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0.1 Abstract

The focus of my PhD research has been on the acquisition of computational modeling and

simulation methods used in both theoretical and applied Economics.

My first chapter provides an interactive review of finite-difference methods for solving

systems of ordinary differential equations (ODEs) commonly encountered in economic ap-

plications using Python. The methods surveyed in this chapter, as well as the accompa-

nying code and IPython lab notebooks should be of interest to any researcher interested

in applying finite-difference methods for solving ODEs to economic problems.

My second chapter is an empirical analysis of the evolution of the distribution of bank size

in the U.S. This paper assesses the statistical support for Zipf’s Law (i.e., a power law,

or Pareto, distribution with a scaling exponent of α = 2) as an appropriate model for the

upper tail of the distribution of U.S. banks. Using detailed balance sheet data for all FDIC

regulated banks for the years 1992 through 2011, I find significant departures from Zipf’s

Law for most measures of bank size inmost years. Although Zipf’s Law can be statistically

rejected, a power law distribution with α of roughly 1.9 statistically outperforms other

plausible heavy-tailed alternative distributions.

In my final chapter, which is based on joint work with Dr. David Comerford, I apply

computational methods to model the relationship between per capita income and city

size. A well-known result from the urban economics literature is that a monopolistically

competitive market structure combined with internal increasing returns to scale can be used

to generate log-linear relations between income and population. I extend this theoretical

framework to allow for a variable elasticity of substitution between factors of production

in a manner similar to Zhelobodko et al. (2012). Using data on Metropolitan Statistical

Areas (MSAs) in the U.S. I find evidence that supports what Zhelobodko et al. (2012)

refer to as “increasing relative love for variety (RLV).” Increasing RLV generates pro-

competitive effects as market size increases which means that IRS, whilst important for

small to medium sized cities, are exhausted as cities become large. This has important

policy implications as it suggests that focusing intervention on creating scale for small

populations is potentially much more valuable than further investments to increase market

size in the largest population centers.
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Chapter 1

Finite-difference methods for

solving ODEs: A Python-based

survey

This chapter reviews finite-difference methods for solving systems of ordinary differential

equations (ODEs) commonly encountered in economic applications using Python. The

methods surveyed in this chapter, as well as the accompanying code and IPython lab note-

books, should be of interest to any researcher interested in applying finite-difference methods

for solving ODEs to economic problems.

1.1 Introduction

This chapter explores the use of the Python programming language for solving types of

ordinary differential equations (ODEs) commonly encountered in economics using finite-

difference methods. The major contribution of this chapter is pedagogical. While the

economics graduate curriculum often includes in-depth training in theoretical branches of

mathematics such as measure theory and real analysis, very few economics department

offer graduate courses in applied mathematics or numerical methods. This general lack

of awareness of numerical methods has significantly limited the types of questions that

economic analysis can be used to address. This chapter seeks to partially fill this significant

gap in the training of economics graduate students. The methods surveyed in this chapter,

as well as the accompanying Python code and IPython notebooks which implement them

should be of use to any economist interested in applying finite-difference methods for

1
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solving ODEs to economic problems.1

I have chosen to focus on numerical methods for solving ODEs because differential equa-

tions have been used to model a wide variety of economic phenomena. For example, the

neoclassical optimal growth model of Ramsey (1928), Cass (1965), and Koopmans (1965),

the Solow (1956) model, as well as the Pissarides (1985) and Mortensen and Pissarides

(1994) search models of unemployment are all examples of ODEs used to model economic

dynamics. Equilibria of signaling models, such as Spence (1974) and its descendants, are

often characterized by ODEs. Recent models of assortative matching, such as Eeckhout

and Kircher (2010), Eeckhout and Kircher (2012), and references therein, typically reduce

to systems of ODEs. As a final example, as demonstrated by Hubbard and Paarsch (2009),

Hubbard et al. (2011), and Hubbard et al. (2012), and references therein, equilibrium bid

functions in many auction models can often be characterized as solutions to systems of

ODEs.2

As the main focus of this chapter is pedagogical, instead of focusing on cutting edge

applications of finite-difference methods in economics, I have decided to focus on three

models that are taught to first-year students in most any economics graduate program:

the optimal growth model of Ramsey (1928), Cass (1965), and Koopmans (1965), the

Solow (1956) model, and the Spence (1974) model of “signaling.” In their most general

formulations, none of these models can be solved analytically and thus researchers are

forced to either make use of numerical methods to approximate the full non-linear solutions,

or to resort to potentially inaccurate and misleading linear approximations of their non-

linear solutions. Each of the models does, however, have an analytic solution for some

specific set of parameter restrictions. I will make heavy use of these analytic results to

compare the accuracy and computational efficiency of the numerical methods.3

My results suggest a number of “best practices” that all economic researchers should adhere

to when solving ODEs.

1. Classic finite difference methods with fixed step-size such as variants of Euler’s

method (discussed in sections 1.3.1-1.3.3) or the family of explicit Runge-Kutta meth-

ods (discussed in section 1.3.5) should be avoided. While such methods are easy to

code, they tend to be computationally inefficient and will be orders of magnitude

less accurate than more modern methods which implement adaptive step-size control

(discussed in sections 1.3.4-1.3.4 and 1.3.5)

1The Python code and IPython notebooks used to obtain the results reported in this chapter are
available online via the author’s GitHub repository.

2For a smorgasbord of additional examples of economic models using ODEs see Brock and Malliaris
(1989) and Zhang (2005).

3Full derivations of these analytic solutions are provided in the appendices.

https://github.com/davidrpugh/numerical-methods
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2. Of the high-quality ODE solvers currently available via the scipy.optimize module,

the embedded Runge-Kutta methods due to Dormand and Prince (1980), dopri5 and

dop853 (discussed in section 1.3.5) are generally the most accurate “out of the box”

(i.e., without changing any of the default tolerances).

3. When solving BVPs using finite-difference methods (discussed in section 1.5) it is

important to remember that the approximation error for multi-layered algorithms

is determined by the interaction between the approximation errors of the individual

layers. For shooting methods (discussed in sections 1.6.1-1.6.2) it may be necessary

to set a relatively loose error tolerance in the outer layer in order for the algorithm

to terminate. Using an ODE solver with adaptive step-size control in the inner layer

will slow down the rate at which error accumulates in the inner layer of the algorithm,

which in turn, will allow the researcher to set a tighter error tolerance in the outer

layer.

4. Where applicable, reverse shooting (discussed in section 1.6.2) is preferred over for-

ward shooting for solving BVPs. Reverse shooting is more computationally efficient,

more numerically stable, and significantly more accurate than forward shooting.

5. When comparing run times times across the various methods, it is the relative (and

not absolute) speed which matters. While absolute speed of any particular method

will vary across computers, the relative speed of various methods should be fairly

stable.

The remainder of this paper proceeds as follows. Section 1.2 provides some background

information on the Python programming language and formally defines many of the key

mathematical concepts used throughout the paper. Section 1.3 surveys finite-difference

methods for solving IVPs. Section 1.4 shows how to solve some classic IVPs from economics

using Python. Sections 1.5 and 1.6 do the same for BVPs. Section 1.7 concludes.

1.2 Basic definitions

In this section I briefly summarize some of the key reasons for my use of the Python pro-

gramming language, before formally defining the key mathematical concepts and notation

used throughout the paper.
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1.2.1 Python

Python is a modern, object-oriented programming language widely used in academia and

private industry, whose clean, yet expressive syntax, makes it an easy programming lan-

guage to learn while still remaining powerful enough for serious scientific computing.

Python’s syntax was designed from the start with the human reader in mind and generates

code that is easy to understand and debug which shortens development time relative to

low-level, compiled languages such as Fortran and C++. Among the high-level, general

purpose languages, Python has the largest number of MATLAB R©-style library modules

(both installed in the standard library and through additional downloads) which meaning

that one can quickly construct sophisticated programs.4

Python is completely free and platform independent, making it a very attractive option as a

teaching platform relative to other high-level scripting languages, particularly MATLAB R©.

Python is also open-source, making it equally attractive as a research tool for scientists

interested in generating computational results that are more easily reproducible.5 Finally,

Python comes with a powerful interactive interpreter that allows real-time code devel-

opment and live experimentation. The functionality of the basic Python interpreter can

be greatly increased by using the Interactive Python (or IPython) interpreter. Working

via the Python or IPython interpreter eliminates the time-consuming (and productivity-

destroying) compilation step required when working with low-level languages at the expense

of slower execution speed.6

While the Python programming language has found widespread use in private industry

and many fields within academia,7 the capabilities of Python as a research tool remain

relatively unknown within the economics research community.8

4The IPython, Pandas, NumPy, SciPy, SymPy, Matplotlib and Mayavi libraries form the core of the
Python scientific computing stack.

5The Python Software Foundation License (PSFL) is a BSD-style license that allows a developer to
sell, use, or distribute his Python-based application in anyway he sees fit. In addition, the source code for
the entire Python scientific computing stack is available on GitHub making it possible to directly examine
the code for any specific algorithm in order to better understand exactly how a result has been obtained.

6In many cases, it may be possible to achieve the best of both worlds using “mixed language” program-
ming. Python can be easily extended by wrapping compiled code written in FORTRAN, C/C++ using
libraries such as f2Py, Cython, or swig. See Peterson (2009), Behnel et al. (2011) and references therein for
more details.

7A non-exhaustive list of organizations currently using Python for scientific research and teaching:
MIT’s legendary Introduction to Computer Science and Programming, CS 6.00, is taught using Python;
Python is the in-house programming language at Google; NASA, CERN, Los Alamos National Labs
(LANL), Lawrence Livermore National Labs (LLNL), and Industrial Light and Magic (ILM) all rely heavily
on Python.

8Notable exceptions are Stachurski (2009) and Sargent and Stachurski (2013).

http://ipython.org/
http://pandas.pydata.org/
http://www.numpy.org/
http://scipy.org/
http://sympy.org/en/index.html
http://matplotlib.org/
http://code.enthought.com/projects/mayavi/
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1.2.2 Ordinary differential equation (ODE)

An ODE is in equation of the form

y′ = f(t,y) (1.1)

where f : [t0,∞) × Rn → Rn. In the case where n = 1, then equation 1.1 reduces to a

single ODE; when n > 1, equation 1.1 defines a system of ODEs. ODEs are one of the

most basic examples of functional equations: the solution to equation 1.1 is a function

y(t) : D ⊂ R→ Rn.

1.2.3 Initial value problems (IVPs)

An initial value problem (IVP) has the form

y′ = f(t,y), t ≥ t0, y(t0) = y0 (1.2)

where f : [t0,∞) × Rn → Rn and the initial condition y0 ∈ Rn is a given vector.9 The

unknown in this problem is the function y(t) : [t0, T ] ⊂ R → Rn that satisfies the initial

condition y(t0) = y0. So long as the function f is reasonably well-behaved, the function

y(t) exists and is unique.10

1.2.4 Boundary value problems (BVPs)

First order differential equations in one variable constitute IVPs by default: with only a

single equation, I can fit the function y(t) at only one t ∈ [t0, T ]. However, with n > 1, the

auxiliary conditions can fit the various components of the function y(t) at different values

of t. The key difference between an initial value problem and a boundary value problem is

that with initial value problems the side conditions pin down the solution, y(t), at a single

point, whereas with boundary value problems pin down y(t) at several points.

A two-point boundary value problem (2PBVP) imposes n conditions on the function y(t)

9Alternatively, I could also specify an initial value problem by imposing a terminal condition of the
form y(T ) = yT . The key point is that the solution y(t) is pinned down at one t ∈ [t0, T ].

10Brock and Malliaris (1989) provide an existence proof for a solution to 1.1 under very general condi-
tions. Uniqueness of the solution requires that the function f satisfy a Lipschitz condition of the form

||f(t,x)− f(t,y)|| ≤ λ||x− y|| for all x, y ∈ Rn, t ≥ t0.

Very readable proofs of existence and uniqueness when the function f satisfies this Lipschitz condition can
be found in Iserles (2009).
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of the form

gi(y(t0)) =0, i = 1, . . . , n′ (1.3)

gi(y(T )) =0, i = n′ + 1, . . . , n (1.4)

where g : Rn → Rn. More generally, a multi-point BVP imposes

gi(y(ti)) = 0 (1.5)

for a set of points ti, t0 ≤ ti ≤ T, 1 ≤ i ≤ n where T = ∞ denotes some condition on the

limt→∞ y(t).

With the auxiliary, or boundary, conditions defined as above the general formulation of a

BVP is

y′ =f(t,y), t ≥ t0,

gi(y(ti)) =0, 1 ≤ i ≤ n (1.6)

for a set of points ti, t0 ≤ ti ≤ ∞. The solution to this boundary value problem is the

function y(t) : [t0, T ] ⊂ R→ Rn that satisfies the boundary conditions. Unlike IVPs, with

BVPs neither existence of a solution nor its uniqueness is guaranteed.

1.3 Finite-difference methods for IVPs

This section provides a non-technical survey of finite-difference methods for approximating

solutions to IVPs of the form

y′ = f(t,y), t ≥ t0, y(t0) = y0 (1.7)

where f : [t0,∞)× Rn → Rn is some function, and y0 ∈ Rn is an initial condition. Finite-

difference methods are perhaps the most commonly used class of numerical methods for

approximating solutions to ODEs. The basic idea behind all finite-difference methods is

to construct a difference equation

y(ti)
′ = f(ti,y(ti)) (1.8)

which is “similar” to the differential equation at some grid of values t0 < · · · < tN .

Finite-difference methods then “solve” the original differential equation by finding for each
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n = 0, . . . , N a value yn that approximates the value of the solution y(tn).11 The literature

on finite-difference methods for solving ODEs is vast and there are many excellent reference

texts. Those interested in a more in-depth treatment of these topics, including formal

proofs of convergence, order, and stability of the methods discussed in this section, should

consult Hairer et al. (1993), Butcher (2008), and Iserles (2009). Chapter 10 of Judd (1998)

covers a subset of this material with a specific focus on economic applications.

1.3.1 The forward Euler method

The simplest scheme for approximating the solution to 1.7 is called the explicit, or forward,

Euler method. The basic idea behind the forward Euler method is to estimate the solution

y(t) by making the approximation

f(t,y(t)) ≈ f(t0,y(t0)) (1.9)

for t ∈ [t0, t0 +h] and some sufficiently small h > 0. Integrating 1.7 and applying the Euler

approximation yields the following.

y(t) = y(t0) +

∫ t

t0

f(τ,y(τ))dτ ≈ y0 + (t− t0)f(t0,y0) (1.10)

Applying equation 1.10 to the initial condition yields the Euler estimate for y1

y1 = y0 + (t1 − t0)f(t0,y0). (1.11)

Repeated application of this approximation scheme yields a general, recursive formulation

for the forward Euler method

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . , N (1.12)

where h = tn+1−tn > 0 denotes the size of the step. The forward Euler method is an order

one method: as the step-size, h, shrinks to zero, the approximation error using the forward

Euler method decays as O(h).12 A graphical illustration of the forward Euler method is

11Note that finite-difference methods only approximate the solution y at the N grid points. In order
to approximate y between grid points I must resort to some form of interpolation. See chapter 6 of Judd
(1998) for an introduction to interpolation methods commonly used in economics research.

12Order of convergence is related to the speed of decay of the approximation error. Let yn,h be the
numerical approximation of y(tn) when the size of the step is h. The approximation error of an order p
method satisfies

lim
h→0+

max
n=0,1,...,b t∗

h
c

||yn,h − y(tn)||
hp

<∞. (1.13)
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tn tn+1

t

yn

yEn+1

h=(tn+1−tn )

hf(tn ,yn )

The forward Euler method
y(t)

Figure 1.1: The forward Euler method assumes that the slope of the solution, y(t), over
the interval [tn, tn+1] is constant and equal to its value at the point (tn,yn).

provided in figure 1.1.

1.3.2 The backward Euler method

The forward Euler method approximates the slope of the solution y(t) over the interval

[tn, tn+1] using the slope of the solution at the point (tn,yn). An obvious alternative to

this procedure would be to approximate the slope of y(t) over the interval using the slope

of the solution at (tn+1,yn+1). This is the basic idea behind the backward, or implicit,

Euler method.

Starting from some initial condition y0, the backward Euler method estimates y(t1) as

y1 = y0 + hf(t1,y1). (1.14)

Equation 1.14 is a non-linear equation in the unknown y1 where y1 is defined only implicitly

in terms of t0, t1, and y0 (all of which are taken as given).13 Repeated application of this

13Numerical routines for solving non-linear equations typically require the user to initially guess the
value of the solution y1. A good strategy for generating an guess in this context is to use a simple explicit
method, such as the forward Euler method, to generate a“predicted” value of y1. The implicit method can
then be thought of as “correcting” the prediction of the explicit method. This common implementation
strategy is called a “predictor-corrector” approach in the numerical analysis literature.
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tn tn+1

t

yn

yBn+1

h=(tn+1−tn )

hf(tn+1,yn+1)

The backward Euler method
y(t)

Figure 1.2: The backward Euler method assumes that the slope of the solution, y(t), over
the interval [tn, tn+1] is constant and equal to its value at the point (tn+1,yn+1).

idea yields a recursive formulation of the backward Euler method

yn+1 = yn + hf(tn,yn) (1.15)

where h = tn+1 − tn > 0 denotes the size of the step. Like the forward Euler method, the

approximation error of the backward Euler method decays as O(h). A graphical illustration

of the backward Euler method can be found in figure 1.2.

1.3.3 The trapezoidal rule

The forward (backward) Euler method assumes that the slope of the solution in the interval

[tn, tn+1] is constant and equal to its value at the left (right) end point. One might guess

that a better way to approximate the derivative of the solution by a constant over an

interval would be to take a simple average of the slope of the solution at both end points.

This simple intuition is formalized by the following approximation scheme

y(t) =y(tn) +

∫ t

tn

f(τ,y(τ))dτ

≈y(tn) +
1

2
(t− tn)f(t0,y(tn)) +

1

2
(t− tn)f(tn+1,y(tn+1)) (1.16)
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tn tn+1

t

yn

y Tn+1

h=(tn+1−tn )

1
2
h
[
f(tn ,yn+1) +f(tn+1,yn+1)

]

The trapezoidal rule
y(t)

Figure 1.3: The trapezoidal rule is an implicit, order two method, that exhibits quadratic
convergence to the solution y(t) as the step-size, h, shrinks to zero.

which leads to the trapezoidal rule. A graphical illustration of the trapezoidal rule is

provided in figure 1.3.14

yn+1 = yn +
1

2
hf(tn, yn) +

1

2
hf(tn+1,yn+1) (1.17)

The trapezoidal method is quadratically convergent implying that the approximation error

decays globally as O(h2). Put more simply, when using the trapezoidal rule, reducing

the step-size by a factor of 10 will reduce the approximation error by a factor of 102.15

The higher order of convergence means that the trapezoidal rule can often make due

with a larger step-size than the Euler method while still maintaining the same level of

approximation error. Like the backward Euler method, the trapezoidal method is an

implicit method and each step requires solving a non-linear equation in the unknown

14Both Euler method and the trapezoidal rule are special cases of a more general approximation scheme
which approximates the derivative of the solution in the interval [tn, tn+1] by taking a linear combination
of the slope of the solution at both end points.

yn+1 = yn + h

[
θf(tn, yn) + (1− θ)f(tn+1, yn+1)

]
, n = 0, 1, . . .

To recover the forward Euler method simply set θ = 1 and to recover the trapezoidal rule set θ = 1
2
. Setting

θ = 0 recovers the backward Euler method.
15Contrast this with both the forward and backward Euler methods whose linear rates of convergence

imply that reducing the step-size by a factor of 10 will only reduce the approximation error by a factor of
10.
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yn+1 as well as extra evaluation of the function f. In practice, however, the more rapid

convergence of the trapezoidal method and ability to use a larger step-size more than

compensate for this additional computational burden.

1.3.4 Linear multi-step methods

All of the methods discussed above are called single-step methods as they use information

about a single point and its derivative to approximate the next point of the solution. In

general, multi-step methods attempt to gain efficiency by incorporating information used

to compute previous points of the solution trajectory and leveraging it to approximate

the current point of the solution. Linear multi-step methods use a linear combination of

yn and f(tn,yn) from the previous s steps to approximate the next step in the solution,

yn+1.

asyn+s+as−1yn+s−1 + · · ·+ a0yn =

h

[
bsf(tn+s,yn+s) + bs−1f(tn+s−1,yn+s−1) + · · ·+ b0f(tn,yn)

]
(1.18)

There are three main classes of linear multi-step methods: the Adams-Bashforth (AB)

methods, which are explicit, and the Adams-Moulton (AM) and backwards differentiation

formulae (BDF) methods, both of which are implicit. These classes are differentiated from

one another by the restrictions each imposes on the coefficients a0, . . . , as and b0, . . . , bs

and by how the values of the remaining, unrestricted, coefficients are chosen.

Adams-Bashforth (AB) methods set as = 1, as−1 = −1 and impose as−2, . . . , a0 = 0 and

bs = 0. Applying these restrictions yields a reduced-form version of 1.18

yn+s =yn+s−1 + h

[
bs−1f(tn+s−1,yn+s−1) + · · ·+ b0f(tn,yn)

]
(1.19)

where h > 0 is the step-size. The Adams-Moulton (AM) methods impose that same

restrictions on the coefficients a0, . . . , as but, being implicit methods, allow bs 6= 0.

yn+s =yn+s−1 + h

[
bsf(tn+s,yn+s) + bs−1f(tn+s−1,yn+s−1) + · · ·+ b0f(tn,yn)

]
(1.20)

To derive both the coefficients b0, . . . , bs−1 for the s-step Adams-Bashforth method and

the coefficients b0, . . . , bs for the s-step Adams-Moulton method, start by integrating 1.7
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over the interval [tn+s−1, tn+s].

y(tn+s) = y(tn+s−1) +

∫ tn+s

tn+s−1

f(τ,y(τ))dτ (1.21)

The idea behind both the AB and AM methods is to use past values of the solution

to construct an interpolating polynomial, p(t), that approximates f over the interval of

integration, [tn+s−1, tn+s]. The s-step AB method, which restricts bs = 0, uses a degree

s− 1 polynomial, while the s-step AM method uses a degree s polynomial.16

The interpolating polynomial, p(t), of degree s− 1 used in the s-step AB method matches

the function f(tm, ym) for m = n, n+ 1, . . . , n+ s− 1 and is defined as

p(t) =

s∑
m=0

pm(t)f(tn+m,yn+m) (1.22)

where the functions

pm(t) =
s−1∏

l=0,l 6=m

t− tn+l

tn+m − tn+l
=

(−1)s−m−1

m!(s−m− 1)!

s−1∏
l=0,l 6=m

(
t− tn
h
− l
)

(1.23)

for all m = 0, 1, . . . , s − 1 are the Lagrange interpolating polynomials. To obtain the

coefficients b0, . . . , bs−1 substitute the interpolating polynomial, p(t) for f in equation 1.21

and note that since p is a polynomial, the integral on the right-hand side of this expression

can be solved exactly. After integrating along an interval of length h, and replacing y(tn+s)

and y(tn+s−1) with their numerical counterparts yn+s and yn+s−1, one obtains

yn+s = yn+s−1 + h
s−1∑
m=0

bmf(tn+m,yn+m) (1.24)

where the coefficients b0, b1, . . . , bs−1 are defined as

bm =
1

h

∫ tn+s

tn+s−1

pm(τ)dτ =
1

h

∫ h

0
pm(tn+s−1 + τ)dτ, m = 0, 1, . . . , s− 1 (1.25)

Equations 1.24 and 1.25 comprise the s-step AB method which has order s implying that

the approximation error decays globally as O(hs). Note that the Adams-Bashforth method

with s = 1 is equivalent to the forward Euler method.

Similar arguments can be used to derive expressions for the coefficients b0, . . . , bs used in

16The extra restriction imposed by the explicit Adams-Bashforth method reduces the available degrees
of freedom by one and results in an interpolating polynomial of only degree s− 1.
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the s-step AM method:

yn+s =yn+s−1 + h
s∑

m=0

bmf(tn+m,yn+m) (1.26)

bm =
1

h

∫ tn+s

tn+s−1

pm(τ)dτ =
1

h

∫ h

0
pm(tn+s−1 + τ)dτ, m = 0, 1, . . . , s (1.27)

where the functions

pm(t) =
s∏

l=0,l 6=m

t− tn+l

tn+m − tn+l
=

(−1)s−m

m!(s−m)!

s∏
l=0,l 6=m

(
t− tn
h
− l
)

(1.28)

are the Lagrange interpolating polynomials. The s-step AM method has order s + 1

implying that the approximation error decays globally as O(hs+1). Note that the Adams-

Moulton methods nest the backward Euler method and the trapezoidal rule as special

cases. To recover the backward Euler method set s = 1; to recover the trapezoidal rule set

s = 2.

Backwards differentiation formula (BDF) methods take a completely different approach.

BDF methods normalize as = 1 and impose bs−1 = bs−2 = · · · = b0 = 0 yielding the

following approximation formula.

yn+s + as−1yn+s−1 + · · ·+ a0yn = hbsf(tn+s,yn+s) (1.29)

When choosing the values of the remaining, unrestricted, coefficients a0, . . . , as−1 the guid-

ing principal is to choose values that maximize the order at which the approximation error

decays subject to the constraint that the resulting BDF method remains convergent.17

These considerations yields a simple formula for the coefficient bs.

bs = β =

(
s∑

m=1

1

m

)−1

(1.30)

Given bs, the coefficients a0, . . . , as−1 are then set equal to the coefficients of the following

polynomial.

ρ(w) = β
s∑

m=1

1

m
ws−m(w − 1)m (1.31)

BDF methods have order s but are convergent only for 1 ≤ s ≤ 6. In practice, however,

only s-step BDF methods with 1 ≤ s ≤ 5 are commonly used. I have already discussed

17For more details on the subtle trade-offs between order and convergence for multi-step methods in
general and BDF methods in particular, see Iserles (2009).
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the simplest example of a BDF. The single step BDF, which has order s = 1, is just the

backward Euler method. The formulas for the remaining BDF methods can be found in

Hairer et al. (1993).

