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Abstract of the Thesis

In the literature on contests, punishments have received much less attention than

prizes. One possible reason is that punishing the bottom player(s) in a contest

where all contestants are not allowed to quit, while e¤ective in increasing con-

testants�total e¤ort, often violates individual rationality constraints. But what

will happen in an open contest where all potential contestants can choose whether

or not to participate? In chapter 1, we study a model of this type and allow

the contest designer to punish the bottom participant according to their perfor-

mances. We conclude that punishment is often not desirable (optimal punishment

is zero) when the contest designer wants to maximize the expected total e¤ort,

while punishment is often desirable (optimal punishment is strictly positive) when

the contest designer wants to maximize the expected highest individual e¤ort.

In the literature on imperfectly discriminating contests, researchers normally

assume that the contest designer has a certain level of accuracy in choosing the win-

ner, which can be represented by the discriminatory power r in the Power Contest

Success Function (the Power CSF, proposed by Tullock in 1980). With symmetric

contestants, it is well known that increasing accuracy (r) always increases total

e¤ort when the pure-strategy equilibrium exists. In chapter 2, we look at the cases

where the contestants are heterogeneous in ability. We construct an equilibrium

set on r > 0, where a unique pure-strategy equilibrium exists for any r below a

critical value and a mixed-strategy equilibrium exists for any r above this critical

value. We �nd that if the contestants are su¢ ciently di¤erent in ability, there al-

ways exists an optimal accuracy level for the contest designer. Additionally, as we

increase the di¤erence in their abilities, the optimal accuracy level decreases. The

above conclusions provide an explanation to many phenomena in the real world

and may give guidance in some applications.

In chapter 3, we propose the Power Contest Defeat Function (the Power CDF)
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which eliminates one player out at a time over successive rounds. We show that

the Power CDF has the same good qualities as the Power Contest Success Function

(the Power CSF) and is more realistic in some cases. We look at both the Power

CSF mechanism (selecting winners in sequence) and the Power CDF mechanism

(selecting losers in sequence) and show that punishments increase expected total

e¤orts signi�cantly. More interestingly, we also �nd that when the contestants�

e¤ort levels are di¤erent, the Power CDF mechanism is more accurate in �nding

the correct winner (the one who makes the greatest e¤ort) and the Power CSF

mechanism is more accurate in �nding the correct loser (the one who makes the

smallest e¤ort).
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Introduction to the Thesis

Theory of Contests

A contest is de�ned as a situation where contestants compete against each other

to win a prize or multiple prizes. In reality, many types of interaction (in which

players expend e¤ort in trying to get ahead of their rivals) have been studied in

the �eld of contest theory both within these speci�c contexts and at a higher level

of abstraction. Such interactions include sports, rent-seeking for rents allocated by

a public regulator, political competition, patent races, litigation, relative reward

schemes in �rms or schools, competition for jobs or promotions, and arm races,

military combat or war, etc.

Among the above practical examples which can be seen or studied as contests,

there are some conventional types of contests such as sports contests and tourna-

ment, but there are some situations which people normally do not take as contests

at �rst sight, such as rent-seeking, arm races, war and litigation. Next, we try to

look at those situations from a certain angle. A part of economics (e.g., general

equilibrium) studies situations where property rights are de�ned clearly and agents

voluntarily trade rights over goods or produce rights for new goods. This approach

produce important insights into the role of markets in resource allocation such as

the existence and e¢ ciency of competitive equilibrium, the optimal specialization

under international trade, the role of prices in providing information to the agents,

etc. However, there are other situations where agents do not trade but rather �ght

over property rights. In these situations, agents can in�uence the outcome of the

process by means of certain actions such as investment in military power, bribing

judges or policy regulators, lobbying politicians, hiring lawyers, advertising, etc.

These situations can also be seen and studied as contests besides the conventional

types of contests.
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In theory, two main branches can be distinguished in the literature on con-

tests. Firstly, perfectly discriminating contests � e¤ort is perfectly observable,

the contestants make irreversible e¤orts and the one who makes the highest e¤ort

wins the prize for certain. Technically speaking, a perfectly discriminating con-

test is very similar to an all pay auction: the prize is like the object auctioned

and a contestant�s e¤ort is like his bid. Therefore, a lot of techniques of auction

theory can be applied to perfectly discriminating contests. Secondly, imperfectly

discriminating contests �e¤ort is not perfectly observable, so the contestant who

expends the largest e¤ort may not win the prize, but the probability of a particu-

lar contestant winning is increasing in his e¤ort and decreasing in the e¤ort of his

opponents�. A critical component of a contest in the literature on imperfectly dis-

criminating contests is the Contest Success Function (CSF), which provides each

player�s probability of winning for any given level of e¤ort.

The literature on contests has developed rapidly from the seminal papers by

Tullock (1967, 1980) which study rent-seeking. For example, in the literature on

perfectly discriminating contests, Hillman and Riley (1989) study a two-contestant

case and Baye, Kovenock and deVries (1996) look at the more than two-contestant

case and prove the equilibrium is unique, Baye, Kovenock and deVries (1998)

consider contests with a non-linear cost function, Che and Gale (1998) study a sit-

uation where contestants have constraints on e¤ort. All the above papers consider

cases with complete information. Perfectly discriminating contests with incomplete

information have also attracted considerable interest in the literature, a selection

of contributions are Glazer and Hassin (1988), Amann and Leininger (1996), Kr-

ishna and Morgan (1997), Baye, Kovenock and deVries (1998), Clark and Riis

(2000), Moldovanu and Sela (2001), Moldovanu, Sela and Shi (2008). While in

the literature on imperfectly discriminating contests, Hillman and Katz (1984),

Hillman and Samet (1987), Skaperdas and Gan (1995), Konrad and Schlesinger
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(1997) study cases with strict risk-averse contestants. Dixit (1987) analyses a

Stackelberg formulation in which one player is able to precommit. Perez-Catrillo

and Verdier (1992) explore the implications of a Contest Success Function (CSF)

where r is an exogenous discrimination factor, Blavatsky (2004) considers CSF

with the possibility of a draw. A large variety of di¤erent types of contests have

been studied. For example, rent-seeking by Tullock (1980), Hillman (1989) and

etc., con�ict and appropriation by Gar�nkel and Skaperdas (1996), R&D by Loury

(1979), patent races by Nti (1997), nonprice competition by Huck et al (2001), the

choice between lobbying and litigation by Rubin et al (2001), the periodic con-

tests to host prestigious events like the Olympic Games by Corchon (2000) and

Status games by Frank (1985), Frank and Cook (1995), multi-stage contests by Fu

and Lu (2007), persuasion (as in advertising, litigation and political campaigning,

etc) by Skaperdas and Vaidya (2007). The above is only a very small part of the

literature1.

Aims and Contributions

The focus of my Ph.D. thesis is on �nding the optimal level of the contest de-

signer�s choice variable, such as punishment and accuracy level, to maximize the

contestants�(expected) total e¤ort or highest individual e¤ort with heterogeneous

contestants.

In daily life, the expression �carrots and sticks�refers to a policy of o¤ering a

combination of rewards and punishments to induce some desired behaviour. In the

literature on contests, the focus has been on the carrots �allocating prizes to the

top players, with little attention paid to the sticks �punishing the bottom players.

1The theory of contests is a vast literature and a dynamic �eld, the interested reader can

consult the surveys of Nitzan (1994), Konrad (2007) and Corchon (2007) for a general review of

this literature.
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However, in practice punishing the bottom players can be observed in a variety of

circumstances. One important reason that punishments draw much less attention

than prizes in the literature is that it is trivial that adding punishments is e¤ective

in increasing e¤ort levels ignoring participation constraints. That is for a given

group of contestants who can not quit the contest, punishing the bottom player

who exerts the lowest e¤ort level, will increase the total e¤ort of the contestants

for certain. In this case, punishments should be made as large as possible from

the contest designer�s point of view. However, adding a punishment, especially

when the punishment is large, will often violate individual rationality constraints

�a contestant may �nd that his expected utility in equilibrium is negative. So

what would happen if we allow all contestants to freely choose whether or not

to participate? The �rst chapter of this thesis attempts to take both prize and

punishment into account in the literature on perfectly discriminating contests. I

show that in an �open�contest where all potential contestants can freely choose

whether or not to enter, it is optimal to set no punishment if the contest designer

wants to maximize the expected total e¤ort in most cases and it is optimal to set

an appropriate amount of punishment if the contest designer wants to maximize

the expected highest e¤ort in most cases. Intuitively, some low ability players

will drop out if a punishment is introduced, so the competition between the par-

ticipants is likely to become less �erce from this perspective since fewer players

are involved. However, the competition between the participants is also likely to

become �ercer since the participants want to avoid the punishment. The overall

e¤ect of introducing a (small) punishment is that the low ability players drop out,

the medium ability players make less e¤ort but the high ability players make more

e¤ort. This is the reason for the di¤erence between the two objectives.

In the Power CSF, the parameter r can be interpreted as the cognitive ability or

the accuracy level of the contest designer. The greater r is, the higher the cognitive
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ability the contest designer has and the more accurate the contest designer is. In

the previous literature on imperfectly discriminating contests, most researchers

take r as an exogenous variable. One important reason might be that researchers

focus on the symmetric case �with symmetric contestants, the higher r is, the

greater the total e¤ort elicited from the contestants. Therefore, it is widely believed

that the contest designer always has an incentive to increase r, so from the contest

designer�s point of view, r has already been increased to the highest possible level.

In the second chapter, we focus on the contest designer�s accuracy level in choosing

the winner in an imperfectly discriminating contest. We look at a model where the

two contestants are heterogeneous in ability and construct an equilibrium set on

r > 0, where a unique pure-strategy equilibrium exists for any r below a critical

value and a mixed-strategy equilibrium exists for any r above this critical value.

We �nd that if the contestants are su¢ ciently di¤erent in ability, there always

exists an optimal accuracy level for the contest designer. In these circumstances

to maximize total e¤ort, r should be set at the optimal accuracy level instead

of the highest possible level. Additionally, as we increase the di¤erence in their

abilities, the optimal accuracy level decreases. The above conclusions provide

an explanation to many phenomena in the real world and may give guidance in

some applications. For example, in recent years with the rapid development of

technologies, some people argue that it is time to introduce high-tech into the

sports (like tennis, football and basketball, etc) to make the games more accurate.

However, our model shows that there is a reason for not using replays and other

technologies, more accuracy may reduce e¤ort and therefore reduce skill levels.

