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Abstract

This thesis includes three essays exploring some economic implications of queueing. A
preliminary chapter introducing useful results from the literature which help contex-
tualize the original research in the thesis is presented first. This introductory chapter
starts by surveying queueing results from probability theory and operations research.
Then it covers a few seminal papers on strategic queueing, mostly but not exclusively
from the economics literature. These cover issues of individual and social welfare in
the context of First Come First Served (FCFS) and Equitable Processor Sharing (EPS)
queues, with one or multiple servers, as well as a discussion of strategic interactions
surrounding queue cutting. Then an overview of some important papers on the impact
of queueing on competitive behaviour, mostly Industrial Organization economists, is
presented.

The first original chapter presents a model for the endogenous determination of
the number of queues in an M/M/2 system. Customers arriving at a system where
two customers are being served play a game, choosing between two parallel queues
or one single queue. Subgame perfect equilibria are obtained, varying with customer
characteristics and game specifications. With risk neutrality and when jockeying is not
permitted, a single queue is an equilibrium, as is two queues. With risk neutrality and
jockeying allowed, there is a unique two queue equilibrium. With risk aversion and
no jockeying, there is a unique single queue equilibrium, and with risk aversion and
jockeying, the equilibrium depends on the magnitude of risk aversion.

The second chapter analyses the individual decisions taken by consumers when de-
ciding whether to join an M/M/1 queue where a subset of customers who interact
repeatedly can both cut the queue and be overtaken once they join, by-passing oc-
casional users. This is shown to be an equilibrium in repeated games for sufficiently
patient customers. The expected sojourn time for customers under this discipline is
described as a solution of a system of difference equations, and this is then used to
obtain a threshold joining strategy for arrivals, which is independent of the number of
regular customers in the queue, as regulars form a sub-queue under the LCFS disci-
pline. Numerical methods are then employed to contrast sojourn times and thresholds
with the equilibrium for a strict First Come First Served queueing discipline, and with
the socially optimal joining rule.

Finally, the third chapter describes a duopoly market for healthcare where one of
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the two providers is publicly owned and charges a price of zero, while the other sets a
price so as to maximize its profit. Both providers are subject to congestion in the form
of an M/M/1 queue, and they serve patient-customers with randomly distributed unit
costs of time. Consumer demand (as market share) for both providers is obtained and
described with its full complement of comparative statics. The private provider’s pricing
decision is explored, and equilibrium existence is proven. Social welfare functions are
described and the welfare maximizing condition obtained. Numerical simulations with
uniform and Kumaraswamy distributions are performed for several parameter values,
showcasing the pricing provider’s decision and its relationship with social welfare.
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Chapter 1

Introduction

Queueing has been a fruitful field of economic research since Naor’s seminal paper,
Naor (1969). The peculiarities inherent in the subject, combined with the fact that
there is significant influence from Operations Research (OR), where most of the work
on the subject has been done, means that there are many concepts required to fully
grasp the research which are not part of the common economic lexicon.

Before Economics, queueing had been the bailiwick of Operations Research (OR)
and Management Science. Their concerns often centred around improving efficiency
in the many cases where queues arise in businesses and other organizations. It is
important to keep in mind that while the most basic form of the queue is a physical line
of people waiting for some kind of serviced, queueing models can capture a wider variety
of realities. Waiting lists where there is no physical queue can still be modelled as an
unobservable queue—these arise in health care, make-to-order transactions, call centres,
and many other contexts. Queueing models have even been applied to congestion in
internet or phone interchanges, and processes in a CPU, situations where there is no
direct human element. It is not surprising that many modelling advances in this area
came from telecommunication engineers and computer scientists. The Section 2 of this
introduction presents the basic OR results essential to understanding the subsequent
discussion.

There are reasons why economists should care about queueing, and contributions
that Economics is uniquely positioned to make to the queueing literature, having a
comparative advantage over other disciplines. The research program in OR was mostly
focused on measurement and improvements in efficiency. Yet clearly be considered
from an economic standpoint. The clearest route into this consideration is thinking of
queueing as a rationing mechanism. It most often functions alongside price, though
in some occasions in can be the only rationing mechanism, such as when the good
is being given away for “free”. The cost of the time spent in the queue acts in the
same way as a monetary price. While the OR literature has traditionally taken supply
and demand, queue discipline and other factors as either given or alterable by man-
agement, economic contributions have tended to focus on how these factors arise in
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4 CHAPTER 1. INTRODUCTION

the first place. As such, starting with the landmark paper Naor (1969), a literature
strand known as Strategic Queueing has developed, where economic methods, chiefly
Game Theory, have been leveraged to examine interactions between several customers,
customers and service providers, and different service providers, and how these inter-
actions give rise endogenously to, inter alia queue discipline, provider behaviour, and
demand and service rates. It is important to note, however, that Operations Research
scholars have taken up the lessons from economic theory and contributed heavily to the
study of strategic queueing since then, as a quick look at the bibliography of Hassin
and Haviv (2003), a literature survey up to the date of publication, will show, while
economists working in the field have also refined the sophistication of their models.
The research presented in this thesis is performed in full view of the fruitful results of
this inter-disciplinary dialogue.

Chapters 3 and 4 of this Introduction will review some key results in Strategic
Queueing. As alluded to in the foregoing, the research agenda of strategic queueing, is
to consider how system characteristics hitherto regarded as parameters can be endog-
enized when some of the actors in the system behave strategically and make rational
decisions, normally modelled using game theory. Examples include capacity limits,
decisions of which queue to join, customer priority and reordering, and the queue-
ing discipline. Other considerations are the welfare implications of sojourn times, the
role of providers—are they profit maximizers, do they have market power, can they
vary service rates—and how queueing can impact broader economic concerns, such as
competition between firms, search, firm production (when the firms must wait for in-
termediate goods), health care provision, etc. In line with the interests of this thesis,
the topics to be covered focus on the issues surrounding the number of queues and
queuing discipline. This is to prepare the ground for the original essays in the thesis,
in chapters 7 and 8.

Chapter 7, entitled “Endogenous Queue Number Determination in M/M/2 Sys-
tems,” uses game theory tools to investigate how in the presence of a multiplicity of
service points, the number of queues can be determined endogenously by customers
rather than being a parameter of the system. The multiplicity of service points nat-
urally offers wide opportunities for research into strategic behaviour in other context:
Hlynka et al. (1994) examined customer choice of queues in the presence of uncertainty
about differing service rates, for instance. The research discussed below, on competition
on sojourn time, is indeed at its core an extension of this type of model where multiple
servers are in competition with one another. It is easy to envisage this being extended
problems in labour economics: if service rates depend on server effort, for instance,
how may firms promote this through contractual mechanisms, and how would servers
and customers respond? How might this affect firm behaviour in deciding whether to
invest in more service points or in improving the service rate? All these are microeco-
nomic problems with direct relevance for the real world, where queueing is an almost
ubiquitous feature of service provision.

Chapter 8 of this thesis, concerned with queueing discipline, is entitled “Cutting
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Queues: Customer and System Behaviour in a Repeated Game.” This paper is not
shy about acknowledging its dependence on existing literature. It is at the crossroads
of Yu et al. (2014) and Allon and Hanany (2012). The former treats an alternative
discipline to the FCFS standard, replicating Naor’s results for that setting, while the
latter uses game theory to endogenously derive a queue reordering where customers
with higher waiting costs overtake those with lower waiting costs in a repeated games
setting. This somewhat echoes Gershkov and Schweinzer (2010), although the game
theoretical apparatus used to solve the problem there is much different. The chapter
extends Allon and Hanany (2012) to a setting where customer costs are identical, and
then characterizes the equilibrium joining threshold using the tools employed in Yu
et al. (2014). The literature about priority in queues is extensive, and applications are
numerous. While this model focuses on endogenous overtaking, it is possible for service
providers to effect the reordering of a queue as well—indeed, that is what most of the
research on this area assumes. The use of payments to improve customer priority as
a price discrimination device seem to be a fruitful avenue for further research, both
theoretical and empirical.

Chapter 5 of this Introduction will move to the uses of queuing in Industrial Organi-
zation. This falls into the heading of strategic interactions among providers mentioned
above. It discusses some key results in Industrial Organization which have seen queues
applied to more general economic topics. In particular, these papers focus on how the
presence of queueing in the delivery of a good. This discussion intends to prepare the
ground for Chapter 9 in this thesis, entitled “Pricing and Waiting Time Decisions in
a Health Care Market with Private and Public Provision,” will apply this literature
to the Health Economics context. This is a much more applied paper than the other
two, following on the heels of Luski’s IO research, and Goddard et al. (1995) and its
progeny’s applying of queueing models to Health Care. The issue under consideration
is how a private sector health care provider operating in the same market as a public
provider which is constrained to charge a price of zero sets its price, given that it is
also subject to congestion and possesses market power. This is a pertinent extension,
considering how prominent issues of waiting time are in health systems.
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Chapter 2

Operations Research Results

This section attempts to give a short overview OR concepts and results required for
understanding the rest of the material, based on a popular textbook, Gross et al.
(2008). The starting point for queueing models is always the description of the system.
Queueing systems can be classified according to six basic characteristics:

(1) Distribution of customer arrivals—usually, the process of customer arrival is stochas-
tic, so a description of the system requires the probability distribution of inter-
arrival times. Another element of this component is whether customers can arrive
only one at a time, or if bulk arrivals are also possible, and if so, what is the
probability distribution of the batch size. These probability distributions may be
stationary, whereupon they are time-independent, or they may be non-stationary,
i.e., changing with time. Upon arrival, customers may join the queue, or they may
balk, i.e., decide not to join and leave—or they may be deterministically required
to join. It may also possible for a customer to opt to join the queue, but then give
up before being served, in which case he is said to have reneged. If there is more
than one queue in the system, it may be possible for customers to change queues
before being served—this behaviour is called jockeying.

(2) Service distribution—similarly, this aspect of the system is described by the prob-
ability distribution of customer service time, which may also be single or batch (if
a server may serve more than one customer at once). The probability distributions
may also be stationary or non-stationary, and may be state dependent or state
independent, i.e., variant or invariant with the state of the system (usually the
number of queueing customers). The probability distribution for service times is
generally assumed to be independent of that for customer arrival.

(3) Queueing discipline—this parameter refers to the way customers are selected for
service. By far the most common discipline is First-Come First-Served (FCFS),
where, as the name indicates, customers are served in order of arrival. However,
it is also possible to use other disciplines such as Last-Come First-Served, where
newly arrived customers are the first to be served, Egalitarian Processor Sharing

7
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(EPS), where servers may serve more than one customer at the same time (usually
with a performance penalty), so service is performed for all customers who are
present in the system at a given time (i.e., batch service, as discussed in the point
above), random selection (RSS), or various priority schemes where customers are
assigned priorities on arrival, and customers with higher priorities are served before
those with lower ones, regardless of arrival order.

(4) System capacity—some systems have physical limitations that require customers
to be turned away once the queue reaches a certain length, with no new customers
being allowed to join the queue until a service is completed. This is equivalent
to forcing customers to balk even if they would prefer to join the queue—though
of course, in models with impatient customers, it is possible that due to the cost-
benefit structure, the physical limit never needs to be reached before balking occurs
endogenously.

(5) Number of servers—this generally refers to the number of servers servicing a single
queue. While there can be multiple servers with a queue for each, this is usually
considered to be comprised of several systems independent of each other.

(6) Number of service stages—it is possible that customers queue for a service com-
posed of smaller sub-services, each of which may need to be queued for.

(7) Information available to customers—whether the queue is observable or not (an
example of a non-observable queue is a call centre), whether the customer knows
the service and arrival rates.

A specialized notation has evolved to describe queueing systems, which is now used
throughout the literature. It takes the form A/B/X/Y/Z, where A corresponds to
the customer arrival distribution, B to service time distribution, X to the number of
parallel servers, Y to restrictions on system capacity, and Z to the queueing discipline.
For example, the notation M/G/2/∞/FCFS represents a system with a Poisson arrival
process (the M stands for ’Markovian’1), no specific service time distribution (the G
stands for ’General’), 2 servers, no capacity restrictions, and using the FCFS discipline.
It is common practice to omit the last two symbols—service-capacity and queueing
discipline—if there are no restrictions on capacity, and if FCFS is used, respectively.

In the common case where inter-arrival and service times are exponentially dis-
tributed, the arrival rates is usually denoted by λ, and the service rate by µ, a conven-
tion to be followed here. Traffic congestion can then be measured by ρ = λ

sµ , where s is
the number of servers. If ρ > 1⇔ λ > sµ, then the average number of arrivals exceeds
the average service rate, and queue size will increase continually without converging
to a steady state—assuming, that is, that there are no exogenous capacity limits and

1Referring to the Markovian property of the exponential distribution. This is used instead of E as
that notation could be easily confused with Ek, the notation for the type-k Erlang distribution.
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customers have infinite patience (or to put it in economic terms, waiting is costless).
Under these conditions, it is necessary that ρ < 1 for a steady state to emerge.2

It is often desirable to obtain the probability distribution N(t) for the total number
of customers present in the system at a given time t, i.e., those customers waiting in
the queue (Nq(t)), and those being served (Ns(t)). Let pi(t) = Pr{N(t) = i} (so that
the steady state is defined as pi = Pr{N = i}): then the mean number of customers in
the system (L, or queue length) is given by:

L = E[N ] =
∞∑
i=0

ipi, (2.1)

with the mean number of only the waiting customers Lq (i.e., excepting those being
served) being:

Lq = E[Nq] =
∞∑

i=s+1
(i− s)pi. (2.2)

These steady state mean system sizes can be related to average customer sojourn
times through Little’s Formulas, or Little’s Laws, from Little (1961). Sojourn time for
a customer is given by T = S + Tq, where S is service time and Tq is waiting time, all
of which are random variables. Let W = E[T ] and Wq = E[Tq]; then Little’s Formulas
are:

L =λW , and (2.3)

Lq =λWq. (2.4)

This result is important because, given µ, it is only necessary to know one of these values
to obtain the other three, as E[T ] = E[S] + E[Tq], or W = Wq + 1

µ (for exponential
service times).

Another result which follows from Little’s Laws is:

L− Lq = λ(W −Wq) = λ
1
µ

= λ

µ
. (2.5)

It is also the case that:

L− Lq = E[N ]− E[Nq] = E[N −Nq] = E[Ns]. (2.6)

Then combine (2.5) and (2.6), and let r ≡ λ/µ, whence it follows that:

E[Ns] = r. (2.7)

2The inequality is strict as, unless arrivals and services are deterministic, then randomness prevents
servers ever catching up and leads to an ever-growing queue as well.
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Further, by definition:

L− Lq =
∞∑
i=0

ipi −
∞∑
i=1

(i− 1)pi = 1− p0. (2.8)

Then,
pb = ρ, (2.9)

where pb is the probability that a given server is busy in a multi-server system in the
steady state, as the expected number of customers being served is r. Given servers are
symmetric, the expected number of customers present at one server is given by:

r

s
= ρ = 0(1− pb) + 1pb. (2.10)

2.1 M/M/1 queues with an exogenous capacity limit

The first case to be covered, which in some ways is the benchmark for all that follows,
is that of an M/M/1/k queue: as usual the M refers to the Markovian character of
the distributions for customer arrival and service time, the 1 to the number of servers,
and the k to the capacity constraint, with k being the maximum number of customers
the system is able to hold. If the number of customers in the system is k, arriving
customers are turned away until a service occurs to reduce the number of customers to
k − 1.

Let i = 0, 1, 2, .., k indicate the number of customers present in the system. This
includes the customer being served as well as those waiting to be served. This can
range from 0, where the server is idle, so k, which is the maximum system capacity.
The probability of a customer being served is µ, the service rate (given by the rate
parameter of the exponential distribution for service time). When a customer is served,
the system loses one customer, and transitions from the state i to i− 1.

On the other hand, λ is the probability of a new customer arriving at the system
(given by the rate parameter of the distribution of inter-arrival time). When a customer
arrives, the system size is increased by one customer, transitioning from the state i to
i+ 1.

For any given state i, the system may transition to another state by either adding
one customer (with probability λ), or losing one customer (with probability µ); therefore
the total probability of changing states given a state i is equal to λ+µ. The two states
at the tail end of possible values present an exception, as they can only change in one
direction: when the system is at state i = 0, it can only change state by adding one
customer, with probability λ. Likewise, when at state i = k, the system can only change
state by losing one customer, with probability µ, because new arrivals are turned away
and do not affect the system state.

In the same way, the probability of arriving at any given state i given the system
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is either at state i + 1 or i − 1 is also given by λ + µ: if the original state is i + 1,
the system transitions to i with probability µ (one customer is served and leaves the
system), and if the original state is i− 1, the system transitions to i with probability λ
(one new customer arrives and joins the system). Once again, the two tail end states
present an exception. Since there is no state i = −1, it’s only possible to arrive at
i = 0 from i = 1, with probability µ. Likewise, as the system cannot be in the state
i = k + 1, it’s only possibly to arrive at i = k from i = k − 1, with probability λ.

In the steady state, it has to be the case that the average rate at which the system
enters into state i must equal the average rate at which the system exits out of that
same state. If pi is the probability of the system being in state i, then for all possible
values of i:

i = 0⇒ λp0 = µp1

i = 1⇒ λp1 + µp1 = λp0 + µp2 ⇔ (λ+ µ)p1 = λp0 + µp2

i = 2⇒ λp2 + µp2 = λp1 + µp3 ⇔ (λ+ µ)p2 = λp1 + µp3

i = 3⇒ λp3 + µp3 = λp2 + µp4 ⇔ (λ+ µ)p3 = λp2 + µp4

. . .

i = k ⇒ µpk = λpk−1.

(2.11)

The foregoing can be re-arranged as:

λp0 = µp1 ⇔ p1 = ρp0

(λ+ µ)p1 = λp0 + µp2 ⇔ p2 = ρ2p0

(λ+ µ)p2 = λp1 + µp3 ⇔ p3 = ρ3p0

. . .

µpk = λpk−1 ⇔ pk = ρkp0.

(2.12)

By definition, the sum of the probabilities of the system being in all possible states
i must equal 1, i.e.:

k∑
i=0

pi = p0 + p1 + p2 + p3 + ...+ pk = 1 (2.13)

must hold.

Combining (2.12) and (2.13), it follows that:

p0 + ρp0 + ρ2p0 + ρ3p0 + ...+ ρkp0 = 1, (2.14)
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in other words,

p0
[
1 + ρ+ ρ2 + ρ3 + ...+ ρk

]
= 1⇔

p0 = 1
1 + ρ+ ρ2 + ρ3 + ...+ ρk

,

or more simply,

p0 =
(

k∑
i=0

ρi
)−1

= 1− ρ
1− ρk+1 , (2.15)

as
∑k
i=0 ρ

i is a finite sum. Hence, pi can be obtained from the knowledge of the model’s
parameters: λ, µ and k, as follows:

pi = ρip0 = ρi
(1− ρ)

1− ρk+1 . (2.16)

The foregoing implies that:

• pi > 0 if and only if p0 > 0;

• p0 > 0 ∀λ > 0, µ > 0, as
∑
i = 0kρi is a finite sum.

Then the expected value of i (that is, the expected steady state queue length L)
can be obtained from (2.16):

L = E[i] =
k∑
i=0

iρi
(1− ρ)

1− ρk+1 = ρ[1− (k + 1)ρk + kρk+1]
(1− ρ)(1− ρk+1) = ρ

1− ρ −
(k + 1)ρk+1

1− ρk+1 . (2.17)

If customers arrive at a queue of length k, they will be diverted away from the
system. The fraction of arrivals meeting this fate, ζ, is obtained by multiplying the
arrival rate by the probability of the system being in state k:

ζ = λpk = λρk(1− ρ)
1− ρk+1 . (2.18)

The expected number of customers joining the queue in unit time (also known as
the effective arrival rate), is then simply the remainder of the arrival rate after the
subtraction of ζ:

λ− ζ = λ(1− pk) = λ

[
1− ρk(1− ρ)

1− ρk+1

]
= λ

1− ρk

1− ρk+1 . (2.19)

The stations’ “busy fraction”, b, indicates the share of the time the server is not
idle, i.e., when i is at least one:

b =
k∑
i=1

pi = 1− p0 = ρ(1− ρk)
1− ρk+1 . (2.20)
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On the other hand, the mean number of customers waiting Lq (that is, those not
being served, so i ≥ 2), can also be obtained:

Lq =
k∑
i=2

(i− 1)pi = ρ

1− ρ −
ρ(kρk + 1)
1− ρk+1 . (2.21)

The expected number of customers completing the service, per unit time, is:

µb = µ(1− p0) = µ

[
1− 1− ρ

1− ρk+1

]
. (2.22)

In the steady state, the number of customers joining the queue in unit time must
be equal to those leaving, and it’s easy to verify that:

ρ = 1− p0
1− pk

. (2.23)

Finally, the expressions for L and Lq in (2.17) and (2.21) can be combined with
Little’s Laws in (2.3) and (2.4) to obtain the expected sojourn time and queueing time:

W =L

λ
=

(1− ρk−1)
(

1
µ−λ −

λk(k+1)
µk+1−λk+1

)
1− ρk , and (2.24)

Wq =Lq
λ

= (µρk − λ)[λk(k − 1)− kλk−1µ+ µk)
(1− ρ)(µ− λ)(λk+1 − µk+1] . (2.25)

2.2 Boundless M/M/1 queue (infinite capacity)

The results in the previous section can be extended to a boundless M/M/1 queue fairly
easily. The most straightforward way of doing this is to model the birth-death process
in the same manner as (2.11), obtaining (2.15) in the same way. Then simply make the
capacity limit k tend towards infinity, so that p0 becomes:

p0 =
( ∞∑
i=0

ρi
)−1

= 1− ρ. (2.26)

From (2.26), all results can be obtained in the same manner as for the capacity
constrained queue. Starting with pi:

pi = ρip0 = ρi(1− ρ). (2.27)

This implies:

• pi > 0 if and only if p0 > 0;

• p0 > 0 ∀λ > 0, µ > 0 and µ > λ, as it’s necessary that ρ < 1 in order for
∑∞
i=0 ρ

i

to converge.
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The expected value of i/expected steady state queue length L can be obtained from
(2.27):

L = E[i] =
∞∑
i=0

iρi(1− ρ) = ρ

1− ρ . (2.28)

As the queue has no capacity constraints, no customers will be turned away, and
so ζ = 0.3 The expected number of customers joining the queue in unit time, then, is
equal to the arrival rate λ.

The stations’ “busy fraction,” b, is likewise given by:

b =
∞∑
i=1

pi = 1− p0 = 1− (1− ρ) = ρ. (2.29)

The mean number of customers waiting, Lq, also follows:

Lq =
∞∑
i=2

(i− 1)pi = ρ2

1− ρ . (2.30)

The expected number of customers completing the service, per unit time, is:

µb = µ(1− p0) = µρ. (2.31)

The steady state condition that the number of customers joining the queue in unit
time must be equal to those leaving is easily verified:

µb = λ⇔ µρ = λ⇔ µ

(
λ

µ

)
= λ. (2.32)

Finally, the expressions for L and Lq in (2.28) and (2.30) can be combined with
Little’s Laws in (2.3) and (2.4) to obtain the expected sojourn time and queueing time:

W = L

λ
=

1
µ

1− ρ = 1
µ− λ

, (2.33)

and

Wq = Lq
λ

=
λ
µ

µ− λ
= ρ

µ− λ
. (2.34)

2.3 M/M/s queues with an exogenous capacity limit

It is possible to extend the M/M/1/k framework to an arbitrary number of servers s.
Waiting times are i.d.d. across servers, following an exponential distribution with rate

3Of course, this assumes customers will join the queue regardless of its length and their expected
sojourn time, but the present section only take into account the probabilistic results, not customer
behaviour.
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µ. Let ρ = λ/sµ, and define the following discrete functions:

di =


(ρs)i
i! if 0 ≤ i ≤ s− 1,

(ρs)s
s! ρi−s if i ≥ s,

(2.35)

and

Dk =
k∑
i=0

di, n ≥ 0. (2.36)

The steady state probability of having i customers in the system is given by:

pi = di
Dk

, 0 ≤ i ≤ k, (2.37)

while expected queue length L in the steady state is:

L = E[i] =
k∑
i=0

ipi. (2.38)

Expected mean steady state sojourn time can be obtained from L and Little’s Law.

The fraction of “lost” customers ζ is given by:

ζ = dk
Dk

(2.39)
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Chapter 3

Strategic Queueing: Joining a
Queue

3.1 Joining a Queue: Individual and Social Issues

This chapter will provide an overview of the economic issues surrounding the decision
to join a queue, and some of the ramifications of the number of queues in the presence
of multiple servers. It was this issue which introduced economic considerations to the
analysis of queueing, in Naor (1969). The problem under analysis by Naor was when
should a customer arriving at a system decide to join a queue, and when to leave.
This can be seen as an endogenizing of the capacity parameter for queues mentioned
in the previous chapter. If customers behave like economic agents with a value for
time, there is only a certain amount of time they are willing to wait to receive a
service. As this time is a function of queue length, it is possible to determine a ‘joining
threshold,’ the maximum queue size for which a customer will join that queue. It is
customer ‘impatience,’ represented as a cost of time, which allows for these strategic
considerations and the subsequent decision modelling.

Consider an FCFS M/M/1 system described above in section 2.1, consumers to
be identical risk neutral expected utility maximizers, who arrive at the system and
observe queue length i, after which they decide whether to join the queue or leave. As
mentioned above, customer strategy can be defined by a threshold value: a strategy
nt, equal to the smallest integer i for which the customer balks. Customer utility of
joining as a function of queue length is:

Ui = R− (i+ 1)c 1
µ
, (3.1)

where R is the net value of the good being provided, and c is the unit cost of time. These
values are constant across customers. Further, let vt = Rµ

c . In meaningful models, at
least some customers must decide to use the queue, so it is assumed that vt ≥ 1. The
outside option has a value of zero. It is worth noting that the queueing literature has

17
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tended to eschew formulations of time cost in discounting terms. This can probably be
traced back to the formulation in the seminal Naor (1969), but whatever its origins, it
is the standard practice in the literature.

The strategy nt which maximizes the customer’s utility must satisfy the following
two conditions:

R− ntc
1
µ
≥ 0, and (3.2)

R− (nt + 1)c 1
µ
< 0. (3.3)

Eq. (3.2) refers to the case where i falls short of nt by one, where the customer
joins. On the other hand, eq. (3.3) refers to the case where queue size at least equals
the threshold value, so that the customer leaves. The two inequalities can be combined
into:

nt ≤
Rµ

C
= vt < nt + 1, , (3.4)

which can be stated as
nt = bvtc, (3.5)

where b c is the floor function, i.e., nt is the largest integer not exceeding vt. Note
that nt depends on µ, R and c, but is independent of λ. This value will act as the
endogenous capacity limit.

3.1.1 Social Optimization

While the foregoing discussion summarized individual considerations, it is often the
case the individually optimal outcomes do not lead to the maximization of social wel-
fare. That is true in the situation in view: as a general rule, the individually optimal
threshold will be larger than socially optimal. Intuitively, this is because each customer
joining the queue imposes a negative externality on all future arrivals, increasing their
expected sojourn time.

Formally, social welfare can be defined as the sum of net gains accruing to customers
in unit time; let W represent this, under a given threshold n:

W = (λ− ζ)R− cE[i] = λR(1− pn)− cL = λR
1− ρn

1− ρn+1 − c
[

ρ

1− ρ −
(n+ 1)ρn+1

1− ρn+1

]
.

(3.6)

It can be shown that W is discreetly unimodal on n, so that a local maximum is a
global maximum. The welfare maximizing strategy no is defined by two inequalities:

λR

[
ρno(1− ρ)
1− ρno+1 −

ρno+1(1− ρ)
1− ρno+2

]
− c

[
(no + 1)ρno+1

1− ρno+1 − (no + 2)ρno+2

1− ρno+2

]
< 0, and (3.7)

λR

[
ρno−1(1− ρ)

1− ρno − ρno(1− ρ)
1− ρno+1

]
− c

[
noρ

no

1− ρno −
(no + 1)ρno+1

1− ρno+1

]
≥ 0. (3.8)
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After some manipulations these can be combined into:

no(1− ρ)− ρ(1− ρno)
(1− ρ)2 ≤ Rµ

c
<

(no + 1)(1− ρ)− ρ(1− ρno+1)
(1− ρ)2 . (3.9)

In order to obtain no, consider the following function of two independent variables
ρ (> 0) and vo (≤ 1):

vt = [vo(1− ρ)− ρ(1− ρvo)](1− ρ)−2. (3.10)

Where ρ is an arbitrary positive constant, vt is a boundlessly increasing function of vo.
Therefore the integers between which vt lies (viewed as a function of vs and ρ), will
obey the conditions at eq. (3.9), so that

no = bvoc. (3.11)

Further:
vo ≤ vt, (3.12)

where the equality only holds if vt = 1.