Adaptive step-size control

The linear multi-step methods that I have discussed so far in this section have all used a

fixed step-size, h. Most high quality linear multi-step integrators, however, exert significant

adaptive control over their own progress by frequently adjusting the step-size based on

estimates of the local truncation error.18

The objective of adaptive step-size control is to minimize the computational burden of

approximating the solution by adjusting the step-size, h, in order to achieve some prede-

termined level of accuracy. The basic principle behind all adaptive step-size schemes is

best demonstrated via a hillwalking analogy. An experienced hillwalker takes relatively

few large strides when moving over smooth, uninteresting countryside, and a large number

of short, carefully-placed steps when moving over treacherous mountain terrain.

The same underlying logic extends to integrating ODEs. When the solution trajectory is

relatively flat, a good integrator understands that it can take larger steps without sacrificing

too much accuracy and thus increases the step-size accordingly. However, when the solution

trajectory is rapidly varying, a good integrator knows that it may need to adjust the step-

size down in order to maintain its predetermined level of accuracy.

The literature on adaptive step-size control is vast with optimal approaches tending to

be integrator specific. Those interested in a more detailed discussion of these, and other,

methods for achieving adaptive step-size control using linear multi-step integrators should

consult, Hairer et al. (1993), Butcher (2008), or Press et al. (2009). The remainder of this

section illustrates a general approach to adaptive step-size control, called the Milne device,

variants of which are commonly found in off the shelf linear multi-step integrators.

The idea behind the Milne device is to use two order p linear multi-step methods, one

explicit and one implicit, to estimate the local truncation error of the implicit method.

Consider the following example. Suppose that I wish to estimate the local truncation error

of an implicit second-order Adams-Moulton method (i.e., the trapezoidal rule)

yTRn+1 = yn +
1

2
hnf(tn, yn) +

1

2
hnf(tn+1,yn+1)

18Local truncation error is the error incurred when integrating the system from tn to tn+1 under the
standard assumption that the value of yn is exact.
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using an explicit 2nd-order Adams-Bashforth method

yABn+1 = yn +
3

2
hnf(tn, yn)− 1

2
hnf(tn−1,yn−1).

Deriving the local truncation error for these methods using a Taylor expansion yields

y(tn+1)− yTRn+1 = − 1

12
h3
ny
′′′(tn) +O(h4

n)

y(tn+1)− yABn+1 =
5

12
h3
ny
′′′(tn) +O(h4

n)

where cTR = − 1
12 and cAB = 5

12 are the error constants for the trapezoidal rule and the

second-order AB method, respectively. Subtracting the bottom expression from the top

yields an estimate of hny
′′′(tn)

hny
′′′(tn) ≈ −2(yABn+1 − yTRn+1)

which can be substituted back into the trapezoidal rule formula obtain an estimate of its

local truncation error.

en+1 = y(tn+1)− yTRn+1 ≈
1

6
(yABn+1 − yTRn+1)

Now that I have an estimate of the local truncation error for the trapezoidal rule, to

complete my adaptive step-size scheme I need a rule for updating the step-size. Perhaps

the most widely used approach for updating the step-size, called error control per unit

step, computes hn+1 using

hn+1 = βhn

 δ∣∣∣∣∣∣en+1

hn

∣∣∣∣∣∣
∞

 1
2

where δ > 0 is some predefined error tolerance and 0 < β < 1 is a tuning parameter.

The above example is generalized for arbitrary linear multi-step methods in Iserles (2009).

The general formula for estimating local truncation error is

y(tn+s)− yn+s ≈
c

c− c̃
(yn+s − ỹn+s), s = 0, 1, . . . (1.32)

where c and c̃ are error constants associated with the order p linear multi-step methods

used to obtain y and ỹ. After computing the estimated local truncation error, the step-size
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hn is updated according to

hn+1 = βhn

 δ∣∣∣∣∣∣en+1

hn

∣∣∣∣∣∣
∞

 1
p

. (1.33)

1.3.5 Runge-Kutta (RK) methods

Like linear multi-step methods, RK methods can be thought of as a generalization of the

basic Euler methods. However, unlike linear multi-step methods, which use current and

previous values of the solution to approximate the value of the solution at the next step,

RK methods approximate the value of the solution at the next step by combining multiple

evaluations of the derivative at various points within the current step.

Explicit RK methods

To construct an explicit RK method, start by applying the fundamental theorem of calculus

to integrate the solution from tn to tn+1 = tn + h.

y(tn+1) =y(tn) +

∫ tn+1

tn

f(τ,y(τ))dτ

=y(tn) +

∫ 1

0
f(tn,y(tn + hτ))dτ

The next step is to approximate the integral on the right-hand side by the following

weighted average.19

yn+1 = yn + h
ν∑
j=1

bjf(tn + cjh,y(tn + cjh)), n = 0, 1, . . . (1.34)

The final step in constructing an explicit RK rule is to approximate each y(tn + cjh) for

j = 1, . . . , ν. Let ξj denote the numerical estimate of y(tn + cjh) for j = 1, . . . , ν. Explicit

RK methods approximate each of the ξj by updating yn with a linear combination of

f(tn, ξ1), f(tn + hc2, ξ2), . . . , f(tn + cj−1h, ξj−1).20 Specifically, define the RK stages ξj for

19In the literature on numerical integration the above weighted average is called a quadrature rule. The
collection of points c1, . . . , cν ∈ [tn, tn+1] are called quadrature nodes; and the values b1, . . . , bν are called
quadrature weights.

20By convention c1 = 0 which implies that ξ1 = yn.
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j = 1, . . . , ν as follows.

ξ1 =yn

ξ2 =yn + ha2,1f(tn, ξ1)

ξ3 =yn + ha3,1f(tn, ξ1) + ha3,2f(tn + c2h, ξ2)

...

ξν =yn + h
ν−1∑
i=1

aν,if(tn + cih, ξi)

The lower triangular matrix A = (aj,i)j,i=1,2,...,ν , where missing elements are defined to be

zero, is called the RK matrix, while

b =


b1

b2
...

bν

 , and c =


c1

c2

...

cν


are called the RK weights and RK nodes, respectively. Combining the ν stages with

the weights, b, and nodes, c, leads to the following general formula for an explicit RK

methods.

yn+1 = yn + h
ν∑
j=1

bjf(tn + cjh, ξj) (1.35)

RK methods are commonly represented by a partitioned tableau with the following form.

c A

bT
(1.36)

There are an almost endless number of explicit RK methods. See Gear (1971), Shampine

(1986), and particularly Butcher (2008) for a comprehensive listing of formulas for different

explicit RK methods. The tableaus for several of the more commonly encountered methods:

a two-stage, second-order RK method called the mid-point rule, and the classic third and
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fourth-order RK methods are provided below.

Second-order RK:

0

1
2

1
2

0 1

Third-order RK:

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

Fourth-order RK:

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

Variants of the fourth-order RK method have been used as default solvers in many software

packages for decades. The sustained popularity of the fourth-order RK method can be

attributed to the fact that it is both highly accurate and cheap to compute.21

Implicit RK methods

Implicit Runge-Kutta (IRK) methods allow the RK stages ξ1, . . . , ξν to depend on each

other in a more general manner than allowed for in equation 1.35. In general, IRK schemes

are formulated as follows.

ξj =yn + h
ν∑
i=1

aj,if(tn + cih, ξi), j = 1, . . . , ν

yn+1 =yn + h

ν∑
j=1

bjf(tn + cjh, ξj) (1.37)

21The approximation error of fourth-order Runge-Kutta decays globally as O(h4): reducing the step-
size by a factor of 10 reduces the global approximation error of by a factor of 104. Compare this result to
the basic forward Euler method whose approximation error would only fall by a factor of 10 for a similar
reduction in step-size. This substantial improvement in accuracy comes at the trivial computational cost
of only four extra evaluations of the function f per step.
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Note that the matrix A = (aj,i)j,i=1,2,...,ν , is now an arbitrary matrix whereas in equation

1.35 it was strictly lower triangular.22

IRK methods have superior stability properties but require substantially more compu-

tational effort than explicit RK methods. For a general IRK matrix A the implicit RK

formula defined by equation 1.37 defines a system of νn, generally non-linear, coupled alge-

braic equations.23 As was the case with explicit RK methods , IRK methods are typically

expressed in tableau form.

c1 a11 a11 . . . a1s

c2 a21 a21 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . a2s

b1 b2 . . . bs

b̃1 b̃2 . . . b̃s

An important subset of IRK methods are called collocation methods. Suppose that the

solution has already been integrated up to the point (tn,yn) and that I now want to advance

the integration to (tn+1,yn+1), where tn+1 = tn + h. Implementation of a collocation

method begins with the specification of ν distinct collocation nodes c1, c2, . . . , cν ∈ [0, 1].

The next step is to find a degree ν polynomial that obeys the given initial conditions and

satisfies the ODE exactly at the ν distinct collocation nodes.

u(tn) =yn, (1.39)

u′(tn + cjh) =f(tn + cjh,u(tn + cjh)), j = 1, 2, . . . , ν (1.40)

A collocation method finds such a polynomial u and sets

yn+1 = u(tn+1) (1.41)

22By convention the rows of matrix A satisfy

cj =

ν∑
i=1

aji, j = 1, . . . , ν (1.38)

which is necessary for the resulting method to be of non-trivial order.
23As a result of the significant computational cost of evaluating the RK stages of fully implicit RK

schemes, several authors have put forward various “semi-implicit” RK methods. Popular methods in the
class are the diagonally implicit Runge-Kutta (DIRK) and the singly-diagonally implicit Runge-Kutta
(SDIRK) methods. For a detailed discussion of these methods and other semi-implicit Runge-Kutta meth-
ods, as well as practical issues associated with implementing implicit Runge-Kutta methods see sections
34-36 of Butcher (2008)
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While in principle one could choose any set of collocation nodes c1, c2, . . . , cν , a common

approach is to set c1, c2, . . . , cν equal to the roots of a suitably transformed ν-degree Leg-

endre polynomial resulting in a ν-stage IRK method of order 2ν.24 The following are the

RK tableaux for ν = 1, 2, 3 and orders p = 2, 4, 6, respectively.

ν = 1, p = 2,

1
2

1
2

1
;

ν = 2, p = 4,

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 −

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

;

ν = 3, p = 6,

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

.

The computation of the νn non-linear algebraic systems generated by fully implicit Runge-

Kutta methods can be expensive. Usually, however, the additional computational burden

is more then compensated by the increased order of the resulting method. Although

there are no general rules for when the law of diminishing returns forces the use of a

lower order method, Iserles (2009) suggests that the three stage, order six Gauss-Legendre

method is likely the largest order method that is consistent with reasonable implementation

costs.

Adaptive step-size control

As was the case with linear multi-step methods, a high quality Runge-Kutta integrator

should implement some form of adaptive step-size control. Recall that an explicit order p

Runge-Kutta method consists of a matrix, A = (aji)j,i=1,...,ν , weights, b, and nodes, c that

24The classic ν-degree Legendre polynomial, Pν , is orthogonal with the weighting function ω(t) = 1 on
the domain −1 < t < 1. In order to insure that the nodes c1, c2, . . . , cν ∈ [0, 1], I need to apply a linear
transformation to the polynomial Pν to create a new polynomial P̃ν that is orthogonal with the weight
function ω(t) on the domain 0 < t < 1.

P̃ν(t) = Pν(2t− 1) =
(ν)!2

(2ν)!

ν∑
k=0

(−1)ν−k
(
ν

k

)(
ν + k

k

)
tk (1.42)
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are combined using

yn+1 = y + h
ν∑
i=1

biξi (1.43)

where

ξ1 =yn

ξ2 =yn + ha2,1f(tn + c1h, ξ1)

ξ3 =yn + ha3,1f(tn + c1h, ξ1) + ha3,2f(tn + c2h, ξ2)

...

ξν =yn + h

ν−1∑
i=1

aν,if(tn + cih, ξi).

An embedded Runge-Kutta (ERK) method adds an additional vector of weights b̃ that

can be used to construct an explicit order p− 1 method

ỹn+1 = ỹ + h
ν∑
i=1

b̃iξi (1.44)

where ξi, i = 1, . . . , ν are the same stages used to construct the order p method. The

difference between the two estimates of y(tn+1),

en+1 = yn+1 − ỹn+1 = h
ν∑
i=1

(bi − b̃i)ξi, (1.45)

is an estimate of the local truncation error for the order p method which can be used in

conjunction with equation 1.32 to adjust the step-size.

ERK methods are generally expressed using an extended form of the Butcher tableau.25

c1 a11 a11 . . . a1s

c2 a21 a21 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . a2s

b1 b2 . . . bs

b̃1 b̃2 . . . b̃s

25Although the first to propose combining two RK methods of different orders into a single tableau was
Merson (1957), embedded Runge-Kutta methods were widely popularized by Fehlberg (1968).
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The most basic ERK method combines Heun’s second-order explicit RK method with the

forward Euler method.

0

1 1

1
2

1
2

1 0

In the above tableau, the first row of b coefficients gives the second-order accurate solution,

and the second row has the first-order solution.

The classic example of a third-order ERK method is the Bogacki and Shampine (1989)

method.

0

1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

In the above tableau, the first row of b coefficients gives the third-order accurate solution,

and the second row has the second-order solution.

The most popular ERK methods are the Fehlberg (1968) method, Cash and Karp (1990)

method, and the Dormand and Prince (1980) method.26 All three of these methods are

26The Dormand and Prince (1980) method is the default ODE integrator in many commercial software
packages including MATLAB c©.
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fourth-order accurate.

Fehlberg 4(5) =

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

16
135 0 6656

12825
28561
56430 − 9

50
2
55

25
216 0 1408

2565
2197
4104 −1

5 0

Cash-Karp 4(5) =

0

1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 −11
54

5
2 −70

27 −35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771

2825
27648 0 18575

48384
13525
55296

277
14336

1
4

Dormand-Prince 4(5) =

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

In the above tableaus, the first row of b coefficients gives the fifth-order accurate solution,
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and the second row has the fourth-order solution.

1.4 Solving IVPs using Python

1.4.1 Solow model

A classic example of an initial value problem in economics is the Solow (1956) model of

economic growth. The ket equation of the Solow (1956) model is the equation of motion

for capital per effective worker:

k̇ = sf(k(t))− (n+ g + δ)k(t), k(0) = k0 (1.46)

where k is capital per effective worker, f(k(t)) is output per effective worker and is as-

sumed to be concave, twice differentiable and satisfy the Inada conditions. The parameters

s, n, g, δ are the savings rate, population growth rate, technology growth rate, and de-

preciation rate of physical capital, respectively.27

The Solow (1956) model with Cobb-Douglas production consists of the following au-

tonomous, first-order non-linear ODE

k̇ = sk(t)α − (n+ g + δ)k(t), k(0) = k0 (1.47)

This special case of the model happens to have an analytic solution.28

k(t) =

[(
s

n+ g + δ

)(
1− e−(n+g+δ)(1−α)t

)
+ k1−α

0 e−(n+g+δ)(1−α)t

] 1
1−α

(1.48)

The existence of a closed-form solution for this special case allows me to directly compare

the true solution with various numerical approximations.

Consider the simple forward Euler method. Figure 1.4 plots the approximation errors for

the forward Euler method for various fixed step-sizes ranging from h = 1.0 to h = 0.001.

In agreement with theory, my results indicate that the global approximation error of the

forward Euler method falls roughly linearly with h. Note that for all h the approximation

errors declines monotonically over the interval of interest. This undesirable behavior is a

product of the fixed step-size and the Solow (1956) model’s monotonic convergence towards

27The parameters of the model are calibrated to the UK using a variation of the growth accounting
procedure of data of Hall and Jones (1999) and data from Feenstra et al. (2013).

28A complete derivation of the differential equation describing the evolution of capital per effective
worker for the Solow (1956) model as well as its solution for the case of Cobb-Douglas production are
included in appendix 1.A.
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Figure 1.4: Solow (1956) approximation errors using forward euler.

Table 1.1: Comparison of the first-order Euler methods with the second-order trapezoidal
rule for solving the Solow (1956) model.

forward euler backward euler trapezoidal rule

h L∞ error Time (sec.) L∞ error Time (sec.) L∞ error Time (sec.)

1.0(0) 1.8(-2) 1.0(-2) 1.7(-2) 6.9(-2) 7.7(-5) 8.9(-2)
1.0(-1) 1.8(-3) 1.0(-1) 1.8(-3) 5.9(-1) 7.7(-7) 7.5(-1)
1.0(-2) 1.8(-4) 1.1(0) 1.8(-4) 5.9(0) 7.7(-9) 7.7(0)
1.0(-3) 1.8(-5) 5.6(1) 1.8(-5) 1.0(2) 7.7(-11) 1.2(2)

its fixed-point attractor k∗. Numerical approximation errors computed using the L∞ norm

as well as the run-times required to integrate equation 1.47 forward from an initial condition

of k0 = 1
2k
∗ where

k∗ =

(
s

n+ g + δ

) 1
1−α

(1.49)

over the interval 0 ≤ t ≤ 200 using the forward euler, backward euler, as well as the

trapezoidal rule are given in table 1.1 29 When comparing run times times across the

various methods, it is the relative (and not absolute) speed which matters. While absolute

speed of any particular method will vary across computers, the relative speed of various

methods should be fairly stable.

Next I approximate k(t) using two high-quality, linear multi-step integrators both of which

implement adaptive step-size control. Figure 1.5 plots approximation errors for lsoda,

29Estimated run times for each of the methods were computed using the IPython %timeit magic com-
mand. The value reported is the fastest of three successive integrations.
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Figure 1.5: In addition to adaptive step size control, the lsoda integrator also adaptively
switches between linear multi-step methods of different orders. The sporadic large drops
in the level of the approximation error are caused by lsoda switching between integrators
of different orders.

which is part of the Livermore Solvers for Ordinary Differential Equations (LSODE) pack-

age of ODE integrators developed by Hindmarsh and Radhakrishnan (1993). Figure 1.6

plots approximation errors for vode, a variable coefficient ODE solver developed by Brown

et al. (1989). Both of these integrators are available via the scipy.integrate.ode module

and their control parameters have been tuned in order to insure that the local truncation

error stays in the neighborhood of 1(−9). L∞ errors and run-times for lsoda, and two

different implementations of the vode solver are given in table 1.2. These results clearly

demonstrate the importance of using high-quality integrators with adaptive step size con-

trol. Both the lsoda and vode integrators achieve a significantly higher level of accu-

racy compared with the simple Euler methods without sacrificing computational efficiency.

Table 1.2: Comparison of various linear multi-step methods with adaptive step-size control

for solving the Solow (1956) model.

lsoda vode (Adams-Moulton) vode (BDF)

h L∞ error Time (sec.) L2 error Time (sec.) L2 error Time (sec.)

1.0 1.4(-8) 1.3(-2) 2.9(-9) 1.3(-2) 9.5(-8) 1.2(-2)

1.0(-1) 3.4(-9) 1.0(-1) 2.9(-9) 1.1(-1) 9.6(-8) 1.2(-1)

1.0(-2) 2.4(-9) 1.1(0) 6.7(-9) 1.2(0) 5.8(-8) 1.2(0)

1.0(-3) 1.8(-9) 5.5(1) 6.6(-9) 5.6(1) 7.1(-8) 5.5(1)
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Figure 1.6: Like lsoda, the vode integrator also adaptively switches between linear multi-
step methods of different orders. The sporadic large drops in the level of the approximation
error when using the vode integrator are caused by such switches.

1.4.2 The Spence (1974) model

The education signaling model of Spence (1974) is another classic example of an IVP

problem in economics. The Spence (1974) model assumes that worker differ in their ability,

and that a worker’s individual ability n ∈ [nL, nH ], is private information thus can not be

observed by any other economic agent. Workers acquire y years of education at a total

cost of C(y, n) where Cy > 0 > Cn. After acquiring some level of education, workers

are offered a job. A worker of ability n and y years of education produces S(y, n) output

where Sn > 0 and Sy > 0. The critical assumption of the Spence (1974) model is that a

prospective employer can not directly observe a worker’s ability, but instead must infer it

by observing a worker’s level of education. Spence showed that the equilibrium function

n(y) satisfies the following first-order non-linear differential equation.

n′(y) =
Cy(y, n(y))− Sy(y, n(y))

Sn(y, n(y))
(1.50)

Given nL and assuming that the lowest ability workers obtain the socially optimal level of

education, then the yL that solves

Sy(yL, nL) = Cy(yL, nL) (1.51)

pins down the initial condition, n(yL) = nL.
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In the special case of the above model analyzed in Spence (1974) C(y, n) = y
n and S(y, n) =

nyα with 0 < α < 1. Under these restrictions, the above differential equation reduces to a

non-autonomous, first-order, non-linear ODE

n′(y) =
n(y)−1 − αn(y)yα−1

yα
, n(yL) = nL (1.52)

where yL = (αn2)
1

1−α is the socially optimal level of education for the lowest ability workers.

This special case also happens to have a closed-form solution for n(y).

n(y) = y−α

2(y1+α +

[(
1+α

2

) (
nL
y−αL

)2
− y1+α

L

]
1 + α


1
2

(1.53)

The existence of a closed-form solution for this special case allows us to directly compare

the true solution with various numerical approximations.

Consider the trapezoidal rule. Given that the trapezoidal rule is an order two method,

reducing the step-size, h by a factor of ten should reduce the approximation error by a

factor of 102. In practice, I find that the approximation error of the trapezoidal rule does

not decay quite as fast. Figure 1.7 plots the absolute errors for various h. L∞ errors and

run-times for the forward euler, backward euler, and the trapezoidal rule are given

in table 1.3 for a model with α = 0.25 and nL = 0.1 (which implies yL = 0.00034).

Table 1.3: Comparison of the first-order Euler methods with the second-order trapezoidal

rule for solving the Spence (1974) model.

forward euler backward euler trapezoidal rule

h L∞ error Time (sec.) L∞ error Time (sec.) L∞ error Time (sec.)

1.0(-1) 1.2(0) 1.0(-2) 1.2(-1) 5.2(-2) 2.1(-1) 7.0(-2)

1.0(-2) 1.3(-1) 1.0(-1) 2.6(-2) 5.0(-1) 5.9(-2) 6.5(-1)

1.0(-3) 1.9(-2) 1.1(0) 2.6(-3) 4.8(0) 6.6(-3) 6.2(0)

1.0(-4) 9.3(-4) 5.3(1) 6.9(-4) 9.0(1) 9.4(-5) 1.0(2)

Figures 1.8 and 1.9 plot the approximation errors for two widely used embedded Runge-

Kutta methods developed by Dormand and Prince (1980). L∞ errors and average run-times

for a fourth-order explicit RK method, rk4, as well as the two embedded RK methods,

dopri5, and dop853 are given in table 1.4. The performance gains from using embedded

Runge-Kutta methods with adaptive step size control are impression. Although embedded

Runge-Kutta methods are about as fast as the classic Euler methods, they are roughly 10
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Figure 1.7: The performance of the trapezoidal rule is disappointing: the approximation
error decays much more slowly than theory would predict.

orders or magnitude more accurate.

Table 1.4: Comparison of the fourth-order Runge-Kutta method with embedded Runge-

Kutta methods with adaptive step-size control for solving the Spence (1974) model.

rk4 dopri5 dop853

h L∞ error Time (sec.) L∞ error Time (sec.) L∞ error Time (sec.)

1(-1) 3.1(-2) 7.3(-2) 8.3(-11) 3.2(-2) 9.0(-13) 4.8(-2)

1(-2) 2.3(-2) 7.2(-1) 6.0(-11) 2.8(-1) 6.9(-12) 4.5(-1)

1(-3) 7.4(-5) 7.4(0) 3.4(-10) 2.9(0) 8.7(-13) 4.6(0)

1(-4) 1.0(-7) 1.2(2) 2.4(-11) 7.1(1) 1.9(-12) 8.7(1)

1.5 Finite-difference methods for BVPs

Initial value problems are typically straightforward to solve because each point of the

solution depends on only local conditions which allows for the use of local approximation

methods discussed in section 1.3. In contrast, boundary value problems impose restrictions

on the solution at multiple points and thus the solution at each point no longer depends

only on local conditions. The need to resort to the more sophisticated global approximation

schemes makes solving BVPs inherently more challenging than solving IVPs. In this section

I discuss “shooting” methods for solving two-point boundary value problems (2PBVPs)
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Figure 1.8: Approximation errors for various step-sizes when solving the Spence (1974)
model using a fourth-order embedded Runge-Kutta method due to Dormand and Prince
(1980).

commonly encountered in the economics literature.30

Consider the following two-point boundary value problem.

y′ =f(t,y), t ≥ t0
gi(yi(t0)) =0, i = 1, . . . , n′ (1.54)

gi(yi(T )) =0, i = n′ + 1, . . . , n

where g : Rn → Rn. Note that the auxiliary conditions of the boundary value problem

defined in 1.54 provide initial conditions for n′ components of the solution and terminal

conditions for the remaining n− n′ components.

The idea behind shooting methods is to turn the boundary value problem into an initial

value problem by guessing appropriate initial conditions for the remaining n− n′ compo-

nents of the solution and then, using an appropriate initial value method, integrating the

system forward in order to see what this guess implies about the value of the y(T ) for the

n − n′ components of the solution. If the conjectured n − n′ initial conditions lead to a

value of y(T ) that is sufficiently close to satisfying the given terminal conditions for the

n − n′ components of the solution then procedure terminates. Otherwise a new guess for

appropriate initial conditions is generated and the above process repeats until a value for

30An excellent discussion of simple shooting methods can be found in Chapter 10 of Judd (1998).
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Figure 1.9: Approximation errors for various step-sizes when solving the Spence (1974)
model using an eighth-order embedded Runge-Kutta method due to Dormand and Prince
(1980).

y(t0) is found that is roughly consistent with the given terminal conditions.

This heuristic description suggests a shooting algorithm is comprised of two basic pieces.

