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This dissertation examines organic food marketing from three aspects: household 
demand for organic food, household choice of retail formats accounting for preference 
organic food preference, and farmers’ joint adoption of organic farming and direct 
marketing methods. In Chapter Two, given the fast growth of private label milk and 
organic milk in the U.S., we estimate a censored demand system to study the demand 
relations among types of milk differentiated by brand types and organic status, using 
recent Nielsen Homescan data. We find that sociodemographic factors still play 
important roles in a household choice of milk types, and fluid milk is an inferior good. 
Moreover, as income increases, households are more likely to shift from buying 
conventional milk to organic milk and from private label conventional milk to branded 
conventional milk, as indicated by the asymmetric cross price elasticities. 

In Chapter Three, we examine whether households’ preference for organic food 
can affect their retail format choices for their grocery shopping trips. We model 
households’ choices of five major retail format with a conditional logit model, also using 
the Nielsen Homescan data. Our main findings are that regular organic user households 
are more likely to patronage organic specialty stores and discount stores, but less likely to 
shop in warehouse clubs. Price, consumer loyalty, and household shopping behavior also 
affects household retail format choice.  

In Chapter Four, we examine the relation between farmers’ adoption of organic 
farming and direct marketing, given their similar objectives in satisfying consumer 
demand and increasing farm income. We model farmers’ adoption of the two practices 
with a bivariate simultaneous linear probability model using data from USDA 
Agricultural Resource Management Survey. Our main finding is that the farmers’ 
adoption of organic farming decreases their probability of adopting direct marketing, 
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whereas the reverse effect is insignificant. Also, organic farming is found to improve 
gross farm income. 

  

KEYWORDS: Organic Food, Private Label, Retail Format,  
 Direct Marketing, Demand System, Discrete Choice 

 

  



 

 
 

Dr. Sayed Saghaian 

Dr. Carl R. Dillon 

April 25, 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESSAYS ON ORGANIC FOOD MARKETING IN THE U.S. 

By 

Bo Chen 

Director of Dissertation 

Director of Graduate Studies 



 

iii 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor and dissertation committee 

chair, Dr. Sayed Saghaian, for his mentoring, encouragement, and support throughout my 

Ph.D. program. I am also thankful to the other committee members, Drs. Michael Reed, 

Yuqing Zheng, Tyler Mark, Mark Williams, and J.S. Butler. Their insightful comments 

and invaluable guidance help me to improve this dissertation immensely.  

Moreover, I want to extend my thanks to all faculty and staff in the Department of 

Agricultural Economics. Without their consistent support, I would not finish my doctoral 

study smoothly. Also, I am grateful to my family and friends, to whom I am deeply 

indebted. 

  



 

iv 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

Chapter 1 Introduction ........................................................................................................ 1 

Background ..................................................................................................................... 1 

Objective and Structure .................................................................................................. 2 

Chapter 2 Organic Labeling, Private Label, and U.S. Household Demand for Fluid Milk 4 

Introduction ..................................................................................................................... 4 

Literature Review ........................................................................................................... 6 

Data ................................................................................................................................. 8 

Econometric Specification ............................................................................................ 11 

Censored Demand System and Two-Step Estimation .............................................. 12 

Price and Expenditure Endogeneity .......................................................................... 16 

Results and Discussion ................................................................................................. 18 

Conclusion .................................................................................................................... 21 

Tables ............................................................................................................................ 24 

Chapter 3 Does Consumers’ Preference for Organic Foods Affect Their Store Format 
Choices? ............................................................................................................................ 30 

Introduction ................................................................................................................... 30 

Literature Review ......................................................................................................... 32 

Organic Preference and Retailer Format ................................................................... 32 

Retail Format Choice and the Role of Organic Preference ....................................... 34 

Methodology ................................................................................................................. 35 

Conditional Logit Model with Repeated Choices ..................................................... 35 

Model Specification .................................................................................................. 37 

Data ............................................................................................................................... 40 

Choice Set of Retail Formats .................................................................................... 41 

Explanatory Variables and Measures ........................................................................ 43 

Results and Discussion ................................................................................................. 46 

Conclusion .................................................................................................................... 49 

Tables ............................................................................................................................ 51 



 

v 

Figures .......................................................................................................................... 57 

Chapter 4 Relation between U.S. Farmers’ Adoption of Organic Farming and Direct 
Marketing .......................................................................................................................... 58 

Introduction ................................................................................................................... 58 

Literature Review ......................................................................................................... 60 

Organic Farming Adoption ....................................................................................... 61 

Direct Marketing Adoption ....................................................................................... 62 

Relation Between Organic Farming and Direct Marketing ...................................... 64 

Model ............................................................................................................................ 66 

Data ............................................................................................................................... 69 

Results and Discussion ................................................................................................. 72 

Adoption of Organic Farming and Direct Marketing ............................................... 73 

Effects of Organic Farming and Direct Marketing on Farm Income ........................ 75 

Conclusion .................................................................................................................... 77 

Tables ............................................................................................................................ 78 

Chapter 5 Summary and Conclusions ............................................................................... 83 

Reference .......................................................................................................................... 85 

Vita .................................................................................................................................... 91 

 

  



 

vi 

LIST OF TABLES 

Table 2.1 Summary Statistics of Milk Consumption, Expenditure and Price .................. 24 

Table 2.2 Summary Statistics of the Sociodemographic of the Sample Households ....... 25 

Table 2.3 First Stage Probit Estimation ............................................................................ 26 

Table 2.4 Second Stage Demand System Estimation ....................................................... 27 

Table 2.5 Own and Cross Price Elasticities and Expenditure Elasticities Estimates........ 29 

Table 3.1 Summary Statistics of Retail Format ................................................................ 51 

Table 3.2 Product Modules in Basket ............................................................................... 52 

Table 3.3 Descriptive Statistics of the Explanatory Variables ......................................... 53 

Table 3.4 Conditional Logit Estimation............................................................................ 54 

Table 3.5 Marginal Effects Estimates ............................................................................... 55 

Table 4.1 Descriptive Statistics of Practice Adoption and Gross Farm Income ............... 78 

Table 4.2 Descriptive Statistics of the Explanatory Variables ......................................... 79 

Table 4.3 Organic Farming and Direct Marketing Adoption Estimation ......................... 81 

Table 4.4 Gross Farm Income Estimation ........................................................................ 82 

 

  



 

vii 

LIST OF FIGURES 

Figure 3.1 Price Index in Main Scantrack Market in California ....................................... 57 
 

  



 

1 

Chapter 1 Introduction 

Background 

The organic food market has been experiencing substantial growth over the past 

decades in the United States. The total organic sale has maintained a double-digit growth 

since the 1990s, reaching a record level of 43.3 billion dollars in 2015 (Organic Trade 

Association, 2016). Also, once exclusive to organic specialty stores and natural food 

stores, organic food is becoming more widely available in main stream retailers. It is 

estimated that organic product is present in over 75% of all categories in supermarkets 

(Organic Trade Association, 2016). On the supply side, organic production is also 

expanding. In 2014, 14093 certified or exempt farms produced organic food, covering a 

total area of 3.7 million acres, and an additional 170 thousand acres are in transition to 

organic production (USDA, 2014). 

Numerous factors have contributed to the rapid rise of organic food and organic 

farming. First, consumers’ high demand for organic food plays a leading role. As 

consumers are increasingly concerned about food safety, nutrition and environmental 

degradation associated with conventional food production systems, organic farming 

provides an alternative due to its restrictions on the usage of synthetic pesticide and 

chemicals. Moreover, given the strong demand and high price premium of organic food, 

producers are incentivized to convert to organic production. Likewise, retailers are also 

motivated to expand their organic offerings in their stores.  

USDA policies are critical in promoting organic agriculture. As early as 2002, the 

National Organic Program (NOP) was established to regulate organic product 

certification and labeling at the federal level, which is essential for the organic market 
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due to the credence attribute nature of organic food. Moreover, the financial assistance 

for organic certification and funding for organic research has steadily increased over each 

of the last three Farm Bills, reaching 57.5 and 100 million dollars respectively in the 

2014 Act (USDA, 2016). Given the current state of demand, supply, and policies in the 

organic sector, the U.S. organic food market is expected to maintain this growth trend. 

Objective and Structure 

It is noteworthy that the organic industry is in a dynamic marketing environment, 

and current knowledge of the organic sector is based on treating the organic food market 

in isolation from the marketing environment. Specifically, few studies of organic food 

demand account for the rise of private labeling and other important marketing trends, 

which could have potential impacts on the organic food market. Also, most studies on 

organic demand do not account for the retailing sector in their analysis. This might be 

inappropriate given consumers’ differing perceptions of retail formats, and the increasing 

availability of organic food across all mainstream retail formats. Moreover, in parallel to 

the organic movement, local food is becoming increasingly popular among U.S. 

consumers, and thus direct marketing becomes an important marketing venue for farmers. 

An important question ignored in the current studies is what is the relation between 

farmers’ decisions to adopt direct marketing and organic farming, given their substantial 

overlapping implications and motivations.  

This dissertation aims to bring the missing marketing environment elements in the 

understanding of organic marketing by examining the three questions outlined above in 

three essays. Each essay is described in one chapter. Chapter Two examines U.S. 

household demand for milk differentiated by its organic status and brand types. An 
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augmented almost ideal demand system accounting for the censoring of dependent 

variables and the endogeneity of milk expenditure is estimated, and corresponding price 

and income elasticities are calculated. The data source is the Nielsen Homescan 

consumer panel data in 2013. 

Chapter Three focuses on the retail sector and examines whether consumers’ 

preference for organic food would affect their choices of retail formats in their grocery 

trips. A conditional logit model is estimated to answer the question, and price levels in 

each format, consumer loyalty to each format, and other household factors are also 

controlled. The data source is the Nielsen Homescan consumer panel in 2013 and 2014.  

Chapter Four, from the perspective of farmers, examines the relation between 

farmers’ adoption of organic farming practice and direct marketing practice. A 

simultaneous bivariate linear probability model is estimated to answer the question, and 

the data is from the Agricultural and Resource Management Survey from USDA. Based 

on the modeling of practice adoption, the effects of the two practices on gross farm 

income are additionally examined.  

Chapter Five summarizes the main findings and their implications from this 

dissertation. Areas for further research are also discussed. 
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Chapter 2 Organic Labeling, Private Label, and U.S. Household Demand for Fluid 
Milk 

Introduction 

The agri-food markets in the U.S. have experienced two noteworthy trends in the 

recent decade. First, private label products (store brands owned by the retailers, PL 

hereafter) are experiencing strong growth, making substantial inroads in numerous 

consumer packaged goods markets. It is estimated that the total market share of PL goods 

reached 14.6% in dollar sales and 17.2% in unit sales by 2013 (IRI, 2013), though 

substantial share differences exist across product categories, ranging from around 4% for 

rice and desserts to over 60% for frozen fruits and milk in 2012 (Hennessy, 2014). One 

notable feature of the PL goods is that they are generally sold at discounted prices 

compared to national brand goods, and this is confirmed in numerous hedonic price 

analyses (see Roheim, et al., 2011 for seafood in the UK; Smith, et al., 2009 for fluid 

milk in the U.S.). Nevertheless, according to recent consumer reports, the majority of 

consumers think that the quality of PL products has improved and they perceive private 

labels favorably (IRI, 2013; Nielsen, 2014).  

A second trend is the increasing adoption of new production practices. As 

consumers’ concerns over food safety, environmental degradation, and social injustice 

associated with conventional food production systems grow, the food industries are quick 

to adopt alternative production practices to assuage these concerns. Examples include 

producing fresh fruits and vegetables without using synthesized fertilizer, pesticide or 

GMO components (organic produce), harvesting tuna without bycatching dolphin 

(dolphin-free tuna) and paying a fair wage to coffee farmers (fair-trade coffee), (see 

Golan, et al., 2001 for more). Because consumers are not able to observe or infer the 
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production process even after consumption, certification processes are usually established 

to verify the adoption of the new production practices, and this information is 

communicated to consumers via labeling schemes. Private labels and alternative 

production practices offer consumers additional choices, and importantly, they also 

represent evolutions in the production differentiation strategies in the agri-food industries 

(Gaviglio, et al., 2015). A good understanding of the demands of foods differentiated by 

private labels and production practices could facilitate the food industries in evaluating 

current product differentiation strategies and possibly contribute to the discovery of new 

strategies.  

The U.S. fluid milk market provides an interesting case to study against this 

backdrop. On the one hand, fluid milk has gained the largest PL share of more than 60% 

among all product categories in 2012 (Hennessy, 2014). On the other hand, organic 

production practices have been employed by an increasing number of dairy farmers, and 

organic milk sales have been steadily increasing, reaching 2.1 billion pounds in 2011 

(Schultz, 2013). Furthermore, retailers have gradually increased their offering of organic 

milk, once dominated by the national brands, under their own private labels (Dimitri and 

Oberholtzer, 2009). These changes in the U.S. fluid milk market also suggest dynamics in 

competition between branded and PL milk as well as between organic and conventional 

milk. Given this background, a potentially important question of industrial implication is: 

“What are the demand relations among milk differentiated by organic status (organic vs. 

non-organic) and brand type (branded vs. private label)?” The answer to this question 

could provide critical information for milk producers in deciding whether to adopt 

organic production practice, and it could also help milk producers, and retailers in 
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formulating their brand strategies. We aim to answer the above question by estimating 

own and cross price elasticities of milk categorized by organic status and brand type in 

the framework of an Almost Ideal Demand System (AIDS). Additionally, the 

methodology also allows us to examine the expenditure elasticities and factors affecting 

the household choice of different milk types. This information can also be used to design 

effective milk marketing programs.  

The remainder of this article is arranged as follows: Section 2 briefly reviews 

recent studies on demand for milk. Section 3 describes the data used in this study, which 

is then followed by a discussion of the AIDS model and related specification issues in 

Section 4. Section 5 presents and interprets the results, and Section 6 presents the 

conclusions. 

Literature Review 

Fluid milk has received substantial attention in the food marketing literature. One 

primary line of research focuses on the price premium of milk produced under alternative 

production practices, especially organic production. Experimental methods have widely 

been used to estimate consumers’ willingness to pay (WTP) for the production attributes, 

and a recent study can be found in Bernard and Bernard (2009). More recently, 

researchers have begun to incorporate important factors previously ignored in their 

experimental design. Akaichi, et al. (2012) cautioned that consumers’ exposure to organic 

farming information could affect their WTP for organic milk. In contrast to the above 

stated preference approach, hedonic analyses use actual market transaction data to 

estimate the implicit price of product attributes. Organic milk is found to carry a positive 

price premium (see Jaenicke and Carlson, 2015; Smith, et al., 2009). 
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The second line of research directly models the milk demand, and routinely 

calculates income and price elasticities. Alviola and Capps (2010) estimated the demand 

of organic and conventional milk in the U.S. market with a Heckman selection model. 

They found that organic milk is a normal good, and is price-elastic. Also, organic milk 

demand is more sensitive to conventional milk price than vice versa, demonstrating an 

asymmetric substitution pattern. The single equation approach, however, does not further 

differentiate milk based on other potentially important milk attributes besides organic, 

and therefore a demand system is appropriate. Chang, et al. (2011) categorized milk 

based on fat contents and organic claims, and estimated an AIDS model for inner city and 

suburban residents in Ohio. They found that suburban residents’ demand for all milk type 

is price-inelastic; in contrast, inner city residents’ demand for conventional whole and 2% 

milk, which constitute 89% of their milk expenditure, is price-elastic. These results 

suggest different purchasing patterns between inner city and suburban dwellers.  

As mentioned above, PL milk offers consumers an economical choice, and it has 

also exerted a strong impact on the dynamics of the milk market. However, PL milk has 

rarely been included in previous discussions of the milk demand system, with three 

exceptions. Hovhannisyan and Gould (2012) studied the demand relations for leading 

national brand milk, other national brand milk, and PL milk in a generalized quadratic 

demand system (GQAIDS). They found elastic demand for other national brand milk 

which might be attributed to the high concentration of specialty milk (including organic) 

in other national brand milk. Additionally, an asymmetric substitution pattern existed 

among the three types. They also cautioned that their product categorization was based 

only on the brand type, while leaving out important health attributes of milk, which may 
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not accurately represent consumer preference. Jonas and Roosen (2008) studied the 

demand for conventional PL milk, conventional branded milk, and organic milk in 

Germany with a censored demand system. One of their key findings was that organic 

milk demand was highly price elastic. They argued that this could be because their 

dataset did not include specialized organic stores, and thus most consumers were 

occasional buyers of organic, who tended to be price sensitive. They further cautioned the 

demand for organic milk could collapse due to high organic premium. Schrock (2012) 

offered an update of the above analysis with a new dataset in Germany. One interesting 

change she identified is that organic milk demand became price-inelastic, possibly 

because the German organic milk market matured during the study interval.  

To the best of our knowledge, no study focusing on the demand relations of milk 

categorized by brand type and organic status has been conducted. It is important to study 

milk at a disaggregated level given the rapid growth of PL milk and organic milk in the 

past decade in the U.S. This paper contributes to the understanding of the demand for 

milk accompanying the rise of private label and organic production in the U.S. agri-food 

industry. Methodologically, we augment our demand system by including a reduced form 

total expenditure equation to address the endogeneity of total expenditure, an issue 

plaguing numerous demand system studies with cross section household data. 

