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Abstract

Many evolutionary game theory papers have obtained their results

when the bounded rationality which creates change vanishes. In our first

chapter we consider whether such results are actually a good reflection

of a population whose bounded rationality is small yet persistent. Our

model consists of a two type population with three stable equilibria.

Firstly we find that results from the standard vanishing noise approach

can be very different from those obtained when noise is small but con-

stant. Secondly when the results differ the small and persistent noise

approach selects an equilibrium with a co-existence of conventions.

Our second chapter generalises the model of our first chapter to a pop-

ulation of many player types and several stable equilibria. Firstly we

produce the characteristics of the long run equilibria under vanishing

noise analysis. Secondly we find that the introduction of a small neutral

group into a divided society can produce a welfare improving switch in

the long run equilibrium towards social co-ordination.

Our third chapter combines the model of the second chapter with the

message of the first. We show numerically that the long run location

of a heterogenous population with extremely low levels of bounded ra-

tionality can be completely different to the equilibria selected through

vanishing noise analysis. We also show that such an event is not a rare

occurrence and find that over a third of populations are misrepresented

by stochastic stability.

Our final chapter conducts a review of the literature on social threshold

models. We give a thorough description of each paper and discuss the

main assumptions that drive the key results.
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1 Introduction

Many interesting games have more than one Nash equilibrium, and so it can be

difficult to determine which equilibrium one would expect to see when the game

is played by real people. Evolutionary game theory has made a particularly

successful attempt in attacking the problem. By allowing players to be bound-

edly rational and change their mind at any point, through experimentation,

lack of concern or irrational behaviour, a population will not get stuck doing

the same thing for a long time. And so a population of boundedly rational

players will fluctuate between different equilibria.

However the aim is not to create a dynamic population, but to select a unique

equilibria which we would expect the population to be in. The most popular

method of achieving this is to allow the bounded rationality of each player to

vanish, in that the probability of a player changing their strategy tends to zero.

One can think of a boundedly rational population as a box of warm particles,

which are moving around and bouncing between two attractors. The method

of vanishing bounded rationality can then be considered similar to cooling the

box. The particles become slower and slower, and eventually congregate by

one attractor. This method of vanishing noise has been very successful as it

pin points exactly one equilibria for the population to be in. Furthermore it is

attractive due to its relative ease in obtaining analytical results for researchers.

The justification for obtaining results using vanishing noise is that they will

accurately reflect a population that has small, but realistic amount of noise.

This seems very reasonable, and as such most research has focused its attention

on obtaining their results as noise vanishes. However, the main aim of our first

chapter is to examine whether vanishing noise results are actually a good re-
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flection of a population whose bounded rationality is small, but non-vanishing.

To achieve this we consider a method which allows a persistent level of bounded

rationality to remain for each player. A population subject to constant noise

is always in motion. However, for any particular population size, it is likely

that a population spends more time playing one type of strategy than another.

Indeed, as we let the population size increase without limit we find a single

neighbourhood where the process spends all of its time is selected.

The chapter is designed with an intention to compare the results of vanishing

noise with those obtained under positive noise with an increasing population.

This is considered within the context of a model of a heterogeneous population,

and with it a conflict of interest. The model has two types of players within

a population playing a coordination game, who differ in their preferred choice

of two strategies. This heterogeneity creates three separate equilibria. Two

where every member of population plays the same strategy, and a third where

both strategies are played in the population.

In our main result we discover that there is a range of situations where a large

population with a only a small amount of non-vanishing noise will be in a

very different place to where vanishing noise analysis tells us. The two meth-

ods yielding completely different results. Furthermore, in our second result we

find that when a discrepancy between the two methods exists, it is the non-

vanishing noise approach that selects the co-existence equilibrium, vanishing

noise selecting one of the monomorphic equilibria instead.

And so I feel that the results of the first chapter are a strong indication that

vanishing noise results can be quite wrong, and that there should be much

more consideration of truly boundedly rational populations. Furthermore, the

prominence of co-existence equilibria may have been underestimated through
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the popularity of vanishing noise methodology.

The second chapter seeks to expand on the first chapter by introducing a

general level of heterogeneity into the model, attempting to continue to link

the work of Kandori, Mailath, Rob and Young with the general binary-action

games of the kind first introduced by Schelling. We investigate a population

consisting of many different types of player who vary in their preferences for

two strategies in a co-ordination game. The general level of heterogeneity can

create many equilibria. One possible application among many could be a key

vote in a society between two opposing issues, such as the U.S presidential elec-

tion. Here voters often prefer others to agree with them and there invariably

exists a large range of different views within the population. There are many

stable voting proportions with the final ratio being of great importance.

We first look to addresses which of the many equilibria the population will

spend most of its time in the long run. With the increased heterogeneity pos-

itive noise analysis is complex and we obtain our results as the noise level

vanishes. For any general degree of heterogeneity, we are able to determine the

precise mathematical characteristics of the long term location of the popula-

tion.

We continue the chapter by applying this result to investigate the influence a

neutral group may have upon a divided society. We show that in some cases the

introduction of only a small amount of neutral agents can upset a co-existence

equilibria and sway society to full agreement.

Our third chapter links the first two chapters together and in particular seeks

to continue our work on the limitations of vanishing noise from chapter one. By

taking our general heterogenous model from chapter two and selecting specific

populations we are able to produce exact numerical results on the long run
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location of the society for different positive noise levels.

We show that increasing the heterogeneity from the two type model of our first

chapter extenuates the chapter’s main result. Indeed we find some populations

with individual experimentation rates as small as one in a million periods can

in fact be located in a completely different neighbourhood in the long run to

the stochastic stability equilibrium. And so we show that populations under

extremely small noise levels can be located in very different neighborhoods to

where vanishing noise would suggest. We also find that over half of populations

with more than 4 player types are misrepresented by stochastic stability.

Our final chapter conducts a review of the social threshold model literature.

Such models are driven by the assumption that people are strongly influenced

by other members of society, and when enough people take up an action oth-

ers will may also be persuaded to join in. The review begins with Thomas

Schelling’s ground breaking paper on social segregation and continues to re-

view a variety of research papers stemming from Schelling’s original idea. We

give a thorough description of the models of each paper and provide discussion

of the assumptions that drive the main results. We also note that some results

may not prevail if they were subjected to small perturbations.
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2 Noise Matters in Heterogenous Populations

Abstract

The concept of boundedly rational agents in evolutionary game theory

has succeeded in producing clear results when traditional methodology

was failing. However the majority of such papers have obtained their

results when this bounded rationality itself vanishes. This paper consid-

ers whether such results are actually a good reflection of a population

whose bounded rationality is small, but non-vanishing. We also look at

a heterogenous population who play a co-ordination game but have con-

flicting interests, and investigate the stability of an equilibria where two

strategies co-exist together. Firstly, I find that results using the standard

vanishing noise approach can be very different from those obtained when

noise is small but persistent. Secondly, when the results differ it is the

non-vanishing noise approach which selects the co-existence equilibria. As

recent economic and psychology studies highlight the irrationality of their

human subjects, this paper seeks to further demonstrate that the liter-

ature needs to concentrate more on the analysis of truly noisy populations.

Keywords: Non-vanishing noise, equilibrium selection, strategy co-existence.
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2.1 Introduction

Nash Equilibrium has been the corner stone of game theory, however the

existence of multiple Nash equilibria in even the simplest of games has

proved a stubborn obstacle for theorists. When a population of rational

players are in one of the Nash equilibria, the population is stuck there.1

This equilibria could be the least efficient. And the only factor determin-

ing the equilibria selected are the preliminary beliefs of the population.

Evolutionary game theory has led the quest to find more appealing solu-

tions. The ground-breaking papers of Kandori, Mailath and Rob(1993)

and Young(1993)2 produced a significant insight. By introducing bound-

edly rational agents who occasionally make mistakes, a population now

had the potential to move between multiple equilibria. This persistent

noise gives the process life, allowing for the investigation of which equi-

libria the population is more likely to be near, independent of the initial

conditions.3

However when analysing a population subject to persistent noise, which

by its nature is continually moving between states,4 it is difficult to obtain

clear results of whereabouts it will be in the long run. KMRY overcame

this issue by producing all their results from analysis as the noise level

decreases to 0. Here, for a population of any size, a single state is solely

selected in the long run as noise vanishes.5

1By definition, no-one has an incentive to deviate.
2KMRY from here on.
3The introduction of boundedly rational agents also served as a step to address the

criticisms of analysis with hyperrational players, players of god like intelligence and endless
time to use it.

4Each state specifies a different combination of who is playing each strategy.
5The trend of vanishing noise analysis has continued. Early vanishing noise papers

including Ellsion(1993), Samuelson(1994), Begin and lipman(1996), Fernando and Vega-
Redondo(96) and Ellsion(2000) and more recently Kolstad(2003), Myatt and Wallace(2003),
Norman(2003a) and Hojman(2004).

9



In this paper we also consider an alternative method, in which we al-

low a constant level of noise, but let the population size increase without

limit. With non-vanishing noise a single state can never be selected as

the process is always in motion. Nevertheless, for any population size, it

is likely that process spends more time in one neighborhood of the state

space than another. Indeed, as we let the population size increase without

limit, we find a single neighborhood where the process spends all of its

time is selected.

I feel that as we are dealing with bounded rationality, the second method

makes more intuitive sense. As vanishing noise results require the source

of the dynamics to disappear, it seems that such results are only justified

if they reflect those that would be obtained under small non-vanishing

noise, with boundedly rational agents who actually do make mistakes oc-

casionally.

And so the primary aim of the paper is to assess whether the two meth-

ods agree on the long run location of the process. Specifically, in a large

population, is the state selected under vanishing noise always within the

neighborhood selected under small non-vanishing noise?

Surprisingly, in our main result we find that in some circumstances a large

population with a only a small amount of non-vanishing noise6 will never

be where vanishing noise analysis tells us, the two methods yielding com-

pletely different results. The single state chosen under vanishing noise can

be very far from the neighborhood selected under non-vanishing noise and

an increasingly large population.

And so here we see vanishing noise analysis can present a very misleading

portrayal of an actual boundedly rational society. Consequently I believe

6One mistake every one hundred periods in the example of section 3.
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that there exists a dangerous trend in the literature to conduct vanishing

noise analysis alone, without any consideration of how significantly their

results may change under non-vanishing noise. Often there are no simu-

lations or calculations in the papers.

To explain the second aim of the paper and our choice of model, let

us consider the mobile phone market in the UK. The existence of high

call charges to networks other than your own entails that each individual

prefers the whole population to be on their own network. Therefore the

most efficient market set-up would be one where just one network exists.

And indeed, in the homogenous population of KMRY we find that the

population is only stable when the entire population plays one strategy.

Yet interestingly, when we look at the actual mobile phone market we

continually observe many networks co-existing together. And there are

other important examples of such strategy co-existence. Most notably,

we often see many different political and religious beliefs existing within a

population,7 and this lack of co-ordination can sometimes produce severe

inefficiency. On a smaller scale, different members of a town will often

choose to invest in different public goods. Even towns which follow two

sports teams could well be better off with everyone supporting just one.8

Although there are probably several reasons for strategy co-existence, this

paper wishes to explain such observations by allowing different people to

like different things. And so we may see one section of society playing

the strategy they prefer, while the rest of the population play a different

strategy which they favor. Therefore I choose a model which has 2 types

of players within a population, differing in their preferences for two strat-

7As an individual you often prefer more people in the population agreeing with your own
beliefs, than less.

8Some UK populations are known as either a football town, or a rugby town.
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egy choices. This increased heterogeneity creates a third equilibrium, a

co-existence equilibrium, where both strategies are played in the popula-

tion.

We find under both methods that the co-existence equilibria can easily be

the long-run location of the process. Furthermore, we find that when a

discrepancy between the two methods exists, it is the non-vanishing noise

approach that selects the co-existence equilibrium, vanishing noise select-

ing one of the monomorphic equilibria instead. And so by considering a

population that is both heterogenous and boundedly rational, we reveal

that observing several strategies together is possible, and indeed likely.

Therefore this type of equilibrium most likely plays a much larger role in

more realistic populations than homogenous populations under vanishing

noise would suggest.

Analysis with non-vanishing noise is not unique to this paper. For exam-

ple Benaim and Weibull [2003a,b] also keep noise constant while taking

population size to infinity, as do Binmore and Samuelson(1997). Myatt

and Wallace(1998), and Beggs(2002) also devote some attention to the

concept. The most similar paper is probably that of Sandholm(2005),

which also looks at constant noise while taking population size to in-

finity, showing that in a homogenous population there can exist some

type of game where it is possible for constant noise results to differ from

those of vanishing noise. The quantal response literature (McKelvey and

Palfrey, 1995) has also given us the best experimental evidence that pos-

itive noise does matter. Separately, the co-existence of strategies exist

in Kolstad(2003) and Anwar(1999) to name two. In Norman(2003) the

introduction of switching costs creates many stable points of co-existence,

although the vanishing noise analysis employed showed that in the long
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run no time would be spent in these states.

Here we look to investigate a model with heterogeneity, co-existence equi-

libria and positive noise, and the paper reads as follows. In Section 2 we

present the model of a boundedly rational population with players of two

conflicting types who have a choice of two strategies, with similarities to

Kolstad’s(2003) fluid interaction. They play a game of co-ordination as

in any period an agent’s payoff is monotonically increasing in the number

of other agents playing her chosen strategy.

In Section 3, we give a quick and clear illustration of our main results.

In Section 4, the framework of the analysis is set out. The selection results

pertaining to when the population spends all its time near the co-existence

equilibrium are obtained using the usual vanishing noise approach, then

selection results are instead found with small non-vanishing noise and the

population size being allowed to increase without limit. The results are

then compared, producing the main result.

Section 4 illustrates a sample of real calculations of boundedly rational

populations, showing that the larger the rate of individual mistakes, the

more likely the two strategies will co-exist. We also take a look at the

survival of minorities groups. Section 5 concludes.
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2.2 The Model

Let a single population of N players consist of two types of players, type

1 denoted T1 and type 2, T2. The game is essentially one of co-ordination

as in any period the more players in the population playing an agent’s

current strategy, the higher is that agent’s payoff. However, there are two

different types of players who receive different payoffs each period.

The payoff in any period t for a T1 agent playing strategy si, πsi1 , is given

by

πs11 = β1(z(t)− 1)ρ (1)

πs21 = γ1(N − z(t)− 1)ρ (2)

where z(t) represents the number of agents playing s1 in period t and

ρ ε R+9. β1 > γ1 indicates that all T1 agents have the same preference to

co-ordinate on strategy 1 rather than 2.

The essential difference between T2 and T1 players is that T2 agents prefer

the population to co-ordinate by playing s2 rather than s1, while T1 agents

have the opposite preference.

And so we have it that the payoff for a T2 agent playing strategy si, πsi2 ,

is given by

πs12 = β2(z(t)− 1)ρ (3)

πs22 = γ2(N − z(t)− 1)ρ (4)

where β2 < γ2.

2.2.1 ρ = 1 and Pairwise Matching

Here we see that a special case of the model is the familiar idea of pairwise

patching, that in each period an agent has an equal chance of playing a
9For most applications we would have ρ ε (0, 1] but we leave ρ > 1 open for generality.
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stage game with any other agent in the population.

While demonstrating this, let us consider an example. Competing cell

phone companies often have far higher charges for calls to other networks

than to calls to the same network, thus each call is a co-ordination game.

Consider a heterogenous world where T1 agents (person or firm) prefer

the network orange over T-mobile (perhaps due to differing sms packages,

etc), and T2 agents favor T-mobile. Then stage game between the two is

given by10

T1, T2 Orange T −mobile

Orange a, c e, f

T −mobile g, h b, d

where a > e, b > g, c > f, d > h indicates the co-ordination nature

of the game and a − g > b − e and c − h < d − f reveals the different

preferences of the two types. Without loss of generality e, f, g and h can

be set to 0, and therefore the three stage games are

T1, T2 Or Tm

Or a, c 0, 0

Tm 0, 0 b, d

T1, T1 Or Tm

Or a, a 0, 0

Tm 0, 0 b, b

T2, T2 Or Tm

Or c, c 0, 0

Tm 0, 0 d, d

The matching process is one phone call each period to any other member

of the population (equally likely). The payoff represents the cheapness

of the call rate to the individual. Every period each agent will decide

whether to change his network or not depending on how many people are

on each network and his preferences, experimenting on occasions.

Now, by setting ρ = 1, β1 = a
N−1 , β2 = c

N−1 , γ1 = b
N−1 , and γ2 = d

N−1 in

equations 1 to 4, we have it that πsij becomes the average expected payoff

10There are two other equally important stage games, one between two T1 agents and
another between two T2 agents.

15



for a Tj agent playing strategy si for pairwise matching. And therefore

pairwise matching is just a special case of the general model.

2.2.2 ρ < 1: A Public Smoking Example

For a further example let s1 represent the choice of going to a smoking

area and let s2 represent going to a non-smoking area. Label T1 agents

as smokers, and T2 agents as non-smokers. Set ρ < 1 and for interest

consider smokers to be in the minority.

Consider in each period that two groups form within the population, one

containing all the people who choose to congregate in the smoking area,

the other containing those who choose not to. For instance we could be in

a familiar office setting where during daily breaks most smoker types of-

ten congregate in a different area to non-smokers. Here the co-ordination

payoffs in equations 1 to 4 could represent the value of forming and en-

joying relationships with other members of the group. The more people

in your group the better it is for you, but as you are unlikely to talk

to everyone ρ < 1 indicates that the value of having 3 members in your

group rather than 2 exceeds that of acquiring an extra 20th member. You

do not interact with people in the other group during breaks and so gain

no payoff from them.

Each day an agent decides whether to convene in the smoking or non-

smoking area, depending on how many people were in which group yes-

terday and their preferences. Occasionally experimenting with a different

strategy.

One question is how will employees take their breaks in the long run, all in

the non-smoking or smoking area, or will a co-existence of the two groups

prevail? Another question is whether the population’s level of bounded
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rationality will effect the answer.

Alternatively, one could imagine the population to be the regular mem-

bers of a bar. And if a co-existence of smoking and non-smoking groups is

prevailing even though it is socially inferior, then there may well be cause

for a government body to step in and ban one of the strategies.

2.2.3 Players and the Stochastic Dynamics

The players chosen here are myopic in the sense that they believe the

state of play will be the same as the previous period, z(t− 1), and so last

periods play is the only factor effecting a player’s decision this period.

Therefore a T1 agent’s best response this period is
s1 if z(t− 1) > 1

1+(
β1
γ1

)
1
ρ
N +

(
β1
γ1

)
1
ρ−1

(
β1
γ1

)
1
ρ+1

≡ pN + δ

s2 Otherwise

(5)

Note that p < 0.5 ∀ β1 > γ1.

And similarly a T2 agent’s best response this period is11.
s1 if z(t− 1) > 1

1+(
β2
γ2

)
1
ρ
N +

(
β2
γ2

)
1
ρ−1

(
β2
γ2

)
1
ρ+1

≡ qN + ζ

s2 Otherwise

(6)

where q > 0.5 ∀ β2 < γ2

We now continue by denoting N1 as the number of T1 agents in a given

population, and N2 as the number of T2 agents, such that N = N1 +N2.

