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Abstract
. . . . .

Chapter 1: Relative Concerns and the Choice of Fertility

Empirical research has shown that people exhibit relative concerns, they

value social status. If they value their children’s status as well, what effect will

that have on their decisions as parents?

This paper argues that parents and potential parents are in competition for sta-

tus and rank in the generation of their children; as a consequence richer agents

may cut back on the number of children they have and invest more in each child

to prevent children of lower income agents from mimicking their own children.

This effect need not be uniform so that equilibrium fertility may e.g. be a U-

shaped function of income, even when agents would privately like to increase

fertility when they receive greater income.

These findings have wide ramifications: they may contribute to our understand-

ing of the working of the demographic transition; they also suggest that the low

fertility traps seen in some developed countries are rather strongly entrenched

phenomena; and they offer a new explanation for voluntary childlessness.

. . . . .

Chapter 2: Relative Concerns and Primogeniture

While pervasive in the past, differential treatment of children, i.e. different

levels of attention and parental investments into children of the same parent,

has become rare in modern societies. This paper offers an explanation based on

technological change which has rendered the success of a child more uncertain

for a parent who is deciding on how much to invest into each of his children.

Within a framework of concerns for social status (or relative concerns), agents

decide on how many children to have and how much to invest in each child.

When their altruism towards each child is decreasing in the total number of chil-

dren, it is shown that they may solve the trade-off between low investment, high

marginal return children (that come in large numbers and hence hurt parental

altruism) and high investment, low marginal return children (that come in low

numbers) by demanding both types and hence practice differential treatment.

Uncertainty over status or rank outcomes of children reduces the range of equi-
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librium investment levels intro children so that the difference in the numbers

they come in is reduced. Eventually the concern for return dominates and dif-

ferential treatment disappears.

. . . . .

Chapter 3: Co-Evolution of Institutions and Preferences: the
case of the (human) mating market

This paper explores the institutions that may emerge in response to mating

preferences being constrained in their complexity in that they can only be condi-

tioned on gender not other characteristics of the carrier of the preferences. When

the cognitive capacity of the species allows a sophisticated institutional setup of

one gender proposing and the other accepting or rejecting to be adopted, this

setup is shown to be able to structure the mating allocation process such that

preferences evolve to forms that, conditional on the setup, are optimal despite

the constraint on complexity. Nature can be thought of as delegating informa-

tion processing to the institutional setup.

In an application to humans it is shown that the mechanism of the model can

help explain why men and women may exhibit opposed preferences in traits

such as looks and cleverness. The anecdotal fact that women do not marry

down while men do can be interpreted as a maladaptation of female preferences

to modern marriage markets.
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Chapter 1

Relative Concerns and the

Choice of Fertility

In all civilised countries man accumulates property and bequeaths it

to his children. So that the children in the same country do not by

any means start fair in the race for success.

Charles Darwin [1871], Vol.1 p. 169.Darwin [1871]

1.1 Introduction

In an online contribution to a well-established British newspaper, a couple asks

other readers to advise them on whether or not to have additional children:

My husband and I have two wonderful children and are thinking of having
four or even five, as we’re both from large families ourselves. But we’re not that
well-off and our friends say we’re mad. Kids today are very demanding and you
can’t expect them to go without the things other children have. Is it really an
impossible (financial) dream?1

This contribution is interesting for a number of reasons: firstly, the couple

consciously decides on whether or not to have an additional child and seems to

1See guardian.co.uk [2006], italics added.
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do so by weighing benefits against costs, which implies that fertility can be seen

as the result of economic decision-making.

Secondly, the sentence in italics appears to indicate, at least in my view, that

in their calculation about how to endow the potential additional children the

couple references a child’s needs by the endowment their peer couples give to

their children. It seems plausible that the high endowments they witness other

couples giving to their (few) children makes this couple think about the large

family they would like to have as not affordable, as “an impossible (financial)

dream”.

I venture to hypothesise that the couple provides an example of the following

logic: people care about the well-being of their offspring and they anticipate that

this well-being depends partly on the relative success of their children in life;

as a consequence they try to favourably influence their children’s success by

investments, endowments or bequests of various forms. The choice of family

size and parental investments in children is thus necessarily part of a strategic

game among potential parents2.

The present paper explores this hypothesis and its effects on fertility be-

haviour.

In the following, a model of endogenous fertility choice is developed. Pref-

erences are chosen such that in the absence of endogenous status the trade-off

between number of children and parental investment per child, or quantity and

quality of children, is balanced in the sense that an increase in income leads to

a higher demand for both.

Equilibria with endogenous status are then characterised3. The possibility of

influencing the status of one’s children via manipulating the parental investment

has strong implications for the fertility behaviour of agents.

In equilibrium, the number of children is never higher than the privately optimal

number, and it is a decreasing function of how intense status competition is. Low

2The idea of this chapter and its literature review build on work the candidate undertook
for his MSc dissertation of 2008.

3As to the motivation compare Frank [1985b]: “[. . .] an element of almost overriding impor-
tance in the structure of human motivation will be a taste for seeing to it that one’s children
are launched in life as successfully as possible. Now, how successful one’s children will be in
life depends much less on their skills and endowments in any absolute sense than on how these
compare with the skills and endowments of others” (p. 102).
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income differences and large status differentials between income groups make for

fiercer competition: agents of lower status are more able and better motivated

to mimic the rich in the way they endow their children. Agents of higher status

and the rich respond by cutting back on the number of children they have and by

investing inefficiently high amounts in their ‘remaining’ children. Conditions are

derived under which competition is intense enough to bring about these effects

on fertility.

It is then shown that the above logic is capable of producing non-monotonic

patterns in the fertility and income relationship. The middle class may feel a

stronger mimicking threat from the poor than do the rich from the middle class;

the result can be a U-shaped fertility pattern in which lower and upper ends of

the income distribution have a greater number of children than the middle class,

which may fall back to having single children.

Furthermore, it can be shown that under certain conditions agents from the

middle of the distribution may choose to opt out of the game completely by not

reproducing at all.

The analysis has various implications. It contributes to our understanding

of fertility behaviour in societies that allow for social mobility; and it adds the

channel of greater economic equality by which economic development may bring

about a demographic transition. Further, it may add to the explanation of the

abundance of single child families among the middle class in many developed

countries and of the consistently reported fall of fertility in focal regions of

economic development in the less rich countries, i.e. cities.

In the normative area, the externality that agents of lower status impose on

agents of higher status by pushing parental investment to inefficiently high levels

may provide a case for government intervention. It is intriguing to think that,

with the intention to exogenise child status, societies may find it opportune to

socialise investments and expenditures on children by which their later income

is influenced, even though the individual intergenerational care that this would

try to crowd out has possibly been the main thrust behind most real and human

capital formation.

The paper is organised as follows: the next section reviews the relevant liter-

ature on relative concerns (or desire for status) to which this paper contributes;
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then the model setup is presented and its implications examined. The final

section concludes.

1.2 Related Literature

Neoclassical economic analysis presupposes that the economic agent derives util-

ity from the bundle of goods he consumes irrespective of what other agents con-

sume. This view of man is analytically convenient and provides a very pure as

well as concise and thus defendable conception of human motivation.

Many economists, however, have argued that modelling preferences according

to this view does not capture an important apparent feature of economic be-

haviour: people seem to have what has become known as ‘relative concerns’,

i.e. people care not only about how much they consume in absolute terms but

also about how their consumption, income and other characteristics compare to

those of others.

The idea traces at least as far back as Thorstein Veblen’s seminal book “The

Theory of the Leisure Class” of 1899 in which he argued that in a tradition that

reaches back to the stone ages people seek status, i.e. rank in social hierarchy,

and that they are willing to part with money in attempts to favourably change

other people’s perception of themselves. These attempts mean that people try to

copy the behaviour of higher-status people who display their status by engaging

in what Veblen called “conspicuous leisure” and “conspicuous consumption”4,

i.e. signalling-type wasteful activities.

The first formal model of relative concerns can be found in Duesenberry [1949];

his model can be interpreted as one in which people care about their total

consumption and how it compares to average consumption of the population.

This is sometimes called the comparison with “the Joneses”.

If the utility derived from the consumption of a good was equally affected

by relative concerns for all goods, then the behaviour of people would not be

affected5; if, however, the effects were unequal we may evidence a different

behaviour from the one that would prevail in the absence of relative concerns. In

4Compare Veblen [1899], chapter 3 and 4, respectively.
5Compare Solnick and Hemenway [2005], p. 147.
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this regard, the literature refers to Hirsch [1978]6 who distinguished positional

from non-positional goods. The former are defined in the following way: “The

positional economy [. . .] relates to all aspects of goods, services, work positions,

and other social relationships that are either (1) scarce in some absolute or

socially imposed sense or (2) subject to congestion or crowding through more

extensive use.”7

The seminal article to model relative concerns in an economy with posi-

tional and non-positional goods is Frank [1985b] who defines the rank in the

consumption of the positional good as the variable of interest regarding relative

concerns. He shows that people consume too much of the positional good (and

accordingly too little of the non-positional good) relative to the pareto-optimal

solution. This result has been replicated in many different guises in the ensuing

literature8 (including this paper).

The literature divides into three ways of motivating relative concerns. On

one side are those who think of relative concerns as a predisposition that was

moulded by natural selection during the evolution of man; this includes for

instance Frank [1985b]9.

Samuelson [2004] provides a rationale for the claim that relative concerns are

an intrinsic feature of human beings; he shows that in an evolutionary setting

nature may select agents that (imperfectly) infer the state of the environment

from other agents’ consumption. If fitness depends on the state of the envi-

ronment it may follow that in the evolutionary optimum agents maximise their

relative standing instead of the absolute level of consumption.

This line of thought was taken further e.g. by Rayo and Becker [2007] who

embed the idea that the consumption of other agents provides a signal about

the state of nature10 into the setting of a fitness-maximising design of the utility

function.

On the other side are those who argue that these concerns should be in-

6Compare for instance Frank [1985b] p. 101 and Hopkins and Kornienko [2004] p. 1088.
7See Hirsch [1978], p. 27.
8Compare for instance Ireland [1994], Hopkins and Kornienko [2004] and Frank [2005]
9Compare also Frank [1985a]: “Evolutionary forces saw to it that people come into the

world with a drive mechanism that makes them seek to outrank others with whom they
compete for important resources” (p. 268).

10Rayo and Becker [2007] speak of “common productivity shocks” (p. 324).
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terpreted as instrumental in that people care for how they compare with others

not for the comparison’s sake but because occupying a favourable social position

entails access or better access to goods the agent cares for.

The idea is that relative comparisons replace market mechanisms where there

are market imperfections, missing markets or non-pecuniary aspects of trans-

actions. Status is sought for the same reason for which pecuniary wealth is

sought: it can be used to acquire valued goods. This understanding is elabo-

rated in Postlewaite [1998]; and an example of the instrumental interpretation is

provided in Cole et al. [1992] who consider a marriage market that matches men

and women who differ in wealth and gender-specific endowment, respectively;

they show that status enters the utility function in the reduced form although

it has no intrinsic value to the agents11.

The third party occupies the middle ground by remaining agnostic about

the source of these relative preferences; the modelling of relative concerns is

motivated by the fact that they can be observed empirically. This party includes

e.g. Hopkins and Kornienko [2004] and the present paper.

The empirical evidence comprises papers such as J. Solnick and Hemenway

[1998], Solnick and Hemenway [2005] who have conducted surveys in order to

identify what goods or characteristics people regard as rather positional and

which as rather non-positional. Their findings strongly suggest that people

exhibit relative concerns and do so to a different degree in different aspects of

life12.

The implications of relative concerns are both wide in scope and deep in

consequence. Recent studies that explore these implications include Gali [1994]

who studies asset markets effects. He takes the comparison of own consump-

tion to average consumption as the object of relative concern as Duesenberry

[1949] and finds that average consumption influences the risk taking behaviour

of agents through its impact on marginal utility of own consumption.

Neumark and Postlewaite [1998] find empirical support for their hypothesis that

11Compare Cole et al. [1992], pp. 1114-19.
12J. Solnick and Hemenway [1998] go further and suggest that one “might be able to rank

people by concern for relative standing in the same way that they are classified by their time
preference or level of risk aversion. Attitude toward risk is considered an important dimension
along which people differ. Attitude toward relative standing may be equally important in
affecting satisfaction and behaviour.” (Compare p. 380).
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the decision to take a job is influenced by the comparison of the income of a

married woman’s household to that of her sister-in-law’s contributing to the ex-

planation of the rise in the proportion of married women who choose to work in

the market sector.

Bagwell and Bernheim [1996] take a signalling equilibrium where relative con-

cerns are assumed to be motivated by preferential treatment by social contacts

and show that under special circumstances these concerns give rise to “Veblen

effects” which “are said to exist when consumers exhibit a willingness to pay a

higher price for a functionally equivalent good”13.

Drawing on findings of auction theory14, Hopkins and Kornienko [2004] inves-

tigate the strategic interactions resulting from relative concerns in the form of

concern for the rank in the consumption of a positional good and derive com-

parative statics results when the income distribution changes15.

In a multi-generational context, the implications of relative concerns have

been studied by Moav and Neeman [2010] who show that when both conspicu-

ous consumption and level of human capital signal wealth and thus confer status

for which agents care intrinsically, then the budget share of conspicuous con-

sumption decreases with the level of human capital; this may give rise to the

existence of a poverty trap for families that start at low ranking incomes.

While Moav and Neeman [2010] fix fertility exogenously and study the im-

plications of relative concerns on economic development given this fertility, the

present paper takes the income process as exogenous and studies the implica-

tions of relative concerns on endogenous fertility behaviour. Status of children

is taken to depend positively on parental investment while being unrelated to

the number of children an agent has; hence investment in children is positional

while fertility is non-positional and thus potentially moves to levels below the

socially and privately optimal in response to competition for status.

The present paper naturally also builds on the economic theory of fertility.

13Compare Bagwell and Bernheim [1996], p. 349.
14The resemblance of the allocation mechanisms of strongly positional goods to auctions

was already discussed in Hirsch [1978], pp. 28-29.
15Similar research questions were investigated in Ireland [1994]; Ireland, however, conducts

a large part of his analysis for he special case of quasi-linear preferences. Moreover, consistent
with the signalling idea of his model, status is defined over absolute wealth whereas in Hopkins
and Kornienko [2004] only the relative standing matters.
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In particular in can be seen as following the tradition of what might be called the

‘Chicago School’ in fertility theory; this tradition takes preferences as exogenous

and stable, postulates a household production function which transforms market

goods and time into final goods like children and their attributes. Starting with

Becker [1960], the school emphasises the distinction of and trade-off between

quantity and quality of children; see Becker and Lewis [1973] and Becker and

Tomes [1976]. The model of this paper extends this trade-off by adding the

channel of status to the quality side.

The building blocks of the approach of this paper can be found in the liter-

ature: Easterlin [1976] hypothesises that parents try to secure a status at least

as high as theirs for their children16; an exposition on intergenerational social

mobility can be found e.g. in Becker [1981]; Sah [1991] restricts fertility choice

to integer numbers; and strategic reasoning has been explored in the context of

bequests by Bernheim et al. [1985], although to a different purpose17. Closest to

the present paper is Tournemaine [2008] who introduces both relative concerns

and endogenous fertility and bequests as a feature into an “R&D-based model”.

His different research interest, however, prevents a more than cursory exam-

ination of relative concerns; the main obstacle being that his model assumes

homogeneous agents so that relative concerns are somewhat artificial.

The specific research question and technique is new to the best knowledge of

the author.

1.3 Model with Exogenous Fertility

The focus of the paper is on how the urge for status shapes the economic deci-

sions of agents in the intergenerational domain; attention is therefore restricted

to these decisions. First, we may thus keep the model simple by taking the

16Compare Easterlin [1976]: “There is considerable evidence that an important concern of
nineteenth century American farmers was to give their children a ‘proper’ start in life, a start
that would enable the children to enjoy over their lifetime a socioeconomic status comparable
to that in which they were raised” (p. 422).

17Bernheim et al. [1985] examine how individuals may try to influence the behaviour of
children and other close relations by making bequests contingent on the behaviour of these.
In contrast, I study how parents choose to endow their children when knowing that they are
strategically interacting with other parents.
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income of agents to be completely determined by how much their parents in-

vested in them (via, among other things, monetary bequests, provision of higher

education and time dedicated to caring and teaching); this renders own income

an exogenous variable for the agents. They are thus solely concerned about how

to spend it and are assumed to use it to pay for their own consumption of a

composite good and for investment in their own children.

As for the intergenerational framework, I build on Becker and Barro [1988] and

so assume that each agent maximises a dynastic utility function into which the

consumption of the agent and that of all his descendants enters in a additively

separable manner18. One may imagine the agent, who could be interpreted as

a couple or household, to value the wellbeing of his descendants for intrinsic

reasons like family based altruism, which in turn may for instance be motivated

by evolutionary arguments. For simplicity, the agent is modelled to consume

and asexually reproduce at a single point in time.

Imagine a world of two generations of agents and imagine that each parent

agent has exactly one child. Parent agent utility can be expressed as:

Vi(zi) = max
bi

[
u
(
zi − bi

)
+ αu

(
qbi
)]

(1.1)

Where zi stands for the parent agent’s income, bi is the bequest or parental

investment into the single child, u is a standard, strictly increasing and concave

consumption utility function that is twice differentiable and satisfies u(0) = 0,

α ∈ (0, 1) is an altruism parameter and q > 0 is a productivity parameter of

parental investment. The decision problem of the parent agent is concave so

that there is a unique bi ∈ (0, zi) that maximises Vi. Note that the optimal

parental investment bi is increasing in parental income zi.

Children simply consume their income and receive a utility of u
(
qbi
)
.

The population of parent agents under study is assumed to be of measure 1

and to be divided into a finite number of income groups. Each income group has

a positive measure of agents and each income group is associated with a different

level of income. This associated level of income is the common income level of

all the agents in the income group. The income distribution is thus assumed

18I depart from Becker and Barro [1988] by focusing on the two generation case and by
restricting fertility choice to integer numbers; which makes the equilibrium predictions both
easier to derive and sharper.
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to be discrete; the support being the set of income levels associated with the

income groups. It should be noted that an individual agent has measure 0.

I denote the set of income levels associated with the income groups as Zp; I

shall refer to Zp as the set of parent incomes because it contains all the income

levels that can be observed among parent agents. Let the elements be ordered

in decreasing manner such that zi > zi+1 where zi and zi+1 are elements of Zp.

Now I introduce ‘relative’ or ‘status’ concerns. Depending on their position in

the income distribution, agents enjoy a certain ‘status’ which is a scalar number

taken from a set of stati denoted Ŝ; let the elements of Ŝ be ordered by their

value such that s1 > s2 and so on. In the parent generation, status is awarded

to income levels by the status function Sp : z → r; in the child generation the

status function is called Sc. In either generation, this status function is a step

function and the levels of income at which its value jumps shall be called income

thresholds. Let the set of income thresholds in the parent generation be denoted

by Z̆p and in the child generation by Z̆c, an element being denoted by z̆p,i and

z̆c,i, respectively.

Agents whose income is equal to or surpasses the highest status threshold in their

generation are assigned the highest status s1; agents whose income is greater

than or equal to the next highest but lower than the highest threshold in their

generation are assigned the second highest status s2. In general, in generation

x ∈ {p, c} we can find for any income level z the next lower status threshold,

say z̆x,s with z̆x,s-1 > z ≥ z̆x,s. Then Sx assigns this income level z the status

associated with this next lower threshold, i.e. ss.

Next, I let the status thresholds be defined in each generation by the income

levels of the income groups in that generation, so e.g. we have Z̆p = Zp in the

parent generation. Sc is thus only defined if the child income distribution is

discrete.

The number of income groups and stati may not match. If there are more stati

than income groups I assume that the lowest stati are not assigned while if there

are more income groups then the income groups with the lowest income levels

share the lowest status. We can formalise this for the example of the parent

generation: for |Zp| ≤ |R| we have S(zi) = si ∀zi ∈ Zp, while for |Zp| > |R| we

have S(zi) = si for i ≤ |R| and S(zi) = s|R| for i > |R|. This way of assigning

stati is illustrated in Figure 1.1.
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Figure 1.1: Graphical representation of the status function in the parent gener-
ation, Sp, given the set of parent income, Zp, and the set of stati Ŝ in the case
of |Zp| > |R|. Note that status depends neither on the distance between these
income levels nor on how other agents are distributed amongst stati.

In what follows, I write sp,i ∈ Ŝ for the equilibrium status that the parent

agent of income zi occupies and sc,i ∈ Ŝ for the equilibrium status of his child

or children.

Following a formulation pioneered by Frank [1985b] and recently advanced

by Hopkins and Kornienko [2004], direct consumption utility and status enter

the utility function in a multiplicative manner. Let the instantaneous utility

function thus be given not by u but by u ·S where S stands for status as defined

above.

We can update the utility function of a parent agent as follows:

Vi(zi) = max
bi

[
u
(
zi − bi

)
sp,i + αu

(
qbi
)
Sc
(
qbi
)]

(1.2)

Note that, when considering deviating to out-of-equilibrium levels of parental

investment, the parent agents takes Sc as given as, being of measure 0, his

decision does not influence the income distribution in the child generation.