Data 

The Nielsen Consumer Panel Dataset of U.S. households is the data source. 

According to Nielsen, this database consists of a representative panel of more than 

40,000 U.S. households who provide information about their purchases intended for 

personal, in-home use from all major retail outlets. Each panelist household is requested 
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to scan the UPC barcode of the purchased items with an in-home scanner provided by 

Nielsen so that the detailed information about the product characteristics can be recorded. 

Through this procedure, organic milk can be identified by its USDA organic seal on the 

containers. Also, the distinction between PL milk and branded milk can be drawn from 

the brand code. Besides product characteristics, Nielsen also collects sociodemographic 

information about panelist households.  

We use the recently released Nielsen Consumer Panel Data 2013 to answer our 

research question above. We include refrigerated fluid milk in the analysis, and it is 

differentiated based on the brand type and organic status. This categorization yields four 

types of milk, viz. PL organic, PL conventional, branded organic and branded 

conventional milk. However, the market share of organic milk is still small despite the 

rapid expansion of organic farming in recent years. As shown in Table 2.1, only around 

8% of households have bought organic milk at least once in 2013. Thus, we combine the 

PL organic and branded organic into one organic milk group. We further aggregate the 

purchase of these three types of milk by the panelists over 2013. Prices of milk are not 

directly recorded by panelists but can be calculated as unit values from total expenditure 

and total quantity. For households with zero purchases of some milk types, we follow the 

common practice in empirical literature by imputing the household missing prices with 

average prices of those types of milk in the Scantrack markets in which the households 

reside (Dong, et al., 2004; Yen and Huang, 2002). 

Two additional considerations involve the choice of panelists in the analysis. 

First, that some panelists did not purchase certain milk type, particularly organic milk, 

might be due to the unavailability of that milk type in their nearby marketplaces. We, 
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therefore, limit our panelist households to those located in main Nielsen Scantrack 

markets where censoring caused by product unavailability can be minimized. Second, 

since milk is perishable over time and it has a high purchase frequency, we further limit 

our samples to those households which purchased milk of any type at least once every 

month for at least ten months in 2013. In doing so, we can obtain a sample of households 

with a stable demand for milk. As a result, a final sample of 24,861 households is 

obtained. 

Table 2.1 gives the sample statistics of the expenditure, quantity, price, and 

expenditure shares of conventional PL, conventional branded, and organic milk. As 

mentioned previously, organic milk is only purchased by a small fraction (7.62%) of the 

frequent milk buyers, whereas most households either buy conventional PL milk 

(93.32%) or conventional branded milk (67.15%), reflecting the major role of 

conventional milk on the market. It also needs to be noted that roughly 60% of the 

households buy more than one type of milk; many households simultaneously choose PL 

and branded milk. This conventional milk dominance is further reflected in the 

expenditure shares, with most of the fluid milk expenditure (96.16%) devoted to 

conventional milk. Despite its small market reach and expenditure share, organic milk is 

by no means negligible in the milk market. Organic milk price is almost double that of 

conventional milk, indicating a substantially high price premium compared with 

conventional milk. Moreover, among organic milk buyers the average expenditure on 

organic milk is 78.18 dollars, almost as high as that of the dominant PL milk. Last, the 

price of PL milk is lower than the branded milk, reflecting the typical low price strategy 

of the private label.  
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The household demographic variables potentially affecting milk purchases are 

described in Table 2.2. Household economic conditions are summarized in the income 

quantile and in share-of-purchase in discounted stores which could have significant 

effects on the choice and consumption level of milk. Wealthy households might be able 

to spend more on organic milk. The presence of small children at home is likely to 

prompt the consumption of organic milk which is generally considered to be more safe 

and nutritious than its conventional counterpart. The milk choice could also demonstrate 

differences across race and geographic region. Lastly, a larger household may consume 

more milk, thereby contributing to a significant milk expenditure. Note that this sample 

of households may no longer be representative of the entire U.S. population. However, 

the data-cleaning process satisfies our purpose since we aim to model the milk demand of 

stable milk-consuming U.S. households.  

Econometric Specification 

The Linear Approximated Almost Ideal Demand System (LA/AIDS) model 

proposed by Deaton and Muellbauer (1980) is used in the following analysis. Derived 

from a price-independent generalized logarithmic (PIGLOG) cost function, the LA/AIDS 

model has a flexible functional form that provides an arbitrary first-order approximation 

of any demand system. Additionally, it satisfies the axioms of choices and aggregation 

across consumers and allows for testing or for imposing theoretical restrictions. 

Therefore, it has been widely used in empirical demand system analysis.  

Since there are no close substitutes for fluid milk, it is assumed that expenditure 

on demand for milk is weakly separable from other purchases (Dhar and Foltz, 2005), 

conditional on which the demand system is specified as: 
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 𝑤𝑤𝑖𝑖 =  𝛼𝛼𝑖𝑖 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖log 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝛽𝛽𝑖𝑖 log(𝑀𝑀/𝑃𝑃), 𝑖𝑖 = 1,2, … ,𝑛𝑛 (1) 

where 𝑤𝑤𝑖𝑖 is the expenditure share of milk type 𝑖𝑖, 𝑝𝑝𝑖𝑖 is the price of milk type 𝑗𝑗, and 𝑀𝑀 is 

the total expenditure on milk. Price index, log 𝑃𝑃, is often approximated by the Stone price 

index. However, the Stone price index is not invariant to units of measurement 

(Moschini, 1995) and we correct the index by replacing the weights with the average 

expenditure share of the milk types, such that 

 log𝑃𝑃 = ∑ 𝑤𝑤�𝑖𝑖 log 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 . (2) 

In addition, household sociodemographic variables are incorporated into the 

model following the demographic translating approach proposed by Pollak and Wales 

(1981) and 𝛼𝛼𝑖𝑖 takes the form: 

 𝛼𝛼𝑖𝑖 = 𝛼𝛼0𝑖𝑖 + ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖   (3) 

where 𝛼𝛼0𝑖𝑖 is a constant, and 𝑑𝑑𝑖𝑖 are sociodemographic variables of the households. The 

consumer theory implies a set of restrictions on the demand system, viz. homogeneity, 

symmetry and, adding-up, and they can also be tested or imposed on the model 

parameters as: 

 ∑ 𝛼𝛼0𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1,∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 0,∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 0,∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 0  (adding-up) (4a) 

 ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 0 (homogeneity) (4b) 

 𝛾𝛾𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖 (symmetry). (4c) 

Censored Demand System and Two-Step Estimation 

One characteristic of the scanner data is the presence of a vast number of zero 

purchase households for most products. This presents challenges for studying the demand 
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for those products, since the censoring of the dependent variable could lead to sample 

selection, resulting in an inconsistent and biased estimation of demand equations.  

In a single equation setting, this issue is routinely addressed with the application 

of  the Heckman selection model (Heckman, 1979). In a system of equations, however, 

accommodating the censoring issue is more complicated. In the literature, the Amemiya-

Tobin approach is widely followed, and numerous specifications and estimation 

strategies are based on this approach. We also focus on this approach. 

Following Wales and Woodland (1983), one can denote the latent expenditure 

share 𝑤𝑤𝑖𝑖∗ of milk type 𝑖𝑖 such that 

 𝑤𝑤𝑖𝑖∗ = 𝑓𝑓𝑖𝑖(x,𝜃𝜃𝑖𝑖) + 𝑢𝑢𝑖𝑖 (5) 

where 𝑓𝑓𝑖𝑖(x,𝜃𝜃𝑖𝑖) is the deterministic expenditure share described in equations (1), (2) and 

(3); x and 𝜃𝜃𝑖𝑖 are the variable vector and the comfortable parameter vector in the demand 

system, respectively. Due to consumers’ errors to maximize utility, errors to measure of 

the observed shares, or random disturbances, a normally distributed error term, 𝑢𝑢𝑖𝑖, is 

added to each of the deterministic shares. Further, to ensure that the observed shares lie 

between zero and one and sum up to one, a mapping from the latent share 𝑤𝑤𝑖𝑖∗ to the 

observed share 𝑤𝑤𝑖𝑖 is made such that 

 
 𝑤𝑤𝑖𝑖 = �

       0        , 𝑤𝑤𝑖𝑖∗ < 0
𝑤𝑤𝑖𝑖∗

∑ 𝑤𝑤𝑖𝑖∗3
𝑖𝑖=1

, 𝑤𝑤𝑖𝑖∗ ≥ 0. (6) 

In doing so, the observed shares are assumed to follow multivariate truncated normal 

distribution, and maximum likelihood estimation (MLE) is used to estimate this censored 

demand system. Alternative estimation methods based on simulated maximum likelihood 
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estimation are proposed in Yen, et al. (2003) and Dong, et al. (2004). However, in these 

methods, the difficulty of evaluating multiple-level integrals of probability density 

functions prevents their applications in the empirical literature. 

Instead of assuming the observed shares follow multivariate truncated normal 

distribution, an alternative specification to accommodate censoring involves adding a 

selection mechanism to equation (5) such that 

  𝑤𝑤𝑖𝑖 = �
 0                  , 𝑧𝑧′𝜏𝜏𝑖𝑖 + 𝑣𝑣𝑖𝑖 < 0

𝑤𝑤𝑖𝑖∗ = 𝑓𝑓𝑖𝑖(x,𝜃𝜃𝑖𝑖) + 𝑢𝑢𝑖𝑖 , 𝑧𝑧′𝜏𝜏𝑖𝑖 + 𝑣𝑣𝑖𝑖 ≥ 0 (7)  

where 𝑧𝑧 is a vector of variables affecting consumers’ decision to purchase milk 𝑖𝑖, and 𝜏𝜏𝑖𝑖 

is a comfortable parameter vector. Pudney (1989) suggests that only personal 

characteristics should appear in the selection equation, and 𝑧𝑧 is thus specified to contain 

only household sociodemographic variables. The error terms 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑖𝑖 are assumed to be 

bivariate normal distributed and the covariance of the errors 𝑐𝑐𝑐𝑐𝑣𝑣(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) =  𝛿𝛿𝑖𝑖. 

The system of equations in (7) can also be estimated using MLE, which is equally 

computationally prohibitive. To avoid this difficulty, we follow the two-step procedure 

proposed by Shonkwiler and Yen (1999) (SY hereafter) which gives consistent parameter 

estimation. Due to its simplicity, this method remains an attractive alternative to the MLE 

despite that it is less efficient than the MLE (Yen and Lin, 2006).  

Shonkwiler and Yen (1999) derive the unconditional mean of the expenditure 

share for milk type 𝑖𝑖 such that 

 𝐸𝐸(𝑤𝑤𝑖𝑖) = Φ(𝑧𝑧′𝜏𝜏𝑖𝑖)𝑓𝑓𝑖𝑖(x,𝜃𝜃𝑖𝑖) + 𝛿𝛿𝑖𝑖ϕ(𝑧𝑧′𝜏𝜏𝑖𝑖) (8) 
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and their procedure involves two steps: first, estimate the probability of positive 

expenditure share for each milk type 𝑖𝑖 in a probit model and obtain the MLE estimator �̂�𝜏𝑖𝑖 

of 𝜏𝜏𝑖𝑖. Second, calculate Φ(𝑧𝑧′�̂�𝜏𝑖𝑖) and ϕ(𝑧𝑧′�̂�𝜏𝑖𝑖) for each 𝑖𝑖 and estimate 𝜃𝜃𝑖𝑖 and 𝛿𝛿𝑖𝑖 in 

 𝑤𝑤𝑖𝑖 = Φ(𝑧𝑧′�̂�𝜏𝑖𝑖)𝑓𝑓𝑖𝑖(x,𝜃𝜃𝑖𝑖) + 𝛿𝛿𝑖𝑖ϕ(𝑧𝑧′�̂�𝜏𝑖𝑖) + 𝜂𝜂𝑖𝑖 (9) 

with MLE or seemingly unrelated regression (SUR). The inefficiency of this procedure is 

due to the heteroscedastic error 𝜂𝜂𝑖𝑖 in (9), and the suggested weighted system estimator 

therein is a generalized least square (GLS) estimator that accounts for heteroscedasticity.  

An additional complication with this procedure is the theoretical restriction of 

adding-up. Even though homogeneity and symmetry can be imposed similarly as in the 

original LA/AIDS model with (4b) and (4c), the adding-up restriction (4a) does not hold 

in the censored demand system because there is no guarantee that the deterministic part 

of 𝑤𝑤𝑖𝑖 in (9) adds up to one across all 𝑖𝑖. Therefore, adding-up cannot be imposed by 

restricting the model parameters (Yen, et al., 2003). Pudney (1989) proposes treating one 

category of good as the residual category whose expenditure is the difference between 

total group expenditure and expenditure on all other categories in the group. This adding-

up identity implies relations between elasticities of the residual category and other 

categories in the group (as shown below). Elasticities of the residual category can be 

calculated from elasticities of other categories so that the theoretical restrictions implied 

by adding-up can be met (Yen, et al., 2003). In this paper, we follow this approach. First, 

we estimate the system of equation (9) with one equation dropped and with homogeneity 

and symmetry imposed. Then the uncompensated own price elasticities (𝑒𝑒𝑖𝑖𝑖𝑖), 

uncompensated cross price elasticities (𝑒𝑒𝑖𝑖𝑖𝑖), and expenditure elasticities (𝑒𝑒𝑖𝑖𝑖𝑖) of the milk 

types 𝑖𝑖 in the remaining equations can be calculated from the estimated coefficients as: 
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 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝜕𝜕𝜕𝜕(𝑤𝑤𝑖𝑖)
𝜕𝜕log 𝑝𝑝𝑖𝑖

� � 1
𝜕𝜕(𝑤𝑤𝑖𝑖)

� − 1 = Φ(𝑧𝑧𝑖𝑖′�̂�𝜏𝑖𝑖) �
𝛾𝛾�𝑖𝑖𝑖𝑖
𝑤𝑤�𝑖𝑖
− �̂�𝛽𝑖𝑖� − 1  (10) 

 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝜕𝜕𝜕𝜕(𝑤𝑤𝑖𝑖)
𝜕𝜕log 𝑝𝑝𝑗𝑗

� � 1
𝜕𝜕(𝑤𝑤𝑖𝑖)

� = Φ(𝑧𝑧𝑖𝑖′�̂�𝜏𝑖𝑖) �
𝛾𝛾�𝑖𝑖𝑗𝑗−𝛽𝛽�𝑖𝑖𝑤𝑤�𝑗𝑗

𝑤𝑤�𝑖𝑖
�  (11) 

 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝜕𝜕𝜕𝜕(𝑤𝑤𝑖𝑖)
𝜕𝜕log𝑖𝑖

� � 1
𝜕𝜕(𝑤𝑤𝑖𝑖)

� + 1 = Φ(𝑧𝑧𝑖𝑖′�̂�𝜏𝑖𝑖)
𝛽𝛽�𝑖𝑖
𝑤𝑤�𝑖𝑖

+ 1. (12) 

The compensated own and cross price elasticities (𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐 ) can be calculated using the 

Slutsky equation: 

 𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝐸𝐸�𝑤𝑤𝑖𝑖�. (13) 

The adding-up restrictions imply: 

 ∑ 𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = −𝑤𝑤𝑖𝑖, ∑ 𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖∗𝑛𝑛

𝑖𝑖=1 = 0,  ∑ 𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 0 (14) 

from which the price and expenditure elasticities of the residual milk type can be 

calculated. All the elasticities are calculated at the sample mean. Also, for statistical 

inference, the standard errors of the elasticities are calculated with the delta method.  

It needs to be noted that the above approach for accommodating adding-up 

restriction is variant to the equation dropped. We first estimate the system dropping the 

organic milk equation. And we re-estimate the system by dropping one of the remaining 

milk equations to recover the sociodemographic parameters in the organic milk equation. 

Either option yields a comparable parameter estimation.  

Price and Expenditure Endogeneity 

Price and expenditure endogeneity are prevalent in demand system analysis, 

which tends to render the estimation biased and inconsistent. A conventional solution to 

endogeneity is the instrumental variable approach, although difficulty remains in finding 
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the appropriate instrumental variables for price and expenditure. The endogeneity issue in 

this analysis is briefly discussed. 

Prices in the demand system analyses, instead of being observed directly, are 

usually calculated as unit values. And the variation of the unit values across households is 

comprised of both the variation of exogenous prices and the variation of potentially 

endogenous quality (Nelson, 1991). The endogenous quality can be explained by the 

simple fact that households tend to simultaneously determine purchasing quantity and 

quality in shopping trips. As a result, price calculated as unit value is likely to be 

endogenous. Cox and Wohlgenant (1986) proposed to use household characteristics as 

proxies for quality and to calculate the quality-adjusted price to approximate the 

exogenous price. Recent application of this technique can be found in Fourmouzi, et al. 

(2012). However, even though quality effects can be excluded from the unit value, 

leaving only price effect, the interpretation of the estimated parameters of the adjusted 

prices in the demand functions is still unclear at best since the dependent variables, 

purchasing quantity, cannot be adjusted for quality differences. Therefore, this approach 

is not followed here. We argue that the effect of potential price endogeneity on estimation 

could be minimal. Despite the efforts to engage in production differentiation in the fluid 

milk market, the differences among different types of milk are relatively small compared 

with many other foods. This limited degree of differentiation also explains the rise of PL 

milk and the increasing supply of organic milk under private labels.  

