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Renewable resource management is necessary to avoid the dissipation of 

inter-temporal rents due to open access exploitation. In reality management is 

costly, which implies that the first best solution is not appropriate. Management 

costs must be considered explicitly in optimization problems, to find the 

appropriate second best solutions. This is the focus of this dissertation, which 

contains applied theoretical analyses of dynamic bio-economic models, where 

moving away from open access exploitation of a renewable resource is costly. 

Partial equilibrium problems of harvesting a scarce renewable resource 

are analyzed, where economic incentives of poachers, who are punished if 

caught, are included. Harvest, enforcement and resource price are endogenously 

determined. The punishment increases poachers' expected marginal costs and the 

resource market price, which forces at least some poachers out of the market. 



 

Different relative harvest cost structures are considered between social planner 

and poachers, which drives the manner in which the market supply is optimally 

shared between them. Corrective policies are given for a pseudo-monopolist 

seeking to maximize his discounted profit instead of total economic surplus. 

Further policy adjustments are characterized, in case the resource entails non-

market values. 

A two-good, two-variable-factor bio-economic trade model is also 

developed for a small country. Open access, first and second best resource 

management models are analyzed, assuming that instantaneous gains are 

independent of the resource stock and that resource management incurs a flow of 

instantaneous fixed cost. The most empirically realistic model allows for 

resource management regime switches, which is influenced by the trade regime 

and the world price of the resource good. 

Different cases are characterized in relation to changes in welfare and 

conservation, following a move from autarky to free trade. Free trade is 

unambiguously beneficial in some cases, but not always. Specifically, if open 

access is the second best management regime in autarky, then a small 

comparative advantage in the resource good could be detrimental to the home 

country. There exists a greater comparative advantage in the resource good, 

above which free trade would be beneficial. Understanding what drives the 

empirically relevant detrimental consequences of free trade can be helpful for 

policy-making. The second best trade model developed in this dissertation 

constitute an effort in that direction. 
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CHAPTER 1. INTRODUCTION 

For decades, economists have known that renewable resources tend to be 

exploited in open access, which leads to economic overexploitation. This can be 

avoided if a clear property right exists for the resource (Gordon, 1954; Scott, 1955; 

Coase, 1960; Hardin, 1968; Smith, 1968; Clark, 1990), or if a policy is put in place that 

makes resource harvesters behave as if they had a property right to the resource (Clark, 

1990). Economic overexploitation results because individuals, who do not own the 

resource, harvest until their net marginal benefit is zero, as in a static optimization 

problem. However, the unexploited stock of renewable resource could be considered as 

an investment capital for society because some of it can be saved for future 

consumption, because the size of the resource stock can affect the instantaneous net 

benefits derived from it, and also because it regenerates through biological growth and 

thus provides dividends. Therefore, a benevolent social planner would maximize the 

discounted social welfare generated by the exploited resource, i.e., he would consider 

the problem as a dynamic one. The social planner's problem leads to the optimal 

exploitation path, where for economically scarce resources, at any point in time, 

exploitation should occur at a level where net marginal benefit is greater than zero. The 

amount of marginal net benefit on the last unit harvested is called the resource rent, i.e., 

the discounted marginal return on investment in the resource for the future. 

A “clear property right” can be understood as defined in western civilization: 

legally binding, enforceable and owned for example by an individual, a company or an 

association. There also exist renewable resources held as common-property, i.e., whose 

property right exists by custom or tradition, is not necessarily legally binding, often is 
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self-enforced, and is typically owned by a group of individuals in a specific geographic 

area, as is sometimes found in less developed economies (Ostrom, 1990). In the absence 

of clear property rights, western style or common-property, policies that create 

incentives for harvesters to behave optimally are taxes and harvest quotas, possibly 

tradable quotas, which mimic actual property rights to the resource (e.g., Clark (1990), 

chapter 8). 

The main motivation for this dissertation is that, even though the property right 

problem and policy prescriptions are clear, open access exploitation is still observed 

empirically. Renewable resources are rarely managed as prescribed, and property rights 

are typically not perfectly enforced. At times, despite renewable resource management 

policies, resources are exploited illegally, at least in part, by others than the designated 

harvesters. Specifically, despite existing policies, black markets in renewable resources 

are observed worldwide, these resources often being endangered species. What then 

could explain the discrepancy between policy prescriptions what we observe? 

The simplest dynamic models leading to the tax and quota prescriptions 

generally suppose only one economic distortion, or departure from optimality: the lack 

of property right on a renewable resource. In reality however, there can be several 

distortions. In this dissertation, the costs of resource management are explicitly 

considered. These can also be called transactions costs, policy costs, agency costs or 

enforcement costs, depending on the details of the analysis. Indeed, it is perfectly 

intuitive that resource management policies are not free, that they are costly to the 

social planner or resource manager, be it a government or a private resource owner, and 

that it uses up inputs that could have been otherwise productive in the economy. 



 

 

3

Another motivation for this dissertation is the growing interest in the impact of 

free trade of natural resources. Hence, costly resource management is considered not 

only in partial equilibrium, but also in trade analyses, where welfare and resource 

conservation are analyzed, moving from autarky to free trade. 

Accordingly, in the context of a renewable resource that is costly to manage, the 

objectives of this dissertation are to: 

i. characterize the optimal policy for the management of a scarce 

renewable resource; 

ii. explain how it may be optimal to observe legal and illegal harvests 

separately or simultaneously; 

iii. provide policy prescriptions for a scarce renewable resource that is 

owned by a sole owner who wishes to act as a monopolist; 

iv. provide policy prescriptions for a scarce renewable resource that not 

only has market value, but also stock value, i.e., its existence is 

valuable; 

v. characterize how resource management costs affect the conservation of 

the resource; 

vi. characterize the impact of free trade on social welfare and on the 

conservation of the resource under open access exploitation of the 

resource; 

vii. characterize the impact of free trade on social welfare and on the 

conservation of the resource under costless management of the 

resource, i.e., under the first best policy; 
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viii. characterize the impact of free trade on social welfare and on the 

conservation of the resource under costly management of the resource, 

i.e., under a second best policy; 

ix. characterize the cases where the resource management regime could 

change due to free trade following autarky (open access versus costly 

management); and finally, 

x. characterize the cases where the move from autarky to free trade can be 

welfare decreasing, and by extension, where some level of barrier to 

trade would be better; and finally, 

xi. characterize the cases where the move from autarky to free trade can 

cause the extinction of the renewable resource. 

Objectives i. to v. are addressed in Chapters 3 and 4, where management cost is 

assumed to be either an enforcement cost on the resource property right or an 

instantaneous fixed cost of taxation. The rest of the objectives are addressed in Chapter 

5, where the management cost is assumed to be an instantaneous fixed cost, necessary 

for the collection and re-distribution of a tax on harvest. Applied theoretical bio-

economic models are used to reach those eleven objectives. Dynamic problems in 

continuous time are solved, making use of the Maximum Principle developed in optimal 

control theory.  

Chapter 2 is a review of literature related to the issues analyzed in the rest of the 

dissertation. Chapter 3 is a partial equilibrium model where the optimal harvest of a 

scarce renewable resource is analyzed, the scarcity implying some level of market 

power. The economic incentives of potential or actual poachers, who are punished if 
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caught, are explicit and endogenous to the bio-economic model. The punishment 

increases poachers' expected marginal costs and the resource market price, which forces 

at least some of them out of the market. Harvest, enforcement and resource price are all 

endogenously determined. We find that different relative harvest cost structures 

between social planner and poachers are what drives the manner in which the market 

supply is optimally shared across legal and illegal harvesters. Indeed, the optimal 

resource supply can be legal only, illegal only, or both, and this composition can change 

over time. We also find that corrective policies are necessary in order to influence a 

pseudo-monopolist who seeks to maximize his own profit instead of total economic 

surplus. In fact, as long as he keeps the fines collected from poachers, the pseudo-

monopolist' harvesting behavior is second best optimal, but his property right 

enforcement level is not. We characterize alternative policies that make the pseudo-

monopolist's enforcement efforts second best optimal. Further corrective policies are 

also necessary in case the resource has value over and above its market value, and we 

solve for them under two different valuation assumptions. 

Chapter 4 is a natural extension of Chapter 3: for a slightly different partial 

equilibrium model, we provide phase diagram analyses with varying levels of resource 

management costs. In order to analyze the phase diagrams for the general model where 

instantaneous net gains are stock-dependent, the model needs to be simplified. The 

same simplification as in Cropper et al. (1979) is made for the harvest cost function, in 

order to compare our results with costly resource management (second best world) to 

theirs, which is based on the assumption of costless resource management (first best 

world). We consider the possibility that costly resource management regime may 
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include open access, which leads to the realization that, whatever the discount rate, the 

costlier is resource management, the more likely is the extinction of the resource, 

especially if the initial stock is small. 

Chapter 5 is also a natural extension of Chapter 3. We use the simpler model 

where instantaneous gains from the renewable resource are not stock-dependent, but 

this time international trade is explicitly considered. A two-good, three-factor (two 

variable, one fixed) trade model is amended in order to include a dynamic bio-economic 

model with a fixed instantaneous resource management cost. First, assuming a pristine 

resource, the general equilibrium autarkic dynamics is characterized up to the feasible 

autarkic steady states. Then, assuming that the resource stock has reached a positive 

steady state stock in autarky, we consider free trade. Discounted and steady state 

welfare changes are characterized for the home country, assuming a trade regime 

change from autarky to free trade. Attention is also given to whether or not free trade 

could cause the extinction of the renewable resource. We find that conservation and 

welfare change due to free trade are related. 

 This is done for a home country that takes world prices as given, under different 

resource management regimes: (i) under open access exploitation; (ii) with costless 

resource management; (iii) with costly resource management; and finally, (iv) 

considering possible resource management regime switches between open access and 

costly management. With the empirically realistic possibility of resource management 

regime switches, different cases are characterized. In some cases, moving from autarky 

to free trade is welfare increasing and it helps the conservation of the resource. In other 

cases however, free trade with proper management of the resource can lead to welfare 
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losses because proper second best management could be open access. It could also 

cause the extinction of the resource. Delineating the different cases in relation to 

welfare and conservation can be helpful for policy-making, which is what motivates 

Chapter 5. 

Chapter 6 is the overall conclusion of the dissertation. Important results are 

summarized and potential further research endeavours are discussed. 

Throughout the dissertation, a number, n, in subscript refers to the derivative of 

a function with respect to its nth argument, while a prime in superscript, " ' ", refers to 

the derivative of a function with respect to its unique argument. A starred variable refers 

to its short-run equilibrium value, a starred variable with the subscript "∞ " refers to its 

steady state equilibrium value and time is represented by the variable t. 
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CHAPTER 2. REVIEW OF LITERATURE 

In economics, well-defined property rights are often prescribed as a cure against 

the over-exploitation of renewable resources. Property rights theoretically provide 

proper incentives to work out the socially optimal solution, at least when there are no 

transactions costs (Coase, 1960). Under nonzero transactions costs however, “Property 

rights develop to internalize externalities when the gain of internalization becomes 

larger than the cost of internalization” (Demsetz, 1967, p.350). This means that, while 

property rights may exist on paper, their effectiveness does depend on the costs 

associated with them. The cost of internalization may include the administrative costs of 

policy-making or agency costs for the government. They may also include the cost of 

property right enforcement, since individual agents often have incentives not to follow 

the optimal policy and costly efforts are necessary to prevent them from cheating. 

Therefore, while an unmanaged natural resource will lead to open access exploitation 

and economic over-harvesting (Gordon, 1954; Scott, 1955; Hardin, 1968), the textbook 

optimal policy is in reality not optimal because it ignores the costs of the policy; the 

world is second best and the decision process must take that into account. 

Smith (1968) wrote one of the first dynamic models of resource management 

using the Maximum Principle, although his model did not allow for discounting; 

instead, he maximized steady state utility. Clark's book (1990) has become a classic 

reference on bio-economic modeling that summarizes issues of open access exploitation 

and dynamic optimization with discounting. Not surprisingly, it has been shown that 

open access, i.e., economic over-exploitation, of a renewable resource can lead to 

extinction (Gould, 1972; Hoel, 1978; Berck, 1979). However, we now also know that 
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dynamic optimization does not preclude the optimal extinction of a renewable resource, 

even when its growth is purely compensatory, i.e., concave in stock. This has been 

shown, namely, by Clark (1973) in a discrete time maximization of present value profit 

from competitive exploitation of a renewable resource where the optimal path is a most 

rapid approach path (MRAP). Clark (1973) shows that if the marginal natural growth of 

the resource close to extinction is small as compared to the discount rate, then 

extinction could result, even though the exploitation regime is not open access. Cropper 

et al. (1979) do a similar analysis, only in a continuous time model, for which the 

optimal path is smooth and with endogenous price, since they analyze the social 

planner's problem. They get a result similar to Clark (1973). Specifically, extinction can 

be optimal if the discount rate is greater than the marginal natural growth rate of the 

resource close to zero. In Cropper et al. (1979) however, since several steady states are 

possible, whether extinction occurs or not also depends on the initial resource stock. 

While an unmanaged resource will lead to open access exploitation and 

economic over-harvesting (Gordon, 1954), naïve management of a renewable resource, 

i.e., management that ignores potential or actual illegal actions, may trigger perverse 

incentives. Specifically, resource management is likely to attract poachers attempting to 

capture the positive rent remaining from the resource stock at any point in time. Hence, 

costly enforcement efforts are required in order to avoid reverting to open access 

exploitation due to poaching, and these efforts ought to be considered endogenous to the 

problem. Costly enforcement is considered explicitly in Chapters 3, 4 and 5 of this 

dissertation. 
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Becker (1968) first analyzed rational illegal behavior using micro-economic 

theory, and the models of Chapter 3 combine the same approach with a bio-economic 

model to address the problem of an illegally harvested renewable resource or species. A 

number of earlier papers have looked at the costly enforcement of property rights in 

fisheries and wildlife markets. Sutinen and Andersen (1985) used the Becker approach 

to crime and punishment with costly enforcement as a control variable, but taking the 

legal harvest level as given. In another fisheries model, Milliman (1986) went one 

logical step further, as he made legal harvest an endogenous variable simultaneously 

with costly enforcement. Anderson and Lee (1986) added the proposition that the policy 

instrument itself ought to be endogenous since with costly resource management, 

economic policy instruments are not necessarily superior to other instruments. Skonhoft 

and Solstad (1996) used the same underlying ideas as Milliman (1986), but in a context 

of wildlife management in East Africa where poachers are local people hunting for 

subsistence. In contrast, in a fisheries model, Crabbé and Long (1993) used legal 

harvest only as a control variable in a Stackelberg model where the home-nation is the 

leader. In these papers, price is exogenous while legal harvest and enforcement efforts 

are used to avoid open access exploitation, so that the resource stock will be exploited at 

a lower rate and scarcity rents will not be entirely depleted at every point in time.1 

                                                 

1 Brown and Layton (1997) and Kremer and Morcom (2000) offer storage as a control 

variable for storable traded resource goods, with speculators storing more of the 

resource as they expect it to become extinct. Models presented in Chapter 3 and Chapter 
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The models from Chapter 3 and 4 are more general than previous ones since the 

price of the resource, the legal harvest level and the property right enforcement level are 

all endogenous. Also, different relative harvest cost structures across legal and illegal 

harvesters are allowed. Under these more general assumptions, the models in these 

chapters encompass several previous models. 

The proposed models are also linked to the entry deterrence literature of 

industrial organization in the sense that the decision-maker modifies his behavior to 

deter entry into the market, here entirely or partially. Enforcement efforts and legal 

harvest levels are decided upon, given poachers' incentives. As in the papers mentioned 

above, successful policies will steer harvesters away from open access exploitation, thus 

leaving a higher stock than under open access exploitation (although not strictly). 

Renewable resources are often traded internationally. Freer trade often leads to a 

greater demand for the harvested resource. If the resource is well managed and the 

enforcement of property rights is costless, then we would expect freer trade to increase 

welfare of the home country. However, when property rights are costly to enforce, then 

the outcome of freer trade is not so clear. Considering that resource management is 

costly, in some instances open access may be chosen instead. In such cases, free trade 

may not be welfare-increasing. International trade and management costs are considered 

in Chapter 5 of this dissertation. 

                                                                                                                                               

4 abstract from speculative attempts and thus better apply to non-storable goods such as 

meat and live exotic pets. 
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International trade in a world of second best has been studied by several authors. 

Well-known contributors to this literature are Bhagwati and Ramaswami (1963), who 

wrote about different possible types of distortions in an economy, and the policies that 

would lead to the first best outcome. They have shown that under such policies, free 

trade is necessarily welfare increasing, but without them, it may not be. Using their 

classification, the distortion we consider in this dissertation is an endogenous distortion, 

caused by a market imperfection under a laissez-faire policy. The first best policy for 

such a distortion is a tax-cum-subsidy on domestic production. Typically, resource 

management policy entails a tax-cum-subsidy scheme, a system of tradable quotas or a 

true change in property rights. The first best solution in our trade model with a 

renewable resource is therefore very similar to what these authors suggest – some 

resource management policy is applied directly to domestic production, in the sector 

where the distortion appears. Their work was later extended to include a ranking of 

different policies, in case the first best policy is, for some reason, unfeasible (Bhagwati, 

Ramaswami and Srinivasan, 1969). This is relevant to this dissertation since the 

management costs considered can render the usual policy (i.e., resource management) 

too expensive to be worth undertaking. In such a case, Bhagwati, Ramaswami and 

Srinivasan (1969) find that free trade may not be welfare increasing. Candidate second-

best policies are trade tariffs and a production factor tax-cum-subsidy. Which is the 

second best and the third best policy is case-dependent; they cannot be ranked 

analytically, as one would expect. In an oft-cited article, Bhagwati (1971) summarized 

and generalized the theory of distortions and welfare with international trade. The 

model considered in Chapter 5 is clearly related to the literature on distortions with 
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international trade, but our model is more complex. Indeed, Bhagwati and Ramaswami 

(1963) and Bhagwati, Ramaswami and Srinivasan (1969) only considered static 

distortions, while the distortion that typically appears in renewable resource markets is a 

dynamic one. 

A number of contributions, which include dynamic considerations, were made to 

the international trade literature. First, at a time where some believed that free trade was 

not inter-temporally Pareto-optimal, Samuelson (1978) offered a two-page verbal 

argument to the contrary. He insisted that the entire transitory path be considered for 

comparative welfare analysis, rather than just the steady states, as some authors had 

done before, especially in the immiserizing growth literature. Then, Smith (1979) wrote 

a model that confirmed Samuelson's assertions. Samuelson (1978) and Smith (1979) 

only considered first best economies however. Distortions with international trade in a 

dynamic setting were later considered by Bark (1987) in a growth model for a small 

open economy. In Bark's paper, a government tax on capital initially exists for lump-

sum redistribution in the home country. Bark considers a tax increase at some point in 

time, which implies a greater distortion in the economy. Without any constraint on 

capital mobility, a new steady state is attained instantly. With some constraints on 

capital mobility, another steady state is attained in the long-run, where consumption, 

and therefore welfare, is lower than under the free trade instantaneous adjustment. 

However, when considering discounted inter-temporal welfare loss, Bark shows that the 

loss is always smaller with constraints on capital mobility than without. This is 

therefore an illustration of Samuelson's (1978) argument, but with a tax distortion in the 

economy. Bark then discusses first, second and third best policies and relates his 
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findings, which include dynamic considerations, to Bhagwati's (1971) now classic 

summary of distortions and static welfare with international trade. 

Chapter 5 of this dissertation is a contribution to the literature on distortions and 

welfare, only the distortion considered here is a dynamic one. We analyze welfare 

changes between autarkic and free trade steady states, and also between trajectories 

from the time the home country opens to free trade. Our goal is to delineate, in the 

second best world where resource management is costly, the cases where trade 

restrictions might lead to greater welfare than free trade. 

To address environmental issues with international trade, recent efforts have 

concentrated on general equilibrium models, some with resource dynamics. Recent 

papers include Brander and Taylor (1997a, 1997b, 1998) on renewable resources, 

Chichilnisky (1993, 1994, 1996) on renewable resources and on the environment, 

Copeland and Taylor (1994) on the environment, Emami and Johnston (2000) on 

renewable resources and Hannesson (2000) on renewable resources as well. Most of 

these papers that dealt with a renewable resource analyzed either the open access 

management regime (infinite discount rate: the future does not matter) or the 

maximization of steady state utility (zero discount rate: the future is as important as the 

present). However, dynamic optimization normally makes use of a discount rate, δ , 

such that 0 < δ  < ∞ , which is assumed in Chapter 5. Also, in some recent renewable 

resource models of trade, specific functional forms prevented extinction from occurring 

with free trade but not in autarky, which seems counterintuitive (e.g., Brander and 

Taylor, 1997a). In contrast, in Chapter 5 of this dissertation, functional forms are as 

general as possible and do not eliminate the possibility of extinction under free trade. 
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Also, all trade papers with environmental concerns mentioned thus far assume that the 

resource management regime is exogenous and constant over trade regimes. These 

papers provide interesting results, but we wish to go one step further and make the 

resource management regime endogenous. 

One previous trade paper does just that (Hotte et al., 2000). Our model in 

Chapter 5 is close in spirit to that of Hotte et al. (2000), except our renewable resource 

is managed by a benevolent resource planner, rather than being exploited by agents who 

maximize their profit and choose to enforce their own property rights accordingly. 

Hotte et al. (2000) found that freer trade may not be welfare-increasing, which is not 

surprising, given that in general equilibrium, private agents' decisions about property 

right enforcement are generally sub-optimal. This result goes back to de Meza and 

Gould (1992), who showed that in a perfectly competitive economy, private property 

right enforcement efforts, which use resources from the economy, may be smaller or 

greater than is socially optimal. Long (1994) showed the same regarding the timing of 

land enclosure. 

In Chapter 5 of this dissertation, the social planner's objective is to maximize the 

inter-temporal total economic surplus, while taking management cost into account. He 

takes the whole economy into account rather than only maximizing his own profit, as 

was done in Hotte et al. (2000) and de Meza and Gould (1992). In Chapter 5, departures 

from the usual result that freer trade is welfare-increasing therefore do not depend on 

the fact that property rights are privately enforced, but rather because they are costly. 
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CHAPTER 3. PARTIAL EQUILIBRIUM MODEL WITH COSTLY 

RESOURCE MANAGEMENT 

3.1. Introduction 

The illegal trade in wildlife, worth about five billion dollars annually, is the 

second most important cause of species extinction, the first cause being land use 

conversion that leads to the loss of natural habitat (Anderson, 1997; Le Duc, 1990). 

Since 1989, the US has been the most active player in illegal wildlife trade with 

estimated annual imports of $773 million and exports of $256 million (Anderson, 

1997). Paradoxically, there is also high demand for conservation in the US and this 

country plays a significant role in international enforcement efforts. The black market in 

endangered species has attracted substantial public attention as newspapers and 

magazines have featured articles on the problem, making it an issue known by most 

North Americans nowadays (Anonymous, 1996; Broussard, 1997; Brower, 1994; Glenn 

and Fino, 1998; Lavigne, 1998; Marston, 1997; Sabourin, 1998; Webster, 1997; to 

name only a few). Currently, the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) regulates the trade of 33 659 species, 113 

sub-species and 46 wildlife populations worldwide 2,3. 

The main objective of this chapter is to propose a model especially suited to the 

case of endangered, hence scarce, harvested species. Another objective is to offer some 

                                                 

2 CITES Secretariat: http://www.cites.org/eng/disc/species.shtml (July 28, 2004). 

3 Some details are provided in Appendix I. 
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policy insight for a resource that is legally managed and where poaching is a fact or at 

least a threat. 

In this chapter, we assume that the resource price is endogenous. In the social 

planner’s problem, where we assume he maximizes the discounted flow of total-

economic-surplus, price is endogenous to his actions. The social planner’s potential 

actions are his own legal harvest and his resource management enforcement efforts. His 

behavior leads to the welfare benchmark. 

In contrast, a private owner of the resource would maximize his discounted flow 

of profit. If the resource is scarce, due to its endangerment for example, then the private 

owner could have market power, and in such a case, price is endogenous in his problem 

as well. Indeed, a scarce resource is likely to be managed by a limited number of 

managers. For simplicity, the limiting case of a monopolist or a unique cartel of 

resource managers is compared to the social planner's model. In the case where the 

resource is not endangered, then an endogenous price could be observed because the 

resource is found in a limited geographic area, so it is owned by only one resource 

manager. Given that the profit-maximizing monopolist faces potential or actual 

poachers, he will be called pseudo-monopolist from now on. The pseudo-monopolist’s 

potential actions are also his own legal harvest and his property rights enforcement 

efforts. 

In this chapter, the legal harvest is provided either by the social planner or by 

the pseudo-monopolist, depending on the problem considered, and the illegal harvest is 

provided by poachers. 



 

 

18

Throughout Chapters 3, 4 and 5, s(t) is the resource stock at time t, and its 

growth function, ( )( )g s t 0≥ , is assumed to be compensatory. That is, ( ) ( )g 0 g s 0= = , 

g'(0) > 0 and g''(s(t)) < 0 for all s such that ( )0 s t s≤ ≤ , where s  is the wildlife 

population's natural carrying capacity.  

In Chapter 3, we analyze the social planner's problem as the welfare benchmark. 

In section 3.2 we present the poachers' problem, whose solution then constrains the 

social planner's and the pseudo-monopolist's problems. In sections 3.3 and 3.4, the 

social planner's problem and the pseudo-monopolist's problems are analyzed, and 

corrective policies are suggested in order to make their solution coincide. Finally, we 

conclude this chapter in section 3.5. 

 

3.2. Poachers' problem 

Individual poachers do not own the renewable resource, and there are no barriers 

to their entry. Consequently, they are assumed to harvest under an open access regime. 

This means that they maximize their static profit and that there is entry of poachers until 

all rents are dissipated, i.e., profit is equal to zero for all poachers. They are also 

assumed to be risk-neutral, so they maximize their expected static profit. 

There is a probability, λ(t), that any poacher will get caught by an enforcer, 

which would lead to the poacher having to pay a per-unit harvest fine, φ. At any point in 

time, t, a poacher takes the resource market price, P(t), and the expected per-unit harvest 

fine, (t)λ φ , as given. An individual poacher's harvest cost is represented by a C2 

function, ( ) ( )IK( t ,s t )q , where ( )I tq  is the amount of the resource an individual 
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illegally harvests.4 Assume ( ) ( )1 IK ( t ,s t ) 0q > , ( ) ( )11 IK ( t ,s t ) 0q > , 

( ) ( )2 IK ( t ,s t ) 0q ≤ , ( ) ( )22 IK ( t ,s t ) 0q ≥ , and 

( ) ( ) ( ) ( ) ( ) ( )( )2
11 22 12I I I( t ,s t ) ( t ,s t ) ( t ,s t ) 0q q qK K K⎡ ⎤− ≥⎢ ⎥⎣ ⎦

. The fixed cost of poaching 

is ( )( )F s t 0> . The fixed cost may depend on the resource stock, for example if it 

includes search costs for the stock. Consequently, we assume that ( )( )F' s t 0≤  and 

( )( )F'' s t 0≥ . Assuming poachers are identical and risk-neutral, and following Becker's 

approach to crime and punishment with null opportunity cost to the illegal activity, the 

poacher's problem is to maximize his expected profit, ( )( )E tπ : 

( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
I

I I Itq

I I I

Max E t t P t t 1 t P t t K t ,s t F s tq q q

P t t t t K t ,s t F s tq q q

π = λ −φ + −λ − −

= −λ φ − −
 

Assuming a positive illegal harvest, the individual's first order condition is: 

 ( ) ( ) ( ) ( )( )1 IP t t K t ,s t 0q−λ φ− = . (3.1) 

The open access regime will lead to entry until all expected rents are dissipated, so that, 

in market equilibrium, we obtain for each poacher: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )I I IE t P t t t t K t ,s t F s t 0q q qπ = −λ φ − − = . (3.2) 

Equating (3.1) to (3.2) leads to the conclusion that in open access, the marginal 

cost is equated to the minimum average cost for each identical poacher: 

 ( ) ( )( )
( ) ( )( ) ( )( )

( )
I

1 I
I

K t ,s t F s tq
q t ,s tK

tq

+
= . (3.3) 

                                                 

4 A C2 function is a twice continuously differentiable function. 
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By the implicit function theorem, let ( )( )*
Iq s t  be the value of qI that solves equation 

(3.3). We can simplify the notation for the problems to come in the rest of the chapter, 

and define the poachers' minimum average cost as: 

 ( )( )
( )( ) ( )( ) ( )( )

( )( )

*
I

*
I

K s t ,s t F s tq
k s t

s tq

+
= . (3.4) 

We find that ( )( ) ( )( )
2

I

K F'k ' s t 0
s tq
+

= < ,5 the stock effect on the minimum average cost is 

negative. 

Notice that in the special case where instantaneous gains are not stock-

dependent, i.e., ( )( )2 IK q ,s t 0= , then the poachers' minimum average cost is constant 

at all times and equal to: 

 
*
I
*
I

K( ) Fq
k

q
+

= . (3.5) 

In the general case, combining (3.1), (3.3) and (3.4), one can infer the market 

equilibrium price, constrained by poachers' behavior, to be  

 ( ) ( )( ) ( )P t k s t t= + λ φ . (3.6) 

Given the downward-sloping inverse demand curve ( )( )P Q t , the instantaneous market 

equilibrium total harvest is 

                                                 

5 Using (3.3), we find 

( )
( )

( )( )( )
0

q
'FK

q
'FK'qqFKK

q
'qF'qKq'FqKq'qKs'k

I

2

I

2II1
2

I

IIII2II1 <
+

=
+++−

=
−−++

= . 
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 ( ) ( )( ) ( )( )Q t D k s t t= + λ φ , (3.7) 

where ( )( ) ( )( ) ( )( ) ( )( )1D k s t t P k s t t−+ λ φ = + λ φ . 

If the resource is exploited in open access only, without any probability of 

paying a fine, then the number of harvesters, ( )( )OA s tN , is ( )( )
( )( )( )
( )( )

OA

I

D k s t
s tN

s tq*
= . 

In the special case where instantaneous gains do not depend on the resource stock, then 

the number of open access harvesters is constant and equal to ( ) ( )OA

I

D k
tN

q*
= . 

3.2.1. Equilibrium paths 

As long as there is no enforcement, ( )t 0λ φ =  and open access results. In the 

special case where instantaneous gains do not depend directly on the resource stock, 

i.e., ( )( )2 IK q ,s t 0= , the open access instantaneous equilibrium harvest is 

( )OAQ D k= . This indicates that the harvest level is invariant as the resource stock 

changes, Q(t) is thus constant and so ( ) ( )dQ t
Q t 0

dt
= =& . The stock evolves according to 

the transition equation ( ) ( ) ( )( ) ( )ds t
s t g s t D k

dt
= = −& . The three possible equilibrium 

paths for this special case are illustrated in Figure 3.1. 

In the more general case where ( )( )2 IK q ,s t 0> , the equilibrium harvest in 

open access depends on the resource stock: ( )( ) ( )( )( )OAQ s t D k s t= . As s(t) increases 

(decreases), the open access harvest increases (decreases): 
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( )( )
( ) ( ) ( )

OAdQ s t
D ' k ' 0

ds t
= ⋅ ⋅ > . In this case, ( ) ( ) ( ) ( )Q t D ' k ' s t= ⋅ ⋅& & , and 

( ) ( )( ) ( )( )( )s t g s t D k s t= −& . Sample equilibrium paths for this case are illustrated in 

Figure 3.2. 