The first piece is a method for solving the initial value problem

y′ = f(t,y), t ≥ t0, y(t0) = yj0 (1.55)

in order to compute the implied value for yT for some conjectured initial condition y(t0) =

yj0. In order to make explicit the dependence of yT on the initial guess yj0, let yT (yj0)

denote the value of the solution at time T given a guess of yj0 as the initial condition. The

second piece is a method for finding a value y0 that is roughly consistent with the n′ − n′

terminal conditions gi(yi(T )) = 0, i = n′+1, . . . , n. Specifically, this requires finding values

yi,0 such that

gi(yi,T (yi,0)) = 0, i = n′ + 1, . . . , n.

Since this is a system of generally non-linear equation in the n′ − n unknowns yi,0, the

second piece of any shooting algorithm for solving a two-point BVP is a method for solving

systems of non-linear equations. These ideas are summarized in algorithm 1

The generic shooting algorithm described above is an example of a two-layer algorithm.

The inner layer, defined on line 4, uses an appropriate method approximating the solution

of an IVP given an initial conditions yj0. The accuracy of this inner layer will depend
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Algorithm 1: Simple shooting algorithm

1 Objective: Solve the two-point BVP defined by 1.54.

2 Guess some yj0 and specify a stopping tolerance, tol > 0.
3 while True :

4 Solve the IVP defined by 1.55 for yT (yj0).

5 if ||gi(yi,T (yji,0))− yi,T || < tol, i = n′ + 1, . . . , n :

6 break
7 else:

8 Choose yj+1
0 based on yj0, yj−1

0 , etc.

on the numerical method used as well as the choice of step-size, h. The outer layer,

represented by the while loop, updates yj0 in order to solve the system of non-linear equation

gi(yi,T (yi,0)) = 0, i = n′ + 1, . . . , n. Any method for solving non-linear equations can be

used in line 7 to choose the next iterate yj+1
0 based on previous values yj0 and/or derivatives

of yT (y0).31

It is important to remember that, in general, the approximation error for multi-layered

algorithms is determined by the interaction between the approximation errors of the in-

dividual layers. For shooting methods, in particular, depending on the speed with which

error accumulates in the inner layer it may be necessary to set a relatively loose error

tolerance in the outer layer in order for the algorithm to terminate.

1.6 Solving BVPs using Python

1.6.1 The optimal growth model

In this section I compare the relative speed and accuracy of three different shooting methods

for solving a version of the optimal growth model of Ramsey (1928), Cass (1965), and

Koopmans (1965) with constant relative risk aversion (CRRA) preferences and a Cobb-

31The literature on numerical methods for solving non-linear equations is vast. Chapter 5 of Judd (1998)
discusses some of the classic techniques.
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k ∗

kt

c ∗
ct

Phase diagram for the Ramsey (1928) model
k̇=0

ċ=0

MU

MS

Figure 1.10: Since the optimal growth model is saddle point stable, “solving” the model is
really just computing the stable manifold (i.e., saddle path).

Douglas production technology.32

k̇ =k(t)α − (n+ g + δ)k(t)− c(t)
ċ

c(t)
=
αk(t)α−1 − δ − ρ− θg

θ
(1.56)

k(0) =k0, 0 < lim
t→∞
|k(t)| <∞

Although there is no general, analytic solution for the optimal growth model with CRRA

utility and Cobb-Douglas production, it is possible to obtain an analytic solution under

the assumption that the discount rate, ρ satisfies

ρ = αθ(n+ g + δ)− (δ + θg) > 0. (1.57)

This assumption implies that the model exhibits a constant gross savings rate which, in

32See appendix 1.B for a complete description of the model including a derivation of this system of
equations and boundary conditions.
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turn, leads to the following analytic solution for k(t), c(t).33

k(t) =

[
k1−α

0 e−λt +

(
1

θ(n+ g + δ)

)(
1− e−λt

)] 1
1−α

(1.58)

c(t) =

(
θ − 1

θ

)
k(t)α (1.59)

The existence of a closed-form solution for this, admittedly rather specific, parameter

restriction allows me to directly compare the shooting approximations with the exact solu-

tion. In what follows I assume the following parameter values: α = 0.33, δ = 0.04, θ = 3.0,

g = 0.01, n = 0.025 which together imply that ρ = 0.00425.

Forward shooting

Figure 1.10 is a phase diagram for this system of differential equations. Because the model

is saddle point stable there exist two invariant manifolds: a stable manifold, MS and an

unstable manifold, MU . These manifolds are called invariant because any path that begins

on MS(MU ) will remain on MS(MU ). MS is called the stable manifold because any path

that begins on the stable manifold will eventually converge to the steady state; MU is

called the unstable manifold because any path the begins on MU will diverge away from

the steady state. In order to solve the optimal growth model I need to compute its stable

manifold, MS .

The forward shooting method for finding MS begins by guessing a feasible value for c0 and

then using some IVP scheme to generate the implied solution trajectories for the variables

k(t) and c(t).34 If the initial choice of c0 is too small, then the solution trajectory eventually

crosses the ċ = 0 locus and c(t) begins to fall. Similarly, if the choice of c0 is too large, then

our path eventually crosses the k̇ = 0 curve at which point k(t) will start to fall. These

observations motivate the forward shooting scheme described in algorithm 2 for an initial

condition k(0) = k0 < k∗.35

Although algorithm 2 uses bisection search to update the guesses for the initial condition,

c0 in order to solve the non-linear equation c∗ = cT (c0), this is not strictly necessary.

Any non-linear equation solver could, in principle, be used.36 Figure 1.11 gives a sense of

33See appendix 1.B for a complete derivation of this solution.
34The choice of consumption per effective worker must be non-negative and be less than the sum total

of output and un-depreciated capital per effective worker. This implies the feasible range for the choice of
c0 is the interval [0, kα0 − (n+ g + δ)k0].

35The algorithm for solving the case where k(0) = k0 > k∗ is almost identical.
36Bisection search is not the most efficient technique for solving non-linear equations. However, so long

as I correctly bracket the true initial condition in line 1 of algorithm 2, bisection search is guaranteed to
converge to a solution. For a more detailed discussion of the bisection search method, as well as several
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Algorithm 2: Forward shooting the optimal growth model

1 Bracket the true c(0) by setting cL = 0 and cH = (1− δ)k0 + kα0 .
2 Guess that c0 = 1

2 (cH + cL) and specify a stopping tolerance, tol > 0.
3 while True :
4 Solve the model as an IVP with k(0) = k0 and c(0) = c0

5 if ċ < 0 :
6 if |c(T )− c∗| < tol :
7 break
8 else:
9 cL = c0

10 c0 = 1
2 (cH + cL)

11 elif k̇ < 0 :
12 if |c(T )− c∗| < tol :
13 break
14 else:
15 cH = c0

16 c0 = 1
2 (cH + cL)

17 else:
18 continue

how the update process using bisection search converges to an initial condition, c∗0, that

approximates the stable manifold, MS .

Approximation errors and estimated run-times for computing MS for k0 = 1
2k
∗ using

algorithm 2 with the dopri5 integrator are given in table 1.5 for various step-sizes and

convergence tolerances. When approximating the value of the policy function between grid

points, I use third-order B-spline interpolation. Note that, for a given convergence toler-

ance, decreasing the step size actually increases the approximation error! When using an

integrator that implements some form of adaptive step size control, such as lsoda, vode,

or dopri5, the value of tol is likely the major determinant of the overall approximation

error for the forward shooting algorithm. In a sense, decreasing h only results in better

approximation of a trajectory that differs from MS by tol, as opposed to a better approx-

imation of MS itself. Forward shooting is also numerically unstable: for sufficiently tight

convergence tolerance, the algorithm fails to converge when h = 1(−2) and h(1− 3). The

results reported in table 1.5 suggest that a good strategy for accurately approximating the

MS using forward shooting is to choose a tight convergence tolerance and a relatively large

step size.

other techniques for solving non-linear equations widely used in the economics literature, see Chapter 5 of
Judd (1998).
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Figure 1.11: Forward shooting with bisection search to find an initial condition c∗0 consistent
with the stable manifold, MS .

Table 1.5: Forward shooting approximation errors and run times.
h = 1(0) h = 1(-1) h = 1(-2)

tol L2 error Time (sec.) L2 error Time (sec.) L2 error Time (sec.)

1(-1) 1.22(0) 4.3(-2) 3.26(0) 2.1(-1) 1.0(1) 2.1(0)
1(-2) 4.4(-1) 1.2(-1) 1.3(0) 7.8(-1) 4.2(0) 7.7(0)
1(-3) 6.8(-1) 1.3(-1) 2.0(0) 8.0(-1) 6.4(0) 8.2(0)
1(-4) 6.8(-1) 1.3(-1) 1.3(0) 2.6(0) 4.2(0) 2.7(1)
1(-5) 8.5(-3) 2.4(1) - - - -
1(-6) 1.3(-4) 1.1(2) - - - -
1(-7) 1.6(-4) 1.1(2) - - - -
1(-8) 6.0(-6) 3.0(2) - - - -
1(-9) 5.3(-7) 4.0(2) - - - -

1.6.2 Reverse shooting

The phase diagram in figure 1.10 suggests that using forward shooting to compute the

stable manifold, MS , of the model might be difficult for at least some parameter values

and initial conditions k(0). Any initial deviation from MS , however small, is magnified

over time resulting in a path that increasingly departs from the exact solution. However,

suppose that instead of computing the stable manifold, I wished instead to compute the

unstable manifold, MU . As figure 1.10 suggests deviations from MU , however large, become

smaller over time. In fact, all I would need to do in order to compute a path that lies on

the unstable manifold is to choose a point near the steady state and then integrate the

system. The basic idea behind reverse shooting is to transform the system of equations
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in such a way so that the stable manifold of the original system becomes the unstable

manifold of the transformed system and then solve for the unstable manifold by shooting

“backwards” from the steady state.

Since time plays no direct role in the model, the household’s choice of consumption per

effective worker at time t depends only on the value of capital per effective worker at time

t. I can express this by defining a policy function, c(k), such that c(k) = c(k(t)) = c(t).

Furthermore, 1.56 implies that the consumption policy function satisfies the following

differential equation.

c′(k) =
ċ

k̇
=

(
c(k)

θ

)(
αkα−1 − δ − ρ− θg

kα − (n+ g + δ)k − c(k)

)
(1.60)

Since optimality requires the economy to converge to its steady state, the solution c(k)

must satisfy the boundary condition c(k∗) = c∗. The reverse shooting approach solves for

the lower portion of the consumption policy function by choosing some initial step-size

ε > 0, setting

k0 =k∗ − ε

c0 =c(k∗ − ε) ≈ c∗ − εc′(k∗)

and then integrating equation 1.60 backward using some IVP scheme. To compute the

upper portion of the policy function using reverse shooting, simply integrate equation 1.60

forward from the initial condition

k0 =k∗ + ε

c0 =c(k∗ + ε) ≈ c∗ + εc′(k∗).

Table 1.6 displays the L2 approximation errors for various choices of the initial step-size, ε,

and the regular step-size, h, when using the dopri5 integrator from Dormand and Prince

(1980) to solve the IVPs on the interval [1
2k
∗, 2k∗]. To approximate the value of the policy

function between grid points I use third-order B-spline interpolation. Reverse shooting

is both faster, more accurate, and more numerically stable than forward shooting. Also,

unlike forward shooting, reverse shooting has the desirable property that the approximation

error is declining with the step size h.
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Table 1.6: Reverse shooting approximation errors and run-times.

h = 1(-1) h = 1(-2) h = 1(-3)

eps L2 error Time (sec.) L2 error Time (sec.) L2 error Time (sec.)

1(-1) 5.8(-5) 3.9(-2) 7.9(-5) 3.6(-1) 8.3(-5) 3.6(0)

1(-2) 8.3(-8) 3.8(-2) 1.8(-7) 3.6(-1) 2.4(-7) 3.7(0)

1(-3) 7.0(-9) 3.9(-2) 2.9(-10) 3.6(-1) 2.5(-10) 3.9(0)

1(-4) 7.1(-9) 3.9(-2) 2.0(-10) 3.6(-1) 2.6(-13) 3.8(0)

1(-5) 7.1(-9) 4.3(-2) 2.5(-10) 3.7(-1) 8.8(-14) 4.0(0)

1(-6) 7.1(-9) 5.3(-2) 2.5(-10) 3.9(-1) 8.1(-14) 4.2(0)

1.7 Conclusions

My results suggest a number of “best practices” that all economic researchers should

adhere to when solving ODEs. Classic finite difference methods with fixed step-size such

as variants of Euler’s method or the family of explicit Runge-Kutta methods should be

avoided. While such methods are easy to code, they tend to be computationally inefficient

and will be orders of magnitude less accurate than more modern methods which implement

adaptive step-size control. There are several high-quality ODE solvers currently available

via the scipy.optimize module: the embedded Runge-Kutta methods due to Dormand

and Prince (1980), dopri5 and dop853 and the linear multi-step integrators lsoda, which

is part of the Livermore Solvers for Ordinary Differential Equations (LSODE) package of

ODE integrators developed by Hindmarsh and Radhakrishnan (1993), and vode, a variable

coefficient ODE solver developed by Brown et al. (1989). Of these methods dopri5 and

dop853 are generally the most accurate “out of the box” (i.e., without changing any of the

default tolerances).

When solving BVPs using finite-difference methods it is important to remember that the

approximation error for multi-layered algorithms is determined by the interaction between

the approximation errors of the individual layers. For shooting methods it may be necessary

to set a relatively loose error tolerance in the outer layer in order for the algorithm to

terminate. Using an ODE solver with adaptive step-size control in the inner layer will slow

down the rate at which error accumulates in the inner layer of the algorithm, which in

turn, will allow the researcher to set a tighter error tolerance in the outer layer. Where

applicable, reverse shooting is preferred over forward shooting for solving BVPs. Reverse

shooting is more computationally efficient, more numerically stable, and significantly more

accurate than forward shooting.
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This chapter explored the use of the Python programming language for solving types of

ordinary differential equations (ODEs) commonly encountered in economics using finite-

difference methods. The methods surveyed in this chapter, as well as the accompany-

ing Python code and IPython notebooks which implement them should be of use to any

economist interested in applying finite-difference methods for solving ODEs to economic

problems.
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Appendix

1.A The Solow growth model

The Solow (1956) model focuses on four variables: output, Y , capital, K, labor L, and

technology or “effectiveness of labor”, A. Capital, labor, and technology are combined to

produce output according to some production function F .

Y (t) = F (K(t), A(t)L(t)) (1.61)

F is assumed to exhibit constant returns to scale which allows us to work with the intensive

form of the production function

y(t) =
Y (t)

A(t)L(t)
= F

(
K(t)

A(t)L(t)
, 1

)
= f(t, k(t)) (1.62)

The initial values of capital, K0, labor, L0, and technology, A0, are taken as given and

assumed to be strictly positive. Labor and technology are assumed to grow at constant

rates:

L̇(t) =nL(t), (1.63)

Ȧ(t) =gA(t), (1.64)

where n and g are exogenous parameters representing the growth rates of the labor force

and technology, respectively.

Output is divided between consumption and investment. The fraction of output invested at

each point in time, s, is exogenous and constant. One unit of output devoted to investment

yields one unit of new capital. Existing capital is assumed to depreciate at a constant rate

δ. Putting all of this together, the aggregate capital stock evolves according to

K̇(t) = sY (t)− δK(t). (1.65)

41
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No restrictions are placed on the parameters n, g, and δ other than the assumption that

their sum is positive.

The key equation of the Solow (1956) model is the equation of motion for capital per

effective worker, k(t) = K(t)
A(t)L(t) . Application of the chain rule to k(t) yields

k̇(t) =
K̇A(t)L(t)−K(t)

[
A(t)L̇(t) + Ȧ(t)L(t)

]
[A(t)L(t)]2

=
K̇

A(t)L(t)
− K(t)

A(t)L(t)

(
L̇(t)

L(t)
+
Ȧ(t)

A(t)

)
. (1.66)

From here we need only substitute the equation of motion for capital and the expressions

for the exogenous growth rates of labor and technology to obtain a first-order non-linear

differential equation describing the evolution of capital per effective worker, k(t).

k̇(t) =
sY (t)− δK(t)

A(t)L(t)
− K(t)

A(t)L(t)

(
L̇(t)

L(t)
+
Ȧ(t)

A(t)

)

=s
Y (t)

A(t)L(t)
− (n+ g + δ)

K(t)

A(t)L(t)

=sf(k(t))− (n+ g + δ)k(t) (1.67)

I assume throughout this chapter that the production function F is a constant returns to

scale Cobb-Douglas technology:

F (K(t), A(t)L(t)) = K(t)α[A(t)L(t)]1−α (1.68)

where α is capital’s share of income/output. Under this assumption, the intensive form of

the production function is simply f(k(t)) = k(t)α, and equation 1.67 is reduces to

k̇ = sk(t)α − (n+ g + δ)k(t) (1.69)

for some given initial condition k(0) = k0.

1.A.1 Analytic solution

The Solow (1956) with Cobb-Douglas production is known to have a general analytic

solution. The solution method presented here follows Chiang and Wainwright (2005) and is

intentionally pedestrian. The basic idea is to use a clever change of variables to transform

equation 1.69 into a linear, first-order differential equation which can be solved using
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standard methods. Start by defining a new variable, z(t), as follows.37

z(t) =
k(t)

y(t)
= k(t)1−α (1.70)

Next, differentiate equation 1.70 with respect to t to obtain the following relationship

between ż and k̇

ż = (1− α)k(t)−αk̇ =⇒ k̇ = ż(1− α)−1k(t)α (1.71)

which can be used to substitute for k̇ in equation 1.69 in order to yield the following linear,

first-order differential equation

ż + (n+ g + δ)(1− α)z(t) =s(1− α) (1.72)

with z(0) = k1−α
0 .

The solution to equation 1.72, which is a non-homogenous, first-order linear differential

equation with constant coefficient and constant term, will consist of the sum of two terms

called the complementary function, zc and the particular integral, zp, both of which have

significant economic interpretation.

Mathematically, the complementary function, zc, is simply the general solution of the

following reduced form, homogenous version of equation 1.72.

ż + (n+ g + δ)(1− α)z(t) = 0 (1.73)

Standard techniques for solving homogenous, first-order linear differential equations demon-

strate that the general solution of equation 1.73 must be of the form

zc = Ce−(n+g+δ)(1−α)t (1.74)

where C is some, as yet unknown, constant.

The particular integral, zp, is any particular solution of 1.72. Suppose that z(t) is some

constant function. In this case ż = 0 and equation 1.72 becomes

zp =
s

n+ g + δ
(1.75)

which is a valid solution so long as n+ g + δ 6= 0.

The sum of the complementary function and the particular integral constitutes the general

37This clever change of variables was originally published in Sato (1963).
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solution to equation 1.72.

z(t) = zc + zp = Ce−(n+g+δ)(1−α)t +

(
s

n+ g + δ

)
(1.76)

Using the initial condition, z(0) = k1−α
0 , to solve for the constant C yields

C =k1−α
0 −

(
s

n+ g + δ

)
(1.77)

which can be combined with equation 1.76 to give the closed for solution for the capital-

output ratio, z(t).

z(t) =

(
s

n+ g + δ

)(
1− e−(n+g+δ)(1−α)t

)
+ k1−α

0 e−(n+g+δ)(1−α)t (1.78)

At this point it is worth digressing slightly to discuss the economic interpretation of the

complementary function and the particular integral. The particular integral, zp, is the

inter-temporal equilibrium value for the capital-output ratio, z(t), whilst the complemen-

tary function, zc, represents deviations from this long-run equilibrium. Dynamic stability

of z(t) requires that deviations from equilibrium described by zc die out as t → ∞. In

order for limt→∞ zc = 0, I require that (n+ g + δ)(1− α) > 0.

Finally, from equation 1.78 it is straightforward to obtain a closed form solution for the

time path of k(t) by substituting z(t) = k(t)1−α and then solving for k(t).

k(t) =

[(
s

n+ g + δ

)(
1− e−(n+g+δ)(1−α)t

)
+ k1−α

0 e−(n+g+δ)(1−α)t

] 1
1−α

(1.79)
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1.B The optimal growth model

The classic optimal growth model due to Ramsey (1928), Cass (1965), and Koopmans

(1965) model.

1.B.1 Assumptions

Firms

As in the Solow (1956) model, there are a large number of identical firms each having

access to the same constant returns to scale (CRTS) production technology, F , which

combines capital, K(t), labor, L(t), and technology, A(t), to produce output, Y (t). Firms

hire workers and rent capital in competitive factor markets, and sell their output in a

competitive output market. Firms take the path of technology A(t) as given; as in the

Solow (1956) model A(t) grows exogenously at rate g. Firms are owned by households and

are assumed to maximize profits.

Households

There are a large number of identical, infinitely-lived households. The size of each house-

hold grows at rate n. Each member of the household is assumed to supply one unit of

labor at every point in time (i.e., labor supply is inelastic). In addition, each household

rents whatever capital it owns to firms. Each household has initial capital holdings of K(0)
H ,

where K(0) is the initial amount of total capital in the economy and H is the number of

households. K(0) is assumed to be strictly positive. At each point in time a household

divides its income between consumption and saving in order to maximize its lifetime utility,

U .

U =

∫ ∞
0

e−ρtu(C(t))
L(t)

H
dt (1.80)

C(t) is the consumption of each member of the household at time t. The function u is

the instantaneous utility function giving each household member’s utility at time t. L(t)

is the total number of workers in the economy at time t; therefore L(t)
H is the total number

of workers per household. Thus

u(C(t))
L(t)

H
(1.81)

represents a household’s total instantaneous utility at time t. Finally, ρ > 0, is the discount

rate. The greater is ρ the less a household values future consumption relative to current



46 CHAPTER 1. FINITE-DIFFERENCE METHODS FOR SOLVING ODES

consumption. The instantaneous utility function, u, is assumed to take the constant relative

risk aversion (CRRA) form.

u(C(t)) =
C(t)1−θ

1− θ
, θ > 0 (1.82)

Since there is no uncertainty in the model, a household’s attitudes toward risk are not di-

rectly relevant. However, CRRA utility implies that a household’s elasticity of substitution

of consumption between different points in time is 1
θ . Thus θ also determines a household’s

willingness to shift consumption between different points in time. For θ close to zero in-

stantaneous utility is almost linear and a household would be willing to shift large amounts

of consumption across time to take advantage of difference between its discount rate and

the prevailing interest rate. For large values of θ, a household requires large differences

between the interest rate and the discount rate in order to shift even small amounts of

consumption across time.

1.B.2 Behavior of households and firms

Firms

The behavior of firms is relatively simple. At each point in time each firm employs stocks

of capital and labor, pays them their respective marginal products, and sell the resulting

output. The joint assumption of competitive markets and constant returns implies that

all firms earn zero profits.

Firms solve the following optimization problem at each point in time.

max
K(t),L(t)

Π(t) = Y (t)− (r(t) + δ)K(t)−W (t)L(t) (1.83)

subject to the constraint imposed by the production function.

Y (t) =F (K(t), A(t)L(t))

=A(t)L(t)F

(
K(t)

A(t)L(t)
, 1

)
=A(t)L(t)f

(
K(t)

A(t)L(t)

)
(1.84)

The first-order conditions for the problem can be used to derive expression for both the
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real return to capital and the real wage.

∂Π(t)

K(t)
=f ′

(
K(t)

A(t)L(t)

)
− (r(t) + δ) = 0 =⇒

r(t) =f ′
(

K(t)

A(t)L(t)

)
− δ

=f ′(k(t))− δ (1.85)

∂Π(t)

L(t)
=A(t)

[
f

(
K(t)

A(t)L(t)

)
−
(

K(t)

A(t)L(t)

)
f ′
(

K(t)

A(t)L(t)

)]
−W (t) = 0 =⇒

W (t) =A(t)

[
f

(
K(t)

A(t)L(t)

)
−
(

K(t)

A(t)L(t)

)
f ′
(

K(t)

A(t)L(t)

)]
w(t) =

W (t)

A(t)
= f(k(t))− k(t)f ′(k(t)) (1.86)

Households’ budget constraint

Each household takes the time-paths of r and W as given when solving its maximization

problem. At each point in time a household’s consumption and investment must not exceed

its total income. Formally, at each point in time the household faces the following flow

budget constraint.
C(t)L(t)

H
+
K̇(t)

H
≤ W (t)L(t)

H
+
r(t)K(t)

H
(1.87)

Because the marginal utility from consumption is always positive, the constraint will bind

with equality for all t.

Household’s maximization problem

The representative household wants to maximize its lifetime utility subject to its budget

constraint. As in the Solow (1956) model, it is easier to work with variables normalized by

the quantity of effective labor. To do this we need to express both the objective function

and the budget constraint in terms of consumption and labor income per unit of effective

labor.

Start with the objective function. Define c(t) to be consumption per unit of effective labor.

Thus consumption per worker, C(t), equals c(t)A(t). The household’s instantaneous utility
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function becomes

C(t)1−θ

1− θ
=

[c(t)A(t)]1−θ

1− θ

=

[
c(t)A(0)egt

]1−θ
1− θ

(1.88)

=A(0)1−θe(1−θ)gt c(t)
1−θ

1− θ

Substituting 1.88 and the fact that L(t) = L(0)ent into the household’s objective function

yields

U =

∫ ∞
0

e−ρt
C(t)1−θ

1− θ
L(t)

H
dt

=

∫ ∞
0

e−ρt
[
A(0)1−θe(1−θ)gt c(t)

1−θ

1− θ

]
L(0)ent

H
dt

=A(0)1−θL(0)

H

∫ ∞
0

e−(ρ−n−(1−θ)g)t c(t)
1−θ

1− θ
dt

=B

∫ ∞
0

e−βt
c(t)1−θ

1− θ
dt (1.89)

where B ≡ A(0)1−θL(0)/H and β ≡ ρ− n− (1− θ)g. Note that β > 0 is required in order

for the household’s lifetime utility to converge.

Now consider the budget constraint, 1.87. Start by dividing both sides of the budget

constraint by A(t)L(t).