I now illustrate the implications of status concerns as defined in this setup

with two simple examples.
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Example 1 A World without Income Differences

Suppose there is only one income group in the parent generation. Suppose further

that parent agents coordinate on a symmetric pure strategy Nash equilibrium. It

is then clear that whatever level of parental investment they coordinate on, there

is only one observed income level in the child generation so that all children

enjoy the highest status (as do their parents).

The interesting bit to notice here is that the level of parental investment may

be higher than the Pareto optimal one which is given by the solution to the first

order conditions of Equation (1.2): −u′
(
zi − bi

)
s1 + αu′

(
qbi
)
qs1 = 0. Suppose

the agents coordinate on a level of parental investment slightly higher than the

Pareto optimal one; then any lower investment level (including the Pareto op-

timal one) would let the child receive status s2 instead of s1. The collective

parental investment decisions of the parent agents can thus impose negative ex-

ternal effects on parent agents even though the decision of any individual agent

imposes no externalities.

Of course the equilibrium parental investment level cannot be lower than the

Pareto optimal one as a deviation to the latter would not result in a status loss

and would therefore be profitable.

Example 2 A World with two Parent Income Groups

Suppose now that there are two income groups in the parent generation. Suppose

again that parent agents coordinate on a symmetric pure strategy Nash equilib-

rium. Finally, suppose that the income difference between the two groups is so

large that the Pareto optimal parental investment level of the rich parent agents

is at least as high as the income of the poor parent agents. This way, irrespec-

tive of what levels of parental investment levels the agents coordinate on, a poor

agent cannot hope to emulate the parental investment decision of a rich agent

and there is thus no link between the decisions of agents of one and the other

income group.

Now suppose that the income difference between the parent agent income groups

is small. Suppose further that the status difference s1 − s2 is large enough so

that a poor parent agent prefers investing the level of parental investment that is

Pareto optimal for rich agents to the level of parental investment that is Pareto

optimal for poor agents given that their children receive status s2 if the former

level lets his child receive a status of s1 instead of s2. Then several types of
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symmetric pure strategy Nash equilibria are possible:

• Parent agents may coordinate on the parental investment level that is

Pareto optimal for rich agents so that children of all agents have the same

income level and status.

• Alternatively, poor agents may coordinate on a parental investment level

that is below the one that rich agents coordinate on which in turn is higher

than the one that is Pareto optimal for rich agents. This forms an equilib-

rium if the parental investment level chosen by rich agents is high enough

to make a status s1 child excessively expensive for poor agents.

Note that if the income difference between parent agent income groups is small

then the latter type of equilibrium may not exist.

These two examples have shown that the urge for competition can lead to

inefficient equilibrium outcomes: parents overinvest into their children and they

do so out of fear that their children may fall behind the children of their peers.

In the following I introduce endogenous fertility choice and show that the burden

of this inefficiently high parental investment may partly fall onto fertility leading

to inefficiently few children.

1.4 Model with Endogenous Fertility

We now turn to a version of the model that allows for endogenous fertility which

I restrict to integer numbers. The utility function of a parent agent of income

group i can now be written as:

Vi(zi) = max
bi,ni

[
u
(
zi − ni(bi + β)

)
sp,i + α · n1−ε

i · u
(
f(bi; zi)

)
Sc
(
f(bi; zi)

)]
(1.3)

The dynastic or overall utility function of the parent agent is thus the sum of

his instantaneous utility and that of his ni child(ren); the instantaneous utility

of his child(ren) enters weighted by α · n−εi with α ∈ (0, 1) and ε ∈ [0, 1). This

weighting reflects the idea that, other things equal, the agent values his own
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consumption more than that of his children and exhibits a decreasing degree of

altruism towards each individual child the more children he has; one may think

of α as the altruism parameter that measures how much one generation values

the next and of ε as a dilution parameter that measures how strongly the number

of siblings diminishes the parental affection towards the individual child19.

Generalising qbi of the preceding section I write f(bi; zi) for the twice dif-

ferentiable and strictly increasing function mapping parental investment into a

child, bi, to the income of that child where f(0; zi) = 0; f is parameterised by

the income of the parent agent, zi. I further write β > 0 for some fixed cost

of having a child. I assume that parent agents treat their children equally, i.e.

invest the same amount in each; consequently, all children of an agent enjoy the

same status. For an analysis that permits differential treatment of children see

Chapter 2.

I introduce a fixed cost of rearing a child, β > 0. This cost can be thought of

as very small and is included only to ensure an interior solution in the exogenous

status case.

The agent trades off three goods: the number of children he has (ni), his

parental investment (bi which I interpret as being a per child figure), and his

own consumption (zi − ni(bi + β)).

In the equilibrium analysis it is going to be important that, while sp,i is exoge-

nous to the agent, he may change the status his child is going to occupy by

varying parental investment bi. If the agent chooses to invest less than do his

peers, i.e. other members of his income group, then his child will suffer a loss

in status; if on the other hand, the agent chooses to increase bi to the level on

which agents of a higher income group coordinate, then his child will enjoy the

status of those ‘richer kids’.

Parent agents are thus playing the following game. They simultaneously

choose the number of children to have, ni, and how much to invest into an

individual child, bi. The resulting distribution of child income levels determines

the income thresholds of the child generation and thus the stati of the children.

In equilibrium this process must be in line with the expectations of the parent

19Readers who are unconvinced by the notion of dilution should note that the ensuing
analysis encompasses the case of ε = 0.
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agents.

I shall focus on symmetric pure strategy Nash equilibria in which parent

agents of different income groups choose different levels of parental investment

so that income differences are passed on from one generation to the next. The

motivation for this focus is that this setting induces the forces of competition

for status that this paper seeks to explore.

1.5 Privately Optimal Choice

Before moving on to the equilibrium analysis it is useful to examine the privately

optimal decision of the agent, i.e. his decision in the case that children’s status

is exogenous. This is done in this section.

Relaxing for a moment the integer constraint on ni and presuming an interior

solution we can take the first order conditions:

− (bi + β) · u′
(
zi − ni(bi + β)

)
sp,i + α(1− ε)n−εi u

(
f(bi)

)
sc,i = 0 (1.4)

− ni · u′
(
zi − ni(bi + β)

)
sp,i + αn1−ε

i u′
(
f(bi)

)
f ′(bi)sc,i = 0 (1.5)

The second order conditions are satisfied for u(·) sufficiently concave; see Ap-

pendix. Letting σk,l denote the elasticity of k to l, and vp and vc denote the

first and second summand of Vi(zi), respectively, we can rearrange the first order

conditions in elasticities to yield the following expression:

bi
bi + β

(1− ε) = u′
(
f(bi)

)
f ′(bi)u

(
f(bi)

)−1
bi (1.6)

and so bi =

σvc,b

1−ε

1− σvc,b

1−ε
β (1.7)

This, in essence, is the neoclassical result of
( ∂U

∂xi
)

( ∂U
∂xj

)
= pi

pj
in elasticities; to see

this write Ec for ni(bi + β) and E for the total expenditure of the parent agent,

and note that
σVi,bi

σVi,ni
=

σVi,vcσvc,bi

σVi,vcσvc,ni
=

σvc,bi

1−ε = bi
bi+β

=
σE,EcσEc,bi

σE,EcσEc,ni
=

σE,bi

σE,ni
can be

rearranged to yield the above formula for bi.

For this interior solution to exist we need to impose an upper bound on the
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product of σvc,f and σf,bi so that the following inequality holds20:

σ̂vc,bi = ̂σvc,f · σf,bi < 1− ε (1.8)

From the model setup follows that σvc,f is independent of zi. f , however,

is parameterised by zi, so it may be that σf,bi is increasing in zi - i.e. parental

investment is more efficient the richer the parent agent, which is plausible if

high income is correlated with better experience in human capital building,

with better contacts to potential mentors etc. - in which case the optimal bi is

increasing in the income of the parent.

Using the first order condition (1.4) and applying the implicit function theorem

we can show that ni would then be likewise increasing in the income of the

parent unless bi grows too fast with zi in a sense formalised below; for the proof

refer to the Appendix.

∂bi
∂zi

< − ∂2V

∂ni∂zi

/
∂2V

∂ni∂bi
⇒ ∂ni

∂zi
= −

∂2V
∂ni∂zi

+ ∂2V
∂ni∂bi

· ∂bi
∂zi

∂2V
∂n2

i

> 0 (1.9)

I set f(·) such that σf,bi is slowly increasing in zi as discussed in the Appendix

so that agents would like to invest more in each of their children and have

more children when they become richer. The marginal utility gain both from

higher bi and from higher ni is diminishing in the levels of the variables, and the

marginal utility of parent consumption is also decreasing, it follows that parent

consumption is also increasing in parent income. In what follows I assume that

f has these properties.

Reinstating the constraint that ni can only take non-negative integer values,

it is easy to see that the implication of rising income leading to increased desire

for own consumption, investment per child and number of children is preserved;

the difference being that fertility changes are now lumpy and investment in

children is in a sense more volatile since it takes on more of the burden of

equalising the marginal contribution to overall utility across generations.

20Cf. Becker and Barro [1988], equation (11) on p. 7.
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Instead of being defined by (1.7), the privately optimal, or efficient, bi can

now be determined in two steps. These make use of the following two lemmas.

Lemma 1 Efficient Parental Investment bei

Define bei (n, sc) as the optimal choice of bi given the values of n and sc.

Then bei (n, sc) can be obtained by solving

−ni · u′
(
zi − ni(bi + β)

)
sp,i + αn1−ε

i u′
(
f(bi)

)
f ′(bi)sc,i = 0

which is the first order condition (1.5).

bei (n, sc) can be shown to be decreasing in n; it holds further that:

∂bei (n, sc)

∂zi
> 0

∂bei (n, sc)

∂sc
> 0

Proof: See Appendix. �

Lemma 2 Efficient Number of Children nei

Define nei (b, sc) as the optimal choice of ni for fixed values of b and sc.

It is given by the largest integer for which the net marginal benefit of an addi-

tional child is weakly positive. It can be shown that nei (b, sc) is increasing in sc

and zi, and it is decreasing in b for b > bei (n, sc).

Proof: See Appendix. �

The privately optimal choice of the agent now can be characterised by the

choice of ni such that ni = nei
(
bei (ni, sc), sc

)
and by choosing bi = bei (n

e
i , sc); let

this joint optimal choice of bi and ni be denoted by bei (sc) and nei (sc), respec-

tively.

Albeit in a ‘spiky’ manner, the agent thus invests more in each of his children

and has more children as his income grows. ‘spikiness’ means that bei fluctuates

around the value it would take if fertility was continuous.

This can be demonstrated formally: notice that if under the continuous n regime
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Figure 1.2: These two diagrams show fertility and parental investment choices
as a function of parent income taking child status as fixed under continuous and
discrete fertility regimes.

we have nei ∈ N then introducing the condition of discrete n is not a binding

constraint and thus does not alter the optimal choice. Because of the first order

conditions, a slight perturbation of z around a value for which the discrete-

ness constraint is not binding leaves the integer constrained nei unchanged. By

Lemma 2 we know further that nei is stepwise increasing in z. Therefore intervals

of z with nei higher in the discrete n case alternate with intervals with nei lower

in the discrete n case. Since the marginal utility of b is decreasing in n it must

be that bei is greater in the discrete n case whenever nei is lower in the discrete

n case. Hence bei in the discrete n case is alternating between being higher and

lower than in the continuous n case.

Compare Figure 1.2.

1.6 Equilibrium Analysis

In the pure strategy symmetric Nash equilibria of this game, agents of different

income groups compete for the status of their children and the poorer agents’

threat to mimic may cause richer agents to choose inefficiently high levels of

parental investment and forgo additional children. I denote the equilibrium

choices of fertility n and parental investment b by a representative agent of

income zi by Ni and Bi, respectively.
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It is clear upon reflection that the only channel by which equilibrium choices

can move away from the privately optimal is that of the threat of loosing status

in the second generation. This means that a parent agent can be kept from

deviating away from an inefficiently high level of equilibrium parental invest-

ment Bi to a lower investment level because such a deviation would result in

his children having a lower income than the children of other agents in his in-

come group and thus being assigned a status lower than the equilibrium child

status of his income group, which is denoted sc,i. This reasoning also implies

that equilibrium parental investment cannot be lower than the privately optimal

investment given the equilibrium status, bei (sc,i); this is so because the children

of an individual agent cannot lose status if their parent invests more in them.

There is, however, an upper bound on how far Bi can move away from the

privately optimal level of parental investment bei (sc,i). For this define ui as

the utility level associated with the best deviation option of an agent with in-

come zi. We have ui = max
{
Vi
(
zi|ni=0

)
,maxj Vi

(
zi|B̆j, sc,j

)}
j 6= i where

B̆j = max{Bj, b
e
i (sc,j)}. The definition of ui reflects the deviation options of

the agent: decide not to have children at all or choose a parental investment

level that leads to a child status other than the equilibrium child status of his

income group. In the latter case, conditional on targeting a certain child status,

the agent may want to invest more than is necessary for his child to attain that

certain status. He does not need to consider deviations targeting the equilib-

rium child status of his income group as we have established that Bi ≥ bei (sc,i)

so that these deviations would yield a lower total utility than the agent enjoys

in equilibrium.

Let the upper bound on Bi be called B̄i.

Lemma 3 Upper Bound on Bi given by B̄i

Define Q(b) = V (zi|Bi=b)− ui. Then we have:

B̄i =

{
zi − β if Q(zi-β) > 0

solution to Q(b) = 0 otherwise

In equilibrium it holds that Bi ≤ B̄i.

It can be shown that B̄i > bei (sc,i); it is increasing in sc,i, and it is also increasing

in zi as long as the agent spends more on his children in total in the equilibrium
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outcome than in the deviation outcome.

Proof: See Appendix.

Intuitively, equilibrium utility is falling in Bi > bei (sc,i), while the deviation

options represented in ui are unaffected; so high equilibrium parental investment

can only be supported up to the threshold B̄i.

It is clear that, unless incomes are vastly different, parent agents of a lower

status may have an incentive to mimic parent agents of a higher status in terms

of parental investment levels in order to secure a higher status for their chil-

dren. To prevent this from happening, higher status parent agents have to raise

their parental investment; they can do this because their higher income lowers

their opportunity cost. The process is complicated in this model by the fact

that higher parental status also raises the opportunity cost by increasing the

marginal utility of parent consumption; income differences must therefore be

big enough to allow the ‘parent income effect’ to dominate sufficiently the ‘par-

ent status effect’.

Let the lowest level of parental investment by agents with income zi which is

incentive compatible be denoted by Bi, where incentive compatibility is under-

stood in the sense that neither do agents income zj < zi want to deviate to

〈Bi, sc,i〉 nor do agents of income zi want to invest more in their children than

Bi. The derivation is as follows.

Lemma 4 Lower Bound on Bi given by Bi

Define Bi = max
{
bei (sc,i), {B̂j,i}

}
j > i where B̂j,i is the level of parental invest-

ment to which an agent from income group j would deviate to secure the status

of sc,i for his child(ren); then it holds that Bi ≥ Bi.

Proof: By contradiction. Suppose Bi < Bi, then agents from at least one in-

come group j ≥ i will want to deviate and the putative equilibrium is destroyed.

�

It follows from the above Lemma in conjunction with Lemma 3 that levels

of parental investment can only be supported in equilibrium on a certain closed
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interval, we have Bi ∈ [Bi, B̄i] for all income groups i.

Note that [Bi, B̄i] depends on the values the Bj with j 6= i take.

The second choice variable, the number of children, is only indirectly influ-

enced by the competition for status which ensues when child status is endoge-

nous.

Given the level of parental investment Bi, the choice of n does not affect the

status of the agent’s children. Hence, conditional on Bi, his best response to the

other agents’ strategy is the privately optimal strategy, which takes the status

of children as given. And so in equilibrium we have Ni = nei (Bi, sc,i) ∀ i.

We can now combine these findings in the following proposition.

Proposition 1 Characterisation of Separating Equilibria with Equal

Treatment

An |Z|-tuple of 〈Bi, n
e
i (Bi, sc,i)〉 constitutes a symmetric pure strategy separat-

ing equilibrium with equal treatment of children iff given 〈Bi〉 we have [Bi, B̄i]

nonempty ∀ zi ∈ Zp and Bi ∈ [Bi, B̄i].

Proof: The fact that [Bi, B̄i] nonempty given 〈Bj〉 with j > i and Bi ∈ [Bi, B̄i]

∀ zi ∈ Zp implies that, by Lemmata 3 and 4, the strategies 〈Bi, n
e
i (Bi, sc,i)〉 are

best responses to one another and thus constitute a symmetric Nash equilibrium

in pure strategies under the assumption of equal treatment of children by each

agent.

Conversely, if a such an equilibrium exists then the set of equilibrium strategies

〈Bi, n
e
i (Bi, sc,i)〉 is incentive compatible and thus it must be that ∀ zi ∈ Z [Bi, B̄i]

nonempty given 〈Bi〉 and Bi ∈ [Bi, B̄i]. �

Note that the equilibrium need not be unique because potentially any b ∈
[Bi, B̄i] can be picked as Bi. Potentially, one cannot pick all of these values,

because the condition b ∈ [Bi, B̄i] ensures incentive compatibility only for agents

of income zi, it does not take into account whether b renders some [Bj, B̄j] empty

for some j 6= i by changing B̂i,j or ūj.

Separating equilibria can more easily be sustained the greater the difference

between the separating agents; in our case it holds that greater differences in
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equilibrium child status and greater income gaps between income groups respec-

tively raise the benefits and lower the costs of separating behaviour.

In particular, by making the difference between the income levels of agents of

any two income groups, or ‘income gaps’, sufficiently wide, we can ensure the

existence of separating equilibria.

Proposition 2 Income Gaps can ensure the Existence of Separat-

ing Equilibria

For any Ŝ, ∃ a parent income distribution Z such that the condition in Propo-

sition 1 is met and a separating equilibrium exist.

Proof: By induction. Set z|Zp| > 0 and B|Zp| = be|Zp|(sc,|Zp|) and N|Zp| =

ne|Zp|(sc,|Zp|). Let i=|Zp|-1 and then since
∂bei (sc,i)

∂zi
> 0 ∃ a threshold income

level ẑi (alternatively, a threshold income gap ̂zi − zi-1) above which bei (sc,i) ≥
maxj{B̂j,i} where j > i and thus B̄i > bei (sc,i) = Bi ⇒ [Bi, B̄i] nonempty; for

i = |Z| − 1 choose zi ≥ ẑi and some Bi ∈ [Bi, B̄i] and Ni = nei (Bi, sc,i). Repeat

process for i-1 until i = 1. �

Note that the reverse is not true, i.e. we need not find a set of stati Ŝ to fit

any set of income levels Z such that an equilibrium exists. The reason is that

the aforementioned ‘parent status effect’ dominates the ‘parent income effect’

for very small income differences.

1.7 Fertility Behaviour in Equilibrium

The equilibrium fertility behaviour is influenced only indirectly by the compe-

tition for status. As has been shown above equilibrium parental investment is

greater or equal to the level an agent would choose if the status of his child was

exogenously fixed at the equilibrium child status of his income group. Since the

equilibrium number of children is equal to the efficient number given the equi-

librium parental investment level and the efficient number of children is falling

in the chosen level of parental investment into each child (which in equilibrium
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is the equilibrium parental investment level) - as established in Lemma 2 - the

equilibrium number of children is less than or equal to the privately efficient

number of children.

This is formalised in the following proposition.

Proposition 3 Fertility equal to or lower than Privately Optimal

Define Q(b|k) = V
(
zi|b, nei (sc,i)-k

)
−V
(
zi|b, nei (sc,i)-k+1

)
with k ∈ {1, 2, . . . , nei (sc,i)}.

Then define b̃i,k by the solution to Q(b|k) = 0. It can be shown that b̃i,k is unique,

greater than bei (sc,i) and increasing in k.

If B̄i > b̃i,k then by setting Bi such that min{B̄i, b̃i,k+1} ≥ Bi > b̃i,k agents of

income zi will choose Ni = nei (sc,i)-k.

Proof: See Appendix.

If for example the difference in equilibrium child status between agents of

income zi and zi-1 is big - that is sc,i − sc,i-1 is big - then agents of income zi

are willing to accept high inefficiency in their equilibrium parental investment,

in other words B̄i is high. It may be so high that Bi = B̄i implies a reduction

in fertility compared to the efficient choice.

This effect of status competition need not affect all income groups to the same

degree. If for instance status competition is stronger for income groups with

higher income, then the positive intrinsic relationship between income and num-

ber of children may be reversed.

This is best shown in an example.

Example 3 A simple Non-Monotonic Fertility Equilibrium

Set Zp = {z1, z2, z3} and Ŝ = {s1, s2, s3}. Think of s2 as substantially larger

than s3. Suppose that z1 is so high that both be1(s1) ≥ z2− β and ne1(s1) > 2 and

suppose that B1 = be1(s1). Suppose further that z3 and s3 are such that ne3(s3) = 2

and that s2 is such that B̂3,2 = z3 − β, i.e. agents of income group 3 would be

willing to spend all their income on a single child if that would secure the parental

status of income group 2 for that child. Suppose that the last relationship just

so holds and that B3 = be3(s3), then:

α · u
(
f(z3 − β)

)
· s2 = u

(
z3 − 2(be3(s3) + β)

)
· s3 + α · 21−εu

(
f(be3(s3))

)
· s3 (I)

25



Suppose for a moment that z2 ≈ z3, then the left hand side (LHS) of (I) would

be the same for income group 2 with a putative B2 = z3−β while the right hand

side (RHS) would be higher due to sp,2 = s2 > s3 = sp,3. Agents of income z2

would thus want to deviate from B2 = z3−β to B3 and so the putative separating

equilibrium is destroyed at z2 ≈ z3.