Similarly, the expenditure endogeneity lies in the simultaneity of deciding the 

quantity demanded for each milk type 𝑖𝑖 and the total expenditure on milk. To address the 

total expenditure endogeneity, we choose to specify a reduced form total expenditure 
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equation to augment the demand system in (7) and to jointly estimate them as a system 

(see Dhar, et al., 2003; Xiong, et al., 2014). The total milk expenditure is explained by all 

sociodemographic variables and the price index in the demand equations. We also 

include household income and size in the explanatory variables as identifying 

instruments. The resulting reduced form equation for total milk expenditure is: 

 log𝑀𝑀 = 𝑧𝑧′𝜅𝜅 + 𝜌𝜌log 𝑃𝑃 + 𝜃𝜃𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒 + 𝜒𝜒ℎℎ𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 (15) 

where 𝜅𝜅 is a vector of sociodemographic variables explaining the total expenditure on 

milk, and 𝑧𝑧 is the corresponding conformable parameter vector. 𝑃𝑃, as above, is the price 

index of milk and 𝜌𝜌 is the coefficient of the price index.  

To sum up our empirical specification, we drop the organic milk type and 

estimate a system comprised of the private label milk and branded milk share equation in 

(9) and the milk expenditure equation in (15) with full information maximum likelihood 

(FIML) in SAS procedure proc model. Then equations (10) – (14) are used to calculate 

elasticities for all milk types.  

Results and Discussion 

The estimation results from the first step probit models are presented in Table 2.3, 

and they show that different milk types have distinct consumer profiles. First, households 

with above-median income are more likely to purchase organic milk than households 

with below-median income. In addition, the higher the income, the more likely the 

household will purchase organic milk. By contrast, income level seems to negatively 

affect the likelihood of households purchasing PL conventional milk, while its effect on 

purchases of branded conventional milk is small. These findings suggest that households 

tend to substitute PL conventional milk for organic milk as income increases, and are in 
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line with the notion that organic buyers are generally wealthier. Further, shares of 

household purchasing at discount stores is shown to negatively affect the choice of 

organic milk, but positively affect the choice of conventional milk. This result indicates 

the important role of income on households’ choice of organic milk, given that wealthy 

households may have lower shares of purchase in discount stores. It may also suggest the 

limited availability of organic milk in discount stores. 

Household demographic status plays important roles in the choice of different 

types of milk. The presence of children under six contributes to organic milk purchases, 

whereas it reduces the likelihood of purchasing private label milk. This finding may 

reflect the image associated with organic milk, that of premium nutrition and safe quality. 

Moreover, elderly households are less likely to buy organic milk, and this result is 

consistent with the preference for organic milk among young households. In addition, 

elderly households are more likely to purchase branded conventional milk and less likely 

to purchase PL conventional milk. This is intuitive since senior citizens may have special 

nutritional needs which can be met with food fortification in branded milk, whereas PL 

milk has little product differentiation. Additionally, higher-educated households are more 

likely to switch from buying conventional milk to organic milk since they might be better 

informed about the benefits of organic milk. Last, organic milk choices also differ across 

race and region. These findings are consistent with the characterization of organic 

consumers in recent studies. It needs to be noted, however, that organic consumer profiles 

differ across goods, time and markets under examination (Dettmann and Dimitri, 2009; 

Smith, et al., 2009; Zepeda and Li, 2007).  
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Based on the above probit estimation in the first step, the second step demand 

system estimation is presented in Table 2.4. The estimated coefficients of ϕ(𝑧𝑧′�̂�𝜏𝑖𝑖) are 

significant for all milk types, indicating the presence of sample selection bias. Thus, the 

SY two-step estimation method is justified. The expenditure shares of branded 

conventional milk and organic milk are highly censored, and estimation bias could be 

severe if sample selectivity is not considered.   

As expected, in the milk expenditure equation, as the household size increases, 

household expenditure on milk increases, and as the price index of the milk increases, 

households reduce their milk consumption, resulting in decreased milk expenditure. 

Interestingly, household milk expenditure decreases as the household income increases, 

suggesting that milk, as a group, is an inferior good. Given that a dominant share of total 

milk expenditure is on PL conventional milk (72.7%), this finding is consistent with 

Alviola and Capps (2010), who estimated a negative income elasticity of -0.01 for 

conventional milk. However, due to the categorical income in our analysis, calculation of 

the income elasticity for milk is beyond the scope of this paper.  

A further examination of the expenditure elasticities in Table 2.5 shows the 

highest expenditure elasticity for PL milk (1.188), followed by branded milk (0.5), and 

organic milk (0.497). These expenditure elasticities are comparable to those in Dhar and 

Foltz (2005) and Jonas and Roosen (2008). They suggest that as household income 

increases, total expenditure on milk decreases, resulting in a significant reallocation of 

expenditure among the three types of milk. Expenditure is directed from PL conventional 

milk to organic milk and branded conventional milk, confirming – as pointed out above –

substitution of PL conventional milk for organic milk.  
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Uncompensated and compensated price elasticities are also shown in Table 2.5. 

All elasticities are consistent with the demand theory. The highest uncompensated own 

price elasticity is found in organic milk (-2.455), followed by PL milk (-1.2), and branded 

milk (-1.169). High own price elasticities for organic milk are also often found in the 

literature (Hovhannisyan and Gould, 2012; Jonas and Roosen, 2008) and consumers tend 

to be price-sensitive to specialty milk, including organic.  

All cross-price elasticities are positive, indicating that PL milk, branded milk and 

organic milk are, to a certain degree, substitutable. However, the substitutions among the 

three types of milk are evidently asymmetric. On the one hand, a 1% increase of PL milk 

price leads to 0.467% and 0.969 % increases in branded milk and organic milk demand, 

respectively. On the other hand, a 1% price increase of either branded milk or organic 

milk price does not significantly increase the demand for PL milk. A similar asymmetric 

substitution pattern can also be found between branded conventional milk and organic 

milk: a 1% increase of branded milk price leads to a 1.106% increase in organic milk 

demand, whereas a 1% increase of organic milk price merely contributes to a 0.202% 

increase in branded milk demand. One plausible explanation for asymmetric substitution 

is that once consumers have bought organic milk and perceive the benefits of it, they are 

unwilling to switch back to PL or branded conventional milk, demonstrating stickiness in 

consumer behavior (Dhar and Foltz, 2005). Asymmetry is also found in Chang, et al. 

(2011) and Jonas and Roosen (2008). 

Conclusion 

Recent decades have manifested two trends in the U.S. fluid milk market: the rise 

of private label milk and the growth of organic milk. Brand type and organic status have 
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become two important attributes affecting consumers’ milk-purchasing decisions. In 

addition to the price analysis studies that improve our understanding of consumers’ 

preference for brand type and organic status, we directly model the demand for three 

types of milk – conventional private label, conventional branded and organic – in a 

censored demand system following the SY procedure. Factors affecting milk choice and 

demand are examined and price and expenditure elasticities are calculated to study the 

demand relations among these types of milk.  

The main conclusions are as follows: sociodemographic variables are still 

important factors in explaining the demand for different types of milk. Based on these 

different consumer profiles, milk marketers can carry out more targeted marketing 

campaigns for various kinds of milk. More importantly, milk as a group is an inferior 

good, a conclusion which might be attributed to the fact that private label milk is an 

inferior good. Also, despite its small market share, organic milk seems to have strong 

market potentials; as income increases, substitution of private label conventional milk for 

organic milk can be identified. Retailers which provide private labels under their own 

brands especially need to explore the opportunities associated with organic milk. In 

addition, there also seems to be a tendency for consumers to substitute private label milk 

for branded milk. Product differentiation and invention could be essential for branded 

milk producers since, for them to compete with private label milk, their strength lies in 

addressing additional consumer needs and concerns beyond basic food safety and 

nutrition.  

One drawback of this study could be the categorization of the milk. As stated in 

the data section, organic milk reach and average expenditure share is still small, and thus 
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we combined the private label and branded organic milk as one group. This blurring of 

brand types in organic milk prevents us from studying the demand relation between the 

two groups of organic milk, and thus no conclusions can be drawn regarding the 

competition between private label and branded milk producers when milk is organic for 

both. However, as the organic milk sector continues to mature, further data may be used 

to shed light on this issue.  
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Tables 

Table 2.1 Summary Statistics of Milk Consumption, Expenditure and Price 

Variables Mean SD % Consuming 
Quantity (Gallons) - Consuming Households  
  Conventional Private Label (𝑖𝑖 = 1) 27.30 26.63 93.32 
  Conventional Branded (𝑖𝑖 = 2) 10.47 16.55 67.15 
  Organic (𝑖𝑖 = 3) 11.42 14.80 7.62 
Expenditure (Dollars) - Consuming Households  
  Conventional Private Label 91.83 85.71  
  Conventional Branded  40.81 62.87  
  Organic 78.18 98.63  
Expenditure Share (%)  
  Conventional Private Label 72.70 34.35  
  Conventional Branded  23.46 31.77  
  Organic 3.84 17.32  
 Price (Dollar/Gallon)  
  Conventional Private Label 3.68 0.99  
  Conventional Branded  4.30 1.34  
  Organic 7.01 0.60  
Note: Number of households in the sample is 24861. 
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Table 2.2 Summary Statistics of the Sociodemographic of the Sample Households 

Variables Definition Mean SD 
𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒1 =1 if HH incomes falls below 25% (base) 0.19 0.39 
𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒2 =1 if HH incomes falls in 25-50% 0.35 0.48 
𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒3 =1 if HH incomes falls in 50-75% 0.3 0.46 
𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒4 =1 if HH incomes falls in 75-100% 0.17 0.37 
𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑐𝑐𝑢𝑢𝑛𝑛𝑑𝑑 Share of households purchase in discount stores 0.17 0.29 
𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑑𝑑 =1 if presence of children under 6  0.03 0.16 
𝑎𝑎𝑎𝑎𝑒𝑒1 =1 if HH head less than or equal to 40 (base) 0.07 0.26 
𝑎𝑎𝑎𝑎𝑒𝑒2 =1 if HH head is higher than 39 but less than 64 0.60 0.49 
𝑎𝑎𝑎𝑎𝑒𝑒3 =1 if HH head is higher than 64 0.33 0.47 
𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒1 =1 if white HH (base) 0.87 0.33 
𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒2 =1 if black HH 0.06 0.24 
𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒3 =1 if Asian or other race HH 0.06 0.24 

𝑒𝑒𝑑𝑑𝑢𝑢1 =1 if HH head education is high school 
graduate (base) 0.18 0.38 

𝑒𝑒𝑑𝑑𝑢𝑢2 =1 if HH head education is some college 0.28 0.45 

𝑒𝑒𝑑𝑑𝑢𝑢3 =1 if HH head education is graduated college or 
post college grad 0.54 0.5 

𝑟𝑟𝑒𝑒𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛1 =1 if residing in Northeast (base) 0.21 0.41 
𝑟𝑟𝑒𝑒𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛2 =1 if residing in Midwest 0.26 0.44 
𝑟𝑟𝑒𝑒𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛3 =1 if residing in South 0.34 0.47 
𝑟𝑟𝑒𝑒𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛4 =1 if residing in West 0.19 0.39 
ℎℎ𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 Number of residents in a household 2.48 1.25 
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Table 2.3 First Stage Probit Estimation 

 
Private Label  Branded Organic 

Coef. 
(Std. err.) 

M.E. 
(Std. err.)  

Coef. 
(Std. err.) 

M.E. 
(Std. err.) 

Coef. 
(Std. err.) 

M.E. 
(Std. err.) 

income2 0.053 0.006 -0.006 -0.002 0.007 0.001 
(0.036) (0.005) (0.024) (0.009) (0.039) (0.004) 

income3 -0.005 -0.001 -0.004 -0.001 0.126** 0.015** 
(0.038) (0.005) (0.026) (0.009) (0.039) (0.004) 

income4 -0.043 -0.005 0.002 0.001 0.336** 0.041** 
(0.044) (0.005) (0.030) (0.011) (0.043) (0.004) 

discount 0.192** 0.024** 0.236** 0.084** -0.194** -0.025** 
(0.048) (0.006) (0.030) (0.011) (0.046) (0.006) 

child -0.157* -0.019* 0.029 0.011 0.405** 0.053** 
(0.077) (0.009) (0.055) (0.020) (0.064) (0.008) 

age2 -0.005 -0.001 0.147** 0.054** -0.122** -0.017** 
(0.052) (0.006) (0.033) (0.012) (0.045) (0.007) 

age3 -0.158** -0.019** 0.195** 0.073** -0.152** -0.022** 
(0.054) (0.006) (0.035) (0.014) (0.048) (0.008) 

edu2 0.005 0.001 -0.017 -0.006 0.166** 0.016** 
(0.039) (0.005) (0.026) (0.009) (0.044) (0.004) 

edu3 -0.068 -0.008 -0.128** -0.046** 0.374** 0.045** 
(0.037) (0.004) (0.025) (0.009) (0.042) (0.004) 

race2 -0.218** -0.026** 0.256** 0.092** 0.054 0.007 
(0.047) (0.006) (0.036) (0.013) (0.048) (0.006) 

race3 -0.217** -0.026** 0.047 0.017 0.230** 0.030** 
(0.048) (0.006) (0.035) (0.012) (0.043) (0.006) 

region2 0.384** 0.064** -0.381** -0.108** -0.104** -0.011** 
(0.034) (0.006) (0.026) (0.007) (0.039) (0.004) 

region3 0.415** 0.066** -0.719** -0.227** 0.207** 0.027** 
(0.033) (0.006) (0.025) (0.007) (0.034) (0.004) 

region4 0.408** 0.068** -0.640** -0.181** 0.195** 0.022** 
(0.038) (0.007) (0.028) (0.006) (0.038) (0.004) 

constant 1.294**  0.794**  -1.792**  
(0.065)  (0.045)  (0.066)  

Note: Standard errors in parentheses.  ** and * indicate significant at 1% and 5% 
respectively. 
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Table 2.4 Second Stage Demand System Estimation 

 Private 
Label Branded Organic Milk 

Expenditure 

log 𝑝𝑝1 -0.051**  
(0.008) 

0.036**  
(0.008) 

0.094**  
(0.015)  

log 𝑝𝑝2 0.036**  
(0.008) 

-0.099**  
(0.01) 

0.0796**  
(0.037)  

log 𝑝𝑝3 0.015*  
(0.006) 

0.063**  
(0.006) 

-0.89**  
(0.04)  

log(M/P) 0.146**  
(0.007) 

-0.173**  
(0.008) 

0.071**  
(0.022)  

discount -0.007  
(0.01) 

-0.104**  
(0.021) 

-0.073  
(0.048) 

-0.004 
(0.014) 

child  -0.014  
(0.015) 

-0.025  
(0.019) 

0.032  
(0.038) 

0.106** 
(0.025) 

age2 -0.002  
(0.009) 

-0.026  
(0.017) 

0.019 
(0.025) 

0.022 
(0.016) 

age3 0.023*  
(0.01) 

-0.012  
(0.02) 

-0.006  
(0.035) 

-0.003 
(0.017) 

edu2 -0.0002  
(0.007) 

-0.005  
(0.008) 

0.013  
(0.104) 

-0.001 
(0.012) 

edu3 0.007  
(0.007) 

0.019  
(0.012) 

-0.002 
(0.105) 

0.005 
(0.011) 

race2 0.038**  
(0.011) 

-0.047*  
(0.022) 

-0.082*  
(0.039) 

-0.297** 
(0.017) 

race3 -0.003  
(0.01) 

0.025*  
(0.012) 

0.06*  
(0.027) 

-0.002 
(0.016) 

region2 0.02  
(0.015) 

-0.039  
(0.03) 

0.044 
(0.042) 

-0.033** 
(0.012) 

region3 0.075**  
(0.015) 

-0.01  
(0.06) 

-0.205** 
(0.032) 

0.071** 
(0.011) 

region4 0.066**  
(0.015) 

-0.045  
(0.053) 

-0.083* 
(0.032) 

0.001 
(0.012) 

(Continued)     
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Table 2.4 Continued 

Variables Private 
Label Branded Organic Milk 

Expenditure 

ϕ(𝑧𝑧′�̂�𝜏𝑖𝑖) -0.68**  
(0.129) 

-0.349*  
(0.172) 

-0.212* 
(0.089) - 

income2    -0.028** 
(0.011) 

income3    -0.052** 
(0.011) 

income4    -0.055** 
(0.013) 

log P    -1.181** 
(0.018) 

hhsize    0.172** 
(0.003) 

Constant 0.331**  
(0.035) 

1.111** 
(0.07) 

1.205** 
(0.23) 

4.389** 
(0.033) 

Note: Standard errors in parentheses.  ** and * indicate significant at 
1%, 5% respectively. Price and milk expenditure parameter estimation 
are not shown because these estimators cannot be readily interpreted. 
Organic milk equation parameters are estimated by dropping branded 
milk equation. 
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Table 2.5 Own and Cross Price Elasticities and Expenditure Elasticities Estimates 

 Price Elasticities Expenditure 
Elasticities  Private Label Branded Organic 

Uncompensated     

  Private Label -1.20** 
(0.011) 

0.002  
(0.01) 

0.012  
(0.008) 

1.188** 
(0.009) 

  Branded 0.467** 
(0.027) 

-1.169** 
(0.028) 

0.202** 
(0.018) 

0.500** 
(0.022) 

  Organic 0.969** 
(0.122) 

0.990** 
(0.125) 

-2.455** 
(0.167) 

0.497** 
(0.115) 

Compensated      

  Private Label -0.338** 
(0.011) 

0.281** 
(0.009) 

0.057** 
(0.008) 

 

  Branded 0.830** 
(0.022) 

-1.051** 
(0.028) 

0.221** 
(0.018) 

 

  Organic 1.331** 
(0.144) 

1.106** 
(0.123) 

-2.436** 
(0.165) 

 

Note: Standard errors in parentheses.  ** and * indicate significant at 1%, 5% 
respectively. 
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Chapter 3 Does Consumers’ Preference for Organic Foods Affect Their Store 
Format Choices? 