C(t)

A(t)
+

K̇(t)

A(t)L(t)
=
W (t)

A(t)
+ r(t)

K(t)

A(t)L(t)

c(t) +
K̇(t)

A(t)L(t)
=w(t) + r(t)k(t) (1.90)

To derive and expression for the second term in equation 1.90, note that

K̇(t) =
∂(k(t)A(t)L(t))

∂t
= k̇(t)A(t)L(t) + k(t)[Ȧ(t)L(t) +A(t)L̇(t)]

K̇(t)

A(t)L(t)
=k̇ +

[
Ȧ

A(t)
+

L̇

L(t)

]
k(t) (1.91)

K̇(t)

A(t)L(t)
=k̇ + (n+ g)k(t).

Substituting this result into equation 1.90 yields the flow budget constraint for the repre-
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sentative household in efficiency units.

k̇ =w(t) + [r(t)− (n+ g)]k(t)− c(t) (1.92)

In addition to the flow budget constraint, we need to impose the following transversality

condition that rules out exploding time paths of consumption per effective worker.

lim
t→∞
|c(t)| <∞ (1.93)

Household behavior

The household’s objective is to choose the path of c(t) in order to

max
c(t)

B

∫ ∞
0

e−βt
c(t)1−θ

1− θ
dt (1.94)

subject to

k̇ = w(t) + [r(t)− (n+ g)]k(t)− c(t), k(0) = k0 (1.95)

lim
t→∞
|c(t)| <∞ (1.96)

where B ≡ A(0)1−θL(0)/H and β ≡ ρ− n− (1− θ)g.

The solution to the household’s optimization problem can be easily characterized using the

theory of optimal control. The main tool for solving problems of optimal control is known

as Pontryagin’s maximum principle. The maximum principle states that the first-order,

necessary condition for optimality requires the representative household to choose a feasible

value of the control so as to maximize the Hamiltonian, H, at each point in time.38

The Hamiltonian for the representative household’s problem is

H(t, k, c, λ) = Be−βt
(
c(t)1−θ

1− θ

)
+ λ(t) [(r(t)− (n+ g))k(t) + w(t)− c(t)] (1.97)

where the variables k, c, and λ are respectively referred to as the state, control, and costate

variables. So long as H is concave in the control, c, the maximum of H corresponds to an

38The classic reference for the theory of optimal control is Pontryagin (1959). Chiang and Wainwright
(2005) and the mathematical appendix of Barro and Sala-i Martin (2003) provide nice, easy introductions
to the core material. Kamien and Schwartz (2012) covers everything about optimal control theory that
even the most mathematically inclined economist might ever want to know.
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interior solution and therefore we can find the optimal choice of c as follows.

∂H

∂c
= Be−βtc(t)−θ − λ(t) = 0 =⇒ λ(t) = Be−βtc(t)−θ (1.98)

Since, along with the control, c, H depends on both k and λ, the maximum principle also

stipulates how k and λ should evolve over time. These equations are referred to as the

state equation and the costate equation, respectively.

k̇ =
∂H

∂λ
= (r(t)− (n+ g))k(t) + w(t)− c(t) (1.99)

λ̇ =− ∂H(t)

∂k
= −λ(t)(r(t)− (n+ g)) (1.100)

These two equations of motion, together with equation 1.98, define the optimal time-paths

for c, k, and λ.

To derive the consumption Euler equation, differentiate equation 1.98 with respect to

time

λ̇ =B
[
e−βt

(
−θc(t)−θ−1ċ

)
− [ρ− n− g(1− θ)]e−βtc(t)−θ

]
=−Be−βtc(t)−θ

[
θ

(
ċ

c(t)

)
+ [ρ− n− g(1− θ)]

]
(1.101)

and then equate the resulting expression for λ̇ with the costate equation.

−Be−βtc(t)−θ
[
θ

(
ċ(t)

c(t)

)
+ [ρ− n− g(1− θ)]

]
= −λ(t)(r(t)− (n+ g))

Finally, after substituting for λ(t) using equation 1.98 (and a bit of algebra) we arrive at

the consumption Euler equation.

−Be−βtc(t)−θ
[
θ

(
ċ

c(t)

)
+ [ρ− n− g(1− θ)]

]
=−Be−βtc(t)−θ(r(t)− (n+ g))

θ

(
ċ(t)

c(t)

)
+ [ρ− n− g(1− θ)] =(r(t)− (n+ g))

ċ(t)

c(t)
=
r(t)− ρ− θg

θ
(1.102)

Equilibrium

The decentralized equilibrium of the optimal growth model is completely characterized by

the two first-order conditions from the representative firm’s profit maximization problem,
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and the consumption Euler equation and budget constraint of the representative house-

hold.

These four equations can be combined to yield a two-dimensional system of non-linear

differential equations

k̇(t) =f(k(t))− c(t)− (n+ g + δ)k(t) (1.103)

ċ(t)

c(t)
=
f ′(k(t))− δ − ρ− θg

θ
(1.104)

with the following boundary conditions.

k(0) =k0 (1.105)

lim
t→∞
|c(t)| <∞ (1.106)

1.B.3 Analytic solution

Although the Ramsey (1928), Cass (1965), Koopmans (1965) model with Cobb-Douglas

production does not have analytic solution for generic parameter values, Smith (2006)

derives an analytic solution for the case where the inverse of the inter-temporal elasticity

of substitution, θ, equals capital’s share of income, α. Unfortunately, this parameter

restriction leads to a linear saddle path which is of little use when the objective is to

compare approximation errors for across numerical methods. Instead, in order to obtain

a closed-form solution of the model that is sufficiently non-linear, I focus on the a special

case of the model with a constant gross savings rate.

Start by defining the capital-output ratio, z(t), and the consumption-output ratio, χ(t),

as follows.

z(t) =
k(t)

y(t)
= k(t)1−α (1.107)

χ(t) =
c(t)

y(t)
=

c(t)

k(t)α
(1.108)

Differentiating equation 1.107 with respect to t yields a relation between ż and k̇

ż = (1− α)k(t)−αk̇ (1.109)

which can be used to transform equation 1.103 into a linear differential equation.

ż + (1− α)(n+ g + δ)z(t) + (1− α)χ(t) =(1− α) (1.110)
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Taking logarithms and then differentiating equation 1.108 with respect to t yields a relation

between the growth rate of χ(t) and those of c(t) and k(t)

˙χ(t)

χ(t)
=

˙c(t)

c(t)
− α

˙k(t)

k(t)
(1.111)

which can be used to transform equation 1.104 into

˙χ(t)

χ(t)
=
[α
θ
− α(1− χ(t))

]
k(t)α−1 + α(n+ g + δ)−

(
δ + ρ+ θg

θ

)
. (1.112)

Now conjecture that the consumption-output ratio, χ(t), is constant along the saddle-path.

This conjecture implies the following.

χ∗ =1− 1

θ
=
θ − 1

θ
, θ > 1 (1.113)

ρ =αθ(n+ g + δ)− (δ + θg) > 0 (1.114)

This conjecture makes equation 1.110 into a linear differential equation

ż + λz(t) = (1− α)(1− χ∗) (1.115)

where

λ = (1− α)(n+ g + δ).

Given the initial condition z(0) = z0, the above equation can be solved using standard

methods to obtain the following solution for z(t).39

z(t) =z0e
−λt +

(
1

θ(n+ g + δ)

)(
1− e−λt

)
(1.116)

Finally, transforming back to k(t) using z(t) = k(t)1−α and z0 = k1−α
0 yields the analytic

solution for the time path of capital per effective worker.

k(t) =

[
k1−α

0 e−λt +

(
1

θ(n+ g + δ)

)(
1− e−λt

)] 1
1−α

(1.117)

With the solution for k(t) in hand, the solution for c(t) is implied by the definition of the

consumption-output ratio, χ(t), which I have conjectured to be constant along the saddle

path.

c(t) =

(
θ − 1

θ

)
k(t)α (1.118)

39See Chiang and Wainwright (2005) for an introductory discussion of such methods.
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One can confirm that the original conjecture of χ(t) = χ∗ for all t is correct by checking

that equations 1.117 and 1.118 jointly satisfy equations 1.103 and 1.104.
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Chapter 2

Characterizing the size

distribution of U.S. banks

Using detailed balance sheet data for all FDIC regulated banks for the years

1992 through 2011 this paper assesses the statistical support for Zipf ’s Law

(i.e., a the power law distribution with a scaling exponent of α = 2) as an

appropriate model for the upper tail of the size distribution of U.S. banks.

Although I find statistically significant departures from Zipf’s Law for most

measures of bank size in most years, a power law distribution with α̂ ≈ 1.9

out performs other plausible heavy-tailed alternative distributions.

2.1 Introduction

The past 20 years have seen significant agglomeration within the U.S. banking sector. In

1992 there were 13,973 banks regulated by the Federal Deposit Insurance Corporation

(FDIC), the largest of which, Citibank, controlled roughly 3.5% of all U.S. banking assets.

By the end of 2011, the number of banks under FDIC regulation had fallen by almost 50%

to 7,366, and the largest remaining bank, JP Morgan-Chase, controlled approximately

13% of all U.S. banking assets. Figure 2.1 shows the fraction of total U.S. banking assets,

loans, liabilities, deposits, equity, and employees controlled by the single largest bank from

1992 to 2011.1 The extent of agglomeration within the banking sector appears even more

dramatic when one examines the market shares held by the ten largest U.S. banks. Figure

2.2 plots these market shares for the same measures of bank size used in figure 2.1. The

1Monetary figures are first deflated and then re-scaled by dividing through by banking sector totals
relative to 2011. See section 2.2 for the details.

55
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Figure 2.1: The market shares of the largest U.S. bank have increased markedly over the
past 20 years.

market share of the 10 largest banks has more than doubled over the last 20 years from

less than 20% to roughly 50%.2

The objective of this paper is to assess whether the levels of concentration observed in

the data are consistent with Zipf’s Law (i.e., a the power law distribution with a scaling

exponent of α = 2) using statistical techniques advocated by Clauset et al. (2009).3 Al-

though the banking literature has long been interested in the size distribution of banks,4

2The “jumps” in the share of assets and liabilities controlled by the largest U.S. bank all occurred
because of mergers between large banks. In 1999, Nations Bank, the largest U.S. bank at the time, merged
with Bank of America. JPMorgan-Chase, itself the largest bank at end of 2003, purchased the sixth largest
bank in the U.S., Bank One, in 2004. Finally, JPMorgan-Chase acquired both Bear Stearns and Washington
Mutual in 2008 in the aftermath of the global financial crisis. These “jumps” in market shares also hint at
another important stylized fact: there seems to be no preferred scale for bank mergers. Small banks merge
with other small banks; small banks merge with larger banks; and large banks also frequently merge with
other extremely large banks.

3Given some measure of bank size Zipf’s Law states that the size of a bank should be inversely propor-
tional to its rank. Put another way, under Zipf’s law, the largest bank should be approximately twice as
large as the second largest bank, three times as large as the third largest bank, etc. The original exposition
of Zipf’s law can be found in Zipf (1949). More modern treatment of Zipf’s Law can be found in Gabaix
(1999) and Gabaix (2008).

4Recent studies include Berger et al. (1995), Ennis (2001), Goddard et al. (2004), Jones and Critchfield
(2005), and Janicki and Prescott (2006), Benito (2008).
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Figure 2.2: Irrespective of the measure of bank size, the 10 largest U.S. banks currently
control roughly 50% of the market.

this literature has not generally focused on fitting specific statistical models to data on

bank size.5 I have chosen to focus on characterizing the size distribution of U.S. banks

because the distribution contains important information on the pace and nature of con-

centration within the U.S. banking sector. Concentration, particularly in excess of what

can be supported by economic fundamentals would call into question the competitiveness

of the banking sector.

Using detailed balance sheet data for all FDIC regulated banks for the years 1992 through

2011, I find significant departures from Zipf’s Law for most measures of bank size in most

years. Although Zipf’s Law can be statistically rejected, a power law distribution with

α̂ ≈ 1.9 outperforms other plausible heavy-tailed alternative distributions. Power law

distributions with scaling exponents α < 2 display some startling mathematical properties

that have important economic implications.6 For example, such distributions have no well-

defined expected values. The failure of the expected value to be well-defined implies that

the fraction of U.S. banking sector totals in the top anything of the size distribution (even

5Janicki and Prescott (2006) is an important exception.
6The mathematical properties of power laws are discussed in detail in appendix 2.A.
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the top 1% of banks) should tend to unity in the limit of an infinite number of banks. In

practice, a scaling exponent of α < 2 implies that one should expect effectively all of the

assets, loans, liabilities, deposits, and equity in the U.S. banking sector to be controlled by

a small number of banks in the extreme tail of the size distribution.

I view characterizing the bank size distribution as an important first-step toward develop-

ing an empirically relevant theory of the banking. A natural point of departure for such

a theory would be Gabaix (2011). Gabaix (2011) posits that, so long as the upper tail of

the firm size distribution is sufficiently heavy, much of the variation in aggregate macroe-

conomic time series data over the business cycle can be explained by idiosyncratic shocks

to individual firms. The “granularity hypothesis” of Gabaix (2011) constrasts sharply

with existing research on business cycles which has focused almost exlcusively on the role

played by aggregate shocks. An empirical characterization of the upper tail of the bank

size distribution is a necessary precusor to any future attempt to develop a “granularity

hypothesis” for banking.

The remainder of this paper proceeds as follows. In the following section I discuss the data

used in the analysis. Section 2.3 details the statistical methodology that I use for fitting

the power law model to the data. Section 2.4 presents the empirical results and section

3.5 provides some concludes and discusses some avenues for future research.

2.2 Data

All bank data used in this study are taken from the Statistics on Depository Institutions

(SDI) database maintained by the U.S. Federal Deposit Insurance Corporation (FDIC).

The SDI data set contains aggregate demographic and financial information about the U.S.

banking sector, as well detailed data on individual bank (or bank holding company) balance

sheets, income statements, performance ratios, etc., dating back to 1992. In analyzing the

evolution of the size distribution of U.S. banks I look at six separate measures of bank

size: total assets, total loans, total liabilities, total deposits, total equity, and number of

employees.7 In order to make sure my results are comparable across years, I deflate and

7Definitions of variables are as follows:

• Total assets (asset): The sum of all assets owned by the institution including cash, loans, securities,
bank premises and other assets. This total does not include off-balance-sheet accounts.

• Total loans (lnlsnet): Total loans and lease financing receivables minus unearned income and loan
loss allowances.

• Total liabilities (liab): Deposits and other borrowings, subordinated notes and debentures, limited-
life preferred stock and related surplus, trading account liabilities and mortgage indebtedness.

• Total deposits (dep): The sum of all deposits including demand deposits, money market deposits,
other savings deposits, time deposits and deposits in foreign offices.

http://www2.fdic.gov/sdi/index.asp
http://www2.fdic.gov/sdi/index.asp
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then re-scale each measure of bank size by dividing by banking sector totals relative to

2011.8

Perhaps the most salient feature of the FDIC data is the enormous heterogeneity in the

size of U.S. banking institutions irrespective of how size is measured. Figure 2.3 plots

density estimates of the size distribution of U.S. banks where size is measured in terms of

assets, deposits, liabilities, loans, and equity. The data range over six orders of magnitude

(depending a bit on the measure of size). One can see that the distributions of bank assets,

deposits, and liabilities lie almost on top of one another. The distributions of bank size

measured in terms of equity or loans are similar in form to the distributions using the other

measures, but are both shifted to the left (equity more so than loans). This rough ordering

of the distributions is consistent for each year in the sample.9

Five of the six size measures included in this study are based on the various components

of banks’ balance sheets. The final size measure, number of employees, is a measure of size

often considered in the literature on the size distribution of firms. Figure 2.4 shows the

evolution of the bank size distribution from 1992 to 2011 under this alternative measure.

To give a sense of how the extreme upper tail of the size distribution of banks has evolved

over the last 20 years it is useful to examine the survival functions for the various measures

of bank size. Figure 2.5 plots estimates of the survival function of the size distributions from

1992 to 2011 where size is again measured by normalized assets. Overlaying the survival

functions for each year clearly documents a thickening of the extreme upper tail consistent

with the agglomeration hinted at in figure 2.2 above. There also appears to be a kink (i.e.,

change in slope) of the survival functions at about $1 billion in total assets. Interestingly,

the FDIC defines “community banks” to be exactly those banks with less than $1 billion in

total assets and manages a number of government programs whose purpose is to encourage

lending by these banks.

• Total equity (toteq): Total equity capital on a consolidated basis.

• Number of employees (numemp): The number of full-time employees on the payroll of the bank and
its subsidiaries at the end of the quarter.

More details can be found in the SDI online documentation.
8Specifically, let Srawi,t denote the raw size of bank i in year t based on one of the six size measures

detailed above. The normalized size of bank i relative to the base year, t = 2011, is defined as follows:

Snormi,t =

(
Srawi,t∑
j S

raw
j,t

)∑
j

Srawi,2011 (2.1)

where
∑
j S

raw
j,t is the banking sector total of some size measure in year t (i.e., total banking sector assets

in year t), and
∑
j S

raw
j,2011 is the banking sector total of the same size measure in the year 2011.

9Density estimates of the size distribution for a given measure exclude banks with non-positive or
unreported values.
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Figure 2.3: There is enormous heterogeneity in the distribution of bank size in the U.S.
irrespective of the measure of size used. In 2011 the largest bank, in terms of assets, was
almost six orders of magnitude larger than the smallest bank!

2.3 Methodology

Power law distributions have been used to fit data in a wide variety of scientific fields from

astrophysics to linguistics,10 and have a long intellectual tradition in the social sciences as

a model for heavy-tailed phenomena (particularly in economics where it is better known

as the Pareto distribution).11

Given that this paper deals with empirical measures of bank size that are (at least ap-

proximately) continuous, I restrict attention to the continuous version of the power law

distribution. The density function, p(x), for the power law distribution can be written as

10Newman (2005) surveys various applications of the power law model including word frequency, citations
of scientific papers, web hits, copies of books sold, telephone calls, earthquakes, moon craters, solar flares,
intensity of wars, individual wealth, frequency of family names, and the population of cities.

11Early reference are Pareto (1896), Champernowne (1953), Simon (1955), Mandelbrot (1963) and
Steindl (1965). Gabaix (2008) is an excellent, recent review of applications of power laws in economics.
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Figure 2.4: There is even substantial heterogeneity in the distribution of bank size in the
U.S. when size is measured by number of employees.

follows.12

p(x) =

(
α− 1

xmin

)(xmin
x

)α
(2.2)

note that normalization requires α > 1. The cumulative distribution function, P (x), can

be derived from integrating the density function derived above:

P (X) = Pr(X ≤ x) =1−
(xmin

x

)−(α−1)
(2.3)

One of the most useful properties of the power law distribution is that the survival function

(sometimes also referred to as the upper cumulative distribution function) also follows a

power law:

Pr(X > x) = 1− P (x) =
(xmin

x

)−(α−1)
(2.4)

Note that the power law scaling exponent of the survival function is α − 1, which is one

less than the scaling exponent of the power law density function.

12Complete derivations of the density function, cumulative distribution function, survival function, as
well as many other interesting mathematical results about power laws can be found in appendix 2.A.
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Figure 2.5: The upper tail of the bank size distribution has become “heavier” over the last
20 years. Plots of the survival functions for the other measures of bank size show a similar
pattern.

In the remainder of this section I discuss, in detail, the procedure for fitting power law

models to data advocated by Clauset et al. (2009). The procedure has three stages: fitting

the power law distribution to the data, validating the model fit using goodness-of-fit tests,

and finally testing the fitted model against plausible alternatives.

2.3.1 Parameter Estimation

Previous empirical research typically uses either OLS or the Hill (1975) procedure to esti-

mate the scaling exponent, α, of the power law model. In this section I briefly summarize

and critique these approaches before detailing the maximum likelihood procedure advo-

cated by Clauset et al. (2009).
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OLS Methods

Perhaps the most obvious method for estimating the power law scaling exponent, α, would

be to take logarithms of equation 2.2 in order to obtain:

ln p(x) = [ln (α− 1) + (α− 1)ln xmin]− αln x+ ε (2.5)

where ε is a mean zero disturbance that is uncorrelated with ln x. If the quantity of

interest, x, is power law distributed above some threshold xmin with scaling exponent α,

then the above equation implies that its density function will be log-linear with a slope

equal −α above the threshold xmin. A procedure to estimate the scaling exponent would be

to obtain an estimate of the true density p(x) using a simple histogram, plot the histogram

on double logarithmic scales, estimate the lower bound xmin visually, and then estimate α

by applying OLS to the observations above xmin.

A second method for estimating α, one encountered frequently in economics literature on

power laws, takes logarithms of equation 2.4 to obtain:

ln P (x) = [(α− 1)ln xmin]− (α− 1)ln x+ ε (2.6)

where ε is a mean zero disturbance that is uncorrelated with ln x. Again, if the quantity

of interest, x, is power law distributed above some threshold xmin with scaling exponent α,

then the above equation implies that the complementary cumulative distribution function,

P (x), will be log-linear with a slope equal −ζ = −(α − 1) above the threshold xmin. A

procedure to estimate the scaling exponent would be to obtain an estimate of P (x) by

constructing a simple rank ordering of the data, plot P (x) on double logarithmic scales,

estimate the lower bound xmin visually, and then estimate α by applying OLS to the

observations above xmin to obtain an estimate of ζ from which the estimate of α can be

backed out. In practice, researchers using this method often report their estimates for ζ

as the power law scaling exponent rather than backing out the estimate of α.

A final method for fitting power law models to data using OLS, which is closely related to

the approach used to estimate equation 2.6, is called a “log-rank, log-size” regression. First,

order the data by size, S, letting S(1) ≥ S(2) ≥ · · · ≥ Sn = xmin denote the observation of

rank n. As with the other OLS methods, the choice of xmin is fairly arbitrary and based

on either a visual assessment of goodness-of-fit of a linear model for the observations above

xmin or by simply restricting the analysis to the upper 5% of observed values. One can

then estimate the power law scaling exponent ζ by regressing log-rank i on log size using

the follow specification

ln (i− s) = constant− ζln Si + ε (2.7)
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where ε is a mean zero disturbance that is uncorrelated with ln S, and the parameter s is

a shift correction.13

Criticisms of OLS-based methods

There are several issues with the above OLS based procedures (in addition to the arbitrary

nature of the choice for xmin). Clauset et al. (2009) demonstrate via simulation that

estimates of the scaling exponent ζ (or α) obtained using OLS as described in the above

procedures are significantly biased even in large (i.e., N ≈ 10e4) samples. Estimating

equation 2.5 using OLS is particularly problematic as the magnitude of the bias is quite

sensitive to the choice of binning scheme used in constructing the histogram (i.e., estimate

of the density function p(x)). For OLS fits of the power law model using either equation

2.6 or 2.7 the classic OLS standard errors for the scaling exponent are no longer valid as

adjacent values of both P (x) or log-rank are highly correlated by construction and this

introduces significant correlations into the disurbance term. Finally, there is no guarantee

that the OLS estimate of the scaling exponent will, when combined with the researcher’s

choice of xmin, result in a valid probability distribution.

In addition to difficulties in estimating the scaling exponent, researchers using any of the

above OLS procedures will not easily be able to assess the goodness-of-fit of the power law

model. Typically one assesses goodness-of-fit for a linear model estimated using OLS by

examining the R2. However, the R2 associated with OLS estimation of any of 2.5, 2.6, or

2.7 can be a misleading measure of goodness-of-fit for the power law model. Informally,

the problem is that there are many non power law distributions that will appear to be

“roughly linear” when plotted on doubly logarithmic scales, and in these instances OLS

estimation of will likely yield a very large R2. In simulation experiments, large measures of

R2 can be obtained even when the true underlying distribution is not well-approximated

by a power law. As such a high value for R2 provides little indication of how well the

power law model actually fits the data.14

13Typically, the shift correction is simply s = 0, however Gabaix and Ibragimov (2011) notes that OLS
estimates of ζ can be heavily biased in small samples and argues that s = 1

2
is optimal to reduce the bias.

Furthermore, in this case a correction of

(α̂− 1)
(n

2

)− 1
2

(2.8)

to the classic OLS standard error is required in order to account for the auto-correlation in the data
introduced by the ranking procedure.

14Gabaix (2008) provides an alternative test for the goodness-of-fit for the power law model within the
OLS regression framework. The approach is to estimate a modified form of equation 2.7 that includes a
quadratic term designed to capture deviations from a pure power law.
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Method of Maximum Likelihood

Clauset et al. (2009), suggest estimating the scaling exponent α of the power law model

using a maximum likelihood procedure which is identical to the Hill (1975) estimator pop-

ular in the economics and finance literature, particularly the subset of this literature that

uses techniques from a branch of statistical theory known as extreme value theory.15

Given some data set containing n observations xi ≥ xmin and a particular value of α the

likelihood that the data were drawn from a power law model is proportional to

p(x|α) =

n∏
i=1

(
α− 1

xmin

)(xmin
x

)α
. (2.9)

Using the method of maximum likelihood the data are most likely to have been generated

by a power law model with a scaling parameter α that maximizes this function. Taking

logarithms yields

L = ln p(x|α) =

n∑
i=1

[
ln(α− 1)− lnxmin + α ln

(
xmin
xi

)]

=n ln(α− 1)− n lnxmin − α
n∑
i=1

ln

(
xi
xmin

)
. (2.10)

Taking the derivative of the log-likelihood function with respect to α and setting the

result equal to zero yields the maximum likelihood estimator for the power law scaling

exponent.

For a given value of xmin, the maximum likelihood estimator for the scaling exponent

is

α̂ = 1 + n

[
n∑
i=1

ln

(
xi
xmin

)]−1

. (2.11)

Equation 2.11, is equivalent to the Hill (1975) estimator, and has been shown to be asymp-

totically normal Hall (1982) and consistent Mason (1982). The standard error of α̂ is

σ =
α̂− 1√
n

+O
(
n−1

)
(2.12)

Note, however, that equation 2.11 holds only for a given value of xmin.16 Thus in order to

15For more on applications of extreme value theory to economics and finance see Embrechts et al. (1997),
Kotz and Nadarajah (2000), Beirlant (2004), or Resnick (2007).

