

σ(x∗,ε)(M−D)+D equals D, where σ(x∗,ε) = 0, and the minimum of σ(x∗,ε)(M−
D)+D equals M, where σ(x∗,ε) = 1. Given the joint normal distribution, we obtain

the best response function in its reverse form:

8The density function f (.|ε) refers to f (ε∗|ε). For the explicit expression, please refer to Appendix
A.
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x∗ = ρ
ς∗

ς
g(x∗)+ ς

∗
√

1−ρ2Φ
−1(

D+g(x∗)
D−M

) (3.3)

where Φ(.) is the cumulative density function of the standard normal distribution.

Then, we can get the derivative of g(x∗) with respect to x∗ as follows.

g′(x∗) =− σx∗(x∗,g(x∗))(M−D)

σε(x∗,g(x∗))(M−D)+1
(3.4)

In this game, we can divide the best response functions into two types: contraction

and non-contraction.9 The contraction best response function, according to Zimper

(2004), makes the game dominance solvable, and hence, there exists a unique equilib-

rium. If the best response function is a non-contraction, it may contain multiple equi-

libria. Figure 1 exhibits a numerical example of a contraction and a non-contraction

best response function. The properties of the best response functions are summarized

in the following proposition.

Proposition 2 (Properties of Best Response Functions): Given that ς = ς∗ and

D > M, there exists a ρ̂ = (D−M)2−2πς∗2

(D−M)2+2πς∗2
which differentiates contraction and non-

contraction best response functions:

1) for ρ ∈ [ρ̃, ρ̂],

I. if g(x∗) ∈ [−D,(D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D), 0 < g′(x∗)< 1;

II. if g(x∗) = (D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D, g′(x∗) = 1;

III. if g(x∗) ∈ ((D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D,(D−M)Φ(

√
ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−

D), g′(x∗)> 1;

IV. if g(x∗) = (D−M)Φ(
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D, g′(x∗) = 1;

V. if g(x∗) ∈ ((D−M)Φ(
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D,−M], 0 < g′(x∗)< 1;

9For the description and properties of contraction and non-contraction functions, please refer to
Appendix H of Chapter 2.
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2) for ρ ∈ (ρ̂,1), 0 < g′(x∗)< 1 globally.

Proof: see Appendix. �
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Figure 1: A numerical example of a contraction best response function and a

non-contraction best response function. D = 1, M = −1, ς (and ς∗)=1 and ρ = −0.3

(for the solid curve) and 0.1 (for the dashed curve). In this case, ρ̂ = −0.2220. The

solid curve represents a non-contraction best response function, and the dashed curve

represents a contraction best response function.

Due to the positive externalities of payoff specification, the game exhibits strate-

gic complements; therefore, it is not surprising that the best response function in this

game is increasing. For the opponent, ρ̂∗= (D−M)2−2πς2

(D−M)2+2πς2 . If both players’ best response

functions are contraction, the game is dominance solvable, and hence a unique equi-

librium exists. Because we consider a symmetric game, ρ̂ = ρ̂∗. Therefore, a sufficient

condition to make the game have a unique equilibrium is that given D, M and ς = ς∗,

ρ ∈ [ρ̂,1). This sufficient condition can be generalized to asymmetric payoff settings,

where each player has different D and M. Therefore, the generalized sufficient condi-

tion to ensure a unique equilibrium is ρ ∈ [max{ρ̂, ρ̂∗},1).

If the best response functions are contraction function and hence the game is dom-

inance solvable, then according to the implicit function theorem, it implies that for all

x∗ ∈ R, a player’s expected payoff responds more to their own strategy than to the op-
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ponent’s strategy, i.e.

∂g(x∗)
∂x∗

=−
∂EΠ(x∗,ε)

∂x∗
∂EΠ(x∗,ε)

∂ε

|ε=g(x∗) < 1

and hence,

∂EΠ(x∗,ε)
∂ε

|ε=g(x∗) >−
∂EΠ(x∗,ε)

∂x∗
|ε=g(x∗) (3.5)

Equation (3.5) can be explicitly written as

σε(x∗,g(x∗))(M−D)+1 >−σx∗(x∗,g(x∗))(M−D)

where σε(x∗,g(x∗)) = σε(x∗,ε)|ε=g(x∗) and σx∗(x∗,g(x∗)) = σx∗(x∗,ε)|ε=g(x∗). Fur-

thermore, the above inequality can be written as

ρ f (x∗|g(x∗))(D−M)+1 > f (x∗|g(x∗))(D−M)

and we obtain

1 > (1−ρ)(D−M) f (x∗|g(x∗))

Finally, we find that (3.5) exactly implies the following restriction on the condi-

tional density function

f (x∗|g(x∗))< 1
(1−ρ)(D−M)

(3.6)

The inequality (3.6) is held for all ρ ∈ [ρ̂,1). From (3.6), it can be seen that as

ρ→ 1, the RHS of (3.6) increases to +∞, and hence (3.6) is certainly satisfied. In this

situation, it is certain that the best response functions are contraction functions and so

the game is dominance solvable.

Given ρ∈ [ρ̂,1), as ς increases, the variance of f (.|g(x∗)), which equals ς2(1−ρ2),

increases and hence the density function flattens.10 Particularly, the maximum value

of f (.|g(x∗)), which is equal to 1√
2π(1−ρ2)ς

and is taken at the mean ρg(x∗) of the

distribution f (.|g(x∗)), decreases. Hence, (3.6) is easier to be satisfied and it is more

10The density function f (.|g(x∗)) is exactly the density function f (ε∗|ε), where ε = g(x∗). For its
explicit expression, please refer to Appendix A.
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certain that at the given value of ρ, g′(x∗) < 1 for all x∗ ∈ R. Therefore, the range of

ρ that ensures g(x∗) is a contraction function should be broadened as ς increases, and

accordingly ρ̂ decreases.

If D−M decreases, the RHS of the inequality (3.6) increases. Hence, (3.6) is eas-

ier to be satisfied and it is more certain that at the given value of ρ, g′(x∗) < 1 for all

x∗ ∈R. Therefore, if D−M decreases, the range of ρ that ensures g(x∗) is a contraction

function should also be broadened, and accordingly ρ̂ decreases.

3.4 Comparative Statics of the Number of Equilibria with

respect to the Correlation Coefficient

Since the best response function in this game increases and the two players’ best re-

sponse functions are located symmetrically around the 45◦ line, all equilibria of the

strategic complements game must be symmetric and locate at the 45◦ line. Hereafter,

we denote any equilibrium of the strategic complements game by (e,e), which should

satisfy e = g(e). Specifically, according to equation (3.3), the following must be satis-

fied:

Φ(

1
ς∗ −

ρ

ς√
1−ρ2

e) =
D+ e
D−M

Therefore, equivalently, the equilibria of the strategic complements game are also

the intersection points between curves y = Φ(
1

ς∗−
ρ

ς√
1−ρ2

x) and y = D+x
D−M . We define

α(ρ) :=
1

ς∗−
ρ

ς√
1−ρ2

. The line y = D+x
D−M passes through the point (−D+M

2 , 1
2 ). Hence,

we can analyse the equilibria of the game separately in terms of D+M > 0, D+M < 0

and D+M = 0 (see Figures 2–4).

Figures 2 to 4 exhibit all possible cases of the intersections between y = Φ(α(ρ)x)

and y= D+x
D−M for all ρ∈ [ρ̃,1). The dashed curves describe the limit case y=Φ(α(ρ̃)x),

and the intersection points between y = Φ(α(ρ̃)x) and y = D+x
D−M will be used to judge

whether the game is able to contain multiple equilibria for all ρ ∈ [ρ̃,1). Irrespec-

tive of the value of ρ, given D, M and ς (and hence ς∗), y = D+x
D−M always crosses the
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Figure 2: In the 2×2 strategic complements game, for all ρ ∈ [ρ̃,1), if D+M > 0,

there could be either one, two or three equilibria, which are intersection points

between y = Φ(α(ρ)x), where ρ ∈ (ρ̃,1), which is represented by the solid curve, and

y = D+x
D−M , which is represented by the solid line. The dashed curve represents the limit

case y = Φ(α(ρ̃)x).
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Figure 3: In the 2×2 strategic complements game, for all ρ ∈ [ρ̃,1), if D+M < 0,

there could be either one, two or three equilibria, which are intersection points

between y = Φ(α(ρ)x), where ρ ∈ (ρ̃,1), which is represented by the solid curve, and

y = D+x
D−M , which is represented by the solid line. The dashed curve represents the limit

case y = Φ(α(ρ̃)x).
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Figure 4: In the 2×2 strategic complements game, for all ρ ∈ [ρ̃,1), if D+M = 0,

then −D+M
2 = 0 and there could be either one or three equilibria, which are

intersection points between y = Φ(α(ρ)x), where ρ ∈ (ρ̃,1), which is represented by

the solid curve, and y = D+x
D−M , which is represented by the solid line. The dashed

curve represents the limit case y = Φ(α(ρ̃)x).
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point (−D+M
2 , 1

2), and y = Φ(α(ρ)x) always crosses the point (0, 1
2). The intersec-

tion points are the equilibria of the game. We can directly judge the stability of each

equilibrium in Figures 2 to 4 by comparing the slopes of y = D+x
D−M and y = Φ(α(ρ)x)

for all ρ ∈ [ρ̃,1). We denote φ(.) as the probability density function of the standard

normal distribution. It is found that at an equilibrium (e,e), g′(e) < 1 if and only if

φ(α(ρ)e)α(ρ)< 1
D−M ; g′(e)> 1 if and only if φ(α(ρ)e)α(ρ)> 1

D−M ; g′(e) = 1 if and

only if φ(α(ρ)e)α(ρ) = 1
D−M . Therefore, by comparing the slopes of the two curves

at each intersection point, we can learn whether the corresponding eigenvalues at the

equilibrium are smaller than one.11 Hence, we obtain the stability property of all equi-

libria.

We are interested in the comparative statics of the number of equilibria with respect

to ρ. Take Figure 2 as an example. Sub-figures 2-1, 2-2 and 2-3 represent three possi-

ble cases of intersections between y = Φ(α(ρ̃)x) and y = D+x
D−M . If at ρ = ρ̃, there exists

a unique intersection point between y = Φ(α(ρ̃)x) and y = D+x
D−M , then as ρ increases

away from ρ̃, y = Φ(α(ρ)x) will decrease given x > 0 and increase given x < 0, and

thus, a unique intersection point exists after the change (see sub-figure 2-1). Hence,

the games for all ρ ∈ [ρ̃,1) always contain a unique equilibrium (intersection point)

given D, M and ς (and hence ς∗). Because in this case, y = D+x
D−M is always steeper than

y = Φ(α(ρ)x), the unique equilibrium is stable. Sub-figure 2-2 represents a boundary

situation, which means at ρ = ρ̃, y = Φ(α(ρ̃)x) and y = D+x
D−M have one intersection

point and one tangent point.12 In this situation, by comparing the slopes of the two

curves, the intersection point is stable, while the tangent point’s stability cannot be

determined. As ρ increases away from ρ̃, again y = Φ(α(ρ)x) will decrease given

x > 0 and increase given x < 0, and only one intersection point exists. It represents

the unique equilibrium for all ρ ∈ (ρ̃,1), and it is stable. Sub-figure 2-3 represents the

11In this symmetric strategic complements game, an equilibrium cutoff strategy (e, e) should
simultaneously satisfy e = g(e) and e = g∗(e). g(.) and g∗(.) are player i’s and player i∗’s best response
functions, respectively. Therefore, the corresponding Jacobian matrix is

J =

(
g∗
′
(e) 0
0 g′(e)

)
It is straightforward to find that the eigenvalues of the Jacobian matrix are g∗

′
(e) and g′(e), respec-

tively. Thus, if the first-order derivatives of best response functions at an equilibrium are known, the
stability of this equilibrium can be judged.

12The tangency situation, which represents an equilibrium, can only arise if D > 0 >M. If D >M > 0
or 0 > D > M, the game always has a unique equilibrium for ρ ∈ [ρ̃,1) (see Appendix).
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most subtle case. At ρ = ρ̃, y = Φ(α(ρ̃)x) and y = D+x
D−M have three intersection points.

By comparing the slopes of the two functions at each intersection point (equilibrium),

the middle intersection point (equilibrium) is unstable, while the two outer intersection

points (equilibria) are stable. As we increase ρ away from ρ̃, the multiplicity situation

continues until ρ = ρ̄, where y = Φ(α(ρ̄)x) has one tangent point and one intersection

point with y = D+x
D−M ; hence, the number of equilibria becomes two. As ρ continues

to increase away from ρ̄, y = Φ(α(ρ)x) will further decrease given x > 0 and further

increase given x < 0 such that only one intersection point is left, which represents the

unique equilibrium and is stable.

We can apply the same approach of deriving how the number of equilibria changes

with respect to ρ and the stability of equilibrium to cases of D+M < 0 and D+M =

0. Figures 3 and 4 describes how many intersections points (equilibria) can exist if

D+M < 0 or D+M = 0. Finally, from previous analysis, it can be determined that ρ̄

exists if and only if D > 0 > M. If ρ̄ exists, ρ̄ ≤ ρ̂, but ρ̄ could be smaller than ρ̃, or

greater than or equal to ρ̃.

Suppose D > 0 > M and hence ρ̄ exists. Its analytical expression depends on the

sign of D+M. Specifically, if D+M > 0, then ρ̄ is the unique solution of the following

equation:

Φ(

√
ln
(D−M)2(1− ρ̄)

2πς2(1+ ρ̄)
) =

D+
√

ς2 1+ρ̄

1−ρ̄
ln (D−M)2(1−ρ̄)

2πς2(1+ρ̄)

D−M

where ρ̄ < ρ̂. If D+M < 0, then ρ̄ is the unique solution of the following equation:

Φ(−

√
ln
(D−M)2(1− ρ̄)

2πς2(1+ ρ̄)
) =

D−
√

ς2 1+ρ̄

1−ρ̄
ln (D−M)2(1−ρ̄)

2πς2(1+ρ̄)

D−M

where ρ̄ < ρ̂. If D+M = 0, then ρ̄ = ρ̂.

When there are three equilibria, we name the equilibrium located at the middle

part of a best response function the middle equilibrium, and the equilibrium located at

the outer part of a best response function the outer equilibrium. By summarizing the

analysis of all three cases (D+M R 0), we obtain the comparative statics results of the
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number of equilibrium with respect to ρ and the stability of equilibrium. It is given by

the following theorem.

Theorem 1 (Comparative Statics of the Number of Equilibria with respect to ρ

and Stability of Equilibrium in the Strategic Complements Game): For the static

2× 2 entry game, suppose D > M and ς = ς∗. ρ̄ exists if and only if D > 0 > M.

If D > 0 > M and ρ̄ < ρ̃, or if 0 > D > M or D > M > 0 in which case ρ̄ does not

exist, then for all ρ ∈ [ρ̃,1), the game has a unique equilibrium. Conversely, if for

all ρ ∈ [ρ̃,1), the game has a unique equilibrium, then it is either because ρ̄ < ρ̃ if

D > 0 > M or because 0 > D > M or D > M > 0 in which case ρ̄ does not exist. The

unique equilibrium is stable.

If ρ̄≥ ρ̃, then for all ρ ∈ [ρ̃, ρ̄), there exist three equilibria. The middle equilibrium

is unstable, while the two outer equilibria are stable. In particular, if D+M = 0, the

middle equilibrium is (0, 0).

At ρ = ρ̄: 1) if D+M 6= 0, there are two equilibria. One is stable. Stability of the

other is not determined; 2) if D+M = 0, there exists a unique equilibrium (0,0) and it

is stable.

For all ρ ∈ (ρ̄,1), there exists a unique equilibrium and it is stable. In particular, if

D+M = 0, the unique equilibrium is (0, 0).

Proof: see Appendix. �

The equilibria can be described as solutions of the equation system of g(x∗) and

g∗(x). As ρ→−1, g(x∗) at the limit is given by 13

13The game at ρ→−1 does not coincide with the game at ρ =−1. The game at ρ→−1 is exhibited
in the following part in the main context of this chapter. For the game at ρ = −1, ε = −ε∗ and both
players are affected by the opposite payoff shocks which are not known ex ante. However, if these
shocks are known, the two players play a complete information game. For ε ∈ (−D,−M), there are
three equilibria: (0,0), (1,1) and a mixed strategy ( D+ε

D−M , D+ε

D−M ), which is the probability of choosing
action 0. This probability depends on ex post realizations of payoff shocks. In contrast, for the game at
ρ→−1, the number of equilibria and the cutoff value of the equilibrium depends on the relation among
D, M and 0. Even if we express the equilibria of the game at ρ→−1 in the form of action strategies,
none of them depends on the ex post realization of ε and ε∗. Therefore, the incomplete information
games at ρ→ −1 does not coincide with the games at ρ = −1. g(x∗) is continuous with respect to
ρ ∈ (−1,1). Therefore, in this section, the natural benchmark to compare the number of equilibria for
games at ρ ∈ [ρ̃,1) is the game at ρ→−1.
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Figure 5: In each sub-figure, the two horizontal lines and the point between the two

lines together represent the piecewise function g(x∗) at ρ→−1. The dashed line

represents the 45◦ line. The intersection point between the horizontal line and the

dashed line is denoted by (e,e). g(x∗) and g∗(x) are symmetrically located around the

45◦ line, and therefore the solution (e,e) that satisfies e = g(e) is also the intersection

point between g(x∗) and the 45◦ line. For M < D < 0, the intersection point (solution)

is (−M,−M). For 0 < M < D, the intersection point (solution) is (−D,−D).

g(x∗) =


−D x∗ < D+M

2

−D+M
2 x∗ = D+M

2

−M x∗ > D+M
2

Because g(x∗) and g∗(x) are symmetrically located around the 45◦ line as well, all

solutions are symmetric and a solution (e,e) of the equation system should be an in-

tersection point between g(x∗) and the 45◦ line. If M < D < 0, g(x∗) and g∗(x) have a

unique solution (−M,−M). If 0 < M < D, the equation system has a unique solution

(−D,−D). Figure 5 describes how these solutions arise .

If D > 0 > M, this situation is complicated. In this situation, if D+M
2 < −D, then

there is a unique solution (−M,−M), and if D+M
2 > −M, there is a unique solution

(−D,−D). Supposing −D < D+M
2 < −M, if D + M 6= 0, there are two solutions

(−M,−M) and (−D,−D), while if D+M = 0, there are three solutions (−M,−M),

(0,0) and (−D,−D). Figure 6 exhibits how these solutions arise.

The intuition of Theorem 1 is as follows. The average known payoff of entry is
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Figure 6: In each sub-figure, the two horizontal lines and the point between the two

lines together represent the piecewise function g(x∗) at ρ→−1. The dashed line

represents the 45◦ line. As in Figure 5, solution(s) (e,e), where e = g(e), are

intersection points between g(x∗) and the 45◦ line. Given D > 0 > M, if D+M
2 <−D,

there is a unique solution (−M,−M). If D+M
2 >−M, there is a unique solution

(−D,−D). If −D < D+M
2 <−M and D+M 6= 0, there are two solutions (−D,−D)

and (−M,−M), and if D+M = 0, there are three solutions (−D,−D), (−M,−M)

and (0,0).

D+M
2 . Therefore, if a firm wants to choose entry, from an ex ante perspective, it should

at least obtain a payoff shock ε =−D+M
2 . We call this shock the average payoff shock

required for entry. If −D+M
2 > D > M, the average payoff shock required for entry

is even higher than the highest known payoff of being active. Thus, ex ante, i.e. be-

fore the payoff shock is drawn, each player will be expected to prefer being inactive

to entry. The expectation that the opponent prefers being inactive is formed before

the payoff shocks are drawn and there do not exist alternative expectations due to the

payoff specification. Hence, the contingent payoff shocks cannot affect the ex ante ex-

pectation. Therefore, given this expectation, a player expects that if they choose entry,

they will get profit M; therefore, if the payoff shock ε ≥ −M, the player will choose

entry. In the symmetric strategic complements game, players can behave identically

for matching their strategies. Hence, the opponent will think in the same way and

adopt cutoff strategy−M. This intuition applies to cases of 0 > D > M and D > 0 > M

with D+M
2 < −D. Both cases satisfy the requirement −D+M

2 > D > M. This fact can

be judged from concerned sub-figures in Figures 5 and 6.

If D > M >−D+M
2 , the average payoff shock required for entry is smaller than the

lowest known payoff of being active. Thus, ex ante, each player will be expected to

prefer being active to being inactive. The expectation that the opponent prefers entry
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is formed before the payoff shocks are drawn and is determined by such payoff spec-

ifications. Hence, the contingent payoff shocks cannot affect the ex ante expectation.

Therefore, in this situation, a player expects that if they choose entry, they will get

profit D, and thus, if the payoff shock ε ≥ −D, the player will choose entry. In the

strategic complements game, players behave identically for matching their strategies;

hence, the opponent will think in the same way and adopt the strategy −D. This intu-

ition applies to the case of D > M > 0 and D > 0 > M with D+M
2 > −M. Both cases

satisfy the requirement D > M > −D+M
2 , which can be judged from concerned sub-

figures in Figures 5 and 6.

If D > −D+M
2 > M, the average payoff shock required for entry is between the

highest and lowest payoff of being active. This situation happens when D > 0 > M,

and hence, reasonably in this situation, −D+M
2 could be higher or lower than, or equal

to 0, which is the payoff of being inactive. Thus, ex ante, each player can either prefer

being inactive to being active, or vice versa. Both possibilities are reasonable to hap-

pen. If each player prefers being inactive to being active, then the intuition follows the

case of −D+M
2 > D > M and both players will choose cutoff strategy (−M,−M). If

each player prefers being active to being inactive, then the intuition follows the case

of D > M > −D+M
2 and both players will choose cutoff strategy (−D,−D). Thus, if

D >−D+M
2 > M, two cutoff strategies (−M,−M) and (−D,−D) exist.

In addition, for D > −D+M
2 > M, if D+M

2 = 0, then the average known payoff

of being active equals that of being inactive, which is 0. Therefore, each player

can be indifferent to being active or inactive ex ante. In this situation, conditional

on the expectation that the opponent is indifferent to either action choice, if payoff

shock ε≥−D+M
2 = 0, the player will choose entry. Symmetrically, the opponent will

think in the same way and also choose a cutoff strategy that equals 0. Therefore, if

D >−D+M
2 > M and D+M = 0, another cutoff strategy (0,0) exists.

At ρ = ρ̃, there exists uncertainty between players’ payoff shocks. Players cannot

predict each other’s private information via the conditional density function f (ε∗|ε) as

precisely as in the case of ρ→−1.14 Suppose 0 > D > M. Then, the payoff of being

inactive is higher than the highest payoff of being active. Thus, each player is ex ante

14To understand how the density function f (ε∗|ε) can reflect the opponent’s private information given
a player’s own private information, please refer to Section 2.4 of Chapter 2.
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expected more likely to choose being inactive. In this situation, irrespective of whether

f (ε∗|ε) can approximately or imprecisely reflect ε∗ given ε, the ex ante expectation that

the opponent is more likely to choose being inactive is not affected, because this ex-

pectation is formed before the payoff shock is drawn and there do not exist alternative

expectations due to the payoff specification. In this situation, there still exists a unique

equilibrium, and reasonably the equilibrium strategy should be close to (−M,−M) if

we translate the action strategy equilibrium into a cutoff strategy equilibrium represen-

tation. This intuition can apply to the games for all ρ ∈ [ρ̃,1) given 0 > D > M.

Suppose D > M > 0. Then, the payoff of being inactive is smaller than the lowest

payoff of being active. Thus, each player is ex ante expected more likely to choose

being active. Although the payoff shocks are negatively correlated at ρ = ρ̃, as in the

case of 0 > D > M, irrespective of whether f (ε∗|ε) can approximately or imprecisely

reflect ε∗ given ε, the players’ expectations that both are more likely to choose being

active will not be affected, because the expectation is formed before the payoff shock

is drawn and there do not exist alternative expectations due to the payoff specifica-

tion. Therefore, there exists a unique equilibrium; that is, both players are more likely

to choose being active. If we translate the action strategy equilibrium into a cutoff

strategy equilibrium representation, the equilibrium strategy is expected to be close to

(−D,−D). This intuition can apply to the games for all ρ ∈ [ρ̃,1) given D > M > 0.

Suppose D > 0 > M. In this situation, at ρ = ρ̃, the game could have a unique

equilibrium for the following three possibilities:

1) D+M
2 <−D < 0: the average known payoff of entry is lower than the payoff of

being inactive. The intuition in this situation follows the case of 0 > D > M, in which

the payoff specification also satisfies D+M
2 < −D. The intuition at ρ = ρ̃ can apply to

games for all ρ ∈ [ρ̃,1) given D+M
2 <−D.

2) D+M
2 > −M > 0: the average known payoff of entry is higher than the payoff

of being inactive. The intuition in this situation follows the case D > M > 0, in which

the payoff specification also satisfies D+M
2 >−M. The intuition at ρ = ρ̃ can apply to

games for all ρ ∈ [ρ̃,1) given D+M
2 >−M.

3) −D < D+M
2 < −M: in this situation, the average known payoff of entry could
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be higher or lower than, or equal to the payoff of being inactive. If at ρ = ρ̃, the un-

certainty between players’ private information is very high, then this uncertainty will

make players’ attempt to match their strategies difficult, because f (ε∗|ε) is imprecise to

reflect ε∗ given ε and players cannot get enough information to match their strategies.

In this situation, a player’s strategy choice is conditional upon an unclear expectation of

the opponent’s propensity of action choice.15 Symmetrically, the opponent will think

in the same way and adopt the same strategy. Therefore, the game exhibits a unique

equilibrium to capture this unclear situation. Reasonably, it can be expected that in this

situation, the value of the equilibrium entry threshold should be between −D and −M.

Alternatively, in the situation of −D < D+M
2 <−M, if at ρ = ρ̃, the uncertainty be-

tween players’ private information is low such that f (ε∗|ε) can approximately reflect

ε∗ given ε for player i, then this situation is close to the case of −D < D+M
2 < −M

with ρ→ −1. In this situation, players are either more likely to choose being inac-

tive or to choose being active. In addition, due to the uncertainty existing between

players’ private information, there is a possibility that each player is unclear about

the other player’s propensity of action choice. In particular, as ρ→ −1, the payoff

shocks for both players are opposite, which makes matching strategies difficult; hence,

each player’s propensity of action choice is blurred and this situation is more likely to

happen. Accordingly, a player will choose a strategy conditional on this unclear expec-

tation. Symmetrically, the other player will think in the same way and adopt the same

strategy. Hence, the game has another equilibrium to capture this unclear situation.

Reasonably, it can be expected that the value of this equilibrium entry threshold is be-

tween −D and −M. The intuition of the games with D > 0 > M at ρ = ρ̃ as discussed

above applies to games for all ρ ∈ [ρ̃, ρ̄) with D > 0 > M.

For ρ taking values that are far from -1 and 1, or specifically for all ρ ∈ [ρ̄, ρ̂),

the correlation between ε and ε∗ are much lower and hence the uncertainty between

players’ private information becomes much higher. Therefore, f (ε∗|ε) is imprecise to

reflect the opponent’s private information. In this situation, it is difficult for players

to get enough information to match their action strategies. Hence, the possibility that

players are unclear about the opponent’s propensity of action choice becomes the only

reasonable situation to exist. Therefore, the game only has a unique equilibrium, which
15An unclear expectation of the opponent’s propensity of action choice means that before the payoff

shocks are drawn, player i is not sure whether i∗ is more likely to choose being active or being inactive,
or more likely to be indifferent to either action choice.
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captures this unclear situation.

For ρ ∈ [ρ̂,1), as we have shown in Section 3.3, it is certain that the best response

functions are contraction functions and hence the game has a unique equilibrium. The

intuition is that, in this situation, as indicated by inequality (3.5), player i’s expected

payoff of entry is more sensitive to his own strategy than to his opponent’s strategy.

It means player i is more self-focused and the opponent’s private information is less

important in player i’s decision making, no matter whether f (ε∗|ε) can approximately

or imprecisely reflect i∗’s private information given ε. Therefore, in this situation, the

game is close to an individual decision problem, and hence there exists a unique equi-

librium.

Therefore, ρ̄, if greater than ρ̃, is the threshold that differentiates the high uncer-

tainty and low uncertainty between players’ private information. The uncertainty be-

tween players’ private information determines how players can behave (i.e. whether

f (ε∗|ε) can approximately or imprecisely reflect ε∗ given ε, and thus, the players can

(cannot) collect enough information to help them match their strategies) and hence

how many equilibria could exist.

All of these intuitions mentioned above explain why for all ρ ∈ [ρ̃,1), the strategic

complements game can have a unique equilibrium, or if there are multiple equilibria

for some values of ρ ∈ [ρ̃,1), as ρ increases from ρ̃ to 1, the number of equilibria will

decrease from 3 to 1.

Finally, to conclude this section, we provide a list of numerical examples. They

exhibit how the number of equilibrium varies with respect to different parameter spec-

ifications (see Figures 7–9).
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Figure 7: A numerical example of unique equilibrium in the 2× 2 strategic comple-

ments game. The solid curve represents a player’s best response function and the

dashed curve represents the opponent’s best response function. In this case, D=3.5,

M=-3, ρ = 0.5, ς = ς∗ = 1.5.

3.5 Comparative Statics of Players’ Equilibrium Strate-

gies

In this section, we present the comparative statics of exogenous parameters on the

equilibrium strategy. It is given as

Proposition 3 (Comparative Statics of Players’ Equilibrium Strategies): As-

sume D > M and ς = ς∗. We denote an equilibrium of the game by (e,e), where

−D < e <−M. We obtain that

(3.1) For a stable equilibrium, ∂e
∂M < 0 and ∂e

∂D < 0. If e ≤ (or >) 0, ∂e
∂ρ
≥ (or <) 0

and ∂e
∂ς2 +

∂e
∂ς∗2
≥ (or <) 0, where ∂e

∂ρ
and ∂e

∂ς2 +
∂e

∂ς∗2
equal 0 when e = 0.

(3.2) For an unstable equilibrium, ∂e
∂M > 0 and ∂e

∂D > 0. If e≤ (or >) 0, ∂e
∂ρ
≤ (or >)

0 and ∂e
∂ς2 +

∂e
∂ς∗2
≤ (or >) 0, where ∂e

∂ρ
and ∂e

∂ς2 +
∂e

∂ς∗2
equal 0 when e = 0.

(3.3) For the equilibrium value for which the stability cannot be determined, ∂e
∂M ,

∂e
∂D , ∂e

∂ρ
and ∂e

∂ς2 +
∂e

∂ς∗2
equals ∞.
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Figure 8: A numerical example of unique equilibrium in the 2× 2 strategic comple-

ments game. The solid curve represents a player’s best response function and the

dashed curve represents the opponent’s best response function. In this case, D=3.5,

M=-3, ρ = 0.3, ς = ς∗ = 1.5. This case is close to a boundary case where there exist

one intersection point and one tangent point. However, in fact, there is no tangency in

this case.

Proof: see Appendix. �

It is found that for τ ∈ {D,M}, sign(∂e
∂τ
) = sign( 1

φ(α(ρ)e)α(ρ)− 1
D−M

) and for τ ∈ {ρ,ς

and ς∗}, sign(∂e
∂τ
) = sign( 1

φ(α(ρ)e)α(ρ)− 1
D−M

)× sign(e). In Section 3.4, we have shown

that at an equilibrium (e,e), φ(α(ρ)e)α(ρ)R 1
D−M if and only if g′(e)R 1. Therefore,

in the symmetric strategic complements game, the stability of each equilibrium deter-

mines the sign of the comparative statics results.

For a stable equilibrium, increasing the payoff of entry D or M will encourage

players to adopt lower cutoff strategies, and hence, they become more likely to choose

entry. The signs of ∂e
∂ρ

and ∂e
∂ς2 +

∂e
∂ς∗2

are opposite towards the signs of correspond-

ing results in the strategic substitutes game in Chapter 2. This is determined by the

strategic complements payoff specification D > M. The intuition to explain ∂e
∂ρ

and
∂e
∂ς2 +

∂e
∂ς∗2

follows the analysis of ∂e
∂ρ

and ∂e
∂ς2 +

∂e
∂ς∗2

in the strategic substitutes game
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Figure 9: A numerical example of multiple equilibria in the 2× 2 strategic comple-

ments game. The solid curve represents a player’s best response function and the

dashed curve represents the opponent’s best response function. In this case, D=3.5,

M=-3, ρ = 0.3, ς = ς∗ = 1.2.

presented in Section 2.5 of Chapter 2. Generally, the intuition is that if we change

the correlation coefficient, the mean of the conditional distribution of the opponent’s

payoff shock given the player’s own payoff shock changes and the mean has a dom-

inant impact on the player’s belief towards the opponent’s strategy given the player’s

own strategy. The change of mean depends on the sign of the equilibrium strategies.

If we jointly change the variances of the prior distribution, only the variance of the

conditional distribution of the opponent’s payoff shock given the player’s own shock

changes. Increasing the variances will assign higher likelihood on low and high payoff

shocks in the conditional distribution of the opponent’s payoff shock, and the sign of

an equilibrium strategy determines whether this strategy is located in the high or low

payoff shock area in the distribution. The different location determines the different

impacts of changing variances on a player’s belief. The only difference of the analysis

for the strategic complements game from that for the strategic substitutes game is that

because D > M, the effect of increasing ρ or ς2 and ς∗2 on the expected payoff of entry

is opposite to the effect in the strategic substitutes game, which leads to the opposite

comparative statics results in the strategic complements game.

It should be noted that for an unstable equilibrium, increasing D and M will in-
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crease e, i.e. increasing the payoff of entry will make a player less likely choose entry.

In this game, only the middle equilibrium, when there are three equilibria, is unstable.

Therefore, in the middle equilibrium, players’ behaviour contradicts with our common

sense. The intuition is that because we use a cutoff strategy to solve the game, if the

payoff of entry increases, then given the opponent’s strategy, a player will become

more likely to choose entry. Because the game exhibits positive externalities in pay-

offs, the opponent will also become more likely to choose entry as the best response

to the player’s change of strategies more favouring entry. Given this best response dy-

namics, no strategy will converge to an equilibrium in which increasing the payoff of

entry makes a player less likely choose entry. This situation satisfies the Lyapunovian

instability of an equilibrium, and hence is unstable.

3.6 Comparative Statics of the Number of Equilibria with

respect to Variances

In this section, we study the comparative statics to determine how the number of equi-

libria changes by simultaneously changing ς2 and ς∗2. Because ς2 = ς∗2, in the follow-

ing, we specify ς2 and ς∗2 as the same variable. From Proposition 1, it is known that

if and only if ρ ≥ −
√

2πς2

2πς2+(D−M)2 , a cutoff strategy can be used to solve the game.

Equivalently, it implies a restriction on the variance:

ς
2 ≥ ρ2(D−M)2

2π(1−ρ2)
for ρ < 0

The inequality indicates that given D > M and ρ < 0, there exists a lower bound of

ς2, which is denoted by ς̃2; hence, ς̃2 = ρ2(D−M)2

2π(1−ρ2)
and ς̃ =

√
ς̃2. Given variances below

this lower bound in the case of D > M and ρ < 0, the game cannot be solved using a

cutoff strategy. The intuition for this result is similar to the intuition of Proposition 1.

Let us recall that

∂EΠ(x∗,ε)
∂ε

= σε(x∗,ε)(M−D)+1 =
ρ(D−M)

ς
√

2π(1−ρ2)
exp(−1

2
(

x∗−ρε

ς
√

1−ρ2
)2)+1

From the above expression, it can be seen that if D>M and ρ≥ 0, ∂EΠ(x∗,ε)
∂ε

> 0 for

all ς ∈ (0,+∞). For ρ < 0, ς̃ exists and it makes min ∂EΠ(x∗,ε)
∂ε

= ρ(D−M)

ς̃

√
2π(1−ρ2)

+ 1 = 0.
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Therefore, for ρ< 0, if ς≥ ς̃, ∂EΠ(x∗,ε)
∂ε

≥ 0 ∀x∗ ∈R. For ρ< 0, if ς< ς̃, EΠ(x∗,ε) is no

longer monotonic with respect to ε, and for some x∗ ∈ R, EΠ(x∗,ε) = 0 has multiple

(three) solutions of ε, which are the best response threshold values. One of the three

solutions has the following property: a payoff shock that is below the threshold value

can make a player choose entry, which contradicts the definition of the cutoff strategy.

This situation parallels the property of expected payoff function with ρ < ρ̃ given ς

and D > M (see Appendix B). Therefore, by assuming ς = ς∗, given D > M and ρ, a

player can legitimately use a cutoff strategy to play the game if and only if ς ∈ [ς̃,+∞)

for ρ < 0 or ς ∈ (0,+∞) for ρ≥ 0.

Proposition 4: Assuming ς = ς∗, given D > M and ρ ∈ (−1,1), a player can use a

cutoff strategy to solve the game if and only if ς ∈ [ς̃,+∞) for ρ < 0 or ς ∈ (0,+∞) for

ρ≥ 0.

Proposition 4 can be generalized to asymmetric payoff settings. Suppose the oppo-

nent has different payoffs D′ and M′ with respect to D and M, respectively. Therefore,

for ρ < 0, ς̃∗2 = ρ2(D′−M′)2

2π(1−ρ2)
. In this situation, Proposition 4 can be generalized such that

the games with asymmetric payoff specifications can be solved by a cutoff strategy if

and only if ς ∈ [max{ς̃, ς̃∗},+∞) for ρ < 0 or ς ∈ (0,+∞) for ρ≥ 0.

Assume ς = ς∗. For ρ ∈ (−1,0), given a ς ∈ [ς̃,+∞) and an x∗ ∈ R, if EΠ(x∗,ε)

increases with respect to ε, it indicates that

∂EΠ(x∗,ε)
∂ε

= σε(x∗,ε)(M−D)+1≥ 0

for all x∗ ∈ R. Again, this inequality can be equivalently transformed into the

following expression:

f (x∗|ε)≤ 1
−ρ(D−M)

and it is inequality (3.2).

As the negative ρ increases, the variance of f (.|ε), which equals ς2(1− ρ2), in-

creases and hence the density function flattens. The mean of f (.|ε), which equals ρε,

also changes. The maximum value of f (.|ε), which equals 1√
2π(1−ρ2)ς

and is taken at
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the mean x∗ = ρε, decreases. Meanwhile, the RHS of (3.2) increases as ρ increases.

Therefore, as ρ increases, the LHS of (3.2) decreases and the RHS of (3.2) increases;

hence, (3.2) is easier to be satisfied and it is more certain that at the given ς, EΠ(x∗,ε)

increases with respect to ε for all x∗ ∈ R. Therefore, given the ρ < 0, the range of ς

that makes the expected payoff increase with respect to ε should be broadened as ρ

increases, and accordingly, ς̃ decreases.

If D−M decreases, the RHS of (3.2) increases. Hence, (3.2) is easier to be satis-

fied and it is more certain that at the given ρ < 0, EΠ(x∗,ε) increases with respect to

ε for all x∗ ∈ R. Therefore, given ρ < 0, the range of ς that makes the expected payoff

increase with respect to ε should be broadened as D−M decreases, and accordingly, ς̃

decreases.

Let us recall inequality (3.6), which is the necessary and sufficient condition to en-

sure g(x∗) is a contraction function for all x∗ ∈ R and is hence the sufficient condition

to ensure that the symmetric game is dominance solvable. This inequality can be ex-

plicitly written as

σε(x∗,g(x∗))(M−D)+1 >−σx∗(x∗,g(x∗))(M−D)

By rearranging the LHS and RHS, we obtain

1 > (σx∗(x∗,g(x∗))+σε(x∗,g(x∗)))(D−M) (3.7)

where σx∗(x∗,g(x∗))+σε(x∗,g(x∗)) = 1√
2πς

√
1−ρ

1+ρ
exp(−1

2(
x∗−ρg(x∗)
ς

√
1−ρ2

)2).

From inequality (3.7), it can be seen that if the maximum value of (σx∗(x∗,g(x∗))+

σε(x∗,g(x∗)))(D−M), which is D−M√
2πς

√
1−ρ

1+ρ
, is smaller than 1, inequality (3.7) and in-

equality (3.6) always hold and g(x∗) is a contraction function for all x∗ ∈ R. Hence,

the game is dominance solvable.

Accordingly, we denote ς̂ as the value that makes D−M√
2πς̂

√
1−ρ

1+ρ
= 1. That is, ς̂2 =

(D−M)2(1−ρ)
2π(1+ρ) . Therefore, for ς2 ≥ ς̂2, 1≥ D−M√

2πς

√
1−ρ

1+ρ
> (σx∗(x∗,ε)+σε(x∗,ε))(D−M)

for all x∗ ∈ R. Hence, for all ς2 ≥ ς̂2, inequality (3.7) and inequality (3.6) always hold

and g(x∗) is a contraction function for all x∗ ∈ R. Hence, the game is dominance solv-
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able in this situation.

By contrast, if ς2 < ς̂2, D−M√
2πς

√
1−ρ

1+ρ
> 1. In this situation, inequality (3.7) and

equivalently inequality (3.6) cannot hold for all x∗ ∈ R; hence, g(x∗) is not a contrac-

tion function for all x∗ ∈ R. Therefore, ς̂2 is the critical value that differentiate the

contraction and non-contraction best response functions. Hence, given other parame-

ters, ς2 ∈ [ς̂2,+∞) is the necessary and sufficient condition to ensure the best response

function of this game to be a contraction function.

Proposition 5: Given ρ ∈ (−1,1), supposing that ς = ς∗ and D > M, the game is

dominance solvable if and only if ς2 ∈ [ς̂2,+∞), where ς̂2 = (D−M)2(1−ρ)
2π(1+ρ) .

Proposition 5 can be generalized to asymmetric payoff settings. Suppose the other

player i∗ has the known payoffs D′ and M′ with respect to D and M, respectively. In

this situation, i∗’s best response function g∗(x) is a contraction function if and only if

ς∗2 ∈ [ς̂∗2,+∞), where ς̂∗2 = (D′−M′)2(1−ρ)
2π(1+ρ) . Hence, Proposition 5 can be generalized

such that given ρ ∈ (−1,1), supposing ς = ς∗, D > M and D′ > M′, the game is domi-

nance solvable if and only if ς2 ∈ [max{ς̂2, ς̂∗2},+∞).

Inequality (3.7) can be written as

1 > (1−ρ)(D−M) f (x∗|g(x∗))

because σx∗(x∗,g(x∗)) = f (x∗|g(x∗)) and σε(x∗,g(x∗)) = −ρ f (x∗|g(x∗)). More-

over, as before, the above inequality implies inequality (3.6):

f (x∗|g(x∗))< 1
(1−ρ)(D−M)

Given ρ ∈ (−1,1), (3.6) is held for all ς2 ∈ [ς̂2,+∞).

Suppose ρ < 0. Given ς2 ∈ [ς̂2,+∞), as ρ increases, the variance of f (.|g(x∗)),
which equals ς2(1− ρ2), increases and hence the density function flattens. As we

know, in this situation, the maximum value of f (.|g(x∗)) decreases, while the RHS

of (3.6) increases. Hence, (3.6) is easier to be satisfied and it is more certain that at

the given ς, g′(x∗) < 1 for all x∗ ∈ R. Therefore, the range of ς that ensures g(x∗) is

a contraction function should be broadened as ρ increases, and accordingly ς̂ decreases.
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Suppose ρ > 0. Given ς2 ∈ [ς̂2,+∞), as ρ increases, the variance of f (.|g(x∗)) de-

creases and hence the maximum value of f (.|g(x∗)), which is 1√
2π(1−ρ2)ς

, increases.

However, the change of 1√
2π(1−ρ2)ς

by increasing 0.1 unit of ρ is always smaller than

the change of 1
(1−ρ)(D−M) , because 0 <

∂
1√

2π(1−ρ2)ς

∂ρ
<

∂
1

(1−ρ)(D−M)

∂ρ
given that all parame-

ters satisfy (3.6). Therefore, in this situation, the net effect by increasing ρ is that the

RHS of (3.6) relatively increases. Hence, again (3.6) is easier to be satisfied and the

range of ς which ensures that g(x∗) is a contraction function should be broadened as ρ

increases, and accordingly ς̂ decreases.

If D−M decreases, the RHS of (3.6) increases, and hence (3.6) is easier to be sat-

isfied. In this situation, given ρ ∈ (−1,1), the range of ς which ensures that g(x∗) is a

contraction function should be broadened, and accordingly ς̂ decreases.

Following the same logic for deriving ρ̄ in Theorem 1, correspondingly we obtain

ς̄2 as a critical value to differentiate the unique equilibrium and multiple equilibria.

Similar to ρ̄, ς̄2 exists if and only if D > 0 > M. It is found that ς̄2 ≤ ς̂2. If ρ < 0 such

that ς̃2 exists, ς̄2 could be smaller than, or greater than or equal to ς̃2. If ς̄2 exists, its

analytical expression depends on the sign of D+M. Specifically, if D+M > 0, then

ς̄2 is the unique solution of the following equation:

Φ(

√
ln
(D−M)2(1−ρ)

2πς̄2(1+ρ)
) =

D+
√

ς̄2 1+ρ

1−ρ
ln (D−M)2(1−ρ)

2πς̄2(1+ρ)

D−M

where ς̄2 < ς̂2. If D+M < 0, then ς̄2 is the unique solution of the following equa-

tion:

Φ(−

√
ln
(D−M)2(1−ρ)

2πς̄2(1+ρ)
) =

D−
√

ς̄2 1+ρ

1−ρ
ln (D−M)2(1−ρ)

2πς̄2(1+ρ)

D−M

where ς̄2 < ς̂2. If D+M = 0, ς̄2 = ς̂2. The comparative statics of the number of

equilibrium with respect to ς2 is thus given by the following corollary.

Corollary 1 (Comparative Statics of the Number of Equilibria with respect to
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ς2 and ς∗2 in the Strategic Complements Game): For a static 2×2 entry game, sup-

pose D > M and ς = ς∗. For D > M, ς̃2 exists if and only if ρ < 0. ς̄2 exists if and only

if D > 0 > M. If D > 0 > M and ς̄2 < ς̃2, or if 0 > D > M or D > M > 0 in which ς̄2

does not exist, then for all ς2 ∈ [ς̃2,+∞) for ρ < 0 or ς2 ∈ [0,+∞) for ρ≥ 0, the game

has a unique equilibrium. Conversely, if for all ς2 ∈ [ς̃2,+∞) for ρ < 0 or ς2 ∈ [0,+∞)

for ρ≥ 0, the game has a unique equilibrium, then it is either because D > 0 > M and

ς̄2 < ς̃2 or because 0 > D > M or D > M > 0 in which ς̄2 does not exist. The unique

equilibrium is stable.

Given that D > 0 > M for all ς2 ∈ [ς̃2, ς̄2) if ρ < 0 and ς̄2 > ς̃2 or for all ς2 ∈ (0, ς̄2)

if ρ≥ 0, there exist three equilibria. The middle equilibrium is unstable, while the two

outer equilibria are stable. Particularly, if D+M = 0, the middle equilibrium is always

(0, 0).

At ς2 = ς̄2, where ς̄2 ≥ ς̃2, if ρ < 0, then 1) if D+M 6= 0, there are two equilibria,

of which one is stable and the other’s stability is not determined; and 2) if D+M = 0,

there exists a unique equilibrium (0,0), which is stable.

∀ς2 ∈ (ς̄2,+∞), where ς̄2 ≥ ς̃2, if ρ < 0, there exists a unique equilibrium which is

stable. Particularly, if D+M = 0, the unique equilibrium is always (0, 0).

Proof: see Appendix. �

Games with ς = ς∗ = 0 are complete information games. If 0 > D > M, the game

has a unique action strategy equilibrium (0,0), which implies a cutoff strategy equi-

librium (−M,−M). If D > M > 0, the game has a unique action strategy equilibrium

(1,1), which implies a cutoff strategy equilibrium (−D,−D). If D > 0 > M, there are

three action strategy equilibria: (0,0), (1,1) and a mixed strategy ( D
D−M , D

D−M ), which

imply cutoff strategy equilibria (−M,−M), (−D,−D) and (0,0), respectively. In the

next section, we explain how these cutoff strategy equilibria are translated into action

strategy representations, and we prove that the games with ς = ς∗ = 0 coincide with

the games with ς and ς∗→ 0.

Given other parameters, for games with small variances, it is possible that f (ε∗|ε)
can approximately reflect ε∗ given ε, because the uncertainty of each player’s private
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information is low. Therefore, in games where D > 0 > M, for variances close to zero,

if ρ ≥ 0, f (ε∗|ε) can approximately reflect ε∗ given ε, and hence players are able to

get enough information to match their strategies. This situation is close to games with

ς = ς∗ = 0, in which players can perfectly predict the opponent’s private information.

The intuition of the equilibria of games with D > 0 > M and ς = ς∗ = 0 will be ex-

plained in next section. Hence, for D > 0 > M, the game can exhibit three equilibria,

which are close to (−M,−M), (−D,−D) and (0,0), respectively.

In contrast, for games with small variances, it is also possible that f (ε∗|ε) impre-

cisely reflect ε∗ given ε, because the uncertainty of each player’s private information

is high. In this situation, for games with D > 0 > M, each player is unclear about

the opponent’s propensity of action choice, and accordingly, they will choose a strat-

egy conditional on this expectation. Therefore, in this situation, the game has only a

unique equilibrium that captures this unclear situation.

When variances of payoff shocks increase such that f (ε∗|ε) imprecisely reflects ε∗

given ε, the game with D > 0 > M always has a unique equilibrium. The intuition ex-

actly follows the corresponding intuitions for small variances of private payoff shocks

but f (ε∗|ε) imprecisely reflects ε∗, conditional on ε given D > 0 > M and ρ ∈ (−1,1).

This is discussed in the last paragraph. Therefore, for D > 0 > M, where ς̄ exists, if

ρ < 0 and ς̄ > ς̃ or ρ≥ 0, then ς̄ is exactly the threshold such that for ς < ς̄, the uncer-

tainty of both players’ private information is low and hence f (ε∗|ε) can approximately

reflect ε∗ given ε, and for ς > ς̄, the uncertainty of both players’ private information is

high and hence f (ε∗|ε) imprecisely reflects ε∗ given ε. At ς = ς̄, even if f (ε∗|ε) can

still approximately reflect ε∗ given ε, if the uncertainty of both players’ private infor-

mation increases a little bit, f (ε∗|ε) will imprecisely reflect ε∗ given ε.

For games with 0 > D > M or D > M > 0, supposing variances are small, for all

feasible values of variances given ρ ∈ (−1,1), irrespective of whether f (ε∗|ε) can ap-

proximately or imprecisely reflect ε∗ given ε, there always exists a unique equilibrium.

It is because in these situations, players are either expected to be more likely to choose

being inactive (0 > D > M) or more likely to choose being active (D > M > 0). These

expectations are formed before the payoff shocks are drawn and there do not exist

alternative expectations given each payoff specification. Hence the contingent payoff

shocks cannot affect these expectations. Therefore, the game exhibits a unique equilib-
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rium based on these expectations and if it is 0 > D > M, the cutoff strategy equilibrium

should be close to (−M,−M), and if it is D > M > 0, the cutoff strategy equilibrium

should be close to (−D,−D).

Morris and Shin (2005) study the same incomplete information game by assuming

ς2 = ς∗2, and give a sufficient condition to ensure the game has a unique equilibrium.

Their sufficient condition is also expressed by a critical value of variance: if ς2 is above

this critical value, the game exhibits a unique equilibrium. Morris and Shin (2005) fo-

cus on how introducing strategic uncertainty can reduce the number of equilibrium

of a complete information game. The complete information game is symmetric and

strategic complements. They also use the cutoff strategy defined in this chapter to

solve the game. They argue that when the strategic uncertainty (belief) is sufficiently

invariant with respect to all possible strategies, a unique equilibrium exists. Based on

this insight, they get the sufficient condition to ensure that the game exhibits a unique

equilibrium.

Specifically, take our game as an example to explain Morris and Shin’s rationale.

We denote an equilibrium by (e,e). The equilibrium should satisfy the following equa-

tion:

EΠ(e,e) = σ(e,e)(M−D)+D+ e = 0

If σ(e,e) is sufficiently invariant with respect to e ∈ R, then EΠ(e,e) is close to

be a linear function with respect to e ∈ R. In this situation, EΠ(e,e) = 0 has a unique

solution of e. Hence, a sufficient condition to make σ(e,e) sufficiently invariant with

respect to e ∈ R is that ∂EΠ(e,e)
∂e ≥ 0 for all e ∈ R. Thus, the linear part of EΠ(e,e),

which is e, dominates the non-linear part of EΠ(e,e), which is σ(e,e)(M−D). In this

way, σ(e,e) is sufficiently invariant with respect to e in the sense of Morris and Shin,

and due to the monotonicity of EΠ(e,e) with respect to e, EΠ(e,e) = 0 has a unique

solution of e.

∂EΠ(e,e)
∂e = φ(

√
1−ρ

1+ρ

e
ς
)
√

1−ρ

1+ρ

M−D
ς

+ 1 ≥ 0 for all e ∈ R. Because D > M, equiva-

lently to make ∂EΠ(e,e)
∂e ≥ 0 for all e ∈ R, it requires that min ∂EΠ(e,e)

∂e =
√

1−ρ

1+ρ

M−D√
2πς

+

1≥ 0. Therefore,
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ς≥ D−M√
2π

√
1−ρ

1+ρ

The RHS of the above inequality is only ς̂ in our study. This inequality indicates

that as long as ς≥ D−M√
2π

√
1−ρ

1+ρ
, ∂EΠ(e,e)

∂e ≥ 0 for all e ∈ R, and hence, a unique equilib-

rium exists. ς̂2 differentiates contraction and non-contraction best response functions.

As we mentioned in Section 3.3, if both players’ best response functions are contrac-

tions, then the game is dominance solvable and hence there exists a unique equilibrium.

Corollary 1 provides a complete range of parameter specifications ensuring a unique

equilibrium, and the complete range is broader than the range of variances that ensures

that the best response functions are contraction function. Therefore, Corollary 1 nests

Morris and Shin’s (2005) sufficient condition of uniqueness.

3.7 An Extension of Purification Rationale

Now consider the following complete information entry game:
Firm i∗

inactive (0) active (1)

i

inactive

(0)

0

0

M

0

Fi
rm active

(1)

0

M

D

D

Table 2: The complete information entry game where D > M

Assume D > 0 > M. The game has three equilibria, (0,0), (1,1) and ( M
M−D ,

M
M−D),

where M
M−D is the probability to choose being active. The game shown in Table 1 is the

perturbed game of this complete information game. In the following, for simplicity,

we call the game shown in Table 2 as the complete information entry game, and the

game shown in Table 1 as the perturbed entry game.

