
  
 

An Analysis of  
The Chinese College Admission System 

 
 

Haibo Zhang 
 
 
 
 
 
 
 
 

PhD in Economics  
 

The University of Edinburgh  
 

2009 
 
 
 
 
 
 
 
 
 



 
Acknowledgements 

 
 
 
    I would like to express my gratitude to all those who gave me the possibility to 

complete this thesis.  

    I am deeply indebted to my supervisors, Dr. Simon Clark and Professor Jonathan 

Thomas, for their greatly helpful comments and encouragement. 

    Special thanks to Dr. Ahmed Anwar for his great help. 

    Many thanks to Professor Ed Hopkins for his encouragement and helpful advice 

during my PhD study. 

    I want to thank Professor Andy Snell, SGPE and the School of Economics for 

providing me the scholarship and teaching opportunities. 

    All my colleagues from the School of Economics supported me in my research 

work.  I want to thank them for all their help, support, interest and valuable hints. 

Last but not least, thank my family, my dear friends, especially Ms. Wei Zhang for 

their support. 

 

 

 

 

 

 

 

 

 



 
 
 

Declaration 
 

 

I confirm that all this work is my own except where indicated. I have clearly 

referenced/listed all sources as appropriate, referenced and put in inverted commas all 

quoted text (from books, web, etc), not made any use of the thesis of any other 

student(s) either past or present, and not sought or used the help of any external 

professional agencies for the work. 

 



 

Abstract 
 
    This thesis focuses on the problems of the Chinese University Admission (CUA) 

system. Within the field of education, the system of university admissions involves all 

of Chinese society and causes much concern amongst all social classes. University 

admissions have been researched since the middle of last century as an issue which 

has economic impact. However, little attention has been paid to the CUA system from 

the perspective of economics. This thesis explores a number of interesting aspects of 

the system. As a special case of the priority-based matching mechanism, the CUA 

system shares most properties of the Boston Mechanism, which is another example of 

a priority-based matching mechanism. But it also has some unique and interesting 

characteristics. The first chapter will introduce the main principles of the CUA system 

in detail and discuss stability, efficiency, strategy-proofness, and other properties 

under different informational assumptions.  

    There is a heated debate about whether the CUA system should be abandoned or 

not. Educational corruption is one of the issues that have been raised. Corruption is a 

major issue of the CUA system as well as university admission systems in other areas 

in the world, e.g. India, Russia, etc. We contrast the performance of markets and 

exams under the assumption that there exists corruption in the admission process. The 

problem will be analyzed under perfect capital markets and also under borrowing 

constraints. We use auction theory to obtain equilibria of the market system and the 

exam system and analyse the effects of corruption on the efficiency of the two 

systems. We conclude that the exam system is superior to the market system if we 

only consider the issue of corruption.  



    In the third chapter, we construct a model to reveal the forces that positively sort 

students into different quality universities in a free choice system under assumptions 

of supermodular utility and production functions. Given a distribution of student 

ability and resources, we analyse the planner's decisions on the number of universities 

and the design of the "task level" for each university, as well as the allocation of 

resources between universities. Students gain from completing requirements (tasks) in 

universities, while having to incur costs of exerting effort. In contrast to previous 

literature, our model includes qualifications as well as cost in the student's utility 

function, and educational outputs depend on qualification, ability and resources per 

capita. Our main focus is on the design of task levels. Our result differs from the 

literature as regards the optimal number of colleges. A zero fixed cost of establishing 

new colleges does not necessarily result in perfect tailoring of tasks to students. 

Furthermore, if the fixed cost is not zero, then the planner has to take fixed costs into 

account when deciding the number of universities.  

 
 



Introduction to the Thesis
China is the largest developing country in the world. During the last thirty years1,

demand for higher education in China has been increasing rapidly. As a result,

concerns over college admission2 have become a focal point of discussion in China

society. Due to historical and cultural reasons, the college admission in today�s

China involves the whole society and causes concerns of various social classes

(Zhang (2008)). Although public attention on this issue has been drawn widely,

most discussions occur in the popular media, and little theoretical research, spe-

cially studies from the economic perspective, has been carried out. This thesis

tries to analyse the Chinese college admission system theoretically. Empirical

analysis may be more convincing, but the collection of data about the higher

education in China is di¢ cult. Nevertheless, it will be a direction for further

studies in the future. This introduction consists of the following parts: a brief

introduction about the Chinese College Admission System; some criticisms of the

system; and the aims and contributions of this thesis.

The Chinese College Admission System

The Chinese College Admission System may be one of the most unique college

admission systems in the world. It was established in 1952 to meet political and

educational needs, as well as to serve as one of the accelerators for the economic

transition of the new People�s Republic of China. The system was interrupted

from 1966 to 1976 during the "Cultural Revolution". In that period, almost all

education activities were suspended. It was restored in 1977. Although there

have been changes to the admission system until present day, the principle of

the system remains the same, which is to admit students into higher education

institutions through uniform national examinations.

The establishment of the original admission system in 1952 was based on �ve

arguments, including external and internal factors. (Zheng, 2007)

1. There are political needs and consideration of economic construction for the

new country. As a new country reborn from wars, almost every aspect of the

society was indeed for rebuilding, and hence all kinds of professionals were

in short supply. Past experiences of higher education in Chinese history had

1The higher education system in China was interrupted due to domestic political complica-
tion during the Cultural Revolution and was restored back to normal in 1977.

2The phrase of "college admission" is used to represent the admission system of undergrad-
uate education which is the main focus of this thesis.

1



suggested that a national examination system could solve the unbalanced

recruiting problems between di¤erent regions, colleges and disciplines. Also

it was thought that an examination system for admission would increase

the e¢ ciency of using limited higher education resources.

2. There was the need of educational adjustment. A large scale adjustment of

academic disciplines was underway in 1952, involving most universities and

colleges. The higher education sector needed a more scheming admission

system to ensure all institutions could recruit enough academically eligible

freshmen.

3. As China has such a large population, the scale of college admission is

enormous. Therefore equality and e¢ ciency are the most important con-

siderations for large-scale exam. Under such condition, a uniform national

admission system organised by the government is more e¢ cient than inde-

pendent admission operated by colleges.

4. In a few centuries before the establishment of new country, China had been

in the war and falling into pieces and in�rmness. People of the country

desired for the uni�cation. This desire had very deep e¤ect on the imple-

mentation of centralism in many aspects in China, including the college

admission system.

5. The last but not the least, it was in�uenced by culture.

The admission system consists of two stages. Stage one is a standard exam,

called the National College Entrance Examination, and stage two is the recruit-

ment procedure which starts immediately after exam results are released. Al-

though students may sit di¤erent papers in di¤erent provinces or in the four

municipalities directly under the Central Government (i.e. Beijing, Chongqing,

Shanghai, and Tianjin) for the same academic subject, the structure and admin-

istration of the exam are the same across the country.3 The exam normally lasts

for 3 days. Three subjects are mandatory for all students: Chinese, Mathematics

and a foreign language4. Apart from the three mandatory subjects, six other

subjects are also being examined selectively depending on the course the student

3Most information and references about the exam and admission systems are from
public sources of the Ministry of Education of the People�s Republic of China.
http://www.moe.edu.cn/

4It is usually English but may also be substituted by Japanese or Russian in some northern
provinces.
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wishes to study in higher education.5 Three of these six subjects for the category

of science include Physics, Chemistry, Biology and three for arts include History,

Geography and Political Education. These examinations are essentially the only

criterion for higher education admissions. The details of the exam are arranged

by the Ministry of Education,6 such as the exam date, subjects, quali�cation of

examinees, criterion of check both in politics and health, matriculation principles.

There is a National College Entrance Exam committee overseeing the operations

of the exams, which include setting exam questions, making reference answers

and grading guidance. However, the implementation and administration of the

exams are arranged by the local government at provincial level. As a tradition,

the exams take place at the same time across the country. Students who are

dissatis�ed by the results of their �rst attempt may repeat the last year study

of high school and take the exams again in the following year. These exams are

traditionally and culturally the most important event for Chinese students as it

is the only possible way to get into colleges.

Although the exam result is the only criterion, the admission also depends

on students�order of preferences of colleges on their preference lists. The whole

admission process takes place in four phases. Phase one is known as "Early Ad-

missions", which deals with applications to degrees in education-related courses,

applications to institutions of the armed forces and the police force, as well as

applications to institutions in Hong Kong and Macau7. Phase two is known as

"Key Undergraduate Admissions" which deals with applications to institutions

administered by central government departments and institutions, in other words,

the top universities in the country. Phase three is called "General Undergraduate

Admissions" which deals with applications to institutions located in the capital

of each province; these institutions are usually the top ones within the province.

The fourth phase deals with the applications to the remaining institutions. Stu-

dents are allowed to list four to six choices of institutions and courses in each of

the admission phase. Currently, sequences of enlisting the choice of institutions

and courses are available to students depending on where they take the exams. In

the �rst sequence, students are required to report their preferences before taking

the exams; in the second sequence, students can list their preferences after exams

but before results come out; and in the third sequence, students are allowed to

5There are two main categories in Chinese higher education system: Science/engineering or
art/humanities.

6There some exceptions, e.g., Shanghai, where local government provides di¤erent exam
questions.

7Due to historical and political reasons, education systems in Hong Kong and Macau are
di¤erent from mainland China under the �one country, two systems�policy.
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report their preferences after exam results are released. For the admission oper-

ation in 2005, �ve provinces adopted the �rst sequence of enlisting preferences,

sixteen provinces adopted the second sequence, and ten provinces adopted the

third sequence.

The speci�c admission rules of each college are not necessary the same, but

most colleges adopt a policy called "Preference Clearance".8 "Preference Clear-

ance" implies that, �rst, a college will consider o¤ering a place to a student who

does not rank it as the �rst choice only when the college can not �ll up the quota

by those who rank it as the �rst choice. Second, the allocation of degree pro-

grammes in a college follows the same principle. Although in theory it is possible

that a student who does not put a college as the �rst choice could still be ad-

mitted, the reality is that the chance is very small because of the large number

of applicants. The fact is that the number of students applying to an institution

is far greater than the quotas available. Moreover, as an internal policy, some

colleges do not admit those students who do not rank them as the �rst choice

even when they can not �ll up their quota by accepting students ranking them as

the �rst choice. For example, Beijing University will only admit a student who

does not put it as the �rst choice if the quota is not �lled up by those who do rank

it as the �rst choice, given the student�s score is above the average grade of those

who have been already admitted. Given this policy and the increasing number

of applicants, how to list the preferences concerns most students and families.

By making an inappropriate decision in listing preference, an applicant may be

rejected by all colleges on his preference list.

Given the large scale of higher education application (e.g. there are 10 million

applicants in 2007) and the limited resources available, it is not di¢ cult to imagine

how highly competitive it is when it comes to the admission procedure. On the

other hand, it is not di¢ cult to understand how huge the in�uence is to a student�s

future. Therefore any reform of the system will a¤ect millions of students and

their families.

Criticisms of the System

We have talked about the reasons why the higher education system has been

running for such a long time given its importance to the Chinese people. One

fact is that criticisms never stop appearing. People question the whole system in

two aspects: the examination itself and the recruitment policies.

8See Chapter 4 of "Guide of Higher Education Entrance Examination Recruitment and
Listing Preferences (2009)".
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Some critics point out that the design of the exam lacks �exibility. Di¤erent

types and levels of higher education institutions have di¤ering requirements on

their students, but in the current system, it is di¢ cult to pick the suitable students

merely according to their performance in the once-in-a-life-time exam. In other

words, the system can not include a �exible personal assessment. It is also di¢ cult

to tell a student�s character by simply looking at exam scores. A student may

have special strength or talent in some areas, but he could be weak in exams or

in the exam of a particular subject; if this is the case, this student may fail to

enter higher education. The current system is also criticized for its emphasis on

rote learning because examinations are basically tests of how much knowledge

students are able to memorise in their years at school. Critical thinking and

personal development are rarely emphasized in Chinese classrooms, especially in

high schools where all students have only one objective: getting ready for exams.

The once-in-a-life-time exams bring many social and psychological problems to

students as most students and their families believe the result of the exam will

decide their entire lives.

Recruitment policy is another aspect being widely criticized. "Preference

Clearance" could lead to an ine¢ cient outcome9. A student is likely to lose the

opportunity of being admitted by a college if he does not list it in his preferences

or does not rank it as the �rst choice. Therefore we might see the following

outcomes: a student wants to enter a college, which has places available, but he

will fail to do so because he did not list that college as one of the preferences; a

student is rejected by a college, which is on his preference list because that college

was not the �rst choice, although the student has met the exam result require-

ment. We will explain this in more details in the next chapter. Another problem

of the recruitment policy is regional discrimination. Under current rules, colleges

set a �xed admission quota for each province, and the number of places available

to students from the province which the institution is located is normally higher

than other provinces. As education quality and the number of universities are

highly uneven in di¤erent geographical locations across China, it is argued that

students are being discriminated in the admission process as those who are from

the area where the institution is located are given priority of being admitted

to that particular institution over students outside the area. For example, stu-

dents from outside Beijing would need a signi�cantly higher exam score to enter

a university or college located in Beijing compared to students from the city of

Beijing. Such regional discrimination policy leads to an abnormal phenomenon,

9We will de�ne e¢ ciency in the �rst chapter.
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called exam immigrants. Currently, students are not allowed to take the higher

education entrance exams in locations other than the place of permanent ad-

dress where the student�s household is registered; however, for the sole purpose

of increasing students�chances of entering university, some families choose to re-

locate their household registrations to a di¤erent city or even province. Under

the Soviet-style population movement control, changing the location of house-

hold registration is not easy. Although the actual population movement is free in

China nowadays, it would still take a large e¤ort and may cost a lot in �nancial

terms to change the permanent location where a household is o¢ cially registered.

Due to the competition in securing a higher education opportunity, o¢ cials

who can in�uence the admission result have the incentive to seek personal gains.

Two scandals being reported in the news below expose the tip of the iceberg of

malpractice and corruption a¤ecting the higher education admission system.

"The Xi�an Conservatory of Music in Northwest China�s Shaanxi Province

had asked for 30,000 yuan (US$3,620) from each enrolled student." 10

"China Central Television (CCTV) reported on Friday three sta¤members of

the Beijing University of Aeronautics and Astronautics (Beihang) had extorted

at least 550,000 yuan (US$66,505) from seven students in South China�s Guangxi

Zhuang Autonomous Region." 11

In the two cases, students who refused to pay the bribe were also threat-

ened with expulsion from the university. These scandals have indicated a number

of loopholes in the university admission system including lack of transparency

and investigation, lax management and lack of professionalism among admission

personnel. The government has invested much e¤ort in keeping the admission

processes transparent and corruption-free, however, the outcome is not satisfac-

tory. Leaking of exam materials, bribery, and other abuses are still being dis-

covered every year. These problems together with other irregular practices have

existed for long time in national college admission procedures, and the whole

system has largely been su¤ering from the so-called "hidden corruption"12. Ac-

cording to the report, it is an open secret that in most colleges, admission job

is a lucrative post, and accepting bribes is a common practice for these person-

nel. Corruption has rapidly evolved into open extortion of money because the

investigation is not strict enough. The problem of corruption in admission has

harmed the equality and e¢ ciency of the higher education system; moreover, it

has a negative impact on young students�sense of fairness and justice.

10The People�s Daily, August 17 2004.
11The People�s Daily, August 19 2004.
12The People�s Daily, August 19 2004.
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One aspect of the debates over abolition of the current system concerns cor-

ruption. The opposition argues that the standard exam system has given too

much power to the administrative personnel, while the supporting side believes

that corruption is more likely to be something that has its root in the culture.

At the end of the day, it is not surprising to see some degrees of corruption when

the competition for university places is strong and the investigation of the use of

admission tutors�power is weak. It has also been argued that corruption would

be even more serious if the current exam system for higher education admission

was replaced by a free market system. In a market system, students can apply

to colleges freely, and applications are not determined only by a one-o¤ exam.

We will compare these systems from the perspective of corruption in the second

chapter.

In order to avoid the problems induced by the standard exam admission sys-

tem, many reforms or even alternative mechanisms have been proposed. One of

them is "easy admission but strict graduation". Tang (1995), Li (1996) and some

other scholars argued that this mechanism is a precious opportunity for higher ed-

ucation to break the fetters of a planned economy and is a way to deepen reforms

and to promote the development of education. They believe that the proposed

policy is ready to be put in trial cities and regions with certain degrees of eco-

nomic powers. Liu (1995) argued that "easy admission but strict graduation"

will not work in China because of the unfailing and in�uential belief of "net-

working through petticoat in�uence" in Chinese culture and traditions; therefore

the implementation of "easy admission" will most likely result in "easy gradua-

tion" without students paying much e¤ort in studying. Zhang (1996) suggested

that there is neither necessity nor practicality for implementing the "easy admis-

sion but strict graduation" in the near future. Generally speaking, there were

more opponents than proponents for such a view Zhang (2008). It is interesting

that the idea of "easy admission but strict graduation" has been implemented in

the French higher education system for a long time. There are two systems in

France.13 The rules adopted in the open system are exactly "easy admission but

strict graduation". The literature related to the problem of sorting suggests that

a a positive assortative matching, i.e., the higher ability students are accepted

by the higher quality institutions and the lower ability students are allocated to

the lower quality institutions, will be produced in competitive procedures, e.g.,

the Chinese exam system. It has not been discussed why there will be a positive

sorting result in an "easy admission but strict graduation" mechanism as well as

13A more detailed introduction of the two systems can be found in the third chapter.
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the competitive systems. The third chapter of this thesis will try to �nd out the

driving force.

Aims and Contributions

Although the research resources on Chinese higher education are very limited,

there have been many studies on higher education in other countries over the

past several decades. The literature in this area mostly focuses on mechanism

and policy designs. E¢ ciency, fairness and welfare of the admission results are

important topics of concern. It is interesting that we can �nd di¤erent mecha-

nisms for higher education admissions in di¤erent countries. In some countries,

the mechanisms have been reformed many times, but some countries have been

using the same mechanism for a long time. The main content of this thesis fo-

cuses on the Chinese college admission mechanism, and we try to discuss three

issues arising in this system. The �rst chapter describes the Chinese College

Admission (CCA) mechanism, explores its main properties and compares it with

other mechanisms currently in use in other countries. In the second chapter, we

compare two college admission mechanisms from the perspective of corruption in

an auction theory framework. The last chapter explores the driving force of a

positive assortative sorting in the college admission problem when there are no

entry requirements, or under the policy of "easy admission but strict graduation".

The �rst two issues concern the current admission mechanism in China, while the

third chapter discusses an alternative system, which has been used in France. In

this section, there are brief literature reviews for each chapter and more detailed

reviews can be found in the introduction of each chapter.

College admission modelling is one of the applications of matching theory. An

outcome of such modelling is a matching of students to colleges, such that each

student is matched to at most one college, and each college is matched to at most

its quota of places available. Therefore, a college admission model is an example of

many-to-one matching models. The discussion on the college admission problems

has existed since the celebrated article "College Admissions and the Stability of

Marriage" by Gale and Shapley (1962). In their model, students and colleges

have their own preferences over the opposite party. They de�ned the stability

and proposed a famous agent optimal stable mechanism in a college admission

problem, in which the outcomes are stable and Pareto e¢ cient.

The CCA mechanism is a special case of a priority matching mechanism. In

a priority-based mechanism, the key phase is submitted preferences determining

priorities. The school choice problem is one of the most important priority-
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based matching problems. The di¤erence between school choice problem and

traditional college admission model lies in priority takes the place of preference

of college. Priorities of students in schools are determined by students�submitted

preferences over schools as well as some other rules. The algorithm behind the

CCA is similar to the Boston Mechanism (Abdulkadiro¼glu, Pathak, Roth, Sönmez

(2005); Abdulkadiro¼glu, Sönmez (2003); Chen, Sönmez (2003); Ergin, Sönmez

(2006)). The priority of a student at a college in the CCA model is dependent on

the student�s submitted preferences and score obtained in the exam. Under the

CCA mechanism, a student who is not o¤ered a place at his top-ranked college

will only be considered for his reported second choice college after those who

have top-ranked that college. Therefore a student will lose his priority to be

admitted at a college unless he lists it as his �rst choice. The match priority is

lexicographic in the CCA mechanism, which implies that any student-college pair

that ranks each other �rst has the highest match priority. It �rst considers the

student preferences and only then the college priorities.

In the �rst chapter, we will review the general college Two-Sided Match-

ing Market model and Priority Matching Mechanism, and introduce some basic

properties of an outcome of a priority-based matching game. We brie�y introduce

how the CCA mechanism works and explore properties of this mechanism under

two di¤erent assumptions about the availability of information. Fairness and

e¢ ciency are the two characteristics being mainly focused in every mechanism.

Given perfect information, the equilibrium strategy of the preference revelation

game induced by the CCA mechanism is not truthful revelation of preferences

equilibrium, but it is fair and hence stable based on either true preferences or

stated preferences, and Pareto e¢ cient. If we relax the assumption of perfect

information as students do not know scores of others, then it will be proved that

the allocation is not necessarily fair, and telling the truth is not always an op-

timal strategy. E¢ ciency will be discussed separately under the assumption of

imperfect information.

Although the CCA mechanism has been used for several decades in China,

debates about the system never stopped. Criticisms mainly focus on the fair-

ness and equality of opportunity for all candidates; design of exam questions;

the pressure induced by exam on students; and corruption. There are voices to

replace the current exam system by a free market system. In the market system,

applications are not determined only by a one-o¤ exam, but with the support of

other materials including reports on student�s performance in high school, ref-

erences from teachers, and face-to-face interviews between the student and the
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college. The argument supporting the current system indicates that corruption

has been a very serious problem in the exam system, and it would be worse under

a free market system since there are no standard criteria. This would lead to a

more severe outcome that corruption results in unfairness and inequality of the

student being educated at college. The second chapter of this thesis addresses

the problem of corruption in college admissions by contrasting the two systems.

Corruption a¤ects many aspects of higher education. It has a negative im-

pact on the quality of colleges; it increases inequality in the access to higher

education, and causes unfairness. Hallak and Poisson (2002) de�ned corruption

in the education sector as "the systematic use of public o¢ ce for private bene�t,

whose impact is signi�cant on the availability and quality of educational goods

and services, and, as a consequence on access, quality or equity in education".

Corruption in education was observed in many places, and previous cases were

seen in countries such as Russia, India, France, China, etc. The second chapter

compares the market system and the exam system in a college admission environ-

ment from the perspective of corruption. We employ the auction model to discuss

the e¢ ciency and degree of corruption between the market system and the exam

system. The principle of e¢ ciency is to allocate the best resources (places of

best college) to those agents (students) who can use them most e¢ ciently. This

principle is based on the assumption of complementarity in student�s valuation

of college. (Becker (1973))

Fernandez (1997, 1998) examined the performance and properties of the mar-

kets system and the exam system as alternative allocation devices with perfect

capital markets. She shows that both systems would achieve e¢ cient allocation

results. However, when borrowing constraints exist, the exam system dominates

the market system in terms of matching e¢ ciency. In this thesis, we will contrast

the performance of both systems under no borrowing constraints as well as un-

der borrowing constraints. The di¤erence from Fernandez�s work is that we use

auction theory to obtain the equilibrium and e¤ects of corruption. To our knowl-

edge, no researcher has previously used auction theory to analyse corruption in

education with borrowing constraints. We will derive the equilibria of the two

systems in a case with perfect capital markets and in a market with borrowing

constraints, and establish the allocation results of both systems are e¢ cient in a

perfect market, but ine¢ cient under borrowing constraints. We will also prove

that the degree of corruption would be higher in the market system than in the

exam system under both assumptions.

In France, there are two di¤erent systems for higher education admission. One
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is through competitive examination, entrance examination or application form,

with an interview where appropriate; the other is an open system, where all bac-

calaureate holders have the right to enter this system without any prior selection

procedure. The former system is a simple two-sided college admission problem,

which can be analysed by the original two-sided matching model or the priority-

based mechanism model. The mechanism with competitive procedures naturally

produces a positive sorting if a student�s performance is positively correlated to

his ability and the mechanism is well designed. Our question is, since students

have the right to enter the system without any prior selection in the latter system,

whether or not the sorting would still be positive assortative? If the answer is

yes, then what is the driving force? This question will be answered in the last

chapter of this thesis.

This piece of work is closely related to the literatures on the assortative sorting

and allocation of resources in higher education. In the theory of marriage, Becker

(1973) de�nes positive assortative matching as a positive correlation between the

values of the traits of husbands and wives. He argues that positive assortative

matching is generally optimal in most circumstances. The agent of likes or un-

likes is optimal as traits are complements or substitutes, because superior types

reinforce each other when traits are complements and o¤set each other when

traits are substitutes. The condition in the theorem is commonly referred to as

the (strict) supermodularity condition of the matching output function. Topkis

(1998) gives a comprehensive mathematical treatment of supermodularity, and

Milgrom and Roberts (1990) and Vives (1990) presents applications in game the-

ory and economics. Arnott and Rowse (1987) �nd that any type partition in a

case of allocating students to various classes within an elementary or secondary

school is possible. The partition depends on the strength of peer e¤ects.

Given a distribution of students�abilities and a limited pool of resources, we

model the planner�s decision to establish colleges, to design a "task level" for each

college, and to optimize the allocation of resources. The cost of accomplishing

the task is the critical factor of sorting students positively. Given all other factors

being equal, students with di¤erent abilities will have di¤erent decisions due to

di¤erent costs incurred. Kremer (1993) highlights the role of positive assortative

matching in economic development. In his model of one-sided, many-to-many

matching market, each �rm consists of a �xed number of workers each employed

for a production task. Workers have di¤erent skills, with a higher-skilled worker

less likely to make mistakes in performing his task. Self-matching is obtained in

equilibrium where each �rm employs workers of identical skills. Kremer uses this
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form of positive assortative matching to explain the large wage and productivity

di¤erences between developing and developed countries that cannot be accounted

for by their di¤erences in levels of physical or human capital. Epple and Romano

(1998) study a competition between private and public schools and analyse the

e¤ects of vouchers under peer e¤ects assumption. Epple, Romano and Sieg (2006)

look through the admission, tuition, and �nancial aid policies in higher education

market. They claim that colleges attempt to attract students with higher abilities

by designing appropriate tuition and admission policies. Fernandez and Gali

(1997), Fernandez (1998) argue that prices and borrowing constraints play the

role of sorting students in the market system, and prices and exam results decide

the matching of students to colleges in the exam system. In our model, we include

costs into the student�s utility function, and ignore the tuition and income e¤ects

on a student�s utility.

The crucial assumption of our model is supermodularity in utility function

and education output function of a particular student. Sallee, Resch and Courant

(2008) claim that the assumptions of supermodularity in production function and

�xed costs of building up colleges are su¢ cient to construct an optimal tiered sys-

tem that sorts students by ability. Our model only assumes the supermodularity

and ignores the peer e¤ects as we will reach the same positive assortative sorting

as well.

The main contribution of the third chapter, in contrast with the literature,

is that we claim that student�s consideration of cost is crucial when they decide

whether or not and where to be educated. Based on the assumption of super-

modularity for utility and production functions, we present a general equilibrium

from a perspective of a central planner who has to sort students into colleges with

di¤erent qualities. It can be applied to either the education market or any other

occasions concerning sorting and resource allocation. The result of our model

gives the design of task levels and resource allocation. Some numerical examples

are presented to discuss the optimal number of colleges given the �xed cost of set-

ting up a college as we are unable to solve the equilibrium in a general case. The

conclusion is di¤erent from Sallee, Resch and Courant (2008)�s work. It would

be shown that the planner only sets up a �nite number of colleges even though

the �xed cost of establishing a college is zero.
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1 Chapter 1:

The Chinese College Admission Mechanism

with Perfect and Imperfect Information about

Student Scores

1.1 Introduction

This chapter discusses a matching problem that focuses on a centralized college1

admission system via standard exams. This model tries to mimic the current

college admission system running in China. For simplicity, we call it as the Chi-

nese College Admission (CCA) system. The CCA is operated as a centralized

mechanism. The admission o¢ ce in a province acts as the agent of the central

government�s Ministry of Education to be responsible for processing applications

of admission to colleges in that province. Those students who have successfully

completed their senior high school leading to a Certi�cate of General Education

(equivalent to A-level in the UK) are eligible to take a nationwide uni�ed exam-

ination in June of each year. The score of this exam is released one month later.

Having obtained the score, students have to report their preferences of colleges

to the provincial admission o¢ ce. After the reporting deadline, the admission

o¢ ce then assigns places of each college to students based on their scores and

reports about their orders of preferences over colleges. This process is a standard

CCA procedure, and each admission o¢ ce is only responsible for dealing with

applications made in the province where the o¢ ce is located. In the CCA sys-

tem, students with higher scores have higher priority of being admitted. However,

exam score is not the only determinant in the CCA system as the admission o¢ ce

takes account of students�reported preferences. This piece of work analyses the

CCA mechanism from the perspective of two-sided matching market.

This introduction is organised as follows: The �rst two sections are brief

literature reviews on two-sided matching market and priority-based matching

mechanism; the third section is a detailed description of the CCA system; and

the last section is to explain the di¤erence between the CCA system and other

related mechanisms as well as our �ndings and contributions, such as analysis on

the CCA mechanism under perfect information and imperfect information.

1We simply use college to represent all undergraduate education institutions in China.
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1.1.1 Two-Sided Matching Market

The college admission problem was initially studied by Gale and Shapley (1962).

They introduce a marriage market model and a college admission model, which

are regarded as the beginning of study on matching theories. In the college

admission model, a set of places in colleges are allotted to a set of applicants.

Each applicant ranks the colleges according to his preference, omitting those

colleges to which he would never go under any circumstances. It is assumed that

applicants are allowed to manipulate their preferences if they believe it would

make them better o¤. They assume that there would not be any ties, which

implies that no colleges are in the same order on a stated preference ranking list.

Each college similarly has preference over applicants, excluding those students

who will never be admitted under any circumstances.

Formally a college admission problem (Gale and Shapley (1962)) consists of:

1. a set of students S = fs1; :::; sng,

2. a set of colleges C = fc1; :::; cmg,

3. a capacity vector q = fq1; :::; qmg, where qj is the capacity of college cj,

4. a list of student preferences P s = fps1; :::; psng, where psi is the preference
relation of student si over colleges including the no-college option,

5. a list of college preferences P c = fpc1; :::; pcng, where pcj is the preference
relation of college cj over students.

Each applicant has a strict preference on C [ fc0g, where c0 denotes the no-
college option. Let cpsi c

0 denotes that student si strictly prefers college c to c0.

Thus, an assignment could be de�ned given each triple lists of preferences of

students, preferences of colleges, and capacities, i.e. (P s; P c; q).

Let � (s) denote the assignment of student s under matching �, and ��1 (c)

denote the set of students each of whom is assigned to college c under matching

�. An outcome of the college admissions model is a matching of students to

colleges, � : S ! C [ fc0g, which is a function from the set of students to the

set of colleges such that each student is matched to at most one college, and each

college is matched to at most its quota of students, i.e., j��1 (cj)j � qj.
Roth and Sotomayor (1990) introduce and provide a comprehensive account

of college admission problems and other two-sided matching applications. They

de�ne a matching � as blocked if, for a student-college pair (s; c) ; either
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(1) Student s prefers college c to assignment � (s) and college c has empty

places under matching �, or

(2) Student s prefers college c to assignment � (s) and college c prefers student

s to at least one of the students in ��1 (c).

A pair that satis�es either (1) or (2) is called a block pair.

De�nition 1 A matching is stable if and only if there are not any block pairs.

Gale and Shapley (1962) prove that a stable matching always exists by the

deferred acceptance algorithm, which also produces an optimal solution for one

side of the matching market. For example, in the college admission model, there

are at least two stable results, which are selected by the student optimal stable

algorithm and the college optimal stable algorithm. We describe the student

optimal matching mechanism as follows.

Algorithm 1 Student Optimal Matching Mechanism (Gale and Shapley(1962)):
Step 1: Each student applies to his �rst choice. If the null object is the �rst

choice of a student, then he is allotted the null object. Each college tentatively

assigns places to its proposers one at a time according to its preference. Any

remaining proposers are rejected.

In general, at

Step k: Each student who was rejected in step k�1 applies to his next favourite
college. If the null object is the next favourite of an agent, then he is allotted the

null object. Each college considers the set consisting of the students it has been

holding and its new proposers, and tentatively assigns its places to those who have

high order on its preference list. Any remaining students after all the places are

assigned are rejected.

The algorithm terminates when each student is either holding a place at any

college or has been allotted the null object.

At termination, each student is assigned his �nal tentative college or the no-

college option. In fact, the student optimal stable mechanism was employed to

address the pre-registration problem in the American medical labour market in

the 1950�s (Roth (1984)).

Gale and Shapley (1962) show that "Every applicant is at least as well o¤

under the assignment given by the deferred acceptance procedure as he would be

under any other stable assignment." The outcome of the student optimal stable

mechanism has the following properties: stability, strategy-proofness, fairness,
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resource monotonicity, and population monotonicity. But it violates other prop-

erties such as e¢ ciency, consistency, and group strategy-proofness.2 Dubins and

Freedman (1981) and Roth (1982) establish that truthful-preference revelation is

always in students�best interest in one-to-one matching such as marriage market.

Roth (1985) and Roth and Sotomayor (1990) show it also holds for the many to

one matching problem which is the case studied here. Roth (1982) shows that

no stable matching mechanism exists that makes it a dominant strategy for all

agents on both sides of the market to state their true preferences, which implies

that, in the college admission problem, there does not exist any stable matching

mechanisms that are strategy-proof for all colleges and students.

1.1.2 Priority-Based Allocation Mechanisms

Two-sided matching and resource allocation based on priorities are a commonly

observed problem. A priority-based matching problem was �rst discussed by

Roth (1991). A priority-based matching mechanism was used to match medical

school graduates (interns) to supervising consultants in three regions of the UK

from the late 1960�s, but were eventually abandoned (Roth (1991), Ergin and

Sönmez (2003)). The product of the student�s ranking of the consultant and

the consultant�s ranking of the student is used as the basis for the priorities,

thus, which are determined by student and consultant�s preferences. The highest

priority is referred as a (1, 1) match when a consultant and a student ranks each

other as the �rst choice. If the consultant ranked the student �rst but the student

ranked the consultant second, referred as a (1,2) match, they had a second highest

priority, as did a consultant who ranked a student second but was ranked �rst

by the student, a (2, 1) match. The two schemes di¤ered in how they broke

ties. It could be either in consultant�s favour, so that a (1,2) match would have

a higher priority than a (2, 1) match, or in the student�s favour. Roth (1991)

shows these schemes may produce unstable matching. Moreover, he shows any

priority matching scheme will sometimes produce unstable matching.

2The de�nitions of these properties are as follows: (see Kesten(2004)
Strategy proofness: No agent ever bene�ts by misrepresenting his preferences.
Resource monotonicity: All agents are a¤ected in the same direction (in welfare terms)

whenever the set of available objects shrinks or expands.
Population monotonicity: All agents are a¤ected in the same direction (in welfare terms)

whenever some agents leave without their allotments.
Consistency: The recommendation for any given problem does not change after the departure

of some of the agents with their allotments.
Group stategy proofness: No group of agents ever bene�t by jointly misrepresenting their

preferences.
Formal de�nitions of fairness and e¢ ciency can be found in the next section.
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In a priority-based mechanism, the key phase is submitted preferences de-

termining priorities. In the case described in the last paragraph, priorities are

purely determined by the rankings reported by consultants and students. In the

following case, the school choice problem, priorities are determined by the pref-

erences over colleges reported by students plus schools�orderings over students,

but students�reported rankings are considered �rst.

The school choice problem is one of the most important priority-based match-

ing problems. The most famous one is the Boston school choice mechanism,3

which is in use at several U.S. school districts including Boston, Cambridge,

Charlotte, Minnesota, Seattle and St. Petersburg-Tampa. The key di¤erence

between the school choice model and the two-sided matching model is that in the

former schools are indivisible objects which shall be assigned to students based

on student preferences and schools priorities whereas in the latter parties in both

sides of the market are agents who have preferences over the other side and whose

welfare are taken into consideration. While schools priorities are determined by

the submitted preferences over schools as well as some other rules4 imposed by law

and do not necessarily represent schools tastes, one can formally treat colleges pri-

orities as schools preferences and hence obtain a two-sided matching market (see

Abdulkadiro¼glu and Sönmez (2003), Balinski and Sönmez (1999), Ergin (2002),

and Ergin and Sönmez (2006)).

In a school choice problem, there is a set of students each of whom will be

placed in a school from a set of schools. For each school a strict ordering of

students is determined according to the rules before admission process. Each

student submits a preference ranking of the schools, which together with �xed

priorities determine the choice of a matching. Under the Boston mechanism a

student who is not assigned to his top ranked school is considered for his second

choice only after the students who have top-ranked that student�s second choice.

Therefore a student may lose his priority at a school unless he ranks it as his

�rst choice. The match priority likewise is lexicographic under the Boston school

mechanism, which implies that any student-school pair that the student ranks the

school as the �rst choice and the student is on the top of the school�s ordering has

the highest match priority. In fact, it is also lexicographic concerning preferences:

It �rst considers the student preferences and only then the schools�ordering. A

3See Balinski and Sönmez (1999); Chen and Sönmez (2003); Abdulkadiro¼glu and Sönmez
(2003); Abdulkadiro¼glu, Pathak, Roth and Sönmez (2005); Ergin and Sönmez (2006); Kesten
(2004).

4Such as whether a student is handicapped, the proximity of his residence to the school,
whether he has a sibling attending the same school etc.

7



similar mechanism was used in Edinburgh in 1967 and 1968 (Roth (1991)). The

mechanism �rst considers the (1,1) match, i.e., the student ranks the school as

the �rst choice and he has the �rst priority at that school; (1,2), (1,3), (1,4), and

so forth follow the (1,1) match. Only when all student�s �rst choice had been

exhausted were other matches, (2,1),...; (3,1),...; etc.

The following algorithm is a brief description of the Boston mechanism.

