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Abstract

This thesis is composed of four chapters and addresses the contracting issue

under strategic experimentation.

The first chapter presents an overview of the thesis and introduces the strate-

gic bandit model, which is commonly adopted in the other three chapters. The

chapter also previews the main results and implications of the thesis.

The second chapter discusses the contracting issue between a principal and a

team of agents where the actions of agents are unobservable to the principal. The

main contribution of this chapter is to fill the gap of strategic experimentation

literature by introducing the free-rider problem in teamwork. The chapter first

deals with the optimal hiring choice of the principal under perfect information.

Since the belief of the state being good decreases if no one succeeds over time,

the paper shows that the principal tends to hire fewer agents in response to the

downward-adjusted posterior belief. When the principal can neither monitor the

agents’ actions nor distinguish the agents who succeed, this chapter shows the

optimal incentivising contract consists of an upfront payment from the agents to

the principal, a bonus to every agent conditioning on success and a stopping time.

Under this contract, the principal can implement first-best experimentation and

incentivise all agents to work until the optimal stopping time.

The third and fourth chapters discuss the financial contracting issue in inno-

vation where an innovator requires external funding from an investor. The third

chapter adopts a “bad news” exponential bandit to study the financial contracting

under adverse selection between the innovator and the investor. The innovator,

owns the innovation project, is privately informed of either a high or low prior

belief of the good state but seeks a large amount of external investment from

the less-informed investor. Experimentation is conducted by the innovator using

internal funding before the external investment. The posterior belief about the

good state increases in the amount of internal funding if no bad news arrives

during experimentation, but the project will be abandoned as long as bad news
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arrives. The chapter shows that the amount of internal funding can be used by

the investor to separate the agents with different priors. Under the unique least-

costly separating equilibrium, the high-prior innovator spends even more than

the low-prior first-best internal funding in order to deter the low-prior one from

mimicking, and the low-prior one remains at his first-best. This chapter enriches

the financial experimentation literature by proposing internal funding as a novel

signalling tool and establishing a Pareto dominating separating equilibrium.

The fourth chapter studies a multi-stage innovation financing problem be-

tween an agent and an investor with asymmetric information on the progress of

the project. The innovation is comprised of two stages where the agent needs

to complete the first development stage in order to proceed to the second ex-

periment stage. The model assumes that the completion of the first stage can

be early or late following a binary distribution, and the arrival of success in the

experimentation stage follows a “good news” exponential bandit. Each period, a

fixed amount of investment is needed from the investor. However, the investor can

not observe nor verify the project progress. The chapter shows that the optimal

incentive-compatible contract consists of differential maximum funding periods in

the event of early and late completion of the first stage respectively and subse-

quent bonuses to the investor conditioning on a success in the second stage. We

prove that the first-best experimentation time is attainable as long as the bonus

of the late completion exceeds that of the early completion, and the difference

between the two bonuses should be confined within a certain range. In the ex-

tension, we consider the case when the first stage completion time is informative

such that an early completion indicates a higher prior in the good state than the

late completion. Under imperfect information, the agent has a stronger incentive

to mimic the early completion if the first stage is completed late as a longer ex-

perimentation time will be granted according the first-best contract. The chapter

proves that the first-best is still achievable under a similar bonus contract but the

difference between the two bonuses becomes smaller. This chapter contributes to

the experimentation financing literature including the information imperfectness

on project progress and multi-stage spillover effects.
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Chapter 1

Introduction

1.1 Overview

Uncertainties are prevalent in the process of innovating. An innovation project

can be promising or not, which is usually unknown to innovators at the begin-

ning. This thesis adopts an exponential bandit to model the experiment process

in innovation and focuses on the agency problems where the principal and agents

involved in experimentation have asymmetric information. Three different agency

problems are addressed in the thesis respectively: the free-rider problem in team

experimentation, the adverse selection problem in financing experimentation and

the imperfect information problem under a multistage project financing. This the-

sis concentrates on the design of an optimal contract that eliminates the relevant

agency problems and optimises the welfare of contracting parties.

The aim of this chapter is to provide an overview of the thesis, which is organ-

ised as follows: Section 1.2 reviews the general exponential bandit game; Section

1.3 and 1.4 introduce the motivation and main contributions of the thesis under

the topic of team experimentation and innovation financing respectively.

1.2 The exponential bandit game

This section provides an introduction of the general strategic bandit model. A

multi-armed bandit represents a sequential game where a player chooses between a

number of arms with unknown returns. The selected arm will randomly generate

a reward follows a probability distribution. A two-armded bandit often involves a

safe arm, which generates a constant relative low return, and a risky arm, which
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randomly generates a relative high return. The player in the two-armed bandit

game faces a trade-off between exploiting the safe arm and exploring the risky arm

in order to maximise his expected payoff. The trade-off between exploitation and

exploration is ubiquitous in real life. For example, people often face the choices

of visiting the regular coffee shop or trying a newly-opened one; researchers can

build work on an existing discovery or explore a novel frontier area.

This thesis adopts the two-armed exponential bandit by Keller et al. (2005)

and Keller and Rady (2010) to model the learning and experimenting process in

innovation. There are two states of the world, either good or bad, which would

impact the expected payoff of the risky arm. If the state is good, the risky arm

is good and will generate a high payoff following the exponential distribution;

otherwise, the state is bad and the risky arm will generate nothing. The state is

chosen by natural and fixed but is unknown the public. The mean of the lump-

sum revenue generated from the risky arm is assumed to be strictly larger than

it from the safe arm. Thus, the players have to strategically allocate resources on

the two arms. Bolton and Harris (1999), Keller et al. (2005), Keller and Rady

(2010) collectively build the seminal strategic experimentation model with the

two-armed bandit. These papers mainly differ in the probability distributions of

the risky arm where different equilibrium results are generated: in Bolton and

Harris (1999), a success arrives following a Brownian process with an unknown

drift, while in Keller et al. (2005) and Keller and Rady (2010), the arrival of either

a success or failure follows an exponential distribution. We adopt the exponential

bandit in the thesis as it is more tractable and has been widely applied in the

innovation literature (Bergemann and Hege, 2005; Horner and Samuelson, 2013).

Keller et al. (2005) and Keller and Rady (2010) both focus on the equilibrium

analysis in a multi-player cooperative game where the free-rider problem exists.

Keller et al. (2005) develops the so-called “good news” model where a good news

is equivalent to a success or a breakthrough of the project. Chapter 2 and 4 both

adopt the “good news” model. Keller and Rady (2010) builds the “bad news”

model to describe the arrival of a failure or breakdown of the project, which is

used in Chapter 3 of the thesis. We choose either the good news or the bad news

arrival that fits best to the specific problem and context of each chapter, and we

will give a thorough explanation later.
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The main difference between the “good news” and “bad news” model is the

evolution of posterior belief updating. Suppose the player is given a prior belief

of the good state as p0. Under the “good news” model, the player exerts effort

and waits for a good news, which indicates a breakthrough or success of the

innovation. Thus, the posterior belief of the good state decreases as long as no

good news arrives. However, in the “bad news” model, an arrival of the bad news

(breakdown/failure) shows the state is bad, which may result in an abandonment

of the project, but the posterior belief of the good state evolves upward overtime

as long as no bad news arrives. The opposite posterior belief updating gives us

opportunities to model innovation under different contexts.

The “good news” model is adopted when the innovation project owner aims

to achieve a breakthrough, but he needs to set up a stopping time after which

the project generates non-positive profit. In Chapter 2, the principal owns the

innovation project and employs a group of agents to explore the unknown state

of the world. The optimal stopping time is determined after which the marginal

expected benefit generated from the project is less than the marginal hiring cost,

which is included in the optimal contract. In Chapter 4, the innovator owns the

project and relies on the external funding from an investor to run experiment.

In order to borrow from the investor, the innovators needs to write an incentive-

compatible financial contract that makes the investor want to participate. As

the innovator is short of funding, she could compensate the investor only if the

project succeeds and a large amount of revenue is generated. Thus, Chapter 4

also uses the “good news” model to describe the innovator’s experimentation in

order to get a breakthrough. The “bad news” model is used to when the project

holder conducts the experiment to check if the innovation involves any fault or

error, which may result a breakdown or failure, before investment. Chapter 3

investigates an optimal financial contract for the innovator to get external invest-

ment under the adverse selection. Given a fixed period of experimentation, the

innovator conducts experiment to guarantee that the project is worth investing

as long as no bad news arrives. Thus, we apply the “bad news” model in this

context. Note that in all these three chapters, pulling the safe arm is equivalent

to take an outside option, which is assumed to generate zero payoff.

3



1.3 Chapter 2: Team experimentation

The free-rider problem is often the key concern of the principal especially when

she cannot fully monitor the actions of team workers. This chapter considers the

free-rider problem in innovation setup when team workers simultaneously con-

duct experiment to learn the unknown state of the world and the outcome of the

project is uncertain. There are several unique features of the team experimenta-

tion model in this chapter, which are absent in the typical asymmetric information

in teamwork research, such as Holmstrom (1982), Manso (2011): the outcomes of

the innovation depends on the unknown state of the world, only when the state

is good, the project can succeed; the principal can neither observe the actions of

the agent nor distinguish the agents who make success; the principal can choose

the number of agents to employ.

This work shows that the principal would equally distribute a reward to each

agent when she cannot tell who contribute to the success under perfect infor-

mation. In this case, the principal extracts the entire surplus and achieves the

first-best experimentation. However, under imperfect information, the actions of

the agents are unobservable to the principal. Assume the primary concern of the

principal is to achieve the first-best level of experimentation, that is, to incen-

tivise the agents to work until the first-best stopping time. We show that the

target can be obtained as long as the principal rewards each agent with a relative

large bonus whenever a success comes, and the value of the optimal bonus exceeds

the revenue of the project. As the principal holds the entire bargaining power,

she can charge each agent a large lump-sum upfront payment and promise the

full-incentivising bonus to each participant conditional on a success, which makes

each agent gain zero payoff in expectation and motivate the team to work until

the first-best stopping time.

This chapter also provides insights on the optimal hiring choice of the prin-

cipal in team experimentation. We endogenize the number of agents to employ

and let the principal to decide the optimal hiring number and stopping time at

the beginning. The result indicates that the optimal hiring choice is negatively

correlated with the optimal experimentation time. Moreover, the time preference

of the principal plays an important role in making the hiring choice: for a relative
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patient principal, fewer agents will be hired initially and the experiment will last

longer. In the extension part, we allow the hiring choice to vary each period and

consider the optimal hiring decision of a myopic principal. Since the belief of the

project being good becomes pessimistic while no body succeeds, the model shows

that the principal tends to hire fewer agents, which means that the termination

of contract and firing may occur during the experimentation.

To summarise, this chapter provides an optimal incentivising contract to elim-

inate the free-rider problem in team experimentation. This work mainly con-

tributes to the recent popular area of strategic experimentation by adding the

study of the free-rider problem in teamwork. Moreover, the results of this chap-

ter can be applied to optimise the hiring choice and the compensation scheme of

innovation projects in real life.

1.4 Chapter 3 and 4: Innovation financing

The third and fourth chapters both focus on the financing of innovation, which

involves an innovator (project owner/borrower) and an investor (financier/lender).

It is motivated from the practical fact that it is very difficult for small innovation

firms to get externally funded, and the main reason might be the information

imperfection between investors and innovators (Hall and Lerner, 2010). These two

chapters aim to design an optimal incentivising financial contract which eliminates

the adverse selection problem on the types of the innovation project (Chapter 3)

and the imperfect information on the project progress (Chapter 4), and hence

improves the financing process.

In Chapter 3, the innovator is privately informed of a high or low prior belief

of the risky project being good and has to signal this information in order to

get funded by the less-informed investor. As the innovator normally covers the

experiment cost, the choice of internal funding spent on the experimentation can

be adopted to as a signal of the confidence in the project. Under the “bad news”

setup, learning speed increases in the amount of internal financing allocated, and

the posterior belief of the good state increases as long as no bad news arrives

during experimentation. External investment from the investor will be triggered

if no bad news arrives until an endogenously fixed deadline.
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This chapter first presents the innovator’s optimal options of the internal

financing under perfect information: in the first-best, the high-type innovator

tends to allocate less internal financing based on the higher prior belief compared

with the low-type innovator. However, under imperfect information, the low-type

would have incentive to mimic to be a high-type by allocating less amount of inter-

nal financing, which results in a welfare loss of the investor. We then consider an

incentive-compatible financial contract that separates the high-type from the low-

type and makes the investor break-even in expectation. By including the amount

of internal financing in the financial contract, the innovator could send useful in-

formation upfront to the investor, which indicates his confidence in the prospect of

the project. Thus, we forms up a high-type optimisation programme by choosing

the amount of internal financing and a revenue share in the event of success sub-

ject to a participation constraint of the investor and the incentive compatibility

constraints of both types. This chapter is able to establish an unique least costly

separating equilibrium under imperfect information which indicates that the high-

type at the optimum would commit to a higher level of internal financing, which

exceeds the amount of the low-type first-best internal financing, and the low-type

remains at the low-type first-best. In other words, the investor can distinguish

between different types of innovators via the signal of internal funding. There

also exist multiple pooling equilibria where cross-subsidisation from the high to

the low is commonly involved, all of which are prove to be Pareto dominated by

the least costly separating equilibrium.

As it is technically challenging to determine a Pareto dominating equilibrium

in the signalling game, this chapter adopts the informed-principal optimisation

approach by Maskin and Tirole (1992) where the innovator has the entire bar-

gaining power and proposes the financial contract to a less-informed investor.

The investor is endowed with a prior belief of the type of the innovator that

with probability of α, the innovator is a high-type; with probability of (1 − α),

the innovator is a low-type. At the beginning, the innovator proposes a menu

of two contracts, including the high-type and low-type optimum, and executes

one of the contracts once the financial contract is signed. We first consider the

so-called low-information intensity equilibrium where each type at the minimum

can get regardless of the prior belief of the investor. The equilibrium allocation
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shows that to prevent the low-type from deviating, the low-type is guaranteed

with the low-type first-best payoff, but the high-type sacrifices a lot. However,

the high-type can do better than the low-information intensity equilibrium by

letting the investor break-even in expectation. In other words, the investor can

make a loss on the low-type contract but is still willing to participate as long

as he earns a non-negative payoff in expectation given a menu of two contracts.

Thus, we form the high-type optimisation problem, which includes the average

participation constraint of the investor, the incentive compatibility constrains of

both types and the constraint that guarantees the low-type at least the low-type-

first-best payoff. Thus, the unique least costly separating equilibrium is realised

from this optimisation program.

Chapter 4 considers another imperfect information problem, which is ubiqui-

tous in a multistage innovation financing, that is the progress of the innovation is

unobservable to the investor. This chapter aims to provide an optimal financial

contract that motivates the innovator to reveal the innovation progress truthfully

and enables a non-negative payoff of the investor. The chapter models a two-stage

innovation where the first-stage involves no experimentation and can be completed

with certainty, but the second-stage requires the innovator to learn the unknown

state of the world. Only in the good state, the innovation project can succeed

and generate a large amount of revenue. The “good news” bandit is adopted to

show the arrival of success in the second experimentation stage. The innovator

needs a constant amount of funding to run the project from the investor until the

first-best stopping time. This chapter shows that the first-best financial contract

should include a bonus transfer from the innovator to the investor at the break-

through and maximum funding times (the first-best stopping times) conditioning

on the completion times of the first stage, under this contract the innovator cap-

tures the entire surplus. However, if the information is imperfect, the investor

can neither observe nor verify the completion of the first stage. The agent may

hide an early completion or pretend to finish the first stage early in order to get a

higher profit. To prevent such deviation, this chapter establishes that with some

variance on the bonus, the above financial contract can still obtain the first-best

and motive a truthful revelation of the innovation progress. In the extension,

this chapter consider a spillover effect across two stages when an early completion
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of the first stage indicates a higher prior belief of the good state. In this case,

the progress of the innovation contains information about the good state, which

would affect the optimal stopping times of the second experimentation stage. The

agent would have a higher incentive to mimic an early arrival due to a higher prior

belief and an extended stopping time. This chapter offers an optimal solution to

eliminate such potential deviation and achieve the first-best, which involves the

similar bonus contract but with some dispersion on the bonus.

Chapter 4 mainly contributes to the multistage innovation financing under

imperfect information, which is a relatively new area. Most of the papers in this

area focus on the moral hazard problem where the optimal contract of the investor

is to incentivise the innovators to work until an optimal stopping time (Green and

Taylor, 2016; Moroni, 2016; Wolf, 2017). However, this chapter focuses on the

problem of imperfect information on the progress of the innovation project and

the design of an innovator-optimum contract that enables a truthful information

disclosure. The results of this chapter shed lights on the design of compensation

scheme especially for the long-term financial contract and help the competent

innovators to get funded more easily under information imperfection.
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Chapter 2

Optimal contracts for team
experimentation

2.1 Introduction

2.1.1 Motivation

Nowadays, uncertainty involved in innovation has drawn much attention and

interest of economic theorists as it may result in the under-provision of research

funding and the early abandonment of research, which are arising from asymmet-

ric information between the worker and project owner (Hall and Lerner, 2010).

In real life, uncertainty is quite prevalent in various industries. For instance, a

pharmaceutical company wants to engage in a brand-new drug field, which re-

quires substantive research and technological development. However, the future

of this area can be promising or not as it relates to various unknown factors, such

as economic background and prospects, intensity of future competition and so on.

Uncertainty also prevails among the discovery of an oil field when workers explore

resources by testing and drilling wells. The field may be abundant or barren,

which is determined by nature but unknown at the outset of the project. In this

paper, we use the unknown state of the world to describe the above-mentioned

uncertainty in innovation. In the good state, a breakthrough will happen with

higher probability; otherwise, in the bad state, the project cannot succeed. As

the owner of the innovation project, the principal would like to explore the un-

known state of the world and optimise his expected payoff. The agents recruited

can gradually learn the state of world through experimentation and acquire the

information for the principal, but they may be less motivated under imperfect
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monitoring. Due to imperfect information, it is difficult for the principal to dis-

cover whether the failure of the project is because of agents’ shirking or the bad

state of the world. Thus, a number of interesting contracting problems arise in

team experimentation, such as how many agents should be employed each period,

how will the principal motivate agents and realise the optimal payoff?

This paper builds on the typical principal-agent framework to study team

experimentation when the actions of agents cannot be fully monitored by the

principal. In the model, there are a group of agents who work together to learn

the state of the world. The arrival of success is random and depends on the state

of world as well as how much effort in total is exerted such that the more effort

is allocated, more likely is success. The model adopts a “good news” exponential

bandit model, so that in a good state success occurs with positive probability,

but the posterior belief of the good project will decrease over time if no success

arrives (Keller et al., 2005). The moral hazard problem arises when the principal

cannot observe the actions of the workers such that some of them may shirk and

free ride on the others, which has the potential to create asymmetric beliefs about

the good state between the two parties. Additionally, due to the imperfect mon-

itoring, the principal cannot even distinguish the agents who make the success,

which makes contracting more complicated. In the seminal teamwork paper by

Holmstrom (1982), the principal creates incentives by generously rewarding each

agent involved in which case the budget is unbalanced. This paper follows Holm-

strom’s motivation scheme to resolve the free-rider issue, that is, giving agents

a substantial reward whenever there is a success. Thus, we apply such a bonus

contract to tackle the two layers of moral hazard problem in our model.

This work starts with a relatively straightforward case when the number of

workers is exogenously set. One might relate it to the practical scenario when

there is a fixed amount of machines available for the production which exogenously

determines the number of workers. The first-best stopping time is defined as

the socially efficient stopping time before which the n-agent-teamwork constantly

generates a positive expected surplus. When the principal cannot identify the

agents who make the success, to motivate each agent work until the first-best

stopping time, our analysis indicates that the principal should equally distribute

the revenue to each agent in the event of success. As there is no credit constraint
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imposed on the principal nor agents, our model allows for an upfront transfer

from the agent to the principal. In this case, the principal can propose a bonus

contract to each agent with an upfront transfer from the agents, which guarantees

a non-negative payoff and the participation of the agents, and the bonus that

equally shares the revenue among the team in the event of success. Under this

bonus contract, the principal is able to extract the entire surplus and implement

the first best stopping time.

However, under imperfect information, the agents have incentive to free-ride

on the others and shirk. This chapter shows that providing a large reward condi-

tioning on success is still an effective way to eliminate the free-rider issue. Section

2.4 derives the minimum bonus required to incentivise agents for the principal.

The approach is to characterise the symmetric agent’s optimal stopping time as-

suming other agents are exerting effort. Then the fundamental issue is to define

an optimal bonus which keeps individual agent working until the first-best stop-

ping time. The result implies that the optimal bonus required should be greater

than the revenue generated from the project if more than one agent is employed,

which matches the statement by Holmstrom (1982) that the principal acts as a

“budget breaker” in teamwork so as to provide incentives. Moreover, the optimal

bonus is increasing in the size of the team, which means that the larger the team

size, the severer the incentivise issue, hence larger bonus should be imposed. In

this case, the principal can optimise his payoff and extract the entire surplus by

charging each agent a larger upfront payment, which balances the participation

constraint of each agent. Intuitively, by signing the bonus contract, the agent

pays a deposit to the principal and will be rewarded with a large bonus as long as

a success arrives. This bonus contract design also appears in Halac et al. (2016a).