The Power CSF has been much used to select the winner or multiple winners

in the literature on imperfectly discriminating contests. However, things become

more complicated in a technical way when the contest designer wants to iden-

tify the bottom players in order to punish them. This is because we need the
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whole rank of all contestants to identify the bottom players (i.e., the losers) in the

Power CSF mechanism. In the third chapter, we propose the Power Contest De-

feat Function (Power CDF) which eliminates one player at a time over successive

rounds. We show that the Power CDF has the same good qualities as the Power

CSF and is more realistic in some cases. For instance, suppose several cities are

in a competition to host the Olympic Games, one city will be eliminated in each

round until only one city remains, which is the winner. We look at both the Power

CSF mechanism (selecting winners in sequence) and the Power CDF mechanism

(selecting losers in sequence) and show that punishments increase expected total

e¤orts signi�cantly. More interestingly, we also �nd that when the contestants�

e¤ort levels are di¤erent, the Power CDF mechanism is more accurate in �nding

the correct winner (the one who makes the greatest e¤ort) and the Power CSF

mechanism is more accurate in �nding the correct loser (the one who makes the

smallest e¤ort). In other words, the multi-step mechanism provides more accuracy

in �nding the correct winner or loser.
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1 Chapter 1: Punishment in an Open Contest

1.1 Introduction

In daily life, �carrots and sticks� refers to a policy of o¤ering a combination of

rewards and punishments to induce some desired behaviour. In the literature on

contests, focus has been on the carrots �allocating prizes to the top players, with

little attention paid to the sticks �punishing the bottom players. However, in prac-

tice punishing the bottom players can be observed in a variety of circumstances.

One important reason that punishments draw much less attention than prizes in

the literature could be that it is trivial that adding punishments is e¤ective in in-

creasing e¤ort levels ignoring participation constraints. That is for a given group

of contestants who can not quit the contest, punishing the bottom player who

exerts the lowest e¤ort level, will increase the total e¤ort of the contestants for

certain. In this case, punishments should be made as large as possible from the

contest designer�s point of view. However, adding a punishment, especially when

the punishment is large, will often violate the individual rationality constraints

� a contestant can �nd that his expected utility in equilibrium is negative. So

what would happen if we allow all contestants to freely choose whether or not to

participate?

In this paper we assume there is no loss if contestants choose not to enter

the contest, so all players can freely choose whether or not to participate; we call

this type of contest an open contest. There are many practical examples of open

contests, such as a photo contest in which all photographers satisfying a certain

criterion can choose whether or not to participate; or an essay contest in which

students can choose whether or not to participate; or a contest for promotion

where all workers can choose to be entered or not, etc.

In the real world, the results of this paper provide the following insights: given
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an unchanged prize, if the contest designer wants to maximize the total e¤ort from

all potential players, no punishment should be set (on the worst performer among

all participants) in most cases. However, if the contest designer wants to get the

best work from the top contestant, a strictly positive punishment should be set in

most cases. Intuitively, introducing a punishment will have two e¤ects. Firstly,

the selection e¤ect: some players will drop out (the low ability players), and the

competition between the participants will become less �erce since fewer players

are involved, consequently, some participants will make less e¤ort (the medium

ability players). Secondly, the incentive e¤ect: some participants (the high ability

players) will make more e¤ort to avoid the punishment. These two e¤ects occur

at the same time. Therefore, by introducing a punishment, the low ability players

drop out and the medium ability players make less e¤ort, while only the high

ability players make more e¤ort. This is the reason for the di¤erence between the

two objectives �punishment is often not desirable when the contest designer wants

to maximize the expected total e¤ort, while punishment is often desirable when

the contest designer wants to maximize the expected highest individual e¤ort.

According to the conclusion of our model, fewer players will participate if the

contest designer increases the magnitude of punishment. This result points out

one important cost of adding punishment �decreasing the number of participants.

We believe that this form of cost, at least in a long run, is the major cost of

adding punishment in a contest. For example, suppose the Economics School (at

a university) announces that, from the next semester, half of the students will

be failed at the end of each semester according to their exam results. One can

be certain that the current students who are studying economics will work much

harder since no one wants to be failed. However, in the long run, fewer students

would choose to study economics because of the high probability of failure.

In a seminal paper of a large literature on tournaments, Lazear and Rosen
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(1981) argue that rank-order tournaments help to solve a moral hazard problem

faced by �rms. This paper and the following papers have shown that rewarding

players based on their work performances provides e¤ective incentives in labor

tournaments. Akerlof and Holden (2007) extend the analysis of Lazear and Rosen

(1981) to the case with multiple prizes and show that it is generally optimal to

give rewards to top performers that are smaller in magnitude than corresponding

punishments to poor performers. Their model assumes that all players are homo-

geneous in abilities and e¤ort and performance is stochastically related �which is

the main di¤erence between their works and ours.

The two papers most closely related to the present paper are Moldovanu and

Sela (2001) and Moldovanu, Sela and Shi (2008). The �rst seeks to explain prize

structures in tournaments within the framework of private value all-pay auctions.

The model we use in this paper is based on that in Moldovanu and Sela (2001)

with �xed �rst prize and linear cost functions � the main di¤erence being that

we allow the possibility of punishing the bottom participant in a contest where all

potential players can freely choose whether or not to enter, with no cost incurred if

they stay out of the contest. In one section of Moldovanu, Sela and Shi (2008), the

case where contestants can exit the contest without cost is analyzed, this is very

similar to what we analyze in this paper2. Interestingly, one important conclusion

of this paper seems to contradict the corresponding result in Moldovanu, Sela and

Shi (2008), where they �nd that when the contest designer wants to maximize the

expected total e¤ort, punishment is always optimal.3 We will discuss the di¤erence

and the reasons for it later.

Minimum-e¤ort requirement (or entry fee) can also be used to exclude low-

2The original version of this paper was produced and circulated in 2007, independently of

Moldovanu, Sela and Shi (2008).
3In this paper, we also look at a case where the contest designer wants to maximize the

expected highest individual e¤ort, which Moldovanu, Sela and Shi (2008) did not cover.
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ability players from the contest. Here, we want to emphasize the di¤erence be-

tween minimum-e¤ort requirement and punishment. Firstly, with minimum-e¤ort

requirement, all participants have to make at least a certain amount of e¤ort to

enter the contest, while in our model only the participant with the lowest e¤ort

will be punished by su¤ering a loss. Secondly, it has been proved that with linear

cost functions, a contest with a single �rst prize and an (optimally set) entry fee

(i.e., minimum-e¤ort requirement) is total e¤ort maximizing among all feasible

mechanisms (that are incentive compatible and individual rational)4, while in this

paper we �nd that punishment is often not desirable to maximize total e¤ort.

1.2 The Model

There are k � 3 potential players in a contest with a �xed �rst prize V > 0. 5 All

potential players can freely choose whether or not to participate in this contest.

Among all contestants who participate in the contest, the player with the highest

e¤ort will win the prize, and the player with the lowest e¤ort will be punished

by bearing a loss p, where p 2 [0; V ] which is a choice variable of the contest

designer.6

Each player, say contestant i simultaneously makes the participation decision

and chooses an e¤ort level xi if he participates without knowing the decision of

others. Take an essay contest for example: the students who have to submit their

essays by the deadline do not know the number of participants until after the

4See Riley and William F. Samuelson (1981) for details.
5We assume the prize is simply �xed, i.e., it is indivisible. Moldovanu and Sela (2001) prove

that, with linear cost functions, if the contest designer can award several prizes (without pun-

ishment), it is optimal to allocate the entire prize sum to a single �rst prize to maximize the

expected total e¤ort. This is a reason why we consider single prize in our model.
6Note here we assume if only one person participates in the contest, then he will get the prize

and the punishment at the same time.
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deadline. An e¤ort xi causes player i a disutility denoted by cixi, where ci refers

to contestant i�s (constant) marginal cost of e¤ort, which is private information to

himself. ci is also called the ability parameter of contestant i, a low ci indicates

high ability and vice versa. Ability parameters are drawn independently of each

other on the interval [s; s] (where s > s > 0) according to a distribution function F

that is common knowledge. We assume that F has a continuous density function

f = dF=dc > 0.

Each contestant chooses his e¤ort level in order to maximize his expected utility

given the values of the prize and the punishment. The contest designer determines

the size of the punishment in order to maximize the expected value of the sum of

the e¤orts (i.e.
Pk

i=1 xi) or the expected value of the highest individual e¤ort.
7

Notice that in this model we allow the possibility of punishing the bottom

participant in a contest where all potential players can opt not to enter at no

cost. Because of the existence of punishment, we have to consider contestants�

participation constraints � each player�s expected utility in equilibrium is non-

negative, an issue that did not arise in Moldovanu and Sela (2001) since without

punishment, every contestant�s expected utility is always non-negative.

1.2.1 The Objective Function and Entry Decision

Given the commonly known values of the prize V and punishment p, to any con-

testant who decides to participate in this contest, a contestant with the ability

parameter c, solves the following problem by choosing e¤ort level x:

Max
x
fV � Pr(x is the highest)� p� Pr(x is the lowest)� cxg:

Assume there is an equilibrium such that only contestants with c 2 [s; e) partici-

pate in the contest and each contestant makes e¤ort according to a strictly decreas-
7We assume that the contest designer only focuses on e¤ort levels and he dose not get any

material bene�t directly from the prize or the punishment.
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ing di¤erentiable symmetric equilibrium e¤ort function x = b(c) when c 2 [s; e).

All contestants with c 2 [e; s] do not participate in the contest; in other words,

they make zero e¤ort and their expected utility is zero.

The contestant with c = e will just be indi¤erent between participating in the

contest or not. In both situations, he will make zero e¤ort, i.e., b(e) = 0 when

he enters. By the assumption of the equilibrium e¤ort function, he has the lowest

e¤ort of any entrant, there is no point in him putting in a positive e¤ort as he

will lose against all other entrants with probability one. He wants to enter the

contest with zero e¤ort (which guarantees being punished with probability one)

because there is a chance he is the only entrant, in that case, he wins the prize.

The marginal contestant�s expected utility is8:

V � Pr(e¤ort is the highest)� p� Pr(e¤ort is the lowest)� e� 0 = 0

) F (e) = 1� (p=V )
1

k�1 : (1)

By looking at the marginal player (the contestant who is just indi¤erent about

entering9) whose ability parameter c = e where e satis�es (1), we can see that the

larger p is, the smaller F (e) is, and so the smaller e is, i.e., fewer players would

participate in the contest. We can see if the contest designer sets the punishment

to the same value as the prize, according to (1),

1� F (e) = 1) F (e) = 0) e = s;

which means no player will participate in this contest, so total e¤ort is always zero.

Intuitively, this is because if it was not true, with the value of the punishment being
8Recall we assume if there is only one contestant who participates in this contest, he simul-

taneously gets the punishment and the prize.
9In the equilibrium, all players with c � e are indi¤erent about entering. We make them not

participate in our equilibrium. This may seem somewhat arbitrary. But adding a very small

miminum e¤ort if a player participates would make higher cost agents (c � e) strictly prefer to

not participate.
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equal to the value of the prize (p = V ), by collecting the punishment from the

bottom player and awarding it to the top player, the contest designer can get a

positive total e¤ort for free! Therefore, only when p < V , do potential entrants

exist and make positive e¤ort.