The inequality at eq. (3.12), which will normally be strict, states the conclusion
anticipated above, that the system will generally be over-congested. It would be desir-
able to reduce the individually optimal threshold to the socially optimal. This can be
done either by imposing an administrative rule such that no is the maximum system
capacity, and further arrivals are turned away by management, or by imposing a toll
on joining customers such that their expected net gain is reduced in a way that no is
the individually optimal threshold value, which is the solution proposed by Naor.

This result was extremely significant, but is reliant on several assumptions: cus-
tomer risk neutrality and homogeneity, linearity of the cost function, arrivals and ser-
vices being exponentially distributed, the First Come First Served discipline, and there
being only one server. Naturally, the subsequent research programme consisted of re-
laxing these assumptions one by one. The rest of this chapter covers some of these
extensions. The scope of this survey precludes the inclusion of all relevant literature;
the results surveyed are those with direct relevance for the original research presented
in Part II. Issues which have not been surveyed but warrant a mention are, inter alia,
those involving customer and/or server heterogeneity, and other distribution functions
for service and inter-arrival times.

3.2 Joining M/M/s Systems

As it turned out, research by Knudsen (1972) showed that Naor’s results held even for
an arbitrary number of (identical) servers, and any unspecified time cost function.

Where multiple servers servicing a single queue are present, the distribution of time
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spent in the queue is different than that of service time. That is because the queue
will lose one customer whenever any server finishes a service, so the rate is increased
by the number of servers. Expected sojourn time when the system is in state i (i.e.,
the number of customers in the system is i) is then given by:

Ti = X + Yi, (3.13)

where X, measuring the service time, and Yi, measuring the waiting time, are mutually
independent. X follows the distribution:

f(t) = µe−µt, t > 0, (3.14)

while Yi = 0 when i ≤ s− 1, and is distributed as follows when i ≥ s:

gi(t) = (sµ)i−s+1

(i− s)! ti−se−sµt, t > 0. (3.15)

The density function of Ti is then:

f(t)i =

f(t) if 0 ≤ i ≤ s− 1,

f(t)× gi(t) =
∫ t
0f(t− u)gi(u) du if s ≤ i.

(3.16)

Further, let customer utility be the function:

Ui = R− γi, i ≥ 0, (3.17)

where R is the net value of the good sought, and γi is expected waiting cost given the
system is in state i. Let h(t) be the waiting cost to a customer spending t units of time
in the system. Then γi is given by:

γi = E[h(Ti)] =
∫ ∞

0
h(t)fi(t) dt, (3.18)

where fi(t) is the density function of Ti.

Then it can be shown that:

γ0 = γ1 = · · · = γs−1 < γs < γs+1 < . . . , (3.19)

whence it follows that:

U0 = U1 = · · · = Us−1 > Us > Us+1 > . . . . (3.20)

Intuitively, this means expected utility is the same for all customers who arrive at a
system with at least one idle server, and then it is strictly decreasing in system size i
when all servers are busy.

Customers decide on whether to join the queue or balk at arrival, after observing
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system size i. They set a threshold strategy nt, the smallest queue size at which they
will balk: i.e., the smallest integer for which Ui < 0:

Unt−1 ≥ 0 > Unt , (3.21)

where to avoid triviality it is assumed that such an nt exists and and that Us−1 ≥ 0,
so that nt > s.

3.2.1 Social Optimization

Naor’s results for the relationship of the social and individual thresholds also hold under
the relaxed conditions. Social welfare W is given by:

W = λ
n−1∑
i=0

pi(n)Ui. (3.22)

It can be shown that a threshold value no which maximizes W exists, as W is
discretely unimodal in i. This is not necessarily equal to ns, but rather no ≤ ns, where
the strict inequality will be the rule rather than the exception. The same policy options
presented in Naor (1969) to attain the welfare maximizing threshold can be used in this
case.

3.3 Welfare Implications of Combining Queues

The previous discussion treated the number of servers as a given parameter without
taking into consideration the implications of this. However, multiple servers performing
the same job are present, the issue of how many queues to have emerges. It is possible
to have one queue for each server, one queue for all, or a number of intermediate
combinations, depending on the number of servers. Chapter 7 of this thesis addresses
the strategic interactions through which customers can endogenously determine this
aspect of the queueing system. However, as with most parameters which can emerge
endogenously, this can also be imposed administratively by management. Either way,
the outcome will affect social welfare. It is intuitively appealing to think that one single
queue for multiple servers is socially optimal and reduces aggregate waiting time. This
result seems to have been more or less assumed to be true without a rigorous proof,
but this eventually emerged, under certain conditions, in Smith and Whitt (1981).

The proof runs along the following lines. Let T (s, λ, µ), be the mean steady state
waiting time function for a customer in an M/M/s, FCFS system, such that:

T (s, λ, µ) =C(s, ρ)
sµ− λ

, where (3.23)

C(s, ρ) = ρs/(s− 1)!(s− ρ)∑s−1
k=0(ρk/k!) + ρs/(s− 1)!(s− ρ)

, (3.24)
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which implies T (s, λ, µ) is a subadditive function of s and λ for a given µ.

Meanwhile, for multiple systems, average waiting time is:

λ1
λ1 + λ2

D(s1, λ1, µ) + λ2
λ1 + λ2

D(s2, λ2, µ). (3.25)

This decomposition can be performed as many times as required to aggregate the total
number of servers in the system. Then:

D(s1 + s2, λ1 + λ2, µ) ≤ λ1
λ1 + λ2

D(s1, λ1, µ) + λ2
λ1 + λ2

D(s2, λ2, µ), (3.26)

whence the more general result follows:

H

(
n∑
i=1

si,
n∑
i=1

ρi

)
≤

n∑
i=1

H(si, ρi), ∀n ∈ N, (3.27)

where
H(s, ρ) = ρ

C(s, ρ)
s− ρ

. (3.28)

This follows from Little’s Law:

L = λT = λT (s, µ, λ) + 1
µ
. (3.29)

If Ls is the steady state expected queue length in the sth system, then eq. (3.26) is
equivalent to:

L ≤ L1 + L2. (3.30)

These results can be readily translated into economic concepts. The intuition behind
them is that where each server has its own queue, then it’s possible for some servers
to be idle while customers are queueing for another server, which leads to a waste of
resources. If customers are like those described in Naor (1969) and Knudsen (1972),
and the service station makes zero economic profits, then it is possible to obtain total
welfare by aggregating it across customers. Given aggregate social welfare is decreasing
on L and T , then as combining queues reduces aggregate expected waiting time and
queue length, it achieves a welfare improvement. Note, however, that relaxing some
of the underlying assumptions may lead to combining queues actually not providing a
benefit (see Rothkopf and Rech (1987)). In particular, this assumes both servers and
customers are identical. In particular, it assumes that length of service is independent of
customer characteristics. This limits the application of this result to, say, supermarkets,
where the expected service length is at least dependent on the number of items of
shopping. In this case, having separate queues according to customer characteristics
might be beneficial. As alluded to in the foregoing, Chapter 7 in this thesis discusses
how the number of queues for multiple servers might be determined endogenously, and
the conditions required for the socially optimal outcome of having one single queue to
emerge.
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3.4 Joining an EPS Queue

While FCFS is by far the predominant discipline, it is not the only one. Another queue-
ing discipline which has received some study is Equitable Processor Sharing (EPS).
Under this discipline, customers receive an identical share of the server’s effort. so that
if there is only one customer in the queue, they will receive all the effort, if there are
two, each receives half, etc. This behaviour approximates that of, say, an internet node,
or processes sharing time on a CPU. Furthermore, this discipline is formally equivalent
to that where the next customer to be served is randomly chosen as a draw from a
uniform distribution. It is then interesting to extend Naor’s results to this discipline,
which nevertheless, remains endogenously determined. Making the order of service at
least partially endogenous shall be addressed in the next chapter.

Yu et al. (2014) considered this problem for an EPS queue, where as in Naor (1969),
customer arrivals are a Poisson process with rate λ, and there is one server with service
times distributed exponentially with rate µ: if there are n customers in the system,
each will receive service at rate µ/n. Customers receive service value R at completion,
and experience time cost c, so that their expected utility function is the familiar:

U = R− cT . (3.31)

The usual conditions set to avoid triviality must be satisfied: a customer will desire to
queue at least for an idle server, ρ < 1, and all stochastic processes are independent of
each other.

The first step in determining the threshold joining value is to find an expression for
conditional expected sojourn time Tn, where n is the number of customers observed
plus 1, i.e., that which the customer would experience if they joined the queue. Unlike
in FCFS, this is not a trivial problem, since the sojourn time is a function not only of
the number of customers in the system at joining time, but also of the behaviour of
future arrivals.

The authors find that conditional expected sojourn times can be represented by the
following system of linear difference equations:

(n+ 1)E[Tn+2]−
(

1 + 1
ρ

)
(n+ 1)E[Tn+1] + 1

ρ
nE[Tn] = − 1

λ
, (3.32)

E[T2]−
(

1 + 1
ρ

)
E[T1] = − 1

λ
. (3.33)

It is not clear, however, whether this is an adequate representation of the system’s
dynamics when there is a capacity constraint, whether exogenous, or as will be assumed
later in the paper, endogenous. This is because the difference equations represent a
system which can take any size from 0 to infinity, which is not true if customers are
following a threshold strategy. Nevertheless, the model will be described as is.

Employing a generating function and a left-multiplication transformation, the sys-
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tem is solved and found to have the following solution:

E[Tn] = n+ 1
µ(2− ρ) , (3.34)

so that for any given n, expected utility is:

U = R− c
(

n+ 1
µ(2− ρ)

)
. (3.35)

The optimal threshold is then found through a similar process to that in Naor
(1969): find an integer n∗ satisfying R − c

(
n∗+1
µ(2−ρ)

)
≥ 0, where the condition is not

satisfied for n∗ + 1. Then the customer will join queues of length up to n∗ − 1, so that
the threshold value nt is:

nt = n∗ − 1 =
⌊
R

C
µ(2− ρ)− 1

⌋
− 1. (3.36)

Note how, unlike for the FCFS case in Naor (1969), this threshold is a function of λ.

The socially optimal joining threshold outlined in Naor (1969) is valid for allM/M/1
queues, regardless of discipline. Resorting to numerical methods, it can be shown that
for the EPS case, the individual threshold is also not equal to the socially optimal
threshold in the general case. However, unlike for FCFS, the socially optimal rule may
yield larger queues than the individually optimal one, meaning systems can be under-
congested. This would make policies to maximize social welfare harder to formulate.



Chapter 4

Strategic Queueing: Queue
Reordering

This chapter considers queue reordering. The first section covers results from the
mechanism design literature where a mechanism is sought through which customers
with different costs of time may reorder the queue to take account of these priorities
through inter-customer payments, subject to several restrictions. The second section
described a repeated games result which allows for reordering without any explicit
payments, only the expectation of benefiting from the mechanism in the future rounds.

The models presented are only a selection from a wider strand of this literature.
Notably, they only cover interaction between customers without taking into consid-
eration the server nor management. Another strand considers management receiving
payments from customers to alter priorities. This has even been extended into political
economy as “optimal bribing” models.

All the models considered assume consumer heterogeneity in respect of time costs,
and seek to use reordering to improve social welfare. Chapter 8 takes a slightly different
tack, assuming homogeneous consumers who still seek to change the queue order to their
benefit. Unlike the models surveyed below, this will tend to have a negative impact
on social welfare, highlighting that the desirability of such mechanisms depends on
consumer characteristics.

4.1 Paying to Reorder

This section covers a strand of literature at the crossroads of strategic queueing and
mechanism design. It considers possibilities for customers to rearrange their order
in a queue, through inter-customer trade. Gershkov and Schweinzer (2010) presents
such a model, where an individual rationality and a balanced budget requirement are
imposed. It is found that in any fully deterministic discipline such as FCFS, there is no
possibility of performing this rearrangement, as the individual rationality condition is
not met. However, the rearrangement is found to be possible at least for a fully random
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discipline.

A finite set of n > 1 customers has the utility function for a given customer i:

Ui = V − kθi − p, (4.1)

where V is the value of the good, k is sojourn time, θi is the unit cost of time (which
varies across customers), and p is a payment made by customer i.θi ∈ Θi = [0, 1] is
private information, and independently distributed with density f and distribution F .
Service time is assumed to be equal for all customers and normalized to 1, without loss
of generality. Denote by Θ = [0, 1]n the type space, and by θ any element of it.

A mechanism M species any payments customers should make and the possible
stochastic order of service. This payment and order may depend on the initial alloca-
tion specified by σi ∈ Ii ≡ [0, 1]n, with

∑
j σij =

∑
i σij = 1, where σij denotes the

probability agent i is served at the jth period; σ denotes the full vector of 〈σi〉ni=1, and
I = [0, 1]n×n the space of all initial allocations. A direct revelation mechanism is a vec-
tor of payments pM = 〈pMi 〉ni=1 and the order σM = 〈σMij 〉ni, j=1, where pMi : Θ× I → R,
and for 1 ≤ i, j ≤ n, σMij : Θ × I → [0, 1], so that

∑
i σ

M
ij (θ, σ) = 1 for each j and∑

j σ
M
ij (θ, σ) = 1 for each i. When all players report their type truthfully, the expected

utility of player i with type θi is:

Ui(θi, σ) = V − E
[
n∑
k=1

σMik (θ, σ)kθi + pMi (θ, σ)
∣∣∣∣θ−i

]
, (4.2)

where θ = (θi, θ−i). Further,

PMi (θi, σ) = E

[
pMi (θ, σ)

∣∣∣∣θ−i] ,
WM
i (θi, σ) =

n∑
k=1

kE

[
σMik (θ, σ)

∣∣∣∣θ−i] ,
that it, expected sojourn time and expected payment by player i, respectively.

Individual rationality is defined with relation to some initial allocation Z as the
requirement for the target mechanismM to give at least the same expected utility, i.e.,
for any customer i and θi ∈ Θi:

V −WM
i (θi, σ)θi − PMi (θi, σ) ≥ V −WZ

i (θi, σ)θi. (4.3)

M is incentive compatible if, for any i and any θi, θ̂i ∈ Θi:

−WM
i (θi, σ)θi − PMi (θi, σ) ≥ −WM

i (θ̂i, σ)θi − PMi (θ̂i, σ). (4.4)

Define further three service schedules/disciplines:
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1. Random order : each customer has equal probability of being at any position:

σRSSik = 1
n
, ∀ i, k, θ. (4.5)

2. FCFS : Players are served according to their order of arrival or some other deter-
ministic schedule, independent of waiting cost:

σFCFSik =

1 if l = k

0 otherwise.
(4.6)

3. Efficient Order : Players are served according to decreasing waiting cost, so that
in M = ef :

σefik (θ, σ) =



1 if |{j : θj > θi}| = k − 1 and |{j 6= i : θj = θi}| = 0
1
m

if |{j : θj > θi}| = l and

|{j 6= i : θj = θi}| = m 6= 0, l +m ≥ k > l

0 otherwise.

(4.7)

where |S| is the number of elements of set S.

The goal is to attain to the efficient order, starting from some other order, of which
FCFS and the random order are two extreme cases.

A set of Lemmas governing customer behaviour can then be set out. These can be
intuitively summarized as follows:

• Players prefer to adopt any mechanism if it provides them with an increase in
expected utility over the original mechanism.

• There is a "worst-off" player θ∗(Z) relative to status-quo Z—the player who gains
least from moving to the efficient mechanism. As long as this player benefits
from the change, all other players will as well, and it’s possible to implement the
efficient mechanism.

• In the efficient mechanism, type θi’s expected sojourn time is:

W ef
i (θi, σ) = n+ (1− n)F (θi). (4.8)

Assume without loss of generality that player i is served in position i under FCFS.
His sojourn time is then just i, and the worst-off type θ∗(FCFS) is given by

n+ (1− n)F (θ∗i (FCFS)) = i, or

F (θ∗i (FCFS)) = i− n
1− n , and θ

∗
i (FCFS) = F−1

(
n− i
n− 1

)
.
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Sojourn time in the random queue is:

1
n

n∑
i=1

i = n+ 1
2 ,

so that the worst-off type θ∗(RSS) is given by:

n+ (1− n)F (θ∗(RSS)) = n+ 1
2 ⇔ F−1

(1
2

)
.

• Under an incentive compatible reordering, the worst-off type cannot pay a positive
transfer while reporting his type truthfully.

• The budget-balancing condition, i.e.,
∑
i p
M
i (θ, σ) = 0, satisfying both incen-

tive compatibility and individual rationality, is as follows, for θ∗(Z) as described
above:

n∑
i=1

[∫ θ∗i (Z)

0
sF (s)dWM

i (s, σ)−
∫ 1

θ∗i (Z)
s(1− F (s))dWM

i (s, σ)
]
≥ 0. (4.9)

With the foregoing results in place, it can be stated that the efficient queueing order
is implementable if and only if there exists a mechanism 〈pM , σef 〉 which is incentive
compatible, individually rational with regard to Z and budget balanced, i.e.:

Theorem 1. Efficient scheduling is implementable with regard to schedule Z ∈ {RSS,
FCFS} iff:

n∑
i=1

[∫ θ∗i (Z)

0
sF (s)f(s)ds−

∫ 1

θ∗i (Z)
s(1− F (s))f(s)ds

]
≤ 0, (4.10)

where

θ∗k(Z) =

F
−1
(
n−k
n−1

)
if Z = FCFS

F−1
(

1
2

)
if Z = RSS.

and k is the position of player i in the FCFS schedule.

So the worst possible type θ∗k(FCFS) depends on the initial position of the customer
in the FCFS queue, implying the individual rationality constraint must be checked for
every one of the n slots, leading to n separate conditions for a deterministic discipline.
The following two key propositions are then derived:

Proposition 1. For any distribution of types F , the efficient scheduling is imple-
mentable with regard to the random discipline.

Proposition 2. For any distribution of types F , the efficient scheduling is not imple-
mentable with regard to the FCFS discipline.

The key difference is that in the FCFS discipline, customers have certainty about
their order of service, while in the random discipline, they only have a probabilistic
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ticket. This makes it impossible to efficiently reschedule the FCFS queue as it will
never be rational for the first customer to sell his assumed first place to a marginally
higher type behind him for a merely marginal payment (note that the balanced budget
constraint prevents the other customers from offering more than the value of the service
minus service time).

However, when randomness is inserted into the queueing discipline, as in the random
queue considered above, efficient rescheduling becomes possible. Consider a lottery
which results with probability p in the random queue and with probability (1− p) the
FCFS queue, and let this lottery be executed if not all layers agree to participate in
the efficient reordering. Then it can be shown that:

Corollary 1. Since the worst-off type in the lottery is continuous in p, for p sufficiently
high, there exists an equilibrium in which the efficient allocation is implemented.

Note that this result is not extensible to non-linear cost functions, as it is impossible
to successfully generalize over linear costs, balancing the budget and require an efficient
allocation. The result is, however, robust to extending common service valuations to
private valuations, and to relaxing the balanced budget condition to allowing for a
budget surplus.

Finally, an efficient indirect mechanism implementing the efficient schedule is pre-
sented in the form of an auction game. This is equivalent to the foregoing game.

4.2 Reordering without Payment

The foregoing sections surveyed mechanisms where customers made monetary payments
to each other in order to effect queue reordering. However, when customers interact
repeatedly, it is possible for reordering to be effected without monetary payment, but
solely by expecting future benefits.

Allon and Hanany (2012) developed a repeated game where customers allow others
with higher time costs to overtake, in the expectation that if they have a high time cost
in the future, they may be allowed to overtake others. This model allows for ongoing
arrivals, in contrast to most of the foregoing, but is restricted to two types of customers,
one with a high cost and one with a low, although this tractability assumption does
not look to restrictive.

The model attempts to capture situations like a queue for airport security controls,
where some customers have time to spare and others might have a flight departing very
soon. The latter category may try convince the other customers to let them cut ahead.
However, other customers have no way of knowing whether the customer seeking to
cut ahead is telling the truth about his higher need or not, even if they were minded
to let customers with genuine needs cut ahead, though they may catch liars by, say,
later seeing them shopping in the duty free area. If customers interact repeatedly,
these monitoring opportunities allow the development of devise grim trigger strategies



30 CHAPTER 4. STRATEGIC QUEUEING: QUEUE REORDERING

to encourage truth telling.

Let there be M customers, each with a stream of service requests modelled by a
Poisson process with rate λ/M ; they queue to obtain a good with value R. Customers
have different time costs, which change randomly across each iteration of the game. For
tractability, only two different types are considered, denoted by t ∈ {H, L}. Request
types follow a non-degenerate Bernoulli distribution, with probability α for being of
type H and 1−α of type L. Denote by cH , cL, and µH , µL the costs and service rates
of each type, respectively. Without loss of generality, H has a higher expected service
cost than L: cHµH > cLµL.

Upon arrival at the queue, customers can choose to join the end of the queue (action
J), or ask to cut the line (P ). The excuse they give to cut the line can only be verified
ex post. When faced with such a request, customers in the queue can accede to the
request (A) or reject it (R). The only consequence of rejection is having to join the
end of the line.

4.2.1 Single Stage Game

In the single stage game, the only equilibrium is the one where all cutting requests are
rejected. When cutting requests happen, they begin with the customer at the end of
the queue, and continue down the queue with the intention of reaching the top. Queue
cutting attempts end after the first rejection. For a cutting attempt to be beneficial,
at least one incumbent must accept it. The full strategy of customer i ∈ {1, ...,M} is
given by (Ei, Ii) ≡ (EiHEiL, IiHIiL) where Eit ∈ {J, P} and Iit = {R, A} are the actions
chosen when a customer is of type t ∈ {H, L}.

Theorem 2. In the single shot game, all customers choose Ii = RR.

This result is quite intuitive. In the absence of repeated interactions, any acceptance
of a cutting request will cause sojourn times to increase without any future compensa-
tion. Accepting requests is therefore not a feasible strategy for incumbents. Knowing
this, arrivals will be indifferent between cutting or joining. For the avoidance of doubt,
the convention is that they join.

4.2.2 Repeated Game With Perfect Public Monitoring

Consider instead a setting where the M customers require this service repeatedly. As-
sume thatM is so large that each customer is not likely to have two concurrent requests,
and further assume that periods are defined such that there is a clear separation be-
tween the time to complete the service and the interval between service requests. This
guarantees that a customer’s choice in a single period affects the current payoff in a
way that is separable from future period payoffs (e.g., a service is required every day,
but the expected sojourn time is 20 minutes). Future period payoffs and waiting costs
are discounted by a per period discounting factor δ ∈ (0, 1).
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In the repeated game setting, for sufficiently patient customers, there is an equilib-
rium where all type L customers join the end of the queue without attempting to cut,
while type H customers attempt to cut and are allowed to do so up to the first H-type
incumbent. This occurs despite the fact that their type cannot be verified until the end
of the service.

This equilibrium employs a grim trigger strategy where customers will punish de-
viations by switching to the FCFS inducing strategy which is the equilibrium of the
single shot game: reject all requests. Denote by TPt and T Jt the expected sojourn
time experienced by a type t customer when cutting or joining the end of the line,
respectively, and when all other customers follow the cooperative strategy (PJ, RA)
(i.e. type H customers jump the queue until meeting a type H incumbent and reject
cutting attempts when they are incumbents; type L customers s join the end of the
queue and accept cutting requests). Also let V cµ be the long term expected discounted
utility when all customers follow the cooperative strategy in all periods, and V FCFS

the long term expected discounted payoff when all customers follow the FCFS inducing
strategy in each period, i.e., Ii = RR.

Theorem 3. (i) The strategy in which each customer cooperates by choosing (PJ ,
RA) if this strategy has been chosen by all customers in all previous periods, and
punishes by choosing Ii = RR otherwise, is an equilibrium if and only if:

δ

1− δ ≥
cL(T JL − TPL )

αcH(DFCFS + 1/µH − TPH ) + (1− α)cL(DFCFS + 1/µL − T JL )
, (4.11)

where
DFCFS = αλ/µ2

H + (1− α)λ/µ2
L

1− αλ/µH − (1− α)λ/µL
is the delay under the FCFS discipline.

(ii) If µH = µL, (i) simplifies to

δ

1− δ ≥
cL

cH − cL
1

α(1− α) . (4.12)

The grim trigger strategy is credible, as its punishment is the equilibrium of the
single shot game, and no customers have any incentive to deviate from it once it is in
place. In the equilibrium path, high-type customers have no incentive to deviate, as
they can only lose by joining the queue at the end, or by accepting a cutting request.
Low-type customers have an incentive to improve their position in the queue by lying
about their true type. However, doing that foregoes future utility earned if they draw a
high cost in the future. Full deviations are always preferable to partial ones, and a full
deviation will be profitable only if its long-term discounted payoff is larger than that of
maintaining the cooperative strategy. This only holds if customers are very impatient,
or in other words, do not meet the condition set in eq. (4.11).

When expected service rates are identical (µH = µL ≡ µ), both types have identical
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expected sojourn time when taking the same action under cµ. Let the expected sojourn
time of joining the queue at the end be W J and that of cutting WP . Both priority
rules provide the same ex ante expected sojourn time, therefore αWP + (1− α)W J =
DFCFS + 1/µ, and eq. (4.11) simplifies to (4.12).

This is equivalent to there being two separate FCFS queues, one for high priority
customers and one for low priority customers, where the low priority queue only has
access to the server when the high priority queue is empty.

4.2.3 Queue Length Dependent Strategies

In the foregoing, only strategies that are independent of queue length were considered.
however, it can also be shown that the cooperative strategy can be sustained when
queue-length dependent strategies are taken into account.

Regimes that depend on randomization between absolute priority schemes are not
sustainable in equilibrium because under such regimes it would be very hard to distin-
guish between a customer that misrepresented their type and a customer that random-
ized. The following considers queue-length-dependent priority schemes where customers
decide to push or join the line upon arrival depending on observed queue length. Denote
by lt the number of type t customers observed upon a customer’s arrival to the system,
and let l = (lH , lL). Note that despite the assumption that types are not ascertainable
until customers leave the system, customer behaviour in equilibrium reveals their type.
Thus an arriving H type customer can know l by observing their place in the queue
following a cutting attempt.

A priority scheme is generated by a queue-length-dependent threshold strategy if a
customer’s strategy gives priority to one class over the other only when queue length is
below some prescribed threshold l̄, i.e., if for each customer i, Ei,l̄ = PJ and Ii,l̄ = RA

when l ≡ (lH , lL) ≤ (l̄H , l̄L), and Ii,l̄ = RR otherwise. The arising priority scheme is
denoted by cµl̄. Denote by TP,cµl̄L and T J,cµl̄L the expected sojourn time experienced
by a type L customer when pushing and joining the line at the end, respectively, and
when all other customers follow the cµl̄ strategy. Further let V cµl̄ denote the long term
expected discounted utility when all customers follow the cµl̄ inducing strategy.

Theorem 4. Any priority scheme generated by queue-length dependent threshold
strategies is sustainable in equilibrium for sufficiently patient customers (sufficiently
large δ).

Proof. The above result is obtained very simply. The critical intuition behind it is that
for any given threshold l̄, it is always possible to find a δ such that the sustainability
condition:

cL[T J,cµl̄L (q)− TP,cµl̄L (l)] ≤ δ[V cµl̄ − V FCFS ], (4.13)

is satisfied for all l ≤ l̄.
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The foregoing discussion paves the way for Chapter 8, which examines a similar
situation in a repeated game, and characterizes that system’s steady state properties.
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Chapter 5

Queueing in Industrial
Organization

5.1 Introduction

Queueing models have also considered interaction between different suppliers. This is
part of a strand of literature which applies queueing to other economic topics, using the
unique insights provided by these models to illuminate some other facet of economic
behaviour. This part will survey some key results stemming from the application of
queueing to Industrial Organization. In particular, it will be analysed how the presence
of queueing in the delivery of a good affects strategic behaviour by the good’s provider
when it possesses market power. This prepares the ground for Chapter 9, which applies
these models to the Health Care market.

This part will first present the monopoly problem, and then present two different
duopoly models, one where consumers are heterogeneous in service rate, and one where
they are identical. The striking feature of the latter model is that it yields a separating
equilibrium, where the each firm specializes in serving consumers with a high cost
of waiting, and the other those with a low cost, despite the fact that the firms are
identical. These models assume consumers take into account ex-ante expected waiting
times. A possible extension would allow consumers to observe queue size before making
a decision.

Further, there is a vast scope for extending this research to other applied fields.
Transport economics could be the next step, as some consumers are obviously willing to
pay a premium to get somewhere faster and avoid queues in the air travel market. Other
possible applications suggesting themselves are the unobserved queues of bureaucracies,
such as waiting times for permit applications, and telecommunications, almost coming
full circle to the field of telephone engineering which originated so much of the earlier
queueing literature!

35
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5.2 Monopoly with Queueing

Chen andWan (2003) and its predecessor, Chen andWan (2003)Chen and Frank (2004),
presents a model of monopoly price setting in the presence of queueing, which is then
extended to a duopoly. This section will describe the former. Consider a firm with an
M/M/1 queue for delivery of the good, a service rate µ, and potential Poisson arrival
rate Λ.

Consumers have the option of buying the monopolist’s good (which they value
uniformly at R) for price P , incurring a cost of c per unit of sojourn time, or forego
the good and receive the outside option which they value uniformly at ν.