Harsanyi (1973) proposed a purification rationale for the play of mixed strategy

equilibria. According to Harsanyi (1973), suppose that a player has some small private

propensity to choose being active or being inactive, and this propensity is independent
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of the payoff specification. However, this information is not known to the other player

at all. Then, the behaviour of such player will look as if they are randomizing between

their actions to the other player. Because of the private payoff perturbation, the op-

ponent will not in fact be indifferent to their actions, but will almost always choose

a strict best response. Harsanyi’s purification theorem showed that all equilibria of

almost all complete information games are the limit of pure strategy equilibria of per-

turbed games where players have independent small private payoff shocks.

Note that, in Harsanyi’s purification theorem, he specifies that the uncertainty of

perturbed games vanishes in scale. That is, a constant η times the perturbation er-

ror ε, and let η→ 0. But in our game, we use an alternative approach to model the

process that the uncertainty of perturbed games vanishes. That is, to let the variances

of the perturbation-error distribution converge to zero. Here we make a clarification.

For Harsanyi’s (1973) purification rationale, it literally describes the idea that every

Nash equilibrium of a complete information game can always be approached by a pure

strategy Bayesian Nash equilibrium of a perturbed game. For Harsanyi’s (1973) pu-

rification theorem, it further requires that the uncertainty of perturbed games vanishes

in scale.

Following Morris’ (2008) approach to decomposing Harsanyi’s purification the-

orem, we can correspondingly decompose Harsanyi’s purification rationale into two

parts. The ‘purification’ part, where all equilibria of the perturbed game are essentially

pure, and the ‘approachability’ part, where every equilibrium of a complete informa-

tion game is the limit of equilibria of such perturbed games. For the first part, both

Harsanyi’s purification rationale and Harsanyi’s purification theorem use the assump-

tion of sufficiently diffuse independent payoff shocks. For our 2× 2 games, the pu-

rification rationale indicates that provided that ρ = 0, all pure-strategy Bayesian Nash

equilibria of the perturbed game obtained by using cutoff strategies (see Table 1) will

finally converge to a Nash equilibrium of the complete information game (see Table

2). According to our Corollary 1, given that D > 0 > M and ρ = 0, for ς2 ∈ (0, ς̃2),

the Bayesian games that can be solved by cutoff strategies exist and they have three

equilibria. As we will exhibit in the following, these equilibria will finally converge

to (0,0), (1,1) and ( M
M−D ,

M
M−D), which are action strategy equilibria of the complete

information game expressed as in Table 2 as ς and ς∗→ 0. Therefore, the purification

rationale is still applicable if the uncertainty of perturbed games vanishes as the vari-
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ances of the perturbation-error distribution converge to zero.

However, what will be the situation if we relax the purification rationale by assum-

ing the perturbation errors are dependent? Will Harsanyi (1973)’s purification rationale

be still held for dependent payoff shocks?

Carlsson and van Damme (CvD, Appendix B, 1993) compare their global game

model with Harsanyi’s model. CvD’s game is identical to our game shown in Table

1. Both are symmetric and strategic complements. The only difference is that in their

game the ε of our game is additively decomposed into a common shock and an id-

iosyncratic shock χ, i.e. ε = θ+χ. θ and χ are independent and both follow a normal

distribution. We denote µθ and µχ as the mean of θ and χ, respectively, and ς2
θ

and

ς2
χ as the variances of θ and χ. Therefore, ε ∼ N(µθ +µχ,ς

2
θ
+ ς2

χ), where µθ +µχ = 0

and ς2
θ
+ ς2

χ = ς2. Thus, ε and ε∗ are correlated due to the common payoff shock, i.e.

ρ =
ς2

θ

ς2
θ
+ς2

χ

. In contrast, in our games, ε and ε∗ can be dependent or correlated in any

way, and due to the normal distribution specification, correlation coefficient ρ can re-

flect the dependence relation between ε and ε∗, rather than a simple correlation relation

between the two shocks.

By specifying ς2
θ
6= 0 and ς2

χ → 0, their model is the global game, and a unique

equilibrium will be selected. The latter result can be accounted by our Theorem 1,

which shows that as ρ→ 1, the game can only have a unique equilibrium, because

during the process, the best response functions become contraction functions. How-

ever, CvD’s work cannot show whether Harsanyi’s (1973) purification rationale can be

extended to perturbed games with correlated perturbation errors. It is because CvD’s

model requires that ς2
θ
+ ς2

χ→ 0, but due to the additive error structure ε = θ+χ, as

ς2
θ
+ ς2

χ→ 0, ρ =
ς2

θ

ς2
θ
+ς2

χ

changes as well and ρ→ 1. Therefore, CvD’s framework can-

not isolate ρ’s impact on the game as the perturbation errors ε and ε∗ degenerate to a

constant 0.

In last section of this work, we see that by assuming D > M and ρ≥ 0, the games

for ς2 ∈ (0,+∞) can be solved by cutoff strategies. The game closest to the complete

information entry game is the Bayesian game, where ς and ς∗ → 0. If ς = ς∗, the best

response function in its reverse form is given by
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x∗ = ρg(x∗)+ ς

√
1−ρ2Φ

−1(
D+g(x∗)

D−M
)

where g(x∗) ∈ [−D,−M] and x∗ ∈ R. Therefore, as ς and ς∗→ 0,

g(x∗) =
1
ρ

x∗

where x∗ ∈ [−ρD,−ρM] if D > M and ρ > 0. Let us recall the following definition

of equation g(x∗):

EΠ(x∗,g(x∗))=σ(x∗,g(x∗))(M−D)+D+g(x∗)=Φ(
x∗−ρg(x∗)

ς
√

1−ρ2
)(M−D)+D+g(x∗)= 0

As ς→ 0, if x∗ > −ρM, g(x∗) = −M, and if x∗ < −ρD, g(x∗) = −D (see Ap-

pendix). Therefore, the best response function of the Bayesian games with ς and ς∗

→ 0 for all x∗ ∈ R and ρ > 0 is given by

g(x∗) =


−D x∗ <−ρD

1
ρ

x∗ −ρD≤ x∗ ≤−ρM

−M x∗ >−ρM

The intuition of the piecewise expression of g(x∗) as ς and ς∗ → 0 is as follows.

Supposing D > M, if the opponent i∗ is expected to adopt a very high (low) cutoff

strategy, it implies that player i expects that i∗ is more likely to choose being inactive

(active). In a strategic complements context, players always tend to match their action

strategies, and hence as a best response, i will adopt the highest (lowest) cutoff strategy

that can be achieved to indicate that the player also prefers being inactive (active). This

highest (lowest) strategy is −M (−D).

Assuming ς = ς∗, as ς and ς∗ → 0, the likelihood of the mean of the distribu-

tion of the opponent’s payoff shock given a player’s own payoff shock increases,

while the likelihood of the payoff shocks at both sides of the distribution around the

mean decreases, because the variance of the conditional payoff shock distribution,

ς2(1−ρ2), degenerates. Suppose the payoff shock that makes player i indifferent to

entry or being inactive equals g(x∗), where reasonably g(x∗) ∈ [−D,−M] for D > M
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or g(x∗) ∈ [−M,−D] for M > D, then the mean of the opponent’s payoff shock distri-

bution is ρg(x∗), which happens with a very high likelihood as ς and ς∗→ 0.

In symmetric games, no matter whether the game exhibits strategic complements

or strategic substitutes, if a player is expected to be indifferent to being active or being

inactive, the opponent will also adopt a strategy such that the opponent is also indiffer-

ent to entry or being inactive as a best response. Thus, the opponent i∗ will choose a

strategy x∗ indicating indifference to their own action choices.

Therefore, based on the analysis from the previous two paragraphs, given g(x∗) be-

tween −M and −D, i expects that the payoff shock that is most likely to happen for i∗

is ρg(x∗). Because at g(x∗), i is indifferent to either action choice, as a best response,

at ρg(x∗), i∗ will also be indifferent to either action choice. Therefore, i∗’s strategy

x∗ should be equal to ρg(x∗) when ς and ς∗ → 0 if g(x∗) ∈ [−D,−M] for D > M or

g(x∗) ∈ [−M,−D] for M > D. Obviously, this intuition applies to both the strategic

complements and strategic substitutes cases.

Because the game is symmetric, for the strategic complements game, the equilibria

can be described by the intersection points between g(x∗) and the 45◦ line. Specifically,

if D > 0 > M, there are three equilibria (intersection points): (−M,−M), (−D,−D)

and (0,0) (see Figure 10-1).16 As ς and ς∗ → 0, the payoff shocks ε and ε∗ converge

to 0. Therefore, given cutoff strategy equilibrium (−M,−M), since −M > 0, both

players always choose action 0 in this equilibrium. Given cutoff strategy equilibrium

(−D,−D), since −D < 0, both players always choose action 1 in this equilibrium.

Given strategy (0,0), the equilibrium belief σ(0,0) equals D
D−M given any value of

ρ ∈ (0,1). Thus, in this situation, σ(0,0) is independent of ρ and it is always equal

16The intuition of the cutoff strategy equilibrium is that given D > 0 > M, a player can expect that
the opponent either chooses being active or inactive. If a player expects the opponent to choose entry,
the player will get payoff D if they also choose entry. Thus, the player will adopt a cutoff strategy −D.
As the best response, the opponent will adopt a strategy −D.

In contrast, if a player expects the opponent to choose being inactive, then the player will get payoff
M if they choose to enter. Thus, the player will adopt a cutoff strategy −M. As the best response, the
opponent will adopt a strategy −M.

If a player expects the opponent is indifferent to being active or being inactive, it indicates that irre-
spective of what value ε∗ is, the expected payoff of entry for opponent i∗ is equal to 0. Therefore, player
i∗’s cutoff strategy is equal to 0. Hence, given D > 0 > M, player i will adopt a strategy 0 as a best
response. Therefore, another cutoff strategy equilibrium ς and ς∗→ 0 is (0,0).
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Figure 10: The solid curve represents g(x∗) as ς and ς∗→ 0. The dashed line

represents the 45◦ line. The intersection points between g(x∗) and the 45◦ line are the

equilibria of the game with ς and ς∗→ 0. If D > 0 > M , there are three equilibria,

(−M,−M), (−D,−D) and (0,0). If 0 > D > M, there is a unique equilibrium

(−M,−M). If D > M > 0, there is a unique equilibrium (−D,−D).

to the unconditional probability of player i∗ choosing action 0. Therefore, as ς and ς∗

→ 0, the equilibria of the game expressed in the form of action strategies are given by

(0,0), (1,1) and ( D
D−M , D

D−M ). These equilibria are exactly equal to the equilibria of

the games with ς = ς∗ = 0 and D > 0 > M. Similarly, if 0 > D > M or D > M > 0,

the equilibrium cutoff strategies are (−M,−M) or (−D,−D) respectively, which im-

ply the action strategies (0,0) or (1,1) (see Figures 10-2 and 10-3).17 These equilibria

are exactly equal to the corresponding equilibria of the games with ς = ς∗ = 0 and

0 > D > M or with ς = ς∗ = 0 and D > M > 0. Therefore, as ς and ς∗→ 0, the equilib-

ria of the perturbed games finally converge to the equilibria of the underlying complete

information game.

Therefore, if D > M and perturbation errors ε and ε∗ follow a joint normal dis-

tribution, all equilibria of the complete information entry games are the limit of pure-

strategy Bayesian Nash equilibria of perturbed games where players have non-negatively

dependent perturbation errors.

17The intuitions of these cutoff strategy equilibria are as follows. Suppose 0 > D > M. As ς and
ς∗→ 0, it is very likely that each player will choose being inactive. Conditional on this expectation, a
player choosing entry must get a payoff shock ε >−M since M+ ε > 0 and M is the payoff the player
can obtain by choosing entry given this expectation. As the best response, the opponent will adopt the
same cutoff strategy. Hence, the cutoff strategy equilibrium (−M,−M) exists in this situation.

Similarly, suppose D > M > 0. As ς and ς∗→ 0, it is very likely that each player will choose being
active. Conditional on this expectation, a player choosing entry must get a payoff shock ε > −D since
D+ε > 0 and D is the payoff the player can obtain by choosing entry given this expectation. As the best
response, the opponent will adopt the same cutoff strategy. Hence, in this situation, we have the cutoff
strategy equilibrium (−D,−D).
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However, if D > M and ρ < 0, then ς̃2 arises. In the previous section, we have

shown that if and only if ς2 ∈ [ς̃2,+∞), the Bayesian games can be solved by cutoff

strategies. If ς2 ∈ (0, ς̃2), the Bayesian games that can be solved by cutoff strategies do

not exist due to the violation of the definition of the cutoff strategy concept, as we have

exhibited in Section 3.6. Therefore, the sequence of such perturbed Bayesian games

that are supposed to converge to the complete information game does not exist. Hence,

the ‘approachability’ part of the purification rationale cannot be satisfied, and so the

purification rationale cannot be applied in this situation. Therefore, in the strategic

complements games (D > M), if and only if ρ≥ 0, Harsanyi’s purification rationale is

still applicable.

Extending purification rationale in the strategic substitutes game where M > D is

similar to extending it in the strategic complements game discussed above. In Chapter

2, it has been proven that if and only if ρ ≤
√

2πς2

2πς2+(M−D)2 , a cutoff strategy can be

used to solve the game (see Wang, 2016). Equivalently, it also implies a restriction on

the variance to ensure that the game can be solved by a cutoff strategy:

ς
2 ≥ ρ2(D−M)2

2π(1−ρ2)
for ρ > 0 (3.8)

This inequality indicates that given M > D and ρ > 0, there exists a lower bound of

ς2, which is denoted by ς̃2 and ς̃2 = ρ2(D−M)2

2π(1−ρ2)
. For variances below this lower bound,

the game cannot be solved by a cutoff strategy. For ρ≤ 0, a cutoff strategy is still appli-

cable for all ς2 ∈ (0,+∞) because for ρ≤ 0, the relationship ρ≤ 0≤
√

2πς2

2πς2+(M−D)2 =

ρ̃ always holds for all ς2 ∈ (0,+∞).

The intuition of the existence of ς̃2 for M > D and ρ > 0 is similar to the intuition

for D > M and ρ < 0. Recall that if M > D, for ρ≤ 0, ∂EΠ(x∗,ε)
∂ε

> 0 for all ς∈ (0,+∞).

For ρ > 0, there exists ς̃ such that min ∂EΠ(x∗,ε)
∂ε

= ρ(D−M)

ς̃

√
2π(1−ρ2)

+1 = 0 ∀x∗ ∈ R. There-

fore, if ρ> 0, for ς≥ ς̃, ∂EΠ(x∗,ε)
∂ε

≥ 0 ∀x∗ ∈R. For ς< ς̃ if ρ> 0, this situation parallels

that of ρ > ρ̃ given ς = ς∗ in the strategic substitutes game. In this situation, EΠ(x∗,ε)

is no longer monotonic with respect to ε, and for some x∗ ∈R, EΠ(x∗,ε) = 0 has mul-

tiple (three) solutions of ε. One of the solutions gets the following property: a payoff

shock that is below this threshold can make a player choose entry, which contradicts

the definition of the cutoff strategy (see Appendix B in Chapter 2). Therefore, by as-
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suming ς = ς∗, given M > D and ρ, a player can use a cutoff strategy to play the game

if and only if ς ∈ [ς̃,+∞) for ρ > 0 or ς ∈ (0,+∞) for ρ≤ 0.

If M > D and ρ ≤ 0, games that can be solved by cutoff strategies exist for all

ς2 ∈ (0,+∞). Since the equilibria of a game are solutions of the equation system com-

posed of both players’ best response functions, a small perturbation of the equation

system will result in a nearby equilibrium. The most closets game is the game with

ς and ς∗ → 0. Again, the best response function is given by the following piecewise

function:

g(x∗) =


−D x∗ <−ρD

1
ρ

x∗ −ρD≤ x∗ ≤−ρM

−M x∗ >−ρM

where x∗ ∈ R and ρ < 0.

Although the expression of the best response function is the same as the one

for D > M and ρ > 0, the intuitions are not exactly the same. For the intuition of

g(x∗) ∈ [−M,−D], we have explained it in the previous part of this section when we

analysed the case of D>M and ρ> 0. Given that M >D, if the opponent i∗ is expected

to adopt a very high (low) strategy, it means player i expects that i∗ is most likely to

choose being inactive (active). In a strategic substitutes context, players always tend to

mismatch their action strategies, and hence as the best response, i will adopt the low-

est (highest) strategy that can be achieved to indicate the player’s preference of being

active (inactive). This lowest (highest) strategy is −M (−D).

Because the game is symmetric, g(x∗) and g∗(x) are symmetrically located around

the 45◦ line. The equilibria are the intersection points between g(x∗) and g∗(x). Specif-

ically, for M > 0 > D, if M > ρD and D > ρM, there are three equilibria (intersection

points): (−D
ρ
,−D), (−D,−D

ρ
) and (0,0) (see Figure 11).18

18The intuition of the cutoff strategy equilibrium is that given M > 0 > D, a player can expect that
the opponent either chooses being active or inactive. If a player expects the opponent to choose entry,
the player will get payoff D if they also choose entry. Thus, the player will adopt a cutoff strategy −D.
As the best response, the opponent will adopt a strategy −D

ρ
.

In contrast, if a player expects the opponent to choose being inactive, then the player will get payoff
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As ς and ς∗→ 0, the payoff shocks ε and ε∗ are always equal to 0. Therefore, given

cutoff strategy equilibrium (−D
ρ
,−D), since −D

ρ
< 0 and −D > 0, in this equilibrium,

player i always chooses action 1 and player i∗ always chooses action 0. Hence, the

action strategy representation of this equilibrium is (1,0). In the same way, the cutoff

strategy equilibrium (−D,−D
ρ
) indicates the action strategy (0,1). Given cutoff strat-

egy equilibrium (0,0), the equilibrium belief σ(0,0) is always equal to D
D−M given any

value of ρ ∈ (−1,0). Thus, σ(0,0) is always equal to the unconditional probability

of player i∗ choosing action 0. Therefore, as ς and ς∗ → 0, the equilibria of the game

expressed in the form of action strategies are given by (1,0), (0,1) and ( D
D−M , D

D−M ).

These equilibria are exactly equal to the equilibria of the games with ς = ς∗ = 0 and

M > 0 > D. Therefore, as ς and ς∗ → 0, the equilibria of the perturbed games finally

converge to the equilibria of the underlying complete information games.

For M > 0 > D and ρ < 0, if M < ρD and D < ρM, there are three cutoff strategy

equilibria (intersection points): (−M
ρ
,−M), (−M,−M

ρ
) and (0,0) (see Figure 12).19 20

As ς and ς∗ → 0, the payoff shocks ε and ε∗ are always equal to 0. Therefore, given

M if they choose to enter. Thus, at least when ε ≥ −M, the player will consider entry. However,
M > ρD and hence −M < −ρD, where −ρD is the entry threshold that opponent i∗ expects player i
to most likely adopt conditional on that i∗ expects i will choose entry. Thus, if i gets a payoff shock ε

such that −M < ε <−ρD, the opponent expects that i will not choose entry but in fact i indeed chooses
entry. Hence, a contradiction arises and i cannot adopt −M. Therefore, based on the opponent’s belief
that i will choose entry and accordingly i∗ will adopt a strategy −D, i’s best response will be −D

ρ
.

If a player expects the opponent is indifferent to being active or being inactive, it indicates that ir-
respective of what value ε∗ is, the expected payoff of entry for i∗ is equal to 0. Therefore, player i∗’s
cutoff strategy is equal to 0. Hence, given M > 0 > D, as a best response, player i will adopt a strategy
0. Therefore, another cutoff strategy equilibrium as ς and ς∗→ 0 is (0,0).

19For M > 0 > D and ρ < 0, the following parameter specifications cannot be held: M > ρD and
D < ρM or M < ρD and D > ρM. It is because if ρ = −1, in either parameter specification, one
inequality indicates M+D> 0, while the other one indicates M+D< 0. Obviously, the two inequalities
cannot be held simultaneously.

20The intuitions of these cutoff strategy equilibria are similar to the previous case where M > ρD
and D > ρM. Given M > 0 > D, a player can expect that the opponent either chooses being active or
inactive. If player i expects the opponent to choose being inactive, then the player will get payoff M if
they choose entry. Thus, player i will adopt a cutoff strategy −M. As the best response, the opponent i∗

will adopt a strategy −M
ρ

.

Otherwise, if player i expects the opponent i∗ to choose being active, the player will get payoff D
if they choose to enter. Thus, at least ε ≥ −D, i will consider entry. However, D < ρM and hence
−D > −ρM, where −ρM is the entry threshold that i∗ expects i is most likely to adopt conditional on
that i∗ expects i will choose being inactive. Thus, if i gets a payoff shock ε such that −D > ε > −ρM,
the opponent will expect that i will choose being active but in fact i chooses being inactive. Hence, a
contradiction arises and i cannot adopt −D. Therefore, based on the opponent’s belief that i will choose
being inactive and accordingly i∗ will adopt a strategy −M, i’s best response will be −M

ρ
.
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Figure 11: The solid curve represents g(x∗) as ς and ς∗ → 0. The dashed curve

represents g∗(x) as ς and ς∗ → 0. The dashed-dot line represents the 45◦ line. The

intersection points between g(x∗) and g∗(x) are the equilibria of the game with ς and

ς∗→ 0. For M > 0 > D and ρ < 0, if M > ρD and D > ρM, there are three equilibria

(−D
ρ
,−D), (−D,−D

ρ
) and (0,0).

cutoff strategy equilibrium (−M
ρ
,−M), since−M

ρ
> 0 and−M < 0, in this equilibrium

player i always chooses action 0 and player i∗ always chooses action 1. Hence, the

action strategy representation of this equilibrium is (0,1). In the same way, the cutoff

strategy equilibrium (−M,−M
ρ
) indicates the action strategy (1,0). Given cutoff strat-

egy equilibrium (0,0), the equilibrium belief σ(0,0) is equal to D
D−M given any value

of ρ ∈ (−1,0). Hence, it equals the unconditional probability of i∗ choosing action 0.

Therefore, as ς and ς∗ → 0, the equilibria of this game are given by (1,0), (0,1) and

( D
D−M , D

D−M ). These equilibria are exactly equal to the equilibria of the games with

ς = ς∗ = 0 and M > 0 > D.

It should be noted that in the case of M > 0 > D, irrespective of whether M > ρD

and D > ρM, or M < ρD and D < ρM, given M, D, and ς and ς∗→ 0, as ρ changes, the

best response function changes and the cutoff strategy equilibria, except (0,0), change

as well. However, when we translate these cutoff strategies with respect to different

values of ρ into action strategies, they indicate the same action strategies. For exam-

The intuition of cutoff strategy (0,0) is the same as that in the previous case where M > ρD and
D > ρM.
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ple, if M > ρD and D > ρM, where ρ < 0, a cutoff strategy equilibrium is (−D
ρ
,−D).

For different values of ρ, (−D
ρ
,−D) differs, but it always indicates the action strategy

equilibrium (1,0).

0 x*
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Figure 12: The solid curve represents g(x∗) as ς and ς∗ → 0. The dashed curve

represents g∗(x) as ς and ς∗ → 0. The dashed-dot line represents the 45◦ line. The

intersection points between g(x∗) and g∗(x) are the equilibria of the game with ς and

ς∗→ 0. For M > 0 > D and ρ < 0, if M < ρD and D < ρM, there are three equilibria

(−M
ρ
,−M), (−M,−M

ρ
) and (0,0).

Similarly, if 0>M >D or M >D> 0, the equilibrium cutoff strategies are (−M,−M)

and (−D,−D), respectively, which imply the action strategy equilibria (0,0) and (1,1)

(see Figures 13-1 and 13-2).21 These equilibria are exactly equal to the equilibria of the

games with ς = ς∗ = 0 and 0 > M > D or with ς = ς∗ = 0 and M > D > 0. Therefore,

as ς and ς∗→ 0, the equilibria of the perturbed games finally converge to the equilibria

21The intuitions of these cutoff strategy equilibria are as follows. Suppose 0 > M > D. As ς and
ς∗→ 0, it is very likely that each player will choose being inactive. Conditional on this expectation, a
player choosing entry must get a payoff shock ε >−M since M+ ε > 0 and M is the payoff the player
can obtain by choosing entry given this expectation. As the best response, the opponent will adopt the
same cutoff strategy. Hence, the cutoff strategy equilibrium (−M,−M) exists in this situation.

Similarly, suppose M > D > 0. As ς and ς∗→ 0, it is very likely that each player will choose being
active. Conditional on this expectation, a player choosing entry must get a payoff shock ε > −D since
D+ ε > 0 and D is the payoff they can obtain by choosing entry given this expectation. As the best
response, the opponent will adopt the same cutoff strategy. Hence, in this situation, we have the cutoff
strategy equilibrium (−D,−D).
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13-1: 0 > M > D

0 x*

g(x*)

-D

-M

-M

-D

13-2: M > D > 0

Figure 13: The solid curve represents g(x∗) as ς and ς∗→ 0. The dashed curve

represents g∗(x) as ς and ς∗→ 0. The dashed-dot line represents the 45◦ line. The

intersection points between g(x∗) and g∗(x) are the equilibria of the game with ς and

ς∗→ 0. For ρ < 0, if 0 > M > D, the equilibrium is (−M,−M), and if M > D > 0,

the equilibrium is (−D,−D).

of the underlying complete information games.

Therefore, Harsanyi’s purification rationale can also be extended to perturbed games

with non-positively dependent perturbation errors in a strategic substitutes context.

However, if M > D and ρ > 0, the Bayesian games that can be solved by cutoff

strategies do not exist for ς2 ∈ (0, ς̃2). Therefore, the sequence of perturbed games

that are supposed to converge to the complete information game does not exist. Since

the ‘approachability’ requirement cannot be satisfied, Harsayni’s purification rationale

cannot be applied in this situation.

In conclusion, irrespective of whether the perturbation errors are positively depen-

dent in strategic complements games or negatively dependent in strategic substitutes

games, as the perturbation errors degenerate to zero, the Bayesian games that are sup-

posed to converge to the underlying complete information game exist. Supposing the

perturbed games exist as variances of the prior distribution tend to 0, given the same

primitives except the correlation coefficient, the best response function differs with dif-

ferent values of the correlation coefficient because the slope changes. Except the case

of M > 0 > D, the value of cutoff strategy equilibria does not depend on the correlation

coefficient. For the case of M > 0 > D, except the cutoff strategy equilibrium (0,0), all
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cutoff strategy equilibria differs with different values of correlation coefficient. How-

ever, in any situation, given different values of correlation coefficient, if we translate

these cutoff strategy equilibria into action strategy equilibria, they represent the same

action strategy equilibria given the same payoffs M and D. These action strategy equi-

libria are equal to the corresponding Nash equilibria of the complete information game.

Finally, we formally describe the extension of Harsanyi’s purification rationale to

the normally distributed dependent perturbation-error situations in the following corol-

lary:

Corollary 2: (An Extension of Purification Rationale): In a 2×2 symmetric en-

try game, described in Table 2, all equilibria are the limit of the pure-strategy Bayesian

Nash equilibria of a sequence of perturbed games described in Table 1 as (ς,ς∗)→ 0, if

and only if D > M and ρ≥ 0 or M > D and ρ≤ 0. (ε,ε∗) follows a joint normal distri-

bution N(0,0,ς2,ς∗2,ρ) and the perturbed games are solved by using cutoff strategies,

as defined in Section 3.2.

3.8 Summary

In this section, we give an organized summary of all main results and intuitions of the

strategic complements game. The game can be described in two ways by six parame-

ters: given ς = ς∗ ∈ (0,+∞), ρ̃, ρ̂ and ρ̄, or given ρ ∈ (−1,1), ς̃, ς̂ and ς̄. ς̃ exists if and

only if ρ < 0. ρ̄ and ς̄ can exist if and only if D > 0 > M. The relationships between

these parameters are as follows: ρ̂≥ ρ̄, ρ̂ > ρ̃ and ρ̄ could be smaller than, equal to or

greater than ρ̃; ς̂≥ ς̄, ς̂ > ς̃ and ς̄ could be smaller than, equal to or greater than ς̃.

In Section 3.2, we derive ρ̃. Supposing the game is symmetric, if and only if ρ≥ ρ̃,

the game can be solved by cutoff strategies. The intuition is that if ρ < ρ̃, the ex-

pected payoff EΠ(x∗,ε) is no longer monotonic with respect to ε and for some x∗ ∈R,

EΠ(x∗,ε) = 0 has three solutions of ε and at one of the solutions, ∂EΠ(x∗,ε)
∂ε

< 0, which

contradicts the definition of the cutoff strategy that is used to solve the game. In fact,

by assuming ς = ς∗, this result can be extended to asymmetric payoff settings, where

each player has different D and M. In this situation, the game can be solved by a cutoff

strategy if and only if ρ ≥ max{ρ̃, ρ̃∗}, where ρ̃∗ = −
√

2πς2

2πς2+(D′−M′)2 and D′ and M′
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are player i∗’s known payoffs.

In Section 3.3, we derive ρ̂. For ρ≥ ρ̂, player i’s best response function is a contrac-

tion function. In this symmetric game, ρ ≥ ρ̂ is also the sufficient condition to ensure

that the game is dominance solvable. This condition can be generalized to asymmetric

payoff settings as described above. In this situation, the sufficient condition is gener-

alized to ρ≥max{ρ̂, ρ̂∗}, where ρ̂∗ = (D′−M′)2−2πς2

(D′−M′)2+2πς2 .

In the strategic complements game, ρ̄ exists if and only if D> 0>M. If ρ̄≥ ρ̃, then

ρ̄ is the threshold to differentiate low and high uncertainty between players’ private in-

formation. For ρ < ρ̄, the uncertainty between players’ private information is low,

which means f (ε∗|ε) can approximately reflect ε∗ given ε; hence, players can gather

enough information to assist them to match their action strategies. For ρ̂ > ρ > ρ̄, the

uncertainty between players’ private information is high such that f (ε∗|ε) imprecisely

reflects ε∗ given ε; hence, each player has an unclear expectation of the other player’s

propensity of action choice. At ρ = ρ̄, the uncertainty between players’ private infor-

mation is at the margin such that if the uncertainty between players’ private information

increases slightly, f (ε∗|ε) will imprecisely reflect ε∗ given ε. If ρ̄ does not exist, then

for all ρ ∈ [ρ̃, ρ̂), the game has a unique equilibrium because the payoff shocks do not

have any impact on players’ ex ante expectations of the opponent’s behaviour. The

ex ante expectations are that either both players are more likely to choose being inac-

tive (0 > D > M) or more likely to choose being active (D > M > 0). Accordingly,

based on these expectations, the game exhibits a unique equilibrium (−M,−M) with

respect to the specification 0 > D > M or (−D,−D) with respect to the specification

D > M > 0. For ρ ∈ [ρ̂,1), the best response functions are contraction function. In this

situation, each player is more focused on the knowledge of himself and the opponent’s

information becomes less important in a player’s decision making. This situation is

close to that of an individual decision problem and hence the game exhibits a unique

equilibrium.

In Section 3.6, we first derive ς̃. It exists if and only if ρ < 0. Then, if and only

if ς ≥ ς̃ for ρ < 0 or ς > 0 for ρ ≥ 0, the game can be solved by a cutoff strategy.

The intuition is that if ρ ≥ 0, for all ς > 0, EΠ(x∗,ε) increases with respect to ε for

all x∗ ∈ R. If ρ < 0, for ς < ς̃, EΠ(x∗,ε) is no longer monotonic with respect to ε.

In this situation, for some x∗ ∈ R, EΠ(x∗,ε) = 0 has three solutions of ε and at one
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of the solutions, ∂EΠ(x∗,ε)
∂ε

< 0. This result can also be extended to asymmetric payoff

settings. For details, please refer to Section 3.6.

Next, we derive ς̂. For ς≥ ς̂, player i’s best response function is a contraction func-

tion. In this symmetric game, ς ≥ ς̂ is also the sufficient condition to ensure that the

game is dominance solvable. This condition can be generalized to asymmetric payoff

settings as well (see Section 3.6).

In the strategic complements game, ς̄ exists if and only if D > 0 > M. By assuming

ς = ς∗, if ς̄ ≥ ς̃, then ς̄ is the threshold to differentiate low and high uncertainties of

a player’s private information. For ς < ς̄, the uncertainty of players’ private informa-

tion is low, which indicates that f (ε∗|ε) can approximately reflect ε∗ given ε; hence,

players can gather enough information to assist them to match their action strategies.

For ς > ς̄, the uncertainty of players’ private information is high such that f (ε∗|ε)
imprecisely reflect ε∗ given ε; hence, each player has an unclear expectation of the

opponent’s propensity of action choice. At ς = ς̄, the uncertainty of players’ private

information is at the margin such that if the uncertainty of players’ private informa-

tion increases slightly, f (ε∗|ε) will imprecisely reflect ε∗ given ε. If ς̄ < ς̃, then for

ς ∈ [ς̃,+∞), the game has a unique equilibrium. It is because in this situation f (ε∗|ε)
is imprecise to reflect ε∗ given ε.

The final and important result obtained is that based on this game, we extend

Harsanyi’s (1973) purification rationale to a dependent-perturbation error setting for

both strategic complements and strategic substitutes games. In our game, the uncer-

tainty of perturbed games vanishes as the variances of perturbation-error distribution

degenerate to zero. By assuming that the perturbed games are solved by cutoff strate-

gies and the perturbation errors follow the joint normal distribution as given in this

paper, the purification rationale can be extended to perturbed games with positively

dependent perturbation errors if the complete information game exhibits strategic com-

plements or negatively dependent perturbation errors if the complete information game

exhibits strategic substitutes. If we assume that the perturbation errors are negatively

dependent if the complete information game exhibits strategic complements or posi-

tively dependent if the complete information game exhibits strategic substitutes, then

the ‘approachability’ part of the purification rationale cannot be satisfied, and hence,

we cannot extend the purification rationale to such situations.
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3.9 Conclusion

In this chapter, we study a 2 × 2 strategic-complements entry game in which players’

private information are correlated. The game is symmetrically specified. Given other

parameters, there exists a critical value of correlation coefficient below which a cutoff

strategy cannot be used to solve the game. We explore the comparative statics of the

number of equilibria with respect to the correlation coefficient. As the correlation coef-

ficient increases from the lowest feasible value, ρ̃, to 1, the sequence of the number of

equilibria will be 3→ 2→ 1 if D+M 6= 0 and 3→ 1 if D+M = 0. Alternatively, under

certain parameter specification, the game exhibits a unique equilibrium for all feasible

values of the correlation coefficient. The comparative statics of equilibrium strategies

with respect to the correlation coefficient and variances of the joint prior distribution

depend on the sign of the equilibrium and the equilibrium’s stability. For unstable

equilibrium, increasing the payoff of entry makes a player less likely to choose entry,

which contradicts our common sense.

We obtain the comparative statics of the number of equilibria with respect to vari-

ances of the joint prior distribution. It is a necessary and sufficient condition to dif-

ferentiate unique equilibrium and multiple equilibria. This necessary and sufficient

condition nests Morris and Shin’s (2005) sufficient condition to ensure a unique equi-

librium of the same game. Finally, if the correlation coefficient is negative for the

strategic complements games or positive for the strategic substitutes games, there ex-

ists a critical value of variance. For variances below this critical value, a cutoff strategy

cannot be used to solve the game. With specifying the process that the uncertainty of

perturbed games vanishes by letting the variances of the perturbation-error distribution

degenerate to zero, this result implies that Harsanyi’s (1973) purification rationale can-

not be applied for a game with dependent perturbation errors that follow a joint normal

distribution with negative correlation coefficient for the strategic complements games

or with positive correlation coefficient for the strategic substitutes games.

However, if the correlation coefficient is positive for the strategic complements

games or negative for the strategic substitutes games, the purification rationale is still

applicable. The Bayesian games that are supposed to converge to the underlying com-
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plete information game as perturbation errors degenerate to zero exist, and the pure-

strategy Bayesian Nash equilibria of the perturbed games will converge to the corre-

sponding Nash equilibrium of the complete information game during this process.

For future research, we can study the comparative statics of the number of equilib-

ria with respect to variances in a strategic substitutes setting, i.e. M > D. In addition,

the characterization of equilibria set in the strategic complements game is helpful for

further econometric studies such as identification of such type of games. Besides, we

will study whether and how the purification with dependent randomization rationale

can be applied to more general games.
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Chapter 4

Bayesian Games with Rationally

Inattentive Players

We study how scarcity of attention affects strategic choice behaviour in a 2-player in-

complete information entry game. Scarcity of attention is a common psychological

character among population (Kahnemann, 1973) and it is modelled by the rational

inattention approach introduced by Sims (1998). In this game, players acquire infor-

mation about their private payoff shocks at a cost, which follows a high-low binary

distribution. We find that high information cost can generate multiple equilibria and

the number of equilibria differs with respect to different ranges of information cost.

The number of equilibria could be 1, 5 or 3. Increasing the information cost could

encourage or discourage a player to choose entry in some equilibria. This depends on

whether the prior probability of high payoff shocks is greater than a given threshold

value. We also exhibit a necessary and sufficient condition of parameter specification

such that with the same set of parameters satisfying this condition, both the rational

inattention Bayesian game and a Bayesian quantal response equilibrium game where

the observation errors are additive and follow a Type I extreme value distribution can

have a common equilibrium.

4.1 Introduction

Usually, in a study of decision problems or game theoretical problems, a scenario

where the economic agents can perform ideally in every aspect is assumed. At least,

in terms of dealing with available information, we consider that the agents can pay full

107
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attention to any observation without a cost. However, according to a series of psycho-

logical studies, human being’s ability to pay attention to their observations is found

to be actually limited (Kahnemann, 1973). This inevitable feature differentiates real

scenario from an ideally perfect economic agent scenario.

Economists have studied the influence of attention scarcity on individual decision

problems (Woodford, 2008, 2009, Matějka and McKay, 2015). In this chapter, we

study how attention scarcity affects economic agent’s strategic choice behaviour in an

incomplete information environment in a strategic substitutes context.

Attention scarcity is usually modelled by rational inattention that was first intro-

duced by Sims (1998). In this chapter also, we adopt rational inattention to model

attention scarcity for players in a game. By far, the literature most relevant to this

chapter is Yang (2014). In an independent work, Yang studies a 2 × 2 symmetric

strategic complements game. Players’ payoffs are affected by a common payoff shock

θ, which is a continuous random variable. However, each player cannot perfectly ob-

serve θ due to scarcity of attention, which is modelled by rational inattention. Players

make decisions after observing θ. Yang’s game is exhibited in Table 1.

Firm i∗

0 1

i

0 0

0

θ− r

0

Fi
rm 1 0

θ− r

θ

θ

Table 1: The coordination game in Yang (2014). θ is the fundamental state dis-

tributed according to a prior distribution P with support θ ∈ R. It is assumed that P

is absolutely continuous with respect to Lebesgue measure over R. Parameter r > 0

is the cost of miscoordination, which measures the degree of strategic complementarity.

The game studied in this chapter is a 2 × 2 symmetric strategic substitutes game.

Each player’s payoff is affected by a private payoff shock subject to a binary distri-

bution. The players cannot perfectly observe their own payoff shock due to attention

scarcity. The game is shown in Table 2 in Section 4.3.
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In this chapter, we study how information cost affects players’ strategic choice be-

haviour. By far, no literature has studied this problem yet, including Yang (2014).

Yang focuses on players’ information acquisition behaviour. By making appropri-

ate assumptions on payoff specifications, he excludes the possible existence of non-

information acquisition equilibrium. In our model, we allow the existence of any type

of equilibrium, and it is found that in certain asymmetric equilibria, one player ac-

quires information to make choices, while the opponent does not acquire information

to make choices.

In terms of the results, Yang (2014) finds that when the information cost is smaller

than a threshold value, there are infinitely multiple equilibria. However, it is not clear

whether there exists a unique equilibrium when the information cost is greater than or

equal to the threshold value. In our model, if there exist multiple equilibria, they arise

when the information cost is greater than or equal to a threshold value. If the infor-

mation cost is smaller than the threshold value, there exists a unique equilibrium. In

addition, under proper parameter specification, our game can always exhibit a unique

equilibrium for any value of information cost.

Finally, because of our particular focus on information cost’s impact, in this chap-

ter, we also study comparative statics of information cost on players’ equilibrium be-

haviour. There is no comparative statics work of information cost in Yang’s paper.

This chapter is in line with the literature of entry games. Entry games have been

widely studied in industrial organization literature, and it is the most typical form for

modelling strategic substitutes behaviour. However, no literature exists that study how

psychological factors affect firms’ competition. There is a void related to this topic in

the industrial organization literature, which this chapter is initially motivated to fill.

In the remaining parts of introduction, we first introduce the evolution of studies on

rational inattention choice problems, and present a binary choice example to explain

the rationale of modelling a rational inattention discrete choice problem. This binary

choice model is a particular case of Matějka and McKay’s (2015) general model.
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4.1.1 Psychological Motivation of Random Choice

Many experiments suggest that individual choice is not deterministic (e.g. Loomes

and Sugden, 1995). The experimental choice behaviour explored in recent litera-

ture matches with a much older literature in the branch of experimental psychology

known as ‘psychophysics’, which showed that subjects cannot dependably make the

same judgment about the relative strength of two similar but not identical stimuli when

facing the same choice on repeated occasions. These experimental data are often ex-

plained by models that assume a random factor in the subject’s perception of a constant

stimulus; however, the randomness is clearly a feature of the subject’s nervous system

rather than of preferences (Woodford, 2008).

Therefore, in terms of these studies, random choice behaviour results precisely

from the decision maker’s difficulty in discriminating among different choice situa-

tions, a human cognitive limitation extensively documented by the psychophysicists.

How does the difficulty in differentiating different choice situations arise? In the psy-

chology literature, this cognitive limit can be accounted for by the scarcity of attention

(e.g., Kahneman, 1973). In most economics literature, economic agents have full ac-

cess to all available information and have no difficulty in paying full attention to all

information available. The first attempt to incorporate attention scarcity into an eco-

nomic model is Sims (1998). Sims’ hypothesis of ‘rational inattention’ is a widely

applied approach to model the limited attention and it motivates a very specific theory

of the randomized choice (conditional on states) (see Sims, 1998, 2003, 2006; Wood-

ford, 2008, 2009; Matějka and McKay, 2015).

Woodford (2008, 2009) and Matějka and McKay (2015) independently develop

the randomized choice theory in the rational inattention framework. Their theories ex-

plain how scarcity of attention leads to decision maker’s difficulty in discriminating

among different choice situations that ultimately results in random choice behaviour.

It bridges a fundamental psychological activity—scarcity of attention—and a human

cognitive limitation—difficulty in clearly differentiating different choices—via an eco-

nomic approach.
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4.1.2 The Principle of Rational Inattention

To explain the rationale of rational inattention, we now specify a rational inattention

binary choice model. This model adopts Sims’ (1998, 2003, 2006) hypothesis of ‘ra-

tional inattention’: firms have precisely that information that is most valuable to them,

given the decision problem that they face, subject to a constraint on the overall quantity

of information that they access. In Woodford (2008, 2009) and Matějka and McKay

(2015), rather than specifying a quantity constraint, it is assumed that there is a cost

λ > 0 per unit of information obtained each period by the decision maker and that the

total quantity of information obtained is optimal given this cost. This chapter, which

studies rationally inattentive players’ strategic choice behaviour in a Bayesian game,

still follows Woodford (2008, 2009) and Matějka and McKay (2015)’s specification in

which λ rather than the overall quantity of information they access, i.e. I, is given. This

is because under this specification, the decision problem is a free-constraint utility-

maximization problem. Hence, decision makers have complete freedom to allocate

their attention, and could certainly allocate more attention to the information that is

most relevant to their choice. It makes more sense to suppose that there is a given cost

of additional attention, determined by the opportunity cost of reducing the attention

paid to other matters, rather than a fixed bound on the attention that can be paid to the

discrete choice problems.1

4.1.2.1 The Information Cost

Following the rational inattention literature, we shall suppose that any information

about the current choice state can be available to the decision maker (DM, hereafter),

as long as the quantity of information obtained by the firm without a thorough in-

vestigation is within a certain finite limit, representing the scarcity of attention, or

information-processing capacity, that is used for this purpose. The quantity of infor-

mation obtained by the DM is defined as in the information theory of Claude Shan-

non (1946). In this theory, the quantity of information contained in a given signal is

measured by the reduction in the entropy of the DM’s posterior over the state space,

relative to the prior distribution. Let us suppose that the agents are interested simply

1If there exists a constraint k on the overall information an agent can access such that I ≤ k, then λ

becomes the shadow price which varies with respect to k, and thus, the choice probability also varies
with respect to k. Therefore, how much information an agent can process to make a choice is ultimately
determined by the constraint in this situation.
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in information about the current value of the unknown state ε ∈ {u,d}, and the firm’s

prior is given by the distribution p = Pr(u) and 1− p = Pr(d), where p ∈ (0,1). Let

rs = Pr(u|s) and 1− rs = Pr(d|s) be the firm’s posterior, conditional upon observing

a particular signal s. The entropy functions associated with a given binary distribution

(a measure of the degree of uncertainty) are given by

H(p) =−p ln p− (1− p) ln(1− p)

and

H(rs) =−rs lnrs− (1− rs) ln(1− rs)

and as a consequence, the entropy reduction when signal s is received is given by

I(s) = [−p ln p− (1− p) ln(1− p)]− [−rs lnrs− (1− rs) ln(1− rs)]

The average information revealed is therefore

I ≡ Es[I(s)] = H(p)−Es[I(rs)]

where the expected value is taken over the set of signals that were possible ex ante,

using the prior probabilities of that each of these signals would be observed. (The prior

over s is the one implied by the DM’s prior over ε ∈ {u,d}, together with the known

statistical relation between ε and the signal s that will be obtained).

According to Matějka and McKay (2015), in a rational inattention binary choice

problem, under an optimal information structure qε
s = Pr(s|ε), the signal s will only

contain two possible values, say s ∈ {0,1} (we will elaborate the notations and the re-

sult in Sections 4.1.2.2 and 4.1.2.3). Denote qs = pqu
s +(1− p)qd

s . Hence, q0+q1 = 1.

The entropy functions associated with the information structure are given by

H(qs) =−q0 lnq0−q1 lnq1

and



4.1. Introduction 113

H(qε
s) =−qε

0 lnqε
0−qε

1 lnqε
1

Therefore, the amount of information conveyed by the information structure qε
s is

I(qs) = H(qs)−Eε[H(qε
s)]

=−q0 lnq0−q1 lnq1 + p[qu
0 lnqu

0 +qu
1 lnqu

1]+ (1− p)[qd
0 lnqd

0 +qd
1 lnqd

1]

Matějka and McKay (2015) prove that according to the symmetry property of mu-

tual information, I(qs) = I. In the strategic choice problem studied in this chapter, we

mainly use I(qs) to express the mutual information for analytical purpose.

4.1.2.2 Formulation of the Decision Problem

Now, suppose the DM is a firm. The firm faces the following choice problem of

whether to enter a market (see Figure 1):
u > 0

1

d < 0

0

0

Figure 1: A firm’s entry decision problem

If the firm chooses entry (1), its payoff will be either u > 0 or d < 0, and if it

chooses inactive (0), its payoff will be 0. The state is drawn before the DM observes

it and makes a choice. The problem is that the DM cannot perfectly observe the state

because of scarcity of attention; therefore, it has to arrange to acquire a signal s at a

cost by paying λI(s) in order to obtain the information that is most relevant to this

choice problem. Then, this knowledge about ε ∈ {u,d} is updated via the posterior rs

and 1− rs. Given the posterior, the DM chooses the action with the highest expected
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payoff. Let V (rs) = max{µ̄(s),0}, where µ̄(s) = rsu+(1− rs)d, denote the maximal

payoff. The theory of rational inattention reveals the mechanism behind the above

(psychological) decision process in a utility maximization framework. It aggregates

all possibilities of such a process and posits that both the design of this signal (the set

of possible values of s, and the probability that each will be observed conditional upon

any given state ε, i.e. qε
s = Pr(s|ε), also referred to as information structure), and the

decision about whether to choose action 1 or 0 conditional upon the signal observed,

will be obtained, in the sense of maximizing

E[V (rs)]−λI

Therefore, this solution concept (the information strategy and the ultimate choice

behaviour as the essence of this psychological process) can account for when a payoff

shock is drawn, what aspects of information about the payoff shock a rationally inatten-

tive agent can and should pay attention to and what choice should be made contingent

on this information. The expectation operator sums over possible states ε∈ {u,d}, pos-

sible signals s and possible action choice decisions under the firm’s prior probability

distribution, which is that payoff shock u happens with probability p and payoff shock

d happens with probability 1− p. λ > 0 is the cost per unit of information of being

more informed when making the action choice decision. This design problem is solved

from an ex ante perspective: players must decide how to allocate their attention, which

determines what kind of signal players will observe under various circumstances, be-

fore learning anything about the current state.

4.1.2.3 Main Results of Rational Inattention Binary Choice Problem

Here, we summarize Matějka and McKay (2015)’s main results of the decision prob-

lem. They are expressed in the binary choice context as shown in Figure 1.

The first result of this binary choice problem is that under an optimal information

structure qε
s , the signal s will take only two possible values, and can be interpreted as

a ‘0-1’ signal as to whether under the current state, the firm should enter the market.

Since the only use of the signal is to decide whether to enter the market, more elabo-

rate signals (e.g. a third signal) will convey redundant information. In addition, since
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more informative signal would have a greater cost without improving the quality of

the decision, it would be inefficient. Correspondingly, an optimal action decision will

necessarily be a deterministic function of the signal (i.e. entry is always chosen if and

only if the signal is 1). Therefore, the information structure qε
s is identical to the con-

ditional probability of action given the state (see Woodford, 2008, 2009; Matějka and

McKay, 2015).

Second, about the choice behaviour, we find that given other primitives, there exists

a boundary value of λ denoted by λ̄DP, which can be equal to +∞. For λ smaller than

or equal to λ̄DP, i.e. the cost of acquiring information is not high for the DM, and its

choice will be made by acquiring information. For λ greater than λ̄DP, since acquiring

information is too costly for the DM, it will solely rely on its prior knowledge to make

a choice rather than by acquiring information. Therefore, λ̄DP is a boundary point dif-

ferentiating two distinct choice behaviours, and a DM’s evaluation of λ̄DP depends on

its preference. Proposition 1 gives us an accurate description of rationally inattentive

agents’ choice behaviour.

Define fDP := w(0,λ), FDP(λ) := S(λ,0), GDP(λ) := T (λ,0) and µDP := e(0),

where the expressions of w(x,λ), S(λ,x), T (λ,x) and e(x) are given in Appendix A

of this chapter. The analytical expression of λ̄DP is given by

λ̄DP =


F−1

DP (1) if µDP < 0

+∞ if µDP = 0

G−1
DP(1) if µDP > 0

where µDP = pu+(1− p)d. In addition, define the following function:

1{P}=

1 if P is true

0 otherwise

Therefore, Proposition 1 is stated as follows.

Proposition 1 (A Binary-State Binary Choice Model, Matějka and McKay
(2015)): Given that u > 0 > d and λ > 0, the unconditional choice probability is given
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by

∀λ ∈ (0, λ̄DP], q = fDP = p
1−exp( d

λ
)
+ 1−p

1−exp( u
λ
) ;

∀λ ∈ (λ̄DP,+∞), q = 0×1{µDP < 0}+1×1{µDP > 0}.

Alternatively, the choice probability can be written in a simplified form as

q = 0×1{ fDP < 0}+ fDP×1{0≤ fDP ≤ 1}+1×1{ fDP > 1}

Proof: see Appendix. �

In Proposition 1, the exponential functions in fDP come from the entropy function.

At λ̄DP, the average information revealed by signal I equals 0. Therefore, the agent’s

action is deterministic and is the interior solution at λ = λ̄DP. If λ > λ̄DP, generally,

fDP will be smaller than 0 or greater than 1. Hence, the agent has to choose a boundary

solution of q to maximize their utility. The boundary solution is equal to the interior

solution at λ = λ̄DP. It is q = 1 if µDP > 0 and q = 0 if µDP < 0.

4.1.3 The Relationship of Rational Inattention Discrete Choice Model

and Statistical Decision Problems

Rational inattention discrete choice problems and statistical decision problems (SDPs)

are different problems, although the components of these problems (e.g. utility func-

tions, signal, state, prior) are the same. The differences are reflected by two points:

1) an SDP is given the joint distribution of signal and state and the prior distribution

of state to derive the optimal decision rule, while a rational inattention discrete choice

problem is given the optimal decision rule and the prior distribution of state to obtain

the optimal information structure (the joint distribution of signal and state); 2) in ratio-

nal inattention binary choice problems, the optimal strategy should contain two signals

indicating two different action choices, otherwise more elaborate signals are redun-

dant and hence undesirable. The same rationale applies to rational inattention multiple

choice problems. In SDPs, the dimension of signal space is not necessarily equal to

the dimension of action space. For binary action problems, it allows more than two

signals. However, at the optimum, agents can always divide the signal set into two
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subsets with respect to the two different action choices.

Therefore, rational inattention discrete choice problems and SDPs can be regarded

as the same question but viewed from two different perspectives. A rational inattention

discrete choice problem is the ‘reinterpretation’ of an SDP.

4.2 Main Results of the Rational Inattention Bayesian

Game

In this chapter, we are interested in agents’ strategic choice behaviour if scarcity of at-

tention exists. We examine this subject in a 2 × 2 incomplete-information entry game

and focus on the pure-strategy Nash equilibrium. In industrial organization literature,

entry games are typically of strategic substitutes, so is our game. By extending the

rational inattention approach into a 2 × 2 strategic-substitutes incomplete information

game, we establish a model that allows us to study how information cost affects an

agent’s strategic choice behaviour. Here, we present a summary of the main results of

this chapter.

First, assuming both players’ information costs are identical, we find that there ex-

ists a critical value of information cost.2 If the given information costs of both players

are below this value, the game is a Bayesian game, in which the payoff of being active

is the production profit plus the private payoff shock. If the given information costs of

both players are above or equal to this value, the game becomes a complete information

game, in which the payoff of being active is the production profit plus the mean of the

distribution of payoff shocks, and players’ best responses are made without acquiring

information given any strategy of the opponent.

Next, by studying symmetric games, we find that scarcity of attention can generate

multiple equilibria, and that different values of information costs lead to different num-

bers of equilibria.3 A general rule is that jointly increasing both players’ information

costs first increases and then decreases the number of equilibria. Specifically, in the

2In this chapter, for simplicity, we refer to information cost to indicate the unit information cost.
3Symmetric game is defined such that the parameter specification of both players are identical. Par-

ticularly, the information costs of both players are identical.
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symmetric rational inattention Bayesian games, we find that given other primitives, by

jointly raising the information costs from 0 to +∞, the number of equilibria appears

in the following sequence: 1→ 3→ 5→ 3 if multiple equilibria can arise. Alterna-

tively, there always exists a unique equilibrium for any value of the information cost.