11Note from the pairwise matching of section 2.1, with β1 = a
N−1 , β2 = c

N−1 , γ1 = b
N−1 ,

γ2 = d
N−1 , that p = 1

1+(
β1
γ1

)
1
ρ

= b
a+b is the mixed equilibrium of the T1, T2 stage game where

T2 agents play s1 with probability p.
And q = 1

1+(
β2
γ2

)
1
ρ

= d
c+d is the other mixed equilibrium where T1 agents play s1 with

probability q.
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Let us define the proportion of T1 agents in the population as α = N1/N .

In any period let z1(t) be the number of T1 agents playing s1, and let z2(t)

be the number of T2 agents playing s1 such that z(t) = z1(t) + z2(t). As

agents do not differentiate between other players types z(t) = {0, 1, ..., N}

can be seen to define the state of the process at any time t. In each period

every player is able to choose a best response to last periods state of play.

There exists at least two stable points for the process, E1 where all agents

choose to play s1(z = 1)12 and E2 where all choose s2(z = 0).

Furthermore, for pN + δ < αN < qN + ζ, there exists a third stable

point of the process Em where z1 = αN and z2 = 0. Here all T1 agent’s

best response is to play s1 as they believe enough agents will join them

to make it worthwhile, while all T2 agents choose their preferred strategy

s2. Em is a steady state of co-existence of both strategies.13

We can now define the basins of attraction of the stable points of the

process. Firstly let the basin of attraction of Ei be denoted by Bi. Then

B2 is defined by any state z(t) ε {0, ..., [pN + δ]−}.14 At any point in B2

all agent’s best response is to play s2 next period. Similarly, Bm is given

by z(t) ε {[pN + δ]+ ..., [qN + ζ]−} and B1 by z(t) ε {[qN + ζ]+, ..., N}.

12Let z ≡ z(t).
13I will consider cases only where pN + δ < αN < qN + ζ holds, as other cases essentially

reduce to a homogenous population as in KMRY.
14[x]− is the largest integer below x, and [x]+ is the smallest integer above x, [x]− =

[x]+ − 1.
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The state space Ø = {z1(t) = 0, ..., αN, z2(t) = 0, ..., (1− α)N} and the

basins of attraction can therefore be illustrated by

Figure 1: The State Space

Left alone the long run location of the process would depend only on

which basin it was in initially. Instead, an element of bounded rationality

is introduced. As in KMRY, an agent will select a strategy other than its

best response with probability ε each period, I shall call such an event a

mutation. Such mutations could be due to small temporary changes in

circumstances for an individual. For instance, the smoking area is too

cold for you one day so you go inside, your favorite football player is sus-

pended and as a result you try a rugby game, or your mobile phone bill

was unexpectedly expensive and so you change networks.15

Now via a certain number of mutations, it’s possible for the process to

leave its initial basin, and any other (often referred to as a basin jump).

Indeed, the process is irreducible and aperiodic as it’s possible to jump

15This is my preferred interpretation. The more familiar story is that players experiment,
just make mistakes or dye with probability 2ε and are replaced.
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from any given state to any other state in one period, including itself, the

markov chain is ergodic. Perhaps the best way to visualize the markov

chain is given by the simplified state space of z(t) = {0, 1, ..., N} illus-

trated below, the larger arrows representing basin jumps, the smaller

showing the flow of the basins.

zt=0 pN qNαN N

Figure 2: The Simplified State Space

And so we have a non-linear stochastic difference equation

z(t+ 1) = B(z(t)) + q(t)− r(t)

given q(t) ∼ Bin(N − B(z(t)), ε), r(t) ∼ Bin(B(z(t)), ε) and where

B(z(t)) gives z(t + 1) when all agents (of both types) choose their best

response to z(t) last period without mutation. Thus we have a markov

matrix Γε with transition probabilities given by Γmn = P(z(t + 1) =

n|z(t) = m).

The long run behavior of the Markov chain is given by the stationary

equations µεΓε = µε, the solution µε is stationary for fixed Γε. Indeed,

for an ergodic Markov chain µε will be unique and therefore independent

of the initial conditions. µε = (µ1, µ2, ..., µN ) can be seen as the propor-
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tion of time society spends in each state z = 1, 2, ..., N .

Lemma 1 The Markov chain on the finite state space Z ={0,...N} defined

by Γmn is ergodic . It therefore has a unique invariant distribution, µε.

Proof. This is a standard result. For example see Grimett and Stirzaker,

2001.

2.2.4 Welfare

Before continuing let us take the opportunity to discuss social welfare in

different equilibria. Welfare in the co-existence equilibrium is often lower

than the two pure equilibria as here the conflict between the two groups

diminishes the network effect. Even though each agent type is playing

their preferred strategy, they fail to co-ordinate with a whole section of

society.

As the process is always dynamic when noise is allowed to stay constant,

it is difficult to make precise statements on the welfare of the society in

certain neighborhoods. However, for small values of noise we can say

something of the total social welfare in each of the three stable states of

the population.

Lemma 2 Let ρ = 1 and ε be small. Then,

a) for an equally distributed population such that α = 0.5, if β1 ' γ2

then Em is always the worst of the three equilibria in terms of total social

welfare, and

b) for any value of α, β1 and γ2, Em can never be the equilibria which

maximises total social welfare.

Proof. Given in the Appendix. �
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2.3 An Illustration of the Results

Before we dive into the analysis, we present some calculations which

demonstrate the stark difference in conclusions that vanishing and non-

vanishing noise analysis can yield.

Consider a population with 50 T1 and 50 T2 players such that α = 1
2 ,

who play the game below with the pairwise matching described in section

2.2.1.16

T1, T2 s1 s2

s1 8, 7 4, 0

s2 0, 4 7, 8

The graph below shows that vanishing noise analysis concludes that the

population will spend none of its time in the basin of attraction of Em.

Figure 3: Time spent in the basin of Em as noise vanishes

However, one can easily see from the graph that at an extremely small

mutation rate of one in a hundred periods (ε = 0.01), the population in

fact spends over 75% of its time in Em’s basin of attraction.

16Note that the following results would be identical if instead the example was with ρ =
0.5, β1 = γ2 = 1.63 and β2 = γ1 = 1.
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And so vanishing noise can portray a completely misleading picture of

where a slightly noisy population will be in the long run.

In order to obtain clear results with positive levels of noise, we allow the

population size to increase without limit. In fact, a large population with

a mutation rate of one in a hundred periods will spend almost all of its

time in the basin of Em.17

 

Figure 4: Time spent in the basin of Em as the population increases, ε = 0.01.

And in terms of social welfare, this is the worst neighborhood for the

population to be in.

17Note that in the graph below the large jumps in πm as N increases are due to the
discontinuous [x]+ and [x]− functions which appear in all the markov probabilities. Also
note the graph contains some non-integer values of N are not relevant, but do do little harm
in illustrating the nature of the dynamics.
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2.4 Analysis

As we will be dealing with positive levels of noise, the process will not

converge to a single point. And so we divide the state space into three

neighborhoods defined by the three basins of attraction, B2, Bm and B1.

Indeed, under the best reply dynamics, at any state in a particular basin of

attraction all agents of a particular type have the same best response next

period. Therefore the number of mutations required to leave a basin, and

the probability of this occurring, is the same at any state in that basin.

We can now consider just three states, V = {B1, Bm, B2}, and let V (t)

indicate which basin the population is in at time t. By defining the

probability of leaving any state in basin i and entering any state in basin

j by pij = P(V (t+ 1) = Bj |V (t) = Bi), we are able to simplify the whole

state space into the three state markov chain below.

Figure 5: The Three State Markov Chain

Therefore we have a new ergodic markov chain whose long run behavior

is given by the stationary equations πεP ε = πε, where P ε is the transition

matrix containing the nine transition probabilities of pij , and πε is the

unique solution for fixed P ε. Here πε = (π1, πm, π2) can be seen as the

proportion of time society spends in each neighborhood V = B1, Bm, B2.
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The minimum number of mutations required to leave the basin of E2

is [pN ]+, no matter which state of B2 the process is in. Therefore the

probability of escaping B2 and entering Bm in any period is the simply

the probability having between [pN ]+ and [qN ]− mutations, and so

p2m =
[qN+ζ]−∑
i=[pN+δ]+

(
N

i

)
εi (1− ε)N−i

Similarly, the probability of escaping B1 and entering Bm in any period

requires between N − [qN ]− and N − [pN ]+ mutations, and so

p1m =
[N−[pN+δ]+∑
i=N−[qN+ζ]−

(
N

i

)
εi (1− ε)N−i

Escaping from Em is a more complicated affair. Two mutations from

different types effectively cancel each other out and they will have no effect

on the next period’s state of play (there is no change in z). Therefore the

process requires a net number of mutations in one direction to make a

jump.18 And so the probability of escaping Bm and entering B1 is given

by

pm1 =
N∑

j=N−[qN+ζ]+

min{j,N−i}∑
k=max{j−αN,0}

(
αN

αN + k − j

)(
(1− αn)N

(1− αn)N − k

)
εαN+k−j (1− ε)j−k εk (1− ε)(1−α)N−k

The remaining transition probabilities, p11, p12, p22, p21, pmm and pm2 are

given in the appendix.

The time spent in the neighborhood Bm can be obtained from the tran-

sition probabilities alone.

18Consider that a minimum of 20 mutations are required to leave Bm and enter B1. These
20 mutations must all be T2 agents switching from their best response s2 to s1. Then, as each
T1 mutation ’cancels out’ a T2 mutation, the difference in the number T2 and T1 mutations
must be at least 20 for the process to jump from Bm to B1.
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Lemma 3

πm =
1

1 +
pm2
p2m

(
p12
p1m

+1)+
p21
p2m

pm1
p1m

p12
p1m

+1+
p21
p2m

+
pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

Proof. See the appendix. �

We divide the state space into neighborhoods as it allows the opportunity

to obtain results with vanishing and non-vanishing noise. To achieve such

results we now define the two most important terms of the paper.

For analysis the dynamics under vanishing noise we have the familiar

notion of stochastic stability.

Definition 1 An equilibrium Ei is defined as being stochastically stable

if 19

lim
ε→0

πi > 0

In order to investigate the dynamics under non-vanishing noise we intro-

duce popular stability.

Definition 2 An equilibrium Ei is defined as being popularly stable at

noise level ε if there exists ε such that

lim
N→∞

πm > 0

As noise is not allowed to vanish for popular stability, the process is

always dynamic and therefore no single state is selected as the population

increases without limit. Instead an equilibrium’s basin of attraction is

selected as we increase the population size. Although individual noise

does not vanish, on an aggregate level the noise of the population does

reduce to zero due to the law of large numbers, thus popular stability can

19In fact, for vanishing noise all the time is spent at the single state z = αN . I have used
πi here for a clearer comparison of the two limiting techniques. Also, the usual definition
stochastic stability states limε→0 πz > 0, for simplicity i wish to focus only on when all the
time is spent in one area.
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select a unique neighbourhood as N increases without bound.20

The main aim of this paper is to investigate whether analysis of stochastic

stability consistently yields the same conclusions as popular stability when

ε is small.21 In order to test this we focus on the conditions for which the

long run location of the process is near Em, for both limiting techniques.

We begin with the simpler case of stochastic stability.

Proposition 1 Under vanishing noise, Em will be stochastically stable if

and only if its basin Bm occupies at over half the markov space.

limε→0 πm > 0 iff p ≤ α
2 and q ≥ 1+α

2 .

Analysis under vanishing noise can be seen as simply counting and com-

paring the number of mutations needed to escape each basin. And so

in order for Em to be stochastically stable it must take more mutations

to escape Bm (to B1 or B2) than any other adjacent basin escape. Let

the transition (jump) from basin i into basin j be denoted by B−→
ij

. Then

consider a scenario where the basin escape B−→
m1

requires just one less mu-

tation than B−→
1m

, for some N . Then in the limit of ε → 0, the ’cost’ of

this one extra mutation becomes infinitely large, overwhelming any other

forces that could be in effect and ensuring that Em is stochastically un-

stable. I shall refer to this force as the basin size effect. When obtaining

results with vanishing noise the basin size effect is all that matters.

This can be seen by the illustration of Proposition 1, the shaded area

representing the range of values that both p and q must take in order for

Em to be stochastically stable.

20I would like to thank D.Myatt for this intuition.
21The question of what constitutes small noise has no simple answer. With further exper-

imental data we could perhaps replace the word small with realistic.
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zt=0 αN N
αN
2

(1+α)N
2

p q

And the basin size effect remains a very powerful force when we examine

popular stability. To see this consider that the basin escape B−→
m1

requires

3 less mutations than B−→
1m

for some Ñ . Then at twice this population

size B−→
m1

now requires 6 less mutations than B−→
1m

. 24 less at 4Ñ , and so

on. Therefore in a boundedly rational population, the magnitude of the

basin size effect rises linearly with N. And so it would seem that basin

sizes again will be all that determines equilibrium selection.

However, there are other forces at work which are overwhelmed under

vanishing noise, but have the ability under non-vanishing noise to alter

selection against the basin size effect.

The first I shall call the combination effect. At any state in B2 all N

agents could experiment with s1, while in Bm there are only αN agents

able to experiment with s2. This contributes towards there being many

more combinations of mutations available for a B−→
2m

jump than B−→
m2

. And

as N rises this combinational difference also increases. In fact, this effect

alone results in different popular and stochastic stability results. It is not

hard to see that when a difference in equilibrium selection does occur it

is popular stability that favors Em.

The second effect I will call the dis-coordination effect. This is the effect,

when in Bm only, of simultaneous mutations from both types canceling

each other out, tending to make any Bm escape less probable at higher

levels of noise. As N increases, the possible number of opposing mutations
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to any jump from Bm also increases. Again this effect strengthens Em

under small non-vanishing noise, and has the potential to change selection

away from the stochastically stable equilibrium.

However, when trying to obtain popular stability results two main prob-

lems appear. Firstly, when analysing with vanishing noise, one may con-

sider only the basin jumps requiring the minimum number of mutations,

as all other possible jumps become negligible in the limit of ε → 0. But

under non-vanishing noise in the limit of N →∞, the probability of other

possible jumps do not become negligible and so need to be included in the

analysis. For instance, when analyzing the probability of jumping from

B−→
1m

, one must consider the probability of jumping from B1 to any state

in Bm. As there exists many states in Bm, the number increasing in N,

the calculation and analysis of basin escape probabilities can be complex.

The second main problem is that the positive probability of simultane-

ous mutations from both types complicates the basin escape probabilities

from Bm further. These are not straight binomial probabilities, but the

net of two binomials.

Such complications make the derivation of precise critical values (p, q, α

and ε) for particular equilibrium selection under positive noise a complex

task. However using the following lemma and lemma 3 something can be

said.

Lemma 4 Let Pr(Sn > r) =
∑∞

v=0 b(r+ v; v, l) where b(r+ v; v, l) is the

binomial probability of exactly r+v successes from n trials with l being the

probability of a success. Then

P (Sn ≥ r) ≤ b(r;n, l) r(1−l)
r−nl ∀ l < r.

Proof. This is a standard result. For example see Feller p.151. �

Lemma 4 allows us to outline the general conditions for Em to be popu-
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larly stable.

Proposition 2 limN→∞ πm → 1 if and only if
limN→∞

pm2

p2m
= 0 and

limN→∞
pm1

p1m
= 0 ∀ ε < min(p, 1− q).

Proof. See the appendix. �

Proposition 2 essentially explains that as p12 and p21 are relatively negli-

gible, if the inflows into Bm progressively dominate outflows as the pop-

ulation increases, then the process will spend all its time in Bm.

We can now do more than just look at stochastic stability as we are able

to determine a condition for the co-existence equilibrium to be popularly

stable.

Proposition 3 If

x(α, p, ε) =
ε2p−α(1− ε)1−2p(α− p)α−p

αα(1− p)(1−p) ≥ 1 and

y(α, q, ε) =
ε2q−(1+α)(1− ε)1−2q(q − α)q−α

(1− α)(1−α)qq
≥ 1

then the time spent in Bm will be greater than that spent in B1 or B2 for

N > Ñ , p, q, α and ε > 0.

For increasingly large N, if the two above conditions are satisfied then

limN→∞ πm = 1

and so Em is popularly stable for p, q, α and noise level ε.

Proof. See Appendix �

It should be understood that x and y are not the exact critical points

determining equilibrium selection at noise level ε, for some x < 0 and

y < 0 it is still very possible that limN→∞ πm → 1. Analysis in Propo-

sition 3 excludes the dis-coordination effect for tractability, and so does

not capture the full strength of the co-existence equilibrium under small
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positive noise in an increasing population.

However Proposition 3 does allow us to establish our main result, that

results of a process where noise vanishes completely can say very little of

a population whose bounded rationality is innate.

Consider again the example in section 3 where p = 3
11 = 0.2727̇ and

q = 8
11 = 0.7272̇.

T1, T2 s1 s2

s1 8, 7 4, 0

s2 0, 4 7, 8

Here Bm contains less than half the markov space as both p > α
2 = 0.25

and q < 1+α
2 = 0.75, from Proposition 2 we see that Em is stochastically

unstable. The calculations concur.

However, with a small non-vanishing experimentation rate of one in a 100

periods, ε = 0.01, we have it that

x(α, p, ε) =
0.012.(0.273)−0.5(1− 0.01)1−2.(0.273)(0.5− 0.273)0.5−0.273

0.50.5(1− 0.273)(1−0.273)

= y(α, q, ε) = 1.0257 > 1
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and from Proposition we can see that Em is popularly stable for ε = 0.01,

and so the population will spend all its time in Bm as N → ∞. The

calculations agree.

 

Indeed, there exists a range of preferences for a large population where

vanishing noise and small non-vanishing noise yield completely different

results.

Theorem

For each ε ε (0,min(α2 ,
1+α

2 )) there exists a range of preferences

corresponding to p ε [α2 ,
α
2 + τ(ε)) and q ε [1+α

2 , 1+α
2 − τ(ε)), τ(ε) > 0,

such that 
limε→0 πm = 0 ∀ α,N, but

limN→∞ πm = 1 ∀ α.

Proof. Please see appendix. �
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The theorem can be seen on the 1-dimensional diagram below, where

the shaded region indicates for a given ε > 0 the range of p and q where

the two limiting techniques give completely different results.

zt=0 αN NpN qN

Em
stochastically

unstable

Em
ε−boundedly

stable

Corollary In the range p ε [α2 ,
α
2 + τ(ε)) and q ε [1+α

2 , 1+α
2 − τ(ε)) , it

is always popular stability that favors Em as the long run equilibrium of

the process, where as the stochastically stable state selects either E1 or

E2.

Proof. As τ(ε) > 0, this follows straight from the theorem. �.

And so the technique of vanishing noise analysis does not show the true

potential for boundedly rational populations to be caught in the neigh-

borhood of the co-existence equilibria, often the worst place to be for the

society to be. Therefore polymorphic states may play a much larger role

than vanishing noise analysis would let us believe.
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2.5 Calculations

In this section we examine a sample of calculations with ρ = 0.5. As will

be seen, the more noisy a population becomes, the smaller Bm needs to

be in order for the process to spend all its time there in a large popu-

lation. Furthermore, we investigate a minority group who have strong

preferences for their chosen strategy. In terms of social welfare, Em is the

worst equilibria for the society in every example.