If, in our mind, we slowly raise z2 while holding on to the putative equilib-

rium with B2 = z3 − β, then the LHS of (I) will initially grow faster than

the RHS because u(·) is concave and additional income will go entirely into

parent consumption on the LHS; this is true at least up to the point where

B2 + β = Ndev
2 (Bdev

2 + β) where Bdev
2 = max{B3, b

e
2(s3)} and Ndev

2 = ne2(Bdev
2 ) -

up to this point parent consumption is lower under the LHS choice and thus the

marginal utility of income is higher on the LHS. At that point the difference

of LHS − RHS is α · u
(
f(z3 − β)

)
· s2 − α · Ndev

2
1−ε
u
(
f(Bdev

2 )
)
· s3; if s2 is

sufficiently larger than s3 this difference is ≥ 0. Then we have that [B2, B̄2]

nonempty and thus the putative equilibrium exists.

If we set z2, s2 and s3 such that this situation holds, then the result is the fol-

lowing non-monotonic fertility behaviour:

.

Bi Ni

. income group 1 . . be1(s1) . . > 2 .

income group 2 B2 1

income group 3 be3(s3) 2

This example paints an abstract picture of a society in which fertility is a

U-shaped function of parent income. While households at the lower and upper

end of the income spectrum have relatively many children - the poor due to the

absence of competition for their status and the rich due to a high enough income

gap to fend off competition easily - the average income household, which we can

perhaps call middle class, struggles to defend its status in the next generation

and forgoes additional children in the process.

As a corollary, if we think of economic development as raising the purchasing

power of the poor as a percentage of the purchasing power of the middle class -

which can be motivated for instance in an anecdotic manner by the observation

that the average number of household helps in a middle class family declines

26



Figure 1.3: Fertility outcome (N1, N2, N3) as a function of income gaps. I as-
sume that agents coordinate on Bi = Bi and that ne3 = 2. Lacking competition
from below, the lowest income parent agents thus have B3 = B3 = be3. Example
3 described the case in the top left, i.e. low income differences between low and
medium income parents and high income difference between medium and high
income parents.

as a country develops - then, by making the income distribution more equal,

economic development may bring about a demographic transition partly through

the channel of increased competition for status.

Proposition 3 does not, however, necessarily imply a U-shaped fertility func-

tion. As Figure 1.3 shows for a chosen parameter set, fertility functions depend

on the income gaps. We get the U-shape when competition is fierce for the

medium status and not for the top status.

Note that the income gap between high and medium income agents needs to be

higher when the gap between medium and low income agents is low because then

equilibrium utility of the medium income agents is depressed by B2 > be2 and so

medium income agents are willing to spend more for successful mimicking (B̂2,1

is higher).

The next example uncovers an interesting possible result of the ‘parent status

effect’; it shows that the above non-monotonicity result may be sharpened to the

case where higher income agents choose to remain childless. This is a surprising

result for preferences that make both number of children and parental investment

in each child intrinsically normal goods.
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Example 4 A Childless Middle-Class

Set Zp = {z1, z2, z3, z4} and Ŝ = {s1, s2, s3}; this way income groups 3 and 4 will

share the parent status of s3 while groups 1 and 2 will enjoy the higher parent

stati of s1 and s2, respectively. Suppose that z1 is so high that both be1(s1) ≥ z2−β
and ne1(s1) > 2 and that B1 = be1(s1). Suppose further that z2 ≈ z3 ≈ z4 and

that these incomes are so low that income group 4 is about indifferent between

having and not having a child:

u
(
z4

)
· s3 ≈ u

(
z4 − be4(s3)− β

)
· s3 + α · u

(
f(be4(s3))

)
· s3 (II)

Then N2 = 0. To see this, suppose that it is true; then the child of z3 will enjoy

status s2 and we can set B3 = B3 > be3(s2) > be3(s3). Income group 3 will defend

the status of its children against group 4 since parental status is the same and

group 3 has a (small) income advantage. Income group 2 will be content not

having children: a child status of s1 is unattainable while, when aiming to let

a child have status s2 by mimicking income group 3, equation (II) holds with

s3 changed to s2 and so an agent of income group 2 will not be willing to raise

parental investment from be2(s2) ≈ be3(s3) to B3; aiming for a child status of s3

by mimicking income group 4 is not a profitable deviation either as the LHS of

(II) will be larger than the RHS if only parental status is changed from s3 to s2.

The result can be summarised in the following table:

.

sp,i sc,i Bi Ni

. income group 1 . . s1 . . s1 . . be1(s1) . . > 2 .

income group 2 s2 − 0 0

income group 3 s3 s2 B3 > be3(s2) 1

income group 4 s3 s3 be4(s3) 1

The intuition is that the parent status of the middle class agents is high

relative to the lower income groups while the income gap is small, so that the

opportunity cost of defending the status for a child is higher than for parents of

lower status.

One may think of the parent status effect as biasing the preferences of the agent

towards children of higher status; it makes agents of higher status pickier about
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their children. Loosely speaking, the decision is then less about having or not

having children but about having highly successful children or no children.

A general condition for childlessness of this form is given in the following

proposition.

Proposition 4 Some Income Groups may choose to remain Childless

Suppose that given Ni = 0 and 〈Bj〉 we have [Bj, B̄j] with j 6= i nonempty and

Bj ∈ [Bj, B̄j] ∀ j; suppose further that u
(
zi
)
· sp,i ≥ maxj Vi

(
zi|Bdev

j , sc,j
)

with

Bdev
j = max

{
Bj, b

e
i (sc,j)

}
for j 6= i.

Then ∃ a (nonstandard) separating equilibrium in which Ni = 0.

Proof: By construction. Taking Ni = 0 as given a separating equilibrium exists

by Proposition 1. Ni = 0 is a best response by agents of income group i because

there is no deviation yielding a higher utility than Vi
(
zi|Ni = 0

)
. �

1.8 Discussion

This paper has shown that separating equilibria which feature relative concerns

in a multi-generational context may exist; and by Proposition 3 they may exhibit

both inefficiently high levels of parental investment in children and inefficiently

low numbers of children (from the point of view of the parents).

These effects need not be uniform over different income groups; as in Ex-

ample 3, equilibrium fertility can be non-monotonic in income even though it is

increasing in income when status is awarded exogenously. This contributes to

our understanding of observed patterns of fertility in developed countries which

show a high concentration of single child families in what might be termed the

middle classes.

The equilibrium forces stemming from the competition for status in future

generations are powerful; this is possibly best exemplified by Proposition 4 and

Example 4 which document that, in this competitive environment, higher income

groups may even find it not worthwhile to have children at all. The intuition of

29



voluntary childlessness which this paper develops builds on two elements: one

is that the social aspirations of parents of lower status may make the status

of children very costly; the other is that agents who themselves enjoy a com-

paratively high status have thus higher opportunity cost when deciding on the

investment level of children. These elements together imply that potential par-

ents who have achieved comparatively high status for themselves may choose

not to have children because they value only high status children and these are

made excessively costly by parents of lower status. They opt out of the game

because their status has made them picky.

In the analysis I have been agnostic towards equilibrium selection. In real life,

however, where generations overlap and ‘generation’ is a more gliding concept,

the behaviour of earlier generations provides a natural focal point for equilibria.

From this follows that once a society has coordinated on a low fertility equilib-

rium, e.g. due to a relative increase in incomes of the poorer income groups,

this equilibrium becomes very stable. The model of this paper hence suggests

that, unless some great change is inflicted upon the societies of most developed

countries, their low fertility is permanent.

Endogenous status in this setup brings about pareto losses21; the equilib-

rium thus asks for correction by government intervention. A suitable system

of Pigouvian taxes and subsidies may provide remedy. Societies may find it

more effective, however, to try to make parent induced social mobility a thing

of the past altogether by, as mentioned above, socialising parental investment;

this would render child status exogenous to the parent agent and the externality

would thus disappear. Yet whether this advantage outweighs the cost of poten-

tial incentive side effects would have to be subject of a more thorough study.

The repeated finding of the literature on relative concerns that greater economic

equality may not be welfare enhancing because of increased competition for sta-

tus is present in this model as well. The measures to remedy the mentioned

pareto losses therefore cannot be seen in isolation from the measures so-called

welfare states undertake in order to reduce inequality of incomes.

Future work may carefully investigate the recent finding of an empirical J-

21I am referring to the parent generation only; the child generation is contentious because
it is e.g. difficult to agree on how to treat the utility of unborn agents.
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curve of fertility as a function of human development22 which may be speculated

to be indicative of greater earnings inequality of high skilled vs. low skilled

labour and/or decreased social mobility.

Finally, what would be this paper’s answer to the advice seeking couple

quoted at the beginning? It would recommend not to have another child and

to allow their children to be as “demanding” as their peers. Even though the

couple may privately lament their small family, if they feel like the agents of the

model that is the best they can do.

22Compare Myrskyla et al. [2009].
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Chapter 2

Relative Concerns and

Primogeniture

2.1 Introduction

Two hundred years ago, differential treatment was deeply engrained in many

human societies: family farms in many regions were bequeathed to the eldest (or

youngest) son; noble titles and estates were passed from one person to the next

in line. One hundred years ago, very few women went to university showcasing

a vastly differential treatment based on gender.

Why then do people in advanced societies today invest roughly equal amounts

of money and time into each of their children; why has differential treatment of

children all but disappeared?

While changes in social norms and the values people hold provide an obvious

answer, this paper proposes that the underlying reason is that faster technolog-

ical change as well as an increase in the economic importance of human capital

have made the returns to parental investment into children riskier. Today, the

position a person occupies in the income distribution and social hierarchy ar-

guably depends more on his talent and luck than in the past. From the point

of view of the parent this means less influence over the fate of his or her child.

The parent can induce less differences among his children and the fact that his

children are thus more equal in expectation implies, as shall be shown, that
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favouring one or a group of children over the rest becomes less attractive.

The argument is developed in the context of a two generational model of

altruism-based endogenous fertility in which agents simultaneously choose the

(continuous) number of children to have and how much of their income to spend

on parental investments into each of the children where parental investment

into a child determines the future income of that child1. Agents exhibit relative

concerns, they foresee that the wellbeing of their children depends not only on

their absolute consumption but also on their relative standing in society which

is represented in the model by a cardinal rank that is assigned according to the

income level of the agent.

Differential treatment of children arises in this model if two conditions are met:

firstly, child wellbeing must over the relevant interval be a concave function of

parental investment, so that the child type offering the highest marginal return

has a lower investment level than the highest investment level type; secondly,

parental affection towards each individual child must be decreasing in the to-

tal number of children of the agent (so that each additional child ‘dilutes’ the

parent’s affection towards his siblings). Facing a trade-off between lower invest-

ment level, high marginal return, high dilution type children and high investment

level, lower marginal return, lower dilution type children, the agent may choose

a portfolio of both child types, and hence differential treatment, if dilution works

in certain ways (which are explored below).

The general intuition of differential treatment in the model of this paper is dif-

ficult to provide, it depends on the nonlinearity of both the return on parental

investment and of parental affection towards each child. It is clearer in an exam-

ple: suppose dilution is convex such that it does not matter for low numbers of

children. A relatively poor agent will thus choose to have a certain (low) number

of the lower investment level, high marginal return children. A relatively rich

agent would want to invest more into his children than the poor agent because

the marginal utility of his consumption is lower. Adding more lower investment

level children to the number chosen by the poor agent, however, may not be

the optimal solution because dilution is assumed to become severe for higher

1This paper essentially takes the model of Chapter 1 and generalises it by allowing agents to
treat their children differentially. Further departures include the change of the rank assigned
to very low out of equilibrium child incomes and the relaxation of the integer constraint on
fertility and the introduction of uncertainty into the assignment of ranks.
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numbers of children. Switching all children to the expensive type may not be

optimal either because the gain in lower dilution is low compared to the loss

in total child wellbeing as dilution is low for low numbers of children. In order

to participate without too much loss (due to dilution) in the wellbeing of the

high marginal return children while investing more in his children than the poor

agent, he may therefore complement lower investment level children with (only

a few) expensive children that still offer a higher return than parental consump-

tion.

Uncertainty, or parental investment risk, is captured in the model by having so-

cial rank assigned to income levels in a noisy way (i.e. even a high income child

may end up with a low rank and a low income child may be awarded a high rank;

this setup can be interpreted as a reduced form model of idiosyncratic or ‘talent

risk’ of children). As it is high investment level child types whose expected re-

turn is lowered by more uncertainty and low investment level child types whose

expected return is raised, it follows firstly that any convexity of expected status

given child income is weakened by higher uncertainty. In equilibrium, agents

secondly respond to this by raising per child investment in low investment child

types and decreasing per child investment in high investment child types, the ef-

fect of which is that high investment child types offer less of a protection against

dilution. Both these forces tilt the trade-off between medium investment, high

marginal return children and high investment, low dilution children in favour of

the former. Eventually, the solution to this trade-off is a corner solution and

then differential treatment disappears.

In the next section I review the received literature on differential treatment

of children; in the following I present the argument of the paper in a simple

example while the ensuing sections introduce and analyse the model and the

final section concludes.

2.2 Related Literature

Differential treatment of children is predominantly studied in its extreme form,

namely ‘unigeniture’ or the inheritance of most of the parents’ wealth by just

one child. Historically, this was usually the first-born son and hence authors
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often refer to the better known word of ‘primogeniture’, which is unigeniture

with the first born as the beneficiary.

The overwhelming majority of the economic literature on primogeniture (im-

plicitly) assumes that parents intrinsically care the same way about all their

children and looks for differences in the children to explain the phenomenon

of differential treatment and primogeniture2. These differential characteristics

can either be exogenously given or endogenously given (via increasing returns

to scale).

The literature focusing on exogenously given differences falls in two parts,

one modelling a world of functioning capital markets and one modelling a world

without.

While not necessarily addressing the extreme form of primogeniture, au-

thors such as Becker and Tomes [1979] or Sheshinski and Weiss [1982] have

developed models in which parents care for the well-being of their children and

treat them differentially for the following reason: with differences in child ability

outside the control of the parents, different levels of parental investment equalise

marginal returns of parental investment. By differential treatment the parent

thus capitalises on the different investment opportunities offered by his children.

Depending on whether his investment is more substituting or complementing he

thereby compensates the less able ones or reinforces the success of the more able

ones.

In a world without capital markets, Grieco and Ziebarth [2010] model primogen-

iture as an intra-family insurance device: if the future income of heirs is subject

to a random shock and heirs do not care about each other intrinsically, then the

parent may buy brotherly and sisterly concern from one child in return for a

greater share of the inheritance.

The strand of literature advancing endogenous differences goes back to Smith

[1776] who remarked that “[i]n those disorderly times, every landlord was a sort

2For an exception, see for instance Faith [2001] and Faith et al. [2008] who interpret in-
heritance rules as a parental response to children seeking more of the total bequest than their
siblings. In particular, Faith [2001] argues that, equal treatment being optimal because it
minimises wasteful rent seeking behaviour of the children, primogeniture was upheld by the
church in an effort to “maximise the value of its monopoly power over a whole host of social
services”.
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of petty prince. [...] The security of the landed estate depended [...] upon its

greatness. To divide it was to ruin it [...]. Hence the origin of the right of

primogeniture, and of what is called lineal succession.” (Book III, Chapter 2).

This is the sort of political increasing returns we shall encounter further below.

Drawing on anthropological literature such as Nakane [1967] and Cole and

Wolf [1974], Chu [1991] reinterprets Adam Smith’s observation by letting the

objective of the family head be to minimise the probability of lineal (dynas-

tic) extinction. His main interest being in the interplay of primogeniture and

income inequality, he only notes in passing that the reason for primogeniture

in his model is increasing returns to parental investment - be it in the survival

probability into adulthood of a child or in the future wealth of a child. He fur-

ther argues that these reasons play out better in the absence of perfect capital

markets.

Bergstrom [1994] works out the evolutionary fitness of different roles in a strati-

fied society which restricts polygyny to wealthy males in an effort to throw light

on how fitness maximising preferences may sustain such societal setups. With

constant costs of additional children, primogeniture emerges as a response to

increasing political returns to wealth: great fortunes are more easily defended

when property rights may be disputed and so the return on investments increases

in the scale of total investment.

In light of Bergstrom’s analysis, the urge to perpetuate the family line by a

legitimate male heir as in Chu [1991] can be reinterpreted as the care taken to

ensure that one’s wealth (as the key to great reproductive success) passes on to

a person with whom one shares many genes.

In a simpler way, increasing returns are also invoked by Bertocchi [2006] who

models primogeniture of landed estates as the rational reaction to an indivisi-

bility constraint due to minimum efficient scales of production.

And drawing on a vast array of historical accounts, Hrdy and Judge [1993] argue

that differential treatment of children is a response to scarcity of arable land in

a marriage market setup that bars men below a certain minimum wealth from

reproduction. While increasing returns are obvious is this argument, they may

be less so in a second argument: they point to the fact, noted by biologists such

as Gillespie [1977], that, given an equal expected number of offspring, types

with the lower variance of reproductive outcomes fare better in the long run.
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Concentrating one’s wealth on a single child with fairly predictable reproductive

success would thus be superior to dividing the wealth among more children thus

placing many smaller bets. But this again, is simply increasing returns in the

form of lower variance per unit invested as total investment grows.

The present paper adds to the strand of literature that explores endogenous

differences of children. While increasing returns to parental investment are

present in the form higher investment leading to higher expected social rank

of the child, it is shown that for differential treatment to arise the altruism of a

parent towards his children must depend on his total fertility in subtle ways.

Its main contribution to the literature is to show that the disappearance of

differential treatment in modern societies may be due to greater uncertainty

over the payoff of parental investment into children.

2.3 Illustrating Example

In this example I consider only the incentives faced by an individual agent who

has to decide how many children to have and how much to invest in each child.

Let his choice of how much to invest be constrained such that he may choose only

from three investment levels. I shall refer to a child endowed with the highest

allowed investment level as a type 1 child, a child with the second-highest allowed

investment level as a type 2 child and a child with the lowest allowed investment

level as a type 3 child. This constraint shall be motivated in the next section,

for this example I take it as given.

Let the well-being of a child be given by a formulation following Frank [1985b]:

u
(
q · bj

)
· Sc
(
q · bj

)
(2.1)

Where bj is the parental investment level of a type j child with j ∈ {1, 2, 3} and

q > 0 is a parental investment productivity parameter so that given the agent

invests bj into a child the income of that child is going to be q · bj. With u(·) a

standard concave consumption utility function as well as Sc(·) the rank functions

mapping child income to child social rank, the instantaneous utility or well-being

of a child is thus given by the product of its instantaneous consumption utility

and social rank.
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I let the rank function Sc be a step function which, for the three child types,

approximates a convex function. The interplay of consumption utility, social

rank and well-being is illustrated in Figure 2.1.

I let the agent have exogenous income and be altruistic towards his children.

And I begin by abstracting from the concept of dilution. Following the dynastic

utility function of Becker and Barro [1988] adjusted for two generations, the

maximisation problem of the agent can then be written as:

max
nj

{
u
(
z −

∑
j

nj(bj + β)
)
· Sp(z) + α

∑
j

nj · u
(
q · bj

)
· Sc
(
q · bj

)}
(2.2)

Where z > 0 is the income of the agent, nj is the number of type j children that

the agent chooses to have, Sp(·) is the rank function in the parent generation,

α ∈ (0, 1) is a altruism parameter that measures how much the agent cares

for the wellbeing of his children compared to his own instantaneous utility and

β > 0 is a fixed cost of raising a child.

The solution to this maximisation problem is to demand only the child type

that offers the highest marginal return on parental investment or, equivalently,

offers the highest return ratio
u(q·bj)S(q·bj)

bj+β
. In the exemplary setup introduced in

Figure 2.1 this would be child type 2 This is shown in Figure 2.2: of the rays

going from the origin through the child well-being and investment points the

one associated with child type 2 has the steepest slope.

Given these preferences, there is thus no differential treatment of children.

Next, I introduce the notion of dilution which means that the affection the

agent feels towards each of his children is decreasing in the total number of

his children. Formally, we can write a(·) for a strictly decreasing and positive

dilution function and then have the agent face:

max
nj

{
u
(
z−
∑
j

nj(bj+β)
)
·Sp(z)+α·a

(∑
j

nj

)∑
j

nj ·u
(
q·bj

)
·Sc
(
q·bj

)}
(2.3)

The effect of dilution is that each additional child imposes a ‘between children’

externality by lowering the altruistic feeling that the parent carries towards the

other siblings. Dilution makes having many children less attractive. As for the

choice of child types this means that ceteris paribus child types with higher
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Figure 2.1: These diagrams show how decreasing marginal consumption util-
ity together with a rank function that approximates a convex function generate
returns to parental investment that are convex for low investment levels and
concave for high investment levels.
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Figure 2.2: This diagram shows that child type 2 offers the highest marginal
return on parental investment.

investment level are preferred: being more expensive they translate into fewer

children per unit of investment and thus dilute the parent’s altruism less.