Besides, we find that in any multiplicity situation, there always exists one pair of asym-

metric equilibria in which at least one player plays without acquiring information and

relies on their prior knowledge. These results about the game’s equilibria are mainly

caused by the concavity–convexity property of the part of the second iteration of the

best response functions in which both players play the game by acquiring information.

Furthermore, the concavity–convexity property is ultimately induced by the structure

of entropy functions.4 Thus, because information processing capacity is modelled by

the reduction in the entropy of players’ posterior over the state space relative to the

prior distribution, there are at most five ways to play the game. For any result, it is ei-

ther that both players make choices by acquiring information or that one player makes

choices by acquiring information and the other player makes choices without acquiring

information and only relying on prior knowledge.

For comparative statics of equilibrium strategies, we find that in the symmetric

equilibrium and outer asymmetric equilibrium, any improvement in players’ expected

payoff of entry can increase the probability of entry.5 If we jointly increase both play-

ers’ information costs, its impact depends on the relative magnitude between the prior

probability of high payoff shock and a threshold value. If the prior probability of high

payoff shock is higher (or lower) than the threshold value, increasing the information

cost will increase (or decrease) the probability of entry. If the prior probability of high

payoff shock equals the threshold value, increasing the information cost does not have

any impact on the probability of entry. There is no conclusive result about comparative

statics of inner asymmetric equilibrium without particular parameter specification. Fi-

nally, in any equilibrium, if we change only one player’s information cost, its impacts

on both players’ equilibrium strategies are not clear without particular parameter spec-

ification, but it is found that its impact on one player’s strategy is always opposite to

its impact on the opponent’s strategy.

4The concavity–convexity property means that as the value of a player’s strategy increases, the part
of the second iteration of the best response functions in which both players acquire information exhibits
first concavity and then convexity. For details, please refer to Section 4.7.

5In this game, there are three types of equilibrium: symmetric equilibrium, outer asymmetric equilib-
rium and inner asymmetric equilibrium. They are named according to their location at the best response
functions.
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We also study how information cost affects a player’s expected payoff. A player’s

information cost does not have any impact on the player’s expected payoff, but the op-

ponent’s information cost can affect the player’s expected payoff through the player’s

belief towards the opponent’s behaviour. Except particular parameter specification,

there is no conclusive result about at what value of opponent’s information cost, the

player’s expected payoff reaches its highest value.

Finally, we study a game in which the players observe their private payoff shocks

with an additive noise that follows Type I extreme value distribution. The solution con-

cept is therefore (Bayesian) Quantal Response Equilibria (QRE). The similar-looking

strategic choice models motivate us to further consider under what conditions the two

games can be identical. It is found that there exists a specific set of parameter specifica-

tion under which both games have a common equilibrium (1
2 ,

1
2). Except this situation,

the two games will not coincide.

The rest of this chapter is organized as follows. Section 4.3 describes the model.

Section 4.4 analyses three particular cases of the game with some special value of in-

formation cost. Section 4.5 analyses the general case. Section 4.6 studies the impact of

information cost on players’ best responses. Section 4.7 presents the equilibria set of

the game. Section 4.8 studies the impact of information cost on players’ equilibrium

strategies. Section 4.9 studies how information cost affects a player’s expected payoff

of entry. Section 4.10 compares a Bayesian quantal response equilibrium game and the

rational inattention Bayesian game to determine under what conditions the two types

of games can coincide or be identical. Section 4.11 concludes this chapter.

4.3 The Model

We study rationally inattentive players’ strategic choice behaviour in the following

Bayesian game. Two firms decide whether to enter a market. If a firm enters, it can

either get a monopoly profit or a duopoly profit, plus an exogenous payoff shock drawn

by nature at the beginning of the time. Each player’s payoff shock is independent from

each other, and it is the private information for each player. Each firm can only know its

own payoff shock. However, although a firm has full access to its own payoff shocks,
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due to scarcity of attention, it is only able to possess partial information about some

aspects of the payoff shock, and this information is obtained by acquiring a signal at

a cost. What kind of signal a player (firm) will observe is unconsciously designed in

their mind and the player only acquires information about their own shock. A player

cannot acquire any information about the opponent’s private payoff shock because it is

the opponent’s private information and it is independent from the player’s own payoff

shock. Both players make decisions according to observed private signals.

We define our game as follows. The firms’ strategic entry behaviour is character-

ized by the 2×2 Bayesian game with payoffs shown in Table 2.

Firm i∗

0 1

i

0 0

0

M+ ε∗

0

Fi
rm 1 0

M+ ε

D+ ε∗

D+ ε

Table 2: The Strategic Entry Game

We use ∗ to denote all variables of the opponent. In this chapter, except in some

particular situations, for simplicity we do not describe i∗’s specification separately and

its specifications are correspondingly symmetric with i’s. Here, ε ∈ {u,d} is i’s pri-

vate payoff shock, and ε∗ ∈ {u,d} is opponent i∗’s payoff shock. Assume u > d. The

shocks ε and ε∗ have the same distribution, namely p = Pr(u) and 1− p = Pr(d), and

we assume that ε and ε∗ are independent and p ∈ (0,1). The payoff shocks are private

information for each player. Nature draws ε and ε∗, respectively, for the players at

the beginning of the time, and since they cannot perfectly observe ε or ε∗, they have

to acquire a signal at cost, which can reveal some aspects of ε or ε∗. To acquire at

a cost what type of signals is designed by each player, the efficient signal should un-

doubtedly be the most relevant to the player’s choice decision. We assume that each

player’s signal is conditionally independent of the opponent’s signal given the player’s

own payoff shock. The true value of the payoff shock can only be known after they

make their choices. The action set of player i is A = {0,1}, where 1 stands for ‘entry’

(being active) and 0 stands for ‘staying outside’ (being inactive). If both firms enter,
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they will engage in a Cournot competition and each firm gets a payoff D that is strictly

lower than the monopoly profit M.

The game exhibits strategic substitutes because when the probability that the op-

ponent chooses entry increases, the marginal expected payoff gain of being active over

inactive decreases.6 Therefore, the opponent’s more aggressive behaviour imposes a

negative externality on a player’s marginal payoff.

Now let us turn to discuss what kind of signal they will acquire. As stated above,

before selecting an action, both players can privately acquire information about their

own payoff shocks at a cost. The root of the inability to grasp the full knowledge about

ε or ε∗ is still scarcity of attention, and the information acquisition process in this game

is thus modelled in the rational inattention framework. The signal the players intend

to acquire is characterized by the set of realizations of player i’s signal, S ∈ R, and

the information structure qε
s = Pr(s|ε), which is the probability measure of that signal

conditional on state ε. In addition, we denote σ(s) the probability of choosing action 1

upon observing s ∈ S, i.e. σ : S→ [0,1]. Then, player i’s strategy can be characterized

by a triplet (S,qε
s,σ).

According to the results of the rational inattention binary choice problem described

in the last section, rationally inattentive agent’s optimal information structure just con-

tains two signal realizations because essentially, acquiring more elaborate signal not

only is costly but also provides no extra benefit to the player, since the player must

always take either action 1 or action 0. Hence, without loss of generality, i’s strategy

can be represented by the following function.

qε = Pr(a = 1|ε)

That is, when i’s private payoff shock is ε, player i receives signal 1 (signal 0) with

probability qε (1-qε) and then takes action 1 (action 0) as instructed.

Given i∗’s strategy qε∗ , player i’s expected payoff of playing qε is

6The expected payoff could be the one in which a player makes decisions by acquiring information of
contingent payoff shocks or the one in which a player makes decisions based only on prior knowledge.
We will present the formulation of expected payoffs in detail in the following parts of this chapter.
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U(qε,qε∗)= pqu[(1−q∗)(M+u)+q∗(D+u)]+(1− p)qd[(1−q∗)(M+d)+q∗(D+d)]

(4.1)

where q∗ = pqu∗+(1− p)qd∗ . Equation (4.1) is directly derived from Table 2. As

a standard setup in rational inattention literature, the information cost associated with

a strategy qε is given by λI(qε), where I(qε) is the amount of information conveyed by

qε, and λ > 0 is a scaling parameter that controls the difficulty of acquiring informa-

tion. Specifically,

I(qε) = H(q)−Eε[H(qε)]

=−(1−q) ln(1−q)−q lnq+ p[(1−qu) ln(1−qu)+qu lnqu]+(1− p)[(1−qd) ln(1−qd)+qd lnqd]

(4.2)

where q = pqu + (1− p)qd . According to the symmetry property of mutual in-

formation, I(qε) = I = Es[I(s)], which has been discussed in the rational inattention

decision problem in Section 4.1.2.1. Hence, I(qε) reflects the average information re-

vealed by the designed signals, and λI(qε) is the average cost of acquiring information.

Taking information cost into account, i’s and i∗’s overall expected payoff in terms

of qε and qε∗ are

V (qε,qε∗) =U(qε,qε∗)−λI(qε) (4.3)

and

V (qε∗,qε) =U(qε∗,qε)−λ
∗I(qε∗) (4.4)

For simplicity, in the rest of this chapter, we abstract from the story of market entry

and deal with the problem simply as a 2-player game with preferences (4.3) and (4.4)

and strategy profile (qε,qε∗). Since qε and qε∗ are probabilities, we can further restrict

the players’ strategies to qε ∈ [0,1] and qε∗ ∈ [0,1]. We write G(M,D,λ,λ∗) for the

game with monopoly profit M, duopoly profit D, i’s information cost λ and i∗’s infor-

mation cost λ∗. Furthermore, to make this incomplete information always interesting,
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we assume the following:

Assumption 1: Given that M > D, the random payoff shocks u and d satisfy

D+u > 0 > M+d.

Under Assumption 1, random payoff shocks dominates deterministic payoffs in

players’ decision making. If λ = λ∗ = 0, the ex ante choice probability of each action

totally depends on the prior distribution, and hence, there exists a unique equilibrium.

Therefore, Assumption 1 makes the underlying game a good benchmark to compare

games with scarcity of attention.7

4.4 Three Particular Cases

Before we analyse the general game, let us begin from three particular cases: (1)

λ = λ∗ = 0, (2) λ = λ∗ = +∞ and (3) λ = 0 and λ∗ = +∞. These particular cases

provide useful benchmarks for further analysis. Remember that we only consider pure-

strategy equilibrium.

In Case 1, signals are free, and hence players can possess full information about

private payoff shocks, and this game then comes back to a typical incomplete informa-

tion game. According to Assumption 1, in such games, there exists a unique Bayesian

Nash equilibrium, (q,q∗) = (p, p). Under Assumption 1, given the payoff shock u, a

player will certainly choose action 1 and hence qu = 1. Given the payoff shock d, a

player will certainly choose action 0 and hence qd = 0. Therefore, the unconditional

probability of choosing action 1 is q = pqu +(1− p)qd and in this situation, the un-

conditional choice probability is a sufficient statistic to describe the equilibrium.

In Case 2, when λ = λ∗=+∞, any signal is too costly to acquire. Then, a Bayesian

player will make a choice by simply comparing the ex ante expected payoffs for each

action, which are the expected payoff before payoff shocks are drawn by nature and

are simply formulated based on prior knowledge as well as the opponent’s strategy.

Case 2 can be further analysed in three specific situations:

7Underlying games refer to games with λ = λ∗ = 0.
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1) If D+ pu+(1− p)d > 0, then there exists a unique equilibrium (q,q∗) = (1,1),

since under this condition, for all q∗ ∈ [0,1], (1−q∗)M+q∗D+ pu+(1− p)d > 0;

2) If M+ pu+(1− p)d < 0, then there exists a unique equilibrium (q,q∗) = (0,0),

since under this condition, for all q∗ ∈ [0,1], (1−q∗)M+q∗D+ pu+(1− p)d < 0;

3) If M + pu+ (1− p)d > 0 and D+ pu+ (1− p)d < 0, then generically there

exist three equilibria (q,q∗) = (1,0), (0,1), and (M+pu+(1−p)d
M−D , M+pu+(1−p)d

M−D ), where

the last equilibrium is essentially a mixed strategy and strictly between 0 and 1. Un-

der these two conditions, (1− q∗)M + q∗D+ pu+(1− p)d is not necessarily always

greater than or lower than 0 for all q∗ ∈ [0,1]. Therefore, in this situation, there exist

two (pure strategy) Nash equilibria. Since in this situation players just rely on prior

information and do not consider payoff shocks, this game is equivalent to a complete

information game with following payoff specifications (see Table 3).

Firm i∗

0 1

i

0 0

0

M+ pu+(1− p)d

0

Fi
rm 1 0

M+ pu+(1− p)d

D+ pu+(1− p)d

D+ pu+(1− p)d

Table 3: The Strategic Entry Game when λ = λ∗ =+∞

The three generical equilibria in 3) are obtained in this way and in fact, 1) and 2)

can also be analysed in this complete-information-game framework. The equilibria in

1) and 2) are dominant strategies.

Finally in Case 3, λ = 0 and λ∗ = +∞. In this situation, player i possesses full

information about their private payoff shock and knows nothing about player i∗’s pri-

vate payoff shock, while player i∗, as in Case 2, only relies on prior information and

knows nothing about player i’s contingent payoff shock either. Then, for player i, the

equilibrium strategy is p for the probability of choosing action 1, and hence, 1− p for

the probability of choosing action 0. Correspondingly, player i∗’s equilibrium strategy

is a∗= 1{(1− p)(M+d)+ p(D+u)> 0}. Therefore, in this situation, there still exists
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a unique equilibrium. Player i’s strategic choice, where λ = 0, depends on contingent

payoff shocks, and player i∗’s decision, where λ∗ = +∞, depends only on prior infor-

mation. Note that 1) in all three particular cases, there is no information acquisition,

either because players have perfect observation or because signals are too costly to

acquire, and 2) the choice behaviour where a player does not acquire information does

not just belong to λ (or λ∗) → +∞. We will show that given the opponent’s strategy

q∗ ∈ [0,1], a player will not make a choice by acquiring information when λ is greater

than a certain value, and in this situation, the choice behaviour is just the one we have

presented for λ→+∞.

4.5 General Case

Now, we deal with the general game. A Nash equilibrium of game G(M,D,λ,λ∗) is a

strategy profile (qε,qε∗) that solves the following problem:

G-1:

max
qε

U(qε,qε∗)−λI(qε)

s.t. 0≤ qε ≤ 1

max
qε∗

U(qε∗,qε)−λ
∗I(qε∗)

s.t. 0≤ qε∗ ≤ 1

where ε (or ε∗) ∈ {u,d}.

By solving G-1, we obtain two equations that contain qε and qε∗ . They are


qε =

qexp[ (1−q∗)M+q∗D+ε

λ
]

qexp[ (1−q∗)M+q∗D+ε

λ
]+(1−q)

qε∗ =
q∗ exp[ (1−q)M+qD+ε∗

λ∗ ]

q∗ exp[ (1−q)M+qD+ε∗
λ∗ ]+(1−q∗)

(4.5)

where ε (or ε∗) ∈ {u,d}, and q = pqu+(1− p)qd and q∗ = pqu∗+(1− p)qd∗ . Ac-

cording to equation group (4.5), and the relation between unconditional probability and
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corresponding conditional probabilities, we can see that the strategy profile (qε,qε∗)

can be equivalently represented by the unconditional probabilities (q,q∗), since one

(qε,qε∗), where ε (or ε∗) ∈ {u,d}, corresponds to a specific (q,q∗), and vice versa.

To obtain (q,q∗), rather than using the relation q = pqu+(1− p)qd or q∗ = pqu∗+

(1− p)qd∗ , we substitute the solutions in (4.5) back to the objective functions in G-1,

and reformulate the game as8:

G-2:

max
q

λ{p ln[qexp(
(1−q∗)M+q∗D+u

λ
)+(1−q)]+(1− p) ln[qexp(

(1−q∗)M+q∗D+d
λ

)+(1−q)]}

s.t. 0≤ q≤ 1

max
q∗

λ
∗{p ln[q∗ exp(

(1−q)M+qD+u
λ∗

)+(1−q∗)]+(1− p) ln[q∗ exp(
(1−q)M+qD+d

λ∗
)+(1−q∗)]}

s.t. 0≤ q∗ ≤ 1

where q and q∗ are strategic choices. We define f (q∗,λ) := w((1−q∗)M+q∗D,λ).

The function w(x,λ) is the same one in the decision problem. If interior solutions exist,

we obtain the following best response functions:

q = f (q∗,λ) =
p

1− exp( (1−q∗)M+q∗D+d
λ

)
+

1− p

1− exp( (1−q∗)M+q∗D+u
λ

)
(4.6)

for all q∗ ∈ [0,1], and q∗ = f (q,λ∗) for all q ∈ [0,1]. We can prove that, given

all primitives, the interior solution q from G-2 and corresponding qε from G-1 satisfy

q = pqu + (1− p)qd , so satisfy q∗ = pqu∗ + (1− p)qd∗ . Then, naturally, the ques-

tion is under what conditions, q and q∗ are interior solutions of G-2. To answer

this question, we find that, given a q∗ ∈ [0,1], to ensure that the best response q is

an interior solution, i.e. q = f (q∗,λ) ∈ [0,1], it is equivalent to letting all parame-

ters satisfy the following conditions. Defining F(λ,q∗) := S(λ,(1−q∗)M+q∗D) and

8If we directly solve q = pqu +(1− p)qd to obtain q given any q∗ ∈ [0,1], there are three solutions:
0, 1 and the equation (4.6). However, 0 and 1 cannot maximize player i’s utility if we substitute them
back to the objective function in G-2.
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G(λ,q∗) := T (λ,(1−q∗)M +q∗D), where S(λ,x) and T (λ,x) are the same in the de-

cision problem, we have

F(λ,q∗) = pexp[ (1−q∗)M+q∗D+u
λ

]+ (1− p)exp[ (1−q∗)M+q∗D+d
λ

]≥ 1

G(λ,q∗) = pexp[− (1−q∗)M+q∗D+u
λ

]+ (1− p)exp[− (1−q∗)M+q∗D+d
λ

]≥ 1
(4.7)

The first equation in (4.7) is derived from f (q∗,λ) ≥ 0 and the second equation

from f (q∗,λ)≤ 1.

We are interested in given M, D, and the prior distribution, the range of λ that en-

sures the existence of interior solutions of G-2. In this chapter, for a bivariate function

y = f (x,v), its inverse function with respect to x is expressed as x = f−1(y;v). We

define µ(q∗) := e((1− q∗)M + q∗D) = (1− q∗)M + q∗D+ pu+(1− p)d. It is found

that there indeed exists a λ = λ̄q∗ such that for all λ≤ λ̄q∗ , the interior solutions of G-2

exist. It is given by

λ̄q∗ =


F−1(1;q∗) if µ(q∗)< 0

+∞ if µ(q∗) = 0

G−1(1;q∗) if µ(q∗)> 0

If λ > λ̄q∗ , f (q∗,λ) will be either below 0 or above 1. In this situation, the player’s

behaviour changes. He will make a choice by comparing the ex ante expected payoff

of each action, disregarding any contingent information. This alternative behaviour is

grounded on the following reasons. First, this behaviour, reflected by its mathematical

representation, matches with the interior solution where the information acquired at

the equilibrium is zero. Second, mathematically, it coincides with the boundary solu-

tions of G-2. Hence, the continuity of the best response function q(q∗) with respect

to λ is ensured. The description of the best response functions is formally given by

Proposition 2.

Proposition 2 (Best Response Functions): Given q∗ ∈ [0,1], a player’s best re-

sponse q(q∗) is given by
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∀λ ∈ (0, λ̄q∗], q(q∗) = f (q∗,λ) = p
1−exp( (1−q∗)M+q∗D+d

λ
)
+ 1−p

1−exp( (1−q∗)M+q∗D+u
λ

)
;

∀(λ̄q∗,+∞), q(q∗) = 0×1{µ(q∗)< 0}+1×1{µ(q∗)> 0}.

Alternatively, the best response function can be written in a simplified form as

follows:

q(q∗) = 0×1{ f (q∗,λ)< 0}+ f (q∗,λ)×1{0≤ f (q∗,λ)≤ 1}+1×1{ f (q∗,λ)> 1}
(4.8)

Proof: see Appendix. �

The exponential form of f (q∗,λ) comes from the entropy function. At λ = λ̄q∗ , the

average information revealed I equals 0. In this situation, the interior solution q(q∗) is

deterministic. For λ > λ̄q∗ , the boundary solutions of G-2 are the same as the solution

at λ = λ̄q∗ . It is q(q∗) = 1 if µ(q∗)> 0 and q(q∗) = 0 if µ(q∗)< 0.

From Proposition 2, we can learn that given a λ > 0, if q(q∗) = f (q∗,λ), the best

response function is a decreasing curve with respect to q∗. If q(q∗) = 0× 1{µ(q∗) <
0}+ 1× 1{µ(q∗) > 0}, the best response function is a horizontal line with respect to

q∗. In addition, given Assumption 1, it is found that limλ→0+ q= limλ→0+ f (q∗,λ) = p,

which implies that a player’s strategy as λ→ 0+ coincides with the strategy at λ = 0.

Since this game exhibits strategic substitutes, it is not surprising that the best re-

sponse function is non-increasing. The best response function can reflect two distinct

strategic choice behaviour: one by acquiring information, represented by the curvature

part of the best response function, and another by comparing ex ante expected pay-

off of each action, represented by the horizontal parts of the best response function.

Only prior knowledge matters for the latter approach. Therefore, the best response of

a player in this game reflects not only the player’s rational choice of an action but also

their choice of behaviour, i.e. the decision is made whether by acquiring information

or by comparing ex ante expected payoff of each action.

To conclude this section, we exhibit some numerical examples of the best response

function. In these examples, we maintain the values of M, D, u, d, p constant and only

change the value of λ from 0.01 to 10. From Figure 2, we see that when λ is large
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enough, some parts of the best response function become horizontal, which indicates

that given the relevant opponent’s strategy, a player’s best response is made without

paying heed to any contingent information and just relying on the prior knowledge

(see Figure 2).
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Figure 2: A series of numerical examples of the best response function. In these

examples, M=5, D=3, u=-2, d=-5.1, p=0.2, and λ increases from 0.01 to 10. When

λ = 0.01, the best response function is close to a horizontal line and approximately

equals p = 0.2. When λ = 0.3, given any q∗ ∈ [0,1], the player always makes the best

response by acquiring information, which is reflected by the curvature of the entire

best response function. When λ = 0.7 and 10, the horizontal parts emerge on the

best response function, which indicates that given relevant opponent’s strategies, a

player’s best response is made by comparing ex ante expected payoff of each action.

4.6 The Impact of Information Cost on a Rational Inat-

tentive Player’s Best Response

For the comparative statics analysis in this section, we focus on the case that q ∈ (0,1)

given q∗ ∈ [0,1]. That means a player’s best response is made by acquiring informa-

tion. In fact, it is not interesting to investigate the boundary cases (q = 0 or q = 1). If

q = 1, there is no scope of increasing it further. If q = 0 and λ≤ λ̄q∗ , entry may be so
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unattractive to start with that any type of improvement in this action (increasing M, D,

u, d or p) will not lead player i to choose it.

By increasing M, D, u and d, the expected payoff of entry increases, and hence

q(q∗) increases given q∗ ∈ [0,1]. If p increases, the high payoff shock u will happen

more often, and it encourages the player to choose entry. Therefore, q(q∗) increases as

p increases given q∗.

We define p̄(q∗) := r((1−q∗)M+q∗D), whose expression is given in Appendix A.

λ’s impact on a player’s own best response and the opponent’s best response are given

by Proposition 3

Proposition 3: Suppose Assumption 1 is satisfied. Given q∗ ∈ [0,1], if and only

if p ≥ (or <) p̄(q∗), ∂q(q∗)
∂λ
≥ (or <) 0, where the equality is taken when p = p̄(q∗).

Besides, sign(∂q(q∗)
∂λ

) =−sign(∂q∗(q)
∂λ

).

Proof: see Appendix. �

To intuitively understand Proposition 3, we have to resort to the analytical expres-

sion of ∂q(q∗)
∂λ

. It is found that

∂q(q∗)
∂λ

=−
pexp( (1−q∗)M+q∗D+d

λ
)

[1− exp( (1−q∗)M+q∗D+d
λ

)]2

(1−q∗)M+q∗D+d
λ2

−
(1− p)exp( (1−q∗)M+q∗D+u

λ
)

[1− exp( (1−q∗)M+q∗D+u
λ

)]2

(1−q∗)M+q∗D+u
λ2

The parameter λ converts bits of information to utils. Therefore, (1−q∗)M+q∗D+ε

λ

is the expected payoff of entry measured by bit. By simple calculation, it can be

found that the condition p > p̄(q∗) indicates that the first term in the above equation

dominates the second term. In this situation, the impact induced by (1−q∗)M+q∗D+d
λ

overwhelms the impact induced by (1−q∗)M+q∗D+u
λ

. As λ increases, the worst expected

payoff of entry, (1−q∗)M+q∗D+d
λ

, increases, and hence it will encourage the player to

choose entry. Therefore, in this situation, raising λ increases q(q∗).
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To interpret the second result in Proposition 3, we can use the chain rule, according

to which the impact of λ on the opponent’s best response, q∗(q), can be decomposed

as

∂q∗(q)
∂λ

=
∂q∗(q)

∂q
× ∂q(q∗)

∂λ

Therefore, the impact of λ on q∗(q) can be decomposed into two separate effects:
∂q∗(q)

∂q , the impact of a player’s strategy on the opponent’s best response, and ∂q(q∗)
∂λ

, the

impact of the player’s information cost on their own best response. The impact of λ on

q∗(q) is transmitted through this mechanism. Because ∂q∗(q)
∂q < 0, the impact of λ on

the opponent’s best response is always opposite to λ’s impact on the player’s own best

response.

4.7 The Equilibrium

Proposition 2 implies that the best response function is continuous with respect to the

opponent’s strategy. Therefore, according to Brouwer’s fixed point theorem, we obtain

the following proposition.

Proposition 4 (Existence): Given Assumption 1, a pure-strategy (Bayesian) Nash

equilibrium always exists.

Proof: see Appendix. �

We use parenthesis to denote the word ‘Bayesian’ because there exists a critical

value λ = λc, and for λ > λc, the game turns into a complete information game. We

will show this in detail later in Proposition 6.

4.7.1 Dominance Solvability

The next question is under what conditions the game is dominance solvable. If the

game is dominance solvable, the game will exhibit a unique equilibrium. A sufficient

condition to ensure that the game is dominance solvable is that both players’ best re-

sponse functions are contraction. Therefore, we have the following proposition.
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Proposition 5: Given other parameters, f (q∗,λ) is a contraction if and only if

λ∈ (0, λ̃], where λ̃=min{ f ′−1
q∗ (−1;q∗= 0), f ′−1

q∗ (−1;q∗= 1)}. Therefore, if λ∈ (0, λ̃]
and λ∗ ∈ (0, λ̃∗], the game is dominance solvable.

Proof: see Appendix. �

f (q∗,λ) is expressed by equation (4.6). f ′q∗(q
∗,λ) is its first-order derivative. It

is found that at q∗ = 0 or 1, there exists a λ = λ̃ such that f ′q∗(q
∗,λ) = −1. Because

f ′q∗(q
∗,λ) is invertible at λ = λ̃, according to the expression rule defined in Section 4.5,

λ̃ = f ′−1
q∗ (−1;q∗).

Now, we look at the intuition of Proposition 5. According to our proof, it is found

that the lowest value of f ′q∗(q
∗,λ) happens at either q∗ = 0 or q∗ = 1 for any parameter

specification. It is caused by the exponential functions in the best response function

and Assumption 1. By Assumption 1, f ′q∗(q
∗,λ) either increases, or decreases, or first

increases and then decreases, as q∗ increases from 0 to 1. Therefore, the lowest value

of f ′q∗(q
∗,λ) happens at either q∗ = 0 or q∗ = 1.

If min{ f ′q∗(q
∗= 1,λ), f ′q∗(q

∗= 0,λ)}≥−1, then for all q∗ ∈ (0,1), f ′q∗(q
∗,λ)>−1

and hence f (q∗,λ) is a contraction; similarly, q(q∗) is a contraction. If both players’

best response functions satisfy this situation, the game is dominance solvable.

Given a q∗ ∈ [0,1], it is found that as λ increases from 0,
∂ f ′q∗(q

∗,λ)

∂λ
< 0. Because

the lowest value of f ′q∗(q
∗,λ) happens at q∗ = 0 or q∗ = 1, for all λ ∈ (0, λ̃], where

λ̃ = min{ f ′−1
q∗ (−1;q∗ = 0), f ′−1

q∗ (−1;q∗ = 1)}, −1 ≤ f ′q∗(q
∗,λ) < 0, which implies

that −1≤ dq(q∗)
dq∗ ≤ 0. Therefore, we get Proposition 5.

4.7.2 From a Bayesian Game to a Complete Information Game

From Section 4.5, it is found that when the information cost is too high, a player’s best

response will be made by comparing ex ante expected payoff of each action. Neverthe-

less, the game may still be a Bayesian game since the player’s best response towards

some other strategies is still made by acquiring information. However, the game can
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turn into a complete information game where λ is higher than some critical value. We

obtain the following proposition.

Proposition 6: In a symmetric game where λ= λ∗, there exists a λc =maxq∗∈[0,1] λ̄q∗

such that ∀λ ∈ [0,λc), the game is a Bayesian game as shown in Table 2, and ∀λ ∈
[λc,+∞), the game is a complete information game as shown in Table 3.

From Proposition 2, it is known that given q∗ ∈ [0,1], ∀λ ∈ (λ̄q∗,+∞), the best

response is made by comparing the ex ante expected payoff of each action. If all λ̄q∗

given q∗ ∈ [0,1] is smaller than the given λ, the player’s reaction will always be made

by comparing the ex ante expected payoffs. In this situation, the game becomes a com-

plete information game, as expressed by Table 3. Therefore, if λ > maxq∗∈[0,1] λ̄q∗ , the

game is a complete information game. Hence, Proposition 6 is obtained.

Further, we determine the analytical expression of λc. They are given by the fol-

lowing corollary.

Corollary 1: If µ(q∗ = 0) > 0 and µ(q∗ = 1) < 0, λc = +∞; if µ(q∗ = 1) > 0,

λc = G−1(1;q∗ = 1)<+∞; if µ(q∗ = 0)< 0, λc = F−1(1;q∗ = 0).

Proof: see Appendix. �

µ(q∗) is as defined in Section 4.5. F(λ,q∗) and G(λ,q∗) are expressed by equation

(4.7).

4.7.3 Equilibria of the Game

Here we give a complete characterization of the equilibrium set of the game for all

parameter specifications. It is given by Proposition 7.

Proposition 7: For the equilibrium set of the game where λ = λ∗, there are two

possibilities:

(1) Under some parameter specifications, there exist λ1 and λ2 such that 0 < λ1 <
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λ2 < λc. ∀λ ∈ [0,λ1), there is a unique equilibrium. At λ = λ1, there are three equilib-

ria. ∀λ ∈ (λ1,λ2), there are five equilibria. ∀λ ∈ [λ2,λc), there are three equilibria.

∀λ ∈ (0,λ2), the symmetric equilibrium is stable.9 At λ = λ2, the stability of the

symmetric equilibrium cannot be determined. ∀λ ∈ (λ2,λc), the symmetric equilib-

rium is unstable.

(2) Otherwise, under some parameter specification satisfying µ(q∗ = 0) < 0 or

µ(q∗ = 1)> 0, there is a unique equilibrium ∀λ ∈ [0,λc), which is stable.

Proof: see Appendix. �

In the following, we explain Proposition 7. The equilibria are solutions of an equa-

tion group comprising the 2 players’ best response functions. By putting the oppo-

nent’s best response function into i’s best response function, we get the following

function with respect to q, which is the second iteration of the best response func-

tions, g(q∗(q)):

g(q∗(q))= 0×1{A(q∗(q))< 0}+A(q∗(q))×1{0≤A(q∗(q))≤ 1}+1×1{A(q∗(q))> 1}
(4.9)

where A(q∗(q))≡ p
1−exp( (1−q∗(q))M+q∗(q)D+d

λ
)
+ 1−p

1−exp( (1−q∗(q))M+q∗(q)D+u
λ

)
and q∗(q) is given

by equation (4.8). Thus, any equilibrium must be a solution of the following equation:

q = g(q∗(q)) (4.10)

Geometrically, equation (4.10) shows that the equilibria are intersection points be-

tween 45◦ line and g(q∗(q)). g(q∗(q)) and A(q∗(q)) are continuous and non-decreasing

with respect to q for all λ∈ (0,+∞). Because the game is symmetric and best response

function q∗(q) is non-increasing, there always exists a unique symmetric equilibrium.

In addition, if asymmetric equilibria exist, one asymmetric equilibrium always has

a corresponding equilibrium obtained by switching players’ identities. Therefore, in

such games, asymmetric equilibria always appear in pairs and hence the total number

9The stability concept adopted in this chapter is Lyapunov stability.
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of equilibrium is odd.

We define set h := {q|0≤ f (q,λ∗)≤ 1 and 0≤ A(q∗(q))≤ 1}. A(q∗(q)) of q ∈ h

represent the part of A(q∗(q)) that is between 0 and 1 and no horizontal parts. Its

economic sense is that both players’ best response functions are made by acquiring

information. The horizontal parts of g(q∗(q)) indicates that there is at least one player

not playing the game by acquiring information. It is proven that when multiple equilib-

ria arise, as q increases, g(q∗(q)) where q ∈ h first exhibits concavity until q = τ, and

then exhibits convexity afterwards, where τ ∈ (0,1). Therefore, we call this property

as concavity–convexity property of A(q∗(q)).

In addition, we denote the symmetric equilibrium of the Bayesian game by (s,s).

It can be found that s ∈ h. This is because the Bayesian game exhibits strategic substi-

tutes, and the best response function is non-increasing and not constant. Therefore, in

the Bayesian game, there is no equilibrium like (0,0) or (1,1). Hence, in the symmet-

ric equilibrium, both players always make decisions by acquiring information.

We define set k := {q|0 ≤ f (q,λ∗) ≤ 1}. The last component we need in order to

explain Proposition 7 is that
∂A′q(q

∗(q))
∂λ

> 0, where q ∈ k. A(q∗(q)) of q ∈ k could be

greater than 1 or smaller than 0. In the following, we first explain the result (1) of

Proposition 7.

4.7.3.1 Multiple Equilibria with Stable Symmetric Equilibrium

When λ is small, the game is dominance solvable and the symmetric equilibrium (s,s)

is stable. Thus, at q = s, g′q(q
∗(q)) < 1. Therefore, if we consider the multiplicity

situation, we should first consider if the symmetric equilibrium is stable, how many

equilibria exist. Because of the concavity–convexity property and that asymmetric

equilibria appear in pairs, in this situation, A(q∗(q)) of q ∈ h should have three inter-

section points with the 45◦ line. Otherwise, there is a unique intersection point (see

Figure 3).

To complete the solid curve in Figure 3 as the geometric representation of g(q∗(q))

with respect to q ∈ [0,1], we should draw two horizontal lines at the two sides of

A(q∗(q)) of q ∈ h. According to the symmetry property of the game, there are three
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Figure 3: The solid curve represents A(q∗(q)) of q ∈ h in the multiplicity situation. If

the game exhibits multiple equilibria, A(q∗(q)) of q ∈ h has three intersection points

with the 45◦ line. Otherwise, there is a unique intersection point indicated by the

dashed curve, which is also a A(q∗(q)) of q ∈ h function.

possible situations of a complete g(q∗(q)) curve. They are determined by whether

g(q∗(0)) = 0 or not, or g(q∗(q)) = 1 or not. Irrespective of the possible situation,

g(q∗(q)) will have five intersection points with the 45◦ line (see Figure 4).

Situations such that shown in Figure 5 cannot happen. Figure 5 is characterized by

g(q∗(0))> 0 and g(q∗(1))< 1. In Figure 5, (a, b) and (b, a), where a, b ∈ (0,1), form

a pair of asymmetric equilibria in which both players make their equilibrium strate-

gies by acquiring information. However, the intersection points a and b are made by

the horizontal part of g(q∗(q)) and the 45◦ line. It implies that there is at least one

player not acquiring information, and hence that player’s strategy (a or b) is either 0

or 1. However, both a and b are between 0 and 1. Hence, a contradiction arises, and

(a, b) and (b, a) in Figure 5 cannot be equilibria of the symmetric rational inattention

Bayesian game. Thus, if there are five equilibria, only the three situations in Figure 4

are the correct situations.

At the boundary situation (λ= λ1), where the game transits from a unique-equilibrium

situation to five-equilibria situation, according to the concavity–convexity property

and
∂A′q(q

∗(q))
∂λ

> 0 ∀q ∈ k, there are three equilibria which are intersections between
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(1) (2) (3)
Figure 4: Three possible situations of g(q∗(q)) when there are multiple equilibria

and the symmetric equilibrium is stable. There are five intersection points,

representing the five equilibria of the symmetric rational inattention Bayesian game.

Figure 5: The situation that cannot happen if there are five equilibria.

A(q∗(q)) of q ∈ h and the 45◦ line. They are described by the three figures in Figure 6.

From Figure 6, we can see that if we slightly increase λ to λ1 + ε, where ε > 0

is an arbitrarily small number, since
∂A′q(q

∗(q))
∂λ

> 0 ∀q ∈ k, the shape of g(q∗(q)) in

each sub-figure will come back to the shape in the corresponding sub-figure with the

same order number in Figure 4. If we slightly decrease λ to λ1− ε, still according to
∂A′q(q

∗(q))
∂λ

> 0 ∀q ∈ k, the slope of g(q∗(q)) in each sub-figure of Figure 6 will become

the one represented by the dashed curve, which is flatter than the solid curve; hence,

there is a unique equilibrium for λ = λ1− ε.
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(1) (2) (3)
Figure 6: Three possible situations of g(q∗(q)) at λ = λ1. They are represented by the

solid curves. Dashed curves represent the g(q∗(q)) function at λ = λ1− ε. From these

figures, it can be seen that when λ increases from λ1− ε to λ1, the number of

equilibria changes from one to three.

Therefore, as long as the symmetric equilibrium is stable, there are at most five

equilibria in this game.

4.7.3.2 Multiple Equilibria with Unstable Symmetric Equilibrium

As λ increases, according to
∂ f ′q∗(q

∗,λ)

∂λ
< 0 ∀q∗ ∈ [0,1], symmetric equilibrium will

finally become unstable. At the boundary situation (λ = λ2), where the symmetric

equilibrium will transit from being stable to unstable as λ increases, the stability of the

symmetric equilibrium cannot be determined, i.e. q′(q∗) = −1 at q∗ = s ∈ (0,1). We

can use the undetermined stability of the symmetric equilibrium to characterize λ2. It

can be proven by contradiction that at λ = λ2, the lowest value of A′q(q
∗(q)) of q ∈ h

equals 1 and it occurs at q = s.

Suppose that ∀q ∈ (s− ε,s), A′q(q
∗(q)) > 1, and ∀q ∈ (s,s+ ε), A′q(q

∗(q)) < 1.

Then (s,s) is the tangent point of A(q∗(q)) with the 45◦ line, and it should be tangent

with the 45◦ line from below (see Figure 7).

From Figure 7, we can see that if the symmetric equilibrium is tangent with the 45◦

line, the number of equilibria will be even. Therefore, a contradiction arises.

In addition, situations indicated by Figure 8 also cannot happen. In Figure 8, the

stability of the symmetric equilibrium is not determined and there are three equilibria.

However, if λ increases to λ2+ε, because
∂A′q(q

∗(q))
∂λ

> 0, where q∈ k, there will be five
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(1) (2) (3)
Figure 7: The situation that A′q(q

∗(q)) = 1 at q = s (1) and its two possible

realizations ( (2) and (3) ). In this situation, A′q(q
∗(q)) = 1 at q = s is not the lowest

value of A′(q∗(q)) of q ∈ h. Because the intersection points and the tangent point are

of even number in total, this situation cannot happen.

intersection points and the middle intersection point s′ (symmetric equilibrium) will

become stable. This contradicts the prerequisite condition that the symmetric equilib-

rium should not be stable for λ > λ2 (see Figure 8).

Figure 8: The situation that A′q(q
∗(q)) = 1 at q = s. Because we are studying the

boundary situation that leads to unstable symmetric equilibrium for λ > λ2, this

situation cannot happen, because here the new symmetric equilibrium s′ by increasing

λ with ε > 0 is stable.

Therefore, at λ = λ2, A′q(q
∗(q)) of q ∈ h reaches its lowest value 1 at q = s. In this

situation, there are three equilibria. Furthermore, we draw an arbitrary curve whose
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(1) (2) (3)
Figure 9: The three possible situations of g(q∗(q)) at λ = λ2. They are represented by

the solid curves. Dashed curves represent g(q∗(q)) at λ = λ2 + ε, where ε > 0 is

arbitrarily small. Therefore, as λ increases from λ2 to λ2+ε, the number of equilibria

will be maintained as three, and the stability of the symmetric equilibrium will change

from undetermined to unstable.

slope is greater than 1 to represent A(q∗(q)) of q ∈ h; there is a unique intersection

point with the 45◦ line. The other two intersection points with the 45◦ line are realized

by the horizontal lines which complete g(q∗(q)) with the A(q∗(q)) of q ∈ h. Figure 9

provides a complete description of the intersection points between g(q∗(q)) and 45◦

line at λ = λ2 (see Figure 9).

Because
∂A′q(q

∗(q))
∂λ

> 0, where q ∈ k, for λ = λ2 + ε, A′q(q
∗(q)) > 1 for all q ∈ k;

hence, there are three equilibria. This situation will be maintained for all λ ∈ (λ2,λc).

Therefore, for all λ ∈ [λ2,λc), the game has three equilibria.

Therefore, if players with scarcity of attention play the Bayesian game of Table 2

and the scarcity of attention is modelled by the reduction in the entropy of players’

posterior over the state space relative to the prior distribution, there are at most five

ways to play the game. For any result, either both players make choices by acquiring

information or one player makes choices by acquiring information and the other player

makes choices without acquiring information and relying only on prior knowledge.

To conclude Sections 4.7.3.1 and 4.7.3.2, we present some numerical examples to

visually exhibit how different number of equilibria arise. They are presented in Figure

10. The three figures in the first row represent the situation in which µ(q∗ = 0) > 0

and µ(q∗ = 1)< 0. The three figures in the second row represent the situation in which

µ(q∗ = 0) < 0. The three figures in the third row represent the situation in which



4.7. The Equilibrium 141

µ(q∗ = 1) > 0. We can see that in any situation, the number of equilibria in each row

of numerical examples follows the 1-5-3 sequence as λ increases (see Figure 10).

4.7.3.3 The Explanation of Result (2) in Proposition 7

Logically, under any parameter specification, as λ increases from 0, the game may

exhibit a unique equilibrium, or not, for all λ ∈ (0,+∞). Result (1) in Proposition 7

belongs to the ‘or not’ part.

For some parameter specifications satisfying µ(q∗ = 0) < 0 or µ(q∗ = 1) > 0, the

game contains a unique equilibrium for all λ ∈ (0,+∞). We can find numerical exam-

ples to support this fact:

1. µ(q∗ = 0)< 0: p = 0.2, M = 5, D = 3, u =−2 and d =−10;

2. µ(q∗ = 1)> 0: p = 0.8, M = 2, D = 1, u = 1 and d =−2.01.

Therefore, if µ(q∗ = 0) < 0 or µ(q∗ = 1) > 0, it is possible that there is only one

way for both players with scarcity of attention to play the Bayesian game shown in

Table 2. In this situation, both players will acquire information to make decisions.

However, if parameters satisfying µ(q∗ = 0) > 0 and µ(q∗ = 1) < 0, multiple

equilibria will surely happen when λ is large enough. For all q∗ ∈ [M+pu+(1−p)d
M−D ,1],

µ(q∗) < 0, and
∂λ̄q∗
∂q∗ < 0. Therefore, as λ increases, q∗ = 1 is the first point at which

the player chooses action 0 deterministically. Then, along the direction from q∗ = 1

to q∗ = M+pu+(1−p)d
M−D , as λ increases, the player’s best responses gradually turn into 0.

At the same time, ∀q∗ ∈ [0, M+pu+(1−p)d
M−D ), µ(q∗) > 0 and

∂λ̄q∗
∂q∗ > 0. Therefore, as λ

increases, q∗ = 0 is the first point at which the player chooses action 1 deterministi-

cally, and then along the direction from q∗ = 0 to q∗ = M+pu+(1−p)d
M−D , the player’s best

responses gradually turn into 1.

Hence, in the case of µ(q∗ = 0) > 0 and µ(q∗ = 1) < 0, as λ increases from 0,

a player’s best response q(q∗) will rise to 1 ∀q∗ ∈ [0, M+pu+(1−p)d
M−D ), and at the same

time, the player’s best response will fall to 0 ∀q∗ ∈ [M+pu+(1−p)d
M−D ,1]. Therefore, when
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Numerical examples corresponding to 1) of Theorem 1: M=5, D=3, u=-2, d=-5.1 and

p = 0.2.
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Numerical examples corresponding to 3) of Theorem 1: M=5, D=3, u=-2, d=-5.1 and

p = 0.7.

Figure 10: Numerical examples of this game. The solid curves represent a player’s

best response function q(q∗), and the dashed curves represent the opponent’s best

response function q∗(q). The horizontal axis indicates q∗ (or q∗(q)) and the vertical

axis indicates q(q∗) (or q).
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q(q∗) = 0 at q∗ = 1 and q(q∗) = 1 at q∗ = 0, equilibria (1, 0) and (0, 1) arise. Thus, in

this situation, asymmetric equilibria are inevitable.

4.8 Impact of Information Cost on Equilibrium Strategy

In the symmetric strategic substitutes game, the symmetric equilibrium always exists

and is unique. When multiple equilibria arise, there are two types of asymmetric equi-

libria. In one type, there is at least one player choosing action 0 or 1 by comparing

ex ante expected payoff of each action. This type of asymmetric equilibria is usually

located at the outer part of a player’s best response function, hence named outer asym-

metric equilibria. In the other type, both players make their best response by acquiring

information. This type of asymmetric equilibria is usually located at the inner part of

a player’s best response function, hence named inner asymmetric equilibria.

For outer asymmetric equilibria, according to the payoff specification, there are

three specific results:

1) If µ(q∗ = 0)> 0 and µ(q∗ = 1)< 0, they are (1, 0) and (0, 1);

2) If µ(q∗ = 0)< 0, they are (t,0) and (0, t), where t ∈ (0,1);

3) If µ(q∗ = 1)> 0, they are ( j,1) and (1, j), where j ∈ (0,1).

In an equilibrium, if a player always chooses 0 or 1 deterministically, the corre-

sponding comparative statics results with respect to any parameter are always equal to

0. Only the equilibrium strategy that is made by acquiring information, i.e. q ∈ (0,1),

will be further analysed.

For inner asymmetric equilibria, there are no conclusive comparative statics results.

It depends on particular parameter specifications.

∂q
∂τ

represents the comparative statics of equilibrium strategy q with respect to pa-

rameter τ. ∂q(q∗)
∂τ

represents the comparative statics of best response q(q∗) given q∗ with

respect to parameter τ. For the symmetric equilibrium and outer asymmetric equilibria
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in which equilibrium strategy q ∈ (0,1), the comparative statics results are given by

the following two propositions:

Proposition 8: For a symmetric equilibrium strategy or an outer asymmetric equi-

librium strategy q ∈ (0,1), ∂q
∂τ
≥ 0, where τ ∈ {M,D,u,d, p}. The equality is taken for

the outer asymmetric equilibria in which τ = D when µ(q∗ = 0) < 0 or τ = M when

µ(q∗ = 1)> 0.

Proof: see Appendix. �

The intuition of Proposition 8 is that increasing τ ∈ {M,D,u,d, p} can increase the

expected payoff of entry; therefore, a player is more willing to choose entry. If q∗ = 0

and µ(q∗ = 0) = M + pu+(1− p)d < 0, duopoly cannot happen, and hence, ∂q
∂D = 0.

If q∗ = 1 and µ(q∗ = 1) = D+ pu+(1− p)d > 0, from an ex ante perspective, entry is

more profitable than being inactive, and hence ∂q
∂M = 0.

Proposition 9: Given that λ = λ∗, for a symmetric equilibrium strategy or an outer

asymmetric equilibrium strategy q ∈ (0,1), if and only if p≥ (or <) p̄(q∗), then ∂q
∂λ
≥

(or <) 0, where the equality is taken when p = p̄(q∗). Here, q∗ = s for symmetric

equilibrium (s,s), q∗ = 0 for an outer asymmetric equilibrium in which µ(q∗ = 0)< 0,

and q∗ = 1 for an outer asymmetric equilibrium in which µ(q∗ = 1)> 0.

Proof: see Appendix. �

For Proposition 9, it is found that at symmetric equilibrium (s,s), ∂q
∂λ

=
∂q(s)

∂λ

C , where

C > 1, and at outer asymmetric equilibrium (q,q∗), where q ∈ (0,1) and q∗ = 0 or 1,
∂q
∂λ

= ∂q(q∗)
∂λ

. Therefore, the sign of ∂q
∂λ

essentially depends on the sign of ∂q(q∗)
∂λ

at equi-

librium (s,s) or (q,q∗). According to Proposition 3, it can be deduced that the sign of
∂q
∂λ

also depends on the trade-off between the impact of (1−q∗)M+q∗D+d
λ

and the impact

of (1−q∗)M+q∗D+u
λ

within ∂q(q∗)
∂λ

.

Finally, for any type of equilibrium, what is the effect of the situation where only

one player’s information cost changes given the other parameters? The answer is that

the impact of changing one player’s information cost on both players’ equilibrium

strategy cannot be determined without particular parameter specification in any equi-
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librium. We define

H =−M−D
λ∗

[
p

[1− exp( (1−q)M+qD+d
λ∗ )]2

exp(
(1−q)M+qD+d

λ∗
)

+
1− p

[1− exp( (1−q)M+qD+u
λ∗ )]2

exp(
(1−q)M+qD+u

λ∗
)]

and

K =−M−D
λ

[
p

[1− exp( (1−q∗)M+q∗D+d
λ

)]2
exp(

(1−q∗)M+q∗D+d
λ

)

+
1− p

[1− exp( (1−q∗)M+q∗D+u
λ

)]2
exp(

(1−q∗)M+q∗D+u
λ

)].

The signs of H and K could be positive or negative. It is found that

∂q∗

∂λ
=

H
1−HK

∂q(q∗)
∂λ

and

∂q
∂λ

=
1

1−HK
∂q(q∗)

∂λ

The signs of 1−HK and ∂q(q∗)
∂λ

cannot be determined without particular parameter

specification. However, sign(∂q∗
∂λ

) =−sign( ∂q
∂λ
) because H < 0. Therefore, the impact

of varying only one player’s information cost on each player’s equilibrium strategy,

in any equilibrium, cannot be determined, but its impact on one player’s equilibrium

strategy is always opposite to its impact on its opponent’s equilibrium strategy.

4.9 Impact of Information Cost on Players’ Expected

Payoffs of Entry

In this chapter, we have two types of expected payoff of entry: the ex ante expected

payoff of entry, i.e. (1−q∗)M+q∗D+ pu+(1− p)d, and the typical expected payoff

of entry, i.e. (1−q∗)M+q∗D+ ε ,where ε ∈ {u,d}. For both types, λ or λ∗ can only
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Figure 11: Three numerical examples of EΠ(λ∗)

affect (1−q∗)M+q∗D. We define EΠ = (1−q∗)M+q∗D = M− (M−D)q∗. There-

fore, λ∗, rather than λ, can affect EΠ through player i’s belief. Therefore,

∂EΠ

∂λ∗
=−(M−D)

∂q∗(q)
∂λ∗

and hence,

sign(
∂EΠ

∂λ∗
) =−sign(

∂q∗(q)
∂λ∗

)

Because if and only if pR p̄(q) given q ∈ [0,1], ∂q∗(q)
∂λ∗ R 0. Therefore, if and only

if p Q p̄(q), ∂EΠ

∂λ∗ R 0. It is found that the sign of ∂ p̄(q)
∂λ∗ could be positive or negative.

Therefore, without particular parameter specification, it is hard to know the critical λ∗

that makes EΠ reach its highest value. For example, suppose ∂p̄(q)
∂λ∗ > 0. It can be found

that in this situation, the maximum value of EΠ is reached at either λ∗ = 0 or λ∗ = λ̄∗q

(see Appendix). We also exhibit three numerical examples here to show the flexibility

of the shape of EΠ with respect to λ∗ (see Figure 11).

4.10 (Bayesian) Quantal Response Equilibrium and Ra-

tional Inattention Bayesian Nash Equilibrium

Consider the following entry game:
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Firm i∗

0 1

i

0 0

0

M+ ε∗+η∗

0
Fi

rm 1 0

M+ ε+η

D+ ε∗+η∗

D+ ε+η

The players make their decisions after observing their respective private payoff

shocks ε and ε∗. However, the observation is always affected by an additive error η (or

η∗). Therefore, what they actually observe is ε+η and ε∗+η∗, assuming that η is in-

dependent from η∗. Assumption 1 in Section 4.3 is still held in this game. Therefore,

if player i observes u+η or d +η, in this game, the player’s choice is probabilistic

because D+u > 0 > M+d. The solution concept of this game is therefore (Bayesian)

Quantal Response Equilibrium (QRE) (McKelvey and Palfrey, 1995).

It is assumed that η follows Type I extreme value distribution, i.e. F(η) = e−e−αη−β

.

Suppose that players in this game adopt a cutoff strategy. The conditional choice prob-

ability qε
QRE(q

∗) = Pr(a = 1|ε) is given by

qε
QRE(q

∗) =
exp{α[(1−q∗)M+q∗D+ ε]}

exp{α[(1−q∗)M+q∗D+ ε]}+1
(4.11)

Let us recall the conditional choice probability in the rational inattention Bayesian

game. Given q∗ ∈ [0,1] and λ < λ̄q∗ such that q(q∗) ∈ (0,1), we have

qε
RI(q

∗) =
qexp[ (1−q∗)M+q∗D+ε

λ
]

qexp[ (1−q∗)M+q∗D+ε

λ
]+ (1−q)

=

q
1−q exp[ (1−q∗)M+q∗D+ε

λ
]

q
1−q exp[ (1−q∗)M+q∗D+ε

λ
]+1

(4.12)

Since (4.11) and (4.12) look similar, it is natural to ask under what parameter spec-

ifications (4.11) and (4.12) are identical. If they are identical, there will be a clear

economic and psychological justification of why the disturbances η should be extreme
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value distributed in the Bayesian QRE game.

It is found that if and only if

α =
1
λ
+

1
(1−q∗)M+q∗D+ ε

ln
q

1−q
(4.13)

where λ < λ̄q∗ , (4.11) and (4.12) are identical. However, because α and λ are con-

stant, (4.13) is held if and only if 1
(1−q∗)M+q∗D+ε

ln q
1−q is a constant with respect to ε

given q∗. Therefore, the only solution to make it as a constant is q = 1
2 . When q = 1

2 ,

α = 1
λ

given that λ < λ̄q∗ .