Consumers have full knowledge of R, P , µ, c, ν, and Λ, but not queue length, so that
their decision is based on ex ante expected queue length. Let λ be the firm’s demand,
i.e., Λ minus the share of consumers seeking the outside option. Then expected sojourn
time T (λ) is given by:

T (λ) = 1
(µ− λ)+ , (5.1)

where x+ = max{x, 0} ∀x ∈ R.

Consumer utility then takes the form:

U = R− P − cT (λ), (5.2)

when consumers join the queue, and

U = ν, (5.3)

when they take the outside option.

It will be assumed throughout that a consumer will buy the good when the queue
is empty, so that R− c

µ > ν. In equilibrium, R−P − cT (λ) = ν, and necessarily λ < µ.
It follows that

λ = µ− c

R− P − ν
, (5.4)

and as λ ≤ Λ,
λ = min

{
Λ, µ− c

R− P − ν

}
. (5.5)

The firm lacks any production or service costs, and seeks to maximize its instanta-
neous profit π = Pλ. Therefore, its problem is

max
P

π = max
P

Pλ s.t. 0 ≤ P ≤ R− ν − c

µ
(5.6)

The optimal price is found to be max{Pm, PΛ}, where Pm is the first-order price:

Pm = R− ν −
√
c(R− ν)

µ
, (5.7)
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and PΛ is the market capture price:

PΛ = R− ν − c

µ− Λ . (5.8)

The first-order price Pm is the optimal price if:

Λ ≥ µ−
√

cµ

R− ν
, (5.9)

and the market capture price PΛ is the optimal price otherwise. Therefore, the firm’s
demand is

λ = min
{

Λ, µ−
√

cµ

R− ν

}
. (5.10)

5.3 Duopoly with Identical Consumers

This duopoly model, presented in Chen and Wan (2003), extends the monopoly model
with homogeneous consumers described in section 5.2 above. There are two firms, shar-
ing the stream of potential consumers Λ; each is anM/M/1 system. Both homogeneous
and heterogeneous firms can be considered. Each firm i = {1, 2} has its own price Pi,
service rate µi, good value Ri, and waiting cost ci. The outside option ν is, however,
of identical value for both firms.

Firms select their own price Pi knowing the other firm’s reaction function, as well
as consumers’ reactions. All consumers are charged the same price. Consumers have
full knowledge of Pi, µi, Ri , and ci, as well as of ν and Λ, though they do not know the
exact length of either firm’s queue. Consumers have three options: join firm 1’s queue,
join firm 2’s queue, or take the outside option ν. Consumer utility when choosing these
options is, respectively:

U1 = R1 − P1 − c1T (λ1), (5.11)

U2 = R2 − P2 − c2T (λ2), (5.12)

Uo = ν, (5.13)

where Uo is the utility of taking the outside option, and λi is each firm’s demand.
Consumers choose the option yielding the largest expected utility.

The sum of monetary price and the expected cost of sojourn time is a firm’s full
price. In equilibrium, full prices will be identical across firms, preventing any firm
switching at the aggregate level. However, at the “microscopic” level, individual con-
sumers choose firms by a rate-based proportional randomized strategy, where each
consumer selects a firm with a probability proportional to each firm’s equilibrium ar-
rival rate, so that the arrival processes across the two firms are independent Poisson
processes.

It is assumed firms can attract at least one consumer if they charge a 0+ price and
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queue length is zero, i.e:
Ri −

ci
µi
> ν. (5.14)

Also, for a given µi, it must be the case that λi < µi. Expected sojourn time is then:

Ti(λi) = 1
µi − λi

. (5.15)

Firms’ service rate µi is exogenous, and they have no production or service costs.
They seek to maximize instantaneous profit πi = Piλi, where price Pi is the decision
variable and the competitor’s price is taken as given. Let πi(P1, P2) be firm i’s expected
profit rate if it chooses a price Pi given firm j’s price Pj , i 6= j, i, j = {1, 2}. A price
pair (P ∗1 , P ∗2 ) is a (pure Nash) equilibrium if it satisfies the following conditions:

π1(P ∗1 , P ∗2 ) ≥ π1(P1, P
∗
2 ), ∀P1 ≥ 0,

π2(P ∗1 , P ∗2 ) ≥ π2(P ∗1 , P2), ∀P2 ≥ 0.

Equilibrium prices are obtained from each firm’s reaction function. Let Pi = fi(Pj)
be firm i’s optimal price for a given value of Pj . An equilibrium is then a pair of prices
(P1, P2) such that P1 = f1(P2) and P2 = f2(P1), i.e., the intersection of the two reaction
functions. f2 is found by taking P1 as fixed and solving firm 2 problem:

max
P2>0

π2 = P2λ2, (5.16)

subject to

R2 − P2 −
c2

µ2 − λ2
≥ ν, (5.17)

R1 − P1 −
c1

µ1 − λ1
= R2 − P2 −

c2
µ2 − λ2

, (5.18)

λ1 + λ2 ≤ Λ, (5.19)

0 ≤ λ2 < µ2. (5.20)

Constraints (5.17) and (5.18) come from the consumer problem: (5.17) states that
utility gained from queueing for firm 2 must be higher than that gained from taking
the outside option—λ2 would decrease until the constraint held, or it became zero;
U2 − Uo is the consumer surplus, which can be either positive or zero in equilibrium.
Constraint (5.18) recognizes that in equilibrium, both firms give consumers the same
expected utility.

5.3.1 Homogeneous Firms

First consider the special case where the two firms are identical, that is, R1 = R2 ≡ R,
µ1 = µ2 ≡ µ, and c1 = c2 ≡ c. The Nash equilibrium will take three forms, depending
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on the magnitude of Λ relative to two threshold levels, Λ and Λ̄, which are defined as

Λ = 2µ+ c

R− ν
−
√

8cµ
R− ν

+ c2

(R− ν)2 , (5.21)

Λ̄ = 2
(
µ−

√
cµ

R− ν

)
. (5.22)

Given the condition R− c
µ > ν, it’s easy to check that Λ < Λ̄.

The equilibrium’s three forms correspond to three possible situations:

1. ample demand: Λ ≥ Λ̄;

2. moderate demand: Λ < Λ < Λ̄;

3. scarce demand: Λ ≤ Λ.

Ample Demand: Non-Competitive

In this case, demand is greater than capacity, and some consumers will always take the
outside option. Therefore, each of the firms will charge their monopoly price.

Theorem 5. Suppose that Λ ≥ Λ̄. There exists a unique equilibrium such that each
firm charges its own monopoly price:

P1 = P2 = R− ν −
√
c(R− ν)

µ
, (5.23)

and corresponding demands are:

λ1 = λ2 = µ−
√

cµ

R− ν
. (5.24)

Price Pi in (5.23) is the first-order optimal price for a monopolist firm, as shown
in (5.7). Therefore, both firms operate independently of each other, as monopolists.
Here, consumer surplus is zero: the expected net benefit of joining either firm’s queue
is equal to the outside opportunity. A positive fraction of potential consumers is not
served by either firm, except at the border Λ = Λ̄.
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Corollary 2. When Λ ≥ Λ̄, the comparative statics of the equilibrium are as follows:

∂Pi
∂c

= −1
2

√
R− ν
cµ

< 0,

∂Pi
∂R

= 1− 1
2

√
c

(R− ν)µ > 0,

∂Pi
∂Λ = 0,

∂Pi
∂ν

= 1
2

√
c

(R− ν)µ − 1 < 0,

∂Pi
∂µ

= 1
2µ

√
c(R− ν)

µ
> 0.

This means firm i would raise Pi with the consumer valuation of their good R, and
its service speed µ, and cut it in response to an increase in c and ν. A small change in
the potential arrival rate Λ (except at the boundary threshold Λ = Λ̄ would result in
no price change.

Moderate Demand: Moderate Competition

Intuition would indicate that, holding µ, c and R constant, a decrease in Λ would
lead firms to lose their monopoly position, and have to engage in competition: this is
formalized in the following theorem, when Λ < Λ < Λ̄.

Theorem 6. Suppose that Λ < Λ < Λ̄ (the moderate demand case). Then any
equilibrium (P1, P2) must satisfy:

2µ− c

R− ν − P1
− c

R− ν − P2
= Λ, (5.25)

and corresponding actual demands are:

λi = µ− c

R− ν − Pi
. (5.26)

In particular,
P1 = P2 = R− ν − c

µ− Λ
2
, (5.27)

is an equilibrium with the corresponding demand λ1 = λ2 = Λ
2 .

Theorem 6 asserts the existence of a symmetric equilibrium, where the firms charge
a higher price than in the ample demand case, where they enjoy monopoly power! As Λ
increases, firms cut prices to compensate for the increased cost of waiting, and as in the
ample demand case, they raise prices as a response to increases in µ and decreases in
c. Theorem 6 also gives a necessary condition for the equilibrium, strongly suggesting
the existence of a continuity of equilibria; these turn out to exist, at least as set out
in the proposition below. Note that Λ ≤ µ if and only if R − ν ≤ c/µ, and Λ < Λ̄ is
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equivalent to R− ν > c/µ.

Proposition 3. There exists a continuum of equilibria if Λ ≤ µ and Λ < Λ < Λ̄.

In an asymmetric equilibrium, the firm charging the higher price takes a smaller
market share. The consumer surplus is zero in either case, and no consumers take the
outside option.

Scarce Demand: Highly Competitive

Where demand is scarce relative to firm capacity, the market exhibits a high degree of
competition.

Theorem 7. Suppose that Λ ≤ Λ. Then there exists a unique equilibrium given by

P1 = P2 = 4cΛ
(2µ− Λ)2 , (5.28)

and the corresponding demands rates are λ1 = λ2 = Λ
2 .

No consumer takes the outside option, and consumer surplus is positive:

R− Pi −
c

µ− λi
> ν. (5.29)

The comparative statics follow:

Corollary 3. Suppose that Λ ≤ Λ. The comparative statics of the equilibrium are as
follows:

∂P

∂c
= 4Λ

(2µ− Λ)2 > 0,

∂P

∂R
= 0,

∂P

∂ν
= 0,

∂P

∂µ
= − 16cΛ

(2µ− Λ)3 < 0,

∂P

∂Λ = 4c(2µ+ Λ)
(2µ− Λ)3 > 0.

Marginal changes in R and ν do not change the equilibrium. Price increases with
Λ, as that reduces the degree of competition; it also leads to an increase in expected
sojourn time. Consumers are made strictly worse off by this increase. This differs from
the symmetric equilibrium in the moderately competitive case, where an increase in
potential arrivals is compensated by a reduction in prices.

Other comparative statics are less intuitive. An increase in µ or a decrease in c both
lead firms to cut prices and receive a lower expected revenue; both these changes reduce
the expected waiting cost for consumers, so one would expect the firms to be able to
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charge a higher price and earn greater profit. But the market is highly competitive due
to excess capacity; these improvements make it even more so, leading to lower prices
and profits.

5.3.2 Heterogeneous Firms

The model can be extended to heterogeneous firms. In this case, five different types of
equilibria may arise:

1. Dominated market: unique equilibrium where one firm takes the whole market.

2. Highly competitive market: unique equilibrium where both firms enter the market
and consumer surplus is positive.

3. No equilibrium market: there is no (pure) Nash equilibrium.

4. Moderately competitive market: there is a continuum of equilibria.

5. Non-competitive market: unique equilibrium with both firms charging their re-
spective monopoly prices.

Numerical experiments were used to determine that the cases tend to appear in the
order of 1-5 as Λ increases. Cases 2, 4 and 5 correspond to the scarce, moderate and
ample demand cases of the homogeneous firms setting.

Equilibrium Existence

Whether heterogeneous or not, firms will not exhibit competitive behaviour where
demand is large. The following theorem generalizes theorem 5 to the heterogeneous
firms case.

Theorem 8. Suppose that:

Λ ≥ Λ̄H : = µ1 + µ2 −
√

c1µ1
R1 − ν

−
√

c2µ2
R2 − ν

. (5.30)

There exists a unique equilibrium such that each firm charges its own monopoly
price:

Pi = Ri − ν −
√
ci(Ri − ν)

µi
, (5.31)

and the corresponding demands are:

λi = µi −
√

ciµi
Ri − ν

. (5.32)

When considering heterogeneous firms, it is assumed that Λ < Λ̄H , i.e., the two
firms will need to compete. First, consider the extreme case where one firm takes the
whole market in equilibrium: a dominated market.
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Theorem 9. Fix i, j = {1, 2} and i 6= j. Suppose that:

µi > Λ , µj ≥ Λ (5.33)

and
Ri −

ciµi
(µi − Λ)2 ≥ Rj −

cj(µj − Λ)
µ2
j

. (5.34)

Then:
Pi = Ri −Rj −

ci
µi − Λ + cj

µj
and Pj = 0, (5.35)

is an equilibrium, with corresponding λi = Λ and λj = 0.

Consumer surplus is positive in the dominated market equilibrium, since although
firm i takes the whole market, it is not able to charge its monopoly price (compare Pi
obtained above with that in theorem 8). The threat of entry from firm j makes the
monopolist behave in a manner consistent with contestable markets results.

As Λ increases, it may no longer be possible for a single firm to service the entire
market. Total demand may, however, still be insufficient to sustain non-competitive
behaviour, which will lead to the emergence of a highly competitive market, with positive
consumer surplus.

Theorem 10. Suppose Λ ≤ Λ̄H . There exists at most one solution (P1, P2, λ1, λ2)
satisfying the following:

λ1 + λ2 = Λ,

R1 − P1 −
c1

µ1 − λ1
= R2 − P2 −

c2
µ2 − λ2

> ν,

c1λ2
(µ1 − λ1)2 + c2λ2

(µ2 − λ2)2 = P2,

c2λ1
(µ2 − λ2)2 + c1λ1

(µ1 − λ1)2 = P1,

0 ≤ λi ≤ µi.

If (P1, P2, λ1, λ2) is such a set of solutions also satisfying:

c2µ2
(µ2 − λ2)3 + c1(µ1 − Λ)

(µ1 − λ1)3 > 0, (5.36)

c1µ1
(µ1 − λ1)3 + c2(µ2 − Λ)

(µ2 − λ2)3 > 0, (5.37)

then (P1, P2) is an equilibrium with λ1 and λ2 being the corresponding demands.

Theorem 10 is a generalization of theorem 7, and reduces to it when the firms are
homogeneous, matching the scarce demand case. If the set of equations is such that
the solution yields one of λi < 0, then one firm takes the whole market in equilibrium,
falling back to the situation described by theorem 9.
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For homogeneous firms in competition, the equilibrium changes from scarce to mod-
erate demand as Λ increases, causing the respective consumer surplus to drop to zero,
and the unique equilibrium to change to a continuum of equilibria. Heterogeneous firms
present the same results. The following lemma presents a necessary condition.

Lemma 1. Suppose Λ ≤ Λ̄H . If (P1, P2) is an equilibrium with zero consumer surplus,
then it must satisfy the following set of conditions:

λi = µi −
ci

Ri − ν − Pi
≥ 0, (5.38)

µ1 + µ2 −
c1

R1 − ν − P1
− c2
R2 − ν − P2

= Λ, (5.39)

c1λ2
(µ1 − λ1)2 + c2λ2

(µ2 − λ2)2 ≥ P2 ≥
c2λ2

(µ2 − λ2)2 , (5.40)

c2λ1
(µ2 − λ2)2 + c1λ1

(µ1 − λ1)2 ≥ P1 ≥
c1λ1

(µ1 − λ1)2 . (5.41)

With the conditions in eqs. (5.38)-(5.41) the moderately competitive market case,
with a continuum of equilibria, follows:

Theorem 11. Suppose Λ ≤ Λ̄H . Let (P1, P2) be a feasible solution to (5.38)-(5.41).
Then (P1, P2) is a Nash equilibrium (with the corresponding set (λ1, λ2) being the
demands) if it satisfies the conditions in either of the two following cases:

1. µ1 ≤ Λ and µ2 ≤ Λ: (P1, P2, λ1, λ2) satisfies either:

Pi + ci
µi − λi

− cj
µj − λj

≤ [(c1(Λ− µ1))
1
3 + (c2µ2)

1
3 ]3

(µ1 + µ2 − Λ)2 , or (5.42)

Piλi ≥
[

cj
(µj − λLj )2 + ci

(µi − λLi )2

]
(λLi )2, (5.43)

where λLi + λLj = Λ, and λLi is the largest root of:

f(λi) = Ri −Rj + Pj −
ciµi

(µi − λi)2 + cj(µj − Λ)
(µj − λj)2 , (5.44)

in the range (Λ− µj , µi).

2. For µi < Λ and µj > Λ: (Pi, Pj , λi, λj) satisfies:

Ri −Rj + Pj −
ciµi

(µi − λi)2 + cj(µj − Λ)
(λi + µj − Λ)2 ≤ 0, (5.45)

and either

Rj −Ri + Pi −
cjµj

(µj − Λ)2 −
ci(Λ− µi)

µ2
i

≤ 0, or (5.46)
Rj −Ri + Pi − cjµj

(µj−Λ)2 − ci(Λ−µi)
µ2
i

> 0, and(
Rj −Ri + Pi − cj

µj−Λ + ci
µi

)
Λ ≤ Pjλj .

(5.47)
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Theorem 11 is a generalization of theorem 6, allowing for heterogeneity between
firms. It shows that when Λ < Λ < Λ̄, there is a continuum of equilibria. The
existence of these equilibria has been confirmed by numerical investigations, as it is
straightforward to confirm whether a candidate equilibrium meets the conditions.

When the market does not fall into any of the four foregoing cases, the authors
conjecture no equilibrium in pure strategies exists, and give a numerical example where
the necessary condition in lemma 1 is not met.

Equilibrium Price and Comparative Statics

In this section, the effects of µi, Ri and ci on equilibrium will be considered.

Larger capacity confers advantage on a firm: a firm with higher capacity is able to
charge a higher price and capture a larger market share.

Proposition 4. All other things being identical, the firm with larger capacity, higher
value of service, or lower cost of waiting can charge a higher price and capture a larger
market share in the dominated market, the non-competitive market, and the highly
competitive market.

This advantage is less clear in the moderately competitive market where there is
a continuum of equilibria. Numerical investigations show that it is possible that the
larger capacity firm will charge a lower price, capture a smaller market share, or even
earn a lower profit.

Comparative statics are only well-defined when an equilibrium exists and is unique,
so only the cases of a dominated, non-competitive and highly competitive markets will
be considered. Take first the dominated market. Let firm 1 be the dominant firm. It
follows from theorem 9 that:

P1 = R1 −R2 −
c1

µ1 − Λ + c2
µ2

. (5.48)

This clearly implies that P1 increases with R1, µ1 and c2, and decreases with c1,
R2 and µ2. Therefore, a dominating firm is able to raise its price when its competitive
edge increases, and must cut it when its competitor competitive edge improves. As the
firm takes the whole market, an increased price implies an increased profit, and vice
versa.

In the non-competitive market, where each firm services at least some consumers
and charges its monopoly price, any marginal change in one firm does not affect the
other. Firm i is able to raise its price and increase its market share and revenue when
µi or Ri increase, or ci decreases.

Finally, in the highly competitive market, no explicit solution for the equilibrium
was obtained. Therefore, the authors resorted to numerical investigations to analyse
its comparative statics. In summary, firm i must cut (or keep unchanged) its price,
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to take a smaller (or keep unchanged its) market share, and to experience a reduction
of (or no change in) its profit, as either µj or Rj increase, or cj decreases. As own
capacity µi increases, a firm can usually raise its price, except when demand is scarce
and there is competition, but neither firm can dominate: price will fall and market
share will increase, though the effect on profit is ambiguous. As ci increases, a firm
usually cuts its price, except when demand is scarce, competition fierce, and neither
firm can dominate; in that case, the firm loses market share but may raise or cut its
price, and its profit will decrease.

5.3.3 Social Welfare

The monopoly model for queueing markets has been shown to be socially efficient (see
Edelson and Hildebrand (1975) and Chen and Frank (2004)). In the duopoly case, that
is only true in some special cases.

With demand λi and price Pi, consumer surplus per unit of time for firm i is
CSi = λi(R − Pi − ciTi(λi) − ν), and producer surplus is identical to firm profit,
PS = λ1p1 + λ2p2. Social welfare is their sum:

SW = CS + PS =
(
R1 − ν −

c1
µ1 − λ1

)
λ1 +

(
R2 − ν −

c2
µ2 − λ2

)
λ2. (5.49)

The social planner ignores price as an internal wealth transfer. To maximize SW ,
λi < µi must hold, otherwise Ti(λi) =∞ and SW = −∞. The planner’s problem will
take the following form:

max
λ1,λ2

(
R1 − ν −

c1
µ1 − λ1

)
λ1 +

(
R2 − ν −

c2
µ2 − λ2

)
λ2, (5.50)

subject to

λ1 + λ2 ≤ Λ,

0 ≤ λ1 < µ1, and

0 ≤ λ2 < µ2.

Theorem 12. Let Λ̄H be defined as in theorem 8. If Λ ≥ Λ̄H , then the social optimum
is given by:

λi = µi −
√

ciµi
Ri − ν

; (5.51)

otherwise, it is given by:
λi = µi −

√
ciµi

Ri − ν − η
, (5.52)

where η is the unique solution to

µ1 + µ2 −
√

c1µ1
R1 − ν − η

−
√

c2µ2
R2 − ν − η

= Λ, (5.53)
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in the interval (0,min{R1 − ν,R2 − ν}).

Proof. The first order conditions for the planner’s problem are:

Ri − ν −
ciµi

(µi − λi)2 − η = 0, (5.54)

η(λ1 + λ2 − Λ) = 0, (5.55)

where η is the Lagrange multiplier. The proof considers two cases: λ1 + λ2 < Λ and
λ1 + λ2 = Λ.

The equation:

µ1 + µ2 −
√

c1µ1
R1 − ν − η

−
√

c2µ2
R2 − ν − η

= Λ, (5.56)

has a unique solution in the interval (0,min{R1 − ν,R2 − ν}), as the left-hand-side is
monotonically decreasing in η, and has a value greater than Λ at η = 0, approaching
−∞ as η increases to min{R1 − ν,R2 − ν}.

Comparing with theorem 8, the Nash equilibrium is found to be socially optimal in
the ample demand case (Λ ≥ Λ̄). In the homogeneous firms case, it is easy to verify
that it is also optimal in the scarce demand case (Λ ≤ Λ) (compare with theorem 7).
However, in the more general case where Λ < Λ̄H , the Nash equilibrium is usually not
socially optimal.

5.4 Monopoly with Heterogeneous Consumers

This section presents a model of a single firm servicing heterogeneous consumers. While
it is not very interesting in its own right, it is useful to contrast it to duopoly model for
heterogeneous consumers below. This model is based on the duopoly model presented
in Luski (1976).

Consumer decisions are based on ex-ante expected benefit. Consumer arrivals follow
a Poisson distribution with mean rate λ. As a simplifying assumption, λ = 1; this can
be done without loss of generality as the choice of time units is arbitrary. The service
rate is exogenous and constant: service times follow an exponential distribution with
exogenous parameter µ. Mean length of service per consumer is therefore 1

µ .

Let λM be the share of arriving consumers seeking service from the monopolist M ,
so that λ− λM = 1− λM is the share of arriving consumers who balk and do not seek
service.

Let T be the ex-ante expected sojourn time at the monopolist’s queue. As the firm
is an M/M/1 system:

T = 1
µ− λM

. (5.57)
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Consumers are identical in their valuation of service R. Their utility is further de-
pendent on price P , which is set by the monopolist, on T , and on time cost c, which
varies across consumers according to a known distribution function f(c) (whose cumu-
lative distribution function is denoted by F (c)). This combines to yield the following
utility function:

U = R− cT − P . (5.58)

A consumer will seek service from the monopolist if U > 0:

R− cT − P > 0⇒ c ≤ R− P
T

. (5.59)

Conversely, a consumer will balk if:

c >
R− P
T

. (5.60)

The monopolist’s demand can be obtained from (5.59) and F (c) in a straightforward
manner:

λM = F

(
R− P
T

)
(5.61)

where F
(
R−P
T

)
is the share of consumers whose time cost c is low enough that they

join the queue, and 1− F
(
R−P
T

)
is the share of consumers whose time cost is so high

that they do not.

Expected sojourn time T , a function of µ and λM , is then:

T = 1
µ− λM

. (5.62)

Given the price P , the parameter µ, and the distribution function f(c), demand
and sojourn time for can be obtained from solving the system of two equations in two
unknowns made up of eqs. (5.61)-(5.62).

The monopolist has no production or service costs, and aims to maximize expected
profit per unit of time, π:

π = PλM . (5.63)

The monopolist can vary prices directly, but can only vary sojourn times through
prices, as µ is exogenous. Price changes will then have two conflicting effects: decreasing
price will make the firm more attractive to consumers, which will increase demand and
therefore sojourn time, which in turn counteracts the benefits for consumers of a lower
price. Will the monopolist serve the entire market? Only under certain conditions.

The monopolist solves the maximization problem subject to restrictions (5.61)-
(5.62). Let P ∗ be the equilibrium price—it is such that:

∂π

∂P
= 0∀P = P ∗. (5.64)
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Let β = R−P
T . The monopolist’s profit function can be given as:

π = PF (β), (5.65)

whence the partial derivative follows:

∂π

∂P
= F (β)− Pf(β) 1

T

[
1 + β

∂T

∂P

]
. (5.66)

The partial derivative ∂T
∂P can be obtained in terms of the parameters by differentiating

(5.62) in respect to P , and substituting that results in (5.66), yielding:

∂π

∂P
= F (β)− Pf(β)

[ 1
T

+ βf(β)
1 + Tf(β)

]
. (5.67)

Then P ∗ is given by:

P ∗ = F (β)T
f(β)

[ 1
T

+ βf(β)
1 + Tf(β)

]−1
. (5.68)

5.5 Duopoly with Heterogeneous Consumers

The duopoly model is arguably more interesting with heterogeneous consumers. This
was developed in Luski (1976) and Levhari and Luski (1978). Two identical firms com-
pete on price to provide an identical good to consumers with different time costs. De-
spite the firms being identical, consumer heterogeneity allows for differentiation through
charging different prices. Indeed, a separating equilibrium is found in which one firm
charges a high price, so that sojourn times are low and the firm is preferred by highly
impatient customers, whereas the other firm charges a low price, so that sojourn times
are high and the firm is preferred by more patient customers.

Consumer decisions are based on ex-ante expected benefit. Consumer arrivals follow
a Poisson distribution with mean rate λ. As a simplifying assumption, λ = 1; this can
be done without loss of generality as the choice of time units is arbitrary. The service
rate is identical in both firms, and not capable of modification: service times follow
an exponential distribution with exogenous parameter µ. Mean length of service per
consumer is therefore 1

µ .

Two firms i = {1, 2} provide an homogeneous good. Let λi be the share of arriving
consumers preferring the firm i, so that λ−λ1−λ2 = 1−λ1−λ2 is the share of arriving
consumers who balk and do not join any queue.

Let Ti be the ex-ante expected sojourn time at firm i. As each firm is an M/M/1
system:

Ti = 1
µ− λi

. (5.69)

Consumers are identical in their valuation of service R. Their utility is further
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dependent on price Pi, which is set by firm i,1 on Ti, and on time cost c, which varies
across consumers according to a known distribution function f(c) (whose cumulative
distribution function is denoted by F (c)). This combines to yield the following utility
function:

Ui = R− cTi − Pi. (5.70)

A consumer will seek service from firm 1 if U1 > U2 and U1 > 0:

R− cT1 − P1 > R− cT2 − P2 ⇒ c >
P1 − P2
T2 − T1

, and (5.71)

R− cT1 − P1 > 0⇒ c ≤ R− P1
T1

. (5.72)

On the other hand, a consumer will seek service from firm 2 if:

0 < c ≤ P1 − P2
T2 − T1

, and (5.73)

c ≤ R− P2
T2

. (5.74)

Finally, a consumer will balk if:

c >
R− P1
T1

, and (5.75)

c >
R− P2
T2

. (5.76)

As long as at least one consumer is served by each firm, it must be the case that
T1 ≤ T2: as P1 ≥ P2, that is the only way for (5.71) to hold. It follows that

P1 − P2
T2 − T1

<
R− P1
T1

. (5.77)

This allows the conditions in (5.71)-(5.76) to be reduced to three. A consumer
prefers firm 2 if:

c ≤ P1 − P2
T2 − T1

. (5.78)

The consumer will prefer firm 1 when:

P1 − P2
T2 − T1

< c ≤ R− P1
T1

, (5.79)

and will balk when:
c >

R− P1
T1

. (5.80)

Demand functions faced by each firm can be obtained from the simplified conditions

1Without loss of generality, it is assumed that P1 ≥ P2.
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at (5.78)-(5.80) and F (c):

λ1 = F

(
R− P1
T1

)
− F

(
P1 − P2
T2 − T1

)
, and (5.81)

λ2 = F

(
P1 − P2
T2 − T1

)
, (5.82)

where F
(
R−P1
T1

)
is the share of consumers whose time cost c is low enough that they

join a queue; F
(
P1−P2
T2−T1

)
is the share with lower values of c who will seek the service

from the firm with low prices and long queues. Finally, 1 − F
(
R−P1
T1

)
is the share of

consumers whose time cost is so high that they join neither queue.