Because we assume b(c) is strictly decreasing in c, this implies that if one

contestant�s ability parameter is c, the probability of one other contestant�s ability

parameter being smaller than c is F (c).

x = b(c)) c = b�1(x),

which means in equilibrium if a participant makes an e¤ort x, by the equilibrium

e¤ort function, we can infer his ability by c = b�1(x). Then, given the equilibrium

behaviour of other competitors, a player who enters this contest solves the following

problem:

Max
x
fV � [1� F (b�1(x))]k�1| {z }

Pr(x is the highest)

� p� [F (b�1(x)) + 1� F (e)]k�1| {z }
Pr(x is the lowest)

�cxg (2)

where [1 � F (b�1(x))]k�1 refers to the probability that all other potential con-

testants make less e¤ort than x and [F (b�1(x)) + (1 � F (e))]k�1 refers to the

probability that all other contestants either make more e¤ort than x or do not

participate in the contest.

1.2.2 The Equilibrium

In Appendix 1A, we prove the following proposition:

Proposition 1 Given V and p 2 [0; V ], there exists a symmetric equilibrium:

all players with c 2 [e; s] do not participate in the contest; while all players with

c 2 [s; e) participate in the contest and make e¤ort according to the following

bidding function:

b(c) = (k � 1)
Z e

c

1

t
fV [1� F (t)]k�2 + p[F (t) + 1� F (e)]k�2gf(t)dt; (3)
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where e satis�es (1):

We can split the equilibrium e¤ort function into two parts:

b(c) = V A(c) + pB(c);

where

A(c) = (k � 1)
Z e

c

1

t
[1� F (t)]k�2f(t)dt;

B(c) = (k � 1)
Z e

c

1

t
[F (t) + 1� F (e)]k�2f(t)dt:

So then

A0(c) = �(k � 1)1
c
[1� F (c)]k�2f(c) < 0;

B0(c) = �(k � 1)1
c
[F (c) + 1� F (e)]k�2f(c) < 0:

Therefore

b0(c) = V A0(c) + pB0(c) < 0: (4)

Thus, b(c) is strictly decreasing and di¤erentiable when c 2 [s; e), which is consis-

tent with what we assumed initially. This means the lower the ability parameter

is (i.e., the more able the participant is), the more e¤ort the participant is going

to make in equilibrium.

1.2.3 Two E¤ects of Introducing a small Punishment

From (4), we can derive

b0(c) = �(k � 1)f(c)
c

fV [1� F (c)]k�2 + p[F (c) + 1� F (e)]k�2g: (5)

We start a situation with no punishment,

p = 0) e = s) F (e) = F (s) = 1;
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thus

b0(c)jp=0 = �
(k � 1)f(c)

c
V [1� F (c)]k�2:

When a punishment p > 0 is introduced, then

(5)) b0(c)jp>0 = b0(c)jp=0 �
(k � 1)f(c)

c
p[F (c) + 1� F (e)]k�2 (6)

Thus for every c 2 [s; e),

b0(c)jp>0 < b0(c)jp=0: (7)

By using (7), we derive the following proposition in Appendix 1A.

Proposition 2 For two equilibrium e¤ort functions b(c)jp>0 (with a positive pun-

ishment) and b(c)jp=0 (with no punishment): (a) b(c)jp>0 is always steeper than

b(c)jp=0. (b) b(c)jp>0 and b(c)jp=0 at most cross once. If they cross at point c = c�,

then b(c)jp>0 > b(c)jp=0 for c < c� and b(c)jp>0 < b(c)jp=0 for c > c�. If they do

not cross, then b(c)jp>0 < b(c)jp=0 for all c.

Part (a) shows that when a punishment is introduced, the competition between

participants will become relatively more �erce. Part (b) indicates that in an open

contest without punishment, if the contest designer introduces a small punishment,

b(c)jp>0 and b(c)jp=0 cross at point c = c�, then the players with c 2 [s; c�) whom

we call the high ability players, will make more e¤ort; the players with c 2 (c�; e]

whom we call the medium ability players10, will make less e¤ort; and the players

with c 2 [e; s] whom we call the low ability players, will drop out (see Figure 1.1).

Intuitively, introducing a small punishment has two main e¤ects. Firstly, the

selection e¤ect: by adding a punishment, some players (the low ability players) will

drop out, i.e., they decide not to participate. So there are fewer players involved,

from this point of view, the competition between the participants will become less

10Notice that without punishment, all players with c 2 [s; s] participate in the contest, while

when a small punishment is introduced, only players with c 2 [s; e) enter.
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�erce. This will cause some players (the medium players) to make less e¤ort since

it is easier to outbid the low ability players. Secondly, the incentive e¤ect: by

adding a punishment, some players (the high ability players) will make more e¤ort

to avoid the punishment. The reasons are, �rstly, it costs them less compared

with other players by putting in the same amount of extra e¤ort; secondly, each

of them will make more e¤ort given that other high ability players making more

e¤ort. From this point of view, the competition among the high ability players

will become more �erce.

However, when the punishment is too large, all participants will make less

e¤ort than before since too many players drop out in this situation (i.e., b(c)jp>0 <

b(c)jp=0 for all c, see Figure 1.2). Therefore, to maximize either the expected

total e¤ort or the expected highest individual e¤ort, a large punishment is never

optimal.

 b(c)

)(2 cb

)(1 cb

S     c*                                                              e S c

Figure 1.1
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 b(c)

)(2 cb

)(1 cb

S e S c

Figure 1.2

Figure 1.1 and Figure 1.2 describe the equilibrium e¤ort functions where b1(c)

with p = 0 and b2(c) with p > 0.11 In Figure 1.1, we can see that with the

introduction of a small punishment, the high ability players who have c 2 [s; c�)

will make higher e¤ort, the medium ability players who have c 2 (c�; e) will make

less e¤ort and the low ability players who have c 2 (e; s] will drop out. However,

in Figure 1.2, we see that when a large punishment is introduced, all participants

make less e¤ort than before.

1.2.4 Two Objectives of the Contest Designer

Maximizing Expected Total E¤ort In this section, it is assumed that the

contest designer�s aim is to maximize the expected total e¤ort. Take an essay

contest as an example: say a university wants to set an essay contest in some

speci�c �eld to improve the overall academic level of all students in that �eld, so

it wants all the students to contribute as much as possible, i.e., maximize the total

e¤ort.

In the equilibrium we characterize, from the contest designer�s point of view,

11Note that p is small/large compared with V in Figure 1.1/Figure 1.2.
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the average e¤ort of each potential contestant is given by

AE =

Z s

s

b(c)f(c)dc: (8)

We have shown that the equilibrium e¤ort function x = b(c) is strictly decreasing

for participants with c 2 [s; e), and from the contest designer�s point of view,

b(c) = 0 for all contestants with c � e who stay out of this contest. There are k

potential contestants, so the expected total e¤ort (TE) is

TE = k � AE = k(k � 1)R1 (9)

where

R1 =

Z e

s

Z e

c

1

t
fV [1� F (t)]k�2 + p[F (t) + 1� F (e)]k�2gf(t)dtf(c)dc: (10)

We can see that maximizing TE is equivalent to maximizing R1. In Appendix 1A,

we prove the following proposition by analyzing (10):

Proposition 3 In an open contest, if the density function f(c) is non-decreasing12

with c on the interval [s; s], then it is always optimal to set p = 0 in order to

maximize the expected total e¤ort.

When f(c) is non-decreasing (i.e., increasing or staying constant) with c, in-

tuitively, the contest designer expects it is very likely that there are only a few

high ability players (c 2 [s; c�)) and the majority of the potential players are the

low ability players (c 2 (e; s]) and the medium players (c 2 (c�; e)). Therefore,

adding a punishment, which will make the low ability players drop out and medium

players make less e¤ort, will always decrease the expected total e¤ort.

When f(c) is decreasing with c on the interval [s; s], to maximize the expected

total e¤ort, the optimal punishment can still be zero (see Case 2 in Appendix 1B for

12In this section, we focus on monotone density functions because it is di¢ cult to derive any

general conclusions with non-monotone density functions.
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an example) or strictly positive (see Case 3 in Appendix 1B for an example). Why

is it possible that the optimal punishment can be strictly positive with decreasing

density function? It is because the contest designer expects it is very likely to

have a lot of high ability players who will make more e¤ort with the introduction

of a punishment, so he will put more weight on the high ability players when he

maximizes the total e¤ort, which makes it possible to make punishment desirable

in this case.

The above result is consistent with what we observe in the real world quite

often � in most open contests there is no punishment. Therefore in our essay

contest example, the university should announce the student with the top quality

essay will be allocated with a prize and no one will be punished at all due to their

poor quality essays.

In one section of Moldovanu, Sela and Shi (2008), a very similar situation

has been analyzed � they prove that the optimal punishment is always strictly

positive when the contest designer wants to maximize the expected total e¤ort.

This contradicts our corresponding result: when f(c) is non-decreasing in c, the

optimal punishment is always zero and even when f(c) is decreasing in c, the

optimal punishment can still be zero (see Case 2 in Appendix 1B for an example).

Next we analyze and discuss this di¤erence.

The main di¤erence between our model (which follows Moldovanu and Sela

(2001)) and Moldovanu, Sela and Shi (2008) is on the distribution of the marginal

cost of e¤ort. The marginal cost of e¤ort in our model (i.e., the ability parame-

ter c), is replaced with 1=a in theirs where a is distributed on the interval [0; 1]

according to a distribution function � that is common knowledge which has a

continuous density function � = d�=da > 0. Since in their model a is distributed

on the interval [0; 1], the marginal cost of e¤ort 1=a is distributed on the interval

[1;+1). Because they assume � > 0; the density function in terms of 1=a must be
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always positive on the interval [1;+1). Therefore, the real di¤erence between our

model and theirs is that the marginal cost of e¤ort (represented by c in our model

and 1=a in theirs) is distributed on [s; s] in our model and [1;+1) in theirs.

Theoretically, if we set s = 1 and s ! +1, our model will be the same

as the one in Moldovanu, Sela and Shi (2008). In Case 1 in Appendix 1B, we

look at the case where s ! +1 and we derive the same result as theirs � the

optimal punishment is strictly positive. However, this result does not contradict

our conclusion. It is because in this paper we asserts that the optimal punishment

is always zero when f(c) is non-decreasing with c on the interval [s; s], while when

s ! +1, the density function can not be always non-decreasing �f(c) must be

decreasing as c! +1 given
R +1
1

f(c)dc = 1.

Therefore, their conclusion is based on the case where the marginal cost of ef-

fort is distributed on [1;+1) with density function being always strictly positive.