Algorithm 2 Boston Mechanism (Ergin and Sönmez (2006)):

For each school a strict ordering of students is determined, each student sub-

mits a preference ranking of the schools, and the key phase is the choice of a

matching based on �xed orderings and submitted preferences.

Round 1 : In Round 1 only the �rst choices of the students are considered.

For each school, consider the students who have listed it as their �rst choice and

assign places of the school to these students one at a time following the school�s

ordering until either there are no places left or there is no student left who has

listed it as his �rst choice.

In general, at

Round k: Consider the remaining students. In Round k only the kth choices of

these students are considered. For each school with still available places, consider

the students who have listed it as their kth choice and assign the remaining places

to these students one at a time following the school�s ordering until either there

are no places left or there is no student left who has listed it as his kth choice.

The procedure terminates when each student is assigned a place at a school.

Ergin and Sönmez (2006) suggest a transition from the Boston Mechanism

to an alternative mechanism, the student-optimal stable mechanism, is likely to

result in potentially signi�cant welfare gains. This transition also eliminates the

needs of students for gaming strategy because truthful preference revelation is a

dominant strategy under the student-optimal stable mechanism.

Balinski and Sönmez (1999) study another priority-based matching problem,

called student placement model. Their model precisely mimics the current Turk-

ish college admissions practices, which was named "multi-category serial dicta-

torship". The Turkish college admission system is centralized and uses a student

placement o¢ ce to assign students to colleges, in fact to the particular faculties

(e.g., engineering, medical, dental, business) of colleges. The "category" here

refers to a faculty with a particular required skill. The multi-category serial

dictatorship allocates places of a college in a particular category to applicants

according to their ranking scores in the test of that category. They de�ne fair-

ness in a priority-based allocation mechanism as students with better test scores
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being assigned their better choices. They show that the Turkish mechanism is

not Pareto e¢ cient and not even a second-best mechanism5 among fair mecha-

nisms. It is not strategy-proof, and does not necessarily respect improvements in

scores. They also show the student optimal stable mechanism is the only second-

best mechanism, and the only strategy-proof mechanism for college admission in

Turkey.

There are arguments about whether subjective preference or objective ability

should be the �rst consideration. Some6 argue that among all fair assignments

society should prefer e¢ cient ones in which students are assigned according to

their comparative advantages (e.g., ability which determines scores in the CCA

mechanism), rather than by their personal preferences. Balinski, Sönmez (1999)

think students should be given the greatest freedom of choice consistent with

their aptitudes, since motivation is more important in ultimate success than mere

scores on standardized exams.

1.1.3 Introduction to the CCA Mechanism

The CCA mechanism is a special case of the priority-based allocation mecha-

nism. It is operated and managed by a non-executive agency in the Ministry

of Education in the central government. Within the system, colleges are either

directly administrated by the Ministry of Education (such institutions are classi-

�ed as �key colleges of the state�, these are usually referred as �the good/better

colleges�. The power of personnel appointment is held by the Ministry of Edu-

cation.) or managed by local governments (these colleges are administrated by

provincial governments or local governments; such institutions are usually re-

ferred as �ordinary colleges�, the power of personnel appointment is held by the

government at the local level.). Every year this authority o¤ers a standardized

exam that all students7 who are planning to enter colleges have to take.

The admission system consists of two stages. Stage one is a standard exam,

called National College Entrance Examination, and stage two is the recruitment

procedure which starts immediately after exam results are released. In the exam,

three subjects are mandatory for all students: Chinese, Mathematics and a for-

eign language. Apart from the three mandatory subjects, six other subjects are

also being examined selectively depending on the courses students wish to study

5The second best mechanism does not induce a Pareto e¢ cient outcome, but the best among
all possible outcomes.

6See Fernandez (1998), Epple & Romano (2006), Sallee, Resch & Courant (2008).
7Some students do not need to take the test if they have been recommended to universities

or colleges by their schools. The exceptions are few compared to total applicants.
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in colleges. Besides scores obtained in the exam, the admission also depends on

students�submitted order of preferences of colleges. The submitted preferences

form consists of four parts, in which colleges in four phases are �lled. Phase

one is known as "Early Admissions", which deals with applications to degrees

in education-related courses, applications to institutions of the armed forces and

the police force, as well as applications to institutions in Hong Kong and Macau.

Phase two is known as "Key Undergraduate Admissions" which deals with ap-

plications to institutions administrated by central government departments and

institutions, in other words, the top universities in the country. Phase three is

called "General Undergraduate Admissions" which deals with applications to in-

stitutions located in the capital of each province; these institutions are usually the

top ones within the province. The fourth phase is dealing with the applications

to the remaining institutions. Students are allowed to list four to six choices of

institutions and courses in each of the admission phase.

The CCA system is similar to the Boston mechanism. The principle is that

it �rst considers student preferences and only then colleges�orderings. For each

college, a strict ordering of students is determined by exam scores. A college

will consider sending o¤ers to students who do not rank it as their �rst choice

only after those who rank it as their �rst choice. The speci�c admission rules of

each college are not necessarily the same, but most colleges adopt a policy called

"Preference Clearance". "Preference Clearance" implies that, �rst, a college will

consider to o¤er a place to a student who does not rank it as his �rst choice only

when the college can not �ll up the quota by those who rank it as their �rst

choice. Second, the allocation of degree programmes in a college follows the same

principle. Although in theory it is possible that a student who does not put a

college as his �rst choice may still be admitted, the reality is that the chance

is very small because of the large number of applicants. The following example

illustrates the principle explicitly.

Suppose n students are applying to two colleges, c1 and c2; with quota q1 and

q2. Firstly, students have to take the standard exam and report their preferences

before or after the results of the exam are released. The admission o¢ ce will

consider the applications to cj (j = 1; 2) only from those who rank the college

as their �rst choice on their submitted preference lists. The top qj students

(according to scores) who rank cj as their �rst choice will be allocated a place

at cj. If the quota at cj is not �lled by students ranking the college as the �rst

choice, the admission o¢ ce will then allocate the spare places to those who rank

cj as the second according to their score ranking. Therefore, if there are more
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students than colleges, then it is possible that a student fails to get a place in

a college even if he has a higher score than at least one student in that college

because he does not put that college at the top of his submitted preference.

Next we describe how the CCA mechanism operates. For simplicity, we as-

sume there is only one phase in the admission process. Students take the exam

and obtain scores. Then every student submits a preference list by ranking a

limited number of colleges. Once scores and submitted preference lists are ready,

the CCA mechanism operates in the following algorithm.

Algorithm 3 The CCA mechanism:
Round 1: Only the �rst choices of students are considered. Each college only

considers to make o¤ers to students who list that college as their �rst choice one

at a time following their ranking scores, until either the admission quota is �lled,

or until all students who list the college as their �rst choice are o¤ered a place.

Round 2: Only the second choices of students are considered. Each college

considers to make o¤ers to students who list that college as their second choice

one at a time following their ranking scores, until either the admission quota is

�lled, or until all students who list the college as the second choice are o¤ered a

place.

......

In general, at

Round k: All remaining students who were not o¤ered a place in previous

rounds of admission are considered. Each college with places available after previ-

ous rounds of admissions will consider and make o¤ers to the remaining students

who list that college as their kth choice one at a time following students�ranking

scores, until either all remaining places are taken or until all students who list

that college as the kth choice are o¤ered a place.

The procedure terminates when each student is assigned a place at a college

or there are no more places available in colleges.

The CCA mechanism has some special features that we need to make clear.

Base Score Base score is the minimum required score to enter a particular

college. This requirement is not set by colleges but by the governmental education

authority�s admission o¢ ce in each province. Since higher education admissions

is administrated at the provincial level, each provincial admission o¢ ce sets the

base score after reviewing the overall performance of students in the exam as well

as their submitted preferences of colleges. Admission o¢ ce in each province sets
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a base score for every college in that province and that base score is only valid

for applicants who took the entry exams in that particular province where the

admission o¢ ce is located. Therefore, it is possible that a college have di¤erent

base scores across di¤erent provinces. A student will surely be o¤ered a place if he

ranks a college as his �rst choice and his score is higher or at least the same as that

college�s base score. The central admission o¢ ce publishes a Guide of Admission

in every year, in which students can �nd the base scores of all colleges in di¤erent

provinces in previous years as well as the recruiting plans of current year. By

reading and working on this guidance, each student forms his own expected base

scores of di¤erent colleges, and then decides his submitted preference of colleges.

Timing The current CCA mechanism may be operated in three possible se-

quences. The �rst sequence is that students have to report their preferences

over colleges before taking the exam; the second sequence is that students report

their preferences over colleges after exam but before results are released; and the

third sequence is that students report their preferences over colleges after results

are released. In the admission operation in 2005, �ve provinces adopted sequence

one, sixteen provinces adopted sequence two, and ten provinces adopted sequence

three.8

Obviously, it is the most di¢ cult for students to decide their submitted pref-

erences before taking the exam as they would not be certain about their perfor-

mance in the exam as well as the average performance of other students. Sequence

two makes students�lives easier since they may know how they did in the exams

before reporting their preferences of colleges; but they would be uncertain about

the results and how others did. Sequence three allows students to report their

preferences of colleges after receiving exam scores. It is a huge advantage for

students to maximise the possibility of being admitted since information released

by the admission o¢ ce would contain information on the distribution of overall

student performance in the exam as well as the average scores and the highest

individual scores. The more information students have on the overall exam per-

formance, the less uncertainty there will be. As a general trend, more provinces

are using sequence three in admission operations; and therefore, we only consider

the system with sequece three.

Regional discrimination There exists regional discrimination in the CCA

mechanism. As a general practice, colleges allocate more admission quota to

8Data was from the o¢ cial website of Ministry of Education of the People�s Republic of
China: http://www.moe.edu.cn/.
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the province where they locate than other provinces. Together with di¤erent

distributions of students�abilities, such discrimination may cause within a single

college, it has di¤erent base scores from di¤erent provinces. This discrimination

induces problems in e¢ ciency and revelation of preferences. This issue is caused

by some degrees of political considerations and in�uences and will not be discussed

in the current context.

1.1.4 Comparisons and Contributions

The CCAmechanism is a special case of a priority-based matching mechanism. As

we mentioned in the last section, a priority-based matching mechanism is di¤erent

from the Gale and Shapley�s college admission model. The CCA mechanism

is not an exception. In Gale and Shapley�s model, the outcome of matching

depends on the preferences of colleges over students and students over colleges.

In the CCA mechanism, students are the only agents, and colleges are merely

objects to be consumed as public goods. So the main di¤erence between the

CCA mechanism and Gale and Shapley�s mechanism is that scores take the place

of preferences of colleges over students and together with submitted preferences

over colleges determine allocations. Therefore, in our model, we do not consider

welfare issues or strategic behavior for the college side. Notions such as the

stability that are central for college admissions problems do not have any direct

meaning in the CCA problems. However, this does not mean that the �ndings in

Gale and Shapley�s model are irrelevant in the CCA mechanism. We can formally

treat scores as college preferences and hence obtain a two-sided matching market.

Consequently concepts/�ndings in a two-sided matching have their counterparts

in our model. Stability is the central notion in the two-sided matching problem

and it is still important in a priority-based matching problem. Ergin and Sönmez

(2006) de�ne stability in a priority-based matching market as: a matching is not

stable if there is a student-college pair (s; c) such that (1) student s prefers college

c to his assignment; (2) either school c has some empty places or student s has

higher priority than another student who is assigned a place at college c. Balinski

and Sönmez (1999) show that a matching is individually rational, non-wasteful

and fair9 for a priority matching problem if and only if it is stable for its associated

college admissions problem.

The CCA system is similar to the Boston mechanism. They both belong to

the priority-based matching michanism, in which reported preferences of students

9We will de�ne individually rational, non-wasteful, and fair allocation in next section.
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determine students�priorities. The main di¤erence between the CCA mechanism

and the Boston school choice mechanism is colleges�orderings over students in the

CCA system are only determined by students�scores, which are obtained from

a standard nationwide exam, while schools�orderings in the Boston Mechanism

are dependent upon several aspects. As in the Boston Mechanism, students

in the CCA mechanism may have incentives to misrepresent their preferences.

The critical reason for such manipulation is that students can possibly lose their

priorities of being admitted to a college unless they rank that college as the �rst

choice. If those students who report the true preferences are rejected by the

reported �rst choice, then they may have to accept o¤ers from other colleges

which are on lower ranks of their list of true preferences, or they may lose their

priorities in all colleges and hence end up being excluded from entering higher

education in the worst scenario.

Let us take a look at a simple example that shows the CCA mechanism may

induce unstable matching according to true preferences. Suppose two student s1
and s2 with scores t1 and t2 and t1 > t2. s1 prefers college c2 to c1, but he ranks

c1 as the �rst choice because he is not sure if he can be allocated a place at c2.

In the end, assume that s1 is assigned a place at c1, but it is possible that c2
has some open places as some other applicants may have the same thought as s1,

or s2 has been allotted a place at the college c2 because he ranks c2 as the �rst

choice. So, it is unstable according to the true preferences. The interesting part

is the result is stable based on reported preferences. The example shows that, in

the CCA mechanism, a student may have incentive to misrepresent his preference

because he needs to keep his priority in the second choice or even less favourite

universities when he is not guaranteed to be allocated a place in his favoured

college.

Compared to litreatures on the Boston mechanism, the main contribution of

the chapter includes three aspects. First, we describe the CCA system from the

perspective of economics. Second, we build up a formal model for the system

under the assumption of perfect information on exam scores. In Nash equilib-

rium of the mechanism, a student who realises that there are no vacancies in his

favourite college may misrepresent his preference, and rank higher the best of

those colleges whose base scores are lower or equal to his score. We will show

that the outcome of the CCA mechanism is the same as the one selected by a

recursive algorithm and the student optimal stable matching mechanism. The

set of Nash equilibrium outcomes is equal to the set of stable matching under

the students�true preferences. Given perfect information, the CCA mechanism
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is not truthful revelation of preferences, but it is fair, stable based on either true

preferences or stated preferences, and Pareto e¢ cient. Third and last, we present

a discussion on the CCA mechanism with imperfect information about the exam

score. There are two colleges and three students, and a �nite number of scores

dividing students into two di¤erent types. The probability of a student being

high type is public knowledge. We discuss the symmetric pure Bayesian Nash

equilibria and the symmetric mixed strategy Bayesian Nash equilibria. Whether

the model reaches a symmetric pure equilibrium or a symmetric mixed strategy

equilibrium depends on the utility of the better college and the probability of

being a high type student. Given imperfect information, the mechanism is fair

and strategy-proof when the utility is high and the probability is low. In that

case, we have a symmetric pure strategy equilibrium that both types of students

rank the better college as the �rst choice. We also discuss the e¤ects of changes of

the utility and the probability on equilibria. The conclusion of the simple model

is used to explain two interesting observations in reality. Contrast to the well

known Boston School system literature, our work discusses the CCA mechanism,

which has some di¤erent properties from the Boston School system,

The organisation of the rest of the chapter is as follows. In section 2, we

describe the model for the CCA mechanism. In section 3, we illustrate the prop-

erties of the mechanism under the assumption of perfect information. In section

4, we discuss the main results of the CCA mechanism under the assumption of

imperfect information. In section 5, we present some concluding remarks and

possible further directions of research.

1.2 The Model

We de�ne the ingredients in the CCA mechanism as follows.

1. a set of students S = fs1; :::; sng;

2. a set of colleges C = fc1; :::; cmg;

3. a capacity vector q = fq1; :::; qmg, total number of places Q =
mP
j=1

qj;

4. a list of students�preferences Ps = fp1; :::; png, where pi is the strict prefer-
ence relation of student si over colleges including the no-college option;

5. a list of students�scores t = ft1; :::; tng;
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6. a list of reported preferences RS = fr1; :::; rng;10

7. a list of the base scores of colleges B = fb1; :::; bmg;

Each applicant has a strict preference on C [ fc0g, where c0 denotes the
no-college option and q0 = jSj. Let cipicj denote that student si strictly prefers
college ci to cj. Given each triple lists of reported preferences of students, student

test scores, and capacities of colleges (RS; t; q), we can de�ne an assignment via

the CCA mechanism.

To implement the CCA mechanism, described earlier, in the context of the

model, it is assumed that students have to submit a strict preference ranking over

all colleges and the no-college option. We will relax this assumption later.

A matching is an allocation of college places to students such that no student

occupies more than one place. Formally it is a function � : S ! C [ fc0g such
that j��1 (cj)j � qj, 8cj 2 C. Student si is not assigned any college place if

� (si) = c0. Given a preference relation pi of student si, initially de�ned over

C [ fc0g, it is extended to the set of matching in the following natural way:
student si prefers the matching � to the matching �0 if and only if she prefers

� (si) to �0 (si). Student si will be assigned a place at college cj if 1) he ranks

cj as the �rst choice in his submitted preference and ti � bj (his score is higher
than the base score of college cj); 2) he ranks cj as the kth choice, ti � bj and

the admission quota of cj can not be �lled up in last k � 1 rounds.
Next we de�ne some properties of student placement models summed up by

Balinski and Sönmez (1999).

Individual Rationality: A matching � is individually rational if no student is

assigned to a college that is worse than the no-college option. In other words,

a student will not be assigned a place at a college that he would never want to

attend. Formally a matching � is individually rational if whenever � (si) 6= c0,

� (si) pic0 for all si 2 S.
Non-Wastefulness: A matching � is non-wasteful if, whenever a student si

prefers cj to his assignment ci, cj has all its places �lled up. Formally a matching

� is non-wasteful if cjpi� (si) and j��1 (cj)j = qj 8 all si 2 S and cj 2 C.
Pareto E¢ ciency: A matching � Pareto dominates a matching �0 if no student

prefers �0 to � and there is at least one student who prefers � to �0. Formally, a

matching � Pareto dominates a matching �0 if �ri�0 8 all si 2 S and �p�0 for at
10Here we assume that students can include as many colleges as they want. But as we

described in the introduction, in the practice, students can only list a limited number of colleges
in their reported preferences.

16



least one student.11 A matching � is Pareto e¢ cient if it is not Pareto dominated

by any other matching.

Strategy-Proofness: Amatching � is strategy-proof only if the truthful-preference

revelation of preferences is always a dominant strategy for all students.

Fairness: Students with higher test scores should be assigned their more pre-

ferred choices. Formally a matching � is fair if � (sl) = cj, then cjpi� (si) implies

tl > ti 8 all si and sl 2 S.
A mechanism is individually rational, non-wasteful, Pareto e¢ cient, strategy-

proof and fair if it always selects an individually rational, non-wasteful, Pareto

e¢ cient, strategy-proof and fair matching. Pareto e¢ ciency implies individual

rationality and non-wastefulness, but the reverse is not necessarily true. An

allocation is fair if no agent envies any other agent whose allotment he has higher

priority for. The mechanism is fair if it always selects fair allocations. Balinski

and Sönmez (1999) argue that a matching is individually rational, non-wasteful

and fair for a placement problem if and only if it is stable for its associated

two-sided matching problem. Although these properties are summed up for a

placement problem, the �rst four can be related to a general matching model and

all of them can be applied to a general priority-based matching problem.

The CCA mechanism satis�es individual rationality because no students will

be allocated to any colleges which are not on their submitted preferences. As

regards other properties, we will discuss them for the CCA mechanism under

di¤erent assumptions in the next section.

1.3 Properties of the CCA Mechanism

1.3.1 Perfect Information

Perfect information means any student�s scores and preferences over colleges are

known by all students and this is common knowledge. At this state, we assume

there are no ties between scores

Before we establish the equilibrium of the model, let us look at a simple

example, which illustrates how the mechanism works under the assumption of

perfect information.

Example 1 Let S = fs1; s2g be the set of students, C = fc1; c2g be the set of
colleges, and q = f1; 1g be the college capacity vector. Scores and preferences of
11Here �rsi�

0 implies that � is at least as good as �0 for si.
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students are as follows:

t = ft1; t2g , with t1 > t2;

Ps = fp1; p2g ;with p1 = p2 = fc1 � c2 � c0g:

Student s1 knows his score is higher than s1, thus he does not need to ma-

nipulate his preference, thus r1 = fc1 � c2 � c0g. Student s2 has two options:
r2 = fc1 � c2 � c0g or r02 = fc2 � c1 � c0g. We have the reported preferences as
follows:

RS = fr1; r2g ;

or

R0S = fr1; r02g :

If the reported preference set is RS, then the system works as follows:

In Round 1, only students��rst choices are considered. College cj, j = 1; 2,

makes o¤ers to students who list it as their �rst choice by following their ranking

scores until either all places are taken or all students who list the college as �rst-

choice are o¤ered a place. Student s1 is assigned a place at college c1, student s2
is rejected by college c1 and the process goes to next round;

In Round 2, only students�second choices are considered by the college with

places available. Thus, college c2 assign the remaining place to student s2. The

procedure terminates here since each student is assigned a place at a college.

If the reported preference set is R0S, then the system works as follows:

In Round 1, student s1 is assigned a place at college c1, s2 is assigned a place

at college c2 and the admission process is over.

In both cases, the matching induced by the CCA mechanism in this example

is as follows:

� =

�
s1 s2
c1 c2

�
;

i.e., � (si) = ci, i = 1; 2. Therefore, RS and R0S are two Nash equilibria for this

example.

Since information is perfect, the student with the higher score knows he would

have a higher priority in any college that he ranks as the �rst choice. The student

with the lower score knows he would not have a higher priority no matter which

college he ranks as the �rst choice. The student with the lower score will be

assigned a place at the college which he prefers but is not preferred by the student

with the higher score,12 otherwise he would have to consider accepting the o¤er
12In this example, it is the case if p2 = fc2 � c1 � c0g:
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from his less-preferred college, or he might end up with c0 if he rejects that

less preferred o¤er.13 Within the matching of this example, the student with the

higher score is assigned a more preferred place and there are no empty places left,

thus the outcome is individually rational, fair, non-wasteful, and hence stable.

Therefore, if there are only two agents on both sides of the market, given the

information is perfect, the matching induced by the CCA mechanism would be

stable, and truthful revelation of preferences is a Nash equilibrium strategy for

both students.

Next we explain what would happen if there are more students and more

colleges. Firstly, we keep n = 2, and increase the total quota of colleges, i.e.,

Q > 2. Holding at the number of students, but increasing the number of places

will not a¤ect the outcome in Example 1. The only di¤erence is that students

have more choices. A student with a higher score obtains a place which he most

prefers, and a student with a lower score is assigned a place which he most

prefers apart from the one assigned to student with higher score. Therefore, the

result must be stable and truthful revelation of preferences is a Nash equilibrium

strategy for both students.

Secondly, suppose m = 2, fq1 = 1; q2 = 1g, and n > 2. Consider the following
Example:.

Example 2 Assume there are three students S = fs1; s2; s3g, and two colleges
C = fc1; c2g, the quota is q = fq1 = 1; q2 = 1g. Students�preferences and scores
are as follows:

Ps = fp1; p2; p3g ;

with

p1 = p2 = p3 = fc1 � c2 � c0g;

t = ft1; t2; t3g ;

with

t1 > t2 > t3:

s1 will submit his true preference because he has the highest priority in either

college. s2 realised that he has lower priority than s1 in c1 and s1 will rank c1
as his �rst choice. Besides, s2 will lose his priority in c2 if he reports his true

preference and s3 reports r3 = fc2 � c1 � c0g. Therefore, s2�s best strategy is
to list c2 as his �rst choice with c1 as the second choice. s3 knows he will be

assigned a place at college c2 if he manipulates his preference and s2 tells the

13In this example, it is the case if p2 = fc1 � c0 � c2g:
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true preference. Therefore, we can have a Nash equilibrium strategy for reported

preferences as follows:14

r1 = fc1 � c2 � c0g;
r2 = r3 = fc2 � c1 � c0g:

College c1 assigns its place to student s1, college c2 assigns its place to s2, and

student s3 has to take c0. Thus the outcome is as follows:

� =

�
s1 s2 s3
c1 c2 c0

�
:

Since there are only three students in this example, the base score of college

cj is just the score of the student who is admitted by cj. Thus, B = ft1; t2; t3g.
In a general case, the base score of a particular college is the equilibrium score

of the least successful placed student in that college if it is �lled up. Student si
can observe the ranking of scores and preferences of other students, hence he is

able to work out the base score of each college. si will not rank his true �rst

option, say c1, as the �rst choice unless ti � b1. In other words, si�s �rst choice
is his most favourite among those colleges whose base scores are lower than or

the same as ti. The matching in the example is individually rational, fair, and

non-wasteful again as students with higher priority are assigned a more preferred

place and all places have been �lled up. In fact, the result of this example can

be generalised as follows.

Proposition 1 Given perfect information, the CCA mechanism is individually

rational, non-wasteful, fair and Pareto e¢ cient; but truthful revelation of prefer-

ences may not be a dominant strategy for all students.

Proof. See Appendix.
Given perfect information, we have a Nash equilibrium in the CCA mecha-

nism, which has the property that a student for whom there are no vacancies in

his favourite colleges may misrepresent his preference, and rank higher his most

favourite among those colleges whose base scores are lower than or the same as

his score. Thus, the Nash equilibrium must be characterised as follows: the stu-

dent with the highest score must get his most preferred option; the student with

the second highest score must get his most preferred option from the remaining

14The other Nash equilibrium would be r1 = r3 = fc1 � c2 � c0g, and r2 = fc2 � c1 � c0g.
Both equilibria would lead to the same output.
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places, ..., etc. The process would terminate in the �rst round by this Nash

equilibrium.

This is not the only Nash equilibrium. For example, the student with the

lowest score may have di¤erent strategies. Let fs1; s2; :::; s3g denote the set of
students with t1 > t2:::; tn�1 > tn. If sn is only able to �nd available places at his

least preferred college, then he may rank any college as his �rst choice. If he ranks

the college with place available as his �rst choice, which is the �rst equilibrium,

then the admission process ends in the �rst round, two rounds otherwise. In the

end, fs1; :::; sn�1g are allocated a place at their reported �rst choices and sn is
allocated a place at his least preferred college.

Given perfect information, the CCA mechanism is equivalent to the so-called

"recursive algorithm". While the two algorithms are di¤erent in general, they

always yield the same outcome. Given a set of students S = fs1; :::; sng with
n > 2; a set of colleges C = fc1; :::; cmg; a capacity vector q = fq1; :::; qmg; a list
of student preferences Ps = fp1; :::; png; a list of student test scores t = ft1; :::; tng
with t1 > t2:::; tn�1 > tn, the recursive algorithm is as follows:

Algorithm 4 Recursive Algorithm:
Round 1: s1 reports his preference and he will be allocated a place at his

reported �rst choice;

Round 2: s2 reports his preference and he will be allocated a place at his

reported �rst choice if there is a place available; otherwise he will go to the no-

college option and the process goes to the next round;

......

In general, at

Round k: sk reports his preference and he will be allocated a place at his �rst

choice if there is place available, otherwise he will go to the no-college option and

the process goes to the next round

The procedure terminates when each student is assigned a place or there are

no places available.

It is easy to obtain a Nash equilibrium for the recursive algorithm. In the �rst

round, s1 reports p1, and he will be allocated a place at his most preferred college;

in the second round, s2 ranks his most preferred college among those remaining

colleges as his �rst choice, and he will be allocated a place at that college; and so

on.

In contrast with the equilibria of the CCA mechanism, the process in the

recursive algorithm lasts k rounds while the CCA mechanism may only last one
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or two rounds as we noted, but they will reach the same outcome. In both

mechanisms, students with higher priority are considered before students with

lower priority.

Remark 1 Given perfect information, the CCA mechanism and the recursive

algorithm select the same matching.

We know the outcomes induced by the CCA mechanism given perfect infor-

mation are fair and stable under students�true preferences. Ergin and Sönmez

(2006) show that Nash equilibrium outcome of the Boston School mechanism is

equivalent to the stable matching under the true preferences. This claim holds in

the CCA mechanism.

It is well known that, in a priority matching game, the Deferred Acceptance

Algorithm Pareto dominates any other fair mechanisms (Balinski and Sönmez

(1999)), and it is strategy-proof (Dubins and Freedman (1981)). The following

algorithm describes how the Deferred Acceptance Algorithm is applied to the

CCA circumstance.

Algorithm 5 Deferred Acceptance Algorithm:
Round 1: Each student applies to his favourite college. If c0 is the favourite

object of a student, then he is allotted c0. If the total number of students who

apply to college is greater than its quota, say qj, then qj students with the highest

scores are assigned a place temporarily. The remaining students are rejected.

Round 2: Each remaining student applies to his favourite college. If c0 is the

favourite object of a student, then he is allotted c0. If the total number of students

who apply to a college including those students who were temporarily allocated a

place at Round 1 is greater than its quota, say q0j, then q
0
j students with the highest

scores are assigned a place temporarily. The remaining students are rejected.

......

Round k, k � 2: Each student who is rejected by a college at step k�1 applies
to his next favourite college. If c0 is the favourite object of a student, then he

is allotted c0. If the total number of students who apply to a college, say ck, is

greater than its quota, qk, then qk students among them with the highest scores

are assigned a place temporarily. The remaining students are rejected.

The procedure terminates when each student is assigned a place at a college

or there are no places left in colleges.

This mechanism is also referred to the "student optimal stable mechanism".

The main di¤erences between the student optimal stable mechanism and the
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CCA mechanism under perfect information is: it is always optimal for students to

report their true preferences in the former mechanism; students may manipulate

their preferences by ranking colleges, which have low order on their true preference

lists, as their �rst choices in order to secure a place at those colleges in the latter

mechanism.

Summary 1 Given perfect information, any Nash equilibrium in the CCA mech-
anism, the recursive algorithm, and the student optimal stable mechanism has

the same matching result, and satisfy individually rationality, non-wastefulness,

fairness and Pareto e¢ ciency. The �rst two mechanisms do not satisfy strategy-

proofness but the last one does.

One of assumptions in the perfect information case is that no ties exist between

scores. Now we use an example to illustrate the model may violate fairness if we

relax this assumption to allow the existence of ties between scores, and varying

the example slightly, that Pareto e¢ ciency can fail if students can only list a limit

number of colleges in their reported preferences and also there are score ties.

Suppose all students are risk neutral, and a place will be allocated to a student

with 1=k probability if there are k students with the same scores applying to this

place.

Example 3 Assume there are three students S = fs1; s2; s3g, and two colleges
C = fc1; c2g, the quota is q = fq1 = 1; q2 = 1g. Students�preferences and scores
are as follows:

Ps = fp1; p2; p3g ;

with

p1 = p2 = p3 = fc1 � c2 � c0g;

t = ft1; t2; t3g ;

with

t1 = t2 > t3:

The utility of c1, u1 = 1, the utility of c2, u2 � 0:1, and the utility of c0, u0 = 0
to all students.

Given that s1 ranks c1 as the �rst choice, if s2 ranks c1 as his �rst choice,

then his expected payo¤ is 0:5u1 = 0:5; if s2 ranks c2 as his �rst choice, then

his expected payo¤ is u2 = 0:1. Therefore, s2�s optimal strategy is to rank c1
as his �rst choice. s1 has the same optimal strategy as does s2. Since all this
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information is publicly known by all students, s3 would rank c2 as his �rst choice

because he knows he has chance to be admitted by c2. In the end, the place at

c1 will be allocated to s1 or s2 randomly, and the place at c2 is allocated to s3.

If, say, s1 gets the place at c1, then the outcome is as follows:

� =

�
s1 s2 s3
c1 c0 c2

�
:

Clearly, the outcome is not fair.

Next we assume that t1 = t2 = t3. Students can only put one college in their

submitted preferences, and a student will end up with c0 if he is not allocated

any place. Since 1=3u1 > 0:1, all students will only put c1 in their preferences.

One of the three students will get the place at c1 randomly, and others have to

select c0. If, say, s1 gets the place at c1, then the outcome is as follows:

� =

�
s1 s2 s3
c1 c0 c0

�
:

It is clear that the outcome is not Pareto e¢ cient. Note that if there are no score

ties, then the outcome selected by the CCA mechanism would be the same as the

unrestricted case even though the number of colleges in reported preferences is

restricted.

The two examples imply that the CCA mechanism may violate fairness and

Pareto e¢ ciency if we relax assumptions such as no score ties, or an unlimited

number of colleges in reported preferences.

1.3.2 Imperfect Information

In the last section, we discussed the CCA mechanism under the assumption that

students have all relevant information about each other, including preferences

over colleges and scores. In practice, scores and preferences are not public knowl-

edge, and hence students have imperfect information. In this section, we look

through the CCA mechanism under the assumption of imperfect information. As

a starting point, we simply assume that all the students have identical prefer-

ences and this is common knowledge. Therefore, the only private information is

their scores, which are determined by a number of factors, such as the student�s

academic ability, his performance on the exam day, and luck. How scores are

realised is not our concern; thus we simply assume that the actual realisation of

scores is observed only by the student, but its ex ante probability distribution is

commonly known among all students. Now the mechanism is a Bayesian game:
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Nature makes the �rst move, choosing realisations of the scores that determine

each student�s type; each student only observes the realisation of his own score

but the distribution of scores is publicly known; each student decides how to �ll

in his preferences form based on available information. Thus, here we are looking

for a Bayesian Nash equilibrium.

Our concern for the CCA mechanism is on those students whose scores are on

the margin of two colleges. The problem of those students is to decide whether

to rank the better college or the safe alternative as the �rst choice. For the same

set of colleges (a good one and an ordinary one), marginal students should have

similar academic abilities among them. For simplicity, we assume these students

have the same academic ability, and then they have the same probabilities of

obtaining a high score and a low score given other symmetric factors. Given

these assumptions, we simplify the problem as follows.

Assume there are two colleges: c1 with utility u > 1; and c2 with utility 1;15

three students: si (i = 1; 2; 3); and two possible scores: th > b1 > tl, where b1
denotes the base score of c1 in the previous year. We call the students with th
as high type, and the students with tl as low type. All students know their own

scores and the probability that another student is high type, denoted by p, and

the probability that another student is low type, denoted by 1 � p. The place
of a college will be randomly allocated to a student if there is more than one

applicant to that college with same score. A college will consider sending o¤ers

to students who do not rank it as the �rst choice only if no students ranked it as

the �rst choice.

Since there are two colleges, students have two possible strategies: Either

ranking c1 as the �rst choice or ranking c2 as the �rst choice. Denote the �rst

and second strategy by r1 and r2 respectively. De�ne x as the probability that

a high type student plays r1, and y as the probability that a low type student

plays r1, that is, assuming a symmetric equilibrium in which strategies do not

depend on the student�s identi�cation. Therefore, the probability that a high

type student plays r2 is 1� x, and the probability that a low type student plays
r2 is 1� y. Given this structure of mixed strategies, there are four possible pure
strategies: x = 1, y = 1, i.e., both types play r1; x = 1, y = 0, i.e., high type

plays r1 and low type plays r2; x = 0, y = 1, i.e., high type plays r2 and low type

plays r1; x = 0, y = 0, i.e., both types play r2.

In order to �nd equilibria of the game, we need to derive the expected utilities

for the two types of students. Consider a particular student, say s1. Nature

15Here we simply assume that there is only one place at each college.
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decides his type to be high or low with probability vector (p; 1� p). We will
work out s1�s expected utilities when he is a high type and when he is a low type

respectively.

Claim 1 (1) t1 = th.
When he is a high type student, s1�s expected utilities from playing r1 and r2

are respectively as follows:

EUhr1 = u (1� px) +
p2x2

3
(1 + u) + pxy (1� p) ;

EUhr2 =
1

3
p2(x� 1) [x+ u(x� 3y + 2)� 1] + p(x� 1) [1 + u(y � 1)] + 1:

(2) t1 = tl.

When he is a low type student, s1�s expected utilities from playing r1 and r2
are respectively as follows:

EU lr1 =
1

3
(p� 1)y [p(y � 3x)� y]

+
1

3
u

�
3� 3y + y2 + p

�
3y � 6x+ 3xy � 2y2

�
+
1

3
p2(3x2 � 3xy + y2)

�
;

EU lr2 = p2x2 � px(p� 1)(1 + y)

+
1

3
(p� 1)2(1 + y + y2) + 1

3
u(p� 1)(y � 1) [1� y + p(2� 3x+ y)] :

Proof. See Appendix.
For the symmetric pure strategy Bayesian Nash equilibria, we have the fol-

lowing proposition:

Proposition 2 There are two possible symmetric pure Bayesian Nash equilibria
in our model under the assumption of private information about scores:

1. x = 1, y = 1, i.e., both types playing r1, is a symmetric pure strategy

Bayesian Nash equilibrium, if

u � 2� p+ 2p2
(p� 1)2 ;

2. x = 1, y = 0, i.e., high types playing r1 and low types playing r2, is a

symmetric pure strategy Bayesian Nash equilibrium, if

3� p2
3� 3p+ p2 � u �

1 + p+ p2

2(p� 1)2
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and p � 0:2787.

Proof. See Appendix.

0.0 1.0
p

4.0 u

1

2

1

E

L1

L3

L2

0.0 1.0
p

4.0 u

1

2

1

E

L1

L3

L2

Figure 1: Pure Strategy Equilibria

For u 2 [1; 4], Figure 1 shows possible symmetric pure strategy equilibria. All
the points in Region 1 meet the requirement for the �rst equilibrium, which is

x = 1, y = 1. Region 2 includes all of the possibilities that satisfy the condition

for the second equilibrium, which is x = 1, y = 0. Point E denotes the starting

point of the second equilibrium with coordinate (0:279; 1:304).16

On the curve L1, a low type student is indi¤erent between choosing r1 and

r2 if both types of students play r1. Thus, the curve L1 is determined by the

solution to the following equation:

EU lr1(x = 1; y = 1) = EU
l
r2(x = 1; y = 1):

On L1, EUhr1(x = 1; y = 1) > EU
h
r2(x = 1; y = 1).

On the curve L2, a low type student is indi¤erent between playing r1 and r2 if

all high type students play r1 and all other low type students play r2. Therefore,

the curve L2 is determined by the solution to the following equation:

EU lr1(x = 1; y = 0) = EU
l
r2(x = 1; y = 0):

16The coordinates keep three �gures after the decimal point.
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On L2, once again, EUhr1(x = 1; y = 0) > EU
h
r2(x = 1; y = 0).