Consider a population where there exists a less intense difference in T1

and T2’s preferences than in section 3 such that β1 = γ2 = 1.58 and

β2 = γ1 = 1, giving p = 0.286 and q = 0.714.

Now at the experimentation rate of one per hundred periods, ε = 0.01,

α = 0.5 and N increasing we see that for large N the process will in fact

spend none of its time in the basin of Em.

Note that x(1
2 , 0.286, 0.01) = y(1

2 , 0.714, 0.01) = 0.93 < 1.
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However, at a slightly larger mutation rate of 1 in 25, ε = 0.04, the

population will again spend all of its time near Em as the population

grows large.

Here x(1
2 , 0.286, 0.01) = y(1

2 , 0.714, 0.01) = 1.01 > 1.

 

But as the difference of T1 and T2’s preferences become less intense still

with β1 = γ2 = 1.53 and β2 = γ1 = 1, with non-vanishing noise ε = 0.04,

again the process spends almost none of its time in the basin of Em for

large N.
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Indeed the trend continues as when noise increases to ε = 0.07, Em once

more becomes the long run location of the population.

 

Consider that you are an observer, perhaps a member of a governing body

who has no knowledge of the preferences of the population. Then one in-

terpretation of the above trend is that the more noisy a population is,

the more likely we are to find a large population spending nearly all of its

time in a state of inefficient strategy co-existence.
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2.5.1 Minority groups

So far our examples have focused upon an equal number of T1 and T2

agents with identically asymmetric preferences, but the model can easily

lend itself to the analysis of minority groups. We again find that vanish-

ing noise results can be a misleading portrayal of a boundedly rational

population.

Consider twice as many T2 agents than T1 agents in a population of 90,

but allow T1 agents to have a stronger preference for their favoured strat-

egy such that β1 = 1.83, γ1 = 1 and γ2 = 1.3, β1 = 1.

where πm is given by the red line and π2 by the green.

We see that results from vanishing noise analysis convey that the minority

group’s strong preferences have no influence over the state of the popula-

tion, if they were indifferent between s1 and s2 they would be in the same

position. However, in a population with some positive noise the minority

group does have some sway in the population. At a small noise level of

0.02 we see that the population will spend almost all of its time near Em,

a significantly better location for the minority to be in.
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2.6 Conclusion

This paper is motivated by the belief that conclusions drawn from van-

ishing noise results can often be surprisingly misleading when used to de-

termine the nature of a truly boundedly rational population, even when

this bounded rationality is small.

I investigate a typical KMRY type model with a population playing a

2x2 co-ordination game. The introduction of slight player heterogeneity

creates a further steady state of co-existence of the two strategies.

By using a large population of agents who play a best response each pe-

riod with probability 1-ε, I have been able to obtain results from both

vanishing and non-vanishing noise techniques, and can therefore compare

the two.

I find that the two do not yield the same results. Indeed, there exists

a range of population preferences where the two methods produce com-

pletely different conclusions. Vanishing noise analysis telling us that the

population will spend all of its time co-ordinating on one strategy, while

under small non-vanishing noise the population will in fact always be close

to the co-existence steady state.

The reason for the startling difference between the methods is that the

limiting procedure of vanishing noise is somewhat overpowering. There

are important forces at work in the population dynamics which are simply

overwhelmed and ignored when noise completely vanishes. However these

forces can be of influence when noise is small, even when the population

is large, and this is why we observe the disparity in the results of the two

techniques.

Given that there exists such a discrepancy, this paper seeks to highlight a

dangerous trend in the past literature to conduct vanishing noise analysis
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alone, with little consideration of how significantly results would change

with just a small amount of non-vanishing noise. As more and more stud-

ies emphasize the irrationality of their human subjects, perhaps the focus

in the literature should be turning to truly noisy populations.
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2.7 Appendix

Proof of Lemma 1:

At E1 total social welfare(sw) is given by αNβ1(N−1)+(1−α)Nγ1(N−1).

At Em, z = αN , sw = αNβ1(αN − 1) + (1− α)Nγ1((1− α)N − 1).

Therefore by setting α1 = γ2 we have it that Eswm > Esw1 iff 2γ2α
2 + γ2 −

3γ2α− γ1 + γ1α > 0.

a) At α = 0.5, Eswm − Esw1 = −0.5 γ1 < 0 such that Esw1 > Eswm for all

γ1, β2 where β1 ' γ1 and α = 0.5.

Similarly at α = 0.5, Eswm −Esw2 = −0.5 β2 < 0 such that Esw2 > Eswm for

all γ1, β2 where β1 ' γ1 and α = 0.5.

b) For any α, β1 and γ2 let γ1 = β2 = 0.

Then Eswm > Esw1 iff α < d
a+d .

Similarly Eswm > Esw2 iff α > d
a+d .

Therefore there will always exist another equilibrium which is superior to

Em in terms of total social welfare. �

Proof of Lemma 3

The stationary equations of the 3 state markov process are given by

1. π1 = π1p11 + π2p21 + πmpm1; 2. π2 = π1p12 + π2p22 + πmpm2;

3. πm = π1p1m + π2p2m + πmpmm; 4. π1 + π2 + πm = 1 ,

and also note,

5. p11 + p12 + p1m = 1, 6. p21 + p22 + p2m = 1, 7. pm1 + pm2 + pmm = 1.

1 ⇒ π1(1− p11) = π2p21 + πmpm1 , and

2 ⇒ π2 = π1p12+πmpM2
1−p22 .

Therefore 1 and 2⇒ π1 = [
pm1(1−p22)

p21
+pm2

(1−p11)(1−p22)
p21

−p12
], π2 = [

pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

] πm,

from substituting in 5 and 6 and rearranging.
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Symmetrically we have π2 = [
pm2
p2m

(
p12
p1m

+1)+
p21
p2m

pm1
p1m

p12
p1m

+1+
p21
p2m

]πM

From substituting both expressions into 4 we obtain our result. �

Proof of Proposition 1

First consider pm2

p2m
.

pm2 =
[pN+δ]−∑
j=0

min{j,N−i}∑
k=max{j−αN,0}

(
αN

αN − [pN + δ]−

)(
N

(1− α)N − k

)
εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k

= εαN−[pN+δ]−

(
αN

αN − [pN + δ]−

)
(1− ε)[pN+δ]−(1− ε)(1−α)N +

[pN+δ]−∑
j=1

j∑
k=0

(
αN

αN − [pN + δ]−

)
(1− ε)[pN+δ]−

(
N

(1− α)N − k

)
εαN+k−j

(1− ε)j−kεk (1− ε)N−αN−k

+
j∑

k=1

(
αN

αN − [pN + δ]−

)(
N

(1− α)N − k

)
εαN+k−j

(1− ε)j−k εk (1− ε)N−αN−k

≡ εαN−[pN+δ]− [ρf(1− ε) + ρf(ε)]

where ρ is some function independent of ε, and,

p2m =
[qN+ζ]−∑
i=[pN+δ]+

(
N

i

)
εi (1− ε)N−i

= ε[pN+δ]+ [(N, [pN + δ]+)(1− ε)N−[pN+δ]+ +
[qN+ζ]−∑

i=[pN+δ]++1

(i N) εi (1− ε)N−i

≡ ε[pN+δ]+ [ρf(1− ε) + ρ(ε)].
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And so,

pm2

p2m
=
εαN−[pN+δ]− [ρf(1− ε) + ρf(ε)]
ε[pN+δ]+ [ρf(1− ε) + ρf(ε)]

= ε(α−2p)N−2δ+(γ1−γ2) [ρf(1− ε) + ρf(ε)]
[ρf(1− ε) + ρf(ε)]

by letting [x]− = x− γ1 and [x]+ = x+ γ2 where γ1, γ2 < 1 for any x.

Therefore

lim
ε→0

pm2

p2m
=


0 if p < α

2 −
δ+(γ1−γ2)

N

∞ if p > α
2 −

δ+(γ1−γ2)
N

which essentially corresponds to

lim
ε→0

pm2

p2m
=


0 if p < α

2

∞ if p > α
2 .

Similarly we have

lim
ε→0

pm1

p1m
=


0 if q > 1+α

2

∞ if q < 1+α
2 .

Therefore as limε→0
p21
p2m

= 0 and limε→0
p12
p1m

= 0 ∀ N , from lemma 3 we

have it that limε→0 πm = 1 requires p < α
2 and q > 1+α

2

Proof of Proposition 2

Recall from lemma 1 that

πM = 1

1+

pM1
p1M

(
p21
p2M

+1)+
p12
p1M

pM2
p2M

p21
p2M

+1+
p12
p1M

+

pM2
p2M

(
p12
p1M

+1)+
p21
p2M

pM1
p1M

p12
p1M

+1+
p21
p2M

≡ 1
1+π1+π2

.

First note that p21
p2M

< c ∀ ε < p, ε < 1 − q, α and N, where c is some

constant.

To see this first define
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pj2m =
(

N
[pN+δ]++j

)
ε[pN+δ]++j (1− ε)N−[pN+δ]++j and

pj21 =
(

N
[qN+ζ]++j

)
ε[qN+ζ]++j (1− ε)N−[qN+ζ]+−j

and then consider

p21
p2m

= p021+p121+...+p
N−[qn+ζ]+
21

p02m+p12m+...+p
[qn+ζ]−−[pn+δ]+
2m

<
p021[qN+ζ]+(1−ε)
p02m[qN+ζ]−Nε

using lemma 1.

As limN→∞
[qN+ζ]+(1−ε)

[qN+ζ]−Nε
= q(1−ε)

q−ε < c1 and p021
p02m

< 1 ∀ ε < p,

we have it that p21
p2M

< c ∀ ε < p. And symmetrically p21
p2M

< ć ∀ ε < p.

Therefore if pm2

p2m
→ 0 and pm1

p1m
→ 0 as N →∞, then

limN→∞ π1 = limN→∞

pm1
p1m

(
p21
p2m

+1)+
p12
p1m

pm2
p2m

p21
p2m

+1+
p12
p1m

= 0+0c+0ć
0+1+0 = 0.

Similarly limN→∞ π2 = 0.

And therefore limN→∞ πm = 1
1+0+0 = 1. �

Proof of Proposition 3

First consider when p2m
pm2

is rising with N.

By considering that the probability of a basin escape is at all times higher

under a constraint that no opposing T2 mutations can occur in a period,

we can deduce an upper bound

pm2 =
[pN+δ]−∑
j=0

min{j,N−i}∑
k=max{j−αN,0}

(
αN

αN − [pN + δ]−

)
((1− α)N − k, N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k

<

[pN+δ]−∑
j=0

(
αN

αN − [pN + δ]− + j

)
εαN−[pN+δ]−+j(1− ε)[pN+δ]−−j

<

(
αN

αN − [pN + δ]−

)
εαN−[pN+δ]−(1− ε)[pN+δ]− [pN + δ]−(1− ε)

[pN + δ]− −Nε
∀ ε, p, α and N,
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the third part coming from lemma 4.

Also,

p2m =
[pN+δ]−∑
j=0

(
N

[pN + δ]+ + j

)
ε[pN+δ]−+j(1− ε)N−[pN+δ]−−j

>

(
N

[pN + δ]+

)
εαN−[pN+δ]−(1− ε)[pN+δ]−∀ ε, p, α and N.

And so,

p2m

pm2
>

(
N

[pN+δ]+

)
ε[pN+δ]−(1− ε)N−[pN+δ]−(

αN
αN−[pN+δ]−

)
εαN−[pN+δ]−(1− ε)[pN+δ]− [pN+δ]−(1−ε)

[pN+δ]−−Nε
∀ ε, p, α and N.

And so when the right-hand side of this inequality, label it λ, increases

without bound as N → ∞, then so must p2m
pm2
→ ∞ as N → ∞. And

so we now investigate under which parameter values the right hand side

increases without bound as N rises.

Now,

λ =

(
N

[pN+δ]+

)
ε[pN+δ]+(1− ε)N−[pN+δ]+(

αN
αN−[pN+δ]−

)
εαN−[pN+δ]−(1− ε)[pN+δ]− [pN+δ]−(1−ε)

[pN+δ]−−Nε

= ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)![pN + δ]−!
(αN)!(N − [pN + δ]+]![pN + δ]+!

[pN + δ]− −Nε
[pN + δ]−(1− ε)

= ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)!
(αN)![N − pN + δ]+]!([pN + δ]+ + 1)

[pN + δ]− −Nε
[pN + δ]−(1− ε)

as [x]−!
[x]+! = 1

[x]++1 .

And

λ = ε[pN+δ]−+[pN+δ]+−αN (1− ε)N−[pN+δ]+−[pN+δ]−

N !(αN − [pN + δ]−)!(N − [pN + δ]−)
(αN)![N − pN + δ]−]!([pN + δ]+ + 1)

[pN + δ]− −Nε
[pN + δ]−(1− ε)
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as (x− [k]+)! = (x− [k]− − 1)! = (x−[k]−)!
x−[k]−

.

Using [x]− = x − γ1 and [x]+ = x + γ2 where γ1, γ2 < 1 for any x, and

taking natural logarithms of both sides we obtain

lnλ = ((2p− α)N − 2δ + γ1 − γ2) ln ε+ ((1− 2p)N − 2δ + γ1 − γ2) ln(1− ε)

+ lnN !− ln(αN)! + ln(N − pN + δ − γ1)! + ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1

+ ln(αN − pN + δ − γ1)! + ln
(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
.

As we shall be taking the limit of N → ∞, we are able to make use of

stirling’s formula which states

lim
x→∞

lnx!
x lnx− x

= 1

Substituting this in gives

lnλ = ((2p− α)N − 2δ + γ1 − γ2) ln ε+ ((1− 2p)N − 2δ + γ1 − γ2) ln(1− ε)

+N(lnN − 1) + (αN − pN + δ − γ1)(ln(αN − pN + δ − γ1)− 1) +

ln
N − pN + δ − γ1

pN + δ + γ2 + 1
− αN ln(αN − 1)−

(N − pN + δ − γ1) ln((N − pN + δ − γ1)− 1) + ln
(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
.

Now implementing

ln(x+ ξ) = lnx+
ξ

x
− ξ2

2x2
+

ξ3

3x3
− ...

gives

λ = (2p− α)N ln ε+ (1− 2p)N ln(1− ε)− αN lnα− (1− p)N ln(1− p)

+(α− p)N ln(α− p) +N lnN + (α− p)N lnN − αN lnN − (1− p)N lnN

−N − (1− p)N + (α− p)N + (γ1 − 2δ − γ2) ln ε+ (γ1 − 2δ − γ2) ln(1− ε)

−(1− p)N(
δ − γ1

N
+

(δ − γ1)2

N2
+ ...) + (α− p)N(

δ − γ1

N
− (δ − γ1)2

N2
+ ...)

+ ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
+ γ1
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or,

λ = ln[
ε2p−α(1− ε)1−2p(1− p)(1−p)

(α− p)α−pαα
]N + (γ1 − 2δ − γ2) ln ε+ (γ1 − 2δ − γ2) ln(1− ε)

−(1− p)(δ − γ1 −
(δ − γ1)2

N
+ ...) + (α− p)(δ − γ1 −

(δ − γ1)2

N
+ ...)

+ ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
+ γ1

In the limit as N →∞ we have it that

ln
(1− p)N + δ − γ1

pN + δ + γ2 + 1
+ ln

(p− ε)N + δ − γ1

(pN + δ − γ1)(1− ε)
→ ln

(1− p)
p

+ ln
(p− ε)
p(1− ε)

< c2.

And so limN→∞ λ→∞, and therefore limN→∞
p2m
pm2
→∞, if and only if

ln[ ε
2p−α(1−ε)1−2p(α−p)α−p

αα(1−p)(1−p) ] > 0.

Symmetrical analysis yields that if

ln[ ε
2q−(1+α)(1−ε)1−2q(q−α)q−α

(1−α)(1−α)qq
] > 0 then,

limN→∞
p1m
pm1
→∞.

And so from Proposition 2, if both the above conditions are satisfied then

limN→∞ πm → 1. �

Proof of Theorem

To prove the theorem first consider the following lemma.

Lemma 5 At p = α
2 and q = 1+α

2 , limN→∞ πm = 1 ∀ α and 0 < ε ≤

min(α2 ,
1+α

2 ).

Proof.

First let us consider x(α, p, ε) from Proposition 3.

At p = α
2 , we have it that x(α, α2 , ε) = α

2 ln
α
2 −αlnα− (1− α

2 )ln(1− α
2 ) +

(1− α)ln(1− ε)

= −α
2 ln2α− (1− α

2 )ln(1− α
2 ) + (1− α)ln(1− ε).
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Let ε = α
2 for each α, then we have

x(α, α2 ,
α
2 ) = −α

2 ln2α− α
2 ln(1− α

2 ) = −α
2 ln(2α− α2) > 0 ∀ α ε (0, 1).

And as ∂x(α,α
2
,ε)

∂ε < 0 we have it that x(α, α2 , ε) > 0 ∀ ε ≤ α
2 .

Symmetrically, at q = 1+α
2 , y(α, 1+α

2 , ε) > 0 for any ε < 1+α
2 .

Therefore x(α, α2 , ε) > 0 and y(α, 1+α
2 , ε) > 0 ∀ ε < min(α2 ,

1+α
2 ), and by

Proposition 3 we are done.

Now we can prove the theorem.

Proposition 2 shows that limε→0 πm = 0 ∀ α,N for any p > α
2 and/or

q < 1+α
2 .

Now consider limN→∞ πm = 1 and x(α, p, ε).

Let α = 2p
k and consider k ε [1, 2) such that α ε (p, 2p ].

Fix p and consider α varying.

For each p fix ε at some ε ε (0,min(p, 1−2p
2 )). 22

Then,

x(2p
k , p, ε) = 2p(1 − k−1)lnε + (1 − 2p)ln(1 − ε) + (2p

k − p)ln(2p
k − p) −

2p
k ln

2p
k − (1− p)ln(1− p). and so,

∂x( 2p
k
,p,ε)

∂k = 2p
k2 lnε− 2p

k2 ln(2p
k − p)−

2p
k2 + 2p

k2 ln
2p
k −−

2p
k2 = 2p

k2 [lnε− ln(2p
k −

p) + ln2p
k ]

which is continuous ∀ k ε [1, 2) provided ε > 0.

At k = 1, ∂x( 2p
k
,p,ε)

∂k = 2p[ln2ε] > −∞ ∀ ε > 0.

From lemma 5 we have x(2p
k , p, ε) > 0 at k = 1, therefore for each ε there

must exist some range of k > 1, τ(ε), where x is positive. I.E, there exists

some range of p ε [α2 ,
α
2 + τ(ε)] such that x > 0.