Their model focuses on the strategic experimentation problem under imperfect in-

formation between the principal and a single agent where the optimal contract is

characterised by an optimal stopping time and a front-loading transfer. However,

as a major departure from Halac et al. (2016a), this paper explores the optimal

contracts under multi-agent teamwork where the identity of the agents who make

success is unknown to the principal. In the team production, the principal would

incur some other contracting problems, involving how to determine the optimal
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number of workers and identify the worker that contributes to the final success.

The rest of the paper will tackle each problem respectively.

The analysis becomes more complicated when the hiring choice is endoge-

nously determined by the principal. There exists a trade-off between accelerated

experimentation and increased cost. The discrete-time model setting allows us to

analyse the principal’s hiring choice, that is, a profit-maximising principal would

choose an optimal number of agents, n, at the beginning based on the total ex-

pected discounted payoff, which also determines the efficient stopping time. For

simplicity, we first assume that once the optimal n is chosen, the principal should

keep these n-agents as a team until the end. Under perfect information, Propo-

sition 2 shows that the optimal experimentation time decreases in the optimal

number of agents. Intuitively, teamwork shortens the experimenting time and

increases the total success probability. Furthermore, the comparative static study

indicates that principal’s time preference would play an important role in his hir-

ing decision: for an impatient principal, he would choose larger amount of agents

to experiment for shorter periods since future success is less valuable to him; in

contrast, as a sufficiently patient principal he would rather save some effort costs

by employing fewer agents and having a longer experiment.

As an extension, we explore the case where a myopic social planner optimally

chooses his hiring choice over time. In this case, the current numbers employed by

the principal will just affect the success probability this period as the planner does

not take future payoff and belief updating into consideration. As the posterior

belief of the good state decreases over time as long as no good news comes, the

planner hires fewer agents accordingly. In the simulation, we are able to capture a

clear decreasing hiring pattern based on the downward-adjusted belief. Moreover,

there is a steep decrease of the hiring choice if the revenue of the project is very

high. Intuitively, the planner would hire more agents in the first period if the

revenue is higher, whereas if it fails, the posterior belief will drop by a lot, which

results in much fewer agents employed in the second period.

This chapter belongs to the literature of moral hazard in team and proposes an

optimal contract eliminating the free-rider problem. This work fills the gap of this

literature by considering a special imperfect information case where the principal

cannot distinguish who make the success. Moreover, this chapter explores the
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team work under strategic experimentation where there exists uncertainty on the

outcome of the project. The results of the principal’s optimal hiring choice also

provide some implications on the contracting and recruiting strategies in a team

innovation.

2.1.2 Related literature

The paper first contributes to the literature on strategic experimentation. The

research in this area mainly concentrates on the equilibrium analysis where each

player independently allocates resource between the safe arm and risky arm as a

best response to the actions of the others. Bolton and Harris (1999), Keller et al.

(2005), Keller and Rady (2010) built the standard models based on the so-called

two-armed bandit model. These papers mainly differ in the distributions of the

success arrival. The “good news” model by Keller et al. (2005) is the closet to

our experimentation setting. In their model, the breakthrough from the risky

arm arrives randomly and follows an exponential distribution, and the average

payoff generated from the risky arm is strictly larger than that of the safe arm,

so the players would play the risky arm and gradually become pessimistic about

the good state as long as no success arrives. However, there is no moral hazard

problem exists in the above-mentioned paper since either the actions of players

or the outcomes of project are public observable. Under the similar bandit model

setup, this paper focuses on the design of an optimal contract that prevents team

members from free riding.

This chapter adds the uncertainty of the innovation into the area of moral-

hazard-in-teams. Since the seminal paper by Holmstrom (1982), researchers have

proposed various incentive contracts to mitigate the moral hazard problem in

teamwork, such as relational contracts based on mutual trust among team mem-

bers suggested by Baker et al. (2002), Levin (2003) and Rayo (2007), using implicit

contracts where the subjective performance evaluation scheme is implemented

(MacLeod and Malcomson, 1989; Bentley MacLeod, 2003). There are several

papers dealing with the moral hazard issue in the team learning environment.

Bonatti and Horner (2011) claims that endogenously forming a deadline is a feasi-

ble way to get rid of free-riders among a team. However, the principal, who holds
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no bargaining power and acts as an outsider, plays no role in their model. More-

over, the multi-stage innovation in teamwork has been modelled by Moroni (2014).

With a limited liability constraint and varying bonus setup, their result indicates

that the principal tends to employ fewer agents in the early experiment stage as

it gets difficult to suceed later. The employment choice is adjusted upwards in

accordance with the increasing posterior belief based on the “bad news” bandit

model. As a contrast, in our model, the decreasing hiring is driven by the more

pessimistic beliefs of the good state under the “good news” bandit. Additionally,

there is just one stage in our model, which means the project stops as long as

a breakthrough arrives. This setup allows us to discuss the imperfect informa-

tion about the team members who make the breakthrough in a straightforward

paradigm.

Our paper also relates to Halac et al. (2016b), which discusses team experimen-

tation under a contest design. The principal with a fixed budget maximises the

probability of success by appropriately distributing the prize amongst the agents.

In their model, the principal has full information about contestants’ performance

and only values the one makes the first success. However, in our model, how

to mitigate the free-rider issue is the major focus as the principal has imperfect

monitoring over agents’ actions. In addition, the number of agents is exogenous

in their model where neither entry nor exit is allowed.

The next section describes the set-up and environment of the model. Section

2.3 defines the first-best in the team experimentation model. Sections 2.4 discusses

the free-rider problem and derives optimal contracts. Section 2.5 is the extension

and conclusion.

2.2 Environment

The principal in charge of the risky project wants to hire a group of homoge-

neous agents to explore the unknown state of world. Adopting the terminology

from the bandit game literature, exploring the risky project is similar as pulling

the risky arm: under the good state, the risky project is supposed to succeed

with some probability and generates relatively high lump-sum h randomly; in the

bad state the project will never succeed no matter how much effort the agents
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allocate, and the principal will get nothing. The agents can pull the safe arm,

which generates zero payoff as an outside option. To avoid complexity, this model

uses discrete-time such that the success can only be observed at the end of each

period. As a group of homogeneous agents work together on the project, indi-

vidual contribution to the success each period is denoted as λ where λ ∈ (0, 1).

Assume that the arrival of the success follows an exponential distribution in the

good state. Let function f be a total success probability function in the good

state, which depends on the number of agents working per period and the success

arrival rate of individual agent. Define f = 1− e−nλ with the total success arrival

rate λn if the number of n agents exerting effort, and f ranges within (0, 1).

Once hired, the agents choose whether to work each period, that is, we set

agent i’s binary actions as: xi ∈ {0, 1}. He could either pull the risky arm and

explore the project by working where xi = 1, or take the safe arm by shirking where

xi = 0. Let xi,t be agent i’s action at period t. Working on the project each period

incurs a fixed cost c. Then we need to define the aggregate success probability

in the n-agent-teamwork problem given the state is good. As long as one of the

agents makes a breakthrough, the project succeeds, and the experiment stops.

Thus, the aggregate success probability at any time t depends on each agent’s

effort at that period. Let ft denotes per-period aggregate success probability

when efforts are publicly known. In particular, if the principal keeps the same

amount of agents and everyone works all the time, aggregate success probability

any period will be constant. If n is treated as endogenous, which means that the

principal chooses how many agents to hire, f(n) as defined is a concave function

in n, i.e f ′(n) > 0, f ′′(n) < 0, and the per-period aggregate success probability

will be the same so long as the principal keeps these n-agents till the end.

If the actions of the agents cannot be monitored, it is hard for the principal

tell who contributes the most to success. In other words, it is difficult to separate

individual’s contribution to the final breakthrough in teamwork. For instance, a

group of workers are employed to drill a water well. If there is a discovery of water,

they might be equally rewarded by the manager due to asymmetric information

on workers’ effort.
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2.2.1 Timing

Both parties share a common prior belief about the good state β0 ∈ (0, 1).

Period 0 is defined as a negotiation period as no experimentation occurs, thus β0 =

β1. The project will be terminated when the expected payoff of the principal over

the next period becomes non-positive, and the optimal stopping time is defined

as t∗. Therefore, {0, 1, ..., t∗} is the time line of the project. All players discount

future at the same rate δ ∈ [0, 1].

When working on the project, agents gradually learn the state of world or

the quality of project as long as there is no success. They will update beliefs

independently based on the available information. Intuitively, they have two ways

of updating their beliefs: they could learn by experimenting individually, or by

just observing whether the project succeeds in that period. Given that only the

outcomes of the project are public observable, a typical free-rider problem arises

where agents have incentives to take advantages of the information imperfectness

and shirk every period. Therefore, the principal needs take actions to motivate

agents and avoid losing profit.

Figure 2.1: Timing

Figure 2.1 illustrates the timing of the problem where there are n agents exert

effort each period. β0 is the prior belief of the good state at the first period. In
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the good state, with f probability that the project will succeed if n agents choose

to work; with (1− f) probability it will fail in the good state. The second period

of experiment starts conditional on the failure of the first trial, however, the belief

about the good state will be updated downward accordingly to β2. If the project

succeeds, it generates the surplus h−nc in that period. However, the project fails

every time under the bad state as shown in the bottom of the time-line, and the

cost nc is paid every period.

2.2.2 Contracting

The model adopts the typical take-it-or-leave-it contract where the agents

have no bargaining power, and the principal proposes the contract and extracts

the entire surplus under perfect information. The contract is signed upfront and

both parties have to fully commit to the contractual terms. The contract that

each agent gets is denoted by C, which consists of an upfront payment W0, a fixed

bonus b conditional on the success of the project and a specific termination time

t, i.e C = (W0, b, t). Note that W0 can be negative such that an upfront transfer

from the agents to the principal is allowed. In other words, the principal could sell

the project to n-agent at the price of W0 as there is no limited liability constraint.

In practise, the negative transfer can be viewed as a type of sunk cost that the

agents paid to participate the project: workers usually need to spare some effort

and get trained in order to be qualified to operate the machine or conduct the

project. A bonus is a commonly used way of incentivising agents. The size of

the bonus directly affects how long the agent would experiment. If the bonus is

sufficiently large, the agents are willing to work a longer time although the belief

about the good state is decreasing overtime when no success comes. However, the

bonus is negatively correlated with the total payoffs that the principal could get.

Thus, the principal faces a trade-off between providing the bonus and motivating

agents.

Let U0 be the total discounted expected payoff of the agent according to the

contract above as follows:

U0 =
t∗∑
t=1

δt{(1− f(n))t−1β0(f(n)b− c)− (1− β0)c}+W0, (2.1)
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where the term in the big bracket is the expected payoff each period. (1−f(n))t−1

denotes the probability that no success arrives before time t. Conditioning on this

failure probability, β0(f(n)b − c) is the expected payoff at time t when the state

is good, while (1− β0)c is the bad-state payoff.

We use Π0 denotes the discounted expected total payoff of the principal under

the bonus contract:

Π0 =
t∗∑
t=1

δt(1− f(n))t−1β0f(n)(h− nb)− nW0. (2.2)

The principal receives h amount of revenue and rewards the bonus b to everyone

in the team when the project succeeds.

2.2.3 Learning and belief updating

In the n-agent-teamwork, each agent’s belief about the good state is updated

via his own effort as well as the actions of the others if the information is perfect.

Consider a perfect information scenario where the actions and outcomes of the

project are public information. Suppose every one works in the first period, but

no success arrives. A rational agent i adjusts down his belief about the good

state given the others’ working and the outcome. We use Bayes rule to formally

characterise the belief updating process at any date t. Let agent i’s posterior

belief about good state at the beginning of time t conditional on previous failures

be denoted by βi,t, which can be calculated as the following:

βi,t(xi,t−1,x−i,t−1) =
β0Πt−1

s=1(1− f(xi,s, x−i,s))

β0Πt−1
s=1(1− f(xi,s, x−i,s)) + (1− β0)

,

where xi,t−1 denotes agent i’s set of actions before period t such that xi,t−1 =

[xi,1, xi,2, ..., xi,t−1], and x−i,t−1 denotes the other n− 1 agents’ actions till time t,

which is a (t− 1) by (n− 1) matrix. The numerator on the right hand side is the

probability that the success never happens before period t conditional on the state

being good, and the denominator is the unconditional probability of failure, which

consists of two events: the failure conditional on the state being good, which is the

same as the numerator; the failure conditional on the bad state, which happens

with probability 1. If the project succeeds at period t − 1, agent i’s belief about

the good state βi,t will jump to 1 at the beginning of time t.
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Under perfect information, if all agents are motivated to work every period,

the belief about the good state will be updated symmetrically, and omitting the

subscript i, the updated belief at period t will be :

βt =
β0(1− f)t−1

β0(1− f)t−1 + (1− β0)
,

where f is the per-period aggregate success probability of n-agent’s working con-

ditional on the good state: f = 1− e−λn.

If the principal could endogenously determine n at the beginning, per-period

updated belief varies with n, the intensity of experimentation, which takes the

form:

βt(n) =
β0(1− f(n))t−1

β0(1− f(n))t−1 + (1− β0)
,

where f(n) is per-period aggregate success probability expressed as a concave

function of n: f(n) = 1 − e−λn. As n increases, f(n) increases, which triggers a

faster decrease of βt(n). Intuitively, more agents induce an accelerated speed of

learning, given the same times of failure, the belief about the good state would

decrease more quickly.

The next section will explore the efficient stopping time on the equilibrium

path and the first-best policy.

2.3 First-best policy

2.3.1 Socially efficient stopping time

In this section, we consider a benevolent social planner whose goal is to opti-

mise the surplus of the risky project. Assume n is exogenously fixed and remains

constant. Given n, the socially optimal level of experiment requires all these n

agents work till some point as long as the marginal expected surplus from experi-

menting dominates that from giving up. In other words, the experiment ceases as

soon as the marginal surplus becomes negative or a success arrives, so the social

planner specifies an optimum stopping time to terminate the experiment. Note

that we apply the same methodology as Halac et al. (2016a) in order to solve

the first-best stopping time. Define this efficient stopping time as t∗ before which

experimenting will always be profitable.
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As all n agents are supposed to work before this efficient stopping time, the

per-period aggregate success probability conditional on the good state will be

identical. At any time period t the belief of the good state will be updated

from previous t − 1 times’ failure, defined as βt. Let st be the expected surplus

from team experimentation at time t given that all agents work, expressed as:

st = βt[f(h − nc) − (1 − f)nc] − (1 − βt)nc = βthf − nc. On the other hand,

if none of the agents work, i.e ∀i ≤ n, xi,t = 0, f = 0, so st = 0. Therefore, the

social planner wants to set up an efficient stopping termination time before which

the marginal surplus of team experimentation is non-negative:

t∗ ∈ maxt {t : t ∈ Z | βthf − nc ≥ 0}

where βt =
β0(1− f)t−1

β0(1− f)t−1 + (1− β0)
.

Solving for the efficient stopping time, we get:

t∗ = 1 + b
log( nc

fh−nc
1−β0

β0
)

log(1− f)
c, (2.3)

where f is the per-period aggregate success probability of n agents’ working condi-

tional on the good state, and we apply the floor function in order to be consistent

with the discrete-time setting. As indicated in Equation 2.3, t∗ decreases in the

effort cost c and increases in the revenue h. Intuitively, if it is more costly to

hire an agent, the planner would save the cost by shortening the experimentation;

if the revenue generated from the success is higher, the planner will extend the

experimentation for few more periods.

2.3.2 Optimal contract under perfect information

As a group of agents work cooperatively on the project, they share the out-

come of the project but their individual contribution cannot be separated. The

breakthrough of the project should be associated with the collective effort of all

the team workers. Thus, the planner has to reward everyone in the case of success.

Suppose the planner could perfectly monitor agent’s actions, so the agents have

no chance of shirking. This section determines an optimal reward that should

be large enough to motivate everyone to work till the first-best stopping time is

reached.
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The planner’s problem is to achieve the socially efficient surplus, which is

equivalent of searching for a cut-off posterior belief below which the planner wants

to terminate the project. So the cut-off β
∗
t is formally calibrated as the following:

βtf(n)h− nc ≥ 0→ β
∗
t =

nc

f(n)h

Under perfect information, the actions of the team workers can be fully mon-

itored by the principal. If the agent shirks, he will get the outside option zero

payoff as there is no punishment specified in the contract1. Under perfect informa-

tion, their belief about the good state will be updated symmetrically if all workers

are rational and choose to work. They are willing to work jointly on this project

as long as the expected payoff is greater than the outside option zero. Define their

cutoff belief as β∗t below which agents will shirk and choose the outside option.

Therefore, each agent’s problem is solved as follows:

βtf(n)b− c ≥ 0→ β∗t =
c

f(n)b
.

Thus, as long as β
∗
t ≥ β∗t holds, agents will be fully incentivised to work until the

cutoff belief is reached. Solve the inequality equation β
∗
t ≥ β∗t , we can determine

a minimum bonus needed to motivate the agents, which is h
n
. Thus, each agent

gets a share of the revenue in the event of success.

Here we formally write down the optimisation programme of the social planner

subject to the participation constraint of the agent:

minimise
b

β
∗
t ≥ β∗t (b)

subject to U0 ≥ 0,

where U0 is the total expected payoff of the agent expressed in Equation 2.1. Solve

the problem, we just let U0 = 0 and choose a minimum reward.

Proposition 1 Under perfect monitoring, with a given number of workers n,

the planner would propose an equal sharing contract to implement the first-best

when the contribution of individual agent cannot be fully separated such that

C = (W0,
h
n
, t∗), where t∗ = 1 + b

log( nc
fh−nc

1−β0
β0

)

log(1−f)
c, and W0 = −

∑t∗

t=1 δ
t{(1 −

f(n))t−1β0(f(n)h
n
− c)− (1− β0)c}.

1Assume the agents can always walk away and choose their safe arm (the outside option).
Thus, we cannot enforce a punishment in the contract.
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The above proposition indicates that to achieve the first-best stopping time the

social planner would equally distribute a share of the revenue to each agent when-

ever the project succeeds, which amounts to h/n. According to the participation

constraint of the agent, W0 is negative, which means there is an upfront payment

from each agent to the planner. In this case, the planner can extract all the

surplus, and the first-best experimentation time can be achieved.

2.3.3 Optimal hiring choice

The social planner cares not only about the efficient stopping time but also

the size of the total surplus. If the planner is allowed to determine the optimal

n and acts like the principal, what would be the optimal hiring choice? The

answer is not transparent since there exists a trade-off when making the hiring

decision. Recruiting more agents shortens experimentation time and increases the

probability of success; however, it costs more.

The following determines the optimal hiring choice via the discounted expected

total surplus S(n) at the initial period. Let st(n) be the expected surplus if no

success arrives before t when hiring n agents, where n is constant over time. f(n) is

defined as the per-period success probability when all these n-agent are supposed

to work the entire time, so f(n) is same across time. Then we express st(n) as

follows:

st(n) = δt[β0(1− f(n))t−1 + 1− β0](βthf − nc),

which consists of two parts: the probability that the project does not succeed

before period t, referring to the first term, and the marginal surplus based on the

updated belief as the second term. To further interpret the surplus we substitute

βt according to its definition and make some rearrangement:

st(n) = δtβ0(1− f(n))t−1(fh− nc)− δt(1− β0)nc,

where the first term could be interpreted as the expected payoff conditional on the

previous t−1 times’ failure in the good state , and the second is the expected payoff

in the bad state. At period 0, taking account of the total expected discounted
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surplus over the entire experiment, denoted as S0(n):

S0(n) =
t∑
t=1

δt(1− f(n))t−1β0(f(n)h− nc)− δt(1− β0)nc

=
t∑
t=1

δt(1− f(n))t
β0(f(n)h− nc)

1− f(n)
− δt(1− β0)nc

=
δ(1− f(n))[1− δt(1− f(n))t]

1− δ(1− f(n))

β0(f(n)h− nc)
1− f(n)

− δ(1− δt)
1− δ

(1− β0)nc.

The social planner could get the optimum size of surplus by maximising the

total expected discounted surplus; formally define his optimisation problem as

follows:

n∗ = arg max
n
{S0(n) =

δ(1− f(n))[1− δt∗(1− f(n))t
∗
]

1− δ(1− f(n))

β0(f(n)h− nc)
1− f(n)

− δ(1− δt∗)

1− δ
(1− β0)nc},

where t∗(n∗) = 1 + b
log( nc

f(n)h−nc
1−β0
β0

)

log(1−f(n))
c. In this case, the optimal stopping time is a

function of the optimal hiring choice n∗.

Proposition 2 The optimal stopping time decreases in the optimal number of

agent hired.

Proof. See Appendix.

Intuitively, if the planner hires more agents, the total success probability in-

creases, which gives rise to a faster learning speed. Thus, the experimentation

will last for a shorter period of time.

2.3.4 A simple example: one versus two

Here we present a simple example to show the changes of the surplus corre-

sponding to employing an additional agent. Thus, we compare the total surplus

generated by having one agent working for two periods versus two agents working

for just one period. Assume that the stopping time is determined by the first-best

stopping rule in both cases such that t∗(1) = 2, t∗(2) = 1.