 

Figure 3.1. Equilibrium paths and steady states in open access; ( )( )2 IK q ,s t 0=  

       Q 
( )OA

c cQ D k=                c 

( )OA
b bQ D k=                b 

 
 

( )OA
a aQ D k=                 a 

 
 
 

 
0s =&  

 
           0        unstables∞        sMSY  stables∞       s          s 
     (extinction) 
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Figure 3.2. Equilibrium paths and steady states in open access; ( )( )2 IK q ,s t 0>  

       Q 
    ( ) ( )( )OA

c cQ s D k s=             ( ) ( )( )OA
b bQ s D k s=  

 
 
 
 

 
 
          ( ) ( )( )OA

a aQ s D k s=  
              0s =&  
 
 
 
           0      unstables∞          stables∞  sMSY  stables∞       s          s 
     (extinction) 

 

 

3.2.2. Steady state equilibria 

In the special case where instantaneous gains do not depend directly on the 

resource stock, i.e., where ( )( )2 IK q ,s t 0= , a positive steady state occurs where 

OAs Q 0= =&& , in other words where ( ) ( )g s D k= . 

 

Definition 3.1. 

Let sMSY be the resource stock at which the harvest is at its maximum 

sustainable yield, i.e., the resource stock at which the growth function, ( )( )g s t , is at its 

maximum, which also corresponds to the resource stock at which steady state harvest is 

at its maximum feasible level. 
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If ( ) ( )MSYg s D k> , then there are two potential steady states, and the steady 

state with the greatest stock is stable, while the other one is unstable. If the initial stock, 

s0, is such that s0 < unstables∞ , then extinction occurs in finite time. Otherwise, one of the 

two steady states with a positive stock occurs. See path a in Figure 3.1. 

If ( ) ( )MSYg s D k= , then the steady state at the MSY stock is unique and 

unstable. In that case, if s0 < sMSY, then extinction occurs in finite time. Otherwise, the 

steady state at sMSY occurs. See path b in Figure 3.1. 

If however, ( )( ) ( ) ( )g s t D k s t< ∀ , then in finite time, the resource will 

become extinct, whatever what the initial stock, s0, may be. Species that are endangered 

due to their economic over-exploitation likely exhibit this characteristic. See path c in 

Figure 3.1. 

Some level of property right enforcement, i.e., ( )t 0λ φ > , would lower the 

harvest level at any point in time, and may prevent extinction. We consider such a 

possibility in the rest of this chapter. 

In the more general case where ( )( )2 IK q ,s t 0> , there can be multiple steady 

states, but one at most at stocks larger than sMSY. Their stability is similar to that of the 

steady states described for the special case above. See Figure 3.2 for examples of steady 

states for the model when ( )( )2 IK q ,s t 0> . In open access, extinction could be 

prevented if poaching costs are high enough, as for ka(s) in Figure 3.2. The possibility 

of extinction with open access exploitation could depend on the initial resource stock 

for lower poaching costs, as for kb(s). Finally, for low enough poaching costs such as 
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kc(s), extinction could be the ultimate outcome of open access exploitation, irrespective 

of the initial resource stock.  

 

3.3. Social planner's problem: total economic surplus maximization 

The social planner can use two instruments to decrease poachers' activities and 

thus steer away from the open access regime: legal harvest, ( )L tQ , and enforcement 

efforts, E(t). If the social planner harvests the resource himself, he decreases the 

poachers' market supply.  

Let ( )I tQ  be the aggregate illegal harvest. Since poaching firms are assumed to 

be identical, ( ) ( )
( )

( ) ( )
N* t

I II
n 1

t q * t N* t q * tQ
=

= =∑ . Furthermore, since there may be 

simultaneous legal and illegal harvest, in market equilibrium, from (3.7), we can infer 

that ( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )LI LE t ,Q t ,s t D k s t E t tQ Q= + λ φ − . The legal harvest cost is 

represented by a C2 function, h(QL(t),s(t)), assuming ( ) ( )( )1 Lh t ,s t 0Q > , 

( ) ( )( )11 L t ,s t 0Qh ≥ , ( ) ( )( )2 Lh t ,s t 0Q ≤ , ( ) ( )( )22 L t ,s t 0Qh ≥  and 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )2
11 22 12L L Lt ,s t t ,s t t ,s t 0Q Q Qh h h⎡ ⎤− ≥⎢ ⎥⎣ ⎦

. Enforcement efforts, E(t), have 

a cost also represented by a C2 function, ( )( )c E t , for which ( )( )c ' E t 0>  and 

( )( )c '' E t 0> . The social planner can charge a per-unit harvest fine, φ, to poachers that 

he catches. We assume this fine is exogenous due to solvency constraints, which limit 

the fine that a poacher can actually pay. The exogenous fine could for example be equal 

to the confiscation of poaching equipment. The enforcement level, E(t), affects the 
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probability of catching any and all poachers, which is represented by the C2 function 

λ(E(t)), assuming λ'(E(t)) > 0 and λ''(E(t)) < 0. Also assume that λ(0) = 0 and 

( )( )0 E t 1≤ λ < , for the domain ( )0 E t≤ < ∞ . The social planner considers the 

reproductive capacity of the renewable resource in his problem, that is, the growth 

function of the resource stock, g(s(t)), as described in section 3.1. Finally, δ is the social 

discount rate, assuming that 0 < δ < ∞ . 

The social planner is assumed to maximize the discounted inter-temporal total 

economic surplus, in contrast with poachers' equilibrium actions, which do not take the 

future into account. The expected per-unit harvest fine paid by poachers to the social 

planner is a transfer in the economy, which does not affect the total economic surplus, 

so it cancels out in the objective function. Therefore, the social planner solves the 

following problem. 

( ) ( )
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( )

L

Q t
t

L I LE t ,Q t 0 0
Max P x dx h t ,s t k s t E t , t ,s t c E t dtQ Q Q e

∞
−δ⎧ ⎫

− − −∫ ∫⎨ ⎬
⎩ ⎭

 (3.8) 

subject to 

( ) ( )( ) ( )( ) ( )( )( )
( )

( ) ( ) ( )
( )

0

L

I

s t g s t D k s t E t

s t 0 s given

s t , E t , t 0, t,Q

t 0, t,Qand

= − + λ φ

= =

≥ ∀

≥ ∀

&

 

where Q(t) is defined in (3.7) and x is a placeholder. 

Substituting ( )( ) ( )( )( ) ( )LD k s t E t tQ+ λ φ −  for ( )I tQ , the Lagrangean 

corresponding to problem (3.8), is: 

( ) ( ) ( ) ( )( ) ( )( )( ) ( )LL t H t t D k s t E t tQ⎡ ⎤= + γ + λ φ −⎣ ⎦
%  
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( )
( )( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( ) ( )

D k s t E t

L L
0

L

P x dx h t ,s t k D k s t E t tQ Q

c E t t g s t D k s t E t

t D k s t E t tQ

+λ φ
⎡ ⎤= − − + λ φ −∫ ⎣ ⎦

⎡ ⎤− +µ − + λ φ⎣ ⎦
⎡ ⎤+γ + λ φ −⎣ ⎦

(3.9) 

where ( )H t%  is the current value Hamiltonian for problem (3.8), ( )tµ  is the 

corresponding current value co-state variable and ( )tγ  is the Lagrange multiplier on 

the inequality constraint ( ) ( ) ( )( )LI E t ,Q t ,s t 0Q ≥ . 

Using Leibnitz' rule of differentiation of integrals where appropriate, the 

necessary conditions for this problem are given by (3.10)-(3.15). 

( ) ( )( ) ( ) ( )( ) ( )
L 1 LQ tL k s t h Q t ,s t t 0= − − γ ≤ , ( )L t 0Q ≥ , and  

 ( )( ) ( ) ( )( ) ( ) ( )1 L Lk s t h Q t ,s t t Q t 0⎡ ⎤− − γ =⎣ ⎦ ; (3.10) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )E tL E t t t D ' ' E t c ' E t 0= λ φ−µ + γ ⋅ λ φ− ≤ , ( )E t 0≥ , 

 and ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )E t t t D ' ' E t c ' E t E t 0⎡ ⎤λ φ −µ + γ ⋅ λ φ − =⎣ ⎦ ; (3.11) 

( ) ( ) ( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

s t

2 L L

L t t

h Q t ,s t k ' s t Q t

D ' k ' s t E t t t

t g ' s t k ' s t D

− = µ −δµ

= −

− ⋅ λ φ−µ + γ

−µ + ⋅

&

 (3.12) 

( ) ( ) ( )( ) ( )tL s t g s t Dµ = = − ⋅& ;  (3.13) 

( ) ( ) ( )LtL D Q t 0γ = ⋅ − ≥ , ( )t 0γ ≥ , ( ) ( ) ( )LD Q t t 0⋅ − γ =⎡ ⎤⎣ ⎦ ; (3.14) 

( ) t

t
lim t e 0−δ

→∞
µ ≥ , ( ) ( ) t

t
lim t s t e 0−δ

→∞
µ = .  (3.15) 
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The necessary Legendre condition is verified: 

( ) ( ) ( ) ( )( )
L L 11 LQ t Q tL h Q t ,s t 0= − ≤ . We assume that the necessary Legendre condition 

on E(t) also holds,6 as well as sufficient conditions for the concavity of the Hamiltonian. 

That way, first order conditions (3.10)-(3.15) are necessary and sufficient, which 

ensures a solution. 

Conditions (3.10), (3.11) and (3.14) are Kuhn-Tucker conditions allowing QL(t), 

QI(t) and E(t) to be greater than or equal to zero, leading to a total of eight possible 

cases along the optimal path, depending on the resource stock and the parameters of the 

model. It is interesting to note that dynamic optimization in this model occurs through 

enforcement only. Indeed, condition (3.10) is static and, in conjunction with (3.14), 

ensures that the total optimal harvest is provided cost-efficiently at all times. As we will 

characterize in some details below, depending on the relative legal and illegal harvest 

cost structures, either the social planner or the poachers may provide the entire harvest, 

or they might share the market. In addition, the composition of suppliers may change 

over time, as the resource stock and the corresponding optimal enforcement effort 

change. For example, if it is optimal for legal and illegal harvest to occur 

simultaneously, then (t) 0γ = . As the stock level increases, the legal harvests could 

increase or decrease, depending on the relative changes between illegal minimum 
                                                 

6 ( ) ( ) ( ) ( )( ) 2
E t E tL D ' ' E t⎡ ⎤= ⋅ λ φ⎣ ⎦

 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( )

2
E t t t D '' ' E t D ' '' E t

c '' E t

0.

⎡ ⎤⎡ ⎤+ λ φ−µ + γ ⋅ λ φ + ⋅ λ φ⎣ ⎦⎢ ⎥⎣ ⎦
−

≤
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average harvest cost and legal marginal harvest cost; from (3.10), 

( ) ( )( )
( )

12 LL

11 L

k ' s(t) (t),s(t)Qhd (t)Q
ds(t) (t),s(t)Qh

−
= . 

We will say that complete deterrence occurs if poaching activities are eliminated 

altogether, i.e., if ( )IQ t 0= . In contrast, partial deterrence occurs if poaching activities 

are reduced as compared to the open access scenario but are not completely eliminated, 

i.e., if ( ) ( )OA
I0 Q t Q t< < . 

Equation (3.11) provides the condition for inter-temporally optimal 

enforcement. At any point in time, there will be positive enforcement only if it is not too 

costly, i.e., if ( ) ( ) E(t) 0
c ' 0 (t) D ' ' (t)D ' ' (t)D ' '

=
< λ φ λ φ−µ λ φ+ γ λ φ . But there will be no 

enforcement at all if it is prohibitively costly: i.e., if 

( ) ( ) E(t) 0
c ' 0 (t) D ' ' (t)D ' ' (t)D ' '

=
≥ λ φ λ φ−µ λ φ+ γ λ φ . In that case, enforcing the property 

right over the resource would be inefficient. This illustrates Demsetz' (1967) assertion 

that if the costs of internalization of externalities are too high, then effective property 

rights cannot be efficient. If enforcement is prohibitively costly, the social planner may 

harvest if his harvest cost is low enough relative to market inverse demand, but the 

shadow value of the resource has vanished to zero. In that case, the total harvest is the 

same as in open access regime since λ(E(t))φ = 0. The illegal harvesters could also 

harvest under open access conditions. Overall, if enforcement cost is prohibitively 

costly, demand is satisfied by either or both the social planner's and the illegal 

harvesters' supply, at the open access level: ( )( )( ) ( )( ) ( )( )L ID k s t Q s t Q s t= +  

( )( )OAQ s t= , ( )( )LQ s t 0≥ , ( )( )IQ s t 0≥  and ( )( )OAQ s t 0≥  
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Equation (3.12) gives the optimality condition with respect to the resource stock 

that drives (t)µ& , the change in the shadow price of the resource. Equation (3.13) gives 

back the resource transition equation. The non-negativity constraint on illegal harvest 

along with its complementary slackness conditions are found in (3.14). We note that by 

writing the upper boundary of the integral in (3.9) as ( )( ) ( )( )( )D k s t E t+ λ φ , we 

implicitly assume that even if  ( )( )IQ s t 0=  (if there is no illegal harvest), 

( )( ) ( )( )P s t k s t>  for all feasible stocks. This means that positive enforcement is 

necessary to prevent the entry of poachers into open access harvest. Finally, equation 

(3.15) is the transversality condition for the problem. 

Cases 1-3 below describe the different supply eventualities emerging from the 

relative harvest cost structures of the social planner relative to that of poachers. For all 

three cases, we assume that ( ) ( ) ( )1D 0 P 0 k s(t)− = > . This means that poachers’ 

minimum average harvest cost is lower than the choke price. Therefore, if there is no 

enforcement effort, poachers will harvest and their supply will find demanders on the 

market. We assume that the resource rent is always positive, ( )* t 0µ > . This implies 

that ( ) ( ) E(t) 0
c ' 0 (t) D ' ' (t)D ' ' (t)D ' '

=
< λ φ λ φ−µ λ φ+ γ λ φ , i.e., enforcement is cheap 

enough to be optimally positive. With positive optimal enforcement, the four possible 

cases arising from Kuhn-Tucker conditions (3.10) and (3.14) are included within Cases 

1-3. Whether partial or complete deterrence of poaching should be achieved depends on 

the marginal cost of the social planner being constant or convex and on it being greater, 

equal to or smaller than the minimum average cost of the poachers, k(s(t)). In 

Proposition 3.1, complete deterrence occurs, while in Proposition 3.2 and Proposition 
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3.4 we only find partial deterrence. The situation depicted in Proposition 3.3 could lead 

to either complete or partial deterrence. Proofs of these propositions rely on Kuhn-

Tucker conditions (3.10) and (3.14). 

 

Case 1. 

In this case, assume that ( ) ( )( )D k s(t) E*(t)+ λ φ =  

( ) ( )( )L I Ls(t) * E*(t), s(t) *,s(t) 0Q Q Q+ > , i.e., the equilibrium resource supply is 

positive. Such a case implies that the market price is lower than the choke price, even 

though enforcement is positive: ( ) ( ) ( ) ( ) ( )1D 0 P 0 k s(t) s(t) k s(t)− = > + λ φ > . 

Propositions 3.1-3.3 refer to this case. 

 

Proposition 3.1. 

If ( ) ( )( )( )1k s(t) h D k s(t) ,s(t)> , then the entire market supply is provided by 

the social planner and poachers are completely deterred. 

Proof. 

Suppose (t) 0γ = . Since ( ) ( )( )( )1k s(t) h D k s(t) ,s(t)> , then 
L(t)Q 0L(t) > , but 

this violates Kuhn-Tucker condition (3.10). Hence, (t) 0γ > , which in turn means that 

I(t) 0Q* =  from condition (3.14). This implies ( ) ( )( )L *(t) D k s(t) s(t)Q = + λ φ .  

 

Hence, whenever the minimum average harvest cost of poachers is greater than 

the marginal harvest cost of the social planner evaluated at the market equilibrium 

quantity, the social planner prefers to supply this entire quantity because it is cost-
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efficient, which serves to maximize total economic surplus. We note that, since we 

assumed ( ) ( ) ( )P 0 k s(t) s(t)> + λ φ , and in this case, ( ) ( )( )( )1k s(t) h D k s(t) ,s(t)> , 

then ( ) ( ) ( ) ( ) ( )( )( )1P 0 P Q k s(t) s(t) h D k s(t) ,s(t)> = + λ > . At price ( )P Q , demand is 

positive and ( )P Q  is greater than the legal marginal cost of harvesting. This is intuitive 

since at least part of the resource rent must be used to pay for the enforcement effort. 

 

Proposition 3.2. 

If ( )( ) ( )( )( )1k s t h D k s(t) ,s(t)< , then the entire market supply is provided by 

the poachers and poaching can at best be partially deterred. 

Proof. 

Since (t) 0γ ≥  and ( )( ) ( )( )( )1k s t h D k s(t) ,s(t)< , then 
L(t)Q 0L(t) <  and hence 

L(t) 0Q* = . Since ( )( ) ( ) ( ) ( )( )L I LD k s(t) ,s(t) t t ,s t 0Q Q Q= + > , then it must be that 

( )( ) ( )( )I s t D k s(t) ,s(t)Q* = . If E(s(t)) = 0, then D = D(k(s(t))) and open access results, 

i.e., poaching is not deterred at all. But if E(s(t)) > 0, we know that 

( )( ) ( )( )( )D k s(t) ,s(t) D k s t<  and partial deterrence occurs, that is, poachers are still 

active, but less than they would be under open access.  

 

Proposition 3.2 says that whenever the minimum average harvest cost of the 

poachers is less than the marginal cost of the social planner evaluated at the market 

equilibrium quantity, it is optimal to let poachers provide the entire quantity supplied to 

the market. 
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Proposition 3.3. 

Suppose a constant legal harvest marginal cost, ( )( ) ( )( ) ( )( )1 Lh Q s t ,s t h s t=  

for all ( )( )L s tQ . If ( )( ) ( )( )k s t h s t= , then QI*(s(t)) and QL*(s(t)) are indeterminate 

but satisfy ( )( ) ( )( ) ( )( )L ID k s(t) ,s(t) s t s tQ* Q*= + . 

Proof. 

Suppose ( )t 0γ > . Since ( )( ) ( ) ( )( )1 Lk s t h t ,s tQ= , then ( )L tQ 0L <  and 

( )L t 0Q = , in order to satisfy condition (3.10). Also, ( )I t 0Q =  to satisfy condition 

(3.14). This leads to ( )( ) ( ) ( ) ( )( )L I LD k s(t) ,s(t) t t ,s t 0Q Q Q= + = , which is contrary 

to our assumption. Hence, ( )t 0γ = . Then ( )L tQ 0L =  satisfies condition (3.10), which 

means that ( )( )L s t 0Q* ≥ . Since ( )t 0γ = , ( )( )I s t 0Q* ≥  as well. The share of legal to 

illegal harvest is however indeterminate.  

 

Proposition 3.3 applies to the restrictive case where the social planner's marginal 

harvest cost is constant and equal to those of the poachers. Any distribution of the total 

harvest will be equally cost-efficient, and therefore the actual optimal distribution is 

indeterminate. 

 

Assumption 3.1. 

Assume that the social planner's harvest cost function is strictly convex in QL. 

Assume also that ( ) ( )h 0,s k s< , for all s, which means that the legal marginal harvest 
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cost and the illegal minimum average harvest cost are equal at one harvest quantity 

only, i.e., for all s(t), ( )( ) ( ) ( )( )1 Lk s t h Q t ,s t=  has a unique implicit solution, which 

we now define. 

 

Definition 3.2. 

Under Assumption 3.1, let us define the harvest quantity at which the legal 

marginal harvest cost and the illegal minimum average harvest cost are equal as 

( )( )Q s t% . Therefore ( )( )Q s t%  is defined by an implicit function, ( )f ⋅ , which depends on 

the resource stock and on the legal and illegal harvest technologies: 

( )( ) ( )( ) ( )( )( ) ( )( )LQ s t f k s t , h Q s t ,s t=% . 

 

Assumption 3.2. 

Under Assumption 3.1, further assume that ( )( ) ( )( )D k s(t) ,s(t) Q s t> %  so that 

( )( ) ( )( )L s t Q s tQ = % . 

 

Under Assumption 3.2, there exists a legal harvest quantity, QL(t) such that 

( )( ) ( ) ( )( )1 Lk s t h Q t ,s t= . This intersection of marginal costs implicitly defines the 

legal harvest quantity ( )( ) ( )( )L s t Q s tQ = % , as long as ( )( ) ( )( )D k s(t) ,s(t) Q s t> % . This 

leads to Case 2. 
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Case 2. 

Under Assumption 3.2, ( )( ) ( )( )( )L I LQ* * s t * s tQ Q Q= + =  

( )( ) ( )( )D k s(t) ,s(t) Q s t 0> >% , i.e., the equilibrium resource supply is positive and it is 

greater than ( )sQ~ , the harvest quantity where the social planner's marginal harvest cost 

curve crosses the poachers' minimum average harvest cost level. Proposition 3.4 refers 

to this case. We suppose again that enforcement is positive, although this assumption 

could be relaxed for Proposition 3.4. 

 

Proposition 3.4. 

Under the assumptions of Case 2, the social planner will supply ( )( )Q s t%  to the 

market while the poachers will provide the rest of the total optimal supply: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )I Q s t ,s t D k s t ,s t Q s t 0Q = − >% % . 

Proof. 

This proof proceeds in a piecewise fashion. 

First, for ( )LQ 0,Q s⎡ ⎤∈ ⎣ ⎦
% , we have that ( )( ) ( ) ( )( )1 Lk s t t ,s tQh≥ . Suppose 

( )t 0γ = . Then ( )L tQ 0L > , which violates Kuhn-Tucker condition (3.10).  

Hence, ( )t 0γ > , which in turn means that ( )I t 0Q =  from condition (3.14). 

Since it is assumed that ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )L I LD k s t ,s t t s t ,s t Q sQ Q Q= + > % , then 

( )( ) ( )*
LQ s t Q s= % . 
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Second, for ( ) ( )( ) ( )( )(LQ Q s , D k s t ,s t ⎤∈ ⎦
% , we have that 

( )( ) ( ) ( )( )1 Lk s t h Q t ,s t< . Since ( )t 0γ ≥ , ( )L tQ 0L <  and hence it is not optimal for 

legal harvest to exceed ( )Q s% . 

Finally, since ( )( ) ( )( ) ( )( ) ( ) ( )( )L I LD k s t ,s t s t t ,s tQ Q Q= + , we have that 

( )( ) ( )( ) ( )( ) ( )IQ * s t D k s t ,s t Q s= − % .  

 

Proposition 3.4 says that when the social planner's marginal harvest cost is 

strictly convex and therefore crosses poachers' minimum average harvest cost at one 

point, ( )( )Q s t% , then if ( )( ) ( )( ) ( )( )D k s t ,s t Q s t> % , the social planner's harvest is 

( )( ) ( )( )*
LQ s t Q s t= %  and the poachers' harvest is 

( )( ) ( )( ) ( )( ) ( )( )*
IQ s t D k s t ,s t Q s t⎡ ⎤= −⎣ ⎦

% . 

 

Let us remark that the case, still under Assumption 3.1, where 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )* *
L LIQ s t Q s t ,s t D k s t ,s t Q s tQ+ = < %  is included in the more 

general Proposition 3.1. 

 

It seems noteworthy that, in the absence of fully controlled access to the 

resource, it could be optimal for poachers to provide the entire market supply ad 

infinitum while the social planner only monitors and limits their activities through 

enforcement (it is the case in Proposition 3.2, and possibly 3.3 as well). Case 2 offers an 
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example where it could be optimal for the supply to the market to be shared across legal 

and illegal harvesters. Hence this model shows clearly that the presence and possibly 

even the persistence of a black market7 is not necessarily an indication that resource 

management policy is nonexistent or sub-optimal. With costly enforcement, this 

situation could be second best optimal and, in such a case, the existence of a black 

market would be justified by the relative marginal harvest costs across legal and illegal 

harvesters. 

Indeed, when the poachers’ minimum average harvest cost is lower than the 

social planner’s marginal harvest cost, it is cost-efficient for the social planner to let the 

poachers harvest in his place. This is conceptually equivalent to the social planner 

delegating its harvest to poachers who can do it at a lower cost, which is welfare 

increasing for society. 

 

Case 3. 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )* *
L LID k s t ,s t Q s t Q s t ,s t 0Q= + = , i.e., in equilibrium, there 

is no supply to the market. This case is limited neither by Assumption 3.1 nor by 

Assumption 3.2. 

Since, from the beginning, we have assumed that ( ) ( ) ( )1D 0 P 0 k s(t)− = > , for 

this case to arise, enforcement is necessary so that price is raised up to the choke price: 

( ) ( )( ) ( )k s(t) s t P 0+ λ φ = . 

                                                 

7 A market trading an illegally harvested resource. 
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Since enforcement is costly and in this case there is no instantaneous welfare 

due to harvest, then the social planner must be investing in the future by letting the 

resource stock replenish itself. This situation can only be transitory the instantaneous 

welfare effect is negative. Hence in Case 3, we know that resource harvest will resume 

at some later point in time. 

 

Cases 1 and 2 referred to situations that could hold both in the short run, along 

the optimal path, or in the long-run, i.e., in a steady state equilibrium, depending on the 

initial stock level, s0, and on the parameters of the model. In contrast, Case 3 refers to 

clear-cut transitory situations because instantaneous welfare is negative. 

 

3.3.1. Optimal steady states 

An optimal steady state equilibrium exists, for a vector ( )* * * * *
L, I,s ,Q ,Q ,E ,∞ ∞ ∞ ∞ ∞µ  

such that necessary conditions (3.10) to (3.15) hold, as well as L Is E 0Q Q= = = = µ =& && && . 

In the special case where instantaneous gains are not stock-dependent, i.e., 

where ( )( )2 IK q ,s t 0= , ( )( )2 Lh Q ,s t 0=  and ( )( )F' s t 0= , there is only one possible 

optimal steady state. Indeed, from necessary condition (3.12), the unique steady state is 

such that ( ){ }*s inf s : g ' s∞ = ≤ δ . Since s(t) ≥ 0, ( ){ }*s inf s : g ' s∞ = ≤ δ  includes the 

possibility of extinction if ( )g ' 0δ ≥  and the possibility of long run conservation if 

( )g ' 0δ < . 
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For the steady state analysis that follows, we assume that ( )g ' 0δ < , which 

means that the optimal steady state stock is positive. We also assume that the unique 

optimal steady state is consistent with Case 2. Still assuming that instantaneous gains 

are not stock-dependent, under Assumption 3.1 and Assumption 3.2, which lead to Case 

2, there exists a steady state legal harvest quantity, *
L,Q ∞  such that ( )*

L,k h ' Q ∞= . This 

intersection of marginal costs implicitly defines the steady state legal harvest quantity 

*
L,Q Q∞ = % , as long as ( )( )*D k E Q∞+ λ φ > % . This leads to a steady state equilibrium 

where both the social planner and poachers harvest the resource. 

If a species that is harvested enough to be economically scarce in steady state, 

then * 0∞µ > , which implies that *E 0∞ > . 

A positive steady state stock and (3.13), imply that ( ) ( )( )* *g s D k E∞ ∞= + λ φ . In 

addition, from (3.12), the golden rule of economic growth applies: ( )*g ' s∞ = δ . Hence, 

the only steady state variable that remains to be found is *E∞ , the enforcement level, 

which in turn will determine ( )* *
LI E ,QQ ∞ ∞ , or simply ( )*

IQ E∞  since in the case 

considered, *
L,Q Q∞ = %  is pegged. At the stock level where ( )*g ' s∞δ = , the enforcement 

level must be such that ( ) ( )( ) ( )* * *
I E ;Q Q D k E g sQ ∞ ∞ ∞+ = + λ φ =% % . Figure 3.3 illustrates 

this steady state. The top graph looks like the typical textbook optimum steady state 

when harvest costs are not stock-dependent, only with the Q- and s-axes flipped as 

compared to the usual presentation of a phase diagram. At the same time, the bottom 
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graph is a modified version of the textbook graph of a static free entry dominant firm-

competitive fringe model (e.g., Carlton and Perloff (1994), p. 168). 

 

Figure 3.3. Steady State Equilibrium; No Stock Dependence 
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In the more general case, where harvest costs are stock-dependent, assuming 

that ( ) ( )* *g s Q s∞ ∞> % , we find from necessary conditions (3.11) and (3.12) that 

( ) ( )( )2 L*
2

D ' ' h k ' D Q D'k 'c '
g ' s

D ' ' c '∞

λ φ + − −
= δ +

λ λφ −
, where arguments of functions have 

been left out for brevity. The second right hand side term has a negative denominator. 

The firs term of the numerator is negative, pushing towards a greater steady state stock, 

than where ( )*g ' s∞ = δ , while the second term of the numerator is negative, pushing 

towards a smaller steady state stock than where ( )*g ' s∞ = δ . Since the second right hand 

side term could be overall positive or negative, depending on the parameters of the 

model, we conclude that a positive steady state stock could be greater or smaller than 

when harvest costs are not stock dependent. This differs from the costless enforcement 

model where the steady state stock is always greater under stock-dependent harvest 

costs. The possibility of a lower steady state stock arises here because of the structure of 

the model where price is endogenous and depends on the stock level and the 

enforcement effort. Since ( ) ( )2 Ih ( t ,s t ) 0q ≤  and ( )( ) ( )
( )

2

I

tKk ' s t 0
tq

= < , a higher stock 

does not only lower harvest costs, it also lowers the market price since ( ) λφ+= skP . 

Given that the demand is downward-sloping, this increases the equilibrium quantity 

harvested, which in turn lowers the resource stock. Hence, the overall effect of the 

stock-dependence of harvest costs on the steady state resource stock is unclear. 

Furthermore in the more general model, multiple optimal steady states could 

exist. Whether the optimal long run equilibrium leads to conservation or extinction 
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could depend on the parameters of the model and possibly also on the initial stock level, 

0s . Without any specification of functions however, little can be said about long run 

outcomes. In Chapter 4, we present a model with some level of function specification 

which allows us to compare phase diagrams with and without a fixed flow of resource 

management costs. 

 

3.3.2. Equilibrium paths 

For the special case where instantaneous gains are not stock-dependent, i.e., 

where ( )( )2 IK q ,s t 0=  and ( )( )2 Lh Q ,s t 0= , we characterize the equilibrium paths 

with optimal positive enforcement. The more general case, where ( )( )2 IK q ,s t 0>  and 

( )( )2 Lh Q ,s t 0> , is substantially more complicated; paths are difficult to characterize, 

unless the functions are specified. Therefore, we concentrate on the simpler version of 

the model. 

 

 Resource stock. 

From (3.12), we obtain ( ) ( ) ( )( )t t g ' s t⎡ ⎤µ = µ δ −⎣ ⎦
& . Therefore, as long as 

( )g ' 0δ ≤ , there can exist only one positive steady state stock, where g'(s) = δ. This 

problem is an autonomous infinite horizon problem with positive discount rate and a 

unique stock. This means that the resource stock path is monotonic over time (Long, 

1979; Léonard and Long, 1992, Theorem 9.5.1). Therefore, if s(t) is such that 
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( )( )( )g ' s t 0δ − < , then by the strict concavity of g(s) and the monotonicity of the 

resource stock path, ( )s t 0>& , and vice versa. 

 

In what follows, we consider cases with strictly legal supply, i.e., cases where 

( )L t 0Q >  but ( )I t 0Q = , and hence ( ) ( )( )( )L t D k E tQ = + λ φ . From equations (3.10) 

and (3.14), a positive supply that is strictly legal implies ( ) ( )( )Lt k h ' t 0Qγ = − ≥ , 

which leads to ( ) ( )( ) ( ) ( )( ) ( )L LLt h '' t t h '' t D ' ' E tQ QQγ = − = − λ φ && & . 

 

 Co-state variable, with strictly legal supply. 

 We find ( )tµ&  directly in (3.12), where we substitute µ  from equation (3.11): 

( ) ( )( ) ( )( )( )c 't E t k h ' g ' s t
D ' '

⎡ ⎤
µ = λ φ+ − − δ −⎢ ⎥λ φ⎣ ⎦
&  

Since ( )( ) ( )c 'E t k h ' t 0
D ' '

⎡ ⎤
λ φ+ − − = µ >⎢ ⎥λ φ⎣ ⎦

, the sign of ( )tµ&  is the same as the sign 

of ( )( )( )g ' s tδ − , and therefore the opposite sign as ( )s t& . 