Symmetrical analysis gives y > 0 for some range of at least q ε [1+α
2 −

τ(ε), 1+α
2 ] and from Proposition 3 we are done.�

22This comes from ε ≤ min(min(2p, 1−2p
2 ),min(p, 1−p

2 ))
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The other markov probabilities are given by:

p11 =
N−[qN+ζ]+∑

i=0

(
N

i

)
εi (1− ε)N−i.

p12 =
N∑

i=N−[pN+δ]−

(
N

i

)
εi (1− ε)N−i

p22 =
[pN+δ]−∑
i=0

(
N

i

)
εi (1− ε)N−i.

p2m =
[qN+ζ]−∑
i=[pN+δ]+

(
N

i

)
εi (1− ε)N−i.

pmm =
j=[qN+ζ]−∑
j=[pN+δ]+

min{j,N−i}∑
k=max{j−αN,0}

(
αN

αN + k − j

)
((1− α)N − k N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k.

pm2 =
αN∑

j=αN−[pN+δ]−

min{j,N−i}∑
k=max{j−αN,0}

(
αN

αN + k − j

)
((1− α)N − k N)

εαN+k−j (1− ε)j−k εk (1− ε)N−αN−k.
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3 Three’s a Crowd

Abstract

This paper presents a co-ordination game played by a heterogenous popu-

lation containing several different types of agent. As such there are many

equilibria where two strategies co-exist together in varying proportions.

Firstly we are able to deduce the characteristics of the equilibria that the

population will be located in under stochastic stability. Secondly we ex-

amine the entrance of a neutral group into a population consisting of two

opposing groups and determine the equilibrium selection results. We find

the introduction of a small neutral group can produce a welfare improving

switch in equilibrium selection away from co-existence.
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3.1 Introduction

Since the introduction of game theory itself a stubborn problem has ex-

isted, when a game produces more than one nash equilibria which one

should be selected? A population’s long run location will depend only on

their prior beliefs, and can easily become stuck in an inefficient equilib-

rium unable to escape. The ground-breaking papers of Kandori, Mailath

and Rob(1993, KMR) and Young(1993) made a great leap in address-

ing this problem. In a homogenous population playing a binary action

co-ordination game KMRY introduce boundedly rational agents who oc-

casionally experiment away from their best choice, giving the population

movement and allowing the possibility of escaping equilibria. Then by

allowing the experimentation rate to fall to 0 KMRY are able to select

which of their two stable equilibria will be selected.

This paper seeks to expand on KMRY’s work by introducing a general

level of heterogeneity into KMRY’s initial model, attempting to continue

to link their work with the general binary-action games of the kind intro-

duced by Schelling. KMRY consider a homogeneous population with two

stable equilibria, in which all agents choose the same action. In this paper

we investigate a population consisting of many different types of player

who vary in their preferences for two strategies in a co-ordination game.

For example one type of player may strongly favour a certain strategy

while another type prefer the opposite strategy, there may be also be fairly

indifferent players and so on within a single population. This increased

level of heterogeneity creates many equilibria, two of which correspond to

perfect co-ordination with all agents agreeing on one strategy as in KMRY.

However the remainder of the equilibria are states of co-existence, where

both strategies survive in the long run. These equilibrium states represent
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a population in conflict as there are two separate groups content playing

different strategies, which can often be to the detriment of society as a

whole.

There are several possible applications for the model. For instance con-

sider the competition between the apple macintosh and windows operating

systems. With a large range of different preferences existing in the pop-

ulation of computer users, the long run outcome has been a co-existence

of both systems. Another application could be a key vote in a society

between two opposing issues, such as the U.S presidential election. Here

voters prefer others to agree with them and there exists a large range of

different views within the population. Members of the population can

see voting ratios on a regular basis via polls and are likely to occasional

change their mind with similarities to our model.

This paper is not the first to look at introducing some heterogeneity into

players’ preferences in KMRY type models. For instance Hehenkamp(2001)

considers two populations with asymmetric preferences. Kolstadt(2003)

also looks at a model with two separate populations with conflicting pref-

erences. Hahn(1997) looks to apply KMRYs model to the battle of the

sexes game without finding a robust equilibrium selection process. Myatt

and Wallace (1998) have a heterogeneity in players’ preferences as they

consider players with idiosyncratic payoffs in the form of Harsanyian type

payoff trembles. There are also several papers whose models possess co-

existence equilibria such as Ahmed(1999) and Norman(2003). To the best

of the author’s knowledge the current paper is the first to look to general

heterogeneity in player types within one KMRY type population.

The paper begins by introducing the model in section 2 in which we have

several different player types within a population, each with their own
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preference for two strategies of a co-ordination game, creating a many

equilibria. The next section addresses which of the many equilibria the

population will spend most of its time in the long run under stochastic

stability. As such by allowing the experimentation rate to fall to 0 in

a fixed population, for any general level of heterogeneity, we are able to

determine the precise characteristics of the long term location of the pop-

ulation.

In section 4 we apply the results from the previous section to a specific

case of a three type population. In particular we wish to consider a pos-

sibly divided society which initially consisted of just two types of players

with opposing preferences, and then at a later date experienced a group

of fairly neutral players enter the population. Firstly we determine the

exact characteristic equations of the stable equilibria for this population.

Secondly, we show that in some cases only a small amount of neutral

agents are required to upset a co-existence equilibria and push society to

full agreement. We find when the introduction of neutral agents has this

effect it is welfare improving for society as a whole. Section 5 concludes.
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3.2 The Model

Consider a single population of N players consisting of m different types

of players, type i being denoted by Ti, i ε {1, ...,m}. The players are in

a co-ordination game as in any period the more players in the population

playing an agent’s current strategy, the higher the agent’s payoff. How-

ever the different types of players within the population receive different

payoffs each period, due to their personal preferences. Each player has

two possible strategies to choose from.

The payoff in any period t for a Ti agent playing strategy sk, λ
sk
i , is given

by

λs1i = βi(z(t)− 1)ρ

λs2i = γi(N − z(t)− 1)ρ

where z(t) represents the number of agents playing s1 in period t and

where ρ ε R+. 23

We have it that βi > βj ∀ i < j. As such T1 players have the strongest

preference to co-ordinate on s1, followed by T2 players, and so on. Indeed,

T1 players may require only a small proportion of the population to play

s1 in order for s1 to be their best response. Similarly, γi < γj ∀ i < j

indicates Tm players have the strongest preference to co-ordinate on s2.24

23For most applications we would have ρ ε (0, 1] but we leave ρ > 1 open for generality.
24We leave β1 < γ1 open as a possibility for generality.
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3.2.1 The Dynamics of a Heterogenous Population

Our population consists of myopic players who consider the state of play

will remain the same as the previous period, z(t− 1). Therefore the best

response of any Ti agent in any period t is25
s1 if z(t− 1) > 1

1+(
βi
γi

)
1
ρ
N +

(
βi
γi

)
1
ρ−1

(
βi
γi

)
1
ρ+1

≡ piN

s2 Otherwise

We shall continue by denoting Ni as the number of Ti agents in a pop-

ulation, such that N =
∑i=m

i=1 Ni. We define the proportion of Ti agents

in the population as αi = Ni/N .26 As agents consider only the aggre-

gate amount of players choosing a strategy, z(t) = {0, 1, ..., N} defines

the state of the process at any time t.

Two monomorphic stable points for the process exist, Em where all agents

choose to play s1(z = N) and E0 where all choose s2(z = 0).27

Furthermore, given

pk <
i=k∑
i=1

αi < pk+1

there exists m− 1 stable points of co-existence denoted by Ek,

k ε {1, ...,m − 1} where a proportion
∑i=k

i=1 αi agents will play s1 and∑i=m
i=k+1 αi agents play s2. For the remainder of this paper we shall only

consider cases where this constraint holds for all values of k.

The constraint is represented by the diagram below which shows the pro-

portion of a four type population who will play s1 given a proportion pj

played s1 last period.

25Such that pi = 1

1+(
βi
γi

)
1
ρ

+
(
βi
γi

)
1
ρ−1

((
βi
γi

)
1
ρ+1)N

.

26We define N0 = 0 and α0 = 0 for later analysis.
27A notation change from the author’s previous ’Noise Matters in Heterogenous Popula-

tions’ chapter.
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Overall there exists m + 1 possible stable states of the process, two of

which are monomorphic, and m− 1 which are states of co-existence.

Let us continue by addressing the basins of attraction of each stable point

and let the basin of attraction of Ek be denoted by Bk.

Bk is then defined as any state z(t) in28
{0, ..., [p1N ]−} for k = 0

{[pmN ]+, ..., N} for k = m

{[pkN ]+, ..., [pk+1N ]−} for k ε {1,...,m-1}

For a population of agents who always play a myopic best response the

long run location of the process depends upon the initial set up alone.

However, as in KMRY, any agent can select a strategy other than its best

response with probability ε each period, I shall describe such an event

as a mutation.29 As it is possible to jump from any given state to any

28Defining [x]− as the as the nearest integer below or equal to x and [x]+ as the nearest
integer above or equal to x. If the proportion of s1 played after strategies are chosen is
within a certain basin region the process will remain in that basin for the beginning of the
next period.

29This system is often described as simultaneous revisions in the literature.
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other state in one period, including itself, the process is irreducible and

aperiodic, and therefore the markov chain is ergodic.

The probability of escaping B0 to its immediate neighbouring basin B1

in any period is given by the binomial probability

p01 =
[p2N ]−∑
i=[p1N ]+

(
N

i

)
εi (1− ε)N−i

Escaping from polymorphic states is a more complicated affair as simul-

taneous mutations from different types effectively cancel each other out,

as such the probability of escaping Bk and entering Bk−1 is given by 30

pk,k−1 =
[pkN ]−∑
j=0

min{j,N−j}∑
k=max{j−

∑i=k
i=0 αkN,0}

( ∑i=k
i=0 αkN∑i=k

i=0 αkN − [pkN ]−

)(
(1−

∑i=k
i=0 αk)N

(1−
∑i=k

i=0 αk)N − k

)
ε
∑i=k
i=0 αkN+k−j (1− ε)j−k εk (1− ε)(1−

∑i=k
i=0 αk)N−k

The state space z(t) = {0, ..., N} is represented below, using an example

of population consisting of four types and 5 stable states.

We are interested in which of the m+ 1 equilibria the process will spend

most of its time. We investigate this issue in the next section by analysing

the process under the limit of stochastic stability.

30The remaining transition probabilities are given in the appendix.
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3.3 Stochastic Stability

In order to find clear conditions that determine which equilibria the pro-

cess will predominantly be in we allow the mutation rate of the process

to vanish to zero. Under this familiar limit we are able to determine the

equilibria that the process will be located in the long run, as detailed

below.31

Let the time spent in equilibrium Ei in the long run stationary dis-

tribution be given by πi. Then an equilibrium Ei is defined as being

stochastically stable if

lim
ε→0

πi > 0

Under vanishing noise only the very minimum escape jump is of impor-

tance, jumps to states other than the neighbours of an equilibria quickly

become negligible as ε decreases to 0. As such under stochastic stability

the m+ 1 Markov chain can be seen as a birth and death Markov chain.

An example of such a chain is shown below for a four type population,

generating 5 stable states.

When determining which of two neighbouring equilibria receives more

weight as ε vanishes, the size of the relevant basins are the only factor

which determine selection. Any combinational factors are overwhelmed

by the strength of the vanishing mutation rate. Similarly the issue of

31There may be more than one equilibria.
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possible counter mutations plays no part in the analysis.

And so we are able to determine that if an equilibria requires more muta-

tions to pass its neighbour’s threshold than vice versa, then it will receive

more weight in the long run. By comparing the stochastic nature of

neighbouring basin jumps throughout the m + 1 state space we are able

to produce the exact conditions that describe which equilibria will be

stochastically stable as detailed in proposition 1.

Proposition 1

An equilibria, Ek will be stochastically stable, limε→0 πk > 0, if and only

if for every j ε {0, ...,m− 1}

Skj > 0
Skj =

∑r=j
r=k 2(pr+1 −

∑s=r
s=0 αs)− αr+1 For m > j ≥ k

Skj =
∑r=k−1

r=j αr+1 − 2(pr+1 −
∑s=r

s=0 αs) For j < k

Proof. See Appendix. �

As in my previous paper32, under vanishing noise we are dealing with

basin size as the only factor determining the stochastic stability of the

process. Interestingly however the general heterogeneity of the current

model creates several linked basins of attractions. In this paper I shall

describe ’flow’ from basins A to B as a larger probability of jumping to

A from B than vice versa and ’steepness’ to be the magnitude of this

difference. Between neighbours, the direction and steepness of the flow is

found purely by comparing the size of the respective basin jumps. Each

basin jump is determined from the proportions of the relevant types and

the strength of their preferences.

In order for an equilibria, Ek, to be stochastically stable firstly there

32Noise Matters in Heterogenous Populations.
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must be flow towards it from its immediate neighbours, Ek−1 and Ek+1.

Next, if there exists positive flow from its neighbours towards their other

neighbour, Ek−2 and Ek+2, this flow cannot be larger than the flow Ek

receives from Ek−1 and Ek+1. And this combined steepness cannot then

be less than any flow that may exist from Ek+2 towards neighbour Ek+3.

And so on. If and only if all these requirements are made can equilibria

Ek be stochastically stable.

Hence the values of pi and αi are critical in determining not just whether

Bi is stochastically stable or not, but they may also have a large impact on

which of the other m states in the process as a whole will be stochastically

stable.

We now look to apply proposition 1 to a specific form of the model, in

order to deduce the characteristics of the stochastically stable equilibrium

for an interesting case of a population of three types.
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3.4 The Influence of a Neutral Group in a

Three Type Population

In this section we investigate the long-run location of a population consist-

ing of three types of player. In particular we wish to consider a population

that initially had two types of players with opposing preferences, and then

at a later date experienced a group of relatively neutral players enter the

population.33 We look to examine what effect the existence of a neutral

group can have on the population as a whole and what sway any small

preferences of the neutral group away from indifference may have on a so-

ciety. We also look to investigate whether the neutral group can increase

the welfare of a previously divided society.

The are many interesting possible applications of such a model where a

stalemate exists between two types of players, often to the detriment of

society. For example consider a population requiring a significant ma-

jority vote in order for change to occur. Indeed one could consider long

term conflict in Northern Ireland caused in part by strong opposing views

between catholic and protestant residents. Here a long term co-existence

of viewpoints could possibly be resolved by a small group of neutral types

entering the population.34 Other conflicts such as the Gaza strip crisis

could also be used as an example where the possibility of a neutral group

swaying both societies towards agreement could be of interest.

There are also technological applications of the model, for example the

recent growth of networking websites such as Facebook, MySpace and

Bebo. Here people generally benefit from more of their friends being on

33One could also consider over time some proportion of each type changing their mind and
becoming less extreme in their views.

34Or a new generation growing up with more neutral views, or people changing their
minds.
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their website of choice, yet there is evidence that certain types of people

seem to prefer different sites to others, possibly preventing one website to

dominate so far.35 For instance it is believed that socio-economics plays

a large role in people’s network preferences, for instance one rearcher has

found ”students whose parents have less than a high school education are

more likely to be MySpace users, while students whose parents have a

college education are more likely to be Facebook users than others”. As

more people look to join a network site, probably of fairly neutral opin-

ions on which to join, it could be of interest whether this will lead to one

website dominating the whole market.36

A further application could be education in classrooms. In some schools

the behavior of students is a large issue within the classroom. One could

consider a group of students who are focused on learning, and another op-

posing group who have a preference for disruptive behavior. Here a group

of neutral students could be very influential in the long term behavior,

culture and success of the class.

We now go on to analyse the influence of such a neutral group in a three

type population.

35At the time of writing Myspace and Facebook hold the majority of the market in roughly
equal proportions.

36http://crookedtimber.org/2007/11/21/using-facebook-vs-mySpace/ .
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3.4.1 The Analysis

To begin with let us consider a population with three types of players,

{T1, T2, T3}, creating four equilibria, {E0, E1, E2, E3}, of which E0 and E3

are monomorphic, and E1 and E2 are states of co-existence. However for

the convenience of this section, let us relabel the types as {T1, TN , T2}37

considering that T1 agents have a preference to co-ordinate on s1, while the

now T2 agents prefer to co-ordinate on s2, and TN agents have no strong

preference and we will describe them as neutral. The proportion of each

type within the population is represented by {α1, αN , α2} with thresholds

p1 < 0.5, pn and p2 > 0.5 respectively. We make the assumption T1 and

T2 agents are equally represented at all times such that α1 = α2 = 1−αN
2 .

We represent the situation in the diagram below38

37Such that from section 1 T1 agents are denoted by T1, T2 agents are denoted by TN and
T3 agents are denoted by T2.

38p1 is drawn relatively closer to α1 than p2 is to E2 as we will at times later consider type
1 agents having relatively stronger preferences than type 1.
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Given the model above we are able to apply proposition 1 and determine

three conditions for E0 to be stochastically stable.39

Lemma 1 limε→0 π0 > 0 if conditions 1a, 2a and 3a are satisfied, where

1a) p1 ≥ 1− αn
4

2a) pn ≥ 3− αn
4

− p1

3a) pn ≥ 3
2
− (p1 + p2)

Proof. Please see appendix. �

Condition 1a details that a positive flow from E1 to E0 is required for the

stochastic stability of E0. Condition 2a details that the combined bal-

ance of flow from basins B0 and B1 must be towards E0, and condition 3a

represents that the combined flow from all three basins must be towards

E0. Interestingly unless conditions 1a and 2a are fulfilled, type 2 agent’s

preferences have no influence on whether E0 will be selected.

We are able to make the conditions of Lemma 1 more succinct and clar-

ify the influence of the neutral types preferences. The nature of type 2

agent’s preferences, p2, dictate whether satisfying condition 2a implies

that condition 3a is simultaneously satisfied. Given that condition 1a is

satisfied, we can reduce the conditions for E0 to be stochastically stable

to just one more condition.

Lemma 2 For any given p1, pn, p2 and αn

limε→0 π0 = 1 if and only if

p1 >
1−αn

4 and
pn >

3−αn
4 − p1 if p2 >

3+αn
4

pn >
3
2 − (p1 + p2) if p2 <

3+αn
4

39We focus on the stochastic stability of E0 for clarity of explanation. The conditions for
stochastic stability of E1, E2 and E3 are given in the appendix.
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Proof. Please see appendix. �

Consider that p1 >
1−αn

4 such that there is positive flow from E1 to E0.

Then if p2 >
3+αn

4 there is positive flow from E3 to E2, a combination

of type 1 and the neutral group’s preferences determine whether there is

positive flow from E2 towards E0, which is required for E0 to be stochas-

tically stable. If p2 >
3+αn

4 then there is flow from E1 to E0 but also

positive flow from E2 to E3, away from E0, and here the a combination

of the strength of all three types preferences determines equilibrium se-

lection.

We now look at a specific form of a co-ordination game, and apply the

conditions for stochastic stability above to a variety of settings.

3.4.2 Pairwise Matching

In this section we consider pairwise matching where an agent has an equal

chance of playing a stage game with any other agent in the population

each period.

We can now analyse which particular equilibria will be stochastically sta-

ble under a variety of parameters. There are two main issues of interest

which we wish to investigate. The first issue is how small deviations

from indifference in the neutral group’s preferences may effect the equi-

librium selection of the whole population. This is achieved by assessing

the influence of a neutral group’s preferences under varying strengths of

heterogeneity between type 1 and 2 agents. The second issue is whether

the very introduction of a small neutral group itself can change equilib-

rium selection.
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To begin let us describe the various stage games between agent types.

The stage game between a T1 and T2 is given by:40

T1, T2 s1 s2

s1 θ, 1 0, 0

s2 0, 0 1, kθ

where θ > max{ 1+αn
k(1−αn) ,

1+αn
1−αn }.