Focusing on the success probability function solely, one might think that hiring

n∗ agents to work t∗ periods is equivalent to hiring a sufficient large number of
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agents to finish the project within just one period as the same success probability

might hold. In the case of one versus two, hiring just one agent to work two periods

gives the same success probability as hiring two agents to work one period, i.e.

f(1) + [1 − f(1)]f(1) = f(2). However, these two choices are not equivalent in

terms of the total surplus received when taking accounting of the belief updating

and discounting.

Let S0(1) and S0(2) denote the total expected discounted surplus in the above

two cases accordingly:

S0(1) = δ(β0f(1)h− c) + δ2{(1− f(1))β0(f(1)h− c)− (1− β0)c},

S0(2) = δ(β0f(2)h− 2c).

Then we take difference of S0(2) and S0(1):

S0(2)− S0(1) = δ[β0(f(2)− f(1))h− c]− δ2{[1− f(1)]β0(f(1)h− c)

− (1− β0)c},

where the first term denotes the discounted marginal benefit of hiring one more

agent, and the second denotes the discounted marginal benefit of extending the

experiment for one more period. To make the hiring decision, principal basically

do the revenue-cost-comparison. If the increased expected revenue dominates the

cost increase, the principal will hire two agents. Otherwise, hiring one agent is

preferable.

Particularly, when δ = 1, S0(2) − S0(1) = −β0f(1)c < 0, having one agent is

preferred. An extremely patient principal does not mind delaying the experimen-

tation and prefers hiring just one agent in order to save some effort cost. Since

β0f(1) is the chance of success with one agent in the first period, so −β0f(1)c

could be interpreted as the amount of cost saved if the project succeeds in the

first period with just one agent. However, when δ approaches closely to 0, the

principal is extremely impatient, the difference between two choices gets close to 1.

Intuitively, when the future payoff values almost nothing to the planner, he wants

the success as soon as possible, thus the principal may employ an extra agent

to end the experiment within just one period. We can conclude in the following

result from this simple exercise.
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Result 1 The social planner’s hiring decision can largely be altered by his time

preference. For an extremely patient planner, he tends to hire as fewer agents as

possible, presumably, just one if he is patient enough and delay the experimenta-

tion. On the other hand, an extremely impatient principal would in general hire

more agents in order to accelerate the experimentation and achieve the success as

soon as possible.

2.3.5 Simulation

Figure 2.2 shows the evaluation result: n∗ = 60 and t∗ = 1 when β0 = 0.5 and

δ = 0.052 . Given β0 = 0.5 the principal believes that this risky project has the

prior belief of 0.5 to be in the good state, so it’s worth experimenting3. After the

first-period failure, the principal would become very pessimistic about the state

of the world. It is no longer worth experimenting given updated posterior belief.

The discount factor is set to be 0.05 such that the principal is very impatient and

prefers to complete the project as quickly as possible.
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Figure 2.2: Optimal hiring choice of an impatient principal (δ = 0.05)

Figure 2.3 evaluates the case when the principal holds a sufficient large discount

factor, set δ = 0.95, then n∗ = 17 and t∗ = 5, controlled for other parameter

values. As the principal values future almost as much as present, he would hire

fewer agents to experiment for more periods.

2Note that the optimal results of n and t are the local optimum, whereas, the global optimum
can be obtained by solving the total surplus function, which is left for future research.

3Parameters values are chosen to insure that the principal has the incentive to start the
project, which means β0f(n)h−nc > 0 holds. Thus, when n ∈ Z+, β0 = 0.5, δ = 0.05, c = 0.03,
λ = 0.02, h = 10.
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Figure 2.3: Optimal hiring choice of a patient principal (δ = 0.95)

2.4 Free-rider problem

This sections considers an optimal contracting under imperfect information

about the actions of the agents. Assume the principal only observes the outcome

of the project each period rather than the actions of each agent. Additionally,

the principal could not distinguish each agent’s contributions to the success. Al-

though the agents cannot observe the others’ actions, the progress of the project,

whether it succeeds or not, is known to them. Thus, once one of them makes

a breakthrough, others could just be a free-rider by claiming the reward. If no

incentive-compatible contract is imposed, all the agents will be reluctant to exert

effort, which impairs the welfare of the principal. With the number of agents n be

exogenously fixed, the principal aims to propose an optimal contract to motivate

all the agents to work until the socially efficient stopping time t∗. According to

Holmstrom (1982), the principal could prevent the free-rider problem by “break-

ing” the budget: team members will be provided with a certain revenue share only

if the first-best level of total production is achieved. Otherwise, the principal could

even deprive the entire output from team workers as a serious punishment. Such

a non-balancing budget strategy is theoretically proven to eliminate the free-rider

problem and could be enforced by various types of contracts.

First, we apply the bonus contract, C = (W0, t
∗, b), where the principal offers

b as a reward to every team member once the project succeeds, t∗ is the socially

efficient stopping time, W0 is an upfront transfer between the agent and principal,

which ensures the participation constraint is satisfied and binding, such that W0 =

−
∑t∗

t=1 δ
t{(1− f(n))t−1β0(f(n)b− c)− (1− β0)c}, which is negative. To join the
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teamwork, each agent needs to pay the principal W0 at the beginning, and in the

event of success, each agent can get compensated by the bonus b.

Second, we need to find out an optimal b∗, which removes the free-rider problem

and provides each agent incentive to work until the social efficient termination time

t∗. Each agent will keep on exerting effort so long as the expected payoff from

working dominates that from shirking. Suppose for each agent, t is the optimal

stopping time which solves agent’s maximisation problem as a best response to

others’ working behaviour. Under the bonus contract above, an agent’s maximum

stopping time t is characterised as the following:

t = maxt {t : t ∈ Z | βtbf(n)− c ≥ βtbf(n− 1)}

where βt =
β0(1− f(n))t−1

β0(1− f(n))t−1 + (1− β0)
,

where the left hand side of inequality equation denotes the expected payoff from

working given the other agents are working this period, and the right hand side

denotes the expected payoff from free-riding at period t holding updated belief

from previous t− 1 time’s failure. Solving for the optimal stopping time, we get:

t = 1 + b
log( c

(f(n)−f(n−1))b−c
1−β0

β0
)

log(1− f(n))
c.

We then determine an optimal bonus by solving the inequality equation: t ≥ t∗,

where t∗ is the socially efficient stopping time. The result is as follows:

Proposition 3 When b ≥ γh, each agent will work until the socially efficient

stopping time t∗, such that t ≥ t∗ always holds for any n > 1, where γ =
f(n)/n

f(n)−f(n−1)
> 1. Thus, the minimum reward is b∗ = γh.

Proof. See Appendix.

The above proposition indicates that the smallest reward needed to achieve

the socially efficient stopping time is γh under the imperfect information. In other

words, γ is the minimum share of the revenue needed to motivate effort until t∗.

As the parameter γ > 1, it indicates that the average success probability always

exceeds the marginal success probability in n-agent teamwork for n > 1, which is

followed from the concavity of the function f . In this case, the principal needs

to pay more than the total revenue to every one as long as the project succeeds.
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However, the contract is signed in the sense that there is an upfront transfer from

the agents to the principal, which is equivalent to sell the project to each agent.

The principal in this case acts as an outsider who distributes a relative high bonus

to each agent whenever someone succeeds. As both parties are supposed to be

fully committed to this long-term contract, agents are willing to sign the contract

and work for the principal as long as the total expected payoff is non-negative.

Corollary 1 Under single-agent-experimentation, the principal should reward the

agent h if the project succeeds when the agent’s action is unobservable.

Proof. When n = 1, γ = 1. For b ≥ h, following the proof of Proposition 3,

we could induce: t ≥ t∗. Moreover the equality holds whenever b = h, which

is consistent with the result in the single-agent-experimentation model by Halac

et al. (2016a).

2.4.1 Equilibrium analysis

Given the optimal contract C = (W0, t
∗, γh), this section discusses the equilib-

rium behaviour of the agents if the others’ actions are unobservable. In particular,

we want to answer whether for any agent regardless of the actions of the others,

working each period dominates shirking. If so, working can be proven as an unique

equilibrium.

Proposition 4 Under the contract C = (W0, t
∗, γh), there exists an unique equi-

librium where each agent chooses to work until the first-best stopping time t∗ re-

gardless of the actions of the others as long as no success arrives.

Proof. See Appendix

The above proposition shows that the agents will always work under the op-

timal contract no matter what the actions of the others are. On the one hand,

we show that if all the others work, the best response of the agent is to work.

Intuitively, within the first-best stopping time t∗, if all the others work, the agent

will always find work to be the best response as working increases the total suc-

cess probability and results in a higher expected payoff. On the other hand, in an

extreme case, if all the others shirk, the best response for this agent is to work.

Given the bonus contract, the agent is willing to work alone until the stopping
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time, denoted as t̃, which is longer than the teamwork-stopping-time t∗. Thus,

within time t∗, the agent works as long as no success arrives. Moreover, if some

of the agents shirk occasionally, the agent still prefers working. Intuitively, if

someone shirked in the past, the agent’s posterior belief of the good state would

increase, which gives rise to a higher expected payoff of working this period. If

someone shirks this period, the agent would have more incentive to work since the

marginal contribution to the total success probability is greater when fewer agents

are involved since f is concave in n. Thus, working is proven to be a dominant

strategy of the agents given all those three scenarios.

2.5 Extension

In Section 2.3.3, we endogenise the planner’s hiring choice n and let the plan-

ner maximises the total expected discounted surplus by optimally choosing the

number of workers to hire and the stopping time simultaneously at the beginning.

As an extension, this section examines the optimal hiring choices of a myopic

planner when n is allowed to vary each period. The myopic planner would make

the hiring choice each period to optimise the expected payoff of the current pe-

riod, instead of taking accounting of the expected payoff in the future. Thus, the

planner would not commit to a long-term stopping time. As long as the expected

payoff in the current period is non-negative, the planner will continue hiring and

making short-term contracts with agents according to the differentiate optimum

hiring choices each period.

We write down the optimisation of the programme of the planner as follows:

maximise
nt

st(nt) = βtf(nt)h− ntc

subject to st(nt) ≥ 0,

where βt is the updated posterior belief based on the hiring history and previ-

ous outcomes of the project, and the constraint is to guarantee a non-negative

expected payoff of the planner. The first order condition indicates that:

f ′(nt) =
c

βth
⇒ n∗t = b1

λ
ln
λhβt
c
c,

where n∗t monotonically increases in βt and h but decreases over time. The planner

hires more agents if the posterior belief of the good state is greater or the rev-

enue is higher. As long as as no success comes, the posterior belief decreases over
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time under the “good” news model. Thus, the optimal hiring choice of the my-

opic planner monotonically decreases over time in accordance with the downward

adjusted posterior belief.

2.5.1 Simulation

Due to the decreasing feature of the optimal hiring choice, in the last period

we would expect the social planner to hire at least one agent, so assume that

n∗T = 1 when T is the last period of experimentation. Under this assumption,

we run several simulations to check the above optimal hiring choice, and several

features can be explored here.

First, the number of agents hired decreases over time. During the process

of innovation, the principal values the chance of breakthrough but also the cost

of hiring. The decreasing number of agent employed coincides with the growing

pessimistic belief about the good state. More agents would be hired initially if the

revenue is higher. There would be a sharp decrease of the optimal n∗ especially for

higher h after the first failure, which is mainly driven by the intensively downward

adjusted belief. As in Figure 2.4, for h = 80, n∗ dropped by 50 if it fails at the

first period. In comparison, for h = 20, n∗ only dropped by 20 after the first

failure. Thus, n∗ is flatter when the project revenue is smaller.
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Figure 2.4: Optimal hiring choice for different lump-sum h controlled for other
parameters, i.e. (λ, c, δ, β0) = (0.02, 0.05, 0.5, 0.8).

Secondly, the principal’s time preference impacts on the optimal hiring choice.

With a higher discount factor, the would hire fewer agents and runs the experiment

longer, which is similar as the fixed-n case. In the far right of Figure 2.5, when
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Figure 2.5: Optimal hiring choice for different time preferences δ controlled for
other parameters, i.e. (λ, c, h, β0) = (0.02, 0.05, 5, 0.8).

δ = 0.9, the principal values future as much as the present, the total discounted

present value of the project (Vt) is the highest compared with the smaller discount

factors. The monotonic decreasing tendency of the optimal hiring choice still holds

since it is driven by the growing pessimistic posterior belief about the good state.

2.6 Conclusion

In conclusion, this paper addresses the contracting issue under the innova-

tive project holder and a team of agents where endogenous learning is required

to explore the nature of the state. To motivate the agents, the principal would

require an upfront transfer by the agent and give a large bonus in the event of

success. As long as the agents find shirking unprofitable, working can be proven

as a dominant strategy. The principal would be able to implement the first-best

stopping time under this contract. We also show that various decisions should be

made contingent on the posterior updated belief about the good state. In general,

fewer agents will be employed as long as the posterior belief decreases over time.

Moreover, the time preference of the principal plays an important role in making

the hiring choice: for a relatively patient principal, less agents will be hired ini-

tially and the experiment will last longer. In all, this paper proposes an optimal

contract for team experimentation under imperfect information and offers recom-

mendations on the optimal hiring choice in innovation. Team experimentation

with heterogeneous agents and the limited liability constraint are left for future

research.
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Appendix

2.A Proof for Proposition 2

Lemma 2 f(x)
x

= 1−e−λx
x

is monotonically decreasing in x, ∀x ∈ R+.

Proof. Taking derivative respect to x:

d1−e−λx
x

dx
=
e−λxλx− (1− e−λx)

x2

= −e
−λx(eλx − λx− 1)

x2

According to the definition of the exponential function:

eλx =
∞∑
k=0

(λx)k

k!
= 1 + λx+

(λx)2

2
+

(λx)3

6
+

(λx)4

24
+ · · ·

> 1 + λx

Thus,
d 1−e−λx

x

dx
< 0 holds.

As t∗ = 1 + b
log( nc

f(n)h−nc
1−β0
β0

)

log(1−f(n))
c, substituting f(n) = 1 − e−λn into the denomi-

nator and making some rearrangement:

t∗ = 1 + b
log(f(n)h

nc
− 1) β0

1−β0

λn
c.

For n ∈ Z+, according to the lemma above, f(n)
n

decreases in n. As the denomi-

nator of t∗ increases in n, t∗ decreases in n can be proven.
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2.B Proof for Proposition 3

We solve the inequality relationship: t ≥ t∗ by substituting the expression of

t and t∗ such that:

1 + b
log( c

(f(n)−f(n−1))b−c
1−β0

β0
)

log(1− f(n))
c ≥ 1 + b

log( nc
f(n)h−nc

1−β0

β0
)

log(1− f(n))
c

log( c
[f(n)−f(n−1)]b−c

1−β0

β0
)

log(1− f(n))
≥
log( nc

f(n)h−nc
1−β0

β0
)

log(1− f(n))

log(
c

[f(n)− f(n− 1)]b− c
1− β0

β0

) ≤ log(
nc

f(n)h− nc
1− β0

β0

)

c

(f(n)− f(n− 1))b− c
1− β0

β0

≤ nc

f(n)h− nc

[f(n)− f(n− 1)]b− c ≥ f(n)

n
h− c

[f(n)− f(n− 1)]b ≥ f(n)

n
h

b ≥ f(n)/n

f(n)− f(n− 1)
h.

Since f(n) = 1 − e−λn, f ′(n) = 1 + λe−λn > 0 and f ′′(n) = −λ2e−λn < 0,

∀n ∈ Z+. Thus, f(n) is concave in n. Apply the concavity property we get the

following:

f(n)− f(n− 1)

n− (n− 1)
<
f(n)− f(0)

n− 0
,

where f(0) = 0. Thus, for any n > 1, f(n)
n

> f(n) − f(n − 1) holds as f(n) is

concave in n. Let γ = f(n)/n
f(n)−f(n−1)

, so γ > 1 holds.

2.C Proof for Proposition 4

To determine the existence of an equilibrium, we discuss the best response of

agent i regardless of the others’ actions. At any period t ≤ t∗, if all the others

choose to work, the agent i would compare the expected payoff this period from

working and shirking as follows:

ui,t(xi,t = 1|x−i,t = 1) = βtf(n)γh− c

ui,t(xi,t = 0|x−i,t = 1) = βtf(n− 1)γh.
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According to the optimal stopping rule, the agent i will work until t∗ as long as

no success arrives, which means ui,t(xi,t = 1|x−i,t = 1) ≥ ui,t(xi,t = 0|x−i,t = 1),

∀t ≤ t∗. Thus, the agent i would work if the others work.

At any period t ≤ t∗, if the others shirk this period as well in the past,

the agent also makes the choice between working and shirking according to the

expected payoff such that:

ui,t(xi,t = 1|x−i,t = 0) = β̃tf(1)γh− c,

ui,t(xi,t = 0|x−i,t = 0) = 0,

where β̃t is the belief updating when he works but no success comes, expressed

as β̃t = β0(1−f(1))t−1

β0(1−f(1))t−1+(1−β0)
. Under the single-agent-experimentation, the optimal

stopping time for agent i can be solved as follows:

t̃ = maxt {t : t ∈ Z | β̃tγhf(1)− c ≥ 0}

where β̃t =
β0(1− f(1))t−1

β0(1− f(1))t−1 + (1− β0)
,

so t̃ = 1 + b
log( c

f(1)γh−c
1−β0
β0

)

log(1−f(1))
c , and the agent i will work until t̃, which satisfies

t̃ > t = t∗. Thus, ui,t(xi,t = 1|x−i,t = 0) ≥ ui,t(xi,t = 0|x−i,t = 0) holds as long

as t ≤ t̃, which proves that working is the best response to the others’ shirking

behaviour.

If some of agents shirk this period as well as in the past, we want to check

whether the equilibrium still holds. Let m denotes the number of agents choose

to work at period t such that m < n. Due to the concavity of function f , f(m)−
f(m − 1) > f(n) − f(n − 1) holds as m < n. This inequality shows that the

incentive of working increases if someone shirks this period since the marginal

success probability is higher in m. Moreover, if in the past, someone shirked and

was speculated by the agent, the agent would increase the posterior belief of the

good state this period, which gives rise to a higher expected payoff as well as

higher incentive to work. Thus, the agent will always choose work no matter

someone has shirked this period or in the past.
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Chapter 3

Financing innovation under
asymmetric information:
signalling through internal
financing

3.1 Introduction

Under-investment in innovation has become a widely recognised problem, es-

pecially for those small and medium-sized innovative firms. Early theoretical

studies have suggested that severe asymmetric information between innovators

and investors may result in under-provision of innovation investment according to

the survey by Hall and Lerner (2010). A moral hazard problem arises when the

results of innovation can easily be copied by the free-riders, which makes the in-

novators reluctant to undertake the investment and reveal the innovation progress

(Nelson, 1959; Arrow, 1962). On the other hand, investors may not observe the

quality of the innovation project to the same extent as innovators do, which gives

rise to the adverse selection issue (Brealey et al., 1977; Myers and Majluf, 1984).

Compared with external financing sources (venture capitalists or business angels),

internal funding is a more convenient and effortless way of financing, which par-

ticularly works well at the initial learning stage of innovation. In fact, internal

financing plays a central role in R&D spending among small high-tech firms in

the US and UK, and the development of innovation is primarily based on the

availability of internal financing (Spence, 1979; Himmelberg and Petersen, 1994;

Bougheas, 2004). Although the importance of internal financing has been corrob-
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orated empirically, there is hardly any theoretical study exploring the crucial role

of internal financing in innovation, especially under asymmetric information. This

chapter aims to provide insights into firms’ optimal decision of internal and exter-

nal financing. It also shows that internal financing could be adopted as a signalling

tool in innovation financing that alleviates the adverse selection problem.

The chapter first discusses the existence of the adverse selection problem within

the innovation process. In practice, innovation often goes through a trial and error

learning phase before major investment occurs, where innovators usually use the

internal funding to learn how good the project is. Assume innovators are initially

endowed with an identical innovative project with the same payoff in the event

of success or failure but have either a high or low prior belief about success1.

The prior beliefs are unobservable to the investors. However, for the high-type

project, it is normally more attractive to investors and get funded easier than

the low-type. In this case, an adverse selection problem arises where the low-

type innovators may pretend to be a high-type. Without any signalling scheme,

it may even result in the “lemons” market problem where no investor is willing

to fund the project, and the high-type innovators are driven out of the market

(Akerlof, 1970). To address this issue, we claim that not only does the internal

funding support the effort cost but also reveals the innovator’s prior belief to the

investors.