The best response function of the Bayesian QRE game is given by

qQRE =
p

1+ exp[−α((1−q∗)M+q∗D+u)]
+

1− p
1+ exp[−α((1−q∗)M+q∗D+d)]

(4.14)

Given q∗ ∈ [0,1], qQRE ∈ (0,1). As α→ +∞, the Bayesian QRE game converges

to the benchmark Bayesian game, which is also the limit of the rational inattention

Bayesian game as λ→ 0. In this situation, qQRE = p. As α→ 0, in the Bayesian QRE

game, actions consist of all observational errors such that all actions become indiffer-

ent ex ante. Hence, qQRE = 1
2 in this situation. It does not coincide with the rational

inattention Bayesian game of λ→+∞, in which players choose a deterministic action

(0 or 1) by comparing ex ante expected payoffs. According to equation (4.14) and

equation (4.8), it is further found that (1
2 ,q
∗) is an equilibrium for both types of games

under the same parameter specification and α = 1
λ

if and only if q∗ = 1
2 . The reason is

that because both games are symmetric, if (1
2 ,q
∗) is an equilibrium, (q∗, 1

2) should be

an equilibrium as well. According to the analysis in the previous paragraph, in (q∗, 1
2),

unless q∗ = 1
2 , (q∗, 1

2) will not simultaneously satisfy (4.8) and (4.14).

Therefore, in conclusion, if there is a set of parameters satisfying α = 1
λ

and pro-

ducing equilibrium (1
2 ,

1
2) in the rational inattention Bayesian game, then the same set

of parameters will produce the same equilibrium (1
2 ,

1
2) in the Bayesian QRE game, and

vice versa. With the help of equation (4.14), we can express this result in an analytical



4.11. Conclusion 149

form. We define a vector of parameters by W := (M,D, p,u,d,α,λ). If and only if

W ∈ {W |12 = p
1+exp[−α( 1

2 M+ 1
2 D+u)]

+ 1−p
1+exp[−α( 1

2 M+ 1
2 D+d)]

,α = 1
λ

andλ < λ̄ 1
2
}, both the

rational inattention Bayesian game and the Bayesian QRE game can have a common

equilibrium (1
2 ,

1
2). This is the only coincidence situation of the two types of games.

4.11 Conclusion

In this chapter, we have studied how scarcity of attention affects economic agents’

strategic choice behaviour in an incomplete information environment. We use the ra-

tional inattention approach to model scarcity of attention. Given the opponent’s strat-

egy, as the information cost changes from 0 to +∞, a player’s behaviour of making best

responses will switch from by acquiring information to by comparing ex ante expected

payoff of each action. The latter behaviour solely relies on the player’s prior knowl-

edge. This behaviour transition is the behavioural manifestation of the mathematical

property that the continuity of the best response function with respect to the opponent’s

strategy is always ensured no matter how λ changes. Hence, the best response function

indeed contains two distinct choice behaviours.

It is particularly interesting to determine the impact of attention scarcity on forming

equilibria and affecting players’ strategic behaviour. By studying symmetric games,

we find that scarcity of attention can bring multiple equilibria and it is the high infor-

mation cost that generates multiple equilibria. The number of equilibria differs with

respect to different ranges of information cost. In any multiplicity situation in sym-

metric games, there always exists one pair of asymmetric equilibria in which at least

one player plays the game without acquiring information.

In a symmetric equilibrium or an outer asymmetric equilibrium (q,q∗), the effect

of attention scarcity on a player’s information-acquisition choice behaviour depends

on whether p is greater than p̄(q∗). We also find that in any equilibrium the impact

of a player’s information cost on their strategy is always opposite to its impact on the

opponent’s strategy.

Finally, we have compared the rational inattention Bayesian entry game with a

Bayesian QRE entry game. It is found that there exists a set of parameters satisfying
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α = 1
λ

and λ < λ̄ 1
2
. Specified by this set of parameters, both Bayesian QRE game and

rational inattention Bayesian game have a common equilibrium (1
2 ,

1
2). Except this sit-

uation, the two games cannot be coincided.

For future research, we will study the situation that players pay full attention to

their own information but are inattentive to their opponents’ information. We are in-

terested in how players make their strategic choices in such a paradigm. In future

study, we will investigate this problem to see how players’ behaviour deviates from

the behaviour in the game in which scarcity of attention exists for players to their own

information.
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Appendix A

Appendix of Chapter 2

Preliminaries and Glossaries of

Notations

The standard Gaussian density function is denoted by φ(.), and the standard Gaus-

sian cumulative density function is denoted by Φ(.). Given a Gaussian distribution

x∼ N(µ,ς2), the density function is written as

f (x) =
1√
2πς

exp(−(x−µ)2

2ς2 ) =
1
ς

φ(
x−µ

ς
)

The joint Gaussian distribution is denoted by (ε,ε∗)∼ N(0,0,ς2,ς∗2,ρ). The den-

sity function of the bivariate Gaussian distribution is

f (ε,ε∗) =
1

2πςς∗
√

1−ρ2
exp(− 1

2(1−ρ2)
(
ε2

ς2 +
ε∗2

ς∗2
− 2ρεε∗

ςς∗
))

The conditional density function is

f (ε∗|ε) = 1

ς∗
√

1−ρ2
φ(

ε∗

ς∗ −
ρε

ς√
1−ρ2

)

and the conditional cumulative density function is

153
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F(ε̄∗|ε) =
∫

ε̄∗

−∞

f (ε∗|ε)dε
∗ =

∫
ε̄∗

−∞

1

ς∗
√

2π(1−ρ2)
exp(−1

2
(

ε∗

ς∗ −
ρε

ς√
1−ρ2

)2)dε
∗

=
∫ ε̄∗

ς∗ −
ρε
ς√

1−ρ2

−∞

1√
2π

exp(−1
2

u2)du

= Φ(

ε̄∗

ς∗ −
ρε

ς√
1−ρ2

)

We denote a player’s belief function by σ(x∗,ε) = F(x∗|ε), where ε is a player’s

own private information, and x∗ is the expected opponent’s cutoff strategy. We get the

following results for σ(x∗,ε):

σ(x∗,ε) = F(x∗|ε) = Φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

σx∗(x∗,ε) =
1

ς∗
√

1−ρ2
φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

σε(x∗,ε) =−
ρ

ς
√

1−ρ2
φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

By assuming ς = ς∗, these expressions can be simplified into the following equa-

tions, respectively:

σ(x∗,ε) = Φ(
x∗−ρε

ς
√

1−ρ2
)

σx∗(x∗,ε) =
1

ς
√

1−ρ2
φ(

x∗−ρε

ς
√

1−ρ2
)

σε(x∗,ε) =−
ρ

ς
√

1−ρ2
φ(

x∗−ρε

ς
√

1−ρ2
)

The expected payoff function EΠ(x∗,ε) is expressed as follows:

EΠ(x∗,ε) = σ(x∗,ε)(M+ ε)+(1−σ(x∗,ε))(D+ ε)

= σ(x∗,ε)(M−D)+D+ ε
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= Φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)(M−D)+D+ ε

= Φ(
x∗−ρε

ς
√

1−ρ2
)(M−D)+D+ ε

The best response function is denoted by g(x∗). In the proof, we often regard

g(x∗) as an independent variable and take derivatives of relevant functions with re-

spect to g(x∗) or find an optimum value of relevant functions with respect to g(x∗).

For simplicity, we denote g−1′(x∗) ≡ dx∗
dg(x∗) =

1
dg(x∗)

dx∗
, and ming(x∗)(maxg(x∗))ρ

′(x∗) =

min(max)ρ′(x∗), which is the derivative of a function with x∗ as dependent variable

and g(x∗) as independent variable, and ming(x∗)(maxg(x∗))ρ
′′(x∗) = min(max)ρ′′(x∗).
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Appendix of Chapter 2

Proof of Proposition 1

Lemma B1: There exists a ρ̃ ∈ (−1,1), if M > D, for all ρ ∈ (−1, ρ̃] and for all

x∗ ∈ R, ∂EΠ(x∗,ε)
∂ε

≥ 0, where the equality is obtained at ε = ς

ς∗
x∗
ρ

, with ρ = ρ̃.

Proof: For all x∗ ∈R, EΠ(x∗,ε)=σ(x∗,ε)(M−D)+D+ε=Φ(
x∗
ς∗−

ρε

ς√
1−ρ2

)(M−D)+

D+ε. Therefore, ∂EΠ(x∗,ε)
∂ε

=σε(x∗,ε)(M−D)+1=− ρ(M−D)

ς

√
2π(1−ρ2)

exp(−1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)+

1. Hence, ∂EΠ(x∗,ε)
∂ε

≥ 0 is equivalent to− ρ(M−D)

ς

√
2π(1−ρ2)

exp(−1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)+1≥ 0. There-

fore, the inequality exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)≥ ρ(M−D)

ς

√
2π(1−ρ2)

is the necessary and sufficient con-

dition for ∂EΠ(x∗,ε)
∂ε

≥ 0. Apparently, that ρ(M−D) ≤ 0 is sufficient to make the nec-

essary and sufficient condition hold. Therefore, that M > D and ρ ≤ 0 is sufficient to

guarantee exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)> ρ(M−D)

ς

√
2π(1−ρ2)

, and thus ∂EΠ(x∗,ε)
∂ε

> 0.

Suppose ρ(M−D)> 0. Then, the necessary and sufficient condition exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)≥
ρ(M−D)

ς

√
2π(1−ρ2)

can be equivalently transformed into (x∗
ς∗ −

ρε

ς
)2 ≥ 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

.

Therefore, under the condition ρ(M−D)> 0, ∂EΠ(x∗,ε)
∂ε

≥ 0 is always held if and only

if for all x∗ ∈ R and ε ∈ R, that (x∗
ς∗ −

ρε

ς
)2 ≥ 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

is always held.

Hence, as long as all parameters satisfy 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

≤ 0, the necessary and

sufficient condition is always held, and thus ∂EΠ(x∗,ε)
∂ε

≥ 0 given that ρ(M−D) > 0.

Since ln ρ(M−D)

ς

√
2π(1−ρ2)

= 0 as long as ρ(M−D)

ς

√
2π(1−ρ2)

= 1. Given M, D, ς and ς∗, and denot-

ing the solution by ρ̃, then we have ρ̃2 = 2πς2

2πς2+(M−D)2 . Furthermore, as long as ρ2 < ρ̃2,

157
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2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

< 0. Therefore, if M > D, and 0 < ρ ≤ ρ̃, ∂EΠ(x∗,ε)
∂ε

≥ 0 is al-

ways held, and ∂EΠ(x∗,ε)
∂ε

= 0 if and only if ε = ς

ς∗
x
ρ̃

. Therefore, combined with the

results for the ρ(M−D) ≤ 0 situation, it can be concluded that if M > D, for all

ρ ∈ (−1, ρ̃], ∂EΠ(x∗,ε)
∂ε

≥ 0 is always held, and ∂EΠ(x∗,ε)
∂ε

= 0 if and only if ε = ς

ς∗
x
ρ̃

,

where ρ̃ =
√

2πς2

2πς2+(M−D)2 .

Finally, the game is symmetric and hence ς = ς∗. Therefore, ρ̃ =
√

2πς2

2πς2+(M−D)2 =√
2πς∗2

2πς∗2+(M−D)2 = ρ̃∗ for M > D. Hence, both players have an identical range to ensure

that their respective expected payoff function EΠ(x∗,ε) always increases with respect

to ε ∈ R. Q.E.D.

Proof of Proposition 1: The proof of Proposition 1 is based on the proof of

Lemma B1. We denote the set of ρ that makes EΠ(x∗,ε) always increase with re-

spect to ε given x∗ by Γ ≡ {ρ|ρ ≤ ρ̃ if M > D }. From Lemma B1, it has been

known that given M and D, the necessary and sufficient condition for ∂EΠ(x∗,ε)
∂ε

≥ 0

is ρ ∈ Γ. Therefore, it is certain that as long as ρ does not belong to Γ, EΠ(x∗,ε) is not

monotonic with respect to ε given any x∗ ∈ R. Equivalently, it means that for some ε,

(x∗
ς∗ −

ρε

ς
)2 < 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

. Without loss of generality, Figure B1 geometri-

cally presents a general description of the relationship between y(ε) = (x∗
ς∗ −

ρε

ς
)2 and

z(ε) = 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

given x∗, M, D, ρ, ς and ς∗ for all ρ /∈ Γ .

According to the quadratic structure of y(ε), as long as ρ /∈ Γ, there should be

two solutions to solve the equation (x∗
ς∗ −

ρε

ς
)2 = 2(1− ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

. They are

ε1 =
ς

ρς∗ x−
x∗
ρ

√
2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

and ε2 =
ς

ρς∗ x+
x∗
ρ

√
2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

.

Therefore, for ε≤ ε1 or ε≥ ε2, (x∗
ς∗ −

ρε

ς
)2≥ 2(1−ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

, then ∂EΠ(x∗,ε)
∂ε

≥ 0,

where the equality is taken when ε= ε1 or ε= ε2. For ε1 < ε< ε2, ∂EΠ(x∗,ε)
∂ε

< 0. Based

on these results, without loss of generality, Figure B2 geometrically presents a general

description of function EΠ(x∗,ε) with respect to ε given any value of x∗ ∈ R, for all

ρ /∈ Γ.

Because for all x∗ ∈ R, given all primitives, expected payoff function EΠ(x∗,ε) is

always located between the line M+ ε and D+ ε, and if M > D, increasing x∗ will lift

EΠ(x∗,ε) upward, it is possible that for some value of x∗, there are two or three solu-



159

Figure B1: A geometric description of the relationship between function y(ε) and

z(ε) as long as ρ /∈ Γ, where y(ε) = (x∗
ς∗ −

ρε

ς
)2 and z(ε) = 2(1− ρ2) ln ρ(M−D)

ς

√
2π(1−ρ2)

.

There must be two intersection point which make f (ε) = g(ε), and in this figure, they

are denoted by ε1 and ε2, respectively. The function y(ε) reaches its global minimum

0 at ε = ς

ς∗
x∗
ρ

.

tions of ε satisfying EΠ(x∗,ε) = 0. In Appendix D, we will prove that it is certain that

for all ρ /∈ Γ, by using a cutoff strategy, the game always contains a unique symmetric

solution g(s) = s, such that given s, EΠ(s,ε) = 0 has three solutions, and the solution

ε = s is located at the middle where EΠ(s,ε) decreases with respect to ε (see Figure

B2). Apparently, the solution (s,s) self-contradicts the definition of the cutoff strategy

under which it is derived. Hence, we cannot solve the game using the cutoff strategy

concept for all ρ /∈ Γ. Therefore, the set Γ not only indicates that EΠ(x∗,ε) increases

with respect to ε for all x∗ ∈R but also characterizes the set of cutoff strategy Bayesian

Nash equilibria of the symmetric strategic substitutes games. Therefore, Proposition 1

is obtained. Q.E.D.



160 Appendix B. Appendix of Chapter 2 Proof of Proposition 1

Figure B2: A general description of expected payoff function EΠ(x∗,ε) with respect

to ε given any value of x, for all ρ /∈ Γ. The position of EΠ(x∗,ε) depends on x∗, and

EΠ(x∗,ε) is always located within [D+ ε,M+ ε] for all x∗ ∈ R. If M > D, increasing

x∗ will lift EΠ(x∗,ε) upward. In Appendix E, it is proven that as long as a cutoff

strategy is used to solve the game, for all ρ /∈ Γ, there always exists a solution (s,s)

satisfying g(s) = s such that given s, EΠ(s,ε) behaves non-monotonically and has

three intersections with the x-axis; this is indicated by the red curve.
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Appendix of Chapter 2

Derivation of the (Inverse) Best

Response Function

The best response function, g(x∗), is defined to satisfy EΠ(x∗,g(x∗)) = 0. Therefore,

we obtain σ(x∗,g(x∗))(M−D)+D+g(x∗)= 0, and further Φ(
x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
)(M−D)+D+

g(x∗) = 0. This equation can be equivalently transformed into D+g(x∗)
D−M = Φ(

x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
).

Since the cumulative density function of normal distribution is invertible, we ob-

tain Φ−1(D+g(x∗)
D−M ) =

x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
. Finally, we obtain the inverse best response function

x∗ = ρ
ς∗

ς
g(x∗)+ ς∗

√
1−ρ2Φ−1(D+g(x∗)

D−M ).

Still, for the definition equation EΠ(x∗,g(x∗)) = 0, or Φ(
x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
)(M−D)+D+

g(x∗) = 0, we differentiate this equation with respect to x∗ on both sides, and ob-

tain EΠ′x∗(x
∗,g(x∗))+EΠ′ε(x

∗,g(x∗))g′(x∗) = 0. Therefore, g′(x∗) =−EΠ′x∗(x
∗,g(x∗))

EΠ′ε(x∗,g(x∗))
=

−
∂EΠ(x∗,ε)

∂x∗
∂EΠ(x∗,ε)

∂ε

|ε=g(x∗)=−
σx∗(x

∗,g(x∗))(M−D)
σε(x∗,g(x∗))(M−D)+1 =

1

ς∗
ς

ρ−
ς∗
√

2π(1−ρ2)exp( 1
2 (

x∗
ς∗ −

ρg(x∗)
ς√

1−ρ2
)2)

M−D

. σx∗(x∗,g(x∗))>

0, and it is known that as long as ρ ∈ Γ, ∂EΠ(x∗,g(x∗))
∂ε

≥ 0; hence, if M > D, g′(x∗)< 0.

Therefore, as long as the concept of cutoff strategy Bayesian Nash equilibria is applied

to solve the game, i.e. ρ ∈ Γ, g(x∗) globally decreases for a strategic substitutes game.
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Appendix of Chapter 2

Proof of Proposition 2

Lemma D1: For all x∗ ∈R, assume ς= ς∗ and M >D, there exists two functions ρ′(x∗)

and ρ′′(x∗). Given an x∗ ∈R and ρ∈ (−1,1), if ρ∈ (−1,ρ′′(x∗)), then−1< g′(x∗)< 0;

if ρ ∈ (ρ′′(x∗),ρ′(x∗)), g′(x∗) < −1 ; at ρ = ρ′′(x∗), g′(x∗) = −1; at ρ = ρ′(x∗),

g′(x∗) = ∞.

Proof: We have g−1′(x∗)≡ dx∗
dg(x∗) =

1
dg(x∗)

dx∗
= ρ+

ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2);

therefore, dg−1′(x∗)
dρ

= 1− ς∗ρ√
1−ρ2

√
2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Hence, given an x∗ ∈ R,

if ρ > 0 and M > D, the function g−1′(x∗) must increase with respect to ρ. Besides, if

ρ = 0, g−1′(x∗)< 0, and if ρ = 1, g−1′(x∗) = 1. Because g−1′(x∗) is a continuous func-

tion with respect to ρ, for all ρ ∈ [0,1], g−1′(x∗) increases from a negative value to 1 as

ρ increases from 0 to 1. Therefore, there must exist a ρ∈ [0,1], whose value depends on

x∗, and it makes g−1′(x∗) = 0. We denote this ρ by ρ′(x∗). Since g−1′(x∗)< 0 is equiv-

alent to g′(x∗) < 0 and g−1′(x∗) > 0 is equivalent to g′(x∗) > 0, we can conclude that

given an x∗ ∈R, for all ρ∈ [0,ρ′(x∗)), g′(x∗)< 0, and for all ρ∈ (ρ′(x∗),1], g′(x∗)> 0.

We define A≡ ς∗
√

2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). For M > D, A < 0. Hence, the equa-

tion g−1′(x∗) = 0 can be equivalently expressed by ρ+A
√

1−ρ2 = 0. The solution

ρ′(x∗) that solves ρ+A
√

1−ρ2 = 0 equals − A√
1+A2 > 0. Because ς = ς∗, both play-

ers’ ρ′(x∗) function should be identical.

Because g′(x∗) = g−1′(x∗) = −1, ρ +
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2) = −1,
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and hence, ρ+1 =− ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2)> 0 for M > D. Given M, D,

ς and ς∗, the ρ that satisfies the equation ρ+1 =− ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2)

must depend on x∗. Thus, we denote the ρ that makes g′(x∗) = g−1′(x∗) = −1 as

ρ′′(x∗). For this incomplete information game, ρ′′(x∗) should not be equal to ±1.

g−1′(x∗) = −1 can be equivalently expressed by ρ+ 1 = −
√

1−ρ2A. Solving this

equation, we get two solutions: ρ′′(x∗) = −1 and ρ′′(x∗) = A2−1
A2+1 ; the first solution is

excluded on the basis of the previous argument. Therefore, ρ′′(x∗) = A2−1
A2+1 .

Because given an x∗ ∈R, ρ′′(x∗) is unique, for all ρ∈ (−1,ρ′′(x∗)) or ρ∈ (ρ′′(x∗),ρ′(x∗)),
g′(x∗) is either greater or smaller than -1. To judge in which interval g′(x∗) is smaller

or greater than -1, let us recall the derivative of g−1′(x∗) with respect to ρ ∈ (−1,1):

dg−1′(x∗)
dρ

= 1− ς∗ρ√
1−ρ2

√
2π

D−M
exp(

1
2
[Φ−1(

D+g(x∗)
D−M

)]2)

Because at ρ = ρ′′(x∗), dg−1′(x∗)
dρ

= 1
1−ρ′′(x∗) > 0, for all ρ∈ (ρ′′(x∗)−ε,ρ′′(x∗)+ε),

the function g−1′(x∗) increases with respect to ρ. Because at ρ = ρ′′(x∗), g−1′(x∗) =

−1, for all ρ∈ (ρ′′(x∗)−ε,ρ′′(x∗)), g−1′(x∗)<−1, and for all ρ∈ (ρ′′(x∗),ρ′′(x∗)+ε),

g−1′(x∗) > −1. In addition, because ρ′′(x∗) is unique, this result can be extended to

the whole interval ρ ∈ (−1,1). Thus, for all ρ ∈ (−1,ρ′′(x∗)), g−1′(x∗)<−1, and for

all ρ ∈ (ρ′′(x∗),1), g−1′(x∗)>−1.

The relationship between ρ′(x∗) and ρ′′(x∗): Recall that ρ′(x∗)> 0. If ρ′′(x∗)≤ 0,

then it is certain that ρ′(x∗)> ρ′′(x∗). If ρ′′(x∗) is positive, g−1′(x∗) increases with re-

spect to ρ when ρ > 0 and at ρ = ρ′(x∗), g−1′(x∗) = 0, and at ρ = ρ′′(x∗), g−1′(x∗) =

−1. Therefore, ρ′(x∗) > ρ′′(x∗) if ρ′′(x∗) > 0. In conclusion, if M > D, ρ′(x∗) is al-

ways strictly greater than ρ′′(x∗).

Because ς = ς∗, both players’ ρ′(x∗) and ρ′′(x∗) function are identical. Therefore,

in conclusion, for M > D, the function g(x∗) whose inverse form is x∗ = ρ
ς∗

ς
g(x∗)+

ς∗
√

1−ρ2Φ−1(D+g(x∗)
D−M ) has the following property: given an x∗ ∈ R and ρ ∈ (−1,1),

if ρ < ρ′′(x∗), g′(x∗) > −1; if ρ′′(x∗) < ρ < ρ′(x∗), g′(x∗) < −1; if ρ = ρ′′(x∗),

g′(x∗) =−1; if ρ = ρ′(x∗), g′(x∗) = ∞; and if ρ > ρ′(x∗), g′(x∗)> 0. Q.E.D.

Lemma D2: For M > D, for all ρ ∈ [0,ρ′(x∗)], g′(x∗) decreases from a negative
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value to −∞, and for all ρ ∈ (ρ′(x∗),1), g′(x∗) decreases from +∞ to 1.

Proof: From the proof of Lemma D1, it has been known that given an x∗ ∈ R,

g−1′(x∗) increases with respect to ρ for ρ∈ [0,1) and it is continuous with respect to ρ.

Therefore, g′(x∗) must perform decreasing property in the interval ρ∈ [0,1). At ρ = 0,

g−1′(x∗)< 0 and hence g′(x∗)< 0; at ρ = ρ′(x∗), g−1′(x∗) = 0 and hence g′(x∗) = ∞;

and at ρ = 1, g−1′(x∗) = 1 and hence g′(x∗) = 1. Therefore, for function g′(x∗), there

is a discontinuity point at ρ = ρ′(x∗). For ρ ∈ [0,ρ′(x∗)), g′(x∗) should decrease from

a negative value to −∞, and for ρ ∈ (ρ′(x∗),1), g′(x∗) should decrease from +∞ to 1.

Q.E.D.

Lemma D3: For M > D, given an x∗ ∈ R, g′(x∗) is concave for ρ ∈ (−1,0). It

reaches its maximum value at ρ =− 1√
1+A2 .

Proof: Given an x∗ ∈ R and M > D, for all ρ ∈ (−1,0), because

d2g′(x∗)
dρ2 = 2(g−1′(x∗))−3(dg−1′(x∗)

dρ
)2−(g−1′(x∗))−2 d2g−1′(x∗)

dρ2 , d2g−1′(x∗)
dρ2 =−A

√
1−ρ2+ ρ2√

1−ρ2

1−ρ2 >

0, and for ρ < 0, g−1′(x∗) < 0, therefore d2g−1′(x∗)
dρ2 < 0 for ρ ∈ (−1,0). Hence, g′(x∗)

is concave for all ρ ∈ (−1,0). Further, by calculating the first-order condition, it is

found that g−1′(x∗) = ρ+
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2) reaches its maximum

value at ρ =− 1√
1+A2 < 0, where A≡ ς∗

√
2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). We denote this ρ

by ρ′′′(x). Thus, given an x∗ ∈ R, the function g′(x∗) reaches its maximum value at

ρ′′′(x) =− 1√
1+A2 for all ρ∈ (−1,0), and the maximum value of g′(x∗) is just− 1√

1+A2 .

Q.E.D.

For M > D, according to Lemmas D1, D2 and D3, the shape of g′(x∗) with respect

to ρ given an x∗ ∈ R can be generally represented as shown in Figure D1.

Lemma D4: Given an x∗ ∈ R and assuming M > D, for g(x∗) ∈ (−M+D
2 ,−D],

dρ′(x∗)
dg(x∗) > 0 and dρ′′(x∗)

dg(x∗) > 0; for g(x∗) ∈ [−M,−M+D
2 ), dρ′(x∗)

dg(x∗) < 0 and dρ′′(x∗)
dg(x∗) < 0.

Proof: Let us recall that ρ′(x∗) = − A√
1+A2 and ρ′′(x∗) = A2−1

A2+1 , where A ≡ ς∗
√

2π

D−M

exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Because M >D, A< 0. By the chain rule, dρ′(x∗)

dg(x∗) =
dρ′(x∗)

dA
dA

dg(x∗) ,

and dρ′′(x∗)
dg(x∗) = dρ′′(x∗)

dA
dA

dg(x∗) . Because ρ′(x∗)=− A√
1+A2 =

1√
1

A2 +1
and ρ′′(x∗)= A2+1−2

A2+1 =

1− 2
A2+1 , as A increases, ρ′(x∗) decreases and ρ′′(x∗) decreases. Hence, dρ′(x∗)

dA < 0
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Figure D1: A general geometric description of function g′(x∗) with respect to ρ for

M > D given an x∗ ∈ R.

and dρ′′(x∗)
dA < 0. If g(x∗)<−M+D

2 , dA
dg(x∗) > 0 and if g(x∗)>−M+D

2 , dA
dg(x∗) < 0; there-

fore, if g(x∗) ∈ (−M+D
2 ,−D], dρ′(x∗)

dg(x∗) > 0 and dρ′′(x∗)
dg(x∗) > 0, and if g(x∗) ∈ [−M,−M+D

2 ),
dρ′(x∗)
dg(x∗) < 0 and dρ′′(x∗)

dg(x∗) < 0. Hence, at g(x∗) = −M+D
2 , both ρ′(x∗) and ρ′′(x∗) reach

their global minimum value with respect to g(x∗). The minimum values of ρ′(x∗) and

ρ′′(x∗) with respect to g(x∗) are
√

2πς∗2

2πς∗2+(M−D)2 and 2πς∗2−(M−D)2

2πς∗2+(M−D)2 , respectively. Q.E.D.

Based on Lemmas D1 and D4, Figure D2 generally depicts functions ρ′(x∗) and

ρ′′(x∗) with respect to g(x∗). According to Lemmas D1, D2 and D3, given an x∗ ∈ R
and hence g(x∗), as ρ increases from -1 to 1, for ρ ∈ (−1,ρ′′(x∗)), −1 < g′(x∗) < 0;

for ρ ∈ (ρ′′(x∗),ρ′(x∗)), g′(x∗)<−1; for ρ ∈ (ρ′(x∗),+∞), g′(x∗)> 0. At ρ = ρ′′(x∗),

g′(x∗) =−1 and at ρ = ρ′(x∗), g′(x∗) = ∞. According to these properties, the general

shape of g′(x∗) can be illustrated by Figure D2. We choose an arbitrary value of g(x∗)

between−M and−D, and at this chosen g(x∗), we draw a vertical line from -1 to 1 (the

red line in Figure D2). The curves ρ′′(x∗) and ρ′(x∗) dissect this line into three parts,

on which g′(x∗)>−1, g′(x∗)<−1 and g′(x∗)> 0 from bottom to top. Because g(x∗)

is arbitrarily chosen, this result applies for all g(x∗) ∈ [−M,−D]. Therefore, it can be

concluded that given M, D, ς and ς∗, for all g(x∗) ∈ [−M,−D], if ρ ∈ (−1,ρ′′(x∗)),

g′(x∗)>−1 and correspondingly it is the area below the curve ρ′′(x∗) in Figure D2; for

all g(x∗)∈ [−M,−D], if ρ∈ (ρ′′(x∗),ρ′(x∗)), g′(x∗)<−1 and correspondingly it is the

area between the curve ρ′′(x∗) and the curve ρ′(x∗); finally, for all g(x∗) ∈ [−M,−D],
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if ρ ∈ (ρ′(x∗),1), g′(x∗)> 0 and correspondingly it is the area above the curve ρ′(x∗).

Figure D2: A general geometric description of functions ρ′(x∗) and ρ′′(x∗) with

respect to g(x∗) for M > D.

Lemma D5: For M > D, given a ρ ∈ [minρ′′(x∗),1), there are one or two values

of g(x∗) that make g′(x∗)=−1. They are g(x∗)=−(M−D)Φ(±
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D.

Proof: Given M, D, ς and ς∗, if there are g(x∗)s whose derivative g′(x∗) =−1, then

the corresponding ρ ∈ [minρ′′(x∗),1) and g(x∗) should satisfy ρ = A2−1
A2+1 , where A ≡

ς∗
√

2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Therefore, A2 = 1+ρ

1−ρ
, i.e. 2πς∗2

(M−D)2 exp([Φ−1(D+g(x∗)
D−M )]2)=

1+ρ

1−ρ
. Therefore, exp([Φ−1(D+g(x∗)

D−M )]2) = 1+ρ

1−ρ

(M−D)2

2πς∗2
≥ 1, where the latter equality

is held if and only if ρ = minρ′′(x∗) = 2πς∗2−(M−D)2

2πς∗2+(M−D)2 . Therefore, [Φ−1(D+g(x∗)
D−M )]2 =

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
, and Φ−1(D+g(x∗)

D−M ) = ±
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
. Hence, we get two solutions:

g(x∗)1 =−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D and g(x∗)2 =−(M−D)Φ(−

√
ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−

D. Note that g(x∗)1 ≤ g(x∗)2, where the equality is obtained as long as ρ = minρ′′(x∗).

Q.E.D.

Remark: Given all primitives, Lemma D5 must be held in the subinterval ρ ∈
[minρ′′(x∗),minρ′(x∗)] as well.

Lemma D6: Given a ρ ∈ (minρ′(x∗),1) if M > D, there are two values of g(x∗)
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that makes g′(x∗) = ∞. They are g(x∗) = −(M−D)Φ(±
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D. If

ρ = minρ′(x∗) for M > D, at g(x∗) =−M+D
2 , g′(x∗) = ∞.

Proof: Given M, D, ς and ς∗, if there are g(x∗)s whose derivative g′(x∗) =∞, which

means 1
g′(x∗) = 0, then the corresponding ρ ∈ (minρ′(x∗),1) for M > D, and the g(x∗)

should simultaneously satisfy ρ = −A√
1+A2 , where A ≡ ς∗

√
2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2).

Therefore, A2 = ρ2

1−ρ2 , i.e. 2πς∗2

(M−D)2 exp([Φ−1(D+g(x∗)
D−M )]2)= ρ2

1−ρ2 . Hence, exp([Φ−1(D+g(x∗)
D−M )]2)=

ρ2

1−ρ2
(M−D)2

2πς∗2
≥ 1, where the latter equality is held if and only if ρ = minρ′(x∗) =√

2πς∗2

2πς∗2+(M−D)2 for M >D. Thus, [Φ−1(D+g(x∗)
D−M )]2 = ln ρ2

1−ρ2
(M−D)2

2πς∗2
and Φ−1(D+g(x∗)

D−M )=

±
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
, and we get two solutions: g(x∗)1 =−(M−D)Φ(

√
ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−

D and g(x∗)2 =−(M−D)Φ(−
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D. Note that for M > D, g(x∗)1 ≤

g(x∗)2, where the equality is obtained as long as ρ = minρ′(x∗). If the equality is held,

g(x∗) = g(x∗)1 = g(x∗)2 =−M+D
2 . Q.E.D.

Proof of Proposition 2: According to Figure D2 and results from Lemmas D5 and

D6, we obtain the following conclusion about the shape of g(x∗) given M, D, ς and ς∗

for all ρ ∈ (−1,1):

1) for ρ ∈ (−1,minρ′′(x∗)), −1 < g′(x∗)< 0 globally;

2) for ρ ∈ [minρ′′(x∗),minρ′(x∗)],

I. if g(x∗) ∈ [−M,−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D), −1 < g′(x∗)< 0;

II. if g(x∗)∈ (−(M−D)Φ(
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D,−(M−D)Φ(−

√
ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−

D), g′(x∗)<−1;

III. if g(x∗) ∈ (−(M−D)Φ(−
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D,−D], −1 < g′(x∗)< 0;

IV. if g(x∗) =−(M−D)Φ(±
√

ln 1+ρ

1−ρ

(M−D)2

2πς∗2
)−D, g′(x∗) =−1.

3) for ρ ∈ (minρ′(x∗),1),

I. if g(x∗) ∈ [−M,−(M−D)Φ(
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D), g′(x∗)< 0;
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II. if g(x∗)∈ (−(M−D)Φ(
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D,−(M−D)Φ(−

√
ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−

D), g′(x∗)> 0;

III. if g(x∗) ∈ (−(M−D)Φ(−
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D,−D], g′(x∗)< 0;

IV. if g(x∗) =−(M−D)Φ(±
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D, g′(x∗) = ∞.

It is straightforward to find that the description of the shape of g(x∗) is still held

even if the payoff specification for both players is asymmetric, because from Lemmas

D1 to D6, we only focus on studying the properties of a single best response function.

In the following, we will prove that the shape of g(x∗) in 3), the non-monotonic

g(x∗), contradicts the definition of the cutoff strategy concept; hence, for the symmet-

ric strategic substitutes game, using the cutoff strategy concept to solve the game is

valid if and only if ρ ∈ (−1, ρ̃].

Let us recall expected payoff function EΠ(x,ε) = σ(x∗,ε)(M−D)+D+ε and the

belief σ(x∗,ε) =
∫ x∗
−∞

f (ε∗|ε)dε∗. These formulations are exeactly following the defini-

tion of the cutoff strategy concept in the paper. The definition of the cutoff strategy just

states that a player’s action choice should monotonically non-decrease with respect to

the player type. It does not explicitly state that at the equilibrium, given one player’s

cutoff strategy x∗, another player’s best response g(x∗) should be unique. However,

if given an opponent’s strategy, there are more than one best responses, this situation

naturally fails the definition of the cutoff strategy. For example, given an opponent’s

strategy ε∗, there are two cutoff strategies (best responses) towards ε∗, ε1 and ε2, where

ε1 < ε2, such that EΠ(ε∗,ε) = 0 and ε ∈ {ε1,ε2}. Then, for a payoff shock ε ∈ (ε1,ε2),

according to the definition of the cutoff strategy, because ε > ε1, the player should

choose being active, but because ε < ε2, the player chooses being inactive, leading to

a contradiction. Therefore, the definition of the cutoff strategy has implicitly dictated

that if a cutoff strategy is adopted, given one player’s cutoff strategy, the other player’s

best response should be unique. This conclusion is held irrespective of the specifica-

tion of payoffs.

As long as ρ /∈ Γ, in the proof of Proposition 1 (Appendix B), we have proven
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that given x∗ ∈ R, as ε increases from −∞ to +∞, EΠ(x∗,ε) first increases, then de-

creases, and finally increases. In addition, we showed that in the strategic substitutes

game, for all ρ > ρ̃, as g(x∗) decreases from−D to−M, function g(x∗) first decreases,

then increases, and finally decreases. In fact, the change of monotonicity of EΠ(x∗,ε)

and g(x∗) is synchronized, because g′(x∗) = −
∂EΠ(x∗,ε)

∂x∗
∂EΠ(x∗,ε)

∂ε

|ε=g(x∗). Since ∂EΠ(x∗,ε)
∂x∗ > 0

for M > D, for any point (x∗,g(x∗)) from the function g(x∗), if ∂EΠ(x∗,ε)
∂ε

|ε=g(x∗) ≷ 0,

g′(x∗)≶ 0 for M > D, and vice versa.

Solving the symmetric game for all ρ > ρ̃, there still exists a symmetric solution

that satisfies x∗ = g(x∗). However, at this symmetric solution, g′(x∗)> 0, because for

a solution that satisfies x∗ = g(x∗), its derivative g′(x∗) can be expressed as

g′(x∗) =
1

ρ−
ς∗
√

2π(1−ρ2)exp( 1
2

1−ρ

1+ρ

g2(x∗)
ς2 )

M−D

In addition, because ρ2 > 2πς2

2πς2+(M−D)2 , we get ρ2 > 2πς2

2πς2+(M−D)2 >
2πς2(1−ρ2)
(M−D)2 , and

because g′(x∗)|g(x∗)=0 = 1

ρ− ς

√
2π(1−ρ2)
M−D

, for M > D and ρ > ρ̃ =
√

2πς2

2πς2+(M−D)2 , we

get g′(x∗)|g(x∗)=0 > 0. For M > D, if we regard g′(x∗) as a function with respect to

variable g2(x∗), ∂g′(x∗)
∂g2(x∗) > 0, then for any symmetric solution (s,s), g′(x∗)|g(x∗)=s ≥

g′(x∗)|g(x∗)=0 > 0. Therefore, for the symmetric strategic substitutes game, as long as

ρ > ρ̃, at the symmetric solution (s,s), the derivative g′(s) > 0, and correspondingly,
∂EΠ(s,ε)

∂ε
|ε=s < 0. So as long as ρ > ρ̃, given a symmetric solution (s,s) such that the

equation EΠ(s,ε) = 0 has a solution ε = s, according to the proof of Proposition 1 in

Appendix B, without loss of generality, function EΠ(s,ε) is simply the red curve in

Figure B2, and ε = s is the middle intersection point where the expected payoff func-

tion decreases. Therefore, if we still use a cutoff strategy to solve the game for ρ > ρ̃,

we will always get a symmetric solution (s,s), for which function EΠ(s,ε) = 0 has

three values of ε, including ε = s, that make the equation hold; more importantly, the

symmetric solution (s,s) itself contradicts the cutoff strategy definition under which it

is derived. Therefore, we cannot use the cutoff strategy concept to solve the symmetric

strategic substitutes game for ρ > ρ̃ given M > D and ς = ς∗. This supplements the

existing proof of Proposition 1 in Appendix B, and the proof of Proposition 1 is now

complete.
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As long as the strategic substitutes game is symmetric, the conclusions 1) and 2)

constitute Proposition 2. However, if the payoff specification is asymmetric, these

results are still held for describing a single player’s g(x∗) function as these results are

derived by studying only a single g(x∗) function. Hence, Proposition 2 is held in asym-

metric payoff settings also. Q.E.D.





Appendix E

Appendix of Chapter 2

Uniqueness/Multiplicity and Stability

of Equilibrium

Lemma E1 (Correspondence between the Position of Symmetric Equilibrium and
the Sign of M+D ): We denote the symmetric equilibrium of the strategic substitutes

game by (s,s). There is a one-to-one correspondence relationship between the position

of the symmetric equilibrium and the sign of M +D, which is M +D R 0 if and only

if 0R sR−M+D
2 .

Proof: Let us recall the (inverse) best response function g(x∗) that is expressed

as x∗ = ρg(x∗)+ ς∗
√

1−ρ2Φ−1(D+g(x∗)
D−M ). We denote symmetric equilibria by (s,s).

It should satisfy g(s) = s. Hence, we get s = ρg(s) + ς∗
√

1−ρ2Φ−1(D+g(s)
D−M ). Af-

ter a series of transformation of the previous equation, we get the following results

which necessarily and sufficiently contain the symmetric equilibrium: Φ(
√

1−ρ

1+ρ

s
ς∗ ) =

D
D−M + s

D−M . Apparently, the symmetric equilibrium (s,s) can be equivalently re-

garded as the solution from the following equation group:

y = Φ(

√
1−ρ

1+ρ

s
ς∗
)

y =
D

D−M
+

s
D−M

(E.1)

Note that the function y= D
D−M + s

D−M always crosses the point (s,y)= (−M+D
2 , 1

2).
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Hence, the relative position between y = D
D−M + s

D−M and y = Φ(
√

1−ρ

1+ρ

s
ς∗ ) depends on

the sign of M+D, and therefore, the position of the symmetric equilibrium should have

some relationship with the sign of M +D as well. Figures E1, E2 and E3 illurstrate

all possibilities of the positions of symmetric equilibrium (s,s) in terms of M+D > 0,

M+D = 0 and M+D < 0, respectively (see Figures E1, E2 and E3).

According to the analysis from Figures E1–E3, it can be concluded that 1) in the

symmetric strategic substitutes game, there always exists a unique symmetric equilib-

rium; and 2) the position of symmetric equilibrium (s,s) and the sign of M +D have

the following correspondence relationship: M+DR 0⇐⇒ 0R sR−M+D
2 . Q.E.D.

Remark: The proof and result of Lemma E1 also apply to the case where ρ > ρ̃

for M > D. Hence, we can extend the results in Lemma E1 to the region where it is

illegitimate to use the cutoff strategy concept to solve the game and correspondingly

the ‘symmetric equilibrium’ should be called ‘symmetric solution’ instead.

Lemma E2: Assume M > D and ς = ς∗. Define function g(x∗;C), which is ex-

pressed by its inverse form x∗ = ρg(x∗;C)+ ς∗
√

1−ρ2Φ−1(C+ g(x∗;C)
D−M ), where C is

an arbitrary constant. If ρ ≤ ρ̃, where ρ̃ =
√

2πς2

2πς2+(M−D)2 =
√

2πς∗2

2πς∗2+(M−D)2 , g(x∗;C)

decreases with respect to x∗ ∈ R. For the equation system

x∗ = ρg(x∗;C)+ ς
∗
√

1−ρ2Φ
−1(C+

g(x∗;C)

D−M
)

g(x∗;C) = ρx∗+ ς
∗
√

1−ρ2Φ
−1(C+

x∗

D−M
) (E.2)

there always exists a unique solution which satisfies g(x∗;C) = x∗. We call it the

symmetric solution. If there exists other solutions, for which g(x∗;C) 6= x∗, they must

appear in even number. We call these solutions the asymmetric solution.

Proof: Define function F(x∗;ε)=Φ( x∗−ρε

ς∗
√

1−ρ2
)(M−D)+C×(D−M)+ε. g(x∗;C)

is the function that satsifies F(x∗;g(x∗;C)) = 0. Analogous to the proof of Proposition

1, it is easy to show that as long as ρ ≤ ρ̃, F(x∗,ε) globally increases with respect to

ε ∈ R and g(x∗;C) globally decreases with respect to x∗ ∈ R. Here, we do not go into

details about these results, and interested readers could refer the proof of Proposition

1 to verify these results.
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Figure E1: Given M > D, ς = ς∗, ρ and M +D > 0, there always exists a unique

intersection point between y = Φ(
√

1−ρ

1+ρ

s
ς∗ ) and y = D

D−M + s
D−M , which indicates that

the symmetric equilibrium always exists and it is unique under the given conditions,

and symmetric equilibrium (s,s) must satisfy −M+D
2 < s < 0.

Figure E2: Given M > D, ς = ς∗, ρ and M +D = 0, there always exists a unique

intersection point (s,y) = (0, 1
2) between y = Φ(

√
1−ρ

1+ρ

s
ς∗ ) and y = D

D−M + s
D−M , which

indicates that the symmetric equilibrium always exists and it is unique under the given

conditions. Moreover, symmetric equilibrium (s,s) must satisfy −M+D
2 = s = 0.

The two equations in equation group E2 can be regarded as the two players’ best

response functions. They are symmetrically located around the 45◦ line. By referring
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Figure E3: Given M > D, ς = ς∗, ρ and M +D < 0, there always exists a unique

intersection point between y = Φ(
√

1−ρ

1+ρ

s
ς∗ ) and y = D

D−M + s
D−M , which indicates that

the symmetric equilibrium always exists and it is unique under the given conditions,

and symmetric equilibrium (s,s) must satisfy 0 < s <−M+D
2 .

to the proof of Lemma E1, it is known that the symmetric solution g(x∗;C) = x∗ always

exists and it is unique for all ρ≤ ρ̃.

If there exist solutions other than the symmetric solution, it is certain that for these

solutions, g(x∗;C) 6= x∗. If we get one asymmetric solution, then we can get another

one correponding to it by simply switching players’ identities. Therefore, if there exist

asymmetric solutions, they must appear in pairs, and hence the number of asymmetric

solutions must be in even number.

If C = D
D−M , then g(x∗;C) becomes the best response function g(x∗) of the game

we are analysing. Therefore, it can also be concluded that if there exist asymmetric

equilibria, they must appear in even number. Q.E.D.

Lemma E3: In the symmetric strategic substitutes game, if there exist asymmet-

ric equilibria, their number is two. Given all primitives, the necessary and sufficient

condition that the symmetric equilibrium is not unstable is that the game only contains

a unique equilibrium, which is the symmetric equilibrium. Given all primitives, the

necessary and sufficient condition that the symmetric equilibrium is unstable is that
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the game exhibits multiple (three) equilibria.

Proof: Let us recall the inverse best response function x∗= ρg(x∗)+ς∗
√

1−ρ2Φ−1( D
D−M +

g(x∗)
D−M ), which can be equivalently represented by D+g(x∗)

D−M = Φ(x∗−ρg(x∗)
ς∗
√

1−ρ2
). Then, we

transform g(x∗) into polar coordinate representation. We define x∗= r cosθ and g(x∗)=

r sinθ, where r ≥ 0 is the radius and θ is the radian. Hence, the best response function

can be expressed as

Φ(
cosθ−ρsinθ

ς∗
√

1−ρ2
r) =

D+ r sinθ

D−M

Arranging the terms on RHS and LHS, we obtain the following result:

r sinθ

M−D
+Φ(

cosθ−ρsinθ

ς∗
√

1−ρ2
r) =

D
D−M

We define p(θ,r)= r sinθ

M−D +Φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r), and so p′

θ
(θ,r)= r cosθ

M−D−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r.

Therefore, the best response function can be equivalently represented by p(θ,r) =
D

D−M . Because a player’s and the opponent’s best response functions should be sym-

metric around the line g(x∗) = x∗ (i.e. the 45◦ line) in Cartesian coordinates, denoting

q(θ,r) = r cosθ

M−D +Φ( sinθ−ρcosθ

ς

√
1−ρ2

r), the opponent’s best response function can be repre-

sented by q(θ,r) = D
D−M . Hence, the equilibria of the game (θ,r) are simultaneously

determined by functions p(θ,r) = D
D−M and q(θ,r) = D

D−M .

For the function g(x∗,C), if there exists a point (x∗,g(x∗,C)) that reaches (0,0)

with zero distance, i.e. r = 0, it must be unique according to the monotonicity of func-

tion g(x∗;C) for all ρ ≤ ρ̃. Therefore, according to Lemma E2, because asymmetric

solutions must appear in pairs, their radius does not equal zero. Therefore, in this

proof, we only need to consider the r > 0 situation.

In terms of all possible values of the radian of asymmetric equilibria (θ,r), the best

response function g(x∗) can be separated into the following two cases:

In Case I, the radian of the symmetric equilibrium is 5
4π, and in Case II, it is π

4 .

The range of radians for possible asymmetric equilibrium is θ ∈ [3
4π, 7

4π] in Case I and

θ ∈ [−π

4 ,
3
4π) in Case II. In addition, it is necessary that a pair of asymmetric equilibria
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Figure E4: Case I: The value of radian θ ranges in θ ∈ [3
4π, 7

4π].

Figure E5: Case II: The value of radian θ ranges in θ ∈ [−π

4 ,
3
4π).

(θ1,r) and (θ2,r) must satisfy θ2− 5
4π = 5

4π− θ1 in Case I, and θ2− π

4 = π

4 − θ1 in

Case II.

Let us first study Case I. Since the asymmetric equilibria must be symmetrically

located around the 45◦ line (in Cartesian coordinates), we first focus on θ ∈ [π, 3
2π],

and then study the entire interval θ ∈ [3
4π, 7

4π].
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Given radius r > 0, we have p′
θ
(π,r) = r[ −1

M−D + 1√
2πς∗

[ ρ√
1−ρ2

exp(−1
2

r2

ς∗2(1−ρ2)
)]].

Because we consider ρ ≤ ρ̃, which is equivalent to ρ√
1−ρ2

≤
√

2πς∗

M−D , for all ρ ≤ ρ̃,
1√

2πς∗
ρ√

1−ρ2
≤ 1

M−D , and we further have

1√
2πς∗

ρ√
1−ρ2

exp(−1
2

r2

ς∗2(1−ρ2)
)≤ 1

M−D
exp(−1

2
r2

ς∗2(1−ρ2)
)<

1
M−D

which is equivalent to

−1
M−D

+
1√

2πς∗
[

ρ√
1−ρ2

exp(−1
2

r2

ς∗2(1−ρ2)
)]< 0

Therefore, p′
θ
(π,r) < 0, for all ρ ∈ (−1, ρ̃]. Besides, given r > 0, p′

θ
(3

2π,r) =
1

ς∗
√

1−ρ2
φ( ρ

ς∗
√

1−ρ2
r)r > 0.

Next, we prove that given an arbitrary value of r > 0, for θ ∈ [3
4π, 7

4π], p(θ,r) first

decreases with respect to θ until θ̄ ∈ (π, 3
2π), and then increases. For the first step, we

restrict our focus within θ ∈ [π, 3
2π]. We define l(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
.

Then, l′
θ
(θ,r) = φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r)[1

r + r( sinθ+ρcosθ

ς∗
√

1−ρ2
)2].

Suppose ρ ∈ (0,1). Hence, arctan 1
ρ
∈ (5

4π, 3
2π). If cosθ− ρsinθ > 0, i.e. θ >

π+ arctan 1
ρ

, then φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r) < 0 and hence l′

θ
(θ,r) < 0 for all θ in this range. If

cosθ−ρsinθ< 0, i.e. θ< π+arctan 1
ρ

, then φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r)> 0, and hence l′

θ
(θ,r)> 0

for all θ in this range. Only when θ = π+arctan 1
ρ

, l(θ,r) reaches its global maximum

value for all θ ∈ [π, 3
2π]. For θ = π+ arctan 1

ρ
, φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) = 1√

2π
, sinθ =− 1√

1+ρ2
,

and cosθ = − ρ√
1+ρ2

. Hence, for θ = π+ arctan 1
ρ

, sinθ+ ρcosθ = −
√

1+ρ2 and

l(π+arctan 1
ρ
,r)= 1√

2πς∗

√
1+ρ2

1−ρ2 . In addition, l(π,r)= ρ

ς∗
√

1−ρ2
φ( 1

ς∗
√

1−ρ2
r) and l(3

2π,r)=
1

ς∗
√

1−ρ2
φ( ρ

ς∗
√

1−ρ2
r). Because ρ > 0, l(3

2π,r) > l(π,r) > 0. Without loss of general-

ity, function l(θ,r) is geometrically represented by Figure E6.

We can equivalently express p′
θ
(θ,r) = r cosθ

M−D − φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r T 0 by

−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
T − cosθ

M−D ; In addition, as p′
θ
(π,r) < 0 and p′

θ
(3

2π,r) > 0,

which implies that if θ = π, −φ(cosπ−ρsinπ

ς∗
√

1−ρ2
r) sinπ+ρcosπ

ς∗
√

1−ρ2
< − cosπ

M−D , and if θ = 3
2π,

−φ(
cos 3

2 π−ρsin 3
2 π

ς∗
√

1−ρ2
r) sin 3

2 π+ρcos 3
2 π

ς∗
√

1−ρ2
> −cos 3

2 π

M−D . Therefore, combining the above analysis,
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Figure E6: A general geometric representation of function l(θ,r) with respect to θ

given r > 0 in θ ∈ [π, 3
2π]. The monotonicity, the position of the optimum (i.e. the

maximum value of l(θ,r) is obtained at θ = π+ arctan 1
ρ
∈ (5

4π, 3
2π) for all ρ ∈ (0,1)),

and the relationship l(π,r) < l(3
2π,r) are always maintained for any parameter

specification of l(θ,r).

there exist two possibilities about the relative positions between curves − cosθ

M−D and

l(θ,r) for all θ ∈ [π, 3
2π], and these two possibilities indicate two types of shapes of

function p(θ,r). They are, respectively, described by Figures E7 and E8.

Which shape of p(θ,r) is correct, the one in Case 1 or in Case 2?

In Case 1, if we draw an arbitrary horizontal line p(θ,r) = C, we can get at most

two intersection points between the line and function p(θ,r), which equivalently mean

that there are at most two points on function g(x∗;C) that reach the origin (0,0) (in

Cartesian coordinates) with distance r. However, in Case 2, it is possible that we get

three or four intersection points on p(θ,r) by drawing a horizontal line p(θ,r) = C,

which means that there may exist three or four points on g(x∗;C) that reaches the ori-

gin (0,0) with distance r. In fact, it is impossible that the shape of p(θ,r) is of the

one in Case 2, because as long as ρ ≤ ρ̃, g(x∗;C) globally decreases with respect to

x∗. Hence, the number of intersections between g(x∗;C) and any circle with center

(0,0) and radius r > 0 is always two (see Figure E9). Therefore, the shape of Case

2 is incorrect and the shape of Case 1 is correct. Hence, p(θ,r) has only one interior
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Figure E7: Case 1: One possibility of the relative position between func-

tion l(θ,r) and − cosθ

M−D for ρ > 0 and θ ∈ [π, 3
2π], and the corresponding shape

of function p(θ,r), where there just exists one interior optimum. The signs

‘-’ and ‘+’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(π,r) and p(3
2π,r) yet. It could be p(π,r) > p(3

2π,r) or

p(π,r)< p(3
2π,r).

optimum (exactly a minimum value) for all θ ∈ (π, 3
2π). We denote the θ where p(θ,r)

reaches its (interior) minimum value by θ̄. Hence, given r > 0, p(θ,r) decreases from
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Figure E8: Case 2: Another possibility of the relative position between

function l(θ,r) and − cosθ

M−D for ρ > 0 and θ ∈ [π, 3
2π], and the corresponding

shape of function p(θ,r), where there exist three interior optima. The signs

‘-’ and ‘+’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(π,r) and p(3
2π,r) yet. It could be p(π,r) > p(3

2π,r) or

p(π,r)< p(3
2π,r).