Expected sojourn times Ti, a function of µ and λi, are then:

T1 = 1
µ− λ1

, (5.83)

T2 = 1
µ− λ2

. (5.84)

Given the two prices P1 and P2, the parameter µ, and the distribution function
f(c), demand and sojourn time for both firms can be obtained from solving the system
of four equations in four unknowns made up of eqs. (5.81)-(5.84). Note though that
when P1 = P2, P1−P2

T2−T1
is not well defined, as the firms are identical. In this special case:

λ1 = λ2 = 1
2F

(
R− P1
T1

)
. (5.85)

Firms have no production or service costs, and aim to maximize expected profit per
unit of time, πi:

πi = Piλi. (5.86)

Each firm takes the other’s price as a given and maximizes profits with respect to its
own price, yielding a Cournot-type behaviour where reaction curves can be obtained.

Under some conditions, firms will sell at different prices. Firms can vary prices
directly, but can only vary sojourn times through prices, as µ is exogenous. Price
changes will then have two conflicting effects: decreasing price will make the firm more
attractive to consumers, which will increase demand and therefore sojourn time, which
in turn counteracts the benefits for consumers of a lower price.

Firms solve their profit maximization problem subject to restrictions (5.81)-(5.84),
with the other firm’s price assumed constant. This yields an optimal price for all of
the other firm’s possible prices, and the equilibrium will be the intersection of these
reaction curves, at which point neither firm wants to change its price. Let P ∗1 and P ∗2
be these equilibrium prices. The question then is can P ∗1 = P ∗2 be an equilibrium?
This can be answered by obtaining the partial derivatives ∂π1/∂P1 and ∂π2/∂P2, and
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calculating their values when P1 = P2. Then P ∗1 = P ∗2 will be equilibrium prices if:

∂π1
∂P1

≤ 0 ∀P1 ≥ P ∗1 , and

∂π2
∂P2

≥ 0 ∀P2 ≤ P ∗2 .
(5.87)

These conditions must hold with strict equality where the demand functions are
continuous and kink-free. However, it can be shown that demand is not continuous at
this point, so inequality restrictions like (5.87) are appropriate. If ∂π1/∂P1 > ∂π2/∂P2

when P1 = P2, then the conditions at (5.87) do not hold. Let

α = P1 − P2
T2 − T1

, and β = R− P1
T1

.

Starting the analysis with firm 2, its profit function can be given as:

π2 = P2F (α), (5.88)

whence the partial derivative follows:

∂π2
∂P2

= F (α)− P2f(α)
T2 − T1

[
1 + α

(
∂T2
∂P2
− ∂T1
∂P2

)]
. (5.89)

The factor ∂T2
∂P2
− ∂T1

∂P2
can be obtained in terms of the parameters by differentiating

(5.83) and (5.84) in respect to P2, and substituting those results in (5.89), yielding:

∂π2
∂P2

= F (α)− P2

[
T2 − T1
f(α) + T 2

2α+ T 2
1α

γ

]−1

, (5.90)

where γ = 1 + T1f(β)β. When P2 = 0, ∂π2/∂P2 = F (α) > 0.

When P2 ≤ P1, as P2 → P1, T2 → T1. Then

lim
P2→P1

∂π2
∂P2

= F (α)− P2
T 2

( 1
α+ α/γ

)
, (5.91)

where at the limit, T = T1 = T2.

Similar proceedings for firm 1 yield:

lim
P1→P2

∂π1
∂P1

= F (α)− P1
T 2

[f(β)Tα+ 1]/γ
α+ α/γ

. (5.92)

Using γ, the derivative for firm 1 can be written as:

lim
P1→P2

∂π1
∂P1

= F (α)− P1
T 2

( 1
α+ α/γ

)
+ P1
T 2

f(β)T (β − α)
γα+ α

. (5.93)
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Using (5.91), it follows that:

lim
P1→P2

∂π1
∂P1

= ∂π2
∂P2

+ P1
T

f(β)(β − α)
α(γ + 1) . (5.94)

Given β > α, the right hand side of the foregoing is positive:

∂π1
∂P1

≥ ∂π2
∂P2

, (5.95)

and the equality holds only if f(β) = 0.

The second order conditions are satisfied when P ∗1 6= P ∗2 and ∂πi/∂Pi = 0. When
P ∗1 = P ∗2 , the firms are in equilibrium if the conditions in (5.87) are satisfied. When
f(β) > 0, (5.95) is an inequality for all Pi pairs where P1 = P2 and (5.87) are not
satisfied. f(β) is the probability that consumers with high waiting costs do not join
the queue. When f(β) = 0 all consumers get served; if f(β) > 0, some consumers balk,
and the price cannot be identical across firms. But β depends on the price, so it cannot
be said whether or not prices will be equal.

If the system diverges (λ/2 > µ), and no consumer balks, sojourn time will reach
infinity and f(β) will be positive. Therefore, where λ/2 > µ, firms will sell at different
prices. Meanwhile, if λ/2 is small compared to µ, then sojourn time will be short, even
if everyone joins a queue. Then, F (β) = 1, so it is reasonable that f(β) = 0 and price
will be the same in both firms. The following lemma summarizes these results.

Lemma 2. Suppose that the set on which f(x) > 0 is a single interval. Then, a
necessary condition for equal price equilibrium P is:

R ≥ T 2λF−1(0.5) + TF−1(1), (5.96)

where T is expected sojourn time in each firm such that each firm serves one-half of
the stream, and no consumer balks.

Proof. If P1 = P2 = P , then f(β) = 0. The first order condition for firm 1 becomes

∂π1
∂P1

= F (α)− P

T 2

( 1
2α

)
= 0. (5.97)

As F (α) = λ/2 and λ = 1, it follows that:

P = λT 2α = λT 2F−1(0.5). (5.98)

f(β) is zero if
R− P
T

≤ F−1(1). (5.99)

Substituting (5.98) into (5.99) yields the necessary condition.

Therefore, it is a condition for equal prices that all consumers are served. However,
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the condition is not sufficient. A further requirement is that f(β) = 0.

The equilibria are further characterized in Levhari and Luski (1978), although due
to complexity of the conditions in the general case, this requires simplifying assumptions
and numerical results.

First, let f(c) be a uniform distribution over the range [0, A], so that f(c) = 1
A , and

F (c) = c
A . Demand for each firm is then:

λ1 = R− P1
T1

1
A
− P1 − P2
T2 − T1

1
A
, and (5.100)

λ2 = P1 − P2
T2 − T1

1
A
, (5.101)

assuming (R− P1)/T1 < A.

Then, for a given (P1, P2), the system composed of eqs. (5.81)-(5.84) yields two
quadratic equations. Demand for firm 1 is:

λ1 = b− (b2 − 4ac)
1
2

2a , (5.102)

where

a =
[
3R− P1

A
+ 2 +

(
R− P1
A

)2
+ P1 − P2

A
+ R− P1

A
.
P1 − P2

A

]
,

b =
[
3R− P1

A
+ 2

(
R− P1
A

)2
+ 2R− P1

A
.
P1 − P2

A

]
µ,

c =
[(

R− P1
A

)2
+ R− P1

A
.
P1 − P2

A
− P1 − P2

A

]
µ2.

In the same manner, demand for firm 2 is:

λ2 = b′ − (b′2 − 4a′c′)
1
2

2a′ , (5.103)

where

a′ = 2 + R− P1
A

+ P1 − P2
A

,

b′ = R− P1
A

.µ,

c′ = P1 − P2
A

.µ2.

As eqs. (5.102)-(5.103) present demand as the sole function of (P1, P2), firm i can
maximize the following problem, taking Pj , j 6= i as given:

Max
Pi

πi(P1, P2) = Max
Pi

λi(P1, P2)Pi. (5.104)
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The first order condition is then:

∂πi
∂Pi

= λi + Pi
∂λi(P1, P2)

∂Pi
= 0, (5.105)

which for firm 1 is:

∂λ1
∂P1

= −λ
2
1(∂a/∂P1)− λ1(∂b/∂P1) + (∂c/∂P1)

2λ1a− b
, (5.106)

while for firm 2 it is:

∂λ2
∂P2

= −λ
2
2(∂a′/∂P2)− λ2(∂b′/∂P2)− (∂c′/∂P2)

2λ2a′ − b′
. (5.107)

Substituting (5.106) and (5.107) into (5.104) yields each firm’s reaction function. In
line with Luski (1976), there are two kinds of reaction functions. The first kind occurs
when all consumers are served: the curves intersect on the 45 degree line and yield a
stable equilibrium where both firms charge the same price and divide demand equally.
In the other case, some consumers do balk, and the two firms have different reaction
functions with a discontinuity on the 45 degree line. There is then some range where
two local profit maximizing prices obtain for a firm given the other firm’s price. One of
those prices is below the 45 degree line, and the other above it, and there is no stable
Nash equilibrium on the 45 degree line, so the two firms will never charge the same
price: one firm specializes in consumers with a high cost of time, and the other firm
will serve the remainder.

If firms only care about local profit maximization, they will make sequential ’local’
price changes and find one of the two stable local equilibrium prices. The two are sym-
metrical in regard to the 45 degree line, giving the prices for both without identifying
which firm will charge a high price. If firms search for the optimal price across the full
range of prices to obtain the global maximum, the reaction curves have a discontinuity
outwith the 45 degree line and do not intersect at all. Therefore, there is no stable
Cournout-Nash equilibrium and a non-convergent oscillation occurs over and under the
45 degree line. This non-existence result is not general, but is due to the particular
shape of the time cost distribution.

With a different type of distribution for c, reaction curves may possess two intersec-
tion points, which the authors show using a Pareto distribution for c. In that case, the
numerical analysis shows the emergence of two stable equilibria, where the first firm
(with the higher price) earns smaller profits than the second (with the lower price).
Which firm takes each role is impossible to predict, and price-war type behaviour may
develop. It is also found that charging identical prices is a local minimum.

Detailed results about social welfare with heterogeneous consumers are absent from
the discussion, possibly because the introduction of the stochastic element into con-
sumer welfare makes the problem exponentially harder. Chapter 9 below advances the
discussion of this issue in the Health Care context.
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Chapter 6

Other Developments

There are many other applications of queueing theory to economic topics, but scope
precludes a full treatment here. Nevertheless, short mention will be made of a small
sample.

A very interesting development is the consideration of a setting where there are
multiple servers with different service rates, and customers do not have full information
about these. In this case, a “smart” customer may opt to wait and observe other
customers being served before deciding which queue to join, considering that the gains
in information may outweigh the lost time. This question has been taken up in Hlynka
et al. (1994). However, this research seems hampered by tractability problems. In
particular, an approach to the situation where all customers are “smart” seems absent
from the literature.

On the other hand, experimental research has provided welcome verification of the-
oretical work. A couple of interesting example are Milgram et al. (1986), where a field
experiment was conducted where researchers attempted to ask members of the pub-
lic in queues to overtake them. This was extended in Schmitt et al. (1992), where it
was shown that customers are more likely to allow intrusions which are perceived by
them as legitimate. Helweg-Larsen and LoMonaco (2008) studied reactions of fans of
the band U2 who are queueing for a concern, showing that fairness concerns influence
queueing behaviour. A significant drawback of this literature is its dominance by field
experiments, possibly tainting the results due to biased sampling. It would be inter-
esting to move the experiments to a laboratory setting, where quality sample selection
might yield better results.
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Part II

Three Essays on Strategic
Queueing
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Chapter 7

Endogenous Queue Number
Determination in M/M/2
Systems
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7.1 Introduction

Queues form naturally whenever there is some delay in service time necessary for the
provision of a good, and the number of providers is smaller than the number of cus-
tomers. Queues force customers to suffer the cost of time spent in the queue, as well
as the monetary cost of the good. Customers will want to minimize this cost, and
increasing queueing efficiency can yield significant social benefits: witness the rise of
self-service check out points at supermarkets.

The treatment of queueing in microeconomic theory goes back to P. Naor’s semi-
nal paper Naor (1969). However, long before economics started considering queueing
phenomena, they had been extensively described by the Operations Research (OR)
literature. OR developed a specialized terminology to describe queueing systems, for
an overview of which, see chapter 2 of the Introduction, or any OR textbook, such as
the popular Gross et al. (2008).1 See further chapter 3 for more detailed discussion of
the various works mentioned below.

The present chapter takes place in the context of M/M/1 and M/M/2 systems,
under a First Come First Served (FCFS) discipline: M/M denotes that inter-arrival
and service times, in that order, are independent and exponentially distributed, and
the digit at the end indicates the number of servers servicing the queue(s). The FCFS
discipline indicates customers are served in the order of their arrival.

FCFS M/M/1 queues featured in Naor (1969), whose innovation was considering
the cost to customers of time spent in the queue. In Naor (1969), risk neutral, utility
maximizing customers, with a linear utility function, choose the maximum length at
which they will join the queue, which is the largest size for which the expected cost of
waiting is weakly smaller than the good’s net value. Once this happens, customers will
turn away without the need for an exogenous capacity limit: this behaviour is known
as balking. Naor also posits a condition, to be followed in this article, that it’s not
possible for customers to leave the queue once they join it.2 Crucially, Naor formulated
the expected benefit for the customers who do queue, which shall be used in the present
chapter. Naor showed that in such a queue, average queue length grows beyond the
social welfare maximizing level, and that a social planner can improve social welfare,
attaining a first-best optimum where aggregate waiting time is minimized. This is
achieved by shifting the cost structure faced by arriving customers, through levying a
toll on customers who join the queue, thereby adding its cost to the cost of waiting and
reducing the threshold at which customers join the queue.

Naor’s result was extended in Knudsen (1972) to a general cost function, and an
M/M/j system, where j is any finite number of servers. Knudsen found Naor’s result on
tolling held even under these relaxed conditions, and crucially for the present purposes,
extended his framework for individual optimization to the more general case. Knudsen

1See also, for an extensive review, up to the date of publication, of the strategic queueing literature
spawned by Naor (1969), Hassin and Haviv (2003).

2Leaving a queue after joining is termed reneging in the literature.
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worked from the assumption that where there is more than one server, a single queue
will feed all the servers.

While it seems intuitively appealing that a single queue for two servers is more
socially efficient than one queue for each, this was only formally demonstrated in Smith
and Whitt (1981) (but see Rothkopf and Rech (1987) for some situations, not relevant
to the present work, where this may not hold3). The source of this inefficiency is that
if customers cannot switch queues, then one of the servers may be idle while there are
customers waiting to be served on the other queue.

Where multiple queues are present despite their inefficiency, it has been shown that
under certain conditions (an M/M/j system, where all servers have the same service
time distribution), customers should join the shortest queue, and break ties arbitrarily
(Winston (1977)). Where expected waiting times vary with servers, there have been
attempts to determine if customers might be better off waiting to gain information
about these, such as Hlynka et al. (1994).

Nevertheless, in the light of its inefficiency, the persistence of multiple parallel
queues presents something of a conundrum. While combining queues seems to be
optimal, it often does not match the observed behaviour of customers in day to day
transactions. This may be due to managers enforcing a multiple queue discipline despite
its inefficiency, but in many cases managers don’t seek to direct customers one way or
the other. Why is it, then, that customers sometimes form multiple queues for multiple
service points, and other times only one? The motivation behind the present work is to
discover whether and in what circumstances this socially optimal outcome is sustainable
without management intervention—is it individually optimal? Is the incidence of this
behaviour related to customers’ risk aversion? Does it depend on whether jockeying
(changing queues after joining one) is possible?

The literature has usually assumed that the number of queues which will form in the
presence of multiple servers is the choice of the service station manager. As such, they
would be the ones to blame for the formation of multiple queues. Rothkopf and Rech
(1987) present some suggestions as to why this might be the case, but even if their
arguments are valid, they certainly don’t explain the emergence of multiple queues
where there is no managerial intervention, such as at self-service points.

The present chapter’s contribution is to answer these questions by analysing the
strategic interactions between customers which determine the number of queues in a
system. This analysis will employ a game theoretical model of queue formation, where
manager preferences are not imposed on customers, so that the number of queues is
determined endogenously. This model will be developed for a system with two servers,
covering in turn risk neutral and risk averse customers, and starting from a baseline
where jockeying (switching queues) is not allowed, to a less restricted case where in
some circumstances it is possible for customers to jockey between queues.

3For instance, management may want to use separate queues as a discrimination mechanism: su-
permarkets often have queues for customers with less items. This, however, requires customer hetero-
geneity, which is not a feature of the model outlined here.



64 CHAPTER 7. ENDOGENOUS QUEUE NUMBER DETERMINATION

The game starts when a customer arriving at the system encounters two busy
servers, but no queue (the first two customers’ decision is trivial). It will be out-
lined how the number of queues is determined through this multi-stage game, whereby
later arrivals can disrupt a single queue, and so their potential future decisions must
be accounted for by earlier customers. The first arrival will be demonstrated to strictly
prefer a single queue, as that reduces both expected waiting time and the variance
thereof (which is relevant when the customers are risk averse). The intuition behind
this preference for the single queue is that this customer can be served as soon as the
first service occurs, rather than having to guess at which server will finish the current
task first. On the other hand, the second arrival does not always have the same benefits
from that single queue: if customers are risk neutral, customer 2 is indifferent to the
number of queues. In the case of risk neutral customers, it will be shown how arrivals
alternate between strictly preferring one queue and being indifferent to the number of
queues, according to whether the index of their arrival order is odd or even. This will
lead to a proof that having a single queue is an equilibrium outcome of this game. This
equilibrium is not unique, however, and it will be shown that if customers can jockey, a
single queue will no longer be an equilibrium outcome when customers are risk neutral.

In order to investigate circumstances where the single queue equilibrium might be
more robust to jockeying, section 7.3 focuses on risk-averse customers. In this case,
it’s found that the preference for a smaller variance, such as the single queue state
offers, will make that equilibrium more robust: even when jockeying is allowed, the
equilibrium exists and is unique as long as customers are sufficiently risk averse.

Steady state properties will not be considered, as the situation being modelled takes
place when the queue is starting to form, before the steady state has had a chance to
emerge. Therefore joining customers will not face the steady state expected waiting
time, but an individual expected waiting time which varies with their arrival order and
with the system state. The strategic interactions at play are how customers deal with
newcomers to the system, who might disrupt the system order by trying to change the
number of queues.4

7.2 Queue Number Determination with Risk Neutral Cus-
tomers

Let there be a stream of customers seeking a service with a value (net of price) of R
monetary units; their arrivals at the service station are a Poisson process in continuous
time with parameter λ. This service is provided by two identical servers j = {a, b}.
Obtaining the good from these servers takes time, distributed according to an expo-

4While addressing a different problem, that of whether customers let others cut ahead on the queue
in an M/M/1 system, the recent paper Allon and Hanany (2012) also addresses how customers deal
with violations of social norms, and reaches a conclusion with a similar tenor: undirected customers
can, at least in some circumstances, reach socially efficient outcomes through strategic interaction,
although it’s important to note that unlike the present model, Allon and Hanany (2012) is set in the
context of repeated games.
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nential distribution with rate µ. As there are two servers, only two customers can be
served simultaneously. Others will wait until a server becomes available, and are served
in order according to the First Come, First Served (FCFS) discipline. It is possible for
the system to be organized as two parallelM/M/1 queues, where each server services a
separate FCFS queue, or one single M/M/2 queue serviced by both servers. The num-
ber of queues is endogenously determined through customer choices, being the game’s
equilibrium outcome.

Waiting imposes a cost on customers, who in this first section are assumed to be
risk neutral. They experience cost c per unit of time t, yielding the following linear net
utility (Ui) function, for customer i:

Ui(ti) = R− cti, (7.1)

where i, i = {−1, 0, 1, 2, ...,∞}5 is the customer’s order of arrival into the system. For
the sake of notational simplicity, the assumption is made that no customer leaves the
system in the period under analysis. This can be done without loss of generality, as
will be shown later. From the linear form of the utility function, it is clear that the risk
neutral customers’ objective in the game is equivalent to minimizing waiting time t.

The game starts when customers −1 and 0 are being served, but no other customers
are waiting to be served. The system can take two possible states, denoted by Q =
{1, 2}, according to the following definitions:

Definition 1. A single queue state (Q = 1) occurs when customer 1 stands roughly
halfway between -1 and 0, and takes the place of whichever of these is served first (and
for notational convenience, also when there is no queue).

Definition 2. A two queue state (Q = 2) occurs when customers 1 and 2 queue behind
customers -1 and 0, respectively, and have to wait for the customer directly ahead of
them to be served before taking their place. Jockeying is not allowed in the baseline
model.

Each arrival i at the system observes the system state. Let this be denoted by a
state variable γi(Q, k), where Q is as defined above and k is the number of queueing
customers when Q = 1, or the number of queueing customers on the shortest/either
queue when Q = 2.6

Upon arrival at the system, customers choose from one of two actions, comprising
the action set A = {D,S}:7

1. Action S: queue for both servers;
5Customers −1 and 0, who are being served, do not take part in the game, but are required for its

setting.
6E.g., if there are four customers in the system, and Q = 2, k = 2; if Q = 1, k = 4.
7As a simplifying assumption, the possibility of balking (i.e., leaving without joining the queue) will

not be considered. It is not the focus of the chapter, and is not relevant to the determination of the
number of queues. It is safe to assume that the reward is large relative to waiting time, taking the
possibility out of consideration.
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2. Action D: queue for whichever server has the shortest queue, or randomize evenly
if the queues are of identical size (cf. Winston (1977)).

Customer arrivals trigger a new round of the game, which is played sequentially—let
this first game be denoted by Game NJ . Formally, the game stages, which are common
knowledge, are:

1. Nature assigns customers an arrival number i ∈ {1, ...,∞}.

2. Customer i arrives at the system, and chooses from action set A = {D,S}. This
choice can be discerned by any incumbent customers with perfect accuracy. The
chosen action is not performed until stage 4, however. Choosing S will not allow
the customer closer access to the servers than incumbents who chose D.8 If there
are more than two customers waiting and the system is in a two queue state,
customers must choose D and the round terminates.9

3. This stage only occurs if customer i > 1 encounters a single queue state and
chooses action D in stage 2. In that case, incumbent customers split the single
queue into two separate queues, changing the system state. They will choose
which server to queue for, in turns, with incumbents placed closer to the server
in the single queue moving first: choosing the server with the shortest queue or
randomizing between queues of equal length. They do this before customer i can
act on the choice made at step 2.

4. Customer i acts upon his choice in stage 2. He cannot change his decision to
react to incumbents’ moves in stage 3, if these occurred.

5. Stages 2-4 are repeated for customer i+ 1, with i now being an incumbent, and
so on for all future arrivals.

Customers’ strategy space is then composed of set A. Let Σi = {α} be the strategy
for any customer i, where α ∈ A. Customers’ waiting time is uncertain, as the queues
are stochastic processes and strategic interactions with newly arrived customers may
alter the system state, which affects expected waiting time. Let ti(Σ, γ) be the waiting
time for customer i, as a function of i’s strategy and the system state i is facing.

It will subsequently be shown that in the equilibrium path, customers arriving
after customer i will not alter the number of queues, i.e., stage 3 of the game is never
triggered. In a subgame perfect equilibrium (see Hassin and Haviv (2002)), customers
make their decision with full knowledge, gained through backwards induction, of the
strategy of future arrivals. While these assertions will all be rigorously shown below,
they are noted here to explain why the notation and computation of waiting times do

8So this choice is never taken in the equilibrium path, as demonstrated in lemma 3.
9If a further arrival chose action S in the presence of an established two queue state, he would still

be constrained by the downstream two queue structure; he would, in fact, be simply postponing the
decision to join one queue or the other! This echoes Hlynka et al. (1994) on “smart” customers who
hold off on choosing a queue, but while interesting, the issue is not the present model’s concern.
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not explicitly incorporate possible changes to waiting time caused by changes in the
number of queues.

7.2.1 Waiting Times10

Customers’ expected waiting times are a function of system state and the customer’s
position in the queue. For a more detailed explanation of results below, see chapters
2 and 3. Upon arrival to the system, a customer observes queue length k (were the
customer to join the queue, this would increase to k+ 1). Expected waiting time t, for
any customer, is then a function of two discrete components:

E[t(k)] = E[X] + E[Y (k)], (7.2)

where X is the service time and Y (k) is the time spent on the queue for a customer
waiting behind k customers (i.e., at the k+ 1th place). Service time X is exponentially
distributed with rate µ, so that its density function is:

f(t) = µ exp(−µt), t > 0. (7.3)

On the other hand, Y (k) varies according to whether customers queue for one or both
servers.11 When j is the number of servers servicing the queue, Y (k) follows a Gamma
distribution with density:12

g(t, k, j) = (jµ)k−j+1

(k − j)! t
k−j exp(−jµt), t > 0, (7.4)

so that generally, waiting time has a density function:

z(t, k) =

f(t) if 0 ≤ k < j∫ t
0f(t− u)g(u, k, j) du if k ≥ j,

(7.5)

where in the second case, the customer queues for time u obtained from eq. (7.4), and
then reaches a server and is served for an expected time derived from eq. (7.3); in the
first case, a server is idle on arrival, and only service time is taken into account.

The density functions for the two cases under consideration can be easily obtained
from eq. (7.5). For the case where there are two queues (k ≥ j = 1), the density
function for waiting time in each queue is:

z(t, k) = µk+1

k! exp(−µt)tk, (7.6)

10This subsection is largely an exposition of work from Naor (1969) and Knudsen (1972).
11Y (k) = 0 if k ≤ j − 1, i.e., if k ≤ 1 for j = 2, (there is an idle server upon arrival), there is no

queueing time.
12See Knudsen (1972) for derivation, or section 3 in the Introduction.
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while for a single queue with two servers (k ≥ j = 2), it is:

zk(t, k) = 2k−1µk

(k − 2)! exp(−µt)
∫ t

0
uk−2 exp(−µu) du, k ≥ 2. (7.7)

Using the density functions in (7.6)-(7.7), the expected waiting times can be easily
derived. For a system with two parallel queues expected waiting time is given by:13

E[t(γ(2, k))] = 1
µ

(k + 1), (7.8)

whereas for a system where one queue feeds two servers it is:

E[t(γ(1, k))] = 1
2µ(k + 1), (7.9)

where the intuition behind eqs. (7.8)-(7.9) is that having one queue feed two services
doubles the processing rate.

In determining customers’ preferred decisions, it is helpful to be able to compare
expected waiting times directly across the two possible system states, for the same
number of customers in the system. This can be done by stating expected waiting
time as a function of i, the index of the customer’s order of arrival, rather than k, i
being preferred as it is invariant to the number of queues. It is for this reason that
it is assumed that no customer leaves the system in the period under analysis. This
can be done without loss of generality, for the departure of one customer simply shifts
all remaining customers a step ahead in the queue. Customers still take into account
the possibility of services finishing, but there is no need to incorporate that into the
notation.

The expected waiting times given in (7.8)-(7.9) as a function of k can be easily
transformed into functions of i. The form of the transformation differs according to
whether the system is in a one or two queue state, and for the latter case, whether i
is odd (io) or even (ie). This difference arises because in a two queue state, customers
with an odd i face two queues of equal length, while those with an even i face two
queues of different length, in which case the expected waiting time is given for the
shortest one. When expected waiting time is transformed into a function of i rather
than k, k can, for convenience, be omitted from the state variable, presented then as
γ(Q).

In a system in a one queue state, k = i+ 1,14 it follows from (7.9):

E[ti(γ(1))] = 1
2µ [(i+ 1) + 1] = 1

2µ(i+ 2). (7.10)

For customers arriving at a system in a two queue state, with an odd i, k =

13At this juncture, strategic interactions are not being considered, and the number of queues is taken
as given, so t is presented as independent of customer choices.

14E.g., i = 1 has two customers ahead of him, so his k = 1 + 1 = 2.
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i/2 + 1/2,15 it follows from (7.8):

E[tio(γ(2))] = 1
µ

[(
i

2 + 1
2

)
+ 1

]
= 1
µ

(
i+ 3

2

)
. (7.11)

Finally, for customers arriving at a system in a two queue state, with an even i,
k = i/2,16 it also follows from (7.8):

E[tie(γ(2))] = 1
µ

(
i

2 + 1
)

= 1
µ

(
i+ 2

2

)
. (7.12)

7.2.2 Customer Behaviour

A lemma governing customer behaviour can now be given:

Lemma 3. If customer 1 chooses action D, then customer 2 will also choose action D.

Proof. Say customer 1 chose action D, queueing for server a. If 2 also chooses D, he
will queue for server b, in which case k = 1.