To see this, we first look into the first-best internal financing of the high and

low types. The model adopts the “bad news” exponential-bandit game by Keller

and Rady (2010) in accordance with the unknown state of the innovation and

the exogenously fixed experimentation time. Internal funding is allocated by the

innovators in order to explore the unknown state of the world. In the good state,

a risky project succeeds and generates a higher revenue once the investment is

made; in the bad state, it fails and receives a lower revenue. Experimentation

would randomly generate bad signals which indicate the state is bad. Thus, one

can be certain that the state is bad as long as a bad signal is observed, otherwise,

the state remains unknown before the investment. Assume that the arrival of

bad news has an intensity λ, which depends on the amount of internal funding

1In this chapter, we sometimes refer to innovators as the high-type or low-type according
to their endowed beliefs about the project, but there is no heterogeneity in innovators’ learning
ability or marginal cost of learning.
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provided, such that more internal funding accelerates learning and provides a more

accurate prediction of the state. According to Bayes rule, given a fixed time of

experimentation, the posterior belief of the good state increases in the amount of

internal funding as long as no bad news arrives. Under perfect information, the

first-best internal financing is determined by the profit-maximisation problem of

the innovators. As a result, for the project with a low prior belief of the good

state, a larger amount of internal funding is required. Conversely, given a high

prior belief, the innovators use less internal funding. Intuitively, the project with a

higher prior of success requires less learning input as it is expected to succeed more

easily, so the innovators are prone to save their funding for other projects; however,

the innovation with a lower prior requires more experimentation and attention in

order to avoid future failure. The above intuition appears to be in line with the

general result of a real-option signalling model where innovators hold the option

of investment timing, such that innovators with a higher prior belief are apt to

provide less learning and invest earlier (Grenadier and Wang, 2005; Bouvard, 2014;

Bobtcheff and Levy, 2014). Instead, internal financing is treated as the optimal

decision of innovators in this chapter, which conveys private information about the

quality of the innovative project. Despite a larger internal funding being allocated

by the low-prior project holders, by the time of investment, they still hold a lower

expectation on the state being good than those with a higher prior. Indeed, for

those cash-constrained innovative companies, it is fairly risky to spend too much

internal funding on the project with a relatively low prior of success at the early

stage.

The chapter then explores external financial contracting between the informed

innovators and the less-informed investors. I assume that the innovative project,

irrespective of the prior beliefs, requires the same amount of external investment,

which cannot be financed internally. The innovators are expected to share a cer-

tain proportion of revenue with the investor if the project succeeds in return for

the external investment. Hence, revenue shares conditioning on the outcome of

the innovation will be included ex-ante in the financial contract. Specifically, the

innovators with a higher prior belief will keep a higher revenue share given a higher

expected possibility of success compared with the low-type. Thus, the equilibrium
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contract is composed of the revenue shares and internal funding, which jointly con-

vey the information about the quality of the project. We can find the relevant

contractual terms appear in the real-world financial contracts within venture cap-

ital and start-up firms. As documented in Kaplan and Strömberg (2003), cash

flow rights contingent on the accomplishment of milestones are widely used in in-

centivising entrepreneurs under asymmetric information, which function the same

as revenue shares in our model. Internal funding is normally implicitly regarded

as a criterion by which investors may judge how much confidence innovators have

in innovation.

The information asymmetry may generate distortions in the sense that the

first-best contracts are no longer attainable for both types. With the first-best

contracts, the low-type innovators will deviate by choosing the high-type contract

by offering less of the revenue shares and internal financing to the investor. To

resolve this problem, the high-type would endeavour to separate from the low

ones by signalling. Proposition 5 states that a larger amount of internal financing

will be adopted by the high-type in this case as compared with the high-type

full-information optimum as well as the low-type’s first-best. In fact, increasing

internal funding would adjust upwards the project’s expected probability of suc-

cess, if no bad news is observed during experimentation, which in return builds

up the investor’s expectation of investing in this innovative project. Thus, the

expansion of the high-type internal financing compensates the investor’s poten-

tial loss on the low-type contract, which avoids the market-breakdown. More

importantly, internal financing functions as a separation tool for the high-type

which deters the low-type from mimicking. Regarding high-type and low-type

innovators’ preferences over internal funding and revenue shares, a single-crossing

property is shown to be held. It indicates that it costs low-type less to exchange

internal funding for an additional increase in revenue shares in comparison with

a high-type. Details of this property will be shown in the analysis later. Con-

sequently, mimicking the high-type contract by exerting more internal funding

is no longer profitable for the low-type as the low-type incentive compatibility

constraint is relaxed. Proposition 5 formally describes this separating equilibrium

which manages to distinguish the agent’s type and make the investor break-even
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on average. This chapter also covers other pooling equilibria, which involve cross-

subsidisation from the high to the low, when either one of the contractual tools is

available. The above-mentioned separating equilibrium is proven to be the least-

costly separating equilibrium according to the criteria proposed by Maskin and

Tirole (1992) as it is interim efficient and weakly Pareto dominates all other equi-

libria in the sense that both types of agents would perform their type-equivalent

contract and the low-type is weakly better-off.

Supportive evidence regarding an innovator’s distinctive choices over internal

funding could be found in many empirical studies of various industries where R&D

plays a pivotal role. According a study of the Italian manufacturing industry by

Succurro and Costanzo (2016), internal financing plays an important role in R&D

financing such that there is a strong positive correlation between the size of the

internal financing and whether the firm will take any R&D and the size of overall

spending on R&D. Moreover, the high-tech firms in Italy still rely largely on the

internal financing sources rather than external financing due to the information

asymmetry problem. Danzon et al. (2005) and Lerner et al. (2003) also confirm the

existence of a strong reliance on the internal financing in the large and experienced

pharmaceutical companies. Those companies often have strong confidence in the

prospect of their research, hence more internal input is allocated at the early

stage. According to data, drugs of those big companies get approved more often

by the administration. Internal financing in this chapter not only represents the

monetary input, but also indicates the intangible effort, managerial skills and

marketing strategies of the innovator. Galende and de la Fuente (2003) conduct

an empirical study on the factors that determine firms’ innovation process based

on the data of Spanish innovation firms. They investigate various internal factors,

including tangible capital and intangible managerial skills, human capital and

strategies, and their relationship with the innovative process. Their regression

result indicates that the factors regarding innovator’s marketing strategies and

intellectual skills can explain 50% of a firm’s innovative process.

Financing innovation under adverse selection has been examined in several re-

cent papers that are closely related to ours (Grenadier and Wang, 2005; Bouvard,

2014; Bobtcheff and Levy, 2014). In their models, the duration of experimenting
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(investment timing), rather than internal financing, is an active contractual vari-

able and served as a signalling tool. ‘Although this chapter shares some similarities

with Bouvard (2014) where the high-type tend to provide excess effort in terms of

either a larger internal financing or a longer experimentation time than the first-

best to get themselves separated under imperfect information, several important

distinctions should be pointed out here: firstly, in their paper, the innovators hold

the option to delay or hurry the experimentation prior to investment, however,

the experimentation time monotonically decreases innovators expected payoff but

non-monotonically affects the expected payoffs of the investors, because there is

a trade-off between learning and discounting. In contrast, in our model, the in-

ternal financing monotonically increases in the expected payoffs of the investor

but monotonically decreases in the payoffs of the innovator, thus, there exists no

such trade-off. Also, we assume that the internal funding is spent upfront as a

lump-sum, which represents not only the cost of learning but also non-financial

observed skills or effort. On the other hand, in their paper, the cost grows pro-

portionally as experimentation is extended, hence both types of agents will stop

at the same cutoff belief level where marginal benefit reaches zero. Bobtcheff and

Levy (2014) model innovators with different learning speed. Because the optimal

investment date is non-monotonic in learning speed λ, it results in either under

or over investment under imperfect information. Although the papers mentioned

above have pointed out that internal funding may alleviate the information dis-

tortion due to adverse selection, none of them have regarded internal financing as

a signalling tool nor related it with learning. Thus, this chapter fills the gap in the

innovation-financing literature by introducing internal financing as a contractible

and signalling tool of heterogeneous innovators. Furthermore, it attempts to an-

swer how information asymmetry affects innovators’ internal financing decision.

This article belongs to a broader literature that combines experimentation and

agency problems. The seminal papers by Bergemann and Hege (1998, 2005) have

examined the agency conflict under imperfect information and its correlation with

the speed of investment based on the “good news” bandit. Under the arm’s-length

financing when agents’ actions are observable, the investment rate decreases since

the posterior belief of the good state decreases as long as no good news arrives over

time. However, when actions are unobservable under the relationship financing

42



mode, a moral hazard problem arises. In this case, the investor tends to downgrade

his posterior belief of the good state after a deviation is detected, which leads to

a shorter financing horizon. In a two-period experimentation model by Drugov

and Macchiavello (2014), investment cost is revealed after the first period’s ex-

perimentation. More recently, the mechanism designed to alleviate moral hazard

in financing innovation has also received attention (Manso, 2011; Yu et al., 2012;

Sannikov, 2014; Horner and Samuelson, 2013). However, this chapter is more re-

lated to another strand of the innovation literature concentrating on the adverse

selection conflict between informed innovators and less-informed investors: Gomes

et al. (2013) examine screening contracts which help the monopolistic investor to

distinguish private information of the innovators. Free-riding and communication

between a group of innovators have been studied under an innovation competi-

tion set-up (Halac et al., 2016a; Heidhues et al., 2015; Akcigit and Liu, 2015).

Compared with the above-mentioned papers, the distinctive feature of this chap-

ter is inverting the roles of innovator and investor. As we assume there are a

lot of investors in the market, the innovator, the owner of the innovative project,

captures the entire bargaining power and proposes the financing contracts as a

take-it-or-leave-it offer. Thus, we draw attention to the equilibrium behaviour of

innovators with heterogeneous prior beliefs about the future success probabilities.

As motivation and related literature are illustrated above, this chapter pro-

ceeds as follows. Section 3.2 introduces model set-up and the first-best internal

financing. Section 3.3 explores the equilibrium contracts under perfect and imper-

fect information respectively, including the analysis of the least-costly separating

equilibrium and pooling equilibria. Section 3.4 concludes.

3.2 Model

3.2.1 Set-up

Consider a two-stage innovation investment project as illustrated in Figure

3.1. At the start-up testing stage, innovators use internal funding to learn the

quality of the project. As the funding is allocated prior to learning, it is fixed

and irreversible even if a bad signal arrives during the experiment process after-

wards, which indicates the quality of the project is bad. Let λ denote the internal
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Figure 3.1: Timing of events

financing, which represents the entire input of learning. It involves not only fi-

nancial cost but also non-financial inputs, such as managerial skill, observable

effort, etc. Thus, it is assumed that internal funding cannot cover the invest-

ment cost in the future, which amounts to I and I > λ. At the investing stage,

the investor lends the funding I to the innovator according to the pre-negotiated

contract. The details of the contract will be discussed below. The result of the

investment, either success or failure, is realised immediately upon investing. In

the good state, the project succeeds and generates revenue R. However, it fails in

the bad state and pays 0. Whenever the expected revenue of the project is greater

than the investment cost together with internal funding, it’s worthwhile to initiate

the experiment. Let T be the exogenously fixed investment timing. Although this

assumption is absent in most of the real option theoretical literature, it is quite

common in real life. For instance, a machine for innovation may be only available

for a certain period of time, which determines timing of the investment.

Innovators are privately assigned with a prior belief pθ0 of the project being

good, which could either be high or low, such that ph0 > pl0. Note that the prior

belief of the project is the only information privately known to innovators, but

separating contracts designed in this chapter aim to help investors distinguish

the high-type and low-type. Within the distribution, it is commonly known that

there is a proportion q of high-type innovators and (1 − q) of low-type ones.

We also impose a condition to make both types of innovators have incentives to

experiment: assume the expected revenue of the project based on the prior beliefs

is higher than total investment, i.e., ph0R > pl0R ≥ I.

Uncertainties exist in the innovation in the sense that whether the project

will succeed or not is unknown even at the investment point, but learning will

provide additional information about the project via the arrival of bad news. The

intensity of the arrival is represented by the internal funding λ. Here we adopt

the exponential distribution to model to the arrival of a bad signal during exper-
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imentation, following Keller and Rady (2010). Thus, learning would randomly

generate bad news with the intensity λ if the state is bad following an exponential

distribution, which is public observable. As soon as a bad news arrives, the pos-

terior belief of the good state will jump to 0, and both the innovator and investor

will abandon the project immediately. However, if no bad news comes, based on

the Bayes rule, one would adjust upward their beliefs on the good state.

We use U and V to describe the expected payoff of the innovator and investor

respectively. Both parties are risk-neutral and discount future with the discount

rate r.

3.2.2 First-best internal financing

This section considers the optimal allocation of internal funding by a social

planner who has perfect information on the project’s prior belief. At time 0, he

chooses internal funding λθ given the realisation of type-θ prior belief in order to

maximise the expected surplus of the project, denoted by Π(λθ):

max
λθ

Π(λθ) = e−rT [pθ0 + (1− pθ0)e−λ
θT ](pθTR− I)− λθ. (3.1)

In continuous time setting, e−rT is the time discounting and T is exogenously given

investment time. The term in the brackets, [pθ0 + (1− pθ0)e−λ
θT ], is the probability

of getting no bad news before T : in the good state, no bad news will come with

certainty; in the bad state, bad news comes with probability (1 − e−λθT ), hence

(1 − pθ0)e−λ
θT is the conditional probability of not receiving any bad news in the

bad state. The third term, (pθTR − I), indicates the expected net return from

investing at time T , where pθT is the updated posterior belief on good state at

time T : pθT =
pθ0

pθ0+(1−pθ0)e−λθT
following Bayes rule if no bad news arrives; otherwise,

pθT = 0. The last term λθ represents the entire experimentation cost of the θ-type

project, which is assumed to be linear in λ with the coefficient 1 without loss of

generality.

However, there is a trade-off of choosing internal funding λθ. On the one hand,

a larger amount of internal funding would accelerate one’s learning speed, in the

event of no bad news before T , one would be more confident in the good state as a

higher posterior belief will be perceived. On the other hand, internal investment is
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allocated before learning and irreversible. Thus, internal funding allocation varies

across different types of projects.

Equation 3.1 could be rearranged by substituting the expression of the poste-

rior belief pθt follows:

max
λθ

Π(λθ) = e−rT{pθ0R− [pθ0 + (1− pθ0)e−λ
θT ]I} − λθ. (3.2)

Then the first-best λ̄θ for θ-type project could be solved from the FOC:

λ̄θ = −r +
1

T
ln
(
T (1− pθ0)I.

)
(3.3)

Specifically, for ph0 > pl0, λ̄h < λ̄l. Intuitively, for a high-type, less internal funding

is needed to learn the state of nature given the high prior belief of success; however,

for a low-type, larger initial funding is required in order to discover whether the

project is worth investing.

3.3 The External Financial Contracting

This section focuses on the financial contracting issue between innovators and

investors in the perfect competitive capital market. Assume innovators have lim-

ited cash at hand, which could only cover the learning expenditure instead of

making the final investment. Thus, innovators have to seek external funding to

finance the investment. This chapter adopts the ex-ante contracting setting where

informed innovators contract with less-informed investors before exerting their in-

ternal funding. It is analogous to the informed-principal problem by Maskin and

Tirole (1992). Note that the informed-principal setting inverts the timing of typ-

ical signalling game, for example, Spence (1973). In Spence’s signalling model,

workers acquire educational certificates so as to send signals to uninformed em-

ployers before signing labour contracts. One can show that this educational sig-

nalling game involves multiple perfect Bayesian equilibria involving the pooling

and separating ones, some of which are inefficient and fail to fulfil the Cho-Kreps

intuitive criterion (Cho and Kreps, 1987, Laffont and Martimort, 2009). This

chapter adopts an ex-ante contracting setup which helps to eliminate those inef-

ficient equilibria and selects the least-costly separating equilibrium.

Define αθ as the revenue share of the investor in the event of success, θ = {h, l}.
In the event of failure, both parties get zero payoff. Let the contract proposed by
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θ-type agent include internal funding and revenue share, such that Cθ = {λθ, αθ}.
As there are only two types of innovators, we could concentrate on two possible

incentive compatible contracts, i.e., Ch and C l, corresponding to the revelation

principle.

In the environment of imperfect information, the innovator, regardless of his

type, is assumed to propose a menu of two contracts to the investor. After updat-

ing beliefs, the investor decides whether to accept the offer or not. If accepted,

the innovator chooses one of the contracts to execute; otherwise, they propose to

another investor. According to Tirole (2006), delivering a menu of two contracts

to the uninformed party is to “get rid of their bad expectations”. Intuitively, the

low-type gains by mimicking the high-type contract, and the investor makes a loss

under imperfect information. Thus, the investor is reluctant to take a high-type

contract solely as it might be from a low-type agent under information asymmetry.

However, such a bad expectation from the investor would be eliminated if the high-

type agent includes a low-type incentive-compatible contract into the proposal,

which makes the investor break-even on average. After contracting, innovators

choose one of the contracts to perform and initiate the experimentation.

3.3.1 Perfect information equilibrium contracts

As a benchmark, we first consider the case where investors have complete

information about the prior belief of the project being good when contracting

with the innovator. Learning is necessary to explore whether the project indeed

is good or bad. From the previous section, we know that λ̄h and λ̄l are the

first-best internal financing levels, which are supposed to be achievable under full

information contracting. In this setup, investors would sign the contract if the

expected net return is no less than the outside option of 0. Thus, αθ is proposed to

make the investor at least break-even under θ-type financial contract. Denote the

expected payoff of the investor and innovator at period 0 as V θ(Cθ) and U θ(Cθ)

respectively where:

V θ(Cθ) = e−rT [pθ0 + (1− pθ0)e−λ
θT ](αθpθTR− I)

= e−rT{pθ0αθR− [pθ0 + (1− pθ0)e−λ
θT ]I},

U θ(Cθ) = e−rT (1− αθ)pθ0R− λθ.
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Note that U θ is monotonically decreasing in λ. As internal funding increases, it

builds up one’s posterior belief in the project being good in the event of no bad

news. However, at period 0, the innovator’s expected payoff depends on the ex

ante success probability rather than the updated posterior belief. Therefore, the

increase of internal funding solely adds extra cost to innovator’s total expected

payoff.

Here we write down the optimisation programme of θ-type innovators under

full information:

max
Cθ

U θ(Cθ), subject to V θ(Cθ) ≥ 0.

The investor breaks even, so V θ(Cθ) = 0. Substituting this condition back into

the maximisation problem gives the following:

λ̄θ = −r +
1

T
lnT (1− pθ0)I; (3.4)

ᾱθ =
I

pθTR
=

I
pθ0

pθ0+ 1

e−rT TI
R

=
I

R
+

1

pθ0Re
−rTT

, (3.5)

where λ̄θ is the same as the first-best internal financing in Equation 3.3. For

ph0 > pl0, λ̄h < λ̄l and ᾱh < ᾱl. Thus, the high-type innovators allocate less

internal funding and keep a larger fraction of revenue themselves compared to

low-type innovators. Moreover, given the optimal internal funding, the posterior

beliefs about the good state at time T are phT =
ph0

ph0 + 1

e−rT TI
> plT =

pl0
pl0+ 1

e−rT TI
.

Thus, at time of investing, the high-type projects still have a higher posterior

belief about succeeding than the low-type projects, and they cost less internal

funding, resulting in a higher expected returns.

To summarise, the full-information equilibrium contracts for high and low

types of innovators are C̄h = {λ̄h, ᾱh} and C̄ l = {λ̄l, ᾱl} with first-best internal

financing and under which the innovators capture the entire surplus and the in-

vestors break even in expectation. As shown in Figure 3.2, the optimal allocations

of λ̄ and ᾱ are the tangency points of the innovators’ indifference curves (Uh and

U l) and investors’ zero-expected-payoff curves under the high and low types of

equilibrium contracts (V h and V l).
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Figure 3.2: Perfect information contracting

3.3.2 Equilibrium contracts under imperfect information

When investors have imperfect information about the type of the project, the

low-type innovators have strong incentives to undertake the high-type optimal

contract, shown as an inward shifting of the low-type indifference curve in Fig-

ure 3.3, which makes full-information equilibrium contracts no longer stable. This

sections attempts to develop perfect Bayesian Equilibria under imperfect informa-

tion and pays particular attention to the Pareto-dominant one, or the least-cost

separating equilibrium.

Tirole (2006) formally concludes the procedure of determining a Pareto dom-

inant equilibrium in signalling game in the book, The Theory of Corporate Fi-

nance (Tirole, 2006, pp. 267–269), and we will follow in this paper. This section

starts by characterising a low-information intensity equilibrium, also known as

the Rothschild-Stiglitz-Wilson (RSW) allocations for the high-type and low-type

(Rothschild and Stiglitz, 1976; Wilson, 1977), that should be by stable and in-

centive compatible for both types of innovators regardless of the prior belief of

the investor by definition (Maskin and Tirole, 1992). The RSW allocations guar-

antee the payoff that each type should at least receive in any other equilibrium.

Later on, we check if the RSW allocations are interim efficient with respect to the
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Figure 3.3: Deviation of the low-type

investor’s prior belief; if so, a Pareto-dominant equilibrium could be determined.

Definition 3 (λ̂h, α̂h) is an RSW-h allocation of the high-type agent if it max-

imises the total expected payoff of the high-type subject to a set of incentive com-

patible allocations for both types of innovators and non-negativity expected profit

constraints of the investor regardless of his beliefs.