Introduction 

Retail sales of organic food in the U.S. have increased rapidly, growing from 3.6 

billion dollars in 1997 to 43.3 billion dollars in 2015, an 11 percent increase from 

previous year compared with the 3 percent growth rate of overall food sector  (Organic 

Trade Association, 2016). The growth trend, however, varies across food categories, with 

fruits and vegetables the leading products, and they are typically the first organic 

products purchased by consumers new to organic products (Dettmann and Dimitri, 2009).  

The high growth of organic food has generated substantial interests in 

understanding the organic food market. The sociodemographic profile of organic 

consumers and their motivations to buy organic food are extensively studied. A typical 

organic consumer is characterized as being wealthy, young, educated, and lives in the 

West region in the U.S. and he or she is motivated to buy organic food for better food 

safety, health benefits and environmental benefits (Hughner, et al., 2007; Nasir and 

Karakaya, 2014; Zepeda and Li, 2007). Also, the success of the organic sector hinges on 

whether the price premium of organic food can be realized to compensate for the higher 

production cost. Thus, a wealth of studies is devoted to evaluating the organic premium, 

and its existence is confirmed for numerous organic products with both stated and 

revealed preference methods (see Hu, et al., 2009 for WTP for organic blueberry jam; 

and Smith, et al., 2009 for organic fluid milk). Moreover, the demand for organic food 

itself has been widely studied, both independently or in a product group. (see Dettmann 

and Dimitri, 2009 for milk; and Zhang, et al., 2008 for fresh produce).  
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One factor that contributes to the high growth of the organic market is the wider 

availability of organic food in main-stream retailers (Organic Trade Association, 2016; 

Quagliani, 2015). As a result, competition has intensified in the retail sector, leading to 

retailers’ forming strategic marketing plans for their organic food. For example, while 

Whole Foods Market had early success with natural and organic food, it introduced a 

smaller store format named Whole Foods 365, offering consumers a limited selection of 

organic products at a lower price (Strom, 2015). Moreover, Walmart announced its entry 

into the organic market in 2006 (Martin, 2014) and currently sells its organic brand Wild 

Oats at prices comparable to conventional food. Additionally, major discounter and club 

stores such as Aldi and Costco keep their pace with the organic trend by increasing their 

offering of organic food in their stores. 

However, the retail sector receives inadequate attention in the current 

understanding of the organic food marketing, despite its important role in the supply chain. 

Because of their direct interaction with consumers, retailers have a better knowledge of 

consumer demand. With this knowledge, retailers can affect consumer demand for food 

including organic food with a combination of marketing mixes in store. Moreover, the 

intangible store image of retailers is an essential element in affecting consumer perception 

of products offered in store and thus indirectly affect their demand (Lee and Hyman, 2008). 

Therefore, as organic food retailing goes through major shifts, the current approaches 

which largely ignore the retail sector could lead to an incomplete understanding of the 

organic food marketing.  

In this article, we aim to fill this gap by examining whether consumers’ 

preference for organic food affects the types of store they visit for grocery shopping. The 
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results have managerial implications for the retail sector in which stores of different 

formats compete intensely in the organic, and other food sectors as well. Also, for the 

organic food producers, processors and distributors, this study could offer some insights 

in their choosing marketing channels. A better understanding of the organic food retailing 

is likely to improve the effectiveness of subsequent USDA policies and programs aiming 

to promote organic food. 

The remainder of this article is arranged as follows. Section 2 reviews studies on 

organic preference and store choice to further motivate our research. Section 3 discusses 

the methodology employed followed by data description in Section 4. Section 5 

demonstrates the main findings of the empirical model followed by a discussion of these 

results. Lastly, Section 6 concludes.  

Literature Review 

We review two lines of literature. The first line of studies suggest relationship 

between consumers’ organic food preference and their retail format choice. This forms 

the conceptualization base of this study. We further review studies modeling consumers’ 

retail format choice accounting for their organic preference. This study is an extension 

along this line of research. 

Organic Preference and Retailer Format 

The relation between consumers’ preference for organic food and the retail format 

choice in their grocery trips is frequently discussed in the literature. Thompson and 

Kidwell (1998) consider the possible linkage between consumers’ two decisions—

whether to buy organic food and whether to shop in cooperative or specialty grocery 

store—and model the two decisions jointly in a two-equation probit model. They find that 
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local cooperative shoppers are more likely to buy organic foods and consumers with a 

high propensity to buy organic food are more likely to shop from cooperatives. 

Moreover, Ngobo (2011) models French consumers’ organic food purchase behavior in a 

retail setting. By employing an incidence/brand choice/purchase quantity model, he finds 

that consumers are less likely to buy widely distributed organic brands, which are largely 

sold in conventional supermarkets and are often perceived to be of lower quality. This 

finding further implies that French consumers associate organic products with specific 

stores—particularly those organic specialty stores. These results suggest that consumers’ 

preference for organic food could be positively related to their patronage of the organic 

specialty store, which is also supported from the perspective of stated preference. 

With data from a consumer survey conducted in six traditional grocery stores and 

one specialty grocery stores spread across Ohio, Batte, et al. (2007) study the WTP for 

organic and other attributes of a breakfast cereal product. They find the WTP for the 

organic attribute is 50% higher for specialty grocery shoppers than traditional grocery 

shoppers, besides significant sociodemographic differences between the two types of 

consumers. Additionally, Wier, et al. (2008) examine the demand characters in Britain 

and Denmark, two mature organic markets, and find the large concentration of organic 

food consumers in Denmark express stronger confidence for organic foods sold in 

alternative retail channels, including specialist stores, farm gates, market stalls, and other 

direct marketing channels. Ellison, et al. (2016) further investigate the interaction of 

product type and retail context on consumers’ evaluation of organic foods’ taste, 

nutrition, safety and other attributes using an online experiment. As expected, they find 
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the halo effect associated with organic food and more importantly, retail context is crucial 

in determining consumers’ evaluation of organic food’s attributes.  

Retail Format Choice and the Role of Organic Preference 

Consumers’ retail format choice has been extensively studied since household 

scanner data become widely available. Current studies tend to focus on the role of 

retailers’ marketing mixes while household sociodemographic status, consumer shopping 

behavior, and loyalty to particular store formats are also shown to have strong effects on 

consumers’ retail format choice (Bell and Lattin, 1998; Fox, et al., 2004; Volle, 2001).  

Few studies, however, account for organic consumer preference. Two exceptions 

are Staus (2009) and Hsieh and Stiegert (2012). Staus (2009) highlights the effects of 

households’ attitudes towards organic food, environment, freshness, quality, pricing, and 

advertising on household retail format choice when they purchase fruits and vegetables. 

By estimating a mixed multinomial logit model with German Gfk scanner data, he finds 

that households reported to like organic foods are more likely to visit specialized organic 

stores, and less likely to visit conventional supermarkets. With a similar multinomial logit 

model and U.S. Nielsen scanner data from 2005 to 2008, Hsieh and Stiegert (2012) use 

households’ percentage of organic food consumption in total food expense to proxy for 

households’ preference for organic food and interact it with relative store price level, 

discount offering, and household income level to explain household retail format choice. 

They conclude that organic households’ stronger quality perception affects their 

willingness to pay and price sensitivity in their choice of store formats.  

We contribute to this line of literature by directly examining the effect of 

household organic preference on their choice of retail format. Staus (2009)’s measure of 
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household organic preference is based on household self-reporting, which may not reflect 

the real organic preference, compared to our measure based on the purchasing history. 

The mechanism through which Hsieh and Stiegert (2012) assume organic preference 

affects store format choice is only through pricing or income effects; this ignores 

consumers’ direct association of quality organic food with particular retail formats, as 

demonstrated in the previous studies. We also account for households’ habitual patronage 

to certain retail format by introducing exponentially weighted loyalty indexes, pioneered 

by Guadagni and Little (1983). Further, we focus on households in California, the largest 

organic market in the U.S., and our analysis is more relevant to the current fast-changing 

U.S. organic market.  

Methodology 

The logit-type models based on the random utility theory have long been the 

workhorse in modeling discrete consumer choices. Consumers’ retail format choice for 

grocery trips can also be modeled within this framework. Staus (2009), and Dong and 

Stewart (2012) study consumers’ retail format choice for fresh produce and milk, 

respectively.  

Conditional Logit Model with Repeated Choices 

We follow a similar treatment and adopt the conditional logit model proposed by 

McFadden (1974). Given the panel structure of our data in which the entire grocery trips 

history is recorded for numerous households, McFadden’s static model can be 

straightforwardly extended to allow for repeated household choices. According to the 

random utility theory, the utility household 𝑖𝑖 derive from visiting retail format 𝑗𝑗 in week 𝑑𝑑 

can be written as 
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 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 is the deterministic component, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the random component. Households 

choose the retail formats that yield the highest utility for them in each week. Since both 

the attributes of the retail formats and characteristics of the households can affect 

household utility, we further specify a general form of the deterministic component of 

household utility such that 

 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑿𝑿𝑖𝑖𝑖𝑖 + 𝜸𝜸𝑖𝑖𝒁𝒁𝑖𝑖𝑖𝑖 (2) 

where 𝑿𝑿𝑖𝑖𝑖𝑖 is a vector of alternative-variant variables, representing the attributes of retail 

format 𝑗𝑗. The alternative specific intercept, 𝛼𝛼𝑖𝑖, captures all other attributes specific to 

retail format 𝑗𝑗, which could include store image and other unobservable attributes that are 

not controlled for. Some variables in 𝑿𝑿𝑖𝑖𝑖𝑖 vary over time. Moreover, 𝒁𝒁𝑖𝑖𝑖𝑖 is a vector of 

household characteristics, including household shopping behavior, sociodemographic 

status, and loyalty index to each retail format. 𝜷𝜷 and 𝜸𝜸𝑖𝑖 are the vectors of the unknown 

parameters.  

Under the assumption that  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 follow independent identical Type I extreme value 

distribution, it can be shown that the probability of household 𝑖𝑖 visiting retail format 𝑗𝑗 in 

week 𝑑𝑑 is 

 
Pr (𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑗𝑗) =

exp (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖)
∑ exp (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖
𝑙𝑙=1

 . (3) 

Given this derived probability and the history of households’ retail format choices, we 

can estimate the conditional logit model of retail format choice with the maximum 

likelihood estimation (MLE). Denote 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if household 𝑖𝑖 visited retail format 𝑗𝑗 in 
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week 𝑑𝑑, and 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 0 otherwise; the log-likelihood function of consumer retail format 

choice is 

 
𝑖𝑖𝑛𝑛𝑙𝑙 = ���𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 ln Pr (𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑗𝑗)

𝑇𝑇

𝑖𝑖=1

𝐽𝐽

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

. (4) 

From the estimated coefficients, the marginal effects of the explanatory variables on 

consumers’ probabilities of choosing each retail format are calculated for interpretation.  

Model Specification 

We specify our model based on prior store choice and retail format choice studies. 

The utility households derive from patronizing one retail format is explained with four 

types of explanatory variables: retail format marketing mix, household sociodemographic 

status, shopping behavior, and household loyalty.  

First, marketing mix has substantial effects on consumer retail format choice, as 

shown in the literature. Accounting for the limitation of our data, we focus on the pricing 

in each retail format and control for the price level in our model. On the one hand, the 

price level is the key consideration for households when having their grocery trips and 

the higher price is associated with a disutility for the households. Also, the competition 

among retail formats and the differences among them can be mostly reflected in their 

pricing. For example, big-box stores and other mass merchandisers offering substantially 

lower price than conventional grocery stores after controlling for the brand, quality and 

package size (Leibtag, 2006; Leibtag, et al., 2010). On the other hand, another marketing 

mix, such as product assortment, is also important in explaining consumers retail format 

choice, yet it is infeasible to accurately measure this marketing mix with our data. 
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Because many of the remaining retail marketing mixes stay relatively constant over time, 

we thus leave them to be absorbed into the retail-format-specific intercept. 

The second category of explanatory variables characterize consumer shopping 

behavior. Our main interest is the effect of organic preference on retail format choice, and 

we define household organic preference as the percentage of organic produce and dairy 

products expenditure in total expenditure on these goods1. We expect household organic 

preference may influence its choice of retail format since different formats have distinct 

organic offerings and consumers’ perception of the retail formats varies substantially.  

Shopping cost could strongly affect consumers’ format choice. A direct way to 

measure the shopping cost of one household is to measure the distances between the 

household and the nearest store of each retail format. Since retailers of different formats 

strategically locate in different areas (grocery stores are usually near the main residential 

areas while warehouse clubs are located farther away from the residential areas), the 

distances and thus the shopping cost can vary substantially across retail formats. 

However, due to privacy reasons, we cannot explicitly measure the distance. Instead, we 

construct a variable of household shopping frequency to approximate the shopping cost 

one household may face under the assumption that households with higher shopping costs 

are likely to shop less frequently than those with lower shopping costs.  

Additionally, coupon usage is another important consumer buying behavior 

characteristic. Retail formats differ in their coupon offerings, resulting in two distinct 

pricing strategy: EDLP (everyday low pricing) and HILO (high/low pricing). Thus, 

                                                 
1 Produce including fruits and vegetables and dairy products are chosen due to their major shares among all 
organic food categories. 



 

39 

consumer preference for these pricing strategies may be accounted for by their coupon 

use frequency during their shopping trips. Besides this shopping behavior, we also 

include essential household sociodemographic variables in our model. Households with 

different social demographic profiles have been observed to have a distinct preference in 

consumer choice studies and as discussed above, numerous academic and industrial 

research have been devoted to characterizing a typical organic consumer.  

The last key variable in explaining households’ retail format choice is 

households’ loyalty to each retail format. Positive experiences from the past choices are 

passed down to future choice scenarios, prompting households to make the same choice. 

One direct approach to account for loyalty is to include the lagged choices in the 

deterministic component of the utility function (see Jones and Landwehr, 1988; Staus, 

2009). Chintagunta, et al. (2001) further derived the conditions under which dynamic 

utility maximization behavior yielded the above model specification in a dynamic utility 

maximization framework. Alternatively, loyalty can also be accommodated with the 

loyalty indexes approach. In their seminal study of the household coffee brand and size 

choice, Guadagni and Little (1983) defined the brand loyalty variables as exponentially 

weighted sequences of previous purchases and they argued the loyalty variables capture 

the preference heterogeneity across households and preference change in the purchase-to-

purchase dynamics.  

Fader and Lattin (1993) pointed out that the variation in the loyalty variables does 

not distinguish between the preference heterogeneity across households and preference 

change over time, and in the event of an abrupt preference change, earlier choice history 

is irrelevant in predicting further choices. Based on a Dirichlet-multinomial model, they 



 

40 

proposed a loyalty measure which could allow abrupt preference change. However, 

consumer choice for the retail format is less likely to experience sudden changes than the 

preference for brands due to the potentially higher cost of switching retail formats than 

switching brands. Thus we follow Guadagni and Little (1983) and construct similar 

loyalty index variables for each of the retail formats.  

Data 

Our data source is Nielsen Homescan from 2013 and 2014. Each year, Nielsen 

invites a vast and representative sample of U.S. households to record their purchases for 

personal and in-home uses by scanning the barcodes on the purchased products. 

Participating households are also asked to record information regarding the store and 

shopping trips. Though Nielsen does not provide names or the precise locations of the 

stores, retail formats of each store can be identified in the dataset which is sufficient for 

the purpose of this study.  

The U.S. is one of the major organic food markets globally, and California is the 

leading state in organic sales and production in the U.S. (Klonsky, 2010). We choose 

households in California in our analysis to avoid the effects of the limited availability of 

organic food in some states on consumer retail format choice. Four major scantrack 

markets are defined by Nielsen in California: San Francisco, Los Angeles, San Diego and 

Sacramento. The 2013 data is used for initializing the retail format loyalty variable and 

generating shopping behavior variables2, and only the 2014 data is used for model 

estimation. Additionally, we include only households making grocery shopping trips at 

                                                 
2 It is plausible for consumers who prefer to patronize a particular retail format to demonstrate certain 
shopping behavior, resulting in endogenous shopping behavior if the same dataset is used to generate these 
shopping behavior explanatory variables and estimate the choice of retail format. 
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least once every month in 2013 and 2014 to ensure that households in the sample keep 

recording their purchase. Furthermore, we focus on households’ main grocery trips, and 

we exclude shopping trips with only non-food item purchases and trips with less than five 

food item purchases. This results in a final sample of 1236 households and 49723 grocery 

trips.  