On the curve L3, a high type student is indi¤erent between playing r1 and

playing r2 if all other high type students play r1 and all low type students play

r2. Curve L3 is determined by the solution to the following equation:

EUhr1(x = 1; y = 0) = EU
h
r2(x = 1; y = 0):

On L2, EU lr1(x = 1; y = 0) < EU
h
r2(x = 1; y = 0).

In other regions, we have mixed strategies. See Figure 2.

Proposition 3 There are three possible symmetric mixed strategy equilibria as
follows:

1. In Region 3, high type students play a symmetric mixed strategy with (x; 1� x)
and low type students play the symmetric pure strategy of choosing r2, i.e.,

0 < x < 1 and y = 0;

2. In Region 4, low type students play a symmetric mixed strategy with (y; 1� y)
and high type students play the symmetric pure strategy of choosing r1, i.e.,

0 < y < 1 and x = 1;

3. In Region 5, both types play symmetric mixed strategies with f(x; 1� x) ; (y; 1� y)g,
i.e., 0 < x < 1 and 0 < y < 1.

Proof. See Appendix.
In Region 3, a low type student�s expected utility of playing r2 is higher

than playing r1. But the di¤erence is falling as u decreases until the curve L4

is reached, on which the low type student is indi¤erent between playing r2 and

playing r1 given that high type students play the equilibrium mixed strategy and

all other low type students play r2. Therefore, the curve L4 is determined by the

solution to the following simultaneous equations:

EUhr1(y = 0) = EUhr2(y = 0);

EU lr1(y = 0) = EU lr2(y = 0):

In Region 4, a high type student�s expected utility of playing r1 is higher

than playing r2. But the di¤erence is falling as u decreases until the curve L5,

on which the high type student is indi¤erent between playing r1 and r2 given

low type students play the equilibrium mixed strategy and all other high type
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Figure 2: Mixed Strategy Equilibia

students play r1. Thus the curve L5 is determined by the solution to the following

simultaneous equations:

EUhr1(x = 1) = EUhr2(x = 1);

EU lr1(x = 1) = EU lr2(x = 1):

Now we set p = 0:3, and see how these equilibria vary.17 See Figure 3. We

start from the bottom of Figure 3. In Region 5, the utility of c1 is close to the

utility of c2, thus both types play mixed strategies such that

EUhr1(x
�; y�) = EUhr2(x

�; y�);

EU lr1(x
�; y�) = EU lr2(x

�; y�):

Given p = 0:3, at each level of u, we can �nd explicit solutions of (x�; y�) from

the functions above. The equilibrium condition is that both types are indi¤erent

17The reason we chose 0:3 is that it is across all the �ve regions.
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Figure 3: Equilibria ( p = 0:3)

between playing r1 and playing r2:

D5
hjp=0:3 : = EUhr1(x

�; y�)� EUhr2(x�; y�)
= �2:19 + x(0:63y � 0:72) + u [2:28� x(0:09 + 0:63y) + 0:63y]
= 0;

D5
l jp=0:3 : = EU lr1(x

�; y�)� EU lr2(x�; y�)
= �0:49� 0:63x� 0:27x2 + u(1:88� 1:17x+ 0:27x2 � 0:49y)� 0:49y
= 0:

We do not give explicit solutions for (x�; y�) in terms of u as it is too complicated.

Table 1 presents ten equilibrium solutions when u rises from 1:010 to 1:308, and

Figure 4 will show us the changes of x�and y� over u in Region 5.

u 1.01 1.05 1.09 1.13 1.17 1.21 1.25 1.25 1.3 1.304

x 0.516 0.577 0.637 0.695 0.752 0.809 0.865 0.921 0.935 0.946

y 0.482 0.414 0.347 0.282 0.218 0.155 0.092 0.029 0.013 0

Table 1

When u = 1, which implies that the two colleges have the same utility for

all the students, both high type and low type students will choose either c1 or c2
with a �fty percent probability. As u rises, high type students will increase their

probability of playing r1. Thus, the equilibrium x increases. Although increasing

u also attracts low type students to play r1, they realise that high type students
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must have raised their probabilities of playing r1 and hence the probability that

they can be admitted by c1 is very low. Therefore, given a low level u, low type

students�probability of playing r1, i.e., y, is falling as u increases. When u arrives

at 1.308, y = 0, which means that low type students will play a pure strategy

by ranking c2 as the �rst choice; and x = 0:946, which implies that high type

students play r1 by the probability of 0:946. This is the point on L4 when p = 0:3.

In Region 3, by solving the following equation:

D3
hjp=0:3 := EUhr1(x; y = 0)� EUhr2(x; y = 0) = 0;

we can obtain the equilibrium mixed strategy for high type students:

x =
2:19� 2:28u
�0:72� 0:09u:

Thus, the equilibrium in Region 3 is
�
x = 2:19�2:28u

�0:72�0:09u ; y = 0
�
, and

dx

du
=

1:839

(0:72 + 0:09u)2
:

High type students�probability of playing r1 is increasing in u. High type students

will play this symmetric mixed equilibrium strategy until u = 1:329, which is on

the curve L3, and then change to play the symmetric pure strategy of choosing

r1. Although y is always zero in Region 3, D3
l jp=0:3 is decreasing as u rises.

In Region 2, we have the symmetric pure strategy equilibrium, (x = 1; y = 0),

i.e., high type students play r1 and low type students play r2. In equilibrium, we
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Figure 5: Changes of x, y over u when p = 0:3.

have the following equations:

D2
hjp=0:3 : = EUhr1(x = 1; y = 0)� EUhr2(x = 1; y = 0)

= �2:91 + 2:19u;
D2
l jp=0:3 : = EU lr1(x = 1; y = 0)� EU lr2(x = 1; y = 0)

= �1:39 + 0:98u:

We can see that
d(D2

l jp=0:3)
du

> 0. That is because high type students start to use

the symmetric pure equilibrium of r1 once u reaches 1.329, and hence the only

factor a¤ecting low type students�decisions is the value of u from that point.

However, low type students will not change their pure strategy until u = 1:418,

which is on the curve L2. On L2, D2
l jp=0:3 = 0 and D2

hjp=0:3 > 0.
When u > 1:418, low type students will play a symmetric mixed equilibrium

with a positive y. In Region 4,

y =
1:39� 0:98u
�0:49� 0:49u:

Since d(y)
du
> 0, low type students�probability of playing r1 is increasing in u. On

L1, when u = 3:837, as well as in Region 1, both types play the symmetric pure

strategy of ranking c1 as the �rst choice.

How x and y vary with u in all regions are presented in Figure 5.

From the preceding analysis, it can be concluded that

Remark 2 (1) High type students are not always choosing a pure strategy by
simply ranking c1 as their �rst choice. They would play a mixed strategy if the
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utility of c1 is su¢ ciently low.

(2) Low type students have two possible pure strategies: When the utility of c1
is low, they rank c2 as the �rst choice; and when the utility of c1 is su¢ ciently

high, they rank c1 as the �rst choice.

Item 1 implies that a high type student has the incentive to rank c2 as his

�rst choice for securing the place in c2 by playing a symmetric mixed strategy if

c1 is not su¢ ciently attractive.

Item 2 tells us that a low type student�s decision is strongly in�uenced by the

decisions of high type students. His willingness to choose c1 as the �rst choice is

decreasing in x when both types play the symmetric mixed strategies. Once high

type students start playing pure strategy r1, the low type student will increase

the probability of choosing r1 as u increases. When u is su¢ ciently large, he

would just play the symmetric pure strategy of choosing r1 because his gain from

c1 is su¢ ciently high for him to take the risk.

Not only the utility of the better college would a¤ect the equilibria but also

would the probability that a student is high type a¤ect the equilibria. If p is

low, then low type students�pure strategy of choosing r2 may disappear (when

p < 0:279, which is the x coordinate of point E). Moreover, they only need a lower

level of u to start using the symmetric pure strategy of choosing r1 (shown by L1

in Figure 2). It is because low type students realise that a lower p means there is

little chance that competitors are high type, thus they have higher opportunity of

being admitted to c1 if they rank c1 as their �rst choice. When p is greater than

the threshold point (p > 0:279), L4 is still climbing up until p = 0:453, but low

type students may play the symmetric pure strategy of r2 given some appropriate

values of u. When p > 0:453, the threshold curve L4 starts falling in p. Low type

students need a higher level of u to go back to the symmetric mixed strategy and

to play the symmetric pure strategy of r1 in p. This is shown by the ascending

curve L2 and L1. It is simpler for high type students. As shown by curve L5 and

L3, they need a higher value of u to trigger the symmetric pure strategy of r1 as

p increases from 0 to 1 because the opportunity that competitors are high type

rises.

The e¤ects of p vary in u. If u 2 [2; 4], then y will fall from 1 to a value

between 0 and 1 and then to 0 as p increases from 0 to 1, while x is always equal

to 1. It is shown in Figure 2, from Region 1 to Region 4 and then to Region 2. y

is decreasing in p in Region 4. If u 2 [1:324; 2], then y falls from a value between

0 and 1 to 0, while x falls from 1 to a value between 0 and 1 as p increase from

0 to 1. It is re�ected in Figure 2, from Region 4 to Region 2 and to Region 3.
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If u 2 [1; 1:324], then y decreases from a value between 0 and 1 to 0 and x falls

from 1 to a value between 0 and 1 as p increases. It is the change from Region

4 to Region 5 in Figure 2. These changes of strategies indicate that it is more

likely that both types rank c2 as their �rst choice when p increases.

The thresholds are graphed by points on those curves, across which at least

one type�s strategy changes, and they depend on values of p. All curves except

for L4 go up as p rises. The thresholds on L4 increases to the maximum, where

u = 1:324 and p = 0:453, and then falls in p.

We de�ne fairness as the property that students with higher test scores should

be assigned their better choices. Therefore, if a high type student is rejected by

both colleges and a low type student is allocated a place, then the allocation is

not fair.

In all regions except for Region 1, it is possible to have such a scenario that

two high type students choose r1 and a low type student chooses r2. The resulting

allocation will be that one of high type students is admitted by c1, the low type

student is admitted by c2, and the other high type student is rejected by both

colleges. In this outcome, the high type student who are rejected by both colleges

envies the low type student, thus the allocation is not fair.

In Region 5, since both type students play mixed strategies, we may see that

high type students rank c2 as the �rst choice, while at least one of low type

students ranks c1 as the �rst choice. One of low type students will be allocated

the place in c1 and one of high type students will be allocated the place in c2.

The probability that this scenario happens is very low as it needs all high type

students choose r2 and at least one low type student chooses r1. In Region 3,

suppose there is only one high type student, who may rank c2 as his �rst choice

with a very low probability, and two low type students who play r2. If the high

type student ranked c2 as his �rst choice, then he will be allocated the place at

c2 and both low type students will be rejected by c2, but one of them would be

admitted by c1. In all these possible outcomes, the high type student who lost

his opportunity for higher education envies at least one low type student, and

hence fairness is violated.

Fairness always holds in Region 1, where all the students rank c1 as the �rst

choice, and a high type student will obtain the place in c2 in the second round

over a low type even if he is rejected by c1 in the �rst round.

Summary 2 If scores are private information, the resulting allocation may vio-
late the property of fairness and strategy-proofness.

The following example shows us an unfair outcome.
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Example 4 Let S = fs1; s2; s3g be the set of students, C = fc1; c2g be the set of
colleges, q = f1; 1g be the college capacity vector. Scores are as follows:

t1 = th; t2 = th; t3 = tl:

The utility of c1 is 1:4 and the probability of being a high type student is 0:3.

From Figure 5, we know that this set of u and p will induce a symmetric pure

strategy equilibrium (x = 1; y = 0). Therefore, the reported preferences are as

follows:

r1 = fc1; c2g ;
r2 = fc1; c2g ;
r3 = fc2; c1g :

Assume that the place in c1 is allocated to s1, then the outcome is as follows:

� =

�
s1 s2 s3
c1 c0 c2

�
:

s2�s score is higher than s3�s, but he is rejected by both colleges and s3 is allocated

a place in c2. Therefore, the result is not fair.

Proposition 4 If u is su¢ ciently high and p is su¢ ciently low, then the sym-
metric pure Bayesian Nash equilibrium is strategy-proof.

Proof. See Appendix.
The conclusions of our simple model can be used to explain some observations

in practice.

(1) There are many more applicants being rejected by top colleges than by

ordinary colleges.

Top colleges usually have high relative utilities over the next level of colleges.

That corresponds to a high level of u in our model. If u is su¢ ciently high, then

low type students have incentives to risk themselves by ranking the top college

as their �rst choice. It is the case in Region 1 or Region 4. Given the same

probability that a student is of high type, the rejection rate is higher in the top

colleges.

(2) When scores in the current year are universally lower than in previous

years,18 there will be more applicants applying to better colleges, vice versa.
18The reason may be the exam is easier than before, or the quality of students is higher than

before.
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This can be explained by the last conclusion we had above. Scores in the

current year are universally lower than previous years would correspond to a lower

value of p. Each student realises that the probability that any other student has a

higher score is low. Therefore, those whose scores are higher will be con�dent to

rank c1 as their �rst choice, and those whose scores are lower would take a chance

by ranking c1 as their �rst choice. On the other hand, we will have the opposite

result when scores in the current year are universally higher than previous years.

We have shown that the CCA mechanism is Pareto e¢ cient under the as-

sumption of perfect information. Next we will discuss the e¢ ciency of the CCA

mechanism in a more general case where scores are private information.

Recall that a matching � Pareto dominates a matching �0 if no student prefers

�0 to � and there is at least one student who prefers � to �0. A matching � is

Pareto e¢ cient if it is not Pareto dominated by any other matching. Since we

assume that all students have identical preferences over colleges, swapping any

two students can not improve their welfare simultaneously. Therefore, the only

case that an outcome is ine¢ cient is: if at least one student si prefers a college

cj than his assignment, cj � � (si), and there is at least one place available at cj.

Proposition 5 Given imperfect information about students�scores and identical
preferences, the CCA mechanism is Pareto e¢ cient.

Proof. See Appendix.
In our model, we assume that students have identical preferences, and students

are allowed to include as many colleges as they want in their submitted preference

forms. The e¢ ciency result will fail if we relax either of the two assumptions.

Remark 3 Given imperfect information about students�scores, the CCA mech-
anism might not be Pareto e¢ cient if

1. Students have di¤erent preferences, or

2. Students are not allowed to include an unlimited number of colleges in their

reported preferences.

We use two simple examples to illustrate the two scenarios. The �rst one

assumes that students have di¤erent preferences, and the second one assumes

students can only include a limited number of colleges on their preference forms.

Example 5 Let S = fs1; s2; s3; s4g be the set of students, C = fc1; c2; c3g be the
set of colleges, q = f1; 1; 2g be the college capacity vector, and ft1; t2; t3; t4g be
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students�scores. Preferences of students are as follows:

p1 = fc1 � c2 � c3 � c0g ;

p2 = fc1 � c2 � c3 � c0g ;

p3 = fc1 � c2 � c3 � c0g ;

p4 = fc2 � c1 � c3 � c0g :

Suppose that it is publicly known that t2 = t3 > t4, t1 > t2 = t3 with a large

probability and t1 < t4 with a small probability.

Without the uncertainty about t1, and t1 > t2 = t3, s1 reports his true

preference, s2 and s3 will rank c2 as the �rst choice, and s4�s decision does not

matter. If, say, the place at c2 is randomly allocated to s2, then the outcome is

as follows:

� =

�
s1 s2 s3 s4
c3 c2 c3 c3

�
:

A Nash equilibrium for this example is as follows: Given the uncertainty, s2
and s3 will not change their strategy because a 50% chance of being admitted

by c2 is better than a tiny chance of going to c1. This must be true for a small

enough probability that t1 < t4. However, for s4, he would rank c1 as the �rst

choice because he has a small chance of being allocated a place at c1, but no

chance of going to c2. For s1, he would put c1 as the �rst choice if t1 > t2 = t3,

and rank any college as his �rst choice if t1 < t4.

If in fact, say, t1 > t2 = t3, then the outcome is the same as the case with

perfect information. If, say, t1 < t4 and the place at c2 is randomly allocated to

s2, then the outcome is as follows:

�0 =

�
s1 s2 s3 s4
c3 c2 c3 c1

�
:

�0 is Pareto dominated by either of the following matching:�
s1 s2 s3 s4
c3 c1 c3 c2

�
;�

s1 s2 s3 s4
c3 c3 c1 c2

�
:

Therefore, the CCA mechanism is not Pareto e¢ cient.

Example 6 Let S = fs1; s2g be the set of students, C = fc1; c2g be the set of
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colleges, q = f1; 1g be the college capacity vector, and ft1; t2g be students�scores.
Preferences of students are as follows:

p1 = p2 = fc1 � c2 � c0g :

The utility of c1 is 1, the utility of c2 is 0:1, and the utility of c0 is 0 to both

students. Suppose that students can only have one choice in their reported prefer-

ences and there are no test score ties. Assume t2 is known by both students, but

t1 is uncertain, so s1 knows whether he has the highest score but s2 is uncertain.

Suppose the probability that t1 > t2 is 0.5, there are no score ties, and hence the

probability that t1 < t2 is 0.5 as well.

With no uncertainty, if it turns out that t1 > t2, then r1 = fc1 � c2 � c0g,
r2 = fc2 � c1 � c0g, and hence the outcome is

� =

�
s1 s2
c1 c2

�
;

if t1 < t2, then r1 = fc2 � c1 � c0g, r2 = fc1 � c2 � c0g, and hence the outcome
is

� =

�
s1 s2
c2 c1

�
:

Clearly, both outcomes are Pareto e¢ cient. Now consider s2. If he ranks c1 as

his �rst choice, then his expected payo¤ is at worst 0:5u1 + 0:5 � 0 = 0:5; if he

ranks c2 as his �rst choice, then his expected payo¤ is at most u2 = 0:1. Thus,

his optimal strategy is to rank c1 as his �rst choice. For s1, given s2�s strategy,

he would rank c1 as his �rst choice if t1 > t2 and c2 as his �rst choice if t1 < t2.

If t1 < t2 in the end, then the outcome would be

� =

�
s1 s2
c2 c1

�
;

which is Pareto e¢ cient. However, if t1 > t2 in the end, then the outcome would

be

� =

�
s1 s2
c1 c0

�
:

Clearly, the outcome is not Pareto e¢ cient as s2 will be better of if he was

allocated a place at c2 without hurting s1. � is Pareto dominated by the following

matching:

� =

�
s1 s2
c1 c2

�
:
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Therefore, the CCA mechanism is not Pareto e¢ cient even though preferences

are identical and there are no ties.

1.4 Conclusion

In this chapter we presented an analysis on the equilibria of the Chinese College

Admission (CCA). We explained how the mechanism works, and constructed two

formal models under di¤erent assumptions about information concerning scores.

Firstly, we looked through the simple model under the assumption of perfect in-

formation. We established that there is a pure Nash equilibrium in the model.

A student who realises that there are not vacancies in his favourite colleges will

misrepresent his preference, and ranks his most preferred college among those

colleges whose base scores are lower than his score or the same as his score. We

also presented a number of examples to show that the allocation results are fair

and hence stable and strategy-proofness is sometimes violated. Moreover, we

showed that the set of Nash equilibrium outcomes of this game is equal to the set

of stable matching under the true preferences, and it is Pareto e¢ cient. In the

model under the assumption of imperfect information and identical preferences,

we described a particular model where there are two colleges and three students

with two possible scores. The model has two pure symmetric Bayesian Nash

equilibria and three possible mixed symmetric strategy Bayesian Nash equilib-

ria. Which equilibrium obtains depends on the utility of the best college and the

probability of being a high type student. When the utility is high and proba-

bility is low, both types of students rank the better college as the �rst choice,

and hence the mechanism satis�es strategy-proofness and produces a fair alloca-

tion result. However, in any other cases, the allocation could be ine¢ cient and

strategy-proofness might fail. We discussed how the equilibrium varies with the

utility of the best college and the probability of being a high type student. The

conclusions were used to explain two common observations in practice. In the

end, we discussed e¢ ciency of the CCA mechanism given imperfect information.

The CCA mechanism is always Pareto e¢ cient if students have same preference

and are allowed to include as many colleges as they want in the preference form.

The outcome of the CCA mechanism may fail to be Pareto e¢ cient if either of

these assumptions does not hold.
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1.5 Appendix

Proof of Proposition 1:

Proof. Since Pareto e¢ ciency implies individual rationality and non-wastefulness,
if we can prove the result is Pareto e¢ cient, then it must be individual rational

and non-wasteful.

Suppose the outcome is not fair. Then there are two students si and sj with

� (sj) pi� (si) but ti > tj: Under the CCA system, this matching can be selected

only in the following process. In round k with k < m, sj is allocated a place at

� (sj) as he submits � (sj) as the kth choice, while si must have submitted � (sj)

as the (k + j)th choice with k + j � m and j � 1. In this case, if si ranks � (sj)
as the �rst choice, then si would be allocated a place at � (sj) in the �rst round,

and hence be better o¤. Therefore, the outcome of the CCA mechanism under

perfect information is fair.

Suppose the outcome is not Pareto e¢ cient. Then there is a matching �0

which dominates the matching selected by the mechanism. So, �0r� 8 all s 2 S
and �0p� for at least one student, say si, which means si can be made strictly

better o¤. However, if si is better o¤, then he must get a place from another

student, say sj, who is ranked above si because when si makes his choice, he can

only choose the best from the remaining places after students ranked above him.

Unless sj is in turn allocated a place from one ranked above him, he will be worse

o¤. If sj is allocated a place from one ranked above him, then we can repeat the

argument with sj rather than si. Eventually, we will �nd a student ranked above

si who is worse o¤. Hence, this can not be a Pareto improvement. Thus, the

outcome of the CCA mechanism is Pareto e¢ cient, and hence individual rational

and non-wasteful.

Suppose all students report their true preferences. If the number of students

who rank ci as their �rst choice is greater than qi, then those students whose scores

are lower than bi (the lowest of top qi students who rank ci as their �rst choice)

would have incentives to manipulate their preferences by ranking their second

true choices as their submitted �rst choices. Therefore, truthful revelation of

preferences is not always a dominant strategy for all students.

Proof of Claim 1:

Proof. (I)
1) s1 uses r1:19

19We only explain the probabilities in this part.
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a. Both s2 and s3�s scores are th. Pr (t2 = t3 = th) = p2.

The probability of going to c1 is as follows:

Pr(c1) = Pr (s1 is admitted by c1 conditional on s2 and s3 using r1)

�Pr (s2 and s3 use r1)
+Pr (s1 is admitted by c1 conditional on either s2 or s3 using r1)

� [Pr (s2 uses r1 and s3 uses r2) + Pr (s2 uses r2 and s3 uses r1)]
+Pr (s2 and s3 use r2)

= 1
3
x2 + 1

2
2x(1� x) + (1� x)2.

The probability of going to c2 is as follows:

Pr(c2) = Pr (s1 is rejected by c1 conditional on s2 and s3 using r1)

�Pr (s1 is admitted by c2 conditional on s2 and s3 use r1 and s1 being rejected by c1)
�Pr (s2 and s3 use r1)
= 2

3
� 1

2
x2:

b. s2 or s3�s score is th, and the other�s is tl. Pr (t2 = th; t3 = tl) = p (1� p)
and Pr (t2 = tl; t3 = th) = p (1� p) :
Pr(c1) = Pr (s1 is admitted by c1 conditional the student with th using r1)

�Pr (the student with th uses r1)
+Pr (the student with th uses r2)

= 1
2
x+ (1� x);

Pr(c2) = Pr (s1 is rejected by c1 conditional the student with th using r1)

�Pr (The student with th uses r1)� Pr (The student with tl uses r1)
= 1

2
xy:

c. Both s2 and s3�s scores are tl. Pr (t2 = t3 = tl) = (1� p)2.
Pr(c1) = 1; Pr(c2) = 0:

2) s1 uses r2:

a. Both s2 and s3�s scores are th. Pr (t2 = t3 = th) = p2.

Pr(c1) =
2
3
� 1

2
(1� x)2; Pr(c2) = x2 + 1

2
� 2x(1� x) + 1

3
(1� x)2 :

b. s2 or s3�s score is th, and the other�s is tl. Pr (t2 = th; t3 = tl) = p (1� p)
and Pr (t2 = tl; t3 = th) = p (1� p) :
Pr(c1) =

1
2
(1� x) (1� y); Pr(c2) = x+ 1

2
(1� x):

c. Both s2 and s3�s scores are tl. Pr (t2 = t3 = tl) = (1� p)2.
Pr(c1) = 0; Pr(c2) = 1:

Therefore, expected utilities are as follows:

EUhr1 =

(
p2
�
1
3
x2 + 1

2
� 2x(1� x) + (1� x)2

�
+2p (1� p)

�
1
2
x+ (1� x)

�
+ (1� p)2

)
u

+
�
p2
�
2
3
� 1

2
x2
�
+ 2p (1� p)

�
1
2
xy
�
+ (1� p)2 0

�
=
�
p2
�
1� x+ 1

3
x2
�
+ 2p (1� p)

�
1� 1

2
x
�
+ (1� p)2

	
u
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+
�
1
3
p2x2 + p (1� p)xy

�
= u (1� px) + p2x2

3
(1 + u) + pxy (1� p) ;

EUhr2 =

(
p2
�
2
3
� 1

2
(1� x)2

�
+2p (1� p)

�
1
2
(1� x) (1� y)

�
+ (1� p)2 0

)
u

+

"
p2
�
x2 + 1

2
� 2x(1� x) + 1

3
(1� x)2

�
+2p (1� p)

�
x+ 1

2
(1� x)

�
+ (1� p)2 1

#
=
�
p2
�
1
3
(1� x)2

�
+ 2p (1� p)

�
1
2
(1� x) (1� y)

�	
u

+p2
�
x+ 1

3
(1� x)2

�
+ p (1� p) (x+ 1) + (1� p)2

= 1
3
p2(x� 1) [x+ u(x� 3y + 2)� 1] + p(x� 1) [1 + u(y � 1)] + 1:

(II)

1) s1 uses r1
a. Both s2 and s3�s scores are th. Pr (t2 = t3 = th) = p2.

Pr(c1) = (1� x)2; Pr(c2) = 0:
b. s2 or s3�s score is th, and the other�s is tl. Pr (t2 = th; t3 = tl) = p (1� p)

and Pr (t2 = tl; t3 = th) = p (1� p).
Pr(c1) = (1� x)(1� y) + 1

2
y(1� x); Pr(c2) = 1

2
xy:

c. Both s2 and s3�s scores are tl. Pr (t2 = t3 = tl) = (1� p)2.
Pr(c1) =

1
3
y2 + 1

2
2y(1� y) + (1� y)2; Pr(c2) = 2

3
1
2
y2:

2) s1 uses r2
a. Both s2 and s3�s scores are th. Pr (t2 = t3 = th) = p2.

Pr(c1) = 0; Pr(c2) = x2:

b. s2 or s3�s score is th, and the other�s is tl. Pr (t2 = th; t3 = tl) = p (1� p)
and Pr (t2 = tl; t3 = th) = p (1� p).
Pr(c1) =

1
2
(1� x)(1� y); Pr(c2) = xy + 1

2
x(1� y):

c. Both s2 and s3�s scores are tl. Pr (t2 = t3 = tl) = (1� p)2.
Pr(c1) =

2
3
1
2
(1� y)2; Pr(c2) = y2 + 1

2
2y(1� y) + 1

3
(1� y)2 :

Therefore, expected utilities are as follows:

EU lr1 =
�
2p (1� p)

�
1
2
xy
�
+ (1� p)2

�
1
3
y2
��

+

(
p2
�
(1� x)2

�
+ 2p (1� p)

�
(1� x)(1� y) + 1

2
y(1� x)

�
+(1� p)2

�
1
3
y2 + y(1� y) + (1� y)2

� )
u

=
�
p (1� p)xy + 1

3
(1� p)2 y2

�
+

(
p2
�
(1� x)2

�
+ 2p (1� p)

�
(1� x)(1� y) + 1

2
y(1� x)

�
+(1� p)2

�
1� y + 1

3
y2
� )

u

= 1
3
(p� 1)y [p(y � 3x)� y]

+1
3
u [3� 3y + y2 + p (3y � 6x+ 3xy � 2y2) + 1=3p2(3x2 � 3xy + y2)] ;

EU lr2 =
�
p (1� p) [(1� x)(1� y)] + (1� p)2

�
1
3
(1� y)2

�	
u

+
�
p2x2 + 2p (1� p)

�
xy + 1

2
x(1� y)

�
+ (1� p)2

�
y2 + 1

2
2y(1� y) + 1

3
(1� y)2

��
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=
�
p (1� p) [(1� x)(1� y)] + 1

3
(1� p)2 (1� y)2

	
u

+p2x2 + p (1� p) [x+ xy] + (1� p)2
�
y + 1

3
(1� y)2

�
= p2x2 � px(p� 1)(1 + y) + 1

3
(p� 1)2(1 + y + y2)

+1
3
(p� 1)u(y � 1) [1� y + p(2� 3x+ y)] :

Proof of Proposition 2:

Proof. In the �rst case, if x = 1, y = 1 is an equilibrium, then EUhr1(x = 1,

y = 1) � EUhr2(x = 1, y = 1) and EU lr1(x = 1, y = 1) � EU lr2(x = 1, y = 1).
EUhr1(x = 1, y = 1)� EUhr2(x = 1, y = 1) � 0;
p2(u� 2) + 3(u� 1)� 3p(u� 1) � 0;
u � 3�3p+2p2

3�3p+p2 .

EU lr1(x = 1, y = 1)� EU lr2(x = 1, y = 1) � 0;
p2(u� 2) + u� p(2u� 1)� 2 � 0;
u � 2�p+2p2

(p�1)2 :

Thus, the above two inequalities hold when u � 2�p+2p2
(p�1)2 as 2�p+2p

2

(p�1)2 > 3�3p+2p2
3�3p+p2

given p 2 [0; 1].
In the second case, if x = 1, y = 0 is an equilibrium, then EUhr1(x = 1,

y = 0) � EUhr2(x = 1, y = 0) and EU lr1(x = 1, y = 0) � EU lr2(x = 1, y = 0).
EUhr1(x = 1, y = 0)� EUhr2(x = 1, y = 0) � 0;
3(u� 1)� 3pu+ p2(1 + u) � 0;
u � 3�p2

3�3p+p2 .

EU lr1(x = 1, y = 0)� EU lr2(x = 1, y = 0) � 0;
2u+ p2(2u� 1)� p(4u+ 1)� 1 � 0;
u � 1+p+p2

2(p�1)2 .

Thus, the above two inequalities hold when 3�p2
3�3p+p2 � u �

1+p+p2

2(p�1)2 . This can

only be the case when 3�p2
3�3p+p2 �

1+p+p2

2(p�1)2 if p � 0:2787. In Figure 1, L1 graphs

u = 2�p+2p2
(p�1)2 , L2 graphs u =

1+p+p2

2(p�1)2 , and L3 graphs u =
3�p2

3�3p+p2 .

x = 0, y = 1 and x = 0, y = 0 can not be equilibria as high type students will

be better o¤ by playing r1 in both cases.
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Proof of Proposition 3:

Proof. In Region 2, x = 1 and y = 0. We have

EUhr1(x = 1; y = 0) =
1

3
(p2 + (3� 3p+ p2)u);

EUhr2(x = 1; y = 0) = (1� p)2 + 2(1� p)p+ p2;
EU lr1(x = 1; y = 0) = (1� p)2u;

EU lr2(x = 1; y = 0) =
1

3

�
1 + p+ p2

�
+
1

3
u(1� p)2;

and

EUhr1(x = 1; y = 0) > EUhr2(x = 1; y = 0);

EU lr1(x = 1; y = 0) < EU lr2(x = 1; y = 0):

De�ne D2
h = EU

h
r1(x = 1; y = 0)�EUhr2(x = 1; y = 0) and D2

l = EU
l
r1(x = 1; y =

0)�EU lr2(x = 1; y = 0). In Region 2, D2
h > 0 and D

2
l < 0. Given any value of p,

d (D2
h)

du
> 0;

d (D2
l )

du
> 0:

Consider decreasing u holding p �xed. D2
h and D

2
l fall until the curve L3, on

which D2
h = 0 but D

2
l < 0. If u keeps falling, then the high types will no longer

play r1 as D2
h < 0. De�ne D3

h = EUhr1(x; y = 0) � EUhr2(x; y = 0) and D3
l =

EU lr1(x; y = 0) � EU lr2(x; y = 0). EU jri(y = 0), where i = 1; 2 and j = h; l,

implies that the expected utility of the j type by playing ri when the high types

play mixed strategy (x; 1� x) and the low type plays r2. At the equilibrium,

D3
h = 0. By solving D

3
h = 0, we have the symmetric mixed equilibrium strategy

in terms of u and p, denoted by x�:

x� =
�3 + 3p� p2 + 3u� 3pu+ 2p2u

p(3� 2p+ pu) :

If D3
l (x = x

�; y = 0) < 0, then x = x�; y = 0 is an equilibrium. It can shown that

D3
l (x = x

�; y = 0) < 0 if u is between L3 and L4. On L4, D3
l (x = x

�; y = 0) = 0.

If u keeps falling below L4, then D3
l (x = x

�; y = 0) > 0. De�ne D5
h =

EUhr1(x; y)�EUhr2(x; y) and D5
l = EU

l
r1(x; y)�EU lr2(x; y). In Region 5 (p � pE),

we will �nd the symmetric mixed equilibria for both types by solving D5
h = 0 and

D5
l = 0.

De�ne D1
h = EU

h
r1(x = 1; y = 1) � EUhr2(x = 1; y = 1) and D1

l = EU
l
r1(x =
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1; y = 1)� EU lr2(x = 1; y = 1). In Region 1, we have

d (D2
h)

du
> 0;

d (D2
l )

du
> 0:

Both D1
h and D

1
l fall as u decreases until L1, on which

EU lr1(x = 1; y = 1) = EU
l
r2(x = 1; y = 1)

and

EUhr1(x = 1; y = 1) > EU
l
r2(x = 1; y = 1):

Below L1, D1
h > 0 but D

1
l < 0, then the low type would play a mixed strategy.

De�ne D4
h = EUhr1(x = 1; y) � EUhr2(x = 1; y) and D4

l = EU lr1(x = 1; y) �
EU lr2(x = 1; y). In Region 4, D

4
l = 0 at the equilibrium. By solving D

4
l = 0, we

have

y� =
�1� p� p2 + 2u� 4pu+ 2p2u

(p� 1)2(1 + u) :

If D4
h (x = 1; y = y

�) > 0, then x = 1; y = y� is an equilibrium. It can shown

that D4
h (x = 1; y = y

�) > 0 if u is between L1 and L2 or L1 and L5. On L2,

D4
l (x = 1; y = 0) = 0 and D

4
h (x = 1; y = 0) > 0; on L5, D

4
h (x = 1; y = y

�) = 0

and D4
l (x = 1; y = y

�) = 0. Below L5, D4
h (x = 1; y = y

�) < 0, then the high

type will play a mixed strategy as well as the low type.

In Region 5 (p � pE), once again we will �nd the symmetric mixed equilibria
for both types by solving D5

h = 0 and D
5
l = 0.

Proof of Proposition 4:

Proof. When u and p fall into Region 1, all the students report the true prefer-
ence no matter what type they are. The symmetric pure Bayesian Nash equilib-

rium is that both types rank c1 as the �rst choice. Since both types of students�

preference is identical: c1 � c2, the equilibrium is strategy-proof.

Proof of Proposition 5:

Proof. Assume the identical preference is as follows:

c1 � c2::: � cm � c0:

If any colleges are ranked below c0, then they can simply be ignored as they won�t

be selected in equilibrium.
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Consider Q � n, i.e., when the number of applicants is greater than the total
quota. Suppose the outcome is ine¢ cient, then there must be at least one place

avalaible at a randomly selected college, say cj, j = 1; 2; :::;m. Since Q � n, there
must be at least one student choosing c0, say si. In si�s reported preferences, c0
must be above cj, otherwise he would be allocated a place at cj. So, if si simply

switched positions of c0 and cj, then he would be allocated a place at cj, and

hence be better o¤. Therefore, there would not be any un�lled places at the end

of admission. The allocation of the mechanism must be Pareto e¢ cient.

Consider when Q > n, i.e., when the total quota is greater than the number

of students. Assume a sub quota Q1 =
Pk�1

j=1 qj < n and Q2 =
Pk

j=1 qj � n,

where k � m. So, if we can prove there is not any place available at a randomly
selected college cj, j < k, in equilibrium, then the result is Pareto e¢ cient. Since

Q1 < n, then n � Q1 students are allocated to ck. ck�1 will not have any places
available because all students who go to ck must have ranked ck�1 in front of ck.

For the same reason, there will not be any places available in cj, j = 1; 2; :::; k�2.
Thus, the outcome of the CCA mechanism is Pareto e¢ cient.
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2 Chapter 2:

A Comparison between Two College Admis-

sion Systems From the Perspective of Corrup-

tion

2.1 Introduction and Literature Review

Millions of Chinese high school graduates sit China�s national higher education

entry exam in June every year. The exam results determine whether they enter

colleges, or end up not receiving any higher education at all. The exam and

the following admission procedures constitute the Chinese college admission sys-

tem. The importance of the system is increasing as the need for highly educated

employees in the ongoing modernization of China is growing. In order to meet

this need, there has been a huge increase in the number of students entering

the system and the higher education sector. As a result, the number of colleges

increased by 536 from 1985 to 2003, and the number of new students enrolled

in the system rose from 61.9 to 382.2 per 10,000 people.20 The system plays an

important role for every single candidate and the whole society. China has the

largest population in the world, and so far she remains a developing country de-

spite the marked development she has achieved. In order to be competitive in the

job market and have a bright future, taking the exam seems to be the only way

for all young Chinese. The number of applicants therefore far exceeds available

places, particularly for entry into prestigious colleges or colleges in large cities

such as Beijing or Shanghai. The �erce competitiveness has resulted in parents

and teachers placing considerable pressure on their children, on their students and

on themselves. Such pressure could start from primary school, or even earlier.