The RSW-h allocation can be found by solving the following maxmisation prob-

lem:

Programme A (high-type)

max
Ch,Cl

Uh(Ch)

subject to Uh(Ch) ≥ Uh(C l), (ICh)

U l(C l) ≥ U l(Ch), (IC l)

V h(Ch) ≥ 0, (IRh)

V l(C l) ≥ 0, (IRl)

where ICh and IC l are incentive compatibility constraints which make sure in-

novators in the equilibrium choose their type-equivalent contracts, and IRh and
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IRl are to guarantee the investor earns non-negative profits on each type. In in-

tuition, the high-type cannot achieve the first-best in this equilibrium and has to

sacrifice part of the revenue in order to make the high-type contract unattractive

to the low-type. There is an analogous maximization programme for the low-type

agent. Let (λ̂l, α̂l) be the RSW-l allocation of the low-type innovators. As an

RSW equilibrium could be achieved regardless of the investor’s prior beliefs in

the agent’s type under imperfect information, the agent could guarantee himself

an RSW payoff by proposing (λ̂θ, α̂θ), and the corresponding RSW payoff can be

regarded as one’s reservation utility.

Lemma 4 The low-type agent receives no more than his full-information equilib-

rium payoff in the RSW-l allocation, that is, U l(λ̂l, α̂l) ≤ U l(λ̄l, ᾱl).

Proof. For (ᾱl, λ̄l) solves the first-best maximisation problem of low-type with the

individual rationality constraint of the investor being binding, thus, V l(λ̄l, ᾱl) = 0.

In the Programme A of the low-type, V l(λ̂l, α̂l) ≥ 0, which means V l(λ̂l, α̂l) ≥
V l(λ̄l, ᾱl). Thus, U l(λ̂l, α̂l) ≤ U l(λ̄l, ᾱl) holds as the agent claims the remaining

surplus of the project.

Intuitively, the low-type innovators maximise profit given that the individual

rationality constraint of the investor binds under full information. That is, for

C̄ l to be the first-best contract, the investor makes zero profit: V l(C̄ l) = 0.

Under Programme A, the investor makes a non-negative profit on both types of

innovators irrespective of his expectation. Thus, the low-type agent can offer a

menu with just one low-type contract {C̄ l, C̄ l}, and the investor will make either

zero payoff if the agent is a low-type or positive profits if the agent is a high-type,

hence the investor will accept the offer. This forms an RSW equilibrium and

guarantees the first-best payoff for the low-type.

Figure 3.4 shows the possible RSW equilibrium where none of the agents has in-

centives to deviate. Firstly, following from the lemma, the low-type could achieve

the first-best under RSW equilibrium, showing as the point (λ̄l, ᾱl) in the graph.

Secondly, to satisfy incentive compatibility, the high-type must sacrifice part of

the welfare in order to prevent the low-type from mimicking, and the best they

could do is to make the low-type indifferent between choosing either of the con-

tracts. In other words, IC l must be binding in this case. As shown in the figure,
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Figure 3.4: RSW equilibrium

(λ̄h, α̂h) is the RSW h allocation as it is the utility maximisation of the high-type

with the non-negativity profit constraint of the investor being satisfied and the

IC l constraint binding. As the indifference curves of V h are vertical translations

of each other, λ̄h stays at the first-best, however, with revenue shares increas-

ing from ᾱh to α̂h, so the high-type suffers a welfare loss under this equilibrium

relative to the first-best. Then we need to check if there exists any equilibrium

that Pareto dominates this RSW h allocation, makes the high-type better off and

achieves a full separation between the high-type and low-type. Then we combine

the investor’s prior belief of the agent’s type and look for an equilibrium makes

the investor break even on average.

Definition 5 An incentive compatible set of contracts {C̃h, C̃ l} is interim effi-

cient if it make the investor earn non-negative profit in expectation relative to the

prior belief about the agent’s type, {q, 1− q}.

As the investor has a prior belief about the agent’s type, the low-information

intensity equilibrium cannot satisfy the interim efficiency according to the defini-

tion above: RSW h leaves the investor positive profit, and RSW l allocates zero

profit to the investor. Whereas, the high-type innovator can improve his profit by

making the investor break-even in expectation. We then relax the type-by-type
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non-negativity constraints of the investor to check if there exists another equilib-

rium that is Pareto dominating the low-information intensity equilibrium as well

as interim efficient. With probability q, the investor believes the agent is a high-

type, and conversely, with probability (1− q), the agent is regarded as a low-type.

Given this belief, the investor would accept the contract if he breaks-even on av-

erage. In this case, we can find an efficient equilibrium that is interim efficient

relative to the prior belief {q, 1 − q} and incentive compatible for both types of

agents. The term “interim” refers to the stage where innovators propose the finan-

cial contract to the investor with private information on their types. Moreover,

an interim efficient equilibrium weakly Pareto dominates the RSW equilibrium,

which is the key results of Maskin and Tirole (1992). Intuitively, as the individual

rationality constraints of the investor are relaxed, the interim efficient equilibrium

allows the investor to make a loss on one of the types of the innovators, which

leads to a Pareto improvement without hurting the other type’s benefit.

Following Lemma 4, the low-type could at most receive their first-best payoff

in the RSW equilibrium. Thus, the first-best payoff should be guaranteed in the

Pareto dominating equilibrium. The following the maximisation programme leads

to the interim efficient and Pareto dominating outcomes:

Programme B (high-type)

max
Ch,Cl

Uh(Ch)

subject to Uh(Ch) ≥ Uh(C l), (ICh)

U l(C l) ≥ U l(Ch) (IC l)

qV h(Ch) + (1− q)V l(C l) ≥ 0 (IR)

U l(C l) ≥ U l(C̄ l) (IEl)

where ICh and IC l are the incentive compatibility constraints of high and low

types of innovators respectively, IR is the individual rationality constraint of the

investor, which ensures he gets non-negative profit in expectation and guarantees

the interim efficiency, and IEl constraint indicates that the low-type agent should

receive at least their first-best expected profit in this equilibrium.

3.3.2.1 The least costly separating equilibrium

Solve the Programme B fully and get the separating equilibrium below.
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Proposition 5 There exists a least-costly separating equilibrium: {λl∗, αl∗},
{λh∗, αh∗} such that:

• Regarding internal funding, the low-type innovators remain at their first-

best optimum, whereas, the high-type innovators invest even more than the

low-type first-best internal funding such that λl
∗

= λ̄l, and λh
∗
> λ̄l > λ̄h;

• For the revenue share, the low-type innovators allocate no more than the

full-information revenue shares, but more than the high type revenue shares

to the investor; thus the following holds: αh
∗
< αl

∗ ≤ ᾱl.

Proof. See appendix.

In practise, the separating equilibrium works as follows: the innovator, either

high or low type, proposes a menu of {λl∗, αl∗} and {λh∗, αh∗} contracts to the

investor. Upon observing these two contracts, the investor still stays uninformed

of the type of the innovator but will accept the offer as it makes him break-even

in expectation. Then the innovator will execute one of the contracts according

to her type as there is no profitable deviation for either party. However, in the

case when the informed innovator proposes only one contract of her type, the

investor will update his belief in agent’s type accordingly. The low-type would

have incentive to deviate as the high-type contract is most likely to be accepted

by the investor. Thus, to avoid further distortion, a set of two contracts should

be proposed ex ante.

Proposition 5 states that the low-type innovators remain at their full-information

equilibrium internal financing, whereas, the high-types invest more than their

first-best internal financing. Firstly, in terms of the internal financing allocation,

{λh∗, λ̄l} allows the high-type being fully separated from the low-type. By over-

investing on learning, the high-type refrains the low-type from mimicking under

imperfect information. As the internal financing of the high-type increases from

λ̄h to λh
∗
, the incentive compatibly constraint of the low-type agents has been

relaxed. Thus, it makes the low-type agents prefer choosing their full-information

contracts to the high-type contract, which ensures as much as an RSW optimum

payoff.
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Moreover, as λh
∗
> λ̄l, the internal funding of the high-type increases even

further and turns to be greater than low-type’s first-best. By definition of sep-

arating equilibrium, all innovators would prefer their type-equivalent contracts.

The separation would not be possible if the high-type chose less than the low-

type’s first-best internal funding, which gives rise to a possible deviation by the

high-type. This can be verified intuitively as the single-crossing property holds in

this case. Let MU θ
α and MU θ

λ denote the marginal utility of revenue share and

internal funding given a certain utility level for the θ-type agent. We can calculate

the marginal rate of substitution of revenue for internal funding as a ratio of MU θ
α

over MU θ
λ respectively for high-type and low-type. Taking the difference between

the ratio of high-type and low-type , we find the following relationship:

MUh
α

MUh
λ

− MU l
α

MU l
λ

> 0, (3.6)

which indicates that the high-type are willing to sacrifice more internal funding in

exchange for a further decrease of revenue shares compared with the low-type. As

the high-type expects success with a higher probability, so the revenue share mat-

ters more to the high-type than to the low-type. As a result, the high-type would

allocate more internal funding than the low-type first-best in order to preserving

a larger proportion of revenue shares in the equilibrium.

Secondly, we analyse the welfare under this separating equilibrium. Under the

financial contract {λ̄l, αl∗}, as αl
∗ ≤ ᾱl the low-type would achieve at least their

full-information payoff and have no incentive to deviate. λ̄l amount of internal

funding guarantees the low-type a sufficient learning and generates the optimum

expected payoff, which means they cannot get any better by adjusting the spend-

ing. Whereas, reducing the revenue share from ᾱl in the RSW equilibrium to αl
∗

makes the low-type weakly better off. Moreover, although more internal funding

than the first-best is provided by the high-type, the revenue shares they need

to sacrifice to make the separation is less than the RSW equilibrium, which also

results in a welfare improvement. Thus, this interim efficient equilibrium weakly

Pareto dominates the above-mentioned RSW equilibrium in terms of the welfare

of both agents. In addition, it manages to make the separation between two types

of the agents. Although the investor is not perfectly informed ex ante, proposing
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this set of two contracts ensures his participation, and he would also believe that

each type of innovators will act according to their types after contracting.

Figure 3.5: Separating equilibrium

In Figure 3.5, the point RH and RL shows the RSW equilibrium allocations

for the high-type and low-types respectively. An outward shift of the high-type’s

indifference curve under full information Uh (the solid black line) generates a

tangent at the point H to investor’s zero-average-profit curve (the blue line),

which represents a cross-subsidisation from the high to the low and a fulfilling

of the interim efficiency of the IR constraint in Programme B. As a response,

the low-type could make themselves better off by inward shifting the indifference

curve U l until it crosses high-type’s new allocation. Any point on that dotted

new indifference curve makes the low-type receive as much payoff as if taking

the high-type contract. The tangency point L with the red indifference curve of

the investor V l maximises the investor’s profit subject to the incentive constraint

holding given that she is facing the low-type. As a set of red indifference curves

of the investor V l are vertical translations of each other, λ̄l remains to be the

optimum internal funding. Whereas, the inward shifting results in a revenue

share decrease from ᾱl to αl
∗
, which, in all, illustrates that point L, (λ̄l, αl

∗
),

is low-type’s best attainable payoff under separation. Compared with the RSW

equilibrium allocations (pont RH and RL), both types of agents are better off at
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this new separating equilibrium (point H and L). However, under this separating

equilibrium, the investor makes strictly positive profit since at point she makes

more profit than she would have against the low-type. Thus, the high-type can

do better by reducing the revenue share αh, hence leave the investor zero profit

in expectation, which is not included in the graph.

In the following, we deliver some implications and thoughts from Proposition

5. To begin with, the above separating equilibrium can be related with Spence’s

(1973) labour market signalling model where heterogeneous employees decide how

much costly education to acquire under adverse selection. The paper also proposes

a separating equilibrium under which the high-type agents are willing to get an

education just for signalling purpose and the low-type agents get no education.

In this case, education severs as a signal to less-informed employers as it’s more

costly for the low-type to acquire the same education compared with the high-

type. In our model, the high-type innovators would otherwise undertake less

internal funding than the low-type given a higher expected probability of success.

Directly driven by the purpose of separating, the high-type innovators are willing

to spend even more internal funding than the low-type, which leads to a Pareto

dominating separating equilibrium.

Proposition 5 also echoes with the well-known pecking order theory according

to which firms prefer internal funding over external resources and debt over equity

at the external financing stage in the presence of information frictions (Myers and

Majluf, 1984; Myers, 1984). This theory has also be confirmed by some empirical

studies as surveyed in Frank and Goyal (2011). Our model predicts that innova-

tors regardless of their types would allocate at least the first-best level of internal

financing to support learning under imperfect information. Although external fi-

nancing happens endogenously between investor and innovator without any cost,

if borrowing is costly we expect that the high-type innovators would adopt more

of the internal funding and borrow a smaller proportion of the external funding

in comparison with the low-type ones. As the innovator’s investing decision is

contingent on the expected probability of success, it follows that innovators with

high-type project tend to provide more internal funding based on their higher

probability of success. Additionally, by doing so, the high-type could save ex-

tra borrowing cost, and less compensation is needed for the less-informed outside
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Figure 3.6: Pooling equilibrium with α
fixed

Figure 3.7: Pooling equilibrium with λ
fixed

investor. Thus, implications could be found in our model as well such that het-

erogeneous agents reveal a slightly different preference over internal and external

financing.

3.3.2.2 Pooling equilibria

This section we discuss if there exists any pooling equilibrium when only one

of the contractual terms is available, either revenue share or internal funding.

The key criterion of a pooling equilibrium is to make sure there is no profitable

deviation for either type of innovators and guarantee the investor on average to

break-even. To achieve this, the high-type may need to compromise on their

revenue in order to subsidise the investor’s welfare losses on the low-type.

Proposition 6 Assume the revenue share to be exogenously fixed, the high and

low types of innovators choose the same amount of internal funding as a pooling

equilibrium, such that λh = λl = λ.

Proof. See appendix.

Proposition 7 Assume the internal funding to be exogenously fixed, the high and

low types of innovators choose the same revenue share as a pooling equilibrium,

such that αh = αl = α.
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Proof. See appendix.

As shown in Figure 3.6 and 3.7, V (q) is the investor’s zero-profit indifference

curve as a linear combination of his indifference curves when contracting with

the high and low respectively, denoted as V (q) = qV h(C) + (1 − q)V l(C) = 0.

Notice that both pooling equilibria involve a cross-subsidy from the high to the

low. In the first case, with exogenously fixed α, high and low types pool at same

internal funding level, λ. It turns out that the high-types tend to undertake more

internal financing than needed under full-information, i.e., λ > λ̄h, as shown in

Figure 3.6, which results in a positive gain of the investor. However, the low-type

would choose a lower amount of internal financing than their full-information

equilibrium, i.e., λ < λ̄l, which induces a loss of the investor. In this case, as

there is no profitable deviation for both types, it can be regarded as a stable

equilibrium outcome. Moreover, as the allocation {α, λ} is on the V (q) = 0

indifference curve, the investor is willing to accept the financial contract and

exert external investment.

Similarly, as stated in Proposition 7, with internal funding exogenous, the only

signalling tool available is the revenue share. The high-types are willing to give a

higher revenue share to the investor in order to compensate her payoff-loss from

the low-type. On the other hand, the best reaction of the low-types is to adopt

this α-revenue share, which generates a positive gain without being distinguished

from the high-type.

As the above two pooling equilibria are achieved with either of the signalling

tool available, it’s worth exploring the existence of any other pooling equilibrium

under two signalling dimensions.

Proposition 8 There exists no other Pareto dominating pooling equilibrium when

both revenue shares and internal funding are available under imperfect informa-

tion, which proves the uniqueness of the least costly separating equilibrium.

Proof. See appendix.

3.4 Conclusion

This chapter presents an exponential innovation model to show heterogeneous

innovation firms’ equilibrium options of internal and external financing. Given
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that prior belief of the project being good is private information, a separating

equilibrium contract indicates that the high-type could be distinguished from

the low-type by committing to a higher level of internal financing. Otherwise,

heterogeneous innovators will be pooled at same revenue share and internal fi-

nancing level where the high-type is strictly worse-off due to cross-subsidisation

of the low-type. The model manages to capture several features of real-world

innovation: costly learning is required before investment; the outcome of an in-

novation project is uncertain; the more in depth the innovator learns, the higher

the posterior belief of success conditional on no bad news gets. Several impor-

tant predictions could be made from our model: innovators with the high-type

project usually put more effort in the initial learning stage, hence are more likely

to succeed; investors could judge a project’s success likelihood by looking into

the innovator’s internal financing on experimentation; internal financing is more

preferred to the high-type especially when external borrowing is more costly, or

information asymmetry problem is severer compared with the low-type.

This article can be extended in the following ways: first, let the innovation

firms become less cash-constrained where internal funding can cover part of the

investment. Attention could be focused on heterogeneous firms’ optimal inter-

nal and external financing allocation under information frictions. Second, initial

learning stage of innovation could be bought under a contest environment where

only the most promising project could be funded. It is similar to Halac et al.

(2016b) where the principal plays a role of attributing prizes and providing incen-

tives to contestants via partly disclosing information. However, innovators will

hold private information on their prior beliefs in our contest setting.
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Appendix

3.A Proof of Proposition 5

Here we illustrate the way of solving the Programme B :

max
λh,αh,Cl

Uh(αh, λh) = e−rT (1− αh)ph0R− λh

subject to Uh(Ch) ≥ Uh(C l), (ICh)

U l(C l) ≥ U l(Ch) (IC l)

qV h(Ch) + (1− q)V l(C l) ≥ 0 (IR)

U l(C l) ≥ U l(C̄ l) (IEl)

Firstly, as the IR constraint binds at the optimum, we obtain the following con-

dition:

qV h(αh, λh) + (1− q)V l(λl, αl) = 0. (3.7)

As the expected payoffs of high-type innovators could be expressed as the

difference between expected surplus of the high-type project and expected payoff

of the investor, Uh(αh, λh) can be rewritten as the following:

Uh(αh, λh) := e−rT (1− αh)ph0R− λh

= e−rT{ph0R− [ph0 + (1− ph0)e−λ
hT ]I} − λh − V h(αh, λh)

Substitute (7) into Uh(αh, λh) and cancel variable αh:

Uh(λh) = e−rT{ph0R− [ph0 + (1− ph0)e−λ
hT ]I} − λh +

1− q
q

V l(λl, αl)

We ignore ICh at this stage as it will be shown to be satisfied ex post.

Lemma 6 In Programme B, if the IEl constraint is binding, the IC l constraint

must be binding.
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Proof. Under unconstrained maximisation problem, λ̄h and ᾱh are the first-

best solution of high-type agents. If the IEl constraint is binding under this

constrained optimisation problem of the high-type, thus for {λl, αl}:

U l(λl, αl) = U l(λ̄l, ᾱl) < U l(λ̄h, ᾱh) holds,

which means IC l would be violated at the first-best contracts. This implies that

IC l must be binding under constrained optimisation problem of the high-type. In

other words, {λ̄h, ᾱh} are no longer achievable as a second-best solution for the

high-type agents.

As IEl constraint binding is the sufficient condition that leads IC l to be

binding according to Lemma 6, so Programme B becomes:

max
λh

Uh(λh) = e−rT{ph0R− [ph0 + (1− ph0)e−λ
hT ]I} − λh +

1− q
q

V l(λl, αl)

subject to U l(λh) ≥ U l(λ̄l, ᾱl) (IEl′)

The key to this high-type maximisation problem is defining a λh that makes IEl′

binding. So we rewrite the left-hand-side of IEl′ as the following:

U l(λh) =
pl0
ph0

[e−rTph0(1− αh)R]− λh

=
pl0
ph0

(Uh(λh) + λh)− λh

=
pl0
ph0
Uh(λh) + (

pl0
ph0
− 1)λh (3.8)

The objective function Uh(λh) is concave in λ since Uh′′(λh) < 0, which guar-

antees a unique λ̃h that maximises Uh. Moreover, for any Uh′(λh) < 0, we could

deduce that λh > λ̃h.

Then we study the properties of U l(λh) in order to identify the λh which

makes IEl′ binding. U l(λh) shows the same concavity property in λh. As dU l

dλh
=

pl0
ph0
Uh′(λh) + (

pl0
ph0
− 1), and for λ̄h to be the first-best, Uh′(λ̄h) = 0 holds. Thus, we

find out that: U l(λh) decreases at the λ̄h-neighbourhood as dU l

dλ̄h
< 0. Moreover,

since U l(λ̄h) > U l(λ̄l) and U l′(λ̄h) < 0, there exists a λh
∗
> λ̄h that satisfies

U l(λh
∗
) = U l(λ̄l), and IEl binds.
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We then turn our attention to the ICh constraint: Uh(Ch) ≥ Uh(C l). Rear-

range the right-hand-side Uh(C l) as following:

Uh(C l) =
ph0
pl0
U l(C l) + (

ph0
pl0
− 1)λl (3.9)

Substituting the condition that IC l binds in the equilibrium, i.e., U l(C l) =

U l(Ch), into the above Uh(C l):

Uh(C l) =
ph0
pl0
U l(Ch) + (

ph0
pl0
− 1)λl

= e−rTph0(1− αh)R− λh + (λh − λL)(1− ph0
pl0

)

= Uh(Ch) + (λh
∗ − λL)(1− ph0

pl0
)

For ICh to hold: Uh(Ch) ≥ Uh(C l) = Uh(Ch)+(λh
∗−λL)(1− ph0

pl0
), as (1− ph0

pl0
) < 0,

thus we deduce that λh
∗
> λL should be satisfied.