Intuitively, this assumption always allows a possibility that a group of very low

ability players exists (1=a ! +1 as a ! 0), so starting from a situation with-

out punishment, introducing an appropriate punishment will make these very low

ability players drop out and the high ability players make more e¤ort. Because

these very low ability players only make little e¤ort in the situation without any

punishment, the selection e¤ect is smaller than the incentive e¤ect, therefore, the

expected total e¤ort must increase after the introduction of the punishment. This

is why the optimal punishment is always strictly positive in their model. However,

we argue that Moldovanu, Sela and Shi (2008) analyze a limiting case of our model

that is when s = 1 and s! +1. In this sense our model is more general.

Maximizing Expected Highest Individual E¤ort Instead of maximizing

the expected total e¤ort, in some cases the contest designer may only want to

elicit the highest individual e¤ort, i.e., the best work from all of the potential
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contestants. For example, for some reason a university may only need the best

essay from its students, with all essays of a lesser quality than the best being of no

interest to the university. In this section, we focus on the case when the contest

designer wants to maximize the expected highest individual e¤ort.

Rank the contestants�ability parameter as follows: c1 < c2 < ::: < ck, so c1 is

the most able player. First consider G1(c), which is the distribution function of

c1. The probability that all k potential players�ability parameters are bigger than

c, i.e., all potential players are less able than type c, is

(1� F (c))k,

then the probability that at least one contestant is more able than c is

1� (1� F (c))k.

Therefore,

G1(c) = Pr(c1 < c) = 1� (1� F (c))k,

hence, the probability density function of c1 is

g1(c) = G
0
1(c) = k(1� F (c))k�1f(c).

Therefore, we write the expected highest individual e¤ort

E[b(c1)] =

Z s

s

g1(c)b(c)dc = k(k � 1)R2;

where

R2 =

Z e

s

Z e

c

1

t
fV [1� F (t)]k�2 + p[F (t) + 1� F (e)]k�2gf(t)(1� F (c))k�1f(c)dtdc:

(11)

We can see that maximizing E[b(c1)] is equivalent to maximizing R2. In Appendix

1A, we prove the following proposition by analyzing (11):
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Proposition 4 In an open contest with k players, there always exists a number

of contestants k� such that for k > k�, for any form of the distribution density

function f(c), the optimal punishment is always strictly positive when the contest

designer�s aim is to maximize the expected highest individual e¤ort.

We have a relatively strong condition in Proposition 3: k must be large enough

(k > k�) to guarantee the optimal punishment being strictly positive. This is

because we allow the density function f(c) to take any form. In fact, for many

forms of f(c), we can relax this restriction on k. For example, in Appendix 1A,

we also prove the following proposition:

Proposition 5 In an open contest where abilities are drawn from a uniform dis-

tribution on [s; s], i.e., f(c) = 1=(s � s), when s=s � 1:47, for any k � 3 it is

always optimal to set a strictly positive punishment if the contest designer�s aim

is to maximize the expected highest individual e¤ort.

Note that when s=s < 1:47, the optimal punishment can be zero or positive.

We want to emphasize that s=s � 1:47 refers to the case when the highest possible

able player is at least 1:47 times as e¢ cient as the least possible able player, which

covers most common cases in reality. Therefore, when abilities are drawn from

a uniform distribution on [s; s], the optimal punishment is zero when the contest

designer wants to maximize the expected total e¤ort, while as long as s=s � 1:47,

the optimal punishment is strictly positive when the contest designer wants to

maximize the expected highest individual e¤ort.

When the contest designer only wants to maximize the expected highest indi-

vidual e¤ort, there is a good chance that the most able player, type c1, is more

able than type c�, i.e., c1 < c�, so the contest designer will put more weight on

the high ability players. More intuitively, when we are maximizing the expected
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highest individual e¤ort, the contest designer cares about the high ability play-

ers much more than other players because the top player of this contest is the

one who has the highest ability. Introducing a punishment will increase the high

ability players�e¤ort which is very likely to increase the highest individual e¤ort.

That is why the contest designer often has an incentive to set a strictly positive

amount of punishment to maximize the expected highest individual e¤ort.

Therefore, in our essay contest example, when the university only wants to

get the best essay, the university should set a strictly positive punishment in the

contest, i.e., it should announce that the participant whose essay is considered to

be the best will get a prize, while the participant whose essay is considered to be

the worst will be punished in some way.

1.3 Concluding Comments

We study an open contest where all potential contestants (who have private in-

formation about their abilities) can choose whether or not to enter and allow

the contest designer to punish the bottom participant according to their perfor-

mance. We conclude that punishment is often not desirable (optimal punishment

is zero) when the contest designer wants to maximize the expected total e¤ort,

while punishment is often desirable (optimal punishment is strictly positive) when

the contest designer wants to maximize the expected highest individual e¤ort, i.e.,

when the contest designer only cares about the performance of the top contestant.

In many circumstances there is a trade-o¤ between maximizing the expected total

e¤ort and maximizing the expected highest individual e¤ort. Hence, depending on

the objectives of the contest designer, punishment may be part of the (optimal)

answer.
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1.4 Appendix 1A

Proof of Proposition 1

To maximize (2), we write out the �rst-order condition as follows:

�(k�1)f(b�1(x))db
�1(x)

dx
fV [1�F (b�1(x))]k�2+p[F (b�1(x))+1�F (e)]k�2g�c = 0,

then we derive

(
db�1(x)

dx
)�1 = �1

c
(k�1)f(b�1(x))fV [1�F (b�1(x))]k�2+p[F (b�1(x))+1�F (e)]k�2g.

(12)

In equilibrium,

b(c) = x) c = b�1(x) (13)

) db(c)

dc
=

dx

db�1(x)
= (

db�1(x)

dx
)�1. (14)

Substituting (12) and (13) into (14),

db(c)

dc
= �1

c
(k � 1)fV [1� F (c)]k�2 � p[F (c) + 1� F (e)]k�2gf(c).

Given the boundary condition: b(e) = 0, we derive

b(c) = b(c)� b(e) = �
Z e

c

db(t)

dt
dt = V A(c) + pB(c)

where

A(c) = (k � 1)
Z e

c

1

t
[1� F (t)]k�2f(t)dt

B(c) = (k � 1)
Z e

c

1

t
[F (t) + 1� F (e)]k�2f(t)dt:

In the main text, we have shown that

b0(c) = V A0(c) + pB0(c) < 0:

Therefore, as we assumed, b(c) is strictly decreasing and di¤erentiable when c 2 [s;

e). Assuming except contestant i, all other players with c 2 [s; e) make e¤ort
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according to b(c), we need to show that for any type c of contestant i, the e¤ort b(c)

maximizes the expected utility of that type. The necessary �rst order condition is

clearly satis�ed since this is how we assumed b(c) to start with. Let

�(x; c) = V [1� F (b�1(x))]k�1 � p[F (b�1(x)) + 1� F (e)]k�1 � cx

be the expected utility of player i with type c that makes e¤ort x. We will show

that the derivative �x(x; c) is nonnegative if x is smaller than b(c) and nonpositive

if x is larger than b(c). As �(x; c) is continuous in x, this implies that �(x; c) is

maximized at x = b(c). Note that

�x(x; c) = �(k � 1)f(b�1(x))db
�1(x)

dx
fV [1� F (b�1(x))]k�2

+p[F (b�1(x)) + 1� F (e)]k�2g � c:

Let x < b(c), and let bc be the type who is supposed to bid x, that is b(bc) = x < b(c):
Note that bc > c because b is strictly decreasing. Di¤erentiating �x(x; c) with

respect to c yields �xc(x; c) = �1 < 0. That is, the function �x(x; :) is decreasing

in c. Since bc > c, we obtain �x(x; c) � �x(x;bc).
Since x = b(bc) we obtain �x(x;bc) = 0 by the �rst-order condition, and therefore

that �x(x; c) � 0 for every x < b(c). A similar argument shows that �x(x; c) � 0

for every x > b(c).

Proof of Proposition 2

Because b0(c) < 0 and b0(c)jp>0 < b0(c)jp=0, it follows that (a) b(c)jp>0 is always

steeper than b(c)jp=0. To prove (b), suppose that b0(c)jp>0 and b0(c)jp=0 cross more

than once, we can choose two points where they cross, say point c�1 and c
�
2 where

c�1 < c
�
2. Then there must exist a point c

m 2 (c�1; c�2) where at point cm, the two

equilibrium e¤ort functions have the same slope, i.e., b0(cm)jp>0 = b0(cm)jp=0, which

contradicts (7). Therefore, b(c)jp>0 and b(c)jp=0 can not cross more than once. If
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they cross once at point c�, b0(c)jp>0 < b0(c)jp=0 < 0, so b(c)jp>0 > b(c)jp=0 for c < c�

and b(c)jp>0 < b(c)jp=0 for c > c�. If they do not cross, since b0(c)jp>0 < b0(c)jp=0
and b(e)jp>0 = 0, b(e)jp=0 > 0, it is trivial to see that b(c)jp>0 < b(c)jp=0 for all c.

1.4.1 Proof of Proposition 3

Recall that

R1 =

Z e

s

Z e

c

1

t
fV [1� F (t)]k�2 + p[F (t) + 1� F (e)]k�2gf(t)dtf(c)| {z }

Z

dc:

We can derive

dZ

dp
=

de

dp
(
V

e
)[(1� F (e))k�2 + p]f(e)f(c)

+

Z e

c

1

t
[F (t) + 1� F (e)]k�2f(t)dtf(c)

�(k � 2)de
dp
f(e)p

Z e

c

1

t
[F (t) + 1� F (e)]k�3f(t)dtf(c):

Thus,
dR1
dp

=
de

dp
� Zjc=e +

Z e

s

dZ

dp
dc =

Z e

s

dZ

dp
dc:

That is:

dR1
dp

=
de

dp
(
V

e
)[(1� F (e))k�2 + p]f(e)

Z e

s

f(c)dc| {z }
(�)

+

Z e

s

f
Z e

c

1

t
[F (t) + 1� F (e)]k�2f(t)dtgf(c)dc| {z }

(�)

�(k � 2)de
dp
f(e)p

Z e

s

f
Z e

c

1

t
[F (t) + 1� F (e)]k�3f(t)dtgf(c)dc| {z }

()

: (15)
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Our aim is to prove that when f(x) is non-decreasing in x,
dR1
dp

< 0 for 0 � p < 1,

thus the optimal punishment is zero.