Like any other college admission systems, the Chinese college admission sys-

tem has limitations. The �rst criticism concerns the fairness and equality of

opportunity. There exists regional discrimination in the system. Students who

live in the same city as a college can be admitted by the college with lower scores

than students from other areas. The second criticism is about the exam itself,

e.g., the style of questions. Some educators indicate that the exam focuses too

much on subject knowledge and theory rather than the ability to solve problems

in practice. As a result, Chinese students are very good at theoretical subjects

such as mathematics, but lack the ability of carrying out practical tasks com-

20China Statistical Yearbook, 2004
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pared to western students. The third criticism indicates that the exam is like a

"gamble" with betting on the candidate�s future life. Failure in the exam really

seems to be the end of the world for students. As a consequence, the childhoods

of most Chinese children are full of studying as well as the fear of failure in the

exam. "I spend my waking hours studying and even my spare time is dedicated

to after-school curricula. Life is hard and all my friends worry about failing our

exams. Sometimes I feel I can�t cope but I just don�t want to let my parents

down." (Davey, Higgins (2005, p.32) The pressure also falls on the shoulders of

schools and teachers, causing the school teaching to serve only for the purpose

of preparation for the exam rather than learning ability and study skills of stu-

dents. The last concern is about corruption. The system has long been hailed as

an e¤ective mechanism to ensure equal education opportunities for all students,

disregarding their backgrounds. But admission scandals have exposed many �aws

as well as laying bare its vulnerability to power abuse and corruption. The widely

publicized scandals have also triggered severe doubts about the government�s call

for higher education institutions to become business-like and pro�t oriented. It

seems that the system has not been able to serve its intended purpose, as it seems

to fail providing equal education opportunities for all students.

Due to these criticisms, there has been a heated debate about the college ad-

mission system in China. The main argument here is: Should the current exam

system be replaced by a free market system? In the market system, students are

able to apply to colleges freely, and applications are not determined only by a

one-time exam. The proponents of the current system argue that corruption has

posed a very serious problem in the current admission system. The competitive-

ness of gaining a place in a Chinese higher education institution has given some

individuals the motive to be corrupt. How does a free market system deal with

that?

Corruption in the education sector can be de�ned as "the systematic use of

public o¢ ce for private bene�t, whose impact is signi�cant on the availability

and quality of educational goods and services, and, as a consequence on access,

quality or equity in education" (Education corruption 29, Hallak and Poisson,

2002). Educational corruption has an enormous negative impact on society. It

will undermine public trust in the system or even the government, exacerbates

the quality of education, negatively a¤ects young professionals and students, and

it spreads them distorted values and culture. It is even more distinct in China

as the higher education system has undertaken such an important task to the

development of the country. Despite the serious consequences of corruption in
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education, attention was only drawn to it in recent years, especially from the

economic perspective. Although developing a deep and solid understanding of the

structure of corruption in education is necessary for building strong theories on

its potential causes and impacts on fairness, social welfare and e¢ ciency, we will

not introduce it in detailed context. We only look into one aspect of educational

corruption.

Our focus is corruption in the admission process, thus the de�nition of cor-

ruption is based on the general de�nition of the public sector corruption, which

is the use of public resources for private gains. In the current exam system, all

admission procedures are operated by the admission o¢ ce of each college. The

serious competition for a higher education opportunity has given the admission

o¢ ce considerable power, and motive for private gains. Both formal (World

Bank, 2003)21 and informal reports posit that bribes are increasingly necessary

to gain admissions into college programs. The admission o¢ ce is assumed to be

an o¢ cial who acts as an individual agent in either a market system or an exam

system. In order to win a place in a preferred college, a student has to pay illegal

bribes to the admission o¢ cials. Corruption in the market system is hard to

detect as there is not standard criteria to tell a candidate�s ability. Corruption in

the exam system is conducted in the following ways: selling entry exam papers

in advance to high-paying candidates; the evaluations of oral examinations are

subjective and di¢ cult to monitor, etc. In some former Soviet states, admission

to colleges is for sale: Well-connected applicants or those who bribe or otherwise

in�uence the academic authorities responsible for admissions are the ones who

are admitted regardless of their academic quali�cations (Hallak, Poisson, 2007).

The authority�s objective is to minimize the degree of corruption and the cost

of investigation. When the cost of investigation is relatively high, the o¢ cials of

college have the incentive to be corrupt.

In the market system, the o¢ cial accepts or rejects a student only on consider-

ation from the application materials, which indicate the student�s performance at

high school, and the student�s personal statement, and references from teachers,

etc. When the power of investigation is high, the o¢ cials will not take bribes,

and then students with higher abilities are always admitted prior to students with

lower abilities. When the cost of investigation is high and power is low, however,

the o¢ cials will have incentives to take bribes. Application materials and support

documents are the only object that the authority is able to monitor, making the

21World Bank. (2003). Governance and service delivery in Kazakhstan� Results of diagnostic
surveys.
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market system relatively subjective. We therefore assume the object that the

authority monitors in the market system are identical across di¤erent students.

Examinations have become a universal method of selecting quali�ed candi-

dates and distributing limited resources. In the exam system, like the current

one in China, a centralized test allocates college places to individuals according

to the order of exam results. Unfortunately, the exam system can not escape from

corruption because of the considerable private bene�t motivation. For the same

reason, when the power of investigation is high, the o¢ cials will not take bribes,

then students with higher exam scores are always admitted prior to students with

lower scores. When the cost of investigation is high and power is low, however,

the o¢ cials will have incentives to be corrupt. For example, a place of a college

could be allocated to a student with an unquali�ed score as long as the student

bribes a su¢ cient amount. We do not provide how exactly the cheating works as

it is not our concern.

We try to look into the two systems in terms of corruption from the perspective

of the authority or the planner of higher education sector. We will discuss three

issues. First is to tell whether or not corruption has in�uence on the e¢ ciency in

both systems; if it does, what is the way. Second is to compare the two systems

in terms of the degree of corruption. The last is to discuss the e¤ect of borrowing

constraints.

This work is related to several branches of the literature. There is a massive

literature on matching problems, in which a set of heterogeneous individuals is

mapped into a set of heterogeneous objects or individuals (e.g., marriage market)

with the payo¤ from each match depending on some characteristic of both sides

of match.22 In this literature, the outcome is produced by either a free mar-

ket or a centralized mechanism. A common characteristic is they assume both

sides of the matching have preferences over the other side, and the outcome is

driven by the preferences and a particular mechanism. Lazear and Rosen (1981),

Green and Stokey (1983) and Nalebu¤ and Stiglitz (1983) examine the perfor-

mance of tournament-based compensation schemes relative to individualistic re-

ward schemes. They are concerned with the relative e¢ ciency of tournaments

in environments with moral hazard and how to extract e¤ort from homogeneous

agents. Balinski and Sönmez (1999) study a model of student placement where

scores play the role of matching students to colleges. Roth(1991), Abdulkadiro¼glu,

Sönmez (2003); Abdulkadiro¼glu, Pathak, Roth, Sönmez (2005) and Ergin, Sön-

22See Gale and Shapley (1962), Becker (1973), Cole, Mailath, and Postlewaite 91992), Kremer
(1993), Sttinger (1005), Acemoglu (1995), Shimer and Smith (1996), Burdett and Coles (1996),
Epple, Romano and Sieg (2003, 2006), etc.
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mez (2006) study the Boston School Choice Mechanism. Fernandez (1997, 1998)

examines the performance and properties of markets (prices) system and exam

(tournament) system as alternative allocation devices with perfect capital mar-

kets. He shows both systems achieve the e¢ cient allocation results. However,

when borrowing constraints are present, exams (tournaments) dominate markets

(prices) in terms of matching e¢ ciency.

In this context, we use some very basic auction theory to analyse corruption in

the admission problem. Most of the theoretical framework is in Krishna (2002).

The literature in this area views corruption in auctions either as a manipulation

of the quality assessment in complex bids or as bid rigging. The former was

introduced in a seminal paper by La¤ont and Tirole (1991), who assume that the

auctioneer has some leeway in assessing complex multidimensional bids, and is

predisposed to favour a particular bidder. That framework was later adopted by

Celantani and Ganuza (2002), who employ it to assess the impact of increased

competition on the equilibrium corruption and show that corruption may increase

if the number of competing bidders is increased. More recently, Burguet and

Che (2004) consider a scoring auction, make the assignment of the auctioneer�s

favourite agent endogenous, and assume that bribery competition occurs at the

same time as contract bidding. Their main result is that corruption may entail

ine¢ ciency, and that ". . . the ine¢ ciency cost of bribery is in the same order of

magnitude as the agent�s (i.e. auctioneer�s) manipulation capacity" (Burguet and

Che, 2004). Lengwiler and Wolfstetter (2005) propose a model of corruption in

which the auctioneer orchestrates bid rigging by inviting a bidder to either lower

or raise his bid, whichever is more pro�table.

The aim of this paper is to contrast the performance of the market system

and the exam system under no borrowing constraints and under borrowing con-

straints. With a market mechanism prices do not discriminate among individuals

except with respect to their willingness and ability to pay; accordingly, individu-

als with the same level of bribe expenditures attend the same college, regardless

of their abilities. In the centralized exam system, identical bribe by students with

di¤erent scores (di¤erent abilities) do not lead to the same allocation results. By

bribing the same amount, the higher-score student wins the place. Therefore, the

higher-ability students are less credit constrained than those with identical wealth

but lower ability, thus the former is more likely to be admitted by the college.

This paper attempts to show the superiority of the centralized test system under

the assumption of corruption. Corruption in our model is simply a bribe to the

o¢ cial during the admission process.
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The main contributions of our work are that we use auction theory to obtain

equilibria of the market system and the exam system under the assumption of

perfect capital markets and borrowing constraints. We discuss the e¤ects of

corruption on e¢ ciency in both systems. To our knowledge, the literature has not

considered corruption in higher education sector from this angle. The admission

process can be taken as an auction game as students are bidding for college places

by paying a bribe in the market system, or by paying a bribe and score in the

exam system. The corrupt o¢ cial is the auctioneer, applicants are bidders, and

the bribe money is the bid in the market system, while bribe money and score are

taken as a binding bid in the exam system. College places are allocated to students

who have the highest bids. We show that the allocation results of both systems

are e¢ cient in a perfect capital market. Borrowing constraints can prevent the

two systems from attaining e¢ cient allocations. We also show the degree of

corruption in the market system is always higher than in the exam system. The

degree of corruption is measured by the expected revenue received by o¢ cials.

Thus, expected revenues in each scenario will be provided. In all analysis, we use

some well-known results from standard auction theories, particularlly from �rst

prize auction model. However, in the discussion for exam system, we establish an

auction model, in which students compete for college places by combining their

bribes and scores.

We build up our model incrementally throughout the rest of the context.

Section 2 describes the general model. Section 3 illustrates the equilibrium of the

model without borrowing constraints, and contrasts the e¢ ciency and the degree

of corruption between the two systems. Section 4 analyses equilibrium allocation

if there are borrowing constraints, and compares the two systems in terms of

e¢ ciency and degree of corruption. Section 5 summarizes.

2.2 Description of the Economy

2.2.1 Student, Authority, and O¢ cial

This model describes a college admission problem in two di¤erent systems, one

is market-based and the other is exam-based. From now on, we just call the

market-based system as the market system and the exam-based system as the

exam system. There are two sides in the market system: students and colleges.

First of all ,we impose several assumptions on the student�s side. Assume there

are n students, each of whom is characterized by an endowment of �ability�, a,

and initial wealth w. For simplicity, we assume that a and w are independently
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distributed according to continuous, di¤erentiable cumulative distributions, F

and H, with probability density functions denoted by f and h and a �nite sup-

ports given by [0; 1] respectively. Thus, each student is characterized by a point

in I2 � [0; 1]� [0; 1] ; and these attributes are un-correlated across students. As-
sume both ability and wealth are unobservable, but the probability distributions

of ability and wealth are commonly known. On the other side, assume there are

m colleges, and the quality q is exogenous and belongs to [0; 1].

Apart from students, in our model, there is an authority, e.g., the govern-

ment; o¢ cials, who are the intermediaries between students and colleges. The

authority�s objective is to minimize the degree of corruption, and the process of

investigation incurs a cost to the authority. We de�ne the objective function of

the authority as

max
�
w = W ((�� tc (�)) ; dc (�)) ;

s:t tc (�) � �;

� � 0;

where w denotes the authority�s utility, � denotes the power of investigation,

dc (�) denotes the degree of corruption,23 � is the budget of authority, and tc (�)

is the total cost of investigation. The authority �nds a value of � to maximise his

utility.

If we assume he is risk neutral, then an o¢ cial�s objective is to maximise his

expected payo¤. One important assumption is that o¢ cials can not elicit bribes

from students, and hence he can only consider accepting or rejecting bribes.

O¢ cials will not take a student�s bribe if the student failed to be admitted.

Therefore, o¢ cials pick the bribes which maximise their expected payo¤s from

all students�intended bribes and reject others. The reason for this assumption

is that eliciting bribes from students or taking all bribes may entail an o¢ cial

to expose him to an exceedingly high risk of detection and punishment. Let �

denote the expected payo¤ of o¢ cials. If the punishment is assumed to be losing

his job, then an o¢ cial�s expected payo¤ function is as follows.

� = (Y + b)P + 0 (1� P ) = (Y + b)P when the o¢ cial is corrupt,

= Y when the o¢ cial is not corrupt,

where Y denotes the o¢ cial�s income without taking bribes, b is a particular bribe,

23dc is measured by o¢ cials�expected revenue from the corruption. A higher total expected
revenue implies a higher degree of corruption.
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and P measures the probability that the o¢ cial is not caught and punished.

Having received a bribe, if bP < Y (1� P ), then the o¢ cial would reject the
bribe; but if bP > Y (1� P ), then the o¢ cial would take the bribe. Thus, the
o¢ cial will not be corrupt when either the probability of being caught or the

legal income is su¢ ciently high. In practice, an o¢ cial�s income is much lower

compared to bribes. Therefore, in the current context, we simply assume the

legal income is low enough to be ignored, and hence the o¢ cial�s expected payo¤

can be rewritten as:

� = bP:

Since bP � 0, this function implies o¢ cials would take any bribes.
We use an exponential function for the probability: P = x�, where x 2 [0; 1)

denotes the object that the authority monitors. x di¤ers in the two systems. In

the market system, x = �, where � denotes the degree of non-transparency of

the admission process. A higher value of � means higher probability to keep the

bribe safely, and it is identical for all applicants in the market system. In the

exam system, x = s, where s denotes a student�s score. Given the same bribe,

an o¢ cial will obtain a higher expected payo¤ from a student with a higher score

than from a student with a lower score for the same reason. If we substitute P in

the payo¤ function by x�, then the o¢ cial�s objective function can be rewritten

as � = bx�. In the extreme cases, such as � = 0, and hence P = 1, � = b,

which implies there is no investigation and the o¢ cial can safely keep the bribes;

as � goes to in�nity, x� and hence � approach zero, so the o¢ cial will not take

any bribes. Here we assume these objective functions are publicly known by all

agents.

A risk neutral student�s objective is to maximise his expected payo¤ from

education, which is the di¤erence between his valuation of education and the cost

of bribe. Here the tuition fee and other costs are not considered in our model,

and hence bribes are the only cost to students. Assume there is an outside

option for all students. Let yc denote the expected aggregate income of a student

in the future if the student receives higher education; let yo denote the expected

aggregate income of a student in the future if the student takes the outside option.

We can take yo as the gain for a student from a college with quality being zero. So,

a student�s valuation for education at a particular college is the di¤erence between

yc and yo: v � yc � yo. A student�s yc obtained from a college is assumed to

be determined by the student�s ability and the quality of the college. Assume

yo only depends on the student�s ability. There are two more assumptions for yc

and yo as follows:
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Figure 6: Valuations

1. yc and yo are continuous, di¤erentiable and increasing in a, @y
c

@a
> 0 and

@yo

@a
> 0; yc is increasing in q, @y

c

@q
> 0.

2. Education output function has supermodularity between its arguments.

Students with higher ability can gain more from the same improvement

in education quality than students with lower ability, @
2yc

@a@q
> 0.

The second assumption immediately implies that @v
@a
> 0. Since a particular

student values a college with higher quality more, we know that vq > 0. For

simplicity, we assume both yc and yo are linear functions of ability, hence v is

a linear function of ability as well. Figure 6 shows an example for valuation.

The distance between yc;H and yo measures the value of the college with a higher

quality, and the distance between yc;L and yo measures the value of the college

with a lower quality. Figure 6 shows that the values of both colleges are increasing

in ability. The di¤erence of values between the higher quality college and the lower

quality college is increasing in ability, which is in accordance with the second

assumption.

We de�ne the valuation function as: v = aq.24 In this function, q is assumed

to be exogenous as we do not consider peer e¤ects.25

The main di¤erence between the market system and the exam system is that

24Assume yc = �caq, ync = �nca, if set �nc = 1, �c = 1 + 1
q , then v = aq.

25Epple and Romano (1998) use a (�; b) = �
b� as a student�s achievement function, where b
is student�s ability, and � denotes the mean ability of the student body in the school attended.
Since we do not consider peer e¤ects, � is a constant in our model as the quality of college.
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score plays a key role in the latter system. A particular student�s score is deter-

mined by how much e¤ort the student invests into studying and his performance

in the entry exam. How much e¤ort to invest depends on the student�s valua-

tion of the higher education; his performance in the exam depends on both his

ability and some other disturbance factors. For simplicity, we assume all other

factors are symmetric between students, and hence the student�s performance in

the exam is only determined by his ability. We use a weighted sum function to

express score.

s = 
0v + (1� 
0) a;

where v denotes the average valuation for higher education, 
0 is a constant and


0 < 1. Given v = aq, we have

s = 
0aq + (1� 
0) a
= (
0q + (1� 
0)) a;

where q denotes the average quality of colleges. Since q � 1, then (
0q + (1� 
0)) <
1. Therefore, we can simply use a constant 
 to substitute (
0q + (1� 
0)). Hence
the score is determined by the following function:

s = 
a;

where 
 < 1.

2.2.2 Mechanisms in the Two Systems

In the market system, students apply to their favourite colleges and intend to

bribe the o¢ cials of those colleges. The o¢ cial of a particular college observes

the intended bribes and allocates the places at that college to those students from

whom he gets the highest expected payo¤s, which are determined by the following

function:

�m = bm��:

Since � is identical for all students, an o¢ cial allocates the places to students only

according to the ranking of their bribes. O¢ cials would take any value of bribes

unless � goes to in�nity. So, students�bribes and hence the degree of corruption

will be dependent on the power of investigation only if it goes to in�nity. If �

goes to in�nity, then there will not be any corruption in both systems. Thus, for

the purpose of comparison between the two systems, in the current context, we
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simply assume � as a positive value, and hence the game induced by the market

system is the same as a standard sealed-bid �rst price auction.

In the exam system, students attend exams, obtain scores, and then choose

which colleges to apply and how much to bribe. The o¢ cial of a particular

college computes his expected payo¤ from all students applying to the college by

substituting students�bribes and scores to his expected payo¤ function:

�e = bes�:

The places at that college will be allocated to the students from whom this

o¢ cial gets the highest expected payo¤s. Note that the superscripts m and e in

the functions denote the market and exam systems, respectively.26

A student will go to the college at which he obtains the highest payo¤. The

student�s payo¤ depends on his valuation for a college and cost for bribing the

o¢ cial of that college, so his choice is not necessarily the college with the highest

quality because he may need to bribe too much to be admitted into that college.

In equilibrium, student�s optimal bribe will be determined only by valuations of

colleges in the market system but by valuations and scores in the exam system.

In the �nal section of this work, the model will incorporate �nancial constraints

into a student�s decision making process. When there exist borrowing constraints,

students have to consider his budget, and we will have some di¤erent results.

To de�ne an e¢ cient allocation result, we assume complementarity in a stu-

dent�s valuation of college. This may also be called supermodularity. It means

that, at any given level of quality of college, higher ability students produce more

when given a marginal increase in quality. Complementarity leads to positive

assortative matching, which is the underlying mechanism in the marriage market

model of Becker (1973).27 We will also believe that our focus from a social per-

spective is of value. The distributions of college qualities and student abilities are

exogenous, and there are no peer e¤ects or externalities. Therefore, the principle

of e¢ ciency is to allocate the best resources (places of the best colleges) to those

agents (students) who can use them most e¢ ciently, take them most valuable and

are, thus, willing to pay more for the resources. The e¢ cient allocation result will

lead to maximised total educational output if we consider a student�s valuation as

the product of education. We also will consider the competition among o¢ cials

26Without special explication, from now on, the superscripts m and e in any functions denote
the market system and the exam system, respectively. If there is no superscript, then it is for
a general case.
27The literature viewing positive matching will be introduced in the next chapter.
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from di¤erent colleges when colleges have identical quality, and the relationship

between the degree of corruption and the di¤erence of quality between di¤erent

colleges.

Next, we start with the model without borrowing constraints.

2.3 Model with One college, One Place under Perfect

Capital Markets

In this section, we will construct a model with perfect capital markets. Perfect

capital markets mean that students are able to borrow money from external

perfect capital markets at a zero rate of interest (for simplicity). Assuming the

capital is external and risk free allows us to avoid endogenous interest rate which

is not the focus of our work. The objective of this part is not only to �nd the

equilibrium bribes in the market system and the exam system respectively, but

also to compare the degree of corruption and e¢ ciency in the market system to

the exam system.

We start with the simplest model, where there is only one college with only

one place for admission. This simple scenario is not only a starting point, but also

an application to such circumstances where there is only one vacancy and many

applicants, for instance, the competition for a PhD place at a popular institution.

In the next section, we will extend this simple model to several more general cases

with more places.

2.3.1 Market System

Recall when market is the allocation mechanism, the o¢ cial�s expected pay is

�m = bm��. Since � is identical across students, the o¢ cial gains the highest

expected payo¤from the highest bribe, therefore, he will make o¤er to the student

who bribes the most. So, the competition of the place can be considered as a

standard sealed-bid �rst price auction.

Next we aim to �nd a Bayesian Nash equilibrium bribe for a student in this

game.

The following notations will be used in the whole chapter:

Given a student i�s ability follow the distribution of F , we let Yk denote the

kth highest of other n� 1 abilities, Fk (�) denote the distribution of Yk, and fk (�)
be the corresponding density function.

In this case, a student i with ability a will win the place whenever b (Y1) <

b (a). By using the standard approach in the �rst price auction model (see, for
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example, Riley and Samuelson (1981)), we can have a symmetric equilibrium

bribe as follows.

Claim 2 Given perfect capital markets and one college with one place, the sym-
metric equilibrium bribe in the market system satis�es

bm (a) = qE [Y1jY1 < a] :

Proof. See Appendix.
The optimal bribe of a student is the expected ability of the expected value

of the highest of other n � 1 abilities multiplied by q, conditional on his ability
being greater than Y1. The equilibrium bribe is increasing in the student�s ability.

Therefore, i will win the place whenever Y1 < ai. The equilibrium can be written

as

bm (a) = q

�
a�

Z a

0

F1 (y)

F1 (a)
dy

�
= v � q

Z a

0

F1 (y)

F1 (a)
dy:

This expression shows that the bribe is less than the student�s valuation v. For any

given F (�), as the number of students increases, the equilibrium bribe approaches
v.

The following example where ability follows uniform distribution gives us a

more intuitive impression for the equilibrium strategy.

Example 7 If abilities are uniformly distributed on [0; 1], then

bm (a) =
n� 1
n

aq =
n� 1
n

v:

At the equilibrium of this example, each student bribes a fraction of his val-

uation. Clearly, the result is e¢ cient as the student with the highest ability will

bribe the most and be allocated the place.

2.3.2 Exam System

The exam system in this case works in the following procedure. Consider a

particular student.

1. The student takes an exam, and obtains his score, which is linearly deter-

mined by his ability as we assumed, s = 
a, 0 < 
 < 1.
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2. In order to maximise his expected payo¤, the student bribes the o¢ cial of

the college which he is applying to.

3. The o¢ cial observes the student�s score and bribe as well as other students�

scores and bribes.

4. The o¢ cial would allocate the place to the student from whom he gets the

highest expected payo¤.

Recall in the exam system, the o¢ cial�s expected payo¤ function is

�e = bes�;

where s� denotes the probability that the o¢ cial can keep the money safely, i.e.

the probability that corruption is not discovered. The probability is increasing in

the exam score as corruption is more di¢ cult to be discovered if the place has been

allocated to students with higher scores than other students with lower scores.

Therefore, the probability that a student is allocated the place is dependent on his

bribe and score. This expected payo¤ function is public knowledge in students,

so they will decide their bribes based on this function.

Recall a follows a continuous, di¤erentiable cumulative distribution, F (a),

with density function f(x) and a �nite support on [0; 1]; and also s = 
a. So,

exam score follows a distribution with the same distribution function but on a

di¤erent interval [0; 
].

Now we de�ne some notations for the exam system: Let Fs (�) denote the
distribution of s, fs (�) denote the corresponding density function. Let Ys;k denote
the kth highest of other n� 1 scores and let Fs;k (�) denote the distribution of Yk,
and fs;k (�) be the corresponding density function.
In the exam system, a student i with ability a will win the place whenever

be (Ys;1) < b
e (a). A symmetric equilibrium bribe is as follows.

Claim 3 Given perfect capital markets and one college with one place, the sym-
metric equilibrium bribe in the exam system satis�es

be (s) =
q




E
�
Y 1+�s;1 jYs;1 < s

�
s�

:

Proof. See Appendix.
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The equilibrium bribe in the exam system immediately implies the expected

payo¤ for the o¢ cial from a student with score s satis�es

�e (s) =
q



E
�
Y 1+�s;1 jYs;1 < s

�
:

So, we have the following proposition.

Proposition 6 Given perfect capital markets and one college with one place, the
allocation result is e¢ cient in the exam system.

Proof. See Appendix.
This claim implies that the place will be allocated to the student with the

highest score, and hence a student i with score s will win the place whenever

Ys;1 < s. In the market system, students with higher valuations are willing to

pay higher bribes for the place, and bribes are the only measurement; thus, the

result in the market system is e¢ cient as the student with the highest ability

will be allocated the place. In the exam system, an integration of score and

bribe measures the extent that the student is eager for education. Hence, in the

exam system, students with higher valuations for education will provide higher

expected payo¤s for the o¢ cial. The o¢ cial allocates the place to the student

who has the highest score as well as the highest ability, and hence the outcome

is e¢ cient.

Claim 3 also implies that students will take the power of investigation into

account in the exam system.

Proposition 7 Given perfect capital markets and one college with one place, the
equilibrium bribe in the exam system is decreasing in the power of investigation.

Proof. See Appendix.
The following example with a uniform distributed ability illustrates the result.

Example 8 If abilities are uniformly distributed on [0; 1], then F (a) = a, and

the symmetric equilibrium satis�es

�e (s) =
q




n� 1
n+ �

s1+�;

and hence

be (s) =
q




n� 1
n+ �

s;

or

be (v) =
n� 1
n+ �

v:28

28This result is by the following functions: v = aq and s = 
a.
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The result is e¢ cient and it shows that the equilibrium bribe is decreasing

in the power of investigation since @be

@�
< 0. When � = 0, the optimal bribe

is exactly the same as in the market system. When � goes to the in�nity, no

students will bribe as they know the investigation is so strict that no o¢ cials

would risk themselves to take the chance.

2.3.3 Market System vs Exam System

Next we compare the two systems in terms of equilibrium bribes, e¢ ciency and

degree of corruption.

Claim 4 Given perfect capital markets and one college with one place, if � 6= 0,
then be (a) � bm (a) and a strict inequality holds for all a 2 (0; 1].

Proof. See Appendix.
Claim 4 implies that every type�s equilibrium bribe is higher in the market

system than in the exam system. As regards the e¢ ciency and the degree of

corruption, we have the following proposition:

Proposition 8 Given perfect capital markets and one college with one place,
the allocation results in both systems are e¢ cient; if � 6= 0, then the degree of

corruption in the market system is higher than in the exam system.

Proof. See Appendix.
This claim states the degree of corruption is higher in the market system than

in the exam system, although they can both select e¢ cient allocation results.

Given perfect capital markets, the existence of corruption does not a¤ect the

e¢ ciency of the allocations, but the existence of the exam lowers the degree of

corruption. The following example gives us a clearer idea about this result.

Example 9 If abilities are uniformly distributed on [0; 1], then the expected rev-
enues in the market system and the exam system are respectively

E (�m) =
(n� 1)
n+ 1

q;

E (�e) =
n (n� 1)

(n+ 1) (n+ �)
q:

Thus,

E (�m)� E (�e) = (n� 1) �q
(n+ 1) (n+ �)

> 0:
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The o¢ cial�s expected revenue is higher in the market system than in the exam

system, and therefore the degree of corruption is higher in the market system than

in the exam system.

2.4 Model with Multiple Places under Perfect Capital

Markets

In the last section, we have looked through the simplest case of the model where

there is only one place for admission in one college. Now we extend the model to

discuss the scenario with more than one place for admission. As we have assumed,

a student�s valuation for the place at a particular college is determined by the

student�s ability and the college�s quality. As a result, we need to take the quality

of colleges into account when there are multiple places. Education quality would

be the same for all places in a particular college, and it could either di¤er or be the

same across di¤erent colleges. Next, we will go through the following scenarios:

One college with k places; two colleges with the same quality; k colleges with

di¤erent qualities.

2.4.1 One College with k Places

Consider the case where n students are applying to one college with k places.

The model has become to a discriminatory "price" model and every student has

single-unit demand. In both systems, the o¢ cial assigns the places to the students

from whom the o¢ cial gets the highest expected payo¤s. In the market system,

the o¢ cial�s only concern is the bribes, so the places would be allocated to the

students whose bribes are above the (k + 1)th highest bribe; however, in the exam

system, the o¢ cial has to consider exam scores as well as bribes.

Market System Given that the expected payo¤ function in the market system

is �m = bm��, the o¢ cial allocates the k places to the students whose bribes are

above the (k + 1)th highest bribe. The quality of college does not matter as

all places in one college are assumed to have the same quality. Based on this

information, there exists a symmetric equilibrium bribe for all students. We use

the standard approach in the auction model (see, for example, Krishna (2002),

p195) to obtain the equilibrium bribe.
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Claim 5 Given perfect capital markets and one college with k places, the sym-
metric equilibrium bribe in the market system satis�es

bm (a) = qE [YkjYk < a] :

Proof. See Appendix.
Since all students follow the same strategy, it is clear that the equilibrium

bribe is increasing in a. Therefore, the k places will be allocated to the students

with the k highest ability types, so the allocation result is e¢ cient.

Exam System The equilibrium bribe in terms of scores is as follows.

Claim 6 Given perfect capital markets and one college with k places, the sym-
metric equilibrium bribe in the exam system satis�es

be (s) =
q




E
�
Y 1+�s;k jYs;k < s

�
s�

:

Proof. See Appendix.
By using the results in Proposition 6 and 7, we have the following corollary.

Corollary 1 Given perfect capital markets and one college with k places, the
allocation result of the exam system is e¢ cient; the equilibrium bribe is decreasing

in the power of investigation.

Market system vs Exam system Next we compare the two systems in terms

of e¢ ciency and degree of corruption. Proposition 8 immediately implies the

following corollary.

Corollary 2 Given perfect capital markets and one college with k places, the al-
location results in both systems are e¢ cient; if � 6= 0, then the degree of corruption
in the exam system is lower than in the market system.

Proof. See Appendix.
This claim implies that both systems produce e¢ cient outcomes given perfect

capital markets. The existence of scores lowers the degree of corruption in the

exam system. Clearly, as the investigation is getting stricter, the degree of corrup-

tion in the exam system decreases, while the degree of corruption in the market

system keeps the same unless the investigation is strict enough to eliminate all

kinds of corruptions.

64



2.4.2 Two Colleges with the Same Quality

Now we assume the case where there are two colleges, fc1; c2g (each college has
one place, and the admission of each college is managed by one o¢ cial) and n

students, with n � 3.29 Here we have a price competition game. This competition
game is similar to a Bertrand model.30 Recall we assume o¢ cials can not elicit

bribes from students, but they may compete for a student by reducing the bribe

he needs to pay. For simplicity, we assume a particular student would bribe the

same amount to the two o¢ cials because the values of the two colleges are the

same. For example, suppose two students fi; jg apply to two colleges fc1; c2g. If
it turns out i will provide a higher expected payo¤to the two o¢ cials, say �i > �j,

then one o¢ cial has incentives to reduce i�s bribe to �0i and get i to accept his

o¤er. Since both o¢ cials will use the same strategy, in the end, �01 will be slightly

higher than �2. For simplicity, it is assumed that �
0
1 = �2 in the equilibrium. In

a general game, we assume each o¢ cial observes students�intended bribes, and

then compete for the student from whom the o¢ cial gets the highest expected

payo¤.

The game induced by the two systems is described as follows:

1. Students realise their abilities and valuations for both colleges. In the mar-

ket system, students go to the next step; in the exam system, students take

the exam, obtain scores and go to the next step.

2. Students submit their strict intended bribes,
�
bIB1 ; b

IB
2 ; :::; b

IB
n

	
; to both

o¢ cials simultaneously.

3. Each o¢ cial observes the intended bribes, the expected payo¤
�
�IB1 ; �

IB
2 ; :::; �

IB
n

	
by these intended bribes and �IB1 > �IB2 > �IB3 ; :::; �

IB
n�1 > �IBn and then

o¤er student 1 a required amount, b1;j with b1;j � bIB1 , j = 1; 2.

4. Student 1 selects the o¤er with a lower b1, or choose one randomly if b1;1 =

b1;2, and then student 1 bribes the o¢ cial with b1;j if he chooses college cj.

29We are currently unable to analyse the case with k > 2 colleges.
30Bertrand competition is a model of competition used in economics, named after Joseph

Louis Francis Bertrand (1822-1900). Speci�cally, it is a model of price competition between
duopoly �rms with the same marginal cost and producing homogeneous products. The game
results in each charging the price that would be charged under perfect competition, known as
marginal cost pricing. Competing in price means that �rms can easily change the quantity they
supply, but once they have chosen a certain price, it is very hard, if not impossible, to change
it.
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5. Suppose student 1 chooses college c1, then the o¢ cial of college c2 would

make an o¤er to student 2 with b2 = bIB2 ; student 2 bribes the o¢ cial of

college c2 with b2.

6. The o¢ cials receive the actual expected payo¤s, f�1; �2g, and then make
admission o¤ers to student 1 and 2.

Referring to the standard Bertrand model, the equilibrium strategy of both

o¢ cials will be o¤ering student 1 an amount such that �1 = �
IB
2 . Since the two

o¢ cials will have the same strategy, s1 receives two identical o¤ers, and s1 will

choose one randomly, say c1, and then the o¢ cial of c2 will make an o¤er to s2
with b2 = bIB2 .

The o¢ cials�decision making process is public knowledge, and hence it will be

in the students�consideration. Next, we aim to �nd students�optimal strategies

in each system respectively.

Market System In the market system, the o¢ cials�expected payo¤ function

is bm��, and hence the competition is on the student with the highest intended

bribe. In equilibrium, bm1 = bm;IB2 . Given the o¢ cials� strategy, the following

claim gives students�equilibrium bribes in the market system.

Claim 7 Given perfect capital markets and two colleges (one place at each col-
lege) with the same quality, the symmetric equilibrium bribe in the market system

satis�es

bm (a) = q

 
a�

Z a

0

�
F (y)

F (a)

�n�2
dy

!
:

Proof. See Appendix.
Again, we use the uniformly distributed ability example to illustrate the equi-

librium.

Example 10 If abilities are uniformly distributed on [0; 1], then F (a) = a, and
the equilibrium satis�es

bm (a) = q

�
a�

Z a

0

�y
a

�n�2
dy

�
=

n� 2
n� 1aq:
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It will be worthwhile to compare the results between the following cases: one

college with one place; one college with 2 places; 2 colleges with the same quality

and each college has one place. Let bm;1 (a) denote the equilibrium bribe in the

�rst case; bm;2 (a), denote the equilibrium bribe in the second case; and bm;3 (a),

denote the equilibrium bribe in the third case. We have the following claim.

Proposition 9 Given perfect capital markets, in the market system, bm;2 (a) <
bm;3 (a) < bm;1 (a); and the expected revenue for the only o¢ cial in the case of

one college with 2 places is the same as the total expected revenues for the two

o¢ cials in the case of 2 colleges with the same quality and each college having

one place.

Proof. See Appendix.
The �rst part of this claim imply that a student shades more of his valuation

and hence when there are more objectives, the same student bribes more in the

�rst case than in the last two cases; the competition between o¢ cials gets students

to be more aggressive because a student realises that if his bribe is the highest,

then he will only need to pay the second highest bribe, and hence he also bribes

more in the last case than in the second case. The second part of this claim states

that the degree of corruption is the same in the second and third cases although

students are more aggressive in the third case

.

Exam System In the exam system, the o¢ cials�expected payo¤ function is

bes�, and hence in equilibrium, be1s
�
1 = be;IB2 s�2. Given the o¢ cials�strategy, the

following claim gives students�equilibrium bribes in the market system.

Claim 8 Given perfect capital markets and two colleges (one place at each col-
lege) with the same quality, the symmetric equilibrium bribe in the exam system

satis�es

be (s) =
q




 
s� (1 + �)

Z s

0

�y
s

�� �Fs (y)
Fs (s)

�n�2
dy

!
:

Proof. See Appendix.
Proposition 9 immediately implies the following corollary. Let be;1 (s) denote

the equilibrium bribe in the case of one place; be;2 (a), denote the equilibrium

bribe in the case of one college with 2 places; and be;3 (a), denote the equilibrium

bribe in the case of 2 colleges with the same quality and each college having one

place.
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Corollary 3 Given perfect capital markets, in the exam system, be;2 (s) < be;3 (s) <
be;1 (s); the expected revenue for the only o¢ cial in the case of one college with 2

places is the same as the total expected revenues for the two o¢ cials in the case

of 2 colleges with the same quality and each college having one place.