Let P [η] be the probability of server a finishing a service before server b. As-
sume no customer arrives before the next service.17 If η occurs, expected waiting time
(E[t2(S, γ(2))|η]) is the sum18 of the expected service time for a to finish serving cus-
tomer −1,19 with the expected waiting time for action S (from (7.9), where k = 2).
This is because, when a finishes serving −1, he starts serving 1, and 2 is in the same
position as 1 would have been in had 1 chosen action S:

E[t2(S, γ(2))|η] =
( 1
µ

+ 3
2µ

)
= 5

2µ . (7.13)

On the other hand, if server b finishes serving 0 before a serves −1 (η̄ such that
P (η̄) = 1 − η), then the expected waiting time (E[t2(S, γ(2))|η̄]) is equal to that cus-
tomer 2 would have experienced had he chosen D anyway, obtained from (7.8) when
k = 1:

E[t2(S, γ(2))|η̄] = 2
µ
. (7.14)

Then the expected waiting time for customer 2 of choosing action S when customer
1 has chosen D is the mean of E[t2(S, γ(2))|η] and E[t2(S, γ(2))|η̄], weighted by the

15E.g., i = 3 has two customers ahead of him regardless of which queue he chooses. Hence his
k = 3/2 + 1/2 = 2.

16E.g., i = 2 faces one queue with two customers and another with one. He chooses the latter, so
that there is one customer ahead of him, and k = 2/2 = 1.

17This can be done without loss of generality, as it occurred when the second customer chose S, the
third would move to the shorter queue and the second would be forced to change his choice to D to
preempt the third.

18Because the utility and cost functions are linear on waiting time, and customers are risk neutral,
the waiting times from before and after the service can be added.

19The memoryless property of the exponential distribution implies that this is independent of elapsed
time.
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probability P [η]:

E[t2(S, γ(2))] = P [η]E[t2(S, γ(2))|η] + P [η̄]E[t2(S, γ(2))|η̄]. (7.15)

As stated above, E[t2(S, γ(2))|η̄] is the same as the expected waiting time of choos-
ing action D (E[t2(D, γ(2, 1)]):

E[t2(D, γ(2, 1)] = E[t2(S, γ(2))|η̄] = 2
µ
. (7.16)

Meanwhile, E[t2(S, γ(2))|η] is greater than the expected waiting time of choosing
action D (E[t2(D, γ(2, 1)]):

E[t2(S, γ(2))|η] > E[t2(D, γ(2, 1))]⇔ 5
2µ >

2
µ
. (7.17)

Taken together, (7.16) and (7.17) imply that for customer 2, the expected waiting
time of choosing S when 1 has chosen D is greater than that of choosing D:

E[t2(S, γ(2))] > E[t2(D, γ(2, 1))]. (7.18)

As stated in Definition 2, as long as customers 1 and 2 are each queueing behind one
customer being served, then the system is in a two queue state. Note further that while
customers arriving at a system in a single queue state can change it to two queues by
choosing actionD and triggering stage 3 of the game, the reverse is not possible: there is
no mechanism for changing the system state from two queues to one, short of the queue
length falling to 1. This implies that regardless of whether the system is at state Q = 1
or Q = 2, arrivals will always get the same expected waiting time from choosing D, as
if they do so on a system in a single queue state, the system will change to a two queue
state before they can overtake the incumbents: E[ti(D, γ(1, k))] = E[ti(D, γ(2, k))],
∀ k ≥ 2.

7.2.3 Customers’ Actions and Equilibria

Customers’ preferred strategy will be comprised of the actions yielding the shorter
expected waiting time; if waiting times are equal, the convention is adopted that ties
will be broken in favour of action S, the single queue.

In the following discussion, comparisons between expected waiting times will be
performed using the values obtained from equations (7.10)-(7.12), using the i index.
The number used to perform the transformations in equations (7.10)-(7.12) is the i in
ti; io customers are covered first, as the first customer has an odd index.

Proposition 5. All customers io choose action S.
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Proof. For any customer io, expected waiting time is strictly smaller when choosing
action S than it is when choosing action D:

E[tio(D, γ(2))] = 1
µ

(
i+ 3

2

)
> E[tio(S, γ(1))] = 1

2µ(i+ 2). (7.19)

Customers make their decision with full knowledge (obtained through backwards
induction) of what subsequent arrivals will decide. Proposition 6 below makes clear
that ie customers choose action S in stage 2 of the game, if they encounter a system
in a one queue state. Since stage 3 of the game is not triggered, expected waiting time
calculations can be performed without explicitly incorporating future arrivals’ actions.

Proposition 6. All customers ie are indifferent between actions S and D.

Proof. For any customer ie, expected waiting times are the same when taking either
action S or D:

E[tie(D, γ(2))] = 1
µ

(
i+ 2

2

)
= E[tie(S, γ(1))] = 1

2µ(i+ 2) (7.20)

As ties are broken by choosing action S, ie customers will do so, cooperating with
the io customers in taking the system into a single queue state.

As no customer has an incentive to deviate and take the system away from the single
queue state by choosing D, the single queue state is a subgame perfect equilibrium.
The game effectively leaves the decision of queue number to the first customer, 1, who
strictly prefers a single queue, and gets to implement it before any of the even numbered
customers, who are indifferent, choose their action. Once this single queue state exists,
there is no incentive for any arrivals to deviate from it.

Note however that as ie customers are indifferent between the two states, were one
of them to choose D instead of S by breaking ties the other way, then stage 3 of the
game would be triggered, and incumbent customers would change the system to a two
queue state. From lemma 3, it’s clear this would also be a stable equilibrium. The
single queue equilibrium is therefore not unique. This fragility may be a reason for the
emergence of multiple queues.

7.2.4 Relaxing the No-Jockeying Condition

As shown in Smith and Whitt (1981), multiple queues are inefficient because, when
customers cannot change queues after committing to them (i.e., jockeying is not al-
lowed), servers can be idle while there are customers waiting to be served. Then, if
customers are allowed to switch queues, their expected waiting times under the multi-
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ple queue state are shorter. Accordingly, if the no-jockeying condition is relaxed, one
would expect the equilibrium in the foregoing game to change.

This subsection looks at the results of relaxing the no-jockeying condition. Allowing
unfettered jockeying would make the problem intractable. Therefore, customers will
be allowed to jockey if and only if the system is in a two queue state, and the server
in the other queue is idle, that is, the other queue’s length becomes zero (0). Let this
occurrence be denoted by event B, the ex-ante probability of this event happening to a
customer joining queue be P [B], and that of it not happening (B̄) be P [B̄] = 1−P [B].
Further, let n be number of customers ahead of a customer n + 1 in the queue when
event B occurs, with no and ne denoting an odd or even value of n, respectively.

The new game (game J), then, follows the stages:

1. Nature assigns customers an arrival number i ∈ {1, ...,∞}.

2. Customer i arrives at the system, and chooses from action set A = {S,D}. This
choice can be discerned by any incumbent customers with perfect accuracy. If he
chooses D ∈ A, he also chooses from action set Ω = {ω, ω̄}, where action ω is
switching queues if and when that becomes possible (i.e., when a server becomes
idle), and ω̄ is to stay in the same queue. This choice is made for two possible
circumstances: when n is odd, and when it is even; there is no requirement that
the choice be the same in the two scenarios. The chosen action is not performed
until stage 4. Choosing S will not allow the customer closer access to the servers
than the incumbents who chose D. If there are more than two customers waiting
and the system is in a two queue state, customers must choose D and the round
terminates.

3. This stage only occurs if customer i > 1 encounters a single queue state and
chooses action D. In that case, incumbent customers split the single queue into
two separate queues, changing the system state. They will choose which server
to queue for, in turns, with incumbents placed closer to the server in the single
queue moving first: choosing the server with the shortest queue or randomizing
between queues of equal length. They do this before customer i can act on the
choice made at step 2.

4. Customer i acts upon his choice in stage 2. He cannot change his decision to
react to incumbents’ moves in stage 3, if these occurred.

(a) If at any point when the system is in a two queue state a server becomes
idle, customers act on their choice from Ω, according to whether their n is
odd or even; customers closer to the server move first.

5. Stages 2 to 4 (including 4.a) are repeated for customer i+ 1, with i now being an
incumbent, and so on for all future arrivals.

Therefore, in this version of the game the customer’s strategy is expanded to include
a choice from set Ω: Σi = {α, o}, where o ∈ Ω.
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Lemma 4. If, when the system is in a two queue state, one of the servers (say b)
becomes idle while the other one (a) is busy (i.e., stage 4.a of the game is triggered),
customers with an odd n in a’s queue will switch to b’s queue (see Figure 7.1 for an
example of this process20).

a b a b

0

1
2
3
4

0 1

2 3

4

Figure 7.1: Server b becomes free, customers with an odd n change queues.

Proof. Let l be the number of customers in the queue the customer can switch to, and
m the number of customers in the current queue.21 In a similar manner to n, let lo
and le denote an odd or even value of l, respectively, and mo and mi the same for
m. Further, let E[τ({D,ω}, γ(2), l] and E[τ({D, ω̄}, γ(2),m)] be the expected waiting
times τ in the queue the customer can switch to, and in the current queue, respectively,
at the time the server becomes idle.

At stage 4.a, customers decide whether to change queues when a server becomes
idle, but it’s only when that happens that they can know their expected waiting times.
These can be derived from (7.8), as a function of customers’ choices from Ω, simply by
replacing k with l when the customer switches queues, and replacing k with m when
the customer does not switch.

For no customers, lo = (n− 1)/2 and mo = (n+ 1)/2;22 for ne customers, le = n/2
and me = n/2.23 Then, for no customers:

E[τ({D,ω}, γ(2), no)] = 1
µ

(lo + 1) < E[τ({D, ω̄}, γ(2), no)] = 1
µ

(mo + 1), (7.21)

as lo < mo. Therefore all no customers are better off choosing ω and switching queues.
On the other hand, for ne customers:

E[τ({D,ω}, γ(2), ne)] = 1
µ

(le + 1) = E[τ({D, ω̄}, γ(2), ne)] = 1
µ

(me + 1), (7.22)

as le = me. Therefore ne customers have no reason to switch queues: they face the
same number of customers in the queue they are at and in the queue they can switch
to (because some io customer will always have switched just before), so they choose ω̄.

20Recall that customers can only change queues when one server is idle.
21E.g., for a customer queueing behind 3 others (n = 3), n = 0 is being served, n = 1 switches

queues, and n = 2 stays in place. Then l = 1 and m = 2 for n = 3.
22E.g., for n = 3, n = 0 is being served, n = 1 switches queues, and n = 2 stays in place. Then

l = (3 − 1)/2 = 1 and m = (3 + 1)/2 = 2 for n = 3.
23E.g., for n = 4, n = 0 is being served, n = 1 and n = 3 switch queues, and the third n = 2 stays

in place. Then l = 4/2 = 2 and m = 4/2 = 2 for n = 4.
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However, their expected waiting time is still reduced compared to game NJ , as they
end up queueing behind half the customers they were previously waiting behind.

The foregoing is clearly illustrated in Figure 7.1: customers 1 and 3 switch queues
to the idle server’s side, while customers 2 and 4 stay in their original queue. The
reduction in the latter’s waiting time is caused only by the reduction in their queue
length, as there is no incentive for 2 or 4 to switch queues.

Given Lemma 4, the choice from Ω will be dropped from the notation in what
follows.

When jockeying is possible, the expected waiting time for a customer in a system in
a two queue state depends on whether a server becomes idle. If that does not happen,
it is exactly identical to that in game NJ . However, if a server does become idle,
the expected waiting time is shorter. Expected waiting time will thus depend on the
probability of a server becoming idle. Let E[ti(D, γ(2))|B] be the expected waiting
time in a system in a two queue state if a switch occurs, and E[ti(D, γ(2))|B̄] that
when a switch does not occur. The expected waiting time for a customer i in a system
in a two queue state is then given by:

E[ti(D, γ(2))] = P (B̄)E[ti(D, γ(2))|B̄] + P (B)E[ti(D, γ(2))|B]. (7.23)

The plurality of equilibria in game NJ game was due to ie customers being indif-
ferent between the two system states. Relaxing the no-jockeying condition eliminates
this indifference, as the small probability of jockeying occurring and thereby reducing
waiting time is enough to reduce the expected waiting time of the two queue state,
which becomes the unique equilibrium, being strictly preferred by ie customers.

Proposition 7. All customers ie strictly prefer action D to S at stage 2.

Proof. Proposition 7 can be proven without obtaining a solution for the complete ex-
pected waiting time: it is only if a server becomes idle that game J differs from game
NJ . Expected waiting time conditional on no server becoming idle is then the same
as if no jockeying was allowed, i.e., E[tie(D, γ(2))|B̄] from (7.23) (for an ie customer)
is identical to E[tie(D, γ(2))] from (7.12):

E[tie(D, γ(2))|B̄] = 1
µ

(
i+ 2

2

)
. (7.24)

On the other hand, if a server does become idle and the queue splits, the expected
waiting time is:

E[tie(D, γ(2))|B] = E[tie(D, γ(2))|b] + E[τi(o, γ(2))], (7.25)

where E[tie(D, γ(2))|b] is the expected waiting time between joining the queue and the
other server becoming idle, and E[τi(o, γ(2))] the expected waiting time between the



7.3. RISK AVERSE CUSTOMERS 75

other server becoming idle (and customers switching queues) and the customer being
served.

Crucially, E[tie(D, γ(2))|b] is identical across E[tie(D, γ(2))|B̄] and
E[tie(D, γ(2))|B], so the only difference is the expected waiting time after the other
server becomes idle. It has been noted in lemma 4 that E[τi(o, γ(2))] is smaller than
it would be if no switch was allowed, which implies the total expected waiting time is
also smaller:

E[tie(D, γ(2))|B] < E[tie(D, γ(2))|B̄]. (7.26)

When switching was not allowed, expected waiting time for ie customers was equal
regardless of choosing action S or D (E[tie(S, γ(1))] = E[tie(D, γ(2))]). If switching
is allowed, taking into account (7.23), expected waiting times are still identical if no
server becomes idle (E[tie(D, γ(2))|B̄] = E[tie(S, γ(1))]), but if a server does become
idle they are smaller (E[tie(D, γ(2))|B] < E[tie(S, γ(1))]); then for any positive value
of P (B), the expected waiting time when choosing D is smaller than it would be if
jockeying was not allowed, and hence smaller than the expected waiting time when
choosing S: E[tie(S, γ(1))] > E[tie(D, γ(2))]. Therefore, ie customers strictly prefer
action D to action S.

Proposition 8. If jockeying is allowed, then the two queue state is the unique subgame
perfect equilibrium of the game.

Proof. In stage 2 of the game, io customers know by backwards induction the result
from Proposition 7 that ie customers strictly prefer action D, even given the incumbent
response in stage 3 of splitting the queue. Therefore, they choose action D at stage 2,
as they know the single queue state is unsustainable.24

Therefore, even allowing the limited form of jockeying described above destroys the
single queue equilibrium when customers are risk neutral. The two queue state is the
game’s unique subgame perfect equilibrium.

7.3 Queue Number Determination with Risk Averse Cus-
tomers

The results in the previous section relied on risk neutrality: customers only took ex-
pected waiting time into account. In this section, it will be shown that if customers
are risk averse, and therefore take the variance of waiting time into account, the single
queue state will be strictly preferred by all customers, and thus be the unique subgame

24Because the assumption is being made that 2 arrives before anyone is served, customer 1 can take
this decision at stage 2. Even if this simplifying assumption were not made, however, the only way the
system could be in a one queue state was if there was only one customer queueing. Once the second
customer arrived, 1 would always preempt him by changing the state to two queues, and therefore the
assumption makes no difference for steady state equilibrium outcomes as long as the expected steady
state queue length is greater than 1.
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perfect equilibrium. The intuition behind this result is that the variance of waiting
time is larger for the two queue state than for a single queue, so risk averse customers
naturally prefer the latter.

The analysis will again start with a strict no-jockeying condition, which will be re-
laxed in section 7.3.4, i.e., games NJ and J are considered in turn. Subgame perfection
is still the relevant equilibrium concept.

Customer risk aversion is reflected through an exponential utility function, which
replaces the linear utility given at (7.1):

Ui(ti) = 1− exp(−v(R− t)), v ∈ (0, µ), (7.27)

where v is a positive constant representing the degree of risk aversion, R is the net
monetary value of the service, and t is the waiting time. The unit cost of waiting time
has been normalized to 1, without loss of generality. Expected utility Ui(ti) is not
defined for v ≥ µ, because limv→µ Ui = −∞, so that if v ≥ µ, customers would not
join the queue for any values of k and R. As this applies equally to both system states,
v ∈ (0, µ) will be assumed throughout the rest of the section. The exponential form
was chosen for the utility function as it is widely employed in many applications and
can readily capture varying dimensions of risk aversion through the parameter v.

7.3.1 Expected Utility

When customers are risk averse, comparing expected waiting times is not enough to
determine their preferred action, as an action might yield a lower expected waiting
time, and still be passed over because the customer considers it too risky. Expected
utilities must be compared instead:

E[Ui(ti)] =
∫ ∞

0
(1− exp(−v(R− t))) z(t, k) dt, (7.28)

where z(t, k) is the probability distribution function of waiting time.

Then for a system in a two queue state, with the queue number taken as given, the
expected utility can be obtained by replacing z(t, k) with (7.6):

E[Ui(ti(γ(2, k)))] = 1− exp(−vR)
(

µ

µ− v

)k+1
. (7.29)

Likewise, for a system in a single queue state, the expected utility is obtained by
replacing z(t, k) with (7.7):

E[Ui(ti(γ(1, k))] = 1−
exp(−vR)

(
1− v

2µ

)−k
(v − 2µ)

2(v − µ) . (7.30)

As for the risk neutral case, it is convenient to have expected utility as a function
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of arrival order i rather than k, enabling direct comparisons between system states.
This is achieved with the same transformations as outlined before, only now they are
applied to the utility functions given in (7.29) and (7.30). Therefore, for customers in
a system in a single queue state, expected utility as a function of i is:

E[Ui(ti(γ(1)))] = 1−
exp(−vR)

(
1− v

2µ

)−(i+1)
(v − 2µ)

2(v − µ) . (7.31)

For io customers in a system in a two queue state, it is:

E[Uio(tio(γ(2)))] = 1− exp(−vR)
(

µ

µ− v

) i+3
2

. (7.32)

Finally, for ie customers in a system in a two queue state:

E[Uie(tie(γ(2)))] = 1− exp(−vR)
(

µ

µ− v

) i+2
2

. (7.33)

7.3.2 Customer Behaviour

The next lemma describes the behaviour of risk averse customers, mirroring that pre-
sented for risk neutral customers in lemma 3.

Lemma 5. If customer 1 chooses action D, then customer 2 will also choose action D.

Proof. Say customer 1 chose action D, queueing for server a. If 2 also chooses D, he
will queue for server b, in which case k = 1.

Recall P [η] has been defined to be the probability of server a finishing a service
before server b. As in the proof of lemma 3, the expected utility is the mean of the
expected utility if server a finishes first (η), and the expected utility if server b is the
one to finish first (η̄), weighted by the probability P [η]. However, unlike the waiting
times in lemma 3, expected utilities are not necessarily additive, and so need to be
derived from the distribution functions of waiting time.

If η occurs, expected utility (E[U2(t2(S, γ(2)))|η]) is the expected utility from the
expected time for a to finish serving −1, and from that point on the expected utility for
action S (from (7.30), where k = 2). This is because, when a finishes serving −1 and
starts serving 1, 2 is in the same position as 1 would have been had he chosen action
S. Thus let ζ(T, k) be the distribution for total waiting time T if η occurs:

ζ(T, k) =
∫ T

0
zk(T − t)µ exp(−µt) dt, (7.34)

where ζ(T, k) comes from (7.5), the distribution for waiting time when the system is
in a one queue state, i.e., for action S, and µ exp(−µt) is the probability distribution
function for service time.

The relevant form of z(t, k) is z(t, 2) for a system in a single queue state, i.e. from
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(7.7), so that the relevant distribution of waiting time is:

ζ(T, 2) =
∫ T

0
z(T − t, 2)µ exp(−µt) dt = 2µ((µT − 1) exp(−µT ) + exp(−2µT )). (7.35)

With ζ2(T, 2) in hand, the expected utility when η occurs can then be derived
from (7.28) (note that this is smaller than the expected utility of choosing action D

(E[U2(t2(D, γ(2, 1)))]):

E[U2(t2(S, γ(2)))|η] =
∫ ∞

0
(1− exp(−v(R− T )))ζ(T, 2) dT = 1 + 2 exp(−vR)µ3

(v − 2µ)(v − µ)2

E[U2(t2(S, γ(2)))|η] < E[U2(t2(D, γ(2, 1)))].
(7.36)

On the other hand, if server b finishes serving 0 before a serves −1 (η̄), then the
expected utility (E[U2(t2(S, γ(2)))|η̄]) is simply equal to the expected utility customer
2 would have experienced had he chosen D anyway (obtained from (7.29) when k = 1):

E[U2(t2(S, γ(2)))|η̄] = E[U2(t2(D, γ(2, 1)))] = 1− exp(−vR)
(

µ

µ− v

)2
. (7.37)

The expected utility for customer 2 of choosing action S when customer 1 has chosen
D is then:

E[U2(t2(S, γ(2)))] = P [η]E[U2(t2(S, γ(2)))|η] + P [η̄]E[U2(t2(S, γ(2)))|η̄].

As E[U2(t2(S, γ(2)))|η̄] is the same as the expected utility of choosing action D (eq.
(7.37)), and E[U2(t2(S, γ(2)))|η] is lower than the expected utility of choosing action
D (eq. (7.36)), the expected utility for 2 of choosing S when 1 has chosen D is lower
than that of choosing D:

E[U2(t2(D, γ(2, 1)))] > E[U2(t2(S, γ(2)))]. (7.38)

As in the risk neutral scenario, if the first two customers settle on a two queue state,
future arrivals choose D and the system stays in that state (see definition 2 and the
formal description of the game steps), at least until the queue is next cleared of waiting
customers.

7.3.3 Customers’ Actions and Equilibria

As before, it is assumed that indifferent customers will break ties in favour of action S.

Proposition 9. All customers io choose action S.
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Proof. For any customer io to choose S over D, it must be the case that:

E[Uio(tio(S, γ(1)))] = 1−
exp(−aR)

(
1− a

2µ

)−(i+1)
(a− 2µ)

2(a− µ) ≥

E[Uio(tio(D, γ(2)))] = 1− exp(−aR)
(

µ

µ− a

) i+3
2

,

(7.39)

where the left hand side is obtained from (7.31) and the right hand side from (7.32).

The inequality at (7.39) can be reduced to

θ(v, µ) ≡
(

1− v

2µ

)i ( µ

µ− v

) i+1
2
≥ 1. (7.40)

θ(v, µ) is increasing in v:

∂θ(v, µ)
∂v

=

(
1− v

2µ

)i ( µ
µ−v

) i+1
2 (v(i− 1) + 2µ)

2(v − 2µ)(v − µ) > 0, (7.41)

as under the specified conditions, all the terms in the numerator are positive, and two
terms in the denominator are negative; further, θ(0, µ) = 1, hence (7.40) holds for all
positive values of v.

As before, customer decisions are made with full knowledge of future arrivals’ deci-
sions, as outlined in Propositions 9 and 10. Since these imply that stage 3 of the game
is not triggered, customers can calculate their expected utility, incorporating future
arrivals’ decisions.

Proposition 10. All customers ie choose action S.

Proof. For any customer ie to choose S over D, it must be the case that:

E[Uie(tie(S, γ(1)))] = 1−
exp(−vR)

(
1− v

2µ

)−(i+1)
(v − 2µ)

2(v − µ) ≥

E[Uie(tie(D, γ(2)))] = 1− exp(−vR)
(

µ

µ− v

) i+2
2

,

(7.42)

where the left hand side is obtained from (7.31) and the right hand side from (7.33).

The inequality at (7.42) can be reduced to

ν(v, µ) ≡
(

1− v

2µ

)i ( µ

µ− v

) i
2
≥ 1. (7.43)

ν(v, µ) is increasing in v:

∂ν(v, µ)
∂v

=
vi
(
1− v

2µ

)i ( µ
µ−v

)i/2
2(v − 2µ)(v − µ) > 0, (7.44)
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as under the specified conditions, all the terms in the numerator are positive, and two
terms in the denominator are negative; further, ν(0, µ) = 1, hence (7.43) holds and the
proposition is proven.

As there is no incentive for any customers to deviate and take the system away from
the single queue state by choosing D, the single queue state is the unique subgame
perfect equilibrium of the game for this type of risk averse customers. Uniqueness
follows from all customers strictly preferring a single queue state/choosing action S.

7.3.4 Relaxing the No-Jockeying Condition

As with the risk neutral case, it is important to investigate whether there are any
changes to the equilibrium when the no-jockeying condition is relaxed. This is done by
considering the Game J from subsection 7.2.4, but with risk averse customers.

Lemma 6. If, when the system is in a two queue state, one of the servers (say b)
becomes idle while the other one (a) is busy (i.e., stage 4.a of the game is triggered),
customers with an odd n in a’s queue will switch to b’s queue.

Proof. This proof uses the notation introduced in the proof of lemma 4. The decision
whether to switch queues at stage 4.a, if that stage is triggered, is taken by comparing
expected utilities at the point in time a server becomes idle, as a function of expected
waiting times at that point, τ , which can be obtained from (7.29) by replacing k with
l and m.

As for the risk neutral case, all no customers are better off choosing ω and switching
queues:

E[U(τ, ({D,ω}, γ(2), no))] = 1− exp(−vR)
(

µ

µ− v

)lo+1
>

E[U(τ, ({D, ω̄}, γ(2), no))] = 1− exp(−vR)
(

µ

µ− v

)mo+1
.

(7.45)

Similarly, ne customers still have no reason to switch queues, even though their
expected utility is higher than prior to the switch-event:

E[U(τ, ({D,ω}, γ(2), ne))] = 1− exp(−vR)
(

µ

µ− v

)le+1
=

E[U(τ, ({D, ω̄}, γ(2), ne))] = 1− exp(−vR)
(

µ

µ− v

)me+1
.

(7.46)

In what follows, the choice from Ω will be dropped from the notation, except where
directly relevant; observance of Lemma 6 will be assumed.

Let E[Ui(ti(D, γ(2, k)))|B̄] be the expected utility in a system in a two queue state
if no switch occurs, and E[Ui(ti(D, γ(2, k)))|B] that when a switch does occur. The



7.4. DISCUSSION AND CONCLUSION 81

expected utility for a customer i in a system in a two queue state, which depends on
P (B), is then given by:

E[Ui(ti(D, γ(2, k)))] = P (B̄))E[U(ti(D, γ(2, k)))|B̄] + P (B)E[U(ti(D, γ(2, k)))|B].
(7.47)

As the general case is extremely complex, only the limit case, where the jockeying
opportunity happens immediately after the customer has joined the queue, will be
considered below. In this special case, expected utility at joining is:

E[Ui(ti(D, γ(2, k)))|B] = E[U(ti(D, γ(2, k)))|b] + E[U(τi({o,D}, γ(2, k)))], (7.48)

where E[Ui(ti(D, γ(2, k)))|b] = 0. Therefore E[Ui(ti(D, γ(2, k)))|B] =
E[Ui(τi({o,D}, γ(2, k)))].

The customer at the front, 1, has the most to gain from switching, as he will get
served immediately. His utility in the event of switching is:

E[U1(t1(D, γ(2, 0)))|B] = 1− exp(−aR)
(

µ

µ− a

)1
. (7.49)

Then, for the limit case of customer 1, it is possible to obtain the values of the
parameters for which the customer would still choose action S, which follow from the
condition below:

E[U1(t1(S, γ(1)))] >P (B̄)E[U(t1(D, γ(2, 1)))|B̄]+

P (B)E[U1(t1(D, γ(2, 0)))|B].
(7.50)

This yields the following parameter conditions:

• P (B) < µ
2µ−v ;

• v > µ(2P (B)−1)
P (B) ;

This limit case indicates that for risk averse customers who can jockey, a single
queue state remains the subgame perfect equilibrium for high levels of risk aversion,
while for low levels of risk aversion, a two queue state becomes the equilibrium instead.
However, as the foregoing analysis was dependent on there being no time between
the customer’s arrival and the switching event, this cannot be stated in more general
terms—doing so does not seem easily tractable, and must remain a conjecture for the
present.

7.4 Discussion and Conclusion

This chapter has shown that risk neutral customers derive a small benefit from com-
bining queues. Without jockeying, half of them benefit compared to a system with two
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queues, whereas the other half is indifferent between the two situations. This causes
the single queue state to be a non-unique equilibrium, and if jockeying is possible the
two queue state is the only equilibrium outcome.

As seen from Smith and Whitt (1981), waiting time inefficiencies in multiple queue
systems are caused by servers being idle when they could be serving another customer.
Allowing jockeying, even in the very limited form used in the present model, eliminates
this issue, as a server does not sit idle if his queue becomes empty. It is then not
surprising that when customers are risk neutral, this situation leads to a two queue
state.

On the other hand, when customers are risk averse, an added source of disutility
arises, the increased variance in waiting time. A two queue state requires customers to
bet on which queue is going to move faster. Obviously, since the two service distribu-
tions are i.i.d., this introduces risk. It’s then quite intuitively appealing, and rigorously
confirmed above, that risk averse customers would prefer single queues more strongly
than risk neutral ones, as having a single queue for both servers eliminates the risk
inherent in having to choose a queue. Even introducing jockeying into the game only
has a limited effect: the two queue state is only an equilibrium for weakly risk averse
customers. Examining in more detail the circumstances in which the single queue equi-
librium breaks down under risk aversion and jockeying is an inviting topic for further
research.