41 The level of θ represents the level of

heterogeneity between the two agents. We allow k > 0 to represent the

possibility of a certain type possessing relatively stronger preferences for

their preferred strategy, k = 1 being equivalent to Type 1 and 2 agents

having equal but opposite preferences.

Similarly let stage game between two Tn agents be:42

TN , TN s1 s2

s1
θ
2 0

s2 0 qθ
2

where q is constant and q = 1 corresponds with perfectly neutral agents.43

Variations in q will allow us to consider the effects of small preferences the

neutral group may possess. We obtain the thresholds p1 = 1
1+θ , pn = 1

1+q

and p2 = kθ
1+kθ from the stage games, detailing the proportion of agents

required to play s1 in the population in order for all Ti agents to have s1

as their best response.

Before continuing we wish to discuss social welfare in different equilibria.

Total social welfare is often at its lowest in the co-existence equilibria as

the conflict between the type one and two agents significantly reduces the

40From section 1, this is equivalent to ρ = 1, β1 = θ, γ1 = 1, β2 = 1, γ1 = θ and γ2 = kθ.
41This ensures that pk <

∑i=k
i=1 αi < pk+1 and kθ > 1.

42The 4 remaining stage games are not given here but are easily obtained.
43The payoff θ

2 has been chosen arbitrary, and will only have an effect when considering
welfare.
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network effect, the neutral group suffering the most from the lack of co-

ordination. Only if one group’s preferences are extreme will a co-existence

equilibrium not be the worst place for the population as a whole to be in.

Lemma 3

A) For k ' 1, the total social welfare at E1 or E2 is less than that of

either E0 or E3 for any value of αn, j and θ,

and

B) For any value of k, E1 and E2 can never be the equilibria which

maximizes total social welfare for any value of αn, j and θ.

Proof. Given in the Appendix. �

We now go onto the analysis of equilibrium selection in our three type

population.

3.4.3 Equilibrium Selection Results

In this section we investigate the equilibrium selection for general param-

eters θ, αn, pn and k. In doing so we also look to examine the impact

of the neutral group’s preferences on the population as a whole. We are

interested in the neutral group’s influence for varying degrees of hetero-

geneity between agents one and two.

We find that the preferences of the neutral group can indeed sway equi-

librium selection, and their influence is highly dependant on the hetero-

geneity of the two opposing types.

Proposition 2 characterizes the equilibrium selection results for our gen-

eral three type model.
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Proposition 2 Consider k ≥ 1 and a population of neutral types αn

with a threshold level of pn. Then:44

For θ < 3+αn
k(1−αn) , the stochastically stable equilibrium will be

E0 if pn > 3
2 −

1+2kθ+kθ2

(1+θ)(1+kθ)

E3 if pn < 3
2 −

1+2kθ+kθ2

(1+θ)(1+kθ)

For 3+αn
k(1−αn) < θ < 3+αn

(1−αn) , the stochastically stable equilibrium will be
E0 if pn > 3−αn

4 − 1
1+θ

E2 if pn < 3−αn
4 − 1

1+θ

For θ > 3+αn
(1−αn) , the stochastically stable equilibrium will be

E1 if pn > 1
2

E2 if pn < 1
2

Proof. See appendix �.

44We use pn rather than 1
1+q for ease of explanation. k < 1 results are symmetric.
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Proposition 2 is represented by the diagram below, with specific values

of αn = 0.2 and k = 1.5.

When a low degree of heterogeneity exists, the neutral group’s preferences

decide between which of the monomorphic equilibria will be selected. As

k > 1 here, the neutral group must have a preference towards strategy

1 in order for E3 to be stochastically stable. The weak level of hetero-

geneity means that neither of the two co-existence equilibria will be a

long term equilibrium, but instead act as stepping stones between the

two monomorphic equilibria.

However when the level of heterogeneity increases beyond a critical point

it is possible for co-existence to be stochastically stable. Here the neu-

tral’s preferences can sway equilibrium selection between E0 and the co-

existence equilibrium E2, but it is now impossible for E3 to be stochasti-

cally stable.
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When the heterogeneity level increases further beyond a second critical

point, given a stable size of the neutral group, the large degree of hetero-

geneity means that co-existence must now be the long term equilibrium of

the population. Here the neutral group’s preferences will only determine

which of the two co-existence equilibria will be stochastically stable.

We now investigate what effect the very introduction of a perfectly neutral

group can have on society.

3.4.4 The Effect of the Introduction of a Neutral Group

We now wish to analyse whether the introduction of neutral agents itself

can effect the equilibrium selection of the whole population. We will

see there is indeed a critical mass of the neutral group that will change

equilibrium selection.

As the neutral group’s size increases, the co-existence equilibria E1 and

E2 are pushed away from each other and towards thresholds p1 and p2

respectively. Once both equilibria are close enough to these thresholds

neither can be stochastically stable. The more extreme the opposing

views of type one and two agents, the larger the neutral group must be in

order to make a difference. Lemma 4 describes the relationship between

the size of the neutral group and the equilibrium selected.

Lemma 4 limε→0 πi = 0 ∀ i ∈ {1, 2} if
αn >

θ−3
1+θ if k ≥ 1 ∀ q

αn >
θ−3
1+kθ if k < 1 ∀ q

There exists a level of αN ∈ (max( θ−3
1+θ ,

θ−3
1+kθ ), 1] such that co-existence

equilibria cannot be stochastically stable.

Proof. See Appendix. �
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And so the introduction of a neutral group of a large enough size ensures

the long run equilibrium will not be one of co-existence. If the population

were divided before the neutral group’s entrance, then their existence

alone could create a welfare improving switch in the population’s long

term location. The diagram below illustrates lemma 4 drawn for k = 1.

For αn = 0, we have a two type case along the horizontal axis in which

co-existence will always prevail for θ > 3.45 However we can see that just

a small proportion of neutrals in a population can be enough to upset

co-existence when the opposing types are not too extreme. In such cases

the co-existence equilibria now simply act as stepping stones between the

two monomorphic equilibria.

45This is the two type model of my previous paper NMHP with equal type 1 and two
representations.
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Bringing lemmas 3 and 4 together we can see that the existence of a

neutral group can have a significant and positive effect on equilibrium

selection and lead to a welfare improving switch.

Proposition 3 Consider a population where θ > 3, k > 1 and αn = 0

such that we have a two type population where co-existence is stochasti-

cally stable. Then the introduction of a neutral group of size αN > θ−3
1+θ

ensures the social welfare maximizing equilibrium E0 is now the stochas-

tically stable selected equilibrium.

Proof. Proposition 3 follows from the results of Lemma 3 and 4. �

And so the very introduction of a neutral population can have significant

benefit to a society, the impact possibly being that in a previously di-

vided society the socially optimum equilibrium is now selected. A society

of purely neutral agents will naturally select the welfare maximising equi-

libria in a single type KMR model. However interestingly for some cases

only a small amount of neutral agents are required to upset co-existence

and switch the long run location to the welfare maximising equilibria.

3.5 Conclusion

This paper successfully characterises the stochastic stability of a gener-

alised version of full player heterogeneity in KMRY’s original model. We

then apply this characterisation to a specific three player type population.

We can see that the entrance of a neutral group into a two type popu-

lation can have two significant effects. Firstly, small preferences of the

neutral group can significantly influence the equilibrium selection of the

whole population. The force of this influence depending on the level of

heterogeneity among the opposing groups. If this heterogeneity is extreme
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a small group of neutral individuals can do little to influence the popula-

tion. But if heterogeneity is less extreme a neutral group’s views can have

a very important effect in swaying a population towards social agreement.

Secondly, the very introduction of a neutral group can result in co-existence

no longer being the long run equilibrium of the population. Importantly

in some cases only a small proportion of neutral agents are required to

upset co-existence, and indeed this equilibrium switch can maximise the

welfare of society as a whole.
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3.6 Appendix

Proof of Proposition 1

Firstly, as we have a birth and death process, the long run time spent in

each basin Bk can be found from the Markov stationary distribution and

is given by

πk =
1

1 +
∑r=k−1

r=0

∏j=r
j=0

pk−j,k−j−1

pk−j−1,k−j
+
∑r=m−k−1

r=0

∏j=r
j=0

pk+j,k+j+1

pk+j+1,k+j

We can describe the probability pk,k+1 as follows

pk,k+1 = ε([pk+1]+−
∑i=k
i=1 αi)[f(1− ε) + ρf(ε)]

where ρ is some function independent of ε.

And similarly,

pk+1,k = ε(
∑i=k+1
i=1 αi−[pk+1]−)[f(1− ε) + ρf(ε)]

And so essentially,
pk,k+1

pk+1,k
= ε2(pk+1−

∑i=k
i=1 αi)−αk+1 [f(1− ε) + ρf(ε)]

and therefore,∏j=r
j=0

pk+j,k+j+1

pk+j+1,k+j
= ε

∑r=m−1
r=j 2(pr+1−

∑i=r
i=1 αi)−αr+1 [f(1− ε) + ρf(ε)].

and∏j=r
j=0

pk+j,k+j+1

pk+j+1,k+j
= ε

∑r=j
r=0 αr+1−2(pr+1−

∑i=r
i=1 αi)[f(1− ε) + ρf(ε)].

For any value of r,∏j=r
j=0

pk+j,k+j+1

pk+j+1,k+j
≡ εs(r)[f(1− ε) +ρf(ε)] and

∏j=r
j=0

pk−j,k−j−1

pk−j−1,k−j
≡ εt(r)[f(1−

ε) + ρf(ε)].

Then if for some r, s(r) < 0 or t(r) < 0,

if limε→0
∏j=r
j=0

pk+j,k+j+1

pk+j+1,k+j
→∞ or limε→0

∏j=r
j=0

pk−j,k−j−1

pk−j−1,k−j
→∞,

then limε→0 πk = 0.

As such an equilibria, Ek will be stochastically stable, limε→0 πk > 0, if

and only if for every j ε {0, ...,m− 1}

Skj > 0
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where
Skj =

∑r=j
r=k 2(pr+1 −

∑s=r
s=0 αs)− αr+1 For m > j ≥ k

Skj =
∑r=k−1

r=j αr+1 − 2(pr+1 −
∑s=r

s=0 αs) For j < k

�

Proof of Lemma 1 Condition 1a) is obtained from

S0
0 = 2(p1 − 0)− 1− αn

2
> 0

⇒ p1 >
1− αn

4

Condition 1b) is obtained from

S1
0 = 2(p1 − 0)− 1− αn

2
+ 2(pn −

1− αn
2

)− αn > 0

⇒ 2p1 + 2pn −
3− αn

2
> 0

⇒ pn >
3− αn

4
− p1

Condition 1c) is obtained from

S2
0 = 2(p1 − 0)− 1− αn

2
+ 2(pn −

1− αn
2

)− αn + 2(p2 −
1 + αn

2
)− 1− αn

2
>

⇒ 2p1 + 2pn + 2p2 −
3− αn

2
− 3

2
− αn

2
> 0

⇒ pn >
3
2
− (p1 + p2)

�

Stochastic Stability of E1, E2 and E3

E3 :
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limε→0 π3 = 1 if conditions 1b, 2b and 3b are all satisfied, where

1b) p2 <
3 + αn

4

2b) pn <
5 + αn

4
− p2

3b) pn <
3
2
− (p1 + p2)

E1 :

limε→0 π1 = 1 if conditions 1c, 2c and 3c are all satisfied, where

1c) p1 <
1− αn

4

2c) pn >
1
2

3c) pn > p2 −
5 + αn

4

E2 :

limε→0 π2 = 1 if conditions 1d, 2d and 3d are satisfied, where

1d) p2 >
3 + αn

4

2d) pn <
1
2

3d) pn > p1 −
3− αn

4

Proof of Lemma 2

To prove lemma 2 consider that satisfying condition 2a also implies con-

dition 3a is satisfied if and only if

3− αn
4

− p1 >
3
2
− (p1 + p2)

⇒ p2 >
3 + αn

4

�

Proof of Proposition 2

Let us first note that from lemma 2 that as
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p1 >
1−αn

4 ⇒ 1
1+θ >

1−αn
4 ⇒ θ < 3+αn

(1−αn)

and

p2 <
3+αn

4 ⇒ kθ
1+kθ <

3+αn
4 ⇒ θ < 3+αn

k(1−αn) we can express lemma 2 as:

For any given p1, pn, p2 and αn

limε→0 π0 > 0 if and only if

θ < 3+αn
(1−αn) and

pn >
3−α

4 − p1 if θ > 3+αn
k(1−αn)

pn >
3
2 − (p1 + p2) if θ < 3+αn

k(1−αn)

Therefore we can see that if θ < 3+αn
k(1−αn) then both conditions 1a and

1b are satisfied (1c and 1d not satisfied) such that E1 and E2 can not

to be stochastically stable. Then from lemma 2 and condition 3c we can

determine the stochastically stable equilibrium will be
E0 if pn > 3

2 −
1+2kθ+kθ2

(1+θ)(1+kθ)

E3 if pn < 3
2 −

1+2kθ+kθ2

(1+θ)(1+kθ)

Now consider that 3+αn
(1−αn) < θ < 3+αn

k(1−αn) . Condition 1d is now satisfied

(1b not satisfied) so that E3 cannot be stochastically stable, however as

k > 1 condition 1a is still satisfied such that E0 can be stochastically stable

and E1 cannot, and from lemma 2 and condition 2d we can determine the

stochastically stable equilibrium will be,
E0 if pn > 3−αn

4 − 1
1+θ

E2 if pn < 3−αn
4 − 1

1+θ

Finally consider that θ > 3+αn
(1−αn) . Then conditions 1a and 1b are not

satisfied, and so neither E0 or E3 can be stochastically stable. Therefore
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from conditions 2c and 2d we can see the stochastically stable equilibrium

will be as follows: 
E1 if pn > 1

2

E2 if pn < 1
2

�

Proof of lemma 3

A)

Essentially when considering moving from E0 to E1 type one agents gain

α1θ − 1 and type two agents lose α1θ, therefore with neutral agents also

having a decreased payoff at E1 it is socially inferior to E0 for k near to

one.

More formally for k = 1 let us consider social welfare at E0 for one period.

Type 1 agent’s total payoff is given α1N .

Type 2 agent’s total payoff is given α2θN = α1θN as type 1 and 2 agents

are equally represented.

The nuetral type’s payoff is given by αnjθN = 1−α1
2 jθ.

As such total social welfare at E0 is given by

Etsw0 = α1(1 + θ) + 1−α1
2 jθ

Now let us consider social welfare at the polymorphic equilibria E1.

Here type 1 agent’s total payoff is given α2
1θN .

Type 2 agent’s total payoff is given (1− α1)α1θ

The neutral type’s payoff is given by (1− α1)1−α1
2 jθ.

As such total social welfare at E0 is given by

Etsw1 = α2
1θN + (1− α1)α1θ + (1− α1)1−α1

2 jθ

= α1θ(α1 + (1− α1)) + (1− α1)1−α1
2 jθ.

Therefore,

Etsw0 − Etsw1 = α1(1− α1θ) + α1(α1θ) + 1−α1
2 jθ
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= α1 + 1−α1
2 jθ > 0 ∀ j, α1.

Symmetrically Etsw0 > Etsw2 , Etsw3 > Etsw2 and Etsw3 > Etsw2 . �

B)

For k > 1 it is possible that the total social welfare at E1 is greater than

E3 as the total social welfare at E1 is given by

Etsw1 = α1θ(α1 + (1− α1)k) + (1− α1)1−α1
2 jθ

and

Etsw3 is given by α1(1 + θ) + 1−α1
2 jθ

such that high levels of k yield Etsw1 > Etsw3 .

However in this case we have it that E0 maximises social welfare not E1

as

Etsw0 = α1(1 + kθ) + 1−α1
2 jθ

such that

Etsw0 − Etsw1 = α1(1− α1θ) + α1(kθ − (1− α1)kθ + α1
1−α1

2 jθ

= α1(1− α1θ) + α1(α1kθ) + α1
1−α1

2 jθ

= α1 + α2
1θ(k − 1) + α1

1−α1
2 jθ > 0 ∀ k > 1, α1, j.

Symmetrically for k < 0, Etsw3 > Etsw2 ∀ α1, j and we see that the co-

exsitence equilibria can not maximise social welfare. �

Proof of Lemma 4

From proposition 1 we can deduce that limε→0 π1 = 0 occurs when

S1
0 = 2(p1 − 0)− 1−αn

2 = 2 θ
1+θ −

1−αn
2 > 0

∴ αn > θ−3
1+θ ⇒ limε→0 π1 = 0.

Similarly, limε→0 π2 = 0 occurs when

S3
2 = 1−αn

2 − 2(p2 − 1+αn
2 ) = 1−αn

2 − 2( kθ
1+kθ −

1+αn
2 ) > 0

∴ αn > θ−3
1+kθ ⇒ limε→0 π2 = 0.

and so
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limε→0 πi = 0 ∀ i ε{1, 2} if


αn >

θ−3
1+θ if k ≥ 1 ∀ q

αn >
θ−3
1+kθ if k < 1 ∀ q

�

Transition Probabilities

The transition probability of escaping Bm and entering Bm−1 in any pe-

riod requires between N − [qN ]− and N − [pN ]+ mutations and is given

by

pm,m−1 =
i=N−[pn−1N ]+∑
i=N−[pnN+]−

(
N

i

)
εi (1− ε)N−i

The probability of jumping from the polymorphic basin Ek to Ek+1 is

given by

pk,k+1 =

∑i=k
i=0 αkN∑

j=
∑i=k
i=0 αkN−[pkN ]+

min{j,N−j}∑
k=max{j−

∑i=k
i=0 αkN,0}

( ∑i=k
i=0 αkN∑i=k

i=0 αkN − [pkN ]−

)(
(1−

∑i=k
i=0 αk)N

(1−
∑i=k

i=0 αk)N − k

)
ε
∑i=k
i=0 αkN+k−j (1− ε)j−k εk (1− ε)(1−

∑i=k
i=0 αk)N−k
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4 The Limitations of Stochastic

Stability in Heterogenous Populations

Abstract

This paper seeks to assess the ability of stochastic stability results to

represent populations subject to small but positive noise levels. Under

varying positive noise levels we present numerical calculations of the long

run distribution of heterogenous populations who play a binary choice

co-ordination game. We show that populations with individual experi-

mentation rates as small as one in a million periods can in fact be located

in a completely different neighbourhood in the long run to the stochastic

stability equilibrium. We also find that over a third of populations are

misrepresented in this way by stochastic stability. As such we severely

question the ability of vanishing noise analysis to represent the true nature

of populations subject to even the smallest noise levels.
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4.1 Introduction

This paper considers a model of the type introduced by Kandori, Mailath

and Rob(1993, KMR) and Young(1993). KMRY have a single type of

boundedly rational agents who occasionally experiment away from their

best choice, giving the population movement and allowing the possibility

of escaping two stable equilibria. In order to obtain clear selection results

KMRY allow the experimentation rate to decrease to 0 which selects a

single equilibria, described in the literature as the stochastically stable

equilibrium.

In this paper we discuss a KMRY type model with a general level of het-

erogeneity such that we have several types of agents existing within a

single population, each with different preferences in a binary choice co-

ordination game. The general level of heterogeneity creates many stable

equilibria and we study the equilibrium selection results of some specific

populations.