The comparison between the market system and the exam system is com-

plicated in the case with a general distribution function, so we take uniform

distribution as an example.

Example 11 If abilities are uniformly distributed on [0; 1], then F (a) = a.

Hence Fs (s) =
s



. So,

be (s) =
q




�
s� (1 + �)

Z s

0

�y
s

�� �y
s

�n�2
dy

�
=

n� 2
n� 1 + �

q



s;

which can be transformed to

be (a) =
n� 2

n� 1 + �aq:

Compared to the market system, where the equilibrium in the same example is

bm (a) =
n� 2
n� 1aq:

The equilibrium in the exam system has included the power of investigation in the

denominator. Therefore, the amount of any student�s bribe is lower in the exam

system.

As regards e¢ ciency and degree of corruption, we have the following conclu-

sions.

Corollary 4 Given perfect capital markets and two colleges (one place at each
college) with the same quality, the allocation results in both systems are e¢ cient.

Proposition 10 Given perfect capital markets and two colleges (one place at
each college) with the same quality, the degree of corruption in the exam system

is lower than in the market system.

Proof. See Appendix.
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2.4.3 k Colleges with Di¤erent Qualities

We next turn to a more realistic case where there are k colleges, fc1; c2; :::ckg,
with strictly ranking qualities, q1 > q2 > ::: > qk, and each college has only one

place available for admission; there are n > k students. Student i has di¤erent

valuations for di¤erent colleges, for example student i�s valuation of college cj
is vij = V (ai; qj), which di¤ers in colleges. Considering the total social welfare,

colleges with better qualities should have higher priority to admit students with

higher abilities because of the supermodularity of education production. There-

fore, we assume that colleges admit students sequentially, i.e., the college with

the highest quality starts the admission procedure �rst, and then the college with

the second highest quality, and so on.

The game is described as follows:

1. Students realise their abilities and valuations for all colleges. In market

system, students go to the next step; in exam system, students take the

exam, obtain scores and go to the next step.

2. The admission commences from c1. Students decide how much to bribe

the o¢ cial at c1. The o¢ cial at c1 will allocate the place to the student

from whom he gets the highest expected payo¤ among n students. The

remaining students are rejected and enter the next round.

3. All remaining students bribe the o¢ cial at c2. The o¢ cial of c2 then chooses

the student from whom he gets the highest expected payo¤ among the n�1
students. The remaining students are rejected and enter the next round.

..........

4. In the round k, the last remaining n � k + 1 students bribe the o¢ cial at
college ck. The o¢ cial of ck then chooses the student from whom he gets

the highest expected payo¤ among the n� k + 1 students.

The o¢ cials�decision making process is public knowledge in students, and

hence it will be in students�consideration. Next, we aim to �nd students�optimal

strategies in each system respectively.

Market System In the market system, one o¢ cial will allocate the place at

his college to the student with the highest bribe. We begin with the simplest

model, in which there are two colleges cH and cL, with quality qH > qL >
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0; n > 2 students compete for the two places. Student i�s valuations of cH
and cL depend on his ability and qualities of cH and cL, i.e. vi;j = ai � qj,�
i = 1; :::n; j = H;L; v0a > 0; v

0
q > 0

�
. In a healthy system, without bribes, cH

will take the student with the highest ability, and cL takes the student with the

second highest ability based on their applications. Under the assumption of cor-

ruption, however, students have to decide how much to bribe the o¢ cial in cH
when they apply to cH , and how much to bribe the o¢ cial of cL if they failed

to win the place in cH . A symmetric equilibrium consists of two bribe functions

(bmH ; b
m
L ), denoting the bribe strategies in the �rst and second admissions, respec-

tively. Assume that the information of the winning student will not be released,

and then the equilibrium bribes in both rounds will be depending on the student�s

values.31 We are interested in the equilibria that are sequentially rational, which

implies that a student chooses sequential strategies to form the equilibria in both

rounds. We begin with the second round.

In the second round, the admission has completed in cH , but the winner�s

value is not released, thus, bL is independent of the �rst round. The game is

almost the same as in the one-college, one-place case with (n� 1) students. Back
to the �rst round, a student has to take the expected result of the second round

into account when he decides the optimal bribe in the �rst round. Suppose that

all students are following the same strategies, bH in the �rst round, and bL in the

second round regardless of what happens in the �rst round. The following claim

shows the equilibrium bribes in this game.

Claim 9 Given perfect capital markets and two colleges with di¤erent qualities,
the symmetric equilibrium bribes in the market system satisfy

bmL = qLE [Y2jY2 < a < Y1] ;
bmH = (qH � qL)E [Y1jY1 < a] + qLE [Y2jY1 < a] :

Proof. See Appendix.
The equilibrium bribe in the �rst round, bmH , depends on not only the quality

of cH , qH , but also the quality of cL, qL. bmH is increasing in qH but decreasing in

qL.

Let us take an example where a follows uniform distribution.

Example 12 If abilities are uniformly distributed on [0; 1], then the equilibrium

31In the second round, the only updated information of any one of remaining students is that
at least one other student�s valuation (ability) is higher than his, but this information will not
change his belief about distribution of other students�abilities.
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bribes satisfy

bmH (a) =
n� 1
n

aqH �
1

n
aqL;

bmL (a) =
n� 2
n� 1aqL:

The gap of quality between the two colleges may cause a student�s bribe to

the college with high quality is less than his bribe to the college with low quality.

When

qH
qL
� 1 + n� 2

(n� 1)2
;

bmH (a) � bmL (a); otherwise bmH (a) < bmL (a). When bmH (a) < bmL (a), it indicates a
student with ability a who is active in the �rst round but fails to win the place in

cH , will be more aggressive in the second round. This is due to the deterioration

of available supply relative to current demand given a small di¤erence of qualities

between the two colleges.

Suppose there are k colleges with di¤erent qualities, q1 > q2 > ::: > qk. We

will derive symmetric bribing strategies (bm1 ; b
m
2 ; :::; b

m
k ) by working backward from

the last round. So �rst consider the kth round, the equilibrium bribe is

bmk (a) = qkE
h
Y
(n�k)
1 jY (n�k)1 < a

i
:

The equilibrium in the last round does not depend on the bribes in other

rounds. Consider the jth round for some j < k. Now look at student i with ability

a and assume that all other students are following the jth round strategy bmj (a),

and suppose all students including i will follow the strategies bmj+1; b
m
j+2; :::; b

m
k , in

the subsequent games.

Claim 10 Suppose there are k colleges with di¤erent qualities q1 > q2; :::; > qk

and n students applying sequentially. Given perfect capital markets, a set of

symmetric equilibrium strategies in the �rst, jth, 2 � j � k � 1, and kth round
in the market system is as follows:

bm1 (a) =

k�1X
L=1

(qL � qL+1)E [YLjY1 < a] + qkE [YkjY1 < a] ;

bmj (a) =
k�1X
L=j

(qL � qL+1)E [YLjYj < a < Yj�1] + qkE [YkjYj < a < Yj�1] ;
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bmk (a) = qkE [YkjYk < a < Yk�1] :

Proof. See Appendix.

Example 13 Abilities are uniformly distributed on [0; 1]. In the last round, the
equilibrium bribing strategy is

bmk (a) =
n� k

n� k + 1aqk:

Proceeding inductively, it may be veri�ed that the bribing strategy in the jth round,

2 � j � k � 1, is

bmj (a) =
n� k

n� j + 1aqk +
k�1X
L=j

n� L
n� j + 1a (qL � qL+1) :

The equilibrium bribe of a particular student in the jth round is determined

by the number of students and colleges, the student�s ability, and qualities of all

the colleges.

Exam System As usual, we begin with the simplest model with two colleges

as in the last part. Now an o¢ cial has to take scores and bribes into account and

allocate the place at his college to the student from whom he gets the highest

expected payo¤.

We use the same notations as in the market system. A symmetric equilibrium

consists of two bribe functions (beH ; b
e
L), denoting the bribe strategies in the �rst

and second admissions, respectively. The bribe in the �rst round depends on the

student�s values and score. Assume that the information of the winning student

in the �rst round will not be released. Thus, in the second round, the bribe

strategy in the second round will only depend on the value of the low quality

college and score.

Claim 11 Given perfect capital markets and two colleges with di¤erent qualities,
the equilibrium bribes in the exam system satisfy

beL (s) =
qL

s�

E
�
Y 1+�s;2 jYs;2 < s < Ys;1

�
;

beH (s) =
qH � qL

s�

E
�
Y 1+�s;1 jYs;1 < s

�
+
qL

s�

E
�
Y 1+�s;2 jYs;1 < s

�
:

Proof. See Appendix.
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Example 14 Abilities are uniformly distributed on [0; 1]. If a follows uniform
distribution, then s follows uniform distribution as well, but with a di¤erent dis-

tribution, Fs = s


, and hence

beH (s) =
n� 1
n+ �

qH � qL



s+
(n� 1) (n� 2)

(n+ �) (n+ � � 1)
qL


s

=
n� 1
n+ �

qH


s� (n� 1) (1 + �)

(n+ �) (n+ � � 1)
qL


s;

beL (s) =
n� 2

n+ � � 1
qL


s:

It is easy to compare the two systems with the uniformly distributed ability.

Proposition 11 Given perfect capital market and two colleges with di¤erent
qualities, if abilities are following uniform distribution, then the degree of cor-

ruption in the market system is higher than in the exam system.

Proof. See Appendix.
Now consider there are k colleges with di¤erent quality, q1 > q2 > ::: > qk.

In what follows, Y (n�1)s;j denotes the jth highest of n � 1 scores, Fs;k denotes
the distribution of Y (n�1)s;k , and fs;k denotes the corresponding density. We will

derive symmetric bribing strategies (be1; b
e
2; :::; b

e
k) by working backward from the

last round. First consider the kth round, the equilibrium bribe is

bek (s) =
qk

s�

E

��
Y
(n�k)
s;1

�1+�
jY (n�k)s;1 < s

�
;

and the contribution to the o¢ cial of ck in equilibrium is

�ek (s) =
qk


E

��
Y
(n�k)
s;1

�1+�
jY (n�k)s;1 < s

�
:

Next we use the same method as in the market system to �nd the equilibrium

in every other round. Consider the jth round for some j < k. Now look at

student i with score s, and assume that all other students are following the jth

round strategy bej (s), and suppose all students including i will follow the strategies

bej+1; b
e
j+2; :::; b

e
k, in the subsequent games.

Claim 12 Given perfect capital markets, a set of symmetric equilibrium strate-

gies in the �rst, jth, 2 � j � k � 1, and kth rounds in the exam system is as
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follows:

be1 (s) =

k�1X
L=1

(qL � qL+1)



E
�
Y 1+�s;L jYs;1 < s

�
s�

+
qk



E
�
Y 1+�s;1 jYs;1 < s

�
s�

;

bej (s) =

k�1X
L=j

(qL � qL+1)



E
�
Y 1+�s;L jYs;j < s < Ys;j�1

�
s�

+
qk



E
�
Y 1+�s;k jYs;j < s < Ys;j�1

�
s�

;

bek (s) =
qk



E
�
Y 1+�s;k jYs;k < s < Ys;k�1

�
s�

:

Proof. See Appendix.
The following example shows the result of the model when ability follows

uniform distribution.

Example 15 Abilities are uniformly distributed on [0; 1]. In the last round, the
equilibrium contribution to the o¢ cial in ck is

�ek (s) =
n� k

n� k + � + 1
qk


s1+�;

and the symmetric equilibrium bribe strategy is

bek (a) =
n� k

n� k + � + 1
qk


s:

Proceeding inductively, it will be veri�ed that the bribing strategy in the jth round

is

bej (s) =
n� k

n� j + � + 1
qk


s+

k�1X
L=j

n� L
n� j + � + 1

(qL � qL+1) s



;

which can be transformed to

bej (a) =
n� k

n� j + � + 1aqk +
k�1X
L=j

n� L
n� j + � + 1a (qL � qL+1) :

The equilibrium bribe of a particular student in the jth round is determined

by the number of students and colleges, the student�s score, the investigation

power and qualities of all the colleges. Given the same conditions and uniform

distribution ability, the degree of corruption in the exam system is lower than in

the market system, but both systems will produce e¢ cient outcome.

Corollary 5 Given perfect capital markets and two colleges with di¤erent quali-
ties, if the ability follows uniform distribution, then the allocation results in both
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systems are e¢ cient but the degree of corruption in the market system is higher

than in the exam system.

The analysis on the CCAmodel under corruption given perfect capital markets

presents students�equilibrium strategies in di¤erent scenarios, and also compare

of the two systems in terms of e¢ ciency and degree of corruption. Although the

allocation results in both systems are e¢ cient, the exam system dominates the

market system in terms of degree of corruption. It implies that the o¢ cials in

the market system would get more expected revenue than in the exam system.

2.5 Model with Borrowing Constraints

In this section, we look at the model assuming that there are no capital markets

at all. The reason for this market failure is that there is not a well constructed

capital system for students. Another possible reason is that the inability to

penalize recalcitrant borrowers or an unveri�able output level would be su¢ cient

to close down capital markets. (Fernandez, 1998) As a result, those who can not

a¤ord the cost of bribing for education have to consider their budgets.

Assume that there are n students, each of whom is characterized by an en-

dowment of �ability�, a, and initial wealth w. a and w are independent and

distributed on the area of [0; 1]� [0; 1] according to the joint distribution F (a; w)
with a density function f (a; w). These attributes are independent across stu-

dents. Assume both ability and wealth are not observed by other students, but

each student knows the probability distribution of other students�abilities and

wealth. We will refer to the pair (ai; wi) as the type of student i. A student�s

strategy should be a function of his ability and budget in the market system, and

a function of his score and budget in the exam system. Firstly, we look at the

simplest case of one college with one place and n applicants. For the purpose of

comparison between systems, we use a to substitute s in the equilibrium bribe of

the exam system.32

Che and Gale (1995, 1998) show that, in a �rst price auction with borrowing

constraints, there exists a unique, symmetric equilibrium given su¢ cient condi-

tions. We employ their results in our model as follows.

Let Gc (a; w) denote the probability that a random chosen student�s type, say

(a0; w0), satis�es a0 < a or w0 < w. We have

Gc (a; w) � 1�
Z 1

a

Z 1

w

f (ea; ew) d ewdea:
32In the exam system, score can be transformed to a function of ability by s = 
a.
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In the x (x = market; exam) system, we consider the equilibrium strate-

gies of the form Bx (a; w) = min f�x (a) ; wg, where �x (a) is some continuous,
strictly increasing function in a.33 Consider a student with (a; 1). This stu-

dent e¤ectively never faces �nancial constraints and his equilibrium bribe would

be Bx (a; 1) = min f�x (a) ; 1g = �x (a). A random selected student (a0; w0)

has a lower bribe than type (a; 1) if min f�x (a0) ; w0g � �x (a) with probabil-

ity F c (a) � Gc (a; �x (a)). Therefore, the problem facing a student with (a; 1)

is the same as if all students do not have borrowing constraints, with abilities

drawn from the distribution F c (�). By using the standard technique, we can
easily obtain the equilibria in both systems. However, the existence of �x (�) is
not immediate because F c (�) is determined by �x (a) itself. Che and Gale (1998)
show that a technical assumption can ensure the existence of a unique equilibrium

bribe function.34

Next we analyse the two systems respectively.

2.5.1 Market System

In the market system, the equilibrium bribe is of the following form:

Bm (a; w) = min f�m (a) ; wg :

The result of Claim 2 implies �m (a) must satisfy

�m (a) = v � q
Z a

0

F c1 (y)

F c1 (a)
dy;

or

�m (a) = qE [Y c1 jY c1 < a] ;

where Y c1 is the highest of n � 1 draws from the distribution F c, and F c1 (�) �
F c (�)n�1 is the distribution of Y c1 .
If a student with (a0; w0) and �

m (a0) < w0, then he would follow �
m (a0),

otherwise he just bribes his wealth. The strategy entails Leontief isobid curves.

Figure 7 depicts the set of types who bribe the same amount as does type (a0; w0).

We can �nd a point (a0; 1) which satis�es Bx (a0; w0) = �
x (a0). Clearly, there are

33Che and Gale (1995) show that any symmetric equilibrium in a �rst price auction with
borrowing constraints must take the form as B (�;w), and �x (�) is continuous and strictly
increasing.
34

(n� 1)w + Gc (a;w)

Gc1 (a;w)

is strictly increasing in w for all a 2 (0; 1) :
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two possible groups. The �rst group consists of those students whose �m (�) is less
than their wealth, e.g., (a0; w0), and the horizontal line with w0 as its abscissa;

the second includes those students whose �m (�) is greater than their wealth and
the vertical line with a0 as its vertical coordinates. All students in the �rst group

will bribe their wealth, and the bribes of all students in the second group follow

�m (�).

( )00 , wa

( )1,a′

( )amβ0w

1

1 a
0a

( )0, wa′

( )00 , wa

( )1,a′

( )amβ0w

1

1 a
0a

( )0, wa′

Figure 7: Budget Constraint in Market System

Claim 13 With borrowing constraints, the o¢ cial�s expected revenue in the mar-
ket system is

E [�m] = qE [Y c2 ] ;

where Y c2 is the second-highest of n draws from the distribution F c (�).

Proof. See Appendix.
This claim implies that the expected revenue in the case with borrowing con-

straints is of the same form as in perfect capital markets model, but with a

di¤erent distribution for abilities.

This research is from a social planner�s perspective, and hence e¢ ciency of

outcomes concerns us. If we consider students�valuation as the product of edu-

cation, then the e¢ cient allocation results imply the maximal total educational

output. Therefore, the principle of e¢ ciency in our work is therefore to allocate

the places of the best colleges to those students who can use the education oppor-

tunities most e¢ ciently. In the market system, the o¢ cials decide the admission
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only based on the amount of bribe paid by students. Given perfect capital mar-

kets, the allocation result is e¢ cient because students have no �nancing problem

and those with higher abilities will bribe more and be accepted. However, under

borrowing constraints, students with higher ability may lose their opportunities

to receive higher education. Let us look at the following example.

Suppose two students, (a0; w0) and (a1; w1) with a0 > a1, are competing for

one place. Without borrowing constraints, student (a0; w0) wins the place be-

cause bm (a0) > bm (a1) even if bm (a0) > w0. With budget constraints, suppose

�m (a0) > w0 and w0 < �
m (a1) < w1. Since (a0; w0) can only bribes w0, which

is less than �m (a1), he will be rejected by the o¢ cial although he has a higher

ability. This scenario is graphed in Figure 8. Point (a0; w0), (a1; w1) denote the

two types respectively, and �m (a) represents an increasing, symmetric function of

a. So, Bm (a0; w0) = �
m (a0) and Bm (a1; w1) = �

m (a1). Since �
m (a0) < �m (a1),

Bm (a0; w0) < B
m (a1; w1), and hence (a1; w1) will be accepted. Generally speak-

ing, any types which fall in the shadow area in Figure 8, e.g. (a1; w1), will bribe

more and win the place with higher probability than student (a0; w0) although

they have lower abilities. Note that the shadow area above the curve �m (a)

indicates the types who are not subject to the budget, so their bribes follow

�m (a). The shadow area below the curve represents the types who are limited

by their budgets, so they bribe their budgets, which however are higher than w0.

This example suggests that allocation results with borrowing constraints may be

( )00 , wa

( )1,a′

( )amβ
0w

1

0a

( )1,1a

a

( )0, wa′

( )11, wa

( )1amβ

1a 1

( )00 , wa

( )1,a′

( )amβ
0w

1

0a

( )1,1a

a

( )0, wa′

( )11, wa

( )1amβ

1a 1

Figure 8: Ine¢ ciency of the Market System

ine¢ cient.

Degree of corruption is another feature concerning us. Recall the expected

78



received bribe in the perfect capital case satis�es

E [�m;p] � qE [Y p2 ] ;

and the expected received bribe in the case with borrowing constraints satis�es

E [�m;c] � qE [Y c2 ] ;

where Y p2 and Y
c
2 denote the second highest of n draws from the distribution

F (�) and F c (�) respectively. Therefore, if the relationship between F (�) and
F c (�) satis�es E [Y p2 ] > E [Y c2 ], then the degree of corruption is greater in the

unconstrained case than in the constrained case.

2.5.2 Exam System

In the exam system, the equilibrium strategy is assumed to be of the following

form:

Be (a; w) = min f�e (a) ; wg ;

for some function �e (a) increasing in a. Note we do not use score in the function

as we can substitute s by 
a to make the model simpler. For the same reason as

in the market system, it must be that �e (a) < a.

The result of Claim 3 implies �e (a) must satisfy

�e (a) = v � (1 + �) q
Z a

0

F c1 (y) y
�

F c1 (y) s
�
dy;

or

�e (a) = q
E
h
(Y c1 )

1+� jY c1 < a
i

a�
:

Claim 14 With borrowing constraints, the o¢ cial�s expected revenue in the exam
system is

E [�c;e] =
q

a�
E
h
(Y c2 )

1+�
i
:

where Y c2 is the second-highest of n draws from the distribution F c (�).

Proof. See Appendix.
For the same reason, the allocation result in the exam system may be in-

e¢ cient because a higher ability student could fail to win a place due to the
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Figure 9: Market System and Exam System I

borrowing constraints. If F (�) and F c (�) satis�es E [Y p2 ] > E [Y c2 ], then the de-
gree of corruption is greater in the unconstrained case than in the constrained

case.

2.5.3 Market System vs Exam System

Claim 3 immediately implies that �e (a) � �m (a) and a strict inequality holds

for all a 2 (0; 1]. This result is graphed in Figure 9. The curve �m (a) is above
the curve �e (a) for all a 2 (0; 1].
We use a simple example to compare the two systems in terms of e¢ ciency.

Consider a student S1 with type (a0; w0), who has higher ability but lower wealth

than student S2 with type (a0; w0) and a0 > a0, w0 < w0. S1 and S2 are competing

for one place. An e¢ cient outcome is supposed to allocate the place to S1 since

S1 has a higher ability than S2. Given Claim 3, we have the following possible

outcomes as graphed in Figure 10, Figure 11 and Figure 12.

1. See Figure 10. Consider S1�s endowment point is below �
m and �e. Since

a0 < a0, and w0 < w0, S2�s three possible endowments are in area a0S1w0.

(a) When a0 2 (a1; a0), for instance S(1)2 , S2 wins the place in both systems.
The allocations are ine¢ cient in both systems as the student with lower

ability wins the place.
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Figure 10: Market System and Exam System II
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Figure 12: Market System and Exam System IV

(b) When a0 2 (a2; a1), for instance S(2)2 , S2 wins in the market system,
but S1 wins in the exam system. The allocation is e¢ cient in the exam

system, but ine¢ cient in the market system.

(c) When a0 2 (0; a2), for instance S(3)2 , S1 wins in both systems. The
allocations are e¢ cient in both systems.

2. See Figure 11. Consider S1�s endowment point is below �
m and above �e.

Since a0 < a0, and w0 < w0, S2�s two possible endowments are in area

a0S1w0.

(a) When a0 2 (a1; a0), for instance S(1)2 , S2 wins the place in the market
system, but S1 wins in the exam system. The allocation is e¢ cient in

the exam system , but ine¢ cient in the market system.

(b) When a0 2 (0; a1), for instance S(2)2 , S1 wins in both systems. The
allocations are e¢ cient in both systems.

3. See Figure 12. Consider S1�s endowment point is above �
m and �e. Since

a0 < a0, and w0 < w0, S2�s only possible endowment is in area a0S1w0. There

is only one possible result. When a0 2 (0; a1), S1 wins in both systems. The
allocations are e¢ cient in both systems.

The outcomes above show that allocation results could be ine¢ cient in both

systems because of borrowing constraints. However, for the same set of students
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and colleges, the allocation results induced by the exam system are always ef-

�cient if the allocation results induced by the market system are e¢ cient, and

the allocation results induced by the exam system may be e¢ cient even if the

allocation results induced by the market system are ine¢ cient. So, we conclude

the exam system dominates the market system in terms of e¢ ciency.

As regards degree of corruption, the following claim implies that, once again,

the exam system is less corrupt than the market system with borrowing con-

straints.

Proposition 12 Given borrowing constraints, the allocation results in both sys-
tems may be ine¢ cient, but the exam system dominates the market system in

terms of e¢ ciency; the degree of corruption in the market system is greater than

in the exam system.

Proof. See Appendix.
The intuition here is that the existence of exams and scores has lowered the

amount of bribe, and hence the e¤ect of borrowing constraints on e¢ ciency. With

borrowing constraints, allocation results in both systems may be ine¢ cient, how-

ever, exams possess greater allocation e¢ ciency than markets. Di¤erent scores

imply di¤ering probabilities of being caught, and thus exams give students with

higher a ability but a lower budget a higher chance of being admitted. The o¢ -

cial�s expected revenue is higher in the market system than in the exam system

even with borrowing constraints.

2.6 Conclusion

The national college entry examination is used in China to decide whether stu-

dents are admitted by colleges or not. There are many criticisms of this system.

One of them is that many students may lose the opportunity of being educated at

colleges because of poor performance in the exam even though they are talented

but are not capable of taking exams. Another criticism focuses on corruption in

the admission process. These critics suggest abandoning the exam system and to

adopt a market system, in which each college decides to accept or reject a student

by face-to-face interviews or base on average performance in high school which

could only be shown in application materials. In the sense of telling the real

ability of students, the market system could perform better than the exam sys-

tem. However, the conclusion may be di¤erent if we include the considerations of

corruption. Corruption in this piece of work mainly implies that students have to
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bribe admission o¢ cials with the result that investment may not be productive.

The more important is that the allocation result could be ine¢ cient as a result of

corruption. We de�ne e¢ ciency as when students with the highest valuations of

higher education have a higher priority of being admitted. Students�valuations

are determined by their abilities and qualities of colleges. In this chapter, we �nd

the equilibria of the two systems under di¤erent assumptions, and then compare

the two systems in terms of e¢ ciency and the degree of corruption.

We �rstly assume that students have no borrowing constraints. They can

borrow money for bribing and pay that back after graduation. It has been shown

that the e¢ ciency of allocation would not be a¤ected in either the market or

the exam system. Places are allocated to students according to the ranking of

abilities. However, the degree of corruption is higher in the market system than

in the exam system because of the higher equilibrium bribe in the market system.

This result holds in both the simplest model with one place and the models with

multiple places or multiple colleges. The reason is that exams and scores provide

criteria for the authority to supervise admission o¢ cials, and students include it

into their decision making process. As intuition would suggest, the equilibrium

bribe is decreasing in the power of investigation.

The allocation may not be e¢ cient when students have borrowing constraints

because a higher ability student could lose his priority as his budget would not

allow him to bribe as much as he would like. We show that the exam system is

better than the market system in terms of e¢ ciency. The exam system may be

ine¢ cient, but it dominates the market system because the existence of exams

and scores reduces the e¤ect of budget constraints on e¢ ciency. Once again, the

expected amount of bribe in the exam system is lower than the market system,

and hence the degree of corruption in the market system is greater than that in

the exam system.

The conclusion is favours the exam system. However, there are many other

aspects that further analysis should take into account, such as the cost of taking

the exam, etc. The conclusion may change if we include these factors. Another

way that the conclusion might change is if corruption in the market system can

be avoided or made less serious by reinforcing the investigation system or using a

centralised admission system. All these aspects are possible directions of further

study.
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2.7 Appendix

Proof of Claim 2:

Proof. Assume there exists such a symmetric equilibrium involves student i

bribing bm (a) where bm (a) is di¤erentiable and increasing in a, @b
m

@a
> 0. Student i

is following an optimal strategy to maximise his expected payo¤ if he realises that

everyone else is bribing according to bm . We have a Bayesian Nash equilibrium

since we have assumed that the game is symmetric. Consider what happens if

student i with ability a bribes bm (z) instead of bm (a), which is the equilibrium

strategy.

The expected payo¤ of student i is

�i = F1 (z)� (v � bm (z)) :

Maximizing the expected payo¤ with respect to z yields the �rst order condi-

tion,

f1 (z)� (v � bm (z))� F1 (z) bm0 (z) = 0:

At a symmetric equilibrium it is optimal to report z = a, so we obtain

f1 (a)� (v � bm (a))� F1 (a) bm0 (a) = 0;

f1 (a)� (aq � bm (a))� F1 (a) bm0 (a) = 0

as v = aq.
@

@a
[bm (a)F1 (a)] = aqf1 (a) :

Since bm (0) = 0, student with zero ability will bribe nothing. Integrating and

rearranging the equation gives

bm (a) =
q

F1 (a)

Z a

0

[yf1 (y)] dy

= qE [Y1jY1 < a] :

Proof of Claim 3:

Proof. Assume there exists such a symmetric equilibrium involves student i

bribing be (s) where be (s) is di¤erentiable and also satis�es that �e (s) = be (s) s�

is di¤erentiable and increasing in s, @�
e

@s
> 0.We now look at a particular student
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i. Suppose student i bribes be (z) instead of equilibrium strategies, be (s).

Student i�s expected payo¤ is

� = Pr (win) (v � be (z))
= Pr

�
be (z) s� � � (Ys;1)

�
(v � be (z)) :

Note we use s� as the probability of keeping the bribe safely. This is because

the student�s score is observed by the o¢ cial, and hence the probability of being

caught does not change even if i pretended to be some other types.

Now we let S denote the inverse function of �, i.e. s = S
�
be (s) s�

�
.

Pr
�
be (z) s� � � (Ys;1)

�
= Pr

�
S
�
be (z) s�

�
� Ys;1

�
= Fs;1

�
S
�
be (z) s�

��
:

So, student i�s expected payo¤ can be written as

� = Fs;1
�
S
�
be (z) s�

��
(v � be (z)) :

The �rst order condition in terms of z is

fs;1
�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
be0 (z) s� (v � be (z))�Fs;1

�
S
�
be (z) s�

��
be0 (z) = 0;

fs;1
�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
s� (v � be (z)) = Fs;1

�
S
�
be (z) s�

��
:

In equilibrium it is optimal to bribe be (s). Setting z = s in the �rst order

condition results in

fs;1
�
S
�
be (s) s�

��
S 0
�
be (s) s�

� �
vs� � be (s) s�

�
= Fs;1

�
S
�
be (s) s�

��
;

fs;1 (s)
@s

@�

�
vs� � �e (s)

�
= Fs;1 (s) ;

fs;1 (s)
�
vs� � �e (s)

�
= Fs;1 (s)�

e0 (s) ;

or

Fs;1 (s)�
e0 (s) + fs;1 (s)�

e (s) = vs�fs;1 (s) ;

or

Fs;1 (s)�
e (s) =

Z s

0

vy�fs;1 (y) dy;
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which has a solution

�e (s) =
1

Fs;1 (s)

Z s

0

fs;1 (y)

�
q



y1+�

�
dy

=
q




�
s1+� � (1 + �)

Z s

0

Fs;1 (y)

Fs;1 (s)
y�dy

�
:

Since

E
�
Y 1+�s;1 jYs;1 < s

�
=

1

Fs;1 (s)

Z s

0

fs;1 (y)
�
y1+�

�
dy;

we have

�e (s) =
q



E
�
Y 1+�s;1 jYs;1 < s

�
:

be (s) =
�e (s)

s�

=
q




�
s� (1 + �)

Z s

0

Fs;1 (y) y
�

Fs;1 (s) s�
dy

�
=

q




E
�
Y 1+�s;1 jYs;1 < s

�
s�

:

Proof of Proposition 6:

Proof. The place will be allocated to the student from whom the o¢ cial gets

the highest expected payo¤, i.e., the highest �e. Given

�e (s) =
q



E
�
Y 1+�s;1 jYs;1 < s

�
;

we have

�e (s) =
q




�
s1+� � (1 + �)

Z s

0

Fs;1 (y)

Fs;1 (s)
y�dy

�
;

@�e

@s
=
q




2664(1 + �) s� � (1 + �)
0BB@s� � fs;1 (s)

Z s

0

Fs;1 (y) y
�dy

Fs;1 (s)
2

1CCA
3775 ;

or

@�e

@s
=
q




2664(1 + �) fs;1 (s)
Z s

0

Fs;1 (y) y
�dy

Fs;1 (s)
2

3775 > 0:
Thus, the o¢ cial gets the highest expected payo¤ from the student with the
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highest score, and hence he will allocate the place to this student. Since the

student with the highest score has the highest ability, therefore, the result must

be e¢ cient.

Proof of Proposition 7:

Proof. Let � (s; �) denote E
�
Y 1+�s;1 jYs;1 < s

�
. We have �s > 0 and �� < 0 as

Ys;1 < s < 1.

Substituting � into the equilibrium function induces be =
q



�
s�
, hence be� =

q




�
��s

�� + �s�� ln s
�
. We have be� < 0 as �� < 0, s

�� > 0 and �s�� > 0, ln s < 0.

Thus, the equilibrium bribe is decreasing as the power of investigation.

Proof of Claim 4:

Proof. The equilibrium bribe of type a in the market system with one place is

as follows:

bm (a) =
q

F1 (a)

Z a

0

[yf1 (y)] dy:

The equilibrium bribe of type a in the exam system with one place is as follows:

be (a) =
q

a�F1 (a)

Z a

0

�
y1+�f1 (y)

�
dy;

which is transformed from

be (s) =
1

s�Fs;1 (s)

Z s

0

fs;1 (y)

�
q



y1+�

�
dy

since s = 
a.

Since for all a 2 (0; 1], if � 6= 0, thenZ a

0

�
qy

F1 (a)

�y
a

��
f1 (y)

�
dy <

Z a

0

�
qy

F1 (a)
f1 (y)

�
dy;

and hence
q

a�F1 (a)

Z a

0

�
y1+�f1 (y)

�
dy <

q

F1 (a)

Z a

0

[yf1 (y)] dy:

Therefore, we have be (a) � bm (a) and a strict inequality holds for all a 2 (0; 1].
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Proof of Proposition 8:

Proof. In both systems, the place is allocated to the student with the highest
ability, i.e. highest valuation. So, the results are e¢ cient in both systems.

To compare the degree of corruption between the two systems, we need to

derive the o¢ cial�s expected revenue.

The expected revenue in system x (x = market; exam) is

E (�x) = nE (bx;ex) ;

where E (�x) denotes the expected revenue, and E (bx;ex) denotes the ex ante

expected bribe of a particular student with ability a in the market system, marked

by m, and the exam system, marked by e, respectively.35 We know that

E (bm;ex) =

Z 1

0

E (bm) f (a) da;

and

E (be;ex) =

Z 1

0

E (be) f (a) da:

Clearly, E (bm;ex) � E (be;ex) if and only if E (bm) � E (be).
Given

E (bx) = Pr (Win in the x system)� bx (a)

and for a particular student, the probabilities of being allocated the place in the

two systems are the same, therefore the inequality of E (bm) � E (be) is equivalent
to bm (a) � be (a).
Claim 3 immediately implies that E (bm) � E (be) and a strict inequality holds

for all a 2 (0; 1]. Therefore, E (bm;ex) > E (be;ex), and hence E (�m) > E (�e).

The expected winning bribe in the exam system is lower than in the market

system, which implies the degree of corruption is lower in the exam system.

Proof of Claim 5:

Proof. Consider what happens if student i bribes bm (z) instead of bm (a), which
is the strategy in equilibrium.

The expected payo¤ of student i is therefore

�i = Fk (z)� (v � bm (z)) :
35See de�nition of ex ante expected value in Krishna (2002) p20.
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Maximizing the expected payo¤ with respect to z yields the �rst order condi-

tion,

fk (z)� (v � bm (z))� Fk (z) bm0 (z) = 0:

At a symmetric equilibrium it is optimal to report z = a, so we obtain

fk (a)� (v � bm (a))� Fk (a) bm0 (a) = 0;

fk (a)� (aq � bm (a))� Fk (a) bm0 (a) = 0

as v = aq.
@

@a
[bm (a)Fk (a)] = aqfk (a) :

Since bm (0) = 0, student with zero ability will bribe nothing. Integrating and

rearranging the equation gives

bm (a) =
q

Fk (a)

Z a

0

[yfk (y)] dy

= qE [YkjYk < a] :

Proof of Claim 6:

Proof. Consider what happens if student bribes be (z) instead of be (s) which is
equilibrium strategy. Student i�s expected payo¤ is

� = Pr (win) (v � be (z))
= Pr

�
be (z) s� � �e (Ys;k)

�
(v � be (z)) :

Note we use the product of be (z) s� as the contribution to the o¢ cial by i because

even if i bribes be (z) which is di¤erent with his equilibrium strategy be (z), the

probability of keeping the bribe is still s� for the o¢ cial. Now we let S denote

the inverse function of �e.

Pr
�
be (z) s� � �e (Ys;k)

�
= Pr

�
S
�
be (z) s�

�
� Ys;k

�
= Fs;k

�
S
�
be (z) s�

��
:

So, student i�s expected payo¤ can be written as

� = Fs;k
�
S
�
be (z) s�

��
(v � be (z)) :
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The �rst order condition in terms of z is

fs;k
�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
be0 (z) s� (v � be (z))�Fs;k

�
S
�
be (z) s�

��
be0 (z) = 0;

fs;k
�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
s� (v � be (z)) = Fs;k

�
S
�
be (z) s�

��
:

In equilibrium it is optimal to bribe be (s). Setting z = s in the �rst order

condition results in

fs;k
�
S
�
be (s) s�

��
S 0
�
be (s) s�

� �
vs� � be (s) s�

�
= Fs;k

�
S
�
be (s) s�

��
;

fs;k (s)
@s

@�e
s�
�
vs� � �e (s)

�
= Fs;k (s) ;

fs;k (s)
�
vs� � �e (s)

�
= Fs;k (s)�

e0;

@

@s
[�e (s)Fs;k (s)] =

�
q



s1+�

�
fs;k (s) :

Combine with be (0) = 0, which implies that student with zero ability will

bribe nothing. Integrating and rearranging the equation gives

�e (s) =
q




1

Fs;k (s)

Z s

0

�
y1+�fs;k (y)

�
dy

=
q



E
�
Y 1+�s;k jYs;k < s

�
=

q




�
s1+� � (1 + �)

Z s

0

Fs;k (y)

Fs;k (s)
y�dy

�
:

Thus, the symmetric equilibrium bribe is

be (s) =
�e (s)

s�

=
q




E
�
Y 1+�s;k jYs;k < s

�
s�

=
q




�
s� (1 + �)

Z s

0

Fs;k (y)

Fs;k (s)

�y
s

��
dy

�
:

Proof of Claim 7:

Proof. Let Im denote the symmetric equilibrium expected payment of a partic-

ular student. Suppose other students are following the equilibrium strategy bm.