Suppose now that the dilution function has a shape as shown in Figure 2.3.

Suppose further that the agent will optimally invest a combined amount x into

all his children. The agent can have arrived at this choice by only three ways:

(a) demand nC = x
b2+β

type 2 children which offer the highest return ratio,

(b) demand nA = x
b1+β

type 1 children which offer a lower return ratio but

are more expensive and hence would result in a lower total number of children,

which means nA < nC , so that the agent would value his children’s well-being

more, (c) demand both type 1 and type 2 children so that the total number of

children is at, say, nB and the average return ratio is between those of the two

child types. Even though we cannot say which of the three options the agent

has chosen without specifying u(·), a(·) and the values of the social ranks more

precisely, it is clear that for some specifications the agent’s choice would be (c)

and with that we have differential treatment of children.

It is already clear at this point that if child type 1 (with the highest level of

parental investment) had offered the highest return ratio then the agent would

have only demanded type 1 children (option (b)) as in that case both return

ratio effect and dilution effect would have pulled in the same direction.

Uncertainty removes differential treatment by lowering the dispersion of the

income levels of child types. This means that dilution plays less of role; and if

its role is weak then we are effectively in a world without dilution as given in the

40



Figure 2.3: A dilution function a(·) is shown which decreases very slowly up to
a threshold total number of children and then falls very quickly. Three possible
total numbers of children are marked off as nA, nB and nC.

preferences of Equation (2.2) which has been shown not to allow for differential

treatment of children.

To see how this works we need an understanding of how the child types the

agent chooses from come about in equilibrium. This is developed in the following

sections.

2.4 Model Setup

The aim of the model to be built is to provide insight into the rationale people

may have when they choose, under the presumption that relative comparisons

matter to them, how many children to have and how to prepare these children for

a productive life in society. Consequently, below I shall put agents in a setting

in which they have only this choice to make and in which parental investment

in a child determines the (expected) social position, or rank, this child is going

to occupy.

Imagine a world of two generations where parent agents live for one period

in which they receive an exogenously given amount of income and decide how

to spend it on their own consumption and on investments in their children, the

number of which they choose. The population of parent agents to be studied is of
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a certain measure and is divided into a finite number of groups, each of positive

measure. Within each group income levels of agents are homogenous. Groups

differ in the associated income levels and may differ in size. An individual agent

is of measure 0. Call the set of income levels that form the support of the parent

income distribution Zp with elements zp,1 > zp,2 > ...

In the pure strategy symmetric Nash equilibria that I concentrate on the discrete

nature of the income distribution in the parent generation is preserved in the

child generation no matter what strategies the parent agents choose. I call the

support of the income distribution in the child generation Zc with elements

zc,1 > zc,2 > ...

Imagine further that, as introduced in the example above, agents care about

their relative standing in society, their status or social rank, and that this rank

is awarded to agents according to their income such that agents of higher income

enjoy a higher (expected) status. Imagine finally that parental investment in a

child determines the income of that child.

Central to our problem is therefore the mapping of agent income to agent

rank (or status). This mapping is captured by the status function Sx(·) where

x ∈ {p, c} indicates the generation it is referring to. It is to be thought of as

a step function which takes steps at income thresholds called ẑx,j (again sub-

scripted for the generation) which are taken from the set Ẑx and ordered such

that ẑx,j > ẑx,j+1. The values that Sx(·) can take are recorded in the discrete

set of ranks R with element rj where the ordering is again such that rj > rj+1;

to simplify the exposition below I assume that |R| = |Zp|3.

I introduce a stochastic element in the assignment of ranks to income levels.

In particular, children enter a lottery over the ranks recorded in R where their

odds are a function of their income. The motivation for this setup is that it

captures the fact that parents do not have perfect control over the social success

of their children, much depends on luck and ability. While it may appear more

natural to model this by letting child income be stochastic, letting their rank

be stochastic simplifies the analysis without compromising on the intuition; one

may think of this combination of deterministic child income and stochastic child

ranks as the utility of children as a function of parental investment in its reduced

form just as the mentioned lottery can be interpreted as the reduced form of a

3This stepwise function S(·) is similar to the category reporting case of Harbaugh [1998].
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Figure 2.4: This diagram shows the lottery a child enters whose income is greater
than or equal to the income threshold ẑc,j and lower than the income threshold
ẑc,j-1. If the income of the child is greater than or equal to the highest income
threshold, then j = 1. (The diagram presupposes that there are at least |R|
income groups in the child generation, otherwise replace |R| with |Zc|.)

imperfectly discriminating or noisy contest for child social rank which is based

on child income.

To be precise, imagine the following procedure: a child with income level zc

where ẑc,j-1 > zc ≥ ẑc,j enters a lottery in which with probability (1 − γ) it is

assigned a rank of rj and with probability γ it enters a second lottery which

assigns a rank by a random draw from the set R. Let the expected rank of such

a child be denoted by r̃j; and let R̃ be the set of all expected ranks r̃j with j

running from 1 to |R|. As a special case, I set rank equal to 0 if child income is

below the lowest threshold, i.e. Sc(z|z < ẑc,|Ẑc|) = 0. Compare Figures 2.4 and

2.5 and note that by construction r̃j > r̃j+1.

γ can be thought of as the degree of uncertainty over the success of a child

(from the point of view of the parent agent) and we can note that for γ=0 the

assignment of ranks becomes deterministic while for γ=1 rank assignment is

completely random so that r̃ is unresponsive to the child’s income level as long

as it is ≥ ẑc,|Ẑc|.

To simplify the exposition, I let ranks of parent agents be assigned in a de-

terministic manner, i.e. as if γ=0, so that there is uncertainty only over child

ranks. While the relative value of rank in society is taken to be determined by

technology and social institutions, so that R is common to both generations, I

suppose that the income thresholds that influence which rank an agent with a

certain income occupies change faster; therefore Ẑp need not be equal to Ẑc.

We have assumed above that the income distribution of parent agents is discrete

and called its support Zp. We now let the income thresholds of the parent gen-
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Figure 2.5: Graphical representation of the rank function S given the set of
income thresholds Ẑ and set of expected ranks R̃.

eration be given by the observed income levels, i.e. Ẑp = Zp. This means that

the richest parent agents (with income zp,1) enjoy the highest rank (r1) and the

second richest the second highest rank (zp,2 and r2) and so on until zp,|Zp| and

r|R| (we have assumed that |Zp| = |R|).
Only in the child generation are the income thresholds endogenous. In pure

strategy symmetric equilibria the distribution of child incomes will be discrete

so I can let the |R| highest observed child income levels (or all income levels

if |Zc| ≤ |R|) be the set of income thresholds Ẑc. In other words, the richest

among the children (with income level zc,1) will enjoy an expected rank of r̃1,

the second richest an expected rank of r̃2 and so on until r̃|R| (or r̃|Zc|). Should

there be more income groups than |R| in the child generation, then the |Zc|-|R|
poorest will have a rank of value 0.

Slightly generalising the maximisation problem in Equation (2.3) of the ex-

ample above, we can summarise the decision problem faced by a parent agent

with income zp,i in the following way:

.
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max
bi,j ,ni,j

{
u

(
zp,i −

∑
j

ni,j(bi,j + β)

)
· Sp(zi)

+α · a
(∑

j

ni,j

)∑
j

ni,ju

(
f(bi,j; zp,i)

)
· E
[
Sc

(
f(bi,j; zp,i)

)]}
(2.4)

Note that in contrast to (2.3), the agent chooses both the parental investment

levels and the fertility level of the child types he wishes to have: the bi,j’s stand

for the chosen parental investment levels of his children and each ni,j stands for

the number of children with the parental investment of bi,j the agent chooses to

have.

As above, apart from parental investment each child also costs the agent a certain

fixed amount β > 0; u(·) is a strictly concave and twice differentiable utility

function that transforms consumption into instantaneous absolute consumption

utility; S(·) maps an agent’s income to his rank in society and is subscripted by

the generation; 1 > α > 0 is the altruism parameter that measures how much

an agent values the well-being of his (single) child compared to how much he

values his own consumption; and a(ni) > 0 with a(1)=1 is a strictly decreasing

function of the number of children that captures the dilutive effect of additional

children on the altruistic feelings of the parent towards each individual child.

f(bi,j; zi) generalises q · bi,j and is a continuous, concave and strictly increasing

function of parental investment bi,j that maps parental investment into child

income; the function is parameterised by the income level of the parent.

If child status was exogenous (independent of child income), we could guaran-

tee an interior solution to this maximisation problem by imposing the following

two restrictions on the curvature of the functions involved. Writing σx,y as the

elasticity of x with respect to y we need:

σu,f · σf,bi,j < σa,ni
(2.5)

− (1 + σa,ni
)ni(bi + β)u′′(ci,p)− (σa,ni

)2u′(ci,p) > 0 (2.6)

Where ci,p = zi−
∑ni

j=1(bi,j+β) is the consumption level of the parent. In words,

the inequalities say that the elasticity of the well-being of children with respect to

parental investment must be lower than the dilutive effect of additional children

(otherwise the agent would let ni,j go to 0 and bi,j to infinity, the opposite does
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Figure 2.6: Time sequence of the modelled process.

not happen because of the presence of the fixed cost of children β > 0), and that

u(·) must be sufficiently concave (otherwise the parent agent would not demand

any children at all because α < 1). Inequalities 2.5 and 2.6 shall be assumed

to hold throughout. We shall also impose 0 > σa,ni
> 1. For the derivation see

Chapter 1.

The timing of the model is the following: first, parent agents simultaneously

choose the (continuous) number of children to have and the levels of parental

investment for each. These investments then determine the income levels of

the children and thus the income distribution in the child generation. Second,

the support of the income distribution in the child generation becomes the set

of income thresholds of the status function of the child generation. Thirdly,

children enter the lottery for status based on their own income level and the

income thresholds of the child generation.

This timing is illustrated in Figure 2.6.

The setting I have chosen can perhaps be described as a ‘meritocracy with

a class system’, the challenge to the parent being which class to target with

each child; importantly I assume that there is no competition for status among

members of a class. In contrast to Chapter 1 the focus is not on the competition

between these classes, which is an emergent feature of simultaneous decisions

of many agents, but on the driving forces of the individual parent’s choice who

takes the form of the class system as given.

I should note what the model does not address: I abstract from any kind of

inherited status, i.e. agents from different family background but equal income

can expect to occupy the same rank in society; there is no mortality risk asso-

ciated with children; and I also abstract from any other uses of children (apart

from altruism) which enter parents’ decision-making process.

46



2.5 Equilibrium Characterisation

As noted, I focus on pure strategy symmetric Nash equilibria.

Notice first that in this two generational setup only agents of the parent

generation have a decision to make. In deciding on how many children to have

and how much to invest into each, parent agents determine the support of the

child income distribution which via the income thresholds Ẑc shapes the child

status function Sc(·). Notice second that parent agents base their decision on

investment levels on their expectation of the form of Sc(·).
In order to be in equilibrium we must therefore have that the child income

distribution which the parent agents expect to materialise indeed comes about

through the optimal response of the parent agents to this expectation.

The equilibrium interaction of agents is kept simple by the discrete nature of

the setup: no features other than the support of the distribution of child in-

comes counts in the expectations of the parent agents (to be precise: in the

determination of E
[
Sc(·)

]
)4.

Note now that in equilibrium there cannot be more than |R| income groups

in the child generation. If there were, then the ones with the lowest income levels

would be awarded a rank of 0 and given the assumed utility function this means

the well-being of children in these income groups would also equal 0. Foreseeing

this, no parent agent would invest an amount in any of his children that lead to a

child income level associated with one of these 0-rank income groups. Formally:

Lemma 5 Maximum Number of Income Groups in the Child Gener-

ation

In any equilibrium there are at most |R| income groups in the child generation.

Proof: By contradiction. Suppose there were more. Then by shifting expendi-

ture from children in the income group with the lowest income level to parent

consumption, some agents can increase their utility and hence the putative equi-

librium is destroyed. �

4The interplay would be more complicated for instance if the value of a rank depended on
how many agents share it or how many have a lower rank etc.
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In order to have that the optimal choices of the agents given the child income

schedule Z̄ bring about this schedule we need two conditions to hold:

(a) that no agent has an incentive to invest in one or more of his children an

amount that leads to a child income level not in the schedule Z̄ (as agents are

homogenous within income groups this would mean that otherwise income

groups in the child generation would form that are not part of the child

income schedule Z̄); and

(b) that for each child type in the schedule there is at least one income group of

parent agents whose members demand it (otherwise this income group does

not materialise).

In order to formalise these two conditions that must be met by the child

income schedule Z̄, we need to fix the notation of the structure that such a

schedule imposes on the decision-making problem of the parent agents. Let the

elements of Z̄ be Z̄m where m ∈ {1, 2, ..., m̄} with m̄ ≤ |R| and where the or-

dering of elements is such that Z̄m > Z̄m+1. For a parent agent with income zi

who considers targeting one or more of these child income levels for his children

the corresponding investment choices can be written5 as Bi,m ≡ f−1(Z̄m; zi)

with an associated expected rank of E
[
Sc
(
f(Bi,m; zi)

)]
= r̃m. For any parental

income level zi we can thus construct an equilibrium ‘child investment sched-

ule’ Bi whose elements are Bi,m. As to investment choices out of equilibrium,

the expected status function E
[
Sc(·)

]
becomes E

[
Sc( f(b; zi) | f(Bi,m−1; zi) >

f(b; zi) ≥ f(Bi,m; zi))
]

= r̃m.

In order to test whether Z̄ forms an equilibrium, let parent agents of each

income level zp,i ∈ Zp solve the following maximisation problem:

max
ni,m,bi,m

{
u

(
zp,i −

∑|Bi|

m=1
ni,m(bi,m + β)

)
rp+

α · a
(∑|B|

m=1
ni,m

)[∑|Bi|

m=1
ni,m · u

(
f(bi,m; zp,i)

)
r̃m

]}
(2.7)

subject to the budget constraint zp,i −
∑|Bi|

m=1ni,m(bi,m + β) ≥ 0, and to fertility

5This is possible because child income is a strictly increasing function of parental invest-
ment.
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being non-negative: ni,m ≥ 0. We further impose bi,m ≥ Bi,m which ensures that

r̃m is the right value for E
[
Sc(bi,m)

]
.

Let the resulting fertility choice be denoted by Ni = {Ni,1, ..., Ni,m, ...Ni,|Z̄|}.

In equilibrium, the agent must have no incentive to set the parental invest-

ment into any of his children at a level different from the values in his child

investment schedule Bi - this is condition (a) above. As we have ruled out in-

vestment levels below Bi,|Z̄| we can rephrase this sentence as: the agent must

have no incentive to increase parental investment into a child with expected

rank r̃m above Bi,m for all m. In other words, either the constraint bi,m ≥ Bi,m

is binding or Ni,m = 0.

Next, note that the agent will only have an incentive to increase bi,m over Bi,m

if the derivative of the objective function in 2.7, which I shall denote Ui, with

respect to bi,m is positive at Bi,m. In equilibrium we must therefore have for

each zi and Bi,m:

∂Ui
∂bi,m

|bi,m=Bi,m
= −u′(·)rp + αa(·)u′(·)f ′(·)r̃m ≤ 0 (2.8)

Given the concavity of u(·) and f(·), ∂Ui

∂bi,m
|bi,m=Bi,m

is monotonically decreasing

in the child investment level Bi,m which in turn is increasing in the income level

of this child type Z̄m. It follows therefore that there exists a threshold value Z̄i,m

such that Inequality 2.8 is satisfied iff Z̄m ≥ Z̄i,m. In words, if the income level

of child type m is high enough, agents with income zp,i will have no incentive

to choose to have children whose income level is higher than that of type m

children and lower than that of type m − 1 children. If this holds for all child

types and for parent agents of all income levels then condition (a) is met.

We can define Z̄m = maxi{Z̄i,m} and formalise this as follows:

Lemma 6 Minimum Income Level for each Child Type

Suppose an equilibrium 〈Zp, R, γ, Z̄〉 exists; then we have that Z̄m ≥ Z̄m for all

m.

Proof: By contradiction. Suppose Z̄m < Z̄m for some m; then by the definition

of Z̄ agents of some income group(s) will have an incentive to deviate to some b

that is Bi,m-1 > b > Bi,m and the putative equilibrium is destroyed as the actual

support of the income distribution of children will differ from the one on which
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parent agents based their decisions. �

The idea behind this equilibrium condition is that by forcing the parental

investment level of a child type to at least the level of the highest efficient

investment level, there is no agent in the population that would want to deviate

to a higher level of investment for that child type. If this holds for all types

then only income levels that are noted in Z̄ are going to be observed in the child

generation. Or, to put if differently, for each child type m parent agents are kept

from deviating to a different investment level by, for deviations to lower levels,

the loss of rank r̃m+1 − r̃m for that child and, for deviations to higher levels, by

the fact that Bi,m is already inefficiently high.

Next I show that equilibrium condition (b), which states that all child types

in Z̄ must be observed in equilibrium, requires that child income levels are not

too close. The logic is the following: as has just been established in Lemma 6,

parental investment levels for each child type are weakly above their privately

efficient level; equivalently we can say that at Bi,m the utility of any parent agent

who chooses to have children of type m (that is we have Ni,m > 0) is decreasing

in the income level of child type m. Leaving everything else the same, the utility

of these agents would therefore decrease if one was to raise Z̄m. The important

incentive to notice here is that as one tests higher and higher levels of Z̄m for

compatibility with the equilibrium, at some point these agents will switch from

type m to type m-1 (and that implies from Ni,m > 0 to Ni,m = 0), as the differ-

ence in parental investment level Bi,m-1−Bi,m becomes ever smaller (that is the

difference in cost of the two child types vanishes) while the status gain r̃m-1− r̃m
remains unchanged (which implies that the relative return on investments into

type m− 1 children increases).

We can therefore define another threshold value, called ¯̄Zm, such that for Z̄m >
¯̄Zm we have

∑
iNi,m = 0. In words, if the income level of child type m is too

close to that of the next higher child type then its lower cost does not compen-

sate for the lower expected rank it carries and thus no parent agent demands

this child type. Note that we have ¯̄Zm < Z̄m-1.

Supposing the condition in Lemma 6 is satisfied, existence of an equilibrium

therefore also needs the following to hold:
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Lemma 7 Maximum Income Level for each Child Type

Suppose an equilibrium 〈Zp, R, γ, Z̄〉 exists; then we have that Z̄m ≤ ¯̄Zm for all

m.

Proof: By contradiction. Suppose Z̄m > ¯̄Zm for some m; then by the definition

of ¯̄Zm no agents will demand children of type m and so the support of the child

income distribution would not be equal to Z̄ and hence the actual E
[
Sc(·)

]
will differ from the E

[
Sc(·)

]
underlying the maximisation problem in 2.7. With

expectations thus rendered inconsistent the putative equilibrium is destroyed.�

Combining these two Lemmata we arrive at a formalisation of the equilibrium

notion.

Proposition 5 Characteristics of a Pure Strategy Symmetric Nash

Equilibrium

Z̄ constitutes a Nash equilibrium in pure strategies iff, given Z̄, we have for each

m both [Z̄m,
¯̄Zm] nonempty and Z̄m ∈ [Z̄m,

¯̄Zm]. We have m̄ ≤ |R|.

Proof: If Z̄ constitutes a Nash equilibrium then by Lemmata 6 and 7 we must

have for each m both [Z̄m,
¯̄Zm] nonempty and Z̄m ∈ [Z̄m,

¯̄Zm]. Further, from

Zc = Z̄ follows m̄ = |Zc| and by Lemma 5 we know that |Zc| ≤ |R|.
Conversely, if the conditions in said Lemmata are met, then we have both that∑

iNi,m > 0 ∀m and that all observed child income levels are elements of Z̄.

Given Z̄, therefore the effects of the choices of the agents are consistent with

their expectations; further, no agent has an incentive to deviate from this choice

and hence we have a Nash equilibrium. �

By providing the parent agents with a menu of child types 〈Bi,m, E
[
S(Bi,m)

]
=r̃m〉

or, in shortened form, 〈Bi, R̃〉, the equilibrium effectively socialises half of the

decision problem of the parent agent: they need no longer decide on the parental

investment levels, but only on how many children to have of each child type m.

We can now move on to the analysis of how the individual parent agent

makes his decision in such an equilibrium.
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2.6 Individual Decision-Making in Equilibrium

It is helpful to note first what agents would like to do - but cannot do - in equi-

librium: they would all like to have children of the highest rank and invest the

privately efficient amount. This being below the required amount save perhaps

for the very rich, they are left with the choice of either accepting the high price

of the highest rank, i.e. child type 〈Bi,1, r̃1〉, and cutting back on the number

of children to have (i.e. a low Ni,1 and Ni,m = 0 for m > 1) or relinquishing

the dream of top ranked children and moving to cheaper child types or a mix of

expensive and cheap child types.

Case 1: Type 1 children have highest Return Ratio

When will an agent choose to have only children of the highest child type?

The answer lies, as in the example at the beginning, in the ‘return ratio’ of

a child type which I define as child expected utility level over cost to parent,
u
(
f(Bm,z)

)
r̃m

Bm+β
.