16It is not possible to estimate the threshold parameter xmin using maximum likelihood as maximizing
the likelihood function would require setting xmin =∞.
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estimate α using the method of maximum likelihood, the researcher must take a stand on

the “optimal” choice of the scaling threshold, xmin. In this respect the maximum likelihood

estimation procedure is no different than the OLS methods detailed above. However,

instead of employing the ad hoc selection procedures typically used in the literature, Clauset

et al. (2009) suggest estimating xmin from the data by choosing a value x̂min that minimizes

the “distance” between the empirical distribution of the observed data and the best-fit

power law model above x̂min.17

Roughly speaking, the Clauset et al. (2009) procedure for choosing xmin works as follows.

First a set of candidate threshold parameters, Θ, is chosen from the observed data. Then

for each xcmin ∈ Θ one obtains an estimate of the scaling exponent α̂c using maximum

likelihood and then calculates the Kolmogorov-Smirnov (KS) distance between the empir-

ical distribution of the data above xcmin and the theoretical distribution of a power law

with parameters α̂c and xcmin. The optimal choice for the threshold parameter, xmin, is

the x∗min ∈ Θ which minimizes the KS distance between the observed data above x∗min and

the theoretical power law distribution with scaling exponent, α̂∗ (i.e., the maximum likeli-

hood estimate of α obtained by applying equation 2.11 with xmin = x∗min), and threshold

parameter, x∗min.

In order to get estimates of parameter uncertainty that accurately take into account the

flexibility introduced by the joint estimation of α and xmin, standard errors and confidence

intervals for the parameter estimates are estimated using a basic non-parametric bootstrap

procedure detailed in Davison (1997).

2.3.2 Assessing Goodness-of-fit

By definition the maximum likelihood estimation procedure described above will find the

“best-fitting” power law model for the upper tail of the size distribution of U.S. banks.

However, the estimation procedure itself says nothing about how good an approximation

the power law model actually is to the tail of that distribution.18 I would like to ask

whether, given data on some measure of bank size, the power law model is a plausible

model for the upper tail of the size distribution.

17See Beirlant (2004) for a detailed discussion of the costs and benefits of the various strategies ad hoc
methods for choosing xmin. The specific procedure for joint selecting xmin used in Clauset et al. (2009)
was first suggested and implemented in Clauset et al. (2007).

18As pointed out by Clauset et al. (2009), in general, authors rarely assess the goodness-of-fit for the
power law model. While Janicki and Prescott (2006) avoid committing the sin of using an OLS-based
procedure for estimating the scaling exponent, they do fail to assess (or at least report) any test of the
plausibility of the power law distribution as a model for their data.
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I test the plausibility of the power law model using the following simulation procedure.19

First, I fit the power law model to data using the above maximum likelihood procedure

to find the optimal parameter estimates α̂, and x̂min. I then extract the KS test statistic

for the optimal fit, which I will use as my “observed” test statistic. I then generate a

large number, say B = 2500, synthetic data sets that mimic the empirical data below

x̂min, but follow a true power law with scaling parameter α̂ in the tail.20 For each of the

i ∈ 1, . . . , B synthetic data sets, I fit the power law model to i-th synthetic data set and

find the optimal parameters using the above maximum likelihood procedure and calculate

the KS test statistic for this optimal fit. As the p-value for my goodness-of-fit test, I take

the fraction of the B KS statistics larger than the “observed” KS statistic. A large p-value

(i.e., > 0.10) indicates power law model is plausible; small p-values (i.e., p-values ≤ 0.05)

indicates power law can be rejected as plausible given the data. To provide some context,

a p-value of 0.05 indicates that there is roughly a 1 in 20 chance that I would observe data

on bank sizes for a given year that agree as poorly (as measured by the KS test statistic)

with the power law model as the data that I actually observe.

2.3.3 Testing Alternative Hypotheses

Once I have determined the plausibility of the power law model using goodness-of-fit test-

ing, the next step in the methodology is to rigorously test the power law model against

several alternative hypotheses using Vuong (1989) likelihood ratio testing procedures as

advocated in Clauset et al. (2009). The Vuong (1989) likelihood procedure comes in two

flavors depending on whether or not the distribution chosen as the null hypothesis is

“nested” within the class of distributions chosen as the alternative hypothesis. I consider

three common alternative distributions for heavy-tailed data: the log-normal, stretched-

exponential, and power law with an exponential cut-off; and one thin-tailed alternative:

the exponential distribution. Of the alternatives considered, all but the power law with

an exponential cut-off make use of the “non-nested” flavor of the Vuong (1989) test. The

density functions for the power law and each of the considered alternatives are listed in

table 2.1.

In comparing the power law null to the non-nested alternatives, I implement the Vuong

19For a more complete description of the goodness-of-fit testing procedure see Clauset et al. (2009).
20Specifically, suppose that I have n observations of bank size in a given year, and based on the maximum

likelihood fit of the power law model I have found that ntail < n of the data points lie in the positive tail of
the size distribution. I then generate a synthetic data set of length n by selecting with probability ntail

n
a

random draw from a true power law distribution with parameters α̂ and x̂min, otherwise with probability
1 − ntail

n
I select uniformly at random an observed value for bank size strictly less than x̂min. Repeating

the selection procedure n times generates a synthetic data set that mimics the observed data below the
estimated threshold x̂min, but that follows a true power law with scaling exponent α̂ above x̂min.
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p(x) = Cf(x)
Distribution C f(x)

Power law α−1
xmin

xαmin x−α

Truncated power law λ1−α

Γ(1−α,λxmin) x−αe−λx

Exponential e−λx γeλxmin

Stretched exponential xβ−1e−λx
β

βλeλx
β
min

Log-normal
√

2
πσ2

[
erfc

(
lnxmin−µ√

2σ

)]−1
1
xe
−( ln x−µ

2σ )
2

Table 2.1: Mathematical definitions of the power law distributions and the various alter-
natives considered in this paper. For each of the distributions, I give the basic functional
form, f(x), along with the normalization constant, C.

(1989) likelihood ratio test in two steps. First I consider the two-sided null hypothesis that

each of the power law and the alternative are equally far from the true distribution against

a general alternative. If I reject this two-sided null hypothesis, then I conclude that one of

the power law or the alternative is preferred (given the data). Following a rejection of the

two-sided null, I then move to test a one-sided null hypothesis of a power law against the

alternative distribution directly. A rejection of the two-sided null hypothesis, followed by

a failure to reject the one-sided null hypothesis of a power law leads me to conclude that

the data are sufficient to distinguish between the power law and the considered alternative,

and the the power law model if preferred. If, however, I fail to reject the two-sided null

hypothesis, then the test is indeterminate: there is simple not enough data to distinguish

between the power law and the alternative. A major advantage of using the Vuong (1989)

likelihood ratio approach over the classic Wilks (1938) likelihood ratio test is that the

former will alert the researcher to the possibility that the data are not sufficient to favor

either the power law or the alternative model.

2.4 Results

2.4.1 Fitting a log-normal distribution

Figure 2.6 shows kernel density estimates of the size distribution of banks, where size

is measured by normalized assets, for each year from 1992-2011. The distributions look

remarkably similar and are, at a glance, consistent with a log-normal distribution. Upon

closer inspection, however, the distributions appear to have a heavy upper tail and a slight
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Figure 2.6: Kernel density estimates of the size distributions appear remarkably constant
across time. However, these plots obscure the agglomeration occurring in the upper tail of
the distributions.

right-skew. Given the logarithmic scale on the horizontal axis, any significant right-skew

would be inconsistent with a log-normal distribution: the log-normal distribution should

have thin, exponentially decaying tails when plotted on a logarithmic scaled horizontal

axis.

Indeed, the log-normal distribution does a particularly poor job of fitting the right tail

of the size distribution. The log-normal distribution systematically underestimates the

probability of observing “large” banks. This fact is brutally demonstrated by figure 2.7

which plots the upper cumulative distribution function of the size distribution of U.S. banks

in 2011 and then overlays the upper cumulative distribution functions for 2500 synthetic

log-normal data sets.21 Figure 2.7 clearly indicates that the log-normal distribution is

a poor fit: it over-predicts the number of small to medium size banks and substantially

21Specifically, I generate 2500 different sets of parameter estimates (i.e., log-µ and log-σ) for the best-
fitting log-normal distribution using a parametric bootstrap procedure, and then create each of the synthetic
log-normal data sets using a unique set of bootstrap parameter estimates. The goal is to generate a “log-
normal cloud” that gives a visual indication of the variability of the log-normal distribution in the upper
tail while taking into account the statistical uncertainty in the estimated parameters of the distribution
itself.
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Figure 2.7: The log-normal distribution is unable to reproduce the extremely fat upper
tail, which is a key feature of the data irrespective of the measure of bank size.

under-predicts the number of very large banks.

2.4.2 Fitting the power law distribution

Parameter Estimates

Estimation results for the scaling exponent α and the threshold parameter xmin of the

power law distribution are reported for each of the six measures of bank size in tables 2.2

to 2.7. The results are summarized in figure 2.8. I find statistically significant departures

from Zipf’s Law (i.e., a power law with α = 2) for most measures of bank size in most

years for which I have data. Of the six measures considered, the only measure of bank size

broadly consistent with Zipf’s Law is number of employees.

When either total assets, net loans and leases, or total liabilities are used as the measure

of bank size the estimated scaling exponent of α̂ ≈ 1.9 is roughly constant (within 95%

confidence bands) across time. When total deposits are used as the measure of bank size

the estimated scaling exponent is slightly larger (though still significantly less than α = 2),
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Figure 2.8: There are significant departures from Zipf’s Law for most measures of bank size
in most years. The tail of the bank size distribution is simply too heavy to be consistent
with Zipf’s Law.

than those obtained using either assets, loans, or liabilities.22 The only measure of bank

size for which there is a clear trend in the estimated scaling exponent is equity. The

negative trend in α̂ when equity is used as the proxy for bank size indicates that equity

holdings are becoming increasingly concentrated in the tail of the distribution.

These results indicate that the upper tail of the bank size distribution is generally too

heavy (i.e., there are simply too many extremely large banks) to be consistent with Zipf’s

Law. In fact, the tail of the size distribution is so heavy (i.e., α̂ < 2) that the mean of the

best-fitting power law model is undefined. Put another way, conditional on being in the

upper tail of the distribution, there is no such thing as an “average” sized bank!

Goodness-of-Fit Testing

In order to assess whether or not the power law model is a plausible model for the upper tail

of the size distribution I implement a bootstrap version of the Kolmogorov-Smirnov (KS)

goodness-of-fit test advocated in Clauset et al. (2009). Perhaps because goodness-of-fit

testing has been strongly neglected in the empirical literature on power laws, Clauset et al.

(2009) make a point to emphasize the importance of assessing the goodness-of-fit of the

22The difference between estimated scaling exponents when using deposits versus assets, loans, and
liabilities as the measure of bank size is statistically significant in only half of the years in the sample.
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power law model.23 Table 2.8 reports the observed KS distance between the best fitting

power law model as well as one-sided 95% confidence intervals for this statistic computed

using the non-parametric bootstrap procedure discussed in section 2.3. The results of these

goodness-of-fit tests are not supportive of the power law distribution as a model for the

upper tail of the bank size distribution: in the majority of cases the observed KS distance

between the best-fit power law model and the data is larger than any of the simulated KS

distances.24

While the goodness-of-fit tests document statistically significant deviations from the power

law distribution, the reason that the power law distribution is rejected as plausible differs

depending on the year. In the 1990’s the upper tail of the distribution of U.S. banks,

though too heavy to be consistent with Zipf’s Law, was too thin relative to the best-fitting

power law distribution for the power law to be a plausible model for the data. However,

following two decades of consolidation within the U.S. banking sector, the power law model

is rejected for the completely opposite reason: in late 2000’s, the extreme upper tail of the

bank size distribution was too heavy relative to the best-fit power law model.

Testing Alternative Hypotheses

Although the power law model is statistically rejected for most measures of bank size in

most years by the goodness-of-fit tests, without a structural model of the size distribution

of banks it is difficult to assess whether or not the observed deviations are economically

meaningful. In this section I test the relative performance of the power law distribution

against several alternative distributions using the Vuong (1989) likelihood ratio test. Re-

call from the discussion in section 2.3 that the test comes in two flavors depending on

whether or not the distribution chosen as the null hypothesis is “nested” within the class

of distributions chosen as the alternative hypothesis. I consider three common alternative

distributions for heavy-tailed data: the log-normal, stretched-exponential, and power-law

with an exponential cut-off; and one thin-tailed alternative distribution: the exponential.

Of the alternatives considered, all but the power-law with a cut-off make use of the “non-

nested” flavor of the Vuong (1989) likelihood ratio test. The results are reported in tables

2.9 through 2.14 and summarized graphically by figures 2.11 and 2.12.

Both the exponential distribution and the stretched exponential distribution are inferior

23Most studies fail to assess (or at least report) results of any goodness-of-fit tests. Studies that use
OLS to estimate the scaling exponent often report the R2 from the regression as a measure of goodness-of-
fit, however, as discussed in section 2.3 above (and in Clauset et al. (2009)) the R2 is often a misleading
indicator of goodness-of-fit for the power law model.

24Recall that the simulated KS distances were generated under the null hypothesis that the best-fit
power law was the “correct” model for the data.
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Figure 2.9: In the 1990s the best-fit power law distribution is rejected because it over
predicts the number of large banks.

to the power law model. The data are sufficient to distinguish between the power law and

both alternatives,25 and, in general, the power law is statistically preferred to both the

exponential and stretched exponential alternatives.26 Given the data it is generally not

possible to distinguish between the power law and the log-normal alternative.27 Finally,

while the power law distribution with an exponential cut-off is preferred over the pure

power law model in the early 1990’s, this distribution becomes less plausible over time. I

reject the power law in favor of the truncated power law for most measures and in most

years between 1992-1997. Starting in the late 1990’s however, I can no longer reject the

power law in favor of the truncated power law.

25Formally, I reject the two-sided null hypothesis of the Vuong (1989) test that the power law and either
the exponential or the stretched exponential are equally far from the “true” distribution.

26Formally, I fail to reject the power law null hypothesis in the one-sided Vuong (1989) test.
27Remember that the log-normal alternative is fit to the tail and is not the log-normal distribution that

we all know and love and that was definitively ruled out above.
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Figure 2.10: In the 2000s the best-fit power law distribution is rejected because it under
predicts the number of large banks.

2.5 Conclusions

Most of the plausible benefits of banking sector concentration, such as increased profitabil-

ity, economies of scale, and increased diversification accrue primarily to individual banks

(and their shareholders). Many important costs of increased concentration, meanwhile, are

social. These might include increased propensity to take risks due to moral hazard/adverse

selection issues created by explicit deposit insurance arrangements as well as implicit bail-

out arrangements for banks deemed “too big to fail,” decreased competitiveness in the

banking sector, etc. Characterizing the behavior of the upper tail of the size distribution

of banks is important in order to quantitatively assess the potential costs and benefits from

continued concentration of the U.S. banking sector.

The parameter estimates reported in tables 2.2 through 2.7 document statistically signifi-

cant departures from Zipf’s Law for most measures of bank size in most years. Estimated

scaling exponents of α̂ ≈ 1.9 < 2 indicates that the upper tail of the empirical distribution

of U.S. is too heavy (i.e., U.S. the banking sector is too concentrated) to be consistent

with the predictions of Zipf’s Law. While the goodness-of-fit tests document statistically
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Figure 2.11: Pure power law model is rejected in favor of power law with exponential
cut-off.

significant deviations from the power law model, it is not clear whether or not the observed

deviations are economicially significant. Furthermore, the Vuong (1989) likelihood ratio

testing results indicate that the power law model out-performs other distributions com-

monly used to model heavy-tailed data. I therefore conclude that a power law distribution

with α̂ ≈ 1.9 is a reasonable null model for the upper tail of the size distribution of U.S.

banks.

Power law distributions with scaling exponents α < 2 have no well-defined expected values.

The failure of the expected value to be well-defined implies that the fraction of U.S. banking

sector totals in the top anything of the size distribution (even the top 1% of banks) should

tend to unity in the limit of an infinite number of banks. In practice, a scaling exponent of

α < 2 implies that one should expect effectively all of the assets, loans, liabilities, deposits,

and equity in the U.S. banking sector to be controlled by a small number of banks in the

extreme tail of the size distribution.

The extreme levels of concentration within the U.S. banking sector has important impli-

cations for empirical and theoretical business cycle research. Gabaix (2011) posits that, so

long as the upper tail of the firm size distribution is sufficiently heavy, much of the varia-
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Power law vs Alternatives, 2008
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Figure 2.12: Power law is the preferred model, but LR tests unable to distinguish between
plausible alternatives like log-normal.

tion in aggregate macroeconomic time series data over the business cycle can be explained

by idiosyncratic shocks to individual firms. The “granularity hypothesis” of Gabaix (2011)

constrasts starkly with existing research on business cycles which has focused almost exl-

cusively on the role played by aggregate shocks. Extending the Gabaix (2011) model to

incorporate a banking sector in order to explore the theoretical and empirical support for

idiosyncratic shocks to individual banks would seem to be a fruitful direction for future

research.28

28Bremus et al. (2013), in a recent working paper, modify the Gabaix (2011) framework and explore
idiosyncratic shocks to loan growth are a plausible source of aggregate fluctuations.



Appendix

2.A Power law primer

This appendix is a self-contained summary of basic theoretical results for the power law

distribution and is intended to assist readers who may be unfamiliar with this literature

to interpret the results of this paper.29

2.A.1 The mathematics of power laws

The density function, p(x)

Given that this paper deals with empirical measures of bank size that are (at least ap-

proximately) continuous, I restrict attention to the continuous version of the power law

distribution described by a probability density function, p(x) such that

p(x)dx = Pr (x ≤ X < x+ dx) = Cx−αdx (2.13)

where X is the observed value (in this paper a normalized measure of bank size) and C is

the normalization constant. Note that this density diverges as x → 0, thus equation 2.13

cannot hold for all x ≥ 0 and there must be some lower bound, xmin, for the power law

distribution. To derive the normalization constant, simply integrate the density function

29Definitions and presentation of formal results mostly follow Newman (2005).
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and set the result equal to one.

1 =

∫ ∞
xmin

p(x)dx

1 =

∫ ∞
xmin

Cx−αdx

1 =C

[
1

−α+ 1
x−α+1

∣∣∣∣∣
∞

xmin

]

1 =C

[
0− 1

−α+ 1
x−α+1
min

]
C =

(
α− 1

xmin

)
xαmin (2.14)

After deriving the normalization constant, the density function, p(x), can be written

as

p(x) =

(
α− 1

xmin

)(xmin
x

)α
(2.15)

note that normalization requires α > 1.

The distribution function, P (x)

The cumulative distribution function, P (x), can be derived from integrating the density

function derived above:

P (X) = Pr(X ≤ x) =

∫ x

xmin

p(x′)dx′

=

∫ x

xmin

(
α− 1

xmin

)(xmin
x′

)α
dx′

=

(
α− 1

xmin

)
xαmin

∫ x

xmin

(
1

x′

)α
dx′

=

(
α− 1

xmin

)
xαmin

[
1

−α+ 1
x
′−α+1
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x

xmin

]

=(α− 1)xα−1
min

[
1

−α+ 1
x−α+1 +

1

α− 1
x
−(α−1)
min

]
=1−

(xmin
x

)−(α−1)
(2.16)



2.A. POWER LAW PRIMER 79

The survival function, 1− P (x)

One of the most useful properties of the power law distribution is that the survival function

(sometimes also referred to as the upper cumulative distribution function) also follows a

power law:

Pr(X > x) = 1− P (x) =
(xmin

x

)−(α−1)
(2.17)

Note that the power law scaling exponent of the survival function is α − 1, which is one

less than the scaling exponent of the power law density function.

The moment generating function

The expected value of the power law distribution satisfies:

E[x] =

∫ ∞
xmin

xp(x)dx

=

∫ ∞
xmin

x

(
α− 1

xmin

)(xmin
x

)α
dx

=(α− 1)xα−1
min

∫ ∞
xmin

x−α+1dx

=(α− 1)xα−1
min

[
1

−α+ 2
x−α+2

∣∣∣∣∣
∞

xmin

]

=(α− 1)xα−1
min

[
0− 1

−α+ 2
x−α+2
min

]
=

(
α− 1

α− 2

)
xmin (2.18)

Note that this expression is only defined for α > 2: if α ≤ 2 then the expected value of the

power law distribution is infinite.
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In general, the kth moment of the power law distribution can be calculated as follows:

E[xk] =

∫ ∞
xmin

xkp(x)dx

=

∫ ∞
xmin

xk
(
α− 1

xmin

)(xmin
x

)α
=(α− 1)xα−1

min

∫ ∞
xmin

x−α+kdx

=(α− 1)xα−1
min

[
1

−α+ k + 1
x−α+k+1

∣∣∣∣∣
∞

xmin

]

=(α− 1)xα−1
min

[
0− 1

−α+ k + 1
x−α+k+1
min

]
=

(
α− 1

α− k − 1

)
xkmin (2.19)

Expected largest value, E[xmax]

Suppose we draw n observations from a power law distribution. What value is the largest

of those measurements likely to take? More precisely, what is the probability π(x)dx that

the largest observation falls in the interval between x and x+ dx?

From the density function we know that the probability that observation i lies between x

and x + dx is p(x); and using the distribution function for the power law the probability

that this observation is the largest of the n total observations is P (x)n−1 (so long as α > 1).

Combining these two observations with the fact that there are n ways to choose the initial

observation i yields an expression for π(x):

π(x) = np(x)P (x)n−1 (2.20)

To calculate the expected value of the largest observation, E[xmax] we need to evaluate

the following integral:

E[xmax] =

∫ ∞
xmin

xπ(x)dx

=n

∫ ∞
xmin

xp(x)P (x)n−1dx

=n(α− 1)

∫ ∞
xmin

(xmin
x

)α−1
[
1−

(xmin
x

)α−1
]n−1

dx
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Using a change of variables, y = 1−
(
xmin
x

)α−1
, the above integral becomes:

E[xmax] =nxmin

∫
0

1
yn−1

(1− y)
1

α−1

dy

=nxminB

(
n,
α− 2

α− 1

)
(2.21)

where

B

(
n,
α− 2

α− 1

)
is Legendre’s beta-function. The beta function has the interesting property that for large

values of its arguments the function follows a power law. Specifically, for large n

B

(
n,
α− 2

α− 1

)
∼ n

α−2
α−1

and therefore

E[xmax] ∼ n
1

α−1 (2.22)

This result implies that as the sample size becomes larger the expected value for the largest

observation increases.30

Top heavy distributions and the 80/20 rule

For any power law distribution with α > 1 the median, xmedian of the distribution is

well-defined and satisfies the following equation:∫ ∞
xmedian

p(x)dx =
1

2

∫ ∞
xmedian

p(x)dx

Working through the algebra yields the following expression for xmedian:

(
α− 1

xmin

)
xαmin

 1

−α+ 1
x−α+1

∣∣∣∣∣
∞

xmedian

 =
1

2

(
α− 1

xmin

)
xαmin

[
1

−α+ 1
x−α+1

∣∣∣∣∣
∞

xmin

]
[
0− 1

−α+ 1
x−α+1
median

]
=

1

2

[
0− 1

−α+ 1
x−α+1
min

]
x−α+1
median =

1

2
x−α+1
min

xmedian =2
1

α−1xmin (2.23)

30Crucially, the n in this formula refers to the number of observations in the power law tail only, and
not to the total sample size.
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In the context of this paper, where α̂ > 1 in every instance, there will be some well defined

median bank size that divides the largest 50% of banks from the smallest 50% of banks.

In addition, the estimates of α̂ ≈ 2 in which case the above formula says that the median

bank should be roughly twice as large as the smallest bank (which still in the tail).

We might also like to ask what fraction of total U.S. banking sector assets, loans, liabilities,

deposits, equity or employees are controlled by the largest 50% of banks? Or even more

generally, what fraction of U.S. banking sector totals is controlled by banks whose size

exceeds x? The fraction of U.S. banking sector totals controlled by the largest 50% of

banks will satisfy: ∫∞
xmedian

xp(x)dx∫∞
xmin

xp(x)dx

Making use of the formulas derived above for E[x] and xmedian (and a bit more algebra!)

yields the following:

=

(α− 1)xα−1
min

 1
−α+2x

−α+2

∣∣∣∣∣
∞

xmedian


(
α−2
α−1

)
xmin

=
(α− 1)xα−1

min

(
1

α−2x
−α+2
median

)
(
α−1
α−2

)
xmin

=

(
xmin
xmedian

)α−2

=2−(α−2
α−1) (2.24)

More generally, the formula for the fraction of U.S. banking sector totals controlled by

banks whose size exceeds x will satisfy:∫∞
x x′p(x′)dx′∫∞
xmin

xp(x)dx
=

(
x

xmedian

)α−2

(2.25)

Crucially, in order for these results to be valid, E[x] must be well defined which, in turn,

requires that α > 2. Unfortunately, as mentioned above, the parameter estimates obtained

for the scaling exponents of the U.S. bank distribution fail to satisfy this basic requirement

for almost all measures of size in almost every year for which I have data. This implies

that the distribution of U.S. banks is extremely top-heavy: the fraction of U.S. banking

sector totals in the top anything of the size distribution (even the top 1% of banks) tends

to 1! Put another way, effectively all of the assets, loans, liabilities, deposits, and equity

in the U.S. banking sector are controlled by a small number of banks in the extreme tail
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of the size distribution.