If this student bribes bm (z) instead of bm (a). Then the expected payo¤ for this
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student is de�ned as

�m (z; v) � F2 (z) v � Im:

The �rst order condition gives

@�m (z; v)

@z
� f2 (z) v �

@Im

@z
= 0:

At the equilibrium, it is optimal to bribe z = a, so we obtain that for all y,

@Im

@y
= qf2 (y) y:

Thus,

Im = Im (0) + q

Z a

0

yf2 (y) dy

= q

Z a

0

yf2 (y) dy:

Now we consider the same student at the equilibrium. If he is allocated a

place, then his bribe could be either the highest which means a > Y1 or the

second highest which implies Y2 < a < Y1. In the �rst possible case, student 1

pays the second highest bribe, b (Y1); in the second case, he pays b (a).

Now we derive the expected payment when his bribe is the highest. The

density function of Y1, conditional on the event that Y1 < a, can be written as

f1 (yjY1 < a) =
f1 (y)

F1 (a)
=
(n� 1) f (y)F (y)n�2

F (a)n�1
:

Thus, the expected payment when his bribe is the highest can then be written as

Im;1 � F1 (a)E [b (Y1) jY1 < a]

= F1 (a)

Z a

0

b (y) f1 (yjY1 < a) dy

= F (a)n�1
Z a

0

b (y)
(n� 1) f (y)F (y)n�2

F (a)n�1
dy

= (n� 1)
Z a

0

b (y) f (y)F (y)n�2 dy:

The expected payment when he is the second highest can then be written as

Im;2 � (n� 1) (1� F (a))F (a)n�2 b (a) :
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So the total expected payment satis�es

Im = Im;1 + Im;2

= (n� 1)
�Z a

0

b (y) f (y)F (y)n�2 dy + (1� F (a))F (a)n�2 b (a)
�
:

Given

Im = q

Z a

0

yf2 (y) dy;

equalising the two equations implies that

(n� 1)
�Z a

0

bm (y) f (y)F (y)n�2 dy + (1� F (a))F (a)n�2 bm (a)
�

= q

Z a

0

yf2 (y) dy:

Di¤erentiating with respect to a on both sides of the equation gives that

(n� 1)

264 bm (a)F (a)n�2 f (a)

+
�
(n� 2)F (a)n�3 f (a) (1� F (a))� F (a)n�2 f (a)

�
bm (a)

+ (1� F (a))F (a)n�2 bm0 (a)

375
= aqf2 (a) :

Since

F2 (a) = F (a)
n�1 + (n� 1) (1� F (a))F (a)n�2 ;

we have

f2 (a) = (n� 1) (n� 2)F (a)n�3 f (a) (1� F (a)) :

Hence,

bm (a)F (a)n�2 f (a) +
�
(n� 2)F (a)n�3 f (a) (1� F (a))� F (a)n�2 f (a)

�
bm (a)

+ (1� F (a))F (a)n�2 bm0 (a)
= ap

�
F (a)n�2 f (a) + (n� 2)F (a)n�3 f (a)� (n� 1)F (a)n�2 f (a)

�
:
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Dividing both sides of the equation by F (a)n�3 gives us

bm (a)F (a) f (a) + ((n� 2) f (a) (1� F (a))� F (a) f (a)) bm (a)
+ (1� F (a))F (a) bm0 (a)

= aq [F (a) f (a) + (n� 2) f (a)� (n� 1)F (a) f (a)] :

Rearrange it as

(n� 2) f (a) aq = F (a) bm0 (a) + (n� 2) f (a) bm (a) :

The solution to the function is as follows:36

bm (a) = q
(n� 2)

R a
0
yf (y)F (y)n�3 dy

F (a)n�2

= q

R a
0
ydF (y)n�2

F (a)n�2

= q

 
a�

Z a

0

�
F (y)

F (a)

�n�2
dy

!
:

Proof of Proposition 9:

Proof. Now we compare the current model to the case of one college with one
place. Let bm;1 (a) denote the equilibrium in case of one place, bm;2 (a) denote the

equilibrium bribe in case of two colleges, and bm;3 (a) denotes case of one college

with two places.

bm;1 (a) = qE [Y1jY1 < a] = q
 
a�

Z a

0

�
F (y)

F (a)

�n�1
dy

!
;

bm;2 (a) = qE [Y2jY2 < a] = q
�
a�

Z a

0

F2 (y)

F2 (a)
dy

�
;

bm;3 (a) = q

 
a�

Z a

0

�
F (y)

F (a)

�n�2
dy

!
:

36We used the following formula to solve the function:

y0 + p (x) y = q (x) ;

y = e�
R
p(x)dx

�Z
q (x) e

R
p(x)dxdx+ c

�
:

94



Since qE [Y2jY2 < a] < qE [Y1jY1 < a], clearly bm;2 (a) < bm;1 (a). Since
F (y)

F (a)
< 1,

then
�
F (y)

F (a)

�n�1
<

�
F (y)

F (a)

�n�2
, hence bm;3 (a) < bm;1 (a).

Substitute F2 (a) = F (a)n�1 + (n� 1) (1� F (a))F (a)n�2 into bm;2 (a) and
rearrange it, then we obtain

bm;2 (a) = q

 
a�

Z a

0

(n� 1)F (y)n�2 � (n� 2)F (y)n�1

(n� 1)F (a)n�2 � (n� 2)F (a)n�1
dy

!
:

Since

(n� 1)F (y)n�2 � (n� 2)F (y)n�1

(n� 1)F (a)n�2 � (n� 2)F (a)n�1
=

�
F (y)

F (a)

�n�2�
(n� 1)� (n� 2)F (y)
(n� 1)� (n� 2)F (a)

�
;

and
�
(n� 1)� (n� 2)F (y)
(n� 1)� (n� 2)F (a)

�
> 1, we have

(n� 1)F (y)n�2 � (n� 2)F (y)n�1

(n� 1)F (a)n�2 � (n� 2)F (a)n�1
>

�
F (y)

F (a)

�n�2
:

Thus,

q

 
a�

Z a

0

�
F (y)

F (a)

�n�2
dy

!
> q

 
a�

Z a

0

(n� 1)F (y)n�2 � (n� 2)F (y)n�1

(n� 1)F (a)n�2 � (n� 2)F (a)n�1
dy

!
;

and hence bm;2 (a) < bm;3 (a).

Recall that the expected payments of a particular student in the second and

third cases are the same, and satisfy

E
�
bm;2

�
= E

�
bm;3

�
= q

Z a

0

yf2 (y) dy;

and hence the ex ante expected bribe of the student would be the same as

E (bex) =

Z 1

0

E (b) f (a) da:

Therefore, the expected revenue for the only o¢ cial in the second case is the same

as the expected revenues for the two o¢ cials in the third case.
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Proof of Claim 8:

Proof. Let Ie denote the symmetric equilibrium expected payment of a particular
student. Suppose other students are following the equilibrium strategy be. If this

student bribes be (z) instead of be (s). Then the expected payo¤ for this student

is de�ned as

�e (z) � Fs;2
�
S
�
be (z) s�

��
v � Ie;

where Fs;2 is the probability he wins or the probability that be (z) s� exceeds the

second highest competing �e (Ys;2).

First order condition implies that

@�e (z)

@z
= fs;2

�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
be0 (z) s�v � @I

e

@z
= 0;

or

fs;2
�
S
�
be (z) s�

��
S 0
�
be (z) s�

�
s�v =

@Ie

@z

@z

@be
=
@Ie

@be
:

Now we let ' be the symmetric equilibrium expected payo¤ by the student. If

this student bribes be (z) instead of be (s), then ' = Ies�. So, @'
@z
= s� @I

e

@z
.

At an equilibrium it is optimal to report z = s, thus,

fs;2 (s)S
0 �be (s) s�� s�v =

@Ie

@be
;

fs;2 (s) s
�v =

@Ie

@be
@�e

@s
;

=
@Ie

@s

@�e

@be

= s�
@Ie

@s
:

Since at the equilibrium, @'
@s
= s� @I

e

@s
, we have

fs;2 (s) s
�v =

@'

@s

' (0) = 0, thus

' =
q




Z s

0

y1+�fs;2 (y) dy:

On the other hand, consider this student, winning implies his score s is either

the highest which means s exceeds the highest of the other n�1 abilities, Ys;1 < s
or the second highest which means s is lower than the highest of the other n� 1
scores, but higher than the second highest of the other n�1 scores, Ys;2 < s < Ys;1.
The bribe this student pays is an amount such that his contribution to the o¢ cial
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is the second highest bribe, � (Ys;1), b = � (Ys;1) =s, when he has the highest score,

and his own bribe, b (s), when he has the second highest score.

First, we need to derive the expected payment when his score is the highest.

The density of Ys;1, conditional on the event that Ys;1 < s, can be written as

f
(n�1)
s;1 (yjYs;1 < s) =

f
(n�1)
s;1 (y)

F
(n�1)
s;1 (s)

=
(n� 1) fs (y)Fs (y)n�2

Fs (s)
n�1 ;

so the expected payo¤ to the o¢ cial from the student with the highest score

satis�es

'1 � F
(n�1)
s;1 (s)E [� (Ys;1) jYs;1 < s]

= F
(n�1)
s;1

Z s

0

� (y)
(n� 1) fs (y)Fs (y)n�2

F
(n�1)
s;1

dy

= (n� 1)
Z s

0

� (y) fs (y)Fs (y)
n�2 dy:

The expected payo¤ to the o¢ cial from the student with the second highest score

satis�es

'2 = (n� 1) (1� Fs (s))Fs (s)n�2 � (s) :

The total expected payment is

' = '1 + '2

= (n� 1)
Z s

0

�e (y) fs (y)Fs (y)
n�2 dy + (n� 1) (1� Fs (s))Fs (s)n�2 �e (s) :

Hence

(n� 1)
Z s

0

�e (y) fs (y)Fs (y)
n�2 dy + (n� 1) (1� Fs (s))Fs (s)n�2 �e (s)

=
q




Z s

0

y1+�fs;2 (y) dy:

Di¤erentiating with respect to s implies that

(n� 1)

264 �e (s)Fs (s)
n�2 fs (s)+�

(n� 2)Fs (s)n�3 fs (s)� (n� 1)Fs (s)n�2 fs (s)
�
�e (s)

+ (1� Fs (s))Fs (s)n�2 �e0 (s)

375

=
q



s1+�fs;2 (s) :
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Since

Fs;2 (y) = Fs (s)
n�1 + (n� 1) (1� Fs (s))Fs (s)n�2 ;

fs;2 (y) = (n� 1) (n� 2)Fs (s)n�3 fs (s) (1� Fs (s)) :

Thus,

(n� 1)

264 �e (s)Fs (s)
n�2 fs (s)

+
�
(n� 2)Fs (s)n�3 fs (s) (1� Fs (s))� Fs (s)n�2 fs (s)

�
�e (s)

+ (1� Fs (s))Fs (s)n�2 �e0 (s)

375
=

q



s1+� (n� 1) (n� 2)Fs (s)n�3 fs (s) (1� Fs (s)) :

Rearrange it,

(n� 2) fs (s)
q



s1+� = Fs (s)�

e0 (s) + (n� 2) fs (s)�e (s) :

The solution of the function is as follows:

�e (s) =
q




(n� 2)
R s
0
y1+�fs (y)Fs (y)

n�3 dy

Fs (s)
n�2

=
q




R s
0
y1+�dFs(y)n�2

Fs (s)
n�2

=
q




 
s1+� � (1 + �)

Z s

0

y�
�
Fs (y)

Fs (s)

�n�2
dy

!
:

Thus,

be (s) =
�e (s)

s�
=
q




 
s� (1 + �)

Z s

0

�y
s

�� �Fs (y)
Fs (s)

�n�2
dy

!
:

Proof of Proposition 10:

Proof. The expected winning bribe in system x (x = m; e) is

E (�x) = nE (bx;ex) :

Since E (bx;ex) =
R 1
0
E (bx) f (a) da, then we only need to compare E (bx).

E (be (s)) =
�e (s)

s�
=
q




Z s

0

y
�y
s

��
gs (y) dy:
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We substitute s by a since s = 
a,

E (be (a)) = q

Z a

0

y
�y
a

��
g (y) dy:

In the market system, the expected revenue is

E (bm (a)) = q

Z a

0

yg (y) dy:

Therefore,

E (bm (a))� E (be (a)) = q
Z a

0

y

�
1�

�y
a

���
g (y) dy > 0;

as 1 >
�y
s

��
. Thus, E (�m) > E (�e).

Therefore, the degree of corruption in the exam system is lower than the

market system given two same quality colleges.

Proof of Claim 9:

Proof. We use the conclusion in the �rst section to obtain bL. The symmetric
equilibrium bribe in the second round is as follows.

bmL (a) =
qL

F
(n�2)
1 (a)

Z a

0

yf
(n�2)
1 (a) dy

= qLE
h
Y
(n�2)
1 jY (n�2)1 < a

i
= qLE [Y2jY2 < a < Y1] ;

where Y (n�2)1 is the highest of remaining n�2 abilities and F (n�2)1 (a) denotes the

distribution of Y (n�2)1 .

Student has to take the expected result of the second round into account when

he decides bnH , the optimal bribe in the �rst round. Suppose that all other students

are following the same �rst round strategy bmH , and all students will follow b
m
L in

the second round regardless of what happens in the �rst round. Assume student

bribes bmH (z), z 6= a, instead of bmH (a), which is the equilibrium bribe. The total

payo¤ is

�(z; a) = F1 (z) [vH � bmH (z)] + (n� 1) (1� F (z))F (a)
n�2 [vL � bmL (a)] ;

where the �rst term results from the event Y1 < z, i.e., the student wins the place
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in the �rst round with a bribe of bmH (z). The second term results from the event

Y2 < a � z � Y1, i.e., he fails in the �rst round, but wins in the second.
The �rst order condition is

f1 (z) [vH � bmH (z)]� F1 (z) bm0H (z)� (n� 1) f (z)F (a)
n�2 [vL � bmL (a)] = 0:

In equilibrium, z = a and the �rst order condition can be rearranged as

bm0H (a) =
f1 (a)

F1 (a)
[vH � bmH (a)]�

f1 (a)

F1 (a)
[vL � bmL (a)]

=
f1 (a)

F1 (a)
[vH � vL] +

f1 (a)

F1 (a)
[bmL (a)� bmH (a)] ;

as f1 (a) = (n� 1) f (a)F (a)n�2 :
Then we have

d

da
[F1 (a) b

m
H (a)] = f1 (a) [vH � vL] + f1 (a) bmL (a) ;

together with bmH (0) = 0, we have

F1 (a) b
m
H (a) =

Z a

0

f1 (y) [vH � vL] dy +
Z a

0

f1 (y) b
m
L (y) dy

= [qH � qL]
Z a

0

f1 (y) ydy +

Z a

0

f1 (y) b
m
L (y) dy:

Therefore,

bmH (a) = [qH � qL]
Z a

0

f1 (y) y

F1 (a)
dy +

1

F1 (a)

Z a

0

f1 (y) b
m
L (y) dy

= [qH � qL]E [Y1jY1 < a] + E [bmL (Y1) jY1 < a]
= [qH � qL]E [Y1jY1 < a] + E [qLE [Y2jY2 < Y1] jY1 < a]
= [qH � qL]E [Y1jY1 < a] + qLE [Y2jY1 < a]
= (qH � qL)E [Y1jY1 < a] + qLE [Y2jY1 < a] :

Proof of Claim 10:

Proof. The equilibrium bribe in the last round is regardless of the previous

rounds, and hence it can be taken as a independent game. The result can be
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found easily by using the previous result,

bmk (a) = qkE [YkjYk < a < Yk�1] :

Now consider the equilibrium bribe for student i, bmj (a), in the jth round,

with j = 1; :::; k � 1. Consider if he bribes slightly higher, say bmj (a+ "). If
Yj < a, he would win but pay more than he would do if he bribe bmj (a). His

expected payo¤ increases by

Fj (a)�
�
bmj (a+ ")� bmj (a)

�
:

On the other hand, if a < Yj < a + ", he would have failed in the jth round

with his equilibrium bribe, whereas bribing higher results his winning. Now there

are two sub cases. In the event that Yj+1 < a < Yj < a+ ", he would have failed

in the jth round but won in the j+1st. In the event that a < Yj+1 < Yj < a+ ",

however, he would have failed in both the jth and the j+1st rounds, and possibly

won in a later round, say the lth for some l > j + 1. When " is small, however,

the probability that a < Yj+1 < Yj < a + " is very small and it is of second

order in magnitude. Thus, the contribution to the expected gain from all events

in which the student fails in both the jth and the j + 1st rounds can be safely

neglected when " is small. The overall expected gain from bribing bmj (a+ ") is

the probability that a < Yj < a+ " times the di¤erence in the equilibrium bribe

paid tomorrow and the bribe paid today, which is approximately

[Fj (a+ ")� Fj (a)]�
��
vj � bmj (a+ ")

�
�
�
vj+1 � bmj+1 (a)

��
:

Equating the two equations, dividing by ", and taking the limit as "! 0, we

obtain the di¤erential equation

bm
0

j (a) =
fj (a)

Fj (a)

�
(vj � vj+1)�

�
bmj (a)� bmj+1 (a)

��
;

together with the boundary condition bmj (0) = 0. Thus, the solution is

bmj (a) =
1

Fj (a)

�Z a

0

fj (y) [vj � vj+1] dy +
Z a

0

fj (y) b
m
j+1 (y) dy

�
= (qj � qj+1)

1

Fj (a)

Z a

0

fj (y) ydy +
1

Fj (a)

Z a

0

fj (y) b
m
j+1 (y) dy

= (qj � qj+1)E
h
Y
(n�j)
1 jY (n�j)1 < a

i
+ E

h
bmj+1

�
Y
(n�j)
1

�
jY (n�j)1 < a

i
= (qj � qj+1)E [YjjYj < a] + E

�
bmj+1 (Yj) jYj < a < Yj�1

�
:
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In order to solve the function, we work backward from the second last round.

bmk�1 (a) = (qk�1 � qk)E [Yk�1jYk�1 < a] + E [bmk (Yk�1) jYk�1 < a < Yk�2]
= (qk�1 � qk)E [Yk�1jYk�1 < a] + qkE [E [YkjYk < Yk�1] jYk�1 < a < Yk�2]
= (qk�1 � qk)E [Yk�1jYk�1 < a] + qkE [YkjYk�1 < a < Yk�2] ;

and proceeding inductively in this fashion results in the solution for all j =

2; :::; k � 1,

bmj (a) =

k�1X
L=j

(qL � qL+1)E [YLjYj < a < Yj�1] + qkE [YkjYj < a < Yj�1] :

Proof of Claim 11:

Proof. We begin with the second round. In the second round, beL is independent
of the result of the �rst round. We can derive the equilibrium bribe in the second

round by using the conclusion in the �rst section. The symmetric equilibrium

bribe and equilibrium expected contribution to the o¢ cial of cL are as follows.

beL (s) =
qL



E
�
Y 1+�s;2 jYs;2 < s < Ys;1

�
s�

=
qL



�
s� (1 + �)

Z s

0

Fs;2 (y) y
�

Fs;2 (s) s�
dy

�
;

�eL (s) =
qL


E
�
Y 1+�s;2 jYs;2 < s < Ys;1

�
:

Student has to take the expected result of the second round into account when

he decides how much to bribe in the �rst round. Suppose that all other students

are following the �rst round strategy beH , and all students will follow b
e
L in the

second round, regardless of what happens in the �rst round. Assume student

bribes beH (z), z 6= a, instead of beH (a), which is the equilibrium bribe. The total

payo¤ is

�(z; s) = Fs;1
�
S
�
beH (z) s

�
��
[vH � beH (z)]

+ (n� 1)
�
1� Fs

�
S
�
beH (z) s

�
���

Fs (s)
n�2 [vL � beL (s)] ;

where the �rst term results from the event Ys;1 < S
�
beH (z) s

�
�
, i.e., the student

wins the place in the �rst round with a bribe of beH (z). The second term results
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from the event S
�
beH (z) s

�
�
< Ys;1, but Ys;2 < s i.e., he fails in the �rst round,

but wins in the second.

The �rst order condition is

0 = fs;1
�
S
�
beH (z) s

�
��
S 0
�
beH (z) s

�
�
be0H (z) s

� [vH � beH (z)]
�Fs;1

�
S
�
beH (z) s

�
��
be0H (z)

� (n� 1) fs
�
S
�
beH (z) s

�
��
S 0
�
beH (z) s

�
�
be0H (z) s

�Fs (s)
n�2 [vL � beL (s)] :

In equilibrium, z = s and the �rst order condition can be rearranged as

fs;1 (s)�
e
H (s) + Fs;1 (s)�

e0
H (s) = s�fs;1 (s) vH � fs;1 (s)

�
s�vL � �eL (s)

�
;

[Fs;1 (s)�
e
H (s)]

0 = s�fs;1 (s) (vH � vL) + fs;1 (s)�eL (s) :

Thus, the equilibrium �H is

�eH (s) =
1

Fs;1 (s)

Z s

0

y�fs;1 (y) (vH � vL) dy +
1

Fs;1 (s)

Z s

0

fs;1 (y)�
e
L (y) dy

=
qH � qL



E
�
Y 1+�s;1 jYs;1 < s

�
+ E

�
�eL
�
Y 1+�s;1

�
jYs;1 < s

�
:

Substituting �L into the above equation gives

�eH (s) =
qH � qL



E
�
Y 1+�s;1 jYs;1 < s

�
+
qL


E
�
E
�
Y 1+�s;2 jYs;2 < Ys;1

�
jYs;1 < s

�
=

qH � qL



E
�
Y 1+�s;1 jYs;1 < s

�
+
qL


E
�
Y 1+�s;2 jYs;1 < s

�
:

Thus, the equilibrium bribe in the �rst round is

beH (s) =
�eH (s)

s�

=
qH � qL

s�

E
�
Y 1+�s;1 jYs;1 < s

�
+
qL

s�

E
�
Y 1+�s;2 jYs;1 < s

�
:

Proof of Proposition 11:

Proof. As we have shown, we only need to compare the expected winning bribes
in the two systems to tell which system is better. The total expected payment to
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two o¢ cials in the market system is

E (�m) =
n� 1
n

E (a1) qH �
1

n
E (a1) qL +

n� 2
n� 1E (a2) qL

=
n� 1
n+ 1

qH +
n� 3
n+ 1

qL:

The total expected payment to two o¢ cials in the exam system is

E (�e) =
n� 1
n+ �

E (s1)



qH �

(n� 1) (1 + �)
(n+ �) (n+ � � 1)

E (s1)



qL +

n� 2
n+ � � 1

E (ss)



qL

=
n (n� 1)

(n+ �) (n+ 1)
qH +

(n� 1) (n2 � 3n� 2�)
(n+ 1) (n+ �) (n+ � � 1)qL:

Since

n (n� 1)
(n+ �) (n+ 1)

<
n� 1
n+ 1

;

(n� 1) (n2 � 3n� 2�)
(n+ 1) (n+ �) (n+ � � 1) <

n� 3
n+ 1

;

the degree of corruption in the exam system is lower than the market system in

this model with di¤erent-quality colleges.

Proof of Claim 12:

Proof. The equilibrium bribe in the last round is regardless of the previous

rounds, and hence it can be taken as an independent game. The result can be

found easily by using the previous result,

bek (s) =
qk



E
�
Y 1+�s;k jYs;k < s < Ys;k�1

�
s�

:

Suppose the equilibrium contribution to the o¢ cial of cj from student i is

�ej (s) in the jth round but consider if he bribes slightly higher, say b
e
j (s+ "),

and contribute �ej (s+ "). If Ys;j < s, he would win but pay more than he would

do if he contributes �ej (s). His expected payment increases by

Fs;j (a)�
�
�j (s+ ")� �j (s)

�
s�

:

On the other hand, if s < Ys;j < s+ ", he would have failed in the jth round

with his equilibrium bribe, whereas bribing higher results his winning. Now there

are two sub cases. In the event that Ys;j+1 < s < Ys;j < s+", he would have failed
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in the jth round but won in the j+1st. In the event that s < Ys;j+1 < Ys;j < s+",

however, he would have failed in both the jth and the j+1st rounds, and possibly

won in a later round, say the lth for some l > j + 1. When " is small, however,

the probability that s < Ys;j+1 < Ys;j < s+" is very small, it is of second order in

magnitude. Thus, the contribution to the expected gain from all events in which

the student fails in both the jth and the j + 1st rounds can be safely neglected

when " is small. The overall expected gain from contributing �ej (s+ ") is the

probability that s < Ys;j < s + " times the di¤erence in the equilibrium bribe

paid tomorrow and the bribe paid today, which is approximately

[Fs;j (s+ ")� Fs;j (s)]�
��
vj �

�ej (s+ ")

s�

�
�
�
vj+1 �

�ej+1 (s)

s�

��
:

Equating the two equations, dividing by ", and taking the limit as "! 0, we

obtain the di¤erential equation

�e
0

j (s)

s�
=

fs;j (s)

Fs;j (s)

"
(vj � vj+1)�

�
�ej (s)� �ej+1 (s)

�
s�

#
;

�e
0

j (s) =
fs;j (s)

Fs;j (s)

�
s� (vj � vj+1)�

�
�ej (s)� �ej+1 (s)

��
;�

�ej (s)Fs;j (s)
�0
= fs;j (s) s

� (vj � vj+1) + fs;j (s)�ej+1 (s) :

Together with the boundary condition �ej (0) = 0, we have

�ej (s) =
1

Fs;j (s)

�Z s

0

fs;j (y) y
� [vj � vj+1] dy +

Z s

0

fs;j (y)�
e
j+1 (y) dy

�
=

(qj � qj+1)



1

Fs;j (s)

Z s

0

fs;j (y) y
1+�dy +

1

Fs;j (s)

Z s

0

fs;j (y)�
e
j+1 (y) dy

=
(qj � qj+1)



E

�h
Y
(n�j)
s;1

i1+�
jY (n�j)s;1 < s

�
+ E

h
�ej+1

�
Y
(n�j)
s;1

�
jY (n�j)s;1 < a

i
=

(qj � qj+1)



E
�
Y 1+�s;j jYs;j < s

�
+ E

�
�ej+1 (Ys;j) jYs;j < a < Ys;j�1

�
:

In order to solve the function, we work backward from the last round.
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�ek�1 (s) =
(qk�1 � qk)



E
�
Y 1+�s;k�1jYs;k�1 < s

�
+E [�ek (Ys;k�1) jYs;k�1 < s < Ys;k�2]

=
(qk�1 � qk)



E
�
Y 1+�s;k�1jYs;k�1 < s

�
+
qk


E
�
E
�
Y 1+�s;k jYs;k < Ys;k�1

�
jYs;k�1 < s < Ys;k�2

�
=

(qk�1 � qk)



E
�
Y 1+�s;k�1jYs;k�1 < s

�
+
qk


E
�
Y 1+�s;k jYs;k�1 < s < Ys;k�2

�
:

Proceeding inductively in this fashion results in the solution for all j,

�ej (s) =
(qj � qj+1)



E
�
Y 1+�s;j jYs;j < s

�
+E

�
�ej+1 (Ys;j) jYs;j < s < Ys;j�1

�
=

(qj � qj+1)



E
�
Y 1+�s;j jYs;j < s

�
+
qk


E
�
E
�
Y 1+�s;k jYs;j+1 < Ys;j

�
jYs;j < s < Ys;j�1

�
=

k�1X
L=j

(qL � qL+1)



E
�
Y 1+�s;L jYs;j < s < Ys;j�1

�
+
qk


E
�
Y 1+�s;k jYs;j < s < Ys;j�1

�
:

Thus, the equilibrium bribe is

bej (s) =
�ej (s)

s�

=

k�1X
L=j

(qL � qL+1)



E
�
Y 1+�s;L jYs;j < s < Ys;j�1

�
s�

+
qk



E
�
Y 1+�s;k jYs;j < s < Ys;j�1

�
s�

:

Proof of Claim 13:

Proof. The expected bribe by a randomly selected student (a0; w0) from the

group of students whose types are graphed by the Leonitief isobid curve in Figure
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7 is the same as the expected bribe by the type (a0; 1). It satis�es

E [Bm (a0; 1)] = Pr [Win]�Bm (a0; 1)
= F c (a0)

n�1 � �m (a0)

= q

Z a0

0

yf c (y)n�1 dy:

The expected revenue of the o¢ cial or the expected winning bribe is just the sum

of the ex ante (prior to knowing their abilities) expected bribes of the students.

The ex ante expected bribe of (a0; 1) satis�es

E [Bm;ex (a0; 1)] =

Z 1

0

E [Bm (a0; 1)] f c (a0) da0

= q

Z 1

0

 Z a0

0

yf c (y)n�1 dy

!
fm (a0) da0

= q

Z 1

0

�Z 1

y

f c (a0) da0
�
yf c (y)n�1 dy

= q

Z 1

0

y (1� F c (y)) f c (y)n�1 dy:

The expected payment to the o¢ cial is just n multiplied by E [Bm;ex (a0; 1)], and

hence

E [�c;m] � n� E [Bm;ex (a0; 1)]

= nq

Z 1

0

y (1� F c (y)) f c (y)n�1 dy:

Note that the distribution of Y c2 is

F c2 (y) � nF c (y)
n�1 � (n� 1)F c (y)n :

The associated density function is

f c2 (y) = n (n� 1) (1� F c (y))F c (y)n�2 f c (y)
= n (1� F c (y)) f c (y)n�1

= n (1� F c (y)) f c (y)n�1 :
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Thus, the expected revenue can be written as

E [�c;m] = q

Z 1

0

yf c2 (y) dy

= qE [Y c2 ] ;

where Y c2 is the second-highest of n draws from the distribution F c (�).

Proof of Claim 14:

Proof. For a randomly selected student (a0; w0), there must be a type with

w = 1, say (d; 1), whose equilibrium bribe satis�es

Be (a0; w0) = B
e (d; 1) .

The expected bribes by the type (d; 1) is as follows:

E [Be (d; 1)] = Pr [Win]�Be (d; 1)
= F c (d)n�1 � �e (d)

=
q

a�

Z d

0

y1+�f c (y)n�1 dy:

The ex ante expected bribe of (d; 1) satis�es

E [Be;ex (d; 1)] =

Z 1

0

E [Be (d; 1)] f c (d) dd

=
q

a�

Z 1

0

�Z d

0

y1+�f c (y)n�1 dy

�
f c (d) da0

=
q

a�

Z 1

0

�Z 1

y

f c (d) dd

�
y1+�f c (y)n�1 dy

=
q

a�

Z 1

0

y1+� (1� F c (y)) f c (y)n�1 dy:

The expected revenue of the o¢ cial is just n multiplied by E [Be;ex (d; 1)], and

hence

E [�c;e] � n� E [Bm;ex (d; 1)]

=
nq

a�

Z 1

0

y1+� (1� F c (y)) f c (y)n�1 dy:
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Since

f c2 (y) = n (1� F c (y)) f c (y)
n�1 :

Thus, the expected revenue can be written as

E [�c;e] =
q

a�

Z 1

0

y1+�f c2 (y) dy

=
q

a�
E
h
(Y c2 )

1+�
i
:

Proof of Proposition 12:

Proof. The �rst part of this claim is clearly established in Figure 10, 11, 12.

They show three possible outcomes: both systems lead to ine¢ cient results; both

of them bring e¢ cient allocations; only the exam system has an e¢ cient result.

Therefore, although both systems may produce ine¢ cient results, the exam sys-

tem is likely to be better than the market system while here is no possibility that

the market system performs better than the exam system in terms of e¢ ciency.

For degree of corruption, we need to look at the expected revenues for the

o¢ cial. In the x (x = m; e) system, E [�x] = nE [Bx;ex]. The ex ante expected

bribe of a particular student, say (a; w) in the market system under borrowing

constraints is

E [Bm;ex] =

Z 1

0

E [Bm (a0; 1)] fm (a0) da0

= q

Z 1

0

 Z a0

0

yfm;1 (y) dy

!
fm (a0) da0;

where a0 is a ability such that Bm (a0; 1) = Bm (a; w). The ex ante expected bribe

of a particular student with type (a; w) in the exam system under borrowing

constraints is

E [Be;ex] =

Z 1

0

E [Be (d; 1)] f e (d) dd

= q

Z 1

0

 R d
0
y1+�f e;1 (y) dy

d�

!
f e (d) dd;

where d is a value such that Be (d; 1) = Be (a; w).

Given a same particular student with type (a; w), d � a0. We can have this
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result from di¤erent cases in Graph 9, 10 and 11. In the cases of Graph 9 and

10, d < a0, while in the case of Graph 11, d = a0. Therefore, we haveR d
0
y1+�f e;1 (y) dy

d�
<

Z d

0

yf e;1 (y) dy �
Z a0

0

yf e;1 (y) dy:

In addition, f e (d) � f e (a0) if d � a0, hence

E [Be;ex] < q

Z 1

0

�Z a

0

yf e;1 (y) dy

�
f e (a0) da0:

Combing with the inequality f e (a0) < fm (a0) and hence f e;1 (y) < fm;1 (y), we

have E [Be;ex] < E [Bm;ex]. So, nE [Be;ex] < nE [Bm;ex], and hence E [�e] <

E [�m]. The expected winning bribe is greater in the market system than in the

exam system, therefore the degree of corruption in the exam system is lower than

in the market system.
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3 Chapter 3:

The Cost of Attending College and Positive

Self-Sorting

3.1 Introduction and Literature Review

The principle of "easy admission but strict graduation" was proposed by some

scholars in the last decade to replace the current Chinese college admission sys-

tem. In fact, one of two college admission systems in France follows that proposed

principle. This chapter explores the properties of this type admission mechanism

in France from the economic perspective.

At the start of the 2006-2007 higher education academic year, there were 2.287

million students in France enrolled into the higher education admission system.

Among these students, 1.357 million of them applied to the universities, 113,500

of them applied to the university institutes of technology and 76,000 of them

applied to preparatory courses for the top graduate schools.37 Higher education

in France covers all studies after the baccalaureat (�A�level equivalent). There

are two systems that coexist side by side:

(1) An open system in the universities: Most students study under this system

(1.357 million out 2.287 million in 2006-2007). All baccalaureat holders have the

right to enter this system without any prior selection procedure. Universities o¤er

an extremely wide range of studies;

(2) A selective system with a limited number of places: Admission is by

competitive examination, entrance examination or application form, with an in-

terview where appropriate. This is the system in use in the grandes ecoles (top

graduate schools such as the Ecole Nationale d�Administration �French Senior

Civil Service School �Ecole Nationale Superieure �national post-graduate school

�and the top engineering and business schools), the institutes universitaires de

technologie (IUTs �university institutes of technology) and the institutes univer-

sitaires professionnalises (IUPs �university institutes of professional education).

These establishments train mainly public-sector and private-sector senior and

middle managers.

The second system is more similar to the prevalent college admission mech-

anism in other countries, e.g., USA, Britain, etc. In the prevalent system, in

which admission is operated through competitive procedures, a positive assorta-

tive matching may be produced, where the higher ability students are accepted

37Source: Ministry of National Education, Advanced Instruction, and Research, France.
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by the higher quality institutions and the lower ability students are allocated

to the lower quality institutions. The mechanism with competitive procedures

naturally produces the positive sorting if a student�s performance is positively

correlated to his ability, and the mechanism is well designed. However, in the

�rst admission system of the French higher education sector, students have the

right to enter universities without any prior selection procedure. Is the sorting

still positive assortative? If the answer is yes, what is the driving force?

The purpose of this research is to discover the driving force that sorts students

into di¤erent quality colleges in a free choice system such as the open system at

French universities. It has important implications at both a practical and theoret-

ical level. From the practical perspective, it provides an analysis of an alternative

mechanism for the current CCA mechanism. In theory, it looks through the allo-

cation of students and resources from a new angle. At the end of this introduction,

we will explain why our approach is di¤erent from the literature.

Given a distribution of student ability and a limited pool of resources, we

model the planner�s decision to establish colleges and set a "task level" for each

college, and also the allocation of resources to colleges. Ignoring entry frictions,

the main cause that drives a student to select a college may be the cost of accom-

plishing the task. At a particular college, the task level and students�abilities are

the determinants of cost for students to complete the educational quali�cation.

For example, students have two options: One is to choose a good college but with

high requirement, and the other is to choose an ordinary college but with low

requirement. The cost that a higher ability student completes the requirement

of the better college is lower than a lower ability student. If all students ob-

tain the same quali�cation from the same college, then the higher ability student

may select the �rst choice, while the lower ability student may choose the second

college.

Certainly, there are other factors that could in�uence student�s choice, such as

tuition, budget constraint, geography consideration and therefore transportation

costs, spatial considerations, and preference of subjects, etc. If these factors

are assumed to be symmetric, then di¤erent ability students will have di¤erent

decisions only due to variant costs. The cost depends on abilities and task levels.

Thus, in our work, abilities are still the key of sorting them to institutions as

the central feature of other related works. In Epple, Romano and Sieg (2006),

colleges attempt to attract the higher ability students by designing appropriate

tuition and admission policies. In Fernandez and Gali (1997), Fernandez (1998),

prices and borrowing constraints play the role of sorting students in a market
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system, and prices and exam results decide the matching of students to colleges

in an exam system. In our model, we include the cost into student�s utility

function, and drop tuition and income e¤ects on student�s utility. We believe

this approach is reasonable because the di¤erence of tuition for undergraduate

study across colleges in some countries is not large enough to in�uence student�s

decision.