3.B Proof of Proposition 6 and 7

According to the assumption, αh = αl = α. As U θ(λ) is monotonically de-

creasing in λ, therefore, both incentive compatibility constraints indicate that

λh ≤ λl and λl ≤ λh. Thus, λh = λl = λ in this case.

As the individual rationality constraint of the investor binds when innovators

receive the optimal payoff, we choose the smallest λ that makes IR binds as

following:

qe−rT{ph0αR− [ph0 + (1− ph0)e−λT ]I}+ (1− q)e−rT{pl0αR− [pl0 + (1− pl0)e−λT ]I}

= 0

=⇒ λ̃ =
1

T
ln
I[q(1− ph0) + (1− q)(1− pl0)]

(αR− I)[qph0 + (1− q)pl0]

Since the full-information internal financing of the low-type under fixed revenue

share is

λ̄l =
1

T
ln

I(1− pl0)

(αR− I)pl0

Thus, λ̃ ≤ λ̄l for q ∈ [0, 1] and IEl holds. Thus Proposition 6 is proved.

Following the same reasoning. For λh = λl = λ, two IC constraints imply that

αh = αl = α. Then according to the IR constraint’s binding condition, one could

show that α̃ ≤ ᾱl, then the IEl constraint holds as well.
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3.C Proof of Proposition 8

Prove by contradiction. Suppose that there exists a pooling equilibrium where

high and low types of innovators propose the same financial contract, i.e Ch =

C l. In the following we first solve the Programme B given Ch = C l to see

the most efficient outcome in the high-type’s best interest. Then we attempt

to analysis the symmetric Programme B of the low-type when Ch = C l. If the

outcomes of these two programmes coincide, there is a pooling equilibrium as a

solution of Programme B. If not, there is always profitable deviation for either

type, which results in no pooling result under imperfect information and confirms

the uniqueness of the separating equilibrium.

In Programme B, when Ch = C l, ICh and IC l hold with equality and could

be ignored. We first ignore IEl and check whether it will be satisfied later. Write

down the reduced version of Programme B as the following:

max
λ,αh

Uh(αh, λh) = e−rT (1− αh)ph0R− λh

subject to V (q) = qV h(λh, αh) + (1− q)V l(λh, αh) ≥ 0 (IR)

As the optimum allocation is where indifference curve of the high-type tangent

with investor’s zero-profit curve where MRSh
αh,λh

(Ū) = MRSαh,λh(V (q)) for given

utility level Ū and 0, we calculate in the following way:

MRShαh,λh(Ū) =
∂U/∂αh

∂U/∂λh
= e−rTph0R

MRSαh,λh(V (q)) =
∂V/∂αh

∂V/∂λh
=

qph0R + (1− q)pl0R
[q(1− ph0) + (1− q)(1− pl0)]TIe−λhT

then equalise the two MRS finding the tangent point:

λh = −r +
1

T
ln
TIph0 [q(1− ph0) + (1− q)(1− pl0)]

qph0 + (1− q)pl0
,

αh =
I

R
+

1

ph0Re
−rTT

= ᾱh.

According to the same logic, we solve the low-type optimisation programme:

max
λ,αl

U l(αl, λl) = e−rT (1− αl)pl0R− λl

subject to V (q) = qV h(λl, αl) + (1− q)V l(λl, αl) ≥ 0, (IR)
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get the following results:

λl = −r +
1

T
ln
TIpl0[q(1− ph0) + (1− q)(1− pl0)]

qph0 + (1− q)pl0
,

αl =
I

R
+

1

pl0Re
−rTT

= ᾱl.

We can see the contradictions here where λh 6= λl and αh 6= αl. Moreover, whether

IEl will hold or not depends on the q parameter value, so it’s not satisfied under

any circumstances.
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Chapter 4

Multi-stage innovation financing
under imperfect information

4.1 Introduction

4.1.1 Motivation and analysis

Successful innovation often requires completion of multiple phases. Launching

a new medicine in the UK requires passing three phases of clinical trials, which

usually takes around 10-12 years and costs 1 billion pounds per new medicine.

Due to safety and risk concerns, only 1 in 10,000 candidate drugs will eventually

succeed (The Faculty Of Pharmaceutical Medicine, 2017). An increasing num-

ber of pharmaceutical companies are seeking outside financing sources due to the

high development cost. However, it is getting increasingly difficult for those small

companies to raise funding than the large ones, which is mainly due to the imper-

fect information between innovators and investors in the market (Hall and Lerner,

2010). According to a study by McKinsey & Company, over half of the late-stage

research is funded externally, and many of them are pursuing novel financing

and collaboration modes, such as sharing control right and selling future options

(David et al., 2010). With outside funding of multistage innovation projects and

asymmetric information about stage completion, it is important that innovators

are incentivised to reveal progress to investors in a trustworthy way.

To address the question of how innovators can be incentivized to reveal progress

in multistage innovation project, this chapter analyses a simple two-stage innova-

tion project funded by an outside investor when the progress of the project is the

private information of the innovator. This is a multistage principal-agent problem
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with innovation where the innovator is the agent and the investor is the principal.

To successfully conclude, the project requires completion of two stages. The first

stage could be considered as a development phase that involves initial investiga-

tion, planning, hiring of researchers, setting up of processes and equipment and

so on. The time of completion of this first phase is unobservable to the investor.

For simplicity, we assume that the time of completion is binary and either early

or late. The second stage requires investigation or experimentation that may or

may not be successful. The probability of the success in the experimentation stage

depends on an unknown state of the world. If the state is good, the project will

generate a relative high revenue compared to the investment cost; if the state is

bad, it realises nothing. Thus, in the second stage, the agent needs to explore the

unknown state of the world and may potentially abandon the project if no good

news comes out as time passes1. The information imperfection on the timing of

completion of the development stage and uncertainty on the result may deter the

investor from committing to a long-term contract and financing the innovation.

Therefore, the question of interest is how to design an optimal financial contract

which is incentive compatible for the agent to truthfully reveal the progress of the

innovation project with respects to the participation constraint of the investor.

The project progress plays a crucial role in the long-term financial contracting

as it determines the funding deadline and relevant amount of compensation. As

the agent is short of funding and continuously requires investment funding from

the investor, the contract should include decent compensation to make the investor

willing to sign the contract. The reward should be paid as soon as the second stage

is completed for the following two reasons: first, it is difficult for the two parties to

contract on the accomplishment of the first stage as it is the private information

of the agent. Second, the agent is short of funding to repay the investor and re-

lies on the breakthrough of the innovation, which will generate a large amount of

revenue. Thus, the financial contract under perfect information needs to specify

two funding periods with different reward in the event of early-completion and

late-completion respectively. We assume that, for simplicity, renegotiation and

short-term contract are not allowed in our model. The contract should take all

1The state of the world does not affect the accomplishment of the development stage, but
the project can only be completed in the second experimentation stage if the state is good.
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possible information imperfection scenario into consideration and especially pre-

vent potential deviations of the agent. We show that with some moderation on

the bonus contract mentioned above, a truthful revealing of the project progress

and the first-best experimentation can be achieved under imperfect information.

This chapter contributes to the theoretical literature on the financing of in-

novation and addresses the imperfect information of project progress. There are

several common features of the models in this literature strand: firstly, the agents

are normally short of funding and need financial support from investors. Secondly,

the outcomes of the innovation are uncertain, which requires agents to conduct

experiment and learn the quality of the innovation. Thirdly, investors are gen-

erally less informed than agents, which gives rise to the problem of information

asymmetry. However, most of the papers in this literature strand focus on the

moral hazard problem where the agent may potentially shirk and delay exert

effort under imperfect monitoring by the investor (Bergemann and Hege, 1998,

2005; Horner and Samuelson, 2013). This chapter enriches the discussion of the

financing innovation literature by introducing the imperfect information problem

of project progress.

This chapter uses the “good news” exponential bandit model to describe the

random arrival of a success in the experimentation stage, which is widely used in

the theoretic literature of strategic experimentation (Keller et al., 2005; Horner

and Samuelson, 2013; Moroni, 2016). This chapter is novel in this literature strand

that demonstrates the information spillover effect between the development stage

and experimentation stage during innovation. Experimentation is adopted by the

agent to explore the state of the world. As the state of the world can either be

good or bad, the agent exerts effort, which is equivalent of pulling the risky arm.

Whereas, taking the safe arm, shirking or delaying effort, generates zero profit

and is not preferable to the agent as actions are fully observable to the investor,

and as the project owner, the fundamental interest of the agent is to generate

the final breakthrough and get the revenue. The innovation project is assigned

with a prior belief of the good state, denoted as p0, which is public information.

The agent will initiate innovation as long as the expected revenue exceeds the

investment cost. The agent experiments and waits for the arrival of a good news

indicating an innovation breakthrough, but the belief of the good state decreases

69



as long as no good news comes. Due to the downward-adjust posterior belief, the

agent would abandon the project when the expected revenue can not cover the

cost, which forms a stopping time of the innovation.

The chapter first shows that the first-best financial contract involves two stop-

ping times and a bonus paid from the agent to the investor at the completion

of the experimentation stage, and the amount of the bonus depends on whether

the development phases finishes early or late. Assume that in the baseline model,

the completion of the first stage conveys no useful information on the state of

the world. Thus, the experimentation in the second stage lasts the same length

of time in both cases, and at the early-completion, the project would optimally

be terminated at an earlier time than the late-completion. The optimal stopping

time is determined when the marginal payoff of the project becomes zero, and the

posterior belief of the good state reaches to a minimum cutoff. The bonus is paid

to compensate the total investment cost from the investor given the completion of

the first stage. Since the investor pays more investment costs when the first stages

is completed late, hence a larger bonus should be paid compared with the early

case. However, deviation from this first-best contract is possible when the comple-

tion of the first stage is not observable: the agent with the early-completion would

want to hide and claim a late-completion. By doing so, he could obtain funding

until the late-contract stopping time. Moreover, deviation of the agent will also

result in an asymmetric belief adjusting such that the investor is more optimistic

about the good state than the agent. Proposition 9 demonstrates an optimal sep-

arating contract which provides incentives for the agent to reveal the progress of

the project truthfully and chooses either the early-completion or late-completion

relevant contractual terms accordingly. The optimal contract indicates that the

bonus of the late-completion should be larger than it of the early-completion and

specifies a minimum distance between the two bonuses so as to prevent the agent

from hiding the early-completion efficiently. Moreover, the first-best experimen-

tation time can be achieved under this optimal contract, which means that the

agent can still claim the entire surplus of the project and the investor break-even

on average. We also consider an optimal pooling contract which is restricted with

a single stopping time and a bonus exogenously. For example, the investor may

prefer a more convenient and straightforward pooling contract as it may take
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longer to negotiate than a rather complicated separating contract. Proposition

10 proves that the first-best experimentation is not attainable under the optimal

pooling contract: the project will be terminated earlier than the stopping time

of the late-completion case, and the shortened experimentation time in the late-

completion is to subsidise the potential welfare loss of the investor as a result of

information imperfection. Thus, the agent without knowing the first stage will

finish early or late ex ante would prefer the separating contract to the pooling

contract.

The chapter then proceeds to the case when the completion time of the first

stage is neither observable nor verifiable by the investor. Since it is very costly and

difficult to monitor the innovation progress, the investor relies on the announce-

ment or report from the agent to be informed of the progress of the innovation.

However, we assume such reports cannot be verified by the investor. In this

case, the agent may deviate from the optimal separating contract: when the first

stage finishes late, he may lie and pretend to have an early-completion mainly

due to the smaller bonus transfer specified in the early-contract. To solve this

deviation problem, we impose another incentive compatibility constraint in the

optimal separating contract and find out an upper bound on the difference be-

tween the early-bonus and late-bonus. As long as the difference between the two

possible bonuses is below this upper bound, the agent will not deviate from this

optimal separating equilibrium, and the first-best is still achievable; otherwise, if

the bonus difference is not within the range, the agent will deviate.

As an extension, we discuss an information spillover effect across two stages.

Suppose that the completion of the first stage is informative such that the early-

completion indicates a higher prior belief of the good state than the late-completion.

In this case, we want to explore whether this additional information embedded in

the first stage would influence the way of long-term contracting and the welfare

of both parties. The result in Proposition 12 demonstrates an optimal incentive-

compatible contract under imperfect information which specifies two cases regard-

ing the undetermined relationship between the first-best stopping times under the

early-completion and late-completion. Due to the heterogeneity of the prior be-

liefs under the early-case and late-case, the experimentation required in the second

stage differs: under the early-completion, the project with a higher prior deserves
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a longer experimentation than the late-completion. In this case, the relationship

between the optimal stopping times depends on the values of exogenous prior be-

liefs and completion times of the first stage, hence cannot be determined. When

the stopping time under the early-completion exceeds the late-completion, a larger

bonus should be imposed in the early contract, which is opposite against the pre-

vious optimum. If the bonuses is confined within a certain range according to

Proposition 12, the first-best is feasible. When the late-completion stopping time

exceed the early, the optimal contract remains the same as in Proposition 11 but

the distance between the two bonuses becomes smaller. As the early contract con-

tains positive information of the good state, hence has a longer experimentation

time than the late, the incentive of mimicking the early contract increases, which

gives rise to a pressure of increasing the early-completion bonus. Conversely,

there is a pressure of downward adjusting the late-completion bonus. Thus, the

difference between the bonuses gets smaller.

4.1.2 Related literature

The chapter first contributes to the literature on the contracting of a multistage

project. Within this strand of literature, Green and Taylor (2016) is one of the

closest to ours where they build a two-stage-breakthrough model with unknown

actions of the agent and imperfect information on the progress of the project. To

resolve the imperfect information problem, the optimal contract proposed by the

principal consists of a “soft” and “hard” deadline. The principal would expect

a report of the innovation progress from the agent before this soft deadline, oth-

erwise, the agents will be punished to undertake a probation, which involves a

random probability of being fired. In this case, the agent is incentivized to work

and truthfully report the progress of the project. While the hard deadline is to

guarantee the completion of the innovation, which is comprised of two successes.

As another similarity, our paper also focuses on the discussion of the imperfectly

observed progress of the project. However, we consider the agent-optimal con-

tact where the investor holds no bargaining power, it turns out that the optimal

incentive compatible contracts for the agent to reveal the progress involve no dis-

tortion on the experimentation time. As a difference, moral hazard problem is not

a major concern in this chapter. Moreover, according to our model, the arrival
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of the experimentation success is random and uncertain, which requires learning

of agent. Whereas, the project can succeed with certainty such that there is no

learning and belief updating in Green and Taylor (2016).

Information imperfection issue has been wildly discussed in the literature of

innovation financing. The seminal papers by Bergemann and Hege (1998, 2005)

study the dynamic moral hazard in the financing of innovation. In the presence of

imperfect information on the actions of the agent, the agent may find it profitable

to divert funding to private ends, which may cause an asymmetric belief updating

between the investor and agent. Their papers show that the investor can shorten

the funding period to prevent such deviation if renegotiation and short-term con-

tract are allowed. Horner and Samuelson (2013), Demarzo and Sannikov (2016),

He et al. (2017) recently approach to the incentivising problem in context of long-

term financial contracting. They show that the equilibrium effort of the agent

is induced to be front-loaded so as to achieve the maximum experimentation in

the early stage. Moreover, the termination rule is set by the investor so as to

improve the incentives of the agent. In our model, a similar asymmetric informa-

tion problem arises where the investor can not perfectly observe the progress of

the project and his belief might be distorted if the agent hides or lies about the

innovation progress. However, our model differs from theirs in several aspects:

first, our paper focuses on the imperfect information of the innovation progress

and the agent’s potential deviation of hiding progress from the investor, rather

than shirking and delaying exert effort. Second, multistage innovation is inves-

tigated in this chapter where we concentrate on the optimal long-term contract

that eliminates the information asymmetry issue.

According to another strand of the literature on the stage financing (Neher,

1999; Bergemann et al., 2010; Dahiya and Ray, 2012), agency problem resulted

from imperfect monitoring of the investor can be resolved by providing investment

funding sequentially and splitting the financing horizon into different stages. The

releasing of funding controlled by the investor varies over time, which can be used

to prevent the agent from procrastinate. Whereas, in my model, the investor has

no power of the funding releasing speed or timing, and the innovation is restricted

exogenously to be completed within two stages .
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Under the similar multistage-experimentation-paradigm, Moroni (2016) and

Wolf (2017) approach the moral hazard agency issue, so their focus is to design a

contract to monitor and incentivise the agent to work, which is different from the

imperfect information problem of the project progress addressed in this chapter.

As the actions of the agents can not be observed by the principal, the agents may

shirk and free-ride on the findings of the others. The optimal contract designed

in Moroni (2016) shows that information rent should be paid to the agent who

succeeds at early stage, hence the first-best experimentation can not be obtained.

Rewards in the contract include the monetary payoff, a extended deadline in the

later stage and the lessening of competition as some agents may be excluded by

the principal. Wolf (2017) introduces the information spillover effect across two

innovation stages, so the agents have additional information rent as the early stage

failure may be resulted from the bad state of the world rather than shirking.

The remainder of the chapter is organised as follows: Section 4.2 introduces

the model set-up and defines the first-best experimentation. Section 4.3 is the

main body of this article, which begins with the optimal verifiable contract under

imperfect information, including the discussions of separating and pooling con-

tracts, follows with the optimal contract with non-verifiability. Section 4.4 extends

the baseline model to the information spillover effect across stages. Section 4.5

concludes.

4.2 Model

4.2.1 Setup

There is an agent and an investor involved in a two-stage innovation financing

game. The agent owns the innovation project. The outcome of the project depends

on the unknown state of the world and is either good or bad. In the good state,

the project will succeed and generate R amount of revenue with a random arrival

rate; in the bad state, it will fail and produce nothing. The agent has a prior

belief p0 that the state is good, and needs to strategically conduct the experiment

and discover the state of the world. The agent has no funding to run the project

and requires a continuous amount i per unit of time of investment funding from
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the outside investor. For simplicity, both the agent and the investor have a zero

discount rate2.

The completion of the innovation project goes through two stages, a develop-

ment stage and an experimentation stage. The first stage is relatively easy, and

one can succeed with certainty, which is independent of the state of the world.

In other words, the completion of the first stage does not provide any informa-

tion about the state of the world. The completion of the first stage can only

be observed by the agent. For simplicity, we assume that the first stage can be

completed either early or late and follows a binary distribution: with probability

α, the first stage finishes at time T e1 and with probability (1− α), it is completed

late at T l1, where T e1 < T l1
3. Thus, the agent knows whether the first stage finishes

early or late at T e1 . T e1 and T l1 are exogenously fixed parameters, and and whether

the development stage is completed early or late is only observed by the agent and

not the investor. Once the development stage is completed, the project proceeds

to the second experimentation stage. In the second stage, a successful outcome of

the project is a random variable that depends on whether the state of the world

is good or bad. Assume that the arrival of a success in the second stage follows

an exponential distribution with the intensity rate λ in the good state. Given

the prior belief of the good state p0, during the second experimentation stage,

the belief that the state is good decreases as long as no success comes. With this

decreasing posterior belief, the agent will optimally terminate the project when

the expected marginal payoff becomes non-positive. Denote T e2 and T l2 as two

termination times conditional on the early or late completion of the development

stage respectively such that T e2 ≤ T l2.

Under the benchmark model, the prior belief of the state being good would not

vary with the early or late completion of the first stage. In the extension part, we

allow the completion of first stage to be informative such that an early completion

indicates a higher prior of the good state. In this case, the agent would extend

2It can be generalised to the case with discounting but the optimal bonus contract of our
paper still apply.

3The binary distribution of first-stage completion time could be generalised to more com-
plicated distributions, such as exponential distribution, Brownian motion. However, using the
binary distribution enables us to relate the incentive problem to just two stopping times, which
avoids extra complications.
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the deadline of the second stage under an early-completion. We will discuss the

spillover effect and incentive problems when T e2 ≤ T l2 and T e2 > T l2 respectively.

Since only the agent observes when the development stage is completed, the

agent may have an incentive to delay announcing or lie about the completion of

the first stage. The financial contract negotiated by the agent and the investor

should take this incentive problem into account.

4.2.2 First-best stopping time

This section considers the optimal choice of a fully-informed social planner.

The social planner bears the entire investment cost and decides the optimal ter-

mination times T e2 and T l2 conditioning on the end of the development phase that

maximise the total expected surplus of the innovation project. Denote Π as the

total expected payoff of the social planner:

Π =− αT e1 i+ α

∫ T e2

T e1

(p0e
−(t−T e1 )λ + 1− p0)(ptλR− i)dt

− (1− α)T l1i+ (1− α)

∫ T l2

T l1

(p0e
−(t−T l1)λ + 1− p0)(ptλR− i)dt,

where the first two terms are the expected surplus under the early-completion case

with the probability of α according to the binary distribution, and the last two

terms are the expected surplus under the late completion. Note that because there

is no direct benefit generated from the development stage, the social planner as

the project owner will immediately commence the experimentation stage as soon

as the development phase is completed. Using the properties of the exponential

distribution, with arrival rate λ, the cumulative probability of success from T e1 to

time t is (1 − e−λ(t−T e1 )). p0e
−λ(t−T e1 ) accounts for the probability of no arrival of

the success up to t if the state is good and 1−p0 is the probability conditioning on

the bad state, so the term (p0e
−(t−T e1 )λ+1−p0) is the unconditional probability of

no success arrives before t. pt is updated posterior belief of the state being good

according to Bayesian updating rule, i.e. pt = p0e
−λ(t−Te1 )

p0e
−λ(t−Te1 )+1−p0

. The analogous

belief updating applies to the case when the first stage finishes late at T l1.
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Π can be rearranged when substituting the posterior belief pt as follows:

Π =− αT e1 idt+ α

∫ T e2

T e1

p0e
−(t−T e1 )λλR− (p0e

−(t−T e1 )λ + 1− p0)idt

− (1− α)T l1i+ (1− α)

∫ T l2

T l1

p0e
−(t−T l1)λλR− (p0e

−(t−T l1)λ + 1− p0)idt.