Scale invariance

A power law distribution is also sometimes called a scale-free distribution. In fact the

power law is the only probability distribution that is scale free or scale invariant. Roughly

speaking, by scale invariant I simply mean that changing the units of the variable (i.e.,

re-scaling) does not alter the functional form of the distribution. Technically, a distribution

function p(x) is scale-invariant if and only if it satisfies

p(bx) = g(b)p(x) (2.26)

The proof of the claim this claim follows Newman (2005). Start by setting x = 1. This

implies that

g(b) =
p(b)

p(1)

and then we can re-write the scale-free condition as:

p(bx) =
p(b)

p(1)
p(x)

Since this equation must hold for any value b, we can differentiate both sides of the above

equation with respect to b in order to get:

xp′(bx) =
p′(b)

p(1)
p(x)

Setting b = 1 yields

xp′(x) =
p′(1)

p(1)
p(x)

which is a simple first-order differential equation with solution:

ln p(x) =
p(1)

p′(1)
ln x+ C (2.27)

To find the constant, C, simply set x = 1 which yields C = ln p(1). Finally, exponentiation

of both sides yields:

p(x) = p(1)x−α (2.28)

where α = − p(1)
p′(1) .
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2.B Estimation results

2.B.1 Power law parameter estimates

Assets
Year α̂ x̂min D N ntail

ntail
N

1992 1.91 2.46e+08 0.01139 13973 5445 0.39

(1.88,1.94) (1.91e+08,3.15e+08)

1993 1.91 2.07e+08 0.01263 13325 6054 0.45

(1.88,1.94) (1.78e+08,2.69e+08)

1994 1.89 1.94e+08 0.01487 12644 5926 0.47

(1.87,1.93) (1.71e+08,2.21e+08)

1995 1.88 1.88e+08 0.0153 12003 5828 0.49

(1.86,1.91) (1.7e+08,2.26e+08)

1996 1.89 1.96e+08 0.01546 11480 5395 0.47

(1.86,1.92) (1.69e+08,2.49e+08)

1997 1.9 1.91e+08 0.01295 10946 5065 0.46

(1.86,1.94) (1.71e+08,5.74e+08)

1998 1.9 1.72e+08 0.01828 10484 5185 0.49

(1.77,1.93) (1.56e+08,1.28e+09)

1999 1.9 1.83e+08 0.01798 10240 4797 0.47

(1.78,1.93) (1.63e+08,1.22e+09)

2000 1.88 1.7e+08 0.01951 9920 4759 0.48

(1.79,1.93) (1.6e+08,8.82e+08)

2001 1.9 2e+08 0.01959 9630 4168 0.43

(1.81,1.94) (1.62e+08,9.96e+08)

2002 1.9 2.16e+08 0.01979 9369 3824 0.41

(1.79,1.94) (1.59e+08,1.15e+09)

2003 1.89 2.05e+08 0.0232 9194 3873 0.42

(1.79,1.94) (1.57e+08,9.89e+08)

2004 1.9 2.25e+08 0.02723 8988 3374 0.38

(1.77,1.94) (1.46e+08,1.07e+09)

2005 1.89 2.12e+08 0.02574 8845 3469 0.39

(1.75,1.94) (1.6e+08,1.13e+09)

2006 1.89 1.89e+08 0.02193 8691 3674 0.42

(1.77,1.94) (1.55e+08,1.22e+09)

2007 1.89 1.77e+08 0.02047 8544 3669 0.43

(1.78,1.94) (1.53e+08,1.03e+09)

2008 1.88 1.7e+08 0.02342 8314 3671 0.44

(1.74,1.94) (1.52e+08,1.36e+09)

2009 1.91 2.03e+08 0.02012 8021 3374 0.42

(1.86,1.97) (1.68e+08,1.02e+09)

2010 1.92 2.12e+08 0.01425 7667 3100 0.4

(1.88,1.96) (1.67e+08,2.47e+08)

2011 1.9 1.82e+08 0.01906 7366 3351 0.45

(1.85,1.96) (1.52e+08,2.81e+08)

Table 2.2: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.
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Loans
Year α̂ x̂min D N ntail

ntail
N

1992 1.88 1.55e+08 0.01002 13932 4386 0.31

(1.85,1.92) (1.12e+08,2.68e+08)

1993 1.88 1.35e+08 0.009586 13299 4749 0.36

(1.85,1.91) (1.05e+08,1.78e+08)

1994 1.88 1.26e+08 0.01197 12613 4868 0.39

(1.85,1.91) (1.05e+08,1.42e+08)

1995 1.87 1.18e+08 0.01169 11975 4864 0.41

(1.84,1.9) (1.02e+08,1.46e+08)

1996 1.87 1.12e+08 0.01401 11449 4811 0.42

(1.83,1.9) (9.81e+07,3.09e+08)

1997 1.89 1.2e+08 0.01628 10902 4368 0.4

(1.82,1.92) (9.74e+07,3.92e+08)

1998 1.89 1e+08 0.01876 10418 4734 0.45

(1.78,1.92) (9.45e+07,5.8e+08)

1999 1.89 1.12e+08 0.01613 10172 4260 0.42

(1.81,1.92) (9.73e+07,5.22e+08)

2000 1.89 1.19e+08 0.01894 9832 3917 0.4

(1.81,1.93) (9.27e+07,5.39e+08)

2001 1.91 1.38e+08 0.01741 9547 3500 0.37

(1.86,1.94) (1.05e+08,1.6e+08)

2002 1.89 1.15e+08 0.01954 9283 3945 0.42

(1.85,1.94) (1.01e+08,1.92e+08)

2003 1.9 1.31e+08 0.02104 9109 3455 0.38

(1.81,1.94) (1.04e+08,5.67e+08)

2004 1.9 1.29e+08 0.02245 8909 3362 0.38

(1.8,1.94) (1.02e+08,5.83e+08)

2005 1.89 1.26e+08 0.02332 8770 3353 0.38

(1.79,1.94) (9.98e+07,6.83e+08)

2006 1.9 1.36e+08 0.02375 8619 3112 0.36

(1.78,1.95) (1.1e+08,8.6e+08)

2007 1.82 5.98e+08 0.02045 8474 730 0.086

(1.77,1.95) (9.95e+07,8.57e+08)

2008 1.82 7.7e+08 0.01827 8248 597 0.072

(1.78,1.95) (1.05e+08,8.59e+08)

2009 1.91 1.42e+08 0.02205 7963 3114 0.39

(1.8,1.98) (1.19e+08,8.35e+08)

2010 1.92 1.33e+08 0.01755 7615 3071 0.4

(1.83,1.97) (1.07e+08,7.58e+08)

2011 1.79 7.78e+08 0.02133 7319 511 0.07

(1.75,1.95) (9.95e+07,8.7e+08)

Table 2.3: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.
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Liabilities
Year α̂ x̂min D N ntail

ntail
N

1992 1.9 2.17e+08 0.01051 13971 5395 0.39

(1.88,1.94) (1.65e+08,2.84e+08)

1993 1.9 1.86e+08 0.01301 13325 5897 0.44

(1.87,1.93) (1.53e+08,2.35e+08)

1994 1.89 1.76e+08 0.01517 12644 5740 0.45

(1.86,1.92) (1.44e+08,1.97e+08)

1995 1.88 1.71e+08 0.01415 12003 5625 0.47

(1.85,1.91) (1.47e+08,1.97e+08)

1996 1.88 1.67e+08 0.01702 11479 5432 0.47

(1.84,1.92) (1.41e+08,5.75e+08)

1997 1.9 1.65e+08 0.01397 10946 5075 0.46

(1.84,1.93) (1.44e+08,5.84e+08)

1998 1.8 1.14e+09 0.01712 10484 783 0.075

(1.77,1.93) (1.4e+08,1.15e+09)

1999 1.89 1.55e+08 0.01851 10240 4901 0.48

(1.78,1.92) (1.42e+08,1.05e+09)

2000 1.88 1.57e+08 0.02026 9918 4548 0.46

(1.77,1.92) (1.38e+08,8.76e+08)

2001 1.9 1.74e+08 0.01968 9630 4184 0.43

(1.8,1.93) (1.43e+08,8.93e+08)

2002 1.9 1.9e+08 0.02026 9367 3806 0.41

(1.8,1.94) (1.4e+08,1.03e+09)

2003 1.89 1.79e+08 0.02315 9192 3886 0.42

(1.81,1.94) (1.37e+08,8.48e+08)

2004 1.89 1.87e+08 0.026 8987 3551 0.4

(1.79,1.94) (1.28e+08,9.26e+08)

2005 1.9 2.1e+08 0.0263 8845 3169 0.36

(1.75,1.94) (1.39e+08,1.1e+09)

2006 1.89 1.7e+08 0.02132 8691 3642 0.42

(1.76,1.94) (1.44e+08,1.1e+09)

2007 1.89 1.6e+08 0.01999 8544 3597 0.42

(1.77,1.94) (1.3e+08,1.03e+09)

2008 1.91 1.83e+08 0.02199 8314 3151 0.38

(1.76,1.94) (1.41e+08,1.18e+09)

2009 1.93 2.08e+08 0.01916 8021 3033 0.38

(1.86,1.97) (1.5e+08,3.6e+08)

2010 1.92 1.9e+08 0.01453 7667 3103 0.4

(1.88,1.96) (1.48e+08,2.27e+08)

2011 1.92 1.9e+08 0.0195 7366 2964 0.4

(1.78,1.96) (1.41e+08,9.97e+08)

Table 2.4: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.



88 CHAPTER 2. CHARACTERIZING THE SIZE DISTRIBUTION OF U.S. BANKS

Deposits
Year α̂ x̂min D N ntail

ntail
N

1992 1.95 2.47e+08 0.01105 13945 4617 0.33

(1.91,1.97) (1.75e+08,3.26e+08)

1993 1.95 2.05e+08 0.01062 13317 5327 0.4

(1.92,1.98) (1.69e+08,2.73e+08)

1994 1.93 1.86e+08 0.01477 12635 5513 0.44

(1.91,1.97) (1.6e+08,2.41e+08)

1995 1.93 1.83e+08 0.01278 11997 5424 0.45

(1.9,1.96) (1.64e+08,2.3e+08)

1996 1.94 1.97e+08 0.01367 11469 4871 0.42

(1.9,1.97) (1.67e+08,2.51e+08)

1997 1.95 1.97e+08 0.01261 10934 4553 0.42

(1.91,1.99) (1.63e+08,5.73e+08)

1998 1.95 1.86e+08 0.01617 10472 4545 0.43

(1.84,2) (1.57e+08,1.09e+09)

1999 1.94 1.71e+08 0.01708 10229 4751 0.46

(1.84,1.99) (1.57e+08,1.04e+09)

2000 1.94 1.85e+08 0.01794 9903 4197 0.42

(1.84,1.99) (1.58e+08,1.01e+09)

2001 1.95 1.92e+08 0.01809 9625 4027 0.42

(1.8,1.99) (1.63e+08,1.16e+09)

2002 1.95 2.14e+08 0.02193 9366 3567 0.38

(1.8,2) (1.6e+08,1.28e+09)

2003 1.94 1.93e+08 0.02425 9189 3782 0.41

(1.8,2) (1.55e+08,1.4e+09)

2004 1.95 1.99e+08 0.02624 8986 3481 0.39

(1.8,2) (1.52e+08,1.13e+09)

2005 1.95 2.16e+08 0.02561 8843 3161 0.36

(1.8,2) (1.62e+08,1.07e+09)

2006 1.94 1.84e+08 0.02232 8688 3498 0.4

(1.81,2) (1.64e+08,1.11e+09)

2007 1.94 1.78e+08 0.01993 8541 3418 0.4

(1.82,1.99) (1.58e+08,9.9e+08)

2008 1.95 1.85e+08 0.02201 8312 3197 0.38

(1.8,1.99) (1.58e+08,9.16e+08)

2009 1.95 1.81e+08 0.0178 8020 3257 0.41

(1.9,2.01) (1.52e+08,5.9e+08)

2010 1.95 1.83e+08 0.01493 7664 3105 0.41

(1.91,1.99) (1.51e+08,2.31e+08)

2011 1.95 1.8e+08 0.02011 7363 2933 0.4

(1.89,1.99) (1.41e+08,2.34e+08)

Table 2.5: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.
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Equity
Year α̂ x̂min D N ntail

ntail
N

1992 1.96 3.41e+07 0.01225 13839 5229 0.38

(1.92,1.99) (2.7e+07,7.32e+07)

1993 1.95 3.31e+07 0.01359 13220 5104 0.39

(1.91,1.98) (2.57e+07,6.93e+07)

1994 1.94 3.36e+07 0.01457 12604 4745 0.38

(1.9,1.97) (2.48e+07,3.77e+07)

1995 1.92 2.8e+07 0.0121 11972 5405 0.45

(1.89,1.95) (2.41e+07,4.78e+07)

1996 1.93 3.15e+07 0.01332 11454 4635 0.4

(1.9,1.96) (2.52e+07,4.1e+07)

1997 1.93 2.67e+07 0.01257 10922 4915 0.45

(1.9,1.97) (2.41e+07,5.19e+07)

1998 1.94 2.67e+07 0.01604 10463 4590 0.44

(1.81,1.97) (2.11e+07,1.25e+08)

1999 1.93 2.85e+07 0.01673 10219 4096 0.4

(1.83,1.96) (2.11e+07,1.32e+08)

2000 1.92 2.46e+07 0.01959 9903 4444 0.45

(1.8,1.95) (1.86e+07,1.25e+08)

2001 1.9 2.2e+07 0.01904 9611 4544 0.47

(1.86,1.95) (1.83e+07,2.98e+07)

2002 1.91 2.32e+07 0.01834 9354 4280 0.46

(1.85,1.95) (2e+07,7.27e+07)

2003 1.91 2.33e+07 0.01906 9180 4173 0.45

(1.87,1.94) (1.9e+07,2.72e+07)

2004 1.88 1.7e+07 0.02155 8976 4630 0.52

(1.85,1.93) (1.5e+07,2.23e+07)

2005 1.88 1.7e+07 0.02233 8833 4516 0.51

(1.84,1.93) (1.5e+07,2.9e+07)

2006 1.89 1.73e+07 0.02357 8679 4323 0.5

(1.72,1.94) (1.46e+07,1.78e+08)

2007 1.89 1.68e+07 0.02195 8534 4341 0.51

(1.74,1.94) (1.56e+07,1.35e+08)

2008 1.91 1.86e+07 0.02156 8298 4093 0.49

(1.75,1.95) (1.56e+07,1.32e+08)

2009 1.9 1.71e+07 0.0201 7997 3884 0.49

(1.86,1.95) (1.4e+07,2.38e+07)

2010 1.9 1.79e+07 0.02015 7648 3533 0.46

(1.85,1.93) (1.37e+07,2.03e+07)

2011 1.88 1.67e+07 0.02222 7352 3705 0.5

(1.84,1.93) (1.41e+07,2.22e+07)

Table 2.6: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.



90 CHAPTER 2. CHARACTERIZING THE SIZE DISTRIBUTION OF U.S. BANKS

Employees
Year α̂ x̂min D N ntail

ntail
N

1992 1.99 7.55e+04 0.01403 13915 3398 0.24

(1.95,2.02) (4.6e+04,9.31e+04)

1993 1.99 6.83e+04 0.01422 13264 3650 0.28

(1.95,2.02) (4.83e+04,1.11e+05)

1994 1.99 6.13e+04 0.01607 12597 3974 0.32

(1.95,2.02) (3.97e+04,7.27e+04)

1995 1.98 6.07e+04 0.01735 11960 3910 0.33

(1.93,2.01) (4.37e+04,1.37e+05)

1996 1.99 6.29e+04 0.01559 11436 3656 0.32

(1.93,2.02) (4.23e+04,1.28e+05)

1997 2 5.55e+04 0.01709 10907 3855 0.35

(1.92,2.03) (4.43e+04,1.82e+05)

1998 1.91 1.85e+05 0.01939 10449 1019 0.098

(1.87,2.03) (4.07e+04,2.15e+05)

1999 1.9 1.92e+05 0.01925 10206 956 0.094

(1.85,2.03) (4.32e+04,2.88e+05)

2000 2 5.06e+04 0.0206 9889 3687 0.37

(1.91,2.04) (3.96e+04,1.89e+05)

2001 1.99 5.04e+04 0.01819 9598 3597 0.37

(1.93,2.03) (4.07e+04,1.41e+05)

2002 1.98 4.81e+04 0.01901 9335 3652 0.39

(1.87,2.03) (3.87e+04,2.47e+05)

2003 1.99 5.05e+04 0.02039 9162 3490 0.38

(1.82,2.04) (4.02e+04,3.15e+05)

2004 2 5.23e+04 0.01987 8958 3286 0.37

(1.92,2.05) (4.22e+04,1.91e+05)

2005 2.03 6.08e+04 0.0197 8814 2862 0.32

(1.84,2.07) (4.71e+04,2.88e+05)

2006 2.02 5.54e+04 0.01814 8661 3027 0.35

(1.87,2.07) (4.68e+04,2.67e+05)

2007 2.02 5.23e+04 0.0181 8515 3157 0.37

(1.91,2.07) (4.66e+04,2.55e+05)

2008 2.03 5.88e+04 0.01562 8284 2835 0.34

(1.98,2.09) (4.8e+04,8.03e+04)

2009 2.04 6.23e+04 0.01468 7996 2681 0.34

(1.99,2.1) (5.21e+04,1e+05)

2010 2.03 5.85e+04 0.01494 7639 2703 0.35

(1.97,2.07) (5.05e+04,1.15e+05)

2011 2.02 5.6e+04 0.0146 7341 2729 0.37

(1.97,2.07) (5.1e+04,1.13e+05)

Table 2.7: Estimates for α and xmin were obtained using the maximum likelihood methods

advocated in Clauset et al. (2009). Reported 95% percentile confidence intervals were

estimated using a non-parametric bootstrap with B = 2500 replications.
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2.B.2 Goodness-of-fit and likelihood ratio test results

Goodness-of-fit tests
Year asset lnlsnet liab dep eqtot numemp

1992 0.01139** 0.01002 0.01051* 0.01105* 0.01225** 0.01403**

(0.01092) (0.01195) (0.01087) (0.0119) (0.01108) (0.01397)

1993 0.01263*** 0.009586 0.01301*** 0.01062* 0.01359*** 0.01422**

(0.0106) (0.01168) (0.01075) (0.01105) (0.01084) (0.01367)

1994 0.01487*** 0.01197** 0.01517*** 0.01477*** 0.01457*** 0.01607***

(0.01079) (0.0119) (0.01092) (0.01105) (0.01148) (0.01346)

1995 0.0153*** 0.01169** 0.01415*** 0.01278** 0.0121** 0.01735***

(0.01066) (0.0117) (0.01102) (0.01129) (0.01113) (0.01358)

1996 0.01546*** 0.01401*** 0.01702*** 0.01367*** 0.01332** 0.01559**

(0.01113) (0.01171) (0.0112) (0.01156) (0.01165) (0.01403)

1997 0.01295** 0.01628*** 0.01397*** 0.01261** 0.01257** 0.01709***

(0.01146) (0.01242) (0.01166) (0.01225) (0.01155) (0.0135)

1998 0.01828*** 0.01876*** 0.01712 0.01617*** 0.01604*** 0.01939

(0.0116) (0.01202) (0.02239) (0.01216) (0.01223) (0.02238)

1999 0.01798*** 0.01613*** 0.01851*** 0.01708*** 0.01673*** 0.01925

(0.01192) (0.0117) (0.01171) (0.01203) (0.01238) (0.02366)

2000 0.01951*** 0.01894*** 0.02026*** 0.01794*** 0.01959*** 0.0206***

(0.01198) (0.0132) (0.01211) (0.01246) (0.01207) (0.01398)

2001 0.01959*** 0.01741*** 0.01968*** 0.01809*** 0.01904*** 0.01819***

(0.01287) (0.01388) (0.01287) (0.01287) (0.01209) (0.01408)

2002 0.01979*** 0.01954*** 0.02026*** 0.02193*** 0.01834*** 0.01901***

(0.01303) (0.01303) (0.01346) (0.01334) (0.01278) (0.01394)

2003 0.0232*** 0.02104*** 0.02315*** 0.02425*** 0.01906*** 0.02039***

(0.01304) (0.01355) (0.01308) (0.01331) (0.01265) (0.01432)

2004 0.02723*** 0.02245*** 0.026*** 0.02624*** 0.02155*** 0.01987***

(0.0137) (0.01403) (0.01342) (0.01395) (0.01225) (0.01469)

2005 0.02574*** 0.02332*** 0.0263*** 0.02561*** 0.02233*** 0.0197***

(0.01377) (0.01399) (0.0141) (0.01434) (0.01215) (0.01544)

2006 0.02193*** 0.02375*** 0.02132*** 0.02232*** 0.02357*** 0.01814***

(0.01365) (0.01433) (0.01369) (0.01378) (0.01258) (0.01494)

2007 0.02047*** 0.02045 0.01999*** 0.01993*** 0.02195*** 0.0181***

(0.01335) (0.02593) (0.01363) (0.01422) (0.01253) (0.01483)

2008 0.02342*** 0.01827 0.02199*** 0.02201*** 0.02156*** 0.01562**

(0.01331) (0.02639) (0.01467) (0.01444) (0.01292) (0.01538)

2009 0.02012*** 0.02205*** 0.01916*** 0.0178*** 0.0201*** 0.01468*

(0.01412) (0.01453) (0.01495) (0.01431) (0.01318) (0.01561)

2010 0.01425* 0.01755*** 0.01453** 0.01493** 0.02015*** 0.01494*

(0.01447) (0.01465) (0.0145) (0.0145) (0.01359) (0.01571)

2011 0.01906*** 0.02133 0.0195*** 0.02011*** 0.02222*** 0.0146*

(0.01447) (0.02772) (0.01467) (0.01476) (0.01342) (0.01557)

Table 2.8: KS goodness-of-fit test statistics. Numbers in parentheses are the upper bound

of a one-sided 95% confidence interval (the lower bound is zero in all cases). Confidence

intervals were estimated using a non-parametric bootstrap with B = 2500 replications.

Significance codes: *** < 1%, ** < 5%, * < 10%.
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Chapter 3

The wealth of cities and

diminishing increasing returns

In this chapter I look at the relationship between output and city size. A well known

result from the urban economics literature is that a monopolistically competitive market

structure combined with internal increasing returns to scale can be used to generate log-

linear relations between total and per capita output and population. I extend this theoretical

framework to allow for a variable elasticity of substitution between factors of production

in a manner similar to Zhelobodko et al. (2012). Using data on Metropolitan Statistical

Areas (MSAs) in the U.S. I find evidence that supports what Zhelobodko et al. (2012)

refer to as “increasing relative love for variety (RLV).” Increasing RLV generates pro-

competitive effects as market size increases which means that IRS, whilst important for

small to medium sized cities, are exhausted as cities become large. This has important

policy implications as it suggests that focusing intervention on creating scale for small

populations is potentially much more valuable than further investments to increase market

size in the largest population centers.1

3.1 Introduction

In a series of recent articles, Bettencourt et al. (2007), Bettencourt and West (2010),

Bettencourt et al. (2010), and Bettencourt (2013), have suggested that important socio-

economic indicators display “super-linear” scaling (i.e., exhibit increasing returns to scale)

1This chapter is based on joint work with Dr. David Comerford. In addition to my individual con-
tributions to our ongoing joint work, this chapter represents a unique and significant contribution to our
research agenda.
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100 CHAPTER 3. THE WEALTH OF CITIES

with city size while indicators of city resource use display “sub-linear” scaling (i.e., exhibit

decreasing returns to scale).2 Both types of scaling can be captured by an elegant power

law (i.e., log-linear) relation between a particular indicator or measure, X, and city size,

L

X ∝ Lb (3.1)

where city size is typically measured by total population. Super-linear scaling (i.e., in-

creasing returns to scale) requires b > 1 while sub-linear scaling (i.e., decreasing returns to

scale) requires b < 1.

In this chapter I show how such scaling relationships can be supported as equilibrium out-

comes within a theoretical framework, widely used in both urban economics and economic

geography, that assumes markets are monopolistically competitive and that firms produc-

ing differentiated intermediate input goods face fixed costs of production. I then extend

this benchmark model, which assumes a constant elasticity of substitution between inter-

mediate inputs used in production, to allow for a variable elasticity of substitution between

factors of production in a manner similar to Behrens and Murata (2007) and Zhelobodko

et al. (2012). The extension demonstrates that, when the elasticity of substitution is no

longer a fixed constant, returns to scale depend greatly on the size of a city. In particu-

lar, while output, income, wages, and productivity of small to medium sized cities exhibit

increasing returns to scale, in larger cities these important socio-economic indicators tend

to exhibit constant returns to scale.

I estimate the structural parameters of both our models using data on output, per capita

output, and population from N = 366 U.S. Metropolitan Statistical Areas (MSAs) in

2010. My findings suggest that the elasticity of substitution is indeed increasing with

the number of available inputs and, although I am not able to statistically reject our

benchmark model in favor of our extension where the elasticity of substitution varies with

the number of available inputs, our extension does have significantly higher predictive

power than a model with constant elasticity of substitution both in and out of sample.

The results have important policy implications as they suggest that focusing intervention

on creating scale and economic integration for small and medium sized cities is potentially

much more valuable than further investment to increase the size and integration of the

largest population centers.

2Bettencourt et al. (2007) and Bettencourt et al. (2010) document purported “super-linear” scaling
relations between socio-economic indicators such as gross metropolitan product (GMP), income, wages,
number of patents filed, total employment in R&D, etc.; and “sub-linear” scaling between measures of
resource usage such as the number of gasoline stations, total road surface, total length of electrical cables,
etc. Bettencourt and West (2010) sketches the outlines of a formal model of city scaling, the details of
which are worked out in Bettencourt (2013).
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At this point it is worth emphasizing what I am not attempting to do in this paper. My

current work is not an attempt to explain the existence or emergence of cities, nor does it

seek to explain the distribution of people across cities.3 My theoretical objective in this

chapter is more modest. I wish to take the distribution of people across cities as given and

seek to explore the implications of a variable elasticity of substitution for the functional

form of the returns to scale between output, income, wages, and productivity. I view my

analysis as a necessary precursor to a richer model.

The objective of the empirical analysis in this chapter is equally modest. Although my

model is capable of generating sharp predictions about how the magnitude of the agglom-

eration effects changes with city size, the objective of my empirical work is simply to asses

whether or not the available data support the functional relation between per capita out-

put and total population predicted by my model. My empirical results are not intended

to be interpreted as direct measures of agglomeration effects.

With these caveats in mind, the remainder of the chapter proceeds as follows. In the next

section I review some of the related literature. In section 3.3, I develop the theoretical

framework and discuss its contribution. In section 3.4, I discuss the data used in the

analysis and assess the relative performance of two statistical models of the relationship

between per capita output and city size which motivated us to consider models with a

varying elasticity of substitution before discussing the structural estimation results. Section

3.5 offers some conclusions and discusses what I think to be promising directions for future

research.