A sufficient condition for an agent with income zi to only demand children

of type 1, i.e. 〈Bi,1, r̃1〉, is satisfied if the return ratio of the type 1 children is

the highest of all types:

Ni,m = 0 ∀ m > 1 if
u
(
f(Bi,1; zi)

)
r̃1

Bi,1 + β
>
u
(
f(Bi,m; zi)

)
r̃m

Bi,m + β
∀ m > 1 (2.9)

To prove this suppose otherwise, i.e. the agent chooses a positive number for

some Ni,m for an m > 1. But then, fixing his total expenditure on children,

the agent can move resources to children of type 1 by the following formula:

∆Ni,m(Bi,m + β) + ∆N1(Bi,1 + β) = 0, which implies
∆Ni,m

∆N1
= − Bi,1+β

Bi,m+β
. A shift

of resources will thus lower the total number of children (Bi,1 > Bi,m), and there-

fore a

(∑|Bi|
m=1Ni,m

)
will increase. The change in

[∑|Bi|
m=1Ni,m ·u

(
f(Bi,m; zi)

)
r̃m

]
can be written as ∆N1 · u

(
f(Bi,1; zi)

)
r̃1 + ∆Ni,m · u

(
f(Bi,m; zi)

)
r̃m. To check

whether this is positive for ∆N1 > 0 use the equation derived before to ar-

rive at u
(
f(Bi,1; zi)

)
r̃1 − Bi,1+β

Bi,m+β
u
(
f(Bi,m; zi)

)
r̃m ≷ 0 which can be rewritten as

u
(
f(Bi,1;zi)

)
r̃1

Bi,1+β
≷

u
(
f(Bi,m;zi)

)
r̃m

Bi,m+β
and which by assumption has ‘>’ instead of ‘≷’.

Therefore a deviation is profitable and we cannot have Ni,m > 0 for m > 1.
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This last paragraph is the formal equivalent of the claim made in the discussion

of the example: if both return ratio effect and dilution effect pull into the same

direction as is the case if the child type with the highest income level offers the

highest return ratio, then the agent will only demand this child type.

Case 2: Type 2 children have highest Return Ratio

As introduced in the example, agents take the child income schedule Z̄ and

the corresponding parental investment level schedule Bi as given and balance

high return ratios and dilution of their altruistic feelings by the number of their

children.

We can now analyse with greater rigour the situation in which return ratio and

dilution must be traded-off. Putting the assumption of Equation (2.9) aside,

imagine now that, as in the example, the expected rank values R̃ as well as

the curvatures of u(·) and f(·; zp,i) are such that the return ratio of the child

type with the second highest income level (type 2) is the highest of all child

types. Notice first that, for parent agent zp,i at least, any child type m > 2 is

dominated by type 2; the same logic as in Equation (2.9) applies. We thus need

only consider types 1 and 2.

We can gain an understanding of the agent’s choice by considering a deviation

from the putative choice of having only type 1 children. Let the optimal number

of type one children given that only type 1 children can be demanded be denoted

by N̂i,1. Then let the agent look for the optimal deviation from this putative

choice under the constraint that total investment in children is fixed6. I let ∆N2

denote the number of type 2 children the agent would opt to have if he were

allowed to deviate from this putative choice.

max
∆N2

{
α · a

[
N̂i,1 +

(
1− Bi,2 + β

Bi,1 + β

)
∆N2

][(
N̂i,1 −

Bi,2 + β

Bi,1 + β
∆N2

)
u
(
f(Bi,1, z)

)
r̃1

+∆N2u
(
f(Bi,2, z)

)
r̃2

]}
(2.10)

subject to 0 ≤ ∆N2 ≤ Bi,1+β

Bi,2+β
N̂i,1.

6This constraint simplifies the exposition by keeping parent consumption constant and does
not imply a qualitative change to the decision problem.
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We have the following expression for the first derivative which I shall call Q:

Q ≡ α · a′
[
N̂i,1 +

(
1− Bi,2 + β

Bi,1 + β

)
∆N2

](
1− Bi,2 + β

Bi,1 + β

)
[(
N̂i,1 −

Bi,2 + β

Bi,1 + β
∆N2

)
u
(
f(Bi,1, z)

)
r̃1 + ∆N2u

(
f(Bi,2, z)

)
r̃2

]
+

α · a
[
N̂i,1 +

(
1− Bi,2 + β

Bi,1 + β

)
∆N2

][
u
(
f(Bi,2, z)

)
r̃2 −

Bi,2 + β

Bi,1 + β
u
(
f(Bi,1, z)

)
r̃1

]

Abbreviating

(
1−Bi,2+β

Bi,1+β

)[(
N̂i,1−Bi,2+β

Bi,1+β
∆N2

)
u
(
f(Bi,1, z)

)
r̃1+∆N2u

(
f(Bi,2, z)

)
r̃2

]
to A and u

(
f(Bi,2, z)

)
r̃2− Bi,2+β

Bi,1+β
u
(
f(Bi,1, z)

)
r̃1 to B as well as writing N for the

total number of children N̂i,1+

(
1−Bi,2+β

Bi,1+β

)
∆N2, we can simplify this expression:

Q = α · a′(N)A+ αa(N)B (2.11)

As the agent increases ∆N2 the weight of type 2 children in his portfolio of chil-

dren increases and as a consequence (I) his total number of children increases

(because we keep his total investment into children fixed) leading to more seri-

ous dilution and (II) the average return ratio of his investment increases. The

first derivative Q captures these two effects in the negative first summand and

positive second summand, respectively.

The first derivative is negative if the dilution effect outweighs the return

effect; this implies that type 1 children are preferable to type 2 children and

so at the margin the agent would want to reduce ∆N2. Rearranging Equation

(2.11) we can see that this is the case iff the elasticity of a(·) with respect to its

argument is greater than a certain threshold σ̂a,N :

σa,N ≡
−a′(N)N

a(N)
>
BN

A
≡ σ̂a,N ⇔ Q < 0 (2.12)

It is straightforward to show that σ̂a,N is increasing in the difference of the

return ratios and in ∆N2 and that it tends to unity as ∆N2 goes to infinity.

The intuition is that the more of the cheap child type the agent has, the less

important dilution becomes as dilution hurts more with expensive (high utility)

children. As his portfolio of child types changes, dilution thus hurts ever less at

the margin.
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Figure 2.7: The two graphs show the effect of a deviation from demanding only
type 1 children (measured by ∆N2) when type 2 children have a higher return
ratio. The lower graph plots σa,N and σ̂a,N for the case of a(n) = n−ε with
ε ∈ [0, 1) and the upper graph shows the marginal change in utility. In this
example the dilution effect dominates the return ratio effect for small deviations
and is dominated for large deviations.

To illustrate, consider the case where a(n) = n−ε with ε ∈ [0, 1). Since σ̂a,N

is increasing in ∆N2 while σa,N = ε is a constant it is clear that either the first

derivative is always positive/negative or it is negative for low levels of ∆N2 and

positive for high ones. With a(n) = n−ε we can thus only have corner solutions

in the decision problem of Equation (2.10). In words, given a(n) = n−ε with

ε ∈ [0, 1) the agent would either choose ∆N2 = 0 or ∆N2 =
Bi,1+β

Bi,2+β
N̂i,1 at which

latter point the agent would not demand type 1 children.

This is represented graphically Figure 2.7.

Moving on to a(n) 6= n−ε, there are forms of a(n) such that interior solutions

may arise. Interior solutions lead the agent to demand positive numbers of two

child types and therefore mean differential treatment of children.

Technically, the necessary condition is that plotting σa,N on ∆N2, σa,N has to

cross σ̂a,N at least once from below, say at the points in {∆N̆2}, while the suffi-

cient condition is that max{∆N̆2}
[ ∫ ∆N̆2

0
∂U(∆N2)d∆N2

]
> max(0,

∫ ∆N̄2

0
∂U(∆N2)d∆N2)

where I write ∆N̄2 =
Bi,1+β

Bi,2+β
N̂i,1 for the highest possible deviation with fixed ex-

penditure on children. A possible case is depicted in Figure 2.8.

Note that the solution one arrives at in this way need not be the final choice of

the agent as we are still keeping total investment into children fixed at the level

optimal given N̂i,1.
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Figure 2.8: These diagrams repeat the exercise of Figure 2.7 with an example of
a(n) that may allow for differential treatment of children.

Case 3: Type m > 2 children have highest Return Ratio

To generalise further, consider now the case where there is more than one

type with higher parental investment level than the type with the highest return

ratio. Here, we can first employ the following algorithm to narrow the set of

candidates: let the type with the highest return ratio be the first candidate;

then take the set of child types with parental investment above that of the

candidate, pick the type with the highest return ratio on this set and let it

be the second candidate; repeat with the set above the second candidate until

reaching type 1 (which is always a candidate). This way we discard all types

that are dominated by candidates using the logic outlined in the example that

saw only type 1 children in demand by the agent (compare Equation (2.9)).

In the case of a(n) = n−ε a second algorithm can be applied, which takes a

randomly drawn pair from this set of candidates and checks the choice of the

agent if only these two candidates could be chosen. This choice has been shown

above to have a corner solution and so we discard the disfavoured candidate

and repeat the process until just one candidate survives. We thus arrive at the

following proposition:

Proposition 6 Simple Forms of Altruism do not allow for Differ-

ential Treatment of Children

Suppose a(n) takes the form of n-ε with ε ∈ [0, 1), then in any pure strategy sym-

metric Nash equilibrium parent agents each choose to demand exactly one child

type, so that for each agent of income zi there is some q such that Ni,q = N̂i,q

and Ni,m = 0 for m 6= q.
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Proof: Suppose this was not true. Then take the agent with differential treat-

ment, fix his total expenditure on children and you will find a profitable deviation

involving moving resources from positively demanded type(s) to the one type

that survives the two algorithms outlined just above this proposition. �

In this more general case where type m offers the highest return ratio,

a(n) 6= n−ε may produce differential treatment of children in the same way

as above. Instead of repeating the above analysis, I show an equation showing

the intuition of differential treatment in this generalised form. Taking the first

order conditions of the agent’s maximisation problem with respect to the num-

ber of children of any two child types m and n which he demands in equilibrium

(that is Ni,m > 0 and Ni,n > 0), setting them equal and rearraging, we get

an equation characterising the trade-off between two positively demanded child

types m and n:

a′
[
N
][∑

q

Ni,qu
(
f(Bi,q; zi)

)
r̃q
][

(Bi,m + β)−1 − (Bi,n + β)−1
]

+a
[
N
][u(f(Bi,m; zi)

)
r̃m

Bi,m + β
−
u
(
f(Bi,n; zi)

)
r̃n

Bi,n + β

]
= 0 (2.13)

Since Bi,m and Bi,n must be final candidates of the algorithm outlined above

Proposition 6, we have Bi,m > Bi,n and
u
(
f(Bi,m;zi)

)
r̃m

Bi,m+β
<

u
(
f(Bi,n;zi)

)
r̃n

Bi,n+β
or the

other way round. Thus we see that always one summand is positive and the

other negative, and that the equation represents the balancing of investment

return and dilution cost.

Some intuition of differential treatment can be captured by contemplating

an agent who chooses to have children of two child types and whose dilution

function a(n) is illustrated in Figure 2.8. His reasoning must be as follows: The

cheaper child type offers a higher return but dilutes altruism more. His dilution

function has a low elasticity for small total numbers of children, so he finds it

worthwhile to demand some cheap, high-return and dilutive (because they are

more for a given expenditure) children. As he, in his mind, increases the number

of children the elasticity of his dilution function increases and he sees dilution

as an ever more pressing problem; so he then switches to some of the expensive

child type.
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The Effect of Parent Income

Another question to ask is how agents differ in their evaluation of child

types. The only heterogeneity of parent agents being in parental income this

is a question about the role of parent income. The important thing to note is

that as long as the function that maps parental investment into child income is

independent of the income level of the parent agent, that is f(b; z) = f(b), we

have that the return ratio of a child type is also independent of parent income;

therefore all agents value child types the same and differences in behaviour arise

only due to the dilution effect playing off differently at different values of total

expenditure on children7.

The issue is more interesting if f(b; z) 6= f(b). In particular, suppose that as

in Chapter 1 higher parental income increases the elasticity of f with respect to

b. This makes u
(
f(b; z)

)
less concave in b for high income agents than for low

income agents and thus changes the return ratios of the child types for agents of

different income. Specifically, high parental investment child types will be more

attractive to high income parents.

To illustrate, consider the following example involving two child types. Imagine

that child type 2 has the highest return ratio from the perspective of a parent

agent with low income zl, i.e.
u
(
f(Bl,2,zl)

)
r̃2

Bl,2+β
>

u
(
f(Bl,1,zl)

)
r̃1

Bl,1+β
. Now we want to

twist f(b, z) such that for a rich agent with high income zh the opposite is true.

We thus want the following to hold:

Bl,1 + β

Bl,2 + β
>
u
(
f(Bl,1; zl)

)
r̃1

u
(
f(Bl,2; zl)

)
r̃2

=
u
(
f(Bh,1; zh)

)
r̃1

u
(
f(Bh,2; zh)

)
r̃2

>
Bh,1 + β

Bh,2 + β
(2.14)

This implies the following necessary condition where σwx,y denotes the elasticity

of x with respect to y for an agent of income level zw:

f−1(Z̄2; zl)(1 + σlf−1,b
Z̄1−Z̄2

Z̄2
) + β

f−1(Z̄2; zl) + β
≈ f−1(Z̄1; zl) + β

f−1(Z̄2; zl) + β

>
f−1(Z̄1; zh) + β

f−1(Z̄2; zh) + β
≈
f−1(Z̄2; zh)(1 + σhf−1,b

Z̄1−Z̄2

Z̄2
) + β

f−1(Z̄2; zh) + β
(2.15)

7In the simple illustration of the case of a(n) = n-ε in Figure 2.7 for instance, depending on
the possible maximum deviation one or the other of the two corner solutions may be chosen
by the agent.
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Comparing the expression on the left and the one on the right of Inequality 2.15

it follows that the inequality holds if σlf−1,b is sufficiently larger than σhf−1,b or,

equivalently, σhf,b is sufficiently larger than σlf,b. If this difference is sufficiently

large then not only Inequality 2.15 holds but also Inequality 2.14 as required.

2.7 Uncertainty over Child Rank and Incidence

of Differential Treatment

In this section, I shall show that high uncertainty over child rank discourages

differential treatment of children and eventually abolishes it. Consider first the

extreme case of complete uncertainty.

When the social success of a child is completely uncertain or γ = 1 (that is

when parent agents cannot influence the probability distribution of the rank a

child is going to be assigned apart from investing at least Bi,|Z̄| so that the child

is not assigned a rank of 0), then child rank is effectively exogenous.

In this case parental investment only varies the consumption utility of the child,

therefore the utility return of parental investment is strictly concave which im-

plies that no two levels of parental investment will have the same marginal utility

and hence the maximisation problem of the agent stated in Equation 2.4 has a

single interior solution. Parent agents with different income levels may invest

different amounts in their children in equilibrium, but any one parent agent will

invest the same in all his children. There is thus no differential treatment of

children under complete uncertainty.

Differential treatment of children is absent also when uncertainty over child

rank is high yet not complete. We can expect to find a certain threshold level

of uncertainty, γ̂, such that there is no differential treatment of children in

equilibrium if uncertainty is at least as high as γ̂.

The idea behind this claim is that greater uncertainty discourages high levels

of parental investment by lowering the expected return - a child of the highest

income can only loose when ranks are more random - while it encourages higher

parental investment into children of the lower expected ranks - a child of the

lowest income can only gain from ranks being more random. As a result parental
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investment levels are less differentiated across child types and hence the dilution

effect plays a lesser role in the decision-making of parents. If the dilution effect

becomes sufficiently unimportant, then parents effectively base their decisions

on the return ratio effect only; and in that case a single child type will be chosen

by each parent.

If we are more specific about the characteristics of the dilution function a(n),

we can be more specific about the threshold uncertainty γ̂. Imagine for instance

that the elasticity of a(n) with respect to total number of children, σa,N , is fairly

low for low total number of children N but increases fast and is bounded above

by σ̄a,N < 1 (see bottom part of Figure 2.9).

In particular, imagine that differential treatment comes about in the follow-

ing form. The agent has children of two types, j and k > j (it must therefore be

that type k has the highest return ratio and type j, being more expensive, is cho-

sen to avert some dilution). At the hypothetical choice under the constraint of

demanding only the more expensive child type (represented by N̂j > 0, Nm = 0

for m 6= j - compare the example maximisation problem in Equation 2.10 where

we had j = 1 and k = 2) we have:

σ̂a,N |N=N̂j
> σa,N |N=N̂j

(2.16)

and for any fertility higher than the level associated with this choice, i.e. N >

N̂j, we have that σa,N is increasing faster than σ̂a,N , formally:

∂σ̂a,N
∂N

|N̂k≤N>N̂j
<
∂σa,N
∂N

|N̂k≤N>N̂j
(2.17)

Figure 2.9 illustrates a case in which an agent with such a a(n) would want to

deviate from the hypothetical choice N̂j (note that therefore the Figure does not

show the final solution, only that the solution will involve differential treatment).

The way that a higher γ will abolish differential treatment is by raising σ̂a,N .

In Proposition 7 below I show that higher uncertainty reduces the distance be-

tween Bi,j and Bi,k and thus reduces the relative dilution disadvantage of the

higher return child type 〈Bi,k, r̃k〉. This manifests itself in the diagram as a

higher σ̂a,N (the dilution effect dominates the return ratio effect iff σa,N > σ̂a,N).
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Figure 2.9: These diagrams show a simple way in which differential treatment
can arise; see explanation in the text.

Suppose for the simplicity of exposition that the equilibrium child income sched-

ule Z̄ is equal to the set of lower bounds on child incomes Z̄. We can then derive

the following proposition.

Proposition 7 Minimum Uncertainty for no Differential Treatment

Suppose a(n) has the properties in Inequalities 2.16 and 2.17 and Z̄ = Z̄, then

∃ γ̂ such that for γ ≥ γ̂ there is no differential treatment in equilibrium.

Proof: From r̃m = (1− γ)rm + γAM(r) where AM(r) is the arithmetic mean

of the set of all rm follows that an increase in γ decreases r̃m if rm > AM(r)

and vice versa. As a consequence r̃m − r̃m+1 decreases for all m. Further, each

element Z̄m of Z̄ is given by f(bi,m; zi) where bi,m is the solution to the following

equation for some zi (compare Inequality 2.8):

−u′
(
zi−

∑|Bi|

m=1
ni,m(bi,m+β)

)
rp+αa(·)u′

(
f(bi,m; zi)

)
f ′(bi,m; zi)r̃m = 0 (2.18)

From this follows that Z̄m = f(bi,m; zi) is increasing in r̃m. This in turn implies

that higher γ lowers Z̄m−Z̄m+1 for all m. Therefore the difference both between

Z̄j and Z̄j and between u
(
Z̄j

)
r̃j and u

(
Z̄k

)
r̃k decreases. With the differences

between both decreasing, the direction of the return ratios
u
(
Z̄j

)
r̃j

Z̄j+β
is indeter-

minate. If an increase in γ changes the return ratios such that we move from
u
(
Z̄j

)
r̃j

Z̄j+β
<

u
(
Z̄k

)
r̃k

Z̄k+β
to

u
(
Z̄j

)
r̃j

Z̄j+β
>

u
(
Z̄k

)
r̃k

Z̄k+β
then the return ratio and dilution effect

pull into the same direction and there is no scope for differential treatment. If,
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Figure 2.10: In conjunction with Figure 2.9, these diagrams demonstrate how a
higher γ, via raising σ̂a,N , disposes of differential treatment.

however, an increase in γ preserves the original ranking of return ratios, then

the decrease in the difference between u
(
Z̄j

)
r̃j and u

(
Z̄k

)
r̃k implies that

σ̂a,N |N=N̂j
=
u
(
Z̄k

)
r̃k − Bi,j+β

Bi,k+β
u
(
Z̄j

)
r̃j

u
(
Z̄j

)
r̃j − Bi,j+β

Bi,k+β
u
(
Z̄j

)
r̃j

(2.19)

is increasing in γ. We also know that σ̂a,N is increasing in ∆Nk. Since for γ high

enough the upper bound on σ̂a,N approaches 1 while the upper bound on σa,N

is fixed at σ̄a,N < 1, it follows that, for some γ̂, γ ≥ γ̂ implies that σ̂a,N > σa,N

for all values of N and for parent agents of any income zi for all child types j

and k. In that case there is no differential treatment of children in equilibrium.

�

If uncertainty is high enough, the agent will deviate from the hypothetical

solution N̂j > 0, Nm = 0 for m 6= j to having only children of the highest return

ratio type: N̂k > 0, Nm = 0 for m 6= k. The dilution effect which made having

some more expensive children with lower return ratio attractive is dominated.

This is illustrated in Figure 2.10.

2.8 Discussion

The preceding sections have shown that increasing returns to scale induced by a

concern for social status (or relative concerns) can lead to differential treatment
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of children if the altruistic feelings of parents towards each child are declining

in certain ways as the total number of children of the parent increases. In-

terestingly, even though the convexity of status returns plays a role by giving

the higher type children a better return ratio, differential treatment arises pre-

cisely because ranks do not convexify the investment into a single child enough;

the return of the high child type is too low to displace the lower type children

completely.