π to θ̄, and then increases from θ̄ to 3
2π. θ̄ could be either greater than or equal to 5

4π,

or smaller than 5
4π.
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Figure E9: The number of intersections between g(x∗;C) and any circle with center

(0,0) and radius r > 0 is always two. Therefore, it is impossible that equation

p(θ,r) = C has three or four solutions for all C ∈ R. This result is held for all

θ ∈ [−π

4 ,
7
4π].

What is the shape of p(θ,r) if ρ ≤ 0? In the following we prove that the previous

conclusion that p(θ,r) performs a ‘U’ shape for ρ > 0 in θ ∈ [π, 3
2π] is still estab-

lished for ρ ≤ 0 in θ ∈ [π, 3
2π]. For all θ ∈ [π, 3

2π], if ρ ≤ 0, then cosθ−ρsinθ ≤ 0.

Therefore, φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r) ≥ 0, and hence l′

θ
(θ,r) ≥ 0, where all of these equalities

are held when ρ = 0 and θ = 3
2π. It is known that l(π,r) = ρ

ς∗
√

1−ρ2
φ( 1

ς∗
√

1−ρ2
r) and

l(3
2π,r) = 1

ς∗
√

1−ρ2
φ( ρ

ς∗
√

1−ρ2
r). Since ρ ≤ 0, l(π,r) ≤ 0 < l(3

2π,r). Without loss

of generality, Figure E10 geometrically describes the relationship between l(θ,r) and

− cosθ

M−D for ρ ≤ 0. It can be observed that, as long as ρ ≤ 0, for all θ ∈ [π, 3
2π], l(θ,r)

and − cosθ

M−D always have a unique intersection point in θ ∈ (π, 3
2π). It is denoted by θ̄.

Therefore, if ρ ≤ 0, for all θ ∈ [π, θ̄], p(θ,r) decreases, and for all θ ∈ (θ̄, 3
2π], p(θ,r)

increases (see Figure E10).

What is the shape of p(θ,r) in θ ∈ [3
4π,π] and θ ∈ (3

2π, 7
4π] ?

It is already known that for r > 0, p′
θ
(θ,r) = r cosθ

M−D −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r. For

all θ ∈ (3
2π, 7

4π], 0 < cosθ <
√

2
2 , and −1 < sinθ <−

√
2

2 . Whether ρ is positive or not,
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Figure E10: The relative position between function l(θ,r) and − cosθ

M−D , and the

corresponding shape of function p(θ,r) for ρ ≤ 0 and θ ∈ [π, 3
2π]. The signs

‘-’ and ‘+’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(π,r) and p(3
2π,r) yet. It could be p(π,r) > p(3

2π,r) or

p(π,r)< p(3
2π,r).

−sinθ−ρcosθ > 0. Therefore, for θ ∈ (3
2π, 7

4π], p′
θ
(θ,r)> 0.

For all θ ∈ [3
4π,π], 0 < sinθ <

√
2

2 and −1 < cosθ <−
√

2
2 . If ρ≤ 0, then −sinθ−
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ρcosθ < 0, which indicates p′
θ
(θ,r) < 0. If ρ > 0, then for all θ ∈ [3

4π,π− arctanρ),

−sinθ−ρcosθ < 0, and for all θ ∈ [π− arctanρ,π], −sinθ−ρcosθ≥ 0. Therefore,

for all θ ∈ [3
4π,π− arctanρ), p′

θ
(θ,r) < 0. For all θ ∈ [π− arctanρ,π], if r cosθ

M−D domi-

nates−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r, then p′

θ
(θ,r)< 0; however, if−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r

dominates r cosθ

M−D , then p′
θ
(θ,r)> 0. Based on these analysis, we get two possible shapes

of p(θ,r) given r > 0 as shown in Figures E11 and E12, respectively.

Again, for shapes like that of Case 2 (see Figure E12), where there are three optima,

it indicates that there could be more than two points on g(x∗;C) that reaches (0,0) with

distance r, and as what we have proven, it is impossible. Therefore, the ‘U’ shape is

the only correct shape of function p(θ,r) in θ ∈ [3
4π, 7

4π]. Hence, for all θ ∈ [3
4π, 7

4π],

p(θ,r) decreases as θ increases from 3
4π to θ̄, and then increases from θ̄ to 7

4π, where

θ̄ ∈ (π, 3
2π).

Can there be more than one pair of asymmetric equilibria (θ1,r) and (θ2,r) if they

exist? To answer this question, first let us recall that a pair of asymmetric equilibria, if

they exist, should be the solutions of the following equation group:

p(θ,r) =
r sinθ

M−D
+Φ(

cosθ−ρsinθ

ς∗
√

1−ρ2
r) =

D
D−M

q(θ,r) =
r cosθ

M−D
+Φ(

sinθ−ρcosθ

ς
√

1−ρ2
r) =

D
D−M

(E.3)

In addition, it is necessary that the radians of the pair of asymmetric equilibria θ1

and θ2 satisfy that θ2− 5
4π = 5

4π−θ1. Then, let us check whether given a pair of asym-

metric equilibria (θ1, r̃) and (θ2, r̃), there exists another pair of asymmetric equilibria

(θ′1, r̃
′) and (θ′2, r̃

′) that satisfies equation group E.3. If r is successively changed away

from r̃, the new solutions that satisfy p(θ,r) = D
D−M (or q(θ,r) = D

D−M ) cannot make

θ′2−
5
4π = 5

4π−θ′1, then it is certain that there exists only one pair of asymmetric equi-

libria, if they exist.

We first analyse the case when θ ∈ [π, 3
2π]. Since the functions p(θ,r) and q(θ,r)

are symmetric around θ = 5
4π, it indicates that the part of p(θ,r) for θ ∈ [5

4π, 3
2π] is the

mirror image to the part of q(θ,r) for θ ∈ [π, 5
4π), i.e. p(θ,r) = q(5

2π−θ,r). Then, if

we restrict θ within the range θ ∈ [π, 5
4π), we can analyze the change of p(θ,r) for all
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θ ∈ [5
4π, 3

2π] via the corresponding change of q(θ,r) for all θ ∈ [π, 5
4π).

Given r, for all θ ∈ [π, 5
4π], we get the following results:

∂p(θ,r)
∂r

=
sinθ

M−D
+φ(

cosθ−ρsinθ

ς∗
√

1−ρ2
r)

cosθ−ρsinθ

ς∗
√

1−ρ2
< 0

∂q(θ,r)
∂r

=
cosθ

M−D
+φ(

sinθ−ρcosθ

ς
√

1−ρ2
r)

sinθ−ρcosθ

ς
√

1−ρ2
< 0

Given an arbitrary value of r > 0, functions ∂p(θ,r)
∂r and ∂q(θ,r)

∂r with respect to θ inter-

sect at θ = 5
4π, because ∂2 p(θ,r)

∂r∂θ
= cosθ

M−D < 0 and ∂2q(θ,r)
∂r∂θ

= −sinθ

M−D > 0. Therefore, if and

only if θ = 5
4π, ∂p(θ,r)

∂r = ∂q(θ,r)
∂r , otherwise, the two functions do not intersect. There-

fore, for θ ∈ [π, 5
4π), ∂q(θ,r)

∂r < ∂p(θ,r)
∂r < 0, for all r > 0; symmetrically if θ ∈ (5

4π, 3
2π],

∂p(θ,r)
∂r < ∂q(θ,r)

∂r < 0, for all r > 0.

Suppose at r = r̃, we get asymmetric equilibria (θ1, r̃) and (θ2, r̃), where θ1 < θ2.

Then, θ2− 5
4π = 5

4π− θ1. Hence, for all θ ∈ [π, 5
4π), given any value of θ, if r suc-

cessively increases, q(θ,r) decreases more than p(θ,r), which equivalently means that

p(5
2π− θ,r) decreases more than p(θ,r) for all θ ∈ [π, 5

4π) given the same amount

of change of r. Therefore, as r is increased away from r̃ successively, for any new

intersection points (θ′1,r) and (θ′2,r) between p(θ,r) and D
D−M , θ′2−

5
4π > 5

4π− θ′1;

conversely, if we decrease r away from r̃ successively, p(θ,r) increases less than

p(5
2π−θ,r) for all θ∈ [π, 5

4π]; hence, for any new pair of intersection points (θ′′1,r) and

(θ′′2,r) between p(θ,r) and D
D−M , θ′′2−

5
4π< 5

4π−θ′′1 (see Figure E13). Therefore, given

primitives M, D, ς, ς∗ and ρ, if we have found a pair of asymmetric equilibria (θ1,r)

and (θ2,r), we cannot find another pair of asymmetric equilibria for all θ ∈ [π, 3
2π].

How about case when given r̃, one asymmetric equilibrium θ1 ∈ [3
4π,π), and an-

other asymmetric equilibrium θ2 ∈ [3
2π, 7

4π]? Again, if the present asymmetric equi-

libria are (θ1, r̃) and (θ2, r̃), can there exist another pair of asymmetric equilibria by

changing the radius r given the same primitives M, D, ς, ς∗ and ρ? In the following,

we prove that in this case, we still obtain only one pair of asymmetric equilibria if they

exist.

As before, it is known that p(θ,r) = q(5
2π− θ,r). Hence, we can still study the
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properties and the movement of p(θ,r) in θ ∈ [3
2π, 7

4π] through its mirror image q(θ,r)

in θ ∈ [3
4π,π]. Hence, in the following, we restrict our attention to θ ∈ [3

4π,π].

We obtain ∂p( 3
4 π,r)
∂r =

√
2

2
1

M−D − φ(
√

2
2

1+ρ

ς

√
1−ρ2

r) 1+ρ

ς

√
1−ρ2

√
2

2 , ∂q( 3
4 π,r)
∂r = −

√
2

2
1

M−D +

φ(
√

2
2

1+ρ

ς

√
1−ρ2

r) 1+ρ

ς

√
1−ρ2

√
2

2 , ∂p(π,r)
∂r =− 1

ς

√
1−ρ2

φ( 1
ς

√
1−ρ2

r), and ∂q(π,r)
∂r =− 1

M−D + ρ

ς

√
1−ρ2

φ( ρ

ς

√
1−ρ2

r). In addition, − 1
M−D < ∂2 p(θ,r)

∂r∂θ
< −

√
2

2
1

M−D and −
√

2
2

1
M−D < ∂2q(θ,r)

∂r∂θ
< 0.

According to above results, it can be found that given r > 0, 0 > ∂p(π,r)
∂r > ∂q(π,r)

∂r and
∂p( 3

4 π,r)
∂r =−∂q( 3

4 π,r)
∂r . Therefore, based on these results, we can conclude that 1) given

r > 0, function ∂p(θ,r)
∂r decreases more rapidly than ∂q(θ,r)

∂r as θ increases from 3
4π to π;

2) ∂p( 3
4 π,r)
∂r > 0 >

∂q( 3
4 π,r)
∂r ; and 3) for all θ ∈ [3

4π,π], ∂p(θ,r)
∂r > ∂q(θ,r)

∂r . Figure E14 gives

a general description of functions ∂p(θ,r)
∂r and ∂q(θ,r)

∂r for all θ ∈ [3
4π,π] given r > 0.

Given primitives M, D, ς, ς∗ and ρ, suppose we already get one pair of asymmetric

equilibria (θ1, r̃) and (θ2, r̃), where θ1 ∈ [3
4π,π) and θ2 ∈ [3

2π, 7
4π]. According to the

above analysis, if r is increased away from r̃ successively, the new intersection point θ′2

is obtained as θ2 increases, while another intersection point θ′1 is obtained from θ1 but

θ1 may increase or decrease and hence θ′1 ≷ θ1. No matter how θ1 changes, θ2 always

moves faster than θ1 and along a fixed direction. Therefore, as r increases, the new

intersection points θ′1 and θ′2 would never be balanced again, i.e. θ′2−
5
4π 6= 5

4π− θ′1

(see Figure E15). The same conclusion can still be obtained by decreasing r away

from r̃. Hence, if there exists a pair of asymmetric equilibria (θ1, r̃) and (θ2, r̃), where

θ1 ∈ [3
4π,π) and θ2 ∈ [3

2π, 7
4π], there would never exist any other asymmetric equilibria

for all θ ∈ [3
4π, 7

4π].

In conclusion, for all θ ∈ [3
4π, 7

4π], given all primitives (M, D, ς, ς∗ and ρ), if asym-

metric equilibria exist, the number of asymmetric equilibria is two.

Next, it is natural to ask, under what conditions asymmetric equilibria exist. The

asymmetric equilibria are solutions of the following equation group:

p(θ,r) =
D

D−M

q(θ,r) =
D

D−M
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Then, geometrically, asymmetric equilibria should be the intersections of the fol-

lowing three curves: y = p(θ,r), y = q(θ,r) and y = D
D−M . According to the possible

relationships between p(τ1,r) and p(τ2,r), where (τ1,τ2) is (π, 3
2π) or (3

4π, 7
4π), we

discuss how asymmetric equilibria arise in the following two distinctive conjectures.

Conjecture 1: p(τ1,r)< p(τ2,r), where (τ1,τ2) = (π, 3
2π) or (3

4π, 7
4π).

In this case, if the symmetric equilibrium is stable, then there must exist asymmet-

ric equilibria. This is 1) because as r increases, l(5
4π,r)=−φ(

cos 5
4 π−ρsin 5

4 π

ς∗
√

1−ρ2
r) sin 5

4 π+ρcos 5
4 π

ς∗
√

1−ρ2
>

0 decreases to 0. If at r = r̂, l(5
4π, r̂)<−cos 5

4 π

M−D , which implies that p′
θ
(5

4π,r)< 0, then

as r increases away from r̂, the relationship l(5
4π,r)<−cos 5

4 π

M−D is held for all r > r̂, and

therefore, p′
θ
(5

4π,r) < 0 for all r > r̂; and 2) because p′
θ
(5

4π,r) < 0, the asymmetric

equilibrium candidates always exist. The asymmetric equilibrium candidates are the

two extreme intersection points between p(θ,r) and q(θ,r), and correspondingly the

middle intersection point is the symmetric equilibrium candidate. Since ∂p(θ,r)
∂r < 0

for all θ ∈ [5
4π,τ2] and ∂q(θ,r)

∂r < 0 for all θ ∈ [τ1,
5
4π], the entire function of p(θ,r)

in θ ∈ [5
4π,τ2] and q(θ,r) in θ ∈ [τ1,

5
4π] decreases as r increases. Therefore, sup-

pose the symmetric equilibrium is obtained at r = r̄, i.e. it is (5
4π, r̄), and it satisfies

p′
θ
(5

4π, r̄) < 0. Then, as r increases away from r̄, the asymmetric equilibrium can-

didates fall from positions above the line y = D
D−M to the positions below the line

y = D
D−M . Therefore, there must exist a moment such that the asymmetric equilibrium

candidates pass the line y = D
D−M . At that moment, which is recorded by the relevant

value of r, the asymmetric equilibrium candidates formally become the asymmetric

equilibria that satisfy equation group E.3 (see Figure E16); 3) We denote the symmet-

ric equilibrium (candidate) by (s,s), and equivalently it is denoted by (5
4π,r) in polar

coordinate representation. According to the following equivalence relationship at the

symmetric equilibrium or symmetric equilibrium candidate, for all r > 0,

g′(s)T−1 ⇐⇒ 1
(1+ρ)(M−D)

− 1

ς∗
√

1−ρ2
φ(

cos 5
4π−ρsin 5

4π

ς∗
√

1−ρ2
r)T 0 ⇐⇒ p′θ(

5
4

π,r)S 0

Thus, p′
θ
(5

4π, r̄)< 0 means that the symmetric equilibrium is stable. In conclusion,

as long as p(τ1,r) < p(τ2,r), if the symmetric equilibrium is stable, then there must

exist asymmetric equilibria.
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However, this conjecture is in fact not correct. Because a fact we have already

established is that as long as the best response function is a contraction, there always

exists a unique equilibrium. It is symmetric and must be stable. Therefore, for the con-

traction case, the symmetric equilibrium is stable and no other equilibria exist. Hence,

the conjecture 1 that p(τ1,r)< p(τ2,r) is incorrect.

Conjecture 2: p(τ1,r)> p(τ2,r), where (τ1,τ2) = (π, 3
2π) or (3

4π, 7
4π).

Since conjecture 1 is incorrect, conjecture 2 must be the correct property of p(θ,r).

In this case, if there is no asymmetric equilibrium candidate, p′
θ
(5

4π,r)≤ 0 must hold,

and if there exist asymmetric equilibria candidates, p′
θ
(5

4π,r) > 0 must hold (see Fig-

ures E17 and E18, respectively).

Remember that as r increases, l(5
4π,r) decreases. Therefore, supposing at r = r̂,

l(5
4π, r̂) > −cos 5

4 π

M−D , i.e. p′
θ
(5

4π, r̂) > 0, then as r increases away from r̂, p′
θ
(5

4π, r̂) will

decrease gradually from p′
θ
(5

4π, r̂) > 0 to p′
θ
(5

4π, r̂) = 0, and finally to p′
θ
(5

4π, r̂) < 0.

If there is no asymmetric equilibrium, it is because at r = 0, l(5
4π,0) ≤ −cos 5

4 π

M−D , and

hence no asymmetric equilibrium candidate exists. Therefore, in this case, as r in-

creases, no asymmetric equilibrium candidates will appear certainly. Alternatively,

it is because as r increases from 0, at the beginning, there were asymmetric equilib-

rium candidates, but before the symmetric equilibrium candidates (5
4π,r) passes the

line y = D
D−M , p′

θ
(5

4π,r) changes from a positive value to a non-positive value, and

thereafter, asymmetric equilibrium candidates vanish; consequently, only a symmet-

ric equilibrium candidate exists, and hence the game will have only one equilibrium,

which is symmetric. For both possibilities, the corresponding symmetric equilibrium

(5
4π, r̄) must satisfy p′

θ
(5

4π, r̄) ≤ 0. Let us recall that for the symmetric equilibrium

(candidate) (s,s), g′(s)T−1 ⇐⇒ p′
θ
(5

4π,r)S 0. Therefore, it can be concluded that

if there is no asymmetric equilibrium, the relevant symmetric equilibrium must be not

unstable, which means it is either stable or stability is not determined.

Conversely, if the symmetric equilibrium is not unstable, there are no asymmet-

ric equilibria, because 1) as long as the symmetric equilibrium is not unstable, i.e.

g′(s) ≥ −1, p′
θ
(5

4π, r̄) ≤ 0, and therefore, no asymmetric equilibrium candidate exists

when r = r̄; and 2) since the symmetric equilibrium is not unstable, i.e. p′
θ
(5

4π, r̄)≤ 0,
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if r increases away from r̄, based on the previous analysis, p′
θ
(5

4π,r)< 0 must be held;

hence, asymmetric equilibrium candidates would never appear. Therefore, an asym-

metric equilibrium is impossible to exist and only a symmetric equilibrium survives if

p′
θ
(5

4π, r̄)≤ 0, i.e. the symmetric equilibrium is not unstable.

In conclusion, given all primitives and for all θ ∈ [3
4π, 7

4π], the symmetric strategic

substitutes game contains only a unique equilibrium that must be symmetric if and only

if the symmetric equilibrium is not unstable, and equivalently, asymmetric equilibria

exist if and only if the relevant symmetric equilibrium is unstable.

Then, we study Case II, where θ ∈ [−π

4 ,
3
4π]. Since the asymmetric equilibria are

symmetrically located around the 45◦ line (in Cartesian coordinates), we first study the

game for all θ∈ [0, π

2 ], and then extend our analysis to the entire range of θ ∈ [−π

4 ,
3
4π].

Let us recall the following equations: p(θ,r)= r sinθ

M−D +Φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r), and p′

θ
(θ,r)=

r cosθ

M−D−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r. Given any r > 0, p′

θ
(0,r)= r

M−D−φ( r
ς∗
√

1−ρ2
) ρ

ς∗
√

1−ρ2
r.

As ρ ≤ ρ̃, 1
M−D −

1√
2πς∗

ρ√
1−ρ2

exp(−1
2

r2

ς∗2(1−ρ2)
) > 0. Therefore, for all ρ ∈ (−1, ρ̃],

p′
θ
(0,r)> 0. Given any r > 0, p′

θ
(π

2 ,r)=
r cos π

2
M−D −φ(

cos π

2−ρsin π

2

ς∗
√

1−ρ2
r) sin π

2+ρcos π

2

ς∗
√

1−ρ2
r =−φ( ρ

ς∗
√

1−ρ2
r) 1

ς∗
√

1−ρ2
r <

0. In addition, p(0,r) = Φ( r
ς∗
√

1−ρ2
) and p(π

2 ,r) =
r

M−D +Φ( −ρ

ς∗
√

1−ρ2
r). Finally, re-

call that l(θ,r)=−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
, and l′

θ
(θ,r)= φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r)[1

r +r( sinθ+ρcosθ

ς∗
√

1−ρ2
)2].

We then prove that given any r > 0, for all θ ∈ [−π

4 ,
3
4π], p(θ,r) first increases until

θ̄ ∈ (0, π

2 ), and then decreases. In the first step, we restrict our focus within θ ∈ (0, π

2 ).

Suppose ρ∈ (0,1). Hence, arctan 1
ρ
∈ (π

4 ,
π

2 ). If cosθ−ρsinθ< 0, i.e. θ> arctan 1
ρ

,

then φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r)> 0 and hence l′

θ
(θ,r)> 0 in θ ∈ (arctan 1

ρ
, π

2 ). If cosθ−ρsinθ >

0, i.e. θ < arctan 1
ρ

, then φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r) < 0, and hence l′

θ
(θ,r) < 0. Therefore, only

at θ = arctan 1
ρ
∈ (π

4 ,
π

2 ), l(θ,r) reaches its global minimum value for all θ ∈ [0, π

2 ].

If θ = arctan 1
ρ

, φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) = 1√

2π
, sinθ = 1√

1+ρ2
, and cosθ = ρ√

1+ρ2
. Hence,

sinθ+ρcosθ =
√

1+ρ2 at θ = arctan 1
ρ

. Therefore, l(arctan 1
ρ
,r) = − 1√

2πς∗

√
1+ρ2

1−ρ2 ,

l(0,r) = − ρ√
2πς∗

φ( 1
ς∗
√

1−ρ2
r) and l(π

2 ,r) = −
1√

2πς∗
φ( ρ

ς∗
√

1−ρ2
r). As ρ > 0, l(π

2 ,r) <

l(0,r) < 0. Based on these properties, Figure E19 generally describes the function

l(θ,r) given any r > 0.
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Because p′
θ
(θ,r)= r cosθ

M−D−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
rT 0 is equivalent to−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r)

sinθ+ρcosθ

ς∗
√

1−ρ2
T− cosθ

M−D given r > 0, p′
θ
(0,r)> 0 and p′

θ
(π

2 ,r)< 0, which indicate that for

θ= 0,−φ(cos0−ρsin0
ς∗
√

1−ρ2
r) sin0+ρcos0

ς∗
√

1−ρ2
>− cos0

M−D , and for θ= π

2 ,−φ(
cos π

2−ρsin π

2

ς∗
√

1−ρ2
r) sin π

2+ρcos π

2

ς∗
√

1−ρ2
<

− cos π

2
M−D . Given these properties, we find that for ρ > 0, there are two possibilities about

the relative positions between functions y = − cosθ

M−D and y = l(θ,r) for all θ ∈ [0, π

2 ],

which give two possible shapes of p(θ,r). The two possible cases are described in

Figures E20 and E21, respectively.

Then, which shape of p(θ,r) is correct, Case 1 or Case 2?

As we have proven, if ρ≤ ρ̃, g(x∗;C) globally decreases with respect to x∗ ∈R and

there are at most two points on g(x∗;C) that reaches (0,0) with r > 0, which equiva-

lently means that p(θ,r) =C has two solutions at most. This result is applicable for the

case where θ ∈ [−π

4 ,
3
4π) as well. Hence, the correct shape of p(θ,r) should be Case

1. In Case 2, it is possible that p(θ,r) = C contains three or four solutions because

y = p(θ,r) and y = C could have three or four intersection points, which contradicts

the fact that p(θ,r) =C at most has two solutions.

What is the shape of p(θ,r) if ρ≤ 0? If ρ≤ 0, then cosθ−ρsinθ≥ 0. Therefore,

φ′(cosθ−ρsinθ

ς∗
√

1−ρ2
r)≤ 0, and so l′

θ
(θ,r)≤ 0. In addition, l(0,r)=− ρ

ς∗
√

1−ρ2
φ( 1

ς∗
√

1−ρ2
r)≥

0 and l(π

2 ,r) =−
1

ς∗
√

1−ρ2
φ( ρ

ς∗
√

1−ρ2
r)< 0. Hence, if ρ≤ 0, y = l(θ,r) and y =− cosθ

M−D

will have only a unique intersection point. Based on these analysis, the top graph in

Figure E22 generally describes how y = l(θ,r) and y = − cosθ

M−D behave and intersect

with each other (see Figure E22). Furthermore, because p′
θ
(θ,r)=−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r−

(− r cosθ

M−D ), from the top graph, we can also obtain the results about the monotonicity

of p(θ,r) if ρ≤ 0, which is described by the bottom graph in Figure E22, where only

a unique interior optimum exists (see Figure E22). Therefore, in conclusion, for all

ρ ∈ (−1, ρ̃], p(θ,r) increases from 0 to θ̄, and then decreases from θ̄ to π

2 .

What is the shape of p(θ,r) in θ ∈ [−π

4 ,0] and θ ∈ [π

2 ,
3
4π]? It is already known

that p′
θ
(θ,r) = r cosθ

M−D − φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r. For θ ∈ [π

2 ,
3
4π], −

√
2

2 ≤ cosθ ≤ 0

and
√

2
2 ≤ sinθ≤ 1. Moreover, irrespective of whether ρ is positive, sinθ+ρcosθ > 0.

Therefore, for θ ∈ [π

2 ,
3
4π], p′

θ
(θ,r)< 0.
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For θ∈ [−π

4 ,0],−
√

2
2 ≤ sinθ≤ 0 and

√
2

2 ≤ cosθ≤ 1. If ρ≤ 0, then sinθ+ρcosθ<

0, which indicates that p′
θ
(θ,r)> 0. If ρ > 0, then for all θ ∈ [−π

4 ,−arctanρ), sinθ+

ρcosθ < 0, and for all θ ∈ (−arctanρ,0], sinθ+ ρcosθ > 0, and at θ = −arctanρ,

sinθ + ρcosθ = 0. Therefore, for all θ ∈ [−π

4 ,−arctanρ), p′
θ
(θ,r) > 0. For all

θ ∈ [−arctanρ,0], if r cosθ

M−D dominates −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r, then p′

θ
(θ,r)> 0 in

θ ∈ [−arctanρ,0]; if −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r dominates r cosθ

M−D , then p′
θ
(θ,r) < 0.

Again, according to these analyses, we get two possible shapes of p(θ,r) given r > 0,

which are shown in Figures E23 and E24.

Again, the shape in Case 2 is not established because there could be three or four

intersection points between y = p(θ,r) and y = C, where C is a constant, and thus,

equation p(θ,r) =C could contain three or four solutions, which indicates that corre-

spondingly in Cartesian coordinates, there could be three or four points on g(x∗;C) that

reaches (0,0) with distance r. This is impossible as long as ρ≤ ρ̃, as we have proven.

Therefore, in conclusion, for all θ ∈ [−π

4 ,
3
4π], p(θ,r) increases with respect to θ from

−π

4 to θ̄, and then decreases with respect to θ from θ̄ to 3
4π, where θ̄ ∈ (0, π

2 ).

Is there more than one pair of asymmetric equilibria (θ1,r) and (θ2,r) if they ex-

ist? First, let us recall that a pair of asymmetric equilibria should be solutions of the

following equation group:

p(θ,r) =
r sinθ

M−D
+Φ(

cosθ−ρsinθ

ς∗
√

1−ρ2
r) =

D
D−M

q(θ,r) =
r cosθ

M−D
+Φ(

sinθ−ρcosθ

ς∗
√

1−ρ2
r) =

D
D−M

It is necessary that the radians θ1 and θ2 satisfy θ2− π

4 = π

4 −θ1. Then, the above

question becomes that given a pair of asymmetric equilibria (θ1, r̃) and (θ2, r̃), whether

there exists another pair of asymmetric equilibria (θ′1, r̃
′) and (θ′2, r̃

′) that satisfy the

same equation group. If r is successively changed away from r̃, and the new solutions

that satisfy p(θ,r) = D
D−M (or q(θ,r) = D

D−M ) cannot make θ′2−
π

4 = π

4 − θ′1, then

there certainly exists only one pair of asymmetric equilibria, and hence, the number of

asymmetric equilibria is two if asymmetric equilibria exist.

We first analyze the case of θ ∈ [0, π

2 ]. Since the functions p(θ,r) and q(θ,r) are
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symmetric around π

4 , the part of p(θ,r) in θ ∈ [π

4 ,
π

2 ] is the mirror image to the part of

q(θ,r) in θ ∈ [0, π

4 ), i.e. p(θ,r) = q(π

2 −θ,r). Then, methodologically, we can analyze

the change of p(θ,r) for all θ ∈ [π

4 ,
π

2 ] via the corresponding change of q(θ,r) for all

θ ∈ [0, π

4 ).

For all θ ∈ [0, π

2 ], we have the following results:

∂p(θ,r)
∂r

=
sinθ

M−D
+φ(

cosθ−ρsinθ

ς∗
√

1−ρ2
r)

cosθ−ρsinθ

ς∗
√

1−ρ2
> 0

∂q(θ,r)
∂r

=
cosθ

M−D
+φ(

sinθ−ρcosθ

ς∗
√

1−ρ2
r)

sinθ−ρcosθ

ς∗
√

1−ρ2
> 0

For all r > 0, ∂p(θ,r)
∂r and ∂q(θ,r)

∂r intersect at θ = π

4 , because ∂2 p(θ,r)
∂r∂θ

= cosθ

M−D > 0

and ∂2q(θ,r)
∂r∂θ

= − sinθ

M−D < 0. Therefore, if and only if θ = π

4 , ∂p(θ,r)
∂r = ∂q(θ,r)

∂r , other-

wise the two functions do not intersect. Therefore, for all r > 0 and for all θ ∈ [0, π

4 ),
∂q(θ,r)

∂r > ∂p(θ,r)
∂r > 0, and symmetrically, for all θ ∈ (π

4 ,
π

2 ],
∂p(θ,r)

∂r > ∂q(θ,r)
∂r > 0.

Suppose at r = r̃, we get symmetric equilibria (θ1, r̃) and (θ2, r̃), where θ1 < θ2.

Then, the two radians must satisfy θ2− π

4 = π

4 − θ1. Hence, for each θ ∈ [0, π

4 ), if r

increases (or decreases), q(θ,r) increases (or decreases) more than p(θ,r). If we in-

crease (or decrease) r away from r̃ successively, since p(θ,r) increases (or decreases)

less in θ ∈ [0, π

4 ] than in θ ∈ (π

4 ,
π

2 ], for any new pair of intersection points (θ′1,r)

and (θ′2,r) (or (θ′′1,r) and (θ′′2,r) if r is decreased) between y = p(θ,r) and y = D
D−M ,

π

4 −θ′1 > θ′2−
π

4 (or π

4 −θ′′1 < θ′′2−
π

4 if r is decreased). Therefore, if we find a pair of

asymmetric equilibria, say (θ1,r) and (θ2,r), then given the same primitives M, D, ς,

ς∗ and ρ, we cannot find another pair of asymmetric equilibria for all θ ∈ [0, π

2 ] (see

Figure E25).

Let us now look at the case when given all primitives and a pair of asymmetric

equilibria (θ1, r̃) and (θ2, r̃), where one asymmetric equilibrium’s radian θ1 ∈ [−π

4 ,0]

and another asymmetric equilibrium’s radian θ2 ∈ [π

2 ,
3
4π]. Can we find another pair of

asymmetric equilibria by changing r away from r̃? In the following, we prove that in

this case, we still get only one pair of asymmetric equilibria if they exist.

As before, it is known that by symmetry, p(θ,r) = q(π

2−θ,r). Hence, we can study
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function p(θ,r) in θ∈ [π

2 ,
3
4π] through its mirror image q(θ,r) in θ∈ [−π

4 ,0). In the fol-

lowing, we restrict our attention to θ∈ [−π

4 ,0]. First, by calculation, we get the follow-

ing results: ∂p(− π

4 ,r)
∂r = −

√
2

2
1

M−D +φ(
√

2
2

1+ρ

ς∗
√

1−ρ2
r) 1+ρ

ς∗
√

1−ρ2

√
2

2 , ∂q(− π

4 ,r)
∂r =

√
2

2
1

M−D −

φ(
√

2
2

1+ρ

ς∗
√

1−ρ2
r) 1+ρ

ς∗
√

1−ρ2

√
2

2 , ∂p(0,r)
∂r = 1

ς∗
√

1−ρ2
φ( 1

ς∗
√

1−ρ2
r), ∂q(0,r)

∂r = 1
M−D−φ( ρ

ς∗
√

1−ρ2
r) ρ

ς∗
√

1−ρ2
,

√
2

2
1

M−D < ∂2 p(θ,r)
∂θ∂r < 1

M−D , and 0 < ∂2q(θ,r)
∂θ∂r <

√
2

2
1

M−D . Hence, by continuity, given

r > 0, ∂q(0,r)
∂r > ∂p(0,r)

∂r > 0 and ∂p(− π

4 ,r)
∂r =−∂q(− π

4 ,r)
∂r . Therefore, given r > 0, function

∂p(θ,r)
∂r increases more rapidly than ∂q(θ,r)

∂r as θ increases from −π

4 to 0. Hence, we can

obtain that ∂q(− π

4 ,r)
∂r > 0 >

∂p(− π

4 ,r)
∂r , and for all θ ∈ [−π

4 ,0),
∂q(θ,r)

∂r > ∂p(θ,r)
∂r (see Figure

E26).

Given primitives M, D, ς, ς∗ and ρ, suppose we already get one pair of asymmetric

equilibria (θ1, r̃) and (θ2, r̃), where θ1 ∈ [−π

4 ,0) and θ2 ∈ [π

2 ,
3
4π]. According to Figure

E27, if r is increased away from r̃ successively, θ2 increases and the new intersection

point θ′2 > θ2, while θ1 could increase or decrease and the new intersection point θ′1

may be greater or smaller than θ1. No matter how θ1 changes, θ2 always moves faster

than θ1 and along a fixed direction. Therefore, as r increases, the new intersection

points θ′1 and θ′2 would never be balanced again, i.e. θ′2−
π

4 6=
π

4 −θ′1 (see Figure E27).

The same conclusion can still be obtained by decreasing r away from r̃. Hence, if

there exists a pair of asymmetric equilibria (θ1, r̃) and (θ2, r̃), where θ1 ∈ [−π

4 ,0) and

θ2 ∈ [π

2 ,
3
4π], there would never exist any other asymmetric equilibria.

Therefore, in conclusion, for all θ ∈ [−π

4 ,
3
4π], given all primitives M, D, ς, ς∗ and

ρ, if asymmetric equilibria exist, the number of asymmetric equilibria is two.

Next, under what conditions asymmetric equilibria exist? Recall that the asymmet-

ric equilibria are solutions of the following equation group:

p(θ,r) =
D

D−M

q(θ,r) =
D

D−M
(E.4)

Hence, these solutions of the equation group E.4 can be interpreted as the inter-

sections of the three curves y = p(θ,r), y = q(θ,r) and y = D
D−M , simultaneously.

According to the relationship between p(τ1,r) and p(τ2,r), where (τ1,τ2) is (0, π

2 ) or

(−π

4 ,
3
4π), we will discuss how asymmetric equilibria arise in the following two distinct
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conjectures:

Conjecure 1: p(τ1,r)> p(τ2,r), where (τ1,τ2) = (0, π

2 ) or (−π

4 ,
3
4π).

In this case, if the symmetric equilibrium is stable, there must exist asymmetric

equilibria, because 1) as r increases, l(π

4 ,r) = −φ(
cos π

4−ρsin π

4

ς∗
√

1−ρ2
r) sin π

4+ρcos π

4

ς∗
√

1−ρ2
< 0 in-

creases to 0. If at r = r̂, l(π

4 , r̂) > −
cos π

4
M−D , which implies that p′

θ
(π

4 , r̂) > 0, then as

r increases away from r̂, it keeps the relationship l(π

4 ,r) > −
cos π

4
M−D for all r > r̂, and

therefore, p′
θ
(π

4 ,r) > 0 for all r > r̂; 2) Because p′
θ
(π

4 ,r) > 0, then the asymmetric

equilibrium candidates always exist. Still, the asymmetric equilibrium candidates are

the two extreme intersection points between p(θ,r) and q(θ,r), and correspondingly

the middle intersection point is the symmetric equilibrium candidate. Since ∂p(θ,r)
∂r > 0

for all θ ∈ [π

4 ,τ2], and ∂q(θ,r)
∂r > 0 for all θ ∈ [τ1,

π

4 ], the entire function of p(θ,r) in

θ ∈ [π

4 ,τ2] and q(θ,r) in θ ∈ [τ1,
π

4 ] increases as r increases. Therefore, supposing the

symmetric equilibrium is obained at r = r̄, i.e. it is (π

4 , r̄), and it satisfies p′
θ
(π

4 , r̄)> 0,

as r increases away from r̄, the asymmetric equilibrium candidates rise from positions

below the line y = D
D−M to the positions above the line y = D

D−M . Therefore, there

must exist a moment such that the asymmetric equilibrium candidates pass the line

y = D
D−M . At that moment which is recorded by the relevant value of r, the asymmetric

equilibrium candidates formally become the asymmetric equilibria (see Figure E28);

3) According to the following equivalence relationship at the symmetric equilibrium

or symmetric equilibrium candidate,

g′(x∗)T−1 ⇐⇒ 1
(1+ρ)(M−D)

− 1

ς∗
√

1−ρ2
φ(

cos π

4 −ρsin π

4

ς∗
√

1−ρ2
r)T 0 ⇐⇒ p′θ(

π

4
,r)T 0

p′
θ
(π

4 , r̄)> 0 indicates that the symmetric equilibrium is stable. Therefore, in con-

clusion, as long as p(τ1,r)> p(τ2,r), if the symmetric equilibrium is stable, then there

must exist asymmetric equilibria.

However, this conjecture is not true because of the contradiction with the facts

we have obtained. If the best response function is a contraction, there always ex-

ists a unique equilibrium, which is symmetric and stable. Hence, the conjecture that

p(τ1,r)> p(τ2,r), where (τ1,τ2) = (0, π

2 ) or (−π

4 ,
3
4π) is incorrect.
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Conjecure 2: p(τ1,r)< p(τ2,r), where (τ1,τ2) = (0, π

2 ) or (−π

4 ,
3
4π).

Since conjecture 1 is incorrect, conjecture 2 must be the correct one to reflect the

true property of p(θ,r). Given that p(τ1,r)< p(τ2,r), if there is no asymmetric equi-

librium candidate, p′
θ
(π

4 ,r) ≥ 0 must hold, and if there are asymmetric equilibrium

candidates, then for the symmetric equilibrium candidate (π

4 ,r), p′
θ
(π

4 ,r) < 0 must

hold (see Figures E29 and E30, respectively).

Remember that as r increases, l(π

4 ,r) increases. Therefore, if at r = r̂, l(π

4 , r̂) <

− cos π

4
M−D , and hence p′

θ
(π

4 , r̂) < 0, then as r increases away from r̂, p′
θ
(π

4 ,r) will in-

crease gradually from p′
θ
(π

4 ,r) < 0 to p′
θ
(π

4 ,r) = 0, and then to p′
θ
(π

4 ,r) > 0. If there

is no asymmetric equilibrium, it is either because for all r > 0, even for r → 0+,

limr→0+ l(π

4 ,r) > −
cos π

4
M−D , and thus no asymmetric equilibrium candidates exist for all

r > 0, or because as r increases, at the beginning, there were asymmetric equilib-

rium candidates, but before the symmetric equilibrium candidate (π

4 ,r) passes the line

y = D
D−M , p′

θ
(π

4 ,r) changes from a negative value to a non-negative value, and there-

after, asymmetric equilibrium candidates vanish; consequently, the game has only one

equilibrium, which is symmetric. For both possiblities, the corresponding symmet-

ric equilibrium (π

4 , r̄) must satisfy p′
θ
(π

4 , r̄) ≥ 0. Let us recall that for the symmetric

equilibrium candidate (s,s), g′(s) T −1 ⇐⇒ p′
θ
(π

4 ,r) T 0. Therefore, it can be con-

cluded that given all primitives, in the symmetric strategic-substitutes game, if there is

no asymmetric equilibrium, the relevant symmetric equilibrium must be not unstable.

Conversely, if the symmetric equilibrium, which is denoted by (π

4 , r̄), is not unsta-

ble, there are no asymmetric equilibria, because 1) as long as symmetric equilibrium

(s,s) is not unstable, i.e. g′(s) ≥ −1, p′
θ
(π

4 , r̄) ≥ 0, and therefore, there do not exist

asymmetric equilibrium candidates at r = r̄; 2) since the symmetric equilibrium is not

unstable, i.e. p′
θ
(π

4 , r̄) ≥ 0, if r increases away from r̄, p′
θ
(π

4 ,r) ≥ 0 must be held for

all r > r̄ because p′
θ
(π

4 ,r) increases as r increases; therefore, the asymmetric equilib-

rium candidates would never appear for all r ∈ [r̄,+∞). Hence, it is impossible for

the asymmetric equilibria to exist, and only the symmetric equilibrium survives if the

symmetric equilibrium is not unstable.

In conclusion, given all primitives and for all θ ∈ [−π

4 ,
3
4π], the symmetric strategic

substitutes game contains only a unique equilibrium if and only if the symmetric equi-
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librium is not unstable, and equivalently, asymmetric equilibria exist in the symmetric

strategic substitutes game if and only if the relevant symmetric equilibrium is unstable.

Therefore, for the entire symmetric strategic substitutes game (i.e., θ ∈ [−π

4 ,
7
4π]),

given all primitives (M, D, ς, ς∗ and ρ), the necessary and sufficient condition for

unique equilibrium is that the symmetric equilibrium, which always exists, is not un-

stable. Equivalently, the necessary and sufficient condition for the existence of asym-

metric equilibria is that the relevant symmetric equilibrium is unstable. Finally, if there

exist asymmetric equilibria, the number is two. Q.E.D.

Lemma E4: Given that M >D and ς= ς∗, the function f (ρ)=
√

2π

M−D

√
1−ρ2

1
ς∗+

ρ

ς

exp((
1

ς∗−
ρ

ς√
1−ρ2

)2 s2

2 ),

where s satisfies Φ(
1

ς∗−
ρ

ς√
1−ρ2

s) = D+s
D−M , strictly decreases with respect to ρ.

Proof: Differentiating (
1

ς∗−
ρ

ς√
1−ρ2

)2 with respect to ρ, we obtain that
d(

1
ς∗ −

ρ
ς√

1−ρ2 )
2

dρ
=

d (ς−ρς∗)2

ς∗2ς2(1−ρ2)
dρ

= −2ς∗(ς−ρς∗)(1−ρ2)+2ρ(ς−ς∗ρ)2

ς∗2ς2(1−ρ2)2 . By differentiating both sides of Φ(
1

ς∗−
ρ

ς√
1−ρ2

s)=

D+s
D−M with respect to ρ, we get ds

dρ
= 1

φ( ς−ρς∗

ςς∗
√

1−ρ2 s) ς−ρς∗

ςς∗
√

1−ρ2 +
1

M−D

φ( ς−ρς∗

ςς∗
√

1−ρ2
s) ς∗−ρς

ςς∗
√

1−ρ2
s

1−ρ2 .

Therefore, given ς = ς∗, we get
d(

1
ς∗ −

ρ
ς√

1−ρ2 )
2 s2

2

dρ
=

d(
1

ς∗ −
ρ
ς√

1−ρ2 )
2

dρ

s2

2 +(
1

ς∗−
ρ

ς√
1−ρ2

)2s ds
dρ

=
− ς2(1−ρ)2

M−D

φ( 1−ρ

ς

√
1−ρ2 s) 1−ρ

ς

√
1−ρ2 +

1
M−D

s2

ς∗2ς2(1−ρ2)2 . Because M > D,
d(

1
ς∗ −

ρ
ς√

1−ρ2 )
2 s2

2

dρ
< 0. Because

d
√

1−ρ2
1

ς∗ +
ρ
ς

dρ
< 0, as long as M > D and ς = ς∗, f ′(ρ) =

√
2π

M−D [exp((
1

ς∗−
ρ

ς√
1−ρ2

)2 s2

2 )

d
√

1−ρ2
1

ς∗ +
ρ
ς

dρ
+

√
1−ρ2

1
ς∗+

ρ

ς

exp((
1

ς∗−
ρ

ς√
1−ρ2

)2 s2

2 )
d(

1
ς∗ −

ρ
ς√

1−ρ2 )
2 s2

2

dρ
]< 0. In conclusion, given that M > D and ς = ς∗,

f (ρ) decreases with respect to ρ. Q.E.D.

Lemma E5: In the symmetric strategic substitutes game (M > D) and ς = ς∗, there

always exists a unique boundary ρ̄ ≥ ρ̂ = 2πς∗−(M−D)2

2πς∗+(M−D)2 . Given M > D and ς = ς∗, the

game always contains a unique equilibrium for all ρ∈ (−1, ρ̃] if and only if ρ̄≥ ρ̃. It is

symmetric and not unstable. Given M > D and ς = ς∗, the game can contain asymmet-

ric equilibria for some value of ρ ∈ (−1, ρ̃] if and only if ρ̄ < ρ̃. In this case, only the

symmetric equilibrium exists if and only if ρ ∈ (−1, ρ̄]. The symmetric equilibrium

is not unstable. Multiplicity arises if and only if ρ ∈ (ρ̄, ρ̃]. There is one symmetric
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equilibrium, which is unstable, and two asymmetric equilibria.

Given M > D and ς = ς∗, the necessary and sufficient condition of ρ̄ < ρ̃ is the

following equation group:

Φ(
M−D√

2πς2 +(M−D)2 +
√

2πς2

s
ς
) =

D+ s
D−M

s2 <
2ς2(

√
2πς2 +(M−D)2 +

√
2πς2)2

(M−D)2 ln(

√
1+

(M−D)2

2πς2 +1) (E.5)

where s is an unkonwn variable that is uniquely contained in the first equation of

equation group E.5.

Proof: Without loss of generality, for all ρ∈ (−1, ρ̂], g(x∗) is a contraction. There-

fore, a unique equilibrium always exists. It is symmetric and stable.

For all ρ ∈ (ρ̂, ρ̃], g(x∗) is not a contraction. In this case, there could be either one

equilibrium or multiple equilibria given all primitives. According to Lemma E3, the

criterion to judge whether there exist multiple equilibria is the stability of the sym-

metric equilibrium. If and only if the symmetric equilibrium is not unstable, i.e. at

this equilibrium g′(x∗)≥−1, there exists a unique equilibrium, which is only the sym-

metric equilibrium. If and only if the symmetric equilibrium is unstable, i.e. at this

equilibrium g′(x∗)<−1, then asymmetric equilibria exist.

We denote the symmetric equilibrium by (s,s). It should satisfy g(s) = s, and at

the symmetric equilibrium, each player’s best response function’s first-order derivative

should satisfy the following:

g′(s) =
1

ρ−
√

2πς∗
√

1−ρ2 exp( 1
2 (

1
ς∗ −

ρ
ς√

1−ρ2 )
2s2)

M−D

For all ρ ∈ [ρ̂, ρ̃], according to Lemma E3, there exists only a unique (symmetric)

equilibrium if and only if the symmetric equilibrium is not unstable, i.e. the first-order
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derivative of each player’s best response function g′(s)≥−1, i.e.

0 <
1

√
2πς∗
√

1−ρ2 exp( 1
2 (

1
ς∗ −

ρ
ς√

1−ρ2 )
2s2)

M−D −ρ

≤ 1

This inequality can be equivalently transformed into
√

2πexp(1
2(

1
ς∗−

ρ

ς√
1−ρ2

)2s2) ≥
1

ς∗+
ρ

ς√
1−ρ2

(M−D). In addition, let us recall that the symmetric equilibrium should satisfy

g(s) = s, i.e. Φ(
1

ς∗−
ρ

ς√
1−ρ2

s) = D+s
D−M . Therefore, given M > D, ς = ς∗ and ρ ∈ [ρ̂, ρ̃],

according to Lemma E3, if there exists only a unique equilibrium, it is necessary and

sufficient that symmetric equilibrium (s,s) should simultaneously satisfy the following

three conditions:

√
2πexp((

1
ς∗ −

ρ

ς√
1−ρ2

)2 s2

2
)≥

1
ς∗ +

ρ

ς√
1−ρ2

(M−D) (E.6)

Φ(

1
ς∗ −

ρ

ς√
1−ρ2

s) =
D+ s
D−M

(E.7)

ρ≥ 2πς∗− (M−D)2

2πς∗+(M−D)2 (E.8)

In contrast, if the inequality E.6 is replaced by

√
2πexp((

1
ς∗ −

ρ

ς√
1−ρ2

)2 s2

2
)<

1
ς∗ +

ρ

ς√
1−ρ2

(M−D) (E.9)

E.9 with equation E.7 and inequality E.8, the three conditions together indicate that

given M > D, ς = ς∗ and ρ ∈ [ρ̂, ρ̃], the symmetric equilibrium is unstable; hence, ac-

cording to Lemma E3, asymmetric equilibira exist as well.

Furthermore, inequality E.6 can be equivalently written as

√
2π

M−D

√
1−ρ2

1
ς∗ +

ρ

ς

exp((
1
ς∗ −

ρ

ς√
1−ρ2

)2 s2

2
)≥ 1



200Appendix E. Appendix of Chapter 2Uniqueness/Multiplicity and Stability of Equilibrium

We denote the LHS of above inequality by f (ρ). Then, f (ρ) ≥ 1 indicates that

g′(s) ≥ −1, while f (ρ) < 1 indicates that g′(s) < −1. According to Lemma E4, if

M > D and ς = ς∗, f (ρ) strictly decreases with respect to ρ. Because ρ̂ = 2πς∗−(M−D)2

2πς∗+(M−D)2 ,

(M−D)2(1+ρ̂)2

2πς∗2(1−ρ̂2)
= (M−D)2(1+ρ̂)

2πς∗(1−ρ̂) = 1, and f (ρ̂) =
√

2π

M−D

√
1−ρ̂2

1
ς∗+

ρ̂

ς

exp((
1

ς∗−
ρ̂

ς√
1−ρ̂2

)2 s2

2 )

=
√

2πς

M−D

√
1−ρ̂

1+ρ̂
exp((

1
ς∗−

ρ̂

ς√
1−ρ̂2

)2 s2

2 )≥ 1, where s satisfies equation E.7. Because f (1)=

0, as ρ increases from ρ̂ to 1, f (ρ) decreases from a value greater than or equal to 1 to

0. Therefore, there must exist a unique ρ = ρ̄ ∈ [ρ̂,1) such that at ρ = ρ̄, f (ρ̄) = 1.

Suppose ρ̄ < ρ̃ =
√

2πς∗2

2πς∗2+(M−D)2 . Because f ′(ρ) < 0, for all ρ ∈ [ρ̂, ρ̄], f (ρ) >

1 ⇐⇒ g′(s) ≥ −1, while for ρ ∈ (ρ̄, ρ̃], f ′(ρ) < 1 ⇐⇒ g′(s) < −1. Therefore, in

this case, according to Lemma E3, given M > D and ς = ς∗, the game only has a

unique equilibrium if and only if ρ ∈ [ρ̂, ρ̄], while multiple equilibria exist if and only

if ρ ∈ (ρ̄, ρ̃].

Suppose ρ̄ ≥ ρ̃ =
√

2πς∗2

2πς∗2+(M−D)2 . Because f ′(ρ) < 0, for all ρ ∈ [ρ̂, ρ̃], the first-

order derivative of each player’s best response function at symmetric equilibrium (s,s)

is g′(s) ≥ −1, where the equality is obtained as long as ρ = ρ̃ = ρ̂. Therefore, in this

case, based on Lemma E3, it can be concluded that given M > D and ς = ς∗, there

always exists a unique equilibrium for all ρ ∈ [ρ̂, ρ̃].

From the above analysis, it can be observed that given M > D and ς = ς∗, the rela-

tionship between ρ̄ and ρ̃ equivalently reflects whether asymmetric equilibria can exist.

Suppose that given M > D and ς = ς∗, the game can contain asymmetric equilibria for

some value of ρ, then at least at ρ = ρ̃, the symmetric equilibrium should be unstable,

while if at ρ = ρ̃, the symmetric equilibrium is unstable, then the game certainly has

asymmetric equilibria. Therefore, we get the following necessary and sufficient condi-

tion to guarantee that the game can contain asymmetric equilibria for some value of ρ

given M > D and ς = ς∗: ρ̄ < ρ̃ ⇐⇒ at ρ = ρ̃, the symmetric equilibrium is unstable

⇐⇒ given M > D and ς = ς∗, asymmetric equilibria must exist in the game for some

value of ρ. Next, we turn to find the algebraic representation of the necessary and suf-

ficient condition. At ρ = ρ̃ =
√

2πς∗2

2πς∗2+(M−D)2 , the symmetric equilibrium is unstable if

and only if the following conditions are simultaneously satisfied:
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Φ(
M−D√

2πς2 +(M−D)2 +
√

2πς2

s
ς
) =

D+ s
D−M

f (ρ̃)=

√
2πς

M−D

√
2πς2 +(M−D)2−

√
2πς2

M−D
exp(

1
2
(
√

2πς2 +(M−D)2−
√

2πς2)2

(M−D)2
s2

ς2 )

=

√
2πς2√

2πς2 +(M−D)2 +
√

2πς2
exp(

1
2

(M−D)2√
2πς2 +(M−D)2 +

√
2πς2

s2

ς2 )< 1

Equivalently, the above conditions can be transformed into the following form:

Φ(
M−D√

2πς2 +(M−D)2 +
√

2πς2

s
ς
) =

D+ s
D−M

s2 <
2ς2(

√
2πς2 +(M−D)2 +

√
2πς2)2

(M−D)2 ln(

√
1+

(M−D)2

2πς2 +1)

Combining the previous analysis, it can be concluded that the above two conditions

are the necessary and sufficient conditions to guarantee ρ̄ < ρ̃, and hence, given M > D

and ς = ς∗, the game can contain asymmetric equilibria for some value of ρ, and which

is exactly ρ ∈ (ρ̄, ρ̃].