 

Enforcement, with strictly legal supply. 
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We totally differentiate (3.11) with respect to time. We then substitute ( )tµ&  

from (3.12) and ( ) ( ) ( )Lt h '' Q tγ = − ⋅ && , as explained above, and we find the optimal 

enforcement path  

( )
( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( )( )2
LE t E t

D ' ' E t t c ' E t g ' s t
E t

H t D ' ' h '' Q t

⎡ ⎤λ φ λ φ+ γ − δ −⎣ ⎦=
− λ φ

&
%

, 

where ( ) ( ) ( )E t E tH t 0≤%  by assumption of concavity of the Hamiltonian. Since 

( )( ) ( )( ) ( )( ) ( )D' ' E t t c ' E t t D ' ' 0⎡ ⎤λ φ λ φ+ γ − = µ λ φ <⎣ ⎦  and since the denominator is 

negative, then it follows that the sign of ( )E t&  is the same as the sign of ( )( )( )g ' s tδ − , 

and therefore the opposite sign as ( )s t& . The enforcement path is therefore monotonic, 

like that of the resource stock. 

 

In what follows, we now consider cases with illegal supply, i.e., cases where 

( )I t 0Q >  and ( )L t 0Q ≥ . These cases encompass situations where supply is partially or 

completely illegal. With illegal supply, from equations (3.10) and (3.14), we know that 

( )( )( ) ( )LD k E t t 0Q+ λ φ − > , ( )t 0γ =  and therefore ( )t 0γ =& . 

 

Co-state variable, with illegal supply. 

We find ( )tµ&  directly in (3.12), where we substitute ( )tµ  from equation (3.11): 

( ) ( )( ) ( )( )( )c 't E t g ' s t
D ' '

⎡ ⎤
µ = λ φ− δ −⎢ ⎥λ φ⎣ ⎦
&  
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As in the case with strictly legal supply, because ( )( ) ( )c 'E t t 0
D ' '

⎡ ⎤
λ φ− = µ >⎢ ⎥λ φ⎣ ⎦

 here, 

the sign of ( )tµ&  is the same as the sign of ( )( )( )g ' s tδ − , and therefore the opposite 

sign as ( )s t& . 

 

Enforcement, with illegal supply. 

Following the same steps as for the strictly legal supply, but using ( )t 0γ =&  

instead, we obtain 

( )
( )( ) ( )( )( )
( ) ( ) ( )E t E t

D ' ' E t c ' g ' s t
E t

H t

⎡ ⎤λ φλ φ− δ −⎣ ⎦=&
%

, 

where again ( ) ( ) ( )E t E tH t 0≤%  by assumption of concavity of the Hamiltonian. Since the 

denominator and ( )( ) ( )D' ' E t c ' t D ' '⎡ ⎤λ φλ φ− = µ λ φ⎣ ⎦  are both negative, then the sign 

of ( )E t&  is the same as the sign of ( )( )( )g ' s tδ −  or the opposite sign as ( )s t& . This is 

qualitatively similar to the case with strictly legal supply. Again, the enforcement path 

is monotonic. When the initial stock is below the optimal steady state, enforcement is 

high, but as the stock increases, enforcement declines. Likewise, if the initial stock is 

larger than the optimal steady state, then enforcement is small but it increases as 

harvesting reduces the stock size. 

 

We note that the total harvest moves in the opposite direction as enforcement, 

due to the downward-sloping demand curve, and therefore, in the same direction as the 

resource stock. 
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We mentioned before that if the resource is exploited in open access only, 

without any probability of paying a fine, then the number of harvesters was constant 

independent of time and of the resource stock. However, with a social planner (or a 

pseudo-monopolist as in section 3.4), who can harvest legally while poachers could 

simultaneously harvest illegally, the total equilibrium harvest is equal to 

( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )( ) ( )( )* *
I L LQ s t D k s t E* s t Q E* s t ,Q s t Q s t= + λ φ = + , (3.16) 

that is, the sum of illegal harvests aggregated over poachers, QI, and the legal harvest, 

QL. If there is some positive level of enforcement, so that ( )t 0λ φ > , then the number 

of poachers is reduced compared to the open access regime since 

( )( ) ( )( ) ( )( )( )( ) ( )( )( )Q s t D k s t E* s t D k s t= + λ φ < , whether ( )( )*
LQ s t 0>  or not. 

Hence some positive level of deterrence occurs as long as ( )t 0λ φ > . 

 

3.4. Pseudo-monopolist problem: profit maximization and corrective 

policies 

In this section we examine the problem of a pseudo-monopolist, who legally 

exploits the resource and enforces his property rights in order to maximize inter-

temporal profit without regard for the welfare of consumers and poachers. It is assumed 

that the pseudo-monopolist keeps the fines collected from poachers. From a global 

perspective, the pseudo-monopolist's behavior is consistent with an individual country's 

government that manages an exportable renewable resource without regard to domestic 

consumer and poachers' welfare. Alternatively, in a national context, the pseudo-
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monopolist's behavior is consistent with that of a private resource owner who is only 

interested in making discounted inter-temporal profits from the resource. 

From the predicted poachers' behavior, we substitute P using market equilibrium 

condition (3.6), i.e., ( ) ( )( ) ( )P t k s t t= + λ φ  and Q using equation (3.7), i.e., 

( ) ( )( ) ( )( )Q t D k s t t= + λ φ . We also make use of identity (3.16), i.e., 

( )( ) ( )( )( )( )D k s t E* s t+ λ φ =  ( )( ) ( )( )( ) ( )( )* *
I L LQ E* s t ,Q s t Q s t+ , so the pseudo-

monopolist's problem can be written as follows. 

 
( ) ( )

( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( ) ( )( )L

L L t

E t , tQ 0

k s t t h t ,s tQ Q
e dtMax

E t D k s t E t c E t

∞
−δ

⎧ ⎫−⎪ ⎪
∫ ⎨ ⎬
+λ φ + λ φ −⎪ ⎪⎩ ⎭

 (3.17) 

subject to: 

( ) ( )( ) ( )( ) ( )( )( )
( )

( ) ( ) ( )
( ) ( )( ) ( )( )( ) ( )

0

L

I L

s t g s t D k s t E t

s t 0 s is given

s t ,E t , t 0, t,Q

t D k s t E t t 0, t,Q Qand

= − + λ φ

= =

≥ ∀

= + λ φ − ≥ ∀

&

 

with variables defined as in (3.8). 

The Lagrangean for problem (3.17) is as follows: 

( ) ( ) ( ) ( )( ) ( )( )( ) ( )LL t H t t D k s t E t tQ⎡ ⎤= + γ + λ φ −⎣ ⎦
%  

( )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( ) ( )

L L

L

k s t t h t ,s t E t D k s t E tQ Q

c E t t g s t D k s t E t

t D k s t E t tQ

= − + λ φ + λ φ

⎡ ⎤− +µ − + λ φ⎣ ⎦
⎡ ⎤+γ + λ φ −⎣ ⎦

 (3.18) 
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where ( )H t%  is the current value Hamiltonian corresponding to problem (3.17), ( )tµ  is 

the corresponding current value co-state variable and γ(t) the corresponding Lagrange 

multiplier on the constraint ( )I t 0Q ≥ . 

The necessary conditions for this problem are given by (3.19)-(3.24). 

( ) ( )( ) ( ) ( )( ) ( )
L t 1Q Lk s t t ,s t t 0QL h= − − γ ≤ , ( )L t 0Q ≥ , and  

 ( ) ( )( ) 0Qs,Qhsk LL1 =γ−− ; (3.19) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )E t ' E t D E t t t D ' ' E t c ' E t 0L = λ φ ⋅ + λ φ−µ + γ ⋅ λ φ− ≤  

( )E t 0≥ , and 

( )( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( )

( )( )
( )

' E t D

E t t t D ' ' E t E t 0

c ' E t

⎛ ⎞λ φ ⋅
⎜ ⎟
⎜ ⎟+ λ φ−µ + γ ⋅ λ φ =
⎜ ⎟
⎜ ⎟−⎝ ⎠

; (3.20) 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

s t 2 L Lt t t ,s t k ' s t tQ QL h

D' k ' s t E t t t  - t g ' s t

− = µ −δµ = −

− ⋅ λ φ−µ + γ µ

&
 (3.21) 

( ) ( ) ( ) ( )( ) ( )t t s t g s t DL Hµ µ= = = − ⋅% & ;  (3.22) 

( ) ( ) ( )t LD t 0QLγ = ⋅ − ≥ , ( )t 0γ ≥ , ( ) ( )( ) ( )LD t t 0Q⋅ − γ = ; (3.23) 

( ) t

t
lim t e 0−δ

→∞
µ ≥ , ( ) ( ) t

t
lim t s t e 0−δ

→∞
µ = . (3.24) 
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The first Legendre condition holds: ( ) ( ) ( ) ( )( )
L Lt t 11Q Q L t ,s t 0QL h= − ≤ . We 

assume that Legendre condition on E(t) holds as well,8 and that all sufficient conditions 

are satisfied, so that the necessary conditions (3.19)-(3.24) are necessary and sufficient. 

First we notice that the necessary conditions above are the same as those found 

for the social planner, except for (3.20), which differs from (3.11). Hence, for a given 

total supply to the market, the split between legal (here, the pseudo-monopolist's) and 

illegal (poachers') harvests is the same as it would be for the social planner. This least-

cost provision of the resource good to the market is dependent on the fact that the 

pseudo-monopolist keeps the fines he collects. This way, the marginal harvest cost of 

poachers vis-à-vis that of the pseudo-monopolist dictates who supplies the resource to 

the market, just as they did in the social planner's problem. Therefore, cases 1-3 and 

Propositions 3.1-3.4 hold for the pseudo-monopolist's problem, with a slightly different 

notation (no upper-bars above variables and functions). 

In a model with exogenous price, but endogenous legal harvest and 

enforcement, Milliman (1986) pointed out that "total gain maximization" is formally 

equivalent to the maximization of legal gains augmented by fine payments (p.379). He 

suggested that total economic surplus advocates (as opposed to legal surplus only) 

should consider allowing resource managers to keep the fines collected from illegal 

                                                 

8 That is, ( ) ( ) ( )( ) ( ) ( )( ) ( )
2

E t E tL '' E t D 2 ' E t D '⎡ ⎤= λ φ ⋅ + λ φ ⋅⎣ ⎦  

  

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( )

2
E t t t D '' ' E t D ' '' E t

c '' E t

0.

⎡ ⎤⎡ ⎤ ⎡ ⎤+ λ φ−µ + γ ⋅ λ φ + ⋅ λ φ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
−

≤
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fishermen in order to trigger optimal behavior. Here however, this is not sufficient to 

trigger optimality because price is endogenous and is a source of rent-seeking by the 

pseudo-monopolist who uses enforcement to his advantage. Indeed, the total supply 

(i.e., legal plus illegal harvests) to the market for a given resource stock differs from 

that of the social planner, and therefore the pseudo-monopolist's behavior is sub-

optimal. This occurs because the first term in (3.20) does not appear in (3.11), which 

means that the equilibrium enforcement level will differ from the social optimum. Since 

the resource price is in part determined by the enforcement level, it follows that the 

equilibrium supply to the market will be sub-optimal. 

3.4.1. Corrective policies 

A policy can be put in place to rectify the pseudo-monopolist's behavior. Indeed, 

the social planner can influence the pseudo-monopolist by subsidizing him by the 

amount of the consumer surplus. 

 

Proposition 3.5. 

The pseudo-monopolist could be subsidized at each point in time by the amount 

of the consumer surplus in order to make him behave optimally. This subsidy is: 

 ( ) ( )
( )( ) ( )( )( )

( )( ) ( )( )( ) ( )
D k s t E t

0
Ŝ t P x dx k s t E t D

+λ φ

= − + λ φ ⋅∫  (3.25) 

Proof. 

( )L t  is the Lagrangian (3.9) for the inter-temporal economic surplus 

maximization problem and ( )L t  is the Lagrangian (3.18) for the inter-temporal profit 



 

 

51

maximization problem. Since ( ) ( ) ( )Ŝ t L t L t= − , the subsidy (3.25) makes the pseudo-

monopolist behave optimally because it redefines his problem and renders it equivalent 

to that of the social planner: ( ) ( ) ( ) ( ) ( ) ( )( ) ( )ˆL̂ t L t S t L t L t L t L t= + = + − = .  

 

Alternatively, the social planner can influence the pseudo-monopolist by 

requesting that a royalty on the resource be paid to the government.  

 

Proposition 3.6. 

The optimal royalty to be paid by the pseudo-monopolist at each point in time is 

 ( ) ( )
( )( ) ( )( )k s t E t

0
t D x dx

+λ φ

ℜ = ∫ . (3.26) 

Proof. 

The redefined pseudo-monopolist's problem can be written as 

 

( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( ) ( ) ( )

L L

L

L t L t t

k s t t h t ,s t E t D k s t E tQ Q

c E t t g s t D k s t E t

t D k s t E t t t .Q

= −ℜ

= − + λ φ + λ φ

⎡ ⎤− +µ − + λ φ⎣ ⎦
⎡ ⎤+γ + λ φ − −ℜ⎣ ⎦

  (3.27) 

The necessary conditions for problem (3.27) are given by (3.28)-(3.33). 

( ) ( )( ) ( ) ( ) ( )( ) ( )
LL

tQ LtQ k s t t ,s t t 0QhL = − − γ ≤ , ( )L t 0Q ≥ , and  

 ( )( ) ( ) ( ) ( )( ) ( )( ) ( )
L tQ L Lk s t t ,s t t t 0Q Qh− − γ = ; (3.28) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )E t E t t t D ' ' E t c ' E t 0L = λ φ−µ + γ ⋅ λ φ− ≤ , ( )E t 0≥ , and  

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( ) ( )E t t t D ' ' E t c ' E t E t 0λ φ−µ + γ ⋅ λ φ− = ; (3.29) 
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( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )

s t

s t L L

t tL

t ,s t k ' s t tQ Qh

D' k ' s t E t t t - t g ' s t k ' s t D

− = µ −δµ

= −

− ⋅ λ φ−µ + γ µ + ⋅

&

 (3.30) 

( ) ( ) ( )( ) ( )t s t g s t DLµ = = − ⋅& ;  (3.31) 

( ) ( ) ( )Lt D t 0QLγ = ⋅ − ≥ , ( )t 0γ ≥ , ( ) ( )( ) ( )LD t t 0Q⋅ − γ = ; (3.32) 

( ) t

t
lim t e 0−δ

→∞
µ ≥ , ( ) ( ) t

t
lim t s t e 0−δ

→∞
µ = .  (3.33) 

 

Conditions (3.28)-(3.33) are the same as (3.10)-(3.15), and hence, the royalty 

suggested in (3.26) influences the pseudo-monopolist to behave optimally at the 

margin.  

 

Even though the policy suggested in Proposition 3.6 triggers the right behavior 

at the margin and may at first glance seem preferable to the policy suggested in 

Proposition 3.5, it would be difficult to implement. Indeed, the optimal royalty 

represents the area to the left of the inverse demand curve between zero and the 

equilibrium price level. The larger QI, the smaller the harvest net revenue for the 

pseudo-monopolist, but he still needs to pay the royalty over the entire equilibrium 

quantity, ( )( ) ( )( )( ) ( ) ( ) ( ) ( )( )LL ID k s t E t t E t ,Q t ,s tQ Q+ λ φ = + . Hence, the more 

likely will the pseudo-monopolist’s equilibrium behavior result in a negative value for 

the Lagrangian. In such an instance the pseudo-monopolist would prefer to shut down 

unless the social planner pays a large lump-sum subsidy. 
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Note that, in the special case where the harvest costs are not stock-dependent, 

the pseudo-monopolist's enforcement level is sub-optimal in the short run but not in the 

long run. That is because the pseudo-monopolist's steady state is the same as the social 

planner's: ( )*g ' s∞ = δ . Therefore, in that special case, once the steady state is reached, 

no more corrective policy is necessary for the pseudo-monopolist to behave optimally. 

Another alternative when the legal harvester is a pseudo-monopolist is that the 

resource planner be responsible for enforcement. However, the fines collected would 

have to be given back to the pseudo-monopolist for him to harvest optimally. This way, 

the enforcement level can be optimal, and both legal and illegal harvesters would react 

cost-effectively to it. The disadvantage of this approach is that external budget, such as 

government spending, must be devoted to enforcement while the resource rents and 

profits do not accrue to a governmental agency. In countries where the government is 

relatively poor, this would not likely be feasible. 

3.4.2. Equilibrium paths 

If one of the above policies is put in place, then the equilibrium paths occur as 

those found for the social planners' problem. The analysis of section 3.2.1 therefore 

holds for the regulated pseudo-monopolist. 

3.4.3. Steady state equilibrium 

Similarly, if the above policies are put in place, then the same long run 

equilibria occur as those found in the social planners' problem. The analysis of section 

3.2.2 therefore holds for the regulated pseudo-monopolist. 
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For the special case where the harvest cost is not stock-dependent, then at the 

unique steady state, a corrective policy is no longer necessary however. This is because 

the unique steady state of the social planner and the pseudo monopolist coincide, as 

long as the pseudo-monopolist discounts the future at the social discount rate, δ. 

 

3.5. Conclusion 

A model that is more general than previous models with costly enforcement of 

property rights over a renewable resource was presented in this chapter. Indeed, the 

price of the resource, the legal harvest level and the property right enforcement level 

were all endogenously determined in a dynamic version of the dominant-firm-

competitive-fringe model of industrial organization. Moreover, different relative harvest 

cost structures across legal and illegal harvesters were allowed. We showed that, given 

the marginal harvest costs of the legal harvester relative to that of the poachers, it could 

be optimal to have a positive and persistent black market. Hence, the presence of a 

black market does not necessarily indicate that resource management policy is 

inexistent or sub-optimal; it could simply be better to have some illegal harvest than 

none when enforcement is costly. 

Furthermore, with a resource that has market value only, we've shown that if the 

pseudo-monopolist is allowed to keep the fines collected from poachers, he will insure 

that the total harvest is provided cost-effectively. His level of enforcement will in 

general be sub-optimal however, and if it is, a corrective policy is required to trigger 

overall optimal behavior. 
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CHAPTER 4. THE OPTIMAL EXTINCTION OF A RENEWABLE 

NATURAL RESOURCE WITH COSTLY MANAGEMENT 

 

4.1. Introduction 

In this chapter, we make use of a model developed by Cropper et al. (1979) for 

the problem of a benevolent social planner who chooses the optimal harvest level of a 

renewable resource over the infinite horizon. We do this for two reasons: 1) in order to 

gain more insight into the model with costly management and stock-dependent harvest 

cost, we must specify some functions as compared to the more general model in 

Chapter 3; 2) in order to compare the phase diagrams of the social planner’s 

management decisions with and without costly management so we can see the impact of 

costly management on long run equilibrium. 

Cropper et al. (1979) have specified a harvest cost function that depends on the 

resource stock but is linear in harvest quantity. We make the same assumption, but 

instead of considering variable enforcement cost, as in Chapter 3, here we assume an 

instantaneous flow of fixed cost of resource management, M > 0. This simplification is 

necessary in order to analyze phase diagrams. Indeed, the model with variable 

enforcement costs does not allow for steady states when instantaneous gains are stock-
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dependent as in Cropper et al. (1979).9 Thus we still have positive transaction costs of 

resource management, but here it is not explicitly related to illegal behavior. Instead, we 

can think of the planner charging a per-unit harvest tax, ( )tτ , to the harvesters, while 

collecting and redistributing the tax incurs a fixed cost, M, at each point in time, which 

is independent of the tax level and time. If however the planner decided not to collect 

the tax, then M = 0, and the resulting exploitation regime of the resource would be open 

access. 

When resource management is costly, open access may be preferred to effective 

management if the cost of management is too high for a given stock level. In fact, there 

could be resource management regime switches between open access and effective 

costly management as the resource stock changes over time. In order to consider 

management regime switches, let us define the overall resource manager's problem in 

two simultaneous stages. 

The second stage, which must be solved before the first one, includes two 

Management problems: the harvesters’ problem under open access exploitation, and the 

social planner's costly management problem. Under open access, harvesters choose 

their equilibrium harvest assuming entry until they reach zero profit. Under costly 

                                                 

9 Assuming a well behaved model with costly enforcement of property rights and 

Cropper et al.’s other model specifications, steady states do not exist in the positive 

quadrant. Conversely, assuming steady states in the positive quadrant, that model is not 

well-behaved. This is why the costly management specification is simplified to an 

instantaneous flow of fixed cost. 
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management, the manager chooses the tax, τ , that will trigger second best optimal 

harvest behavior. These two management problems are solved in sections 4.2 and 4.3. 

The first stage is the social planner's Timing Problem for management regime 

switches across open access and costly management (or vice versa). Once the planner 

knows his second best optimal choice of tax, ( )tτ , and the equilibrium choice of harvest 

by the harvesters under either regime, he must choose the best management regime as 

well as the timing of management regime switches. The Timing Problem is solved in 

section 4.4. Then in section 4.5, we characterize the phase diagrams for the problem 

with fixed flow cost of management with the possibility of management regime 

switches. In section 4.6, we conclude. 

4.2. Harvesters' problem 

In this model, we suppose that harvesters are homogeneous, and they all have a 

right to harvest. Individual harvesters do not own the resource, so they are static 

optimizers who operate in open access. At any point in time, t, a harvester takes the 

resource market price, P, and the per-unit tax, ( )tτ , as given. An individual harvester's 

continuous and twice differentiable harvest cost function is ( ) ( )K(s t )q t , where q is the 

amount of the resource an individual harvests, s is the resource stock and K(s(t)) is the 

marginal cost of harvesting. Here we assume that ( )K '(s t ) 0<  and ( )K ''(s t ) 0≥ . There 

is no fixed cost of harvest. A harvester's problem is to maximize his profit, π (t): 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
q t

Max t P t q t K s t q t t q t

P t K s t t q t

π = − − τ

⎡ ⎤= − − τ⎣ ⎦

 

The individual's first order condition is: 
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 ( ) ( ) ( )( ) ( )q t P t K s t t 0π = − − τ = . (4.1) 

The open access regime will lead to entry until all expected rents are dissipated, 

so that, in equilibrium, we obtain for each harvester: 

 ( ) ( ) ( )( ) ( ) ( )t P t K s t t q t 0⎡ ⎤π = − − τ =⎣ ⎦ . (4.2) 

Equating (4.1) to (4.2) leads to the conclusion that in open access, the number of 

harvesters is indeterminate, as well as the quantity harvested by each one of them, due 

to the perfect competition among them and their constant per-unit harvest cost, for a 

given stock level, K(s). The total quantity harvested, ( ) ( )Q t q t= ∑ , is determinate 

however as it occurs at the equilibrium between supply and demand. On the supply side, 

the market price is affected by the resource stock level, s(t), and the resource planner's 

tax, ( )tτ . Indeed, by combining (4.1) and (4.2), one can infer the price level, given the 

harvester's behavior, to be 

 ( )( ) ( )P K s t t= + τ . (4.3) 

Given the downward-sloping inverse demand curve ( )( )P Q t , the market 

equilibrium for the total quantity harvested and consumed is 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )1Q t P K s t t D K s t t−= + τ = + τ . (4.4) 

A positive tax will lead to a smaller total harvest, since D'(t) < 0: 

( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )OAQ s t , t D K s t t D K s t s tQτ = + τ < = , where ( )( )OA s tQ  is the 

open access total harvest at stock level s. Hence some positive level of resource 

management will occur, i.e., harvest will be lower than under open access, as long as 

( )t 0τ > . 
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4.2.1. Equilibrium paths and steady states under open access exploitation 

The phase diagram of open access exploitaiton in (Q,s)-space is relatively 

simple. First, the equation of motion for the resource is ( ) ( )( ) ( )( )s t g s t Q s t= −&  and we 

assume g(s) to be a compensatory biological growth function. The steady state locus 

( )s t 0=&  is plotted as ( )( ) ( )( )g s t Q s t= . We need to understand harvesting behaviour as 

the resource stock varies. Assuming open access, ( )t 0τ = , and from (4.4) harvest is 

equal to ( )( ) ( )( )( )Q s t D K s t= . As s increases, harvest increases as well because the 

inverse demand is downward-sloping and the harvest cost decreases with stock: 

( )( ) ( )( )( ) ( )( )Q' s t D ' K s t K ' s t 0= > . Sample equilibrium paths with three different 

harvest costs, Ka(s) > Kb(s) > Kc(s), are illustrated in Figure 4.1. 

Figure 4.1. Equilibrium paths and steady states in open access; ( )( )K ' s t 0>  

       Q 
    ( ) ( )( )OA

c cQ s D K s=             ( ) ( )( )OA
b bQ s D K s=  

 
 
 
 

 
 
          ( ) ( )( )OA

a aQ s D K s=  
 
                 0s =&  
 
 
           0      unstable

b,s ∞          stable
b,s ∞  sMSY  stable

a,s ∞       s          s 
     (extinction) 
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In Figure 4.1, we see that there can be multiple steady states, but one at most at 

stocks larger than sMSY, for which g'(s) < 0. In open access, extinction can be prevented 

if harvesting costs are high enough, such as for Ka(s) in Figure 4.1. The possibility of 

extinction with open access exploitation could depend on the initial resource stock for 

lower harvesting costs, as for Kb(s), where if s0 < unstable
b,s ∞  extinction eventually occurs 

but not otherwise. Finally, for low enough harvesting costs, such as Kc(s), extinction is 

the ultimate outcome of open access exploitation, irrespective of the initial resource 

stock.  

 

4.3. Social planner's costly management problem 

The resource planner's problem is to find the optimal total harvest over time, 

Q(t), given s(t), that will maximize the flow of discounted social welfare as measured 

by the instantaneous total economic surplus. The resource planner's problem is 

 
( )

( )
( )

( )( ) ( )
Q tT

t

Q t 0 0
Max p x dx K s t Q t M e dt−δ⎡ ⎤

− −∫ ∫⎢ ⎥
⎣ ⎦

 (4.5) 

subject to 

( ) ( )( )
( )
( ) ( )

0

s t g s t Q,

s t 0 given,s
s t ,Q t 0, t,

= −

= =

≥ ≥ ∀

&

 

where M is the instantaneous fixed cost due to resource management, and x is a 

placeholder. 

The current value Hamiltonian corresponding to the resource planner's problem 

is 
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 ( )
( )

( )( ) ( ) ( ) ( )( ) ( )( )
Q t

0
H P x dx K s t Q t M t g s t Q t= − − +µ −∫%  (4.6) 

where µ  is the current value co-state variable or shadow value of the resource. Using 

Leibnitz' rule of differentiation of integrals where appropriate and assuming an interior 

solution, the necessary conditions for this problem are as follow. 

( ) ( )( ) ( )( ) ( )Q tH P Q t K s t t 0= − −µ =%  (4.7) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )s tH t t K ' s t Q t t g ' s t− = µ −µ δ = −µ% &  (4.8) 

( ) ( ) ( )( ) ( )tH s t g s t Q tµ = = −% &   (4.9) 

( ) t

t T
lim t e 0−δ

→
µ ≥ , ( ) ( ) t

t T
lim t s t e 0−δ

→
µ = . (4.10) 

For an interior solution, the necessary Legendre condition holds: 

( ) ( ) ( )( )Q t Q tH P ' Q t 0= <% . Further, we have ( ) ( ) ( )( ) ( ) ( )( )s t s tH K '' s t t g '' s t 0= − +µ <% , 

( ) ( ) ( )( )Q t s tH K ' s t 0= − >% , and we assume that ( ) ( ) ( ) ( ) ( ) ( )( )2

Q t Q t s t s t Q t s tH H H 0− ≥% % % , which 

implies the concavity of the Hamiltonian and guarantees a solution to this problem. 

4.3.1. Phase diagrams for the costly management problem 

Assuming T= ∞, the phase diagrams with costless resource management are 

analyzed in Cropper et al. (1979). A summary is presented in Appendix II. 

We want to plot the phase diagram in (s,Q)-space for problem (4.5), i.e., for the 

Cropper et al. (1979) model only a fixed flow cost of resource management, M. We 

therefore need two loci: ( ) ( )( )s s t ,Q t 0=&  and ( ) ( )( )Q s t ,Q t 0=& . The first one is 

already expressed in the proper space (4.9): ( ) ( )( ) ( )s t g s t Q t 0= − =& . For the second 
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one, we use the first two necessary conditions, (4.7) and (4.8). First we differentiate 

(4.7) with respect to time and we obtain ( ) ( )( ) ( ) ( )
( )( )

K ' s t s t t
Q t

P ' Q t
+µ

=
& &

& . From (4.9), we 

can substitute ( )( ) ( )g s t Q t⎡ ⎤−⎣ ⎦  for s& . From (4.7) and (4.8), we can substitute 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )t P Q t K s t g ' s t K ' s t Q t⎡ ⎤ ⎡ ⎤µ = − δ − +⎣ ⎦ ⎣ ⎦&  for ( )tµ& . We then have the 

locus in the appropriate space: 

 ( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( )
P Q t K s t g ' s t K ' s t g s t

Q t 0
P ' Q t

⎡ ⎤ ⎡ ⎤− δ − +⎣ ⎦ ⎣ ⎦= =& . (4.11) 

We realize that (4.11) is similar to equation (A1) in Cropper et al. (1979), where 

the planner's objective function was the same as (4.5), except that management was 

considered to be costless, which means that M = 0 in their model. Therefore, we 

conclude that the locus ( )Q t 0=&  is exactly the same, whether M is positive or not. 

Intuitively, a flow of fixed management cost should not influence the harvest level if 

management is chosen. The impact it will have on the solution to the problem is in the 

choice of managing the resource or not. Hence, as M varies, the locus ( )Q t 0=&  will not 

move. Of course, the locus ( )s t 0=&  is the same as in Cropper et al. (1979) as well, 

regardless of M. 

Let us introduce the phase diagrams for this problem under costless resource 

management, which are characterized in Cropper et al. (1979). See Figures 4.2 and 4.3, 
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where we have drawn possible loci for ( )Q t 0=&  that are similar to theirs, assuming 

costless management.10 

In Figure 4.2, we have the case where ( )0'g<δ . Thick arrowed lines represent 

the optimal paths under costless management. In this case, it is always best to manage 

the resource, no matter its stock size. This is so because it is assumed that the zero 

average profit line, ( )( ) ( )( )P Q t K s t 0− = , is above the optimal paths under 

management along the entire range of feasible stock sizes. From this phase diagram, we 

see that extinction is impossible, so the resource is necessarily conserved in the long 

run. Depending on s0, the steady state stock is either at s*
1  or at s*

3 . There is also the 

special case where s0 = s*
2 , which is the only way to reach and stay at the unstable 

steady state, s*
2 . 

                                                 

10 See APPENDIX II for explanations on Figure 4.1 and 4.2, which were analyzed by 

Cropper et al. (1979). 
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Figure 4.2. Steady State Equilibria with Stock-Dependent Harvest Costs and Costless 

Enforcement; ( )0'g<δ . 

 

       Q      ( ) ( ) 0sKQP =−  

 

     0Q =&                 0Q =&  

 
 
 
 
 
 

 
 

 
 

         0s =&  
 
 
 
0       s~ ŝ   *

1s       *
2s       sm      *

3s     s  s 
 

In Figure 4.3, the case where ( )0'g>δ  with costless management is presented. 

The optimal paths under costless management are presented as thick arrowed lines. 

Again, it is always best to manage the resource, no matter its stock size for the same 

reason as in Figure 4.1. In this phase diagram however, extinction is optimal if s0 < s*
1 . 

But if s0 > s*
1 , then the optimal steady state stock is positive and it is s*

3 . In the special 

case where s0 = s*
1 , then the system remains at that steady state forever. 
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Figure 4.3. Steady State Equilibria with Stock-Dependent Harvest Costs and Costless 

Enforcement, ( )0'g>δ  

       Q 
      ( ) ( ) 0sKQP =−  

 
 

      0Q =&  
 
 
 
 
 
 
 
 
 
 
 
 

            0s =&  
 
 
 
0  s*

1        sm    s*
2     s  s 

 

Of interest to us is when management is worth doing at a fixed flow cost of M. 