The virtual disappearance of differential treatment in modern times can be

attributed to technological changes: faster growth in technology as well as a

shift of value creation to human capital intensive processes have, from the point

of view of the parent, lead to greater talent and idiosyncratic risk associated

with parental investment into children. The ensuing greater uncertainty over

the future rank of a child is shown in the model to lower the incidence of dif-

ferential treatment by reducing the cost differences between children and thus

weakening the influence of the dilution effect, which stems from the fact that

altruism towards any one child decreases with the number of children.

One can generalise the fundamental message of the model: whatever the mech-

anism behind differential treatment, it is a fair guess to say that it builds on

differences between children, be they exogenous or endogenous. Greater un-

certainty over the future path of children, which makes children more alike in

expectation, lowers these differences and hence removes incentives for differential

treatment.

Within the animal kingdom, humans have comparatively few children each,

making the abstraction from the integer constraint humans face in their choice of

fertility little realistic. In fact, I believe the integer constraint is a fundamental

reason for differential treatment of children. While it is not explicitly modelled

in the preceding sections, one can easily imagine an extension of the model that

incorporates it. The story of the integer restriction would then, I think, be the

following: Imagine a high ranking nobleman in a preindustrial society; he would

like to have, say, 1.4 children of his rank, but he is not prepared to cut back his

own consumption so much as to finance 2 children of this rank. Instead, he has

one child (or son) to succeed him in his rank and one or a few barely noble and

cheap children. Greater uncertainty of child ranks also discourages this ‘integer

induced differential treatment’ by lowering the variance of parental investment
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levels and thus reducing the suitability of cheaper child types for substituting

fractions of expensive child types.

In a sense, differential treatment in the model and integer induced differential

treatment are complementary explanations for differential treatment as they

answer two different questions: the first answers why low status children may

have high status siblings while the second answers why high status people may

have low class siblings.

Further limitations of the model should be addressed. It is asexual both in

the sense that there is no matching and mating and also in the sense that there

are no genders. While this simplification may seem to be increasingly acceptable

in many modern societies, it certainly is problematic in the type of society where

primogeniture and differential treatment was or is common practice. To explore

the origins and implications of gender roles from this perspective is an avenue

for future research.

I should also add that in real life children, especially in societies of the past,

may come into existence for reasons other than those captured by the notion of

altruism of the model: they may be the byproduct of sexual desire, replacements

in waiting in case the chosen heir would die prematurely, labourers on the family

farm, providers of retirement income, tokens in marriage arrangements and so

on.
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Chapter 3

Co-Evolution of Institutions and

Preferences:

the case of the (human) mating

market

3.1 Introduction

Recent years have seen a surge of studies that show how natural selection op-

erating on both genes and institutions (which shall be understood as the rules,

habits and other culturally transmitted norms that individuals of a species fol-

low when interacting with each other) can lead to co-evolution of the two (see

e.g. Boyd and Richerson [2002], Bowles et al. [2003], Bowles [2006], Choi and

Bowles [2007] and Gintis [2007] - for early proponents see for instance Cavalli-

Sforza and Feldman [1981], Durham [1992], Feldman and Zhivotovsky [1992] and

Soltis et al. [1995]). The general result can be stated as follows: evolution creates

institutions that are complementary to the genetic setup of the (sub)population.

In particular, the literature has shown how institutions can be complementary

to certain genetically fixed behaviours - mainly in the human domain. Con-

sider Bowles et al. [2003] as an example: the authors study the emergence of

genetically induced behaviours that are beneficial to the group and costly to the
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individual. While reproductive differentials of individuals thus drive these be-

haviours towards extinction, group level selection works for their proliferation.

Institutions such as resource sharing or segmentation reduce the variance of re-

productive success within groups and thus weaken the force of selection on the

level of individuals; the emergence of these institutions depends on the existence

of such group-beneficial traits and these in turn may only be able to proliferate

if these institutions are in place.

Note that the very existence of groups can for some species be interpreted as a

part of the institutional setup.

This paper, focussing on mating preferences and the mating market, adds to

this literature by showing that evolution may also create institutions that are

complementary to the mate choice based on genetically fixed preferences, which

can be interpreted as genetically coded information processing.

The model is as follows. In a population of a strictly monogamous species,

individuals choose who to form a couple for life with, their choice based on the

observable characteristics of the opposing sex (the opposing sex’ phenotype).

The setup is such that, in its optimal form in terms of maximising evolutionary

fitness, the desirability ranking of potential mate types depends on the charac-

teristics of the individual forming this ranking.

This is achieved by good and bad expressions of parental characteristics being

sub-modular in terms of the evolutionary fitness of joint offspring; which in turn

depends on a dominant-recessive allele setup of the relevant characteristics of

individuals. Dominant alleles code for the evolutionarily better phenotype. If

one is homozygotic in the recessive allele (carries only the latter), then switching

from a mating partner who is also homozygotic in the recessive allele to one who

carries at least one dominant allele increases the probability of one’s child car-

rying the more advantageous dominant allele by more than if one oneself carries

at least one such dominant allele.

The mentioned optimal preferences will thus result in a matching allocation that

sees individuals of different strengths and weaknesses form couples. Such an al-

location happens to be evolutionarily efficient in the sense that the speed with

which favourable genes spread through the population is maximised as the re-

productive differential between good and bad expressions of traits is maximised1.

1Note that if parental characteristics were modular instead of submodular the efficient allo-
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However, one cannot expect genetically fixed mating preferences to be com-

pletely conditionable on the characteristics of the carriers. I therefore introduce

the constraint that they cannot depend on the phenotypical characteristics of

the carrier other than his gender (and thus also not on his genotype other than

the bit that determines his gender). This can be interpreted as a constraint on

the complexity of mating preferences.

The population is then assumed to adopt a certain mating partner ‘allocation

mechanism’ (or, equivalently, an ‘institutional setup’ of its mating market) which

structures the choices to be made by the individuals. In particular, I assume

that the allocation takes place following the ‘deferred-acceptance procedure’ of

Gale and Shapley [1962]2. Given this allocation mechanism, the evolution of

mating preferences such constrained is studied. I derive the equilibrium mating

preferences and their implications for the evolution of the phenotypical traits

based on which individuals rank possible mates.

The result is that under certain conditions this ‘deferred-acceptance proce-

dure’ (DA procedure) produces mating preferences which, conditional on this

institutional setup being in place, are optimal for the individuals3 - they form

couples as if they were guided by the unconstrained optimal desirability ranking

mentioned above. And therefore the matching allocation under the DA proce-

dure is evolutionarily efficient.

Nature may thus be thought of as overcoming the genetic constraint on the com-

plexity of mating preferences by structuring the interaction of the individuals of

the species in a certain way, that is by letting the species adopt an appropriate

institutional setup. Based on the fact that the DA procedure induces an evolu-

tionarily efficient allocation, an argument is then developed that suggests that

group level selection will let it prevail over other institutional setups.

The equilibrium preferences in the DA procedure are interesting because the

cation could be reached with desirability rankings that are independent of the characteristics
of the individual making the choice.

2The allocation is a two-sided matching problem with nontransferable ordinal utility (com-
pare Legros and Newman [2007]). Further seminal works of the two-sided matching literature
include Knuth [1997], Becker [1981] and Roth and Sotomayor [1992].

3To be precise, conditional on the two having the same genotype, an individual maximising
these preferences and an individual with full information and the desire to maximise his
evolutionary fitness would do equally well in expectation.
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preference of the two genders can be shown to be partly opposing and comple-

mentary: if one gender prefers a certain trait over another, individuals of the

opposite sex will prefer the other trait. An ensuing application to modern mar-

riage markets of humans (which formed the original motivation for this paper)

argues that mating preferences formed in our paleaolithic past may be respon-

sible for the anecdotal fact that women are quite reluctant to ‘marry down’ the

social ladder while for men traits such as beauty are far more important than

social status or intelligence. This result is also interesting as it does not hinge

on the dynamics specific to polygynous mating.

This paper is also contributing to the vast literature on sexual selection.

Originating with Darwin [1871], sexual selection as a distinct force in evolution

has probably received most attention in the form of runaway processes à la

Fisher which are based on correlations between genes coding for characteristics

and preferences (see Fisher [1930] and for a formal model Lande [1981]; for

further extensions see e.g. Pomiankowski and Iwasa [1993]) and the handicap

principle which is based on signalling arguments (see Zahavi [1975] and his

follow-on papers as well as e.g. Grafen [1990]); both these processes are ruled

out by assumption in this model, however, as traits are both assumed to be

statistically independent and perfectly observable. Assortative mating similar

to the partial assortative mating that emerges in the model below has been

studied for instance by Karlin and O’Donald [1978] and Wilson and Dugatkin

[1997].

Comparative analysis of alternative mating mechanisms is covered for instance

in Andersson [1994]; the perhaps closest related work to the present paper in

this field is Servedio and Lande [2006] who study the dynamics of population

genetics for polygynous species.

The rest of the paper is structured as follows. The next section introduces

the setup of the model in more detail and provides more motivation, then ex-

amines the evolution of the modelled traits including preferences under the DA

procedure before giving some observation concerning the co-evolution of institu-

tions and preferences as well as other traits. This is followed by the application

to modern marriage markets and a short discussion.
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3.2 The Model

3.2.1 Setup

Introduction

The modelling approach of this paper is the following: it tracks the evolution

of genotypes and determines their equilibrium values for each of a set of in-

stitutional setups of the mating market; in a second step, it then asks which

of these institutional setups would prevail in an evolutionary process based on

group selection.

The analysis applies to sexually reproducing species that form monogamous

couples, have moderate cognitive capabilities and whose success in rearing young

does not systematically depend on culturally determined characteristics such as

inherited wealth or status. The model thus has no distinctively human features,

I shall, however, refer to the example of a community of human hunter-gatherers

in the stone age as a motivating example.

In the following sections I shall expose the genetic setup of individuals and the

population and show how genotypes are linked to reproductive success, followed

by an overview of the institutional setup of the mating market.

To fix ideas, imagine the life cycle of a member of the hunter-gatherer commu-

nity to be as follows: When child is born to a couple, it survives into adulthood

with a certain probability. This probability depends on the characteristics of

his parents, the more successful they are in life the more likely the child is to

survive.

When coming of age, the individual enters the mating market and is there

matched with a partner of the opposite sex with whom he or she forms a monoga-

mous couple for life. The number of children who survive into adulthood depends

positively and exclusively on the success in life of the parent couple; and success

in life in turn depends (systematically) only on the genotypes of the partners.

In the end the individual dies.
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Genotypes and ‘Success in Life’

As mentioned above, the number and probability of survival into adulthood of

children depends on parental characteristics such as access to food, material

well-being, health, survival into old age etc. These we shall call summarily

‘success in life’. For evolutionary purposes what matters is the connection of

genes and ‘success in life’.

Suppose that we can describe genetic heterogeneity of agents along only four

dimensions: gender, a characteristic named L, a characteristic named I, and

mating preferences.

As to the first three characteristics I assume for the sake of simplicity of exposi-

tion that they are binary: gender naturally can be male (m) or female (f) while

L, which we may or may not interpret as looks or beauty, can be good (g) or bad

(b) and I, which we may or may not interpret as intelligence or cleverness, can

be high (h) or low (l). I assume that the phenotype of an individual is perfectly

observable to all individuals in the community including the individual him- or

herself.

In terms of genes, one may imagine gender to be the result of the genotype

having XX or XY chromosomes while for L and I I assume that their pheno-

typic expression results from simple autosomal dominance setups: let there be

two alleles for L named T and t, the first of which causes the bearer to have

the more advantageous expression g; we thus have the following relationship

between genotypes and phenotype (as far as L is concerned): {TT, T t, tT} ⇒ g

and tt⇒ b. Similarly for I, I define alleles U and u and {UU,Uu, uU} ⇒ h and

uu⇒ l.

Mating preferences or in short ‘preferences’ take the form of an ordering of all

possible phenotypes involving the characteristics L and I. This implies that

there is no homosexuality and that there are no preferences over the the poten-

tial partner’s preferences. I do not specify the underlying genetics.

To simplify, I assume that the alleles of all four characteristics are inherited

independently which implies that, within a subgroup established by conditioning

on a phenotypic characteristic, the frequencies of the other characteristics are

identical in expectation to the frequencies we observe in the total population.
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This ensures for example that if 3
4

of the population has g and half is male then

we have that of the subgroup of individuals with h 3
8

are male with g, 1
8

are male

with b, 3
8

are female with g and 1
8

are female with b.

Suppose that the expected number of surviving children can be expressed

as a function of the sum of the values for success in life of the two parents:

E(S|slm + slf ) with
∂E(S|slm+slf )

∂(slm+slf )
> 0, where S stands for number of surviving

children and slm and slf for success in life of male parent and female parent,

respectively.

Let us further assume that the gender of the parent has no bearing on how

beneficial these traits are and that L and I are equally important to the success

in life. As a function of the phenotype we can therefore set (where x ∈ {m, f}):

slx(g, h) > slx(g, l) = slx(b, h) > slx(b, l) (3.1)

When a man and a woman have a child in this setup, the child’s phenotype

with respect to L and I is one of the four types (g, h), (b, h), (g, l) and (b, l).

The probability of these depends on the phenotypes of the parents. If we write

Pr
(

(Lc, Ic)|(Lm, Im), (Lf , If )
)

for the probability of the child having phenotype

(Lc, Ic), with looks Lc and intelligence Ic, given that the father has phenotype

(Lm, Im) and the mother has phenotype (Lf , If ), then from Mendelian rules

follows that:

1 > PL1 = Pr
(

(g, ·)|(g, ·), (g, ·)
)

> PL2 = Pr
(

(g, ·)|(g, ·), (b, ·)
)

= Pr
(

(g, ·)|(b, ·), (g, ·)
)

=
1

2

> PL3 = Pr
(

(g, ·)|(b, ·), (b, ·)
)

= 0 (3.2)

from which follows that PL1 − PL2 < PL2 − PL3 which means that the gain

of additional probability of a good looking child from being paired with an

individual with good looks is smaller for an individual who has himself good

looks. Equation 3.2 is illustrated in Figure 3.1.

Similar conditions hold for I and I define equivalents of PL1, PL2 and PL3 as PI1,

PI2 and PI3. By construction we have PL2 = PI2 = 1
2
≡ P2 and PL3 = PI3 =

0 ≡ P3 and to simplify the exposition I also assume that PL1 = PI1 ≡ P1.

The choice of a dominant/regressive mode of inheritance with two alleles for
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Figure 3.1: This diagram shows the probability of a child having good, or ‘g’, in
L depending on the phenotypes of his parents.

each trait is a special setup, but the important underlying assumption is that

mating with an individual with preferred characteristics improves the expected

genetic quality of a child more in the case of agents who lack this preferred

characteristic; to economists this would go by the name of diminishing returns

or submodularity. And this is true for many modes of inheritance.

Mating Market

Imagine the mating market to be such that when a generation comes of age (say

at a certain date every year) men and women are matched in monogamous pairs

that stay together for life. To focus the exposition we assume equal numbers of

men and women and will work with the expectation of the distribution of types.

This means that I essentially work with large populations. That is admittedly

a potentially dangerous abstraction in an evolutionary context.

The matching is assumed to take place following the DA procedure, according

to which individuals of one gender propose to form a partnership to an individual

of the other gender who in turn decides whether to accept or reject the proposal.

Let individuals of the former gender be called ‘proposers’ and those of the latter

‘receivers’. Proposing takes place in rounds: in the first round each proposer

proposes to his favourite receiver (exactly one proposal per proposer) and after

receiving all proposals each receiver rejects all but one proposal if any. The

rejected proposers then propose to their second most favourite receiver and

once all these proposals are received each receiver again rejects all but one of

the new proposals and the kept proposal of the first round. This procedure is

repeated until all individuals are matched. By Theorem 1 of Gale and Shapley

[1962] this procedure always results in a stable allocation, i.e. one in which no

two individuals would want to leave their allocated partner in order to form a
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couple among themselves.

In order to ease the language of the following sections, I shall describe the out-

come of the DA procedure as if individuals understood its working well enough

for proposers not to propose to receivers they know will reject them and for

receivers to accept proposals when they know that they cannot get a better one.

How they know shall be made clear whenever this argument is invoked.

In the following we shall track the evolution of all four genotypical charac-

teristics (in the form of replicator dynamics) under the DA procedure.

I assume that nature is constrained to condition preferences only on the

gender of the individual; in other words, men and women may have different

preferences but whether a man or woman is of phenotype g or l in L or of

phenotype h or l in I can have no direct effect on his or her preferences (this

implies his genotype in terms of u, U , t and T can have no direct effect on the

carrier’s preferences).

This is of course again a simplification and stands for the underlying assumption

that mating preferences are not optimised given complete conditioning on genetic

and other characteristics. This I think is a reasonable view.

A note on objectives and information sets: while the individual knows both

his own type and that of all other individuals, the genes that determine pref-

erences only know the gender of their carrier, nothing else. For the individual

the task is to get matched with an individual of the opposite sex that is as

high in the ranking of types as possible, where this ranking is dictated by his

preferences.

The task (figuratively speaking) for preferences, however, is to devise the ranking

of types that generates the highest possible evolutionary fitness for their carrier

(who decides what type to match with based on this ranking). It is therefore

in the evolution of preferences that the submodularity of types and the fact

that preferences cannot be conditioned on all the characteristics of the carrier

matter. These two features of the setup do not matter in any single instance of

the matching process.
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Benchmark Matching without Complexity Constraint

In order to have a benchmark outcome or scenario with which to contrast the

matching outcomes in the following sections, it is worthwhile to consider the

outcome if individuals are taken to be rational agents and preferences are not

constrained in their complexity. This is the full information case.

Under such circumstances a matching is stable if there is no combination of

two agents such that both would want to leave their matched partner in order

to form a couple. This implies that preferences will evolve such that the ranking

of desired types is equal to the ranking of types based on the expected success

in life of the offspring generated by forming a couple with each of these types.

The resulting preferences are tabulated below.

.

Table 1

own phenotype preferences

(g, h) (g, h) � (g, l) ∼ (b, h) � (b, l)

(g, l) (g, h) � (b, h) � (g, l) � (b, l)

(b, h) (g, h) � (g, l) � (b, h) � (b, l)

(b, l) (g, h) � (g, l) ∼ (b, h) � (b, l)

In terms of matching outcome we have that (g, h) types are only matched

with (g, h) types, (g, l) types with (b, h) types (if they are of equal frequency),

and (b, l) types with (b, l) types. If (g, l) and (b, h) types are not of equal

frequency then the more common type will form couples among itself. The

evolutionary implications of such a matching outcome are discussed below.

Note that preferences in this full information case are not conditioned on the

gender of the carrier. It only plays a role given the complexity constraint as,

within a structured interaction with gender roles, gender may then be associated

with and therefore proxy the characteristics that actually matter.

Review of critical Assumptions

In this section I list and explain the set of assumptions that drive the model.
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Assumption 1 The species reproduces in strictly monogamous couples and in-

herited traits are statistically independent and their phenotypical expression per-

fectly observable.

This provides for a simple environment by restricting the number of possible

institutional setups for the mating market and ruling out indirect effects of

traits. This in turn focuses attention on the interplay of genetic and institutional

setups.

Assumption 2 The fitness ranking of types of mating partners of an individual

depends on the genotype of this individual; in particular, type (g, l) individuals

have children of higher expected success in life if mating with a type (b, h) rather

than a type (g, l) while for type (b, h) individuals this ranking is reversed.

This is modelled in the form of diminishing returns (compare Equation 3.2 and

Figure 3.1): mating with an individual of phenotype g is more valuable to an

individual of phenotype b than g.

Assumption 3 Nature is restricted in the complexity of the genetic setup of

mating preferences in that these can only be conditioned on the gender of the

carrier of the preferences not his other characteristics.

The purpose of assumptions 2 and 3 is to let optimal preferences be a non-

degenerate function of one’s phenotype and, figuratively, to bar nature from

giving individuals these optimal preferences. Taken together this implies that

there is scope for improvement over genetically fixed mating preferences, a task

which, as shall become evident below, may be taken up by institutions.

3.2.2 The Evolution of Gender, L and I

While all four traits (gender, L, I and preferences) evolve simultaneously, it can

be shown that some characteristics of the evolution of the first three of these are

independent of the institutional setup of the mating market and the evolution

of preferences.
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As to gender, I assume that initially there are equal numbers of males and

females and I show that, as a direct result of Assumption 1, this distribution is

stable:

Proposition 8 Gender Ratio

In equilibrium, genes coding for male and female have the same frequency so

that the gender ratio is 1 : 1.

Proof: Note that due to the monogamous setup the distribution of reproductive

success is identical for the two genders; together with the fact that gender is

inherited independently from other traits this implies that the expected fitness

of a male child is equal to that of a female child. The posited ratio thus forms

an equilibrium.

Should the expected gender ratio deviate from 1 : 1, children of the gender

that forms the longer side of the market will have a lower expected fitness as a

portion of its members will not be matched and thus will not reproduce. This

lets selection work in its disfavour until the ratio of 1 : 1 is restored. Therefore

the posited ratio is the unique equilibrium in the genes coding for gender. �

The genes governing the traits I and L evolve in a way that lets the popu-

lation frequencies of g (the ‘good’ version of L) and h (the ‘high’ version of I),

denoted Pg and Ph respectively, increase over time. In order to avoid degenerate

distributions of I and L, I assume that there is a constant error rate such that

when an individual of genotype UU mates, he passes on a copy of u instead of

U with a certain (small) probability ε. Let the equivalent hold for T and t.