Choice Set of Retail Formats 

The Nielsen data contains 66 mutually exclusive retail channels, among which 

grocery store, discount store, warehouse club store, convenience store, dollar store, and 

drugstore are the mainstream retail formats. We focus on these mainstream retail 

formats.3 Note that grocery stores differ substantially in their organic food offerings, and 

pooling all grocery stores into one choice is unlikely to reflect consumers’ preference for 

grocery retail format. Stores like Whole Foods and Trader Joe’s, for instance, are 

specialized in marketing organic and natural food. Hence, assuming that organic specialty 

grocery stores offer more organic varieties and generate more revenues from organic food 

sales, we divide grocery stores into two categories based on the share of organic produce 

and dairy sale to total sale in produce and dairy4: grocery stores with more than five 

percent of organic sale is categorized into the choice of organic specialty grocery stores 

and the remainder of the grocery stores are grouped as conventional grocery stores. 

Moreover, convenience stores, dollar stores, and drug stores are the marginal channels in 

                                                 
3 Direct marketing channels including farmers’ market, pick your own, door to door and CSA are gaining 
momentum in organic food marketing. However, the total sale through these venues is still small. Thus we 
do not include these direct marketing channels in our analysis.  
4 In contrast to our categorization approach, Hsieh and Stiegert (2012) used their own judgement to 
categorize stores into three types: value oriented retailers, supermarkets and high-end shops in a city with 
which they are familiar. While their approach may have some merits since it can identify more stores, it 
could introduce researchers’ personal bias and it does not offer a systematic solution to study a large market 
area, such as the Californian market.  
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food retailing and offers a limited selection of organic food, we group these three retail 

formats into one choice and rename this group as the residual format. To sum up, 

households face five types of retailer formats: organic specialty grocery stores, 

conventional grocery stores, discount stores, warehouse clubs, and the residual format. 

Table 3.1 describes the basic features of the five retail formats in the Californian 

food retail market in 2014. A first examination of the numbers of the retailer chains and 

stores reveals that the food retail sector in California closely resembles a competitive 

market with numerous retailers competing within and between retail formats. With its 

largest number of stores, the conventional grocery store is the leading format in food 

retailing, accounting for 60% of the total household store visits. By contrast, the organic 

specialty grocery store is substantially smaller in both store visit share and store 

accessibility. Discounter stores and warehouse have a similar market share in our data.  

Product assortments also differ substantially across retail formats. While most 

items sold in both formats of grocery stores are food, conventional grocery stores offer 

more choices to consumers. Similar to conventional grocery stores, discount stores also 

carry a large assortment of goods, among which food only accounts for 46%. This is 

expected given the discounter strategy of satisfying consumer demand at one stop 

shopping. Warehouse clubs take a different strategy from discounter by offering a narrow 

product assortment yet most (76.6%) of the goods sold there are food. Since food is not 

the focus in the residual format, it carries a large assortment of goods while only 41.2% 

are food items. Regarding organic food marketing, it is expected that organic specialty 

grocery stores offer the most organic choices and generate the largest share of revenue 

from selling organic food. Though conventional grocery’s organic share is half of that in 
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organic specialty stores, it is still higher than the other retail formats. Interestingly, 

despite its limited selection of organic products in the store, warehouse club has a 6.1% 

share of organic sales, only after organic specialty stores. This might be a result of the 

bulk purchasing in warehouse clubs. 

Explanatory Variables and Measures 

To operationalize the explanatory variables in the previous chapter, we discuss the 

construction of these variables and measures in detail in this section. We also provide 

descriptive statistics for these variables.  

Format Price Index    To measure the price level in each of the retail format, we 

adopt a method similar to the one employed in constructing Consumer Price Index (CPI). 

A basket comprised of the twenty most frequently purchased product modules by the 

households (see Table 3.2) is first selected 5, and the total prices of this basket in each 

retail format and market are calculated. The price index is then calculated as the total 

price of the basket in each of the format normalized by the total price of the same basket 

in the market. Specifically, the price index takes the following form: 

 
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =

∑ �̅�𝑝𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖20
𝑔𝑔=1 𝑞𝑞�𝑔𝑔𝑖𝑖

∑ �̅�𝑝𝑔𝑔𝑖𝑖𝑖𝑖20
𝑔𝑔=1 𝑞𝑞�𝑔𝑔𝑖𝑖

 (5) 

where 𝑞𝑞�𝑔𝑔𝑖𝑖  is the average quantity of household purchase of product 𝑎𝑎 in week 𝑑𝑑 in 2013. 

And �̅�𝑝𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖  is the average price of product module 𝑎𝑎 in format 𝑗𝑗 in scantrack market 𝜃𝜃 in 

                                                 
5 If too few products are chosen, it is unlikely that the calculated price index would reflect the general price 
level in a retail format whereas if too many products are chosen, prices can be missing for some products in 
the basket in some retail formats, rendering the calculated price index inaccurate. We choose the twenty 
most purchased products to maintain a balance between the two scenarios.  
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week 𝑑𝑑 in 2014 while �̅�𝑝𝑔𝑔𝑖𝑖𝑖𝑖  is the average price of product module 𝑎𝑎 in market 𝜃𝜃 in week 

𝑑𝑑 in 2014. Note that the price indexes vary across format, market, and time. 

The resulting price indexes are plotted in Figure 1. The price indexes show some 

similar patterns in the four scantrack markets. First, the price index is the highest in 

organic specialty stores, indicating price level in these stores are generally 1.5 and 2 

times higher than the market price level. This is consistent with the high price premiums 

organic foods command. Except for the relatively low warehouse club price index in the 

San Francisco market, the format with the next highest price index is conventional 

grocery stores, followed by discount stores and other stores. Also, note that price index is 

relatively stable for conventional grocery stores because they have the largest share in 

food retailing and thus have the largest impact on the market price index used for 

normalizing price indexes. Similar stability is observed for the discounter, which might 

be a result of the every-day-low-price strategy adopted there. In contrast to conventional 

grocery and discounter, price indexes in the organic specialty store and the warehouse 

club have shown substantial changes over the weeks. The high-low pricing could be 

responsible for the fluctuation.  

Household Shopping Behavior   Table 3.3 summarizes the household shopping 

behavior and sociodemographic variables discussed above. We use the share of 

expenditure on organic produce and dairy products in the total expenditure on these 

products to measure household preference for organic food. A majority (76%) of 

households spent less than 3% (sample mean) on organic, and we categorize them as 

trivial organic users. While for those households with more than 10% expenditure on 

organic, they are regular organic users, accounting for 8% of the total households. The 
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remaining are referred as occasional organic users. Moreover, the average time between 

shopping visits is 5.95 days, and it differs substantially across households. Finally, we 

measure the household coupon usage as the percentage of items purchased with coupons 

for one household and an average of 8% household purchases are made with coupons.  

Format Loyalty Index   As discussed in the previous chapter, the exponentially 

weighted loyalty variable for household 𝑖𝑖 patronizing retail format 𝑗𝑗 at week 𝑑𝑑 takes the 

form:  

 𝑙𝑙𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑙𝑙𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖−1 + (1 − 𝜆𝜆) 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 (6) 

where 𝜆𝜆 is the smoothing parameter, following Guadagni and Little’s terminology and 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if 𝑖𝑖 visited 𝑗𝑗 in 𝑑𝑑, and 0 otherwise. As shown in equation (6), the loyalty 

variables are weighted averages of the past choices, and the variation of the loyalty 

variables across households reflect preference heterogeneity for particular retail formats. 

In addition, loyalty variables are updated in each week depending on consumer choices in 

that week so that household stationary preference change is reflected.  

As mentioned above, we use the data in 2013 to initialize the price indexes, and 

we start the indexes by setting 𝑙𝑙𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖1 = 1 if household 𝑖𝑖 patronizes format 𝑗𝑗 in the first 

week in 2013, otherwise 𝑙𝑙𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖1 = 0. For the smoothing parameter in the loyalty index, in 

their original paper, Guadagni and Little (1983) first estimated the model with the loyalty 

index replaced by ten dummies indicating the previous ten choices made by the 

household, and they estimated 𝜆𝜆 via fitting an exponential decay curve to the coefficients 

of the above dummy variables. Fader, et al. (1992) proposed an iterative method by linear 

approximating the loyalty index with Taylor expansion. However, most studies have their 
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smoothing parameter conveniently set between 0.7 and 0.9 and make no further attempts 

to refine the parameter. We follow this to avoid the computationally expensive iteration 

procedure, and we choose 𝜆𝜆 = 0.85 to calculate the loyalty indexes. The estimation results 

are robust to the specification of 𝜆𝜆 in the vicinity of 0.85 based on a grid search.  

Results and Discussion 

To test our model specification, we estimate an alternative model without 

household shopping behavior and sociodemographic variables, and perform a log 

likelihood ratio test for model selection. The LR test (test statistic = 386.42, p-value = 0) 

rejects the null hypothesis that coefficients of shopping behavior and sociodemographic 

variables are zero. This is in contrast to Staus (2009)’s claim that the influence of 

sociodemographic variables is small. Further, Guadagni and Little (1983) argued that 

their loyalty indexes can capture much of the preference heterogeneity across households 

and numerous studies applying their loyalty indexes did not control for other household 

characteristics. The test result, however, shows that the loyalty indexes do not fully 

capture household preference and it is necessary to control for other household 

characteristics, including household shopping behavior and sociodemographic status 

when modeling retail format choice. The coefficients estimated from the conditional logit 

model are reported in Table 3.4 and the marginal effects of the explanatory variables on 

the probability of patronizing each retail format are reported in Table 3.5. Our model 

performs well: the predicted probabilities are comparable to the shares of retail format 

visits shown in Table 3.1, though conventional grocery store is slightly overestimated.  

The price indexes have the expected sign. For each retail format, an increase in its 

price index decreases the probability of patronizing that format and increase the 
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probability of patronizing the alternative formats. However, the estimated price index 

coefficients slightly miss the conventional 10% significance level. This may be because 

our price indexes are not able to vary over individuals. By contrast, an increase in the 

loyal index for one retail format leads to increasing probability of patronage that format. 

This result highlights the strong effect of household preference captured in the previous 

purchasing history on household retail format choice.  

The household preference for organic food affects the choice of the retail formats. 

Compared with occasional organic users, trivial users are less likely to choose the organic 

specialty store whereas regular users are more likely to patronize it, other things being 

equal. This finding is consistent with organic specialty stores’ feature of offering a wide 

selection of organic food. The organic preference, however, does not have significant 

effects on consumer choosing conventional grocery. This could be explained by the fact 

that conventional store is the largest retail format to buy food items for all households 

regardless of their organic food preference. The discounter’s efforts in making organic 

food more widely accessible and affordable may contribute to regular organic users’ 

preference for discount stores. Also, a nonlinear relationship could exist between organic 

preference and warehouse club patronage: trivial and regular organic users are less likely 

to shop in this format than occasional organic users. One unique feature of the warehouse 

club is that households need to buy a wholesale quantity of products in the store, and we 

expect this feature is against regular organic users’ pursue of freshness and healthfulness 

embodied in organic food, thus resulting in their less patronage. Further, regular organic 

users are less likely to purchase in the residual format, which could be explained by their 
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limited assortment of organic food and their store images that are hardly associated with 

the premium organic food.  

This result has direct managerial implication for the retailers in their competition 

in the organic food sector. Besides increasing the organic offerings in store to cater to 

consumers’ increasing demand for organic foods, retailers also need to pay attention to 

the retail contexts, which could influence consumer perception about their store format. 

Also, this result is useful for organic producers, processors, and distributors when they 

plan the marketing their organic food, particularly produce and dairy products, through 

different retail formats. Additionally, this result may also suggest that a lack of 

consumers’ understanding regarding the implications of organic food. Since all organic 

food is produced according to the same USDA standard and certified by National 

Organic Program, organic consumers should be indifferent where they buy their organic 

food. Consumer education about organic food and USDA organic programs is needed.  

As the average interval between trips increases, households are more likely to 

patronize conventional grocery stores while less likely to patronize organic specialty 

grocery stores, warehouse clubs, and the residual format. As discussed above that interval 

between trips is used to measure the shopping cost one household faces and given the 

substantially smaller number of the organic specialty store and warehouse club, it is 

intuitive that households with higher shopping cost tend to reduce their cost by 

patronizing the more accessible retail format, that is, the conventional grocery store. 

However, it is surprising to find that longer interval also reduces the likelihood of 

patronage in the residual format, since it is not as difficult to access as the other two 

formats.  
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Among the sociodemographic variables, income has the most significant impacts 

on each format’s patronage probability. Households in the highest income group are more 

likely to shop in the organic specialty grocery store than other households. And the effect 

of income on the patronage of the organic specialty store seems to have a threshold. The 

household income, however, does not substantially affect conventional grocery store 

patronage. Since the conventional grocery store has roughly 60% of the total store visits 

and households with various income levels, have more than half of their grocery 

shopping in this format. Moreover, the higher the income, the more likely to shop in 

warehouse club and less likely in the discounter or residual format. Finally, the remaining 

demographic characteristics on organic specialty store patronage is generally consistent 

with the typical profile of organic users. 

Conclusion 

In this article, we model households’ retail format choice in grocery trips with an 

extended conditional logit model, and we are mainly interested in the role of households’ 

preference for organic food. We find that compared with occasional organic users, 

regular organic users are more likely to patronize organic specialty stores and discount 

stores and less likely in warehouse club and the residual format comprised of a 

convenience store, dollar store, and drugstore. This finding suggests that organic food is 

perceived differently in different retail format, possibly due to the store image associated 

with one format; and consumers’ preference for organic food would affect where they do 

their grocery. Besides, pricing level and loyalty indexes are also important in affecting 

consumer retail format choice. Though the loyalty indexes proposed in Guadagni and 

Little (1983) capture a large proportion of individual preference heterogeneity and 
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change, they do not incorporate all household characteristics reflected in household 

shopping behavior and sociodemographic status, and thus accounting for the impacts of 

these variables on preference is also important.   

A final note concerns the food demand analysis. Given the increasing product 

differentiation in the food sector and the evolving marketing channel, consumer food 

demand can be affected by a wider range of factors besides the traditional economic 

factors and advertising. It is thus important not to ignore the effects of the new factors in 

the demand analysis.  
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Tables 

Table 3.1 Summary Statistics of Retail Format  

Retail format Org. Specialty 
Grocery 

Conv. 
Grocery Discounter Warehouse 

Club Residual 

Visits Share 
(count) 1.8% 59.6% 18.7% 12.2% 7.6% 

Retail Chains 
(count) 13 69 12 6 70 

Store (count) 341 2489 526 47 1493 

UPC (count) 19631 110868 80108 20760 51945 

Food Item (%) 88.5% 77.7% 46.2% 76.6% 41.2% 
Organic Share  
(UPC count) 15.9% 7.7% 4.4% 4.0% 4.2% 

Organic Share 
(Expenditure) 8.2% 2.9% 2.1% 6.1% 3.3% 
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Table 3.2 Product Modules in Basket 

refrigerated yogurt bottled water 

carbonated soft drinks cookies 

low-calorie soft drinks potato chips 

fresh bread frozen Italian entrees 

refrigerated milk bulk ice cream 

canned soup precut fresh salad mix 

fruit drinks fresh eggs 

ready-to-eat cereal frozen novelties 

remaining fresh fruit frozen pizza 

chocolate pasta 
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Table 3.3 Descriptive Statistics of the Explanatory Variables 

Variables Definition Mean 
(SD) 

𝑐𝑐𝑟𝑟𝑎𝑎1 =1 if HH organic expenditure share of produce and dairy 
products is below 3%, 0 otherwise 

0.76 
(0.42) 

𝑐𝑐𝑟𝑟𝑎𝑎2 =1 if HH organic expenditure share of produce and dairy 
products is between 3% and 10%, 0 otherwise 

0.16 
(0.36) 

𝑐𝑐𝑟𝑟𝑎𝑎3 =1 if HH organic expenditure share of products and dairy 
products is above 10%, 0 otherwise 

0.08 
(0.27) 

𝑎𝑎𝑣𝑣𝑎𝑎_𝑖𝑖𝑛𝑛𝑑𝑑 average time interval between grocery trips (days) 5.95 
(2.28) 

𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝𝑐𝑐𝑛𝑛 coupon use ratio (%) 0.08 
(0.12) 

𝑖𝑖𝑛𝑛𝑐𝑐1 =1 if HH income is below $45000, 0 otherwise 0.25 
(0.43) 

𝑖𝑖𝑛𝑛𝑐𝑐2 =1 if HH income is between $45000 and $70000, 0 
otherwise 

0.23 
(0.41) 

𝑖𝑖𝑛𝑛𝑐𝑐3 =1 if HH income is between $70000 and $100000, 0 
otherwise 

0.26 
(0.44) 

𝑖𝑖𝑛𝑛𝑐𝑐4 =1 if HH income is above $100000, 0 otherwise 0.25 
(0.43) 

ℎℎ𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 household size (count) 2.45 
(1.21) 