The optimal T e2 and T l2 are chosen such that Π is maximised according to the

first-order condition as follows:

dΠe

dT e2
=p0e

−(T2−T e1 )λλR− (p0e
−(T2−T e1 )λ + 1− p0)i = 0

⇒ T̄ e2 = T e1 +
1

λ
ln

(
p0

1− p0

λR− i
i

)
;

dΠl

dT l2
=p0e

−(T2−T l1)λλR− (p0e
−(T2−T l1)λ + 1− p0)i

⇒ T̄ l2 = T l1 +
1

λ
ln

(
p0

1− p0

λR− i
i

)
,

where T̄ e2 and T̄ l2 denote the first-best experimentation times under early and late

completion of the first stage respectively.

The first-best total experimentation time at the second stage is independent

of the completion of the first stage as indicated by T̄ l2 − T l1 = T̄ e2 − T e1 . In other

words, the result of the first stage does not convey any information on the state of

the world, so the prior belief remains unchanged regardless of the completion time

of the first stage. Moreover, the project is terminated when the posterior belief of

the good state reaches the cutoff if no success comes such that pT̄2
e = p

T̄2
l = i

λR
.

4.3 Financial contracting under imperfect infor-

mation

4.3.1 Optimal separating contract with verifiability

As the project owner, the agent has no funding and seeks outside financing

from the investor. This section considers the financial contracting between the

investor and the agent when the completion of the first stage is privately known

by the agent but the progress announcement can be verified by the investor. The

aims of the financial contract are to optimise the expected payoff of the agent

and make sure the investor participates and gains non-negative expected payoffs.
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Moreover, as the project progress is unobervable but verifiable to the investor, the

agent may have incentives to delay reporting the early completion, so the optimal

contract is designed also to make the agent voluntarily announce the progress.

We first consider a separating contract which creates incentives for the agent

to announce the completion of the first stage by choosing either early or late terms

in the contract accordingly. The financial contract proposed specifies maximum

funding periods from period 0 to T e2 or T l2 in the event of early or late completion of

the first stage respectively and non-time varying lump-sum bonuses from the agent

to investor in the experimentation stage conditional on the announcement of early

or late completion of the development stage, denoted as Be and Bl. That is, the

contract is C = {T e2 , Be;T l2, B
l}. The bonuses Be and Bl are used to compensate

the funding provided by the investor and create creditable incentives for the agent

to reveal the completion of the development stage. Specifically, if the first stage

finishes early, the agent will inform the investor in order to get funded until T e2 , and

the investor receives Be as soon as success in the experimentation stage arrives;

otherwise, the contractual terms concerning the late completion will be triggered.

Since the agent cannot self-fund, the bonuses are made to the investor only when

the revenue R is realised at the experimentation success, whereas, in the event

of no success in the bad state, zero bonus will be paid. We initially assume that

these bonuses do not depend on the time of success at the experimentation stage

and check whether such bonuses can be used to achieve the first-best outcome.

As a first step, consider the case of full information where the investor knows

the time the development stage is completed. Assume the agent maximises his

total expected payoff and subjects to offering the investor a break-even utility in

both the early and late cases. Under C = {T e2 , Be;T l2, B
l}, let V e and V l be the

total expected payoff of the investor under the early and late completion of the

first stage, which are equal to zero at the agent’s optimal contract. Thus, the

first-best bonuses, also known as full-information bonuses, are denoted as B̄e and
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B̄l, which can be determined by setting V e and V l equal to zero such that:

V e = −
∫ T e1

0

idt+

∫ T e2

T e1

p0e
−(t−T e1 )λλBe − (p0e

−(t−T e1 )λ + 1− p0)idt = 0

⇒B̄e

∫ T e2

T e1

p0e
−(t−T e1 )λλ =

∫ T e1

0

idt+

∫ T e2

T e1

(p0e
−(t−T e1 )λ + 1− p0)idt;

V l = −
∫ T l1

0

idt+

∫ T l2

T l1

p0e
−(t−T l1)λλBl − (p0e

−(t−T l1)λ + 1− p0)idt = 0

⇒B̄l

∫ T l2

T l1

p0e
−(t−T l1)λλ =

∫ T l1

0

idt+

∫ T l2

T l1

(p0e
−(t−T l1)λ + 1− p0)idt.

Thus, the bonuses compensate the total investment cost of the investor under

full-information, and B̄l exceeds B̄e by the first stage extra investment time from

T e1 to T l1.

Now, we consider the case where the completion of the development stage is

private information of the agent, but where completion can be costlessly verified

by the investor. Thus, the agent cannot claim to have completed early if she has

not, but the agent may be able to claim to have completed late even if in fact she

completed earlier. The advantage of claiming a late completion of the development

stage is that the agent might receive extended funding for experimentation until

T l2. Such a behaviour would distort upward the posterior belief of the investor,

where the investor always holds higher posterior than the agent during T l1 to T l2,

which would altogether result in a welfare loss to the investor. Thus, we want to

find an incentive compatible contract that gives the agent the incentive to report

truthfully.

Let U0 and V0 denote the total expected payoff of the agent and the investor

at period 0 respectively as follows:

U0 =− α
∫ T e2

T e1

p0e
−(t−T e1 )λλ(R−Be)dt+ (1− α)

∫ T l2

T l1

p0e
−(t−T l1)λλ(R−Bl)dt,

(4.1)

V0 =− α
∫ T e1

0

idt+ α

∫ T e2

T e1

{p0e
−(t−T e1 )λλBe − (p0e

−(t−T e1 )λ + 1− p0)i}dt

− (1− α)

∫ T l1

0

idt+ (1− α)

∫ T l2

T l1

p0e
−(t−T l1)λλBl − (p0e

−(t−T l1)λ + 1− p0)idt,

(4.2)
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where the first and third terms of V0 are the total investment funding up to the

early or late completion of the first stage. The agent optimally chooses stopping

times and compensation subject to the break-even (or individual rationality, or

participation constraint) of the investor and incentive compatibility constraints

as follows:

max
T e2 ,B

e,T l2,B
l
U0(C)

subject to U e(T e2 , B
e) ≥ U e(T l2, B

l) (ICe)

V0(C) ≥ 0, (IR)

where U e(T e2 , B
e) is the expected payoff of taking the early contract conditioning

on the early completion, U e(T l2, B
l) is the expected payoff of hiding the early

completion and choosing the late contract4. ICe ensures the agent truthfully

reveal the early completion of the first stage. IR is the individual rationality

constraint of the investor. However, there is no analogous IC l which ensures the

truthful reveal of the late completion as the progress of the first stage is verifiable

and the agent can not pretend to complete early in the late case. Let the IR

constraint bind at the optimum, so set V0 = 0, and the programme becomes:

max
T e2 ,T

l
2

U0 =α

∫ T e2

T e1

(p0e
−(t−T e1 )λ + 1− p0)(ptλR− i)dt

+ (1− α)

∫ T l2

T l1

(p0e
−(t−T l1)λ + 1− p0)(ptλR− i)dt.

Note that the ICe constraint is ignored at the moment, and we would then check

at the optimal experimentation time, whether the full information bonuses could

be satisfied. Taking the first-order condition of U0 with respect to T e2 and T l2:

dU0

dT e2
=p0e

−(T e2−T e1 )λλR− (p0e
−(T e2−T e1 )λ + 1− p0)i = 0,

dU0

dT l2
=p0e

−(T l2−T l1)λλR− (p0e
−(T l2−T l1)λ + 1− p0)i = 0.

⇒ T̄2
e

= T e1 +
1

λ
ln

(
p0

1− p0

λR− i
i

)
; (4.3)

T̄2
l
= T l1 +

1

λ
ln

(
p0

1− p0

λR− i
i

)
, (4.4)

4Here we assume that the agent can conceal the experimentation success when it arrives
between T e

1 and T l
1. In this case, the incentive problem still exists in the sense that the agent

may claim a late completion even when the experimentation success comes before which he
chooses the late contract at T l

1.
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which are the first-best experimentation times.

Then we consider the choices of Be and Bl that satisfying the ICe constraint

under the first-best experimentation times, which incentivise the agent reveal the

early completion.

Proposition 9 The optimal separating equilibrium financial contract under im-

perfect information on the first stage is C = {T̄2
e
, Be; T̄ l2, B

l}, where T̄2
e

and T̄ l2

are the first-best maximum funding time, Be and Bl are the bonuses distributed

by the agent when success comes at the second stage based on the early or late

completion of the first stage respectively. Specifically, the expectation of Be and

Bl should satisfy the following relationship:∫ T̄2
l

T l1

pT l1e
−(t−T l1)λλBldt−

∫ T̄2
e

T e1

p0e
−(t−T e1 )λλBedt ≥ Rγe

where γe =
∫ T̄2

l

T̄2
e pT̄2

ee−(t−T̄2
e
)λλdt, pe¯T2

e = p0e
−λ(T̄2

e−Te1 )

p0e
−λ(T̄2

e−Te1 )+1−p0

. Additionally, the full

information bonuses satisfy the above inequality, which means the full-information

equilibrium {T̄2
e
, B̄e; T̄ l2, B̄

l} is achievable.

Proof. See appendix.

The above optimal separating contract provides sufficient incentives for the

agent to truthfully reveal the completion of the first stage and take the early or late

terms accordingly, and the investor in expectation breaks even. The proposition

indicates that the gap between the bonuses in the early and late terms should

be at least large enough to cover the expected net gain of the agent if the late

contract is taken at the early completion, which is exactly the expected revenue in

the extended experimentation time from T̄2
e

to T̄2
l
. Intuitively, by hiding the early

completion the agent can distort the investor’s posterior belief of the good state

in which case the investor holds higher posterior belief over time than the agent

such that ∀t ∈ [T l1, T̄2
l
], pt(investor|agent hides) = p0e

−λ(t−Tl1)

p0e
−λ(t−Tl1)+1−p0

> pt(agent) =

p0e
−λ(t−Te1 )

p0e
−λ(t−Te1 )+1−p0

. Thus, the agent continuously gains positive profit until T̄2
l
, which

makes a loss to the investor. To deter such a deviation, we impose the incentive

compatibility constraint and specify different bonuses be distributed in the event

of early or late completion. Specifically, a smaller bonus in case of early completion

should be claimed by the investor in order to eliminate agent’s hiding incentive,

81



and the difference of the expected bonuses on the late and early cases should be

at least large enough to cover the net gain of the agent if the early completion

is hidden. Moreover, the separating equilibrium contract can fully induce the

first-best outcome regardless of the information imperfection in the sense that the

first-best experimentation times and bonuses can be obtained in both early and

late cases and the agent claims the entire surplus. In other words, the first-best

contract forms a separation equilibrium in both early and late cases where the

agent is incentivised to truthfully report the progress of the first stage.

4.3.2 Optimal pooling contract with verifiability

In practice, it can be case when the contract is exogenously restricted to a

single experimentation deadline and a threshold bonus. Under such restriction,

we want to discuss the existence of an optimal pooling contract when the first

stage process is imperfect information and compare it with the optimal separating

contract in terms of the welfare of both the agent and investor.

Proposition 10 When the first stage completion is private information of the

agent, and the contract is restricted to a single-time and threshold-bonus form,

the optimal pooling contract is C = {B, T̃2}, where the investor starts financing

until T̃2 regardless the completion time of the first stage such that:

T̃2 =
1

λ
ln

 p0

α(1− p0) + (1− α)( p0

αp
Tl1

+(1−α)p0
− p0)

λR− i
i

[αeT
e
1 λ + (1− α)eT

l
1λ]

 ,

which is smaller than T̄2
l
.

Proof. See appendix.

The above optimal pooling contract states that under either early or late com-

pletion, the funding will be provided until T̃2, which is smaller than the first-best

experimentation time for late completion under the separating contract. Intu-

itively, the shortened optimal experimentation time is to subsidise the welfare

loss of the investor when the first completion is not observable. Such welfare

loss stems from two aspects: the difference in the optimal stopping times in the

early-completion and the late-completion; the asymmetric posterior belief updat-

ing where the investor holds higher posterior belief than the agent if the early-

completion is not announced. Under the first-best, the late completion will be
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0 T e1 T l1 T̃2

experimentation under early completion

experimentation under late completion

0 T e1 T l1 T̄2
e

T̄2
l

experimentation under early completion

experimentation under late completion

Figure 4.1: The optimal separating (above) and pooling (below) contracts

granted funding until T̄2
l
, which is longer than the early-completion-first-best T̄2

e
.

Due to the restriction of an single funding deadline, T̃2 is chosen such that the

investor breaks-even in expectation no matter when the first stage is completed.

Moreover, conditioning on the early completion of the first stage, the second ex-

perimentation stage starts at T e1 , which is unknown to the investor. In this case,

as long as the success does not come until T l1, the agent privately updates the

posterior belief of the good state being pT l1 . Whereas, at T l1 the investor forms the

expected beliefs in the good state such that with α probability the belief is pT l1
where the agent hides the early completion from her, and with (1−α) probability,

the belief is p0 where no experimentation has been conducted so far. Thus, the

expected belief of the good state of the investor at T l1 is
(
αpT l1 + (1− α)p0

)
, such

that
(
αpT l1 + (1− α)p0

)
> pT l1 , ∀α ∈ (0, 1). Thus, the investor is more optimistic

than the agent as his posterior belief is distorted upward. Such asymmetric belief

updating will not cease unless the success arrives and is observed by the investor

at the experimentation stage.

Under the optimal pooling contract, the agent is not incentivised to report the

early-completion as the contract is restricted to a single stopping time and bonus.

As assumed that both parties have full commitment power once the contract is

signed, even when the early-completion is revealed, the agent has the right to

continue requesting funding from the investor until T̃2
5.

5However, when renegotiation is allowed, the investor would have incentive to provide the
agent additional benefit to reveal the early-completion of the first stage and stop at an earlier
time, which would improve welfare for both parties.
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Figure 4.1 shows the timings of the optimal separating and pooling contract.

Under the separating contract, a longer experimentation time can be achieved if

the first stage is completed late as T̃2 < T̄2
l

is proven in Proposition 10.

Result 2 The optimal separating contract dominates the optimal pooling contract

where the agent obtains a longer experimentation time and captures the entire

surplus in the former contract, and the investor breaks even in both contracts.

Thus, the rational agent would always propose the separating contract.

4.3.3 Optimal contract with non-verifiability

This section considers the problem of imperfect information where the com-

pletion of the first stage can neither be observed nor verified by the investor.

Although the agent can not proceed to the experimentation stage until she fin-

ishes the development stage, she could claim an early completion even when she

finishes late without being found out by the investor. By lying about the progress

and taking the early contract, the agent would only get funded until T̄2
e

but

pay less bonus to the investor in the event of success at the second stage under

the previous optimal separating contract if no additional incentive constraint is

imposed. Moreover, there will be no bonus transfer during T e1 and T l1 since the

second experimentation stage only initiates at T l1.

Let U l(T e, Be) be the expected payoff of the agent when the late completion

of the first stage is claimed to be early:

U l(T e2 , B
e) =

∫ T e2

T l1

p0e
−(t−T l1)λλ(R−Be)dt.

In this case, the first-best experimentation time is not achieved since there is no

funding support during T e2 to T l2. However, the agent could still benefit from such

deviation if the difference between expected bonus between the late and early cases

is larger than the expected revenue loss in [T e2 , T
l
2]. Thus, the optimal contract

needs to eliminate such distortion when the progress is non-verifiable, realise the

maximised profit of the agent and make sure non-negative expected payoff of the

investor.
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The optimisation programme of the agent is as follows:

max
T e2 ,B

e,T l2,B
l
U0(C)

subject to U e(T e2 , B
e) ≥ U e(T l2, B

l) (ICe)

U l(T l2, B
l) ≥ U l(T e2 , B

e) (IC l)

V0(C) ≥ 0, (IR)

where we add the IC l constraint to eliminate the agent’s incentive of lying about

the progress.

Following the same logic dealing with the optimisation problem in Section

4.3.1, we first want to check if the first-best experimentation times and bonuses

are attainable under a separating contract where the agent has incentives to reveal

the progress truthfully. Based on the previous analysis, Proposition 9 indicates

that a larger expected bonus should be transferred to the investor in the late-

completion case to prevent the agent from hiding the early completion. However,

the larger the difference between Bl and Be, the stronger the incentive to mimic

the early-completion for the agent. Thus, with the extra incentive compatibility

constraint IC l, there are additional restrictions on the relationship between the

bonuses Bl and Be that need to be checked.

Proposition 11 The first-best experimentation time can be achieved under the

optimal separating contract C = {T̄2
e
, Be; T̄ l2, B

l}, where Bl and Be should satisfy

the following relationship:

Rγe <

∫ T̄ l2

T l1

p0e
−(t−T l1)λλBldt−

∫ T̄ e2

T l1

p0e
−(t−T l1)λλBedt ≤ Rγl,

where γl =
∫ T̄ l2
T̄ e2
pl
T̄ e2
e−(t−T̄ e2 )λλdt, γe =

∫ T̄2
l

T̄2
e pe

T̄2
ee−(t−T̄2

e
)λλdt, pe¯T2

e = p0e
−λ(T̄2

e−Te1 )

p0e
−λ(T̄2

e−Te1 )+1−p0

and pl
T̄2
e = p0e

−λ(T̄ e2 −Tl1)

p0e
−λ(T̄ e2 −Tl1)+1−p0

. Moreover, the full-information bonuses satisfy the

above inequality, which means the full-information equilibrium {T̄2
e
, B̄e; T̄ l2, B̄

l} is

achievable even when the completion of the first stage is non-verifiable.

The above proposition indicates that the full information equilibrium contract

could attain a complete separation between the agent with early or late completion

of the first stage such that there is no incentive for the agent to deviate from this
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contract even with the unobervablity and non-verifiability of the project progress.

The non-verifiablity adds an additional constraint on the bonuses where there is

an upper bound of the difference between the late-bonus and the early-bonus. In-

tuitively, by lying about the early contract, the agent gives up the experimentation

during T̄ e2 and T̄ l2, so Rγl denotes the loss of the agent. However, the difference

between B̄l and B̄e is the gain of deviating from the late contract such that less

bonuses is needed under the early contract. Thus, to deter the agent from lying,

Proposition 11 indicates that the gain of deviating should be no greater than the

loss.

4.4 Informative first-stage completion

This section extends the baseline financial contracting model to the case when

the first stage contains additional information on the unknown state of the world

such that the early completion indicates a higher prior belief of the good state

than the late completion. In this case, the early completion will be granted a

longer experimentation time due to the higher prior belief. When the innova-

tion progress remains unobservable to the investor, the agent would have stronger

incentive to mimic the early contract when she finishes late, whereas, the incen-

tive of mimicking the late contract under the early-completion decreases. As the

completion of the first stage contains information about the state of the world

but is privately observed by the agent, it is not obvious whether the first-best is

achievable or not under an optimal separating contract.

Let pe0 be the prior belief of the good state when the first stage is completed

early, and pl0 corresponds to the late-completion-prior-belief where pe0 > pl0 holds.

The investor will hold either high or low prior beliefs of the project once the

completion time of the first stage is announced by the innovator. The first-best

stopping times can be solved by substituting pe0 and pl0 into the optimisation

programme of the agent subject to the individual rationality constraint of the

investor such that:

T̄2
e

= T e1 +
1

λ
ln

(
pe0

1− pe0
λR− i

i

)
;

T̄2
l
= T l1 +

1

λ
ln

(
pl0

1− pl0
λR− i

i

)
,
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Figure 4.2: Two cases of the first-best stopping times when T̄2
e
< T̄2

l
and T̄2

e
> T̄2

l

which indicates that the early-completion requires longer experimentation than

the late-completion as T̄2
e−T e1 > T̄2

l−T l1. However, the relationship between T̄2
e

and T̄2
l

is undetermined as it depends on the value of exogenous parameters pe0,

pl0, T e1 and T l1, which means the first-best stopping time of the early-completion

may fall behind or exceed the late-completion-stopping-time (as shown in Figure

4.2). The first-best bonuses could be solved by setting the individual participation

constraint of the investor binding such that:

B̄e

∫ T̄ e2

T e1

pe0e
−(t−T e1 )λλ =

∫ T e1

0

idt+

∫ T̄2
e

T e1

(pe0e
−(t−T e1 )λ + 1− pe0)idt;

B̄l

∫ T̄ l2

T l1

pl0e
−(t−T l1)λλ =

∫ T l1

0

idt+

∫ T̄ l2

T l1

(pl0e
−(t−T l1)λ + 1− pl0)idt.