The aim of the paper is to assess the validity of using stochastic stability

as an equilibrium selection technique for a KMRY type model with a gen-

eral level of heterogeneity in players’ preferences. In particular we wish to

investigate the ability of stochastic stability to represent the actual long

term location of a population subject to small but positive noise.

The complex stochastic nature of the dynamics under positive noise en-

tails that tractable results are difficult to produce, and in this paper we

obtain our results instead through numerical calculations. By choosing

specific populations we are able produce a discrete markov chain for a

finite population size with set transition probabilities. As such we can

calculate the exact location of the population in the long run for varying

levels of noise, and compare these results to the stochastically selected
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equilibrium. We find populations with individual experimentation rates

as small as one in a million periods can in fact be located in a completely

different neighbourhood in the long run to the stochastic stability equi-

librium.

We also assess the likelihood that a population will have different equilib-

rium selection results under stochastic stability and small noise levels. We

find that such a misrepresentation is not a rare event. Populations with

greater degrees of heterogeneity are more likely to be misrepresented by

stochastic stability. Indeed we find that more than a third of populations

with five player types are misrepresented by stochastic stability.

This paper is not the first to look at KMRY type models with posi-

tive noise levels. Theoretical papers of Benaim and Weibull (2003a,b)

and Binmore and Samuelson(1997) have constant positive noise levels in

a population whose size is taken to infinity. Myatt and Wallace(1998)

and Beggs(2002) devote some attention to positive noise levels. Sand-

holm(2005) shows in some homogenous population games constant noise

results can differ from those of vanishing noise. My previous chapter

’Noise Matters in Heterogenous Populations’ proves that in a two type

population positive noise results can differ from those of stochastic sta-

bility. This paper continues by showing more heterogenous populations

under extremely small noise levels can be located in very different neigh-

borhoods to where stochastic stability would suggest.

The paper is presented as follows. The next chapter presents the model

and the dynamics of the population. We then discuss our methods of

producing the numerical calculations. In section 4 we present an intro-

ductory calculation, and then go onto demonstrate our key result for three

separate populations under an array of small noise levels. Section 6 de-
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tails the frequency of our results from section 4. Section 7 discusses the

reasons behind our result and section 8 concludes.

4.2 The Model

Consider a single population of N players consisting of m different types

of players, type i being denoted by Ti, i ε {1, ...,m}. The players are in

a co-ordination game as in any period the more players in the population

playing an agent’s current strategy, the higher the agent’s payoff. How-

ever the different types of players within the population receive different

payoffs each period, due to their personal preferences. Each player has

two possible strategies to choose from.

The payoff in any period t for a Ti agent playing strategy sk, λ
sk
i , is given

by

λs1i = βi(z(t)− 1)ρ

λs2i = γi(N − z(t)− 1)ρ

where z(t) represents the number of agents playing s1 in period t and

where ρ ε R+. 46

We have it that βi > βj ∀ i < j. As such T1 players have the strongest

preference to co-ordinate on s1, followed by T2 players, and so on. Indeed,

T1 players may require only a small proportion of the population to play

s1 in order for s1 to be their best response. Similarly, γi < γj ∀ i < j

indicates Tm players have the strongest preference to co-ordinate on s2.47

46For most applications we would have ρ ε (0, 1] but we leave ρ > 1 open for generality.
47We leave β1 < γ1 open as a possibility for generality.
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4.2.1 The Dynamics of a Heterogenous Population

Our population consists of myopic players who consider the state of play

will remain the same as the previous period, z(t− 1). Therefore the best

response of any Ti agent in any period t is48


s1 if z(t− 1) > 1

1+(
βi
γi

)
1
ρ
N +

(
βi
γi

)
1
ρ−1

(
βi
γi

)
1
ρ+1

≡ piN

s2 Otherwise

We shall continue by denoting Ni as the number of Ti agents in a pop-

ulation, such that N =
∑i=m

i=1 Ni. We define the proportion of Ti agents

in the population as αi = Ni/N .49 As agents consider only the aggre-

gate amount of players choosing a strategy, z(t) = {0, 1, ..., N} defines

the state of the process at any time t.

Two monomorphic stable points for the process exist, Em, where all agents

choose to play s1(z = N) and E0 where all choose s2(z = 0).50

Furthermore, given

pk <
i=k∑
i=1

αi < pk+1

there existsm−1 stable points of co-existence denoted by Ek, k ε {1, ...,m−

1} where
∑i=k

i=1 αi agents will play s1 and
∑i=m

i=k+1 αi agents play s2. For

the remainder of this paper we shall only consider cases where this con-

straint holds for all values of k.

48Such that pi = 1

1+(
βi
γi

)
1
ρ

+
(
βi
γi

)
1
ρ−1

((
βi
γi

)
1
ρ+1)N

.

49We define N0 = 0 and α0 = 0 for later analysis.
50A notation change from the author’s previous Noise Matters in Heterogenous Populations

paper.
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The constraint is represented by the diagram below which shows the pro-

portion of a four type population who will play s1, given a proportion pj

played s1 last period.

Overall there exists m + 1 possible stable states of the process, two of

which are monomorphic, and m− 1 which are states of co-existence.

Let us continue by addressing the basins of attraction of each stable point

and let the basin of attraction of Ek be denoted by Bk.

Bk is then defined as any state z(t) in 51
{0, ..., [p1N ]−} for k = 0

{[pmN ]+, ..., N} for k = m

{[pkN ]+, ..., [pk+1N ]−} for k ε {1,...,m-1}

For a population of agents who always play a myopic best response the

long run location of the process depends upon the initial set up alone.

However, as in KMRY, any agent can select a strategy other than its best

response with probability ε each period, I shall describe ε as the mutation

51Defining [x]− as the as the nearest integer below or equal to x and [x]+ as the nearest
integer above or equal to x.
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experimentation rate.52 As it is possible to jump from any given state to

any other state in one period, including itself, the process is irreducible

and aperiodic, and therefore the markov chain is ergodic.

A state space using an example of population consisting of four types and

5 stable states is shown below

4.3 A Positive Level of Noise

As we will be dealing with positive levels of noise, the process will be

in continual movement and therefore will not converge to a single point.

However under the best reply dynamics of the population, at any state in

a certain basin of attraction every agent of a particular type has the same

best response next period. Therefore the number of mutations required

to leave a basin, and the probability of this occurring, is the same for any

state within a basin of attraction.

As such we are able to divide the state space into neighborhoods defined

by the basins of attraction, and the state space z(t) = {0, 1, ..., N} can

be reduced to an m + 1 state markov chain. We can then determine the

proportion of time the process will spend in each of the neighbourhoods

for various ε levels. It is possible to jump from one basin to any other

each period, however the probability of the process jumping beyond a

52This system is often described as simultaneous revisions in the literature.
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neighbouring basin is extremely small relatively, and although included

in the calculations for clarity will not be illustrated. With this in mind

we present a four type model with 5 stable states as an example below:

The markov transition probabilities correspond to the basin escape prob-

abilities. The probability of escaping B0 to its immediate neighbouring

basin B1 in any period is given by the binomial probability 53

p01 =
[p2N ]−∑
i=[p1N ]+

(
N

i

)
εi (1− ε)N−i

Similarly pm,m−1 is given by

pm,m−1 =
i=N−[pm−1N ]+∑
i=N−[pmN+]−

(
N

i

)
εi (1− ε)N−i

Escaping from polymorphic states is a more complicated affair as we are

dealing with the net of two binomials as simultaneous mutations from

different types can cancel each other out, and so the probability of moving

from the polymorphic neighbourhood Bk to Bk−1 is given by

pk,k−1 =
[pkN ]−∑
j=0

min{j,N−j}∑
k=max{j−

∑i=k
i=0 αkN,0}

( ∑i=k
i=0 αkN∑i=k

i=0 αkN − [pkN ]−

)(
(1−

∑i=k
i=0 αk)N

(1−
∑i=k

i=0 αk)N − k

)
ε
∑i=k
i=0 αkN+k−j (1− ε)j−k εk (1− ε)(1−

∑i=k
i=0 αk)N−k

We have a new ergodic markov chain whose long run behavior is given

by the stationary equations πεP ε = πε, where P ε is the transition matrix
53We only present the jumps p01, pm,m−1 and pk,k−1 for establish the nature of the prob-

ability dynamics.
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containing all transition probabilities of pij , and πε is the unique solution

for fixed P ε.

As such for a fixed population with specific player proportions αi and

preferences pi, for a chosen level of ε we are able to calculate the station-

ary distribution of the process {π0, ..., πm}, and determine the proportion

of time the process will spend in each neighbourhood in the long run.

We proceed to look at a specific population and investigate whether vari-

ations in levels of ε, when ε is itself small, has any significant affect on

the stationary distribution of the process.
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4.4 An Introduction to the Results

We begin by considering a specific population of 100 players consist-

ing of four player types equally represented such that αi = 1
4 for all

i ε {1, 2, 3, 4}. Each player type has separate preferences yielding thresh-

olds p1 = 0.13, p2 = 0.38, p3 = 0.62 and p4 = 0.88 for types one to four

respectively. As such the state space can viewed as

The aim of the paper is to assess the ability of stochastic stability analysis

to represent the behaviour of populations subject to small but positive

noise. And so we now look at the long run stationary distribution of the

current process under three separate small values of the mutation rate to

assess the consistency of the results.

We begin by calculating the stationary distribution under a positive noise

level ε = 0.01, an individual mutation rate of one every one hundred pe-

riods. The results of the calculations are shown below.

N 0.01

p1 0.14

p2 0.38 0.24

p3 0.62

p4 0.88

! = 0.01

! = 0.001

! = 0.0001

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4
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We find that for this small level of noise the process spends all of its

time in states of co-existence, with the vast majority being in the middle

equilibria, where half of the population play each strategy, and no time is

spent in either monomorphic equilibria.

Next we reduce the mutation rate of the population to ε = 0.001 to assess

the consistency of our first result, and the resulting stationary distribu-

tion is given below.

N 0.01

p1 0.14

p2 0.38 0.24

p3 0.62

p4 0.88

! = 0.01

! = 0.001

! = 0.0001

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4

We find that the stationary distribution of the population for ε = 0.001

is significantly different from a mutation rate of ε = 0.01, despite both

mutation levels being small. Here the stationary distribution details a bal-

anced amount of time being spent in all three of the co-existence states,

with a small amount of time being spent in B0.

Lastly we reduce the mutation rate further to ε = 0.0001 and the result-

ing stationary distribution is given below.

N 0.01

p1 0.14

p2 0.38 0.24

p3 0.62

p4 0.88

! = 0.01

! = 0.001

! = 0.0001

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4

!0 !1 !2 !3 !4
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Surprisingly we find a very different distribution is produced when con-

sidering ε = 0.001 and ε = 0.0001 noise levels. Under ε = 0.001 the

population will spend almost all of its time in B0 and essentially no time

in states of co-existence. Reducing ε to 0 we can verify that E0 is the

stochastically stable state, the equilibria where stochastic stability tells

us the process will spend all of its time.54

Stochastic stability informs us that this population will spend all of its

time in the neighbourhood B0 yet our numerical calculations show that

with a mutation rate as small as ε = 0.001 this population will be mostly

located in neighbourhoods of co-existence. For ε = 0.01 the long run

location of the population is the opposite to where stochastic stability

suggests. In the next section we show such results can indeed repeat

themselves, and under exceptionally small levels of noise.55

54We can also prove that B0 is the stochastically stable state using proposition one from
my previous paper ’Three’s a Crowd’. Here S1 = 1, S2 = 2, S3 = 2 and S4 = 6 such that all
Sj > 0 and therefore E0 is the stochastically stable state.

55Let us note that there are several populations where stochastic stability does reflect
equilibrium selection under small positive noise levels. The aim of the paper is to show that
are also many populations where the opposite is true, and for particularly small positive
noise values. Section 6 discusses the prevalence of our main result.
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4.5 The Limitations of Stochastic Stability

In this section we show even more startling results with populations sub-

ject to extremely small mutation levels being located in a completely dif-

ferent neighbourhood to the stochastically stable equilibria.

The charts below show the stationary distribution of another four type

population with each type equally represented such that αi = 1
4 and

thresholds p1 = 0.2, p2 = 0.31, p3 = 0.69 and p4 = 0.81

Remarkably the stationary distribution at mutation levels as low as one

in ten thousand is completely different to the distribution implied by

stochastic stability. As such vanishing noise analysis cannot in any way

be seen as an accurate representation of the long run distribution of this
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population under even very small mutation rates. Under high noise lev-

els one would naturally expect the process to locate in central equilibria,

what is surprising here is that we find remarkably different results for such

small levels of ε.

We continue by showing similar results are repeated for a population with

six types equally represented in a 102 player population with thresholds

p1 = 0.12, p2 = 0.22, p3 = 0.42, p4 = 0.58, p5 = 0.78 and p6 = 0.88.

We can see below that this population exhibits the same characteristics

as our first two examples.

We now present one of our most extreme examples below with a 100 player

population consisting of four player types equally represented with pref-

erences p1 = 0.13, p2 = 0.38, p3 = 0.62 and p4 = 0.87. Amazingly the

stochastic stable equilibrium only appears in the stationary distribution
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with any positive weight when the mutation rate reaches values as low as

10−8.

The results show conducting stochastic stability alone can be a very dan-

gerous method of selecting the long run location of certain models even

with very small levels of noise.
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4.6 The Prevalence of Stochastic Stability
Misrepresentation

We now look to assess the frequency of populations with small noise lev-

els who are misrepresented by stochastic stability analysis. To do this

we simulate many different populations which have the same number of

player types but have players with different preference values. We then

determine the percentage of populations where small ε results are in fact

different to stochastic stability results.

Each population consists of 100 players and the player types are equally

represented such that αi = 100
m+1 .56 We wish to assess populations with a

variety of different preference values. As such each type’s threshold’s are

drawn from a uniform distribution on the interval given by our constraint

pk <
∑i=k

i=1 αi < pk+1. And so for each population p1 is drawn from

U [0, α1], and generally pi is drawn from U [αi−1, αi].

Each set of pi values represents a single population, and we calculate the

stationary distribution of each population for ε = 0.01, to assess small

positive noise levels, and for ε = 10−11 to determine the stochastically

stable equilibrium.57 We then assess whether the neighbourhood with

the highest stationary weighting, πi, is the same for both values of ε or

not. We produce these calculations for 10000 populations and determine

the percentage of populations which have different ε = 0.01 and stochastic

stability results.

We now present our results of the percentage of populations with

56For m = 2 and m = 5 we have N = 102, and for m=7 we have N = 98 as αiN must be
an integer. We have chosen not to vary N and αiN here and leave such investigations for
future research.

57This is generally a small enough value of ε to find the stochastically stable equilibrium.
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different ε = 0.01 and stochastic stability results, for increasing levels

of heterogeneity.

The one type population corresponds to KMR’s original homogenous

model and here stochastic stability results do match those with positive

noise levels as there are no polymorphic states. However when a degree

of heterogeneity is introduced into the model we can see that stochastic

stability is a poor representation of many populations subject to small

noise levels. As such the results of our previous section are not a freak

occurrence. We find 17% of four player type populations have different

ε = 0.01 and stochastic stability results. As such our results from sec-

tion 4 and 5 are not a fluke. Indeed for higher levels of heterogeneity

we find more startling results, over a third of six player type populations

have different positive noise and stochastic stability results. This is an

extremely high occurrence of stochastic stability misrepresentation, and

further demonstrates the weakness of vanishing noise analysis.

We now discuss why we observe different stochastic stability and positive

noise level equilibrium selection results, and why this difference occurs

more readily in populations with higher levels of heterogeneity.
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4.7 Discussion of the Results and Dynamics

In this section we wish to address the reasons for the difference between

stochastic stability and small noise level results, the direction of the

change and why such small mutation rates can yield such a significant

disagreement. We also discuss why populations with higher levels of het-

erogeneity are more likely to be misrepresented by stochastic stability.

The stark difference in results is due to the force of using stochastic stabil-

ity as a limit. Allowing noise to completely vanish overwhelms two effects

that are present and significant under positive noise even when the levels

of that noise are extremely small. The first effect is the smaller of the

two and comes from the fact that simultaneous opposing mutations can

cancel each other out. This effect is overwhelmed by stochastic stability,

and when the effect is present under positive noise it favours states of

co-existence.

The main positive noise effect however comes from the combinational dy-

namics of the process. The number of potential mutations in order to

complete a basin jump varies between different equilibria, which has a

large influence on transition probabilities under any positive noise levels,

yet is completely overlooked when taking the limit of noise to zero. Un-

der positive noise a mixture of combinational forces and the size of basin

jumps will decide equilibrium selection, however under stochastic stability

only the size of the basin jumps is of importance.

For instance when the process is in B0 all N agents can jump towards

B1, whereas at B1 there are only α1N agents who can jump towards B0.

As such due to the larger combinational forces in B0 the probability of x

mutations is strictly greater than x type 1 mutations at B1 towards B0 for

any noise level. However as the the noise level vanishes the combinational
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forces are overwhelmed and probabilities converge to the same value.

The combination effect is always in favour of co-existence states under

positive noise levels and as such our results cannot go the other way. If

stochastic stability does select a state of co-existence then the long run

location of the process under positive noise cannot be a monomorphic

neighbourhood.

For populations where the B0 basin escape requires slightly more muta-

tions than the jump from B1 to B0, due to the combination effect for

some positive noise levels the process will spend more time in B1 than

B0. Stochastic stability instead tells us more time will be spent at B0

than B1 as the basin B0 basin jump is larger. As such there is a range

of type one thresholds p1 between the equilibria E0 and E1 where some

positive level of noise will yield probabilities p01 > p10 while stochastic

stability tells us limε→0
p01
p10
→ 0, and as such the stationary distributions

can be very different. I shall denote the range as ε+
0 .

It is the heterogeneity of our model which is the key to why we obtain

our results, even at very small mutation levels, for two reasons both as-

sociated with combinational forces.

Firstly there exists an ε+
0 range between every two neighboring equilib-

ria.58 In a heterogenous population there are many equilibria and there-

fore many ε+
0 ranges. If one threshold is within an ε+

0 range then this

in itself can lead different stochastic stability and positive noise results.

If more than one threshold is within an ε+
0 range then the effect can be

extenuated, and stochastic stability and positive noise results can be very

different for very small values of ε. In each case the effect of a threshold

58The only exception being when two neighbouring equilibria are situated equally far from
pi = 0.5. Here the number of possible mutations from either equilibria are identical, and so
there is no combination effect present here.
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being in the ε+
0 range is that more weight is given to more central neigh-

bourhood than stochastic stability would suggest.