In Cropper et al. (1979), the resource was worth managing because for all possible s, 

the authors assumed that * 0µ > , which is implicit in the fact that in Figures 4.2 and 4.3 

the zero average profit line, ( )( ) ( )( )P Q t K s t 0− = , is above the optimal paths under 

management along the entire range of feasible stock sizes. With M > 0 in problem (4.5) 

however, the locus of management regime switch differs from ( )( ) ( )( )P Q t K s t 0− = . 

Let us characterize it by solving what we call the social planner’s timing problem. 
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4.4. Social planner's timing problem 

The social planner's problem of choosing between costly management and open 

access is a timing problem since switches can occur across management regimes as the 

resource stock varies. The timing of resource management regime switch(es) is a 

problem that includes the resource management sub-problems in open access (presented 

in section 4.2) and with costly management (problem (4.5) presented in section 4.3). In 

this section, we define the timing problem and we characterize its necessary conditions. 

In order to find the second-best timing of management regime switch(es), we 

therefore assume that the current value Hamiltonian for problem (4.5) is optimized, and 

we denote it as ( )H* t% . Assuming that T0 = 0, the resource planner's timing problem is 

as follows: 

{ }
( ) ( )

( ) ( ) ( )( )

i 1

i 1 i 2
i

i 1

i

T
rt

i 1 i 2T ,T i T

T Q*
rt

i 0T

Max J T ,T H* t e dt

p x dx K s* Q* M * g s* Q* e dt

−
+

+ + +

−
+

+

−
+ +

−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤

= − − +µ −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∫

∑ ∫ ∫

%

,  (4.12) 

where i = 0, 2, 4, …∞. 

Using Leibnitz' rule of differentiation of integrals, the Kuhn-Tucker conditions 

that let us peg i 1T + , the time(s) when open access is chosen over costly management, are 

 ( ) ( ) i 1i 1 i 2 rT
i 1

i 1

J T ,T
H* T e 0

T
−
++ + −−

+
+

∂
= ≤

∂
% , 

 i 1T 0+ ≥  and ( )i 1 i 2
i 1

i 1

J T ,T
T 0

T
+ +

+
+

∂
=

∂
,   i = 0, 2, 4, …, ∞. (4.13) 

We can rewrite these conditions in terms of the current value Hamiltonian instead: 



 

 

67

 ( ) ( )i 1i 1 i 2 rT
i 1

i 1

J T ,T
e H* T 0

T
++ + −

+
+

∂
= ≤

∂
% , 

 i 1T 0+ ≥  and ( )
i 1i 1 i 2 rT

i 1
i 1

J T ,T
T e 0

T
++ +

+
+

∂⎡ ⎤
=⎢ ⎥∂⎣ ⎦

,   i = 0, ,2, 4, …, ∞. (4.14) 

Note however that in such a case, the resource management problem no longer 

has an infinite horizon. Therefore in that case, the transversality condition (4.10) is 

replaced by the following condition: 

 ( )i 1T 0+µ ≥ , ( ) ( )i 1 i 1T s T 0+ +µ = , Ti+1 < ∞. (4.10') 

The Kuhn-Tucker conditions that let us peg i 2T + , the time(s) when costly 

management is chosen over open access, are 

 ( ) ( ) i 2i 1 i 2 rT
i 2

i 2

J T ,T
H* T e 0

T
+
++ + −+

+
+

∂
= − ≤

∂
% , 

 i 2T 0+ ≥  and ( )i 1 i 2
i 2

i 2

J T ,T
T 0

T
+ +

+
+

∂
=

∂
,   i = 0, ,2, 4, …, ∞. (4.15) 

We can rewrite these conditions in terms of the current value Hamiltonian instead: 

 ( ) ( )i 2i 1 i 2 rT
i 2

i 2

J T ,T
e H* T 0

T
++ + +

+
+

∂
= − ≤

∂
% , 

 i 2T 0+ ≥  and ( )
i 2i 1 i 2 rT

i 2
i 2

J T ,T
T e 0

T
++ +

+
+

∂⎡ ⎤
=⎢ ⎥∂⎣ ⎦

,   i = 0, 2, 4, …, ∞. (4.16) 

First order conditions (4.14) and (4.16) reveal that a switch occurs precisely 

when ( )H* t 0=% . Indeed, the fixed flow cost of management can lead ( )H* t%  to be 

negative even though the open access locus (or zero profit locus) is above the infinite 

horizon solution paths for all feasible s (this is possible only because M is not incurred 

in open access). 
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4.5. Steady states with costly resource management 

We already mentioned that for the problem with fixed flow of management cost, 

the loci ( )s t 0=&  and ( )Q t 0=&  are entirely similar to Figures 4.2 and 4.3 (from Cropper 

et al. (1979)). The difference in the phase diagrams lies in whether it is worth managing 

the resource or not, given that M must be paid at each instant for resource management, 

but not in open access. In section 4.4, we found that the condition for a management 

regime switch is ( ) ( ) ( )( )
Q*

0
H* p x dx K s* Q* M * g s* Q* 0= − − +µ − =∫% . Let us 

characterize this locus. We use first order condition (4.7) in the optimized Hamiltonian, 

leading to  

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Q

0
Q

0

H Q,s, * P x dx K s Q P Q K s g s Q M

P x dx P Q Q P Q K s g s M

U Q P Q Q P Q K s g s M

µ = − + − − −⎡ ⎤∫ ⎣ ⎦

= − + − −⎡ ⎤∫ ⎣ ⎦

= − + − −⎡ ⎤⎣ ⎦

%

 (4.17) 

Note that with this notation, ( ) ( )U ' Q P Q 0= >  and ( ) ( )U '' Q P ' Q 0= < . 

The following analysis is divided into three cases, depending on whether the 

locus ( )H Q,s, * 0µ =%  intersects the zero profit line or not.  

 

Assumption 4.1 

The zero profit line is above the growth function for all feasible stock, as in 

Cropper et al. (1979) and as depicted in Figure 4.2 and Figure 4.3 
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Assumption 4.1 holds in all cases considered below. 

The first case is when the locus ( )H Q,s, * 0µ =%  intersects the zero profit line. 

The second case is when ( )H Q,s, * 0µ =%  is below the zero profit line for all feasible s 

(this implies a relatively small M). Finally, the third case is when ( )H Q,s, * 0µ =%  is 

above the zero profit line for all feasible s (this implies a large enough M that 

management is prohibitively costly for all feasible s). 

 

Case 1 : The locus ( )H Q,s, * 0µ =%  intersects the zero profit line, 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦  at stock sπ . 

First consider points where the locus ( )H Q,s, * 0µ =%  intersects the vertical axis, 

where s 0= . At s 0= , the locus ( )H Q,s, * 0µ =%  implies ( ) ( )U Q P Q Q M− = : the 

instantaneous consumer surplus generated by costly resource management is equal to 

the instantaneous cost of management, M. Let Qm be the quantity that satisfies 

( ) ( )U Q P Q Q M− =  at s 0= . 

Second, consider the point(s) where the locus ( )H Q,s, * 0µ =%  intersects the zero 

profit line (or open access locus) defined by ( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ , or equivalently, with 

no restriction on g(s), ( ) ( ) ( )P Q K s g s 0− =⎡ ⎤⎣ ⎦ . If an intersection exists, it occurs at 

(Q,s) that satisfies ( ) ( ) ( ) ( ) ( ) ( )H Q,s, * U Q P Q Q P Q K s g s Mµ = − + − −⎡ ⎤⎣ ⎦%  

( ) ( ) ( )P Q K s g s 0= − =⎡ ⎤⎣ ⎦ , which means that ( ) ( )U Q P Q Q M− = , the instantaneous 

consumer surplus generated by management is equal to M (for shortness, CS = M). 
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Figure 4.4 illustrates the open access locus and the CS = M line, as well as the different 

regions defined by them. 

 

Figure 4.4. Regions delimited by the intersection of loci ( )H Q,s, * 0µ =%  and 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦  

  Q 
               P(Q)-K(s)=0 
  (I) 
 
 P(Q)-K(s)<0, U(Q)-P(Q)Q>M   P(Q)-K(s)>0, 
        U(Q)-P(Q)Q>M; H* 0>%  
  s=sπ  
                    U(Q)-P(Q)Q=M 

Qm    P(Q)-K(s)<0, 
       U(Q)-P(Q)Q<M;  
 H* 0<%  

    (II) 
 Qp  

  P(Q)-K(s)>0, U(Q)-P(Q)Q<M 
 
 

     0           s 

From the regions defined in Figure 4.4, the ( )H Q,s, * 0µ =%  locus must lie in 

regions (I) and (II) exclusively since in the other two regions, ( )H Q,s, * 0µ >%  or 

( )H Q,s, * 0µ <% , unequivocally. 

The slope of the ( )H Q,s, * 0µ =%  locus is 

 
( )

( ) ( ) ( ) ( ) ( )
( ) ( )H Q,s, * 0

P Q K s g ' s K ' s g sdQ
ds P ' Q Q g sµ =

− −⎡ ⎤⎣ ⎦=
−⎡ ⎤⎣ ⎦%

. (4.18) 

The slope of ( ) ( ) ( )P Q K s g s 0− =⎡ ⎤⎣ ⎦ , assuming ( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ , is  
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( ) ( )

( )
( )P Q K s 0

K ' sdQ
ds P ' Q− =⎡ ⎤⎣ ⎦

= . (4.19) 

At s 0= , the slope of ( )H Q,s, * 0µ =%  is  

 
( )

( ) ( ) ( )
( )

m

H Q,s, * 0 m ms 0

P Q K 0 g ' 0dQ
ds P ' Q Qµ =

=

−⎡ ⎤⎣ ⎦=
%

. (4.20) 

Let us define Qp as the point where the zero profit line intersects the Q axis. 

Since Qm is above Qp, then at s 0= , ( ) ( )mP Q K 0 0− <⎡ ⎤⎣ ⎦ , and the slope of 

( )H Q,s, * 0µ =%  is positive. If Qm were below Qp, then at s 0= , we would find 

( ) ( )mP Q K 0 0− <⎡ ⎤⎣ ⎦ , and thus the slope of ( )H Q,s, * 0µ =%  would be negative. If Qm = 

Qp then at s 0= , we would have ( ) ( )mP Q K 0 0− =⎡ ⎤⎣ ⎦ , and the slope of ( )H Q,s, * 0µ =%  

would be  zero. In Case 1, where the locus ( )H Q,s, * 0µ =%  and the zero profit line 

intersect, Qm > Qp and therefore, the slope of ( )H Q,s, * 0µ =%  at s 0=  is positive. 

If the zero profit line intersects the ( )H Q,s, * 0µ =%  locus at s s 0π= > , the slope 

of the ( )H Q,s, * 0µ =%  locus at that intersection is 

 
( )
( ) ( )

( )

( ) ( )

( )
( )
( )

H Q,s, * 0
P Q K s 0

0, if Q g s
K ' sdQ 0, if Q g s

ds Q ,if Q g s .P ' Q 1
g s

µ =
− =⎡ ⎤⎣ ⎦

> <⎧
⎪= < >⎨

⎡ ⎤ ⎪= ∞ =−⎢ ⎥ ⎩
⎣ ⎦

%
 (4.21) 

(This is also the slope of the ( )H Q,s, * 0µ =%  locus where g'(s)=0) 

Under Assumption 4.1, the slope of the ( )H Q,s, * 0µ =%  locus is negative at its 

intersection with the zero profit line at s s 0π= > . By continuity of the locus 
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( )H Q,s, * 0µ =% , we conclude that there must be a stock in the interval 0 < s < sπ  where 

the slope of the locus is zero. From (4.18), this implies 

( ) ( ) ( ) ( ) ( )P Q K s g ' s K ' s g s− =⎡ ⎤⎣ ⎦ . The right hand side of that equation is negative and 

since in the interval 0 < s < sπ  the locus ( )H Q,s, * 0µ =%  is above the zero profit line, 

( ) ( )P Q K s 0− <⎡ ⎤⎣ ⎦ . Therefore ( )H Q,s, * 0µ =%  has a zero slope at some s such that 

g'(s)>0, or in the interval 0 < s < sMSY, where sMSY is the resource stock that allows the 

maximum sustainable yield (g'(sMSY)=0). 

If the ( )H Q,s, * 0µ =%  locus intersects the growth function, then where this 

happens Q = g(s) and we can rewrite (4.17) as ( )( )H g s ,s, * 0µ =%  as 

( )( ) ( ) ( )U g s K s g s M 0− − = : the instantaneous total economic surplus of harvesting is 

equal to the flow fixed cost of management. The slope of ( )( )H g s ,s, * 0µ =%  is infinite: 

 ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

H* 0
Q g s

P Q K s g ' s K ' s g sdQ
ds P ' Q Q g s

P Q K s g ' s K ' s g s
0

=
=

− −⎡ ⎤⎣ ⎦=
−⎡ ⎤⎣ ⎦

− −⎡ ⎤⎣ ⎦= = ∞

%

  (4.21) 

If the intersection is at a stock smaller or equal to the maximum sustainable 

yield, g'(s)≥0, and from (4.18), the slope of ( )H Q,s, * 0µ =%  is negative above the 

growth function and positive below it. 

Alternatively, if the intersection between ( )H Q,s, * 0µ =%  and the growth 

function occurs at a stock greater than the maximum sustainable yield, g'(s)<0. From 

(4.18), this implies that the slope of ( )H Q,s, * 0µ =%  is positive above the growth 
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function and negative below it. Since at the intersection between ( )H Q,s, * 0µ =%  and 

the zero profit line the slope of ( )H Q,s, * 0µ =%  is negative, the alternative case implies 

that the slope is infinite somewhere above the growth function. However, from (4.18), 

we see that the slope of ( )H Q,s, * 0µ =%  is infinite only as it crosses the growth 

function. The alternative case where ( )H Q,s, * 0µ =%  crosses the growth function at a 

stock greater than the maximum sustainable yield (where g'(s)<0) is impossible. 

Let us now characterize the slope of the ( )H Q,s, * 0µ =%  locus where it intersects 

the Q 0=&  isocline. As shown in (4.11), Q 0=&  satisfies 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )P Q t K s t g ' s t K ' s t g s t 0⎡ ⎤ ⎡ ⎤− δ − + =⎣ ⎦ ⎣ ⎦ , or 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )P Q t K s t g ' s t K ' s t g s t P Q t K s t 0⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − = δ − >⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

because ( )( ) ( )( )P Q t K s t 0⎡ ⎤− = µ >⎣ ⎦  by Assumption 4.1. Since the slope of the 

( )H Q,s, * 0µ =%  locus is 
( )

( ) ( ) ( ) ( ) ( )
( ) ( )H Q,s, * 0

P Q K s g ' s K ' s g sdQ
ds P ' Q Q g sµ =

− −⎡ ⎤⎣ ⎦=
−⎡ ⎤⎣ ⎦%

, at an 

intersection with Q 0=& , the numerator of the slope is positive. Hence, at Q 0=& , 

( )H Q,s, * 0

dQ 0
ds µ =

>
%

 if ( )Q g s 0− <⎡ ⎤⎣ ⎦  and 
( )H Q,s, * 0

dQ 0
ds µ =

<
%

 if ( )Q g s 0− >⎡ ⎤⎣ ⎦ . This 

means that at an intersection with Q 0=& , the slope of the ( )H Q,s, * 0µ =%  locus is 

positive if it occurs below the growth function; it is negative if the intersection occurs 

above the growth function. 
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For the Case 1, where ( )H Q,s, * 0µ =%  and the zero profit line intersect, we have 

characterized the shape of the ( )H Q,s, * 0µ =%  locus. We must now prove the existence 

of cases where ( )H Q,s, * 0µ =%  intersects the growth function. 

 

Assumption 4.2 

( ) ( )P 0 K s 0− >⎡ ⎤⎣ ⎦  for all feasible s. 

 

We found that at s 0= , ( )H Q,s, * 0µ =%  implies ( ) ( )U Q P Q Q M− = , which is 

illustrated at point (Qm,0) in Figure 4.4. Under Assumption 4.1., if the locus 

( )H Q,s, * 0µ =%  and the zero profit line intersect at sπ , then the slope of ( )H Q,s, * 0µ =%  

is positive at s 0=  and negative at s sπ= . That slope is then infinite when 

( )H Q,s, * 0µ =%  intersects the growth function below the maximum sustainable yield, 

and it is positive below the growth function. Given the continuity of ( )H Q,s, * 0µ =% , 

the locus must either intersect the vertical axis again or it must intersect the horizontal 

axis. The only Q for which ( )H Q,s, * 0µ =%  at s 0=  is Qm. If the locus ( )H Q,s, * 0µ =%  

went back to it from below, it would have to pass through the region in Figure 4.4 

where H* 0<% . Therefore this is not possible and ( )H Q,s, * 0µ =%  must instead reach the 

horizontal axis where Q=0. 

Consider points where the locus ( )H Q,s, * 0µ =%  intersects the horizontal axis. 

At Q=0, ( )H Q,s, * 0µ =%  implies ( ) ( ) ( )P 0 K s g s M 0− − =⎡ ⎤⎣ ⎦ . Under Assumption 4.2 
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and since M > 0, if ( )H Q,s, * 0µ =%  intersects the horizontal axis, it must do so at some 

stock sh > 0. The slope of ( )H Q,s, * 0µ =%  at Q=0 is 

( )

( ) ( ) ( ) ( ) ( )
( ) ( )H Q,s, * 0

Q 0

P 0 K s g ' s K ' s g sdQ 0
ds P ' 0 g sµ =

=

− −⎡ ⎤⎣ ⎦= >
−%

 since it occurs on the left of the 

maximum sustainable yield. Therefore in Case 1, as long as Assumption 4.2 holds, 

( )H Q,s, * 0µ =%  intersects the horizontal axis. 

 

Proposition 4.1 

In Case 1, where the locus ( )H Q,s, * 0µ =%  intersects the zero profit line 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦  at stock sπ >0, under Assumptions 4.1 and 4.2, the locus 

( )H Q,s, * 0µ =%  intersects the growth function. 

Proof 

As demonstration above, the locus ( )H Q,s, * 0µ =%  is defined at (Qm,0), (Qm, 

sπ ) and at (0,sh). By continuity, this implies that ( )H Q,s, * 0µ =%  must cross the growth 

function.  

 

(Examples of Case 1 are illustrated in Figures 4.5.A-C and 4.6.A-B.) 

Let us now characterize how the consumer surplus line, ( ) ( )U Q P Q Q M− = , 

and locus ( )H Q,s, * 0µ =%  move on the phase diagram as M increases. First note that if 

M = 0, then ( ) ( )U Q P Q Q M− =  is verified at Qm = 0. This is the case for the Cropper 

et al. (1979) model depicted in Figures 4.2 and 4.3, where ( )H Q,s, * 0µ >%  for all 
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feasible s. As M increases, Qm increases and the ( ) ( )U Q P Q Q M− =  line moves up on 

the graph: 
( )

m

m m

dQ 1 0
dM P ' Q Q

−
= > . Since the open access locus (or zero profit line) is 

invariant with M, if M is large enough, ( ) ( )U Q P Q Q M− =  intersects it, as is assumed 

in Case 1. If M is relatively small however, Qm < Qp and ( ) ( )U Q P Q Q M− =  is below 

the open access locus for all feasible s; this is depicted in Case 2 below. If M is 

relatively large, then ( ) ( )U Q P Q Q M− =  is above the open access locus for all 

feasible s; this is Case 3 below. 

In Case 1, the locus ( )H Q,s, * 0µ =%  intersects the vertical axis at Qm, the 

horizontal axis at sh, and the open access locus at sπ . How does ( )H Q,s, * 0µ =%  vary as 

M increases? From (4.17), we find 
( ) ( ) ( )H Q,s, * 0

dQ 1
dM P ' Q g s Qµ =

=
−⎡ ⎤⎣ ⎦%

. Therefore, as M 

increases, the locus ( )H Q,s, * 0µ =%  above the growth function moves up on the phase 

diagram, and it moves down below the growth function. From (4.17) we also find 

( ) ( ) ( ) ( ) ( ) ( )H Q,s, * 0

ds 1
dM P Q K s g ' s K ' s g sµ =

=
− −⎡ ⎤⎣ ⎦%

. Hence, for stocks below the 

maximum sustainable yield and quantities on or below the open access locus, 

( )H Q,s, * 0

ds 0
dM µ =

>
%

, which is consistent with 
( )

m

m m

dQ 1 0
dM P ' Q Q

−
= >  found above. Thus 

as M increases, the area where ( )H Q,s, * 0µ <%  increases (this is delimited by the 

vertical axis and the horizontal axis around the origin and by the locus ( )H Q,s, * 0µ =% ). 
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In summary, in Case 1, where the zero profit locus and the surplus line (CS=M) 

cross at s = sπ > 0, in (Q,s)-space, the locus ( )H Q,s, * 0µ =%  starts at (Qm,0) and has a 

positive slope. It reaches a maximum in Q, and then slopes downward, more and more. 

It crosses both the zero profit locus and the surplus line at (Qm,sπ). It then crosses the 

growth function ( s 0=&  locus) with an infinite slope. Under the growth function, it has a 

negative slope and ultimately reaches the horizontal axis at (0,sh). The locus 

( )H Q,s, * 0µ =%  crosses the growth function at the maximum sustainable yield or at a 

smaller stock, i.e., at a stock such that ( )g ' s 0≥ . 

Given the characterization of ( )H Q,s, * 0µ =%  for Case 1, let us now analyze 

long term equilibria for the phase diagrams introduced in Cropper et al. (1979). In a 

similar but more general model, Lewis and Schmalensee (1977) showed that a 

necessary condition for not following the infinite horizon optimal path is that the steady 

state that would be realized starting at initial stock s0 lead to a negative steady state 

Hamiltonian.11 In section 4.4, we found the necessary condition ( )H Q,s, * 0µ =%  for the 

locus that delimits the stock range where the infinite horizon optimal path (costly 

management) and open access are chosen. These conditions will be instrumental to the 

following phase diagram analysis. 

                                                 

11 See Proposition 10 on page 546. In their article, Lewis and Schmalensee assume a 

fixed flow of harvest cost and no open access harvest. Hence in their model, if the fixed 

flow of harvest cost is too high, no harvest occurs at all and the resource stock grows to 

s . 



 

 

78

Figures 4.5A-C relate to Cropper et al.'s case where ( )g ' 0δ < , while Figures 

4.6B-C relate to Cropper et al.'s case where ( )g ' 0δ > . In all these figures, sc is the 

critical stock below which the initial stock, s0, leads to a path other than the infinite 

horizon optimal path in the costly management problem and ultimately, to extinction. 

In Figure 4.5.A, the fixed flow cost of management, M=MA, is smaller than in 

Figure 4.5.B where M=MB. Figure 4.5.C has the highest cost of all three figures, 

M=MC. Hence MA<MB<MC. This is illustrated by the surplus line moving up, sπ 

moving right and the area where ( )H Q,s, * 0µ <%  increasing from Figure 4.5.A to 4.5.B 

to 4.5.C. The same goes for Figures 4.6.A and 4.6.B: MAA<MBB. 
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Figure 4.5.A. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement; ( )0'g<δ . 

       Q      ( ) ( ) 0sKQP =−  

 

     0Q =&                 0Q =&  
        sπ   ( ) ( ) AU Q P Q Q M− =  

      Qm        
       Qp         H 0=%  

     
 
 
 

 
 

 
 

         0s =&  
 
 
 
0       s~ ŝ   *

1s       *
2s       sm      *

3s     s  s 
    sh   sfoc=sc 

In Figure 4.5.A, since MA is relatively small, the intersection between 

( )H Q,s, * 0µ =%  and the infinite horizon optimal path (sfoc) is at a rather low stock. Since 

at that intersection, s 0>&  on the optimal path, sc=sfoc: the critical initial stock under 

which the infinite horizon optimal path is sub-optimal is sfoc. For stocks such that 

foc 0s s s≤ ≤ , the infinite horizon optimal path is followed as if M=0. This is because at 

such higher stocks where harvest cost is smaller and harvest is greater, management 

cost is worth incurring. If s0 < sfoc, there is costly management and harvest until (Qm,sπ) 

is reached, after which open access prevails until extinction occurs. One possible path is 

illustrated on Figure 4.5.A between sfoc and sπ. The path chosen between those two 
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stocks must follow first order conditions (4.7)-(4.10). Specifically in finite horizon, 

(4.10) implies that when costly management is no longer incurred, since s(T)>0 at sπ, 

then we must have µ(T)=0: the resource manager's finite horizon path must reach the 

zero profit line, as depicted above. The second best optimal path illustrated between sfoc 

and sπ leads to ( )H Q,s, * 0µ >%  for that range of resource stock. There are several paths 

that reach the zero profit line, but the most inter-temporal welfare inducing one is 

chosen. From section 4.4, we know that a switch in management regime will occur at 

( )H Q,s, * 0µ =%  and transversality condition (4.10) tells us that the management path 

must reach the zero profit line. Hence, the end of the costly management regime must 

occur at (Qm,sπ). The exact shape of the path is unknown; it could be upward-sloping, 

downward-sloping or it could even be non-monotonic in Q. What we know for sure is 

that it starts at sfoc and ends at (Qm,sπ).  

If 0s sπ≤ , then we immediately have open access until extinction is reached. 
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Figure 4.5.B. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement; ( )g ' 0δ < . 

       Q 
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    sh  sfoc 

In Figure 4.5.B, the flow of fixed management cost, MB is greater than MA in 

Figure 4.5.A. Here the intersection between ( )H Q,s, * 0µ =%  and the infinite horizon 

optimal path (sfoc) is at a stock greater than *
1s , the lowest stable steady state in the 

phase diagram. The intersection occurs where s 0<&  on the optimal path, and therefore, 

sc= *
2s  : the critical initial stock under which the infinite horizon optimal path is sub-

optimal is the unstable steady state *
2s .  
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For small initial stocks, i.e., s0< *
2s , the second best optimal finite horizon 

management path is chosen between *
2s  and (Qm, sπ ), for which ( )H Q,s, * 0µ >% . Once 

(Qm, sπ ) is reached, no management occurs and open access prevails until extinction 

occurs. The finite horizon path between *
2s  and (Qm, sπ ) must follow first order 

conditions (4.7)-(4.10) and the necessary condition ( )H Q,s, * 0µ =%  when there is a 

switch from costly management to open access exploitation. Similarly to Figure 4.5.A, 

the exact shape of that path depends on the parameters of the problem and cannot be 

known in this general model. 

If 0s sπ≤ , then we immediately have open access until extinction is reached. If 

*
0 2s s≥ , the infinite horizon optimal path is followed as if M=0. As in Figure 4.5.A, this 

is because at such higher stocks where harvest cost is smaller and harvest is greater, 

management is worth paying for. 

In Figure 4.5.C, the fixed flow of management cost, MC, is even greater than in 

Figure 4.5.B. As in Figure 4.5.A, the intersection between ( )H Q,s, * 0µ =%  and the 

infinite horizon optimal path (sfoc) occurs where s 0>&  on the optimal path. Hence, 

sc=sfoc: the critical initial stock under which the infinite horizon optimal path is sub-

optimal is sfoc. For stocks such that foc 0s s s≤ ≤ , the infinite horizon optimal path is 

followed as if M=0. However, for smaller initial stocks, s0<sfoc, open access exploitation 

will eventually prevail, which will lead to extinction. If 0s sπ≤ , we immediately have 

open access until extinction is reached. If however 0 focs s sπ < < , then the path between 

sfoc and (Qm,sπ) is in finite horizon and must respect first order and transversality 
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conditions (4.7)-(4.10) as well as the necessary condition for a management regime 

switch: ( )H Q,s, * 0µ =% . As before, the shape of the finite horizon path between sfoc and 

(Qm,sπ) could vary depending on the parameters of the problem. One possible path is 

illustrated on Figure 4.5.C between sfoc and sπ.  

As we go from Figure 4.5.A to B to C, we note that as the fixed flow cost of 

management increases, the interval for s0 that leads to optimal infinite horizon paths 

contracts. 

 

Figure 4.5.C. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement; ( )0'g<δ . 
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In Figures 4.5.A-C, we assumed that ( )g ' 0δ < : the discount rate is small 

compared to the marginal biological growth close to extinction. In Cropper et al. (1979) 

extinction was never optimal in that case (see Figure 4.2). However, when the resource 

manager must pay a fixed flow of management cost M, despite the fact that ( )g ' 0δ < , 

there exists a critical stock sc, under which the second best optimal management will 

lead to extinction. This is what happens if s0<sc. 

In the next two figures (4.6.A-B), we assume that ( )g ' 0δ > : the discount rate is 

large compared to the marginal biological growth close to extinction. In that case, as 

shown by Cropper et al. (1979), at relatively small initial stocks, extinction is optimal 

even when resource management is costless (see Figure 4.3).  
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Figure 4.6.A. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement, ( )0'g>δ  

       Q 
      ( ) ( ) 0sKQP =−  
 

 
H 0=%       0Q =&  

   ( ) ( ) AAU Q P Q Q M− =  
      Qm           sπ 
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            0s =&  
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        sh     sfoc 

 

In Figure 4.6.A, the critical stock leading to extinction, sc, is *
1s , the same as if 

M=0. Indeed in the case where ( )g ' 0δ > , extinction is first best optimal for *
0 1s s< . 

Here however, if *
0 1s s< , then a second best optimal path is chosen because of the area 

where ( )H Q,s, * 0µ <% . A second best optimal path between *
1s  and (Qm, sπ ) is chosen 

so that ( )H Q,s, * 0µ >% . Then open access management prevails until extinction is 

reached. The finite horizon path between *
1s  and (Qm, sπ ) can be upward or downward 



 

 

86

sloping and it can even be non-monotonic in Q, as long as it follows necessary 

conditions (4.7)-(4.10) and ( )H Q,s, * 0µ =%  when costly management is abandoned for 

open access exploitation. If s0<sπ , then open access exploitation happens immediately 

until extinction of the resource is reached. For *
0 1s s≥ , the infinite horizon optimal path 

is followed towards *
2s  as if M=0.  

 

Figure 4.6.B. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement, ( )0'g>δ  
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In Figure 4.6.B, the fixed flow of management cost, MBB, is greater than MAA in 

Figure 4.6.A. Also, in Figure 4.6.B, since the locus ( )H Q,s, * 0µ =%  and the infinite 
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horizon path cross where s 0>& , then the critical stock, sc, is equal to sfoc. For stocks 

such that foc 0s s s≤ ≤ , the infinite horizon optimal path is followed as if M=0. At such 

larger stocks, per-unit harvest cost is smaller and instantaneous harvest is greater, which 

leads to management cost being worth incurring. 

However, for smaller initial stocks, s0<sfoc, open access exploitation will 

eventually prevail, which will lead to extinction. If 0s sπ≤ , then we immediately have 

open access until extinction is reached. If 0 focs s sπ < < , then the path between sfoc and 

(Qm,sπ) is in finite horizon and must respect first order and transversality conditions 

(4.7)-(4.10) as well as the necessary condition for a management regime switch: 

( )H Q,s, * 0µ =% . As before, the shape of the finite horizon path between sfoc and (Qm,sπ) 

could vary depending on the parameters of the problem. One possible path is illustrated 

on Figure 4.6.B between sfoc and (Qm,sπ).  

Going from Figure 4.6.A to Figure 4.6.B, we note once more that as the fixed 

flow cost of management increases, the interval for s0 that leads to the optimal infinite 

horizon path contracts. 

We now present Case 2. 

Case 2: The surplus line ( ) ( )U Q P Q Q M− =⎡ ⎤⎣ ⎦  lies below the zero profit locus, 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ .  

Consequently, Qm is below zero profit line, and ( )H Q,s, * 0µ =%  does not 

intersect the zero profit line. Let us illustrate the regions delimited by 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ , and ( ) ( )U Q P Q Q M− =⎡ ⎤⎣ ⎦  when Qm < Qp (see Figure 4.7). 
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Figure 4.7. Regions delimited by U(Q)-P(Q)Q=M, ( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦  and 

( )H Q,s, * 0µ =% when Qm < Qp. 