𝑎𝑎𝑎𝑎𝑒𝑒1 =1 if HH head age is below 40, 0 otherwise 0.05 
(0.22) 

𝑎𝑎𝑎𝑎𝑒𝑒2 =1 if HH head age is between 40 and 64, 0 otherwise 0.59 
(0.49) 

𝑎𝑎𝑎𝑎𝑒𝑒3 =1 if HH head age is above 65, 0 otherwise 0.36 
(0.48) 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 =1 if HH head education is some college or above, 0 
otherwise 

0.55 
(0.5) 

𝑤𝑤ℎ𝑖𝑖𝑑𝑑𝑒𝑒 =1 if HH head is white, 0 otherwise 0.73 
(0.44) 

𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖𝑒𝑒 =1 if single HH, 0 otherwise 0.13 
(0.33) 

Note: Number of households in the sample is 1236. 
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Table 3.4 Conditional Logit Estimation 

 Conv. 
Grocery Discounter Warehouse 

Club Residual 

Alternative Variant Variables 
𝑃𝑃𝑃𝑃 -0.1010 (0.0693) 
𝑖𝑖𝑐𝑐𝑙𝑙 4.0964** (0.0257) 

Alternative Invariant Variables 

𝑐𝑐𝑟𝑟𝑎𝑎1 0.634** 
(0.0956) 

0.6378** 
(0.1015) 

0.5345** 
(0.1007) 

0.7063** 
(0.1083) 

𝑐𝑐𝑟𝑟𝑎𝑎3 -0.1614 
(0.1126) 

-0.0495 
(0.1271) 

-0.3047** 
(0.1252) 

-0.6553** 
(0.1654) 

𝑎𝑎𝑣𝑣𝑎𝑎_𝑖𝑖𝑛𝑛𝑑𝑑 0.0811**  
(0.02) 

0.0596** 
(0.0208) 

0.0304 ǂ 
(0.021) 

0.031 
(0.0222) 

𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝𝑐𝑐𝑛𝑛 -0.4071 
(0.3666) 

-0.0477 
(0.3847) 

0.2118 
(0.393) 

0.57  
(0.4118) 

𝑖𝑖𝑛𝑛𝑐𝑐2 -0.1713 
(0.1318) 

-0.2858** 
(0.1356) 

-0.0933 
(0.14) 

-0.2773** 
(0.1405) 

𝑖𝑖𝑛𝑛𝑐𝑐3 -0.1659 
(0.1242) 

-0.1745 
(0.1284) 

-0.0456 
(0.1318) 

-0.3308** 
(0.1345) 

𝑖𝑖𝑛𝑛𝑐𝑐4 -0.5424** 
(0.1285) 

-0.6187** 
(0.1338) 

-0.3594** 
(0.1367) 

-0.8012** 
(0.1413) 

ℎℎ𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 0.1657** 
(0.0435) 

0.1803** 
(0.0446) 

0.1647** 
(0.0451) 

0.1473** 
(0.0465) 

𝑎𝑎𝑎𝑎𝑒𝑒2 -0.131 
(0.1446) 

-0.1657 
(0.1524) 

-0.0889 
(0.1595) 

0.0661 
(0.1776) 

𝑎𝑎𝑎𝑎𝑒𝑒3 -0.2301 
(0.1583) 

-0.2613 ǂ 
(0.1659) 

-0.1069 
(0.1729) 

0.0316 
(0.1909) 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 -0.1554* 
(0.0924) 

-0.2522** 
(0.0955) 

-0.1953** 
(0.0972) 

-0.1875* 
(0.1008) 

𝑤𝑤ℎ𝑖𝑖𝑑𝑑𝑒𝑒 0.0769 
(0.0901) 

0.0778 
(0.0937) 

0.1636* 
(0.0948) 

0.0755 
(0.0997) 

𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖𝑒𝑒 0.0128 
(0.132) 

-0.005 
(0.1374) 

-0.121 
(0.1449) 

-0.0463 
(0.145) 

𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑑𝑑 -0.0214 
(0.2747) 

0.4492 ǂ 
(0.2853) 

0.3617 
(0.293) 

0.1693 
(0.3101) 

Likelihood -33976.942 
N 248615 

Note: Standard errors in parentheses.  ** and * indicate significant at 5% and 
10%, respectively. 
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Table 3.5 Marginal Effects Estimates 

 
Org. 

Specialty 
Grocery 

Convention
al Grocery Discounter Warehouse 

Club Residual 

Probability 0.0150 0.702 0.1344 0.0930 0.0557 

𝑃𝑃𝑃𝑃1 -0.0015 
(0.001) 

0.0011 
(0.0007) 

0.0002 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

𝑃𝑃𝑃𝑃2 0.0011 
(0.0007) 

-0.0211  
(0.0145) 

0.0095 
(0.0065) 

0.0066 
(0.0045) 

0.0039 
(0.0027) 

𝑃𝑃𝑃𝑃3 0.0002 
(0.0001) 

0.0095 
(0.0065) 

-0.0117 
(0.0081) 

0.0013 
(0.0009) 

0.0008 
(0.0005) 

𝑃𝑃𝑃𝑃4 0.0001 
(0.0001) 

0.0066 
(0.0045) 

0.0013 
(0.0009) 

-0.0085 
(0.0058) 

0.0005 
(0.0004) 

𝑃𝑃𝑃𝑃5 0.0001 
(0.0001) 

0.0039 
(0.0027) 

0.0008 
(0.0005) 

0.0005 
(0.0004) 

-0.0053 
(0.0036) 

𝑙𝑙𝐿𝐿𝑌𝑌1 0.0605** 
(0.0028) 

-0.0431** 
(0.002) 

-0.0083** 
(0.0004) 

-0.0057** 
(0.0003) 

-0.0034** 
(0.0002) 

𝑙𝑙𝐿𝐿𝑌𝑌2 -0.0431** 
(0.002) 

0.8571** 
(0.006) 

-0.3866** 
(0.0048) 

-0.2673** 
(0.0042) 

-0.1601** 
(0.0033) 

𝑙𝑙𝐿𝐿𝑌𝑌3 -0.0083** 
(0.0004) 

-0.3866** 
(0.0048) 

0.4767** 
(0.0059) 

-0.0512** 
(0.0011) 

-0.0307** 
(0.0008) 

𝑙𝑙𝐿𝐿𝑌𝑌4 -0.0057** 
(0.0003) 

-0.2673** 
(0.0042) 

-0.0512** 
(0.0011) 

0.3454** 
(0.0053) 

-0.0212** 
(0.0006) 

𝑙𝑙𝐿𝐿𝑌𝑌5 -0.0034** 
(0.0002) 

-0.1601** 
(0.0033) 

-0.0307** 
(0.0008) 

-0.0212** 
(0.0006) 

0.2153** 
(0.0044) 

𝑐𝑐𝑟𝑟𝑎𝑎1 -0.0093** 
(0.0013) 

0.01  
(0.0074) 

0.0024 
(0.0054) 

-0.0079** 
(0.0038) 

0.0048  
(0.0031) 

𝑐𝑐𝑟𝑟𝑎𝑎3 0.0028* 
(0.0016) 

0.0164 
(0.0123) 

0.0182** 
(0.0089) 

-0.0112* 
(0.0062) 

-0.0262** 
(0.0067) 

𝑎𝑎𝑣𝑣𝑎𝑎_𝑖𝑖𝑛𝑛𝑑𝑑 -0.001** 
(0.0003) 

0.0082** 
(0.0013) 

-0.0013 
(0.0009) 

-0.0036** 
(0.0007) 

-0.0021** 
(0.0006) 

𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝𝑐𝑐𝑛𝑛 0.0036 
(0.0054) 

-0.1168** 
(0.0233) 

0.026  
(0.017) 

0.0421** 
(0.0143) 

0.0451** 
(0.0107) 

𝑖𝑖𝑛𝑛𝑐𝑐2 0.0027 
(0.0019) 

0.0081 
(0.0077) 

-0.0139** 
(0.0052) 

0.0083* 
(0.0048) 

-0.0053* 
(0.003) 

𝑖𝑖𝑛𝑛𝑐𝑐3 0.0024 
(0.0018) 

-0.0023 
(0.0077) 

-0.0016 
(0.0053) 

0.0109** 
(0.0046) 

-0.0094** 
(0.0031) 

𝑖𝑖𝑛𝑛𝑐𝑐4 0.0081** 
(0.0019) 

-0.0003 
(0.0084) 

-0.0103** 
(0.0059) 

0.017** 
(0.0048) 

-0.0144** 
(0.0035) 

(Continued) 
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Table 3.5 Continued 

 
Org. 

Specialty 
Grocery 

Convention
al Grocery Discounter Warehouse 

Club Residual 

ℎℎ𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 -0.0025** 
(0.0006) 

0.0011 
(0.0024) 

0.0022 
(0.0017) 

0.0001 
(0.0014) 

-0.0009 
(0.001) 

𝑎𝑎𝑎𝑎𝑒𝑒2 0.0018 
(0.0021) 

-0.0085 
(0.0118) 

-0.0063 
(0.0079) 

0.0028 
(0.0069) 

0.0103* 
(0.0058) 

𝑎𝑎𝑎𝑎𝑒𝑒3 0.0031 
(0.0023) 

-0.0177 
(0.0125) 

-0.0076 
(0.0083) 

0.0091 
(0.0072) 

0.0132** 
(0.006) 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 0.0026* 
(0.0013) 

0.0114** 
(0.0057) 

-0.0108** 
(0.004) 

-0.0022 
(0.0032) 

-0.0009 
(0.0024) 

𝑤𝑤ℎ𝑖𝑖𝑑𝑑𝑒𝑒 -0.0013 
(0.0013) 

-0.0049 
(0.0061) 

-0.0008 
(0.0043) 

0.0074** 
(0.0035) 

-0.0005 
(0.0026) 

𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖𝑒𝑒 0.0001 
(0.0019) 

0.0129 
(0.0093) 

0.0001 
(0.0063) 

-0.0107* 
(0.006) 

-0.0023 
(0.0037) 

Note: Standard errors in parentheses.  ** and * indicate significant at 5% and 10%, 
respectively.  
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Chapter 4 Relation between U.S. Farmers’ Adoption of Organic Farming and 
Direct Marketing 

Introduction 

The markets for organic food and local food6 have been experiencing substantial 

growth over recent years in the U.S. The total organic sale has reached a record level of 

43.3 billion dollars in 2015, an 11-percent increase from the previous year (Organic 

Trade Association, 2016). A similar trend can be identified for the total sale of foods 

marketed through direct marketing channels, which reaches 8.7 billion dollars in 2015 

(USDA, 2015). The high demand for organic and local food and the price premium they 

command encourage farmers to adopt organic farming and direct marketing practices. As 

of 2014, the number of farms adopting organic farming reached 14,093, covering a total 

land area of 3.67 million acres, and in 2015, 167 thousand farms reported that they 

adopted some direct marketing practices (USDA, 2015). 

Organic food and local food address consumers’ increasing concerns about food 

nutrition, safety, and environmental degradation of the conventional agricultural system, 

and this attributed to their strong growth (Hughner, et al., 2007; Martinez, et al., 2010; 

Nasir and Karakaya, 2014). Moreover, promoting organic farming and promoting direct 

marketing have gradually evolved as important rural development initiatives (Bagi and 

Reeder, 2012). By encouraging farmers to grow organic foods and sell them on the local 

market, it is believed that more food dollars can be kept in the local economy, thus 

benefiting farmers and consumer alike. Also, organic farming prevents the use of certain 

                                                 
6 Although there is no consensus on the definition of local foods, definitions based on market arrangement, 
including direct-to-consumer sales and direct-to-retail/foodservice sales, are well recognized (Martinez, et 
al., 2010). Thus we define local foods as those sold through direct marketing channels. For a more 
comprehensive discussion of the definition of local food, please refer to Hand and Martinez (2010).  
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synthesized fertilizers and pesticides, while direct marketing reduces food supply chains 

and reduces food miles as well. Both have potential environmental benefits.   

These features of organic farming and direct marketing provide justifications for 

policies aiming to promote these two practices among farmers, and the policies play a 

major role in the development of organic and local food systems. As early as 2002, the 

National Organic Program (NOP) was established to regulate organic product 

certification and labeling at the federal level, which is essential for the organic market 

due to the credence attribute nature of organic food. Moreover, the financial assistance 

for organic certification and funding for organic research has steadily increased over each 

of the last three Farm Bills, reaching 57.5 and 100 million dollars respectively in the 

2014 Act (USDA, 2016). It needs to be noted, however, that unlike their European 

counterparts, farmers are not directly subsidized to adopt organic farming in the U.S. 

(Lohr and Salomonsson, 2000). The promotion of local food production and marketing is 

incentivized by numerous programs at the federal and state levels. Notably, USDA’s 

Know Your Farmer, Know Your Food (KYF2)7 provides loans and grants to support 

each step in the local and regional food supply chain. Also, USDA and other federal 

agencies provide local and regional production advice and guidance. At the state level, 

each state has its state-sponsored agricultural marketing program (e.g. Kentucky Proud in 

Kentucky and California Grown in California). Though these programs vary in program 

components, they all aim to capture the local food consumers (Onken and Bernard, 

2010).   

                                                 
7 For more information about this program, please refer to 
https://www.usda.gov/wps/portal/usda/knowyourfarmer?navid=kyf-resources-report.  

https://www.usda.gov/wps/portal/usda/knowyourfarmer?navid=kyf-resources-report
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From a policy perspective, an understanding of what factors affect the adoption of 

organic farming or direct marketing is critical in making effective policies in promoting 

either practice. However, given their overall similarities regarding satisfying consumer 

needs, increasing farm income, and meeting government’s rural development objective, 

there seems to be a gap in understanding the relation between the adoption of the two 

practices among U.S. farmers. A deeper understanding of this relationship could be 

invaluable in coordinating existing policies and programs in promoting the two practices. 

We fill the gap by examining this relationship utilizing farm level data from USDA’s 

Agricultural and Resource Management Survey. We further evaluate the effects of both 

practices on gross farm income.  

The remainder of the article is organized as follows. Section 2 reviews literature 

on adoption of organic farming and direct marketing and introduces the central research 

question and objectives. Section 3 discuss the econometrics methodology, and section 4 

describes the data. Section 5 presents the results and discusses some policy implications. 

Section 6 concludes. 

Literature Review 

Organic farming and direct marketing have drawn substantial research interests in 

recent years. The literature mainly focuses on two topics: 1) identifying factors affecting 

farmers’ adoption of either practice and 2) evaluating the effects of the two practices on 

farm income. The two issues have direct implications for policymakers and farmers alike. 

We briefly review studies on these two items, based on which we further introduce our 

research question and primary objectives. 
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Organic Farming Adoption 

Numerous factors have been shown to affect farmers’ adoption of organic 

farming. Though the demographic profile of organic farmers varies across farm type, 

location and time under study, they tend to be younger, have less farming experience, and 

are more educated than non-organic farmers (Bagi and Reeder, 2012; Burton, et al., 1999; 

Genius, et al., 2006; Kallas, et al., 2010). Additionally, female farmers are also more 

likely to adopt organic farming (Bagi and Reeder, 2012; Burton, et al., 1999). While the 

mechanisms through which sociodemographic characteristics affect organic farming 

adoption remain unclear, some studies suggest that sociodemographic characteristics can 

affect farmers’ information acquisition (Genius, et al., 2006), adoption motivation 

(Peterson, et al., 2012), and risk perception (Bagi and Reeder, 2012), all of which play 

important roles in organic farming adoption. 

In their study of organic land conversion in Crete, Greece, Genius, et al. (2006) 

found that farmers make joint decisions of information acquisitions and organic land 

conversions. A trivariate ordered probit model is used to evaluate whether farmers’ 

decision to gather information, either actively or passively, increases their probability of 

organic conversion. Besides the conventional information sources, Lewis, et al. (2011) 

postulate that farmers may gather information about organic farming from their 

neighbors, which could reduce the uncertainty of organic farming adoption and lower the 

cost of learning. They provide evidence in their study of organic farming adoption among 

dairy farms in Wisconsin with spatial econometrics techniques.  

Moreover, in their duration analysis of vineyard farmers’ organic practice 

adoption in Catalonia, Spain, Kallas, et al. (2010) found that farmers who are willing to 
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preserve the environment and generate employment in the local area are more likely to 

convert to organic farming in a shorter period. The same can be said for farmers who 

have positive attitudes and opinions towards organic farming. They also found risk-

loving farmers are more prone to adopt. With a similar duration analysis technique, 

Läpple (2010) studied Irish stock farmers organic farming adoption. Their main findings 

are also similar: Farmers who express environmental concerns are more likely to adopt 

and less likely to abandon organic farming. Additionally, risk-averse farmers are less 

likely to adopt.  

Among farm characteristics under study, farm size receives the most scrutiny in 

the literature. However, its impact on the organic farming adoption decision is mixed. 

While some studies found evidence that small farms are more likely to convert to organic 

(Bagi and Reeder, 2012; Burton, et al., 1999; Kallas, et al., 2010), others failed to find 

significant effects (Genius, et al., 2006). 