(??) ) p = (1� F (e))k�1V (16)

) de

dp
=

�1
(k � 1)f(e)(1� F (e))k�2V : (17)

Substituting (16) and (17) into (�), we can derive

(�) = � 1

(k � 1)e [2� F (e)]F (e): (18)

In (�), in a two-dimensional world, the area where c � t � e and s � c � e can

be expressed as the area where s � t � e and s � c � t, so we write

(�) =

Z e

s

Z t

s

1

t
[F (t) + 1� F (e)]k�2f(t)f(c)dcdt

=

Z e

s

F (t)

t
[F (t) + 1� F (e)]k�2f(t)dt: (19)

Because f is non-decreasing, we can infer that f 0(t) � 0. Let

g(t) = F (t)=t, h(t) = tf(t)� F (t)

) h0(t) = tf 0(t) � 0) h(t) > 0 as h(s) = sf(s) > 0

) dg(t)

dt
=
tf(t)� F (t)

t2
=
h(t)

t2
> 0:

So g(t) = F (t)=t is increasing with t; then for all t < e,

F (t)

t
<
F (e)

e
: (20)

Substituting (20) into (19)

(�) =

Z e

s

F (t)

t
[F (t) + (1� F (e))]k�2f(t)dt

<

Z e

s

F (e)

e
[F (t) + (1� F (e))]k�2f(t)dt

=
F (e)

e(k � 1)[1� (1� F (e))
k�1] � F (e)

e(k � 1) ,
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i.e.,

(�) <
F (e)

e(k � 1) . (21)

By using similar method, we can deriveZ e

s

Z e

c

1

t
[F (t) + (1� F (e))]k�3f(t)f(c)dtdc < F (e)

e(k � 2) . (22)

Substituting (16), (17) and (22) into (), we derive

() <
F (e)(1� F (e))
(k � 1)e : (23)

From (18), (21) and (23), we obtain

dR1
dp

= (�) + (�) + () < �(2� F (e))F (e)
(k � 1)e +

F (e)

(k � 1)e +
F (e)(1� F (e))
(k � 1)e = 0:

Therefore, when f(x) is non-decreasing in x, dR1=dp < 0 for all p 2 [0; 1).

Proof of Proposition 4

Recall that

R2 =

Z e

s

Z e

c

V

t
([1� F (t)]k�2 + p[F (t) + 1� F (e)]k�2)f(t)(1� F (c))k�1f(c)dt| {z }

X

dc.

We get

dX

dp
=

de

dp
(
V

e
)[(1� F (e))k�2 + p]f(e)(1� F (c))k�1f(c)

+

Z e

c

1

t
[F (t) + 1� F (e)]k�2f(t)(1� F (c))k�1f(c)dt

+(�de
dp
)p(k � 2)f(e)

Z e

c

1

t
[F (t) + 1� F (e)]k�3f(t)(1� F (c))k�1f(c)dt:
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Consequently, we write

dR2
dp

=
de

dp
Xjc=e +

Z e

s

dX

dp
dc =

Z e

s

dX

dp
dc

=
de

dp
(
V

e
)[(1� F (e))k�2 + p]f(e)

Z e

s

(1� F (c))k�1f(c)dc| {z }
(a)

+

Z e

s

Z e

c

1

t
[F (t) + 1� F (e))]k�2f(t)(1� F (c))k�1f(c)dtdc| {z }

(b)

+(�de
dp
)p(k � 2)f(e)

Z e

s

Z e

c

1

t
[F (t) + 1� F (e)]k�3f(t)(1� F (c))k�1f(c)dtdc| {z }

(c)

:

Substituting (16) and (17) into (a) and (c), we can derive

(a) = � [2� F (e)][1� (1� F (e))
k]

k(k � 1)e

(c) =
(k � 2)(1� F (e))

(k � 1)V

Z e

s

Z e

c

1

t
[F (t) + 1� F (e)]k�3f(t)(1� F (c))k�1f(c)dtdc:

When p = 0, e = s and F (e) = F (s) = 1, we derive

dR2
dp
jp=0 = (a) + (b) + (c)

=

Z s

s

Z s

c

1

t
F (t)k�2f(t)(1� F (c))k�1f(c)dtdc� 1

k(k � 1)s:

Therefore, dR2=dpjp=0 > 0 if and only ifZ s

s

Z s

c

1

t
F (t)k�2f(t)(1� F (c))k�1f(c)dtdc > 1

k(k � 1)s: (24)

In a two-dimensional world, the area where c � t � s and s � c � s is equivalent

to the area where s � c � t and s � t � s, so mathematically we derive:

LHS of (24) =

Z s

s

Z t

s

[
1

t
F (t)k�2f(t)(1� F (c))k�1f(c)dc]dt

=
1

k

Z s

s

1

t
F (t)k�2f(t)[1� (1� F (t))k]dt:
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So (24) holds if and only ifZ s

s

1

t
[1� (1� F (t))k]F (t)k�2f(t)dt > 1

s(k � 1) : (25)

Because we can derive

RHS of (25) =
1

s(k � 1) =
Z s

s

1

s
F (t)k�2f(t)dt:

Thus, (25) holds if and only ifZ s

s

1

t
[1� (1� F (t))k]F (t)k�2f(t)dt� 1

(k � 1)s

=

Z s

s

1

t
[1� (1� F (t))k]F (t)k�2f(t)dt�

Z s

s

1

s
F (t)k�2f(t)dt

=

Z s

s

(1� t

s
)
1

t
F (t)k�2f(t)dt�

Z s

s

(1� F (t))k 1
t
F (t)k�2f(t)dt > 0: (26)

We claim that (26) always holds when k > k� where k� satis�es13Z s

s

[(1� t

s
)� (1� F (t))k� ]1

t
F (t)k

��2f(t)dt = 0: (27)

By comparing (1 � t

s
)
1

t
F (t)k�2f(t) and (1 � F (t))k 1

t
F (t)k�2f(t), it can be seen

that, for all k where k > k�, when k gets larger, (1� t
s
) becomes larger compared

with (1�F (t))k and (1� t
s
)
1

t
F (t)k�2f(t) becomes relatively larger compared with

(1� F (t))k 1
t
F (t)k�2f(t). Therefore, when k > k�, (26) always holds.

To sum up, the logic of the whole proof is that: when k > k�,

(26) )
Z s

s

1

t
[1� (1� F (t))k]F (t)k�2f(t)dt > 1

(k � 1)s

)
Z s

s

Z s

c

1

t
F (t)k�2f(t)(1� F (c))k�1f(c)dtdc� 1

k(k � 1)s > 0

) dR2
dp
jp=0 = (a) + (b) + (c) > 0

13Note here we assume k� 2 R, while k 2 N .
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Proof of Proposition 5

Substituting F (t) =
t� s
s� s and f(t) =

1

s� s into (11), we have:

R2 =
1

(s� s)2k�1
Z e

s

[

Z e

c

V

t
(s� t)k�2 + p

t
(t� s+ s� e)k�2(s� c)k�1dt| {z }]

Y

dc:

It can be derived that

dY

dp
=

de

dp
(
V

e
)[(s� e)k�2 + p(s� s)k�2](s� c)k�1

+

Z e

c

1

t
(t+ s� s� e)k�2(s� c)k�1dt

+(�de
dp
)p(k � 2)

Z e

c

1

t
(t+ s� s� e)k�3(s� c)k�1dt:

Then we derive

dR2
dp

=
1

(s� s)2k�1f
de

dp
Y jc=e +

Z e

s

dY

dp
dcg = 1

(s� s)2k�1
Z e

s

dY

dp
dc

=
1

(s� s)2k�1f
de

dp
(
V

e
)[(s� e)k�2 + p(s� s)k�2]

Z e

s

(s� c)k�1dc| {z }
(a1)

+

Z e

s

Z e

c

1

t
(t+ s� s� e)k�2(s� c)k�1dtdc| {z }

(b1)

+(�de
dp
)p(k � 2)

Z e

s

Z e

c

1

t
(t+ s� s� e)k�3(s� c)k�1dtdc| {z }

(c1)

g:

Using (1) and F (e) =
e� s
s� s , we derive

p = (
s� e
s� s)

k�1V (28)

de

dp
=

�(s� s)k�1
(k � 1)(s� e)k�2V (29)

Substituting (28) and (29) into (a1) and (c1), we have

(a1) = �
(s� s)k�2(2s� s� e)

(k � 1)e

Z e

s

(s� c)k�1dc
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(c1) =
(k � 2)(s� e)
(k � 1)V

Z e

s

Z e

c

1

t
(t+ s� s� e)k�3(s� c)k�1dtdc:

When p = 0, e = s, we derive

(a1) = �(s� s)
k�1

(k � 1)s

Z s

s

(s� c)k�1dc = �(s� s)
2k�1

k(k � 1)s

(b1) =

Z s

s

Z s

c

1

t
(t� s)k�2(s� c)k�1dtdc

(c1) = 0�
Z s

s

Z s

c

1

t
(t� s)k�3(s� c)k�1dtdc = 0:

Thus we write

dR2
dp
jp=0 =

1

(s� s)2k�1f
Z s

s

Z s

c

1

t
(t� s)k�2(s� c)k�1dtdc� (s� s)

2k�1

k(k � 1)s g:

Therefore, dR2=dpjp=0 > 0 if and only ifZ s

s

Z s

c

1

t
(t� s)k�2(s� c)k�1dtdc > (s� s)2k�1

k(k � 1)s : (30)

So the optimal punishment is strictly positive when (30) holds. In a two-dimensional

world, the area where c � t � s and s � c � s is equivalent to the area where

s � c � t and s � t � s, so mathematically we derive

LHS of (30) =

Z s

s

Z t

s

1

t
(t� s)k�2(s� c)k�1dcdt

=
1

k

Z s

s

1

t
(t� s)k�2[(s� s)k � (s� t)k]dt:

Let v =
s� t
s� s , then t = s� (s� s)v, so dt = �(s� s)dv; since s � t � s, we can

derive

0 � s� t
s� s � 1;

i.e., 0 � v � 1. Notice that v = 1 when t = s and v = 0 when t = s. Then we

write

LHS of (30) =
1

k

Z s

s

1

t
(t� s)k�2[(s� s)k � (s� t)k]dt

=
(s� s)2k�1

k

Z 1

0

(1� v)k�2(1� vk)
s� v(s� s) dv:
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We claim that for all k � 3, (30) holds ifZ 1

0

(1� v)k�2f (1� v3)
1� v(1� (s=s)) � 1gdv > 0: (31)

This is true because

(31) ) 1

s

Z 1

0

(1� v)k�2f (1� v3)
1� v(1� (s=s)) � 1gdv > 0

)
Z 1

0

(1� v)k�2f (1� v3)
s� v(s� s) �

1

s
gdv > 0

)
Z 1

0

(1� v)k�2f (1� vk)
s� v(s� s) �

1

s
gdv > 0 (since k � 3)

)
Z 1

0

(1� v)k�2(1� vk)
s� v(s� s) dv >

1

s

Z 1

0

(1� v)k�2dv

)
Z 1

0

(1� v)k�2(1� vk)
s� v(s� s) dv � 1

(k � 1)s

) (s� s)2k�1
k

Z 1

0

(1� v)k�2(1� vk)
s� v(s� s) dv � (s� s)2k�1

k(k � 1)s :

Let

j(v) =
(1� v3)

1� (1� (s=s))v � 1,

then the LHS of (31) becomesZ 1

0

(1� v)k�2j(v)dv. (32)

We can see that the sign of (1 � v)k�2j(v) is determined by j(v) as 0 � v � 1.