These results have implications for service station management. The welfare ef-
fects of non-monetary costs such as waiting time sometimes escape notice, but they
negatively impact customer utility as much as price—though unlike price, they benefit
no-one. There is then great scope for improving social welfare by reducing these costs.

The present chapter has shown that risk averse customers, have the most to lose from
a plurality of queues, and will, in equilibrium, form a single queue when presented with
two servers. It seems a reasonable assumption that customers are at least somewhat risk
averse, yet combining queues is often frowned upon by managers. This work provides
a counterpoint to the views expressed in Rothkopf and Rech (1987).

This does leave open the question of why it is often observed that customers form
two queues even where there is no pressure from management to do so. Further research
should investigate customers’ judgement of the probability of jockeying being possible,
their degree of risk aversion in this specific context, and on a slightly behavioural tack,
whether they judge their fellow customers to be rational when it comes to actions
which might disturb the one queue equilibrium state (i.e., the observance of lemmas
4 and 6). While it might be quite complex mathematically, it would be interesting
to explore the impact of either server or customer heterogeneity in expected service
time. It might also be interesting to investigate the impact on equilibrium robustness
of repeated interactions as in Allon and Hanany (2012).

Other avenues for further research include the steady state properties of a system
with risk averse customers, characterize more rigorously the switching conditions for
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game J with risk averse customers, generalizing the problem to any number of servers,
and providing a full formal treatment of social welfare issues with risk averse customers,
which still seems to be absent from the literature, as is research into management
incentives when dealing with these customers.
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8.1 Introduction

The present paper is placed at the intersection of two strands of literature.1 It seeks to
determine whether there are any circumstances where homogeneous customers facing
an M/M/1 queue system with what at first looks to be a First Come First Served
(FCFS) service discipline, allow arriving customer possible to overtake incumbents.
This will be shown to be possible for a subset of customers in a setting with repeated
interactions, involving the creation of a queue-within-a-queue employing the Last Come
First Served (LCFS) discipline. This makes customers’ sojourn times into a function
of more than on queue length at arrival, and service rate: it is also affected by the
rate of future arrivals. The joining threshold threshold problem is then solved for these
customers.

An individual threshold strategy for FCFS queues was determined in Naor (1969),
which also obtained the social welfare maximizing threshold; the former was found to be
larger than the latter, so that customers joining a queue impose a negative externality
on all others. The recommended prescription was charging a ‘toll’ to joining customers,
which could reduce the Nash equilibrium threshold to the socially optimal one. These
findings were generalized in Knudsen (1972) to general waiting and inter-arrival time
distributions, and an arbitrary number of servers.

Naor’s paper was followed by a variety of further articles examining customers’
strategic queueing behaviour, especially in M/M/1 FCFS queues. For a good overview
of the literature up to publication, see the review monograph by Hassin and Haviv
(2003). Since then, many more papers than can be individually mentioned have been
published on this subject. A few notable examples are Burnetas and Economou (2007),
Boudali and Economou (2012), Sun et al. (2009) and Sun and Li (2014). Ventures
beyond the FCFS discipline were rarer, as other disciplines tend to be more mathemat-
ically intractable. However, a couple of important exceptions include Hassin and Haviv
(1997) and Erlichman and Hassin (2009). These cover an FCFS M/M/1 queue where,
similarly to the present paper, a customer can overtake others. However, unlike the
present model, this overtaking does not emerge from interactions among customers in
a repeated games setting: rather customers pay the server to be allowed to cut ahead;
they also do not examine customer sojourn time as the present work does. The present
analysis rather draws on that performed by Yu et al. (2014) for the EPS discipline, who
compute expected sojourn time for customers joining an EPS queue, using a method
which is followed, mutatis mutandis, in the present paper, to determine the joining
threshold.

As mentioned in the foregoing paragraph, one of the distinctions between the present
work and Hassin and Haviv (1997) and its progeny is that the possibility of overtaking

1Thanks to Tim Worrall for the many helpful discussions, and to Jonathan Thomas and Paul
Schweinzer, my viva examiners, for the helpful comments and suggestions. Any remaining errors are,
of course, my own. I also thank the University of Edinburgh for funding my PhD, of which the present
paper forms a part.
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emerges from repeated interactions between customers rather than being part of the
set of rules established by the service station manager. This leads into the discus-
sion of the second strain of literature the present paper draws from. Queues can be
classified among what Parsons (1955) described as social systems, in that they involve
interactions between individuals according to some set of socially agreed upon norms.
These sorts of interactions can be modelled as a game, which can then be investigated
with standard game theoretic tools, such as the theory of repeated games, as described
by Okuno-Fujiwara and Postlewaite (1995) (and see Mailath and Samuelson (2006)
for a thorough review of the repeated games literature). Kandori (1992) showed the
applicability of this type of analysis to situations where game ‘partners’ change by de-
scribing a process where ‘punishment’ for deviating from social norms is meted out by
the community rather than by the aggrieved individuals only.

The extent to which queueing is governed by these social norms has been the object
of research in the Psychology and Sociology literatures. A few noteworthy studies can
be mentioned: following on Schwartz (1975), which laid out a sociological analysis of
waiting for service and customers’ perceptions of the fairness of queueing disciplines,
Milgram et al. (1986) described an experiment where people tried to cut ahead of sev-
eral queues. While these overtaking attempts were sometimes successful, they generally
met with failure. On this vein, Larson (1987) characterized deviations from FCFS as
unjust, which would explain why reactions to overtaking attempts were so overwhelm-
ingly negative. These findings were reinforced by a study of reactions to deviations
from FCFS in an overnight queue for a U2 concert, in Helweg-Larsen and LoMonaco
(2008), which found negative reactions even when there was little impact on outcomes.
However, Oberholzer-Gee (2006) describes an experiment where customers in queues
were offered payment in exchange for letting a stranger cut in line; it was found that
the likelihood of the offer being accepted increased with the payment, which would
favour the conclusion that self interest is the dominant factor governing behaviour in
queues. This lead to Allon and Hanany (2012), which presents a model of a queue
where customers with different priorities (which are reassigned after each round of the
game) interact repeatedly, and concluded that sufficiently patient customers will allow
those with high priority to cut ahead, as customers take into account the possibility of
being allowed to cut ahead in the future, when they might have high priority.

The present paper begins by setting up a repeated game scenario which is heavily
indebted to Allon and Hanany (2012), although it deals with homogeneous customers,
a subset of which is known to each other. The single shot equilibrium is presented,
and then a grim-trigger strategy where customers allow overtaking attempts from their
‘acquaintances’ in the repeated-game setting is set forth. It is shown that this strategy,
where customers allow some attempts to overtake them, is an equilibrium for sufficiently
patient customers, and further that queue length-dependent strategies will not affect
this equilibrium (again, for sufficiently patient customers).

Once the repeated game equilibrium is established, it will be seen to create a queue-
within-a-queue which uses the LCFS discipline. The method for deriving customer
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sojourn time in this sub-queue will be discussed; it will be seen that it can be obtained
using a method similar to that outlined in Yu et al. (2014) for the EPS discipline. Then
the joining threshold (maximum length for which an arriving customer will join the
queue) will be investigated. An overview of Naor (1969)’s findings regarding the socially
optimal threshold for an M/M/1 queue follows, after which the sojourn times and
joining thresholds obtained for the overtaking system presented here are contrasted with
that for the FCFS discipline, and with the socially optimal value, through numerical
simulations. While the form of the results prevents general conclusions from being
drawn, numerical simulations seem to indicate that queue cutting reduces social welfare
and should be discouraged. The conclusion, outlining avenues for further research,
follows at the end.

8.2 A Repeated Game Model of Queue Cutting

This model is an adaptation of that presented in Allon and Hanany (2012), stripped of
its element of customer heterogeneity and with other changes to make it address the
problem at hand. In Allon and Hanany (2012), type heterogeneity was the driver for
the sustainability of the queue cutting discipline: customers let others with high cost
of time overtake them, in order to benefit from that possibility when their type was
higher in the future. In the present model, customers are homogeneous in regards to
their cost function. However, a subset of customers interacts repeatedly. Under these
circumstances, the queue cutting discipline is still found to be an equilibrium in re-
peated games for sufficiently patient customers, showing heterogeneity is not required
for this result. Nevertheless, as the numerical results in section 8.5 indicate, when cus-
tomers are homogeneous this might have a negative effect on social welfare, unlike Allon
and Hanany (2012), where it seems beneficial. Why is this important? The scenario
may be thought to be unrealistic, but anyone who has gone to a sufficiently rowdy
high school could readily attest otherwise—the lunch line problem. More generally,
wherever enforcement of the FCFS discipline by management is lax, customer who are
regular users of the service will have an incentive to ‘collude’ against occasional users
through allowing other regulars to overtake them. The welfare issues alluded to suggest
enforcement of FCFS by the system managers can be a welfare enhancing measure, so
that this is a repeated game where it might improve social welfare to move to the
single-shot equilibrium!

Consider a Poisson stream of identical, risk neutral utility maximizing customers,
demanding a certain service from an M/M/1 queue; these customers have the utility
function U = ν − cE[W ], where ν is the service value, c the unit cost of time, and
E[W ] the expected sojourn time. In each instance of the game, inter-arrival times are
modelled by a Poisson process with rate λ. Customers are identical, and obtain value
ν at the end of the service, incurring a waiting cost c per unit of sojourn time. A
share of customers α ∈ (0, 1) expects to use the service repeatedly, while the remainder
1 − α does not expect to use it again; denote the former by iα and the latter by iᾱ.
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Information about repeated user status is common knowledge shared by all regular
users, but not for occasional users, who are unaware of this.

Repeated user status is assigned by nature before any instance of the game occurs.
The single shot game is then comprised of the following steps, which approximate the
game presented in Allon and Hanany (2012) without completely reproducing it:

1. Nature assigns customers their arrival order.

2. Customer arrives at the queue and observes the queue length (which for a cus-
tomer N is N−1), and in the case of regular users, the positions of other regulars.
Customers then decides whether to join the queue or balk. If they balk, the game
ends for them.

3. If the customer joins the queue, they can make one attempt at cutting it: they
will ask one “known” incumbent customer (and it is both trivial and intuitive that
they will ask the regular incumbent who is closest to the server) to be allowed to
cut ahead (action P ).2 Only the consent of the customer who is being overtaken
is required, so that if one customer in the middle of the queue allows an arrival
to cut ahead, all the customers behind the incumbent just have to ‘lump it’,
something which is well within the purview of the high school lunch problem!
This action is costless. The customer can also choose to join the end of the queue
without trying to cut (action J).

4. The incumbent customer who received the cutting request can accept it (action
A): in that case, if the incumbent is the nth customer in the queue, the arrival
takes the nth place, and the incumbent is now the n+1th; customers behind them
will likewise see their place in the queue increase by one. It is never optimal for
a customer to accept some cutting attempts and reject others.3 The incumbent
can also reject the cutting attempt, in which case the arrival joins the queue at
its end: action R. Regardless of where customers join the queue, they cannot
leave it until they are served.4

The full strategy of customer i is then given by (Ei, Ii):

• Ei ∈ {J, P},

• Ii ∈ {R,A},
2Only the interactions of regular customers with each other are considered. It’s obvious that occa-

sional users of the system will reject all requests to cut ahead in all circumstances, and no requests by
them will be accepted, so that there is no loss of generality in not considering them, and the benefits
for elegance of presentation are significant.

3As all customers have identical cost functions, costs are linear in waiting time, and the increase in
expected sojourn time from letting an arrival overtake is always the same (this takes into account the
fact that future arrivals might let other customers cut ahead—see section 8.3.1). This accords with the
setup in Allon and Hanany (2012).

4Note, however, that it is possible to set up a version of the game where customers are allowed to
leave, the results of which are not too dissimilar qualitatively. The author hopes to set out this version
of the game in future research.
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where Ei describes the choices available to arrivals, and Ii those available to incum-
bents.

8.2.1 Single Shot Game

In the single stage game, only one equilibrium can be sustained: in this equilibrium, all
requests to cut the line are rejected, and thus each arriving customer joins the queue
at its end. The following theorem sets out this equilibrium formally; for the proof of
this and subsequent theorems consult the Appendix.

Theorem 13. The strategy where customers choose Ei = J , Ii = R is an equilibrium,
which yielding a pure FCFS queue. There are no other equilibria for the single stage
game.

Obviously, in the single shot game it makes no sense to consider whether customers
are regular users or not, and there is no incentive for any incumbent to allow other
customers to overtake them, as this will only increase their expected sojourn time.
Therefore, they will refuse all cutting requests. This is true regardless of queue length
and the number of requests, and will describe the behaviour of the occasional customers
even in the repeated games setting, as for them, it is a single-shot game.

8.2.2 Repeated Game With Perfect Public Monitoring

Consider now the setting where some players use the service repeatedly. As in Allon
and Hanany (2012), it will be assumed that each customer will not have concurrent
requests, that periods are such that the length of time between service requirements
is clearly separated from waiting times (e.g. say a service is needed every day, and
expected sojourn time is 20 minutes). Future period payoffs and waiting costs are
discounted by a factor δ ∈ (0, 1).

Note that the FCFS inducing strategy which is the equilibrium of the single stage
game is also an equilibrium of the repeated game. Nevertheless, there are conditions
where it is an equilibrium outcome for regular customers to allow others to cut the
queue.

Consider the following grim trigger strategy profile, set out in Allon and Hanany
(2012): incumbents who are regular customers agree to all requests for cutting ahead
made by other regulars. If one refuses, the punishment strategy is triggered. This
punishment is the FCFS inducing strategy which is the equilibrium of the single stage
game, as is required to avoid deviations. The punishment strategy is anonymous, i.e.,
it doesn’t target a specific customer.

LetWA andWR be the expected sojourn time experienced by a regular customer as
an incumbent when agreeing and when refusing to let an arrival cut ahead, respectively,
given that all other regular customers follow the cooperative strategy of agreeing to
cutting requests from other regulars (P,A). Further let V A be the long term expected
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discounted payoff when all regular customers follow the cooperative strategy in all
periods, and V FCFS the long term expected discounted payoff all customers follow the
punishment strategy (J,R).

Theorem 14. The strategy in which every regular customer chooses (A,P ) if this
choice was taken by all regular customers in previous periods, and punishes by choosing
(R, J) if some regular customer deviates from this, is an equilibrium if and only if:

δ

1− δ ≥
WA −WR

DFCFS + 1
µ −WA

ι

, (8.1)

and
WA
ι < DFCFS + 1

µ
, (8.2)

where DFCFS is the a priori expected waiting time under the FCFS discipline (pro-
duced by the punishment strategy), and WA

ι is the a priori expected waiting time
conditional on the cooperative strategy being followed.

Theorem 14 shows that the cooperative strategy, where regular users, as incumbents,
allow arriving regular users to cut ahead, can be sustained in equilibrium for sufficiently
patient customers, as the joining customers are willing to forego the present benefit of
a shorter sojourn time in exchange for the future benefits of being able to cut ahead.
For this to happen, however, it must also be the case that ex ante expected sojourn
time is lower when all regular customers follow the cooperative strategy (eq. (8.2)).
For further discussion of this condition, see the Appendix at 8.7.4.

When the cooperative equilibrium is sustainable, arriving regular customers will
ask the (regular) incumbent closest to the server to overtake them. This can be seen
to lead to a sort of queue-within-a-queue, as set out in the following corollary:

Corollary 4. When the cooperative strategy is being implemented, regular customers
will form a LCFS queue within the FCFS queue.

Essentially, new arrivals of regular customers will ask the first regular to let them
overtake. When their request is accepted, they will take the first place among the reg-
ulars. However, there might be occasional customers in front of sub-queue of regulars,
as well as behind them, and these will behave according to FCFS.

Queue-Length-Dependent Strategies

So far, only ex-ante decisions on whether to join the end of the queue or request to
cut ahead, and whether to accept or reject these requests, have been considered. This
section explores whether the equilibrium where customers allow others to cut the queue
can be sustained when customers’ strategies vary with queue length.

The approach to this problem is borrowed from Allon and Hanany (2012), focus-
ing on queue-length-dependent strategies, i.e., a strategy where customers’ choice of
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whether or not to agree to a cutting request depends on observed queue length. Let
the system size observed by customer N at arrival be N − 1; further denote by nα∗ the
place occupied by the first regular customer (i.e., where the arrival would join).

Further, let nα∗ be a threshold defining the queue-length-dependent strategy, such
that for nα∗ ≤ nα∗, incumbent regular customers will play A, and for nα∗ > nα∗

they will play R. Then let WA,nα∗(nα∗) denote the expected sojourn time for an
incumbent of letting an arrival cut ahead, and WR,nα∗ that of refusing to do so, given
that in both cases all other regular customers are following the queue-length-dependent
strategy. Finally, let V A,nα∗ be the long-term expected discounted utility when all
regular customers follow the queue-length-dependent strategy for all periods.

Theorem 15. When regular customers follow queue-length-dependent strategies, for
any threshold nα∗ there is a value of δ such that the threshold is never reached in
equilibrium, i.e., it is never the case that nα∗ > nα∗, and so the ‘long-queue’ strategy
is never employed: incumbent regular customers always play A.

The intuition behind Theorem 15 is that if customers employ queue length depen-
dent strategies, where there is a maximum length above which they will reject cutting
attempts, then there is always some value of delta for which customers are patient
enough that this cutoff is never reached and only the short queue strategy is employed.

8.3 Sojourn Time and Joining Decision

This section considers sojourn time for customers who decide to join the queue, and
subsequently considers their decision of whether or not to join. This decision is taken in
stage 2 of the game, as detailed in Section 8.2. This consideration only comes into play
if the conditions for the cooperative equilibrium to be sustainable, as defined in theorem
14, are met, otherwise incumbents allow no cutting attempts and the discipline is FCFS.
Further, the criteria employed by regular customers who can cut ahead of other regulars
when making a joining decision will differ from those of occasional service users.

On arrival, customer N observes queue size N − 1; if she is a regular customer, she
will also observe its composition, i.e., which members are also regular customers. If
the customer is an occasional user, she does not have access to this information, and
may only join the queue at its end, taking position N . She will do so as long as her
expected utility from doing so is positive:

U = ν − cE[WN ],

where WN , (N = 1, 2, ...) is the sojourn time for a customer arriving at a system
containing N − 1 customers.

On the other hand, regular users have the possibility of asking another regular user
to overtake them. As described previously in Section 8.2, the customer from whom this
will be requested is to be the regular customer who is closer to the server—although,



8.3. SOJOURN TIME AND JOINING DECISION 93

of course, it is possible that there are no other regulars in the queue, in which case
the customer will just join the queue at the end. A share α of customers is regular,
and under the cooperative equilibrium, regular customers join the queue by taking the
place of the first regular customer. Therefore, conditional on their deciding to join the
queue, their place within it will be determined by a bounded geometric distribution
with parameter α, where pn(n,N) denotes the probability the first regular incumbent
is in the nth position in the queue, n ∈ {2, ..., N} and N ≥ 3, as a function of n and
N . Note that if the number of trials exceeds the number of customers in the queue,
the customer will just take the last place: this reflects the situation where no other
regulars are in the queue. Further, it is not possible to overtake the first customer, as
her service has started, so the distribution support starts at n = 2. The probability
distribution function is then:

pn(n,N) =

α(1− α)n−2 if n ∈ {2, ..., N − 1}

(1− α)n−2 if n = N
, ∀N ≥ 3, (8.3)

where obviously for N = 2, the customer cannot overtake anyone and so takes the place
n = 2.

To this p.d.f. corresponds the following cumulative distribution function:

Pn(n,N) =

1− (1− α)n−1 if n ∈ {2, ..., N − 1}

1 if n = N
, ∀N ≥ 3. (8.4)

Finally, the ex-ante expected value of n as a function of N is:

E[n(N)] =
N∑
n=2

pnn =
N−1∑
n=2

α(1− α)n−2 + (1− α)N−2N =

α2 + (1− α)n − 1
α(α− 1) , ∀N ≥ 3.

(8.5)

Regular customers will of course also only join the queue as long as their expected
utility from doing so is positive. Unlike occasional customers, however, their place in
the queue upon joining is not necessarily N , but rather n(N), i.e., n as a function of
N , so that utility is a function of WN

n , where N ∈ {1, 2, . . . } and n = 1 when N = 1,
n = 2 when N = 2, and n ∈ {3, . . . , N} when N ≥ 3:

U = ν − cE[WN
n ].

Nonetheless, the customer’s decision of whether to join the queue or not is made
with knowledge of n, i.e., of the result of the draw from the p.d.f. at (8.3). Customer
N will of course join the queue if and only if:

U = ν − cE[WN
n ] ≥ 0, (8.6)
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which can be written as:
E[WN

n ] ≤ ν

c
. (8.7)

8.3.1 Expected Sojourn Time

Occasional customers are unaware of the cooperation between regular customers. There-
fore, while their actual waiting time will not be according to the FCFS discipline, they
act on the mistaken assumption that it is. Under the FCFS rules, expected sojourn
time is given by:

E[WN ] = N

µ
, (8.8)

so that occasional customers will join the queue if (see Naor (1969)):

ν − cN
µ
≥ 0. (8.9)

On the other hand, determining the expected sojourn time for regular customers is
more challenging, because it is a function of future arrivals as well as the existing queue
size: as regular customers form a LCFS queue, future arrivals of regular customers will
overtake the customer and increase the expected time to service completion. On the
other hand, the existing queue size is only relevant insofar as it is composed of occasional
customers (who will not allow anyone to overtake them) ahead of the LCFS queue of
regulars, and the customer being served (who cannot be overtaken)—at the time of
joining, queue size beyond the first regular customer is irrelevant for determining the
sojourn time of a regular customer.

The approach followed here to determine expected sojourn time for regular cus-
tomers follows that used by Yu et al. (2014) in their solution of the joining problem
for the EPS discipline, although it has been modified to take account of the specifici-
ties of the present LCFS-like problem. The essence of this approach is to describe the
queueing problem through a system of linear difference equations.

Before setting out how to solve this problem, however, it is important to posit three
conditions: (1) ρ ≡ (λ/µ) < 1 and % ≡ (Λ/µ) < ρ, where Λ = αλ i.e., departures from
the system must on average exceed arrivals—this is required to prevent the system
from growing explosively, and the arrival rate for regular customers is lower than the
total arrival rate; (2) all stochastic processes are independent of each other; (3) the
inequality ν ≥ c

µ holds—this is required to avoid triviality: it must be profitable for
a customer to join when the queue length is zero and the server is idle, otherwise the
system would never be used.

Let Wn denote the expected sojourn time of an arbitrary regular customer, chosen
to be ‘tagged’, joining at the nth position in the queue, where n = n∗ᾱ + nα: n∗ᾱ

is the number of occasional customers queueing ahead of the LCFS queue of regular
customers, and nα the customer’s position on the sub-queue of regular customers.
Under the cooperative strategy, arriving regular customers overtake the first regular
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in the queue, so that nα = 1 on joining if n∗ᾱ ≥ 1, or nα = 1 on joining if n∗ᾱ = 0,
though future arrivals of regular customers will overtake the ‘tagged’ customer and
cause her value of nα = 1 to change. Regular customers on the system at arrival, and
occasional customers behind the sub-queue of regular customers, have no effect on the
expected sojourn time of a joining customer, so total queue size is irrelevant for regular
customers’ joining decision: it will only be a function of service and arrival rates, and
the number of occasional customers ahead of the sub-queue of regulars.

Further let A denote the time to the next customer arrival, and S the time to
completion of the currently ongoing service. Once a customer chooses to join, and
takes her place in the queue, either n = n∗ᾱ+1 when n∗ᾱ ≥ 1, or n = 0+2 when n∗ᾱ = 0,
there are two possibilities for the next relevant event5:

• The server finishes servicing the first customer, who leaves the system, before a
new customer arrival: A > S.

• A new regular customer arrives before service completion, and cuts ahead of all
the other regulars, including the ‘tagged’ customer: A < S. In this case, the
‘tagged’ customer’s place in the LCFS sub-queue, nα, increases by 1.

Further let:

IB =

1, if event B occurs,

0, if event B does not occur.

Then the expected sojourn time can be decomposed, using a first-step argument,
into two components corresponding to the two cases outlined above. In order to perform
the decomposition, it is convenient to take the Laplace transform of expected sojourn
time (see Yu et al. (2014)):6

exp
(
−sWnᾱ∗+nα

)
= exp

(
−sWnᾱ∗+nα I{S<A}

)
+ exp

(
−sWnᾱ∗+nα I{A<S}

)
, ∀nᾱ∗ ≥ 1, and nα ≥ 1

(8.10)

exp (−sW0+nα) = exp
(
−sW0+nα I{S<A}

)
+ exp

(
−sW0+nα I{A<S}

)
, ∀nᾱ∗ = 0, and nα ≥ 3,

(8.11)

exp (−sW0+2) = exp
(
−sW0+2 I{S<A}

)
+ exp

(
−sW0+2 I{A<S}

)
, ∀nᾱ∗ = 0, and nα = 2.

(8.12)

After a series of lengthy considerations, for which see the Appendix, the following
form for the difference equations emerges, where Λ = αλ, i.e., the share of arrivals who
are regular customers:

5I.e., excluding arrivals of occasional users, which do not affect waiting times of regular customers,
since they all join the end of the queue.

6As customers are risk neutral, the expectations operator will be dropped in order to save space.
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Wnᾱ∗+nα = 1
Λ + µ

+ µ

Λ + µ
W(nᾱ∗−1)+nα + Λ

Λ + µ
Wnᾱ∗+(nα+1), (8.13)

for nᾱ∗ ≥ 1, and nα ≥ 1,

W0+nα = 1
Λ + µ

+ µ

Λ + µ
W0+(nα−1) + Λ

Λ + µ
W0+(nα+1),

∀nᾱ∗ = 0, and nα ≥ 3,
(8.14)

W0+2 = 1
Λ + µ

+ µ

Λ + µ
W0+1 + Λ

Λ + µ
W0+3, ∀nᾱ∗ = 0, and nα = 2, (8.15)

and finally for the customer being served:

W0+1 = 1
µ
, ∀nᾱ∗ = 0, and nα = 1. (8.16)

The intuition behind eqs. (8.13)-(8.16) if relatively easy to grasp: the term 1/(Λ+µ)
is the expected time to the next relevant event, whether an arrival or service completion;
µ/(Λ + µ) is the probability of the next relevant event being a service completion, in
which case the customer’s place in the queue falls by one, either by the service of an
occasional or a regular customer; Λ/(Λ + µ) is the probability that the next relevant
event is a new arrival of a regular customer, in which case the customer’s place in the
queue increases by one, through the addition of a regular customer.

As eqs. (8.13)-(8.16) describe a system of linear second order difference equations
with two boundary conditions, it is solvable for any values of µ, λ and α. This can
be done through a guess and verify approach, where one conjectures that the solution
takes the following form:

Wnᾱ∗+nα = β0 + nᾱ∗β1 + nαβ2. (8.17)

Once this is applied to the system, the following values emerge:

β0 = − %

µ− Λ

β1 = 1
µ− Λ

β2 = 1
µ− Λ ,

so that expected sojourn time is:

Wnᾱ∗+nα = nᾱ∗ + nα − %
µ− Λ . (8.18)
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8.3.2 Threshold Value

Occasional users by the very nature of their occasional use do not know of the cooper-
ation between regular users until they observe it at play. Instead, they take the queue
to obey FCFS rules, so that their joining threshold Nᾱ, the highest place in the queue
they will be willing to take, is that obtained in Naor (1969):

Nᾱ =
⌊
νµ

c

⌋
. (8.19)

On the other hand, regular users know about their cooperative equilibrium and
how they will form an LCFS sub-queue, so that if they decide to join, they will always
join the beginning of the LCFS sub-queue, i.e. nα = 1 when nᾱ∗ ≥ 1, or nα = 2 when
nᾱ∗ = 0 (though this may of course change as other customers join). However, it follows
from (8.18) that W1+1 = W0+2, so that if a customer will join the queue for nᾱ∗ = 1,
she will also do so when nᾱ∗ = 0, and so only the former case need be considered. The
joining threshold is then nᾱ∗ , the maximum number of occasional customers ahead of
the LCFS sub-queue for which an arriving regular customer will join the queue:

nᾱ∗ =
⌊
(µ− Λ)ν

c
− (1− %)

⌋
. (8.20)

It is evident from (8.20) that regular customers’ joining decisions are independent
of total queue length. This implies that the queue may grow to any arbitrary length,
even if customers are impatient, although the condition that ρ < 1 ensures that it will
never experience explosive growth.

A few comparative statics results for the threshold can be outlined:

Lemma 7. The threshold for regular customers, nᾱ∗ is increasing on the value of the
final service ν.7

Lemma 8. The threshold for regular customers, nᾱ∗ is decreasing on unit cost of time
c.

Lemma 9. The threshold for regular customers, nᾱ∗ is increasing on the service rate
µ.