Next, we derive the analytical expression of ρ̄. At ρ = ρ̄, there exists a unique

equilibrium/solution; this equilibrium’s/solution’s stability is not determined. Accord-

ing to the previous analysis, for ρ̄ ∈ [ρ̂, ρ̃], the following conditions should be satisfied

simultaneously:

√
2πexp((

1
ς∗ −

ρ̄

ς√
1− ρ̄2

)2 s2

2
) =

1
ς∗ +

ρ̄

ς√
1− ρ̄2

(M−D) (E.10)

Φ(

1
ς∗ −

ρ̄

ς√
1− ρ̄2

s) =
D+ s
D−M

(E.11)

ρ̄≥ 2πς∗− (M−D)2

2πς∗+(M−D)2 (E.12)

First, consider the case where M+D = 0. According to the Lemma E1, it is known

that as long as M+D= 0, symmetric equilibrium (s,s) = (0,0). According to equation
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E.10, given ς= ς∗ and (s,s) = (0,0), equation E.10 indicates that ρ̄= 2πς∗−(M−D)2

2πς∗+(M−D)2 = ρ̂.

Hence, if M+D = 0, ρ̄ = ρ̂.

Inequality E.12 can be equivalently transformed into (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
≥ 1, where the

equality is held as long as ρ̄ = 2πς∗−(M−D)2

2πς∗+(M−D)2 . From equation E.10, it is known that

s2 = ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2 ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
. If ρ̄ = ρ̂, then (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
= 1, and hence s = 0.

According to Lemma E1, M +D = 0, which is therefore necessary and sufficient for

ρ̄ = ρ̂.

Now consider the case where M + D 6= 0. Then ρ̄ > 2πς∗−(M−D)2

2πς∗+(M−D)2 , and hence
(M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
> 1. Still, s2 = ς∗2ς2(1−ρ̄2)

(ς−ρ̄ς∗)2 ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
. According to Lemma

E1, it is known that M + D T 0 ⇐⇒ 0 T s T −M+D
2 . Therefore, if M + D > 0,

s =−
√

ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2 ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
. If M+D < 0, s =

√
ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2 ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
.

According to Lemma E4, function f (ρ) strictly decreases with respect to ρ. It im-

plies that ρ̄ must be unique if and only if it simultaneously satisfies E.10, E.11 and

E.12, which constitute ρ̄’s definition. If there exists multiple ρ̄s, it indicates that equa-

tion groups of E.10, E.11 and E.12 represent more than one equilibrium/solution of

which stability is not determined, which contradicts the fact that there is only one such

kind of equilibrium/solution in this symmetric strategic substitutes game. Therefore,

given the expressions of s and equation E.11, for M + D > 0, ρ̄ is the unique so-

lution of the equation Φ(−
√

ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
) =

D−
√

ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2

ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)

D−M , while

for M + D < 0, ρ̄ is the unique solution of the equation Φ(
√

ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)
) =

D+

√
ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2

ln (M−D)2(ς+ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)

D−M . For M+D 6= 0, ρ̄≷ ρ̃.

Finally, according to the previous proofs, we can use the stability of the symmetric

equilibrium at ρ = ρ̃ to judge whether the game can contain asymmetric equilibria, or

equivalently ρ̄ > ρ̃ or ρ̄ < ρ̃. Here, we give the algebraic representation of the stability

of the symmetric equilibrium at ρ = ρ̃. Symmetric equilibrium (s,s) at ρ = ρ̃ is given

by
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Φ(
M−D√

2πς2 +(M−D)2 +
√

2πς2

s
ς
) =

D+ s
D−M

The solution of this equation is unique. If it is unstable, s satisfies

s2 <
2ς2(

√
2πς2 +(M−D)2 +

√
2πς2)2

(M−D)2 ln(

√
1+

(M−D)2

2πς2 +1)

which indicates that ρ̄ < ρ̃, and vice versa.

If it is not unstable, s satisfies

s2 ≥ 2ς2(
√

2πς2 +(M−D)2 +
√

2πς2)2

(M−D)2 ln(

√
1+

(M−D)2

2πς2 +1)

which indicates that ρ̄≥ ρ̃, and vice versa.Q.E.D.

Proof of Theorem 1: The proof of Theorem 1 completely comprises all proofs in

Appendix E, which are the proofs of Lemmas E1 to E5. All of these proofs and their

conclusions constitute Theorem 1. Q.E.D.
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Figure E11: Case 1: For all θ ∈ (3
2π, 7

4π], p′
θ
(θ,r) > 0 for all ρ ∈ (−1, ρ̃]. For all

θ∈ [3
4π,π], if ρ≤ 0, p′

θ
(θ,r)< 0; therefore, p(θ,r) gets the ‘U’ shape in θ∈ [3

4π, 7
4π] if

ρ≤ 0. If ρ > 0, for all θ ∈ [3
4π,π−arctanρ), p′

θ
(θ,r)< 0. For all θ ∈ [π−arctanρ,π],

if r cosθ

M−D dominates −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r, then p′

θ
(θ,r) < 0, and therefore

in this case, p(θ,r) gets the ‘U’ shape in θ ∈ [3
4π, 7

4π] if ρ > 0. Note that by far,

we do not know the relationship between p(3
4π,r) and p(7

4π,r) yet. It could be

p(3
4π,r)> p(7

4π,r) or p(3
4π,r)< p(7

4π,r).

Figure E12: Case 2: For all θ ∈ (3
2π, 7

4π], p′
θ
(θ,r) > 0 for all ρ ∈ (−1,1). If

ρ > 0, for all θ ∈ [3
4π,π− arctanρ), p′

θ
(θ,r) < 0. For all θ ∈ [π− arctanρ,π], if

−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r dominates r cosθ

M−D , then p′
θ
(θ,r)> 0; therefore, in this case,

p(θ,r) gets the shape where there are three optima in θ ∈ [3
4π, 7

4π]. Note that by

far, we do not know the relationship between p(3
4π,r) and p(7

4π,r) yet. It could be

p(3
4π,r)> p(7

4π,r) or p(3
4π,r)< p(7

4π,r).
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Figure E13: Since p(θ,r) always have a larger movement in θ ∈ [5
4π, 3

2π] than in

θ ∈ [π, 5
4π), if r is changed away from r̃, under which θ2 − 5

4π = 5
4π− θ1, where

(θ1,θ2) are intersection points between p(θ,r) and D
D−M given the value of r > 0, the

position of the new intersection points will not be balanced, i.e. the new intersection

points (θ1,θ2) = (θ′1,θ
′
2) or (θ′′1,θ

′′
2) will make θ2− 5

4π 6= 5
4π−θ1. This conclusion is

held for either p(π,r)> p(3
2π,r) or p(π,r)< p(3

2π,r)

Figure E14: A geometric description of ∂p(θ,r)
∂r and ∂q(θ,r)

∂r for all θ∈ [3
4π,π] given r > 0
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Figure E15: Given a pair of asymmetric equilibria (θ1, r̃) and (θ2, r̃), where

θ1 ∈ [3
4π,π) and θ2 ∈ [3

2π, 7
4π]. If r is increased away from r̃ successively, the new

intersection point θ′2 is greater than θ2, while another intersection point θ′1 or θ′′1 could

be greater or smaller than θ1. No matter how θ1 changes, θ2 always moves faster

than θ1 and along a fixed direction. Therefore, as r increases, the new intersection

points θ′1 (or θ′′1) and θ′2 would never be balanced again, i.e. θ′2−
5
4π 6= 5

4π−θ′1. This

conclusion is held for either p(3
4π,r)> p(7

4π,r) or p(3
4π,r)< p(7

4π,r).

Figure E16: If p(τ1,r)< p(τ2,r), where (τ1,τ2) = (π, 3
2π)or(3

4π, 7
4π), the asymmetric

equilibrium candidates always exist. They are the two extreme intersection points.

Suppose there is a symmetric equilibrium (5
4π, r̄). If r is increased away from r̄, there

must exist a moment that the asymmetric equilibrium candidates fall onto y = D
D−M

so that they formally become the asymmetric equilibria. From previous analysis and

results, it is known that if asymmetric equilibria exist, there will be only two. Hence,

the moment, or essentially the coresponding radius r, that asymmetric equilibrium

candidates pass the line y = D
D−M is unique.
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Figure E17: Because p(τ1,r) > p(τ2,r), where (τ1,τ2) = (π, 3
2π)or(3

4π, 7
4π), if

p′
θ
(5

4π,r) ≤ 0, there exists only one symmetric equilibrium candidate and no asym-

metric equilibrium candidate. The top figure describes the p′
θ
(5

4π,r) < 0 case, while

the bottom figure describes the p′
θ
(5

4π,r) = 0 case.
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Figure E18: Because p(τ1,r) > p(τ2,r), where (τ1,τ2) = (π, 3
2π)or(3

4π, 7
4π), if

p′
θ
(5

4π,r) > 0, both the symmetric equilibrium candidate (the middle intersection

point) and asymmetric equilibrium candidates (the two extreme intersection points)

exist.

Figure E19: A general geometric representation of function l(θ,r) with respect to

θ given r > 0 in θ ∈ [0, π

2 ]. The monotonicity, the position of the optimum (i.e., the

minimum value of l(θ,r) is obtained at θ = arctan 1
ρ
∈ (π

4 ,
π

2 ) for all ρ ∈ (0,1)), and the

relationship l(0,r)> l(π

2 ,r) are always maintained for any parameter specification of

l(θ,r).
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Figure E20: Case 1: One possibility of the relative position between func-

tion l(θ,r) and − cosθ

M−D , and the corresponding shape of function p(θ,r), where

there exists only one interior optimum for ρ > 0 and θ ∈ [0, π

2 ]. The signs

‘+’ and ‘-’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(0,r) and p(π

2 ,r) yet. It could be p(0,r) > p(π

2 ,r) or

p(0,r)< p(π

2 ,r).
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Figure E21: Case 2: Another possibility of the relative position between

function l(θ,r) and − cosθ

M−D , and the corresponding shape of function p(θ,r),

where there exist three interior optima for ρ > 0 and θ ∈ [0, π

2 ]. The signs

‘+’ and ‘-’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(0,r) and p(π

2 ,r) yet. It could be p(0,r) > p(π

2 ,r) or

p(0,r)< p(π

2 ,r).
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Figure E22: The relative position between function l(θ,r) and − cosθ

M−D , and

the corresponding shape of function p(θ,r) for ρ ≤ 0 in θ ∈ [0, π

2 ]. The signs

‘+’ and ‘-’ represent the monotonicity of function p(θ,r), because for r > 0,

p′
θ
(θ,r) = −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r− (− r cosθ

M−D ). Note that by far, we do not know

the relationship between p(0,r) and p(π

2 ,r) yet. It could be p(0,r) > p(π

2 ,r) or

p(0,r)< p(π

2 ,r).
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Figure E23: Case 1: For all θ ∈ [π

2 ,
3
4π], irrespective of whether ρ is positive,

p′
θ
(θ,r)< 0. For all θ ∈ [−π

4 ,0], if ρ≤ 0, p′
θ
(θ,r)> 0; therefore, p(θ,r) gets the ‘cap’

shape in θ ∈ [−π

4 ,
3
4π] if ρ ≤ 0. If ρ > 0, for all θ ∈ [−π

4 ,−arctanρ), p′
θ
(θ,r) > 0.

For all θ ∈ [−arctanρ,0], if r cosθ

M−D dominates −φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r, then

p′
θ
(θ,r) > 0; therefore, in this case also, p(θ,r) gets the ‘cap’ shape in θ ∈ [−π

4 ,
3
4π]

if ρ > 0. Note that by far, we do not know the relationship between p(−π

4 ,r) and

p(3
4π,r) yet. It could be p(−π

4 ,r)> p(3
4π,r) or p(−π

4 ,r)< p(3
4π,r).

Figure E24: Case 2: For all θ ∈ [π

2 ,
3
4π], p′

θ
(θ,r) < 0 for all ρ ∈ (−1, ρ̃]. If

ρ > 0, for all θ ∈ [−π

4 ,−arctanρ), p′
θ
(θ,r) > 0. For all θ ∈ [−arctanρ,0], if

−φ(cosθ−ρsinθ

ς∗
√

1−ρ2
r) sinθ+ρcosθ

ς∗
√

1−ρ2
r dominates r cosθ

M−D , then p′
θ
(θ,r)< 0; therefore, in this case,

p(θ,r) gets the shape such that there are three interior optima in θ ∈ [−π

4 ,
3
4π].
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Figure E25: Since p(θ,r) always have a larger movement in θ ∈ [π

4 ,
π

2 ] than

in θ ∈ [0, π

4 ), if r is changed away from r̃, under which θ2 − π

4 = π

4 − θ1, where

(θ1,θ2) are intersection points between p(θ,r) and D
D−M given r > 0, the position

of the new intersection points will not be balanced, i.e. the new intersection points

(θ1,θ2) = (θ′1,θ
′
2) or (θ′′1,θ

′′
2) will make θ2− π

4 6=
π

4 −θ1. This conclusion is held for

either p(0,r)> p(π

2 ,r) or p(0,r)< p(π

2 ,r).

Figure E26: A geometric illurstration of function ∂p(θ,r)
∂r and ∂q(θ,r)

∂r for all θ∈ [−π

4 ,0)

given r > 0.
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Figure E27: Given a pair of asymmetric equilibria (θ1, r̃) and (θ2, r̃), where

θ1 ∈ [−π

4 ,0) and θ2 ∈ [π

2 ,
3
4π]. If r is increased away from r̃ successively, the new

intersection point θ′2 is greater than θ2, while another intersection point θ′1 or θ′′1 could

be greater or smaller than θ1. No matter how θ1 changes, θ2 always moves faster

than θ1 and along a fixed direction. Therefore, as r increases, the new intersection

points θ′1 (or θ′′1) and θ′2 would never be balanced again, i.e. θ′2−
π

4 6=
π

4 − θ′1. This

conclusion is held either for p(−π

4 ,r)> p(3
4π,r) or p(−π

4 ,r)< p(3
4π,r).

Figure E28: If p(τ1,r) > p(τ2,r), the asymmetric equilibrium candidates always

exist. They are the two extreme intersection points. Suppose there is a symmetric

equilibrium (π

4 , r̄). If r is increased away from r̄, there must exist a moment that

the asymmetric equilibrium candidates rise and pass the line y = D
D−M so that they

formally become the asymmetric equilibria. From previous analysis and results, it is

known that if there are asymmetric equilibria, there are only two. Hence, the moment,

or essentially the coresponding radius r, that asymmetric equilibrium candidates pass

the line y = D
D−M is unique.
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Figure E29: Because p(τ1,r) < p(τ2,r), where (τ1,τ2) = (0, π

2 ) or (−π

4 ,
3
4π), if

p′(π

4 ,r)≥ 0, there exists only one symmetric equilibrium candidate and no asymmetric

equilibrium candidate. The top figure describes the p′
θ
(π

4 ,r) > 0 case, while the

bottom figure describes the p′
θ
(π

4 ,r) = 0 case.
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Figure E30: Because p(τ1,r) < p(τ2,r), where (τ1,τ2) = (0, π

2 ) or (−π

4 ,
3
4π), if

p′
θ
(π

4 ,r)< 0, both the symmetric equilibrium candidate (the middle intersection point)

and asymmetric equilibrium candidates (the two extreme intersection points) exist.
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Appendix of Chapter 2

Derivation of the Best Response

Function at ρ→ 1

Let us recall the definition of the cutoff best response g(x∗): EΠ(x∗,g(x∗))=Φ(x∗−ρg(x∗)
ς

√
1−ρ2

)(M−

D)+D+ g(x∗) = 0. If x∗ = g(x∗), limρ→1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = 1
2 . Therefore, 1

2(M−D)+

D+g(x∗) = 0, and hence g(x∗) =−M+D
2 . Thus, at x∗ =−M+D

2 , g(x∗) =−M+D
2 .

If x∗ > g(x∗), limρ→1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(+∞) = 1, g(x∗) = −M. In the equation

EΠ(x∗,g(x∗)) = 0, if and only if x∗ = −M+D
2 , g(x∗) = x∗; therefore, if x∗ > −M+D

2 ,

g(x∗) =−M.

If x∗ < g(x∗), limρ→1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(−∞) = 0, g(x∗) = −D. In the equation

EΠ(x∗,g(x∗)) = 0, if and only if x∗ = −M+D
2 , g(x∗) = x∗; therefore, if x∗ < −M+D

2 ,

g(x∗) =−D.
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Appendix G

Appendix of Chapter 2

Comparative Statics of the Symmetric

Equilibrium

In this section, we first derive the comparative statics of the best response function at

the symmetric equilibrium; next, we derive the comparative statics of the symmetric

equilibrium. Both types of comparative statics have been qualitatively discussed in the

intuition of comparative statics analysis.

G.1 Proof of Comparative Statics of the Best Response

Function

Let us recall that given an opponent’s strategy x∗ ∈ R, the best response function is

x∗ = ρ
ς∗

ς
g(x∗)+ ς

∗
√

1−ρ2Φ
−1(

D+g(x∗)
D−M

)

and it can be equivalently represented by

Φ(
ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) =

D+g(x∗)
D−M

(G.1)

1) ∂g(x∗)
∂M : Differentiating both sides of equation (G.1) with respect to M and rear-

ranging terms on both sides, we obtain
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∂g(x∗)
∂M

=−
D+g(x∗)
(D−M)2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

The condition ρ≤ ρ̃ =
√

2πς2

2πς2+(M−D)2 can be equivalently re-expressed into

1
D−M

+
1√
2π

ρ

ς
√

1−ρ2
≤ 0

Therefore, when ρ ≤ 0, 1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

< 0, and when ρ > 0, then

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2
≤ 1

D−M + 1√
2π

ρ

ς

√
1−ρ2
≤ 0. Therefore, for all ρ∈ (−1, ρ̃],

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2
≤ 0. Hence, without loss of generality, 1

1
D−M+φ(

ςx∗−ρς∗g(x∗)
ςς∗
√

1−ρ2 ) ρ

ς

√
1−ρ2

<

0. Because g(x∗) ∈ [−M,−D], where −M and −D are reached at the asymptote, with-

out loss of generality, ∂g(x∗)
∂M < 0.

2) ∂g(x∗)
∂D : Differentiating both sides of equation (G.1) with respect to D and rear-

ranging the terms on both sides, we obtain

∂g(x∗)
∂D

=

M+g(x∗)
(D−M)2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

Because g(x∗)∈ [−M,−D], where−M and−D are reached at the asymptote, with-

out loss of generality, ∂g(x∗)
∂D < 0.

3) ∂g(x∗)
∂ρ

: Differentiating both sides of equation (G.1) with respect to ρ and rear-

ranging the terms on both sides, we obtain

∂g(x∗)
∂ρ

=

φ( ςx∗−ρς∗g(x∗)
ςς∗
√

1−ρ2
)

ρ
x∗
ς∗−

g(x∗)
ς

(1−ρ2)
3
2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

At symmetric equilibrium (s,s), where g(s) = s and s ∈ [−M,−D] in which −M

and −D are reached at the asymptote, if sR 0, ∂g(x∗)
∂ρ
R 0.
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4) ∂g(x∗)
∂ς

+ ∂g(x∗)
∂ς∗ : First, differentiating both sides of equation (G.1) with respect to

ς and rearranging the terms on both sides, we obtain

∂g(x∗)
∂ς

=
φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ√

1−ρ2

g(x∗)
ς2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

Second, differentiating both sides of equation (G.1) with respect to ς∗ and rear-

ranging terms on both sides, we obtain

∂g(x∗)
∂ς∗

=−
φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) 1√

1−ρ2
x∗
ς∗2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

Hence, we have

∂g(x∗)
∂ς

+
∂g(x∗)

∂ς∗
=

φ( ςx∗−ρς∗g(x∗)
ςς∗
√

1−ρ2
)ρg(x∗)−x∗

ς2
√

1−ρ2

1
D−M +φ( ςx∗−ρς∗g(x∗)

ςς∗
√

1−ρ2
) ρ

ς

√
1−ρ2

At symmetric equilibrium (s,s), where g(s) = s and s ∈ [−M,−D] in which −M

and −D are reached at the asymptote, if sR 0, ∂g(x∗)
∂ς

+ ∂g(x∗)
∂ς∗ R 0.

G.2 Proof of Comparative Statics of the Symmetric Equi-

librium (Proof of Proposition 3)

Symmetric equilibrium (s,s) should always satisfy g(s) = s. Therefore,

s = ρ
ς∗

ς
g(s)+ ς

∗
√

1−ρ2Φ
−1(

D+g(s)
D−M

)

This can be equivalently represented as

Φ(
ς−ρς∗

ςς∗
√

1−ρ2
s) =

D+ s
D−M

(G.2)

Then, differentiating both sides of equation (G.2) with respect to M, D, ρ, ς and ς∗,

and rearranging the terms on both sides of relevant equations, we obtain the following
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results on comparative statics of the symmetric equilibrium:

1)
∂s
∂M

=
1

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

D+ s
(M−D)2

Because s ∈ [−M,−D] and−M and−D are reached at the asymptote, without loss

of generality, ∂s
∂M < 0.

2)

∂s
∂D

=
1

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

−M− s
(M−D)2

Because s ∈ [−M,−D] and−M and−D are reached at the asymptote, without loss

of generality, ∂s
∂D < 0.

3)

∂s
∂ρ

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
s)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

ς∗−ρς

ςς∗(1−ρ2)
3
2

s

Therefore, at the symmetric equilibrium, if sR 0, then ∂s
∂ρ
R 0.

4)

∂s
∂ς∗

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
s)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

s

ς∗2
√

1−ρ2

∂s
∂ς

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
s)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

−ρs

ς2
√

1−ρ2

Because ς = ς∗, we have

∂s
∂ς

+
∂s
∂ς∗

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
s)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
s)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)+ 1

M−D

1−ρ

ς∗2
√

1−ρ2
s

Therefore, at the symmetric equilibrium, if sR 0, then ∂s
∂ς
+ ∂s

∂ς∗ R 0.
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Appendix of Chapter 2

Contraction and Non-contraction Best

Response Functions

Contraction is a very useful property of the best response functions. According to Zim-

per (2004), if the best response functions of a lattice game are contraction, the game

is dominance solvable, and therefore, a unique equilibrium exists. In this thesis, the

best response functions are real-valued and one-dimensional. In this specific context,

we prove that, if and only if the abosulte value of the first-order derivative of a best

response function is smaller than one, given any strategy of the opponent, the best re-

sponse function is a contraction. This result applies to all chapters in this thesis.

Proposition H1: A first-order differentiable best response function x = g(x∗),

where x ∈ R and x∗ ∈ R, is a contraction if and only if for all x∗ ∈ R, |g′(x∗)|< 1.

Proof: In an arbitrary interval [a,b] ⊆ R, g(x∗) as defined is first-order differen-

tiable. Therefore, according to the Lagrange intermdeidate value theorem, there exists

a η ∈ (a,b) such that

g(b)−g(a) = g′(η)(b−a)

Therefore, we have |g(b)−g(a)|= |g′(η)|(b−a)≤maxx∗∈(a,b) |g′(x∗)|.|b−a|.

If x = g(x∗) is a contraction, according to the formal definition of contraction (see
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de la Fuente, 2000), we have maxx∗∈(a,b) |g′(x∗)| < 1. Because a and b (b > a) are

arbitrarily valued, for all x∗ ∈ R, |g′(x∗)|< 1.

If for all x∗ ∈R |g′(x∗)|< 1, then at any interval (a,b)⊆R, maxx∗∈(a,b) |g′(x∗)|< 1,

and therefore, x = g(x∗) is a contraction for all x∗ ∈ R. Q.E.D.

In this thesis, we will meet two types of best response functions: contraction and

non-contraction. Given a best response function x = g(x∗), where x∗ ∈ R, the condi-

tion of contraction is that |g′(x∗)| < 1 for all x∗ ∈ R. In some situations, |g′(x∗)| = 1

at some isolated points on the real line indicating the value of x∗ and at the remaining

real numbers, |g′(x∗)| < 1. For these situations, x = g(x∗) is still a contraction. The

proof of Proposition 1 adapts to such situations. The situation of the non-contraction

best response functions is that at some interval(s) of x∗ ∈ R, |g′(x∗)|> 1.

Reference: de la Fuente, A. (2000), Mathematical Methods and Models for Economists,

Cambridge University Press.
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Appendix of Chapter 3

Preliminaries and Glossaries of

Notations

The standard Gaussian density function is denoted by φ(.), and the standard Gaus-

sian cumulative density function is denoted by Φ(.). Given a Gaussian distribution

x∼ N(µ,ς2), the density function is written as

f (x) =
1√
2πς

exp(−(x−µ)2

2ς2 ) =
1
ς

φ(
x−µ

ς
)

The joint Gaussian distribution is denoted by (ε,ε∗)∼ N(0,0,ς2,ς∗2,ρ). The den-

sity function of the bivariate Gaussian distribution is

f (ε,ε∗) =
1

2πςς∗
√

1−ρ2
exp(− 1

2(1−ρ2)
(
ε2

ς2 +
ε∗2

ς∗2
− 2ρεε∗

ςς∗
))

The conditional density function is

f (ε∗|ε) = 1

ς∗
√

1−ρ2
φ(

ε∗

ς∗ −
ρε

ς√
1−ρ2

)

and the conditional cumulative density function is
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F(ε̄∗|ε) =
∫

ε̄∗

−∞

f (ε∗|ε)dε
∗ =

∫
ε̄∗

−∞

1

ς∗
√

2π(1−ρ2)
exp(−1

2
(

ε∗

ς∗ −
ρε

ς√
1−ρ2

)2)dε
∗

=
∫ ε̄∗

ς∗ −
ρε
ς√

1−ρ2

−∞

1√
2π

exp(−1
2

u2)du

= Φ(

ε̄∗

ς∗ −
ρε

ς√
1−ρ2

)

We denote a player’s belief function by σ(x∗,ε) = F(x∗|ε), where ε is a player’s

own private information, and x∗ is the opponent’s expected cutoff strategy. We obtain

the following results of σ(x∗,ε):

σ(x∗,ε) = F(x∗|ε) = Φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

σx∗(x∗,ε) =
1

ς∗
√

1−ρ2
φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

σε(x∗,ε) =−
ρ

ς
√

1−ρ2
φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)

By assuming ς = ς∗, these expressions can be simplified into the following equa-

tions, respectively:

σ(x∗,ε) = Φ(
x∗−ρε

ς
√

1−ρ2
)

σx∗(x∗,ε) =
1

ς
√

1−ρ2
φ(

x∗−ρε

ς
√

1−ρ2
)

σε(x∗,ε) =−
ρ

ς
√

1−ρ2
φ(

x∗−ρε

ς
√

1−ρ2
)

The expected payoff function EΠ(x∗,ε) is expressed as

EΠ(x∗,ε) = σ(x∗,ε)(M+ ε)+(1−σ(x∗,ε))(D+ ε)

= σ(x∗,ε)(M−D)+D+ ε
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= Φ(

x∗
ς∗ −

ρε

ς√
1−ρ2

)(M−D)+D+ ε

= Φ(
x∗−ρε

ς
√

1−ρ2
)(M−D)+D+ ε

The best response function is denoted by g(x∗). In the proof, g(x∗) is often re-

garded as an independent variable and the derivatives of relevant functions with respect

to g(x∗) are taken or the optimum value of relevant functions with respect to g(x∗) is

found. For simplicity, we denote g−1′(x∗)≡ dx∗
dg(x∗) =

1
dg(x∗)

dx∗
, and ming(x∗)(maxg(x∗))ρ

′(x∗)=

min(max)ρ′(x∗), which is the derivative of a function with x∗ as a dependent variable

and g(x∗) as an independent variable, and ming(x∗)(maxg(x∗))ρ
′′(x∗)=min(max)ρ′′(x∗).
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Appendix of Chapter 3

Proof of Proposition 1

Lemma B1: There exists a ρ̃∈ (−1,1), if D>M, ∀ρ∈ [ρ̃,1) and ∀x∗ ∈R, ∂EΠ(x∗,ε)
∂ε

≥
0, where the equality is obtained at ε = ς

ς∗
x∗
ρ

with ρ = ρ̃.

Proof: For all x∗ ∈R, EΠ(x∗,ε)=σ(x∗,ε)(M−D)+D+ε=Φ(
x∗
ς∗−

ρε

ς√
1−ρ2

)(M−D)+

D+ε. Therefore, ∂EΠ(x∗,ε)
∂ε

= σε(x∗,ε)(M−D)+1 = ρ(D−M)

ς

√
2π(1−ρ2)

exp(−1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)+

1. Hence, ∂EΠ(x∗,ε)
∂ε

≥ 0 is equivalent to ρ(D−M)

ς

√
2π(1−ρ2)

exp(−1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)+1≥ 0. There-

fore, the inequality exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)≥ −ρ(D−M)

ς

√
2π(1−ρ2)

is the necessary and sufficient con-

dition of ∂EΠ(x∗,ε)
∂ε

≥ 0. Apparently, that ρ(D−M) ≥ 0 is sufficient to make the nec-

essary and sufficient condition hold. Therefore, that D > M and ρ ≥ 0 is sufficient to

guarantee exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)> −ρ(D−M)

ς

√
2π(1−ρ2)

, and thus ∂EΠ(x∗,ε)
∂ε

> 0.

Suppose ρ(D−M)< 0. Then, the necessary and sufficient condition exp(1
2(

x∗
ς∗−

ρε

ς√
1−ρ2

)2)≥
−ρ(D−M)

ς

√
2π(1−ρ2)

can be equivalently transformed into (x∗
ς∗ −

ρε

ς
)2 ≥ 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

.

Therefore, under the condition ρ(D−M) < 0, ∂EΠ(x∗,ε)
∂ε

≥ 0 always holds if and only

if for all x∗ ∈ R and ε ∈ R, (x∗
ς∗ −

ρε

ς
)2 ≥ 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

always holds. Hence,

as long as all parameters satisfy 2(1− ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

≤ 0, the necessary and suf-

ficient condition always holds, and thus ∂EΠ(x∗,ε)
∂ε

≥ 0 given ρ(D−M) < 0. Since

ln −ρ(D−M)

ς

√
2π(1−ρ2)

= 0 as long as −ρ(D−M)

ς

√
2π(1−ρ2)

= 1, given D, M, ς and ς∗, and denoting

the solution by ρ̃, we have ρ̃2 = 2πς2

2πς2+(M−D)2 . Furthermore, as long as ρ2 < ρ̃2,
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2(1− ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

< 0. Therefore, if D > M and ρ̃ ≤ ρ < 0, ∂EΠ(x∗,ε)
∂ε

≥ 0 al-

ways holds, and ∂EΠ(x∗,ε)
∂ε

= 0 if and only if ε = ς

ς∗
x
ρ̃

. Therefore, combined with the

results for ρ(D−M)≥ 0, it can be concluded that if D > M, ∀ρ ∈ [ρ̃,1), ∂EΠ(x∗,ε)
∂ε

≥ 0

always holds, and ∂EΠ(x∗,ε)
∂ε

= 0 if and only if ε = ς

ς∗
x
ρ̃

, where ρ̃ =−
√

2πς2

2πς2+(D−M)2 .

Finally, the game is symmetric and hence ς= ς∗. Therefore, ρ̃=−
√

2πς2

2πς2+(D−M)2 =

−
√

2πς∗2

2πς∗2+(D−M)2 = ρ̃∗ for D > M. Hence, both players have an identical range to en-

sure that their respective expected payoff function EΠ(x∗,ε) always increases with

respect to ε ∈ R. Q.E.D.

Proof of Proposition 1: The proof of Proposition 1 is based on the proof of

Lemma B1. We denote the set of ρ that makes EΠ(x∗,ε) always increase with re-

spect to ε given x∗ by Γ ≡ {ρ| ρ ≥ ρ̃ if D > M }. From Lemma B1, it has been

known that given D and M, the necessary and sufficient condition for ∂EΠ(x∗,ε)
∂ε

≥ 0 is

ρ ∈ Γ. Therefore, it is certain that as long as ρ does not belong to Γ, EΠ(x∗,ε) is not

monotonic with respect to ε given any x∗ ∈ R. Equivalently, it means that for some ε,

(x∗
ς∗ −

ρε

ς
)2 < 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

for ρ /∈ Γ. Without loss of generality, Figure B1

geometrically gives a general description of the relation between y(ε) = (x∗
ς∗ −

ρε

ς
)2 and

z(ε) = 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

given x, M, D, ρ, ς and ς∗ for all ρ /∈ Γ (see Figure B1).

According to the quadratic structure of y(ε), as long as ρ /∈ Γ, there should be

two solutions to solve the equation (x∗
ς∗ −

ρε

ς
)2 = 2(1− ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

. They are

ε1 =
ς

ρς∗ x−
x∗
ρ

√
2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

and ε2 =
ς

ρς∗ x+
x∗
ρ

√
2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

.

Therefore, for ε≤ ε1 or ε≥ ε2, (x∗
ς∗ −

ρε

ς
)2≥ 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

, then ∂EΠ(x∗,ε)
∂ε

≥ 0,

where the equality is taken when ε= ε1 or ε= ε2. For ε1 < ε< ε2, ∂EΠ(x∗,ε)
∂ε

< 0. Based

on these results, without loss of generality, Figure B2 geometrically gives a general de-

scription of function EΠ(x∗,ε) with respect to ε given any value of x, for all ρ /∈ Γ (see

Figure B2).

Because for all x∗ ∈R, given all primitives, the expected payoff function EΠ(x∗,ε)

is always located between the line D+ ε and M + ε, and if D > M, increasing x∗ will

bring EΠ(x∗,ε) downward, it is possible that for some value of x∗, there are two or

three solutions of ε satisfying EΠ(x∗,ε) = 0. In Appendix D, we will prove that it is
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Figure B1: A geometric description of the relation between function y(ε) and z(ε)

as long as ρ /∈ Γ, where y(ε) = (x∗
ς∗ −

ρε

ς
)2 and z(ε) = 2(1−ρ2) ln −ρ(D−M)

ς

√
2π(1−ρ2)

. There

must be two intersection points which make f (ε) = g(ε), and in this figure, they are

denoted by ε1 and ε2. The function y(ε) reaches its global minimum 0 at ε = ς

ς∗
x∗
ρ

.

certain that for all ρ /∈ Γ by using cutoff strategy, the game always contains a unique

symmetric solution g(e) = e, such that given e, EΠ(e,ε) = 0 has three solutions, and

the solution ε = e is located in the middle where EΠ(e,ε) decreases with respect to

ε (see Figure B2). Apparently, the solution (e,e) self-contradicts the definition of the

cutoff strategy under which it is derived. Hence, it is impossible to solve the game

using the cutoff strategy concept for all ρ /∈ Γ. Therefore, the set Γ not only indicate

that EΠ(x∗,ε) increases with respect to ε for all x∗ ∈ R but also characterizes the set

of cutoff strategy Bayesian Nash equilibria of the symmetric strategic complements

games. Therefore, Proposition 1 is obtained. Q.E.D.



232 Appendix B. Appendix of Chapter 3 Proof of Proposition 1

Figure B2: A general description of expected payoff function EΠ(x∗,ε) with respect

to ε given any value of x∗, for all ρ /∈ Γ. The position of EΠ(x∗,ε) depends on x∗, and

EΠ(x∗,ε) is always located within [M+ε,D+ε] for all x ∈R. If D > M, increasing x∗

will bring EΠ(x∗,ε) downward. In Appendix D, it is proven that as long as the cutoff

strategy concept is used to solve the game, for all ρ /∈ Γ, there always exists a solution

(s,s) satisfying g(s) = s, such that given s, EΠ(s,ε) behaves non-monotonically and

has three intersections with the x-axis, which is demonstrated by the red curve.
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Appendix of Chapter 3

Derivation of the (Inverse) Best

Response Function

The best response function, g(x∗), is defined to satisfy EΠ(x∗,g(x∗)) = 0. Therefore,

it is obtained that σ(x∗,g(x∗))(M−D)+D+g(x∗) = 0, and further Φ(
x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
)(M−

D) +D+ g(x∗) = 0. This equation can be equivalently transformed into D+g(x∗)
D−M =

Φ(
x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
). Since the cumulative density function of normal distribution is invert-

ible, we obtain Φ−1(D+g(x∗)
D−M ) =

x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
. Finally, we obtain the inverse best response

function x∗ = ρ
ς∗

ς
g(x∗)+ ς∗

√
1−ρ2Φ−1(D+g(x∗)

D−M ).

Still, for the definition equation EΠ(x∗,g(x∗)) = 0, or Φ(
x∗
ς∗−

ρg(x∗)
ς√

1−ρ2
)(M−D)+D+

g(x∗) = 0, we differentiate this equation with respect to x∗ on both sides, and ob-

tain EΠ′x∗(x
∗,g(x∗))+EΠ′ε(x

∗,g(x∗))g′(x∗) = 0. Therefore, g′(x∗) =−EΠ′x∗(x
∗,g(x∗))

EΠ′ε(x∗,g(x∗))
=

−
∂EΠ(x,ε)

∂x∗
∂EΠ(x,ε)

∂ε

|ε=g(x∗)=−
σx∗(x

∗,g(x∗))(M−D)
σε(x∗,g(x∗))(M−D)+1 =

1

ς∗
ς

ρ−
ς∗
√

2π(1−ρ2)exp( 1
2 (

x∗
ς∗ −

ρg(x∗)
ς√

1−ρ2
)2)

M−D

. σx∗(x∗,g(x∗))>

0, and it is known that as long as ρ ∈ Γ, ∂EΠ(x∗,g(x∗))
∂ε

≥ 0 ∀x∗ ∈ R; hence, if D > M,

g′(x∗) > 0. Therefore, as long as the concept of cutoff strategy Bayesian Nash equi-

libria is applied to solve the game, i.e. ρ ∈ Γ, g(x∗) globally increases for a strategic-

complements game.
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Appendix of Chapter 3

Proof of Proposition 2

Lemma D1: Assume ς = ς∗ and D > M. There exist two functions ρ′(x∗) and ρ′′(x∗).

Given any x∗ ∈ R and for all ρ ∈ (−1,1), if ρ ∈ (ρ′(x∗),ρ′′(x∗)), g′(x∗) > 1; if ρ ∈
(ρ′′(x∗),1), 0 < g′(x∗)< 1; at ρ = ρ′′(x∗), g′(x∗) = 1; at ρ = ρ′(x∗), g′(x∗) = ∞.

Proof: We have g−1′(x∗)≡ dx∗
dg(x∗) =

1
dg(x∗)

dx∗
= ρ+

ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2);

therefore, dg−1′(x∗)
dρ

= 1− ς∗ρ√
1−ρ2

√
2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Hence, given an x∗ ∈ R,

if ρ < 0 and D > M, then the function g−1′(x∗) must increase with respect to ρ. In

addition, if ρ =−1, g−1′(x∗) =−1, and if ρ = 0, g−1′(x∗)> 0. Because g−1′(x∗) is a

continuous function with respect to ρ, for all ρ ∈ (−1,0], g−1′(x∗) increases from -1 to

a positive value as ρ increases from -1 to 0. Therefore, there must exist a ρ ∈ (−1,0],

whose value depends on x∗, and it makes g−1′(x∗) = 0. We denote this ρ by ρ′(x∗).

Because g−1′(x∗) < 0 is equivalent to g′(x∗) < 0, and g−1′(x∗) > 0 is equivalent to

g′(x∗)> 0, we can conclude that given an x∗ ∈ R, for all ρ ∈ (−1,ρ′(x∗)), g′(x∗)< 0,

and for all ρ ∈ (ρ′(x∗),0), g′(x∗)> 0.

We define A≡ ς∗
√

2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). For D > M, A > 0. Hence, the equa-

tion g−1′(x∗) = 0 can be equivalently expressed by ρ+A
√

1−ρ2 = 0. The solution

ρ′(x∗) that solves ρ+A
√

1−ρ2 = 0 equals − A√
1+A2 < 0. Because ς = ς∗, both play-

ers’ ρ′(x∗) function should be identical.

Because g′(x∗) = g−1′(x∗) = 1, ρ+
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2) = 1, and
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hence 1−ρ =
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2)> 0 for D > M. Given D, M, ς and

ς∗, the ρ that satisfies the equation 1− ρ =
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2) > 0

must depend on x∗. Thus, we denote the ρ that makes g′(x∗) = g−1′(x∗) = 1 by ρ′′(x∗).

For this incomplete information game, ρ′′(x∗) should not be equal to ±1. g−1′(x∗) = 1

can be equivalently represented by 1−ρ = A
√

1−ρ2. Solving this equation, we get

two solutions: ρ′′(x∗) = 1 and ρ′′(x∗) = 1−A2

1+A2 . The first solution is excluded according

to the previous argument. Therefore, ρ′′(x∗) = 1−A2

1+A2 .

Because given an x∗ ∈ R, ρ′′(x∗) is unique, for all ρ ∈ (ρ′(x∗),ρ′′(x∗)) or ρ ∈
(ρ′′(x∗),1), g′(x∗) is either greater or smaller than 1. To judge in which interval g′(x∗)

is smaller or greater than 1, let us recall the derivative of g−1′(x∗) with respect to

ρ ∈ (−1,1):

dg−1′(x∗)
dρ

= 1− ς∗ρ√
1−ρ2

√
2π

D−M
exp(

1
2
[Φ−1(

D+g(x∗)
D−M

)]2) = 1− ρ√
1−ρ2

A

Because at ρ = ρ′′(x∗), dg−1′(x∗)
dρ

= 1
1+ρ′′(x∗) > 0, for all ρ∈ (ρ′′(x∗)−ε,ρ′′(x∗)+ε),

the function g−1′(x∗) increases with respect to ρ. Because at ρ = ρ′′(x∗), g−1′(x∗) = 1,

∀ρ ∈ (ρ′′(x∗)− ε,ρ′′(x∗)), g−1′(x∗) < 1, and ∀ρ ∈ (ρ′′(x∗),ρ′′(x∗)+ ε), g−1′(x∗) > 1.

Moreover, because ρ′′(x∗) is unique, this result can be extended to the whole interval

ρ∈ (−1,1). Thus, ∀ρ∈ (−1,ρ′′(x∗)), g−1′(x∗)< 1, and ∀ρ∈ (ρ′′(x∗),1), g−1′(x∗)> 1.

The relationship between ρ′(x∗) and ρ′′(x∗): Let us recall that ρ′(x∗) < 0. If

ρ′′(x∗)> 0, then certainly ρ′(x∗)< ρ′′(x∗). Now, consider the case that ρ′′(x∗) is neg-

ative. Recall that g−1′(x∗) increases with respect to ρ if ρ is negative. At ρ = ρ′(x∗),

g−1′(x∗) = 0 and hence g′(x∗) = ∞, and at ρ = ρ′′(x∗), g−1′(x∗) = 1 and hence g′(x∗) =

1. Therefore, ρ′(x∗)< ρ′′(x∗) if ρ′′(x∗)< 0. In conclusion, if D > M, ρ′′(x∗) is always

strictly greater than ρ′(x∗).

Because ς = ς∗, both players’ ρ′(x∗) and ρ′′(x∗) functions are identical. Therefore,

in conclusion, for D > M, the function g(x∗) whose inverse form is x∗ = ρ
ς∗

ς
g(x∗)+

ς∗
√

1−ρ2Φ−1(D+g(x∗)
D−M ) has the following property: given x∗ ∈ R and ρ ∈ (−1,1),

if ρ′(x∗) < ρ < ρ′′(x∗), g′(x∗) > 1; if ρ ∈ (ρ′′(x∗),1), 0 < g′(x∗) < 1; if ρ = ρ′′(x∗),

g′(x∗) = 1; if ρ = ρ′(x∗), g′(x∗) = ∞; and if ρ < ρ′(x∗), g′(x∗)< 0. Q.E.D.
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Lemma D2: For D > M, for all ρ ∈ [ρ′(x∗),0], g′(x∗) decreases from +∞ to a

positive value, and for all ρ ∈ (−1,ρ′(x∗)], g′(x∗) decreases from -1 to −∞.

Proof: From the proof of Lemma D1, it has been known that given an x∗ ∈ R,

g−1′(x∗) increases with respect to ρ for ρ ∈ (−1,0] and it is continuous. Therefore,

g′(x∗) must have a decreasing property in the interval ρ ∈ (−1,0]. We have at ρ = 0,

g−1′(x∗)> 0, and hence g′(x∗)> 0; at ρ = ρ′(x∗), g−1′(x∗) = 0 and hence g′(x∗) = ∞;

and at ρ = −1, g−1′(x∗) = 1, and hence g′(x∗) = 1. Therefore, for function g′(x∗),

there is a discontinuity point at ρ = ρ′(x∗). For ρ ∈ (−1,ρ′(x∗)], g′(x∗) should de-

crease from -1 to −∞, and for ρ ∈ (ρ′(x∗),0], g′(x∗) should decrease from +∞ to some

positive value. Q.E.D.

Lemma D3: For D > M, given an x∗ ∈R, g′(x∗) is convex for ρ∈ [0,1). It reaches

its minimum value at ρ = 1√
1+A2 .

Proof: Given an x∗ ∈R and D>M, for all ρ∈ (0,1), because d2g′(x∗)
dρ2 = 2(g−1′(x∗))−3(dg−1′(x∗)

dρ
)2

−(g−1′(x∗))−2 d2g−1′(x∗)
dρ2 , d2g−1′(x∗)

dρ2 =−A

√
1−ρ2+ ρ2√

1−ρ2

1−ρ2 < 0, and for ρ> 0, g−1′(x∗)> 0,

we have d2g−1′(x∗)
dρ2 > 0 for ρ ∈ (0,1). Hence, g′(x∗) is convex for all ρ ∈ (0,1). Fur-

thermore, by calculating the first-order derivative, it is found that g−1′(x∗) = ρ +
ς∗
√

2π(1−ρ2)
D−M exp(1

2 [Φ
−1(D+g(x∗)

D−M )]2) reaches its minimum value at ρ= 1√
1+A2 > 0, where

A ≡ ς∗
√

2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). We denote this ρ by ρ′′′(x). Therefore, given an

x∗ ∈ R, the function g′(x∗) reaches its minimum value at ρ′′′(x) = 1√
1+A2 ∀ρ ∈ (0,1),

and the minimum value of g′(x∗) is just 1√
1+A2 . Q.E.D.

For D > M, according to Lemmas D1, D2 and D3, the shape of g′(x∗) with respect

to ρ given an x∗ ∈ R can be generally represented by Figure D1.

Lemma D4: Given an x∗ ∈ R and assuming D > M, for g(x∗) ∈ (−M+D
2 ,−M],

dρ′(x∗)
dg(x∗) < 0 and dρ′′(x∗)

dg(x∗) < 0; for g(x∗) ∈ [−D,−M+D
2 ), dρ′(x∗)

dg(x∗) > 0 and dρ′′(x∗)
dg(x∗) > 0.

Proof: Let us recall that ρ′(x∗) = − A√
1+A2 and ρ′′(x∗) = 1−A2

1+A2 , where A ≡ ς∗
√

2π

D−M

exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Because D>M, A> 0. By the chain rule, dρ′(x∗)

dg(x∗) =
dρ′(x∗)

dA
dA

dg(x∗) ,
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Figure D1: A general geometric description of function g′(x∗) with respect to ρ for

D > M given an x∗ ∈ R.

and dρ′′(x∗)
dg(x∗) = dρ′′(x∗)

dA
dA

dg(x∗) . Because ρ′(x∗)=− A√
1+A2 =−

1√
1

A2 +1
and ρ′′(x∗)= 2−1−A2

1+A2 =

2
1+A2 − 1, as A increases, ρ′(x∗) decreases and ρ′′(x∗) decreases. Hence, dρ′(x∗)

dA < 0,

and dρ′′(x∗)
dA < 0. If g(x∗) < −D+M

2 , dA
dg(x∗) < 0 and if g(x∗) > −D+M

2 , dA
dg(x∗) > 0;

therefore, in conclusion, if g(x∗) ∈ [−D,−D+M
2 ), dρ′(x∗)

dg(x∗) > 0 and dρ′′(x∗)
dg(x∗) > 0, and if

g(x∗) ∈ [−D+M
2 ,−M], dρ′(x∗)

dg(x∗) < 0 and dρ′′(x∗)
dg(x∗) < 0. Hence, at g(x∗) = −D+M

2 , both

ρ′(x∗) and ρ′′(x∗) reach their global maximum value with respect to g(x∗). The max-

imum values of ρ′(x∗) and ρ′′(x∗) with respect to g(x∗) are −
√

2πς∗2

2πς∗2+(D−M)2 and
(D−M)2−2πς∗2

(D−M)2+2πς∗2
, respectively. Q.E.D.

Based on Lemmas D1 and D4, Figure D2 generally depicts functions ρ′(x∗) and

ρ′′(x∗) with respect to g(x∗). According to Lemmas D1, D2 and D3, given an x∗ ∈ R
and hence g(x∗), as ρ increases from -1 to 1, for ρ ∈ (−1,ρ′(x∗)), g′(x∗) < −1; for

ρ ∈ (ρ′(x∗),ρ′′(x∗)), g′(x∗) > 1; for ρ ∈ (ρ′′(x∗),1), 0 < g′(x∗) < 1. At ρ = ρ′′(x∗),

g′(x∗) = 1 and at ρ = ρ′(x∗), g′(x∗) = ∞. This change of g′(x∗) can be illustrated

by Figure D2. We choose an arbitrary value of g(x∗) between −D and −M, and at

this chosen g(x∗), we draw a vertical line from -1 to 1 (the red line in Figure D2).

The curves ρ′(x∗) and ρ′′(x∗) dissect this line into three parts, g′(x∗) < 0, g′(x∗) > 1

and g′(x∗) < 1 from bottom to top. Because g(x∗) is arbitrarily chosen, this result

applies for all g(x∗) ∈ [−D,−M]. Therefore, it can be concluded that given D, M, ς
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and ς∗, for all g(x∗) ∈ [−D,−M], if ρ ∈ (ρ′′(x∗),1), 0 < g′(x∗) < 1 and correspond-

ingly it is the area above the curve ρ′′(x∗) in Figure D2; for all g(x∗) ∈ [−D,−M], if

ρ ∈ (ρ′(x∗),ρ′′(x∗)), g′(x∗) > 1 and correspondingly it is the area between the curves

ρ′(x∗) and ρ′′(x∗); finally, for all g(x∗) ∈ [−D,−M], if ρ < ρ′(x∗), g′(x∗)< 0 and cor-

respondingly it is the area below the curve ρ′(x∗).

Figure D2: A general geometric description of functions ρ′(x∗) and ρ′′(x∗) with

respect to g(x∗) for D > M.

Lemma D5: For D>M, given an ρ∈ (−1,maxρ′′(x∗)], there are one or two values

of g(x∗) which makes g′(x∗) = 1. They are g(x∗) = (D−M)Φ(±
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D.

Proof: Given D, M, ς and ς∗, if there are g(x∗)s whose derivative g′(x∗) = 1, then

the corresponding ρ ∈ (−1,maxρ′′(x∗)] and g(x∗) should satisfy ρ = 1−A2

1+A2 , where A≡
ς∗
√

2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2). Therefore, A2 = 1−ρ

1+ρ
, i.e. 2πς∗2

(D−M)2 exp([Φ−1(D+g(x∗)
D−M )]2)=

1−ρ

1+ρ
. Therefore, exp([Φ−1(D+g(x∗)

D−M )]2) = 1−ρ

1+ρ

(D−M)2

2πς∗2
≥ 1, where the latter equality

is held if and only if ρ = maxρ′′(x∗) = (D−M)2−2πς∗2

(D−M)2+2πς∗2
. Therefore, [Φ−1(D+g(x∗)

D−M )]2 =

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
, and Φ−1(D+g(x∗)

D−M ) = ±
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
. Hence, we get two solutions:

g(x∗)1 =(D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D and g(x∗)2 =(D−M)Φ(

√
ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−

D. Note that g(x∗)1≤ g(x∗)2, where the equality is obtained as long as ρ=maxρ′′(x∗).

Q.E.D.
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Lemma D6: Given a ρ ∈ (−1,maxρ′(x∗)), if D > M, there are two values of g(x∗)

which makes g′(x∗) = ∞. They are g(x∗) = −(M−D)Φ(±
√

ln ρ2

1−ρ2
(M−D)2

2πς∗2
)−D. If

ρ = maxρ′(x∗) for D > M, at g(x∗) =−D+M
2 , g′(x∗) = ∞.

Proof: Given D, M, ς and ς∗, if there are g(x∗)s whose derivative g′(x∗) =∞, which

means 1
g′(x∗) = 0, then the corresponding ρ∈ (−1,maxρ′(x∗)) for D>M, and the g(x∗)

should simultaneously satisfy ρ = −A√
1+A2 , where A ≡ ς∗

√
2π

D−M exp(1
2 [Φ

−1(D+g(x∗)
D−M )]2).

Therefore, A2 = ρ2

1−ρ2 , i.e. 2πς∗2

(D−M)2 exp([Φ−1(D+g(x∗)
D−M )]2)= ρ2

1−ρ2 . Therefore, exp([Φ−1(D+g(x∗)
D−M )]2)=

ρ2

1−ρ2
(D−M)2

2πς∗2
≥ 1, where the latter equality is held if and only if ρ = maxρ′(x∗) =

−
√

2πς∗2

2πς∗2+(D−M)2 for D>M . Therefore, [Φ−1(D+g(x∗)
D−M )]2 = ln ρ2

1−ρ2
(D−M)2

2πς∗2
and Φ−1(D+g(x∗)

D−M )=

±
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
. Hence, we get two solutions: g(x∗)1 =(D−M)Φ(

√
ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−

D and g(x∗)2 = (D−M)Φ(−
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−D. Note that for D > M, g(x∗)1 ≥

g(x∗)2, where the equality is obtained as long as ρ = maxρ′(x∗). If the equality is held,

g(x∗) = g(x∗)1 = g(x∗)2 =−M+D
2 . Q.E.D.

Proof of Proposition 2: According to Figure D2 and results from Lemmas D5 and

D6, we get the following result for the shape of g(x∗) given D, M, ς and ς∗ for all

ρ ∈ (−1,1):

1) for ρ ∈ (−1,maxρ′(x∗)),

I. if g(x∗) ∈ [−D,(D−M)Φ(−
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−D), g′(x∗)> 0;

II. if g(x∗) ∈ ((D−M)Φ(−
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−D,(D−M)Φ(

√
ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−

D), g′(x∗)< 0;

III. if g(x∗) ∈ ((D−M)Φ(
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−D,−M], g′(x∗)> 0;

IV. if g(x∗) = (D−M)Φ(±
√

ln ρ2

1−ρ2
(D−M)2

2πς∗2
)−D, g′(x∗) = ∞;

2) for ρ ∈ [maxρ′(x∗),maxρ′′(x∗)],

I. if g(x∗) ∈ [−D,(D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D), 0 < g′(x∗)< 1;
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II. if g(x∗) ∈ ((D−M)Φ(−
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D,(D−M)Φ(

√
ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−

D), g′(x∗)> 1;

III. if g(x∗) ∈ ((D−M)Φ(
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D,−M], 0 < g′(x∗)< 1;

IV. if g(x∗) = (D−M)Φ(±
√

ln 1−ρ

1+ρ

(D−M)2

2πς∗2
)−D, g′(x∗) = 1.