According to the de�nition of integration, graphically, the value of (32) is equal to

the area between the v axis and the curve (1� v)k�2j(v) on the interval [0; 1]. By

looking at the expression for j(v), we can prove that when 0 � v � 1,

j(v)

8>>><>>>:
>

=

<

9>>>=>>>; 0 when v
8>>><>>>:
<

=

>

9>>>=>>>;
p
1� (s=s).
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As k increases in (31), more relative weight is put on j(v) for lower values of v,

and as j(v) crosses the axis only once (when v =
p
1� (s=s)), a positive integral

cannot become negative. Therefore, we conclude that ifZ 1

0

(1� v)k�2j(v)dvjk=3 > 0,

then for all k � 3 Z 1

0

(1� v)k�2j(v)dv > 0.

Therefore, we write:Z 1

0

(1� v)k�2j(v)dvjk=3 =
Z 1

0

(1� v)f (1� v3)
1� [1� (s=s)]v � 1gdv

= (1=12)[(s=s)� 1]�5f�3 + 28(s=s)� 30(s=s)2 � 6(s=s)3 + 17(s=s)4

�6(s=s)5 + 36(s=s)2 ln(s=s)� 36(s=s)3 ln(s=s) + 12(s=s)4 ln(s=s)g:

By analyzing the above equation, it is easy to check when 0 < (s=s) � 0:68, in

other words, when (s=s) � 1:47,Z 1

0

(1� v)k�2j(v)dvjk=3 > 0;

so when (s=s) � 1:47, Z 1

0

(1� v)k�2j(v)dv > 0 for k � 3:

Thus, the optimal punishment is strictly positive in these cases. To sum up, the

logic of the whole proof is that:Z 1

0

(1� v)k�2j(v)dvjk=3 > 0

)
Z 1

0

(1� v)k�2j(v)ds > 0 for k � 3

)
Z s

s

[

Z s

c

1

t
(t� s)k�2](s� c)k�1dtdc > (s� s)2k�1

k(k � 1)s

) dR2
dp
jp=0 =

1

(s� s)2k�1f(a1) + (b1) + (c1)g > 0:
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1.5 Appendix 1B

Case 1 (Proposition 6 of Moldovanu, Sela and Shi, 2008) Let the support of F is

[a;+1), i.e., s! +1. Substituting (18) and (19) into (15), we derive
dR1
dp
jp=0 = �

1

(k � 1)s +
Z s

s

1

t
[F (t)]k�1f(t)dt:

As s! +1, we write
dR1
dp
jp=0 =

Z +1

s

1

t
[F (t)]k�1dF (t) > 0:

Therefore, the optimal punishment is strictly positive when s! +1.

Case 2 Let V = 1, k = 3, s = 1, s = 2, F (c) = �c2 + 4c� 3 and f(c) = F 0(c) =

4�2c. We can see the density function is strictly decreasing with c on the interval

[1; 2]. According to (9) the expected total e¤ort can be calculated as follows:

TE =

Z e

1

Z e

c

6

t
f(t� 2)2 + p[4t� t2 � 3 + (e� 2)2]g(4� 2t)(4� 2c)dtdc: (33)

Substituting F (e) = �e2 + 4e� 3 into (1), we derive

e = 2� p 14 : (34)

Substituting (34) into (33), we write

dTE=dp = �172:4�49p 34�12p�3:6p 54+108(2�p 12 ) ln(2�p 14 )+45=(2�p 14 )+96p 14+96p 12 :

It is easy to show that dTE=dp < 0 for all p 2 [0; 1). Thus, the optimal punishment

can still be zero when the density function decreases in c.

Case 3 Let V = 1, k = 3, s = 1, s = 11, F (c) = �0:01c2 + 0:22c � 0:21 and

f(c) = F 0(c) = 0:22� 0:02c. We can see the density function is strictly decreasing

with c on the interval [1; 11]. According to (9) the expected total e¤ort can be

calculated as follows:

TE =

Z e

1

Z e

c

6

t
f(0:1t�1:1)2+p[1+0:22(t�e)�0:01(t2�e2)]g(0:22�0:02t)(0:22�0:02c)dtdc:

(35)
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Substituting F (e) = �0:01e2 + 0:22e� 0:21 into (1), we derive

e = 11� 10p 14 : (36)

Substituting (36) into (35), we can express TE as a function of p: It can be found

that TE is maximized when p = 0:011. Thus, the optimal punishment can be

strictly positive when the density function decreases in c.
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2 Chapter 2: The Optimal Accuracy level in

Asymmetric Contests

2.1 Introduction

The International Table Tennis Federation (ITTF) changed the points scoring

system for international matches from �rst to 21 to �rst to 11 in 2000. One reason

for doing this is to reduce the accuracy level of the matches. The rationale for

this is simple. The domination of China meant that there was little incentive for

the other teams. Reducing the accuracy level increases the chance that a team

other than China will win, thus inducing more e¤ort from the other teams. This

increased competition could in turn result in greater e¤ort from the Chinese team.

The greater all round e¤ort in preparing for matches results in higher quality

and more entertaining matches. However, with very little accuracy there is also

little incentive for e¤ort. In the extreme case we simply have a lottery where the

probability of winning is independent of e¤ort. We investigate the optimal level

of accuracy in the face of these trade-o¤s.

A contest is a situation in which players compete against each other by making

irreversible e¤ort, often for a prize or multiple prizes14. In theory, two branches

can be distinguished in the literature. Firstly, perfectly discriminating contests

(very similar to �rst-prize all-pay auctions) �the e¤ort is perfectly observable, the

contestants make irreversible e¤orts and the player who makes the highest e¤ort

wins the prize for certain. Secondly, imperfectly discriminating contests � the

e¤ort is not perfectly observable, so the contestant who expends the largest e¤ort

14Typical examples are various types of rent�seeking contests: competition among �rms to win

a monopoly rent allocated by a public regulator, litigation, beauty contests, patent races, research

and development (R&D), political competition, competition to higher ranks, competition for jobs

or promotions, arm races and sports events, etc.
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may not win the prize, but the probability of a particular contestant winning is

increasing in his e¤ort and decreasing in the e¤ort of his opponents�. A critical

component of a contest in the literature on imperfectly discriminating contests is

the Contest Success Function (CSF), which provides each player�s probability of

winning for any given level of e¤ort. In this paper, we use the Power CSF which

was proposed by Tullock15 in 1980:

pi(e) =
eriPn
j=1 e

r
j

if maxfe1; :::eng > 0; (37)

pi(e) = 1=n otherwise,

where e = (e1; e2; :::; :en) denotes a vector of e¤orts for the n players. There

are n contestants, ei refers to the e¤ort contestant i makes and pi(e) refers to

the probability with which contestant i wins the contest. Mathematically, the

parameter r is the elasticity of the odds of winning for contestant i.16 It is often

interpreted as indicating returns to scale in e¤orts: if r > 1 (r < 1; r = 1), then

returns to scale are increasing (decreasing, constant). So r can be seen as the

discriminatory power of the Power CSF (note the Power CSF becomes perfectly

discriminating as r ! +1).

More intuitively, we could interpret r as the cognitive ability or the accuracy

level of the contest designer. The greater r is, the higher cognitive ability the

contest designer has and the more accurate the contest designer is. In practice,

15The Power CSF has also been called the Tullock CSF. Skaperdas (1996) derives the Power

CSF from easily interpretable axioms �the Power CSF is the only continuous success functional

form which satis�es all the following axioms: (1) Imperfect Discrimination, (2) Monotonicity,

(3) Anonymity, (4) Consistency, (5) Independence and (6) Homogeneity. This justi�es the

popularity of the Power CSF and is one important reason why we use it in this paper. For a

review of the general properties of Contest Success Functions, see Skaperdas(1996).

16Note here r =
d ln[pi(e)=(1� pi(e))]

d ln ei
i.e., r measures percentage changes of pi(e)=(1� pi(e))

in response to a one percent change of ei.
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the contest designer often has ways to increase or decrease the accuracy level.

For example, in an essay contest, the marker can spend more time on marking

each essay and do more comparisons between essays, etc. By doing this, r will be

greater. On the contrary, if he decreases the time on marking each essay, like he

only gives himself few minutes to mark each essay, r must be lower.

In the previous literature on imperfectly discriminating contests, most re-

searchers take r as an exogenous variable. One important reason might be that

most researchers focus on the symmetric case �with symmetric contestants, the

higher r is, the greater the total e¤ort elicited from the contestants. Therefore, it

is widely believed that the contest designer always has an incentive to increase r,

so from the contest designer�s point of view, r has already been increased to the

highest possible level.

The two papers most closely related to the present research are Michaels (1988)

and Nti (2004). Michaels (1988) �nds that r = 2 is optimal for the symmetric val-

uations case when the contest designer can choose r to maximize total e¤ort17.

Nti (2004) looks at the asymmetric valuations case and �nds that there exists an

optimal r in the region where a pure-strategy equilibrium exists. The main di¤er-

ences between this paper and Nti�s are two: �rstly, contestants are heterogeneous

in ability in our model while contestants have di¤erent valuations (to the same

prize) in Nti�s model, which leads to di¤erent conclusions and applications; sec-

ondly, except for the case where a unique pure-strategy equilibrium exists (for any

r 2 (0; r]), we also look at the case where a mixed-strategy equilibrium exists (for

any r 2 (r;+1)) while Nti does not.18

17With symmetric contestants, the maximum value of r is 2 to ensure a pure-strategy equilib-

rium exists.
18The parameter r will be explained later in detail. You will �nd that in this paper a unique

pure-strategy equilibrium exists for any r 2 (0; r], and at least one mixed-stategy equilibria exist

for any r 2 [ r;+1).
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In this paper, we build a model with two contestants who are heterogeneous

in ability and show that when the contestants are su¢ ciently di¤erent in their

abilities, there exists an optimal accuracy level, which maximizes total e¤ort. So

from the contest designer�s point of view, it is not true that the total e¤ort always

increases with the accuracy level. Hence, if the contest designer�s objective is to

maximize the total e¤ort, r should not be increased to the highest possible level.

Additionally, we also �nd that the optimal accuracy level would decrease when the

two contestants become more di¤erent in ability.

If the contestants are su¢ cient di¤erent in ability, when the contest designer

increases the accuracy level, intuitively there are two e¤ects. Firstly, it increases

every contestant�s incentive to invest more e¤ort since the competition is more

�erce as r increases. Secondly, the less able contestant realizes he is less likely

to win as r increases �it decreases his incentive to invest more e¤ort. So when r

increases to some certain level, the less able contestant starts to invest less e¤ort, in

turn this will again cause the more able contestant to invest less e¤ort. Therefore,

after r reaches this level, total e¤ort falls and this level of r is the optimal accuracy

level. When the di¤erence in their abilities becomes larger, the less able contestant

becomes even weaker compared with his opponent, he will start to invest less e¤ort

earlier and so total e¤ort falls earlier than in the previous case. Hence the optimal

level of r decreases. Therefore, as a contest designer who wants to maximize

total e¤ort, he should set r at the optimal accuracy level instead of the highest

possible level and the optimal accuracy level decreases when contestants become

more di¤erent in ability.