3.2 Related literature

My benchmark model descends directly from the seminal work on monopolistic competition

of Spence (1976) and Dixit and Stiglitz (1977). Following Abdel-Rahman (1988), Fujita

(1988), Rivera-Batiz (1988), Krugman (1991), Ciccone and Hall (1996), and Fujita et al.

(1999), I focus on the role of product differentiation and fixed costs of production as the

drivers of agglomeration economies (i.e., increasing returns to scale). Like Rivera-Batiz

(1988) and Ciccone and Hall (1996) product differentiation in my model occurs on the

3It is difficult to explain the existence of large concentrations of people in a particular area without
allowing people to choose the area in which to locate, and in my model, location is not a choice variable.
Clearly people do move between cities, however movement between cities takes time and money and thus one
justification for taking population as exogenous is that population levels are slow to respond to differentials
in per capita income and productivity. Glaeser and Gyourko (2005) argue that durable housing may cause
population adjustments in response to productivity shocks to be spread over several decades. In his detailed
study of the “American dust bowl,” Hornbeck (2012) argues that the large exogenous shock experienced
by much of the American midwest in the 1930’s (i.e., the widespread erosion of top-soil by extensive and
repeated dust storms) was absorbed over several decades by mostly permanent migration.
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supply side of the economy: firms facing fixed costs of production produce differentiated

intermediate inputs which are then used in the production of a homogenous consumption

good.4 In such models the monopoly power of firms producing the differentiated interme-

diate inputs.56

The inspiration for the general model lies in the recent work of Behrens and Murata

(2007) and Zhelobodko et al. (2012) on monopolistic competition with variable elasticity

of substitution. The major theoretical contribution of this chapter is to extend the models

of Rivera-Batiz (1988) and Ciccone and Hall (1996) to allow the elasticity of substitution

between intermediate inputs used in the production of consumption goods to vary across

cities depending on the number of available intermediate inputs. The variation of the

elasticity of substitution with the number of available intermediate inputs creates a link

between the size of a city and the market power of firms producing intermediate inputs

in that city via the markup that these firms charge for the use of their products in the

production of consumption goods. I show that if firms producing consumption goods find

it easier to substitute between any two intermediate inputs when the number of available

inputs is larger (i.e., if the elasticity of substitution is an increasing function of the number

of available intermediate inputs), then firms producing intermediate inputs will be larger

(in terms of both output and employment) and the markups charged by these firms will be

lower in larger cities.7 As the size of a city increases, the competitive pressure generated by

falling markups erodes the market power of firms selling intermediate inputs which is the

root source of increasing returns to city size. In the limit of large cities, the competitive

pressure becomes so great that firms producing intermediate inputs are forced to equate

4The models of Abdel-Rahman (1988) and Fujita (1988) assume that product differentiation occurs
on the demand side of the economy: households derive utility from consuming an aggregate consumption
bundle consisting of differentiated consumption goods.

5The essence of standard models models of economic agglomeration with monopolistic competition,
product differentiation, and fixed costs of production is summarized in a slightly different manner by Ciccone
and Hall (1996): “when local markets are more active, a larger number of producers of the differentiated
intermediate inputs break even. The production of final goods is more productive when a greater variety
of intermediate inputs is available.”

6A major strand of the urban economics literature to which my model is somewhat more distantly
related are the spatial equilibrium models pioneered by Mills (1967), Rosen (1979), and Roback (1982).
Models of spatial equilibrium allow for free movement of consumers across cities and then assume a kind
of “no-arbitrage” condition which requires that the welfare, at least for the marginal consumer/migrant,
is equalized across space (i.e., cities). In such spatial equilibrium models, output, income, and population
of a city are jointly determined by prices (i.e., housing prices, wages, etc.) and productivity. See Glaeser
(2008) and Glaeser and Gottlieb (2009) for a more modern treatment of the spatial equilibrium approach.
My current model, contrary to the spirit of the spatial equilibrium approach, treats the population of a city
as exogenous and fixed. In section 3.5 I briefly discuss some extensions of the model that would explicitly
incorporate a notion of spatial equilibrium.

7Both of these predictions find empirical support. Syverson (2007) provides evidence that firms oper-
ating in larger cities charge lower markups. Campbell and Hopenhayn (2005) characterize the effects of
market size on the size distribution of firms using data on retail trade establishments across 225 U.S. cities.
In general they find that larger firms tend to exist in larger cities.
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their price with their marginal costs of production and the production of consumption

goods exhibits constant, rather than increasing, returns to city size.

3.3 Model

I begin by developing the benchmark model, which descends from Dixit and Stiglitz (1977)

and Spence (1976) via Abdel-Rahman (1988), Fujita (1988), Rivera-Batiz (1988) and Cic-

cone and Hall (1996) where the elasticity of substitution between factors of production, σ,

is constant. The benchmark model predicts a log-linear (i.e., power law scaling) relations

between city size and total (and per capita) income. Such a relation generates unbounded

growth in per capita income with city size consistent with increasing returns to scale.

Following Zhelobodko et al. (2012), I then develop a more general model in which the

elasticity of substitution is itself an equilibrium outcome of the model that varies across

cities depending on their size. The general model predicts an equilibrium relationship

between city size and total (and per capita) output that is consistent with the limiting

behavior of the logistic scaling model discussed in the preceding section.

3.3.1 Benchmark model with constant σ

I model the world as consisting of N distinct economic agglomerations which I will refer to

as “cities” for simplicity. The production side of the economy in city i = 1, . . . , N consists

of final goods producers and intermediate goods producers.

Final goods producers

All final goods producers in city i create a homogenous consumption good from a dif-

ferent number (formally a different measure) of intermediate goods ni via the following

constant returns to scale (CRTS), constant elasticity of substitution (CES) production

function:

Yi =

[∫ ni

0
q
σ−1
σ

j dj

]σ−1
σ

(3.2)

where the parameter 1 < σ ≤ ∞ is the elasticity of substitution between the ni different

intermediate goods used in production.

Firms producing the final consumption good are assumed to choose their demand for the



104 CHAPTER 3. THE WEALTH OF CITIES

various intermediate goods qj in order to maximize profits.

max
{qj}

ni
j=0

Πi =

[∫ ni

0
q
σ−1
σ

j dj

] σ
σ−1

−
∫ ni

0
pjqj (3.3)

Therefore the demand for each intermediate good j must satisfy the following first-order

necessary condition:

∂Πi

∂qj
≡ q

σ−1
σ
−1

j

[∫ ni

0
q
σ−1
σ

j dj

] σ
σ−1
−1

− pj = 0 (3.4)

which yields the following standard demand function for good j:

qj = p−σj Yi. (3.5)

The demand for each intermediate good j of the final goods producers in city i varies

directly with total output (which is also total revenue since the final consumption good is

the numeraire) and inversely as the σ of the price of good j. The easier it is to substitute

between inputs to production (i.e., the larger is σ), the lower will be the demand for any

particular intermediate good.

Intermediate goods producers

Firms producing intermediate good j take labor Lj and use it to produce qj units of the

intermediate good via the following production function

qj = φ(Lj − f) (3.6)

where φ > 0 is physical productivity and f > 0 is fixed costs of production (both of which

as assumed constant across cities).

I assume monopolistic competition in the production of intermediate goods: firms produc-

ing good j take the demand for good j from firms producing the final consumption good as

given and set their price in order to maximize profits subject to the additional constraint

imposed by their production technology:

max
pj

Πi = pjqj − wiLj (3.7)
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subject to

qj =p−σj Yi (3.8)

qj =φ(Lj − f) (3.9)

Substituting these constraints into the objective function yields

max
pj

Πi = p1−σ
j Yi − wi

(
1

φ
p−σj Yi + f

)
. (3.10)

The optimal price must satisfy the following first-order necessary condition:

∂Πi

∂pj
≡ −(σ − 1)p−σj Yi +

wi
φ
σp−σ−1

j Yi = 0 (3.11)

which implies that the optimal price for good j is

pj =
wi
φ

σ

σ − 1
. (3.12)

Note that the optimal price for good j depends only on exogenous parameters of the model

(and the wage, wi). Firms producing in city i have marginal costs that are proportional

to the wage in city i and inversely proportional to productivity:

MC ≡ wi
φ

(3.13)

thus I can interpret

µ ≡ σ

σ − 1
≥ 1 (3.14)

as the markup over marginal costs charged by the producers of good j. Note that the

markup is strictly decreasing in σ:

∂µ

∂σ
= −

(
1

σ − 1

)2

< 0 (3.15)

and that

lim
σ→∞

µ = 1. (3.16)

The larger is the elasticity of substitution between intermediate inputs in production, the

lower is the markup. In the limit as the intermediate inputs become perfect substitutes in

the production of the final consumption good, the markup disappears and firms producing

good j are forced to set price equal to marginal cost.

I now make the standard assumption of free entry in the production of intermediate good
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j. The assumption of free entry drives profits of firms producing good j to zero.

Πi = pjqj − wiLj = 0 (3.17)

Substituting for Li using equation 3.6 and then substituting for pi using equation 3.12 yields

the following expressions for qj , the quantity of good j produced, and Lj , the quantity of

labor required to produce qj units of good j. Combining these expression with the equation

for pj completely describes the behavior of firms producing good j.

pj =µ
wi
φ

(3.18)

qj =

(
1

µ− 1

)
φf (3.19)

Lj =

(
µ

µ− 1

)
f (3.20)

Note that none of these expression depends directly on j which implies that firms producing

intermediate goods are symmetric.

Households

The behavior of households in each city is trivial. I assume linear preferences over the

homogenous generic consumption good.

Ui = Ci (3.21)

Households in city i supply labor to the intermediate goods producers in return for a wage

wi. Household budget constraint is

Ci = wiLi (3.22)

I assume that households choose there demand for the consumption good in order to

maximize Ui subject to the budget constraint. The assumption of linear preferences implies

that optimal behavior for households is to simply consume their income.

Equilibrium

Labor market clearing requires that

Li =

∫ ni

0
Ljdj = ni

(
µ

µ− 1

)
f. (3.23)
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Solving the above equation for ni yields

ni = n(Li) =

(
µ− 1

µ

)
1

f
Li (3.24)

The number (formally measure), ni, of intermediate goods produced in city i is an increas-

ing function of the size of the city (as measured by population) and is a decreasing function

of both the elasticity of substitution, σ, and fixed costs, f .

At this point I am in a position to characterize both equilibrium output/income, Yi, equi-

librium per capita output/income, yi = Yi
Li

, and the equilibrium productivity of the final

goods sector (i.e., quantity of the final output good produced using given amounts of the

various intermediate goods/inputs).

Yi =φf

(
1

µ− 1

)((
µ− 1

µ

)
1

f
Li

)µ
(3.25)

yi =φ

(
1

µ

)((
µ− 1

µ

)
1

f
Li

)µ−1

(3.26)

prodi =

((
µ− 1

µ

)
1

f
Li

)µ−1

(3.27)

To determine the equilibrium wage in city i note that the goods market clearing condition

requires that

Yi = Ci = wiLi. (3.28)

This condition just requires that households in city i consume all of the final goods produced

by firms in city i. Goods market clearing implies that the wage equal per capita output,

yi.

wi =
Yi
Li

= yi. (3.29)

In keeping with standard results from seminal work in urban economics and economic

geography,8 equations 3.25, 3.26, 3.27, and 3.29 define power law (i.e., log-linear) scaling

relations between output, per capita output, productivity, and wages, respectively, and city

size. The strength of these various power law scaling relations depends on the elasticity

of output, Y , with respect to city size, L, which in the benchmark model, is equal to the

markup charged by firms producing intermediate inputs, µ.

∂ lnY

∂ lnL
= µ (3.30)

8See, for example, Abdel-Rahman (1988), Fujita (1988), Rivera-Batiz (1988), Ciccone and Hall (1996).
For detailed surveys of similar results from economic geography see Krugman (1996) and Fujita et al.
(1999).
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In the benchmark model, indeed in most all models where increasing returns are generated

by product variety, the degree of increasing returns is intimately connected to the degree

of market power held by firms producing the intermediate inputs. In the next section, I

extend the benchmark model by creating an indirect link between the size of a city and

the markup by explicitly assuming a link between the size of a city and the elasticity of

substitution between intermediate inputs. Under certain conditions, I show that this link

eliminates the market power of firms producing intermediate inputs which in turn destroys

the increasing returns to scale in the production of final consumption goods.

3.3.2 Extended model with variable σ(ni)

I follow in the spirit of Zhelobodko et al. (2012) and suppose that the elasticity of sub-

stitution between any two inputs to production in city i varies with the total number of

available inputs, ni: σ(ni). Specifically, I define

ρ(ni) =
σ(ni)− 1

σ(ni)
⇐⇒ σ(ni) =

1

1− ρ(ni)
(3.31)

and suppose that ρ is a linear function of ni:

ρ(ni) = β0 + β1ni. (3.32)

Recall that I require intermediate goods to be gross substitutes in production: 1 < σ(ni) ≤
∞ which requires 0 < ρ(ni) < 1 for all ni.

Our assumption nests the benchmark model as a special case where β1 = 0 and implies

that the elasticity of substitution between intermediate inputs it a convex function that is

either increasing (decreasing) in the number of available inputs, ni, if β1 > (<) 0. Using the

language of Zhelobodko et al. (2012), β1 > (<) 0 implies increasing (decreasing) “relative

love of variety (RLV).”

σ(ni) =
1

1− β0 − β1ni
(3.33)

σ′(ni) =
β1

(1− β0 − β1ni)2
(3.34)

σ′′(ni) =
2β2

1

(1− β0 − β1ni)3
(3.35)

From this point forward, much of the analysis from the previous section goes through with

only minor modification.
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Final goods producers

Producers of the final consumption continue to use a CRTS, CES production technology

and choose their respective demands for the various intermediate inputs in order to maxi-

mize profits. The first-order necessary condition for good j implies the following demand

function for good j.

qj =p
−σ(ni)
j Yi

=p
−
(

1
1−β0−β1ni

)
j Yi (3.36)

Intermediate goods producers

Firms producing intermediate goods continue to operate in a monopolistically competitive

environment and choose a price for good j in order to maximize their profits subject to

the constraints imposed by equations 3.6 and 3.36. The first-order necessary condition for

the optimal price pj implies that firms set their price equal to some markup over marginal

costs.

pj =
σ(ni)

σ(ni)− 1

wi
φ

=
1

β0 + β1ni

wi
φ

=µ(ni)
wi
φ
. (3.37)

The requirement that 1 < σ(ni) ≤ ∞ implies that 1 ≤ µ(ni) < ∞ for all ni. Note

that the markup varies with the number of available intermediate inputs. In particular, if

the elasticity of substitution between intermediate inputs is an increasing function of the

number of available inputs (i.e., β1 > 0), then the markup is a decreasing function of the

number of available inputs

µ′(ni) = − β1

(β0 + β1ni)2
< 0. (3.38)

This is an example of the type of “pro-competitive” effects generated by increasing relative

love for variety. With β1 > 0, an increase in the number of available intermediate inputs

increases the elasticity of substitution between inputs in the production of consumption

goods. The rise in the elasticity of substitution pushes down the markup and lowers the

price that firms producing input j can charge.

Free entry in the production of intermediate goods drives the profits of firms producing
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these goods to zero in equilibrium which, in turn, implies that quantity of intermediate

input j produced in equilibrium is

qj =(σ(ni)− 1)φf

=

(
1

µ(ni)− 1

)
φf

=

(
β0 + β1ni

1− β0 − β1ni

)
φf. (3.39)

The amount of labor required to produce qj of intermediate input j in equilibrium is

Lj =σ(ni)f

=

(
µ(ni)

µ(ni)− 1

)
f

=

(
1

1− β0 − β1ni

)
f. (3.40)

Note that if σ′(ni) = β1 > 0, then both the output of intermediate input j and the labor

used its production are increasing functions of number of available inputs, ni.

∂qj
∂ni

=
β1

(1− β0 − β1ni)2
> 0 (3.41)

∂Lj
∂ni

=
β1

(1− β0 − β1ni)2
> 0 (3.42)

This is another example of the “pro-competitive effects” generated by increasing relative

love for variety: the larger the number of available intermediate inputs (i.e., the larger the

market), the larger are firms (in terms of either the size of their labor force, Lj , or the

amount of output, qj).

Equilibrium

Since the behavior of households in the general model does not change, I move straight to

characterizing the model equilibrium. Imposing labor market clearing requires that

Li =

∫ ni

0
Ljdj =niσ(ni)f

=ni

(
µ(ni)

µ(ni)− 1

)
f

=ni

(
1

1− β0 − β1ni

)
f. (3.43)
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Equilibrium level of product differentiation: As in the benchmark model, the labor

market clearing condition implies an explicit relation between the size of a city, Li, and

the variety of intermediate inputs, ni.
9

n(Li) =
Li(1− β0)

f + β1Li
(3.46)

Elasticity of substitution and the markup: With a functional form for n(Li) in

hand, I can express the elasticity of substitution between intermediate inputs, σ, and the

markup, µ, as functions of city size, Li. After substituting the result for n(Li) into equation

3.31 I find that σ is a linear function of city size.

σ(Li) =
1

1− β0
+

β1

1− β0

Li
f

(3.47)

Note that, in the limit of large cities, intermediate inputs become perfect substitutes in

the production of final consumption goods.

lim
Li→∞

σ(Li) =∞ (3.48)

Using the expression for σ(Li), I can derive the following expression for µ.

µ(Li) =
f + β1Li
β0f + β1Li

(3.49)

Note that in order for 1 ≤ µ(Li) <∞ I require that 0 < β0 ≤ 1. Following an application

of L’hôpital’s rule, I find that, in the limit of large cities, the markup tends towards

unity.

lim
Li→∞

µ(Li) = 1 (3.50)

If β > (<) 0, then firms producing intermediate inputs in larger markets (i.e., large cities)

should have lower (higher) markups. Empirical evidence provided by Syverson (2007)

suggests that firms operating in larger cities have lower markups, which, in the model,

9In the most general framework, the labor market clearing condition defines the variety of intermediate
inputs only implicitly as a function of city size. Given some value for Li I can define ni ≡ n(Li) to be the
value ni that solves the following non-linear equation.

R(Li, ni) ≡
Li
f
− ni

(
µ(ni)

µ(ni)− 1

)
= 0 (3.44)

From the implicit function theorem, I know that the function ni ≡ n(Li) exists so long as

∂R

∂ni
≡ 1

µ(ni)− 1

[(
µ′(ni)

µ(ni)− 1

)
ni − µ(ni)

]
6= 0. (3.45)
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requires β1 > 0.

Intermediate goods producers: Recall that in the benchmark model there is no link

between the size of firms producing in a given city and the size of that city i. This runs

against empirical evidence which suggests that firms in larger markets tend to be larger.10

In the general model the variation in the markup with city size described by equation 3.49

creates a link between the size of a city and the size (as measured by either output or labor

force) of firms producing intermediate goods in that city.

qj =
φfβ0

1− β0
+

φβ1

1− β0
Li

=c0 + c1Li (3.51)

Lj =
f

1− β0
+

β1

1− β0
Li

=c2 + c3Li (3.52)

Note that c1 and c3 represent the marginal effect on firm size in response to a change in

the size of a city. Equations 3.51 and 3.52 tell us that if β1 > (<) 0 (alternatively, c1, c3 >

(<) 0), then the size of firms producing intermediate goods is an increasing (decreasing)

function of city size.

Output, productivity, and wages: I are now ready to characterize equilibrium output,

productivity, and wages as functions of the city size, Li, and structural parameters of the

model. I begin with total output, Yi.

Yi = (c0 + c1Li)

(
Li

c2 + c3Li

) c1c2+c1c3Li
c0c3+c1c3Li

=qj

(
Lj
Li

)−εqj ,Li
(3.53)

where εqj ,Li is the elasticity of the output of firms producing input j with respect to city

size. Equation 3.53 says that total output produced in city i varies directly with the total

output of firms producing intermediate good j and inversely as the εqj ,Li with the fraction

of total labor used by firms producing intermediate good j.

Per capita output in city i, yi, varies directly with the productivity of firms producing

intermediate good j and inversely as the 1− εqj ,Li with the fraction of total labor used by

10Campbell and Hopenhayn (2005) characterize the effects of market size on the size distribution of
firms using data on retail trade establishments across 225 U.S. cities. In general they find that larger firms
to to exist in larger cities.
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firms producing intermediate good j.

yi =

(
c0 + c1Li
c2 + c3Li

)(
Li

c2 + c3Li

) c1c2−c0c3
c0c3+c1c3Li

=

(
qj
Lj

)(
Lj
Li

)1−εqj ,Li
(3.54)

The productivity of firms producing the final consumption good in city i is the amount of

output produced per unit of inputs

prodi ≡
Yi∫ n(Li)

0 qjdj
=

(
Li

c2 + c3Li

) c1c2−c0c3
c0c3+c1c3Li

=

(
Lj
Li

)1−εqj ,Li
(3.55)

Finally, as was the case in the benchmark model, the goods market clearing implies that

the wage equals per capita output, yi.

wi =
Yi
Li

= yi (3.56)

I are interested in the limiting behavior of per capita output.

Claim: As the intermediate inputs used in the production of the final consumption good

become perfect substitutes, firms producing these inputs are forced to set their output

price equal to their marginal costs of production:

lim
Li→∞

σ(Li) =∞ =⇒ lim
Li→∞

µ(Li) = 1. (3.57)

This loss of market power by intermediate goods producers, in turn, eliminates the increas-

ing returns to scale in the production of final consumption goods:

lim
σ(Li)→∞

yi = lim
µ(Li)→1

yi = φ. (3.58)

Proof: See appendix 3.A. �

In the benchmark model with constant σ there was unbounded growth in per capita income
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with city size: cities exhibit increasing returns to scale at all scales. However, in the more

general model with a variable elasticity of substitution (i.e., σ(Li)) I have bounded growth

of per capita income with city size: while there are increasing returns to scale for small to

medium sized cities, in the limit of large cities there is only constant returns to scale.

3.4 Empirics

3.4.1 Data

I follow the common approach in the literature and analyze data on population, income,

and output of Metropolitan Statistical Areas (MSAs) available from the Bureau of Eco-

nomic Analysis (BEA). MSAs are defined for each urban agglomeration with at least 50,000

people and attempts to capture the overall size of the agglomeration by merging administra-

tively defined entities (i.e., cities, counties, places, towns, etc) in the US, based on social

or economic ties.11 Figure 3.1 displays scatter plots of real total and per capita Gross

Metropolitan Product (GMP) versus population for the N = 366 Metropolitan Statistical

Areas.

From the scatter plots its is clear that the relationship between per capita output and

city size is rather noisy. Distinguishing between different models is going to be difficult.

Nonetheless I will give it a go!

The analysis of Bettencourt et al. (2007) and Bettencourt et al. (2010) focuses on scal-

ing relations between aggregate (i.e., extensive) quantities and city size as measured by

total population. This approach is heavily criticized on statistical grounds by Shalizi

(2014b).12 The approach also makes very little economic sense. As such I choose to focus

11MSAs, as defined by the Office of Management and Budget (OMB), are the standard unit of analysis
for much of urban economics. The OMB defines a Core Based Statistical Area (CBSA) as “a statistical
geographic entity consisting of the county or counties associated with at least one core (urbanized area
or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and
economic integration with the core as measured through commuting ties with the counties containing the
core.”

Micropolitan and Metropolitan Statistical Areas are the two categories of CBSAs. A Micropolitan
Statistical Area is a CBSA with “at least one urban cluster that has a population of at least 10,000,
but less than 50,000. The Micropolitan Statistical Area comprises the central county or counties containing
the core, plus adjacent outlying counties having a high degree of social and economic integration with the
central county or counties as measured through commuting.” A Metropolitan Statistical Area is a CBSA
with “at least one urbanized area that has a population of at least 50,000. The Metropolitan Statistical
Area comprises the central county or counties containing the core, plus adjacent outlying counties having
a high degree of social and economic integration with the central county or counties as measured through
commuting.”

Ideally I would have liked to include Micropolitan Statistical Area data in the analysis, unfortunately
the BEA only publish GMP data for Metropolitan Statistical Areas.

12For example, Shalizi (2014b) argues that the high values of R2 reported by Bettencourt et al. (2007) are
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Figure 3.1: From the scatter plots its is clear that the relationship between per capita
output and city size is rather noisy. Distinguishing between different models is going to be
difficult.

on modeling the relationship between per capita GMP and city size as measured by total

population.

3.4.2 Methodology

I start by comparing two statistical models of the relationship between per capita GMP

and total population that have wildly different implications for the behavior of per capita

income in the limit of large cities: a power law (i.e, log-linear) scaling model and a logistic

scaling model.

largely an artifact of data aggregation. Suppose, for example, that per capita GMP is actually statistically
independent of city size. Under this hypothesis lnY = ln y + lnL is the sum of two independent random
variables and the variance of lnY is the sum of the variances of log per capita GMP and log population.
The R2 of a regression of lnY on lnL is

R2 =
var(lnL)

var(ln y) + var(lnL)
. (3.59)

If the variance of lnL is large relative to the variance of ln y, then R2 will be close to unity! Indeed,
performing this calculation on the data set yields R2 = 0.93. Thus, given the data, one would expect to
find an R2 of roughly 0.93 when regressing lnY on lnL even when per capita income and population are
completely independent!
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Population, L GMP, Y Per capita GMP, y

count 366 366 366
mean 0.71 31.69 36.00
std 1.58 86.66 11.25
min 0.06 1.12 11.79
25% 0.14 4.33 28.51
50% 0.25 8.40 34.04
75% 0.56 20.10 41.30
max 18.90 1113.38 89.35

Table 3.1: Descriptive statistics for Metropolitan Statistical Area data. Population, L, is
measured in millions of people, real GMP, Y , is measured in billions of chained 2005 USD,
and per capita real GMP, y, is measured in thousands of chained 2005 USD.

Power law scaling

Bettencourt et al. (2007) report that GMP scales as a power of population: Y ∼ cLb.