Our model may apply to a more general case other than to the higher educa-

tion sector. In any circumstances where a central planner is maximizing output

by dividing a group of people into di¤erent task levels and allocating them with

limited resources, our model is able to solve for an optimal solution if the plan-

ner does not set any entry requirements, this group of people�s abilities follow

some identical distribution, and the cost of completing a task level di¤ers among

people.

For example, a �rm is designing a mechanism to stimulate workers�output.

The manager is not able to observe any individual worker�s ability, but the dis-

tribution of workers�abilities. The manager sets up some groups with di¤erent

levels of rewards or quali�cations and allocates allocable resources to each group.

These rewards or quali�cations require workers to accomplish some speci�c tasks.

Since the manager does not have knowledge of a particular worker�s ability, he

would have to let workers choose appropriate levels of tasks by themselves. A

worker�s concern is the quali�cation and the cost of accomplishing the required

task of that quali�cation. All workers in a task will obtain the same quali�cation;

thus their gains would be the same. The costs, however, will di¤er as workers

vary in their abilities. The manager�s purpose is to maximise the total output,

which is the aggregate of all individual outputs. Individual output depends on

the worker�s ability, resources per worker, and the motivation (quali�cation) ob-

tained upon completing the task. In such a game, an equilibrium can be reached

by working backword from the end of the game. At the end of the game, workers

select the task that maximises their utilities and produce outputs. At the begin-

ning, the manager sets up the optimal task levels and allocation of resources to

maximise the expected total output by taking workers�decisions into account.

Although this model can apply to a wide range of scenarios, we concentrate

our focus on the higher education sector. Therefore in our model, the market is

composed of the higher education planner, colleges (for simplicity, we use colleges

to represent higher education institutions in the rest context), and students. In

such an economy, a central planner has limited amount of resources and he needs

to decide the number of colleges, a task level for each college and the allocation of
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resources; a group of continuum students whose abilities follow some distribution

can either choose an outside option, or go to college. The planner does not have

the information about the ability of any particular student, but he knows the

distribution of students� abilities. The planner�s objective is to maximise the

total education output which is the aggregate output of individual education.

The individual output of a particular student depends on the student�s ability,

resources per capita, and the task level of that college. In order to maximise

total output, the planner determines the number of colleges, designs an identical

task level for all students at each individual college, and allocates the allocable

resources to all colleges.

Our model is driven by a few simple assumptions: (1) there is complemen-

tarity between resources and ability, task and ability, task and resources in the

education output function. In other words, the production function satis�es su-

permodularity; (2) students have a cost function which has converse property to

the production function, we call it submodularity: given any level of task, the

student with higher ability faces a lower rise in cost when given a marginal in-

crease in the task level; (3) a student�s utility depends on the value gained from

the completion of the given task and the cost incurred, the value is concave while

the cost is strictly converse in task level. These assumptions yield that the plan-

ner would set up a tiered structure with sorted task levels, and students select

the most suitable college. Therefore the system produces a tiered structure that

sorts students by their abilities and results in an optimal output overall.

This work is closely related to the literatures on the assortative sorting and

allocation of resources in higher education. Using the ability of individuals to

sort or segregate themselves across various dimensions and in di¤erent spheres is

a topic of concern in many countries, e.g., di¤erent races, incomes, and abilities

are sorted into di¤erent residences, workplaces, schools, and households (Fernan-

dez (2002)). Kremer and Maskin (1996) present some evidence that sorting by

skill level at the workplace has increased. They �nd that the e¢ cient match-

ing in their model depends on the distribution of skill in the matching market,

because the trade-o¤ between the asymmetry and the complementarity in the

match output function depends on the relative scarcity of highly-skilled workers.

As we mentioned, even without an explicit plan, students will sort themselves into

di¤erent quality colleges. Students are distributed among these colleges largely

according to their academic abilities. The requirement of completing the study

and obtaining the quali�cation in each tier, and the public spending per student

at each level are strongly and positively associated with students�average ability.
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The driving force of the positive sorting was �rstly discussed by Becker (1973).

In his theory of marriage, Becker (1973) de�ned positive assortative mating as a

positive correlation between the values of the traits of husbands and wives. He

argued that the positive assortative mating is generally optimal in most circum-

stances.

Theorem 1 Positive assortative mating-mating of likes-is optimal when

@2Z (Am; Af )

@Am@Af
> 0;

where Z denotes aggregate output, Am denotes male�s ability and Af denotes

female�s ability, because aggregate output is then maximised. Negative assorta-

tive mating-mating of unlikes-is optimal when the inequality is reversed. (Becker

(1973))

This theorem indicates that, in the marriage market, higher-quality men and

women marry each other rather than selecting lower-quality mates when these

qualities are complements: a superior woman raises the productivity of a superior

man and vice versa. Beck�s theorem can be applied to other matching or sorting

problems when the concern is the aggregate output produced by two sides of the

market, e.g. colleges and students, �rms and employees, etc. The agent of likes

or unlikes is optimal as traits are complements or substitutes, because superior

types reinforce each other when traits are complements and o¤set each other

when traits are substitutes. The condition in the theorem is commonly referred

to as the (strict) supermodularity condition of the match output function Z. See

Topkis (1998) for a comprehensive mathematical treatment of supermodularity,

and Milgrom and Roberts (1990) and Vives (1990) for applications in game theory

and economics.

Arnott and Rowse (1987) �nd that any type partition in a case of allocating

students to various classes within an elementary or secondary school is possi-

ble. The partition depends on the strength of peer e¤ects, which was initially

de�ned in Coleman (1966). Peer e¤ects have been employed in a large amount

of literatures to explain the positive sorting.38 These literatures �nd that having

better peers tends to improve a student�s own academic performance, and many

�nd the e¤ects to be larger for students with low abilities than for those with

38See Coleman (1966), Henderson, Mieszkowski, and Sauvageau (1976), Hoxby and Terry
(2000), Zimmer and Toma (2000), Checchi and Zollino (2001), Robertson and Symons (2003),
McEwan (2003), Epple and Romano (1998), Epple, Romano and Sieg (2003, 2006).
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high abilities. Epple and Romano (1998) construct a model of private and pub-

lic secondary schools in order to analyse the e¤ects of voucher reforms. Epple,

Romano and Sieg (2003) and Epple, Romano and Sieg (2006) present a general

equilibrium model of the market for higher education. In their model, colleges

seek to maximise the quality of the educational experience provided to their stu-

dents. The quality of colleges is assumed to depend on peer ability and income

of the student body, and also the instructional expenditures per student. Since

peer e¤ect is an important component of college quality, students will seek out

colleges with high ability peers. Meanwhile, colleges will attempt to attract high

ability students in order to improve quality. Their model yields the hierarchy

of colleges in equilibrium about the distribution of students according to income

and ability, and the price policy adopted by colleges. In most cases that consider

peer e¤ects, outcomes are in�uenced by the distribution of income (exogenous

endowment). We do not include peer e¤ects into our model as our assumption of

supermodularity is enough to obtain an assortative matching outcome.

Kremer (1993) highlights the role of positive assortative matching in economic

development. In his model of a one-sided, many-to-many matching market, each

�rm consists of a �xed number of workers each employed for a production task.

Workers have di¤erent skills, with a higher-skilled worker less likely to make mis-

takes in his task performance. Self-matching would be obtained in equilibrium

where each �rm employs workers of identical skills. Kremer uses this form of

positive assortative matching to explain the large wage and productivity di¤er-

ences between developing and developed countries that cannot be accounted for

by their di¤erences in the levels of physical or human capital.

Fernandez and Gali (1997) and Fernandez (1998) compare the market system

to the exam (tournament) system under the assumption of complementarity be-

tween student ability and college quality. They assume a continuum of exogenous

quality for schools, and the education output depends on student ability and col-

lege quality. Students sort themselves into di¤erent tier schools by maximizing

education output. They also discuss the e¤ects of borrowing constraints on the

e¢ ciency. Sallee, Resch and Courant (2008) have a perspective of central planner

similar to ours. They assume complementarity and �xed costs of building up col-

leges are su¢ cient to construct an optimal tiered system that sorts students by

ability and results in discontinuous spending and educational output per student

for essentially identical students at the margin between schools. Although the

assumptions from existing literatures are di¤erent, the peer e¤ects and comple-

mentarity are looking at the same thing. In the end, these di¤erent approaches
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would have given the same result. Our model only assumes the supermodular-

ity and ignores the peer e¤ects, but we will reach the same positive assortative

sorting.

The main contribution of this work, in contrast with existing literature, is

that we pay more attention to students�considerations of costs when they decide

whether or not and where to be educated. Based on the assumption of super-

modularity for utility function and production function, we present a general

equilibrium from a planning perspective and explain how students sort them-

selves into colleges with di¤erent quality optimally. This work could apply to

both the admission sorting of education market, or any other scenarios concern-

ing sorting and resource allocation. To our knowledge, this piece of work raises

some issues that do not appear in the previous literature. Although we reach

the same positive assortative matching result as of in most of the literature, all

roads lead to Rome, and our approach is di¤erent from others. The presence

of a submodular cost function for students and other assumptions allows us to

construct the model with central planning but free choice for students. We are

standing for a central education planner whose output will be maximised, but

students are not allocated by the planner, which is in most literature with social

planners, e.g., Sallee, Resch and Courant (2008). In our model, the central plan-

ner can not allocate students to colleges and students are free to make decisions.

Our model assumes that the planner is concerned about the total outputs and a

student cares only his utility. The output of a student in a college depends on

his ability, resources per student, and the task level of that college. A student�s

utility is the di¤erence between gains from the college and costs of accomplishing

the task, so it depends on the student�s ability and the task level. The assumption

of supermodularity of the production and utility functions provides the planner

with the motivation to set up di¤erent task levels. Our model yields a result that

the hierarchy of colleges emerges in equilibrium, the optimal design of task levels

and resource allocation, and students�choice making such as to have a positive

sorting. In the discussion on the optimal number of colleges, we have inconsistent

conclusion with the work of Sallee, Resch and Courant (2008). The planner will

only set up a �nite number of colleges even if the �xed cost is zero. This di¤erent

result is �rstly because we let students select colleges freely by considering stu-

dents�maximised utilities. We think this makes sense in such systems as "easy

admission but strict graduation", where students do not have any requirements

to enter higher education institutions. Secondly, we include task level into educa-

tion production model, which combining with free choices of students determine
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a small number of colleges even though the �xed cost is low. By including task

level into our model, we think requirements of colleges do have positive e¤ects on

higher education outputs.

The work is organised as follows. Section 2 describes the economy and lays

out the key elements of the general model. Section 3 de�nes the equilibria in

a one-college case and a two-college case; compares the two systems in several

aspects, and considers the model by taking �xed cost into account. Section 4

presents the conclusion.

3.2 The Model

3.2.1 Description of the Economy

The economy in our model consists of two sides:

1. We think of the ministry of education as a social planner, who has a total

resource 
 which is free to allocate. The planner decides the number of

colleges, N . The �xed cost of setting up a college is denoted by �. The

planner also sets a vector of task levels for each college fT1; :::; Tj:::; TNg.
After subtracting the �xed cost from total resources, the planner allocates

the remainder to colleges, which is denoted by R, R = 
 � N�. The pro-
portions of total resources allocated to each college are denoted by vector

fp1; :::; pj:::; pNg. The planner has an objective function W , which denotes
the total education output.

2. There is a continuum of potential students who di¤er with respect to their

ability levels. Let x denote a student�s ability, which follows a continuous

distribution. A particular student�s educational output is determined by

the production function q (x; r; T ) (where r = pR
w
, pR measures the amount

of resource available to the college, and w is the measure of students in

the particular college). It is thus assumed that a student�s output depends

on resources per capita in his college. The student�s gain from his college

is determined by a function V (T ), and his cost function is C (x; T ). Let

u = U (x; T ) = V (T )�C (x; T ) be the utility function. There is an outside
option with constant utility u0 available to all students.

Note that students have a di¤erent output function from the utility function.

The di¤erence is that resources per student have been included in the output

function. Excluding resources from the utility function is a controversial assump-

tion. Our opinion is that the quali�cation achieved from colleges is the only
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thing matters to students, while the planner is concerned about what students

would have actually contributed to colleges. Task level in our model is taken

as the requirements to achieve quali�cations; thus it is in the student�s utility

function as a higher task level means a better quali�cation. The same quali�-

cation gives the same gain to di¤erent students. Employers in a job market are

only concerned about students�quali�cations, not how much resources students

occupy in colleges. Therefore, resources per student are not in the gain function.

In order to bene�t from a better quali�cation, students have to make more ef-

fort which incurs higher cost. Given the same task level, costs are di¤erent for

di¤erent types of students; thus we have C (x; T ). Another reason of excluding

resources from the utility function is that it is not easy for students to realise the

resources allocation. Student�s ability and resources per student are employed as

inputs in the production function can be found in many literatures (Sallee, Resch

and Courant (2008); Epple (2003); Arnott and Rowse (1987)). Task level in our

model, however, is the third determinant of output. q is capturing not only the

output of students but also a short-hand for college output, i.e., it adds the two

together. If a college has good students (higher a) and a higher T , then it is likely

to be a better college and attracts better academics, etc. So it is plausible that

extra resources to that college have a higher marginal product. For example, the

college can allow these good academics to have more time for research since the

resources could pay for teaching assistants etc.; or if the students are research

students, then the resources allow for better equipment and facilities. The re-

search output will be improved. Therefore, higher r; x and T increase the output

of the college, and hence the planner�s welfare.

This is a two sided market between the planner and students. From the

planner�s point of view, total outputs are to be maximised; on the other side,

students maximise their own utilities. The moves of the planner and students

obey the following order:

1. The planner is endowed with total resources 
 and he observes student�s

ability distribution F as well as the �xed cost of setting up a college �.

2. The planner decides the number of collegesN , designs task levels fT1; :::; TNg
for each college, and allocates allocable resourcesR to each college fr1; :::; rNg.

3. A set comprising a continuum of students receives abilities, which are drawn

from distribution F (x). Having observed fT1; :::; TNg and an outside op-
tion, students simultaneously select colleges that maximise their utilities.
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The planner knows the individual production function, ability distribution,

utility function, and the outside option. It is a simple sequential decision making

game. We therefore use backward induction to discuss the model. Let us look at

the decision problem of students �rst.

3.2.2 The Decision Problem of Students

In this section, we discuss the student�s decision given the set of task levels and

the outside option. As we described in the last section, there is a continuum of

potential students who di¤er in their ability levels x in the economy.

Assumption 1: The distribution of ability F (x) is continuous and di¤eren-

tiable with a corresponding density function by f (x) over a �nite interval [x ; x].

Next we turn to focus on how a student�s selection is made. A student�s utility

has been assumed to equal his gain from the college quali�cation minus the cost

of accomplishing the task. The gain for a particular college j is the same for all

students involved in that college, and is expressed as vj = V (Tj).

Assumption 2: V (T ) is twice di¤erentiable, increasing, and concave in T , i.e.,

V1 (T ) > 0, V11 (T ) � 0; and V (0) = 0.

The cost function of student i who studies at the college is given by ci =

C (xi; T ).

Assumption 3: C (x; T ) is twice di¤erentiable, increasing, and strictly convex

in T , i.e., C2 (x; T ) > 0 and C22 (x; T ) > 0; it is decreasing in x, i.e., C1 (x; T ) <

0; it satis�es dc
dT

! 1 as x ! 0 and C (x; 0) = 0; it is submodular, i.e.,

C12 (x; T ) < 0.

Submodularity of the cost function implies that given any level of task, a

higher ability student�s cost rises more slowly than that of a lower ability student

given a marginal increase in the task level. In other words, it is relatively easier

for the high ability student to accomplish a tougher task. The second part of

Assumption 3 indicates the cost rises to the in�nity when ability is zero. The last

part of Assumption 3 implies the cost is zero when the task level is zero. This

assumption rules out the possibility for zero ability students to enter any college

with positive task level.

Given the gains and costs functions, the utility function of student i obtained

from college j is

U (xi; Tj) = V (Tj)� C (xi; Tj)
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Combining Assumption 2 and Assumption 3 implies that the utility function

is strictly concave and single-peaked in T , i.e., U22 (x; T ) < 0;39 U (x; 0) = 0;

supermodularity, i.e., U12 (x; T ) > 0,40 which means, given the same task level, a

higher ability student earns more utility than a lower ability student at the same

college.

Supermodularity means that, at the same level of task, the marginal utility of

achieving a higher level task is higher for students with higher abilities. Note that

resources are not in student�s utility function. However, in the next section, we

will see that resources per student are one of determinants in the output function.
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Figure 13: Utility

Figure 13 shows a simple example presenting the utilities of two students at

the same college. One has ability of xH , and the other has xL. They share

the same gains curve since they attend the same college, but the costs curve

of the higher ability student is �atter than the lower ability student due to the

submodularity of the cost function. The distance between the gains curve and the

costs curve measures the utility. These curves immediately imply U22 (x; T ) < 0

as already noted. For instance, the distance between V (T ) and C (xL; T ) starts

from zero, where both gains and costs are zero, and increases to the maximum,

where the task level is marked as TL, and then falls to zero where costs equals

gains again. As we can tell from Figure 13, the di¤erence between two cost curves

is increasing in T , which is consistent with our assumption of U12 (x; T ) > 0. Let

Tm denote the task level that maximises the utility of the corresponding type.

39U22 (x; T ) = V11 � C22 (xi; Tj) < 0, thus U is strictly concave, and hence single-peaked.
40If c is submodular, �c is supermodular, and hence u = v � c is supermodular.
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Proposition 13 The utility of a student with lower ability is maximised at a
lower level of T than a student with higher ability, dTm

dx
> 0.

Proof. See Appendix.
In Figure 13, we use TH to denote the task level maximizing the high ability

type�s utility. Proposition 13 yields that TL < TH . Since they share the same

gains curve, and the high ability type�s cost curve is �atter, the high ability

student�s utility is greater than the low ability type�s for any positive task level

by Assumption 2 and Assumption 3.

Assumption 4: Each student has an outside option of u0, independent of x.

Given the outside option, student i�s objective is to �nd a college j that

satis�es the following condition:

ui;j � max [u0; ui;k] 8 all k 6= j:

Let T0 denote no higher education; thus all students face N + 1 options. The

equilibrium will be a many-to-one mapping from the set of students to the set

of colleges with di¤erent task levels including the outside option fT0; T1; :::TNg.
Our concern is whether or not students will be positively sorted to the colleges

which have been ranked by task levels, in other words, whether or not the higher

ability types would go to colleges with the higher task levels.

Now we de�ne positive sorting.

De�nition 2 Given a set of ranked colleges including the outside option with
task levels fT0; T1; :::TNg with T0 < T1 < T2; :::; TN�1 < TN and two types x, y

with x < y, a mapping result does not have positive sorting if given Tj0 < Tj, type

x chooses college j and type y selects college j0.

If a mapping result has positive sorting, then a student selects college j if and

only if xj;l � x � xj;h, where xj;l and xj;h denote the lowest type and the highest
types at college j, respectively.41

Our assumptions about the utility function and the design of colleges yield

the following proposition.

Proposition 14 Under Assumption 3 and 4, given a set of colleges including the
outside option ranked by task levels as T0 < T1 < T2 < ::: < TN , the equilibrium

assignment has positive sorting.
41Sallee and Resch (2008) de�ne a partition to be monotonic if and only if, for the least and

greatest elements xk and xk in each school, a student x is assigned to school k if and only if
xk � x � xk.
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Proof. See Appendix.
Proposition 14 implies that, in equilibrium, the group of students with the

highest ability select the college with the highest task level, the group of students

with the second highest ability choose to attend the college with the second

highest task level, and so on. Students who choose the outside option would be

the ones with the ability lower than those with the lowest ability who choose the

college with the lowest task level.

Proposition 15 Any two adjacent colleges in terms of task levels share the same
marginal types, i.e., there are no overlaps or gaps of abilities between two adjacent

colleges.

Proof. See Appendix.
The highest type of any lower level college or outside option is the same as

the lowest type of the adjacent higher level college. Marginal types are indi¤erent

between the two adjacent colleges. They will earn the same utility from the two

colleges.

3.2.3 The Planner�s Decision Problem

The planner aims to maximise the total output, which is the aggregate of the

continuum of students�output. Any individual student�s output is assumed to

be a function of that student�s ability, resources per student and task level in a

particular college. The output of student i in college j is given by

qi;j = q (xi; rj; Tj) ;

where recall that rj denotes the resources per student in the college and rj =
pjR

wj
.

We assume all arguments are complementary (supermodular). In contrast to

the assumption of submodularity in the student�s cost function, supermodularity

implies positive cross partial derivatives. The formal assumption for the output

function is as follows.

Assumption 5: The output function q (�) : R3+ ! R, is a twice di¤eren-

tiable, increasing, concave, and supermodular function of its arguments, and hence

q1 (x; r; T ) > 0, q2 (x; r; T ) > 0, q3 (x; r; T ) > 0; q11 (x; r; T ) < 0 ,q22 (x; r; T ) < 0,

q33 (x; r; T ) < 0; q12 (x; r; T ) > 0, q13 (x; r; T ) > 0, q23 (x; r; T ) > 0. The output is

zero if one of the arguments is zero, i.e., q (0; r; T ) = q (x; 0; T ) = q (x; r; 0) = 0.

The cross partial derivatives represent the supermodularity. q12 (x; r; T ) > 0

means at any given level of resources per student, the higher ability student
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produces more when given a marginal increase in resource; q13 (x; r; T ) > 0 implies

that at any given level of task in each college, the higher ability student produces

more when given a marginal increase in task level; q23 (x; r; T ) > 0 represents

that at any given level of task, a student in a college with higher resources per

student produces more when given a marginal increase in task level.

We use utilitarian social welfare function (Sallee, Resch and Courant (2008))

to express the total output. The aim of the planner is to maximise the aggregate

output of all colleges. The total output function is expressed as

W =

Z x1;h

x1;l

q

�
x;
p1R

w1
; T1

�
f (x) dx+ :::+

Z xN;h

xN;l

q

�
x;
pNR

wN
; TN

�
f (x) dx;

where recall that xj;l and xj;h represent the lowest and highest abilities in college

j (8j = 1; 2; :::; N), wj denotes the size of college j, i.e., the total measure of
students in college j, wj =

R x;h
xj;l
f (x) dx. Given this output function, the planner

will simultaneously choose the optimal number of colleges, N , design task level

for each college, fT1; :::; TNg, and decide the optimal allocation of total resources
to each college. Therefore, the planner�s decision problem is

max
N;fT1;:::TNg;fp1;:::pNg

W:

The maximization is subject to the following constraints.

1. Budget constraint:

�N +R � 
;

where 
 is the total resources. The sum of total �xed costs and the total allocable

resources is less than or equal to the total resources.

NX
k=1

pk = 1:

We assume that the planner will invest all resources into colleges.

2. Feasibility constraint:

pk � 0 8 k:

This rules out negative allocations.

3. Identity constraint:

0 < T1 < T2 < ::: < TN :
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The identity constraint implies that colleges are identi�ed by the task levels,

and we assume they are ranked from the lowest (denoted by 1) to the highest

(denoted by N). It is clearly ine¢ cient for the planner to set up a college with

a zero task level as output will then be zero. Consider there are two colleges

with the same task level, say Tj. Students whose abilities satisfy U (x; Tj) �
max (u0; U (x; Tk 6=j)) would select one of the two colleges randomly. One would

think it would be sub-optimal as a single college would lead to the same output

and save on �. This is not quite a complete argument as the output would vary

if r di¤ered between colleges. The planner would allocate more resources to the

college having a higher average ability. However, it will not be optimal to set

the same task level for two colleges with di¤erent average abilities and resources

per student. Therefore, the planner will not set the same task level for two or

more colleges in equilibrium. Note that Proposition 14 and Proposition 15 imply

that, given 0 < T1 < T2 < ::: < TN , x1;h = x2;l;x2;h = x3;l; :::xN�1;h = xN;l, hence

from now on we use xj to denote the lowest type in college j, which is also the

highest type in college j � 1 8j = 2; 3; :::; N . In the college with the highest task
level, the highest type should be x since type x does not have any other options

better than joining college N . However, type x1 is indi¤erent between college 1

and the outside option. Note that all marginal types are di¤erent from each other

otherwise an empty college may exist. The bottom type x1 in the lowest level

college, however, may be the same as the lower bound x, in which case all types

enter into colleges. Therefore, the planner�s objective function can be rewritten

as

max
N;fT1;:::TNg;fp1;:::pNg

W =

Z x2

x1

q

�
x;
p1R

w1
; T1

�
f (x) dx+:::

Z x

xN

q

�
x;
pNR

wN
; TN

�
f (x) dx;

s.t.

�N +R � 
;
NX
k=1

pk = 1;

pk � 0 8 k;

0 < T1 < T2 < ::: < TN :

In equilibrium, x1, x2, :::, xN are determined by fT1; :::; TNg. Since we have
constructed both sides of the market, next we are able to de�ne the equilibrium

of the model.
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3.3 Equilibrium

3.3.1 De�nition of Equilibrium

To de�ne the equilibrium, we need to �nd the optimal number of colleges, the

equilibrium task levels and allocation proportions of resources for the planner,

and to consider the choices made by students. In our work, the economy will

reach a "free choices" equilibrium, where students select colleges as they will. We

assume that the planner anticipates how students allocate themselves to colleges

and only needs to choose the optimal number of colleges, to design the task levels

and allocate resources to each college. Students select any college or the outside

option freely to maximise utilities. The equilibrium the Nash equilibrium of this

game and is de�ned as follows:

De�nition 3 The equilibrium of the economy consists of strategies of students

and the planner such that:

1. By taking account of students� decisions and the distribution of students�

abilities, the planner decides the number of colleges, and the vector of re-

sources allocation and vector of task levels to maximise total output.

2. Given N� colleges, the outside option and task levels, student i selects college

j if and only if

uj � max
k
(u0; uk) ;

where uk denotes the utility from any other college.

Resources and ability, task levels are complements in production. This imme-

diately yields the following conclusion.

Proposition 16 Given any two colleges ki and kj with 0 < Ti < Tj, if wi � wj
in equilibrium, then 0 < ri < rj and 0 < Ri < Rj.

Proof. See Appendix.
This proposition implies that if the measure of students at a higher level college

is less than a lower level college, then total allocable resources and resources per

capita are higher at the higher level college than the lower level college.

3.3.2 The Optimal Design When N = 1

The planner�s decision consists of two steps: (1) choosing the optimal number

of colleges; (2) setting the optimal level of tasks and the optimal allocation of
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resources. We isolate the two steps by beginning with the second stage. Fixing

the number of colleges will simplify our model so we derive the equilibrium only

consisting of fT1;:::TNg and fp1;:::pNg. If the number of colleges is given, the �xed
cost is not our concern at this stage, and only the amount of allocable resources

and the distribution of students�ability matter.

We start with the simplest model, where there is only one college. In this case,

the planner does not have to consider how to allocate resources as he will invest

all resources into the only college. Therefore, the planner only needs to �gure out

the optimal design of task level for this college in order to maximise total output

by considering the compatibility condition of students. For simplicity, assume

that a student�s ability is uniformly distributed on [0; 1], hence f (x) = 1. This

assumption will not substantively a¤ect our model. Under these assumptions,

the planner�s objective model is

max
T
W (T; x1) =

Z 1

x1

q

�
x;

R

1� x1
; T

�
dx;

s.t. 0 < T;

where x1 denotes the lowest ability in the college. Since the ability follows a

uniform distribution on [0; 1], the measure of students in the college is w = 1�x1.
The compatibility condition implies students will join the college if and only

if u � u0, where u denotes the utility obtained from the college, and u0 denotes

the utility obtained from the outside option. At the equilibrium, the marginal

student is indi¤erent between the outside option and attending college, i.e.,

U (x1; T ) = u0:

This equation tells the planner how to �nd the marginal ability in the college.

By solving this equation for x1, which must be unique, the bottom ability is

determined by a function g:

x1 = g (T; u0) :

The task level has a direct positive impact on individual output. However, it

has a negative e¤ect on the size of the college.

Proposition 17 At the optimal task level, T �, if x1 = g (T �; u0), then U2 (x1; T �) �
0 and x1 is increasing in T �.

Proof. See Appendix.
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Figure 14: gT

The intuition behind Proposition 17 is shown in Figure 14. Given the outside

option u0, there must be a marginal type who is indi¤erent between attending the

college and choosing the outside option. V (T ) and C (x1; T ) denote the gain and

cost of that type of students. Since U (x1; T ) strictly concave and single-peaked

in T , we can �nd two task levels such that U (x1; T ) = u0, which are denoted by

T � and T 0 with T 0 � T �. T � and T 0 will be equal if type x1 maximises his utility
at T �. The proposition implies that the planner will only choose T � as the task

level. It is because T � and T 0 will attract the same set of students whose abilities

are higher than x1, but the higher task level produces more education output.

The second part looks at how the marginal type changes in the equilibrium task

level. If the planner increases the task level from T �, then type x1 will leave the

college as cost increases more than gain. Any increase in the task level will cause

the marginal type to leave the college.42

Type zero will not choose to attend any colleges under the assumption that
dc
dT
!1 as x goes to zero; the planner would not set a task level such that x1 = 1

as it means the top college is empty and unused. Therefore, the optimum will

be an interior solution. First-order necessary condition for an interior solution

follows from the unconstrained optimization problem. The �rst order condition

of with respect to T will give us the optimal solution for T by substituting out

x1 with function g.

42An equivalent way of looking at this is to note that g is initially decreasing but beyond
some point increasing, and an optimal government policy must choose a point on the upward
sloping part for the reasons we outline.
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Claim 15 The F.O.C. of the one-college case is:

�q (x1; r; T ) g1 (T; u0) +
�

R

(1� x1)2
Z 1

x1

q2dx

�
g1 (T; u0) +

Z 1

x1

q3dx = 0;

where q2 denotes q2 (x1; r; T ), q3 denotes q3 (x1; r; T ) and r = R
1�x1 .

Proof. See Appendix.43

This equation states that the marginal output of a unit increase in the task

level must be zero in equilibrium. Given the same level of total resources, pro-

duction of each student depends not only on the task level, but also on resources

per student, which is determined by resources and the measure of students. An

increase in the task level will directly increase output because output of each

student is increasing in task level; this is represented by the third term. How-

ever, output will decrease due to the change of size of the college. The �rst

term measures the loss of output due to losing marginal students. The second

term represents the increase in output because those students still in the college

produce more due to a smaller size of the college. The overall e¤ect is zero in

equilibrium.

Next we use an example to illustrate the model.

Assume that C (x; T ) = T 2

x
; V (T ) = T , and hence U (x; T ) = T � T 2

x
. These

functions satisfy the assumptions about the cost, gain and hence utility functions.

In the one-college case, U (x1; T ) = u0; thus we have

x1 =
T 2

T � u0
:

Note that the outside option needs to satisfy u0 � 0:25 in order that x1 � 1;44

and when u0 = 0, x1 = T .

For output, assume that

q (x; r; T ) = (xr)� T �:

The Cobb-Douglas education output function has the properties as we assumed.

43We did not derive the second derivative of W with respect to T , but it does not matter too
much as the interior solution has to satisfy the �rst order condition.
44 T 2

T�u0 � 1, so T
2 � T + u0 � 0. Therefore, 1�

p
1�4u0
2 � T � 1+

p
1�4u0
2 . If u0 > 0:25, then

T 2 � T + u0 > 0, and hence T 2

T�u0 > 1.

129



The total output function in the one-college case can be rewritten as

max
T
W (T ) =

Z 1

x1

(xr)� T �dx

s.t. 0 < T < 1

where x1 = T 2

T�u0 and r =
R

1�x1 .

The �rst part of the �rst order condition is

�T �
�
1� T 2

T � u0

����
T

T � u0

�� 
1�

�
u0

T � u0

�2!
;

the second part is

�

1 + �
T �
�
1� T 2

T � u0

��(1+�) 
1�

�
T 2

T � u0

�1+�! 
1�

�
u0

T � u0

�2!

and the last part is

�

1 + �
T�1+�

�
1� T 2

T � u0

��� 
1�

�
T 2

T � u0

�1+�!
:

As we can see, the amount of total resources does not a¤ect the equilibrium,

but the outside option does. The following numerical example provides some

properties which can not be analysed in a general case.

Conjecture 1 If U (x; T ) = T � T 2

x
and q (x; r; T ) = (xr)0:5 T 0:5, the maximised

output falls and the ability of the bottom type rises as u0 goes up, but the optimal

task level does not vary monotonically.

We are not able to prove this claim in a general case, but we believe it to be

true. The increase in u0 implies the college is less attractive; thus some bottom

types of students will leave the college if the planner does not change the task

level. Given the increase in u0 at a relatively low level, the planner could lower

the task level, which is high, to keep some of the students who are leaving. At

this stage, the e¤ect represented by the �rst term in the �rst order condition

dominates the e¤ect measured by the other two terms. But the planner will

only keep part of all leaving types as the output would drop if the task level is

set too low. Therefore, x1 rises at this stage. When u0 approaches the upper

limit, the increase in output by retaining students is less than the decrease due

to a lower task level, which means the last two terms in the �rst order condition
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U0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.25
T* 0.581 0.567 0.553 0.539 0.524 0.509 0.495 0.481 0.471 0.465 0.467 0.475 0.490 0.500
X1 0.581 0.588 0.596 0.607 0.618 0.633 0.653 0.678 0.713 0.759 0.817 0.885 0.960 1
r 2.387 2.427 2.475 2.545 2.618 2.725 2.882 3.106 3.484 4.149 5.464 8.696 25.000 N/A

W* 0.437 0.430 0.421 0.412 0.401 0.390 0.376 0.360 0.340 0.314 0.279 0.227 0.138 0
U0: Outside option;
T*: Optimal task level;
r: Resources per student at equilibrium;
X1: Bottom type;
W*: Maximized output.

Table 2

dominates. So, the optimal task level increases. The outside option is like a rival

of the college, so an increase in the outside option must reduce the output of

the college. Therefore, W falls as u0 increases. An increasing task level plus u0
increasing cause x1 to rise at this stage as well. The following numerical result

and the diagram support the claim.

Table 2 presents the optimal task levels, bottom types, and maximal outputs

given di¤erent values of u0.45 The ability of the bottom type rises as u0 increases

from 0 to 0.24. The optimal task level decreases until u0 reaches 0.18, and then

starts increasing. It goes to 0.5 as u0 approaches 0.25, and x1 approaches 1.

Figure 15 presents how total output curves vary in the task level given di¤erent

values of u0. Given a value of T , the outside option is smaller, more is total output.

When the outside option is too large, plausible task levels are few. For example,

suppose u0 = 0, the planner has the largest number of plausible task levels, and

total output is the greatest given any value of T .

T

W
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Figure 15: Total Output Given Di¤erent u0

45The numerical and graphical results in this section are calculated by Mathematica and
Excel.
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3.3.3 The Number of Colleges

In the last section, we considered the case where there is only one college. But

the planner has to decide the optimal number of colleges before setting the task

levels and allocation of resources. The number of college should be determined

by the total resources and the �xed cost of setting up a college. Since this is a

sequential game, the planner as the �rst mover has to take students�decisions

into account. Apart from the task levels, students�concerns include the outside

option. Therefore, the outside option should be in the planner�s consideration.

In this section, we discuss the number of colleges given the total resources, �xed

costs and outside option.

Two-College Case Under the same assumptions as in the one-college case,

the planner designs the task level for each college and allocates a proportion of

total allocable resources to each college in order to maximise total outputs.

Assume there are two colleges, and denote the one with the lower task level

by k1 and the other one with the higher task level by k2. Since there are two

colleges, the planner has to consider the allocation of resources. By choosing the

proportion of resources to k1, p, the proportion of resources to k2, 1� p, and the
task levels in each college, T1 and T2, the planner can have all students sorted

themselves into each college or to stay in the outside option. Note that the results

of this case are easily translatable to the case of more colleges.

The objective function in this case (with uniform distributed ability) is

max
T1;T2;p

W =

Z x2

x1

q

�
x;

pR

x2 � x1
; T1

�
dx+

Z 1

x2

q

�
x;
(1� p)R
1� x2

; T2

�
dx

s.t. 0 < T1 < T2:

Where x1 and x2, the marginal abilities, are functions of T1 and T2, which are

the factors that the planner is able to control. Student i�s decision is according

to the rule that he selects k1 if U (xi; T1) � U (xi; T2) and U (xi; T1) � u0, or k2 if
U (xi; T2) � U (xi; T1) and U (xi; T2) � u0, or the outside option if U (xi; T1) and
U (xi; T2) are less than u0.

In equilibrium, the bottom type in 1 satis�es

U (x1; T1) = u0
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and the top type in 1, which is identical to the bottom type in 2, satis�es

U (x2; T1) = U (x2; T2) :

The �rst equation states that the bottom ability type student is indi¤erent be-

tween the outside option and k1; the second equation implies that the marginal

type student is indi¤erent between k1 and k2.

Let g1 and g2 denote the solutions to the following two equations:46

x1 = g
1 (T1; u0)

x2 = g
2 (T1; T2) :

The bottom type of k1 only depends on T1 and the outside option. The top type

in k1 which is the same as the bottom type in k2 is determined by T1 and T2. The

bottom type in k1 still follows Proposition 17.

Proposition 18 x2 is increasing in both T1 and T2, i.e., g21 (T1; T2) > 0 and

g22 (T1; T2) > 0.

Proof. See Appendix.
Proposition 18 can be extended to a general case with any number of colleges.

Given any number of colleges, we use xk+1 to denote the top type in a particular

lower level college ck, which is identical to the bottom type in the adjacent higher

level college ck+1, and we de�ne gk+1 (Tk; Tk+1) = xk+1. Then:

Corollary 6 gk+11 (Tk; Tk+1) > 0 and gk+12 (Tk; Tk+1) > 0.