 

               P(Q)-K(s)=0 
  P(Q)-K(s)<0, 
         U(Q)-P(Q)Q<M;  

 H* 0<%  
    P(Q)-K(s)>0, 

 Qp     U(Q)-P(Q)Q>M; H* 0>%  
   
H 0=%  

Qm      U(Q)-P(Q)Q=M 
        

 
   (III) 
  P(Q)-K(s)>0, U(Q)-P(Q)Q<M 
 
 

     0                  s  s 
 

In this case, a locus ( )H Q,s, * 0µ =%  can only be found in region (III). Indeed, 

above the zero profit line H* 0<%  and between the zero profit line and the locus 

( ) ( )U Q P Q Q M− = , H* 0>% . We illustrate an example of locus ( )H Q,s, * 0µ =%  in 

Figure 4.7 for Case 2. The locus ( )H Q,s, * 0µ =%  has the following characteristics: from 

equation (4.20), it has a negative slope at (Qm, s 0= ), it has an infinite slope where it 

crosses the growth function and it crosses the horizontal axis at some sh > 0. Also, if it 

crosses the Q 0=&  locus, its slope is positive if the intersection below the growth 

function; it is negative if the intersection occurs above the growth function. 

The same exercise can be done with Case 2 as we did in Case 1 in Figures 

4.5.A-C and 4.6.A-B. Around the growth function and the infinite horizon optimal 
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paths, the characteristics of the ( )H Q,s, * 0µ =%  locus are the same as in Case 1. Results 

are therefore similar to those explained above, except that for smaller stocks, extinction 

can be reached under costly management. This is because in Case 2, the area where 

( )H Q,s, * 0µ <%  does not encompass any part of the zero profit (or open access 

management) locus. Costly management leading to extinction thus respects finite 

horizon transversality condition (4.10) since this implies that µ(T)>0 but s(T)=0 and 

hence µ(T)s(T)=0. 

As in Case 1, the surplus line moves up as the fixed flow of management cost 

increases, and consequently, the area for which ( )H Q,s, * 0µ <%  increases. As we found 

before, the critical stock, sc, increases as M increases, i.e., the interval of initial stocks 

for which second best optimal management leads to extinction increases as M increases. 

Also, as in Case 1, even when ( )g ' 0δ < ,12 for a high enough fixed flow of management 

cost, M, and a small enough initial stock s0, extinction can be second best optimal even 

though it would never be first best optimal, i.e., never optimal under M=0. 

In Cropper et al.(1979), M=0, which in our analysis means that 

( ) ( )U Q P Q Q M− =  lies on the horizontal axis. Therefore H* 0>%  everywhere between 

the zero profit line and the horizontal axis and the infinite horizon optimal path is 

followed. In Case 2, as in Case 1, as M increases, Qm increases and the 

                                                 

12 The discount rate is small compared to the marginal biological growth close to 

extinction (see Figure 4.2). 
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( ) ( )U Q P Q Q M− =  locus moves up on the phase diagram: 
( )

dQ 1 0
dM P ' Q Q

−
= > . Also, 

as M increases, the locus ( )H Q,s, * 0µ =%  moves as follows: 

( ) ( ) ( )H Q,s, * 0

dQ 1
dM P ' Q g s Qµ =

=
−⎡ ⎤⎣ ⎦%

. Therefore, as M increases, the locus ( )H Q,s, * 0µ =%  

above the growth function moves up on the phase diagram, and it moves down below 

the growth function. Also, 
( ) ( ) ( ) ( ) ( ) ( )H Q,s, * 0

ds 1
dM P Q K s g ' s K ' s g sµ =

=
− −⎡ ⎤⎣ ⎦%

. Hence, 

for stocks below the maximum sustainable yield and quantities on or below the open 

access locus, 
( )H Q,s, * 0

ds 0
dM µ =

>
%

, which is consistent with 
( )

m

m m

dQ 1 0
dM P ' Q Q

−
= >  found 

above.  

The change in the area delimited by ( )H Q,s, * 0µ =%  leads to the fact that as M 

increases, the stocks at which ( )H Q,s, * 0µ =%  intersects the growth function as well as 

the infinite horizon path increase. If M is large enough, we have the polar case where 

open access is preferred for all feasible stocks and extinction occurs no matter what s0 

may be; see Case 3 below and Figures 4.8-4.10. 

 

Case 3: The surplus line ( ) ( )U Q P Q Q M− =⎡ ⎤⎣ ⎦  lies above the zero profit locus, 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ , for all feasible stocks. 

This implies that Qm is above Qp. As a consequence, the locus ( )H Q,s, * 0µ =%  

does not intersect the zero profit line. Let us illustrate the regions delimited by 
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( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦ , and ( ) ( )U Q P Q Q M− =⎡ ⎤⎣ ⎦  when Qm > Qp and the loci do not 

cross. 

 

Figure 4.8. Regions delimited by the intersection of loci ( )H Q,s, * 0µ =%  and 

( ) ( )P Q K s 0− =⎡ ⎤⎣ ⎦  with Qm>Qp and the lines do not cross. 
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         P(Q)-K(s)<0,                         P(Q)-K(s)=0 
  U(Q)-P(Q)Q<M 

 H* 0<%  
    P(Q)-K(s)>0, 

 Qp      U(Q)-P(Q)Q<M 
   
     (V) 

        
 
    
 
In Figure 4.8, there are two regions where we could have ( )H Q,s, * 0µ =% : 

regions (IV) and (V). However, we must rule out region (V) because at s 0= , 

( )H Q,s, * 0µ =%  holds at Qm only and at that point, the slope of ( )H Q,s, * 0µ =%  is 

positive. In addition, at s s= , since ( )g s 0=  we find 

( ) ( ) ( )H Q,s, * U Q P Q Q M 0µ = − − =%  (from equation 4.17), so ( )mH Q , s, * 0µ =% . Also 

at s s= , the slope of ( )H Q,s, * 0µ =%  is negative since ( )g s 0= , ( ) ( )mP Q K 0 0− <⎡ ⎤⎣ ⎦  

and ( )g ' s 0<  (see equation 4.18). The fact that the locus ( )H Q,s, * 0µ =%  and the zero 
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profit line do not intersect implies that ( )H Q,s, * 0µ =%  does not intersect the line U(Q)-

P(Q)Q=M and therefore, ( )H Q,s, * 0µ =%  is above the line U(Q)-P(Q)Q=M for all 

feasible s. This is consistent with H* 0<%  below Qm. Since the ( )H Q,s, * 0µ =%  locus 

does not reach Q<Qm, we must rule out region (V) for ( )H Q,s, * 0µ =% . 

 

Proposition 4.2 

In Case 3, any initial stock s0 will lead to extinction. Management problem 

(4.12) is a finite horizon problem with Ti+1=0, which means that open access is chosen 

from the beginning until the resource stock is extinct. 

 

Let us characterize the slope of ( )H Q,s, * 0µ =%  for 0 s s< <  (not necessary to 

know which path is chosen however). The slope of the ( )H Q,s, * 0µ =%  locus is given 

by equation (4.18). First, at the maximum sustainable yield stock, ( )MSYg ' s 0= , which 

implies a negative slope: 
( )

( ) ( )
( ) ( )

MSY

H Q,s, * 0
s s

K ' s g sdQ 0
ds P ' Q Q g sµ =

=

−
= <

−⎡ ⎤⎣ ⎦%
. Second, for 

MSY0 s s< < , we have ( )g ' s 0>  and ( )g s 0> , meaning that the slope of 

( )H Q,s, * 0µ =%  could be positive or negative. Third, for MSYs s s< < , we have 

( )g ' s 0<  and ( )g s 0> , which implies that ( )H Q,s, * 0µ =%  has a negative slope. 

Finally from (4.18), ( )H Q,s, * 0µ =%  has a zero slope where 

( ) ( ) ( ) ( ) ( )P Q K s g ' s K ' s g s 0− − =⎡ ⎤⎣ ⎦ . This can only occur at a stock where ( )g ' s 0> , 
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or s such that MSY0 s s< <  because ( ) ( )P Q K s 0− <⎡ ⎤⎣ ⎦ . We illustrate possible cases in 

Figures 4.9 and 4.10. 

 

 

Figure 4.9. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement; ( )0'g<δ . 
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In Figures 4.9 and 4.10, the fixed flow of management cost is so high that open 

access is the second best optimal management regime for all feasible resource stocks. 

Hence, irrespective of the magnitude of s0, open access is chosen and extinction is the 

ultimate outcome. 
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Figure 4.10. Steady State Equilibria with Stock-Dependent Harvest Costs and Fixed 

Flow Cost of Enforcement, ( )0'g>δ  
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4.6 Conclusion 

In this chapter, a fixed flow of management cost, M, was added to Cropper et 

al.'s 1979 model of optimal resource management.  

Since the flow of management cost is fixed, if the infinite horizon trajectory is 

second best optimal, it is the exact same as the first best optimal trajectory. However, 

for some resource stocks, the first best optimal path may not be second best optimal. In 

the limit, for very large M, it may be second best optimal to let the resource be 



 

 

95

exploited in open access to extinction for any feasible initial resource stock. For smaller 

M, the first best optimal path is not second best optimal for smaller resource stocks 

only. In those cases, a finite horizon second best optimal costly management path can 

be chosen that leads to positive returns until resource management switches to open 

access leading to extinction (Case 1) or costly management can be second best optimal 

until extinction occurs (Case 2). Either way, a second best finite horizon path decreases 

the resource stock and extinction is the ultimate outcome.  

The greater the fixed flow of management cost, the greater is the area (and the 

greater is the interval of initial stock, s0) for which the first best optimal trajectory is not 

second best. Even in cases where ( )g ' 0δ < , i.e., the discount rate is small compared to 

the marginal biological growth close to extinction, extinction can be the best option for 

a resource manager who must pay a fixed flow of management cost. 
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CHAPTER 5. TRADE MODEL WITH COSTLY RESOURCE 

MANAGEMENT 

5.1. Introduction 

International trade is welfare increasing in the simplest theoretical models, but it 

may not always be so in reality. Over the past decade, popular beliefs against free trade 

have developed such that nowadays, anti-globalization demonstrations often make 

headline news. For example, in Seattle in 1999, anti-globalization protestors were 

effective in getting media attention and even in disrupting high-level international 

meetings dealing, among other things, with international trade. Anti-globalization 

activists fear that free trade may not be good for the environment, for different labor 

interests and for the economic welfare of the poorest (Powell and White, 2002; Colitt, 

2002). Some fear a generalized "race to the bottom," towards a world where national 

regulations would disappear due to global competition, and therefore, where the quality 

of life would be overall diminished. Members of academia are part of the debate as 

well. For example, in 1993, economists Bhagwati and Daly presented arguments for and 

against free trade in the popular magazine Scientific American. 

Contrary to anti-globalization groups' contentions, economists Dollar and Kraay 

(2002) have shown that freer trade in the past has decreased the economic inequality 

between the richest and poorest, both across and within nations. However, these authors 

insist on the importance of changing institutions and policies along with increased 

international integration in order for the economic growth to benefit the entire economy. 

They also insist that free trade per se does not increase inequality. 
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Anti-globalization groups also tend to think that trade is detrimental to the 

environment. Many economists believe that freer trade can help protect the 

environment. Their point of view is that, if trade promotes economic development, and 

if the environmental Kuznets' curve (EKC) hypothesis turns out to be true, then free 

trade would necessarily promote a better environment, at least in the long run. However, 

the economic incentives through which the EKC could occur are little known so far, and 

so more theoretical and empirical work is needed to study trade with negative 

externalities or natural resource issues. No clear-cut theoretical result exists, so we 

cannot say if trade is altogether good or bad for the environment. From what we know, 

trade is likely good for the environment and the conservation of natural resources in 

some cases, and bad in others. What characterizes each case is the question. 

Not surprisingly, anti-globalization groups are not keen on the World Trade 

Organization (WTO), whose political mandate is to promote international free trade. In 

recent years however, the WTO and other international institutions have publicly 

discussed environmental and social issues more than ever before. In 1994, the 

Marrakhesh Agreement Establishing the World Trade Organization (the WTO's 

founding charter) was signed following the Uruguay Round, and its preamble refers to 

the importance of sustainable development, including the protection of the environment 

(WTO, 2002c). With this Agreement, the WTO was created (formerly "GATT 

members"), as well as, namely, the Committee on Environment and Trade (CET), 

whose mandate is to study the impact of international trade on the environment. The 

WTO has been interested in environmental policies for a long time. Historically 

however, the question it asked was whether environmental policies hindered free trade. 
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Indeed, the 1971 GATT study entitled "Industrial Pollution Control and International 

Trade" was more concerned about the impact of environmental policy on free trade than 

the potential opposite effect (WTO, 2002b). Now however, through the CET, the WTO 

does discuss free trade potentially hindering the environment. 

Chapter 5 provides a partial answer to the contemporary debate over free trade 

of a renewable resource. An important finding is that resource management institutions 

(or management regimes), are crucial to our results about welfare changes following a 

move from autarky to free trade. Hence we concur with Dollar and Kraay (2002) on the 

fact that institutions matter a great deal in the process towards free trade. 

The objectives of this chapter are 

i. characterize the impact of free trade on social welfare and on the 

conservation of the resource under open access exploitation of the 

resource; 

ii. characterize the impact of free trade on social welfare and on the 

conservation of the resource under costless management of the resource, 

i.e., under the first best policy; 

iii. characterize the impact of free trade on social welfare and on the 

conservation of the resource under costly management of the resource, 

i.e., under a second best policy; 

iv. characterize the cases where the resource management regime could 

change due to free trade following autarky (open access versus costly 

management); and finally, 
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v. characterize the cases where the move from autarky to free trade can be 

welfare decreasing, and by extension, where some level of barrier to 

trade would be better; and finally, 

vi. characterize the cases where the move from autarky to free trade can 

cause the extinction of the renewable resource. 

 

We address these objectives through a trade model with a renewable resource 

input. In the next section, we introduce the general assumptions underlying all the 

models in this chapter. In section 5.3 to 5.6, a model is analyzed under different 

resource management regimes. Potential welfare and conservation impacts of moving 

from autarky to free trade are characterized for each management regime. In section 5.3, 

we assume an open access management regime for the resource sector, which is the 

worst-case scenario in terms of discounted inter-temporal welfare maximization. In 

section 5.4, we analyze the first best scenario, that is, the textbook costless resource 

management and welfare benchmark. In section 5.5 we analyze the second best model 

of resource management with a fixed cost of management. In section 5.6 we analyze 

empirically relevant resource management regimes and potential switches. In section 

5.7, we discuss the policy implications of our results. We then conclude. 

 

5.2. General assumptions about the home country 

The trade model includes two final goods, a resource good, H(t), and a 

manufactured good, M(t), as well as two variable inputs, a renewable resource stock, 
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s(t), and labor, L, the supply of which is assumed to be constant. The manufactures 

sector also uses a specific factor, K . 

In the sections that follow, we analyze welfare and conservation issues of the 

home country, which we assume is a small country. For the home country, A as a 

superscript stands for equilibrium values in autarky and T as a subscript for free trade 

equilibrium values; a subscript ∞ indicates long-run equilibrium as opposed to a 

transitory path equilibrium. Under different resource management regimes, we 

characterize short run and long run general equilibria in autarky and, in free trade, 

under small country assumptions, i.e., taking world relative prices as given. The 

discount rate, δ, is given and constant in time; it represents individual's inter-temporal 

preferences. We assume that 0 < δ < ∞, which represents some level of impatience for 

consumption since δ > 0, but also some care for future utility, since δ < ∞. We do not 

allow for saving and borrowing, so the economy's budget must be balanced at each 

point in time. 

5.2.1. Endowment 

The home country is endowed with total fixed labor, L. For simplicity and 

without loss of generality, we normalize total labor to one unit per individual, for a total 

of L individuals in the economy. Furthermore, the home country is endowed with K  

fixed units of a specific factor. 

The home country is endowed with a renewable resource with stock s(t), which 

can vary over time. We denote the initial resource stock as s0. The resource growth 

function, ( )( )g s t 0≥ , is assumed to be compensatory: ( ) ( ) 0sg0g == , g'(0) > 0 and 
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g''(s(t)) < 0 for all s such that ( )0 s t s≤ ≤ , where s  is the wildlife population's natural 

carrying capacity and s(t) = 0 implies the irreversible extinction of the stock considered. 

The rate of change of the resource stock, when there is no harvest, is written as 

( ) ( ) ( )( )ds t
s t g s t

dt
= =& . 

We note that even if a resource stock is unique in the world, an endemic species 

for example, or a rarified species dwindling on the brink of extinction, then an 

exogenous world price exists that represents the price of a substitute to the resource 

good. A famous example is rhinoceros horn powder, which is used in traditional Asian 

medicine, and which can be substituted by, among other medicines, the much cheaper 

and more effective aspirin for its proven anti-fever effect (Brower, 1994, p.124). 

Therefore, our analysis can be applied to an endangered specie found only in the home 

country, as long as some substitute exists for it on the world market. Our analysis also 

applies to other renewable resources that exist in the rest of the world as well as in the 

home country. In such cases, the world relative price applies to the exact same goods as 

the ones produced in the home country. 

5.2.2. Production 

A P-superscript refers to production, a cursive variable is for individual firms, 

and variables in capital letters represent aggregate quantities. Two goods are produced: 

a resource-based good ( )( )P
H tH L , and a manufactured good, MP(LM(t)), which we 

assume is produced with labor and capital. The production function ( )( )P
M t , KLγ  is 

characterized by constant returns to scale and a diminishing marginal rate of 

substitution between inputs, leading to strict concavity in labor since K  is fixed in the 
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economy. Therefore, capital, being a fixed factor in manufacturing, can be normalized 

to 1, so that ( )( ) ( )( ) ( )( )P P P
M M Mt ,K t ,1 tL L M L= =γ γ  where ( )( )P

M' t 0M L >  and 

( )( )P
M'' t 0M L < . The net gain that arises from the concavity of MP is the fixed factor 

rent. 

In this chapter, we assume that productivity in the resource good depends only 

on labor, as long as the resource stock is positive: if s(t) > 0, then ( )( )P
HH tL =  

( ) ( )( ) ( ) ( )( )P P
h hH N t t N t h t=l l , where ( )( )P

h th l  is an individual firm's output, and 

N(t) is the number of harvesting firms. We assume that ( )( )P
h t 0h =l  if 

( ) min
h h0 t≤ ≤l l  and that ( )( )P

h t 0h >l  if ( ) min
h ht >l l . This means that there is a 

minimum labor requirement for a firm's harvest to be positive: 

( ) ( )( ){ }min P
h h hmin t : t 0 0h= > >l l l ; this is the production function equivalent of a 

fixed cost of harvest. For ( ) min
h ht >l l , we assume a strictly concave production 

function, that is, ( )( )P
h' t 0h >l , ( )( )P

h'' t 0h <l . See Figure 5.1 for clarification. 

 

Figure 5.1. Assumptions on individual firms' harvest production function 
 

           ( )lhh  
 
 

( )lhh  
 
 
   h~  
 
 
 
 
 

  0  lmin
h      l~h       lh  



 

 

103

 

We note that there is no dependence of the harvest production function on the 

resource stock, and that the only input paid for is labor, with wage rate ( )tω . Therefore, 

in this model, instantaneous net gains do not depend on the resource stock. This means 

that the resource stock can only have inter-temporal value, depending on the discount 

rate, when the future is taken into account in an objective function. 

The renewable resource stock is affected by harvesting as depicted by the stock 

transition equation: ( ) ( )( ) ( )( )P
Hs t g s t H tL= −& . 

5.2.3. Numéraire good 

The manufactured good is the numéraire: ( )M Mp t p 1= = , for all t, and the 

relative price is ( ) ( ) ( )H
H

M

tp
p t tp

p
= = , where pH(t) is the resource good price relative to 

the manufactured good price. 

5.2.4. Consumption 

A C-superscript refers to consumption; a lowercase variable is for individuals, 

while capital letters are reserved for aggregate quantities. We assume that individual 

preferences can be represented by a neoclassical utility function ( ) ( )( )C Cu h t ,m t , 

which is homothetic. A homothetic utility function is a special case of the Gorman form 

utility function, which implies that an individual's utility function is representative of 

the aggregate, if we assume that individuals have identical preferences and that they all 
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count equally in the social welfare function.13 This way, social welfare depends on 

GDP, irrespective of distributional issues. We will thus be able to infer aggregate 

consumption easily, as well as aggregate welfare. 

Aggregate income is ( ) ( ) ( ) ( )P PY t p t H t M t= + . Since utility is homothetic for 

all individuals in the economy, we can write individual i's consumption of the resource 

good as h(t) = hC(p(t))yi(t) and the aggregate consumption as 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
L LC C C C

i i
i 1 i 1

H t h p t y t h p t y t h p t Y t
= =

= = =∑ ∑ . In the same manner, 

individual i's consumption of the manufactured good is m(t) = mC(p(t))yi(t), and its 

aggregate consumption is ( ) ( )( ) ( ) ( )( ) ( )
L LC C C

i i
i 1 i 1

M t m p t y t m p t y t
= =

= =∑ ∑  

( )( ) ( )Cm p t Y t= .14 A homothetic utility function also implies that the indirect utility 

function takes the form ( ) ( )( ) ( )( ) ( )v p t , Y t p t Y t= ν , such that v1 < 0, v11 > 0, v2 > 0, 

v22 = 0 and v12 < 0. This will be helpful in analyzing welfare changes. 

Furthermore, we assume an interior solution to the consumer problem, whenever 

production and trade allow for it. This means that, at any point in time, if it is 

impossible to consume both goods (in autarky, because of the extinction of the 

renewable resource, for example), then individuals are worse off than they would have 

been if they could have consumed some of the resource good. Therefore, if it is possible 

                                                 

13 For details, see Varian (1992), p.152-154. 

14 Homothetic utility functions can be written as linearly homogeneous in income 

without loss of generality; see Varian (1992), p.146-147 for details. 
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to consume some of both goods, then that will always be the chosen over corner 

solutions. 

 

5.3. Open access: complete rent dissipation 

If property rights over the renewable resource are not defined or not effective, 

then exploitation occurs in open access. Profit maximizing harvesters, who hire labor, 

enter the resource sector until their respective profit is equal to zero, which means that 

all resource rents are dissipated. The intuition behind this is that if one does not exhaust 

all the rents he can extract at any point in time, then someone else will. Thus aggregate 

and individual harvesting behavior does not take the future into account. 

5.3.1. Production of the resource good 

Each harvesting firm takes the resource price and the wage rate as given, and it 

hires labor to maximize its profit. The objective is: 

 
( )

( ) ( )( ) ( ) ( )
h

h h
t

p t h t t tMax ⎡ ⎤−ω⎣ ⎦
l

l l  (5.1) 

Assuming harvesting takes place, the first order condition is 

 ( ) ( )( ) ( )hp t h ' t t 0−ω =l . (5.2) 

Under perfect competition between harvesting firms, entry occurs until profit 

opportunities are dissipated: 

 
( ) ( )( )

( ) ( )h

h

p t h t
t 0

t
−ω =

l

l
. (5.3) 

Therefore, we know each firm harvests at its maximum average productivity of labor, or 

where 
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( )( )
( ) ( )( )h

h
h

h t
h ' t h

t
= =

l %l
l

 = constant. (5.4) 

Hence, from (5.2) and (5.4), when the resource good is produced in the economy, it 

must be that 

 ( )
( )
t

h
p t
ω

= % , (5.5) 

which is a constant ratio. 

Let us write the unique corresponding level of hired labor per firm as 

( ) ( )( )
( ) ( )( )h

h hh
h

h t
t : h ' t h

t

⎧ ⎫⎪ ⎪= = =⎨ ⎬
⎪ ⎪⎩ ⎭

l %% l ll
l

. Aggregate harvest is 

( ) ( )( ) ( )( ) ( ) ( ) ( )P P P P
H h h hH t H t H N t N t h N t hL= = = = %% % %l l l . Since h~  and h

%l  are 

constant, it is through the number of firms, N(t), that the production equilibrium occurs. 

We assume that entry is such that (5.3) occurs instantaneously. 

5.3.2. Production of the manufactured good 

As stated in section 5.2.2. the manufacturing sector has decreasing marginal 

returns, and it takes the resource price and the wage rate as given. Labor is hired to 

maximize aggregate profits: 

 
( )

( )( ) ( ) ( )
M

M M
tL

M t t tMax L L⎡ ⎤−ω⎣ ⎦  (5.6) 

Assuming an interior solution, the first order condition is 

 ( )( ) ( )MM ' t t 0L −ω = . (5.7) 
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Using this first order condition and the results from the resource sector, we 

obtain that in general equilibrium, if both goods are produced, then the marginal value 

product of labor in both sectors is equated to the wage rate: 

 ( )( ) ( ) ( )MM ' L t p t h t= = ω% . (5.8) 

5.3.3. Consumption 

A representative individual maximizes his utility under his budget constraint: 

 
( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ){ }C C

C C C C
ih t ,m t

Max u h t ,m t t y t p t h t m t+ λ − − . (5.9) 

First order conditions lead to the equilibrium price being 

 ( ) ( )
( )

C

C

h

m

u t
p t

u t
= . (5.10) 

As stated before, since individuals all have the same preferences, aggregate demands 

are as follows: 

 ( ) ( )( ) ( )C CH t h p t Y t=  and ( ) ( )( ) ( )C CM t m p t Y t=  (5.11) 

5.3.4. Walrasian equilibrium 

The necessary condition of consumption problem (5.9) determines the relative 

price of the resource good, ( )p t as specified in (5.10). Since h%  is constant and ( )p t  is 

given by the consumption equilibrium, the necessary and entry conditions on production 

of the resource good leading to (5.5) peg the wage rate, ( ) ( )t p t hω = % . The necessary 

condition on production of the manufactured good (5.7) then determines the division of 

labor across production sectors. The conditions for this general equilibrium do not 

depend on the resource stock and therefore, the division of labor remains the same as 
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long as the resource stock is positive. Hence the harvest level does not change as long 

as the resource stock is positive. 

At all times t, the labor and budget constraints of the home country translate 

into: 

 
( ) ( )
( ) ( )

H M

h M

L L t L t

N t L t

= +

= +%l
 (5.12) 

 and ( ) ( ) ( ) ( )P PY t p t H t M t= +  (5.13) 

5.3.5. Autarky: temporary and long-run equilibria 

By assumption, as long as the resource is not extinct, then both goods are 

produced and consumed in autarky. The economy's instantaneous Walrasian 

equilibrium requires that production and consumption of the resource good be equal: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )C C P
H hp t ,Y t h p t Y t L t ;s t 0 N t hΗ = = Η > = % %l . (5.14) 

So when the resource good is produced in open access, we find that 

 ( ) ( )( ) ( )C

h

h p t Y t
N t

h
=

% %l
. (5.15) 

Hence, the number of harvesting firms, N, is a function of p, which in general 

equilibrium implies a function of individuals' preferences, since ( ) ( )
( )

C

C

h

m

u t
p t

u t
= . It is 

also a function of income, Y(t), which is determined by the parameters of the economy 

such as individual preferences, harvest and manufacturing technology, resource stock 

and quantity of labor. N(t) is also directly a function of the harvest technology through 

its denominator, hh% %l . 
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Given that instantaneous net gains are not affected by the resource stock, and 

given that in open access, the change of the resource stock is not taken into account in 

the harvesters' optimization problem, then N(t) = N; it is fixed over time. Hence, as long 

as the resource stock is positive, the aggregate harvest and harvest labor also are fixed. 

Assuming preferences do not change over time, this implies that prices are also 

constant. 

In autarky, supply and demand of the manufactured good must also be equal: 

 ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )C C P P
M hM p t ,Y t m p t Y t M L t M L N t .= = = − %l  (5.16) 

Since harvest labor is fixed over time, given the total labor constraint, then the resource 

good and the manufactures are produced and consumed in fixed quantities over time, 

until a steady state stock is reached. Assuming that the initial resource stock is the 

natural carrying capacity, s0 = s , then conservation occurs as long as the equilibrium 

harvest is no greater than the biological growth at the maximum sustainable yield stock 

level, sMSY, as defined in Definition 3.1: 

 given that s0 = s , As∞ > 0 iff ( ) ( )P
H MSYH L g s≤ . (5.17) 

If ( ) ( )P
H MSYH L g s< , the optimal steady state is stable. In contrast, if 

( ) ( )P
H MSYH L g s= , then the optimal steady state is the MSY, and it is unstable. 

If ( ) ( )P
H MSYH L g s> , then extinction occurs in finite time. Given that an 

interior solution is optimal in the consumption of both goods, then, in autarky, 

individuals are worse off after extinction occurs. 

In the case where the initial resource stock is smaller than the natural carrying 

capacity, then even if condition (5.17) holds with inequality, we could have extinction. 
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To show this, let us define the unique resource stock 

( )( ) ( ) ( )( ){ }P
min Hmin s t : H L g s ts = =  ( ) ( ) ( )( ) ( )( ){ }P

Hs t : H L g s t ,g ' s t 0= = ≥ , i.e., 

smin is the unique lower, unstable, steady state stock, out of one or two possible steady 

states. There is one possible steady state if smin = sMSY; there are two otherwise. Then 

under (5.17), if s0 < smin, extinction will occur. This is illustrated in Figure 5.2. 

 

Figure 5.2. Autarkic steady states in open access 
HP 
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Let us assume that the initial resource stock in autarky is the natural carrying 

capacity, s0 = s , and that ( ) ( )P
H MSYH L g s< . This means that in autarky, the resource 

eventually reaches an autarkic stable steady state, As∞  such that ( )Ag ' s 0∞ < . For the 

following free trade analysis, we assume that As∞  has been reached in autarky when the 

country is opened to free trade. 
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5.3.6. Free trade: temporary and long-run equilibria 

By assumption, in free trade, the resource stock is initially As∞  such that 

( )Ag ' s 0∞ < . The equilibrium autarky price just before trade opens is denoted Ap∞ . Since 

the home country takes world prices as given, we need to analyze two possible cases: 

W Ap p∞> , and W Ap p∞< . The special case where W Ap p∞=  would lead to an 

undetermined initial and long run pattern of production, although welfare would be the 

same as in autarky. 

 

Case 1. W Ap p∞>  

Proposition 5.1. 

As the home country opens to free trade, it produces more resource good and 

may or may not specialize in it. Welfare is higher initially. The resource good is 

exported, and the manufactured good is imported. If, in free trade, harvest is smaller or 

equal to the resource maximum sustainable yield, i.e., ( )h MSYN h g s≤%%l , then this 

equilibrium is sustainable in the long run; in such a case, utility is higher than in autarky 

forever, and therefore discounted utility is greater. Otherwise, extinction occurs in finite 

time, and afterwards, the home country must export some MP(t) in order to import some 

HC(t). Utility is lower thereafter, although utility discounted to the time when trade 

opens could be higher or lower than it would have been in autarky. 

Proof. 

 Specialization vs. diversification 
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Because the manufacturing sector production function is strictly concave in 

labor, we may have a positive level of T T
M hL L N= − %l  such that ( )W T

Mp h M ' L=% , in 

which case there would be diversification with trade. However, if ( )Wp h M ' 0≥% , then 

the home country specializes in the resource good. 

 Welfare 

Initially, instantaneous welfare necessarily increases. Indeed, we find that 

( ) P Cv p,Y
dv H H dp

Y
∂ ⎡ ⎤= −⎣ ⎦∂

> 0 with the new terms and pattern of trade. 

If ( )T
h MSYN h g s≤%%l  in free trade, then the resource is conserved. In that case, a 

positive steady state stock is reached, and the new production pattern continues forever. 

Therefore steady state welfare is higher than in autarky as well as instantaneous welfare. 

The discounted welfare change due to the opening of the home country to free trade is 

therefore positive. 

However, if ( )T
h MSYN h g s>%%l , then the resource becomes extinct in finite time. 

Steady state welfare is lower than in autarky since ( ) P Cv p,Y
dv H H dp

Y
∂ ⎡ ⎤= −⎣ ⎦∂

 < 0. 