We then have:

Proposition 9 Dynamics of I and L

Pg and Ph weakly increase over time and are each bounded above by 1− ε2 < 1.

Proof: There is change over time in Pg if at least some individuals of type g

are matched to individuals of type g and similarly for b, because only then does

the distribution of reproductive success differ across g and b. The worst possible

scenario for g is that there are only matches of (g, l) with (g, l) and (b, h) with
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(b, h). In this special case, the success in life of the two types of couples is equal

(by Equation 3.1), in all other cases the success in life of the couples having g

is higher than that of the couples having b and then Pg increases. The same

analysis holds for Ph.

The upper bounds on the prevalence of Ph (Pg) stem from the fact that even

a population of individuals of genotype UU (TT ) will, in expectation, see a

fraction ε2 of their children have genotype uu (tt) and phenotype l (b) due to

the above introduced error rate. �

Note that Proposition 9 makes no statement regarding the average speed

with which Pg and Ph approach their upper bounds from their initial value, nor

does it imply that the two frequencies will evolve at the same speed. These

characteristics of the evolution of I and L depend, as shall be shown below, on

the evolution of preferences and institutions.

3.2.3 The Evolution of Preferences

We now turn to how the preferences of both genders evolve. Preferences are set

over the four phenotypes (g, h), (g, l), (b, h) and (b, l). It is clear that whatever

an individual’s own phenotype and genotype, it is beneficial for him or her to

prefer a partner with phenotype (g, h) to all other phenotypes. Likewise the

individual should prefer all other phenotypes to type (b, l). Formally we have:

Lemma 8 Preferences over types (g, h) and (b, l)

Preferences will evolve to the following general form:

(g, h) � X � (b, l) X ∈
{[

(g, l) � (b, h)
]
,
[
(g, l) ∼ (b, h)

]
,
[
(g, l) ≺ (b, h)

]}
(3.3)

Proof: Whenever an individual is given the opportunity to choose between

being matched with a type (g, h) individual or some other type, he will have

higher expected reproductive success if he chooses the type (g, h) individual ir-

respective of his own genotype; see Equation (3.1). The choice of individuals

is based on their preferences and therefore preferences that do not rank (g, h)
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highest will result in suboptimal choices and thus eventually be driven out.

Likewise preferences that do not rank (b, l) lowest will result in suboptimal

choices as expected reproductive success is higher when mating with an individ-

ual of some other type. �

We examine a situation in which the forces of Lemma 8 have already moved

preferences to the form of (g, h) � X � (b, l). We can now deduce the following

behaviour.

Proposers of type (g, h) propose to receivers of the same type and get ac-

cepted: the receivers accept the best possible match and the proposers foresee

this. Since we are working with expectations there are equal numbers of pro-

posers and receivers of this type and so this type enters partnerships among its

own members only.

Likewise, proposers of type (b, l) propose to receivers of the same type and

get accepted. These individuals realise that type (g, h) proposers and receivers

match among themselves and that there are equal numbers of type (g, l)∪ (b, h)

proposers and followers. They also realise that preferences are as in Equation

3.3 so that the latter types rather match among themselves than with a (b, l)

type individual. So receivers of type (b, l) accept proposers of type (b, l) knowing

that they cannot expect to get a better match by waiting and receivers of type

(b, l) propose to them because they know that receivers of any other type would

reject them.

These results are independent both of the distribution of X in the population

and, by the independence of traits in the inheritance process, of the distribution

of L and I. We may therefore suppress an exposition of the matching of types

(g, h) and (b, l) in what follows.

Since individuals of type (g, h) form couples among themselves as do those

of type (b, l), the individuals that count for the dynamics (or evolution) of X are

thus of type (g, l) and (b, h) only. Let a denote the frequency of X =
[
(b, h) �

(g, l)
]

for receivers and b the frequency of X =
[
(b, h) � (g, l)

]
for proposers.

If we find an equilibrium in {a, b}, then taken together with Equation (3.3) we

have characterised the equilibrium distribution of mating preferences.
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The important bit to notice is that there is a tension or conflict between

preferences that are optimal for a (g, l) type individual and for a (b, h) type

individual as both types maximise their evolutionary fitness within the subgroup

of type (g, l)∪ (b, h) individuals by their complement type4. The solution to this

problem is to make use of the information of the opposite sex. This can be made

clear with an example for the receivers: if all proposers have certain preferences

these will be optimal for one of the two phenotypes, so receivers should accept

proposals from this phenotype but not from the other; when all proposers of

the phenotype for which the proposer preferences are optimal are matched the

remaining proposers and receivers will be of the complement types and thus also

form optimal couples.

This idea can be generalised for non-degenerate distributions of preferences. I

first review the special case of equal numbers of individuals of the two types

(g, l) and (b, h), i.e. the case of Pg = Ph. We can then formalise the solution

idea for receivers in the following Lemma:

Lemma 9 Dynamics of Receiver Preferences given Pg = Ph

The frequency of receivers with preferences X =
[
(b, h) � (g, l)

]
denoted a

decreases if b > 1
2
, increases if b < 1

2
and does not change if b = 1

2
and/or a = 1

2

where b is the frequency of proposers with preferences X =
[
(b, h) � (g, l)

]
.

Proof: See Appendix.

The proof makes use of the fact that unless a = 1
2

and/or b = 1
2

one type of

one gender is matched entirely to the preferred partners in Q = {(g, l), (b, h)} so

that of this gender only individuals of the other type remain. All remaining in-

dividuals of the opposite sex are thus forced to match with this type irrespective

of their preferences. This is illustrated with an example in Figure 3.2.

The intuition for the dynamics of proposer preferences as opposed to receiver

preferences is that they, too, can infer the optimal match of their own phenotype

from the preferences of the opposite sex: if all receivers prefer a certain type in

Q, then it is opportune for proposers to have preferences that are optimal for

this preferred type because if they are accepted the match will be optimal while

if they are rejected by the partners they prefer they benefit too by being forced

4Compare Assumption 2.
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Figure 3.2: This diagram shows how types (g, l) and (b, h) are matched in an
example with a, b < 1

2
: the left column represents proposers, the right column

receivers. Arrows point in the direction of the preferred type. The numbering
shows in which order one can imagine matches to occur.

to mate with the less preferred but optimal complement type in Q5.

We arrive at a result similar to the one above:

Lemma 10 Dynamics of Proposer Preferences given Pg = Ph

The frequency of proposers with preferences X =
[
(b, h) � (g, l)

]
denoted b

decreases if a > 1
2
, increases if a < 1

2
and does not change if a = 1

2
and/or

b = 1
2
.

Proof: The proof is very similar to the one in Lemma 9; it checks the same

cases and notes the dynamics of b which are the flip side of the dynamics of a.�

Considering these two results in the replicator dynamics as well as our earlier

results we arrive at the following:

Proposition 10 Preferences in the DA procedure given Pg = Ph

There are two stable equilibria in preference frequencies: {a=1, b=0} and {a=0, b=1}.
In both of these the mating allocation is as follows: (g, h) proposers with (g, h) re-

ceivers, (g, l) proposers with (b, h) receivers, (b, h) proposers with (g, l) receivers,

and (b, l) proposers with (b, l) receivers.

5Where ‘optimal’ is short for optimal given that (g, h) individuals are not available because
they match among themselves.
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Proof: From Lemmata 9 and 10 immediately follows that the following fre-

quency pairs are equilibria {a=1, b=0}, {a=0, b=1}, {a=1
2
, b ∈ [0, 1]} and {a ∈

[0, 1], b=1
2
}. However, it also follows from the Lemmata that only the first two

of these are stable when subjected to repeated small random shocks to the fre-

quencies.

It has been shown above that we always have (g, h) proposers pairing with

(g, h) receivers and (b, l) proposers pairing with (b, l) receivers. In the case of

{a=1, b=0}, (b, h) proposers prefer (g, l) partners and (g, l) receivers prefer (b, h)

partners so that these two groups form couples. This leaves (g, l) proposers and

(b, h) receivers with no choice but to pair. In the case of {a=0, b=1}, (g, l)

proposers and (b, h) receivers willingly form partnerships and (b, h) proposers

and (g, l) receivers are forced to mate. In either case the allocation is as shown

above. �

Note that this mating allocation is the one obtained in the benchmark sce-

nario of section 3.2.1 and that it is efficient from an evolutionary point of view

in the following sense: the evolution of L is speeded because matches involving

two individuals carrying g and two individuals carrying b are (g, h) with (g, h)

only and (b, l) with (b, l) only - and this maximises the reproductive differen-

tial between the two. The equivalent holds for the evolution of I. The reason

is that individuals are matched partly assortatively in the sense that the top

and bottom types (in terms of success in life) are paired and that the mediocre

types match in cross pairs (g matched with b and h with l). The cross pair-

ing of mediocre types means that they do not count towards the reproductive

differential of the expressions of L and I.

When the frequencies of g and h are not equal so that Pg 6= Ph, this strong

result no longer necessarily holds. The intuition is that whenever an element of

X becomes more prevalent then it has to take on a greater relative burden of

sub-optimal matches of same types in Q. This is exemplified in Figure 3.3 and

formalised in the following proposition.

Proposition 11 Possible Breakdown of the Equilibrium if Pg 6= Ph

∃ rupper > 1, 0 < rlower < 1 such that if Pg

Ph
> rupper or Pg

Ph
< rlower then no stable

equilibrium of the form in Proposition 10 exists.
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Figure 3.3: This diagram shows the breakdown of the mechanism that sustains
the equilibrium of Proposition 10 when Pg > Ph to a sufficient degree. We have
a > 1

2
and b < 1

2
so in the case of Pg = Ph we would see a → 1 and b → 0; but

here the enlarged pool of (g, l) individuals preferring (b, h) individuals over their
own type ensures that the absolute number of right matches is the same for both
expressions of X which implies that the more frequent expression looses out so
that a 6→ 1.

Proof: See Appendix.

Note that even when no stable equilibrium exists, the result of Lemma 8

still holds so that while the distribution of preferences does not converge to

an equilibrium in terms of X it does converge to the form in Equation 3.3:

(g, h) � X � (b, l). And this implies that, as noted above, we will see (g, h)

type individuals matched to (g, h) types only and similarly for (b, l) types.

Before discussing the co-evolution of institutions and genetic traits, I shortly

review a possible genetic innovation that may be able to restore a stable and

efficient equilibrium.

An Extension: Preferences over Preferences

Within the setup of the DA procedure with Pg 6= Ph, imagine that by mutation

the mating preferences of individuals are no longer a ranking over the pheno-

typic expression of L and I of the opposite sex only but over the phenotypic

expressions of L, I and mating preferences of the opposite sex.

The aim of this section is not to suggest that such preferences will evolve but
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to give an example of how genetic innovation may be beneficial in certain insti-

tutional setups. Instead of a full analysis therefore, I focus on the implications

of a certain set of preferences over preferences. I consider only the dynamics of

preferences over (g, h) and (b, l) types.

Denote individuals who prefer individuals of type (g, h) over type (b, l) by Ĝ

and those with opposite preferences by Î. Then by arguments similar to the ones

advanced in Lemma 8 we will arrive at the following general form of preferences:

(g, h, Ĝ) ∼ (g, h, Î) � X � (b, l, Ĝ) ∼ (b, l, Î) (3.4)

As to X, I assume that all proposers prefer Ĝ receivers irrespective of L and I

and that all receivers prefer Î receivers irrespective of L and I. Writing Xp for

the possible values X can take for proposers given this assumption and similarly

Xr for receivers we thus have:

Xp ∈
{[

(b, h, Ĝ) � (g, l, Ĝ) � (b, h, Î) � (g, l, Î)
]
,

[
(g, l, Ĝ) � (b, h, Ĝ) � (g, l, Î) � (b, h, Î)

]}
(3.5)

Xr ∈
{[

(b, h, Î) � (g, l, Î) � (b, h, Ĝ) � (g, l, Ĝ)
]
,

[
(g, l, Î) � (b, h, Î) � (g, l, Ĝ) � (b, h, Ĝ)

]}
(3.6)

Let a be the frequency of receivers with preferences given by Equation 3.4 and

the first element of Xr in Equation 3.6 and let b be the frequency of proposers

with preferences given by Equation 3.4 and the first element of Xp in Equation

3.5.

The following can be shown to hold in this case:

Proposition 12 Properties of an Equilibrium with Preferences over

Preferences

Given preferences take the form as in Equations 3.4, 3.5 and 3.6 there is a con-

tinuum of equilibria that is characterised by a + b = 1. Each of these equilibria

is stable in the absence of small random shocks and unstable in their presence.

In each of these equilibria there are no matchings of (b, h) with (b, h) if Pg > Ph
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Figure 3.4: This diagram shows an exemplary equilibrium of the Preferences
over Preferences type with a > 1

2
and a+ b = 1. The numbering shows in which

order one can imagine matches to occur.

and no matchings of (g, l) with (g, l) if Pg < Ph and neither of these types of

matchings occur if Pg = Ph.

Proof: See Appendix.

This means that evolutionary efficiency is restored in the following sense:

mediocre types form the maximum number of matches among themselves so

that the expected reproductive difference between individuals carrying g (h)

and b (l) is maximised. The reason is that even though there is no equilibrium

that would be stable in the face of small random shocks, preferences will after

each shock be driven to an equilibrium that ensures the maximum number of

cross matches of types (g, l) and (b, h). And again the outcome mirrors that of

the benchmark scenario.

One such equilibrium is illustrated in Figure 3.4.

3.2.4 Evolution of Institutions and Co-Evolution

I assume that the evolution of institutional setups is relatively slow compared to

the evolution of preferences, so that it is appropriate to compare the performance

of these setups taking preferences in communities following a certain institutional

setup as given by the equilibrium they approach in such setup.
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By Propositions 8 and 9 the gender ratio is constant at 1 : 1 and the frequency

of the better traits g and h is weakly increasing under all institutional setups

and given any distribution of preferences. Differential reproductive success of

two communities which adhere to different institutional setups I take to depend

on how fast L and I are evolving in these communities6. Clearly a community

with higher frequency of the favourable traits h and g will outgrow a community

with a lower frequency; eventually we would thus expect to see institutions that

lead to higher frequencies Pg and Ph prevail. If we take the initial distribution of

traits to be equal (at least in expectation) across communities, then institutions

that lead to faster evolution of L and I will eventually displace other institutions.

Communities following the Proposer Scheme will outgrow communities fol-

lowing a random allocation mechanism. The underlying reason is that the former

makes use of more information in the matching process: (g, h) types only match

with (g, h) types and (b, l) types only with (b, l) types; we therefore have a clear

differential in expected reproductive success for individuals carrying h (g) ver-

sus l (b) and thus the evolution of I and L is faster. This fitness spread based

argument is elaborated e.g. in Sloman and Sloman [1988].

In the case of Pg = Ph the DA procedure induces the highest possible differen-

tial between expected reproductive success for g (h) and b (l) so that it weakly

dominates any other allocation mechanism7.

This is co-evolution because institutions shape the evolution of preferences

and the evolution of preferences makes for reproductive differences between in-

stitutions thus setting in motion and determining the evolution of institutions.

Within communities following the DA procedure, those that mutate to changes

of the sort of ‘preferences over preferences’ will outgrow those that do not if

Proposition 11 applies, i.e. if the frequencies of g and h are sufficiently different.

6Alternatively, one could track the total number of expected surviving children in a com-
munity of a given size under different institutional setups. For that kind of analysis, however,
we need specific assumptions on both the magnitudes of slx(g, h) versus slx(g, l) and slx(b, l)
and the elasticity of S with respect to sl. In the longer run these effects will be dominated by
the effect of differences in Pg and Ph across communities.

7When Pg 6= Ph, it can be shown that the Proposer Scheme results in a higher fitness
differential than allocation mechanisms that let individuals of one gender choose in random
order or grouped by either their phenotype in I or in L.
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3.2.5 An Application: Why Women and Men differ in

their Mating Preferences and why Women Don’t

Marry Down

The implications of the above analysis can be applied to modern marriage mar-

kets. The analysis is relevant if men and women today are constrained in their

choice of a partner by their innate mating preferences and if these are inherited

with no substantial change from our ancestors who lived before the neolithic rev-

olution. As an important caveat of what follows I should note that the model

developed above explicitly rules out any importance of culturally determined

characteristics of individuals (such as status and wealth), whereas in modern

human societies these seem to play a substantial role in mating markets.

Interpret I as intelligence and L as looks which I take as a proxy for under-

lying health. As argued above we should expect the DA procedure, being more

conducive to the working of natural selection, to have prevailed over alternative

schemes. Let us further assume that the frequencies of good looks g and high

intelligence h are not too different so that Proposition 10 applies.

Extrapolating from the experience in historic times, one can then argue that

it is more plausible to find men in the position of proposers and women in the one

of receivers; and further that men clearly value beauty more than intelligence

while for women it may be the other way round. In the language of the model

this would translate into an equilibrium of type {a=1, b=0}.

The model does not give an account other than arbitrary initial distributions

of preferences for whether it should be men who look for beauty and women

for cleverness or vice versa. This initial distribution may have been tilted in

favour of the observed equilibrium type because, and this is outside the model,

intelligence can be argued to be more important to the success in life for men

than for women8. From an initial distribution of preferences where women paid

8One of the fundamental differences between women and men, if not the most fundamental,
is that only women give birth to children. While the first nine months in the life of a human
being as well as the quality and abundance of nutrition in the months after its birth have been
shown to be highly important to its whole later life, these in turn depend on the status of
health of its mother. While intelligence helps securing food and shelter etc. for the mother,
her ‘underlying health’ such as the strength of her immune system is also vitally important. A
further reason is that, in times of high fertility and high child mortality especially, underlying
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a little more attention to cleverness and rank9 than men and men a little more

attention to looks, the forces described in Lemmata 9 and 10 transformed this

distribution such that women basically uniformly value cleverness more and men

value looks more10.

Co-evolution of preferences and institutions lets mating preferences be nec-

essarily different between genders even though, first, there may be very little

intrinsic difference in the (evolutionary) value of the characteristics over which

preferences are defined and, second, this value is completely independent of

gender.

A further question I am concerned with in this application is why, accord-

ing to anecdotal evidence, highly educated women who are successful in their

careers seldom marry down in the sense of marrying a man with markedly less

education or a markedly worse career while this is not uncommon for successful

and well educated men.

The answer this paper offers is the following: in equilibrium our ancestors

matched clever men with good looking women and clever women with good

looking men with the help of a proposal based institution that shaped prefer-

ences such that the clever men and good looking women wanted their match

while the clever women and good looking men preferred the respective other

type. This wrong preference did not matter because the concerned individuals

realised that they had no better choice. In order to realise this, however, it is

necessary to know the mating market well (as is assumed in the model). The

modern day equivalents of the members of the forced pairs, good looking men

and clever women, have maladapted preferences in the sense that they are pro-

grammed to pair up with the not preferred type only if they are sure that there

is no preferred partner available in the market. And to be sure is much more

health is important to how well the woman takes the high toll of pregnancies and childbirth
and thus how well she is prepared for subsequent pregnancies and the raising of her children.
For men on the other hand, no such direct connection between bodily health of father and
child exists. What matters is whether they can provide goods like food and shelter; and this,
above a certain minimum threshold of health can be argued to depend more on intelligence
than health.

9Above a certain minimum level of health, intelligence related social and emotional skills,
the ability to think strategically etc. can be argued to be the decisive factors in the determi-
nation of social rank.

10In terms of outcome, Bjerk [2009] reaches similar conclusions based on a model of human
capital investment that determine wealth, a cultural characteristic.
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difficult in the vastly greater and much more varied marriage markets today.

It is because of the mating market of times long gone that women today do not

marry down and instead continue their search for the elusive intelligent man.

3.3 Discussion

Within the framework of a monogamous mating market, the model of this paper

demonstrates that nature may delegate information processing to a culturally

transmitted institutional setup. Genes and culture co-evolve towards an evolu-

tionarily efficient solution to the complexity constraint introduced in the genetic

setup of mating preferences.

The DA procedure has been shown to be a plausible institutional setup

to emerge replacing a random allocation setup. At the same time it seems

reasonable to say that the cognitive capacities required of the individuals in the

DA procedure are higher than in simpler institutional setups such as random

allocation - in particular if individuals are expected to know whom it is futile to

propose to and whom one should accept immediately. We may thus find that

species of higher such capacities are more likely to follow something resembling

the DA procedure.

While the sophistication of the institutional setup is thus constrained by the

intelligence of the species, the fact that more sophisticated institutions provide

advantages will encourage the development of greater cognitive capacities. While

this is obvious in the primate and human domain, the merit of this model is to

show this complementarity in a very simple and more widely applicable setup.

As for human mating preferences11, the model suggests that men and women

may have different rankings over traits whose reproductive value is a priori

independent of gender. A more speculative interpretation is that men may

value looks more than intelligence and its correlates whereas for women it is the

other way round. Adding uncertainty over market conditions may then prevent

women from opting to marry down the social ladder while this seems to present

little problems for many men.