Lemma 10. The threshold for regular customers, nᾱ∗ is decreasing on the arrival rate
λ.

Lemma 11. The threshold for regular customers, nᾱ∗ is decreasing on the share of
regular customers α.

7Though note that because nᾱ∗ is a discrete variable, a small increase in ν may not be enough to
change the threshold value. The same applies, mutatis mutandis, to lemmas 8-10.
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8.4 Social Optimization

This section considers the system from the point of view of a social planner who is
concerned to maximize aggregate utility accruing to the stream of customers, and can
set a maximum length for the queue such that when this threshold is reached, arriving
customers are turned away until a service occurs (cf. Naor (1969)).

Given the system is M/M/1, absent individual optimization its queue length dis-
tribution is the same regardless of service discipline, i.e. identical to the FCFS dis-
cipline (see Federgruen and Groenevelt (1988) and Guillemin and Boyer (2001)). Let
πN (N = 0, 1, ...) be the stationary probability of there being N customers in the queue.
Then for a boundless system:

πN = ρN (1− ρ), N = 0, 1, 2, . . . . (8.21)

This means that the approach to social optimization pursued by Naor (1969) can be
followed here as well, as is done by Yu et al. (2014) for the EPS discipline. This
approach is outlined below.

Let N̄ be a size limit for the system, such as can be set by the social planner; the
distribution of queue lengths becomes:

πN = ρN (1− ρ)
1− ρN̄+1

, N = 0, 1, 2, . . . , N̄ , (8.22)

and expected queue size is:

E[N ] = ρ

1− ρ −
(N̄ + 1)ρN̄+1

1− ρN̄+1
. (8.23)

Then let N̄s be maximum system size set by the social planner. Instantaneous
utility accruing to the stream of customers is given by:

Us(N̄s) = νλ(1− πN̄s)− cE[N ]

= νλ
1− ρN̄s

1− ρN̄s+1
− c

[
ρ

1− ρ −
(N̄s + 1)ρN̄s+1

1− ρN̄s+1

]
.

(8.24)

This expression was obtained in Naor (1969), where Us was also shown to be discreetly
unimodal in Ns. The first term is the value of the service multiplied by the effective
arrival rate, i.e., λ multiplied by the probability of the system being at the maximum
size, when arrivals are turn away; the second term is the unit cost of time times the
expected queue size E[N ].

Discrete unimodality implies that the socially optimal threshold N̄∗s may be found
through iterative substitutions of successive integers into (8.24) until the maximum is
achieved. This can also equivalent to finding a value for N̄∗s satisfying the two following
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inequalities:

Us(N̄∗s − 1) ≤ Us(N̄∗s )

Us(N̄∗s ) ≥ Us(N̄∗s + 1).

8.5 Numerical Investigations

The present section will employ numerical simulations to compare the several disci-
plines with respect to sojourn times and joining thresholds. Table 8.1 presents the
maximum queue length for the FCFS discipline (that is, the highest place in the queue
a customer is willing to take), which is given by nFCFSt = bνcµc; the threshold Nᾱ for
occasional customers, as given in (8.19); the threshold nᾱ∗ for regular customers under
the cooperative equilibrium, as given in (8.20); and the socially optimal threshold as
described in section 8.4:

Table 8.1: Threshold comparison across disciplines for ν = 12, c = 6, λ = 2, µ = 3, and
α = 0.5.

Discipline FCFS Nᾱ nᾱ∗ Social
Threshold 6 6 3 2

Meanwhile, Figure 8.1 shows how, for a fixed α, the threshold function (prior to
the application of the floor operator) varies with λ and µ, and Figure 8.2 how it varies
with λ and α for a fixed µ, reflecting the behaviours described in Lemmas 7-11:
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Figure 8.1: Threshold function for ν = 12, c = 6, and α = 0.5.
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Figure 8.2: Threshold function for ν = 12, c = 6, and µ = 3.

Table 8.2 presents the sojourn times for customers at the respective threshold value
(as presented in table 8.1), in a pure FCFS queue, for regular customers in the queue
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considered in this paper, as well as customers in the FCFS discipline for the socially
optimal threshold. The chosen parameters are, as before, ν = 12, c = 6, λ = 2, µ = 3,
and α = 0.5. It is easy to verify that these values meet the condition ν ≥ c/µ, which
must hold so that at least one customer uses the system.8

Table 8.2: Sojourn time comparisons, ν = 12, c = 6, λ = 2, µ = 3, and α = 0.5.

Case Time
FCFS 2
Regulars 1.8333
Social 0.6667

Meanwhile, Figure 8.3 shows how the sojourn time and the threshold varies with α:
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Figure 8.3: Expected sojourn time at the threshold for for ν = 12, c = 6, µ = 3, and λ = 2

According to Naor (1969), social welfare is discreetly unimodal on queue length.
As queue cutting reduces the threshold for regular customers, it might naively be
construed improving welfare. However, this ignores the fact that the threshold only
refers to the maximum number incumbent occasional users ahead of the the LCFS
sub-queue of regular customers, which can itself increase boundlessly—which will tend
to lower social welfare. However, this is contingent on the relative sizes of the shares of
regular and occasional customers. It can be noted, nevertheless, that for the situation
where all customers are regular (i.e., α = 1), and there is a pure LCFS queue, for
the parameters chosen above, customers always join the queue and expected queue
length9 E[N ] = 4, which is almost twice as large as that for the FCFS queue, where
the threshold of 6 yields an expected queue length E[N ] = 2.01. These results are
somewhat expected, as the cutting process aggravates the worst aspect of the FCFS
queue: on that discipline, joining customers impose a negative externality on all future
arrivals who decide to join; here, not only is that still the case, but they also impose
that externality on customers who were already in the queue.

8For the FCFS discipline, expected sojourn time is identical to that for occasional customers as
given in (8.8).

9The expected steady state queue length of an M/M/1 system, conditioned on threshold Nt and ρ,
is E[N ] = ρ

1−ρ − (Nt+1)ρNt+1

1−ρNt+1 , or E[N ] = ρ
1−ρ for unbounded queues(see Naor (1969)).
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8.6 Conclusion

The present article has built on the advances of Naor (1969) and Yu et al. (2014) to
analyse a queueing system which is a hybrid between the FCFS and LCFS disciplines.
The repeated games framework presented by Allon and Hanany (2012) was adapted
to construct a scenario where a subset of incumbent customers in an otherwise FCFS
queue, those who use it regularly, allow other arriving regular customers to overtake
them.

The methods used by Yu et al. (2014) to obtain the expected waiting time in an EPS
queue were adapted to produce the expected waiting time in the discipline considered
here. This was then used to determine the joining threshold, which was found to
refer only to the number of ‘occasional’ customers ahead of the sub-queue of regular
customers, not the maximum queue size, which can grow boundlessly.

Numerical simulations comparing the system under analysis here with the FCFS
discipline, both under the endogenous as well as the socially optimal thresholds, were
performed, where it was found to differ in behaviour from both the former studied
disciplines, and particularly to lead to greater potential queue lengths, over and above
the socially optimal threshold. This indicates the potential for this arrangement to
reduce welfare vis-a-vis the FCFS queue, which itself is not socially optimal. While
it is important not to exaggerate this potential, it could be an operational problem,
implying that system managers should discourage queue cutting.

Further research could address generally distributed service time, take into con-
sideration sub-groups of regular users, and perform a deeper analysis of the welfare
properties of the system. This would, of course, result in higher complexity. Another
important avenue for further research is to characterize the steady-state properties of
the cooperative equilibrium, particularly ex-ante expected sojourn time, and how it
relates to that under FCFS.

8.7 Appendix: Proofs

8.7.1 Single and Repeated Game

Proof of Theorem 13. This proof follows that for the similar theorem in Allon and
Hanany (2012). There is no incentive for incumbents to allow arrivals to cut ahead:
this will only increase their expected sojourn time. Therefore, they will refuse all
requests. This is true regardless of queue length. Arrivals are then indifferent between
J and P . Thus, the strategy profile Ei = J , Ii = R forms an equilibrium in weakly
dominant strategies. If all cutting attempts are rejected, the queue operates according
to the FCFS discipline.

Suppose incumbent customer i chose Ii = A. If there exists any new arrival i′ that
chooses Ei′ = P , then i will deviate to R to avoid being overtaken. On the other
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hand, if a newcomer i′ has a positive probability of encountering incumbent i, they
will deviate to Ei′ = P to seek to cut ahead. That strategy profile is therefore not an
equilibrium.

Proof of Theorem 14. This proof follows that for the similar theorem in Allon and
Hanany (2012). Once a deviation is observed, the threat to punish by rejecting all
cutting attempts is credible, as it is the equilibrium of the single shot game. Because
all customers do so, a single customer has no incentive to deviate and allow cutting.
Therefore, the grim trigger is sustained in all future interactions.

In the equilibrium path, arrivals have no incentive to deviate when incumbents
choose A, as they get to cut ahead. Focusing on the incumbents, they have an incentive
to improve their waiting time by rejecting cutting requests (R), but doing so results
in losing all future benefits from being able to cut ahead. Partial deviations can be
ignored as customers would always be better off with a full deviation than a partial
one.

An incumbent regular customer will not deviate from A to R if and only if:

ν − cWA + δV A ≥ ν − cWR + δV FCFS , (8.25)

where the left hand side is the long term expected discounted payoff from allowing the
arrival to cut ahead, and all customers continuing with that strategy, and the right
hand side is the long term expected payoff of refusing to allow the arrival to cut ahead,
which triggers the FCFS inducing punishment strategy in all future periods. This can
be rewritten as:

δ

(1− δ) ≥
c(WA −WR)

(1− δ)(V A − V FCFS) . (8.26)

The expected sojourn time for a customer under the FCFS rule is DFCFS + 1
µ , and

so the difference between the two rules in terms of the per period long-term expected
discounted payoff is:

(1− δ)(V A − V FCFS) = [ν − cWA
ι ]−

[
ν − c

(
DFCFS + 1

µ

)]
, (8.27)

whereWA
ι is the a priori expected waiting time conditional on the cooperative strategy

being followed.

Substituting (8.27) into (8.26) yields the following:

δ

1− δ ≥
WA −WR

DFCFS + 1
µ −WA

ι

,

proving the theorem.

Proof of Theorem 15. This proof follows that for the similar theorem in Allon and
Hanany (2012). Fix a strategy where the threshold is nα∗. When nα∗ > nα∗, no
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customer will agree to a request to cut ahead, and no requests will be made. Below the
threshold, there is no incentive for arrivals to deviate, as they are can improve their
expected waiting time by cutting ahead. For incumbents, it must be the case, for all
nα∗ ≤ nα∗, that:

ν − cWA,nα∗(nα∗) + δV A,nα∗ ≥ ν − cWR,nα∗(nα∗) + δV FCFS , (8.28)

which simplifies to

c[WA,nα∗(nα∗)−WR,nα∗(nα∗)] ≤ δ[V A,nα∗ − V FCFS ]. (8.29)

As waiting times are finite for nα∗ < nα∗, and so is the region, the left-hand side
of (8.29) is bounded over the region; this bound is constant in δ. On the other hand,
the right hand side is increasing in δ, as it is δ/(1 − δ) times the positive difference
between the stage game payoff under the cooperative strategy and FCFS. Thus, there
exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), (8.29) is satisfied for all nα∗ ≤ nα∗.

8.7.2 Individual Joining Decision

The difference equations given in (8.13)-(8.15) were obtained as follows. First, set out
the various elements stemming from the decomposition in (8.10), for a queue with some
occasional users ahead of the sub-queue of regulars (i.e., nᾱ∗ ≥ 1). Starting with the
case when the first relevant event (i.e. excluding arrivals of occasional users, so that
the relevant arrival rate is αλ = Λ ) is a service completion of an occasional customer,
and applying the memoryless property of the exponential distribution:

exp
(
−sWnᾱ∗+nα I{S<A}

)
=∫ ∞

0
exp (−sy)µ exp (−µy)Pr{A > y} exp

(
−sW(nᾱ∗−1)+nα

)
dy =∫ ∞

0
µ exp (−y(s+ Λ + µ)) exp

(
−sW(nᾱ∗−1)+nα

)
dy =

µ

s+ Λ + µ
exp

(
−sW(nᾱ∗−1)+nα

)
.

(8.30)

Then the converse case where inter-arrival time (for regular users) is shorter than
service time, so that queue length is increased by 1:

exp
(
−sWnᾱ∗+nα I{A<S}

)
=∫ ∞

0
exp (−sx) Λ exp (−Λx)Pr{x < S} exp

(
−sWnᾱ∗+(nα+1)

)
dx =∫ ∞

0
Λ exp (−x(s+ Λ + µ)) exp

(
−sWnᾱ∗+(nα+1)

)
dx =

Λ
s+ Λ + µ

exp
(
−sWnᾱ∗+(nα+1)

)
.

(8.31)
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Substituting (8.30)-(8.31) into (8.10) then yields:

exp
(
−sWnᾱ∗+nα

)
= µ

s+ Λ + µ
exp

(
−sW(nᾱ∗−1)+nα

)
+

Λ
s+ Λ + µ

exp
(
−sWnᾱ∗+(nα+1)

)
,

(8.32)

for nᾱ∗ ≥ 1, and nα ≥ 1.

The next step is to reverse the Laplace transform by taking the first derivative of
(8.32) with regard to s, multiplying by −1 and setting s = 0, which yields:

Wnᾱ∗+nα = 1
Λ + µ

+ µ

Λ + µ
W(nᾱ∗−1)+nα + Λ

Λ + µ
Wnᾱ∗+(nα+1),

for nᾱ∗ ≥ 1, and nα ≥ 1, which corresponds to (8.13).

A similar process can be employed for (8.11)-(8.12), yielding (8.14) and (8.15),
respectively.

8.7.3 Threshold Value

Let:
θ(ν, c, µ, λ, α) = (µ− αλ)ν

c
−
(

1− αλ

µ

)
, (8.33)

i.e., θ(.) is the threshold nᾱ∗ from (8.20) before the floor function is applied to make it
into an integer.

Proof of Lemma 7. An increase in ν increases θ(.):

∂θ(.)
∂α

= µ− αλ
c

> 0,

as µ > λ.

If the increase in ν is high enough, this might lift θ(.) to the next larger integer and
increase the threshold.

Proof of Lemma 8. An increase in c decreases θ(.):

∂θ(.)
∂c

= −(µ− αλ) ν
c2 < 0,

as µ > λ.

If the increase in c is high enough, this might lower θ(.) to the next smaller integer
and decrease the threshold.

Proof of Lemma 9. An increase in µ increases θ(.):

∂θ(.)
∂µ

= ν

c
− αλ

µ2 > 0,
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as ν > c
µ per the triviality avoidance clause.

If the increase in µ is high enough, this might lift θ(.) to the next larger integer and
increase the threshold.

Proof of Lemma 10. An increase in λ decreases θ(.):

∂θ(.)
∂λ

= α

(
−ν
c

+ 1
µ

)
< 0,

as ν > c
µ per the triviality avoidance clause.

If the increase in λ is high enough, this might lower θ(.) to the next smaller integer
and decrease the threshold.

Proof of Lemma 11. An increase in α decreases θ(.):

∂θ(.)
∂λ

= λ

(
−ν
c

+ 1
µ

)
< 0,

as ν > c
µ per the triviality avoidance clause.

If the increase in α is high enough, this might lower θ(.) to the next smaller integer
and decrease the threshold.

8.7.4 FCFS Ex-Ante Expected Sojourn Times

As alluded to in Theorem 14, one of the conditions for the cooperative equilibrium
to hold is that a priori expected sojourn time for regular customers must be smaller
when all regular customers choose the cooperative strategy than when they use the
FCFS-inducing strategy.

Total a priori expected sojourn time under either discipline consists of service time
µ−1 plus waiting time. Under the FCFS-inducing strategy, there is no differentiation
between regular and occasional customers and thus expected sojourn time WFCFS

follows readily from Little’s Laws (see Little (1961) and Federgruen and Groenevelt
(1988)). Average queue length under FCFS, LFCFS is a function of the threshold Nᾱ:

WFCFS =
Nᾱ∑
n=0

npn =
Nᾱ∑
n=0

nρn
1− ρ

1− ρNᾱ+1
= ρ

1− ρ −
(Nᾱ + 1)ρNᾱ+1

1− ρNᾱ+1
. (8.34)

Then WFCFS = LFCFS/λ:

WFCFS = 1
µ− λ

− (Nᾱ + 1)ρNᾱ

(1− ρNᾱ+1)µ
(8.35)

Expected waiting time DFCFS , as relevant for eq. (8.2) in Theorem 14, then can
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be obtained from WFCFS by subtracting service time 1/µ:

DFCFS = WFCFS − 1
µ

= 1
µ− λ

− Nᾱ ρ
Nᾱ + 1

(1− ρNᾱ+1)µ
(8.36)
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9.1 Introduction

Waiting times are a problem affecting most health care systems. This is especially true
where rationing is required, although its root cause is simply that capacity is limited
while treatments take time to perform. Queueing imposes a further cost on the patient-
consumer, and in this way, health care fits into a wide body of literature which deals
with the economic causes, behaviour and consequences of queues.

Rationing is common in public health care systems, such as the British NHS. Where
systems of this type are present, a private sector often also coexists, being able to offer
shorter waiting times to those willing to pay. The present work deals with the pricing
decisions of a single profit maximizing private provider of healthcare, which operates
in a market also served by a public provider offering free treatment. The approach to
modelling the health care market follows a simplified version of that outlined in Goddard
et al. (1995). However, unlike that model, where the focus was on the NHS sector and
its outcomes, the present work focuses on the pricing decisions of the private sector:
in particular, in Goddard et al. (1995) the private sector set a market clearing price
by design, and was not subject to congestion, whereas here the sole private provider
exercises market power and is subject to congestion in a manner similar to the NHS.
Although as will be shown, congestion will be lower in equilibrium in the private sector
compared to the public sector. The present model yields similar results to Goddard
et al. (1995) regarding the responses of demand for public and private sector treatment
when capacity increases, namely, that an increase in capacity reduces expected waiting
time in the public sector, and therefore increases demand for that sector while reducing
it for the private. However, because in the present model price is a decision variable,
the price’s response to an increase in capacity will be dependent on the distribution of
consumer waiting time cost.

The private provider’s decision problem is solved with recourse to the basic model of
competition in waiting times presented in Luski (1976) and Levhari and Luski (1978),
taking a special case where one provider charges price zero (i.e., the NHS). This work’s
chief contribution is the analysis of private sector decisions when it is subject to con-
gestion and possesses market power. It is appropriate to use queueing theory to model
the waiting time features of the Health Care market, as persuasively argued in God-
dard et al. (1995). Queueing has been a subject of economic analysis since the seminal
paper Naor (1969), which dealt with optimal queue sizes in M/M/1 FCFS queues, and
sketched a framework for individual decisions taken by impatient consumers which has
been almost universally followed. These results were extended to an arbitrary number
of queues by Knudsen (1972). See chapter 3 in the Introduction for an overview of
these results.

9.1.1 Related Literature

Luski (1976) and Levhari and Luski (1978) employed the queueing framework to model
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duopolistic competition between two identical providers selling a good whose provision
required queueing. The two providers’ simultaneously choose price, and this decision
affects demand both directly and indirectly through waiting time. Consumers are
differentiated through a randomly distributed unit cost of waiting time. The key result
of Levhari and Luski (1978) is to show there is a separating equilibrium where one
provider specializes in serving consumers with high waiting costs at a high price, and the
other provider serves consumers with low waiting costs at low prices. This framework is
adapted for the present chapter, with the public sector charging a price of zero, and the
outside option being constructed such that no consumer will choose it in equilibrium.
See Chapter 5 in the Introduction for an overview of these and other important results
from the application of queueing theory to Industrial Organization.

A model similar to that in Levhari and Luski (1978) was devised by Chen and
Frank (2004) for a monopolist provider, and then extended to a duopoly in Chen
and Wan (2003). Their model assumes the presence of an outside option, and allows
for heterogeneous firms. Lederer and Li (1997) has some crossover application, as it
deals with consumer heterogeneity in delay cost, which is important in the health care
context. Finally, Li and Lee (1994), describe a model of competition in three product
characteristics: price, quality and service speed, where the good’s value declines with
time. This value-decay assumption is often used in the health economics literature.

Moving away from industrial organization to the fields of health economics and
the economics of publicly provided private goods, Barzel (1974) presents a theory of
rationing “free” goods through waiting which is relevant to public health provision,
but does not have queueing as an important feature. Iversen (1993) has a model
of resource allocation to meet waiting times within a national health service setting.
Hoel and Sæther (2003) also consider competition between private and public health
providers—with an important contribution to the welfare economics of the issue. This
draws on previous work by Lindsay and Feigenbaum (1984) (and see Cullis and Jones
(1986)), where rationing by waiting lists is used, with value decay rather than cost of
time used to represent consumer impatience. Private providers have no capacity con-
strains, and therefore no queueing in equilibrium. This value decay approach is followed
by Iversen (1997), who however is chiefly concerned with whether rationing occurs in
the public sector, and does not use queuing models. Propper (2000) continued in the
same vein as Lindsay and Feigenbaum (1984) by considering no capacity constraints in
the private sector, and using this to analyse empirically the demand for private care in
the UK.

Finally, Farnworth (2003) is quite similar to the present chapter, including capacity
constraints on the fee-charging provider. The difference between it and the present work
is that while there is a fee-charging provider “competing” with a “free” one, the former
has the same ‘social’ objectives as the latter and is therefore not profit maximizing,
presenting a completely different problem. Indeed, the, author specifically describes
the model as presenting “two private hospitals that are publicly funded,” and the fact
that one charges a price while the other does not is attributed to “policy makers,” (who
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determine the price charged by the former) for “equity reasons”—it is the service rate
that is the hospitals’ decision variable. Conversely, the sole objective of the private
sector provider in the present model is profit maximization, and it operates without
reference to externally set social policy. Nevertheless, he reaches a similar result in
regard to waiting times’ response to a price increase: a decrease (increase) in the fee-
charging (free) sector, providing corroboration to one of the present model’s results.

9.2 The Model

The model combines Goddard et al. (1995)’s approach to queueing in health care mar-
kets with the framework for duopoly competition in price and waiting time in Levhari
and Luski (1978). Adaptations to the latter include: i) restricting the public provider to
charge a price of zero; and ii) instead of there being a disutility of waiting in the queue,
and positive utility coming from a good bought after being served, disutility accrues
regardless of whether one chooses to queue or not (reflecting the suffering caused by
disease) and the ‘good’ to be purchased is the treatment of disease, eliminating the suf-
fering. This is similar to what has been developed in Lindsay and Feigenbaum (1984),
Iversen (1997), Farnworth (2003), and others. However, the framework represents an
ongoing disutility rather than an exponential decay of treatment value, as generally
assumed. While it can be shown that the two approaches are formally equivalent (for
which, see the Appendix), the one adopted here is more tractable.

9.2.1 Consumers

Consumers are risk neutral expected utility maximizers, whose utility function is linear
in waiting time, and who have a expected lifespan from the emergence of their disease
of τ .1 The intuition behind the specification adopted here is that in healthcare, the
value of a treatment is not so much a pure benefit, but the removal of a preexisting
condition causing disutility.

Consumers suffer a disutility of c per unit of time, which can be interpreted as the
severity of the consumer’s illness. As illness severity varies across consumers, c is a
random variable following a continuous probability distribution function:

f(c), x ∈ [0, c̄], (9.1)

where c̄ is finite and F (c) is the corresponding cumulative distribution function.

Disease cost c is suffered until removed by treatment at Ti, the waiting time for
provider i = {n, p}, where n denotes the public and p the private providers. If the
consumer does not seek treatment, they will suffer c until death, i.e., for τ units of

1As consumers are risk neutral, the expectations term is omitted.
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time. The expected utility of seeking treatment from provider i is then:

Ui = −cTi − Pi, (9.2)

where Pn = 0, and Pp = P is the price charged by the private provider. The expected
utility of foregoing treatment, Uo, is:

Uo = −cτ

Total potential demand for health care is given by the exogenous parameter λ. This
can be thought of as representing a patient population which is fixed in the short run.
The two providers will each service a share of this total, which will be the arrival rate
for that provider’s queue.2 Following the literature (e.g., Levhari and Luski (1978)),
this parameter is normalized such that λ = 1, without any loss of generality, because
the unit of time t is arbitrary, and therefore it is always possible to find one measure
of time for which the arrival rate is 1.

Unlike Goddard et al. (1995), there is no consideration of consumer income—all
consumers can afford the private sector treatment. While this is a restrictive assump-
tion, made in the interests of simplicity, the problem is treated in this way to allow for
a clear focus on the private provider’s pricing decisions in response to the public sec-
tor provision. Interaction with consumer income constraints and heterogeneity, while
doubtlessly important, is left for further research.

9.2.2 Providers

It is assumed that neither the private nor the public sectors have costs, or in what is
perhaps a preferable interpretation, those costs are sunk in the short run. It is further
assumed that for both the private and public sectors, service times are identically
and independently distributed along an exponential distribution with rate µ. The
assumption is made that µ > 1, meaning that either server is capable of, by itself,
serving the entire demand stream λ = 1. The assumption is required in order to
avoid explosive growth of waiting times. This rate is exogenous and common to both
servers. This parameter can be taken to reflect the state of technology. For example,
improvements in surgical techniques allowing for hospital stays to be reduced would
lead to an increase in the service rate. In what is a simplifying departure from Goddard
et al. (1995), it is assumed that only one consumer can be treated at a time. This turns
the queueing process into the well known M/M/1 system.

Expected waiting time for each provider, as a function of arrival and service rates,
can be obtained from a well known result in queueing theory (see, inter alia, Gross

2It is not required that the two shares add up to 1, as patients can opt for not seeking treatment.
Nevertheless, given the way the model is constructed, the shares of the two providers will always add
up to 1 in equilibrium. An explanation follows below.
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et al. (2008), or chapter 2 in the Introduction, where this result is given in eq. (2.33)):

Ti = 1
µ− λi

, i ∈ {n, p}. (9.3)

As the present work is concerned with the analysis of competition between public and
private providers in health care, the assumption will be made that both the public and
private providers exist and are used by at least one consumer. For this to happen, it
must be the case that Un = −cTn > Uo = −cτ , which implies that τ > Tn. Since, by
assumption, the public sector does not charge for treatment, regardless of demand, and
τ > Tn, no consumers will forego treatment, and public sector supply is equal to its
demand.

Meanwhile, private sector demand, given the exogenous parameter µ, is a function
of P , which is set at the value that maximizes its instantaneous profit function:

max
P

π = max
P

λpP . (9.4)

9.3 Demand

9.3.1 Individual Choice

An individual consumer chooses to seek care from a particular provider if two conditions
are satisfied: his expected utility is larger than that of joining the waiting list for the
other provider, and it is larger than that of foregoing treatment.

For a consumer with a given value of c, expected utility when seeking care from the
private or public provider can be obtained from eq. (9.2). They are, respectively:

Up = −cTp − P , (9.5)

and
Un = −cTn. (9.6)

A consumer will then seek care from the private sector when:

c >
P

Tn − Tp
. (9.7)

On the other hand, the consumer will choose the public provider when (assuming
indifferent consumers will opt for the public sector):3

c ≤ P

Tn − Tp
. (9.8)

3Returning to the assumption that both a public and a private sector exist, and are used by at least
one consumer, it must be the case that Tp < Tn, and therefore Tp < τ . Proof by contradiction: for
Up > Un, it is necessary that c > P

Tn−Tp
. But if Tp > Tn, this requires that c < 0, which is not a

possible value of c. Cf. a similar discussion in Luski (1976).
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Let c∗ be the critical value of c for which a consumer is indifferent between the two
providers:

c∗(P, Tn, TP ) = P

Tn − Tp
. (9.9)

9.3.2 Market Demand

Market demand for the private and public providers is obtained from the individual
optimization process described in subsection 9.3.1. Potential demand λ divides itself
between the two providers, with the share of consumers with a c ≤ c∗ choosing the
public provider, and the share with c > c∗ the private provider, so that as c∗ decreases,
the private provider’s market share increases. The two demand functions are then:

λp =
∫ c̄

c∗
f(c) dc⇒λp(c∗) = 1− F (c∗), and (9.10)

λn =
∫ c∗

0
f(c) dc⇒λn(c∗) = F (c∗). (9.11)

It can be seen from eq. (9.9) that c∗ is itself a function of Tn, Tp, and P . The former two
values (as set out in eq. (9.3)) are themselves a function of demand and the parameter
µ. Ultimately, demand is then determined by the shape of the distribution of c, and
the values of µ and P , the latter being the private sector provider’s decision variable,
as set out in subsection 9.4.3 below.