The state space with ε+
0 ranges for the 100 player population with 4 types

equally represented is illustrated below.59

Secondly the linked basins of a heterogenous population means that an

equilibria’s long term weighting is dependant upon the interaction of

transition probabilities across the whole state space, not just the equi-

libria’s own basin jump probabilities. For instance B0’s long term weight

in the stationary distribution is in part determined by E2’s basin jump

probabilities as essentially π0 = p10
p01

p21
p12
π2.60 If the jump B1 → B2 re-

quires a relatively small amount of mutations61 but slightly more than

B1 → B0 then under some positive noise levels due to combinational

forces p21
p12

p10
p01

> 1 ⇒ π0 < π2. However because the basin jump B1 → B2

requires slightly more mutations the results, for some very small ε the

results must switch such that p10
p01

p21
p12

< 1⇒ π0 > π2. The many basins of

a heterogenous population create various scenarios in which such switches

59The ε+0 ranges are drawn wider near the monomorphic equilibria than the middle equi-
libria. To see why consider that the number of possible mutations from E0 to E1 is 100 and
the number of possible mutations from E1 to E0 is just 25, a difference of 75. However the
number of possible mutations from E1 to E2 is 75 and the number of possible mutations
from E2 to E1 is 50, a difference of 25. As such the ε+0 range is larger between E0 and E1

than E1 and E2.
60Cross basin jumps, p20 etc, being regarded as negligible here.
61Such that p10

p01
> 1 and p21

p12
> 1.
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occur at extremely low ε rates as shown in the calculation examples.

The linked basin effect and the ε+
0 range effect both increase with the level

of heterogeneity of a population, which explains why we find a greater

proportion of populations are misrepresented by stochastic stability when

the populations have more player types. For higher levels of heterogene-

ity we have more basins of attraction, and therefore a greater scope for

the linked basin effect to produce different stochastic stability and small

noise results. With higher levels of heterogeneity there are also more ε+
0

ranges in the state space and therefore more populations are affected by

player thresholds landing within an ε+
0 range. The combination of both

effects produces our finding that 56% of six player type populations are

misrepresented by stochastic stability.

And so both when thresholds fall in ε+
0 ranges and when linked transition

probability interactions are sensitive to ε rates, stochastic stability can

be a very poor representation of many populations subject to even very

small levels of noise.
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4.8 Conclusion

We have shown through calculations that stochastic stability can be a

very dangerous method of representing a heterogenous populations sub-

ject to small levels of noise. Most surprisingly we have found that even

with populations subject to extremely small noise levels stochastic stabil-

ity can completely misrepresent the long run location of the population.

We also find that such a representation is not rare and occurs in over

a third of populations. We also find that when there is a discrepancy

between the two methods it is the states of co-existence that stochastic

stability overlooks.

And so this paper wishes to alert the research community of the dangers

of conducting vanishing noise analysis alone, without consideration of how

results may change under a rather small amount of positive noise.
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5 Models of Evolution and Social

Thresholds

Abstract

This literature review looks at a series of papers whose models are driven

by social thresholds, the idea that people’s decisions are strongly influ-

enced by the actions of society as a whole. The literature began with

Schelling’s investigative paper on social integration proceeded by a formal

model by Granovetter on group action. Later papers delve into the influ-

ence of social networks and the speed of evolution. We give a thorough

description of each key paper and provide insight into the assumptions

that drive the results of the varying models and the overall literature.

108



5.1 An Introduction to Social Threshold Models

In his ground breaking paper ’Dynamic Models of Segregation’ Thomas

Schelling first looked at a game which modeled a society consisting of

white and black people with the simple requirement that in a certain

neighbourhood, individuals did not want to be in the minority. When

an individual considered a neighborhood they looked at the proportion of

their own colour and if this fell below a certain threshold they would not

join the neighborhood. Schelling went onto demonstrate this simple and

seemingly insignificant preference can lead society to extreme segregation,

and his work began a literature of models based upon social thresholds.

Social threshold models are driven by the assumption that people are

strongly influenced by other members of society, and when enough people

take up an action others will may also be persuaded to join in. Mark

Granovetter’s first formal model of social thresholds, ’Threshold Models

of Collective Behavior’, explains the idea extremely well. If one person

starts a riot then another person may join in. If 50 people have joined the

riot already this may persuade another 10 to riot, and eventually through

this dynamic an entire group may join in. Grovetter’s paper gives us a

first insight into the importance of the distribution of thresholds in the

population, and this is the second paper we study.

One can naturally ask whether people are in fact strongly influenced by

the actions of others and indeed whether threshold models can be an ac-

curate representation of individual choices in society and group outcomes.

It can be in little doubt that in a variety of situations people are influ-

enced by the actions of others. For instance in some cases the fact that

a large proportion of people are taking up a new innovation may imply

they know something you don’t, and as such persuade you to also buy
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the innovation. Indeed a disease will spread at a faster rate the more a

population is infected. Also one may only want to speak out on an issue,

or vote on an issue if they believe other people hold the same view. Obvi-

ously there are many examples where individuals don’t care what others

are doing, however there are certainly many interesting cases where peo-

ple do care about the actions of others, certainly enough to justify the

focused research on social threshold models we survey in this review.

The previous chapters of the thesis are studies of populations of players

who have a range of thresholds and this is the motivation for the par-

ticular literature review of social threshold models chosen here. However

one criticism of the literature on threshold models is that people change

strategies just because other people have changed without any economic

justification for why this should happen. Players often do not have utility

functions such that their chosen strategies cannot be judged to be opti-

mal or not, and as such it can be argued that economists should not be

concerned with pure threshold models.

However the threshold nature of the models of our previous chapters are

not assumed but produced from populations who play a co-ordination

game with actual payoff matrices and player utility functions. Indeed the

general level of heterogeneity of the populations results in a distribution

of thresholds of the type assumed by Granovetter initially and others

later. Therefore, as economists we are very interested in the pure thresh-

old models studied in this review.

One application of interest which demonstrates the link of the previous

chapters to the current review is the mobile phone market. In many

markets calls to your own network are significantly cheaper than calls to

other networks, creating a repeated co-ordination game. The more peo-

110



ple in a population on your network the higher your payoff will be, such

that it may be optimal for you to switch networks if many other people

switch strategies, leading to player thresholds. Furthermore in our pre-

vious chapters we also allow players to have personal preferences for a

particular network, and as such different players will have different opti-

mal actions based upon the play of the population as a whole, generating

a range of player thresholds of the type assumed in many of the papers

studied in this review. The only significant difference between the models

in my previous chapters and those of the current literature review is that

in the current literature agents can adopt a strategy but often cannot

change their mind, whereas in my model it is possible for agents to switch

back and forth between two strategies.

Returning to the contents of the review the third paper we look at is

Micheal Macy’s paper ’Chains of Co-operative Action: Threshold Effects

in Collective Action’. In Granovetter’s paper he often finds populations

which get stuck at very low adoption levels, or no adoption at all and

it is this issue which Macy looks to address. By introducing a threshold

distribution that can evolve over time Macy’s model can create a mech-

anism for a population to escape from low levels of adoption. We go

onto examine Mark Gronovetter’s second paper co-written with Roland

Song, ’Threshold Models of Diversity: Chinese Restaurants, Residential

Segregation and the Spiral of Silence’. This paper attempts to create a

formal mathematical account of Schelling’s initial ground breaking paper

on social segregation, recreating many of his simulated results.

Next we consider Peter Dodds and Duncan Watts paper, ’Universal Be-

havior in a Generalized Model of Contagion’ where agents can remember

a number of previous interactions and their threshold can therefore be
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breached via a series of contacts with other members of a population. In

a quite complicated structure the authors are able to determine which of

three classes a model’s equilibria will fall in just by looking at two param-

eters. Here it is those most easily influenced in the population who are

key to the diffusion dynamics.

The penultimate paper we study is the social threshold section of Peyton

Young’s recent paper ’Innovation Diffusion in Heterogeneous Populations:

Contagion, Social Influence and Social Learning’. Peyton’s paper is orig-

inal in that he focuses on the speed of adoption. He demonstrates that

the speed of adoption is dependant upon the initial conditions of a society

and shows if the early adoption levels are high enough the process will

sustain a period of super-exponential growth.

The last paper we study is Thomas Valente’s ’Social network thresholds

in the diffusion of innovations’. His paper is unique as he conducts an em-

pirical investigation on the diffusion of innovations with data from three

separate cases. The paper assesses the influence of social networks on the

adoption of new ideas in a society. He finds amongst other results that

those individuals who have the most affect upon the adoption of inno-

vations in a population are generally both conservative and consistent in

their views and actions.

The first paper we begin with is Schelling’s corner stone paper, and the

rest of the literature review continues in the order described by the intro-

duction.
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5.2 Dynamic Models of Segregation
− Thomas.C.Schelling 1971

In this paper Schelling pioneers the idea of social thresholds in dynamic

models of individual choice. The thresholds here derive from an agent re-

quiring a certain number of their own type to be in their neighbourhood in

order to be content. Schelling considers two groups of players who decide

which neighbourhood they wish to live in. He begins with an elegant one

dimensional model consisting of a line of players of both groups. The dia-

gram below demonstrates the model, with stars and crosses representing

the two separate groups in a random order, and is taken from Schelling’s

paper.

An agent’s neighbourhood is defined initially as an agent’s immediate four

players to their left, four players to their right and themselves.

The key feature of the model is that in terms of their neighbourhood in-

dividuals do not want to be in the minority.62 Therefore a star requires

at least four of his eight neighbours to be stars in order to be content,

as he also includes himself. This introduces the social threshold nature of

the model which inspired a whole literature.

If an agent is not content in their current neighbourhood then they can

move. Those who are unhappy in the first diagram have been denoted

with a dot above them. The process moves from left to right in that the

first discontented agent to move is the cross who starts out second in from

the left in the diagram. A discontented agent must move to the closest

62But agents do not necessarily have a preference to be part of a strong majority.
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neighbourhood that satisfies his preferences not to be in the minority.

When an agent moves this may cause some previously content agents to

become discontent, a key rule is that such an agent can move but only

after the all the previously discontented agents move (all those with a dot

above them in the initial diagram). Similarly some previously discontent

agents can become content when an agent moves, if this is the case the

previously discontented agent will not move.

Following these rules, once those with the dots in the initial diagram have

become content we obtain the new social distribution below.

There are still eight discontented agents due to the other agents’ moves.

Once these eight move we reach a state of equilibrium in which all agents

are content which is shown in the diagram below.

The startling and fascinating result Schelling obtains is the overwhelming

segregation of the two groups, when the only requirement agents have is

not to be in the minority. Agents would be perfectly content in a popu-

lation with stars and crosses alternating, yet when left to the dynamics

of the model extreme segregation results. Schelling verified his key result

with many simulations to show the initial distribution in the first diagram

does not drive the main result.

The model lends itself to many variations, Schelling considers neighbour-

hood size, neighbourhood preferences, the ratio of the two groups, the

rules of movement and the initial distribution. Schelling finds that the
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main result is robust to most assumptions on these variations. An inter-

esting result is obtained from restricting movement by putting a limit on

an individual’s travel, when there exists a minority group. Surprisingly

agents achieve their desired neighbourhood faster and without travelling

as far as they would in a free movement model. The restriction channels

society into small, more frequently occurring clusters.

Schelling develops his main result in the rest of the paper by looking at a

two dimensional form of the model, consisting of agents living on a che-

quer board type arrangement. Schelling repeats his main result that just

a small individual preference not to be in the minority leads to signifi-

cant segregation holds in the two dimensional model. Schelling continues

to investigate several variations on this model such as intensity of the

population densities and individual demands for social integration with

interesting results.63

In this paper Schelling introduces the concept of social threshold levels

when an agent looks at the proportion of two groups in a neighbourhood.

Schelling’s concept of social thresholds could then be applied to any model

in which agents care about the proportion of agents already taking an

action. Granovetter’s next paper details how such a concept could be

mathematically represented, and applies his model to riots amongst other

interesting examples.

63In the final section of the paper Schelling changes the definition of neighbourhood from
those located next to an agent to a set area, defined as a bounded neighbourhood model,
and investigates a series of topics with varying results.
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5.3 Threshold Models of Collective Behavior
− M.Granovetter 1978

Granovetter is one of the pioneers of theoretical models which are driven

by individual threshold levels, where an individual will only take an ac-

tion when a certain number of other people have already taken the action.

He looks to continue from Schelling’s original paper by forming a math-

ematical model which holds the essence of Schelling’s paper with social

thresholds at the centre of the dynamics.

Granovetter introduces the paper with the example of a riot. Granovetter

asks the question with 100 people in a square, with at least one person

willing to begin the riot, will others join in next and more after them in a

domino type effect, and how many of the 100 will end up taking part in

the riot. Importantly people will join the riot only once a certain number

have already joined, this level being the social threshold for each individ-

ual. The key to the model is that people have different threshold levels,

and it is the nature of this heterogeneity that determines the resulting

size of the riot. The model can be extended to many different and inter-

esting cases such as the take up of innovations, rumours, strikes, voting

and migration.

Granovetter considers a clear and simple case of a uniform distribution of

thresholds such that one person wishes to begin a riot having a threshold

of 0, and another person has a threshold of 1 person in order to join the

riot, another with threshold of 2 and so on with the most resistant joining

in only if 99 people have joined in already. In this case it is clear to see

due to a domino effect that all 100 people will join the riot in the end.

However Granovetter then considers that the person with threshold 1 is

instead replaced with a person of threshold 2. We now have a completely
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different result where we have a riot of just one person with no-one else

willing to join in. Granovetter uses this simple case to illustrate that

drawing conclusions of individual views from group outcomes can be very

misleading indeed.

Formally Granovetter gives each individual in a population a threshold

level x, such that an individual will only take an action when at least x

players have already taken action x. F(x) is the cumulative distribution

frequency and f(x) is the frequency density function. The proportion who

have adopted the action at time t is denoted r(t).

Consider that one person has joined the riot in period one, and there are

ten people with threshold 1. Then next period all these 10 people will

join to make 11 in total. In the following period all those with thresholds

less than 11 will join in. And so if at any time t r(t) agents have joined,

then the amount of people who will have adopted in the next period is

given by the difference equation:

r(t+ 1) = F (r(t))

And so the process will come to rest at equilibrium when it reaches the

first fixed point of F (r), where F (r) = r.

Granovetter decides to focus on thresholds that are normally distributed

in the population of 100, leaving other distributions to further research.

An example of a normally distributed threshold density with mean 25

is used, and Granovetter considers the resulting equilibrium level Re for

varying levels of standard deviation levels, σ. The graph below is taken

from the paper and displays Granovetter’s main result.
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For low σ, there is little mass in the left tail of the threshold distribution,

and so the process stops early on. For a critical level of σ ' 12 and beyond

there is enough mass in the left tail such that process will create a knock

on effect such that at least half of the population will adopt. For σ just

above 12 adoption will be close to 100%. As σ increases, the decreasing

slope of the right hand side of the normal distribution causes the process

to stop at a decreasing equilibrium level of adopters.

Granovetter’s main point is that a very small change to the individual

views of the population can lead to radically different outcomes, and so

inferring individual views from group outcomes is a dangerous business.

Next Granovetter looks at the introduction of social networks into the

population, so that an individual will put different weights on different

people joining the riot. For instance Granovetter considers a population

who count friends joining the riot twice as much as strangers joining.

There are obviously any number of social networks possible. Granovetter

also introduces perturbations into the model, allowing the threshold dis-

tribution to be subject to small shocks. Characterising stable equilibria

mathematically is difficult and most of Granovetter’s results are produced

using computer simulations.
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Granovetter’s general results show that the nature of social networks can

have a highly significant effect upon the resulting equilibrium, and in-

terestingly states that the modal equilibrium result is one player joining

the riot, under a variety of network and perturbation combinations. The

stochastic nature of the threshold distribution means that the probability

of no agents with threshold 0, or some with 0 but none with threshold 1

is in fact often greater than 50%, explaining the low model equilibrium

result. And so with perturbations collective action may be unlikely to oc-

cur even if most of the population would happily join in once the process

gets going. Therefore we can see that the results from the initial threshold

model, especially for cases resulting in high adoption levels are unlikely to

reflect a population subject to thresholds that may evolve over time. In

the remainder of the paper Granovetter discusses a variety of views many

of which we have in part discussed in the introduction of this paper.

In this paper Gronovetter introduces a rather elegant mathematical repre-

sentation of a population of individuals who are influenced by what others

are doing and as such have social thresholds. Gronovetter produces some

interesting results on the nature of the resulting equilibrium and builds

upon Shelling’s original ideas in a more mathematical way.
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5.4 Chains of Co-operative Action: Threshold
Effects in Collective Action - M.W.Macy 1991

This paper follows on directly from Granovetter’s 1978 paper. Primarily

Macy looks to address the issue of low uptake cases, where the population

is stuck in a non-cooperative equilibrium. In order to address this issue

Macy’s main change to Granovetter’s model is to introduce a stochastic

rather than deterministic distribution of thresholds. As such agents will

adjust their threshold levels in a direction dependent upon the payoff of

the last two periods. This allows agents to gradually reduce their thresh-

olds when stuck in a low uptake case, until the threshold distribution

evolves such that there is now a critical mass willing to adopt which cata-

pults the population into a state of increasing adoption levels. Essentially

Macy’s stochastic threshold distribution can fill the gaps in Granovetter’s

static threshold model allowing a population to escape non co-operative

equilibrium.

As well as introducing an evolving threshold distribution Macy also adds

a variety of other factors in his model, and considers a formal public goods

game with individual contributions, a production function and a method

of distributing the public good to individuals. All of the results in the

paper are from simulation alone. We next look at the specifics of the

model.

Firstly rather than agents having a threshold at which they will definitely

contribute to a public good, agent j has a probability Pj of contributing

at any point depending upon their threshold Tj , the participation rate π

and a slope parameter M.
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The specific logistic functional form is given below:

Pj =
1

1 + e(Tj−π)M

such that an agent has a 0.5 chance of adoption when the participation

rate reaches Tj .

Different agents contribute different amounts Cj according to

Cj = RjNVi

where Rj is agent j’s share of total resources N and Vj = {0, 1} represents

whether the agent has contributed or not.

And agent receives a share of the public good, Sj , given by

Sj =
LNIj

N (1− J)
− Cj

where L is the production level, Ij is an individual’s level of interest in

the public good and J represents a jointness of supply, such that higher

values of J will reap higher co-operation rewards.

The production level L is given by the production function below,

L =
1

1 + e(0.5−π)10
− 1−X

2

where X can be varied to make the public good game a public bad game.

We now look at the Macy’s learning algorithm which is the main de-

velopment from Granovetter’s 1978 paper. Macy introduces an outcome

function given by

Oij =
Ej(2Sij − Si−1,j)

3|Smax|

and the evolution of an agent j’s threshold is given by

Ti+1,j = Ti,j−Vi,j [Oi,j(1−(1−Ti,j)|0i,j |)]+(1−Vi,j)[Oi,j(1−(1−Ti,j)|0i,j |)]
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such that an agent’s threshold will fall if he co-operates and is rewarded,

or if he does not co-operate and is punished.

It is the assumption that agents’ thresholds can change and evolve that

drives Macy’s results and leads to different conclusions from Granovet-

ter’s paper. The paper contains two key results.

Macy’s main result is that in his model a population can overcome the

low uptake levels found in Granovetter’s examples. If the population is

stuck in low uptake levels over time the threshold distribution will shift

to the left until it reaches a critical point which sparks a period of mass

co-operation, explaining the ’chain of co-operation’ terminology of the ti-

tle. The initial period of low co-operation can be seen as pulling back

an elastic band, with the release of the band being chain reaction of co-

operation.

Macy also compares the model when agents move simultaneously and

sequentially, termed parallel and sequential choice respectively in the pa-

per. Under simultaneous decisions the population is in isolation and often

struggles to escape a non co-operative equilibrium. This is because equi-

librium escape requires a number of agents to change their strategies at

the same time, and such a random fluctuation is unlikely.