Besides the table tennis example we gave at the beginning of this paper, our

model can help us with explaining or understanding some other phenomena in the

real world. In 1976, FIFA changed the tie-breaking method from replay to penalty-

shootout. We believe that a shootout is more like a random draw compared with
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replays. So why did FIFA make football matches less accurate? In dive meets, the

judges are not allowed to see the slow motion while the audience can see it right

after each dive. Though all the judges are professional, no one can argue that

letting them see the slow motion would help them in increasing their accuracy

level. Then why not? Besides that, there are other examples which may look

stranger. In a lot of sports, every athlete only has one shot, like the balance beam.

Why not give them more chances considering it is very easy to have some bad miss

on the balance beam even for a world-class athlete. In a long-jump match, every

athlete only has three chances, why not give them more chances given it is almost

costless to let them jump several more times. There are of course many reasons

why these restrictions are a good idea. Our analysis highlights one, the contest

designer may wish to reduce accuracy to increase total e¤ort in some situations.

2.2 The Model

There are two risk-neutral contestants involved in a contest with a single prize

V . Each contestant, say contestant i, has a linear cost function, costi = ciei

(i = 1; 2) where ei refers to contestant i�s e¤ort level and ci is contestant i�s ability

parameter. It can be seen that the more able the contestant is, the lower his

ability parameter is. Contestant 1 has an ability parameter c1 and contestant 2

has an ability parameter c2 = c � c1. Assume that contestant 1 is more able than

contestant 2, so c > 1. The probability of winning is de�ned by the Power Contest

Success Function (the Power CSF, see (37)). All the parameters (r, c1 and c2) are

common knowledge.

Each contestant�s aim is to maximize his expected pro�t, �i = PiV �ciei where

Pi represents contestant i�s probability of winning. Each contestant can freely

choose to stay active in the contest by making a positive e¤ort or stay inactive by

making zero e¤ort. The contest designer�s aim is to maximize the expected total
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e¤ort.19

The timing of the model is as follows. First the contest designer chooses an

accuracy level r which he can commit to. Then, given that the values of c1, c2

and r are public information, contestants make their e¤orts. Finally, the contest

designer chooses the winner by applying the Power CSF with the r he chooses in

the �rst stage.

2.2.1 The Pure-strategy Equilibrium

The Equilibrium Total E¤ort In this section we assume that the contest

designer can costlessly choose his accuracy level from the set (0; r], where the

value r is determined to ensure that a pure-strategy equilibrium exists which we

will explain in detail later.

Given contestant 1 makes an e¤ort e1 and contestant 2 makes an e¤ort e2, the

expected pro�ts for each contestant are:

�1 =
er1

er1 + e
r
2

V � c1e1; �2 =
er2

er1 + e
r
2

V � c2e2: (38)

Each contestant chooses his e¤ort level to maximize his expected pro�t. In Ap-

pendix 2A, we show that subject to participation constraints, there always exists

a unique pure-strategy equilibrium where contestant 1 makes an e¤ort e�1 and

contestant 2 makes an e¤ort e�2:

e�1 =
cr1c

r
2rV

c1(cr1 + c
r
2)
2
; e�2 =

cr1c
r
2rV

c2(cr1 + c
r
2)
2
: (39)

19In many cases, we may have aims other than maximizing total e¤ort, like the contest designer

may care about the social welfare instead of the e¤ort level, he may care about waste from

duplication like in an R&D contests where increased e¤ort entails wasteful duplication. In some

other cases the contest designer may just want to identify the most able agent as accurately as

possible and does not really care about the e¤ort level. However, in this paper we focus our

attention on the cases where the contest designer�s aim is to maximize the total e¤ort.
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Substituting c2 = c � c1 into (39), we have:

e�1 =
crrV

c1(1 + cr)2
; e�2 =

cr�1rV

c1(1 + cr)2
: (40)

The contest designer�s aim is to maximize the total e¤ort:

TE = e�1 + e
�
2 =

(cr�1 + cr)rV

c1(1 + cr)2
: (41)

To make sure of the existence of the pure-strategy equilibrium, all contestants�

participation constraints must hold, i.e., each contestant�s expected pro�t should

be greater than or equal to zero in equilibrium:

�1je1=e�1; e2=e�2 � 0, �2je1=e�1; e2=e�2 � 0: (42)

In Appendix 2B we show that to make (42) hold, r 2 (0; r] where r satis�es

cr = 1=(r� 1). We also �nd that as c increases from 1 to +1, r decreases from 2

to 1. The following proposition summarizes the results so far.

Proposition 6 For any r 2 (0; r], there always exists a unique pure-strategy Nash

equilibrium, where r satis�es cr = 1=(r � 1). As c increases from 1 to +1, r

decreases from 2 to 1. The equilibrium e¤ort levels are:

e�1 =
crrV

c1(1 + cr)2
; e�2 =

cr�1rV

c1(1 + cr)2
; TE =

(cr�1 + cr)rV

c1(1 + cr)2
:

The Optimal Accuracy Level Hence

dTE

dr
=
de�1
dr
+
de�2
dr
; (43)

where

de�1
dr

=
cr(1 + cr � (cr � 1)r log c)V

c1(1 + cr)3
; (44)

de�2
dr

=
cr�1(1 + cr � (cr � 1)r log c)V

c1(1 + cr)3
: (45)
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In Appendix 2C, we show that

dTE

dr
(
de�1
dr
;
de�2
dr
) > 0 when r < br;

dTE

dr
(
de�1
dr
;
de�2
dr
) = 0 when r = br;

dTE

dr
(
de�1
dr
;
de�2
dr
) < 0 when r > br;

where br satis�es
1 + cbr � (cbr � 1) log cbr = 0 () br � log4:68c ): (46)

When c � 4:68, br � 1 < r since (46), it must be the case that br locates in the
region (0; r] where a unique pure-strategy equilibrium exists; when c < 4:68, br > 1
since (46), to ensure that br locates in the region (0; r], we need cbr < 1=(br � 1). In
Appendix 2D, we show that

cbr < 1=(br � 1)) c > 3:5665:

Therefore, when c > 3:5665, br locates in the region (0; r], so TE and e�i increase

with r when r < br and decrease with r when r > br; when c � 3:5665, TE always
increases with r in the region (0; r].

From (46), it can be seen that br decreases when c increases, which means the
bigger the di¤erence in the contestants�abilities, the sooner dTE=dr and de�i =dr

would turn to negative when r increases. In Appendix 2D we also show that TE

and e�i approach zero as r goes to zero. The following proposition summarizes

these results.

Proposition 7 (1) Total e¤ort (TE) and individual e¤ort (e�i ) approach zero as

r goes to zero: TE ! 0 and e�i ! 0 as r ! 0. (2) When c > 3:5665, in the

region where r 2 (0; r], the optimal accuracy level is br where br satis�es (46), andbr decreases when c increases. (3) When c � 3:5665, in the region where r 2 (0; r],
the optimal accuracy level is r.

50



From the above results, we can see when the accuracy level (r) is extremely low

(r ! 0), no player is willing to put in any e¤ort because the winning probability

is always close to a half no matter how much e¤ort he makes. In the region where

r 2 (0; br), with an increase of the accuracy level, both players would make more
e¤ort in equilibrium. This is because when r is small, both contestants�e¤orts are

low, as r increases, by making one additional unit of e¤ort, the marginal revenue is

big compared with the marginal cost20. However, when r increases above br, both
contestants have already made relatively large e¤orts, as r increases, by making

one additional unit of e¤ort, the marginal revenue is small compared with the

marginal cost, and this is true especially for the less able contestant who has a

bigger marginal cost. Hence the less able contestant will decrease his e¤ort at

the point r = br where the marginal revenue equals marginal cost. The more able
contestant will �nd that it is optimal to decrease e¤ort at the same point given

his opponent does so, so total e¤ort (TE) falls after br. Therefore, br is optimal for
the contest designer who wants to maximize the total e¤ort in the region where

r 2 (0; r]. Intuitively, we can think of the less able contestant as �rst rising to

and then shrinking from competition as r rises. So br is the point where the less
able contestant starts to shrink facing the competition. The result �the optimal

accuracy level br decreases as c increases� indicates that when the contestants
become more di¤erent in ability, the optimal accuracy level decreases. Intuitively,

this shows that when the less able contestant becomes even weaker compared with

his opponent, he will shrink earlier than before. For example, when c goes to

in�nity which means the less able contestant is extremely weak compared with his

opponent, br approaches zero.
20Recall that the marginal cost is always c1 for the more able contestant and c2 = c � c1 for

the less able contestant where c > 1.
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For any r 2 (0; r], in equilibrium:

P2 =
e�r2

e�r1 + e
�r
2

=
(
e�2
e�1
)r

1 + (
e�2
e�1
)r
=

(1
c
)r

1 + (1
c
)r
=

1

1 + cr
; (47)

we can see that the probability of winning for the less able contestant always

decreases with an increase of r, so decreasing the accuracy level actually increases

the probability of winning for the less able contestant in a fair way. So when r > br,
by reducing the accuracy level r, the less able contestant is encouraged, hence he

increases his e¤ort which causes the more able contestant to invest more e¤ort as

well.

Figure 2 depicts the case with c1 = 1, c2 = 6 where r 2 (0; r]. We can calculate

that r � 1:132 and br � 0:861. So when r < 1:132, there always exists a pure-

strategy equilibrium where both contestants make positive e¤ort. It is clear to see

that total e¤ort and each individual e¤ort (TE; e�1 and e
�
1) are maximized when r

reaches the optimal level br. After that, TE, e�1 and e�2 are decreasing in r.
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Other Findings in the Pure-strategy Equilibrium How will each contes-

tant�s expected pro�t change as r increases from 0 to r. In Appendix 2E, we show

that:

��1 =
cr(1 + cr � r)V
(1 + cr)2

; ��2 =
(1 + cr � crr)V
(1 + cr)2

; (48)

@��1
@r

=
�crV [1 + cr � (1� r + cr(1 + r)) log c]

(1 + cr)3
; (49)

@��2
@r

=
�crV [1 + cr + (1 + r + cr(1� r)) log c]

(1 + cr)3
: (50)

In Appendix 2E, we �nd the following results by analyzing the above equations.

(1) ��1 � ��2 > 0, which means the more able contestant always makes higher

pro�t than the less able one.

(2) @(��1���2)=@r > 0, which shows the di¤erence in the two contestants�pro�ts

gets greater when r increases.

(3) @��2=@r < 0, which indicates that the less able contestant�s expected pro�t

decreases from V=2 to 0 when r increases from 0 to r.