9.4 Supply

9.4.1 Providers

Waiting times Tn and Tp depend on of P , but only indirectly through λn and λp, both
of which are a function of c∗. So it is possible, through implicit differentiation, to show
that c∗ is increasing in P even when taking into account the indirect effects, where
c∗, λp and λn are as presented in (9.9)-(9.11). The direct effect corresponds to the
direct increase of c∗ in response to P , while the indirect effects are those mediated by
the increase in Tn and decrease in Tp caused by the shift in the respective demands
in response to an increase in price. Let c∗′P ≡ ∂c∗(P,Tn(λn(c∗),µ),Tp(λp(c∗),µ))

∂P , the total
derivative of c∗ with regard to P . Then:

c∗′P = 1
Tn − Tp

+ ∂c∗

∂Tn

∂Tn
∂λn

∂λn
∂c∗

∂c∗

∂P
+ ∂c∗

∂Tp

∂Tp
∂λp

∂λp
∂c∗

∂c∗

∂P
> 0.

Solving, it yields:

c∗′P =
[(

1− ∂c∗

∂Tn

∂Tn
∂λn

∂λn
∂c∗
− ∂c∗

∂Tp

∂Tp
∂λp

∂λp
∂c∗

)
(Tn − Tp)

+

]−1

> 0, (9.12)
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where
− ∂c

∗

∂Tn
−

∂Tn
∂λn

+

∂λn
∂c∗
+

> 0, − ∂c∗

∂Tp
+

∂Tp
∂λp

+

∂λp
∂c∗
−

> 0,

with the signs under the partial derivatives indicating whether they are negative or
positive. This result leads to the following two lemmas, which establish that private
sector demand is bounded between 0 and half of the market:

Lemma 12. For any continuous distribution function f(c), x ∈ [0, c̄], there is a price
P̄ which at the limit makes demand for the private provider equal to zero.

Proof. As c∗ is a continuous and strictly increasing function of P (c∗′P > 0), and λp(c∗)
is a continuous and decreasing function of c∗, as defined at (9.9), it follows that:

lim
c∗→c̄

λp = 0, (9.13)

where P̄ is such that c∗(P̄ , Tn, Tp) = c̄ = F−1(1).

Lemma 13. For any distribution function f(c), x ∈ [0, c̄] meeting the conditions in
(9.1), when P → 0, demand for the private sector equals that for the public sector:
λn(c∗) = λp(c∗) = 1

2 .

Proof. This is the reverse of Lemma 12. As c∗ is a continuous and strictly increasing
function of P (c∗′P > 0), and λp(c∗) is a continuous and decreasing function of c∗, as
defined at (9.9), it follows that when P → 0, the two providers are indistinguishable,
as none of them charges for treatment and they offer the same service rate µ. In this
case the market outcome is a Bertrand equilibrium with the two providers splitting the
market equally: limP→0 c

∗(P, Tn, Tp) = F−1
(

1
2

)
.

As ∂λp/∂P < 0, this further implies that demand for private sector treatment will
never exceed that for the public sector.

9.4.2 Comparative Statics

The same process can be used to ascertain the effects a shock to µ will have on c∗, if P
does not change. Let c∗′µ ≡ ∂c∗(P,Tn(λn(c∗),µ),Tp(λp(c∗),µ))

∂µ , the total derivative of c∗ with
regard to µ. Then:

c∗′µ = ∂c∗

∂Tn

(
∂Tn
∂µ

+ ∂Tn
∂λn

∂λn
∂c∗

∂c∗

∂µ

)
+ ∂c∗

∂Tp

(
∂Tp
∂µ

+ ∂Tp
∂λp

∂λp
∂c∗

∂c∗

∂µ

)
.

Solving, it yields:

c∗′µ =
(
∂c∗

∂Tn

∂Tn
∂µ

+ ∂c∗

∂Tp

∂Tp
∂µ

)/(
1− ∂c∗

∂Tn

∂Tn
∂λn

∂λn
∂c∗
− ∂c∗

∂Tp

∂Tp
∂λp

∂λp
∂c∗

)
. (9.14)
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It follows from the definition of c∗ at (9.9) that:

∂c∗

∂Tp
= − ∂c

∗

∂Tn
= P

(Tn − Tp)2 > 0.

It also follows from the waiting time expression at (9.3) that:

∂Ti
∂µ

= − 1
(µ− λi)2 = −T 2

i < 0.

So c∗′µ in eq. (9.14) can be written as:

c∗′µ = P

(Tn − Tp)2
+

(
T 2
n − T 2

p

)/(
1− ∂c∗

∂Tn

∂Tn
∂λn

∂λn
∂c∗
− ∂c∗

∂Tp

∂Tp
∂λp

∂λp
∂c∗

)
+

> 0, ∀ P > 0.

(9.15)

Demand for either provider, as set out in (9.10)-(9.11), is a direct function of c∗

alone, it is easy to sign their comparative statics in respect of both P and µ, considering
P as a parameter. Let λp′P ≡

∂λp(c∗(P,Tn(λn,µ),Tp(λp,µ)))
∂P , λn′P ≡

∂λn(c∗(P,Tn(λn,µ),Tp(λp,µ)))
∂P ,

λp
′
µ ≡

∂λp(c∗(P,Tn(λn,µ),Tp(λp,µ)))
∂µ , λn′µ ≡

∂λn(c∗(P,Tn(λn,µ),Tp(λp,µ)))
∂µ , the derivatives of λp

and λn in regard to P and µ, respectively.

λp
′
P = ∂λp

∂c∗
∂c∗

∂P
= −f(c∗)c∗′P < 0 (9.16)

λn
′
P = ∂λn

∂c∗
∂c∗

∂P
= f(c∗)c∗′P > 0 (9.17)

λp
′
µ = ∂λp

∂c∗
∂c∗

∂µ
= −f(c∗)c∗′µ < 0 (9.18)

λn
′
µ = ∂λn

∂c∗
∂c∗

∂µ
= f(c∗)c∗′µ > 0. (9.19)

These indicate that, as expected, a price increase will cause demand for the private
sector to fall and that for the public sector to increase. This effect reduces the expected
waiting time for the private sector, for which the consumers with higher time costs are
willing to pay the increased price. Section 9.4.3 describes the private sector’s pricing
decision.

On the other hand, when the service rate increases, expected waiting time falls for
both sectors. This reduces the private sector’s advantage over the public sector, so that
for a constant value of P , its demand would fall—similarly, to retain the same market
share, it would have to reduce P .

9.4.3 Private Provider Optimization

The profit maximization process follows the model presented in Luski (1976) and Lev-
hari and Luski (1978), but with the public provider constrained to charge a price of
zero. The private provider will set P at the level P ∗ which maximizes its instantaneous
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profit function:
P ∗ = arg max

P
π = arg max

P
λpP . (9.20)

Note that waiting time in both sectors is then determined by the private provider, as
it is a function of P and parameter µ (via c∗). Let π′P ≡ ∂π(λp(c∗(P,Tn(λn,µ),Tp(λp,µ))),P )

∂P ,
the total derivative of π with regard to P . Then performing the maximization yields
the following first order condition:

π′P = λp(c∗(P, Tn(λn, µ), Tp(λp, µ)) + Pλp
′
P = 0, (9.21)

where λp′P follows from (9.16) and is known to be negative. P ∗ then follows from
solving the first order condition for P :∫ c̄

c∗
f(c) dc− Pf(c∗)c∗′P = 0⇔

[1− F (c∗)] = Pf(c∗)c∗′P ⇔

P ∗ = 1− F (c∗)
f(c∗) c∗′P

= λp
f(c∗) c∗′P

. (9.22)

Theorem 16. There exists at least one value of P which maximizes the private
provider’s profits.

Proof. At least one value P ∗ exists if the first order condition (9.21) has at least one
zero in the domain P ∈ (0, P̄ ), where P̄ is the value for which λp = 0, or c∗ = c̄. When
P → 0, (9.21) takes the form:

lim
P→0

[
(1− F (c∗)) + Pλp

′
P

]
> 0,

whereas when P → P̄ , c∗ → c̄, and (9.21) takes the form:

lim
P→P̄

[
(1− F (c̄)) + P̄ λp

′
P

]
= 0− P̄ f(c̄)c∗′P < 0.

Since the FOC takes a positive value at one end of the domain, a negative value at
the other, and is continuous across the domain, the intermediate value theorem implies
there is at least one zero.

The firm’s profit in equilibrium, π∗ is then given by:

π∗ = P ∗λp(c∗(P ∗, Tn(λn, µ), Tp(λp, µ)) = λp
2

f(c∗) c∗′P
= (1− F (c∗))2

f(c∗) c∗′P
(9.23)

While existence could be shown from the first order condition alone, consideration
of the uniqueness of P ∗ requires engaging with the second order condition as well.

Lemma 14. It is a sufficient condition for P ∗ to be a unique local maximum in the
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range (0, P̄ ) for:

∂f(c∗)
∂c∗

(
c∗′P

)2
+ f(c∗)∂

2c∗

∂P 2 > 0.

Proof. If the derivative of the first order condition is negative across the specified range,
P ∗ will be unique in that range. This follows from the proof of theorem 16: as one
end of the domain is negative and the other positive, and the FOC is continuous, if its
derivative is negative it will only have one zero along that domain.

This condition is given by:

− 2f(c∗)c∗′P − P
[
∂f(c∗)
∂c∗

(
c∗′P

)2
+ f(c∗)∂

2c∗

∂P 2

]
< 0, (9.24)

evaluated at P ∗. As c∗′P > 0, (9.24) holds under the condition presented in lemma
14.

Lemma 14 presents only a sufficient condition, so one cannot guarantee uniqueness
for distributions which do not meet the conditions presented. However, numerical sim-
ulations have failed to produce a counter-example where P ∗ is not an unique maximum
on the relevant range, even when the sufficient conditions outlines in the lemma were
not met.

9.5 Welfare

In the present context, welfare for the consumers seeking treatment from provider i
can be defined as the gain in disease-free time from seeking treatment (τ − Ti), across
all consumers seeking treatment from that provider, reflected by the integral term, the
expected value of c for each demand stream, minus the price of seeking treatment in
the case of those consumers choosing the private sector. Therefore, welfare accruing to
consumers in unit time, Wi, i ∈ {n, p}, is given by the following expressions:

Wn(c∗, Tn) =
(∫ c∗

0
cf(c) dc

)
(τ − Tn) (9.25)

Wp(c∗, Tp, P ) =
(∫ c̄

c∗
cf(c) dc

)
(τ − Tp)− λpP . (9.26)

Let W be aggregate social welfare, obtained from the sum of the firm’s profit and
the welfare of the two demand streams. The second term in Wp cancels out the firm’s
profit, so that W is given by:

W = Wn +Wp + π =
(∫ c∗

0
cf(c) dc

)
(τ − Tn) +

(∫ c̄

c∗
cf(c) dc

)
(τ − Tp)

W (c∗, Tn, Tp) =
(∫ c̄

0
cf(c) dc

)
τ −

(∫ c∗

0
cf(c) dc

)
Tn −

(∫ c̄

c∗
cf(c) dc

)
Tp. (9.27)
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The first term
(∫ c̄

0 cf(c) dc
)
τ = E[c]τ is the expected disutility of seeking no treatment,

for all consumers. It is a constant term determined exogenously, the product of the
expected value of c across the consumer population and expected lifespan τ . The two
subsequent terms are the product of the expected value of the share of consumers
seeking demand from each provider, and the expected waiting time for that provider,
so that as waiting time falls, disease free time increases and so does welfare.

Both
∫ c∗

0 cf(c) dc and
∫ c̄
c∗cf(c) dc can be rewritten using integration by parts:

∫ c∗

0
cf(c) dc = c∗F (c∗)−

∫ c∗

0
F (c) dc∫ c̄

c∗
cf(c) dc = c̄− c∗F (c∗)−

∫ c̄

c∗
F (c) dc.

Then Wi and W can be written as follows:

Wn =
(
c∗F (c∗)−

∫ c∗

0
F (c) dc

)
(τ − Tn) (9.28)

Wp =
(
c̄− c∗F (c∗)−

∫ c̄

c∗
F (c) dc

)
(τ − Tp)− λpP (9.29)

W =
(
c̄−

∫ c̄

0
F (c) dc

)
τ + c∗F (c∗)(Tp − Tn)− c̄Tp+(∫ c∗

0
F (c) dc

)
Tn +

(∫ c̄

c∗
F (c) dc

)
Tp.

(9.30)

The final expression is especially useful to determine how welfare responds to changes
in price and processing rate, as c̄ and τ are constants, while the integrand is the cu-
mulative distribution function. Nevertheless, while the foregoing set is more tractable,
it is preferable to use eqs. (9.25)-(9.27) for intuitive reasoning about welfare, as the
interpretation of eqs. (9.28)-(9.30) is not straightforward.

Let W ′P ≡ ∂W (c∗(P,Tn(λn,µ),Tp(λp,µ)),Tn(λp,µ),Tn(λp,µ))
∂P , the total derivative of W with

regard to P . Further, let PW be the social welfare maximizing price, such that
W ′P P=PW = 0; substituting this value back into W yields the largest possible social
welfare W ∗.
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W ′P =
(
c∗′PF (c∗) + c∗f(c∗)c∗′P

)
(Tp − Tn) + c∗F (c∗)

(
∂Tp
∂λp

∂λp
∂c∗

c∗′P −
∂Tn
∂λn

∂λn
∂c∗

c∗′P

)

− c̄∂Tp
∂λp

∂λp
∂c∗

c∗′P + ∂

∂P

(∫ c∗

0
F (c) dc

)
Tn +

(∫ c∗

0
F (c) dc

)
∂Tn
∂λn

∂λn
∂c∗

c∗′P

+ ∂

∂P

(∫ c̄

c∗
F (c) dc

)
Tp +

(∫ c̄

c∗
F (c) dc

)
∂Tp
∂λp

∂λp
∂c∗

c∗′P ⇔

W ′P = c∗′P f(c∗)
[
c∗(Tp − Tn)− T 2

p

(
c∗F (c∗)− c̄+

(∫ c̄

c∗
F (c) dc

))
+

T 2
n

((∫ c∗

0
F (c) dc

)
− c∗F (c∗)

)]
.

(9.31)

The expression for ∂W/∂P in (9.31) above is not easily tractable through analytical
means as long as f(c) is not specified. Therefore, section 9.6 below presents the results
for a sample of tractable distributions.

9.6 Results for Selected Distribution Functions

In this section, the model presented above is developed for two distribution functions
f(c), the Uniform and Kumaraswamy distributions. This is necessary because some
of the results are intractable when the distribution function is not specified. Section
9.7 below presents numerical results for both the distributions considered here, and
discussion of the results will be postponed until then, so that in this section only an
overview is provided.

9.6.1 Uniform Distribution

Consider first a uniform distribution such that:

f(c) = (c̄)−1, (9.32)

F (c) = c

c̄
. (9.33)

Under this distribution, demand and waiting time functions take the following
forms:

λn = c∗

c̄
, λp = 1− c∗

c̄
,

Tn = 1
µ− c∗

c̄

, Tp = 1
µ−

(
1− c∗

c̄

) ,
which taken together form a system of four equations in four unknowns, easily solvable
analytically.
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The derivative of c∗ with regard to price follows easily from c∗:

c∗′P =
[
Tn − Tp + c∗

c̄
(T 2
n + T 2

p )
]−1

,

which allows analytical derivation of the comparative statics outlined in eqs. (9.16)-
(9.17):

λp
′
P = −1

c̄
c∗′P = −1

c̄

[
Tn − Tp + c∗

c̄
(T 2
n + T 2

p )
]−1

λn
′
P = 1

c̄
c∗′P = 1

c̄

[
Tn − Tp + c∗

c̄
(T 2
n + T 2

p )
]−1

.

The private provider’s optimization problem is presented and solved below:

max
P

π = max
P

λpP = max
P

(
1− c∗

c̄

)
P

π′P = 0⇔ λp + Pλp
′
P = 0

P ∗ = (c̄− c∗)
(
Tn − Tp + c∗

c̄
(T 2
n + T 2

p )
)
.

Once P ∗ is known, equilibrium profit follow easily:

π = P ∗λp(P ∗) = (c̄− c∗)2

c̄

(
Tn − Tp + c∗

c̄
(T 2
n + T 2

p )
)
.

For price P ∗, welfare levels Wn, Wp, and W are:

Wn = 1
2

(c∗)2

c̄
(τ − Tn)

Wp = 1
2

(
c̄− (c∗)2

c̄

)
(τ − Tp)− π

W = 1
2

[
c̄τ − Tn

(
(c∗)2

c̄

)
+ Tp

(
(c∗)2

c̄
− c̄
)]

.

The derivative of W with regard to P is then as follows:

W ′P = c∗′P

[
Tp

(
c∗

c̄
+ Tp

2

(
1−

(
c∗

c̄

)2))
− Tn

(
c∗

c̄
+ Tn

2

(
c∗

c̄

)2)]
.

This can be set equal to 0 and solved for P , yielding PW , the social welfare maximizing
price.

Consider further a situation where there are two public providers, each charging a
price of 0, and sharing consumers equally, i.e., λN1 = λN2 = 1/2; waiting times are
therefore identical as well TN1 = TN2 = T = (µ− 1/2)−1. The following lemma can be
stated:

Lemma 15. When c is uniformly distributed, it increases social welfare improving for
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one of the providers to charge a positive price.

Proof. When there are two identical providers charging a price of 0 and c is uniformly
distributed, the derivative of social welfare with regard to price takes the following
form:

W ′P = c∗′P

[
T 2

2

(
1− 2

(
c∗

c̄

)2)]
.

When demand is shared equally between the two providers, this is equivalent to
c∗ = F−1

(
1
2

)
= 1

2 c̄, so that c∗

c̄ = 1
2 . Then the derivative is

W ′P = c∗′P
T 2

4 ,

which is positive, so that charging a positive price increases social welfare from the
situation where the two providers charge a price of zero.

Note, however, that there are positive prices which yield worse outcomes, and this
result does not guarantee that the profit maximizing price will improve welfare.

9.6.2 Kumaraswamy distribution

This subsection performs the same exercise as above, but for a Kumaraswamy distri-
bution with parameters a = 1 and b = 2, and c̄ = 1. This is defined as follows:

f(c) = 2(1− c) (9.34)

F (c) = c(2− c). (9.35)

This a bounded continuous distribution which depending on the parameters can take
a variety of shapes, although it is much more tractable than the more widely known Beta
distribution. Under the chosen values, the cumulative distribution function is concave.
This places it under the set of distributions for which uniqueness of equilibrium price
cannot be generally proven. Nevertheless, numerical simulations did not present any
non-unique counter-example.

Under this distribution, demand and waiting time take the following forms:

λn = c∗(2− c∗) , λp = 1− c∗(2− c∗),

Tn = 1
µ− c∗(2− c∗) , Tp = 1

µ− (1− c∗(2− c∗)) ,

which taken together form a system of four equations in four unknowns, easily solvable
analytically.

The derivative of c∗ with regard to price follows:

c∗′P =
[
Tn − Tp + 2(1− c∗)c∗(T 2

n + T 2
p )
]−1

,
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which allows analytical derivation of the comparative statics outlined in eqs. (9.16)-
(9.17):

λp
′
P = −2(1− c∗)

[
Tn − Tp + 2(1− c∗)c∗(T 2

n + T 2
p )
]−1

λn
′
P = 2(1− c∗)

[
Tn − Tp + 2(1− c∗)c∗(T 2

n + T 2
p )
]−1

.

The private provider’s optimization problem is presented and solved below:

max
P

π = max
P

λpP = max
P

(1− c∗(2− c∗))P

π′P = 0⇔ λp + Pλp
′
P = 0

P ∗ = (1− c∗(2− c∗))
(
Tn − Tp
2(1− c∗) + c∗(T 2

n + T 2
p )
)
.

Once P ∗ is known, equilibrium profit follow easily:

π = P ∗λp(P ∗) = (1− c∗(2− c∗))2
(
Tn − Tp
2(1− c∗) + c∗(T 2

n + T 2
p )
)
.

When price is P ∗, welfare levels Wn, Wp, and W are:

Wn = (c∗)2
(

1− 2
3c
∗
)

(τ − Tn)

Wp =
(1

3 + (c∗)2
(2

3c
∗ − 1

))
(τ − Tp)− π

W = 1
3τ + Tn(c∗)2

(2
3c
∗ − 1

)
+ Tp

(
(c∗)2

(
1− 2

3c
∗
)
− 1

3

)
.

The derivative of W with regard to P is then as follows:

W ′P = c∗′P

[
2(1− c∗)Tp

(
c∗ + Tp

(1
3 − (c∗)2

(
1− 2

3c
∗
)))

− 2(1− c∗)Tn
(
c∗ − Tn(c∗)2

(2
3c
∗ − 1

))]
.

This can be set equal to 0 and solved for P , yielding PW , the social welfare maximizing
price.

Consider again situation where there are two public providers, each charging a price
of 0, presented at the end of section 9.6.1. The following lemma can be stated:

Lemma 16. When c follows the Kumaraswamy distribution at (9.34), it increases
social welfare improving for one of the providers to charge a positive price.

Proof. When there are two identical providers charging a price of 0 and c follows the
Kumaraswamy distribution at (9.34), the derivative of social welfare with regard to
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price takes the following form:

W ′P = c∗′P 2(1− c∗)T 2
[1

3 + (c∗)2
(4

3c
∗ − 2

)]
.

When demand is shared equally between the two providers, this is equivalent to
c∗ = F−1

(
1
2

)
= 1−

√
2

2 . Then the derivative is

W ′P = c∗′P

√
2

3 T (5 +
√

2),

which is positive, so that charging a positive price increases social welfare from the
situation where the two providers charge a price of zero.

As before, however, there are positive prices which yield worse outcomes, and this
result does not guarantee that the profit maximizing price will improve welfare.

9.7 Numerical Simulations

This section presents the results of numerical simulations for the distributions f(c)
outlines in section 9.6, showing the values obtained for waiting times, market share,
price, profit and social welfare, including the social welfare when there are two public
providers charging a price of 0 and sharing demand equally, denoted byW2n. Tables 9.1
and 9.2 use a Uniform distribution, while table 9.3 uses the Kumaraswamy distribution.
There follows a section discussing the results presented here and in section 9.6.

Table 9.1: Numerical Simulations for a Uniform Distribution [0, c̄], c̄ = 1, and τ = 8.

µ Tn Tp λn λp P ∗ π Wn Wp W PW W ∗ W2n
1.2 2.719 0.969 0.832 0.168 1.457 0.244 1.829 0.836 2.909 0.163 3.304 3.286
1.5 1.443 0.765 0.807 0.193 0.547 0.106 2.134 1.157 3.397 0.090 3.510 3.500
2 0.831 0.557 0.796 0.204 0.218 0.045 2.272 1.318 3.635 0.045 3.672 3.667
4 0.312 0.264 0.790 0.210 0.038 0.008 2.399 1.446 3.853 0.010 3.858 3.857

Table 9.2: Numerical Simulations for a Uniform Distribution [0, c̄], c̄ = 8, and τ = 8.

µ Tn Tp λn λp P ∗ π Wn Wp W PW W ∗ W2n
1.2 2.719 0.969 0.832 0.168 11.656 1.955 14.631 6.689 23.275 1.304 26.430 26.286
1.5 1.443 0.765 0.807 0.193 4.472 0.845 17.074 9.257 27.175 0.724 28.080 28.000
2 0.831 0.557 0.796 0.204 1.745 0.356 18.179 10.544 29.078 0.359 29.373 29.333
4 0.312 0.264 0.790 0.210 0.301 0.063 19.193 11.569 30.826 0.076 30.865 30.857

Table 9.3: Numerical Simulations for a Kumaraswamy Distribution [0, 1], and τ = 8.

µ Tn Tp λn λp P ∗ π Wn Wp W PW W ∗ W2n
1.2 2.897 0.948 0.855 0.145 1.206 0.175 1.148 0.589 1.912 0.127 2.208 2.190
1.5 1.490 0.753 0.829 0.171 0.432 0.074 1.363 0.825 2.262 0.071 2.343 2.333
2 0.846 0.550 0.818 0.182 0.170 0.031 1.452 0.941 2.423 0.035 2.449 2.444
4 0.314 0.262 0.811 0.189 0.029 0.006 1.532 1.032 2.569 0.008 2.572 2.571
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9.7.1 Discussion

Analysis of the simulation results yields some notable findings. In the first instance, for
the Uniform distribution, varying the values of c̄ results only in proportional changes
to welfare and profits, while market shares remain unaltered. Hence only one different
value is presented to illustrate this. Meanwhile, it is noteworthy that, for both distri-
butions, as µ increases, W approaches W ∗ even as P and π fall, though the latter two
values remain strictly positive. This can be intuitively explained as the increase in µ
improving the service of the public sector vis-a-vis the private sector, therefore forcing
it to reduce its price. This is in line with the result in eq. (9.18) showing λp is decreas-
ing in µ for a constant price—clearly, even when the private sector changes its price to
respond to the fall in demand, the downward pressure on demand still dominates.

There is a unique value of P ∗—in fact, numerical simulations beyond those displayed
here were not able to produce any counter-example where multiple equilibria emerged.

Comparing the results for the two distributions, one observes similar movements
in welfare, prices and market shares when µ increases. However, welfare seems to
be lower for the Kumaraswamy distribution, as are private sector market share and
profits. This can be explained as being due to the Kumaraswamy distribution, with
the chosen parameters, concentrating consumers towards the bottom of the range, i.e.,
more consumers have c closer to 0 than 1, and therefore the private sector chooses to
charge lower prices in equilibrium. Despite that, it still receives a lower market share
than for the Uniform distribution case.

When the social welfare is compared with the situation where there are two public
providers charging a price of 0, regardless of the distribution, it is the case that the
private sector equilibrium price produces an inferior outcome to the case where there are
two public providers instead. However, this is always inferior to the socially optimal
outcome where the private provider price PW . This suggests an argument for price
regulation of the private sector. Presumably this is due to the private sector functioning
as an escape valve for consumers with very high disease costs who are willing to pay a
lot to be served more quickly.

9.8 Conclusion

Waiting times affect competition in healthcare in a way that is not adequately cap-
tured by traditional models. The present chapter, using methods derived from the
applications of queueing theory to Industrial Organization and Health Economics, con-
tributes to the understanding of this phenomenon, following the lead of Lindsay and
Feigenbaum (1984) and Farnworth (2003), among others.

When a profit maximizing private provider acts as a competitor to a public provider
of health care, and that private provider faces capacity constraints resulting in queues,
in a similar manner the public sector, but can vary its demand by varying the price,
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there will always exist at least one price which maximizes the private sector’s profit.
This equilibrium’s uniqueness will depend on the distribution of consumers’ cost of
waiting time/illness severity.

Comparative statics can be obtained for demand functions for any given distribution
of c. Some of the most noteworthy results include that an increase (decrease) in the
price charged by the private sector causes an increase (decrease) in demand for the
public sector, as well as their waiting time; that a positive price for the private sector
is welfare enhancing when compared with free treatment in two providers, and that
an increase in the service rate µ decreases waiting times for both sectors, reducing the
attractiveness of the private sector and lowering its demand. This forces the private
sector to reduce its price, approximating the welfare maximizing value with higher
values of µ. The most promising lead for further research is relaxing the assumption
that both providers have the same service rates, and allowing at least the private sector
to choose its own rate.

Further, the numerical results strongly suggest that the private sector equilibrium
price is too high from a social welfare point of view. Further research should explore
the effects of the public sector charging a regulated small price compared to a private
sector charging a profit maximizing price.

Other warranted topics for further research include, in the first instance, to incor-
porate consumer income constraints and distribution into the decision process. Other
interesting extensions are to incorporate long run capacity decisions by providers, and
allowing for a plurality of private (and possibly public) providers. Numerical simula-
tions of model outcomes for different distributions are also warranted, as is a further
examination of how intertemporal considerations and discounting might affect consumer
decisions.

9.9 Appendix: Equivalence of Exponential and Linear For-
mulation

Many works addressing waiting times in health care have formulated consumer util-
ity using exponential decay. The following is an example, taken from Lindsay and
Feigenbaum (1984):

Ui = V (ū, p)e−gt. (9.36)

In (9.36), V (ū, p) is the value of the good, in this case the treatment, which is a
function of a vector of parameters ū, and of price p. This value decays at rate g per
unit of time t. Applying this function to the present problem, if ū is held constant and
V is a linear function of p such that V = v− p, where v is the value of the good before
its price is deducted, (9.36) becomes:

Ui = (v − p)e−gt. (9.37)
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This can then be transformed by taking logs:

Ũi = lnUi = ln(v − p)− gt. (9.38)

Both v and p are arbitrary, so they can be redefined to new values such that Λ =
ln(v − p):

Ũi = Λ− gt, (9.39)

where g is equivalent to parameter c in the utility function at equation (9.2).

There is still one outstanding issue. The presence of value parameter Λ introduces
some mathematical complications. Moreover, as discussed above, medical treatments,
especially of chronic diseases, can hardly be said to possess intrinsic value for consumers,
unless perhaps they suffer from Münchausen syndrome. Rather, they are valuable in so
far as they removes an illness. Therefore, take price p as being paid to remove disutility
g. It’s perfectly possible to postulate a function V of this kind, say V = −p, i.e., there
is no benefit from the treatment itself other than it causing g to stop. This yields the
following utility function:

Ui = −pe−gt. (9.40)

Taking logs of (9.40) yields

Ũi = lnUi = ln(−p)− gt. (9.41)

Then once P is defined such that P = ln(−p), the utility function from (9.2) emerges.
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