Indeed, with extinction, the trade pattern is reversed, but the terms of trade are fixed. In 

this case, the discounted welfare change due to free trade could be positive or negative, 

depending on the parameters of the economy, namely the discount rate, and other 

parameters which influence the time it takes for the resource stick to reach extinction.  

 

When W Ap p∞> , trade can be immiserizing if it causes the extinction of the 

resource in the home country. Such possibility is due to the lack of effective property 
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rights over the resource: gains from trade are mitigated by the dynamic inefficiency, and 

they can even be entirely dissipated. Case 1 of the open access model with trade is 

illustrated in Figure 5.3, for the case where extinction occurs. We note that the 

production possibilities frontier (PPF) does not depend on the magnitude of the resource 

stock, which implies that it remains the same even as the resource stock changes, as 

long as s(t) > 0. 

 

Figure 5.3. Open access resource exploitation and trade, Case 1: W Ap p∞>  

 
  M     steady state production, free trade (worst case scenario) 

 
     steady state production and consumption, autarky 
 
       autarky budget line (slope = - pA) 
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∞  
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steady state consumption, free trade 

 
free trade budget line (slope = - pW)              PPF 
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Case 2. W Ap p∞<  

Proposition 5.2. 

If W Ap p∞< , the home country produces more manufactures than in autarky, and 

it may or may not specialize in it. In either the diversified case or the specialized case, 

the long run equilibrium stock with free trade, sT
∞ , is such that ( ) ( )P T T

MH L L g s∞− =  
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and sT
∞  > sA

∞ . Therefore extinction cannot occur in this case due to trade. Also, 

manufactures are exported and the resource good is imported. Furthermore, utility is 

higher forever. Hence overall, welfare is unambiguously improved, both inter-

temporally and in steady state. 

Proof. 

 Specialization vs. diversification 

Since with diversified production, Wp hω = % , then specialization occurs only if 

( ) WM ' L p h≥ % . However, if ( ) WM ' L p h< % , then labor is hired in the manufactures 

sector up to a level such that ( )T W
MM ' L p h= %  is satisfied, and the home country's 

harvest is ( ) ( )P T P T
H MH L H L L= − . 

 Welfare 

In this case, instantaneous welfare necessarily increases forever. Indeed, we find 

that ( ) P Cv p,Y
dv H H dp

Y
∂ ⎡ ⎤= −⎣ ⎦∂

 > 0, since the last two factors are negative according 

to the terms and pattern of trade. Welfare increases forever because this equilibrium is 

sustainable. Indeed, harvest being smaller than in autarky, by construction the resource 

stock is necessarily conserved. Therefore, steady state and discounted welfare are 

necessarily greater than in autarky.  

 

When W Ap p∞< , welfare is unambiguously improved, in the short and the long 

run, because there are gains from trade, and the dynamic externality due to the open 

access exploitation regime is lessened in this case under diversification or altogether 
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eliminated if there is specialization in the manufactures. Case 2 of the open access 

model with trade is illustrated in Figure 5.4. 

 

Figure 5.4. Open access resource exploitation and trade, Case 2: W Ap p∞<  

      M     steady state production with free trade 

 
     steady state production and consumption, autarky 
 
           UT

∞  
       UA

∞  
 
 

          PPF 
steady state consumption with free trade 

autarky budget line (slope = - pA) 
free trade budget line (slope = - pW) 

 
  H 

 

 

The welfare results for the open access model with free trade are qualitatively 

comparable to those found in Brander and Taylor (1997a). Indeed, when harvest 

decreases after the home country opens to trade, then steady state welfare decreases as 

compared to autarky, and even discounted welfare could decrease as compared to what 

it would have been in autarky. However, Brander and Taylor's specific functional forms 

made it so that extinction could occur in autarky but not in free trade, which seems 

counterintuitive when thinking of extinction problems. Here however, when pW > Ap∞ , 

we may have extinction under free trade, which seems more plausible when free trade 

raises the relative price of the resource. Our example differs from Brander and Taylor's 
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in that instantaneous net gain, i.e., 
( )

( ) ( )( ) ( ) ( )
h

h h
t

p t h t t tMax ⎡ ⎤−ω⎣ ⎦
l

l l , is not affected 

directly by the resource stock. However, in a different model where stock affects 

instantaneous net gains, extinction could still be a possible event in open access; see 

Gould (1972) and Hoel (1978) for discussions on extinction with stock dependence of 

instantaneous net gains. 

 

5.3.7. Summary of results for the open access model 

In Tables 5.1 and 5.2, we summarize our findings regarding the possible impact 

of free trade on welfare and resource conservation, when the resource is exploited in 

open access. Recall that we have assumed that, when trade opens, the resource stock is 

at its autarkic steady state, As∞ , such that ( )Ag ' s 0∞ < . There are three possible scenarios 

when pW > pA while there is only one outcome when pW < pA. 

Table 5.1. Open access resource exploitation and trade, Case 1: W App ∞> . 

Long-run 
impact of free 

trade on 
resource stock 

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Conservation + + + 
Extinction - - + 
Extinction - - - 

Prop. 5.1 
Fig. 5.3 
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Table 5.2. Open access resource exploitation and trade, Case 2: W App ∞< . 

Long-run 
impact of free 

trade on 
resource stock 

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Conservation - + + Prop. 5.2 
Fig. 5.4 

 

 

5.4. First Best World: Costless Management, or Utopia 

The model presented here is the welfare benchmark. The dynamic distortion in 

the home country, due to the lack of property rights on the resource, is corrected at no 

cost through a harvest unit-tax, ( )tτ , imposed on the harvesters. Hence, in this first best 

model, individuals and firms behave optimally, even though they have unilateral 

incentives not to. Indeed, they could cheat and not pay the tax for example, but they do 

not; this is Utopia. 

5.4.1. Production of the resource good 

In this model, the social planner must understand the harvesting firms' behavior 

in order to make them pay the optimal per-unit harvest tax, ( )tτ . Once ( )tτ  is 

optimally set, harvesting firms react to it and behave optimally. As usual, the problem 

must be solved by backward induction. Accordingly, in what follows, we solve the 

harvesting firms' problem first, and then we use the information obtained about their 

behavior in the social planner's problem. 
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5.4.1.1. Harvesting firms 

The resource price, the wage rate and the tax rate are exogenously given to each 

harvesting firm. Since firms do not own the resource, they are open access harvesters. 

As such, they hire labor to maximize static profits, and there is entry of harvesting firms 

until profits are equal to zero. The harvesters' objective now includes the per-unit 

harvest tax: 

 
( )

( ) ( )( ) ( ) ( ) ( ) ( )( )
h

h h h
t

p t h t t t t h tMax ⎡ ⎤−ω − τ⎣ ⎦
l

l l l  (5.18) 

The harvesters' first order condition and the open access zero-profit condition 

lead to the same result as before: each firm harvests at its maximum average 

productivity of labor, at level h~ , as defined by equation (5.4). Therefore, we obtain the 

usual result that with a per-unit harvest tax, the quantity of inputs used per firm does not 

change; instead, it is the total number of firms that is affected by the tax. 

Hence, from the first order condition to problem (5.18) and equation (5.4), when 

the resource good is produced in the economy, we must have that 

 ( )
( ) ( )

t
h

p t t
ω

=
− τ

% . (5.19) 

We use the previous definition and notation for the optimal level of hired labor 

by each firm, h
%l . Aggregate harvest is still written as ( )( ) ( )P

H hH L t N t h= % %l . Since 

h~ and h
%l  are constant, it is again through N(t) that equilibrium occurs. Here however, if 

the per-unit harvest tax, ( )tτ , changes through time, N(t) also changes. Hence, harvest 

may not be fixed over time as it was with open access resource exploitation. 
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5.4.1.2. The resource planner 

In this Utopian world, we suppose that a resource planner has the power to 

charge a per-unit harvest tax to the harvesting firms. His objective is to maximize the 

discounted inter-temporal welfare (i.e., total economic surplus) of the resource sector. 

The tax is to be re-distributed in the economy in a non-distortionary manner, and only 

serves to eliminate the dynamic distortion due to the lack of property rights over the 

renewable resource. 

We note that, since the solution to (5.18) is given by equation (5.4), then the 

harvest of each identical harvesting firm is ( )h hh * h= % %l l . Hence, we can write 

aggregate production as ( ) ( )P
hH t N t h= % %l in the resource planner's problem. This way, 

the planner charges a tax, τ(t), in order to induce the optimal number of firms, N(t), in 

the industry. In autarky, the resource planner's problem is therefore 

 
( )

( )
( )

( ) ( )
hN t h

t
hN t 0 0

Max p x dx t N t e dt
∞

−δ⎡ ⎤
−ω⎢ ⎥∫ ∫

⎢ ⎥⎣ ⎦

% %l
%l  (5.20) 

subject to 

( ) ( )( ) ( )
( )
( ) ( )

h

0

s t g s t N t h

s t 0 s is given

s t , N t 0, t,

= −

= =

≥ ∀

% %& l

 

where x is a placeholder. 

The current value Hamiltonian corresponding to the resource planner's autarkic 

problem is: 

 ( )
( )

( ) ( ) ( ) ( )( ) ( )( )
hN t h

h h
0

H p x dx t N t t g s t N t h= −ω +µ −∫
% %l

%% %% l l  (5.21) 
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where ( )tµ  is the corresponding current value co-state variable or shadow value of the 

resource. Using Leibnitz' rule of differentiation of integrals where appropriate and 

assuming an interior solution, the necessary conditions for this problem are as follow. 

( ) ( ) ( )( ) ( ) ( )hN tH t p N t h h t t h 0= −ω −µ =% % %%% l  (5.22) 

( ) ( ) ( ) ( ) ( ) ( )( )s tH t t t t g ' s t− = µ −µ δ = −µ% &  (5.23) 

( ) ( ) ( ) ( )( ) ( ) htH t s t g s t N t h
µ

= = − % %% & l   (5.24) 

( ) t

t
lim t e 0−δ

→∞
µ ≥ , ( ) ( )t

t
lim t e s t 0−δ

→∞
µ = . (5.25) 

For an interior solution, the necessary Legendre condition holds: 

( ) ( ) ( ) ( )( )2
hN t N tH t p ' h 0= ⋅ <% %% l . Second order conditions are also satisfied to guarantee a 

unique solution to this problem. Indeed, ( ) ( ) ( ) ( ) ( )( )s t s tH t t g '' s t 0= µ <% , 

( ) ( ) ( )s t N tH t 0=% , and therefore, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2

N t N t s t s t s t N tH t H t H t 0− >% % % , which 

means we have a strictly concave problem. 

We see, by comparing the harvesters' first order condition of problem (5.18) to 

equation (5.22), that the optimal per-unit harvest tax is equal to the resource current 

value marginal rent: ( ) ( )* t * tτ = µ . We then have, ( )
( ) ( )

t
h

p t * t
ω

=
−µ

%  from equation 

(5.19), (5.4) and (5.22), when the resource good is produced in autarky. Also, if 

( )t 0µ >  for s(t) such that g'(s(t)) = δ, then according to (5.23), the unique optimal 

steady state occurs where g'(s(t)) = δ. Therefore, optimally, if g'(0) > δ, the resource is 

conserved in the long run, while if g'(0) ≤ δ, then extinction is optimal. To summarize, 
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we write the steady state stock as ( ){ }*s inf s : g ' s∞ = ≤ δ , which includes both potential 

outcomes since s(t) ≥ 0. 

In order to better understand the dynamics of the resource planner's model, we 

first rewrite (5.22) as ( ) ( )( ) ( )
h

t
t p N t h

h
ω

µ = −% %l
%

. From this, we substitute µ into 

(5.23): 

 ( ) ( )( ) ( ) ( )( )( )h
t

t p N t h g ' s t
h

ω⎛ ⎞
µ = − δ −⎜ ⎟

⎝ ⎠
% %& l

%
. (5.26) 

We find µ&  by differentiating (5.22) with respect to time: 

 ( ) ( ) ht N t p 'hµ = % %&& l  (5.27) 

Therefore, from (5.26) and (5.27), we obtain the path for the number of harvesting firms 

in autarky: 

 ( ) ( )( ) ( ) ( )( )
h

h

g ' s tt
N t p N t h

h p 'h

⎛ ⎞δ −ω⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

% %& l
% % %l

 (5.28) 

 

Proposition 5.3. 

In autarky, the resource planner's optimal path for s(t) and HP(t) are monotonic 

over time. As s increases (or decreases) towards its steady state, then the harvest 

increases (decreases) through the increase (decrease) of N(t), until the optimal steady 

state, *s∞ , is attained. 

Proof. 

The optimal steady state stock, *s∞ , was deducted from (5.23). Necessary 

conditions lead to (5.28), whose first right-hand-side factor is positive for a scarce 
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resource, and whose second right-hand-side factor has the sign opposite to that of 

( )s'g−δ . Since g''(s) < 0, it must be that N increases (decreases) as s increases 

(decreases). Since HP = N l
~h~ h , total harvest increases (decreases) with N and s.  

 

Proposition 5.4. 

In autarky, the optimal tax path, ( )tτ , is monotonic; it increases as s(t) 

decreases towards the steady state, and vice versa. 

Proof. 

Since, ( ) ( )* t * tτ = µ , Proposition 5.4 follows directly from equation (5.27) and 

Proposition 5.3.  

 

5.4.2. Production of the manufactured good 

As in the open access model of section 5.3, we find necessary condition (5.7): 

( ) ( )( )Mt M ' L tω = . Given the results we found for resource production in the first best 

model, when both goods are simultaneously produced, we conclude that the marginal 

value products are equalized and equal to the wage rate: 

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )MM ' L t p t * t h p t t h t= − τ = −µ = ω% % . (5.29) 
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5.4.3. Consumption 

As we found in the open access model, the necessary conditions on the utility 

maximization problem of consumers lead to (5.10): ( ) ( )
( )

C
h
C
m

u t
p t

u t
= . Aggregated 

demands are the same as (5.11). 

5.4.4. Walrasian equilibrium 

Constraints (5.12) and (5.13) must still be obeyed in the economy, except that 

here, N(t) depends not only on the same parameters as in the open access model, but 

also on the resource stock level, through the shadow price, ( )* tµ , and therefore, 

through the optimal tax, ( )* tτ . Since the resource stock changes over time, ( )* tµ  

does too, and therefore ( )* tτ  as well. This implies that N(t) is not fixed over time. 

5.4.5. Autarky: temporary and long-run equilibria 

Equation (5.14)-(5.16) must hold at all times, as in the open access model, but 

now, N(t) depends on the resource stock size through the per-unit harvest tax charged to 

harvesters. The dynamics of the first best model is therefore richer than that of the open 

access model presented in section 5.3. 

We saw that the resource planner's optimal path towards the steady state is 

monotonic in s(t) and that N(t) changes over time. In a general equilibrium setting, a 

change in N(t) will trigger changes elsewhere in the economy, since it implies labor 

migration from one sector to the other. This leads to the following proposition. 
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Proposition 5.5. 

General equilibrium dynamic paths are monotonic in this autarkic economy. 

Furthermore, as s increases (decreases) towards its steady state, then the harvest 

increases (decreases), the production of manufactures decreases (increases), the wage 

rate increases (decreases), the relative price of the resource good decreases (increases), 

and the instantaneous welfare of individuals increases (decreases). 

Proof. 

 Production 

From equation (5.28) we have ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −δ
⎟
⎠
⎞

⎜
⎝
⎛ ω

−=
l

l&
~h~'p

s'g
h~

~h~NpN
h

h , so that N varies 

in the same direction as s. For the resource good, at any given time, l
~h~NH h

P = . 

Therefore l&& ~h~NH h
P = . Hence, HP varies in the same direction as N and s. For the 

manufactured good, at any given time, ( ) ( ) ( )l
~NLMLLMLM h

P
H

P
M

P −=−= . 

Therefore, ( ) l&& ~'MNM h
PP ⋅−= . Therefore HP varies in the opposite direction of N and s. 

 Equilibrium prices 

From the utility maximization given the economy's budget constraint, we 

obtained 
u

M
H
u

u
u

u
up

C

C
M

H

m

h

∂
∂

∂
∂

=== , where ( )C CH h p Y=  and ( )C CM m p Y= . In 

autarkic equilibrium however, MC = MP and HC = HP. This must hold over time in 

autarky, and so we can replace HC&  by HP&  and MC&  by MP&  for the evolution of harvest 

and manufactures over time in the Walrasian equilibrium. We find that, since 

( )M,Huu CC= , the relative price changes as follows 
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[ ] [ ]
( )2M

MMHMHMMHHHHM

u
uuuuMuuuuHp −+−

=
&&

& . Given that H changes in the same 

direction as s, and M changes in the opposite direction, and since for a homothetic 

utility function [ ] 0uuuu MHHHHM <−  and [ ]uuuu MMHMHM − >0, we conclude that 

changes in p are opposite to changes in s. 

From the manufactures production sector, we found that ( )L'M M=ω . Since 

l
~NLL hM −= , we find that ( ) l&& ~''MN h

P ⋅−=ω . Therefore, the wage rate, ω, varies in 

the same direction as N and s. 

 Instantaneous welfare 

Welfare changes are measured by changes in the indirect utility function v(p,Y). 

Therefore welfare changes over time as follows 

( ) ( ) ( )

( ) ( )
( )

( ) ( ).MHp
Y

Y,pvH
Y,pv

Y
p

Y,pv
Y

Y,pvp

MHppH
Y

Y,pvp
p

Y,pvv

&&&

&&&&&

+
∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡
+

∂
∂

∂
∂

∂
∂

=

++
∂

∂
+

∂
∂

=

 

We note that ( )
( ) 0HHH

Y,pv
Y

p
Y,pv PC =+−=⎥

⎦

⎤
⎢
⎣

⎡
+

∂
∂

∂
∂  in autarky (see Appendix 

IV). Given our assumption of homotheticity of the utility function, then 

( )( )MHppv &&& +ν= , which given our findings above leads to ( ) ( )'Mh~p~Npv h −ν= l&& . 

From equation (5.7), in equilibrium we have M' = ω, and from (5.22), we also have 

0h~h~p >µ=ω− . Then, welfare changes can be rewritten as ( ) h~~Npv h µν= l&& . 

Therefore welfare changes in the same direction as N and therefore s as well.  
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Figure 5.5. Autarkic phase diagram with first best management 
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A
∞  
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The first best autarkic dynamics is illustrated in Figure 5.5 for the resource 

sector. In Table 5.3, we summarize the autarkic trajectories for the first best model. 

 

Table 5.3. Summary of first best autarkic trajectories 

 
Components 
of the economy ↓ 

Initial stock 
→ 0 < s0 < s∞ s∞ < s0 ≤ s  

Resource stock, s(t) increases decreases 
Implicit current value of the 

resource stock, µ(t) decreases increases 

Number of harvesting firms, N(t) increases decreases 
Equilibrium quantity of resource 

good, H(t) increases decreases 

Equilibrium quantity of 
manufactures, M(t) decreases increases 

Wage rate, ω(t) increases decreases 
Relative price, p(t) decreases increases 
Welfare, v(p(t))Y(t) increases decreases 
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5.4.6. Free trade: temporary and long-run equilibria 

We assume that g'(0) > δ, and that when trade opens, the resource stock is at its 

autarkic steady state As∞ , such that ( )Ag ' s∞ = δ . The equilibrium autarky price just before 

trade opens is noted Ap∞ . Since we assume that the home country takes world prices as 

given, there are two cases of interest: W App ∞> , and W App ∞< . 

 

Case 1. W App ∞>  

Proposition 5.6 

If W App ∞> , production remains the same as in the autarkic steady state forever. 

The home country exports some HP(t) and imports some MC(t). Welfare is always 

higher due to the new international exchange possibilities; hence the discounted welfare 

is higher than it would have been in autarky, and the steady state welfare is higher than 

it would have been in autarky as well. Finally, the resource is conserved. 

Proof. 

We have W App ∞> . The home country has a comparative advantage in the 

resource good, and therefore, ( )* t 0µ >  with free trade, as it was in autarky. In free 

trade, the steady state stock is unique and is the same as in autarky, since it only 

depends on the discount rate and on the biological growth function: 

( ) ( )A Tg ' g 's s∞ ∞= = δ . The resource is therefore conserved in the long run.  

In market equilibrium, since 
u
up

M

H= , W App ∞> , and since preferences are 

homothetic, this means that the price change leads to a decrease in the consumption of 
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H and an increase in the consumption of M. However, the same quantity as before is 

produced since the economy is already at the optimal steady state. Therefore, H is 

exported and M is imported. Utility is higher than in autarky initially and forever, since 

the economy is already at its steady state production. 

Indeed, the change in welfare (equation A.4) is ( ) [ ] 0dpHH
Y

Y,pvdv PC >+−
∂

∂
= , 

from the pattern of trade and change in relative price (see Appendix IV). Therefore, 

welfare necessarily increases with free trade in this case, both in the short and long run. 

 

 

Case 1 of the first best model with trade is illustrated in Figure 5.6. We note that 

the autarky budget line is not tangent to the production possibilities frontier (PPF) 

because an inter-temporal user cost is considered in the problem while the PPF is a 

static notion. In the inter-temporal problem, the optimal relative price of the resource is 

greater than it would be in the static problem, such as the open access problem 

presented in section 5.3. 
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Figure 5.6. First best resource management and trade, Case 1: W App ∞>  
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Case 2. W App ∞<  

Case 2 in the first best model can be subdivided into two sub cases, depending 

on the magnitude of the change in the relative terms of trade. 

 

Case 2a: ( ) WA A
MM ' L h pp∞ ∞

⎡ ⎤ < <⎣ ⎦
%  

Proposition 5.7a. Production remains the same as in autarky 

If W App ∞< , but the difference between the two relative prices is not great, then 

there is still a positive rent on the resource and therefore it remains managed. 

Production remains the same as in autarky. Given the new, lower relative price, the 

home country exports MP(t) and imports HC(t), which is now relatively cheaper than in 

autarky. Welfare is initially higher, and since production does not change, the initial 
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equilibrium is also a steady state. Therefore, steady state welfare is higher than in 

autarky, and discounted welfare also is. Finally, the resource is conserved. 

Proof. 

If W App ∞< , but the difference between the two relative prices is not great, i.e., smaller 

than the autarkic steady state rent, ( )A t∞µ , then the resource rent is 

( )W A T
MM ' L h 0p ∞ ∞

⎡ ⎤− = µ >⎣ ⎦
% . Since it is positive, the resource remains managed. Since 

( ) ( )A Tg ' s g ' s∞ ∞= = δ , production remains the same and the steady state stock is the same 

as in autarky. Hence the resource is conserved. 

Given the new terms of trade, the consumption of M decreases and that of H 

increases, which, with the production equilibrium and instantaneous budget constraint, 

implies that some HC(t) is imported and MP(t) is exported. 

With free trade, the welfare change initially is ( ) P Cv p,Y
dv H H dp 0

Y
∂ ⎡ ⎤= − >⎣ ⎦∂

, 

from the new pattern and terms of trade. Since the home country remains at the same 

steady state, then this situation continues forever; welfare is always higher than it would 

have been in autarky, and therefore discounted welfare is unambiguously higher than it 

would have been in autarky as well.  

 

Case 2a of the first best model with trade is illustrated in Figure 5.7. 
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Figure 5.7. First best management and trade, Case 2a: 
( )A

M,M ' L
h

∞⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

%
< pW < Ap∞  
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Case 2b: ( )W A A
MM ' L h pp ∞ ∞

⎡ ⎤≤ <⎣ ⎦
%  

Proposition 5.7b. Production changes with free trade. 

If W App ∞< , and the decrease in relative price of the resource good is large 

enough so that the resource no longer has a positive inter-temporal shadow value, then 

the resource is no longer managed, the home country produces more M(t) than in 

autarky (or the exact same amount if ( )W A
MM ' L hp ∞

⎡ ⎤= ⎣ ⎦
% ) and it exports some of it. It 

produces less, maybe none at all, H(t), and it imports it for at least part of its 

consumption. It consumes less M and more H. 
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Welfare is always higher; hence the discounted welfare is higher than it would 

have been in autarky, and the steady state welfare is higher than it would have been in 

autarky as well. Finally, the resource is conserved at a stock greater or equal to As∞ . 

Proof. 

If W App ∞< , and the difference between the two relative prices is large enough, 

i.e., at least the magnitude of the autarkic steady state rent, ( )A t∞µ , then the resource 

rent disappears since ( )W A
MM ' L h 0p ∞

⎡ ⎤− ≤⎣ ⎦
% . 

If ( )W A
MM ' L h 0p ∞

⎡ ⎤− =⎣ ⎦
% , then the resource rent is zero at As∞ , and the 

production pattern remains the same since this is equivalent to having the resource 

being "just managed" because ( ) ( )A Tg ' s g ' s∞ ∞= = δ  and here it turns out that T As s∞ ∞= . In 

that case, the rest of the proof is the same as that of Proposition 5.7a, except that the 

resource rent is exactly zero. 

If ( )W A
MM ' L h 0p ∞

⎡ ⎤− <⎣ ⎦
%  however, then resource management is wasteful, and 

open access is the first best level of resource management. This implies that with the 

new terms of trade, there is no more economic scarcity of the resource stock at As∞ . In 

that case, more MP(t) and less HP(t) are produced. Since the aggregate production of 

manufactures is strictly concave in labor, with trade and W App ∞< , the home country 

will produce more manufactures than in autarky (or the same amount in the special case 

where ( )W A
MM ' L hp ∞= % ), and it may or may not specialize in it. Specialization occurs 

only if ( ) WM ' L hp≥ % . However, if ( )( ) WT
MM ' L t hp< % , then labor is hired in the 
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manufactures sector up to the point where ( )( ) WT
MM ' L t hp= %  is satisfied, which leads 

to diversification. In such instance, the home country's harvest is positive bit less than it 

was in autarky: ( )( ) ( )( ) ( )( )P T P T P A
H M H,H L t H L L t H L t∞= − < . 

In consumption, since ( ) ( )
( )

C
h
C
m

u t
p t

u t
= , and since preferences are homothetic, and 

the instantaneous budget must be balanced, then the price change leads to an increase in 

the consumption of HC(t) and a decrease in the consumption of MC(t). Along with the 

new production pattern, this implies that at least some HC(t) is imported and some MP(t) 

is exported. 

From the pattern and terms of trade, the initial change in welfare due to trade is 

( ) P Cv p,Y
dv H H dp 0

Y
∂ ⎡ ⎤= − ≥⎣ ⎦∂

. 

We conclude that welfare unambiguously increases with trade initially and 

forever. Hence, both steady state and discounted welfare are higner than they would 

have been in autarky. In either the diversified case or the specialized case, the long run 

equilibrium stock with free trade, sT
∞ , is such that ( )( ) ( )P T

MH L L t g s∞− =  and sT
∞  

≥ sA
∞ . Therefore when W App ∞< , extinction cannot occur due to trade.  

 

Case 2b of the first best model with trade is illustrated in Figure 5.8. 
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Figure 5.8. First best management and trade, Case 2b: 
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5.4.7. Summary of results for the first best model 

In Tables 5.4 and 5.5, we summarize our results about the impact of free trade 

on welfare and resource conservation, for the first best model, which is the welfare 

benchmark. We assume that ( ) δ>0'g , so the resource is always conserved in the long 

run. We further assumed that when trade opens, the resource stock was at its autarkic 

steady state. 
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Table 5.4. First best resource management and trade, Case 1: W App ∞> . 

Long-run 
impact of free 

trade on 
resource stock 

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Conservation no change + + Prop. 5.6 
Fig. 5.6 

 

Table 5.5. First best resource management and trade, Case 2: W App ∞< . 

Long-run 
impact of free 

trade on 
resource stock 

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Conservation no change + + Prop. 5.7a 
Fig. 5.7 

Conservation - + + Prop. 5.7b 
Fig. 5.8 

 

 

5.5. Second best world: fixed cost of resource management 

In reality, resource management is costly because it requires the use of inputs. 

Different bodies of literature would call this a transactions cost or an agency cost. 

Empirical studies, from Harberger's pioneering estimate of 5% (1964) to more recent 

estimates of up to 300% for the US, have clearly shown that theoretical deadweight 

losses due to taxation have important empirical impacts for a country. In their summary 

of this body of empirical literature, Vedder and Gallaway (1999), retain a cost of 40¢ 

per marginal tax dollar collected in the US as a reasonable midpoint estimate of what 

they consider to be several serious studies. 

In our model, as a rough approximation, we assume that the fiscal apparatus in 

the home country generates an instantaneous fixed cost of tax collection and 
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redistribution, no matter what the tax rate may be. This fixed cost needs to be paid at 

each instant when resource taxes are collected; it is a flow fixed cost. We further 

assume that taxpayers do not evade taxation. In subsection 5.5, we analyze the model 

under second best management, in autarky and in free trade, in steady state and along 

the transitory paths. We also compare this second best management regime to the first 

best welfare benchmark. 

 

5.5.1. Production of the resource good 

For this second best model, we first solve the harvesting firms' problem. We 

then use the result into the benevolent social planner's problem. The only difference 

with section 5.4.1 is that the social planner must pay an instantaneous fixed cost to 

manage the resource. 

5.5.1.1. Harvesting firms 

The harvesting firms' problem is the same as in the first best model. From (5.4), 

their equilibrium average harvest is 
( )( )
( ) ( )( )h

h
h

h t
h ' t h

t
= =

l %l
l

 = constant. In 

equilibrium, we must have ( )
( ) ( )

t
h

p t t
ω

=
− τ

% , or ( ) ( ) ( )t
p t t

h
ω

= + τ
%

. Therefore the tax 

chosen by the resource planner, ( )tτ , affects the market price. 

5.5.1.2. The resource planner 

In this second best, more realistic world, the resource planner can charge a per-

unit harvest tax to the harvesters, but the collection and redistribution of the tax is costly 
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in terms of a fixed amount of labor, Lτ(t) = Lτ. In that case, the resource planner's 

autarkic problem is 

 
( )

( )
( )

( ) ( ) ( )
hN t h

t
hN t 0 0

Max p x dx t N t t L e dt
∞

−δ
τ

⎡ ⎤
−ω −ω⎢ ⎥∫ ∫

⎢ ⎥⎣ ⎦

% %l
%l  (5.30) 

subject to 

( ) ( )( ) ( )
( )
( ) ( )

h

0

s t g s t N t h

s t 0 s given

s t , N t 0, t,

= −

= =

≥ ∀

% %& l

 

where x is a placeholder. 

The current value Hamiltonian corresponding to the resource planner's autarkic 

problem is: 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( ) ( )( )
hN t h

h h
0

H t p x dx t N t t L t g s t N t hτ= −ω −ω +µ −∫
% %l

%% %% l l  (5.31) 

where ( )tµ  is the corresponding current value co-state variable. Using Leibnitz' rule of 

differentiation of integrals where appropriate and assuming an interior solution, the 

necessary conditions for this problem are the same as those for the first best model 

(equations (5.22)-(5.25)). Second order conditions therefore hold as well here, and we 

have a strictly concave problem. We therefore obtain the same result as before that 

( ) ( )* t * tτ = µ , but µ*(t) differs from what it was in the first best model because, here, 

the general equilibrium wage rate and price ratio are affected by the cost of the planner's 

policy, ( )t Lτω . Also, the unique steady state of this second best management regime is 

at the same stock level than in the first best model, ( ) ( )( ){ }* s t : g ' s ts∞ = = δ , assuming 



 

 

138

that ( ) δ>0'g . Propositions 5.3 and 5.4, which establish that all paths are on monotonic, 

hold here too. 

5.5.2. Production of the manufactured good 

Again, manufactures are produced according to (5.7): ( ) ( )( )P
Mt M ' L tω = . If 

the resource good is also produced, then (5.29) must hold: 

( ) ( )( ) ( ) ( )( ) ( )p t * t h p t * t h t−µ = − τ = ω% % . 

5.5.3. Consumption 

Equilibrium price and aggregate demands are as in (5.10) and (5.11) in this 

model too: ( ) ( )
( )

C
h
C
m

u t
p t

u t
= , ( ) ( )( ) ( )C CH t h p t Y t=  and ( ) ( )( ) ( )C CM t m p t Y t= . 