The relationship between the bonuses depends on the first-best experimentation

times T̄2
e

and T̄2
l
. As the bonuses are used to compensate the total investment

cost of the investor, if T̄2
e
> T̄2

l
, the bonus on the early completion will be larger,

otherwise, early-completion-bonus is smaller.

Under imperfect information on the project progress, we want to explore

whether the first-best outcome is achievable in the sense that C = {T̄2
e
, B̄e; T̄ l2, B̄

l}
could induce a complete separation between the early and late cases. Thus, we

impose the same optimisation programme of the agent as in the previous section,

which includes the IC l, ICe and IR constraint.

Proposition 12 The first-best experimentation time can be achieved under the

optimal separating contract C = {T̄2
e
, Be; T̄ l2, B

l}, where Bl and Be should satisfy
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the following relationship:

When T̄2
e ≥ T̄2

l
,∫ T̄2

e

T e1

pe0e
−(t−T e1 )λλBedt−

∫ T̄2
l

T l1

peT l1
e−(t−T l1)λλBldt >

∫ T̄2
e

T̄2
l
e−(t−T̄2

l
)λidt

≤
∫ T̄2

e

T̄2
l
pe
T2
le
−(t−T2

l)λλRdt;

(4.5)

When T̄2
e
< T̄2

l
,∫ T̄ l2

T l1

pl0e
−(t−T l1)λλBldt−

∫ T̄ e2

T l1

pl0e
−(t−T l1)λλBedt ∈ (Rγe, Rγl], (4.6)

which is the same as in Proposition 11. Moreover, the full-information bonuses

satisfy in both scenarios the above inequality, which means the full-information

equilibrium {T̄2
e
, B̄e; T̄ l2, B̄

l} is achievable.

Proof. See appendix.

The above proposition indicates that the relationship between the optimal

bonuses and experimentation times under the early-completion and late-completion

depends largely on the difference between the prior beliefs pe0 and pl0. If the early-

completion conveys an exceptionally positive news on the state being good such

that at T l1 the agent with the early-completion is still more optimistic of the good

state than the late-completion, i.e. pe
T l1
> pl0 holds, the optimal experimentation

will last longer in the early-completion scenario. In this case, a larger bonus should

be paid to compensate the investor as the agent would have stronger incentive to

take the early contract. The inequality Equation 4.5 shows the range of the gap

betweenBe and Bl within which the agent would truthfully reveal the progress and

the full separation could be obtained. Specifically, by taking the early contract,

the late-completion-agent would potentially gain
∫ T̄2

e

T̄2
l e−(t−T̄2

l
)λidt, which is the

expected payoff in the extended experimentation time. Moreover, the potential

benefits of taking the late-contract in the early-completion case would be upward

distorting the posterior belief of investor and undertaking no bonus transfer before

T l1 when the late-contract is triggered if the experimentation success can somehow

be hidden by the agent. Thus, to deter the mimicking of the late-contract, the
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bonus gap should be smaller than the benefit of continuing experimentation until

T̄2
e
, which is

∫ T̄2
e

T̄2
l pe

T2
le
−(t−T2

l)λλRdt.

In the case when T̄2
e
< T̄2

l
, the relationship of Be and Bl follows from Propo-

sition 11 as the experimentation stopping time in the late-completion exceeds

it in the early-completion. However, the distance between the bonuses becomes

smaller. Due to the information spillover effect, the early contract has a longer

experimentation time than the late contract, so the agent would have stronger

incentive to mimicking an early-completion. To deter them from mimicking, the

early-completion bonus increases. Conversely, the bonuses on the late-completion

is adjusted downward due the reducing incentive of lying. Although in the case

when T̄2
e
< T̄2

l
, the bonus of the late-completion still dominates it of the early-

completion, the difference between the two bonuses gets smaller.

4.5 Conclusion

In conclusion, this chapter has studied a multistage innovation financing prob-

lem in which the progress of the project is neither observable nor verifiable by

the investor. The chapter has shown that the optimal long-term separating con-

tract consists of differential maximum funding periods in the event of early and

late completion of the first stage respectively and subsequent bonuses from the

agent to the investor conditioning on success of the experimentation stage. It

has been shown that the first-best experimentation time is attainable as long as

the bonus of the late completion exceeds that of the early completion, and the

difference between the bonuses should be confined within a specific range. In the

extension, there exists spillover effect over the stages, bonuses should be adjusted

in accordance with the agent’s differentiate distortion incentives. In particular,

when the deadline of the early-completion exceeds the late-completion, the bonus

on the early-completion would increase in order to balance the increased incentive

of mimicking the early-completion. This chapter extends the study of long-term

innovation financing by including the imperfect information on project progress,

and enriches the theoretical bandit game by incorporating the spillover effect in

a multistage experimentation.
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Although this chapter has not considered heterogeneous innovators, a useful

extension for future research could be a model with two types of agents with

differentiate learning abilities. Private information on the innovation progress can

be an indication of agent’s ability such that the agent who finishes the first-stage

early is a high-type or fast-learner with a larger arrival rate, i.e. λe > λl. The

result may vary from current chapter as λ is non-monotonic in the stopping time.
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Appendix

4.A Proof of Proposition 9

Let U e(T l2, B
l) be the expected payoff of the agent when hiding the early

completion from the investor:

U e(T l2, B
l) =

∫ T l1

T e1

p0e
−(t−T e1 )λλRdt+

∫ T2
l

T l1

pT l1e
−(t−T l1)λλ(R−Bl)dt

=

∫ T2
l

T e1

p0e
−(t−T e1 )λλRdt−

∫ T2
l

T l1

pT l1e
−(t−T l1)λBldt

According to ICe, U e(T2
e, Be) ≥ U e(T2

l, Bl):∫ T2
e

T e1

p0e
−(t−T e1 )λλ(R−Be)dt ≥

∫ T2
l

T e1

p0e
−(t−T e1 )λλRdt−

∫ T2
l

T l1

pT l1e
−(t−T l1)λBldt

Make some rearrangement:∫ T2
l

T l1

pT l1e
−(t−T l1)λλBldt−

∫ T2
e

T e1

p0e
−(t−T e1 )λλBedt ≥

∫ T l2

T e2

pT2
ee−(t−T̄2

e
)λλRdt,

(4.7)

where pT l1 = p0e
−λ(T1

l−Te1 )

p0e
−λ(T1

l−Te1 )+1−p0

and pT2
e = p0e

−λ(T2
e−Te1 )

p0e
−λ(T2

e−Te1 )+1−p0
. As p0 > pT l1 , the above

inequality indicates the following:∫ T2
l

T l1

p0e
−(t−T l1)λλBldt−

∫ T2
e

T e1

p0e
−(t−T e1 )λλBedt >

∫ T2
l

T2
e

pT̄2
ee−(t−T2

e)λλRdt. (4.8)

Thus, the first-best experimentation times T̄2
l

and T̄2
e

can be chosen as long as

the above inequality on the bonuses holds.

Then we want to check whether the first-best bonuses satisfy the above in-

equality. Under perfect information, the bonuses are just used to compensate the
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total expected investment cost by the investor, which means:

B̄e

∫ T̄ e2

T e1

p0e
−(t−T e1 )λλ =

∫ T e1

0

idt+

∫ T̄2
e

T e1

(p0e
−(t−T e1 )λ + 1− p0)idt

B̄l

∫ T̄ l2

T l1

p0e
−(t−T l1)λλ =

∫ T l1

0

idt+

∫ T̄ l2

T l1

(p0e
−(t−T e1 )λ + 1− p0)idt

As T̄2
l−T l1 = T̄2

e−T e1 , B̄l
∫ T̄ l2
T l1
p0e
−(t−T l1)λλ−B̄e

∫ T̄ e2
T e1
p0e
−(t−T e1 )λλ = (T l1−T e1 )i. Sub-

stitute the full information bonuses into the left-hand-side of inequality Equation

4.8 and check whether the inequality still holds, which is equivalent of comparing

(T l1 − T e1 )i and
∫ T̄2

l

T̄2
e pT̄2

ee−(t−T̄2
e
)λλRdt:

(T l1 − T e1 )i =

∫ T̄2
l

T̄2
e
idt >

∫ T̄2
l

T̄2
e
pT̄2

ee−(t−T̄2
e
)λλRdt

As at T e2 , the early agent would terminate the project as the expected marginal

payoff becomes non-positive such that pT̄2
eλR− i = 0.

4.B Proof of Proposition 10

The expected payoff of the agent and the investor under the contract C =

{B, T2} are as follows:

U0 =α

∫ T2

T e1

p0e
−(t−T e1 )λλ(R−B)dt+ (1− α)

∫ T2

T l1

p0e
−(t−T1)λλ(R−B)dt

V0 =α

∫ T2

T e1

{p0e
−(t−T e1 )λλB − (p0e

−(t−T e1 )λ + 1− p0)i}dt

+ (1− α)

∫ T2

T l1

{(αpT l1 + (1− α)p0)e−(t−T l1)λλB

−
(

(αpT l1 + (1− α)p0)e−(t−T l1)λ + 1− (αpT l1 + (1− α)p0)
)
i}dt,

where the first and second terms of V0 are the investor’s expected payoff when the

first stage finishes early and late respectively. Specifically, (αpT l1 +(1−α)p0) is the

expected belief of the investor when informed of the late completion of the first

stage at T l1. The agent would optimally choose an T2 that maximise his expected

profit and make sure the investor get at least zero expected payoff. Thus, the

optimisation programme of the agent is as follows:

max
T2,B

U0(C), subject to V0(C) ≥ 0
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Let the individual rationality constraint of the investor bind and substitute the

expected bonus into U0:

U0 =α

∫ T2

T e1

{p0e
−(t−T e1 )λλR− (p0e

−(t−T e1 )λ + 1− p0)i}dt

+ (1− α)

∫ T2

T l1

p0e
−(t−T l1)λλRdt− (1− α)

p0

αpT l1 + (1− α)p0

i

∫ T2

T l1(
(αpT l1 + (1− α)p0)e−(t−T l1)λ + 1− (αpT l1 + (1− α)p0)

)
dt

Taking the first-order condition with respect to T2:

dU0

dT2

= α
(
p0e
−(T2−T e1 )λλR− (p0e

−(T2−T e1 )λ + 1− p0)i
)

+ (1− α)p0e
−(T2−T l1)λλR

− (1− α)i
p0

αpT l1 + (1− α)p0

[(αpT l1 + (1− α)p0)e−(T2−T l1)λ + 1− (αpT l1 + (1− α)p0)]

⇒ T̃2 =
1

λ
ln

p0

α(1− p0) + (1− α)( p0

αp
Tl1

+(1−α)p0
− p0)

λR− i
i

[αeT
e
1 λ + (1− α)eT

l
1λ]

≤ T̄2
l
= T l1 +

1

λ
ln

(
p0

1− p0

λR− i
i

)
We then prove the fact that under this pooling contract, the agent always hide

the early completion. When the agent choose to reveal the early completion, he

will get funded from T e1 to T̃2 and the investor is supposed to earn zero, such that:

U(Revealing) =

∫ T2

T e1

p0e
−(t−T e1 )λλ(R−B)dt

V (Early) =

∫ T2

T e1

{p0e
−(t−T e1 )λλB − (p0e

−(t−T e1 )λ + 1− p0)i

= 0

Thus, the expected payoff of the agent is: U(Revealing) =
∫ T2

T e1
{p0e

−(t−T e1 )λλR −
(p0e

−(t−T e1 )λ + 1− p0)i}dt.
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Whereas, if the agent choose to hide, the expected payoffs are as follows:

U(Hiding) =

∫ T l1

T e1

p0e
−(t−T l1)λλR−−(p0e

−(t−T e1 )λ + 1− p0)idt

+

∫ T2

T l1

pT l1e
−(t−T l1)λλ(R−B)dt

V (Late) =

∫ T2

T l1

{(αpT l1 + (1− α)p0)e−(t−T l1)λλB

−
(

(αpT l1 + (1− α)p0)e−(t−T l1)λ + 1− (αpT l1 + (1− α)p0)
)
i}dt

=0

Substitute for expected bonus:

U(Hiding) =

∫ T l1

T e1

p0e
−(t−T l1)λλR−−(p0e

−(t−T e1 )λ + 1− p0)idt

+

∫ T2

T l1

pT l1e
−(t−T l1)λλRdt−

pT l1
αpT l1 + (1− α)p0

i

∫ T2

T l1

(αpT l1 + (1− α)p0)e−(t−T l1)λ + 1− (αpT l1 + (1− α)p0)dt

Comparing U(Hiding) and U(Revealing), the difference is the expected invest-

ment cost from T l1:
p
Tl1

αp
Tl1

+(1−α)p0
i
∫ T2

T l1
(αpT l1 + (1−α)p0)e−(t−T l1)λ + 1− (αpT l1 + (1−

α)p0)dt versus i
∫ T2

T l1
(pT l1e

−(t−T e1 )λ + 1− pT l1)dt, where the former is smaller. Hence,

when the first stage is completed early, the agent always chooses to hide under

the pooling contract.

4.C Proof of Proposition 11

According to IC l:

U l(T l, Bl) ≥U l(T e, Be)∫ T l2

T l1

p0e
−(t−T l1)λλ(R−Bl)dt ≥

∫ T e2

T l1

p0e
−(t−T l1)λλ(R−Be)dt.

The integrated value of R during T l1 and T e2 could be cancelled, and the above

inequality becomes the following:∫ T l2

T l1

p0e
−(t−T l1)λλBldt−

∫ T e2

T l1

p0e
−(t−T l1)λλBedt ≤

∫ T l2

T e2

plT e2 e
−(t−T e2 )λλRdt,
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where plT e2 = p0e
−λ(Te2 −Tl1)

p0e
−λ(Te2 −Tl1)+1−p0

.

From ICe:∫ T l2

T l1

pT l1e
−(t−T l1)λλBldt−

∫ T e2

T e1

p0e
−(t−T e1 )λλBedt ≥

∫ T l2

T e2

peT2
ee−(t−T e2 )λλRdt,

where peT2
e = p0e

−λ(T2
e−Te1 )

p0e
−λ(T2

e−Te1 )+1−p0
.

As p0 > pT l1 ,
∫ T l2
T l1
p0e
−(t−T l1)λλBldt >

∫ T l2
T l1
pT l1e

−(t−T l1)λλBldt. Moreover, as

T e1 < T l1,∫ T e2
T l1
p0e
−(t−T l1)λλBedt <

∫ T e2
T e1
p0e
−(t−T e1 )λλBedt, so the left hand side of IC l is

greater than the left hand side of ICe, which means IC l(left) > ICe(left) holds:∫ T l2

T l1

p0e
−(t−T l1)λλBldt−

∫ T e2

T l1

p0e
−(t−T l1)λλBedt >

∫ T l2

T l1

pT l1e
−(t−T l1)λλBldt

−
∫ T e2

T e1

p0e
−(t−T e1 )λλBedt

Thus, IC l(right) ≥ IC l(left) > ICe(left) ≥ ICe(right). IC l(right) > ICe(right)

indicates the following:∫ T l2

T e2

plT e2 e
−(t−T e2 )λλRdt >

∫ T l2

T e2

peT e2 e
−(t−T e2 )λλRdt (4.9)

As plT e2 > peT2
e , the above inequality holds. Hence, the first-best experimentation

time can be achieved as long as Bl and Be satisfies the relationship:

Rγe <

∫ T l2

T l1

p0e
−(t−T l1)λλBldt−

∫ T e2

T l1

p0e
−(t−T l1)λλBedt ≤ Rγl (4.10)

where γl =
∫ T l2
T e2
plT e2 e

−(t−T e2 )λλdt and γe =
∫ T2

l

T2
e peT2

ee−(t−T2
e)λλdt. Thus, the first-

best experimentation times T̄2
l

and T̄2
e

can be chosen as long as the above in-

equality of the bonuses holds.

Then we want to check whether the bonuses under full information satisfy the

above relationship, which is equivalent of checking whether the difference between

expected B̄l and B̄e is within the interval. From Proposition 9, we know that:

B̄l

∫ T̄ l2

T l1

p0e
−(t−T l1)λλ− B̄e

∫ T̄ e2

T e1

p0e
−(t−T e1 )λλ = (T l1 − T e1 )i =

∫ T̄2
l

T̄2
e
idt > Rγe
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Thus, we just need to check whether the upper bound is satisfied. Make some

rearrangement of the inequality Equation 4.10:∫ T̄2
l

T l1

p0e
−(t−T l1)λλBldt−

∫ T̄2
e

T l1

p0e
−(t−T l1)λλBedt >

∫ T̄2
l

T l1

p0e
−(t−T l1)λλBldt

−
∫ T̄2

e

T e1

p0e
−(t−T l1)λλBedt

Substituting the B̄e and B̄l, we check the relationship between (T l1 − T e1 )i and

Rγl: ∫ T̄2
l

T l1

p0e
−(t−T l1)λλB̄ldt−

∫ T̄2
e

T l1

p0e
−(t−T l1)λλB̄edt = (T l1 − T e1 )i =

∫ T̄2
l

T̄2
e
idt

<

∫ T l2

T e2

plT e2 e
−(t−T e2 )λλRdt

As the late agent would not terminate the project until T̄2
l
, so plT e2λR − i > 0

holds.

4.D Proof of Proposition 12

When pe0 > pl0 and T̄2
e
> T̄2

l
. To stop the late completion from mimicking the

early, IC l is imposed, which indicates the following:∫ T e2

T l1

pl0e
−(t−T l1)λλBedt−

∫ T l2

T l1

pl0e
−(t−T l1)λλBldt ≥

∫ T e2

T l2

plT l2
e−(t−T l2)λλRdt,

where pl
T l2

= i
λR

.

Additionally, we impose ICe, which indiactes the following:∫ T2
e

T e1

pe0e
−(t−T e1 )λλBedt−

∫ T2
l

T l1

peT l1
e−(t−T l1)λλBldt ≤

∫ T e2

T l2

pe
T2
le
−(t−T2

l)λλRdt

where pe
T l1

=
pe0e

−λ(T̄1
l−Te1 )

pe0e
−λ(T1

l−Te1 )+1−pe0
.

As the left hand side of ICe is greater than the left hand side of IC l, the

following holds:∫ T2
e

T e1

pe0e
−(t−T e1 )λλBedt−

∫ T2
l

T l1

peT l1
e−(t−T l1)λλBldt >

∫ T e2

T l2

e−(t−T l2)λidt
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Thus, the first-best bonuses and experimentation times are achievable as long

as the differences between the expected bonuses are within the range

(
∫ T e2
T l2
e−(t−T l2)λidt,

∫ T e2
T l2
pe
T2
le
−(t−T2

l)λλRdt].

Now we turn to the case when pe0 > pl0 and T̄2
e
< T̄2

l
. The agent with an

early completion still have strong incentive to mimic the late due to extended

experimentation time although it carries a higher prior belief.

ICe indicates the following:∫ T2
l

T l1

peT l1
e−(t−T l1)λλBldt−

∫ T2
e

T e1

pe0e
−(t−T e1 )λλBedt ≥

∫ T l2

T e2

peT2
ee−(t−T2

e)λλRdt,

where pe
T l1

=
pe0e

−λ(T̄1
l−Te1 )

pe0e
−λ(T1

l−Te1 )+1−pe0
and peT2

e =
pe0e

−λ(T2
e−Te1 )

pe0e
−λ(T2

e−Te1 )+1−pe0
.

IC l indicates the following:∫ T l2

T l1

pl0e
−(t−T l1)λλBldt−

∫ T e2

T l1

pl0e
−(t−T l1)λλBedt ≤

∫ T l2

T e2

plT e2 e
−(t−T e2 )λλRdt,

where plT e2 =
pl0e

−λ(Te2 −Tl1)

pl0e
−λ(Te2 −Tl1)+1−pl0

. When pe
T l1
≤ pl0, the first-best experimentation

times are achievable. The expected bonuses gap is the same as Proposition 11.

When pe
T l1
> pl0, it contradicts with the assumption that T̄2

e
< T̄2

l
.

97



98



Bibliography

Akcigit, Ufuk and Qingmin Liu (2015), “The role of information in innovation

and competition.” Journal of the European Economic Association.

Akerlof, George A. (1970), “The market for “lemons”: Quality uncertainty and

the market mechanism.” The Quarterly Journal of Economics, 84, 488–500.

Arrow, Kenneth (1962), “Economic welfare and the allocation of resources for

invention.” In The rate and direction of inventive activity: Economic and social

factors, 609–626, Princeton University Press.

Baker, George, Robert Gibbons, and Kevin J Murphy (2002), “Relational con-

tracts and the theory of the firm.” Quarterly Journal of economics, 39–84.

Bentley MacLeod, W (2003), “Optimal contracting with subjective evaluation.”

The American Economic Review, 93, 216–240.

Bergemann, Dirk and Ulrich Hege (1998), “Venture capital financing, moral haz-

ard, and learning.” Journal of Banking & Finance, 22, 703–735.

Bergemann, Dirk and Ulrich Hege (2005), “The financing of innovation: learning

and stopping.” RAND Journal of Economics, 719–752.

Bergemann, Dirk, Ulrich Hege, and Liang Peng (2010), “Ven-

ture capital and sequential investments.” Available at SSRN

https://dx.doi.org/10.2139/ssrn.1572103.
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