Economic factors, including organic price premium, availability of subsidy, and 

conversion costs are also important in making adoption decisions, despite that farmers 

could have multiple motivations to adopt organic farming besides profit maximization. It 

is established that a high organic price premium and subsidy to organic farmers 

encourage farmers to adopt organic farming whereas high conversion costs discourage 

adoption (Latruffe and Nauges, 2014; Lohr and Salomonsson, 2000; Serra, et al., 2008). 

Direct Marketing Adoption 

In contrast to the global interests in organic farming adoption, research on direct 

marketing adoption are relatively scarce and primarily concentrated in the U.S. Early 

studies mainly focus on the effects of farm and farmer characteristics on sales from direct 
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marketing. Importantly, the geographical closeness to urban areas is found to increase 

direct marketing sales (Brown, et al., 2006; Brown, et al., 2007; Govindasamy, et al., 

1999). This is intuitive since cities have significant demands for products sold via direct 

marketing, and prices also tend to be higher in cities. One major drawback of these 

studies, however, is that all observations in their data are direct marketers, which makes it 

impossible to understand what factors drive farmers’ adoption of direct marketing.  

Monson, et al. (2008) is the first to fill the gap by modeling small fruit and 

specialty product farmers’ choice of direct marketing practice with an ordered logit 

model. They found that large farms are less likely to adopt direct marketing; this might be 

because it is more economical for large farms to choose buyers that can absorb a greater 

share of their production. By contrast, farmers producing high-value crops are more 

likely to adopt direct marketing since high-value producers are more incentivized to 

capture a larger proportion of the total value of their products. Interestingly, farmers 

implementing organic production without USDA organic certification are more likely to 

adopt direct marketing. They argued that consumers preferring organic foods may not 

rely on USDA certification but rather trust local farmers’ organic claims, and this leaves 

organic farmers without USDA certification to choose to sell their products directly to 

consumers.  

Recently, as richer datasets from Agricultural Resource Management Survey 

(ARMS) become available, several studies shed more light on farmers’ adoption of direct 

marketing practice and its effect on gross farm income or sales from direct marketing. 

Detre, et al. (2011) used a double hurdle model to evaluate the effects of farm and farmer 

characteristics on direct marketing adoption and income from it. They confirmed the 
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importance of these factor in determining farmers’ choice and revenue from direct 

marketing. Closeness to metropolitan areas and adoption of organic practices increase 

farmers’ likelihood of adopting direct farming and revenue from direct marketing. 

Uematsu and Mishra (2011) took a different modeling approach and found farm and 

farmer characteristics affect the intensity of direct marketing adoption, but direct 

marketing adoption does not have significant effects on gross farm income.  

Relation Between Organic Farming and Direct Marketing 

In the current literature, farmers’ adoption of organic farming/direct marketing is 

studied in isolation from the adoption of direct marketing/organic farming. It is important 

to recognize, however, that these two decisions need not be independent of each other, 

and farmers may jointly consider the adoption of the two practices. On the one hand, the 

adoption of one method may increase the probability of adopting the other. First, the 

incentives for adopting the two practices are considerably overlapping for farmers. For 

example, both organic farming and direct marketing are proposed to protect the 

environment and reduce adverse effects of farming on the environment. Numerous farmer 

sociodemographic and farm characteristics are shown to have the same qualitative effects 

on farmers’ adoption of the two practices. Also, some consumer demand studies suggest 

that the organic attribute of a food tends to be complementary to the local attribute 

(Connolly and Klaiber, 2014; Gracia, et al., 2014). This complementary relation between 

organic and local attribute may encourage farmers to adopt organic farming and direct 

marketing at the same time.  

On the other hand, the adoption of one practice may reduce the probability of 

adopting the other. First, unlike the first organic farms, organic farms nowadays tend to 
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rely on a portfolio of marketing channels. As the demand for organic foods grows, it is 

expected that organic farms concentrated on the west coast and northeast region would 

employ intermediate channels to distribute their organic foods. Thus organic foods need 

not be local foods sold through direct marketing channels. Importantly, the income of 

farmers who commit to local direct selling is significantly lower than farmers who 

employ multiple channels (Park, et al., 2014; Park and Lohr, 2010), and organic farmers 

may be incentivized to move away from direct marketing channels. Second, although the 

organic and local attribute are largely complementary in the consumer studies, Connolly 

and Klaiber (2014) noted this result differs by state; in addition, Gracia, et al. (2014) 

cautioned about consumer heterogeneity: in their study for a large segment of consumers, 

the complementary relation holds, yet for a small segment of consumers, the two 

attributes actually substitute each other. Furthermore, with the rapid development of local 

food systems and the overlapping implications of local and organic foods, there seems to 

be a trend of “local is the new organic.” Farms which primarily rely on direct marketing 

report substantially lower production under organic certification (Veldstra, et al., 2014).  

In summary, the relation between farmers adoption of organic farming and direct 

marketing remains an empirical issue. The major objective of this article is to examine 

this relationship with data from ARMS. We contribute to the understanding of this 

possible relationship so that policies aiming to promote these two practices can be better 

coordinated. Our second objective is to reevaluate the effects of either practice on gross 

farmers’ income, based on modeling of the two adoption decisions. The answer to this 

question sheds light on the profitability of the two practices on U.S. farms. 
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Model 

Given that U.S. farmers marginally adopt organic farming and direct marketing 

practices, we ignore adoption intensity and model farmers’ adoption of either practice as 

binary choices. Thus, binary choice models, including probit, logit, and linear probability 

models are the natural options. Since we also expect that the two decisions affect each 

other and we are interested in jointly modeling the two decisions, a simultaneous 

bivariate binary choice model serves our purpose. If we choose probit to model each 

decision, for instance, the model can be specified such that 

 𝐿𝐿𝑟𝑟𝑎𝑎∗ = 𝑿𝑿𝟏𝟏𝑏𝑏1 + 𝛾𝛾1𝐷𝐷𝑀𝑀 + 𝑢𝑢 

𝐷𝐷𝑀𝑀∗ = 𝑿𝑿𝟐𝟐𝑏𝑏2 + 𝛾𝛾2𝐿𝐿𝑟𝑟𝑎𝑎 + 𝑣𝑣,  

𝐿𝐿𝑟𝑟𝑎𝑎 = 1 𝑖𝑖𝑓𝑓 𝐿𝐿𝑟𝑟𝑎𝑎∗ > 0, 0 𝑐𝑐𝑑𝑑ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒 

𝐷𝐷𝑀𝑀 = 1 𝑖𝑖𝑓𝑓 𝐷𝐷𝑀𝑀∗ > 0, 0 𝑐𝑐𝑑𝑑ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒 

(1) 

where 𝐿𝐿𝑟𝑟𝑎𝑎 and 𝐷𝐷𝑀𝑀 are dummy variables indicating farmers’ adoption of organic 

farming and direct marketing, respectively. 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐 are vectors of explanatory 

variables accounting for these two adoption decisions and they share some common 

variables. Also, the two residual terms 𝑢𝑢 and 𝑣𝑣 are assumed to follow standard bivariate 

normal distribution. 

However, it is believed that simultaneous models involving limited dependent 

variables as in model (1) are logically inconsistent with non-unique reduced forms and 

they are thus not identified (Maddala, 1983). A conventional way to circumvent this issue 

is to make model (1) recursive by restricting either 𝛾𝛾1 or 𝛾𝛾2 equal to 0. In doing so, it 

implies that one decision is determined exogenously from the other decision, making it 

impossible to evaluate the effects of one practice on the other. 
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A potential solution is to follow Jovanovic (1989) and Butler and Mitchell (1990) 

who note the distinction between non-unique reduced forms and non-unique structure and 

argue that as long as the structure of a model is unique, it can be identified, even though 

there could exist multiple reduced forms. Butler and Picone (1999) further prove that 

model (1) is identified by showing different structures lead to different distributions of 

the outcomes of the endogenous variables. Based on this result, they propose to estimate 

the model in (1) directly with GMM, and the orthogonality conditions they use: 

 𝐸𝐸[𝑿𝑿(𝐿𝐿𝑟𝑟𝑎𝑎 −𝚽𝚽(𝑿𝑿𝟏𝟏𝑏𝑏1 + 𝛾𝛾2𝐷𝐷𝑀𝑀))] = 0 

𝐸𝐸[𝑿𝑿(𝐷𝐷𝑀𝑀 −𝚽𝚽(𝑿𝑿𝟐𝟐𝑏𝑏2 + 𝛾𝛾1𝐿𝐿𝑟𝑟𝑎𝑎))] = 0, 
(2) 

where X  is the union set of 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐 and identification is achieved via excluded 

instrumental variable in each equation.  

We follow this estimation strategy. However, the simultaneous bivariate probit 

model outlined above fails to converge. To overcome this difficulty, we employ linear 

probability models to model each adoption decision while also accounting for the joint 

adoptions. This yields a simultaneous bivariate linear probability model such that: 

 𝐿𝐿𝑟𝑟𝑎𝑎 = 𝑿𝑿𝟏𝟏𝑏𝑏1 + 𝛾𝛾1𝐷𝐷𝑀𝑀 + 𝑢𝑢 

𝐷𝐷𝑀𝑀 = 𝑿𝑿𝟐𝟐𝑏𝑏2 + 𝛾𝛾2𝐿𝐿𝑟𝑟𝑎𝑎 + 𝑣𝑣,  
(3) 

where all the notations have their original meanings. We still use GMM to estimate 

equation (3), and we maintain the same sets of instrumental variables for each equation. 

The orthogonality conditions accordingly change to 

 𝐸𝐸[𝑿𝑿(𝐿𝐿𝑟𝑟𝑎𝑎 − 𝑿𝑿𝟏𝟏𝑏𝑏1 − 𝛾𝛾1𝐷𝐷𝑀𝑀)] = 0 

𝐸𝐸[𝑿𝑿(𝐷𝐷𝑀𝑀 − 𝑿𝑿𝟐𝟐𝑏𝑏2 − 𝛾𝛾2𝐿𝐿𝑟𝑟𝑎𝑎)] = 0. 
(4) 
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The use of linear probability model (LPM) in modeling binary choices is 

debatable in the econometrics literature. We do not aim to offer a thorough discussion of 

the linear probability model; however, we acknowledge some shortcomings of the model 

documented in the literature, mainly heteroscedastic residuals and predicted probabilities 

outside the unit interval (Greene, 2012). The heteroscedastic residual can be addressed 

using heteroscedasticity-robust standard errors, and the LPM can approximate true 

probabilities and give good estimates of marginal effects of explanatory variables on 

response probabilities over a range of explanatory variables (Angrist and Pischke, 2008; 

Wooldridge, 2010).  

The second objective of this paper is to evaluate the effects of the two practices 

on gross farm income. This could be achieved by regressing farm income on the adoption 

of the two practices and other factors affecting farm income, such that 

 𝑙𝑙 =  𝛽𝛽1𝐿𝐿𝑟𝑟𝑎𝑎 + 𝛽𝛽2𝐷𝐷𝑀𝑀 + 𝑿𝑿𝟑𝟑𝑏𝑏3 + 𝜀𝜀. (5) 

A direct estimation of equation (5) with OLS could generate inconsistent and biased 

estimation for 𝛽𝛽1 and 𝛽𝛽2 since adoption of either practice is unlikely to be randomly 

assigned among farmers. Common unobservable variables affecting the adoption of either 

practice and the farm income, when uncontrolled for, are left in the residuals terms, 

causing 𝜀𝜀 to be correlated with 𝑢𝑢 or 𝑣𝑣. This further leads to correlation between 𝜀𝜀 and the 

adoption dummy variables, causing these variables to be endogenous in equation (5). To 

address the endogeneity issue, we replace the adoption dummies in equation (5) with the 

predicted probabilities of adoption of either practice and continue to estimate the equation 

with OLS. In addition, robust standard errors are calculated for inferences.  
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Data 

The main data source is a dataset from the 2012 ARMS, conducted jointly by 

USDA’s Economic Research Service (ERS) and National Agricultural Statistics Services 

(NASS). With a multiphase, multi-frame, and stratified survey design, the ARMS 

provides detailed information regarding the financial conditions, production practices, 

marketing practices, farm characteristics, and operator characteristics of farm businesses 

in the 48 U.S. contiguous states on a yearly basis. We further supplement the ARMS with 

data from the 2012 Census of Agriculture. The census data contains information about 

the agricultural and rural economy on the county level, and the variables we use are the 

county-level numbers of farms adopting organic farming and direct marketing, and the 

number of farmers’ market in a county.  

The 2012 ARMS data offers a unique opportunity to study the possible joint 

adoption of organic farming and direct marketing on U.S. farms since both practices were 

queried in the survey. For organic farming, farm operators indicate whether their 

operations produce organic products according to USDA’s National Organic Program 

(NOP) standards or have acres transitioning into USDA NOP production. However, 

given the low organic farming adoption rate, we do not further differentiate organic 

operations by their USDA certification status8. For direct marketing, two questions are 

relevant: Operators indicate whether they sell their products directly to individual 

consumers, including sales from roadside stands, farmers markets, pick you own, door to 

                                                 
8 In the ARMS data, there are four types of organic production: certified production, production exempt 
from certification, production transitioning to certification, and production according to USDA NOP 
standards but not certified or exempt. The latter two types cannot be sold as organic and thus they do not 
command an organic premium, which could bias downward the estimation of the effect of organic 
production on gross farm income. However, due to their small sizes, the bias should be minimal.  
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door, and Community Supported Agriculture (CSA). Also, operators indicate whether 

they sell products directly to retail outlets, including restaurants, grocery stores, schools, 

hospitals, or other businesses. We combine both types of marketing channels into a 

broader definition of direct marketing. Also, we only include family farms which are not 

run by hired managers in our analysis. After dropping observations with key explanatory 

variables missing, the sample size is 14960.  

As shown in Table 4.1, organic farming and direct marketing are not widely 

adopted among U.S. family farms, with the adoption percentage of 1.84% and 7.17% 

respectively, and even fewer farmers choose to adopt both practices. The Pearson and 

Tetrachoric correlation coefficients suggest that the two adoption decisions could be 

positively correlated. Further, the gross farm income of organic farmers is significantly 

higher than that of non-organic farms whereas the income difference is not significant 

between farms adopting direct marketing and those do not. 

Table 4.2 presents the explanatory variables, most of which are dummy variables 

describing farm characteristics, farm operator sociodemographic status, and practices on 

farms. We choose these variables based on studies we review above and the data 

availability in the ARMS.  

Variables used to explain the adoption of both practices include farm type and 

size, a region where the farm is located, diversification index, use of marketing contract 

and production contract, principal operator’s age, gender, education, main occupation, 

and time spent working off farms. Since our sample covers the entire agricultural sector 

in the U.S., and the adoption of organic farming and direct marketing varies substantially 

across farm type, farm size, and farm region, it is important to control for these factors. 
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Specifically, high-value crops, including fruits and vegetables, are the largest food 

category in the organic sector, and thus farmers producing high-value crops are more 

likely to adopt organic farming. By contrast, the logistic requirements of direct marketing 

may inhibit large commercial farms from adopting direct marketing since they are not 

able to exploit economies of scale. Since organic and local foods are well received in the 

west coast and northeastern regions, it is expected that farms in these areas are more 

likely to adopt the two practices. High-value crops and dairy farms, closely associated 

with organic farming or direct marketing, represent 11.3% and 6.5% of all farms, 

respectively. Large commercial farms represent 44% of all farms. 

Moreover, the use of marketing or production contracts could free farmers from 

selling their produce, thus reducing the likelihood of adopting direct marketing. As 

discussed above, farmers’ attitudes and perceptions towards the two practices can affect 

their adoption decisions; we use farmers’ sociodemographic characteristics to proxy for 

these attitudes and perceptions. The profile of a typical farm operator is 58 years old male 

with at least a high school education. 71% of principal operators report farming is their 

main occupation, and 41% report they spent time working off farms. 

Besides these common explanatory variables in both equations, we include 

whether the farm has internet access and the number of organic farms in the county 

where the farm is located to explain farm adoption of organic practice. The internet 

access on the farm would affect farmer’s information acquisition, which has already been 

documented to increase farm’s adoption. Farm’s adoption could be encouraged by their 

peer farms decisions to adopt organic farming, and we use the number of organic farms in 

the county where a farm is located to measure this peer effect. Note that these two 
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variables are not likely to affect farmers’ adoption of direct marketing, and we also use 

them to instrument for the organic adoption variable in the direct marketing adoption 

equation. Additionally, we use three variables to explain farm’ adoption of direct 

marketing: distance from farm to the nearest major town/city, the number of farms 

adopting direct marketing and number of the farmers market in the county where the farm 

is located. Previous studies have emphasized the importance of farm location in farmer's 

decision to adopt direct marketing. It is expected the closer the farm is to urban areas, the 

more likely are farmers to adopt direct marketing. A peer effect could also exist for direct 

marketing adoption, and we measure this effect with a similar count of farms adopting 

direct marketing on a county level. Farmer's market is one major avenue in direct 

marketing, and it is expected that it has a positive effect on farmers’ direct marketing 

adoption. Because these variables do not tend to affect farmers’ adoption of organic 

farming, we thus use these variables to instrument for the direct marketing adoption 

variable in the organic farming adoption equation. 