3) for ρ ∈ (maxρ′′(x∗),1), 0 < g′(x∗)< 1 globally.

It is straightforward to find that the description of the shape of g(x∗) is still held

even if the payoff specification for both players is asymmetric, because in Lemmas

D1–D5 and Lemma D6, we only focus on studying a single g(x∗) function.

In the following, we prove that the shape of g(x∗) in 1), the non-monotonic g(x∗),

contradicts the definition of the cutoff strategy concept; therefore, for the symmetric

strategic complements game, using the cutoff strategy concept to solve the game is

valid if and only if ρ ∈ [ρ̃,1). In addition, the definition of the cutoff strategy implic-

itly dictates that, given the opponent’s cutoff strategy, a player’s best response towards

it should be unique, and it is held irrespective of the specification of payoffs.

As long as ρ /∈ Γ, in the proof of Proposition 1 (Appendix B), we have proven that

given an x∗ ∈ R, as ε increases from −∞ to +∞, EΠ(x∗,ε) first increases, then de-

creases, and finally increases. We just saw that in the strategic complements game, for

all ρ < ρ̃, as g(x∗) decreases from −M to −D, function g(x∗) first increases, then de-

creases, and finally increases with respect to the corresponding x∗. In fact, the changes

of EΠ(x∗,ε) monotonicity (with respect to ε) and g(x∗) (with respect to x∗) are syn-

chronized, because g′(x∗) = −
∂EΠ(x∗,ε)

∂x∗
∂EΠ(x∗,ε)

∂ε

|ε=g(x∗), and since ∂EΠ(x∗,ε)
∂x∗ < 0 for D > M, for

any point (x∗,g(x∗)) from the function g(x∗), if ∂EΠ(x∗,ε)
∂ε

|ε=g(x∗) ≷ 0, g′(x∗) ≷ 0 for

D > M, and vice versa.

For the symmetric strategic complements game, all solutions are symmetric, i.e.

they satisfy x∗ = g(x∗). However, we find that if ρ ∈ (−1, ρ̃), at any (symmetric) solu-

tion, g(x∗) must have a negative derivative, i.e. g′(x∗) < 0. It is because for solutions

that satisfy x∗ = g(x∗), its derivative g′(x∗) can be expressed as
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g′(x∗) =
1

ρ−
ς∗
√

2π(1−ρ2)exp( 1
2

1−ρ

1+ρ

g2(x∗)
ς2 )

M−D

Furthermore, because at this situation ρ2 > 2πς2

2πς2+(M−D)2 , we get ρ2 > 2πς2

2πς2+(M−D)2 >

2πς2(1−ρ2)
(M−D)2 , and because g′(x∗)|g(x∗)=0 =

1

ρ− ς

√
2π(1−ρ2)
M−D

, for D>M and ρ< ρ̃=−
√

2πς2

2πς2+(M−D)2 ,

g′(x∗)|g(x∗)=0 < 0. For D > M, if we regard g′(x∗) as a function with respect to

variable g2(x∗), ∂g′(x∗)
∂g2(x∗) < 0,. Then, for any symmetric solution (e,e), we must have

g′(x∗)|g(x∗)=e≤ g′(x∗)|g(x∗)=0 < 0. Therefore, for the symmetric strategic complements

game, as long as ρ < ρ̃, at any (symmetric) solution (e,e), the derivative g′(e)< 0, and

correspondingly, ∂EΠ(e,ε)
∂ε
|ε=e < 0. Thus, as long as ρ < ρ̃, given any symmetric solu-

tion (e,e), the equation EΠ(e,ε) = 0 must always have a solution ε = e, and at this

point, ∂EΠ(e,ε)
∂ε

< 0. Therefore, according to the proof of Proposition 1 in Appendix

B, without loss of generality, the function EΠ(e,ε) with respect to ε is the red curve

shown in Figure B2, and the ε = e is the middle intersection point around which ex-

pected the payoff function decreases. Therefore, if we still use a cutoff strategy to solve

the game for ρ < ρ̃, all (symmetric) solutions contradict the cutoff strategy definition

under which these solutions are derived. Therefore, we cannot use the cutoff strategy

concept to solve the symmetric strategic complements game for ρ < ρ̃ given D > M

and ς = ς∗. This supplements the existing proof of Proposition 1 in Appendix B, and

the proof of Proposition 1 is now complete.

It is necessary and sufficient that for D>M, as long as ρ≥maxρ′(x∗)=−
√

2πς∗2

2πς∗2+(D−M)2 ,

g(x∗) globally increases. Because ς∗ = ς, maxρ′(x∗) = ρ̃ = −
√

2πς2

2πς2+(D−M)2 ; there-

fore, if g(x∗) globally increases, ρ ≥ ρ̃ must hold, i.e. the cutoff strategy concept is

legitimately used to solve the game, and vice versa. Therefore, combining the previ-

ous result in the proof of Proposition 1 in Appendix B, we find that a necessary and

sufficient condition for using the cutoff strategy concept to solve the symmetric strate-

gic complements game, or equivalently ρ≥ ρ̃, is that the best response function g(x∗)

globally increases.

As long as the strategic complements game is symmetric, the conclusions 2) and

3) obtained at the beginning of the proof form the content of Proposition 2. However,

if the payoff specification is asymmetric, these results are still held for describing a
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single player’s g(x∗) function as these results are derived by studying a single g(x∗)

function. Hence, Proposition 2 is still held for asymmetric payoff settings. Q.E.D.





Appendix E

Appendix of Chapter 3

Proof of Theorem 1

Proof of Theorem 1: The main content of Section 3.4 is essentially about the proof of

Theorem 1. Hence, in the Appendix, we supplement Section 3.4 with proofs around ρ̄.

The proof below, together with Section 3.4, completes the proof of Theorem 1. In the

following, we assume that ρ̄ exists in the mathematical sense, i.e. M < 0 if D+M > 0

or D > 0 if D+M < 0, and therefore, y = Φ(1
ς

√
1−ρ

1+ρ
x) can be tangent with y = D+x

D−M

at ρ = ρ̄. If ρ̄ cannot exist in the mathematical sense, then the game always contains a

unique equilibrium, because it is impossible to make the tangent point arise, let alone

the multiple intersection-point situation, as ρ increases from ρ̃ to 1 (recall that as ρ

increases, y = Φ(1
ς

√
1−ρ

1+ρ
x) “stretches”). Therefore, if ρ̄ cannot exist in mathematical

sense, ∀ρ ∈ [ρ̃,1), the game always contains a unique equilibrium.

From Section 3.4, it is known that at the boundary case ρ = ρ̄, there must exist a

tangent point (e,e) between y = Φ(
1

ς∗−
ρ̄

ς√
1−ρ̄2

x) and y = D+x
D−M . Hence, ρ̄ and (e,e) must

simultaneously satisfy the following equation group comprised by equations (E.1) and

(E.2):

φ(

1
ς∗ −

ρ̄

ς√
1− ρ̄2

e)
1
ς∗ −

ρ̄

ς√
1− ρ̄2

=
1

D−M
(E.1)

Φ(

1
ς∗ −

ρ̄

ς√
1− ρ̄2

e) =
D+ e
D−M

(E.2)
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Reasonably, ρ̄≤ ρ̂ = (D−M)2−2πς∗2

(D−M)2+2πς∗2
. Because ς = ς∗, the previous inequality equiv-

alently indicates that D−M√
2π

ς−ρ̄ς∗

ςς∗
√

1−ρ2
≥ 1, where the equality is obtained if and only if

ρ̄ = ρ̂. Given that ρ̄≤ ρ̂, by solving equation E.1, we obtain

e2 =
ς2ς∗2(1− ρ̄2)

(ς− ρ̄ς∗)2 ln
(D−M)2

2π

(ς− ρ̄ς∗)2

ςς∗(1−ρ2)

From Figures 2–4, it can be concluded that for the sign of the tangent point (e,e),

it has the following one-to-one correspondence relationship with respect to the sign of

D+M: D+M R 0 ⇐⇒ e R 0. From this equivalence relationship, it is certain that

as long as D+M = 0, e = 0 and ρ̄ = ρ̂. Otherwise, if D+M 6= 0, then ρ̄ 6= ρ̂, and vice

versa. Therefore, if D+M > 0, by substituting the expression of e into E.2, we obtain

the following equation, where ρ̄ is the unknown variable:

Φ(

√
ln
(D−M)2(ς− ς∗ρ̄)2

2πς∗2ς2(1− ρ̄2)
) =

D+
√

ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2 ln (D−M)2(ς−ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)

D−M

Because ς = ς∗, the above equation can be equivalently written as

Φ(

√
ln
(D−M)2(1− ρ̄)

2πς2(1+ ρ̄)
) =

D+
√

ς2 1+ρ̄

1−ρ̄
ln (D−M)2(1−ρ̄)

2πς2(1+ρ̄)

D−M
(E.3)

If D+M < 0, by substituting the analytical expression of e into E.2, we get the

following equation, where ρ̄ is the unknown variable:

Φ(−

√
ln
(D−M)2(ς− ς∗ρ̄)2

2πς∗2ς2(1− ρ̄2)
) =

D−
√

ς∗2ς2(1−ρ̄2)
(ς−ρ̄ς∗)2 ln (D−M)2(ς−ς∗ρ̄)2

2πς∗2ς2(1−ρ̄2)

D−M

Because ς = ς∗, the above equation can be equivalently written as

Φ(−

√
ln
(D−M)2(1− ρ̄)

2πς2(1+ ρ̄)
) =

D−
√

ς2 1+ρ̄

1−ρ̄
ln (D−M)2(1−ρ̄)

2πς2(1+ρ̄)

D−M
(E.4)

and if D+M = 0, then ρ̄ = ρ̂.
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Next, we will prove that equations E.3 and E.4 have a unique solution of ρ̄ by con-

tradiction. Suppose there is a second solution ρ̄′ that is the solution of either equation

E.3 or equation E.4. Given this ρ̄′, we can obtain another solution from the equation

group of E.1 and E.2 (i.e. the tangent point between the functions y=Φ(1
ς

√
1−ρ

1+ρ
x) and

y= D+x
D−M ). It is impossible. From Figures 2–4, it can be seen that in any situation, given

D, M, ς (and ς∗), the functions y = Φ(1
ς

√
1−ρ

1+ρ
x) and y = D+x

D−M can be tangent with each

other at most only once, and hence, the tangent point is unique if it exists. Therefore, a

contradiction arises, and thus equations E.3 and E.4 always contain a unique solution

of ρ̄ if ρ̄ exists. Finally, according to Figures 2–4, it is known that, for the strategic

complements game, if there exist multiple equilibria (three or two) for ρ ∈ [ρ̃,1), the

boundary correlation coefficient ρ̄ must be greater than or equal to ρ̃, and vice versa.

Therefore, equations E.3 and E.4 are the correct implicit expressions about ρ̄ for the

symmetric strategic complements games for D+M 6= 0 and ρ̄ is the unique solution of

equations E.3 and E.4. Q.E.D.
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Appendix of Chapter 3

Derivation of the Best Response

Function at ρ→−1

Let us recall the definition equation of the cutoff best response g(x∗): EΠ(x∗,g(x∗)) =

Φ(x∗−ρg(x∗)
ς

√
1−ρ2

)(M−D) + D + g(x∗) = 0. If x∗ = −g(x∗), limρ→−1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = 1
2 .

Therefore, 1
2(M−D)+D+g(x∗) = 0, and hence g(x∗) =−D+M

2 . Thus, at x∗ = D+M
2 ,

g(x∗) =−D+M
2 .

If x∗ > g(x∗), limρ→−1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(+∞) = 1, g(x∗) = −M. In the equation

EΠ(x∗,g(x∗)) = 0, if and only if x∗ = D+M
2 , g(x∗) = −x∗; therefore, if x∗ > D+M

2 ,

g(x∗) =−M.

If x∗ < g(x∗), limρ→−1 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(−∞) = 0, g(x∗) = −D. In the equation

EΠ(x∗,g(x∗)) = 0, if and only if x∗ = D+M
2 , g(x∗) = −x∗; therefore, if x∗ < D+M

2 ,

g(x∗) =−D.
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Appendix of Chapter 3

Comparative Statics of Equilibria

(Proof of Proposition 3)

Proof of Proposition 3: In this symmetric strategic complements game, all equilibria

are symmetric. Particularly, recall that ς = ς∗ always holds. We denote one by (e,e).

Hence, g(e) = e. Therefore, they should satisfy

e = ρ
ς∗

ς
e+ ς

∗
√

1−ρ2Φ
−1(

D+ e
D−M

)

and it can be equivalently represented as

Φ(
ς−ρς∗

ςς∗
√

1−ρ2
e) =

D+ e
D−M

(G.1)

Remember that in the strategic-complements game, D > M. Therefore, −D < e <

−M.

For ρ > ρ̄, there exists a unique equilibrium. According to the slope relationship

expressed in Figures 2–4, such equilibrium should satisfy

251
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φ(

1
ς∗ −

ρ

ς∗√
1−ρ2

s)(
1
ς∗ −

ρ

ς∗√
1−ρ2

)<
1

D−M

As stated in the main context of this paper, this inequality also indicates that the

equilibrium is stable.

Similarly, for ρ < ρ̄, there are three equilibria. For the two outer ones, they satisfy

φ(

1
ς∗ −

ρ

ς∗√
1−ρ2

s)(
1
ς∗ −

ρ

ς∗√
1−ρ2

)<
1

D−M

They are stable. For the middle equilibrium, they satisfy

φ(

1
ς∗ −

ρ

ς∗√
1−ρ2

s)(
1
ς∗ −

ρ

ς∗√
1−ρ2

)>
1

D−M

It is unstable.

For ρ = ρ̄, for the equilibrium expressed as the intersection point in Figures 2 and

3, it satisfies

φ(

1
ς∗ −

ρ

ς∗√
1−ρ2

s)(
1
ς∗ −

ρ

ς∗√
1−ρ2

)<
1

D−M

and therefore, it is stable. For the equilibrium expressed as the tangent point in

Figures 2–4, it satisfies

φ(

1
ς∗ −

ρ

ς∗√
1−ρ2

s)(
1
ς∗ −

ρ

ς∗√
1−ρ2

) =
1

D−M

and its stability cannot be determined.

Then, differentiating both sides of equation (G.1) with respect to D, M, ρ, ς and ς∗

(the relation ς = ς∗ is always maintained), and rearranging the terms on both sides of

relevant equations, we obtain the following results on comparative statics of symmetric
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equilibrium:

1)
∂e
∂M

=
1

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

D+ e
(M−D)2

Because e∈ [−D,−M] and−D and−M are reached at the asymptote, without loss

of generality, ∂e
∂M < 0 for stable equilibria and ∂e

∂M > 0 for unstable equilibria.

2)

∂e
∂D

=
1

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

−M− e
(M−D)2

Because e∈ [−D,−M] and−D and−M are reached at the asymptote, without loss

of generality, ∂e
∂D < 0 for stable equilibria and ∂e

∂D > 0 for unstable equilibria.

3)

∂e
∂ρ

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
e)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

ς∗−ρς

ςς∗(1−ρ2)
3
2

e

Therefore, at the symmetric equilibrium, if eR 0, then ∂e
∂ρ
Q 0 for stable equilibria

and ∂e
∂ρ
R 0 for unstable equilibria.

4)

∂e
∂ς∗

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
e)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

e

ς∗2
√

1−ρ2

∂e
∂ς

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
e)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

−ρe

ς2
√

1−ρ2

Because ς = ς∗, we obtain

∂e
∂ς

+
∂e
∂ς∗

=
φ(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
e)

φ(
1−ρ

ς∗
ς

ς∗
√

1−ρ2
e)(

1−ρ
ς∗
ς

ς∗
√

1−ρ2
)− 1

D−M

1−ρ

ς∗2
√

1−ρ2
e
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Therefore, at the symmetric equilibrium, if eR 0, then ∂e
∂ς
+ ∂e

∂ς∗ Q 0 for stable equi-

libria and ∂e
∂ς
+ ∂e

∂ς∗ R 0 for unstable equilibria .

For the equilibrium whose stability cannot be determined, any comparative statics

result equals ∞. Q.E.D.
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Appendix of Chapter 3

Proof of Corollary 1

Proof of Corollary 1: Supposing D+M > 0, we define the following function:

F(ρ;ς
2)=Φ(

√
ln
(D−M)2(ς− ς∗ρ)2

2πς∗2ς2(1−ρ2)
)− 1

D−M

√
ς∗2ς2(1−ρ2)

(ς−ρς∗)2 ln
(D−M)2(ς− ς∗ρ)2

2πς∗2ς2(1−ρ2)
− D

D−M

= Φ(

√
ln
(D−M)2(1−ρ)

2πς2(1+ρ)
)− 1

D−M

√
ς2 1+ρ

1−ρ
ln
(D−M)2(1−ρ)

2πς2(1+ρ)
− D

D−M

The latter equality is obtained by the relation ς = ς∗. Differentiating F(ρ;ς2) with

respect to ρ and ς2, respectively, we obtain

∂F(ρ;ς2)

∂ς2 = A× (− 1
2ς2 )−B× 1+ρ

1−ρ

and

∂F(ρ;ς2)

∂ρ
= A× (− 1

1−ρ2 )−B× 2ς2

(1−ρ)2

where A= φ(
√

ln (D−M)2(1−ρ)
2πς2(1+ρ)

) 1√
ln (D−M)2(1−ρ)

2πς2(1+ρ)

> 0 and B= 1
2(D−M)

1√
ς2 1+ρ

1−ρ
ln (D−M)2(1−ρ)

2πς2(1+ρ)

[ln (D−M)2(1−ρ)
2πς2(1+ρ)

− 1]. Therefore, ∂F(ρ;ς2)
∂ς2 > 0 ⇐⇒ A× (− 1

2ς2 )− B× 1+ρ

1−ρ
> 0 and

∂F(ρ;ς2)
∂ρ

> 0 ⇐⇒ A×(− 1
1−ρ2 )−B× 2ς2

(1−ρ)2 > 0 ⇐⇒ A×(− 1
1+ρ

)−B× 2ς2

1−ρ
> 0 ⇐⇒
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A× (−1)−B×2ς2 1+ρ

1−ρ
> 0 ⇐⇒ A× (− 1

2ς2 )−B× 1+ρ

1−ρ
> 0 ⇐⇒ ∂F(ρ;ς2)

∂ς2 > 0. Thus,

mathematically the inequalities ∂F(ρ;ς2)
∂ρ

R 0 is equivalent to ∂F(ρ;ς2)
∂ς2 R 0, respectively.

We define ς̄2 such that F(ρ; ς̄2) = 0. According to the proof of Theorem 1, it

can be known that ς̄2 exists and it is unique if D > 0 > M (ς̄2 makes the curve y =

Φ(
1

ς∗−
ρ

ς√
1−ρ2

x)=Φ( 1−ρ

ς

√
1−ρ2

x) and y= D+x
D−M tangent with each other, and y=Φ( 1−ρ

ς

√
1−ρ2

x)

is monotonic with respect to ς2). Therefore, the reasons of the existence of ς̄2 and ρ̄

are the same. In the same way, if ρ̄ is the unique solution of equation E.3, then ς̄2 is

the unique solution of the following function, derived from F(ρ; ς̄2) = 0, and it can be

used as the (implicit) analytical expression of ς̄2 for the D+M > 0 situation:

Φ(

√
ln
(D−M)2(1−ρ)

2πς̄2(1+ρ)
) =

D+
√

ς̄2 1+ρ

1−ρ
ln (D−M)2(1−ρ)

2πς̄2(1+ρ)

D−M
(H.1)

According to the expression of H.1, it can be found that equation H.1 corresponds

to equation E.3. In addition, to ensure that F(ρ;ς2) is valid, the ς̄2 should satisfy

(D−M)2(1−ρ)

2πς̄2(1+ρ)
> 1 ⇐⇒ ς̄

2 <
(D−M)2(1−ρ)

2π(1+ρ)
= ς̂

2

for D+M 6= 0. If and only if D+M = 0, then

(D−M)2(1−ρ)

2πς̄2(1+ρ)
= 1 ⇐⇒ ς̄

2 = ς̂
2

By putting ς̃2 into H.1 to replace ς̄2, it is found that ς̄2 could be greater or smaller

than or equal to ς̃2 if ρ < 0 and hence ς̃2 exists. Because ∂F(ρ;ς2)
∂ρ

and equivalently
∂F(ρ;ς2)

∂ς2 could be greater or smaller than 0. Therefore, in the following, we discuss the

two situations separately. It is found that both situations lead to the same result.

1) For ρ > ρ̄, if ∂F(ρ;ς2)
∂ρ

> 0, then F(ρ;ς2) > F(ρ̄;ς2), i.e. F(ρ;ς2) > 0. Because
∂F(ρ;ς2)

∂ρ
> 0 is equivalent to ∂F(ρ;ς2)

∂ς2 > 0, F(ρ;ς2) > F(ρ; ς̄2). Hence, for such ς2,

ς2 > ς̄2 can be obtained.

2) For ρ > ρ̄, if ∂F(ρ;ς2)
∂ρ

< 0, then F(ρ;ς2) < F(ρ̄;ς2), i.e. F(ρ;ς2) < 0. Because
∂F(ρ;ς2)

∂ρ
< 0 is equivalent to ∂F(ρ;ς2)

∂ς2 < 0, F(ρ;ς2) < F(ρ; ς̄2). Hence, for such ς2,
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ς2 > ς̄2 can be obtained.

Therefore, for the strategic complements game with ς2 > max{ς̄2, ς̃2} if ρ < 0

or with ς2 > ς̄2 if ρ ≥ 0, the situation is equivalent to the game with ρ > max{ρ̄, ρ̃}.
Hence, the game contains a unique equilibrium for ς2 >max{ς̄2, ς̃2} if ρ< 0 or ς2 > ς̄2

if ρ≥ 0.

Moreover, from the proof, supposing ς̄2 > ς̃2, we can find that for games with

ς2 ∈ [ς̃2, ς̄2) for ρ < 0 or with ς2 ∈ (0, ς̃2) for ρ ≥ 0, this situation mathematically

corresponds to the game with ρ∈ [ρ̃, ρ̄) given ς2. Hence, the game contains three equi-

libria. In addition, at ς2 = ς̄2, supposing ς̄2 ≥ ς̃2 if ρ < 0, because D+M > 0, the game

contains two equilibria.

Applying the same approach, we can derive ς̄2’s (implicit) analytical expression for

D+M < 0. Still, the condition D > 0 > M ensures the existence of ς̄2 for D+M < 0,

which is the unique solution of the following equation:

Φ(−

√
ln
(D−M)2(1−ρ)

2πς̄2(1+ρ)
) =

D−
√

ς̄2 1+ρ

1−ρ
ln (D−M)2(1−ρ)

2πς̄2(1+ρ)

D−M

and for D+M = 0, ς̄2 = ς̂2. Still, in these two situations (D+M ≤ 0), for ς2 ∈
(max{ς̄2, ς̃2},+∞) if ρ < 0 or ς2 ∈ (ς̄2,+∞) if ρ≥ 0, there exists a unique equilibrium,

and for ς2 ∈ (ς̃2, ς̄2) if ς̄2 > ς̃2 and ρ < 0 or ς2 ∈ (0, ς̄2) if ρ≥ 0, there exist three equi-

libria. At ς2 = ς̄2, where ς̄2 ≥ ς̃2 if ρ < 0, there are two equilibria for D+M < 0. One

equilibrium is stable, and the other equilibrium’s stability cannot be determined. For

D+M = 0, there exists a unique equilibrium, which is stable. Q.E.D.
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Appendix of Chapter 3

Derivation of the Best Response

Function for ς and ς∗→ 0

Assume ς = ς∗. Suppose D > M and ρ > 0. As shown in Section 3.7, as ς and ς∗→ 0,

g(x∗) =
1
ρ

x∗

where x∗ ∈ [−ρD,−ρM]. Let us recall the definition equation of the cutoff best re-

sponse g(x∗): EΠ(x∗,g(x∗)) = Φ(x∗−ρg(x∗)
ς

√
1−ρ2

)(M−D)+D+g(x∗) = 0. If x∗ > ρg(x∗),

limς→0 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(+∞) = 1 and hence g(x∗) = −M. Therefore, if x∗ > −ρM,

g(x∗) =−M.

If x∗ < ρg(x∗), limς→0 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(−∞) = 0 and hence g(x∗) =−D. There-

fore, if x∗ <−ρD, g(x∗) =−D.

Therefore, if D > M and ρ > 0,

g(x∗) =


−D x∗ <−ρD

1
ρ

x∗ −ρD≤ x∗ ≤−ρM

−M x∗ >−ρM

Suppose M > D and ρ < 0. As shown in Section 3.7, as ς and ς∗→ 0,
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g(x∗) =
1
ρ

x∗

where x∗ ∈ [−ρD,−ρM]. According to the equation EΠ(x∗,g(x∗))=Φ(x∗−ρg(x∗)
ς

√
1−ρ2

)(M−

D) + D + g(x∗) = 0, if x∗ > ρg(x∗), limς→0 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(+∞) = 1 and hence

g(x∗) =−M. Hence, if x∗ >−ρM, g(x∗) =−M.

If x∗ < ρg(x∗), limς→0 Φ(x∗−ρg(x∗)
ς

√
1−ρ2

) = Φ(−∞) = 0 and hence g(x∗) =−D. There-

fore, if x∗ <−ρD, g(x∗) =−D.

Therefore, if M > D and ρ < 0,

g(x∗) =


−D x∗ <−ρD

1
ρ

x∗ −ρD≤ x∗ ≤−ρM

−M x∗ >−ρM.
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Appendix of Chapter 4

Notations

Here, we summarize all notations and expressions of formulas that have been used in

this chapter.

1.

w(x,λ) =
p

1− exp(x+d
λ
)
+

1− p
1− exp(x+u

λ
)

2.

S(λ,x) = pexp(
x+u

λ
)+(1− p)exp(

x+d
λ

)

3.

T (λ,x) = pexp(−x+u
λ

)+(1− p)exp(−x+d
λ

)

4.

e(x) = p(x+u)+(1− p)(x+d)

5.

r(x) =
1

1− x+d
x+u (

exp( x+u
λ

)−1
1−exp( x+d

λ
)
)2 exp(d−u

λ
)

6.

1{P}=

1 if P is true

0 otherwise

7. For a bivariate function y = f (x,v), its inverse function with respect to x is ex-

pressed by x = f−1(y;v).
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Definitions in the binary decision problem:

1.

fDP := w(0,λ)

2.

FDP(λ) := S(λ,0)

3.

GDP(λ) := T (λ,0)

4.

µDP := e(0)

Definitions in the rational inattention Bayesian game:

1.

f (q∗,λ) := w((1−q∗)M+q∗D,λ)

If there exists a λ̃ given q∗ such that f ′q∗(q
∗, λ̃) =−1, then λ̃ = f ′−1

q∗ (−1;q∗).

2.

F(λ,q∗) := S(λ,(1−q∗)M+q∗D)

If there exists a λ̄q∗ given q∗ such that F(λ̄q∗,q∗) = 1, then λ̄q∗ = F−1(1;q∗).

3.

G(λ,q∗) := T (λ,(1−q∗)M+q∗D)

If there exists a λ̄q∗ given q∗ such that G(λ̄q∗,q∗) = 1, then λ̄q∗ = G−1(1;q∗).

4.

µ(q∗) := e((1−q∗)M+q∗D)

5.

p̄(q∗) := r((1−q∗)M+q∗D)
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Appendix of Chapter 4

Proofs of Proposition 1 and

Proposition 2

Proof of Proposition 1: Proposition 1 is a particular case of Proposition 2 if M =

D = 0. Therefore, the proof of Proposition 1 is essentially the proof of Proposition 2.

Q.E.D.

Proof of Proposition 2: Define qε = Pr(a = 1|ε), where ε ∈ {u,d}. Player i’s

utility therefore can be written as

U(qε,qε∗)= pqu[(1−q∗)(M+u)+q∗(D+u)]+(1− p)qd[(1−q∗)(M+d)+q∗(D+d)]

(B.1)

Moreover, the information processing capacity can be written as

I(qε) = H(q)−Eε[H(qε)]

=−(1−q) ln(1−q)−q lnq+ p[(1−qu) ln(1−qu)+qu lnqu]+(1− p)[(1−qd) ln(1−qd)+qd lnqd]

(B.2)

where H(.) is the entropy measure of relevant probability distribution and q =

pqu +(1− p)qd . Therefore, player i’s preference can be expressed as

V (qε,qε∗) =U(qε,qε∗)−λI(qε) (B.3)
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Next, we solve player i’s utility maximization problem to obtain the best response

function. Given the opponent’s strategy q∗ ∈ [0,1], player i’s utility maximization

problem can be written as

G-1:

max
qu,qd

pqu[(1−q∗)(M+u)+q∗(D+u)]+(1− p)qd[(1−q∗)(M+d)+q∗(D+d)]

−λ{−(1−q) ln(1−q)−q lnq+ p[(1−qu) ln(1−qu)+qu lnqu]+(1− p)[(1−qd) ln(1−qd)+qd lnqd]}

s.t. 0≤ qu ≤ 1, 0≤ qd ≤ 1.

Solving G-1, we obtain the conditional choice probabilities qε, where ε ∈ {u,d},
which is given by

qε =
qexp( (1−q∗)M+q∗D+ε

λ
)

qexp( (1−q∗)M+q∗D+ε

λ
)+(1−q)

(B.4)

where ε ∈ {u,d}.

Substituting equation (B.4) back to i’s objective function in G-1, we obtain the fol-

lowing transformation of the game:

G-2:

max
q

λ{p ln[qexp(
(1−q∗)M+q∗D+u

λ
)+(1−q)]+(1− p) ln[qexp(

(1−q∗)M+q∗D+d
λ

)+(1−q)]}

s.t. 0≤ q≤ 1.

If the interior solution in G-2 exists, i.e. the function q with respect to q∗ obtained

from G-2 is between 0 and 1 (q ∈ [0,1]), then the solution, which is also player i’s best

response function when i acquires information to make decisions, is given by

q =
p

1− exp( (1−q∗)M+q∗D+d
λ

)
+

1− p

1− exp( (1−q∗)M+q∗D+u
λ

)
(B.5)
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Given Assumption 1, we find that the second-order condition of G-2: [exp( (1−q∗)M+q∗D+u
λ

)−
1][exp( (1−q∗)M+q∗D+d

λ
)−1]< 0 ∀q∗ ∈ [0,1]. Therefore, given the opponent’s strategy

q∗, equation (B.5) is the unique maximizer of player i’s utility.

Conditions ensuring the existence of (B.5) : Given q∗ ∈ [0,1], for (B.5), that

0≤ q≤ 1 can be expressed by

0≤ p

1− exp( (1−q∗)M+q∗D+d
λ

)
+

1− p

1− exp( (1−q∗)M+q∗D+u
λ

)
≤ 1

which can be equivalently expressed into the following inequality system:

pexp( (1−q∗)M+q∗D+u
λ

)+(1− p)exp( (1−q∗)M+q∗D+d
λ

)≥ 1

pexp(− (1−q∗)M+q∗D+u
λ

)+(1− p)exp(− (1−q∗)M+q∗D+d
λ

)≥ 1
(B.6)

The inequality group (B.6) is the necessary and sufficient condition to ensure that

i’s information-acquisition best response (B.5) exists given the opponent’s strategy. We

are interested in the value of λ that ensures (B.5) exists given the other primitives. In

the following, we will derive the set of λ that ensures (B.5) exists from (B.6).

Define F(λ) = pexp( (1−q∗)M+q∗D+u
λ

) + (1− p)exp( (1−q∗)M+q∗D+d
λ

) and G(λ) =

pexp(− (1−q∗)M+q∗D+u
λ

)+(1− p)exp(− (1−q∗)M+q∗D+d
λ

). It can be obtained that limλ→0+ F(λ)=

limλ→0+ G(λ) =+∞ and limλ→+∞ F(λ) = limλ→+∞ G(λ) = 1. The derivatives of F(λ)

and G(λ) are given by

F ′(λ) =−(1−q∗)M+q∗D+u
λ2 exp(

(1−q∗)M+q∗D+u
λ

)p

−(1−q∗)M+q∗D+d
λ2 exp(

(1−q∗)M+q∗D+d
λ

)(1− p)

G′(λ) =
(1−q∗)M+q∗D+u

λ2 exp(−(1−q∗)M+q∗D+u
λ

)p

+
(1−q∗)M+q∗D+d

λ2 exp(−(1−q∗)M+q∗D+d
λ

)(1− p)

In the following, we will analyse the range of λ that ensures the existence of the

interior solution (B.5) in three different cases: (1−q∗)M+q∗D+ pu+(1− p)d Q 0.
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Case 1 ((1− q∗)M + q∗D+ pu+(1− p)d < 0) : F ′(λ) = 0 indicates that [(1−
q∗)M+q∗D+u]exp( (1−q∗)M+q∗D+u

λ
)p+[(1−q∗)M+q∗D+d]exp( (1−q∗)M+q∗D+d

λ
)(1−

p) = 0. Define LHS(λ) = [(1−q∗)M+q∗D+u]exp( (1−q∗)M+q∗D+u
λ

)p+[(1−q∗)M+

q∗D+d]exp( (1−q∗)M+q∗D+d
λ

)(1− p). Calculating the derivative of LHS(λ), we obtain

LHS′(λ) =− [(1−q∗)M+q∗D+u]2

λ2 exp(
(1−q∗)M+q∗D+u

λ
)p

− [(1−q∗)M+q∗D+d]2

λ2 exp(
(1−q∗)M+q∗D+d

λ
)(1− p)< 0

Therefore, LHS(λ) strictly decreases with respect to λ.

Because limλ→0+ LHS(λ) = +∞ and limλ→+∞ LHS(λ) = (1−q∗)M+q∗D+ pu+

(1− p)d, equation F ′(λ) = 0 or LHS′(λ) = 0 has a solution if and only if (1−q∗)M+

q∗D+ pu+(1− p)d ≤ 0, and the solution must be unique.

Here, we only consider the strict inequality case. Thus, if

(1−q∗)M+q∗D+ pu+(1− p)d < 0 (B.7)

then there exists a unique λ̂ such that F ′(λ̂)= 0. In addition, for λ< λ̂, LHS(λ)> 0,

which equivalently indicates that F ′(λ)< 0; for λ> λ̂, LHS(λ)< 0, which equivalently

indicates that F ′(λ) > 0. Therefore, if (B.7) is held, F(λ) decreases with respect to λ

for λ < λ̂, and F(λ) increases with respect to λ for λ > λ̂.

According to (B.7) and the convexity property of function xexp(x), we get

−λG′(λ) = (−(1−q∗)M+q∗D+u
λ

)exp(−(1−q∗)M+q∗D+u
λ

)p

+(−(1−q∗)M+q∗D+d
λ

)exp(−(1−q∗)M+q∗D+d
λ

)(1− p)

≥ [−(1−q∗)M+q∗D+u
λ

p− (1−q∗)M+q∗D+d
λ

(1− p)]

exp[−(1−q∗)M+q∗D+u
λ

p− (1−q∗)M+q∗D+d
λ

(1− p)]> 0

Therefore, G′(λ)< 0 ∀λ ∈ (0,+∞). Thus, when (B.7) is held, there exists a unique

λ = λ̂ such that F ′(λ̂) = 0. For λ < λ̂, F(λ) decreases, and for λ > λ̂, F(λ) increases.

According to the above analysis, it is known that F(λ̂) < 1, and ∀λ ∈ (0,+∞), G(λ)
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decreases.

Therefore, in this case, there exists a unique λ̄ <+∞ such that F(λ̄) = 1. ∀λ < λ̄,

F(λ) > 1, and ∀λ ≤ λ̄, G(λ) > 1. Hence, in conclusion, given a q∗ ∈ [0,1], as long

as (B.7) is held, ∀λ ∈ (0, λ̄], (B.6) is held, and so the information-acquisition best re-

sponse (B.5) exists (see Figure B.1).

Figure B.1: Given a q∗ ∈ [0,1], if (1−q∗)M+q∗D+ pu+(1− p)d < 0, there exists a

λ̄ such that F(λ̄) = 1. In this case, ∀λ ∈ (0, λ̄], player i’s information-acquisition best

response exists.

In this case, for λ> λ̄, the interior solution does not exist. Instead, there is a bound-

ary solution. Given a q∗ ∈ [0,1], since (1−q∗)M+q∗D+ pu+(1− p)d < 0, q = 0 in

this situation.1 The behavioural implication is that for λ > λ̄, player i’s best response

towards q∗ is obtained by comparing the ex ante (i.e. before nature draws payoff shocks

for each player) expected payoff of being active and inactive. Note that at λ = λ̄, the

interior solution q= 0 as well, and in this situation, the amount of information acquired

at the optimum is zero. Therefore, the coincidence of the solution at λ = λ̄ with the

solution at λ > λ̄ supports that the prior-reliance choice behaviour is the limit of the

information-acquisition choice behaviour as λ increases, given a q∗ ∈ [0,1]. In the fol-

lowing, we will frequently use the term ’prior-reliance choice behaviour’ to represent

the choice behaviour by comparing the ex ante expected payoff of each action.

1If the constraint 0≤ q≤ 1 is ignored, the interior solution q obtained from solving G-2 is negative.
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Case 2 ((1− q∗)M + q∗D+ pu+(1− p)d > 0) : G′(λ) = 0 indicates that [(1−
q∗)M+q∗D+u]exp(− (1−q∗)M+q∗D+u

λ
)p+[(1−q∗)M+q∗D+d]exp(− (1−q∗)M+q∗D+d

λ
)(1−

p) = 0. We define LHS(λ) = [(1− q∗)M + q∗D+ u]exp(− (1−q∗)M+q∗D+u
λ

)p+ [(1−
q∗)M+q∗D+d]exp(− (1−q∗)M+q∗D+d

λ
)(1− p). Calculating the derivative of LHS(λ),

we obtain that

LHS′(λ) =
[(1−q∗)M+q∗D+u]2

λ2 exp(−(1−q∗)M+q∗D+u
λ

)p

+
[(1−q∗)M+q∗D+d]2

λ2 exp(−(1−q∗)M+q∗D+d
λ

)(1− p)> 0

Therefore, LHS(λ) strictly increases with respect to λ.

Because limλ→0+ LHS(λ) =−∞ and limλ→+∞ LHS(λ) = (1−q∗)M+q∗D+ pu+

(1− p)d, equation F ′(λ) = 0 or LHS′(λ) = 0 has a solution if and only if (1−q∗)M+

q∗D+ pu+(1− p)d ≥ 0, and the solution must be unique.

Here, we only consider the strict inequality case. Thus, if

(1−q∗)M+q∗D+ pu+(1− p)d > 0 (B.8)

then there exists a unique λ̂ such that G′(λ̂) = 0. In addition, for λ < λ̂, G′(λ)< 0

and for λ > λ̂, G′(λ)> 0. Therefore, if (B.8) is held, G(λ) decreases with respect to λ

for λ < λ̂, and G(λ) increases with respect to λ for λ > λ̂.

According to (B.8) and the convexity property of function xexp(x), we get

−λF ′(λ) =
(1−q∗)M+q∗D+u

λ
exp(

(1−q∗)M+q∗D+u
λ

)p

+
(1−q∗)M+q∗D+d

λ
exp(

(1−q∗)M+q∗D+d
λ

)(1− p)

≥ [
(1−q∗)M+q∗D+u

λ
p+

(1−q∗)M+q∗D+d
λ

(1− p)]

exp[
(1−q∗)M+q∗D+u

λ
p+

(1−q∗)M+q∗D+d
λ

(1− p)]> 0

Therefore, F ′(λ)< 0 ∀λ ∈ (0,+∞). Thus, when (B.8) is held, there exists a unique

λ = λ̂ such that G′(λ̂) = 0. For λ < λ̂, G(λ) decreases, and for λ > λ̂, G(λ) increases.

According to the above analysis, it is known that G(λ̂) < 1, and ∀λ ∈ (0,+∞), F(λ)
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decreases.

Therefore, in this case, there exists a unique λ̄ <+∞ such that G(λ̄) = 1. ∀λ < λ̄,

G(λ) > 1, and ∀λ ≤ λ̄, F(λ) > 1. Hence, in conclusion, given a q∗ ∈ [0,1], as long

as (B.8) is held, ∀λ ∈ (0, λ̄], (B.6) is held, and so the information-acquisition best re-

sponse (B.5) exists (see Figure B.2).

Figure B.2: Given a q∗ ∈ [0,1], if (1−q∗)M+q∗D+ pu+(1− p)d > 0, there exists a

λ̄ such that G(λ̄) = 1. In this case, ∀λ ∈ (0, λ̄], player i’s information-acquisition best

response exists.

In this case, for λ> λ̄, the interior solution does not exist. Instead, there is a bound-

ary solution. Given a q∗ ∈ [0,1], since (1− q∗)M + q∗D+ pu+(1− p)d > 0, q = 1

in this situation.2 Its behavioural implication and its consistence with the information-

acquisition choice behaviour are the same as in the analysis of Case 1.

Case 3 ((1−q∗)M+q∗D+ pu+(1− p)d = 0) : If (1−q∗)M+q∗D+ pu+(1−
p)d = 0, then limλ→0+ F ′(λ) =−∞ and limλ→+∞ F ′(λ) = 0; limλ→0+ G′(λ) =−∞ and

limλ→+∞ G′(λ) = 0. Furthermore, the condition that (1− q∗)M + q∗D+ pu+ (1−
p)d = 0 can be equivalently expressed by

(1−q∗)M+q∗D+d =− p
1− p

[(1−q∗)M+q∗D+u]

2If the constraint 0 ≤ q ≤ 1 is ignored, the interior solution q obtained from solving G-2 is greater
than 1.
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Therefore, in this case,

F(λ) = pexp(
(1−q∗)M+q∗D+u

λ
)+(1− p)exp(− p

1− p
[(1−q∗)M+q∗D+u])

G(λ) = pexp(−(1−q∗)M+q∗D+u
λ

)+(1− p)exp(
p

1− p
[(1−q∗)M+q∗D+u])

Calculating derivatives of F(λ) and G(λ), we obtain

F ′(λ)=
(1−q∗)M+q∗D+u

λ2 p{exp(− p
1− p

(1−q∗)M+q∗D+u
λ

)−exp(
(1−q∗)M+q∗D+u

λ
)}< 0

G′(λ)=
(1−q∗)M+q∗D+u

λ2 p{exp(−(1−q∗)M+q∗D+u
λ

)−exp(
p

1− p
(1−q∗)M+q∗D+u

λ
)}< 0

Therefore, according to above results, ∀λ < +∞, both F(λ) and G(λ) decrease

from +∞ to 1 as λ increases from 0 to +∞, and hence in this case, only at +∞ can

F(λ) and G(λ) be equal to 1. Therefore, in this case, all λ ∈ (0,+∞) are applicable to

ensure the existence of the interior solution (B.5) (see Figure B.3).

Figure B.3: Given a q∗ ∈ [0,1], if (1 − q∗)M + q∗D + pu + (1 − p)d = 0, it

is at λ = +∞, F(λ) = G(λ) = 1, and hence in this case, λ̄ = +∞. Therefore,

∀λ ∈ (0,+∞), the interior solution (B.5) always exists. According to Assumption 1,

(1−q∗)M+q∗D+u > 0. Therefore F(λ)> G(λ).
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Summary of proof results for all three cases: In conclusion, under Assumption

1, given i∗’s strategy q∗ ∈ [0,1], i’s information-acquisition best response (B.5) exists

if and only if:

1) if (1−q∗)M+q∗D+ pu+(1− p)d < 0, there exists a unique λ̄ <+∞ such that

F(λ̄) = 1, and ∀λ ∈ (0, λ̄], i’s information-acquisition best response, given by (B.5),

exists and is unique.

∀λ ∈ (λ̄,+∞), q = 0 given any q∗ ∈ [0,1].

2) if (1−q∗)M+q∗D+ pu+(1− p)d > 0, there exists a unique λ̄ <+∞ such that

G(λ̄) = 1, and ∀λ ∈ (0, λ̄], i’s information-acquisition best response, given by (B.5),

exists and is unique.

∀λ ∈ (λ̄,+∞), q = 1 given any q∗ ∈ [0,1].

3) if (1−q∗)M+q∗D+ pu+(1− p)d = 0, ∀λ∈ (0,+∞), i’s information-acquisition

best response (B.5) always exists and it is unique. In this case, λ̄ =+∞. Q.E.D.





Appendix C

Appendix of Chapter 4

Proofs of Proposition 4, 5, 7 and

Corollary 1

Proof of Proposition 4: The choice probabilities q and q∗ are contained in the unit

interval. The function (q(q∗),q∗(q)), which is represented by the equation system

q = 1×1{ f (q∗,λ)> 1}+ f (q∗,λ)×1{0≤ f (q∗,λ)≤ 1}+0×1{ f (q∗,λ)< 0}

q∗ = 1×1{ f (q,λ∗)> 1}+ f (q,λ∗)×1{0≤ f (q,λ∗)≤ 1}+0×1{ f (q,λ∗)< 0}

where f (q∗,λ) is equation (6), is continuous with respect to (q∗,q). Therefore,

according to Brouwer’s fixed point theorem, there exists a fixed point of the function

(q(q∗),q∗(q)). The fixed point corresponds to an equilibrium. �

Proof of Proposition 5: In this proof, we omit the “*” notation for denoting oppo-

nent’s strategy for simplicity. It will not affect the understanding of this proof because

the opponent’s strategy only plays the role as an independent variable.

Let us define equation f (q) as

f (q) =
p

1− exp(M+d−(M−D)q
λ

)
+

1− p

1− exp(M+u−(M−D)q
λ

)

273
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First, we derive its first-order and second-order derivatives with respect to q, as

follows:

f ′(q) =−
pexp(d

λ
)M−D

λ
exp(M−(M−D)q

λ
)

[1− exp(d
λ
)exp(M−(M−D)q

λ
)]2
−

(1− p)exp( u
λ
)M−D

λ
exp(M−(M−D)q

λ
)

[1− exp( u
λ
)exp(M−(M−D)q

λ
)]2

and

f ′′(q) = p
(M−D)2

λ2

exp(M−(M−D)q+d
λ

){1− [exp(M−(M−D)q+d
λ

)]2}

{1− exp(M−(M−D)q+d
λ

)}4

+(1− p)
(M−D)2

λ2

exp(M−(M−D)q+u
λ

){1− [exp(M−(M−D)q+u
λ

)]2}

{1− exp(M−(M−D)q+u
λ

)}4

Disregarding the constraint 0≤ q≤ 1, f (q) generically has two discontinuity points:

q = M+u
M−D and q = M+d

M−D . According to Assumption 1, M+d < 0 and D+u > 0; there-

fore, M+u
M−D > 1 and M+d

M−D < 0. Hence, under Assumption 1, f (q) is continuous with

respect to q ∈ [0,1] (see Figure C.1).

Figure C.1: A geometric representation of function f (q∗). Note that f (0) and f (1)

could be greater than or equal to 1, or less than 1, depending on specific parameter

specification.

Derivation of ∂ f ′(q)
∂λ

: Define φ(x) = 1+x
(1−x)3 , c(d) = M− (M−D)q+d and c(u) =

M− (M−D)q+u, and
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Φ(λ) =−
pexp(M−(M−D)q+d

λ
)

[1− exp(M−(M−D)q+d
λ

)]2
−

(1− p)exp(M−(M−D)q+u
λ

)

[1− exp(M−(M−D)q+u
λ

)]2
< 0 ∀λ ∈ (0,+∞)

It is found that limλ→0 Φ(λ) = 0. The derivative of Φ(λ) is

Φ
′(λ) = p

M− (M−D)q+d
λ2 φ(exp(

M− (M−D)q+d
λ

))exp(
M− (M−D)q+d

λ
)

+(1− p)
M− (M−D)q+u

λ2 φ(exp(
M− (M−D)q+u

λ
))exp(

M− (M−D)q+u
λ

)

Therefore,

∂ f ′(q)
∂λ

=
dΦ(λ)M−D

λ

dλ
=

M−D
λ

[Φ′(λ)− Φ(λ)

λ
]

=
M−D

λ
{p[

c(d)
λ2 exp(

c(d)
λ

)φ(exp(
c(d)

λ
))+

exp(c(d)
λ
)

λ[1− exp(c(d)
λ
)]2

]

+(1− p)[
c(u)
λ2 exp(

c(u)
λ

)φ(exp(
c(u)

λ
))+

exp(c(u)
λ
)

λ[1− exp(c(u)
λ
)]2

]}

The range of λ that ensures | f ′(q)|< 1: | f ′(q)|< 1 can be explicitly written as

{
pexp( (1−q)M+qD+d

λ
)

[1− exp( (1−q)M+qD+d
λ

]2
+

(1− p)exp( (1−q)M+qD+u
λ

)

[1− exp( (1−q)M+qD+u
λ

]2
}M−D

λ
< 1

which can be equivalently represented by

−Φ(λ)
M−D

λ
< 1

Because for x ∈ (0,1), φ(x)> 1, and for x ∈ (1,+∞), φ(x)< 0,

−Φ
′(λ)=−p

M− (M−D)q+d
λ2 φ(exp(

M− (M−D)q+d
λ

))exp(
M− (M−D)q+d

λ
)

−(1− p)
M− (M−D)q+u

λ2 φ(exp(
M− (M−D)q+u

λ
))exp(

M− (M−D)q+u
λ

)> 0

We have limλ→0−Φ′(λ) = 0, and from the previous analysis, it has been known

that −Φ(λ)> 0, −Φ′(λ)> 0, limλ→0−Φ(λ) = 0 and limλ→0−Φ′(λ) = 0. Therefore,

there should exist an ε > 0 such that given q∗ ∈ [0,1], ∀λ ∈ (0,ε), −Φ′(λ)< 1
M−D , and

hence −Φ(λ) < λ

M−D ∀λ ∈ (0,ε) and the ε should satisfy −Φ(ε) = ε

M−D (see Figure

C.2).
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Figure C.2: A geometric illustration of the proof. For λ ∈ (0,ε), −Φ(λ) < λ

M−D ,

and hence f ′(q) > −1. From the proof by far, at least it can be known that the λ that

makes f ′(q)>−1 must begin from 0.

Therefore, we obtain a preliminary result that given the opponent’s strategy q∗ ∈
[0,1], there exists an ε such that ∀λ ∈ (0,ε), | f ′(q)|< 1, or equivalently, f ′(q)>−1.

The shape of f ′(q) : Let us recall f ′(q) and f ′′(q):

f ′(q) =−
pexp(d

λ
)M−D

λ
exp(M−(M−D)q

λ
)

[1− exp(d
λ
)exp(M−(M−D)q

λ
)]2
−

(1− p)exp( u
λ
)M−D

λ
exp(M−(M−D)q

λ
)

[1− exp( u
λ
)exp(M−(M−D)q

λ
)]2

and

f ′′(q) = p
(M−D)2

λ2

exp(M−(M−D)q+d
λ

){1− [exp(M−(M−D)q+d
λ

)]2}

{1− exp(M−(M−D)q+d
λ

)}4

+(1− p)
(M−D)2

λ2

exp(M−(M−D)q+u
λ

){1− [exp(M−(M−D)q+u
λ

)]2}

{1− exp(M−(M−D)q+u
λ

)}4

According to above equations, f ′′(q)< 0 indicates that

p
1− p

exp(
d−u

λ
)< [1+

exp( u
λ
)− exp(d

λ
)

1
A + exp(d

λ
)

][
exp( u

λ
)− exp(d

λ
)

exp( u
λ
)− 1

A

−1]3

where A= exp(M−(M−D)q
λ

)> 0 and A∈ [exp(D
λ
),exp(M

λ
)] and hence 1

A ∈ [exp(−M
λ
),exp(−D

λ
)].
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Define

T (A) = [
exp( u

λ
)− exp(d

λ
)

exp(d
λ
)+ 1

A

+1][
exp( u

λ
)− exp(d

λ
)

exp( u
λ
)− 1

A

−1]3

We can obtain T (exp(M
λ
))> 0 and T (exp(D

λ
))> 0. The derivative of T (A) is given

by

T ′(A) =
exp( u

λ
)− exp(d

λ
)

A2 [
exp( u

λ
)− exp(d

λ
)

exp( u
λ
)− 1

A

−1]2{ 1
[exp(d

λ
)+ 1

A ]
2

1
A − exp(d

λ
)

exp( u
λ
)− 1

A

− 3
[exp( u

λ
)− 1

A ]
2

exp( u
λ
)+ 1

A

exp(d
λ
)+ 1

A

}

We denote

L(s) =
1

[exp(d
λ
)+ s]2

s− exp(d
λ
)

exp( u
λ
)− s

− 3
[exp( u

λ
)− s]2

exp( u
λ
)+ s

exp(d
λ
)+ s

where s ∈ [exp(−M
λ
),exp(−D

λ
)]. According to Assumption 1, it can be known that

exp( u
λ
)> exp(−D

λ
)> s and s > exp(−M

λ
)> exp(d

λ
) and

[exp(
u
λ
)− s][s− exp(

d
λ
)]< 3[exp(

u
λ
)+ s][exp(

d
λ
)+ s]

which equivalently indicates that ∀s ∈ [exp(−M
λ
),exp(−D

λ
)], L(s)< 0.

Note that L(s) < 0 equivalently indicates that T ′(A) < 0, and we find that the fol-

lowing:

Case 1: if T (exp(D
λ
))< p

1−p exp(d−u
λ
), i.e. p >

T (exp(D
λ
))

exp( d−u
λ

)+T (exp(D
λ
))

, then f ′′(q)> 0.

Therefore, in Case 1, f ′(q) increases with respect to q ∈ [0,1] (see Figure C.3).

Case 2: if T (exp(D
λ
))> p

1−p exp(d−u
λ
) and T (exp(M

λ
))< p

1−p exp(d−u
λ
), i.e.