11The literature on human mating preferences is large; for an introductory survey see for
instance Roberts and Little [2008].
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Second Order Conditions for the continuous n case (Chap-

ter 1)

We need to show that the matrix of second derivatives is negative definite. I

test the leading principal minors.

Writing Vij for ∂2V
∂i∂j

and making use of the first order conditions (equations

(1.5) and (1.4)), note that:

Vnn = (bi + β)2u′′(·)rp,i − εn−1
i u′·rp,i < 0

Vbb = n2
iu
′′(·)rp,i + αn1−ε

i

[
u′′(·)f ′(·) + u′(·)f ′′(·)

]
rc,i < 0

Vnb = Vbn = (bi + β)niu
′′(·)rp,i + (1− ε)u′(·)rp,i

Note further that by the condition imposed in inequality (1.8) and the assump-

tion of 1− ε < 1 we know that u
(
f(bi)

)
is a concave function, so Vbb < 0.

The leading principal minors must be alternating in sign, so we need Vnn < 0

and VnnVbb − V 2
bn > 0. The first of these conditions is automatically satisfied;

the second is satisfied iff:

Vnnαn
1−ε
i

[
u′′(·)f ′(·)+u′(·)f ′′(·)

]
rc,i−(2−ε)ni(bi+β)u′′(·)u′(·)r2

p,i−(1−ε)2u′(·)2r2
p,i > 0

As can readily be seen, only the last summand is negative; and this inequality

is satisfied ‘in excess’ if the following holds:

−(2− ε)ni(bi + β)u′′(·)− (1− ε)2u′(·) > 0

In words, this tells us that u(·) must be sufficiently concave. The intuition is

that a lack of curvature may result in a corner solution where all income is spent

on parent consumption because then the weighting by α < 1 renders investment

into children uninteresting. It is assumed throughout that the last inequality

holds.
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Proof of inequality (1.9), ni increasing in parent income

Label the first order condition with respect to ni, which is given in equation

(1.4), as Q. Then from the implicit function theorem and from noting that

Q = ∂V
∂ni

we get:

∂ni
∂zi

= −
( ∂Q
∂zi

)

( ∂Q
∂ni

)
= −

∂2V
∂ni∂zi

+ ∂2V
∂ni∂bi

· ∂bi
∂zi

∂2V
∂n2

i

> 0

It is immediate that ∂2V
∂ni∂zi

> 0 and ∂2V
∂n2

i
< 0, and it has been assumed that

∂bi
∂zi

> 0. By using equation (1.5), we can show that

∂2V

∂ni∂bi
= (bi + β)niu

′′(·)rp,i + (1− ε)u′(·)rp,i

This derivative is assumed negative which is a slightly stronger concavity

assumption on u(·) compared to the discussion of the second order conditions

for the continuous n case with two generations.

Rearranging the first equation of this proof then yields the condition on ∂bi
∂zi

written in (1.9). �

Proof of Lemma 1

For given values of n and rc,i, the only choice variable of the agent is b. The

first order condition is Equation (1.5), label it Q for this proof; the second order

condition is satisfied as Vbb has been shown to be negative.

Using the implicit function theorem we arrive at the following relationships:

∂bei (n, rc)

∂zi
= −

( ∂Q
∂zi

)

( ∂Q
∂bei (n,rc)

)
= −−niu

′′(·)rp,i
Vbb

> 0

∂bei (n, rc)

∂rc
= −

( ∂Q
∂zi

)

( ∂Q
∂bei (n,rc)

)
= −αn

1−ε
i u′(·)f ′(·)
Vbb

> 0
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We have set Vbn < 0 - see the proof of inequality (1.9) - so were ni continuous,

then bei (n, rc) would vary with ni according to
∂bei (n,rc)

∂ni
= −Vbn

Vbb
< 0. Now ni is

discrete and moving from n to n+ 1 will translate into

bei (n+1, rc)− bei (n, rc) =

∫ n+1

n

∂bei (x, rc)

∂x
dx < 0

So bei (n, rc) is decreasing in n. �

Proof of Lemma 2

The net marginal benefit of an additional nth child (NMBC) is given by:

NMBC = marginal benefit − marginal cost

= αn−εu
(
f(b)

)
rc −

[(
u
(
zi − (n-1)(b+ β)

)
− u
(
zi − n(b+ β

))
rp

+ α(n-1)

(
(n-1)−ε − n−ε

)
u
(
f(b)

)
rc

]

Marginal benefit is the added well-being of the additional nth child while

marginal cost can be decomposed into the utility loss from lower parent con-

sumption and the dilution effect on the altruistic feelings of the agent towards

the “existing” n-1 children.

It is easily shown that NMBC is a strictly decreasing function of n, so when

considering marginal changes in the factors that influence nei (b, rc) it suffices to

check whether nei (b, rc) changes to nei (b, rc)+/−1.

Accept for the moment the shorthand of n = nei (b, rc). Then we can see that:

.

n−1 n n+1

V (zi|n-1) ≤ V (zi|n) ≥ V (zi|n+1)
∂V (zi|n−1)

∂zi
< ∂V (zi|n)

∂zi
< ∂V (zi|n+1)

∂zi
∂V (zi|n−1)

∂rc
< ∂V (zi|n)

∂rc
< ∂V (zi|n+1)

∂rc

The inequalities stem from the facts that, firstly, ∂V (zi|n)
∂zi

= u′
(
zi − n(b+ β)

)
rp,i
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is increasing in n, and secondly, that ∂V (zi|n)
∂rc

= αn1−εu
(
f(b)

)
is increasing in n.

If fertility was continuous, then
∂ne

i

∂b
= − Vnb

Vnn
< 0. This underlying structure is

left intact when the integer constraint is imposed. �

Proof of Lemma 3

Note that for positive Ni, equilibrium utility for the parent agent given Bi =

bei (rc,i) is weakly greater than ui; also note that ∂V (zi)
∂b
|b=bei (rc,i) = 0 while ∂2V (zi)

∂b2
<

0. Hence if b can take any positive value, ∃ a unique b > bei (rc,i) for which

V
(
zi
∣∣bi=b) = ui, call this b B̄i. In the model b is bounded above by the feasibility

constraint bi ≤ zi − β, therefore we define B̄i as done in the Lemma.

Was Bi > B̄i then a deviation to the option that yields utility ui would be

profitable and the putative equilibrium would be destroyed.

B̄i > bei (rc,i) because of the inequality mentioned at the beginning of this

proof and the smooth process by which utility falls in b; note also that bei (rc,i)

is always smaller than zi − β because of the concavity of u(·).
Note that for Ni unchanged and B̄i not being equal to zi−β we have the following

relationships:

∂B̄i

∂rc,i
= −

(
∂Q
∂rc,i

)(
∂Q
∂B̄i

) = −
∂V (zi)
∂rc,i

∂V (zi)
∂b
|b>bei (rc,i)

> 0

∂B̄i

∂zi
= −

(
∂Q
∂zi

)(
∂Q
∂B̄i

) = −
u′
(
zi −Ni(Bi + β))

)
· rp,i − u′

(
zi − nei (rc,j, B̆j)(B̆j + β)

)
· rp,i

∂V (zi)
∂b
|b>bei (rc,i)

The sign of the latter quotient clearly is given by the sign of:

Ni(Bi + β)− nei (rc,j, B̆j)(B̆j + β) �

Proof of Proposition 3

Let k = 1 and note that as the agent would prefer nei (rc,i) to nei (rc,i)-1 we

have Q(bei (rc,i, n=nei (rc,i) − k + 1)) < 0. As b increases, the first summand of

Q will initially grow because bei (rc,i, n) is decreasing in n and eventually fall as
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bei (rc,i, n=nei (rc,i)−k) is surpassed; the second summand, however, will fall from

the start. We can show that Q is increasing in b > bei (rc,i, n=nei (rc,i) − k + 1):
∂Q
∂b

=
∂V (ne

i (rc,i)-k)

∂b
− ∂V (ne

i (rc,i)-k+1)

∂b
≈ ∂V (ne

i (rc,i)-k)

∂b

(
1 − (1 + Vbn)

)
> 0. Hence ∃ a

unique b̃i,k. One can see that b̃i,k > bei (rc,i), lower values need not be considered

as from Lemma 4 we know that Bi ≥ bei (rc,i).

Applying the above logic recursively with higher and higher k it becomes clear

that b̃i,k is increasing in k; the driving force behind this result is the fact that,

as mentioned, bei (rc,i, n) is decreasing in n.

The fertility choice of agents given min{B̄i, b̃i,k+1} ≥ Bi > b̃i,k follows from

equilibrium fertility being efficient given the equilibrium parental investment

level. �

Proof of Lemma 9

Note first that receivers of a type ∈ Q = {(g, l), (b, h)} will accept a proposer of

the preferred type ∈ Q because they rightly expect never to receive a proposal

from a type (g, h) proposer. Note second that they will reject a proposer of the

less preferred type ∈ Q as long as there are unmatched proposers of the preferred

type ∈ Q who prefer one’s own phenotype to the complement phenotype in Q;

the reason being that accepting means settling with the less preferred type in Q

for certain while rejecting means getting matched with the preferred type with

a positive probability and with the less preferred type with the complement

probability.

Five cases must now be considered and the relative performance of the carriers

of the two possible preferences assessed:

First, a > 1
2

and b < 1
2
. Within this case two subcases can be distinguished,

1 − b ≥ a and 1 − b < a; the reasoning is as follows: in the first case there

are more (b, h) proposers seeking a partner of type (g, l) than there are (g, l)

receivers wanting a (b, h) partner, thus all these receivers will be matched with

a (b, h) proposer. Likewise there are more (g, l) proposers wanting a (g, l) receiver

as a partner than there are (g, l) receivers wanting a (g, l) partner so that all

receivers of this type are matched with a (g, l) proposer. Note that this allocates

all (g, l) receivers so that all the remaining proposers are matched to (b, h)

receivers. In the second case there are more (b, h) receivers seeking a (b, h)
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partner than there are (b, h) proposers seeking a (b, h) partner, so all these

proposers are matched with (b, h) receiver. And likewise there are more (g, l)

receivers preferring (b, h) partners than there are (b, h) proposers wanting a (g, l),

so that all these proposers are matched with (g, l) receivers. This allocates all

(b, h) proposers so that the remaining receivers are matched with (g, l) proposers.

Of the receivers acting according to X =
[
(b, h) � (g, l)

]
the (g, l) types will

therefore be matched rightly with probability 1 or 1−b
a

, depending on whether

1− b > a or not, while the (b, h) types will be matched wrongly with probability
1−a
a

and b
a

in the respective cases. The proportion of right matches is thus either
1
2
(1 + a−(1−a)

a
) > 1

2
or 1

2
(1−b
a

+ a−b
a

) > 1
2
. Of the receivers acting according to

X =
[
(b, h) ≺ (g, l)

]
on the other hand, all of the (g, l) type are matched wrongly

so that the proportion of right matches is ≤ 1
2
. Noting that no differences in the

success of life of the wrong couples (g, l) with (g, l) and (b, h) with (b, h) exist, it

is the proportion of right or optimal matches that counts. We can thus conclude

that the evolutionary fitness of receivers with X =
[
(b, h) � (g, l)

]
is higher so

that a increases.

Second, a < 1
2

and b < 1
2
. Following a similar reasoning to the first case, of

the receivers acting according to X =
[
(b, h) � (g, l)

]
all the (g, l) types will be

matched rightly, so that the proportion of right matches is ≥ 1
2
. Of the receivers

acting according to X =
[
(b, h) ≺ (g, l)

]
the (g, l) types will be matched wrongly

with probability or 1−b
1−a , while the (b, h) types will in the corresponding cases be

matched rightly with probability a
1−a and b

1−a . The proportion of right matches

is therefore either 1
2
(0 + a

1−a) < 1
2

or 1
2
( (1−a)−(1−b)

1−a + b
1−a) < 1

2
. So again carriers

of X =
[
(b, h) � (g, l)

]
fare better and a increases.

Third, a > 1
2

and b > 1
2
. Following a similar reasoning to the first case, of

the receivers acting according to X =
[
(b, h) � (g, l)

]
the (g, l) types will be

matched rightly with probability 1−b
a

, while the (b, h) types will be matched

wrongly with probability 1 or b
a
. The proportion of right matches is thus at

most 1
2
(1−b
a

+ a−b
a

) < 1
2
. Of the receivers acting according to X =

[
(b, h) ≺ (g, l)

]
all the the (h, b) types are matched rightly, so the proportion of right matches

is ≥ 1
2
. Carriers of X =

[
(b, h) ≺ (g, l)

]
thus have higher fitness and therefore a

decreases.

Fourth, a < 1
2

and b > 1
2
. Following a similar reasoning to the first case, of the

receivers acting according to X =
[
(b, h) � (g, l)

]
all the (b, h) types will be

matched wrongly so the proportion of right matches is ≤ 1
2
. Of the receivers
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acting according to X =
[
(b, h) ≺ (g, l)

]
the (g, l) types will be matched rightly

with probability (1−a)−(1−b)
1−a or (1−a)−a

1−a and the (b, h) types with probability 1 or
b

1−a . The proportion of right matches is thus either 1
2
(1 + (1−a)−(1−b)

1−a ) > 1
2

or
1
2
( b

1−a + (1−a)−a
1−a ) > 1

2
. So again carriers of X =

[
(b, h) ≺ (g, l)

]
fare better and

a decreases.

And fifth, a = 1
2

and/or b = 1
2
. For these cases it is straightforward to show

that there is no fitness differential for either gender so that the frequencies do

not change. �

Note that the fitness condition used in the proof subsumes the success in life

and mating success considerations of the above section on the ranked chooser

scheme; the difference in analysis arises from the fact that we have moved from

an exogenous to an endogenous ranking regime.

Proof of Proposition 11

The stable equilibria in Proposition 10 require that a→ 1 and b→ 0 if a > 1
2
> b

and that a → 0 and b → 1 if b > 1
2
> a; we need to show that these dynamics

do not hold under the conditions mentioned above.

Imagine first the case of a > 1
2
> b. Within this case, two subcases need to

be distinguished: Pg

Ph
> 1 and Pg

Ph
< 1. In the first of these subcases, when Pg

Ph

is sufficiently high, then the payoffs to proposers carrying the genotype that

implies X =
[
(b, h) � (g, l)

]
, applying the same reasoning as in the proof of

Lemma 9, can be written as 0x + (1−b)x
b(1−x)

(1 − x) = 1−b
b
x (where x is short for

Ph(1−Pg)

Ph(1−Pg)+(1−Ph)Pg
which is the proportion of type (b, h) individuals in the pool

of type (b, h) and (g, l) individuals) whereas the payoffs to proposers carrying

X =
[
(b, h) ≺ (g, l)

]
are 1x + 0(1 − x) = x < 1−b

b
x. Therefore we have b

increasing and not going to 0 as required for the equilibrium. We can define a

r1
upper > 1 such that if Pg

Ph
> r1

upper this holds.

In the second of these subcases, when Pg

Ph
is sufficiently low, we can write the

payoff to receivers carrying X =
[
(b, h) � (g, l)

]
as simply (1 − x) whereas

the payoff to receivers carrying X =
[
(b, h) ≺ (g, l)

]
is a(1−x)

(1−a)x
x + 0(1 − x) =

a
1−a(1 − x) > (1 − x); hence a decreases and does not approach 1 as required

for the equilibrium. We can define a r1
lower ∈ (0, 1) such that if Pg

Ph
< r1

lower this
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holds.

Imagine second the case of b > 1
2
> a. Again two subcases can be distinguished

within this case: Pg

Ph
> 1 and Pg

Ph
< 1. In the first of these subcases, when Pg

Ph

is sufficiently high, then the payoffs to receivers carrying X =
[
(b, h) � (g, l)

]
is 1−a

a
x and the payoffs to receivers carrying X =

[
(b, h) ≺ (g, l)

]
as simply

x < 1−a
a
x and hence a increases and does not approach 0 as required for the

equilibrium. We can define a r1
upper > 2 such that if Pg

Ph
> r2

upper this holds.

In the second of these subcases, when Pg

Ph
is sufficiently low, we can write the

payoff to proposers carrying X =
[
(b, h) � (g, l)

]
is simply 1 − x whereas the

payoff to proposers carrying X =
[
(b, h) ≺ (g, l)

]
is b

1−b(1 − x) > (1 − x) and

so b decreases and does not approach 1 as required for the equilibrium. We can

define a r2
lower ∈ (0, 1) such that if Pg

Ph
< r2

lower this holds.

We can now define rlower = min{r1
lower, r

2
lower} and rupper = max{r1

upper, r
2
upper}.

We have shown the dynamics required for the stable equilibria in Proposition

10 do not hold if Pg

Ph
> rupper or Pg

Ph
< rlower. �

Proof of Proposition 12

We first have to show that equilibria take the form of a + b = 1. In a second

step we show the claimed implications of these equilibria.

Applying the reasoning about how matches occur that was introduced in the

proof of Lemma 9 and that is exemplified for the preferences underlying this

proposition in 3.4 we can write the payoffs to receivers carrying the genotype

that implies X =
[
(b, h) � (g, l)

]
as xa+1−b

a
(where x is short for Ph(1−Pg)

Ph(1−Pg)+(1−Ph)Pg

which is the proportion of type (b, h) individuals in the pool of type (b, h) and

(g, l) individuals) and the payoffs to receivers carrying X =
[
(b, h) ≺ (g, l)

]
as

x1−a+b
1−a . We have that a increases iff xa+1−b

a
> x1−a+b

1−a and this is the case if

1 − (a + b) > 0; likewise a decreases if 1 − (a + b) < 0 and does not change if

1 − (a + b) = 0. From this follows that for a given b, a will adjust such that

a+ b = 1 holds.

Similarly we can derive the payoffs to proposers carrying the genotype that

implies X =
[
(b, h) � (g, l)

]
as x b+1−a

b
and the payoffs to proposers carrying

X =
[
(b, h) ≺ (g, l)

]
as x1−b+a

1−b .We have that b increases iff x b+1−a
b

> x1−b+a
1−b and

this is the case if 1− (a+ b) > 0; likewise b decreases if 1− (a+ b) < 0 and does
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not change if 1− (a+ b) = 0. From this follows that for a given a, b will adjust

such that a+ b = 1 holds.

Taken together this implies that we have a continuum of equilibria characterised

by a+ b = 1. They are not stable because upon any shock to any one of a and b

not only does the variable that has been shocked, say a to â, respond by moving

back towards an equilibrium value but also the one that has not been shocked.

This latter one (b in the example) will therefore move away from its ante-shock

equilibrium value towards the value that equilibrates the system given the new

value of the shocked variable (â in the example).

As for the mating allocations, we need to show that in the four general cases

Pg > Ph with a > b, Pg ≤ Ph with a > b, Pg > Ph with a ≤ b and Pg ≤ Ph with

a ≤ b matings of individuals that are both (b, h) or both (g, l) do only occur if

this type is in surplus compared to the complement type in Q = {(b, h), (g, l)}.
The reasoning in all the four cases is the same, therefore I only present it for the

first case (Pg > Ph with a > b) which is also depicted in Figure 3.4. Receivers

of type (b, h) carrying the genotype that implies X =
[
(g, l, Ĝ) � (b, h, Ĝ) �

(g, l, Î) � (b, h, Î)
]

will find that for their most preferred partners among the

proposers (apart from the unattainable types (g, h, Î) and (g, h, Ĝ)) they are

themselves the first choice (again qualified for types (g, h, Î) and (g, h, Ĝ)) and

therefore these individuals match. Note that all these receivers will be matched

but not all these proposers. These unmatched proposers of type (g, l) (carrying

X =
[
(b, h, Ĝ) � (g, l, Ĝ) � (b, h, Î) � (g, l, Î)

]
) will then, their most preferred

partners having been cleared, propose to their second most preferred partners

(receivers of type (g, l) carrying X =
[
(g, l, Ĝ) � (b, h, Ĝ) � (g, l, Î) � (b, h, Î)

]
)

for whom in turn they are the best possible match so that the proposals are

accepted. Now, all these proposers are matched. With their first choice gone,

receivers of type (g, l) carrying X =
[
(g, l, Ĝ) � (b, h, Ĝ) � (g, l, Î) � (b, h, Î)

]
will now accept proposals from their second choice proposers, type (b, h) with

X =
[
(b, h, Ĝ) � (g, l, Ĝ) � (b, h, Î) � (g, l, Î)

]
. For these proposers the first

choice is also already gone so these individuals are happy to match. Since in

equilibrium (1−a)(1−x) = bx+[b(1−x)−(1−a)x] all receivers of type (g, l) with

X =
[
(g, l, Ĝ) � (b, h, Ĝ) � (g, l, Î) � (b, h, Î)

]
are now matched. For proposers

of type (b, h) with X =
[
(g, l, Ĝ) � (b, h, Ĝ) � (g, l, Î) � (b, h, Î)

]
both first and

second choice partners are now fully matched and so they will propose to their
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third choice, receivers of type (g, l) with X =
[
(b, h, Î) � (g, l, Î) � (b, h, Ĝ) �

(g, l, Ĝ)
]
, for whom also the first and second choice partners are completely

matched and for whom these proposers are the third choice; so these proposals

are accepted. The remaining receivers are, by want of alternative, matched to

type (g, l) proposers. We have shown that in equilibrium individuals of the less

frequent of the two types (g, l) and (b, h) are matched with their complement in

Q. �
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