However under sequential moves a single agent’s choice to contribute will

lower other agent’s thresholds through the evolving threshold dynamic,

thereby making them more likely to contribute next period, and so here

the population can often escape the non co-operative equilibrium.
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The two main results are show in the diagram below.

Macy like Granovetter looks at the effect of the population’s social struc-

ture in which agents are only influenced by their friends. Macy considers

a strong tie configuration in which agents are in small groups, and are

only influenced by members of their group, such that agents are always

friends with their friend’s friends. Macy also considers a weak configura-

tion, in which agents are paired with others in the population, but agents

are often not friends with their friend’s friends. Interestingly a population

with weak social ties escapes low uptake levels much more readily than

a population with strong social ties. Indeed the results with strong ties

are similar to those under simultaneous moves. Cliquishness means that

isolated groups do not influence each other, and so equilibrium escape re-

quires separate groups to change strategies and contribute simultaneously

in much the same as with simultaneous decisions.
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Macy finishes the paper by showing that high adoption levels are gener-

ally robust to low jointness of supply, few positive rewards and divisible

contributions. Macy also looks at the effect of correlation between an

individuals resource level, Rj , and their interest in the public good, Ij ,

finding correlation levels do not prevent high adoption level results. Fur-

thermore different Rj and Ij distributions reveal that it is often those who

have the most interest in the game, but not the most resources who often

bear the burden of contribution.

The main contribution of Macy’s paper is to show that allowing a popu-

lation’s threshold distribution to evolve over time allows the gaps of Gra-

novetter’s model to be filled which creates a mechanism for a population

to escape from low levels of adoption.
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5.5 Threshold Models of Diversity: Chinese
Restaurants, Residential Segregation and the
Spiral of Silence - Granovetter and Song 1998

In this paper Granovetter and Song attempt to formalise mathematically

some of Schelling’s results. Schelling’s original paper detailed an open

model and showed a variety of interesting outcomes including the main

result that just a small individual preference not to be in the minority

can lead to significant social segregation. Granovetter and Song form an

exact mathematical model and look to see amongst other things whether

Schelling’s main result is produced by their model.

Granovetter and Song define two separate groups as white and black peo-

ple as Schelling often does. Nb and Nw denote the total number of black

and white people who could move into a neighbourhood from a popula-

tion of N players. As such the actual neighbourhood size can vary over

time. Each individual has a social threshold pw dictating the minimum

proportion of whites needed in a certain neighbourhood in order for the

agent to be content. F (pw) denotes the fraction of whites with thresh-

olds below or equal to pw. Furthermore nb and nw denote the number of

black and white people in a neighbourhood such that pw(t) = nw(t)
nw(t)+nb(t)

details the proportion of whites in a neighbourhood at time t, where time

is taken to be discrete.

If a neighbourhood was 25% white at time t and Fw(0.25) = 0.6 then

35% of the white population would wish to join the neighbourhood, and

therefore generally we have

nw(t+ 1) = Fw[pw(t)]Nw

nb(t+ 1) = Fb[pw(t)]Nb
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Equilibrium results when both nw(t + 1) = nw(t) and nb(t + 1) = nb(t),

and w and b represent the number of black and white people in a neigh-

bourhood in equilibrium. The resulting algebra from the equilibrium

conditions is complex and so for clarity of explanation we concentrate

on Granovetter and Song’s graphical demonstration of their model and

results.

Granovetter and Song use curves illustrating the maximum number of

group A a certain group number of group B can withstand in a neighbour-

hood, these type of curves were first being introduced by Schelling. The

maximum number of white people a group of black people in a neighbour-

hood can tolerate is given by the black person with the highest threshold.

Given the neighbourhood is in equilibrium and considering F (s), then s

is the highest threshold among a proportion k of the population where

F (s) = k. We have it that in equilibrium k = b
Nb

and s = b
w+b .

It it then possible, given b, Nb and F to deduce the highest threshold

proportion and the maximum number of white people a certain group of

black people can tolerate. If F (0.4) = 70, then 70 black people out of

a population of 100 can live in a 40% white neighbourhood. Moreover,

solving 70
70+w ≤ 0.4 gives us that w ≤ 105 is required for 70 black people

to be content. Therefore for each value of b, 70 in the example here, the

maximum number of white people that can be tolerated is easily com-

puted. Granovetter and Song denote a function e(b), such that e(x) = y

details that a maximum number of x black people can tolerate y white

people in their neighbourhood. In our current example e(70) = 105.
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Granovetter and Song consider the cdf threshold distribution used by

Schelling, which is given by F (s) = 1
R [1 + R − 1

s ] and a specific example

is shown below for R = 5.

By solving w
Nw

= Fw[ w
w+b ] for b we can find e(w), and by substituting in

the threshold distribution we obtain e(w) as follows.

w

Nw
=

1
R

[1 +R− 1
w
w+b

]

⇒ e(w) = b = R[1− w

Nw
]w

The resulting parabola is graphed below.
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The diagram illustrates the movement of white people when in disequi-

librium. Within the curve more white people can tolerate a ratio of b
w

than exists in the neighbourhood and so more white people will enter the

neighbourhood. On the left hand side of the curve the b
w ratio is too low

and white people will leave the neighbourhood.

In order to assess equilibria for population as a whole Gravonetter and

Song put both e(w) and e(b) curves together, which is represented by the

diagram below:

where (0,100) and (100,0) are stable monomorphic equilibria. The inter-

section of the curves details the three co-existence equilibria, of which only

(80,80) is stable. Granovetter and Song do not subject their model to per-
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turbations and therefore cannot select between the three stable equilibria

in the example shown. However their analysis has succeeded in producing

an exact mathematical account for Schelling’s paper. Furthermore they

do demonstrate in a formal model that neighbourhoods consisting of only

one colour are stable equilibria under Schelling’s threshold distribution,

concurring with Schelling’s main result.

We now look at a model in which agents can remember a number of in-

teractions and their threshold can therefore be breached via a series of

contacts with other members of a population.

129



5.6 Universal Behavior in a Generalized Model
of Contagion - Dodds and Watts 2004

Dodds and Watts (DW) consider a population of N agents who can be

in three mutually exclusive states, S (susceptible), I (infected) or R (re-

moved). DW study a pairwise matching process where an agent i will

randomly come into contact with one other agent j each period. If agent

i is susceptible and agent j is infected then there is a probability p that

agent i will receive a dose, and that dose di(t) is drawn from a distribution

f(d).

A strong and original feature of this particular threshold model is that an

individual can remember doses from the last T periods recalling a total

dose Di(t) = Σt
t′=t−T+1di(t

′). The threshold nature of the model is given

by an individual’s dose threshold d∗i which is drawn randomly at the start

such that susceptible agents will become infected when Di(t) ≥ d∗i .

Then the probability that a susceptible agent who meets K infected indi-

viduals in T periods will become infected is given by

Pinf(K) =
∑
k=1

K

(
K

k

)
pk(1− p)K−kPk

where

Pk =
∫ ∞

0
dd∗g(d∗)P (

∑
i=1

kdi ≥ d∗)

is the average proportion of infected individuals after they receive k doses

in T time steps.

The resulting model is very general but also quite complex, as such DW

obtain their results through numerical methods and simulations. DW

primarily look at a particular case where an agent will definitely recover

if Di(t) falls back below d∗ and recovered agents are susceptible with

probability 1. From this model type DW are able to produce an equation
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for the steady state proportion of infected agents in the population, which

is given below

φ∗ = ΣT
k=1

(
T

k

)
(pφ∗)k(1− pφ∗)T−kPk

Using this equation DW produce some interesting results. Firstly they

show the equilibrium behaviour of their general model falls into three

distinct classes. Secondly and surprisingly DW show that the particular

equilibrium class depends on just two variables, P1, the probability of

infection from a single exposure to an infected agent, and P2, the proba-

bility of infection from two exposures.

The first class is called the epidemic threshold class and an equilibrium

will fall into this class if P1 ≥ P2
2 , here one encounter with an infected

agent is more dangerous than in the other two classes. A graph of the

steady state proportion of infected agents for this class is shown below.

If the probability of receiving a dose, p, is below a critical point pc the

stable equilibrium will be no infections. However if p ≥ pc an epidemic of

positive size will occur. The higher p the larger the epidemic will be and

for p greater than 0.4 the entire population will be infected.

131



Equilibria from certain models can fall into a second class type of class

if P2
2 > P1 ≥ 1

T with the resulting infected population graph is displayed

below

For p beyond pc there exists both unstable (dashed line) and stable (solid)

equilibria. The initial φ(0) level is critical as if the initial φ(0) falls below

the unstable equilibria the infected population will fall to 0. However if

the initial φ(0) is above the unstable equilibria a significant proportion

of the population will become infected. The size of the critical mass re-

quired decreases as p increases and as such DW term this second class

the vanishing critical mass class of equilibria.

Equilibria can fall into a third class when 1
T > P1, and the corresponding

infected population graph is displayed below.

A large initial φ(0) level is required in order for the initial seed not to die

out and infection to prevail in the long term. As a large initial seed is
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required for all values of p and as such DW term this third class the pure

critical mass class as opposed to the vanishing second class.

And so DW show that in a quite complicated structure they can deter-

mine which of three classes a model’s equilibria will fall in just by looking

at two parameters, and they continue by showing that these results are

robust to varying f(d) and g(d∗) distributions. Their results demonstrate

that not all contagion models fall into the same class. As DW state there

is little empirical evidence for P1 and P2 values. The current literature

has said little on the subject of whether exposures are independent events.

DW show here for models where P1 <
P2
2 the nature of the interdepen-

dencies can have a dramatic effect. In much of the literature persuading

the leaders in society is the key to dispersion. Interestingly in contrast

here, DW show as P1 and P2 are so significant for a model that those

most easily influenced could in fact be the key to the diffusion dynamics.
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5.7 Innovation Diffusion in Heterogeneous
Populations: Contagion, Social Influence, and
Social Learning - P.Young 2008

We begin by discussing social influence chapter in P.Young’s recent paper

”Innovation Diffusion in Heterogeneous Populations: Contagion, Social

Influence and Social Learning”. The analysis assumes a population which

is infinitely large and encounters between individuals are purely random.

The issue that Young looks at in this paper that few have analysed in the

literature is the speed of adoption of innovations in a threshold model.

Young considers a population where each agent has a social threshold ri,

such that when a proportion ri of the population have adopted, agent i

will also want to adopt the innovation. Young also has a level of inertia

in his model such that even though an agent’s social threshold has been

passed, they will now only adopt the innovation at a rate λ > 0.

Importantly Young does not want to restrict the distribution of thresh-

olds and as such considers a general cumulative distribution function of

thresholds, F (r). In order to create initial diffusion there must be some

agents who will adopt the innovation even though no-one else has, and

so F (r) > 0. There must be some of these genuine innovators in order to

”get the ball rolling”, once they adopt then others (with low ri) may be

persuaded to adopt and so on in a domino type effect. The first interest-

ing question is whether this dynamic will continue until everyone adopts,

or whether the process will stop with only some people adopting.

In order to address this question Young considers at some time point t,

a proportion F (p(t)) > 0 have had their thresholds passed, of which p(t)

have adopted, and so

ṗ(t) = λ[F (p(t))− p(t)], λ > 0
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Of which the inverse function

∀x ∈ [o, b), t = p−1 = (1/λ)
∫ x

0

dr

F (r)− r

can be obtained. By considering the first fixed point of F such that F(b)

= b, it can seen that as x → b, the right hand side of the later equation

goes to infinity due to 1
F (r)−r , and as such p(t) must converge to b in the

long run.

This occurs when the number of agents whose thresholds have been crossed

becomes close to those who have already adopted, thus essentially bring-

ing the process to a halt apart from those taking up the innovation due

to inertia alone.

And so an innovation will only be adopted by everyone in the population

if the first fixed point of the process occurs at F (1) = 1. As in Granovet-

ter and other papers if a population has many people willing to adopt

only once there has been a small uptake then the innovation may not get

off the ground due to an early fixed point.

The second and more important issue that Young investigates is the shape

of the adoption curve given F (r), with particular interest in the speed of

adoption. The essence of this investigation comes from the equation for

the acceleration of adoption, which Young forms by differentiating the

first equation detailed and dividing by ṗ(t) to give

p̈(t)
ṗ(t)

= λ[f(p(t))− 1]

And so one can see that if f(p(0)) > 1 then the process will initially be

accelerating. Consider also that F (p(x)) is increasing for x in the neigh-

borhood of the origin. Then if both these conditions are met, we can see

that the process will experience a period of acceleration. Indeed Young

shows the adoption curve will exhibit super-exponential growth for some
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time, which is faster than an exponential growth rate as p̈(t)
ṗ(t) is increasing.

Young also shows that this result holds when the inertia rate λ is het-

erogeneously distributed. A diagram taken from Young’s paper of such

growth is shown by the blue line in the adoption curve below:

This extreme growth occurs because of two reasons. Firstly, a significant

proportion of initial agents adopting means that other agents are willing

to adopt the innovation. Secondly, when F (p(x)) is increasing for x in the

neighborhood of the origin there are simultaneously more agents willing

to adopt than there were initially, creating a double effect.

Interestingly it is the mass of those initially willing to innovate who drive

and determine the speed and shape of adoption. If there are enough

agents willing to adopt when no-one else has, and enough agents when

only a few have adopted, then the innovation will experience a period of

extreme growth. If the initial innovators are not present, despite many

others potentially willing to take up the innovation later on, the innova-

tion may never get off the ground.

However some criticism may come due to Young’s analysis concentrating

on the initial growth of adoption and the final adoption levels separately.

From the analysis given it seems possible that the adoption curve may

exhibit super-exponential growth initially but the innovation may not be
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taken up by a large proportion of the population. Similarly, an adoption

curve which initially decelerates may in the long term reach 100% take-up.

Although one can deduce the final presence of the innovation in individual

cases by determining the first fixed point of F (p(x)), some discussion on

the link between initial growth of adoption and the final adoption levels

between would be welcomed.

In this chapter Young has provided some insight into the speed to adop-

tion of new innovations and not just the long term equilibrium solutions.

Interestingly he shows that the shape of the adoption curve is highly de-

pendent on the nature of the innovators of a population.
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5.8 Social network thresholds in the diffusion of
innovations - Valente 1996

In this paper Valente conducts an empirical investigation on the diffusion

of innovations in three separate cases. The three cases are the take up

of doctors prescribing a new medical drug in four US communities in the

mid 1950s, the diffusion of hybrid corn among 692 Brazilian farmers in 11

villages in the 1940s and 1950s, and finally the adoption of modern family

planning in by 1000 Korean women in 1973. Valente is able to obtain real

estimates for individual thresholds at which innovation adoption occurs

and then analyse the diffusion of the innovation in the population as a

whole.

A key point is that Valente catagorises possible reasons for an individual’s

adoption into two separate sources. The first is influence from social net-

works. Each individual was asked to name certain people who influenced

their decision making with regards to the relevant issue, thus determining

a social network each agent was part of. Some individuals with many

nominations can then be considers as leaders. An individual’s adoption

threshold is determined by the number of adopters in their network at the

time they themselves adopt the innovation. Each individual is categorised

according to their network threshold as either very low, low, high or very

high.

The second source of diffusion is that of external influence from society

on an individual independent of their social network. Such influences

may include the proportion of adopters in society as a whole as well as

media and advertising. Each individual in the study has a quantifiable

score of external influence determined by the number of medical journals

subscribed to, the number large Brazilian towns visited annually or the
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exposure to family planning advertising, for the three separate cases.

Each individual is categorised by the time at which they adopt the inno-

vation, independent of their social network, as either early adopters, early

majority, late majority or laggards, and I shall describe this category as

an individual’s adoption time. These four categories will be compared to

those of adoption thresholds, such that an individual who has a very low

threshold and is also an early adopter will be described as being consistent

across groups.

The results from the paper then come from comparing individual’s adop-

tion threshold with their adoption time, whilst also looking at external

exposure and leadership distributions. It is possible for an individual to

have a low adoption threshold yet be in the late majority of adopters if

no-one in their social network adopts the innovation early on. Similarly

an individual can have a high adoption threshold yet be an early adopter

if many people in their social network adopt the innovation early on.

The first results state that 43% of doctors are in the same groups for

adoption threshold and adoption time, 47% of Brazilian farmers and 64%

of Korean women. We also see that the laggards are almost entirely com-

posed of very low or very high threshold individuals, those who are just

not exposed to the innovation in their network or just plain stubborn.

The second set of results examines the individual external influence scores

with respect to adoption thresholds and adoption time. Firstly we see

that for the majority of cases early adopters have the highest external

influence score, suggesting that external influence leads to their highly

innovative behaviour. Furthermore external influence appears to affect

adoption time far more than adoption thresholds. For a given threshold

level, an individual’s adoption time is always earlier the greater their ex-

139



ternal influence score, but this is not the case with thresholds. Instead

external influence scores are highest when an individual’s threshold level

is consistent with their adoption time grouping. We also see that laggards

with low threshold levels generally have a low external influence score fur-

ther implying isolation as the reason for non-adoption. Valente also points

out that specific external influence results across the three groups are not

statistically similar, in particular medical journal subscription had little

correlation with an individual’s adoption threshold or adoption time.

The final set of results compare the individual leadership scores with re-

spect to adoption thresholds and adoption time. Interestingly those with

the highest leadership scores are again generally those individuals whose

threshold level is consistent with their adoption time grouping. This im-

plies that individuals who are consistent in their adoption decision are

popular role models. We also see particularly large inconsistencies across

the three groups. In Korea the women with high leadership scores tended

to be those who were early adopters suggesting those early adopters may

have high relative education and therefore social status. However, in the

medical example the doctors in the late majority with high thresholds

tended to have the highest leadership scores, implying a link between

conservativeness and leadership. No clear pattern in leadership emerged

from the Brazilian case.

In summary the majority of individuals are consistent in their adoption

threshold and their adoption time, and these individuals are often the

leaders in their communities. We can also see that external influence

leads the way for the first individuals to adopt in society in general yet

does not have a strong effect on an individual having a low social network

threshold, instead those with consistent adoption threshold and adoption
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time groupings have the most external influence. And so it would ap-

pear that consistency is the key issue, with those individuals having both

medium adoption thresholds and adoption times, and also having the

high external influence levels often being the leaders in their respective

societies.

5.9 Conclusion

This literature review studies an array of models based upon dynamics

created by individuals who possess a social threshold, such that they can

be persuaded to take an action if enough of their own population already

take the action. The literature has produced many interesting models

and results on issues such as social integration, rioting, contagion and the

diffusion of innovations.

Within the literature there exists a variety of results from models with

different assumptions. In our opinion a critical point of the whole litera-

ture is whether it is assumed that the threshold distribution can change

over time and how this takes place. Without this assumption populations

can often get stuck in low adoption equilibria, yet without it any society

can reach high uptake levels. Whether populations engage in high levels

of adoption is obviously a key point and so I believe more attention should

be devoted to the nature of changing threshold distributions.

Amoungst the literature we also see that few models have populations

which are subject to any level of peturbations, and therefore the robust-

ness of some results could be put into question. Indeed Granovetter shows

that his results significantly change when he introduces some noise into

his model. As such I feel future research should be based both upon the

nature of evolving thresholds distributions and models which are subject

141



to small peturbations.
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