A scaling relation between GMP and population mechanically implies a scaling relation

between per capita GMP, y = Y
L and population of the form y ∼ cLb−1 which can be

connected to the data via the regression equation:

ln yi = γ0 + γ1 lnLi + εi. (3.60)

where γ0 = ln c and γ1 = b−1 and ε is assumed to be independent, mean-zero disturbance.

I estimate equation 3.60 using OLS.13 Note that if γ1 > 0, then the power law scaling

model predicts that growth in per capita GMP with total population is unbounded.

Logistic scaling

Following Shalizi (2014b) I also consider a logistic scaling relation between per capita GMP,

y, and population, L. Logistic scaling implies that:

ln y ∼ d1 + d2

(
1

1 + e−(d3+d4L)

)
. (3.61)

Note that while the power law scaling model implies that per capita GMP growth is

unbounded in total population, the logistic scaling model predicts that per capita GMP

13Classic OLS standard errors will be too narrow in the presence of heteroskedasticity. Although analysis
of OLS residuals failed to indicate the presence of substantial heteroskedasticity, I re-estimated equation
3.60 with White (1980) standard errors. The resulting heteroskedasticity consistent standard errors and
associated confidence intervals did not differ substantially from the classic standard errors and confidence
intervals reported below.
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converges to a constant in the limit of large cities.

lim
L→∞

ln y = d1 + d2 (3.62)

The logistic scaling model can be connected to the data via the following non-linear re-

gression equation

ln yi =d1 + d2

(
1

1 + e−(d3+d4L)

)
+ εi

=F (d1, d2, d3, d4;Li) + εi (3.63)

where ε is assumed to be independent, mean-zero disturbance. I estimate equation 3.63

using non-linear least squares as follows. First, I define the following residual function

R(θ; yi, Li) = ln yi − F (θ;Li) (3.64)

for each of the i = 1, . . . , N cities where θ is a vector containing the four structural

parameters of the model d1, d2, d3, d4. I then choose the vector of parameters which

minimizes the sum of squared deviations between the model predicted per capita GMP

and the observed data on per capita GMP.

θ̂∗ = arg min
θ

1

2

N∑
i=1

R(θ; yi, Li)
2 (3.65)

Under the assumption that the disturbances εi (and therefore the residuals R(θ; yi, Li)),

are independently and identically distributed, the non-linear least squares estimator θ̂∗ is

consistent, asymptotically efficient, and asymptotically normal.14 In general solving non-

linear optimization problems like 3.65 is non-trivial. In order to solve for θ̂∗ in equation

3.65 I use the Levenberg-Marquardt (LM) algorithm which has been developed to exploit

the structure of non-linear least squares problems.15

The uncertainty of the parameter estimates is inversely related to the amount of curvature

14For those interested in the gory details, see either Amemiya (1985), Davidson and MacKinnon (1993),
or Hayashi (2000).

15The Levenberg-Marquardt (LM) algorithm, which was originally developed by Levenberg (1944) and
Marquardt (1963), adaptively combines two general approaches to non-linear optimization: the gradient
descent and Gauss-Newton methods. When the current solution is “far” from the optimal solution, the LM
algorithm behaves like a gradient descent method: the rate of convergence is slow, but ultimate convergence
to a local minimum is guaranteed. When the current solution is “close” to the optimal solution, the LM
algorithm behaves like a Gauss-Newton method: the rate of convergence is fast, and because I am already
close to the optimal solution it is unlikely that Gauss-Newton will fail to converge. See Judd (1998) and
Nocedal and Wright (2006) for more details on gradient descent and Gauss-Newton methods as well as the
mathematical details of the Levenberg-Marquardt (LM) algorithm.
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in the objective function in the neighborhood of the optimal parameter vector, θ̂∗. If the

objective function has a lot of curvature around θ̂∗, then the parameter estimates will be

quite precise and the standard errors will be small; if, on the other hand, the objective

function is very flat in the neighborhood of θ̂∗, then the parameter estimates will be very

imprecise and the standard errors will be large. Information about the curvature of the

objective function around θ̂∗ is encoded by H(θ̂∗; y, L), the Hessian of the objective function

evaluated at θ̂∗.

Formally, I compute the standard errors for the parameter estimates in two steps. First, I

construct an estimate of the residual variance σ̂2 as follows

σ̂2 =
1

N − k

N∑
i=1

R(θ̂∗; yi, Li)
2 (3.66)

where N is the total number of observations and k is the number of estimated parameters

and θ̂∗ is the optimal parameter vector. I then estimate the variance-covariance matrix Σ

as

Σ̂ = σ̂2H−1(θ̂∗; y, L) (3.67)

where H−1 is the inverse Hessian of the objective function defined in equation 3.65. The

standard errors for the k = 4 parameters can be found by taking the square root of the

diagonal elements of Σ̂.

Structural scaling

My structural model predicts that per capita output in city i, ŷi, is given by the following

non-linear function of the population of city i, Li, and the four structural parameters

β0, β1, φ, f :

ln ŷi = ln

[
φ

(
β0f + β1Li
f + β1Li

)]
+

f(1− β0)

β0f + β1Li
ln

(
Li(1− β0)

f + β1Li

)
(3.68)

where I have substituted for c0 = φfβ0
1−β0 , c1 = φβ1

1−β0 , c2 = f
1−β0 , and c3 = β1

1−β0 using

equations 3.51 and 3.52.

The model imposes the following parameter restrictions: 0 < β0 < 1,−∞ < β1 < ∞, 0 <
φ, 0 < f . To incorporate these restrictions into the estimation procedure I define the
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following change of variables:

β0 =
1

1 + e
− ln

(
β0

1−β0

)
β1 =

β

f
f

φ =elnφ = eγ2

f =e
− ln 1

f = eγ3 .

This change of variables, in turn, leads to new structural parameters

γ0 =− ln
β0

1− β0

γ1 =
β1

f

γ2 = lnφ

γ3 =− ln
1

f

which, no matter the estimation results for γ0, γ1, γ2, γ3, guarantee that the values of the

original structural parameters satisfy the restrictions imposed by the model.

Re-writing equation 3.68 in terms of the new structural parameters γ0, γ1, γ2, γ3 yields

ln ŷi =A(γ0, γ1, γ2;Li) +B(γ0, γ1;Li)C(γ0, γ1, γ3;Li) (3.69)

where

A(γ0, γ1, γ2;Li) = ln

[(
eγ2

1 + eγ0

)(
1 + γ1Li + γ1Lie

γ0

1 + γ1Li

)]

B(γ0, γ1;Li) =

(
eγ0

1 + γ1Li + γ1Lieγ0

)
C(γ0, γ1, γ3;Li) = ln

[(
eγ0−γ3

1 + eγ0

)(
Li

1 + γ1Li

)]

The model can be connected to the data via the following non-linear regression equa-

tion.

ln yi =A(γ0, γ1, γ2;Li) +B(γ0, γ1;Li)C(γ0, γ1, γ3;Li) + εi

=F (γ0, γ1, γ2, γ3;Li) + εi (3.70)



120 CHAPTER 3. THE WEALTH OF CITIES

For each of the i = 1, . . . , N cities, I define the following residual function.

R(θ; yi, Li) = ln yi − F (θ;Li) (3.71)

where θ is a vector of the four structural parameters γ0, γ1, γ2, γ3. Given observed data on

per capita incomes, y, and city population, L, I choose θ to minimize the sum of squared

deviations between the model’s predictions and the observed values.

θ̂∗ = arg min
θ

1

2

N∑
i=1

R(θ; yi, Li)
2 (3.72)

Again, under the assumption that the disturbances εi (and therefore the residualsR(θ; yi, Li)),

are independently and identically distributed, the non-linear least squares estimator θ̂∗ is

consistent, asymptotically efficient, and asymptotically normal.

Confidence intervals are computing using the same two step procedure used to obtain the

confidence intervals for the estimated parameters of the logistic scaling model discussed

above. First, I construct an estimate of the residual variance σ̂2 as follows

σ̂2 =
1

N − k

N∑
i=1

R(θ̂∗; yi, Li)
2 (3.73)

where N is the total number of observations and k is the number of estimated parameters

and θ̂∗ is the optimal parameter vector. I then estimate the variance-covariance matrix Σ

as

Σ̂ = σ̂2H−1(θ̂∗; y, L) (3.74)

where H−1 is the inverse Hessian of the objective function defined in equation 3.72. The

standard errors for the k = 4 parameters can be found by taking the square root of the

diagonal elements of Σ̂.

3.4.3 Results

Power law scaling

The easiest way to test the super linear power law scaling hypothesis put forward by

Bettencourt et al. (2007) is to simply estimate equation 3.60 using OLS and check that

γ1 > 0. Regression results for equation 3.60 are reported in table 3.2. Consistent with

super linear power law scaling γ̂1 ≈ 0.12 is positive and significant. A 1% increase in the

population of a city results in a 0.12% increase in per capita GMP (or equivalently, a 1.12%



3.4. EMPIRICS 121

coef std err t P>|t| [95.0% Conf. Int.]

const 3.6734 0.020 181.250 0.000 3.634 3.713

population 0.1174 0.013 9.003 0.000 0.092 0.143

Table 3.2: OLS estimation results for the power law scaling model.

coef std err t P>|t| [95.0% Conf. Int.]

d1 3.8788 0.0533 72.7843 0.0000 3.7743 3.9832

d2 -0.5127 0.1802 -2.8456 0.0047 -0.8568 -0.1596

d3 0.7736 0.2762 2.801 0.0054 0.2322 1.3149

d4 -0.4103 0.2660 -1.5427 0.1237 -0.9315 0.1110

Table 3.3: Estimation results for the logistic scaling model.

increase in GMP).16 The root mean square error (RMSE) of the power law scaling model

for predicting per capita GMP is $10.22 thousand chained 2005 USD per person. The R2

is 0.182 indicating that the fitted values retain roughly 18% of the variation in the log of

per capita GMP.

Logistic scaling

Table 3.3 displays the coefficients, asymptotic standard errors, and 95% confidence intervals

obtained from estimating equation 3.63 using non-linear least squares. The RMSE of the

logistic model for predicting per capita GMP is $10.12 thousand chained 2005 USD.

Given that the logistic model has k = 4 parameters it is not surprising that the model has

a lower RMSE than the power law model with k = 2 parameters. I use a non-parametric

bootstrap procedure to estimate the distribution of the differences in RMSE between the

power law and logistic scaling models under the null hypothesis that the power law scaling

model with parameters as reported in table 3.2 is the “true” model.17 The observed

16Bettencourt et al. (2007) and Bettencourt et al. (2010) conveniently ignore all possible sources of
endogeneity and interpret γ as the elasticity of per capita income with respect to city size (i.e., a 1%
increase in the total population of a city leads to a γ1% increase in per capital income).

17A detailed outline of my non-parametric bootstrap procedure can be found in appendix 3.B.
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Figure 3.2: Difference in RMSE between logistic and power law scaling model is statistically
significant indicating that the logistic model is preferred to the simpler power law model.

difference in RMSEs is

t̂ = RMSEp(θ̂p)−RMSEl(θ̂l) ≈ 0.104 (3.75)

where RMSEp(θ̂p) and RMSEl(θ̂l) are the root mean squared errors of the power law

and logistic scaling models computing using the estimated parameter vectors θ̂p and θ̂l.

Figure 3.2 displays the distribution of t̂. The p-value is 0.07 indicating that only 7% of the

time did my simulation generate a difference in RMSE larger that the observed difference.

I conclude that it is reasonably unlikely that the logistic scaling model out performs the

power law scaling model “by chance.”

Structural scaling

I estimate equation 3.72 using non-linear least squares and report the results in table 3.4.

Reported confidence intervals were computed using the two step procedure described in
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Figure 3.3: Regression curves for the power law, logistic, and structural scaling models.

the previous section.18 Figure 3.3 plots the regression curves for the power law, logistic,

and structural scaling models for comparison. Note that, like the logistic scaling model,

the structural scaling model predicts that increasing returns to scale are exhausted in the

limit of large cities.

Note that the parameters γ0 and γ3 are not identified. This lack of identification is clearly

indicated by the enormous confidence intervals for the estimated values of these parameters

Fortunately, the exact value of these parameters are not material for the analysis. The key

estimated parameters of interest are γ̂1 and γ2. The model predicts that per capita income

and per capita output converge to a constant φ in the limit of large cities. Recall that

my change of variables set φ = ln γ2. Thus my estimation results indicate that per capita

output converges to eγ̂2 ≈ $59,000. From a theoretical standpoint, the crucial parameter

is γ1 which captures the variability of the elasticity of substitution with city size. Since my

general model nests the power law scaling model as a special case where β1 = γ1 = 0, I can

18I also computed confidence intervals using several standard non-parametric bootstrapping routines.
The resulting non-parametric bootstrap confidence intervals were similar to those based on the Hessian of
the objective function and lead to identical inferences. The results have been omitted for brevity. Seminal
references for bootstrapping are Efron (1979) and Efron and Efron (1982). Davison (1997) is a excellent
reference. Shalizi (2014a) covers the basics.
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coef std err t P>|t| [95.0% Conf. Int.]

γ̂0 -5.9744 40.6401 -0.1470 0.8832 (-85.6274, 73.6786)

γ̂1 0.6692 0.8776 0.7626 0.4462 (-1.0508, 2.3893)

γ̂2 4.0801 0.1580 25.8188 0.0000 (3.7704, 4.3898)

γ̂3 262.41 1.0716e4 2.4489e-2 0.9805 (-2.0740e4, 2.1264e4)

Table 3.4: Non-linear least squares results for the structural scaling model.

use a simple t-test for the significance of γ̂1 as a test of the null hypothesis of power law

scaling against the structural scaling model with γ1 > 0. Recall that γ1 = 0 implies that

σ is constant and independent of city size, whereas γ1 > 0 implies that σ is an increasing

function of city size. While the estimation results indicate that γ̂1 is indeed positive, the

associated 95% confidence interval includes zero and as a result I fail to reject the power

law null hypothesis. Despite the fact that γ̂1 is not statistically significant, a model with

γ̂1 > 0 predicts that firms operating in larger markets should be larger (in terms of both

employment and output) and charge lower markups. Thus a model with γ̂1 > 0 is at least

consistent with empirical results reported in Syverson (2007) and Campbell and Hopenhayn

(2005).

In-sample performance

The RMSE for the structural model is $10.14 thousand chained 2005 USD per person which

is less than the RMSE for the power law scaling model reported in section 3.4. Given that

the structural model has k = 4 parameters it is not surprising that the model has a

lower RMSE than the power law model with k = 2 parameters. I use a non-parametric

bootstrap procedure to estimate the distribution of the differences in RMSE between the

power law and the structural scaling models under the null hypothesis that the power law

scaling model with parameters as reported in table 3.2 is the “true” model.19 The observed

difference in RMSEs is

t̂ = RMSEp(θ̂p)−RMSEs(θ̂s) ≈ 0.08 (3.76)

19A detailed outline of the non-parametric bootstrap procedure can be found in appendix 3.B.
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where RMSEp(θ̂p) and RMSEs(θ̂s) are the root mean squared errors of the power law

and structural scaling models computing using the estimated parameter vectors θ̂p and θ̂s.

The difference between the RMSEs for the two models is statistically significant, but only

marginally so: only 8% of the time did the simulations generate a difference in RMSE

larger that the observed difference.

Out-of-sample performance

The RMSE measure of in-sample fit. However, as shown in figure 3.3, the predictions of the

structural scaling model differs most aggressively from those of the power law and logistic

scaling models for very small and very large cities. Thus what I really care about is out-of-

sample forecasting ability of the model. To assess the out-of-sample predictive performance

of the structural model relative to the power law and logistic scaling models I implement

two types of cross-validation (CV): k-fold CV and “leave-one-out” CV. Cross-validation

(CV) is a standard procedure for assessing out-of-sample performance of competing models

that is widely used in statistics and machine learning.20

In general, CV proceeds as follows. Pick some small integer k and divide the data at random

into k equally sized pieces called “folds”. Call the first fold the “testing data” and then fit

each of the competing models using the remaining k−1 folds as “training data” and evaluate

each of their predictions using the testing data. Now make the second fold the testing data

and the remaining k − 1 folds the training data. Fit the models to the training data and

evaluate their predictions on the testing data. Repeat this process until each of the k folds

has been used as the testing data. The average predictive performance of a model across the

testing sets is referred to as the k-fold cross-validation estimate of the generalization error

and is an unbiased estimate of the model’s out-of-sample prediction error. “Leave-one-out”

cross-validation can be thought of as a special case of k-fold cross-validation with k = N ,

where N is the total number of observations in the data. Whether using k-fold or “leave-

one-out” CV, the preferred model is the one with the smallest estimated generalization

error as measure by the root mean squared error (averaged across the k folds).2122

20For additional economic applications of cross-validation see Racine (1997), Racine (2000), and Hansen
and Racine (2012).

21For those interested in a more detailed treatment of the theory behind the various flavors of CV, see
Arlot and Celisse (2010). For those interested in a more practical and intuitive approach to the key ideas
behind CV, see Shalizi (2014a).

22Those more accustomed to using standard model selection criteria, such as the Akaike Information
Criterion (AIC), emphasized in the econometrics literature may take comfort from the work of Claeskens
and Hjort (2008) who prove that, as sample size set gets large, AIC is equivalent to “leave-one-out” CV.
Furthermore, as discussed in Shalizi (2014a), Claeskens and Hjort (2008) also demonstrate formally that
the “domain of validity” for AIC is a strict subset of the domain of validity of cross-validation and that
therefore the AIC is best viewed as an asymptotic approximation the more accurate “leave-one-out” CV
procedure.
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Fold, k Power law model Logistic model Structural model

1 20.02 9.90 9.88
2 12.13 8.13 8.10
3 13.02 11.65 11.67
4 33.86 12.15 12.18
5 15.34 7.96 7.99
6 13.11 10.91 10.74

RMSE 17.95 10.11 10.09

Table 3.5: k-fold CV results indicate that the structural scaling model generalizes better
out-of-sample compared with both the logistic scaling model and the power law scaling
model.

Table 3.5 reports the 6-fold cross validation results.23 For completeness, I report the RMSE

for each of the six folds, however the key statistic is RMSE, the average RMSE across

folds the k = 6 folds. The relative magnitudes of RMSE for the power law, logistic,

and structural scaling models provide a relative ranking of these models based on how

well each predict out-of-sample. Both the logistic scaling model and the structural model

clearly out-perform the power law scaling model favored by Bettencourt (2013). Somewhat

surprisingly given the substantial structure imposed on the relation between city size and

per capita output by the structural model, the structural model has a slightly lower cross-

validation RMSE.

3.5 Conclusions

The simple power law scaling relations advocated by by Bettencourt et al. (2007), Betten-

court and West (2010), and Bettencourt et al. (2010) predict that the returns to scale for

various socio-economic indicators and measures of city resource use are independent of city

size. The major contribution of this paper is to show that, although such scaling relations

can be supported as equilibrium outcomes in a standard economic framework featuring

monopolistic competition, product differentiation, and fixed costs of production, a simple

extension of the standard framework that incorporates a variable elasticity of substitution

between intermediate inputs generates competitive forces that are sufficient to eliminate

increasing returns to scale in output, income, wages, and productivity in the limit of large

cities.

The model predicts that if the elasticity of substitution is an increasing function of the

number of available intermediate inputs, then firms producing intermediate inputs will

23The “leave-one-out” cross-validation results are similar and are omitted for brevity.
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be larger (in terms of both output and employment) and the markups charged by these

firms will be lower in larger cities. As the size of a city increases, the competitive pressure

generated by falling markups erodes the source of increasing returns to city size. In the limit

of large cities, the competitive pressure becomes so great that firms producing intermediate

inputs are forced to equate their price with their marginal costs of production and the

production of consumption goods exhibits constant, rather than increasing, returns to city

size. Unfortunately, despite the simplicity of the mechanism driving the main results direct

empirical support for the model’s predicted scaling relation between city size and per capita

income is weak. There is simply insufficient data to sharply distinguish between the highly

non-linear structural scaling relation and the log-linear or power law scaling relation.

I feel that the current theoretical framework has at least two major shortcomings that need

to be addressed in future work. First, the model fails to incorporate any notion of spatial

equilibrium. As emphasized by Glaeser and Gottlieb (2009) analyzing the relationship

between per capita output (or income) and population in isolation makes little sense if per

capita output/income and population of cities are jointly determined in equilibrium along

with prices and wages as is typically the case in spatial equilibrium models descending from

Mills (1967), Rosen (1979) and Roback (1982) and epitomized by the more recent work of

Glaeser (2008) and Glaeser and Gottlieb (2009). The model also fails to incorporate any

notion of trade between cities that is the focal point of the economic geography approach

to agglomeration economies epitomized by Krugman (1996) and Fujita et al. (1999). Ex-

tending the model to allow for the free flow of people and goods between cities is the next

step in The research.
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Appendix

3.A Mathematical appendix

Claim: As the intermediate inputs used in the production of the final consumption good

become perfect substitutes, firms producing these inputs are forced to set their output

price equal to their marginal costs of production:

lim
σ→∞

µ = 1. (3.77)

This loss of market power by intermediate goods producers, in turn, eliminates the increas-

ing returns to scale in the production of final consumption goods:

lim
σ→∞

yi = lim
µ→1

yi = φ. (3.78)

Proof: A simple application of L’hôpital’s rule is sufficient to demonstrate that firms pro-

ducing intermediate goods are forced to set their price equal to marginal cost if inputs are

perfect substitutes in production.

lim
σ→∞

µ = lim
σ→∞

σ

σ − 1
= 1

To see that this loss of market power by intermediate goods producers eliminates the

increasing returns to scale in the production of final goods use a standard of variables to
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re-write the limit as follows.

lim
µ→1

yi = lim
µ→1

φ

(
1

µ

)((
µ− 1

µ

)
1

f
Li

)µ−1

= lim
µ→1

φ

(
1

µ

)
lim
µ→1

e

ln

((
µ−1
µ

)
1
f
Li

)
1

µ−1

= lim
µ→1

A lim
µ→1

B

The change of variables has allowed us to rewrite the limit as a product of two limits A

and B. The limiting behavior of A is trivial to calculate:

lim
µ→1

A = φ lim
µ→1

1

µ
= φ. (3.79)

To complete the proof I need to show that

lim
µ→1

B = 1. (3.80)

Using the composition law for limits I can write

lim
µ→1

B = e
limµ→1

ln

((
µ−1
µ

)
1
f
Li

)
1

µ−1 . (3.81)

Now applying L’hôpital’s rule yields:

lim
µ→1

ln

((
µ−1
µ

)
1
fLi

)
1

µ−1

lim
µ→1

1
µ(µ−1)

−
(

1
µ−1

)2

lim
µ→1
−µ− 1

µ
= 0. (3.82)

Therefore

lim
µ→1

B = lim
µ→1

e0 = 1 (3.83)

as required. �
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Claim: In the limit of large cities, per capita output converges to a constant.

lim
Li→∞

yi =
c1

c3
= φ (3.84)

Proof: A useful first step to deriving the limiting behavior of per capita output is to derive

the limiting behavior of productivity.

lim
Li→∞

prodi = lim
Li→∞

e

ln

(
Li

c2+c3Li

)
c0c3+c1c3Li
c1c2−c0c3

=e
limLi→∞

ln

(
Li

c2+c3Li

)
c0c3+c1c3Li
c1c2−c0c3

Another application of the L’hôpital’s rule allows us to compute the limit in the exponent

as follows.

ln
(

Li
c2+c3Li

)
c0c3+c1c3Li
c1c2−c0c3

= lim
Li→∞

c2+c3Li
Li

[
c2

(c2+c3Li)
2

]
c1c3

c1c2−c0c3
= 0 (3.85)

Therefore I know that limLi→∞ prodi = limLi→∞ e
0 = 1. It is now straightforward to show

that in the limit of large cities per capita output converges to a constant.

lim
Li→∞

yi = lim
Li→∞

(
c0 + c1Li
c2 + c3Li

)(
Li

c2 + c3Li

) c1c2−c0c3
c0c3+c1c3Li

= lim
Li→∞

(
c0 + c1Li
c2 + c3Li

)
lim
Li→∞

prodi

=
c1

c3
= φ (3.86)

�
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3.B Technical appendix

In this section I sketch the simulation procedure for comparing the RMSE of the power

law, logistic, and structural scaling models.

1. Get some data on population and per capita incomes: (L1, y1), . . . , (LN , yN ).

2. Fit the power law (i.e., log-linear) scaling model to the data to get parameter vector

θ̂p and an estimate of the in-sample mean squared error: MSEp(θ̂p).

3. Fit the logistic scaling and structural scaling models to the data to get parameter

vectors θ̂l and θ̂s as well as estimates of the in-sample mean squared error for both

models: RMSEl(θ̂l) and RMSEs(θ̂s).

4. Calculate the following test statistics:

t̂1 = MSEp(θ̂p)−MSEl(θ̂l), t̂2 = MSEs(θ̂p)−MSEs(θ̂s) (3.87)

Note that t̂1 and t̂2 are just the difference between the mean squared errors of the

power law scaling model (i.e., the null hypothesis) and the two different alternatives

(i.e., the logistic and structural scaling models).

5. Simulate from the null model to get synthetic data: (L′1, y
′
1), . . . , (L′N , y

′
N )

6. Fit the power law null model to the synthetic data to to get parameter vector θ̃p and

an estimate of the in-sample mean squared error: MSEp(θ̃p).

7. Fit the logistic scaling and structural scaling models to the synthetic data to get

parameter vectors θ̃l and θ̃s as well as estimates of the in-sample mean squared error

for both models: MSEl(θ̃l) and MSEs(θ̃s).

8. Calculate the following test statistics:

T̃1 = MSEp(θ̃p)−MSEp(θ̃l), T̃2 = MSEp(θ̃p)−MSEs(θ̃s) (3.88)

9. Repeat steps 5-8 a large number of times, N , to get an estimate of the distribution

of t1 and t2 under the null hypothesis.

10. Compute the p-value as

p =
1 + #{T̃ > t̂}

1 +N
(3.89)
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Figure 3.4: Difference in RMSE between the structural scaling model and power law scaling
model is only marginally significant (p-value of 0.09).
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