5.5.4. Walrasian equilibrium 

The budget constraint (5.13) must be obeyed in the economy: Y(t) = p(t)HP(t) + 

MP(t). Equation (5.12) is however replaced by 

 

( ) ( )
( ) ( )
( ) ( )( )

H M

h M
1

h

L L t L t L

N t L t L

N t M ' t L

τ

τ

−
τ

= + +

= + +

= + ω +

%l

%l

 (5.32) 

As in the first best model, N(t) depends on the resource stock level through its 

shadow price, ( )* tµ , and in turn, through the optimal tax, ( )* tτ . 

5.5.5. Autarky: temporary and long-run equilibria 

The dynamics of this second best model is also characterized by equations such 

as (5.26)-(5.28) although magnitudes of optimal production and resulting income, for a 
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given s(t), differ because of the use of Lτ in this second best world. Due to the use of 

labor for tax collection and re-distribution, equation (5.16) is replaced by 

 ( )( ) ( ) ( )( ) ( )( )C P P
M hM p t Y t M L t M L N t L .τ= = − −%l  (5.33) 

In this second best management regime, Proposition 5.5, on the monotonicity 

and direction of all paths in autarky, also holds. Here however, the use of a portion of 

the labor force Lτ, results in a different wage rate than in the first best model, hence a 

different price ratio, a different consumption and resource extraction path, and a 

different optimal tax as well, since µ(t), the shadow price of the resource, is affected by 

the need for Lτ. 

Indeed, in autarkic equilibrium, the use of Lτ takes labor away from both 

sectors, as compared to the first best, because of the homotheticity of preferences. 

Hence, there is less M(t) and less H(t) produced for any stock level. Producing less M(t) 

implies that, for a given s(t), the wage rate is higher than in the first best model, since 

ω(t) = M'(LM(t)). Even though the necessary conditions of the resource production 

problem are the same as in first best, (5.32) differs from (5.12). There is a greater 

demand on labor, and therefore, a higher equilibrium wage rate than in first best. In 

other words, in this second best model, the solution is similar to exogenously having Lτ 

less labor than in the first best model. Welfare is always lower than in the first best 

model because less goods are produced and therefore, consumed. 

For a given s(t), the autarky equilibrium relative price p(t) differs in an 

undetermined fashion from that in the first best model, depending on preferences. Since 
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( )
( ) ( )

( ) ( )

C
h t
C
m t

u t
p t

u t
= , we know that ( ) [ ] [ ]

( )
M HH H MH M MH H MM

2
M

dH dMu u u u u u u udp t
u

− + −
= . 

Given that H(t) and M(t) both decrease as compared to the first best model, and since 

for our homothetic utility function [ ] 0uuuu MHHHHM <−  and [ ]uuuu MMHMHM − >0, we 

conclude that for any given s(t), the difference in p(t) as compared to the first best is 

unclear. It depends on how much of Lτ was taken from the resource sector and the 

manufactures sector as compared to the first best management regime. 

5.5.6. Free trade: temporary and long-run equilibria 

Again, we assume that when free trade occurs, the resource stock is at a positive 

steady state stock such that ( ) δ=∞s'g A . The equilibrium autarky price just before trade 

opens is noted Ap∞ . Since we assume that the home country takes world prices as given, 

then we need to analyze two possible cases: W Ap p∞> , and W Ap p∞< . Welfare and 

resource conservation results are similar to those for the first best model. 

 

Case 1. W Ap p∞>  

Proposition 5.8. 

If W App ∞> , production remains the same as in the autarkic steady state forever. 

The home country exports some HP(t) and imports some MC(t). Welfare is always 

higher due to the new international exchange possibilities; hence the discounted welfare 

is higher than it would have been in autarky, and the steady state welfare is higher than 

it would have been in autarky as well. Finally, the resource is conserved. 
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Proof. 

See the proof of Proposition 5.6 from section 5.4.6.  

 

Case 2. W Ap p∞<  

Case 2 in the second best model with fixed cost of management can also be 

subdivided into two sub cases, depending on the magnitude of the change in the relative 

terms of trade. 

 

Case 2a: ( )A W A
MM ' L h p p∞ ∞

⎡ ⎤ < <⎣ ⎦
%  

Proposition 5.9a. Production remains the same as in autarky 

If W App ∞< , but the difference between the two relative prices is not great, then 

there is still a positive rent on the resource and therefore it remains managed. 

Production remains the same as in autarky. Given the new, lower relative price, the 

home country exports MP(t) and imports HC(t), which is now relatively cheaper than in 

autarky. Welfare is initially higher, and since production does not change, the initial 

equilibrium is also a steady state. Therefore, steady state welfare is higher than in 

autarky, and discounted welfare also is. Finally, the resource is conserved. 

Proof. 

See the proof of Proposition 5.7a in section 5.4.6.  
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Case 2b: ( )W A A
Mp M ' L h p∞ ∞

⎡ ⎤< <⎣ ⎦
%   

Proposition 5.9b. 

If W App ∞< , and the decrease in relative price of the resource good is large 

enough so that the resource no longer has a positive inter-temporal shadow value, then 

the resource is no longer managed, the home country produces more M(t) than in 

autarky (or the exact same amount if ( )W A
MM ' L hp ∞

⎡ ⎤= ⎣ ⎦
% ) and it exports some of it. It 

produces less, maybe none at all, HP(t), and it imports it for at least part of its 

consumption. It consumes less MC(t) and more HC(t). 

Welfare is always higher; hence the discounted welfare is higher than it would 

have been in autarky, and the steady state welfare is higher than it would have been in 

autarky as well. Finally, the resource is conserved at a stock greater or equal to As∞ . 

Proof. 

See the proof of Proposition 5.7b in section 5.4.6.  

 

In Case 2b of this second best resource management economy, Lτ will be 

reallocated to MP and perhaps HP, depending on whether the economy specializes in the 

manufactures or remains diversified. This is different of course from the first best model 

where there is no Lτ devoted to resource management. 
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5.6. Empirically-relevant resource management regimes and regime 

switches 

We now consider the possibility that open access turns out to be the second best 

optimal resource management regime, i.e., that open access is chosen by the resource 

planner when resource management is "too" costly. Hence we allow for open access and 

effective costly management to be optimally chosen at different resource stocks, s(t); 

we call his option The resource management regime problem. 

First, let us point out that for some resource stock range, open access can be the 

first best management regime, i.e., it can be optimal even when resource management is 

costless. This was shown in a continuous time framework by Kemp and Long (1980) 

and by Levhari et al. (1981) in discrete time. This is so because, in a concave infinite 

horizon autonomous problem, the shadow price of the resource, which represents the 

economic scarcity of the resource stock, varies inversely with the resource stock.15 

Therefore, for high resource stocks, the shadow price could be zero, i.e., there could be 

no economic scarcity at all. Open access exploitation of the resource would then be first 

best optimal. In the first best model however, as the resource stock decreases, the 

shadow price of the resource can eventually become positive, and therefore effective 

management can be optimal for smaller stocks. 

                                                 

15 See Long (1979) for a proof that ( ) ( )t s t 0µ ≤&&  for an infinite horizon autonomous 

concave problem, and that ( ) ( )t s t 0µ <&&  for an infinite horizon autonomous strictly 

concave problem. 
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The same inverse relationship between the shadow price, ( )tµ , and the resource 

stock, s ( )t , holds true in our second best model with fixed cost of management. Indeed, 

our second best problem is also an infinite horizon autonomous problem, which implies 

that the relationship ( ) ( )t s t 0µ ≤&&  must hold (Long, 1979). Equation (5.26) makes it 

clear for our specific model. 

In our second best model however, if ( )* s 0µ >  for large stocks, then open 

access can be the preferred management regime for some resource stock range only 

because of the fixed flow of management cost, not due to lack of economic scarcity. As 

in section 4.4, we consider the possibility that open access is the second best resource 

management regime. First, we must solve the social planner’s resource management 

regime problem. That problem is solved in Appendix IV and we use the necessary 

condition found there in the analysis that follows. As in Chapter 4, at stocks where the 

second best resource management regime changes from costly management to open 

access (or vice versa), we must have ( )PH H , *,s 0µ =% . 

In order to characterize the stock range(s) for which the second best 

management could be open access, we must first describe the locus ( )PH H , *,s 0µ =%  in 

(s,HP)-space in order to plot it on the phase diagram. To do so, let us use the current 

value Hamiltonian (5.31), and let us simplify the notation slightly by setting the harvest 

level ( )P
SP hH N t h= % %l , where NSP is the number of harvesters under costly resource 

management. Let us also substitute ( )tµ  according to first order condition (5.22) by 
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( )Pp H
h
ω⎛ ⎞−⎜ ⎟

⎝ ⎠%
. Further, let us set ( ) ( )

PH
P

0
p x dx U H=∫ . After some algebraic 

manipulation, we finally obtain the locus 

 ( ) ( ) ( ) ( )P P P PH U H p H H p H g s L 0
h τ
ω⎛ ⎞= − + − −ω =⎜ ⎟

⎝ ⎠
%

% . (5.34) 

The characterization of ( )PH H , *,s 0µ =%  on the phase diagram will be done in a 

similar fashion as in Chapter 4, that is, by considering the zero profit locus, 

( )Pp H 0
h
ω

− =% , and the surplus locus ( ) ( )P P PU H p H H Lτ− = ω . 

Assume that the resource manager cares about maximizing total inter-temporal 

welfare from the resource sector, but he does not take general equilibrium externalities 

into account. This implies that he takes ω , the wage rate, as given. As in Chapter 4, we 

will find three cases of interest. Case A occurs when the ( )PH H , *,s 0µ =%  locus intersects 

with the zero profit locus, which is also the open access path; we will see that this 

implies that the zero profit locus and the surplus line intersect. In Cases B and C, the 

zero profit locus and the surplus line do not intersect. In Case B the zero profit line is 

above the surplus line for all feasible resource stocks; in Case C it is the opposite. 

 

Case A: The locus ( )PH H , *,s 0µ =%  intersects the zero profit line, 

( )Pp H 0
h
ω

− =% . 

First consider points where the locus ( )PH H , *,s 0µ =%  intersects the vertical axis, 

where s 0= . At s 0= , the equation ( )PH H , *,s 0µ =%  implies ( ) ( )P P PU H p H H Lτ− = ω : 
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the instantaneous consumer surplus generated by costly resource management is equal 

to the instantaneous cost of management, Lτω . Let Hτ be the harvest level that satisfies 

( ) ( )P P PU H p H H Lτ− = ω  at s 0= . 

Now consider the point(s) where the locus ( )PH H , *,s 0µ =%  intersects the zero 

profit line defined by ( )Pp H 0
h
ω

− =% , or equivalently, with no restriction on g(s), 

( ) ( )Pp H g s 0
h
ω⎡ ⎤− =⎢ ⎥⎣ ⎦%

. If an intersection exists, it occurs at (s,HP) that satisfies 

( ) ( ) ( ) ( ) ( )P P P P PH H , *,s U H p H H p H g s L
h τ
ω⎡ ⎤µ = − + − −ω⎢ ⎥⎣ ⎦

%
%  ( ) ( )Pp H g s 0

h
ω⎡ ⎤= − =⎢ ⎥⎣ ⎦%

, 

which implies that ( ) ( )P P PU H p H H Lτ− = ω , the instantaneous consumer surplus 

generated by management is equal to Lτω . Since neither ( )Pp H 0
h
ω

− =%  nor 

( ) ( )P P PU H p H H Lτ− = ω  depend on s, their slopes are null. Therefore, in Case A, the 

fact that ( )PH H , *,s 0µ =%  intersects ( )Pp H 0
h
ω

− =%  implies that 

( ) ( ) ( )P P P Pp H U H p H H L 0
h τ
ω

− = − −ω =% : the zero profit line and the surplus line 

overlap completely. In Case A, given a demand function, a wage rate, and a marginal 

productivity of labor per harvester ( h% ), only one specific fixed amount of resource 

management labor, Lτ, can make this equality hold. This is therefore a special case and 

most possible cases will differ from it. 
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Figure 5.9 illustrates Case A, where the zero profit line and ( )PH H , *,s 0µ =%  

intersect, as well as the different regions defined by them. In this special case, the locus 

( )PH H , *,s 0µ =%  overlaps with the zero profit line and the surplus line as well. This is a 

case where open access is the second best optimal management regime for all feasible 

resource stocks, given that resource management is costly. 

 

Figure 5.9. Regions delimited by the intersection of loci ( )PH H , *,s 0µ =%  and 

( )Pp H 0
h
ω

− =% . 

H 

 (I)  ( )Pp H 0
h
ω

− <% , ( ) ( )P P PU H p H H Lτ− > ω     

    ( )PH H , *,s 0µ =%  
 

Hτ 

  ( ) ( ) ( )P P P Pp H U H p H H L 0
h τ
ω

− = − −ω =%  

 

 (II) ( )Pp H 0
h
ω

− >% , ( ) ( )P P PU H p H H Lτ− < ω  

 
 
 

  
     0           s 

 

In order to gain insight into more general cases, let us characterize the slope of 

the ( )PH H , *,s 0µ =%  locus. The slope of (5.34) is 
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( )

( ) ( )

( ) ( )P

P
P

P P
H H , *,s 0

p H g ' s
dH h
ds p ' H H g sµ =

ω⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎡ ⎤−⎣ ⎦%

%
. (5.35) 

At s=0, ( )PH H , *,s 0µ =%  always coincides with the surplus locus, whether we are 

analyzing Case A, B or C. 

 

 

Case B: The surplus locus is below the profit line for all feasible stocks. 

In Case B ( )Pp H 0
h
ω⎛ ⎞− >⎜ ⎟

⎝ ⎠%
 at s=0. From (5.35), above the growth function 

where ( )PH g s> , the slope of the ( )PH H , *,s 0µ =%  locus is negative, as long as g'(s)>0. 

The slope is negative below the growth function, and it is infinite as it crosses the 

growth function.  

Figure 5.10 illustrates Case B, where the surplus locus is below the zero profit 

line, as well as the different regions defined by them. The ( )PH H , *,s 0µ =%  locus is 

illustrated as well. As per (5.35), at s=0, the locus ( )PH H , *,s 0µ =%  and the surplus locus 

coincide and the slope of ( )PH H , *,s 0µ =%  is negative. The slope is infinite as 

( )PH H , *,s 0µ =%  crosses the growth function, and it is positive below it. Therefore, the 

locus ( )PH H , *,s 0µ =%  is in region (III) of Figure 5.10. It could not be in region (II) since 

H 0>%  there. The locus could possibly be in region (I), but its slope at s=0 takes it away 

from that region.  
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Figure 5.10. Case B: ( ) ( )P P PU H p H H Lτ− = ω  lies below ( )Pp H 0
h
ω

− =% . 

 H 

 (I) ( )Pp H 0
h
ω

− <% , ( ) ( )P P PU H p H H Lτ− > ω   ( )Pp H 0
h
ω

− =%  

 

 (II) ( )Pp H 0
h
ω

− >% , ( ) ( )P P PU H p H H Lτ− > ω ; ( )PH H , *,s 0µ >%  

 
        ( ) ( )P P PU H p H H Lτ− = ω  

Hτ 
 

  (III) ( )Pp H 0
h
ω

− >% , ( ) ( )P P PU H p H H Lτ− < ω  

 
 ( )PH H , *,s 0µ =%  
               s 0=&  
 
     0            s   s 

We now need to show that the ( )PH H , *,s 0µ =%  locus as illustrated in Figure 5.10 

eventually reaches the horizontal axis at some point (sh,0). At that point, equation (5.34) 

becomes 

 
( ) ( ) ( ) ( )

( ) ( )

h

h

H U 0 p 0 0 p 0 g s L
h

p 0 g s L 0
h

τ

τ

ω⎛ ⎞= − + − −ω⎜ ⎟
⎝ ⎠

ω⎛ ⎞= − −ω =⎜ ⎟
⎝ ⎠

%
%

%

 (5.36) 

Since L 0τω > , and ( )p 0
h
ω⎛ ⎞−⎜ ⎟

⎝ ⎠%
 are positive constants, it is through sh that (5.36) holds. 

Hence, 
( )

1
h

Ls g
p 0

h

− τ

⎛ ⎞
⎜ ⎟ω

= ⎜ ⎟ω⎜ ⎟−
⎝ ⎠%

. 
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Case C: The surplus locus is above the profit line for all feasible stocks. 

Case C implies that on the surplus locus, ( )Pp H 0
h
ω⎛ ⎞− <⎜ ⎟

⎝ ⎠%
. In that case, from 

(5.35), the sign of the slope of ( )PH H , *,s 0µ =%  is positive at s=0, and the same as g'(s) 

for all feasible s. Hence it is negative at s s=  and zero at the maximum sustainable 

yield, where g'(s)=0. Figure 5.11 illustrates this case. 

 

Figure 5.11. Case C: ( ) ( )P P PU H p H H Lτ− = ω  lies above ( )Pp H 0
h
ω

− =% . 
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  ( )Pp H 0
h
ω

− =%  

  (III) ( )Pp H 0
h
ω

− >% , ( ) ( )P P PU H p H H Lτ− < ω  

               s 0=&  
 
     0            s   s 

 

Let us figure out how the surplus line ( ( ) ( )P P PU H p H H Lτ− = ω ) is affected by 

a change in fixed flow cost of management, Lτω . Since ω  is considered fixed by the 
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resource manager, Lτω  increases if Lτ , the quantity of labor required to manage the 

resource, increases. Using U'(HP) = p(HP), we find that 

 
( ) ( ) ( )P P P

P

P P
U H p H H L

dH 0.
dL p ' H H

τ
τ − =ω

−ω
= >  (5.37) 

The surplus line moves up on the phase diagram as the required labor for resource 

management increases. Hence, with a relatively low cost of resource management, Case 

B occurs. As Lτ  increases, special Case A is reached, and then Case C. 

Let us now characterize how the locus ( )PH H , *,s 0µ =%  changes in Case B as Lτ  

increases. Using (5.34), we find 

 
( ) ( )

P

P P
H 0

dH
dL p ' H g s Hτ =

ω
=

⎡ ⎤−⎣ ⎦%

, (5.38) 

which means that HP increases above the growth function (since ( ) Pg s H⎡ ⎤−⎣ ⎦ <0) and 

decreases below the growth function if Lτ  increase. Also, we find that 

 
( ) ( )PH 0

ds
dL p H g ' s

h
τ =

ω
=

ω⎡ ⎤−⎢ ⎥⎣ ⎦
%

%

, (5.39) 

which implies that the stock increases as Lτ  increases as long as g'(s)>0: the stock is 

smaller than the maximum sustainable yield. Overall then, as Lτ  increases, the area 

encompassed by the locus ( )PH H , *,s 0µ =% , and therefore the area for which 

( )PH H , *,s 0µ <% , increases. 

Now let us do the long run analysis, i.e., the analysis that takes general 

equilibrium considerations into account, so we can plot the general equilibrium phase 
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diagram. While the resource manager does not take these considerations into account 

directly, he will perceive that the parameters of the economy change as the resource 

stock changes and we assume he will adjust accordingly. The parameter that changes as 

the resource stock changes under management is the wage rate: ( )sω = ω  and 

( )' s 0ω > , as reported in Table 5.3. Hence both the zero profit line and the surplus locus 

will move as the resource stock does.  

In the long run, the zero profit line is ( ) ( )P s
p H 0

h
ω

− =% . Its slope is no longer 

null but instead ( )
( )

P

P

' sdH 0
ds p ' H

ω
= < .16 Similarly, the surplus locus is 

( ) ( ) ( )P P PU H p H H s Lτ− = ω  and its slope is ( )
( )

P

P P

' s LdH 0
ds p ' H H

τ−ω
= > . These long term 

zero profit and surplus loci can cross or not, leading to three long term cases as depicted 

in Figures 5.12-5.14. 

Figure 5.12 illustrates general equilibrium Case AGE, where the zero profit line 

and ( )PH H , *,s 0µ =%  intersect, as well as the different regions defined by them. Figure 

                                                 

16 The equation ( ) ( )P s
p H 0

h
ω

− =%  is used here only for the purpose of characterizing 

the locus ( )PH H , *,s 0µ =%  in general equilibrium. In this model where instantaneous 

returns do not depend the s(t), actual open access behavior (zero profit path) implies a 

fixed division of labor in general equilibrium, and therefore, a fixed wage rate, ω , as 

shown in section 5.3.1. 
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5.13 illustrates Case BGE, where the surplus locus is below the zero profit line for all 

feasible stocks. Figure 5.14 shows Case CGE, where the surplus locus is above the profit 

line for all feasible stocks. 

We want to characterize the shape of the locus ( )PH H , *,s 0µ =%  in these figures. 

In general equilibrium, we substitute ω  by ( )sω  in (5.34) and obtain 

 ( ) ( ) ( ) ( ) ( ) ( )P P P P s
H U H p H H p H g s s L 0

h τ
ω⎛ ⎞

= − + − −ω =⎜ ⎟
⎝ ⎠

%
% . (5.40) 

As before, at s=0, the locus ( )PH H , *,s 0µ =%  coincides with 

( ) ( ) ( )P P PU H p H H s Lτ− = ω  in all three cases. The slope of ( )PH H , *,s 0µ =%  is 

 
( )

( ) ( ) ( ) ( ) ( )

( ) ( )P

P
P

P P
H H , *,s 0

s g s
p H g ' s ' s L

h hdH
ds p ' H H g s

τ

µ =

ω⎛ ⎞ ⎡ ⎤
− −ω +⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦=
⎡ ⎤−⎣ ⎦%

% %
. (5.41) 

We keep a similar nomenclature as impartial equilibrium (Case A, B and C 

become AGE, BGE and CGE), but we analyze the cases in reverse order. The simplest case 

is Case CGE, illustrated in Figure 5.12; the surplus line lies above the zero profit line. At 

s=0, since ( )PH H , *,s 0µ =%  coincides with ( ) ( ) ( )P P PU H p H H s Lτ− = ω , and the 

surplus line is above the zero profit line, then ( ) ( )P s
p H 0

h
ω⎛ ⎞

− <⎜ ⎟
⎝ ⎠% . Also, at that point, 

( )P PH g s H 0⎡ ⎤− = >⎣ ⎦ . Since ( )g ' 0 0> , then 
( )P

P

H H , *,s 0

dH 0
ds

µ =

>
%

 at s=0. Notice that at 

s s= , ( )PH H , *,s 0µ =%  coincides with ( ) ( ) ( )P P PU H p H H s Lτ− = ω  as well. Since 
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( ) ( )g s
' s L 0

h τ
⎡ ⎤

ω + >⎢ ⎥
⎣ ⎦%  for all feasible stocks and since ( )g '' s 0< , we could have 

( )P

P

H H , *,s 0

dH 0
ds

µ =

=
%

 at a stock such that MSYs s s< < , or the slope could remain positive 

for the entire range of feasible stock. Hence in Case CGE, open access is the second best 

management regime for all feasible stocks. 

A slightly more complicated case is Case BGE, illustrated in Figure 5.13. As 

usual, at s=0, ( )PH H , *,s 0µ =%  coincides with ( ) ( ) ( )P P PU H p H H s Lτ− = ω . Since the 

surplus line is below the zero profit line for all feasible stocks, then 

( ) ( )P s
p H 0

h
ω⎛ ⎞

− >⎜ ⎟
⎝ ⎠%  for all feasible stocks. Also, at s=0, ( )P PH g s H 0⎡ ⎤− = >⎣ ⎦ . From 

(5.41), the slope of the locus ( )PH H , *,s 0µ =%  is indeterminate at s=0. However, if it 

were positive, the locus ( )PH H , *,s 0µ =%  would be in the area between the zero profit 

line and the surplus line where we know that ( )PH H , *,s 0µ >% . This means that the only 

possibility in Case BGE is 
( )P

P

H H , *,s 0

dH 0
ds

µ =

<
%

 at s=0. If ( )PH H , *,s 0µ =%  crosses the 

growth function, 
( )P

P

H H , *,s 0

dH
ds

µ =

= ∞
%

, and then below the growth function, the slope is 

positive. Alternatively in Case BGE, it is possible that the ( )PH H , *,s 0µ =%  locus has a 

null slope at some positive stock and then a positive slope before meeting the surplus 

line again at s s= . This possibility occurs for higher fixed flow of management costs as 
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it leads to open access for all possible stocks. Both possibilities are illustrated on Figure 

5.13 as ( )P
AH H , *,s 0µ =%  and ( )P

BH H , *,s 0µ =% . 

The most complicated case is Case AGE, illustrated in Figure 5.14. From the 

partial equilibrium analysis of Figure 5.11 and the general equilibrium analysis of 

Figure 5.12, we know that at stocks greater than the stock where the zero profit and the 

surplus lines intersect, the locus ( )PH H , *,s 0µ =%  is above the surplus and zero profit 

lines. At the intersection, locus ( )PH H , *,s 0µ =%  also intersects the two lines and from 

(5.41), its slope is positive at the intersection because ( ) ( )P s
p H 0

h
ω⎛ ⎞

− =⎜ ⎟
⎝ ⎠%  and 

( )PH g s 0⎡ ⎤− >⎣ ⎦ . 

We know that at s=0, the locus ( )PH H , *,s 0µ =%  and the surplus line coincide at 

Hτ. Also, at s=0, the slope of ( )PH H , *,s 0µ =%  is negative. Since the locus 

( )PH H , *,s 0µ =%  is continuous, we conclude that its slope becomes null as s increases, 

and then it becomes positive so the locus reaches the intersection of the zero profit and 

surplus lines from the left hand side as well. The locus ( )PH H , *,s 0µ =%  never crosses the 

growth function since its slope would be reversed under the growth function and it 

would move away from the intersection between the zero profit and the surplus lines. 

See Figure 5.14. We conclude that in Case AGE, open access is the second best 

management for all feasible stocks. Hence only in Case BGE, where the surplus line lies 

below the zero profit line, do we have costly resource management for higher stocks. 
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As the fixed flow of management cost varies, locus ( )PH H , *,s 0µ =%  varies in a 

similar way as we found before. Indeed, HP varies in the same way as in the partial 

equilibrium (see equation (5.38)): above the growth function, HP increases as Lτ 

increases, and below the growth function, it decreases as Lτ decreases. Therefore, as the 

fixed flow of management cost increases, the area for which ( )PH H , *,s 0µ <%  expands, 

like was found in the partial equilibrium analysis. 

 

Figure 5.12. Case CGE: ( ) ( ) ( )P P PU H p H H s Lτ− = ω  lies above ( ) ( )P s
p H 0

h
ω

− =% . 
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h
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       ( ) ( )P s
p H 0

h
ω
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  (II) ( ) ( )P s
p H 0

h
ω

− >% , ( ) ( ) ( )P P PU H p H H s Lτ− < ω  

 
     0           s 
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Figure 5.13. Case BGE: ( ) ( ) ( )P P PU H p H H s Lτ− = ω  lies below ( ) ( )P s
p H 0

h
ω

− =% . 
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Figure 5.14. Case AGE: ( ) ( ) ( )P P PU H p H H s Lτ− = ω  and ( ) ( )P s
p H 0

h
ω

− =%  intersect. 
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We are now ready to do the trade analysis with the possibility that open access 

or costly management can be second best optimal. We assume that when the country 

opens to free trade, the resource stock is above the maximum sustainable yield, where 

g'(0)=0. 

Cases CGE and AGE, presented in Figures 5.12 and 5.14, lead to open access 

exploitation for all stocks. In Case BGE, presented in Figure 5.13, we found that costly 

management for could be second best optimal for larger stocks. In the long run, what 

matters is if ( )P *H H , *,s 0∞µ <%  or if ( )P *H H , *,s 0∞µ ≥% . Only in the later case could we 

reach the optimal steady state. Otherwise, open access is preferred at s= *s∞  and 

extinction could eventually occur due to open access exploitation. 
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In the next section, we examine the impact of free trade on welfare and 

conservation in the home country. 

 

5.6.1. Free trade: temporary and long-run equilibria 

The equilibrium autarky price just before trade opens is noted Ap∞ . We assume 

that a steady state, As∞ , has been attained in open access in autarky, such that 

( )Ag ' s 0∞ ≤ . Hence the resource is conserved in autarky. Again, let us look at the two 

cases: W App ∞>  and W App ∞< . 

Case 1. W Ap p∞>  

Results in Case 1 depend on how large Wp  is in relation to the parameters of the 

home country. Scenario (i) occurs if the home country has a relatively small 

comparative advantage in the resource good. In this scenario, Wp  is greater than Ap∞ , 

but not be enough to trigger costly management. There are two possible outcomes in 

that scenario. The first outcome occurs as open access leads to greater harvest, but 

instantaneous harvest smaller than the maximum sustainable yield harvest. In that 

outcome, the resource is conserved and welfare is greater immediately as the country 

opens to trade and forever after. The second outcome occurs if open access leads to 

greater harvest that is larger than the maximum sustainable yield harvest. In that 

outcome, the resource becomes extinct. Welfare is greater than in autarky immediately 

as the country opens to trade but it is smaller once extinction occurs. The change in 

discounted welfare between free trade and the autarkic alternative is therefore 
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ambiguous. This outcome is the worst-case scenario where free trade allows greater 

exchange possibilities, but exacerbates the open access exploitation problem, which 

ultimately impoverishes the home country. 

Scenario (ii) occurs if the home country has an important comparative 

advantage in the resource good. In this scenario, the difference between Wp  and Ap∞  is 

large enough to trigger costly management. Initially the resource stock decreases under 

costly management. Two outcomes exist in this scenario as well. The first outcome 

occurs if ( )P *H H , *,s 0∞µ ≥% . In this outcome, the steady state is the infinite horizon 

steady state, *s∞ . This outcome is a complete success story of free trade, because free 

trade not only generates more wealth but also triggers institutional changes for resource 

management that lessen the dynamic distortion in the home country. Welfare is initially 

greater than under autarky and discounted welfare from free trade is greater than in 

autarky. Steady state welfare may be greater or lower than in autarky. In the second 

outcome of scenario (ii), ( )P *H H , *,s 0∞µ <% , so under costly management a finite horizon 

path is followed until the open access zero profit line 17 and the ( )PH H , *,s 0µ =%  locus 18 

are reached simultaneously. Afterwards, the resource is exploited in open access and 

extinction is eventually reached. Initial welfare is greater than in autarky, steady state 

                                                 

17 The finite horizon transversality condition *s 0µ =  is respected since * 0µ = . 

18 This is the necessary condition for a resource management regime change as found in 

APPENDIX IV. 
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welfare is lower and the change in discounted welfare in free trade compared to autarky 

is ambiguous. 

Let us analyze both scenarios in more details. 

 

Scenario (i): open access under free trade 

In scenario (i) of Case 1, even though W App ∞> , open access can still be the 

preferred resource exploitation regime under free trade. This is because the cost of 

management, ( ) Tt Lω , could still be prohibitively high and render resource 

management welfare-decreasing as compared to open access exploitation. The 

comparative advantage is not advantageous enough for the management cost to be 

worth incurring. 

 

Proposition 5.10. 

In scenario (i) of Case 1, as the home country opens to free trade, it produces 

more resource good and may or may not specialize in it. In any case, welfare is higher 

initially. The resource good is exported, and the manufactured good is imported. In the 

first outcome, under free trade, harvest is smaller or equal to the resource maximum 

sustainable yield, i.e., ( )P
h MSYH N h g s= ≤%%l , so this equilibrium is sustainable in the 

long run; in such a case, utility is higher than in autarky forever, and therefore 

discounted utility is greater. In the second outcome of this scenario, harvest is greater 

than the resource maximum sustainable yield, i.e., ( )P
h MSYH N h g s= >%%l . As a result, 

extinction occurs in finite time. The home country must then export some MP(t) in order 
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to import some HC(t), even though W Ap p∞> . Utility is lower thereafter, although utility 

discounted to the time when trade opens could be higher or lower than it would have 

been in autarky since it is initially higher until extinction is reached. 

Proof. 

See the proof of Proposition 5.1 in section 5.3.6.  

 

In this second outcome of scenario (i), therefore, second best management could 

lead both to extinction, to a decrease in steady state welfare, and possibly to lower 

discounted inter-temporal welfare as compared to the autarkic steady state alternative. 