T (exp(M
λ
))

exp( d−u
λ

)+T (exp(M
λ
))
<

p <
T (exp(D

λ
))

exp( d−u
λ

)+T (exp(D
λ
))

, then there exists an Ā ∈ [exp(D
λ
),exp(M

λ
)] such that

p
1− p

exp(
d−u

λ
) = [

exp( u
λ
)− exp(d

λ
)

exp(d
λ
)+ 1

Ā

+1][
exp( u

λ
)− exp(d

λ
)

exp( u
λ
)− 1

Ā

−1]3

Recall the definition of A≡ exp(M−(M−D)q
λ

). Therefore, Ā corresponds to a unique

value of q and we denote it by q̄. According to the above analysis, if A < Ā, i.e. q > q̄,
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Figure C.3: A geometric illustration of the shape of f ′(q) in Case 1. This figure

can only express the monotonicity of f ′(q), but that is enough for the remaining proofs.

then f ′′(q)< 0, and if A > Ā, i.e. q < q̄, then f ′′(q)> 0. Therefore, for q ∈ [0, q̄], f ′(q)

increases, and for q ∈ [q̄,1], f ′(q) decreases (see Figure C.4).

Figure C.4: A geometric illustration of the shape of f ′(q) in Case 2. Similar to

Figure C.3, this figure can only express the monotonicity of f ′(q), but that is enough

for the remaining proofs.

Case 3: if T (exp(M
λ
))> p

1−p exp(d−u
λ
), i.e. p <

T (exp(M
λ
))

exp( d−u
λ

)+T (exp(M
λ
))

, then f ′′(q)< 0

for all q ∈ [0,1]. Therefore, in Case 3, f ′(q) decreases with respect to q ∈ [0,1] (see
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Figure C.5).

Figure C.5: A geometric illustration of the shape of f ′(q) in Case 3. Similar to

Figures C.3 and C.4, this figure can only express the monotonicity of f ′(q), but that is

enough for the remaining proofs.

The sign of ∂ f ′(q)
∂λ

: Recall the formula of ∂ f ′(q)
∂λ

:

∂ f ′(q)
∂λ

=
dΦ(λ)M−D

λ

dλ
=

M−D
λ

[Φ′(λ)− Φ(λ)

λ
]

=
M−D

λ
{p[

c(d)
λ2 exp(

c(d)
λ

)φ(exp(
c(d)

λ
))+

exp(c(d)
λ
)

λ[1− exp(c(d)
λ
)]2

]

+(1− p)[
c(u)
λ2 exp(

c(u)
λ

φ(exp(
c(u)

λ
))+

exp(c(u)
λ
)

λ[1− exp(c(u)
λ
)]2

]}

Specifically, for Φ′(λ)− Φ(λ)
λ

the above equation can be rewritten it into the fol-

lowing expression:

Φ
′(λ)− Φ(λ)

λ
=

p
λ

exp(c(d)
λ
)

[1− exp(c(d)
λ
)]2

[
c(d)

λ

1+ exp(c(d)
λ
)

1− exp(c(d)
λ
)
+1]

+
1− p

λ

exp(c(u)
λ
)

[1− exp(c(u)
λ
)]2

[
c(u)

λ

1+ exp(c(u)
λ
)

1− exp(c(u)
λ
)
+1]
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We define (A) = c(d)
λ

1+exp( c(d)
λ

)

1−exp( c(d)
λ

)
+1 and (B) = c(u)

λ

1+exp( c(u)
λ

)

1−exp( c(u)
λ

)
+1. In the following,

we first prove that (A)< 0 ∀λ ∈ (0,+∞), and then prove that (B)< 0 ∀λ ∈ (0,+∞).

1) Define t = c(d)
λ

. For all λ ∈ (0,+∞), t ∈ (−∞,0). Define equation A(t) =

(t−1)exp(t)+1+ t. Hence, A′(t) = t exp(t)+1.

Define equation ξ(t) = t exp(t). Hence, ξ′(t) = (1+ t)exp(t). According to the

first-order derivative, it can be known that the minimum value of ξ(t) is taken at t =−1.

It is ξ(−1) =−exp(−1)>−1.

For all t ∈ (−∞,0), t exp(t)>−1 and hence A′(t)> 0 for all t ∈ (−∞,0). Therefore,

the maximum value of A(t) is taken at t = 0, which is A(0) = 0. Hence, A(c(d)
λ
) < 0

for all λ ∈ (0,+∞).

By re-arranging A(c(d)
λ
) < 0, we can obtain that (A) = c(d)

λ

1+exp( c(d)
λ

)

1−exp( c(d)
λ

)
+ 1 < 0 for

all λ ∈ (0,+∞).

2) Define t = c(u)
λ

. For all λ ∈ (0,+∞), t ∈ (0,+∞). Define equation B(t) =

(t−1)exp(t)+1+ t. Hence, B′(t) = t exp(t)+1.

For all t ∈ (0,+∞), B′(t) > 0; therefore, the minimum value of B(t) is taken at

t = 0, which is B(0) = 0. Hence, for all λ ∈ (0,+∞), B(c(u)
λ
)> 0.

By re-arranging B(c(u)
λ
)> 0, we can obtain that (B) = c(u)

λ

1+exp( c(u)
λ

)

1−exp( c(u)
λ

)
+1 < 0 for all

λ ∈ (0,+∞).

Therefore, in conclusion, ∀λ ∈ (0,+∞), (A) < 0 and (B) < 0, which implies that

Φ′(λ)− Φ(λ)
λ

< 0, and hence ∂ f (q∗)
∂λ

< 0.

From the previous proof of the range of λ that ensures | f ′(q)| < 1, we have ob-

tained a preliminary result that given the opponent’s strategy q∈ [0,1], where λ∈ (0,ε),
f ′(q) > −1. Moreover, from the proof of the shape of f ′(q), we found that f ′(q), in

terms of monotonicity, has three kinds of shapes. Based on the analysis by far, it can

be learnt that irrespective of the shape of f ′(q), given a q ∈ [0,1], when λ increases
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from 0, f ′(q) will decrease from a value that is greater than −1.

Therefore, according to the proof of shapes of f ′(q), combining the above analysis,

we obtain the necessary and sufficient condition to ensure f (q) is a contraction func-

tion. As a first step, we determine the necessary and sufficient condition to make f (q)

a contraction if as λ increases, f ′(q) always exhibits a single type of shape (remember

there are three possibilities). This condition is still expressed in three cases, consistent

with the three possible shapes of f ′(q). They are given in terms of the value of λ that

ensures f (q) is a contraction:

Case 1: 0 < λ≤ λ̃, where λ̃ is the unique solution of f ′(0) =−1;

Case 2: 0 < λ ≤ λ̃, where λ̃ is the minimum value between the λ̃ which is the

unique solution of f ′(0) =−1 and the λ̃ which is the unique solution of f ′(1) =−1;

Case 3: 0 < λ≤ λ̃, where λ̃ is the unique solution f ′(1) =−1.

As λ increases from 0, we could meet either Case 1, Case 2 or Case 3. The shape

of f ′(q) may not be confined within a single type for every value of λ. However, no

matter what situation it is, the necessary and sufficient condition to ensure f (q) as a

contraction is always that, given other primitives,

λ ∈ (0, λ̃]

where λ̃ is the minimum value between the λ̃ which is the unique solution of

f ′(0) =−1 (λ̃ = f ′−1
q∗ (−1;q∗ = 0) in this chapter) and the λ̃ which is the unique solu-

tion of f ′(1) =−1 (λ̃ = f ′−1
q∗ (−1;q∗ = 1) in the chapter) . In one word, it is the value

of f ′(q) at q = 0 or 1 that decides whether f (q) is a contraction.

If λ∈ (0, λ̃] and λ∗ ∈ (0, λ̃∗], where λ may not be equal to λ∗, then the game is dom-

inance solvable. In this situation, both players’ best response functions are contraction

and the best response could be q = f (q∗)× 1{0 ≤ f (q∗) ≤ 1}, i.e. the information-

acquisition best response, or q = 0 or 1 that is obtained by comparing the ex ante

expected payoff given the opponent’s strategy. Q.E.D.

Proof of Corollary 1: (1) For M + pu+(1− p)d > 0 and D+ pu+(1− p)d <
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0, if the game turns into a complete information game, then at q∗ = M+pu+(1−p)d
M−D ,

f ′q∗(q
∗,λ) = +∞.

If (1−q∗)M+q∗D+ pu+(1− p)d = 0, λ̄q∗ =+∞. Therefore, at q∗= M+pu+(1−p)d
M−D ,

λ̄q∗ = +∞. For the other value of q∗, the corresponding λ̄q∗ < +∞. Therefore, in this

situation, λc =+∞.

Hence, q∗ = M+pu+(1−p)d
M−D is the last point at which f ′q∗(q

∗,λ) reaches +∞.

(2) If (1−q∗)M+q∗D+ pu+(1− p)d > 0, λ̄q∗ is determined by G(λ̄q∗,q∗) = 1. It

is known that ∂G(λ,q∗)
∂q∗ > 0 and ∂G(λ,q∗)

∂λ
|
λ=λ̄q∗

< 0. Therefore, according to the implicit

function theorem, it is obtained that

∂λ̄q∗

∂q∗
=−

∂G(λ,q∗)
∂q∗

∂G(λ,q∗)
∂λ
|
λ=λ̄q∗

> 0

If for all q∗ ∈ [0,1], (1−q∗)M+q∗D+ pu+(1− p)d > 0, thus D+ pu+(1− p)d >

0. In this situation, λc is the solution of the equation G(λc,q∗ = 1) = 1, i.e.

pexp(−D+u
λc

)+(1− p)exp(−D+d
λc

) = 1

At λ = λc, G(λ,q∗ = 1) = 1 is invertible. Therefore, λc = G−1(1;q∗ = 1).

(3) If (1−q∗)M+q∗D+ pu+(1− p)d < 0, λ̄q∗ is determined by F(λ̄q∗,q∗) = 1. It

is known that ∂F(λ,q∗)
∂q∗ < 0 and ∂F(λ,q∗)

∂λ
|
λ=λ̄q∗

< 0. Therefore, according to the implicit

function theorem, it is obtained that

∂λ̄q∗

∂q∗
=−

∂F(λ,q∗)
∂q∗

∂F(λ,q∗)
∂λ
|
λ=λ̄q∗

< 0

If for all q∗ ∈ [0,1], (1−q∗)M+q∗D+ pu+(1− p)d < 0, then M+ pu+(1− p)d <

0. In this situation, λc is the solution of the equation F(λc,q∗ = 0) = 1, i.e.
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pexp(
M+u

λc
)+(1− p)exp(

M+d
λc

) = 1

At λ = λc, F(λ,q∗ = 0) = 1 is invertible. Therefore, λc = F−1(1;q∗ = 0). Q.E.D.

Proof of Proposition 7: In this proof, we still omit the notation “*” for simplicity.

It will not affect our understanding of the proof because this notation only appears at

the opponent’s strategy q∗, and q∗ only plays the role as an independent variable of a

function. Recalling the equation for f (q) defined in the proof of Proposition 5,

f (q) =
p

1− exp(M+d
λ
− M−D

λ
q)

+
1− p

1− exp(M+u
λ
− M−D

λ
q)

and hence the best response function, equation (8) in the paper, can be written as

q∗(q) = 0×1{ f (q)< 0}+ f (q)×1{0≤ f (q)≤ 1}+1×1{ f (q)> 1}

In the following, we denote

A(q∗(q)) =
p

1− exp(M+d
λ
− M−D

λ
q∗(q))

+
1− p

1− exp(M+u
λ
− M−D

λ
q∗(q))

and thus the 2nd iteration of best response functions is given by

g(q∗(q))= 0×1{A(q∗(q))< 0}+A(q∗(q))×1{0≤A(q∗(q))≤ 1}+1×1{A(q∗(q))> 1}

The equilibria of this game should be the solutions of the following equation:

q = g(q∗(q))

where q ∈ [0,1] and in particular, we denote the symmetric equilibrium by (s,s). It

should satisfy

s = q∗(s) = g(q∗(s))

where s ∈ [0,1].

The first- and second-order derivatives of g(q∗(q)) are given by
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dg(q∗(q))
dq

=
dA(q∗(q))

dq∗(q)
× d f (q)

dq
×1{0≤ f (q)≤ 1}×1{0≤ A(q∗(q))≤ 1} ≥ 0

and

d2g(q∗(q))
dq2 = 1{0≤ f (q)≤ 1}×1{0≤A(q∗(q))≤ 1}×{d2A(q∗(q))

dq∗(q)2 ×(
d f (q)

dq
)2+

dA(q∗(q))
dq∗(q)

× d2 f (q)
dq2 }

For symmetric equilibrium s ∈ (0,1), we have the following relationship:

d f (q)
dq
|q=s =

dq∗(q)
dq
|q=s =

dA(q∗(q))
dq∗(q)

|q=s =
dg(q∗(q))

dq∗(q)
|q=s

Rearranging the RHS of equation dg(q∗(q))
dq , we obtain

dg(q∗(q))
dq

=
dA(q∗(q))

dq∗(q)
×1{0≤ A(q∗(q))≤ 1}× d f (q)

dq
×1{0≤ f (q)≤ 1}

Define set h := {q|0 ≤ f (q) ≤ 1 and 0 ≤ A(q∗(q)) ≤ 1}. The function A(q∗(q))

where q ∈ h, or equivalently g(q∗(q)) where q ∈ h, represents the situation in which

both players play the game by acquiring information.

The shape of g(q∗(q)): There should be four types of best response functions

according to whether a player makes the best response at q∗ = 0 or 1 by acquiring

information. Then, based on these four types of best response functions, we can ob-

tain four possible shapes of g(q∗(q)) in the symmetric games. As we will present

below, these four possible types only reflect monotonicity and information acquisition

behaviour, but these properties are enough for the proof. Irrespective of the changes

in λ, a particular shape of q∗(q), and hence g(q∗(q)), will always belong to one of the

four possibilities.

Scenario 1: In this scenario, there are some q in q∗(q) such that f (q)< 0, and some

q in q∗(q) such that f (q)> 1. According to the decreasing property of f (q), f (q)< 0

and f (q)> 1 must happen at the two extreme parts of f (q). We denote the interval of

q that makes f (q) ∈ (0,1) by α = (a,b) ⊂ (0,1). This scenario is depicted by Figure

C.6-1.
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Figure C.6-1: The first possible type of q∗(q). The red curve represents the generic

f (q) function.

For q ∈ (a,b), the player makes the best response by acquiring information and

hence q∗(q) = f (q) ∈ (0,1). According to the construction of the 2nd iteration algo-

rithm, in order to obtain A(q∗(q)) where q ∈ h, rotate q∗(q) ∀q ∈ (a,b) around q = s

by 180◦ and stretch as well as compress relevant parts to make the rotated parts fit

the interval [q∗−1(b),q∗−1(a)]. According to the continuity and increasing property

of A(q∗(q)), it can be expected that for q ∈ (0,q∗−1(b)), A(q∗(q)) < 0 and for q ∈
(q∗−1(a),1), A(q∗(q)) > 1. Therefore, for g(q∗(q)), ∀q ∈ (0,q∗−1(b)), A(q∗(q)) = 0,

and ∀q ∈ (q∗−1(a),1), g(q∗(q)) = 1. Figure C.6-2 exhibits the shape of g(q∗(q)) geo-

metrically.

For q∈ (q∗−1(b),q∗−1(a)), g(q∗(q)) that is obtained by rotating q∗(q) for q∈ (a,b)
should inherit the following property: that d f ′(q)

dλ
decreases as λ increases, given any

q ∈ [0,1], and correspondingly, dA(q∗(q))
dq and (hence dg(q∗(q))

dq ) increases, and dA(q∗(q))
dq

(and hence dg(q∗(q))
dq ) begins going above 1 at either q = 0 or 1. The detailed derivation

and analysis of dg(q∗(q))
dq will be discussed later.

Scenario 2: In this scenario, there are some q of q∗(q) such that f (q) < 0, and

for the remaining q, q∗(q) = f (q) ∈ (0,1), i.e. the player’s best response is made by

acquiring information. According to the decreasing property of q∗(q), we denote this

interval supporting information acquisition by β = [0,a) ∈ [0,1]. This scenario is de-
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Figure C.6-2: The first possible type of g(q∗(q)). It reflects monotonicity and

information acquisition behaviour. ∀q ∈ (0,q∗−1(b)) and ∀q ∈ (q∗−1(a),1), there is

at least one player playing the game without acquiring information, indicated by the

horizontal line.

picted by Figure C.7-1.

Figure C.7-1: The second possible type of q∗(q). The red lines indicate two possible

parts of q∗(q) that are used to obtain the shape of g(q∗(q)). Which part will be used

depends on the relative magnitude of a and q∗(0).

In this scenario, for q ∈ [0,a), the player makes the best response by acquiring
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(a) q∗−1(a)> 0 (b) q∗−1(a)< 0

Figure C.7-2: The second possible type of g(q∗(q)). It has two possible shapes

which depends on the relative magnitude of q∗−1(a) and 0. These figures reflects

monotonicity of g(q∗(q)) and players’ information acquisition behaviour.

information. According to the construction of the 2nd iteration algorithm, in order to

obtain A(q∗(q)) where q∈ h, rotate q∗(q) ∀q∈ [0,min{a,q∗(0)}] around q= s by 180◦,

and compress as well as stretch relevant parts to fit the interval [max{q∗−1(a),0},a].
Therefore, we obtain the A(q∗(q)) where q∈ h. For q∈ [0,max{q∗−1(a),0}), g(q∗(q))=

0 if q∗−1(a) > 0 and g(q∗(q)) = q(q∗(0)) if q∗−1(a) < 0. For q ∈ [a,1], g(q∗(q)) =

q∗(0). This result implies that in Scenario 2, for q ∈ [0,max{q∗−1(a),0}) or q ∈ [a,1],

there is at least one player not acquiring information when playing the game. There-

fore, we obtain the shape of function g(q∗(q)) which reflects monotonicity and infor-

mation acquisition behaviour. It is given by Figure C.7-2.

As in Scenario 1, in Scenario 2, the property of dA(q∗(q))
dq (and hence dg(q∗(q))

dq ) in-

herits the property of d f (q)
dq (and hence dq∗(q)

dq ) since the former is in principle a rotated

image of the latter. In particular, by inheriting the property of d f ′(q)
dλ

< 0, correspond-

ingly, as λ increases, dA(q∗(q))
dq increases ∀q ∈ [0,1] and it is at q = 0 or 1 that dA(q∗(q))

dq

begins increasing above 1. The detailed derivation and analysis of dg(q∗(q))
dq will be

discussed later.

Scenario 3: In this scenario, there are some q of q∗(q) such that f (q)> 1, and for

the remaining q, q∗(q) = f (q) ∈ (0,1), i.e. the player’s best response is made by ac-

quiring information. We denote the interval about information-acquisition behaviour

by r = [b,1]⊂ [0,1]. This scenario is depicted by Figure C.8-1.
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Figure C.8-1: The third possible type of q∗(q). The red lines denote two possible

parts that are used to obtain the shape of g(q∗(q)). Which part will be used depends

on the relative magnitude of b and q∗(1).

For q ∈ [b,1], the player makes the best response by acquiring information. In or-

der to obtain A(q∗(q)) where q ∈ h, rotate q∗(q) for all q ∈ [max{b,q∗(1)},1] around

q = s by 180◦, and compress as well as stretch relevant parts to fit [b,min{1,q∗−1(b)}].
Therefore, we obtain the shape of A(q∗(q)) where q ∈ h, which is the part of g(q∗(q))

in which both players play the game by acquiring information. For all q ∈ [0,b],

g(q∗(q)) = q∗(1) and for all q ∈ (q∗−1(b),1), g(q∗(q)) = 1 if q∗(1) < b. This re-

sult implies that in Scenario 3, for q∈ [0,b] or q∈ [min{q∗−1(b),1},1], there is at least

one player not acquiring information when playing the game. Therefore, we obtain the

shape (geometric expression) of g(q∗(q)) which reflects monotonicity and information

acquisition behaviour. They are given by Figure C.8-2.

Scenario 4: In this scenario, for all q ∈ [0,1], q∗(q) = f (q) ∈ [0,1], i.e. in the

symmetric game, both players always play the game by acquiring information. This

scenario is depicted by Figure C.9-1.

In order to obtain A(q∗(q)) where q ∈ h, rotate the part of q∗(q) corresponding to

[q∗(1),q∗(0)] around q = s by 180◦, and compress as well as stretch relevant parts in

order to fit the interval [0,1]. Without loss of generality, we obtain the shape of func-

tion A(q∗(q)) where q ∈ h and hence g(q∗(q)). It is given by Figure C.9-2.



289

(a) q∗−1(b)< 1 (b) q∗−1(b)> 1

Figure C.8-2: The third possible type of g(q∗(q)). It has two possible shapes which

depends on the relative magnitude between q∗−1(b) and 1. These figures reflect

monotonicity of g(q∗(q)) and players’ information acquisition behaviour

Figure C.9-1: The fourth possible type of q∗(q)

The property of dA(q∗(q))
dq (and hence dg(q∗(q))

dq ) inherits the property of d f (q)
dq (and

hence dq∗(q)
dq ) since the former is in principle a rotated image of the latter. In partic-

ular, it inherits the following property: that as λ increases, dA(q∗(q))
dq increases for all

q ∈ [0,1] and it is at q = 0 or q = 1 that dA(q∗(q))
dq first begins increasing above 1. The

detailed derivation and analysis of dg(q∗(q))
dq will be discussed later.

dg(q∗(q))
dq and equilibria of the game: As we have derived, for λ ∈ (0, λ̃), the best

response functions should be contraction. Therefore, the 2nd iteration of the best re-
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Figure C.9-2: The fourth possible type of g(q∗(q)). As in previous cases, this

figure can only reflect monotonicity of g(q∗(q)) and players’ information acquisition

behaviour.

sponse functions should be contraction as well (recall the equation of dg(q∗(q))
dq ). The

contraction 2nd iteration can be categorized into the following three situations in terms

of whether players acquire information at the symmetric equilibrium when the best

response functions are contraction functions (see Figure C.10).1

However, (2) and (3) are impossible to happen. When λ = 0, the equilibrium is

(p, p), while p is the prior probability and it is assumed that p ∈ (0,1). For λ ∈ (0,ε),

where ε is a small enough positive number, the information cost is small; hence, the

new solution (p′, p′) should be close to (p, p) and p′ ∈ (0,1). Hence, for the 2nd iter-

ation algorithm we start with, it must be in the form of sub-figure (1) of Figure C.10,

where the intersection point between g(q∗(q)) and 45◦ line is between 0 and 1. More-

over, the intersection point is realized by the A(q∗(q)) function, not horizontal lines,

which implies that both players acquire information at the symmetric equilibrium.

Sub-figure (1) in Figure C.10 represents a situation where for all q ∈ [0,1], both

players play the game by acquiring information. According to previous analysis, in re-

1These figures can generally represent monotonity and information acquisition behaviour of players
in such games, but as in most previous figures, by far these figures do not necessarily reflect other more
precise properties such as curvature of q∗(q) and g(q∗(q)). However, we do not need these properties
yet. The monotonicity and information-acquisition behaviour shown by these figures have been enough
for us in the current proof.
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(1) (2) (3)
Figure C.10: The three possible cases of the 2nd iteration algorithm g(q∗(q)) for

λ ∈ (0, λ̃) such that the best response function q∗(q) and hence g(q∗(q)) are

contraction. In (1), in the symmetric equilibrium, both players acquire information.

In (2), both players do not acquire information when making decisions and the

equilibrium is (1, 1). In (3), both players do not acquire information when making

decisions as well and the equilibrium is (0, 0). In (1), (2) and (3), the figures reflect

the monotonicity, information-acquisition behaviour of players (at the symmetric

equilibrium), and the contraction property of g(q∗(q)).

ality, we have additional two possibilities describing the shape of contraction g(q∗(q)).

First, for qs close to 0, there is at least one player playing the game without acquiring

information; this part is represented by a horizontal line in sub-figure (1)-1 of Figure

C.11. Second, for qs close to 1, there is at least one player playing the game without

acquiring information; this part is represented by a horizontal line in sub-figure (1)-2

of Figure C.11.

Now, we consider the situation that multiple equilibria begin to arise. As we may

start from situation (1) (in Figure C.10), (1)-1 or (1)-2 (in Figure C.11), and each sit-

uation has three possibilities in terms of the three possible cases of f ′(q), we have

to consider 9 possible first-time occurrences of multiple equilibria as λ increases to a

level λ1.2 These 9 possible situations are described in Figure C.12.

It can be easily proven that in this game, when multiple equilibria arise, it is impos-

sible that at the symmetric equilibrium, both players do not acquire information (a fact

indicated by no horizontal line intersection at the symmetric equilibrium). Interested

readers can prove this result by themselves.

2λ1 is defined to describe the situation of the first-time occurrences of multiple equilibria.



292 Appendix C. Appendix of Chapter 4 Proofs of Proposition 4, 5, 7 and Corollary 1

(1)-1 (1)-2
Figure C.11: Two possible shapes of contraction g(q∗(q)). (1)-1 is the case that for

qs close to 0, at least one player does not acquire information. (1)-2 is the case that

for qs close to 1, at least one player does not acquire information.

In all nine possibilities, the shapes that match with Cases 1 and 3 of f ′(q) are im-

possible to happen, since there are only two intersection points. The game exhibits

strategic substitutes and the best response function is decreasing and continuous with

respect to the opponent’s strategies, and therefore, if multiple equilibria can arise, the

number of equilibria must be odd. Therefore, in all nine possible situations, only

cases corresponding to Case 2 can happen when multiple equilibria first appear as λ

increases. Therefore, we only get three cases, corresponding to (1), (1)-1 and (1)-2,

to describe the first-time appearance of multiple equilibria and the corresponding λ is

the λ1 as indicated from above. In a particular situation, irrespective of whether the

multiplicity evolves from (1), (1)-1 or (1)-2, there are always three equilibria, and in

the two asymmetric equilibria which are the outer intersection points between g(q∗(q))

and the 45◦ line, there is always one player not acquiring information.

Another result we can derive from the above analysis is that for λ∈ (λ1−ε,λ1+ε),

where ε is an arbitrarily small positive number, the shape of q∗(q) is always in line with

Case 2. It is because of the continuity of q∗(q) and hence g(q∗(q)) with respect to λ

for all q ∈ [0,1]. In Case 2, the g(q∗(q)) where q ∈ h first exhibits concavity and then

exhibits convexity as q increases. We call this property the concavity–convexity prop-

erty of g(q∗(q)).

Therefore, as λ increase away from λ1, for λ ∈ (λ1,λ1 + ε), at each q ∈ [0,1],
dg(q∗(q))

dq increases, and therefore, we get five equilibria in either situation evolving
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Case 2 Case 1 Case 3
The first multiple equilibria situation happens at λ1 and it evolves from (1)

Case 2 Case 1 Case 3
The first multiple equilibria situation happens at λ1 and it evolves from (1)-1

Case 2 Case 1 Case 3
The first multiple equilibria situation happens at λ1 and it evolves from (1)-2

Figure C.12: Nine possible situations describing the first multiple equilibria

situations if multiple equilibria can happen in this symmetric game.
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(1) (1)-1 (1)-2
Figure C.13: The three possible cases of 5 equilibria corresponds to (1), (1)-1 and

(1)-2. Based on the previous analysis, it is known that in this situation, the derivative

of best response function q∗(q) must follow the shape of Case 2.

from (1), (1)-1 or (1)-2.3 Figure C.13 shows a geometric description of these three

5-equilibria situations.

As λ increases, for all q∈ [0,1], dg(q∗(q))
dq continues increasing, and geometrically, it

indicates that the part of g(q∗(q)) in which both players acquire information will grow

steeper. This part is essentially A(q∗(q)) where q∈ h, not the horizontal lines. Besides,

it can be obtained that as λ increases away from λ1, before the symmetric equilibrium

becomes unstable, q∗(q)’s shape is always in line with Case 2, and Cases 1 and 3 are

impossible to happen. From the red curves in the following figures (see Figure C.14),

it can be found that if Case 1 or Case 3 happens, there are three equilibria and the sym-

metric equilibrium becomes unstable. More importantly, in one asymmetric equilib-

rium, both players acquire information (the intersection point of the red curve with the

45◦ line), and in the other asymmetric equilibrium, at least one player does not acquire

information. This contradicts with the symmetry property. Therefore, as λ increases

away from λ1, 5 equilibria will always be maintained and the symmetric equilibrium

is stable. Until the symmetric equilibrium becomes unstable as λ increases, we can

consider whether the shape of q∗(q) may deviate from Case 2 to Case 1 or Case 3.

As λ increases, the next boundary situation that we need to consider is that at λ =

λ2, the stability of the symmetric equilibrium is not determined, i.e. dq∗(q)
dq |q=s = −1;

hence, dg(q∗(q))
dq |q=s = 1.4 According to the continuity of dq∗(q)

dq with respect to λ, it can

3In the following, for simplicity, we will indicate any situation originating from situation (1) (in
Figure C.10), (1)-1 or (1)-2 (in Figure C.11) by (1), (1)-1 or (1)-2. It does not affect the understanding
of the proof.

4λ2 is defined to describe this boundary situation.
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(1) (1)-1 (1)-2
Figure C.14: The three possible cases of g(q∗(q)) before the symmetric equilibrium

becomes unstable. The shapes of g(q∗(q)) function are consistent with Case 1 and

Case 3. Each curve is combined with a red part and a black part.

be known that at λ2, the shape of Case 2 is still maintained.

In addition, by proof of contradiction, it can be shown that at λ = λ2, dg(q∗(q))
dq

reaches its lowest value at q = s, which is dg(q∗(q))
dq = 1. For other values of q except

s, dg(q∗(q))
dq > 1 based on its shape indicated by Case 2. Here is the proof. Suppose at

q = s, the dg(q∗(q))
dq has not reached its lowest value, which without loss of generality

can be depicted by Figure C.15.

Around s, for q ∈ (s−ε,s), dg(q∗(q))
dq > 1 and for q ∈ (s,s+ε), dg(q∗(q))

dq < 1. There-

fore, (s, g(q∗(s))) turns to be a tangent point of g(q∗(q)) with 45◦ line (see Figure

C.16).

According to the above analysis and Figure C.16, apparently this situation con-

tradicts with the symmetry property of the strategic substitutes game. Therefore, at

λ = λ2, the value of dq∗(q)
dq reaches its lowest value, which equals 1. Therefore, at

λ = λ2, for the value of q ∈ (s− ε,s+ ε), dq∗(q)
dq should exhibit in the following shape

(see Figure C.17).

Hence, at λ = λ2, the situations following (1), (1)-1 and (1)-2 turn into the fol-

lowing situations, respectively (see Figure C.18). We can see that at λ = λ2, g(q∗(q))

where q∈ h still exhibits the concavity–convexity property. Together with the situation

of λ = λ1, it can be concluded that at any boundary where the number of equilibria will

change, g(q∗(q)) where q ∈ h always exhibit the concavity–convexity property.
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Figure C.15: The red curve corresponds to the generic A(q∗(q)) function. As it is

known, the A(q∗(q)) function is part of the g(q∗(q)) function, to which the piecewise

function indicated in blue corresponds. The overlapped parts between the red curve

and blue curve correspond to the function A(q∗(q)) where q ∈ h and the symmetric

equilibrium s belongs to the set h.

Figure C.16: Following Figure C.15, in this situation, (s, g(q∗(s))) turns to be a

tangent point of g(q∗(q)) with 45◦ line, and according to value of dg(q∗(q))
dq around s,

g(q∗(q)) must be located below the 45◦ line. In this symmetric strategic substitutes

game, the number of equilibria must be odd, thus a contradiction arises.

Therefore, at λ = λ2, at symmetric equilibrium (s, s), dq∗(q)
dq = −1, and there are
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Figure C.17: The correct shape of dq∗(q)
dq at λ = λ2

(1) (1)-1 (1)-2
Figure C.18: At λ = λ2, dq∗(q)

dq |q=s = 1, and the shape of g(q∗(q)) has three

possibilities that evolve from (1), (1)-1 and (1)-2, respectively.

three equilibria.

As λ increases away from λ2, except the part that at least one player plays the game

without acquiring information, which exhibits a horizontal line and happens at the two

sides of g(q∗(q)), the derivative of g(q∗(q)) in which both players play the game by

acquiring information is greater than 1 since
d dA(q∗(q))

dq
dλ

> 0 ∀q ∈ [0,1]. According to

continuity of g(q∗(q)) with respect to λ, at the new symmetric equilibrium, both play-

ers still play the game by acquiring information. By increasing λ away from λ2, the

shapes of g(q∗(q)) evolving from (1), (1)-1 and (1)-2 not only match with Case 2, but

the shapes of g(q∗(q)) may match with Case 1 or Case 3 as well. Therefore, for λ> λ2,

Cases 1 and 3 again become the candidate shapes of g(q∗(q)), and again, we have nine

possible shapes of g(q∗(q)), which are given by Figure C.19.
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It is found that, irrespective of the shape of g(q∗(q)), there are always three equi-

libria, and in either (1), (1)-1, or (1)-2, irrespective of the case (Case 1, Case 2 or

Case 3), the concerned properties of equilibria (i.e. the stability of the symmetic equi-

librium, players’ behaviour at the symmetic equilibrium and the types of asymmetric

equilibria) are the same. In all nine possible situations, the symmetric equilibrium is

unstable. In the situation of (1), according to symmetry of players’ behaviour in a pair

of corresponding asymmetric equilibria, the asymmetric equilibria in this situation is

(1, 0) and (0, 1). In the situation of (1)-1, again according to symmetry, the asymmet-

ric equilibria are (1,q) and (q,1), where q ∈ (0,1). And in the situation of (1)-2, the

asymmetric equilibria are (0,q) and (q,0), where q ∈ (0,1). These (outer) asymmetric

equilibria have already been there since asymmetric equilibria arise from λ = λ1.

Before we proceed, let us study some profound issues underlying (1), (1)-1 and (1)-

2. We begin from (1)-1. According to the symmetry property of players’ behaviour in

asymmetric equilibria, as long as asymmetric equilibria arise, as it has been shown, the

(1,q) and (q,1) asymmetric equilibria where q ∈ (0,1) always exist. This means that

given an opponent’s strategy q∗ ∈ (0,1), player i always chooses action 1 by comparing

ex ante expected payoff of each action. Therefore, player i in (1)-1 always has

(1−q∗)M+q∗D+ pu+(1− p)d > 0 ∀q∗ ∈ (0,1)

and equivalently it implies that the payoff specification always satisfies

D+ pu+(1− p)d > 0

For (1)-2, as long as asymmetric equilibria arise, the (0,q) and (q,0) equilibria

where q ∈ (0,1) always exist, which means that given opponent’s strategy q∗ ∈ (0,1),

player i always chooses action 0 when not acquiring information. Hence, in this situa-

tion, for player i, we get

(1−q∗)M+q∗D+ pu+(1− p)d < 0 ∀q∗ ∈ (0,1)

and equivalently it implies that the payoff specification always satisfies

M+ pu+(1− p)d < 0
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Case 2 Case 1 Case 3
The three-equilibria situation happens for λ > λ2 and it evolves from (1). The

symmetric equilibrium is unstable.

Case 2 Case 1 Case 3
The three-equilibria situation happens for λ > λ2 and it evolves from (1)-1. The

symmetric equilibrium is unstable.

Case 2 Case 1 Case 3
The three-equilibria situation happens for λ > λ2 and it evolves from (1)-2. The

symmetric equilibrium is unstable.

Figure C.19: Nine possible shapes of g(q∗(q)) for λ > λ2. There are three equilibria

in all nine situations, and the symmetric equilibrium is unstable.
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For (1), as long as asymmetric equilibria arise, the (1,0) and (0,1) asymmetric

equilibria always exist. It implies that when the player makes the decision without ac-

quiring information, (1−q∗)M+q∗D+ pu+(1− p)d is not necessarily always greater

than or smaller than 0 for all q∗ ∈ (0,1). Hence, given assumption 1, situation (1) im-

plies that the payoff specification satisfies

M+ pu+(1− p)d > 0

and

D+ pu+(1− p)d < 0

Now, we go back to the three-equilibria situation that we have just analysed. For

(1), as λ increases (λ> λ2), the g(q∗(q)) where q∈ h will grow steeper since its deriva-

tive with respect to q increases, and at the same time, the three equilibria always exist.

Therefore, the limit of this process is reached until dg(q∗(q))
dq = dA(q∗(q))×1{0≤A(q∗(q))≤1}

dq =

∞ at q = s. This limit indicates that if the opponent deviates from the symmetric

equilibrium s, a player will either choose action 0 or action 1. This is the reaction

style for a player in a complete information game. Under the payoff specification

M + pu+(1− p)d > 0 and D+ pu+(1− p)d < 0, the symmetric equilibrium at the

limit is just the mixed strategy in the corresponding complete information game which

is shown in Table 3, Section 4.4. Therefore, it can be said that when λ is so large that

at symmetric equilibrium q = s, dg(q∗(q))
dq = +∞, no player will try to make the best

response by acquiring information given any strategy of the opponent q∗ ∈ [0,1] and

the game turns into the complete information game described in Table 3, Section 4.4.

Suppose at λ = λc, dg(q∗(q))
dq equals +∞ at q = s. Then, for λ > λc, the shape of the best

response function is fixed because dg(q∗(q))
dq ≥ 0 always holds; hence, from λ≥ λc, the

game is always the complete information game (see Figure C.20).

For (1)-1, as λ increases, the g(q∗(q)) where q ∈ h will grow steeper since in this

part
d dg(q∗(q))

dq
dλ

> 0, and at the same time, the three equilibria always exist. It has been

known that when λ is greater than λc so that players make the best response without

acquiring information given any strategy of the opponent, the game becomes the com-

plete information game described in Table 3 and the equilibrium is (1,1). From the

three-equilibria situation to the complete information game limit, dg(q∗(q))
dq continues to

increase and the three-equilibira situation will always be maintained, unless the ver-
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Figure C.20: The 2nd iteration algorithm g(q∗(q)) for λ ≥ λc given that

M + pu + (1− p)d > 0 and D + pu + (1− p)d < 0, i.e. situation (1). This algo-

rithm calculates the equilibria of the complete information game described in Table 3.

tical distance between the two horizontal lines at the two sides of g(q∗(q)) decreases

at the same time, the complete information limit that its equilibrium is unique and it

is (1, 1) would never be reached. Therefore, as λ increases from λ2, dg(q∗(q))
dq where

q ∈ h continues to increase, and at the same time, the vertical distance between the

horizontal lines at the two sides of g(q∗(q)) decreases, until λ = λc, g(q∗(q)) becomes

a horizontal line, and the game becomes a complete information game. Because in

(1)-1, D+ pu+(1− p)d > 0, for λ ≥ λc, g(q∗(q)) = 1, and the unique intersection

point of g(q∗(q)) and the 45◦ line is just the equilibrium of the complete information

game (see Figure C.21).

For (1)-2, the analysis is the same as in (1)-1 and the results parallel with (1)-1.

(1)-2 is characterized by M + pu+ (1− p)d < 0. As λ increases until λc in which

both players play the game without acquiring information given any strategy of the

opponent and hence playing a complete information game, then g(q∗(q)) = 0 and so

the symmetric equilibrium becomes (0,0). For λ > λc, still because
d dg(q∗(q))

dq
dλ

> 0, it is

known that g(q∗(q)) always equals 0 (see Figure C.22).

Therefore, in conclusion, as λ increases from 0, multiple equilibria will arise, and

then we get the following results:
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Figure C.21: The 2nd iteration algorithm g(q∗(q)) for λ ≥ λc given that

D + pu + (1− p)d > 0, i.e. situation (1)-1. It is g(q∗(q)) = 1. This algorithm

calculates the equilibria of the complete information game described in Table 3.

Figure C.22: The 2nd iteration algorithm g(q∗(q)) for λ ≥ λc given that

M + pu + (1− p)d < 0, i.e. situation (1)-2. It is g(q∗(q)) = 0. This algorithm

calculates the equilibria of the complete information game given in Table 3.

1) As λ increases from 0, if M+ pu+(1− p)d > 0 and D+ pu+(1− p)d < 0, for

λ < λc, it is always possible that a player makes the best response by acquiring infor-

mation for some strategies of the opponent. Then, the number of equilibria will change

in the following sequence: 1→ 3→ 5→ 3. During this process, at symmetric equilib-



303

rium, both players play the game by acquiring information. Finally, when λ ≥ λc, no

player will make the best response by acquiring information given any strategy of the

opponent and the game becomes a complete information game shown in Table 3. The

limit complete information game has 3 equilibria: (1,0), (0,1) and the mixed strategy

{(M+pu+(1−p)d
M−D ,−D+pu+(1−p)d

M−D ), (M+pu+(1−p)d
M−D ,−D+pu+(1−p)d

M−D )}. The mixed strategy

is the limit of the symmetric equilibrium as λ increases from 0.

2) As λ increases from 0, if D+ pu+(1− p)d > 0, for λ < λc, it is always pos-

sible that a player will make the best response by acquiring information. Then, the

number of equilibria will change in the following sequence: 1→ 3→ 5→ 3. During

this process, at the symmetric equilibrium, both players play the game by acquiring

information. Finally, when λ≥ λc, no player will make the best response by acquiring

information given any strategy of the opponent and the game becomes a complete in-

formation game shown in Table 3. The limit complete information game has a unique

equilibrium (1,1).

3) As λ increases from 0, if M+ pu+(1− p)d < 0, for λ < λc, it is always possible

that a player will make the best response by acquiring information for some strategies

of the opponent. Then, the number of equilibria will change in the following sequence:

1→ 3→ 5→ 3. During this process, at the symmetric equilibrium, both players play

the game by acquiring information. Finally, when λ≥ λc, no player will make the best

response by acquiring information given any strategy of the opponent and the game

becomes a complete information game shown in Table 3. The limit complete informa-

tion game has a unique equilibrium (0,0).

Logically, there exists another possibility as λ increases from 0— during the pro-

cess, there always exists a unique equilibrium. From the previous analysis, we can

see that if at symmetric equilibrium q = s, dg(q∗(q))
dq ≥ 1, i.e. the symmetric equilib-

rium is unstable, then irrespective of the shape of f (q) in Case 1, Case 2 or Case

3, multiple equilibria will definitely arise (which is the situation that λ ≥ λ2 in the

previous multiple-equilibria situation). Therefore, a necessary requirement for the

uniqueness situation happening is that as λ increases from 0 to +∞, the symmetric

equilibrium is always stable. For this situation, when players make the best response

by acquiring information at the symmetric equilibrium, dq∗(q)
dq |q=s > −1, and hence,

dg(q∗(q))
dq |q=s < 1. Finally, when players no longer acquire information at the symmetric
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equilibrium, dq∗(q)
dq |q=s = 0, and hence, dg(q∗(q))

dq |q=s = 0. In this uniqueness situation,

before g(q∗(q)) becomes a horizontal line at the symmetric equilibrium, both play-

ers play the game by acquiring information at equilibrium and equilibrium strategy

s ∈ (0,1).

When g(q∗(q)) becomes a horizontal line at q = s, it is impossible that the hor-

izontal line around q = s is located between 0 and 1 because if there exists a unique

equilibrium in which no player plays the game by acquiring information, then this equi-

librium must be either (0,0) or (1,1) obtained by comparing ex ante expected payoff of

each action. Therefore, this fact indicates that this situation can only happen with pay-

off specifications of M+ pu+(1− p)d < 0 or D+ pu+(1− p)d > 0 (see Figure C.23).

Figure C.23: An illustration of the unqiueness situation of the game as λ increases

from 0 to +∞. Without loss of generality, the process can be described by the LHS

sub-figure and RHS sub-figure(s). This uniqueness situation can only happen for

M+ pu+(1− p)d < 0 or D+ pu+(1− p)d > 0

Therefore, if M+ pu+(1− p)d < 0 or D+ pu+(1− p)d > 0, as λ increases from

0 to +∞, the game is able to always perform a unique equilibrium under appropriate

parameter specification. The equilibrium is always stable.

Therefore, all the above proof constitutes the proof of Proposition 7, and Proposi-

tion 7 is the summarization of all analytical results in this proof. Q.E.D.
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Appendix D

Appendix of Chapter 4

Proof of Comparative Statics Analysis

(Proposition 3, 8 and 9)

Proof: At an equilibrium (q,q∗) where q and q∗ ∈ (0,1), we denote the compara-

tive statics of parameter τ on player i’s equilibrium strategy by ∂q
∂τ

, and the com-

parative statics of parameter τ on i’s best response q(q∗) given q∗ by ∂q(q∗)
∂τ

, where

τ ∈ {M,D,u,d, p,λ}. It is found that players’ equilibrium strategies are contained in

the following equation system:


∂q
∂τ
+A∂q∗

∂τ
= ∂q(q∗)

∂τ

B∂q
∂τ
+ ∂q∗

∂τ
= ∂q∗(q)

∂τ

where

A =
M−D

λ
[

p

[1− exp( (1−q∗)M+q∗D+d
λ

)]2
exp(

(1−q∗)M+q∗D+d
λ

)

+
1− p

[1− exp( (1−q∗)M+q∗D+u
λ

)]2
exp(

(1−q∗)M+q∗D+u
λ

)]

and

B =
M−D

λ
[

p

[1− exp( (1−q)M+qD+d
λ

)]2
exp(

(1−q)M+qD+d
λ

)

+
1− p

[1− exp( (1−q)M+qD+u
λ

)]2
exp(

(1−q)M+qD+u
λ

)].
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We solve this equation system as follows:(
1 A

B 1

)(
∂q
∂τ

∂q∗
∂τ

)
=

(
∂q(q∗)

∂τ

∂q∗(q)
∂τ

)

m

(
∂q
∂τ

∂q∗
∂τ

)
=

(
1 A

B 1

)−1(
∂q(q∗)

∂τ

∂q∗(q)
∂τ

)

m

(
∂q
∂τ

∂q∗
∂τ

)
=

1
1−AB

(
1 −A

−B 1

)(
∂q(q∗)

∂τ

∂q∗(q)
∂τ

)

m


∂q
∂τ

= 1
1−AB

∂q(q∗)
∂τ
− A

1−AB
∂q∗(q)

∂τ

∂q∗
∂τ

= 1
1−AB

∂q∗(q)
∂τ
− B

1−AB
∂q(q∗)

∂τ

(D.1)

The comparative statics of best response ∂q(q∗)
∂τ

, where τ ∈ {M,D,u,d, p,λ}, are

obtained by

∂q(q∗)
∂M

= {
pexp( (1−q∗)M+q∗D+d

λ
)

[1− exp( (1−q∗)M+q∗D+d
λ

)]2
+

(1− p)exp( (1−q∗)M+q∗D+u
λ

)

[1− exp( (1−q∗)M+q∗D+u
λ

)]2
}1−q∗

λ
> 0

∂q(q∗)
∂D

= {
pexp( (1−q∗)M+q∗D+d

λ
)

[1− exp( (1−q∗)M+q∗D+d
λ

)]2
+

(1− p)exp( (1−q∗)M+q∗D+u
λ

)

[1− exp( (1−q∗)M+q∗D+u
λ

)]2
}q∗

λ
> 0

∂q(q∗)
∂u

=
exp( (1−q∗)M+q∗D+u

λ
)

[1− exp( (1−q∗)M+q∗D+u
λ

)]2

1− p
λ

> 0

∂q(q∗)
∂d

=
exp( (1−q∗)M+q∗D+d

λ
)

[1− exp( (1−q∗)M+q∗D+d
λ

)]2

p
λ
> 0

∂q(q∗)
∂p

=
1

1− exp( (1−q∗)M+q∗D+d
λ

)
− 1

1− exp( (1−q∗)M+q∗D+u
λ

)
> 0
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∂q(q∗)
∂λ

=−
pexp( (1−q∗)M+q∗D+d

λ
)

[1− exp( (1−q∗)M+q∗D+d
λ

)]2

(1−q∗)M+q∗D+d
λ2

−
(1− p)exp( (1−q∗)M+q∗D+u

λ
)

[1− exp( (1−q∗)M+q∗D+u
λ

)]2

(1−q∗)M+q∗D+u
λ2

and therefore

∂q(q∗)
∂λ
R 0 ⇐⇒ pR p̄, where p̄ = 1

1− (1−q∗)M+q∗D+d
(1−q∗)M+q∗D+u [

exp( (1−q∗)M+q∗D+u
λ

)−1

1−exp( (1−q∗)M+q∗D+d
λ

)
]2 exp( d−u

λ
)

.

Next, we consider the comparative statics of parameter τ, where τ∈{M,D,u,d, p,λ},
on players’ equilibrium strategies:

1. Symmetric Equilibrium: For symmetric equilibrium q = q∗ = s ∈ (0,1), ac-

cording to equation group (D.1), we get

∂q
∂τ
|q=s =

∂q(s)
∂τ

C

where C = 1+ M−D
λ
{ pexp( (1−q∗)M+q∗D+d

λ
)

[1−exp( (1−q∗)M+q∗D+d
λ

)]2
+

(1−p)exp( (1−q∗)M+q∗D+u
λ

)

[1−exp( (1−q∗)M+q∗D+u
λ

)]2
} > 1. There-

fore, at the symmetric equilibrium, we get

sign(
∂q
∂τ
|q=s) = sign(

∂q(s)
∂τ

)

and

|∂q
∂τ
|q=s|< |

∂q(s)
∂τ
|

2. Outer Asymmetric Equilibrium: At an extreme asymmetric equilibrium (q,q∗),

where q ∈ (0,1) and q∗ = 0 or 1, because ∂q∗
∂τ

= 0, in such asymmetric equilibrium, ac-

cording to equation system (D.1), ∂q
∂τ

= ∂q(q∗)
∂τ

.

3. Inner Asymmetric Equilibrium: At a middle asymmetric equilibrium (q,q∗),

where q ∈ (0,1) and q∗ ∈ (0,1), the comparative statics result in such equilibrium are

expressed simply by equation system (D.1). In such asymmetric equilibria, ∂q
∂τ

is linear

with respect to ∂q(q∗)
∂τ

and ∂q∗(q)
∂τ

. The coefficients 1
1−AB and− A

1−AB (or− B
1−AB for ∂q∗

∂τ
)

depend on not only the value of parameters but also both players’ equilibrium strategy

q∗ and q. Hence, without specific parameter specification, the signs of ∂q
∂τ

and ∂q∗
∂τ

of
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the middle asymmetric equilibria cannot be determined. Q.E.D.

D.1 Proof of the Sensitivity Analysis that Only One Player’s

Information Cost Changes

Proof: Recall the best response function q = p
1−exp( (1−q∗)M+q∗D+d

λ
)
+ 1−p

1−exp( (1−q∗)M+q∗D+u
λ

)

for q ∈ (0,1). Now, we calculate the impact of varying one player’s information ac-

quisition cost, namely λ, on each player’s equilibrium strategy q and q∗:

∂q∗

∂λ
= H

∂q
∂λ

(D.2)

∂q
∂λ

= K
∂q∗

∂λ
+

∂q(q∗)
∂λ

(D.3)

Remember that ∂q(q∗)
∂λ

is λ’s impact on player i’s best response. Solving the equa-

tion group comprised by equations D.2 and D.3, we obtain

∂q∗

∂λ
=

H
1−HK

∂q(q∗)
∂λ

and

∂q
∂λ

=
1

1−HK
∂q(q∗)

∂λ

Q.E.D.
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Appendix of Chapter 4

Proof for Section 4.9

In this section, we calculate ∂p̄
∂λ∗ and explain why its sign is uncertain.

Recall p̄ = 1

1− (1−q)M+qD+d
(1−q)M+qD+u [

exp( (1−q)M+qD+u
λ∗ )−1

1−exp( (1−q)M+qD+d
λ∗ )

]2 exp( d−u
λ∗ )

. Calculating its derivative with

respect to λ∗, we obtain

∂ p̄
∂λ∗

=− 1

[1− (1−q)M+qD+d
(1−q)M+qD+u [

exp( (1−q)M+qD+u
λ∗ )−1

1−exp( (1−q)M+qD+d
λ∗ )

]2 exp(d−u
λ∗ )]

2

×− (1−q)M+qD+d
(1−q)M+qD+u

× 1
λ∗2

exp(
d−u

λ∗
)

exp( (1−q)M+qD+u
λ∗ )−1

[1− exp( (1−q)M+qD+d
λ∗ )]3

×−{[1+ exp(
(1−q)M+qD+u

λ∗
)][1− exp(

(1−q)M+qD+d
λ∗

)]

+2× (1−q)M+qD+d
u−d

×{exp(
(1−q)M+qD+u

λ∗
)− exp(

(1−q)M+qD+d
λ∗

)}}

Therefore, under Assumption 1, we find that

sign(
∂ p̄
∂λ∗

) =

sign({[1+ exp(
(1−q)M+qD+u

λ∗
)][1− exp(

(1−q)M+qD+d
λ∗

)])
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p̄∗ ≥ p p̄∗ < p (Case 1) p̄∗ < p (Case 2)
Figure E.1: Assuming ∂ p̄∗

∂λ∗ > 0, three cases of EΠ(λ∗) are possible. In the third figure

from left, at λ∗ = λ0, p̄∗ = p.

+2× (1−q)M+qD+d
u−d

×{exp(
(1−q)M+qD+u

λ∗
)− exp(

(1−q)M+qD+d
λ∗

)})

It can be concluded that the sign of the latter formula cannot be determined without

specific parameter specification, because [1+exp( (1−q)M+qD+u
λ∗ )][1−exp( (1−q)M+qD+d

λ∗ )])>

0 and (1−q)M+qD+d
u−d ×{exp( (1−q)M+qD+u

λ∗ )−exp( (1−q)M+qD+d
λ∗ )}< 0. Therefore, sign( ∂ p̄

∂λ∗ )

cannot be determined.

In the following, we assume that ∂ p̄∗
∂λ∗ > 0, and study how λ∗ affects a player’s ex-

pected payoff.

Given that ∂ p̄∗
∂λ∗ > 0, suppose when λ∗ is close to 0, p̄∗ ≥ p, where p has been given.

Then, as λ∗ increases, p̄∗ becomes higher, and therefore ∂EΠ

∂λ∗ > 0 as λ∗ increases from

0 to +∞. In this case, we always have ∂q∗(q)
∂λ∗ < 0 and when λ∗ reaches λ̄∗q, as defined in

Proposition 2, q∗(q) = 0 and thus EΠ = M, which is the highest of value of EΠ (see

Figure E.1).

Next, suppose when λ∗ is close to 0, p̄∗ < p. As λ∗ increases, two possible scenar-

ios happen:

Case 1: As λ∗ increases, p̄∗ < p is always maintained. Therefore, ∂EΠ

∂λ∗ < 0. Until

λ∗ = λ̄∗q, which is defined in Proposition 1, q∗(q) = 1 and EΠ = D, which is its lowest

value.

Case 2: As λ∗ increases, at λ∗ = λ0 < λ̄∗q, p̄∗ = p. For λ∗ Q λ0, ∂EΠ

∂λ∗ Q 0. There-

fore, in Case 2, the highest value of EΠ is reached at λ∗ = λ̄∗q, and the highest value is

M. At λ∗ = λ0, EΠ reaches its lowest value.
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Therefore, if ∂ p̄∗
∂λ∗ > 0, the highest value of EΠ is reached at either λ∗= 0 or λ∗= λ̄∗q.

The λ̄∗q is defined in Proposition 2 (see Figure E.1).
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