We can use the simple example from the one-college case to illustrate the

claim. If U (x; T ) = T � T 2

x
, then x1 =

T 21
T1�u0 and x2 = T1 + T2. More gen-

erally, xk+1 = Tk + Tk+1; 8k = 1; :::; N � 1. Clearly, gk+11 (Tk; Tk+1) > 0 and

gk+12 (Tk; Tk+1) > 0.

In the two-college model, we can derive the �rst order condition for an interior

solution of the objective function. If we substitute the solutions to x1 and x2 into

the initial objective function, then we have

cW (T1; T2; p) =W
�
T1; T2; p; g

1 (T1; u0) ; g
2 (T1; T2)

�
46The solutions are unique by the fact that U1 (x; T ) > 0 and u12 (x; T ) > 0.
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The �rst order condition of the new objective function is as follows:

cWT1 = W4g
1
1 (T1; u0) +W5g

2
1 (T1; T2) +W1 = 0;cWT2 = W5g

2
2 (T1; T2) +W2 = 0;cWp = W3 = 0;

where Wi denotes Wi (T1; T2; p; g
1 (T1; u0) ; g

2 (T1; T2)), i = 1; 2; 3; 4; 5.

The �rst and second equations represent the equilibrium conditions for the

design of task levels. The changes of T1 and T2 have direct and indirect e¤ects on

output. Since the task level is a factor of individual output function, any change

of the task level will have a direct impact on total output. The indirect e¤ects

consist of the change of measure e¤ect and the congestion e¤ect47.

The �rst term of the �rst equation measures the overall indirect e¤ect of T1
through x1, which includes the loss due to the students who left k1, and the

increase in output of those still in the college. The second term measures the

overall indirect e¤ect of T1 through x2, which is a little more complicated than

the e¤ect through x1. Consider an increase in the task level of k1: the bottom

type in k2 will therefore go to k1, i.e., x2 rises. The indirect e¤ect through x2
consists of the loss of students in k2, and the corresponding increase in k1; and the

combined marginal bene�t of changing size of k1 and k2. The last term measures

the direct e¤ect of T1, which is positive, therefore the �rst two indirect e¤ects

must have an overall negative e¤ect.

The �rst term of the second equation measures the overall indirect e¤ect of

T2 through x2, and the second term measures the direct e¤ect of T2.

Lemma 2 Wx2 < 0:

Proof. Since W2 > 0 and g22 (T1; T2) > 0, Wx2 < 0 follows immediately fromcWT2 = W5g
2
2 (T1; T2) +W2 = 0.

This implies that the e¤ect on total output of an increase in x2 is negative

at the equilibrium, which means the loss due to losing students from k2 is larger

than the contribution of rising resources per student due to the falling size.

The third equation states the equilibrium condition for resource allocation.

We can rewrite it asZ x2

x1

1

w1
q2

�
x;
pR

w1
; T1

�
dx =

Z 1

x2

1

w2
q2

�
x;
(1� p)R
w2

; T2

�
dx:

47Congestion e¤ect: Changes of the measure of students will in�uence resources per capita
for those who are already in the college, and hence outputs.
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The equation states that the marginal output of a unit resource spent on either

college must be the same in equilibrium. The individual output depends on the

resources per student, so that one unit extra resource has to be divided by the

number of students, 1
wi
; i = 1; 2. By multiplying the derivatives by 1

wi
, we have

the individual marginal increase in output given one unit increase in resource.

By integrating, we get the total marginal output.

The next section investigates the relationship between the task level in the

one-college and the task levels in the two-college case.

The results of the two-college case are easily transferrable to any value of N .

At the equilibrium, the compatibility condition for type xi to choose college kj
(1 � j � N) is as follows:48

uj � max (u0; ui) 8 i 6= j:

When 2 � j � N , denote the bottom marginal type in kj by xj. Proposition 15

implies that xj is indi¤erent between cj and cj�1 in equilibrium:

U (xj+1; Tj+1) = U (xj+1; Tj) :

At college k1, the bottom type x1 is indi¤erent between k1 and the outside option

in equilibrium:

U (x1; T1) = u0:

We use gj to denote the function expressing the bottom type in college j. It

is easy to conclude that each marginal type is determined by task levels of two

adjacent colleges, hence xj = gj (Tj; Tj�1) and x1 = g1 (T1; u0).

The objective function is as follows. (Under the assumption of uniformly

distributed ability)

max
fT1;:::TNg;fp1;:::pNg

W =

Z x2

x1

q

�
x;

p1R

x2 � x1
; T1

�
dx+:::

Z 1

xN

q

0BBBBB@x;
 
1�

N�1X
k=1

pk

!
R

1� xN
; TN

1CCCCCA dx

s:t:

NX
k=1

pk = 1, pk > 0:

48See De�nition 2.
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We obtain the optimal task levels and allocation of resources by solving the �rst

order condition for an interior solution of the objective function.

Comparison Between the One-College System and the Two-College
System

�=0: Sallee, Resch and Courant (2008) argue that if there are no �xed costs,

the optimal solution features a unique level of funding (a unique school) for each

student�s ability that is funded at a positive level. In the proof of the proposition

in their model, Sallee, Resch and Courant (2008) argue that the planner has

incentives to set up more schools to feature di¤erent level of resources for di¤erent

student ability because of the supermolarity of the production function. In our

model, we include the task level in the production function, and assume that

the planner can not allocate students arbitrarily. Without the �rst di¤erence,

our model would have the same result as theirs. If there is no �xed cost, then

the planner sets up an in�nite number of colleges, yielding a unique task level

(unique college) for each positive ability type. At the optimum, each college has

such a task level that maximises the corresponding student�s utility. This follows

straightforwardly from the supermodularity of student�s utility function and the

planner�s production function. In our model, the same result obtains although the

planner can not allocate students arbitrarily. The supermodularity of student�s

utility function ensures that they will sort themselves into colleges with di¤erent

task levels.

Now we look at the �rst di¤erence. The following proposition presents a result

of our model by including the task level in the production function. Let W �
1 and

W �
2 denote the maximised total outputs in the one-college case and two-college

case respectively.

Proposition 19 Given � = 0,
a. if T is allowed to be zero, then the two-college system is at least as good as

the one-college system, W �
2 � W �

1 ;

b. when the optimal task level in the one-college system is smaller than the

task level that maximises the utility of the highest type, the two-college system

always does better than the one-college system, W �
2 > W

�
1 .

Proof. See Appendix.
Part a of this proposition implies that the two-college system will not be

worse than the one-college system under the strong assumption that T is allowed
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to be zero. Part b states that the two-college system always does better than

the one-college system under some circumstances. However, if we withdraw the

assumption that T is allowed to be zero, then this proposition does not always

hold. Consider the case when u0 = 0 and T � is equal or greater than the task

level that maximises the utility of the type with the highest ability. It is likely

that the planner can not �nd any positive task level such that total output of the

two-college system is higher than the one-college system. The following numerical

example will illustrate this scenario.

Suppose a student�s utility function is U (x; T ) = T � T 2

x
, and his output

function is q (x; r; T ) = (xr)� T �.49

In the �rst place, we assume � = 0. The problem is whether or not the planner

has incentives to set up a new college. We have had the optimal task levels and

maximal output from the one-college case.50 Thus, the planner will establish a

new college if the maximal total output from the two-college system is higher

than output from the one-college system.

If we assume � = � = 0:5, and R = 1, then the total output function in the

two-college case is as follows:

max
T1;T2;p

W =

Z x2

x1

(xr1)
0:5 T 0:51 dx+

Z 1

x2

(xr2)
0:5 T 0:52 dx

s.t. 0 < T1 < T2;

where

x1 =
T 21

T1 � u0
;

and x2 is determined by the following condition:

T2 �
T 22
x2

= T1 �
T 21
x2
;

x2 = T1 + T2:

Since R is assumed to be 1, the allocation of resources is determined by

r1 =
p

x2 � x1
; r2 =

1� p
1� x2

:

We are not able to work out a general expression for the equilibrium task level

in terms of u0. But by giving di¤erent values to u0, we can calculate the optimal

task levels as shown in Table 3. In this case, the planner will not set up a new

49We assumed � = � = 0:5 in the one-college case.
50See Table 2.
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U0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.25
T* 0.581 0.567 0.553 0.539 0.524 0.509 0.495 0.481 0.471 0.465 0.467 0.475 0.490 0.500
T1* 0 0.023 0.050 0.083 0.120 0.163 0.209 0.258 0.306 0.353 0.397 0.438 0.479 0.500
T2* 0.581 0.573 0.564 0.554 0.544 0.534 0.525 0.517 0.511 0.506 0.503 0.501 0.500 0.500
P* 0 0.019 0.042 0.073 0.109 0.154 0.204 0.261 0.314 0.368 0.414 0.435 0.459 N/A
X1 0 0.176 0.250 0.300 0.360 0.422 0.491 0.564 0.641 0.720 0.800 0.880 0.960 1
X2 0.581 0.596 0.614 0.637 0.664 0.697 0.734 0.775 0.817 0.856 0.900 0.939 0.980 1
r1 0 0.045 0.115 0.217 0.359 0.560 0.840 1.237 1.784 2.706 4.140 7.373 22.950 N/A
r2 2.387 2.428 2.482 2.554 2.652 2.792 2.992 3.284 3.749 4.389 5.860 9.262 27.050 N/A

W* 0.437 0.433 0.427 0.421 0.412 0.402 0.390 0.373 0.352 0.324 0.285 0.230 0.139 0
ΔW 0 0.003 0.006 0.009 0.011 0.012 0.014 0.013 0.012 0.010 0.006 0.003 0.001 0
U0: Outside option;
T*: Optimal task level of one­college system;
T1*: Optimal lower task level;
T2*: Optimal higher task level;
P*: Optimal allocation of resources;
X1: Bottom type of the college with lower task level;
X2: Bottom type of the college with higher task level;
r1: Resources per student of the college with lower task level at the equilibrium;
r2: Resources per student of the college with higher task level at the equilibrium;
W*: Maximized output under two task levels;
ΔW: Difference of output between the one­college case and two­college case.

Table 3

college when u0 = 0.

Proposition 20 Given � = 0, if q (x; r; T ) = (xr)0:5 T 0:5 and U (x; T ) = T � T 2

x
,

then the two-college system does not do better than the one-college system when

u0 = 0; the two-college system does better than the one-college system when 0 <

u0 < 0:25.

Proof. See Appendix.
The following numerical results support our claim. Table 3 shows us the

optimal task levels, allocations of resources, bottom types of the two colleges,

maximal outputs and the increase in output from the new system as u0 varies.

Figure 16 and Figure 17 present the contrasts of the two systems.

The high task level falls and the low task level rises as u0 increases. Note the

task level in the one-college case does not change monotonically. The di¤erence

between the two new task levels decreases as u0 rises. When u0 goes to 0.25,

which makes the available types contract to 1, the di¤erence disappears. The

bottom types in the new systems have lower abilities than the bottom types in

the one-college system. It implies that more students take higher education in

the new systems. But the di¤erence decreases as u0 rises. The increase in total

output from the new system rises when u0 is small and then falls after the peak

where u0 = 0:12 as u0 increases. The result about p supports Proposition 16,

which states that the college with the higher task level has higher resources per

student.

138



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.25

T*

T1*

T2*

0u0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.25

T*

T1*

T2*

0u

Figure 16: Task levels.
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Figure 17: Outputs.
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The intuition behind these results is as follows. When u0 is small, the optimal

task level in the one-college case would be high, so that the direct e¤ect of a rising

task level (increasing output) is small and the indirect e¤ect (decreasing output)

is large, and hence the di¤erence between T �2 and the original task level is small.

Meanwhile, T �1 needs to be low enough to yield a large positive indirect e¤ect to

balance the large direct e¤ect by T �2 . In the extreme case, where u0 = 0, it is not

possible to �nd a T �1 to balance the e¤ect of changing the higher task level. As

u0 rises, the optimal task level in the one-college system falls until it reaches the

minimum point. At this point, the direct e¤ect of a rising task level increases and

the indirect e¤ect falls. Therefore T �2 falls and the di¤erence between T
�
2 and the

original task level rises. On the other hand, as u0 rises, the possible downward

room for T �2 decreases because T
�
1 � u0 > 0. This negative e¤ect increases as u0

rises. Therefore, the increase in total output between the two cases stops rising

when the negative e¤ect exceeds the positive e¤ect, then starts falling.51 The

increase in T �1 has a positive e¤ect on T
�
2 , hence the decrease of T

�
2 slows down.

In the stage when the optimal task level of the one-college case increases, T �2 still

falls but at a decreasing rate because of the e¤ect of T �1 , and the increase in total

output keeps falling. As u0 approaches 0.25, T �1 and T
�
2 approach 0.5, and the

increase in total output goes to zero.

In this example, the output of the one-college system is higher than the total

output of any two colleges which are not empty when u0 = 0. This result would

change if we transform the production function. Suppose q (x; r; T ) = (xr)� T �.

Numerical results show that when u0 = 0, the planner will set up the second

college only if � + � < 1, i.e. the production function has decreasing returns

to scale.52 This results also show that the increase in output of the two-college

system over the one-college system is rising as � decreases. On the other hand,

when � + � is too large and u0 is su¢ ciently small, we found that the two-

college system does not do better than the one-college system. For instance,

when � = � = 0:9 and u0 = 0:01, the total output of the two-college system

approaches the maximum only if the low task level goes to zero and the high task

level goes to the optimal task level of the corresponding one-college system.

Table 4 and Figure 18 show the trends of optimal task levels and outputs in

both cases as � changes. When � < 0:5, it is more pro�table for the planner

to establish a two-college system as � goes to zero. On the other side, this

observation supports our analysis on the e¤ects of the outside option in the two-

51See Table 3, u0 = 0:12.
52See Table 4, where we simply assume � = � and hence the production function is

q (x; r; T ) = (xr)
�
T�. W �

2 > W
�
1 for � 6= � as long as �+ � < 1:
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0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
T* 0.116 0.239 0.360 0.475 0.581 0.680 0.771 0.854 0.930

W1* 0.673 0.542 0.476 0.444 0.437 0.452 0.492 0.564 0.695
W2* 0.747 0.605 0.514 0.454 0.437 0.452 0.492 0.564 0.695
ΔW 0.074 0.063 0.038 0.010 0.000 0.000 0.000 0.000 0.000
    : Power of inputs in the production function;
T*: Optimal task level in the one­college case;
W1*: Maximial output in the one­college case when u0=0;
W2*: Maximial output in the two­college case when u0=0;
ΔW: W2*­W1*

Table 4

α

α

college case. The optimal task level in the one-college case falls as � decreases, so

that the upward room for a higher task level and the downward room for a lower

task level increases, and hence the output of the two-college system is possibly

greater than the one-college system.
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Figure 18: Task levels and outputs.

We have bee unable to establish whether or not the three (or more)-college

system would do better than the two-college system, but we believe that it should

depend on the elasticity of inputs, i.e. � and �. When the elasticity is very low,

it could increase the output to break one college into two or more colleges. On

the other side, when the elasticity is high, the planner would rather keep a small

number of colleges. Sallee, Resch and Courant (2008) propose that if there are

no �xed costs, the optimal solution features a unique level of funding (a unique

school) for each student ability that is funded at a positive level. Thus, there

must be an in�nite number of colleges if students�abilities follow a continuous

distribution. The analysis on our model has shown that the number of colleges

is not necessarily in�nite.
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� 6=0: If � 6= 0, then the resource constraint is �N+R � 
. In the optimum,
�N+R = 
. Given 
, the planner�s decision is dependent upon the optimal total

outputs of the two systems. Since � 6= 0, the allocable resources are decreasing
as N rises. Therefore, the planner would set up the second college only if the

new system can produce a higher output than the one-college system although

R2 < R1. When the �xed cost is too high, the decrease of allocable resources may

cause the total output of the two-college system to be lower than the output of

the one-college system. In that case, the planner will not establish a new college.

Let us see the following example.

Suppose u0 = 0:12.53 If � = 0 and the total resources are 
, then the total

output in the one-college case is W 0
1 = 0:376
0:5, and the total output in the

two-college case is W 0
2 = 0:39


0:5:54 Figure 19 shows how the total output varies

in 
 when � = 0. The total output of the two-college system is higher than the

one-college system for all positive 
.
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Figure 19: Outputs vs total resources when � = 0:

If we let � = 0:1, then the total output in the one-college case is W 0:1
1 =

0:376(
� 0:1)0:5, and the total output in the two-college case is W 0:1
2 = 0:39(
�

0:2)0:5. Figure 20 presents the changes of W over 
 when � = 0:1. When

R < 1:54, the output is higher in the one-college case. When R > 1:54, the output

is higher in the two-college case. This example shows that given a constant �xed

cost, the optimal number of colleges is weakly increasing as 
 rises. Figure 21

shows how total output changes as 
 rises in a general case when � increases from

zero. The planner will start setting up the �rst college when 
 = �, and W1 rises

53The result can be applied to all cases with di¤erent u0.
54Since equilibrium conditions do not depend on R, the optimal task levels do not change

even though R varies. Therefore, we have this output functions simply by substituting the
optimal task levels and allocation of resources into the original output function.
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Figure 20: Outputs vs total resources when � = 0:1.

as 
 increases. The planner decides to set up a new college when W2 = W1. W2

increases until the establishment of the third college, and so on.
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Figure 21: Outputs vs total resources in a general case:

On the other hand, if we assume 
 = 1 and the �xed cost changes, then the

total outputs in the one-college and two-college cases are functions of �. When

u0 = 0:12; W
�
1 = 0:376(1 � �)0:5 and W �

2 = 0:39(1 � 2�)0:5. Figure 22 shows the
changes of the total outputs of the two cases as � changes. When � < 0:066,

the output is higher in the two-college case; and when � > 0:066, the output is

higher in the one-college case. This example implies that given a constant total

resources, the optimal number of colleges is weakly decreasing as � rises:

3.3.4 Students�Welfare

The last point that concerns us is students�welfare. We do not provide any

general conclusions, but a numerical example to illustrate the e¤ects of the two
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Figure 22: Outputs vs �xed costs.

systems on students�welfare. Consider the case where u0 = 0:12. Our question

is whether or not all students are better o¤ if the planner sets up a new college.

A particular student with ability x is better o¤ if u1 < u2, where uj denotes

his utility in the j-college case, j = 1; 2. Let k1 denote the college with the low

task level and k2 denote the college with the high task level. Those students who

attend k1 rather than taking the outside option must be better o¤and the bottom

type of k1 is indi¤erent between k1 and the outside option. For other students

in k1, who attended the college in the one-college case, their utilities from the

college in the one-college system are

u1 = U (x; 0:495) = 0:495�
0:4952

x
;

and their utilities from k1 in the two-college system is

u2 = U(x; 0:209) = 0:209�
0:2092

x
:

When x < 0:704, u1 < u2, and hence all the types between 0.491 and 0.704 are

better o¤; when x > 0:704, u1 > u2, and hence those whose ability is between

0.704 and 0.734 are worse o¤. On the other hand, if x chooses k2, then his utility

from attending k2 is

u2 = U(x; 0:525) = 0:525�
0:5252

x
:
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u1 > u2 for all x 2 [0:734; 1].55 Therefore, all the types in k2 is worse o¤compared
to the one-college case. The reason that those students whose abilities are between

0.734 and 1 choose k2 instead k1 is the task level of k1 is too low for them.

However, the utilities gained from k2 is less than the utility from the college in

the one-college case because the task level of k2 is too high.

Remark 4 A system with more colleges does not necessarily lead to higher util-

ities for all students.

3.4 Conclusion

This chapter presented a framework for sorting students and allocating resources

to colleges from a planner�s point of view. The intuition comes from the French

higher education admission system. Without any entry requirements, how do

students sort themselves into di¤erent colleges with various education qualities?

Do they all choose to go to the college with the highest quality? This piece of

work tries to build up a model to analyse these questions by introducing the

cost of completing a speci�c task into the model. In the French higher education

admission system, di¤erent quality colleges have di¤erent levels of performance

requirements which can be treated as "Tasks" in our model. Students have to

take the cost into account when they choose colleges. Although there is no entry

requirement, students will sort themselves by maximizing their utilities. There

are undoubtedly many other factors that may a¤ect a student�s utility, such as the

interest rate, tuition fee, distance to the school, living cost, �nancial constraints,

and so on. Indeed, all bene�ts of attending a particular school could be included

into the gains from that school, while all disadvantages could be included in

the costs. However, that will make the model asymmetric and too complicated.

Therefore, this model abstracted from such factors. These asymmetric factors

combining with incomplete information could explain why the central planner

has di¢ culty in controlling the system and why some universities in Paris are

overcrowded.

Our work simply assumes a student�s gain from college only depends on the

task level, which is similar to the degree of a university, and the cost of completing

the task is determined by the task level and the student�s ability. An important

assumption about the cost function is submodularity between task level and abil-

ity. A student selects a college or the outside option that maximises his utility.

55Note that 0.491 and 0.734 are the lower marginal types at each college respectively. See
Table 3.
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We de�ned the concept of positive sorting as students sort themselves into dif-

ferent levels of colleges according to their abilities. The higher ability types go

to the higher level colleges. We showed that given a positive ranked colleges by

task levels, students will sort themselves positively.

The planner�s objective is to maximise total output which is the aggregate

of all individual students�outputs. The crucial assumption is supermodularity

between arguments in production function. We derived the equilibrium in the

simple models of one college and two colleges, and the results can be translated

to anN college case. At the optimum, the planner has maximised the total output

by designing task levels and allocation of resources and students have maximised

utilities as well. We use a speci�c utility and production function to illuminate

our model. We concluded that the optimal number of colleges is not necessarily

in�nite even if there are no �xed costs. When there are �xed costs, the planner

has to balance the bene�t of the new college against the reduction of the allocable

resources. The optimal number is determined by total resources, �xed costs and

the outside option. An increase in the total output does not necessarily mean all

students are better o¤ from a system with more colleges.

This model is rather simple and may miss out some other important factors.

Nevertheless, it captures a number of key features about such a sorting problem

where one side of the market has to incur certain costs in order to accomplish

the quali�cation provided by the other side. It explains why high ability students

are more willing to attend a higher quality institution than low ability students.

Also, our model o¤ers an explanation for a tiered system, and why higher quality

universities are allocated more resources.
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3.5 Appendix

Proof of Proposition 13:

Proof. Given the utility function, U (x; T ), the �rst order condition for maxi-
mizing utility function with respect to T is

U2 (x; T
m) = 0:

By taking the �rst derivative with respect to x on both sides of U2 (x; Tm) = 0,

we have

U21 (x; T
m) + U22 (x; T

m)
dTm

dx
= 0:

Thus, dT
m

dx
= �U21(x;Tm)

U22(x;Tm)
. Since U21 (x; Tm) > 0 and U22 (x; Tm) < 0, then dTm

dx
>

0.

Proof of Proposition 14:

Proof. For any college j, which is not empty, consider the highest ability and the
lowest ability, denoted by xj;l and xj;h. In order to prove the equilibrium sorting

is positive, it is su¢ cient to show that any type in college j + 1 (if j + 1 is not

empty and j � N � 1), denoted by X (j + 1), are higher than xj;h and any type
in college j � 1 (if j � 1 is not empty and it denotes the outside option if j = 1),
denoted by X (j � 1), is lower than xj;l.
If positive sorting fails, then 9 xk 2 X (j + 1), with xk < xj;h or 9 xk 2

X (j � 1), with xk > xj;l. In the �rst case, as type xk selects j + 1, U (xk; Tj) �
U (xk; Tj+1); type xj;h selects j, then U (xj;h; Tj) � U (xj;h; Tj+1). Therefore we

have

U (xj;h; Tj+1)� U (xj;h; Tj) � U (xk; Tj+1)� U (xk; Tj) ;

which contradicts the assumption of supermodular utility given xk < xj;h, hence

type xk will not choose college j + 1 if xk < xj;h. In the second case, 9 xk 2
j � 1 > xj;l, which means for type xk, U (xk; Tj) � U (xk; Tj�1); for type xj;l,

U (xj;l; Tj) � U (xj;l; Tj�1), therefore we have

U (xk; Tj)� U (xk; Tj�1) � U (xj;l; Tj)� U (xj;l; Tj�1) ;

which again contradicts the assumption of supermodular utility given xk > xj;l,

hence type xk will not choose college j � 1 if xk > xj;l.
Therefore, in equilibrium, the result is positive sorting.
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Proof of Proposition 15:

Proof. Suppose that the highest type in college j� 1 is di¤erent from the lowest
type in the adjacent higher level college, say college t, i.e., xj�1;h 6= xj;l. There
must exist a type z such that xj�1;h < z < xj;l and does not choose college j � 1
or college j because we have assumed xj�1;h and xj;l are the highest and lowest

marginal type in each college respectively. If type z selects college j + 1 or even

a higher level college, say j+, then we have U (z; Tj) � U (z; Tj+); but since xj;l
has chosen j, so U (xj;l; Tj) � U (xj;l; Tj+); thus

U (xj;l; Tj+)� U (xj;l; Tj) � U (z; Tj+)� U (z; Tj) ;

which contradicts the assumption of supermodular utility given z < xj;l. If type z

selects j�2 (j � 2) or even a lower level college or the outside option, say (j � 1)�,
then we have U (z; Tj�1) � U

�
z; T(j�1)�

�
; for type xj�1;h, U

�
xj�1;h; T(j�1)�

�
�

U (xj�1;h; Tj�1); thus

U (z; Tj�1)� U
�
z; T(j�1)�

�
� U (xj�1;h; Tj�1)� U

�
xj�1;h; T(j�1)�

�
;

which contradicts the assumption of supermodular utility given xj�1;h < z.

Therefore, such a type of z that xj�1;h < z < xj;l does not exist, hence

xj�1;h = xj;l;

i.e., there are no overlaps or gaps between any two adjacent colleges.

Proof of Proposition 16:

Proof. Without loss of generality, suppose j < N . De�ne the total out-

put of kj as h (xj; xj+1; rj; Tj) =
R xj+1
xj

q (x; rj; Tj) dx; the total output of ki as

h (xi; xi+1; ri; Ti) =
R xi+1
xi

q (x; ri; Ti) dx. Proposition 14 implies that xj; xj+1 >

xi; xi+1 given Tj > Ti.

Suppose kj has a lower resources per student than ki, i.e., rj < ri, then

Rj < Ri as wj � wi at the equilibrium. The total output of the two colleges is
written as

W = h (xj; xj+1; rj; Tj) + h (xi; xi+1; ri; Ti)

= h

�
xj; xj+1;

Rj
wj
; Tj

�
+ h

�
xi; xi+1;

Ri
wi
; Ti

�
:

148



Now consider a positive transfer of resources from ki to kj. Since a student�s

decision does not depend on the allocation of resources, the marginal types would

not alter if the planner only changed the allocation of resources and kept the same

task levels. Therefore, marginal types at ki and kj would not change if there is

such a transfer. Therefore, the total output after the swap is

W 0 = h

�
xj; xj+1;

Rj + "

wj
; Tj

�
+ h

�
xi; xi+1;

Ri � "
wi

; Ti

�
:

By the fact of supermodularity and 1
wj
� 1

wi
, we have the following inequality:

@W 0

@"
=
1

wj
h3

�
xj; xj+1;

Rj + "

wj
; Tj

�
� 1

wi
h3

�
xi; xi+1;

Ri � "
wi

; Ti

�
> 0:

So, it is optimal to set " > 0, which contradicts the optimality of the proposed

solution. Therefore, ri < rj and Ri < Rj.

Proof of Proposition 17:

Proof. Consider the marginal type x1. Recall V (0) = C (x1; 0) = 0, V11 (T ) � 0,
C22 (x; T ) > 0, and hence U22 < 0. Then there must be two positive solutions

(identical or di¤erent) for the following function:

V (T )� C (x1; T ) = u0:

Let T1 � T2 denote the two solutions. Therefore, U2 (x1; T ) � 0 at T1 and

U2 (x1; T ) � 0 at T2, where strict inequalities hold if T1 < T2. The optimal task
level should be the identical solution or one of the two di¤erent solutions.

Since the marginal type is the same for the two task levels,Z 1

x1

q

�
x;

R

1� x1
; T2

�
dx �

Z 1

x1

q

�
x;

R

1� x1
; T1

�
dx;

where strict inequalities hold if T1 < T2. Therefore, the planner will choose T2.

Thus, T � = T2, and hence U2 (x1; T ) � 0 at T �, where strict inequalities hold if
T1 < T2.

At the optimal task level, T �, taking the �rst derivative on both sides of the

following equation:

U (x1; T ) = u0;
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with respect to T gives

U1 (x1; T )
@x1
@T

+ U2 (x1; T ) = 0:

Therefore, at T �,

gT =
@x1
@T

= �U2 (x1; T )
U1 (x1; T )

:

Since U1 (x1; T ) > 0, then gT � 0. Therefore, x1 rises given any increase in

T �.56

Proof of Claim 15:

Proof. The �rst derivative of W with respect to T is

WT = W2 (T; x1)
@x1
@T

+W1 (T; x1) ;

where

W2 (T; x1) = �q (x1; r; T ) +
R

(1� x1)2
Z 1

x1

q2 (x; r; T ) dx:

Hence

WT =

�
�q (x1; r; T ) +

R

(1� x1)2
Z 1

x1

q2 (x; r; T ) dx

�
@x1
@T

+

Z 1

x1

q3 (x; r; T ) dx:

F.O.C. sets WT = 0, and as in equilibrium x1 = g (T; u0), it can be rearranged as

�q (x1; r; T ) g1 (T; u0) +
�

R

(1� x1)2
Z 1

x1

q2dx

�
g1 (T; u0) +

Z 1

x1

q3dx = 0;

where q2 denotes q2 (x1; r; T ), q3 denotes q3 (x1; r; T ) and r = R
1�x1 .

Proof of Proposition 18:

Proof. In the equilibrium, since the top marginal type in the lower level college is
identical to the bottom marginal type in the higher level college, the marginal stu-

dents in college 1 and college 2 must have the same utility, U (x2; T1) = U (x2; T2).

In Figure 23, T1 and T2 must be on two sides of the task level that induces the

maximal utility for x2.

56If gT = 0, then VT � C2 (x1; T ) = 0 at T �, which means type x1�s utility is maximised.
Therefore, given any changes of T �, type x1 will leave the college and the bottom ability will
rise.
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Now consider a marginal increase from T1 to T 01: the utility of the top type

student in college 1 is higher than the utility of the bottom type student in college

2, i.e., U (x2; T 01) > U (x2; T2), by the single peakedness of student�s utility. Thus

the bottommarginal student in college 2 will switch to college 1, hence the bottom

type in college 2 rises, which implies g21 (T1; T2) > 0.

By the same logic, a marginal increase in T2 will lead to U (x2; T 02) < U (x2; T1),

which implies that the increase squeezes the bottom marginal student in college

2 out to college 1, i.e., g22 (T1; T2) > 0.

T
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Figure 23: E¤ects on x2:

Proof of Proposition 19:

Proof. a. If we found a two-college system that replicates the output of the op-

timal one-college system, then part a of this proposition would have been proved.

The planner can simply set up a new college with zero task level, keep the college

in the one-college system the same and allocate all the resources to the origi-

nal college. The total output is the same as before, W2 = W �
1 . Note that W2

needs not to be maximised. The planner is able to change the task levels of the

two colleges as well as the allocation of resources to maximise the total output.

Therefore, W �
2 � W2 = W

�
1 .

b. Denote the optimal task level in the one-college system by T � and the

task level that maximises the utility of the highest type by T �t . If T
� < T �t ,

then U2 (x; T ) must be positive at T � for some types whose abilities are higher

than x1, which is the bottom type in the one-college case. Suppose the planner

sets up a new college with task level T 0 and T � < T 0 < T �t . For those types,
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U (x; T �) < U (x; T 0), and hence they will go to the new college. Denote the

lowest type of those going to the new college by x2. Note that x1 does not

changed because T � keeps the same.

Resources per student in the one-college case is r = R
1�x1 , and the resources per

student in the new system is r1 =
pR

x2�x1 , r2 =
(1�p)R
1�x2 for each college respectively.

If p = x2�x1
1�x2 , then r1 = r2 = r. Since the output of a particular student is

increasing in the task level given the same resources per capita, we obtainZ 1

x2

q (x; r; T �) dx <

Z 1

x2

q (x; r; T 0) dx:

HenceZ x2

x1

q (x; r; T �) dx+

Z 1

x2

q (x; r; T �) dx <

Z x2

x1

q (x; r; T �) dx+

Z 1

x2

q (x; r; T 0) dx;

Z 1

x1

q (x; r; T �) dx <

Z x2

x1

q (x; r; T �) dx+

Z 1

x2

q (x; r; T 0) dx:

Therefore, W2 > W �
1 , where W2 denotes total output of the new system. Note

that T � and T 0 need not to be the optimal task levels, so the W �
2 � W2 > W

�
1 .

Proof of Proposition 20:

Proof. When u0 = 0, the output of the one-college system is 0.437. The total

output of the two-college system approaches 0.437, which is the maximum, when

T1 goes to zero and T2 stays at the optimal task level of the one-college system.

Therefore, the two-college system can not do better than the one-college system

when u0 = 0:

When 0 < u0 < 0:25, there are two possible circumstances.

First, UT = 0 at T � for the bottom type. T � must be lower than the task level

that maximises the utility of the highest type, otherwise the college in the one-

college system would be empty. Proposition 19 has shown that the two-college

system produces more total output than the one-college system in this case.

Second, U2 (x1; T ) 6= 0 at T � for the bottom type. There must be two positive
solutions for T to the following function:

U (x1; T ) = u0:

One of the solutions is T �, and denote the other one by T 0. At the equilibrium

U(x1; T
0) = U(x1; T

�): By using Proposition 17 and Figure 14, we know that
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T 0 < T � and U2 (x1; T ) < 0 at T � and U2 (x1; T ) > 0 at T 0 for type x1. Suppose

the planner sets up a new college with task level T 0. Consider those students

whose abilities are higher than the bottom type, x > x1. The supermodularity

of the utility function, U12 (x; T ) > 0, immediately implies U(x; T 0) < U(x; T �).

Therefore, these types would stay in the college with T �. Consider those students

whose abilities are lower than the bottom type, x < x1. They will not go to

the college with T � and T 0 because U(x; T �) < U(x1; T
�) = u0 and U(x; T 0) <

U(x1; T
0) = u0. In the end, the new college does not recruit any students.

Now suppose the planner changes the task level of the new college from T 0 to

T1 and T1 = T 0 + �, where � is a positive number, and allocate a small amount of

resources to that college. Our aim is to show the total output of the new system

is increasing as � rises from zero. In other words, the �rst derivative of the total

output in terms of � is positive when � goes to zero.

Let x01 denote the bottom type of the new college. The bottom type of the

original college is x2 = T1 + T � = T 0 + T � + �. From the function T � T 2

x1
= u0,

we obtain T 0 + T � = x1, and hence x2 = x1 + �. Therefore, the total output of

the new system is

W2 =

Z x1+�

x01

�
x

p

x1 + �� x01

�0:5
(x1 � T � + �)0:5 dx

+

Z 1

x1+�

�
x

1� p
1� x1 � �

�0:5
(T �)0:5 dx

=
1

1:5

�
p

x1 + �� x01
(x1 � T � + �)

�0:5 �
(x1 + �)

1:5 � (x0)1:5
�

+
1

1:5

�
1� p

1� x1 � �
T �
�0:5 �

1� (x1 + �)1:5
�
:

Together with

x01 =
T 21

T1 � u0

=
(x1 � T � + �)2

x1 � T � + �� u0
;
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we obtain the �rst derivative of W2 with respect to �

@W2

@�
= �1:5 (T �)0:5

�
1� p

1� x1 � �

�0:5
(x1 + �)

0:5

+
0:5 (T �)0:5 (1� p)

�
1� (x1 + �)1:5

�
(1� p)0:5 (1� x1 � �)1:5

+
0:5
�
(x1 + �)

1:5 � (x01)
1:5� � p

x1+��x01

�0:5
(x1 � T � + �)0:5

�
0:5p (x1 � T � + �)0:5

�
(x1 + �)

1:5 � (x01)
1:5� 1 + (x1�T �+�)2

(x1�T �+��u0)2

� 2(x1�T �+�)
(x1�T �+��u0)

!
(p)0:5 (x1 + �� x01)

1:5

+1:5 (x1 � T � + �)0:5
�

p

x1 + �� x01

�0:5
 
(x1 + �)

0:5 � (x01)
0:5

 
2 (x1 � T � + �)

(x1 � T � + �� u0)
� (x1 � T � + �)2

(x1 � T � + �� u0)2

!!
:

When � goes to zero, x01 approaches x1. Therefore,

lim
�!0

�
@W2

@�

�
= �1:5

�
x1T

� (1� p)
1� x1

�0:5
+
0:5 (T �)0:5 (1� p)

�
1� (x1)1:5

�
(1� p)0:5 (1� x1)1:5

+ lim
�!0

[A+B + C] :

where

A =
0:5
�
(x1 + �)

1:5 � (x1)1:5
� �

p
�

�0:5
(x1 � T �)0:5

;

B = �
0:5p (x1 � T �)0:5

�
(x1 + �)

1:5 � (x1)1:5
� �
1 + (x1�T �)2

(x1�T ��u0)2
� 2(x1�T �)

(x1�T ��u0)

�
(p)0:5 (�)1:5

C = 5 (x1 � T �)0:5
�p
�

�0:5
(x1)

0:5

  
2 (x1 � T �)

(x1 � T � � u0)
� (x1 � T �)2

(x1 � T � � u0)2

!!
:

lim
�!0

[A+B + C] is determined by term C. The limit of the last term in the square

brackets is in�nity and the sign is directed by the sign of the following expression

(x1p)
0:5 u2 (x1 � T �)0:5

(x1 � T � � u0)2
,

which is positive.

Therefore, W2 is increasing as � goes up from zero, and hence W2 is greater
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than W �
1 for some positive �: Once again, W2 is not necessarily the maximal

output. The planner is able to �nd the optimal T �1 and T
�
2 to maximise the total

output.
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