This scenario is the least appealing for free trade; autarky could be better, both for 

welfare and conservation, even though with trade, open access is second best optimal 

from the resource planner's standpoint. Hence, trade can be inter-temporally welfare-

decreasing, even with "proper" management, i.e., second best management. 

For illustrative purposes of Proposition 5.10, see Figure 5.15, in which welfare 

is unambiguously increased with free trade and the resource is conserved (scenario (i)), 

and Figure 5.16, in which the resource becomes extinct with free trade, and steady state 

welfare is decreased; again, discounted welfare could also be lower than it would have 

been in autarky (scenario (ii)). 
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Figure 5.15. One possible second best outcome; scenario (i) 
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Figure 5.16. Another possible second best outcome; scenario (i) 
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Scenario (ii): costly management under free trade 

In this scenario, we assume that the comparative advantage of the home country 

in the resource good is important, which leads to costly management at the moment 

when the country is opened to free trade. This means that the world price Wp  is equal or 

greater than the critical relative world price (which depends on the resource stock), 

( )( )W
Cp s t . The critical relative world price is the minimum price that triggers a change 

from open access exploitation to costly resource management. Hence, ( )( )W
Cp s t  is such 

that ( )P AH H , *,s 0∞µ =%  under free trade. In scenario (ii) therefore, ( )( )W W
Cp p s t≥ . 

 

Proposition 5.11a. 

In scenario (ii) of Case 1, where free trade triggers resource management, then 

HP initially increases, MP initially decreases, consumption in HC decreases and MC 

increases. HP is exported and MC is imported. 

Initial welfare increases, but it decreases as the resource stock and HP decrease, 

and as MP increases. There could be trade reversal at some point, if HP decreases and 

MP increases enough. Welfare would then be lower than it would have been in autarky, 

and it would be so until the new steady state, Ts∞ , is reached. As long as ( ) δ>0'g , Ts∞  is 

such that ( )Tg ' s∞ = δ . Hence, the resource is conserved in the long run. 

Regardless of the instantaneous welfare comparison with autarky, discounted 

welfare is higher than it would have been in autarky, regardless of steady state welfare. 

Proof. 
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The new terms of trade imply that initially HP increases, MP decreases, 

consumption in HC decreases and it increases in MC. Initially, some HP is exported and 

some MC is imported. Therefore, initial welfare increases: P Cvdv H H dp 0
Y
∂ ⎡ ⎤= − >⎣ ⎦∂

. 

However, there could be trade reversal on the optimal path, if HP decreases and 

MP increases until 
( )( )
( )( ) ( )( )

P
HW H

P P
M H H

H ' L tu hp
u M ' L L t L M ' L L t Lτ τ

= < =
− − − −

%
. Then 

welfare would be lower than it would have been in autarky. It would be so until the new 

steady state Ts∞  is reached because HP decreases and MP increases until then. In that 

case, steady state welfare would be lower than it would have been in autarky. 

However, if resource management is chosen between the initial free trade 

resource stock and the steady state resource stock, Ts∞ , such that ( )Tg ' s∞ = δ , then by the 

Maximum Principle, it must lead to a higher discounted stream of welfare than open 

access would. 

If steady state harvest in free trade is greater or equal to the steady state harvest 

in autarky, i.e., ( ) ( )T AP PH H
∞ ∞
> , then, given the terms of trade, steady state welfare is 

unambiguously greater in free trade than in autarky: P Cvdv H H dp 0
Y
∂ ⎡ ⎤= − >⎣ ⎦∂

. 

However, if ( ) ( )T AP PH H
∞ ∞
< , then for a large enough difference in the steady state 

harvests, steady state welfare could be smaller than in autarky. However, discounted 

welfare is greater in free trade with management than in autarky under open access, 

even if instantaneous welfare is lower than in autarky for part of the optimal path in free 

trade.� 
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See Figure 5.17 for the outcome of scenario (ii) treated in Proposition 5.11a. In 

relation to the location of locus ( )PH H , *,s 0µ =%  on the phase diagram, the critical world 

price, W
c,p ∞ , above which conservation occurs and below which we could have extinction 

is given by condition ( )P *H H , *,s 0∞µ =% . The only instance of locus ( )PH H , *,s 0µ =%  

under which management can occur is Case BGE (see Figure 5.13, locus 

( )P
AH H , *,s 0µ =% ). 

 

Figure 5.17. One possible second best outcome; scenario (ii) 
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Proposition 5.11b. 

In this other possible outcome of scenario (ii), the home country's comparative 

advantage in the resource good triggers resource management as the country is opened 

to free trade, Hence HP initially increases, MP initially decreases, consumption in HC 
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decreases and MC increases. HP is exported and MC is imported. Consequently, initial 

welfare increases 

As the stock decreases, open access becomes second best optimal (because 

( )P *H H , *,s 0∞µ <% ). This means that extinction eventually occurs and from that time on, 

welfare is lower than in autarky. Welfare is initially higher than in autarky and it is 

lower in the long run. The change in discounted welfare due to the free trade regime as 

compared to the autarkic steady state is ambiguous. 

 

Proof. 

For the portion of the transitory path where costly management is second best 

optimal, the proof proceeds as for Proposition 5.11a. For the portion where open access 

is optimal, the proof proceeds as that of Proposition 5.1, section 5.3.6.  

 

See Figure 5.1819 for the outcome of scenario (ii) treated in Proposition 5.11b. 

 

                                                 

19 In Figure 5.18, there is a discrete jump in harvest between the open access and second 

best management regime. This is due to the full employment constraint and the 

homotheticity of preferences, which together imply that the fixed management input, 

Lt, must be diverted towards, the resource sector in part and the manufactures sector in 

part. There is a corresponding jump up in the relative wage rate in the home country. 
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Figure 5.18. Another possible second best outcome; scenario (ii) 
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Case 2. W App ∞<  

Results here are as in the same case for the open access model: welfare is 

unambiguously improved and extinction is prevented. 

 

Proposition 5.12. 

If W Ap p∞< , the home country produces more manufactures than in autarky, and 

it may or may not specialize in it. In either the diversified case or the specialized case, 

the long run equilibrium stock with free trade, sT
∞ , is such that ( ) ( )P T T

MH L L g s∞− =  

and sT
∞  > sA

∞ . Therefore extinction cannot occur in this case due to trade. Also, 

manufactures are exported and the resource good is imported. Furthermore, utility is 
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higher initially and forever. Hence overall, welfare is unambiguously improved, both 

inter-temporally and in steady state. 

Proof. 

See the proof of Proposition 5.2 in section 5.3.6.  

 

When W App ∞< , even though the resource may remain exploited under open 

access, there are net gains from trade because the dynamic externality due to the open 

access exploitation regime is lessened under diversification or altogether eliminated if 

there is specialization in the manufactures. Also, usual gains from trade are realized by 

producing more manufactures. Overall then, welfare is unambiguously improved. 

 

The results of a change in trade regime with costly resource management are 

summarized in Table 5.6 and Table 5.7. 
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Table 5.6. Second best resource management with trade, Case 1: W App ∞> . 

Steady state 
autarky 
resource 

management 
regime 

Steady state 
free trade 
resource 

management 
regime 

Long-run 
impact of free 

trade on 
resource stock

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Conservation + + + Prop. 5.10 
Fig. 5.15 

Extinction - - + Open access20 

Extinction - - - 

Prop. 5.10 
Fig.5.16; 

Prop. 5.11b  
Fig. 5.18 

Open access 

Effective 
costly 

management 
Conservation + or - + or - + Prop. 5.11a 

Fig. 5.17  

Effective costly 
management 

Effective 
costly 

management 
Conservation No change + + Prop. 5.8 

Fig. 5.6 

 

                                                 

20 With stock dependence of instantaneous net gains, welfare change could be negative even without extinction. This occurs, for 

example, in Brander and Taylor (1997a). 
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Table 5.7. Second best resource management with trade, Case 2: W App ∞< . 

Steady state 
autarky 
resource 

management 
regime 

Steady state 
free trade 
resource 

management 
regime 

Long-run 
impact of free 

trade on 
resource stock

Change in 
steady 
state 

harvest 

Steady state 
welfare 

change due 
to trade 

Discounted 
welfare change 

due to trade 

Related 
Proposition(s) 
and Figure(s) 

Open access Open access Conservation - + + Prop. 5.12 
Fig. 5.3 

Effective 
costly 

management 
Conservation No change + + Prop. 5.9a 

Fig. 5.7 Effective costly 
management 

Open access Conservation - + + Prop. 5.9b 
Fig. 5.8 
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5.7. Policy implications 

In economics, it is common to hear that trade unambiguously raises welfare if 

proper environmental policies are in place. This is true only for the empirically 

irrelevant first best world where resource management is costless. However, due to 

costly resource management, "proper" management of the resource is less than perfect. 

In a second best world, where renewable resource management is not free, trade does 

not unambiguously raise welfare when "proper" environmental policies are in place. 

Some cases illustrating this finding have been shown. 

A very contemporary question is whether freer trade helps or hinders 

environmental protection. We obtained a partial answer to this, by looking at whether or 

not free trade can cause the extinction of a renewable resource. The answer is yes, free 

trade can cause the extinction of a species. Therefore, we conclude that freer trade can 

hinder the environment. However, it could also help it, if it triggers better resource 

management, which can also happen in some cases. Therefore, there is ambiguity in the 

answer to this question; it depends on which case is considered. 

In international trade theory, it is often said that the removal of trade restrictions 

and distortions can yield benefits for trading nations and for the environment. While this 

may be true for agricultural export subsidies for example, it is not so clear for 

environmental policies in general. In fact, we found that trade tariffs for a resource good 

can be second best optimal, when resource management is costly. Such policies can be 

welfare increasing for a resource good-exporting country with prohibitively high 

resource management cost. Let us recall that, for endogenous distortions, Bhagwati, 

Ramaswami and Srinivasan (1969) suggested trade tariffs and production factor tax-
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cum-subsidy as competing second best policies when the first best policy is not feasible. 

In our model, a tax-cum-subsidy on factor input implies taxation on labor in the 

resource good sector. A tariff means that exporters of the resource good would pay 

some percentage of their export revenues. Both alternatives entail the collection and re-

distribution of a tax or tariff. 

Trade tariffs can also be beneficial for an resource good-importing country 

(importing from the home country) that values the in situ resource stock, and therefore 

may agree to bear part of the cost of conservation policy. Therefore, trade tariffs for the 

resource good can be second best optimal, as opposed to trade tariffs on "normal" (not 

resource-based) goods. 

Given our results, an important question is: "In which cases must we be careful 

about free trade in the presence of a resource-based production sector?" In our model, if 

resource management is ineffective or weak in autarky, then the relative price increase 

due to trade needs to be either low enough to allow conservation in autarky (see 

Proposition 5.10, Figure 5.15) or high enough to trigger effective costly management 

leading to a positive steady state (see Proposition 5.11a, Figure 5.17). Otherwise, the 

losses due to greater harvest with ineffective resource management could overcome the 

gains from trade. 

Knowing this, what can be done? Trade tariffs for the resource good are a 

possible type of policy, which in time could perhaps be decreased if some level of trade-

based growth promotes the improvement of resource management technology. Our 

model does not address this possibility directly however, and it seems like an interesting 

subject for future research. 



 

 

174

Aid in the form of technology transfer and expertise could also be considered, 

but their positive effect on resource management would be long term. Such 

international cooperation already exists under the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora (CITES). CITES, an international 

environmental voluntary agreement, was introduced in 1973, to keep track of renewable 

resources being traded worldwide, to protect them from illegal trade and possibly from 

extinction. CITES policies generally are trade quotas and trade bans. We note however 

that our model serves to show that free trade can be welfare-decreasing for nations that 

have ineffectively managed resources in general, not endangered resources only. 

Unfortunately, current policy under CITES only covers the resources that are in danger 

of extinction, and WTO policy prevents trade tariffs unless a species is covered under 

CITES. Hence, there seems to be a gap in current policy relating to renewable resources 

that are traded. 

 

5.8. Conclusion 

In this chapter, we have proposed a trade model where the benevolent resource 

planner's management is costly and therefore endogenous. This allows for the analysis 

of free trade impacts when resource management regimes other than the polar open 

access and first best regimes. Interestingly, the second best endogenous management 

considered is more realistic than the textbook first best policy prescription. 

With a model where instantaneous net gains do not depend on the resource 

stock, and where resource management incurs an instantaneous fixed cost, we have 

characterized cases where a move from autarky to free trade is welfare increasing and 
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cases where it could be welfare-decreasing. We have also shown that free trade can 

cause the extinction of a resource and that this is welfare decreasing, at least in steady 

state, but perhaps even when we consider the discounted stream of welfare under free 

trade. Overall, we have characterized the impact of free trade on social welfare and on 

the conservation of the resource under open access exploitation of the resource, in the 

first best management regime and under costly management of the resource, i.e., under 

a second best policy. More specifically, in the second best model, we have characterized 

cases where the move from autarky to free trade can be welfare decreasing, and by 

extension, where some level of barrier to trade would be better. 

Furthermore, we have considered second best, empirically relevant, resource 

management switches and characterized cases where the resource management regime 

could change as a result of a change in trade regime, going from autarky to free trade.  

We have also characterized cases where the move from autarky to free trade can 

cause the extinction of the renewable resource. For this, we explicitly took the dynamic 

constraints and potential irreversibility into account, which are often ignored in 

renewable resource models that consider international trade and concentrate on positive 

steady state results only. 

Finally, we want to make it clear that there are cases where trade is welfare 

increasing and where it also can help the environment. But knowing when it does not 

and why it may not is helpful for policy-making, which is what motivated this chapter. 



 

 

176

CHAPTER 6. CONCLUSION 

The main motivation for this dissertation was that while property right problems 

and policy prescriptions are clear, open access exploitation is still observed empirically. 

The fact that resource management is costly can explain empirical observations. 

Another motivation was the growing interest for the impact of free trade of natural 

resources. The empirically relevant resource management cost was identified as a 

distortion compared to the first best model, which leads to second best analyses. Costly 

resource management was considered not only in partial equilibrium, but also in trade 

analyses, where welfare and resource conservation were analyzed, moving from autarky 

to free trade. For this, we have developed applied theoretical bio-economic models to 

analyze renewable resource dynamic problems in continuous time, making use of the 

Maximum Principle developed in optimal control theory. 

In Chapters 3 and 4, we developed partial equilibrium models, where 

management cost was assumed to be either an enforcement cost against poaching or an 

instantaneous fixed cost of tax collection and re-distribution. In Chapter 3, we have 

characterized the optimal policy for the management of a scarce renewable resource. 

We have explained how it may be optimal to observe legal and illegal harvests 

separately or simultaneously. Furthermore, we provided policy prescriptions for a 

scarce renewable resource that is owned by a sole owner who wishes to act as a 

monopolist (the pseudo-monopolist). We have also considered resource non-market 

values, and we provided policy prescriptions that take them into account. In Chapter 4, 

we considered resource management regime switches, and found that resource 
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management costs can affect the conservation of the resource negatively, irrespective of 

the discount rate. 

In Chapter 5, international trade was explicitly considered. We characterized the 

impact of free trade on social welfare and on the conservation of the resource under 

different resource management regimes. We showed that the empirically relevant 

second best management regimes and regime switches can render free trade discounted 

welfare decreasing, even with "proper" management. In such instances, some level of 

barrier to trade would be better than free trade. We have also shown that in the 

empirically relevant second best model, free trade can cause the extinction of the 

renewable resource, which we interpret as free trade hurting the environment. In the 

debate over international trade and the environment, rather than taking a one-sided 

stance, we find it important to understand the pros and cons of free trade, so that proper 

policy can be put in place. 

The importance of relative resource management costs is likely greater in poorer 

countries. Therefore, our findings are especially important for less developed economies 

that consider relying more on the export of their renewable resources to trigger 

economic growth. In some cases it may be a good solution, while in others, it can turn 

out to be immiserizing, even in terms of discounted welfare. 

In future research, it would be interesting to investigate distributional issues, by 

replacing our implicit social welfare function with one that takes wealth distribution 

into account, both in partial equilibrium models and in trade frameworks. In relation to 

international trade, a natural extension to Chapter 5 would be the analysis of a trade 

model where net instantaneous gains would depend directly on the resource stock. Also, 
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it would be interesting to go one step further and consider a growth model where initial 

trade-generated wealth can be invested into better resource management technologies 

instead of the home country passively moving towards potential doomsday. 
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APPENDIX I: DETAILS ON CITES-REGULATED SPECIES 

 

Table I.A.1. Statistics on CITES-listed species 

 Appendix Ia Appendix IIa Appendix IIIa 

 Sppb Ssppc Popnsd Spp Sspp Popns Spp Sspp Popns 

Mammals 228 21 13 369 34 14 57 11 0 

Birds 146 19 2 1401 8 1 149 0 0 

Reptiles 67 3 4 508 3 4 25 0 0 

Amphibians 16 0 0 90 0 0 0 0 0 

Fish 9 0 0 68 0 0 0 0 0 

Invertebrates 63 5 0 2030 1 0 16 0 0 

Plants 298 4 0 28074 3 6 45 1 2 

Total 827 52 19 32540 49 25 292 12 2 

 

Legend: 

a: CITES listings: species in CITES Appendix I are most endangered and most 

severely regulated (trade bans typically); species in CITES Appendix II are less 

endangered and less regulated (trade quotas typically); species in CITES Appendix 

III are not endangered yet or their level of endangerment is unknown, and data is 

being collected on trade. 

b: species; 

c: sub-species; 

d: populations. 
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APPENDIX II: STEADY STATE ANALYSIS, CROPPER ET AL. (1979) 

In this appendix, we show how to obtain Figure 4.2 and Figure 4.3 in our model, 

by summarizing Cropper et al.'s (1979) analysis. For this, we use our two loci in (s,Q)-

space: 

 ( ) ( )( ) ( )s t g s t Q t 0= − =&  (4.24) 

and 

 ( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( )
P Q t K s t g ' s t K ' s t g s t

Q t 0
P ' Q t

⎡ ⎤ ⎡ ⎤− δ − +⎣ ⎦ ⎣ ⎦= =& . (4.26) 

In (s, Q)-space, (4.24) is easy to draw for a compensatory biological growth 

function. However, locus (4.26) needs more analysis for plotting. Since P'(Q(t)) < 0, 

(4.26) implies that the following equation must hold along locus ( )Q t 0=& : 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )P Q t K s t g ' s t K ' s t g s t 0⎡ ⎤ ⎡ ⎤− δ − + =⎣ ⎦ ⎣ ⎦ . (II.A.1) 

To characterize the shape of ( )Q t 0=& , we differentiate (II.A.1) and obtain 

 ( )
( ) ( )

( ) ( )
( )Q t 0

dQ t K ' g ' g '' P K K ''g K 'g '
ds t P ' g '

=

− δ − − − + +
=

− δ −&

 (II.A.2) 

From the assumptions on the different functions, the slope of ( )Q t 0=&  is strictly 

positive for s > sm because g'(s > sm) < 0. For s < sm, it is indeterminate. 

The line ( ) ( ) 0sKQP =−  on both Figure 4.2 and Figure 4.3 separates the area 

that yield instantaneous positive net marginal benefit, below the line, and the area that 

does not, above it. Also, the slope of ( )( ) ( )( )P Q t K s t 0− =  is positive: 
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( )
( ) ( )

( )( )
( )( )t 0

M 0

K ' s tdQ t
0

ds t P ' Q tπ =
=

= > . Its second derivative with respect to s(t) is 

( )
( ) ( )

( )
( )( )
( )( )

t 0

dQ t
d

ds t K '' s t
0

ds t P ' Q t
π =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦ = < , which means that the ( ( )( ) ( )( )P Q t K s t 0− = )-locus 

is increasing and concave in (s,Q)-space. Also, as long as ( )g ' 0 ≠ δ , then the line 

( ) ( ) 0sKQP =−  and the locus ( )Q t 0=&  coincide at s 0=  and at s s= . 

In order to gain insight into ( )Q t 0=&  for the interval s < sm, we separate the 

analysis in two, which will lead to two phase diagrams, depending on whether 

( )g ' 0δ < , which leads to Figure 4.2 or ( )g ' 0δ > , which leads to Figure 4.3. Let us 

analyze them successively. 

 

Phase diagram for δ < g'(0) (Figure 4.2 or II.1)) 

The stock level s%  is such that ( )g ' sδ = % . The position of ( )Q t 0=&  when 

( )g ' 0δ <  depends on which side of s%  the locus is. 

For s < s% , since K'g < 0, then from (II.A.1) the optimal locus is such that 

( )( ) ( )( )P Q t K s t 0− < . Hence, ( )Q t 0=&  lies above the line ( )( ) ( )( )P Q t K s t 0− = , in 

the region where instantaneous net marginal benefit are negative. This means that any 

equilibria to the left of s%  are suboptimal. 

For s > s% , ( )Q t 0=&  lies below the line ( )( ) ( )( )P Q t K s t 0− = . The only 

optimal steady states are therefore to the right of s% . In order to prove that at least one 
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steady state exists in the interval (s, s )% we have to show that the two loci intersect at 

least once in that interval. 

The locus ( )Q t 0=&  intersects the s-axis at ŝ , where ŝ  is the smallest stock level  

for which the following equation holds: 

 ( ) ( ) ( )
( ) ( ) ( )K ' s g s

P 0 K s s
g ' s

−
= + ≡ Ψ

δ−
. (II.A.3) 

Equation (II.A.3) is continuous. Since ( )
s s
lim s

+→
Ψ = ∞

%
 and 

( ) ( ) ( )
s s
lim s K s P 0

−→
Ψ = <

%
, then equation (II.A.3) must have a solution in the interval 

(s, s )% . 

Since ( )Q t 0=&  is below ( )s t 0=&  at ŝ  and above it at s , then it must intersect 

( )s t 0=&  at least once between these points. If it intersects it more than once, it must be 

an odd number of times. 

Also, ( )Q t 0=&  must intersect ( )s t 0=&  from below first. This is because the first 

steady state stock, s*
1 , for which condition ( )( ) ( )P g s s= Ψ , s s s< <% , necessarily lies 

to the right of ŝ . This is because ( ) ( )( )P 0 P g s> , s s s< <% , and ( )sΨ  is initially 

increasing in the interval (s, s )% . 
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Figure II.1. Steady State Equilibria with Stock-Dependent Harvest Costs and Costless 

Enforcement; ( )0'g<δ  

 

       Q      ( ) ( ) 0sKQP =−  

 

     0Q =&                 0Q =&  

 
 
 
 
 
 

 
 

 
 

         0s =&  
 
 
 
0       s~ ŝ   *

1s       *
2s       sm      *

3s     s  s 
 

Phase diagram for δ > g'(0) (Figure 4.3 or Figure II.2) 

In this case, (II.A.1) implies that ( )Q t 0=&  is below the line 

( )( ) ( )( )P Q t K s t 0− =  for the entire domain of s. The parameter assumption ( )g ' 0δ >  

does not restrict the slope of ( )Q t 0=&  for s < sm, but this slope is necessarily positive 

for the entire domain of s if ( )2g ' 0δ > . In Figure 4.2, we have therefore assumed that 

( ) ( )g ' 0 2g ' 0< δ < . 
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From the shape of ( )( ) ( )( )P Q t K s t 0− = , the fact that it has a positive Q-

intercept, and  that ( )Q t 0=&  coincides with it at s 0=  and at s s= . This implies that 

( )Q t 0=&  and ( )s t 0=&  intersect an even number of times or not at all. If there is at least 

one intersection, since ( )Q t 0=&  has a positive Q-intercept, then ( )Q t 0=&  must 

approach ( )s t 0=&  from above. This means that s*
1  is an unstable steady state 

(saddlepoint). 

 

Figure II.2. Steady State Equilibria with Stock-Dependent Harvest Costs and Costless 

Enforcement, ( )0'g>δ  
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APPENDIX III: NOTES ON WELFARE COMPARISONS FOR 

CHAPTER 5 

A.III.1 Welfare comparisons using the indirect utility function in autarky 

With homothetic utility functions, the expenditure function is written as E(p,µ) = 

e(p)µ, where µ is the utility level attained and e(p) ≡ E(p,1) is the unit (utility) 

expenditure function. We note that e(p) can be interpreted as a price index or a "cost of 

living" index. By duality, the corresponding indirect utility function then takes the form: 

 ( ) ( ) ( )v v p, Y Y e p p Y= = = ν . (III.A.1) 

Changes in welfare can be measured by changes in indirect utility as follows: 

 ( ) ( )dY
Y

Y,pvdp
p

Y,pvdv
∂

∂
+

∂
∂

= . (III.A.2) 

We know that the economy's income is PP MpHY += . Therefore, 

 PPP dMpdHdpHdY ++= . (III.A.3) 

This gives us a way of measuring welfare changes. Using (III.A.3), we obtain 

 

( ) ( ) ( )
( ) ( )

( )
( ) ( ).dMpdH
Y

Y,pvdpH
Y,pv

Y
p

Y,pv
Y

Y,pv

dMpdHdpH
Y

Y,pvdp
p

Y,pvdv

PPP

PPP

+
∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡
+

∂
∂

∂
∂

∂
∂

=

++
∂

∂
+

∂
∂

=

 (III.A.4) 

By Roy's identity, the first term of the factor in brackets -HC. The factor in brackets is 

therefore the excess demand for H in the home country. In autarky, demand equals 

supply within the economy, and therefore 

 ( ) ( ).dMpdH
Y

Y,pvdv PP +
∂

∂
=  (III.A.5) 
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A.III.2 Welfare comparisons in free trade, using the indirect trade utility function 

Since we assume no possibility of saving and borrowing, then we still have 

PP MpHY +=  in free trade. We also suppose that prices are exogenous to the home 

country. That means that in equilibrium, HP = HP(LH(p)) and MP = MP(LH(p)). 

Therefore, using the first order condition of the GNP maximizing problem21, we find 

( ) ( )( ) ( )( ) ( )( )

( )( )

P P
H H TP H

H
H H

P
H

dH L p dM L L p LdY p dLH L p p
dp dL dL dp

H L p .

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞− − ⎛ ⎞⎢ ⎥⎢ ⎥= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

=

 

(III.A.6) 

This is Hotelling's lemma, which makes use of the envelope theorem. With this result, 

using the indirect trade utility function22, we characterize the welfare changes due to 

free trade. Our small country assumption implies that price is exogenous. The indirect 

trade utility function is ( )( ) ( ) ( ) ( ) ( )v v p, Y p Y p e p p Y p .= = = ν  The welfare change 

is 

                                                 

21 The problem is ( ) ( )
H

P P
H H TL

Max Y pH L M L L L= + − − . Assuming an interior 

solution, the first order necessary condition is ( ) ( )P P
H H T

H H

dH L dM L L L
p 0

dL dL
− −

+ = , 

which leads to the unique solution LH = LH(p). 

22 Woodland (1980) first used this terminology. 
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( )( ) ( )( )
( )

( )

( )( ) ( )( )
( ) ( )( )

( )( )
( )

( )( ) ( )( ) ( )( )

P
H

P
H

v p, Y p v p, Y p dY p
dv dp dp

p Y p dp

v p, Y p v p, Y p
dp H L p dp

p Y p

v p, Y p v p, Y p v p, Y p
H L p dp.

p YY p

⎛ ⎞∂ ∂ ⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

⎛ ⎞∂ ∂
= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎢ ⎥= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

 

The equation can be written more simply, by making use of Roy's Identity: 

( )( )
( ) ( )( )P C

H
v p,Y p

dv H L p H dp.
Y p

∂
⎡ ⎤= −⎣ ⎦∂

   (III.A.7) 

 Therefore, the change in welfare, dv, is proportional to the net export of the resource 

good, [HP – HC]. 
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APPENDIX IV. THE RESOURCE MANAGEMENT REGIME 

PROBLEM AND NECESSARY CONDITIONS 

Much like in Chapter 4, in our trade model from Chapter 5, the social planner's 

problem of choosing between costly management and open access is a timing problem 

since switches can occur across management regimes as the resource stock varies. The 

timing of resource management regime switch(es) is a problem that includes the 

resource management sub-problems in open access (presented in section 5.3) and with 

costly management (problem (5.30) presented in section 5.5). 

In order to find the second-best timing of management regime switch(es), we 

therefore assume that the current value Hamiltonian (5.31) is optimized, and we denote 

it as ( )H* t% . Let us write the optimized Hamiltonian as 

 
( )

( )
( )

( )

( ) ( )( )
( )

SP hN s h

SP SP h SP t0

SP h

t

P y dy N s L
H* s e

g s N s h

H* s e .

τ −δ

−δ

⎡ ⎤−ω −ω∫⎢ ⎥= ⎢ ⎥
+µ −⎢ ⎥⎣ ⎦

=

% %l

%l

% %l

%

 (IV.A.1) 

where ( )H* s%  is the optimized current value Hamiltonian at stock s; x and y are 

placeholders. The social planner's costly management problem is autonomous, which is 

why its solution yields variables depending on s but not t in (IV.A.1). 

The planner’s problem is to maximize (IV.A.1) at all times. Interestingly, with 

the flow of fixed cost of management, SPLτω , we could find that ( )H* s 0<%  even 

though * 0µ > ; in such a case, open access would be the preferred course of action even 

though the shadow price of the resource is positive. In what follows, we concentrate on 
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this reason for the social planner to choose open access and that is why we restrict our 

attention to cases where Assumption 5.1 holds: * 0µ >  for all feasible s. 

Assuming that T0 = 0, the resource planner's timing problem is as follows: 

 

( ) ( )

( )
( )

( )

( ) ( )( )

i 1

i 1 i 2 i

SP h

i 1

i

T t
i 1 i 2T ,T i T

N s h

T SP SP h SP t
0

i T
SP h

Max J T ,T H * t e dt

P y dy N s L
e dt , i 0,2,4,..., .

g s N s h

−
+

++ +

−
+

+

−δ
+ +

τ −δ

⎡ ⎤
= ∑ ∫⎢ ⎥

⎣ ⎦
⎡ ⎤⎡ ⎤

−ω −ω⎢ ⎥∫⎢ ⎥
= = ∞∑⎢ ⎥∫ ⎢ ⎥

⎢ ⎥⎢ ⎥+µ −⎢ ⎥⎣ ⎦⎣ ⎦

% %l

%

%l

% %l

 (IV.A.2) 

Using Leibnitz' rule of differentiation of integrals, the Kuhn-Tucker conditions 

that peg Ti+1, the time(s) when open access is chosen over costly management, are 

 ( ) ( )i 1i 1 i 2 T
i 1

i 1

J T ,T
e H * T 0,

T
++ + δ −

+
+

∂
= ≤

∂
%  

 i 1T 0+ ≥  and ( )
i 1i 1 i 2 T

i 1
i 1

J T ,T
T e 0

T
++ + δ

+
+

⎡∂ ⎤
=⎢ ⎥∂⎣ ⎦

, i = 0, 2, 4,…, ∞. (IV.A.3) 

Similarly, the Kuhn-Tucker conditions that peg Ti+2, the time(s) when costly 

management is chosen over open access, are 

 ( ) ( )i 2i 1 i 2 T
i 2

i 2

J T ,T
e H * T 0,

T
++ + δ +

+
+

∂
= − ≤

∂
%  

 i 2T 0+ ≥  and ( )
i 2i 1 i 2 T

i 2
i 2

J T ,T
T e 0

T
++ + δ

+
+

⎡∂ ⎤
=⎢ ⎥∂⎣ ⎦

, i = 0, 2, 4,…, ∞. (IV.A.4) 

According to (IV.A.3) and (IV.A.4), at both switch times i 1T−
+  and i 2T+

+ , 

( )H* s 0=% . Let us write the equality generally at time T, which could be i 1T−
+  or i 2T+

+ : 

( ) ( )
( )

( ) ( )( ) ( )( )
SP hN T h

SP SP h SP SP h
0

H * s P x dx N T L g s T N T h 0τ= −ω −ω + µ − =∫
% %l

%% % %l l  (IV.A.5) 
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Hence, for a stock where the management regime changes, we must have 

( )H * s 0=% . 
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