Finally, in the gross farm income equation, in addition to the common explanatory 

variables, we substitute the adoption variables with the predicted probability of the 

adoption to evaluate the effects of farmers’ adoption of organic farming and direct 

marketing on gross farm income. Moreover, we also control for farm input, including 

total acres and hired labor hours on farms, and whether farm receives a government 

payment.  

Results and Discussion 

Table 4.3 presents the estimation results of organic farming and direct marketing 

adoption equations, and Table 4.4 presents the estimation result of gross farm income 
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equation. The models perform satisfactorily, and the instruments used in the two adoption 

equations pass the over-identification tests.   

Adoption of Organic Farming and Direct Marketing  

Compared with other crop farms, cash grain farms are less likely to adopt either 

organic farming or direct marketing whereas high-value crop farms are more likely to 

adopt both practices. By contrast, dairy farms are less likely to choose direct marketing 

and more likely to adopt organic farming while the reverse can be said about other animal 

farms. These distinctions reflect the characteristics of different farming enterprises. 

Fruits, vegetables, and dairy products are the most common organic products on the 

market, and farms producing these products are more likely to adopt organic farming. 

Cash grains and dairy products need further processing, which explains that farms 

producing them are less likely to adopt direct marketing. While farm size does not have a 

significant effect on organic farming adoption, it negatively affects direct marketing 

adoption. This result is also expected since larger farms tend to rely on marketing 

contracts to sell a lot of products, and thus they are less likely to resort to direct 

marketing, which could substantially increase marketing cost. Further, the adoption of 

either practice shows similar regional patterns. Compared with the Heartland region, the 

Northern Crescent region in the northeast and the Basin and Range in the west of the U.S. 

are more likely to adopt either practice. This is consistent with the factor that organic 

food and local food are popular in these regions. 

Additionally, farmers’ sociodemographic characteristics also have similar effects 

on farmers’ adoption of either practice. Young and female farmers are more likely to 

adopt both practices. The effect of education on adoption, however, seems to be 
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nonlinear. Farmers’ probability of choosing either method decrease first and then 

increases as the education level increases. As discussed above, sociodemographic status, 

including education, a proxy for farmers’ attitudes and perceptions towards the two 

practices, and the nonlinearity might suggest heterogeneous motivation in adopting these 

practices.    

The diversity of farm enterprises is shown to have a positive impact on the 

adoption of both practices. The use of production contract or marketing contract has little 

effects on the probability of organic farming adoption. However, they tend to decrease 

the probability of direct marketing adoption, especially for marketing contracts. This is 

understandable since the use of marketing contracts makes it unnecessary for farmers to 

engage in direct marketing. 

The effects of many variables discussed so far on adoption of either practice are 

qualitatively identical, and this contributes to the positive correlation between adoption of 

the two practices, indicating farmers’ simultaneous adoption of the two practices. 

However, after controlling for these variables, farmers’ adoption of organic farming 

reduces the probability of adopting direct marketing, and direct marketing adoption 

reduces the chance of organic farming adoption, though the latter effect is small and 

insignificant, suggesting the substitution between the two practices. This may be 

contributed by limited local demand. To exploit the economies of scale and offset the 

high cost of organic farming, many organic farms expand their operations, causing the 

supply to exceed the demand that can be met through local direct marketing channels. 

The local glut then propels farmers to sell to intermediaries with various marketing 

contracts and forgo direct marketing. Gross organic farm income, which is roughly three 
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times that of the non-organic farms as shown in Table 4.1, provides some supports for 

this explanation. Another possible explanation concerns the high cost of direct marketing. 

For small farms, it might be economical to sell locally through direct marketing channels 

while for large organic farms, it would be costly to find direct marketing channels for a 

lot of organic goods. This could drive those large organic farms to wholesalers and other 

intermediaries to lower their per-unit marketing costs. Given the finding, we tentatively 

suggest that policies towards promoting organic farming be more focused on small farms 

since they can meet small local demand by employing various direct marketing channels. 

Additionally, programs supporting direct marketing could also integrate an organic 

component, helping farmers to adopt organic farming and market their organic products 

via direct marketing channels.  

Lastly, access to the internet, to our surprise, has a negative yet not significant 

effect on organic farming adoption. This could suggest that the internet might not be 

farmers’ main venues to acquire information regarding organic farming. As expected, 

there exist peer effects in farmers’ organic farming adoption. And a similar peer effect 

can also be found for direct marketing. The distance to major city/town from farms has a 

negative effect on the probability of farmer’s direct marketing adoption. Finally, the more 

farmers markets in a county, the more likely farmers adopt direct marketing. This result 

can suggest that farmers market may be substantial among all direct marketing channels. 

Effects of Organic Farming and Direct Marketing on Farm Income 

Table 4.4 shows the estimation results of gross farm income. Most of the 

variables included in the model have expected significant impacts on the gross farm 

income. Notably, the income of farms adopting organic farming is 2.16% higher than 
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those who do not, other things being equal. The adoption of direct marketing has a 

slightly negative yet insignificant impact on gross farm income. This result is in contrast 

to Uematsu and Mishra (2012) in which no significant effect on farm income is found for 

USDA NOP certified organic production in 2008. This change may well reflect the 

transition the U.S. organic industry is going through in recent years. The small-scale 

farming typically associated with organic farming might not be able to meet consumer’s 

growing demand for organic food, which could motivate many organic farmers to expand 

their production and sell large quantities of organic products at a premium. The adverse 

effect of direct marketing on farm income, however, is consistent with previous findings 

as in Park, et al. (2014) and Park and Lohr (2010).  

Moreover, farm income varies across farm type, size, and regions. This is 

expected given the heterogeneity of the U.S. farming businesses. The sociodemographic 

status of the operators and the practice on farms also play important roles in explaining 

farm income. In particular, age has a slightly negative impact on farming while the more 

educated the operators, the higher the farm income. Additionally, operator’s primary 

occupation is farming has a positive impact on farm income whereas operator’s time 

spent working off farms has an adverse impact on farm income. These results highlight 

the importance of developing farming professionalism in the agricultural sector.  

Furthermore, the more diversified the farm, the higher farm income. This may be 

contributed by diversified farms capabilities to cope with production or marketing risks. 

Furthermore, having a production contract has a negative effect on farm income whereas 

having a marketing contract has a positive effect on farm income. And the more input 
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usage, labor, and land, the higher the farm income. Finally, government payment also 

increases farm income. 

Conclusion 

Organic farming and direct marketing are gaining momentum in the U.S. due to 

consumer’s growing demand for organic food and local food and also due to government 

policies and programs promoting the two practices since they are considered to be 

important rural development strategies.  This study investigates the relation between 

farmers’ adoption of organic farming and direct marketing practices and evaluates their 

effects on gross farm income. The main finding is that farm’s adoption organic farming 

reduces the probability of adopting direct marketing while the direct marketing adoption 

does not have a significant effect on organic adoption. Also, organic farming adoption is 

found to increase gross farm income while no significant effect can be found for direct 

marketing adoption. We recommend that organic farming policies need to focus more on 

small farms and programs promoting direct marketing incorporate components to help 

farmers adopt organic farming. 

We only evaluate the effects of the two practices on gross farm income. It needs 

to be noted that organic farming’s environmental and health benefits are hard to quantify. 

Though we fail to find a significant effect of direct marketing on farm income, its impact 

on general rural development cannot be ignored. Further research may need to evaluate 

the effects of policies promoting organic farming and direct marketing more thoroughly.  
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Tables 

Table 4.1 Descriptive Statistics of Practice Adoption and Gross Farm Income 

 Non-Direct 
Marketing Direct Marketing Total 

Non-organic 13706 978 14684 (98.16%) 
Organic 181 95 276 (1.84%) 

Total 13887 (92.83%) 1073 (7.17%) 14960 

  
Pearson correlation coefficient: 0.145, p-value 0.00 

 Tetrachoric correlation coefficient: 0.4492, p-value 0.00 
 Gross Farm Income T-statistic (p-value) 

Non-organic 703414 -10.4177 (0.00) 
Organic 2239951  

Non-Direct 
Marketing 730512.1 -0.2257 (0.82) 

Direct Makreting 747936.6  
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Table 4.2 Descriptive Statistics of the Explanatory Variables 

Variables Description Mean 
 (Std. Err.) 

cgrain = 1 if the largest proportion of the farm total gross 
value of sale comes from cash grain, 0 otherwise 

0.384 
(0.486) 

hvc 
= 1 if the largest proportion of the farm total gross 
value of sale comes from high value crops, 0 
otherwise 

0.113 
(0.316) 

mdairy = 1 if the largest proportion of the farm total gross 
value of sale comes from dairy products, 0 otherwise 

0.065 
(0.246) 

oanimal 
= 1 if the largest proportion of the farm total gross 
value of sale comes from other animal products, 0 
otherwise 

0.365 
(0.481) 

intermediate = 1 if the farm is an intermediate farm, 0 otherwise 0.298 
(0.457) 

commercial = 1 if the farm is a commercial farm, 0 otherwise 0.44 
(0.496) 

age principal operator age 58.312 
(12.548) 

male = 1 if principal operate is male, 0 otherwise 0.943 
(0.233) 

edu2 = 1 if completed high school 0.377 
(0.485) 

edu3 = 1 if have some college 0.298 
(0.457) 

edu4 = 1 if completed college or above 0.27 
(0.444) 

occ_farming = 1 if principal operator’s main occupation is farming 0.714 
(0.452) 

offwork = 1 if principal operator report working time off the 
farm, 0 otherwise 

0.416 
(0.493) 

entropy Farm diversification index 0.164 
(0.142) 

prd_contract =1 if the farm has production contract for any 
commodity produced 

0.077 
(0.267) 

mkt_contract =1 if the farm has marketing contract for any 
commodity produced 

0.216 
(0.412) 

region2 =1 if the farm is located in the Northern Crescent 
region, 0 otherwise 

0.126 
(0.331) 

region3 =1 if the farm is located in the Northern Great Plains 
region, 0 otherwise 

0.041 
(0.197) 

  (Continued)   
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Table 4.2 Continued 

Variables Description Mean 
 (Std. Err.) 

region4 =1 if the farm is located in the Prairie Gateway region, 
0 otherwise 

0.125 
(0.331) 

region5 =1 if the farm is located in the Eastern Uplands, 0 
otherwise 

0.078 
(0.269) 

region6 =1 if the farm is located in the Southern Seaboard 
region, 0 otherwise 

0.126 
(0.332) 

region7 =1 if the farm is located in the Fruitful Rim region, 0 
otherwise 

0.163 
(0.369) 

region8 =1 if the farm is located in the Basin and Range 
region, 0 otherwise 

0.035 
(0.183) 

region9 =1 if the farm is located in the Mississippi Portal 
region, 0 otherwise 

0.041 
(0.198) 

internet = 1 if the farm has internet access, 0 otherwise 0.763 
(0.425) 

organic_farm Number of organic farms in the county where the farm 
is located 

13.792 
(35.252) 

distance Distance from farm to the nearest town or city with 
population of 10,000 or more 

24.186 
(23.373) 

ds_farms Number of direct-marketing farms in the county where 
the farm is located 

46.102 
(106.163) 

fmrkt11 Number of Farmers market in the county in which the 
farm is located 

2.86 
(5.771) 

hiredhours Hired labor hours 5145.587 
(113077) 

acres Number of acres operated in farm 1068.118 
(3038.868) 

govtpmt = 1 if farm receive government payment, 0 otherwise 0.553 
(0.497) 
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Table 4.3 Organic Farming and Direct Marketing Adoption Estimation 

 Organic Farming Adoption Direct Marketing Adoption 
 Coef. Robust 

Std. Err.   Coef. Robust 
Std. Err.   

DM -0.005 (0.106)   
Org   -1.763*** (0.547) 
cgrain -0.019*** (0.006) -0.062*** (0.016) 
hvc 0.026 (0.027) 0.279*** (0.027) 
mdairy 0.001 (0.010) -0.047** (0.020) 
oanimal -0.013** (0.005) 0.000 (0.014) 
intermediate 0.000 (0.007) -0.026 (0.016) 
commercial -0.006 (0.009) -0.066*** (0.016) 
region2 0.002 (0.009) 0.057*** (0.013) 
region3 -0.002 (0.005) -0.018 (0.014) 
region4 -0.005 (0.004) -0.035*** (0.008) 
region5 -0.008* (0.004) -0.034*** (0.011) 
region6 -0.002 (0.003) -0.013 (0.010) 
region7 -0.010 (0.007) -0.064*** (0.013) 
region8 0.015* (0.009) 0.061*** (0.022) 
region9 -0.006 (0.004) -0.033*** (0.009) 
age -0.000*** (0.000) -0.002*** (0.000) 
male -0.005 (0.006) -0.043*** (0.016) 
edu2 -0.016** (0.008) -0.071*** (0.017) 
edu3 -0.009 (0.007) -0.046*** (0.016) 
edu4 -0.002 (0.006) -0.006 (0.016) 
occ_farming 0.008 (0.006) 0.041** (0.016) 
offwork 0.001 (0.003) 0.000 (0.007) 
entropy 0.036* (0.021) 0.230*** (0.034) 
prd_contract -0.001 (0.004) -0.011 (0.011) 
mkt_contract -0.003 (0.004) -0.034*** (0.008) 
internet -0.004 (0.003)   
organic_farm 0.0004*** (0.00008)   
distance   -0.0002 (0.00013) 
ds_farms   0.0002** (0.00006) 
fmrkt11   0.002* (0.001) 
_cons 0.056*** (0.021) 0.255*** (0.040) 
N 14960  14960  

Standard errors in parentheses are adjusted for heteroscedasticity. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4.4 Gross Farm Income Estimation 

 Coef. Robust 
Std. Err.   

pre_org 2.163*** (0.768) 
pre_dm -0.002 (0.043) 
cgrain 0.561*** (0.043) 
hvc 0.749*** (0.060) 
mdairy 0.820*** (0.053) 
oanimal 0.224*** (0.042) 
intermediate 0.626*** (0.048) 
commercial 2.627*** (0.051) 
region2 -0.098*** (0.030) 
region3 0.149*** (0.050) 
region4 -0.044 (0.033) 
region5 -0.146*** (0.036) 
region6 -0.213*** (0.031) 
region7 0.230*** (0.035) 
region8 -0.046 (0.058) 
region9 0.087** (0.039) 
age -0.005*** (0.001) 
male 0.270*** (0.040) 
edu2 0.136*** (0.039) 
edu3 0.121*** (0.039) 
edu4 0.221*** (0.039) 
occ_farming 0.124*** (0.044) 
offwork -0.051** (0.020) 
entropy 0.975*** (0.077) 
prd_contract -0.134*** (0.038) 
mkt_contract 0.433*** (0.020) 
hiredhours 0.001*** (0.000) 
acres 0.061*** (0.016) 
govtpmt 0.501*** (0.023) 
_cons 9.422*** (0.095) 
N 14802  

Standard errors in parentheses are adjusted  
for heteroscedasticity. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Chapter 5 Summary and Conclusions  

This dissertation examines three issues in organic food marketing, accounting for 

the dynamic marketing environment the organic food sector is in. Chapter 2 examines 

household demand relations of milk categories differentiated by organic status and brand 

types in the U.S. with an almost ideal demand system approach. The main conclusion is 

that fluid milk, as a whole product group, is an inferior good and asymmetric substitution 

patterns exist between conventional milk and organic milk, and between private label 

milk and branded milk. The implications of these findings are twofold. First, it confirms 

the strong demand for organic milk among the U.S households, and highlights the 

importance of ensuring sufficient supply, especially given the short supply of organic 

feedstock in the industry in recent years. Second, though the private label conventional 

milk has the largest share among all milk types, households tend to substitute it for 

branded milk and organic milk. Given this result, it is advisable that retailers of private 

label milk engage in more product differentiation, including providing organic milk for 

their private labels.  

Chapter 3 answers the question whether households’ preference for organic food 

affect their choice of retail stores in their grocery trips. As organic food becomes more 

widely available in mainstream retailers, which compete in the organic sector, households 

may have different perception about retail formats marketing organic food. Californian 

Households’ choice of retail formats is modeled with a conditional logit model. Main 

results are households’ organic preference affect their retail format choice, and regular 

organic user households are more likely to patronage organic specialty stores and 

discount stores, but less likely to shop in warehouse clubs. Price, consumer loyalty, and 
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household shopping behavior also have the expected effects on household retail format 

choice. This result indicates the importance of the retail sector in the organic food supply 

chain. Also for the organic producers and processors, the choice of retail formats should 

be one of their considerations. 

Chapter 4 explores the linkage between farmers’ adoption of organic farming and 

direct marketing practices, given the increasing popularity of local food among 

consumers and governmental rural development policies promoting direct marketing. The 

understanding of this linkage could facilitate the current government programs and 

policies in promoting both organic agriculture and direct marketing. A bivariate linear 

probability model is estimated to investigate this linkage. The main result is that farmers’ 

adoption of organic farming reduced the probability of their adoption direct marketing 

while the effect of farmers’ adoption of direct marketing on their organic farming 

adoption is negative yet weak. This result indicates a substitution relation between the 

two practice, and thus necessity to integrate programs in promoting organic farming and 

direct marketing. The effects of the two practices on gross farm income are also 

evaluated, and the positive effect of organic farming is found while no statistically 

significant effect for direct marketing. This suggests the economic sustainability of 

organic farming.  
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