(4) @��1=@r can be positive, negative or zero. When c is small, @�
�
1=@r � 0 for

all r; when c is medium, @��1=@r � 0 for small r and @��1=@r > 0 for big r; when c

is big, @��1=@r > 0 for all r.

Intuitively, the less able contestant always prefers a smaller r, but the more

able contestant�s preference depends on the di¤erence between the contestants�

abilities �when the di¤erence is small, the more able contestant�s pro�t decreases

as r increases; when the di¤erence is big, the more able contestant�s pro�t increases

as r increases.

So far, we have analyzed the equilibrium e¤ort levels when r changes given the

ability parameters c1 and c2 unchanged. Next, we are going to analyze the case

when c1 or c2 changes given that r is exogenous. From (39) and (40), it can be

easily derived that:

@e�1
@c1

< 0;
@e�1
@c2

< 0;
@e�2
@c1

> 0;
@e�2
@c2

< 0:
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It is not a surprise that @e�1=@c1 < 0 and @e�2=@c2 < 0, which means when a

contestant is more able, he makes more e¤ort. But @e�1=@c2 < 0 and @e
�
2=@c1 > 0

are very interesting. This tells us that the more able contestant always increases

(decreases) his e¤ort level when his opponent gets more (less) able but the less

able contestant always decreases (increases) his e¤ort level when his opponent gets

more (less) able. So intuitively, we can think of this as an advantage of the more

able contestant �he will always increase his e¤ort when his opponent gets more

able (as long as he is more able than his opponent), while the less able contestant

always decrease his e¤ort when his opponent gets more able.

2.2.2 Mixed-strategy Equilibrium when r 2 [r;+1)

In the previous discussion, we focus on the case when r 2 (0; r] where a unique

pure-strategy equilibrium exists. In this section, we are going to look at the case

when r 2 [r;+1) where the pure-strategy equilibrium does not exist, but one or

multiple mixed-strategy equilibria exist.

The All-pay Auction Equilibrium when r 2 [2;+1) In the existing liter-

ature, there are only a few papers (Baye (1994) and Alcalde and Dahm (2007))

discussing the situation when r � r where one or multiple mixed-strategy equilib-

ria exist. Alcalde and Dahm (2007) have proved that in Tullock�s Rent-Seeking

Game21, when r � 2 there exists a mixed-strategy equilibrium which they call the

all-pay auction equilibrium22. Alcade and Dahm derive an all-pay auction equilib-

rium23 with asymmetric valuations V1 � V2 = V from the Tullock�s Rent-Seeking

Game, i.e., the case with symmetric valuations V1 = V2 = V . We derive the

21Tullock�s Rent-seeking Game in their paper is the same with our model in this paper with

c1 = c2 = 1. Notice that r = 2 in Tullock�s Rent-seeking Game.
22We also refer this kind of equilibrium as all-pay auction equilibrium in this paper.
23See Alcade and Dahm (2007) for details.
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following proposition by using similar techniques.

Proposition 8 Let CA be a two-player contest with asymmetric abilities c1 < c2

with c2=c1 = c. Let CS be the same contest with symmetric ability cs1 = c
s
2 = c2.

If �� = (��1; �
�
2) is a symmetric Nash equilibrium strategy pro�le to CS in which

the rent is completely dissipated in expectation, then the following strategy pro�le

v� = (v�1; v
�
2) constitutes a Nash equilibrium to CA: contestant 1 uses strategy

v�1 = �
�
1, contestant 2�s strategy v

�
2 is that he uses �

�
2 with probability 1=c and stays

inactive (i.e. makes zero e¤ort) with probability 1� (1=c).

Proof. Alcade and Dahm (2007) have proved that: when c1 = c2 = 1, for any

r 2 [2;+1), there exists an all-pay auction equilibrium where the expected e¤ort

of each contestant is V=2. Based on the this, we can easily show that when c1 =

c2, for any r 2 [2;+1), there exists an all-pay auction equilibrium where the

expected e¤ort of each contestant is V=(2c2).

In CS, the symmetry of the game assures that on average each player wins half

of the time, each contestant�s expected revenue is:

E�(��) = (V=2)� c2V=(2c2) = 0:

So in CS the rent is completely dissipated in expectation. Because v�1 = ��1 and

cs2 = c2 in C
S and CA, any pure strategy for contestant 2 in CA yields the same as

that in CS and contestant 2 obtains E�2(v�) = 0. So in CA, he is willing to stay

inactive (i.e. make zero e¤ort) with probability 1� (1=c).

In CS given contestant 2�s strategy ��2, contestant 1�s pure strategy b
s
1 in the

support of �� maximizes

E�1(b
s
1; �

�) = E[Prfplayer 1 wins j bs1; ��g]V � cs1bs1

= E[Prfplayer 1 wins j bs1; ��g]V � c2bs1: (51)
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In CA, given contestant 2�s strategy v�2 (which is that he uses �
�
2 with probability

(1=c) and stays inactive with probability 1 � (1=c)), contestant 1�s pure strategy

b1 maximizes

E�1(b1; v
�) =

1

c
E[Prfplayer 1 wins j b1; ��g]V + (1�

1

c
)V � c1b1

=
1

c
E[Prfplayer 1 wins j b1; ��g]V � c1b1 + (1�

1

c
)V

=
1

c
(E[Prfplayer 1 wins j b1; ��g]V � c2b1) + (1�

1

c
)V: (52)

We complete the proof by noticing that the bs1 which maximizes (51) must maximize

(52), so contestant 1 does not have an incentive to deviate from v�1.

The expected total e¤ort in the all-pay auction equilibrium is

E[TE]All�pay =
V

2c2
+ (
1

c
)
V

2c2
=
(c+ 1)

2cc2
V: (53)

The Mixed-strategy Equilibrium when r 2 [r; 2] So far, we have found

a unique pure-strategy equilibrium for any r 2 (0; r] and also constructed an

all-pay auction equilibrium for any r 2 [2;+1). Next, we construct a mixed-

strategy equilibrium for any r 2 [r; 2] as follows. Given r �xed, contestant 1

always participates and makes an e¤ort x� (notice here contestant 1 adopts a pure

strategy), while contestant 2 stays inactive with probability 1 � p and makes an

e¤ort y� with probability p (notice here contestant 2 adopts a mixed strategy).

Note contestant 2 is indi¤erent between participating with e¤ort y� and staying

inactive since we assume his expected pro�t is always zero.

In Appendix 2F, we prove the existence of this mixed-strategy equilibrium and

we summarize the results into the following proposition.

Proposition 9 For any r 2 [r; 2], there always exists a mixed-strategy equilibrium

in which contestant 1 always participates with e¤ort level x�, contestant 2 stays

inactive with probability 1�p and participates with an e¤ort level y� with probability
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p, where

x� =
1

c2
(r � 1)� 1

r (1� 1
r
)V; y� =

1

c2
(1� 1

r
)V; p =

1

c
(r � 1)� 1

r ;

E(TE)m = x� + py� =
1

c2
(r � 1)� 1

r (1� 1
r
)(1 +

1

c
)V: (54)

According to (54),

E(TE)mjr=2 =
(c+ 1)

2cc2
V: (55)

We have shown that for any r 2 [2;+1), there exists an all-pay auction equilib-

rium, using (53),

E[TE]All�pay =
(c+ 1)

2cc2
V = E(TE)mjr=2:

So the expected total e¤ort when r = 2 from the mixed-strategy equilibrium

coincides with that from the all-pay auction equilibrium. When r = r (then

cr = (r � 1)�1), in the mixed-strategy equilibrium we have:

E(TE)mjr=r = (r � 1)� 1
r (1� 1

r
)(1 +

1

c
)
1

c2
V

= (1� 1
r
)(1 + c)

V

c2
:

When r = r, then we have cr = (r � 1)�1, in the pure-strategy equilibrium, using

(41),

TEjr=r =
cr(1 + c)rV

c2(1 + cr)2
= (1� 1

r
)(c+ 1)

V

c2
= E(TE)mjr=r:

So the mixed-strategy equilibrium when r 2 [r; 2] connects the pure-strategy equi-

librium when r 2 (0; r] and the all-pay auction equilibrium when r 2 [2;+1) by

making the expected total e¤ort continuous in the region where r 2 (0;+1). Next

we look at the expression of expected total e¤ort when r 2 [r; 2].

(54)) dE(TE)m

dr
=
(c+ 1)

cc2r3
V (r � 1)1� 1

r ln(r � 1); (56)

r � r � 2 and 1 < r < 2) ln(r � 1) < 0 and (r � 1)1� 1
r > 0:
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Then according to (56), we derive when r � r � 2, dE(TE)m=dr < 0. Therefore,

in the mixed-strategy equilibrium when r 2 [r; 2], the expected total e¤ort always

decreases with an increase of r.

To sum up, we have constructed the entire equilibrium set where r 2 (0;+1),

which consists of region (0; r] where a unique pure-strategy equilibrium exists for

any r in this region, region [r; 2] where a mixed-strategy equilibrium exists for any

r in this region and region [2;+1) where an all-pay auction equilibrium exists for

any r in this region. We �nd that the expected total e¤ort always decreases when

r 2 [r; 2] and stays constant when r 2 [2;+1). Therefore, in this equilibrium set,

the optimal accuracy level in the region (0; r] is the optimal accuracy level in the

entire region (0;+1).24

Figure 3 depicts the case with c1 = 1, c2 = 6, where r 2 (0;+1). We can

calculate that r � 1:132 and br � 0:861. We can see that for any r 2 (0; 1:132]

(in region A) a unique pure-strategy equilibrium exists, for any r 2 [1:132; 2] (in
24We have not been able to rule out other mixed-strategy equilibria when r 2 [r;+1), so this

is only a ranking of equilibria that have been characterized.
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region B) a mixed-strategy equilibrium exists, and for any r 2 [2;+1] (in region

C) an all-pay auction equilibrium exists. It is clear to see that the expected total

e¤ort is maximized when r reaches the optimal level br � 0:861. After that, TE

decreases with r in region A and B and remains unchanged in region C.

2.3 Concluding Comments

In this paper, we interpret r in the Power CSF as the accuracy level of the contest

designer. We claim that in many circumstances the contest designer has ways to

change r, i.e., increase or decrease the accuracy level. The question we ask is, is

it always better to be more accurate? With symmetric contestants the answer is

quite simple, it has been shown that increasing accuracy (r) always increases total

e¤ort when r < 2 and when r � 2 the expected total e¤ort stays constant25 with

an increase of r.

In this paper, we look at a model with two contestants who are heterogeneous in

ability. We construct an equilibrium set on r 2 (0;+1), which consists of the pure-

strategy equilibrium region when r 2 (0; r], the mixed-strategy equilibrium region

when r 2 [r; 2] and the all-pay auction equilibrium region when r 2 [2;+1). We

have shown that when the di¤erence between the contestants�abilities is relatively

small (c � 3:5665), total e¤ort always increases with an increase of r when r 2

(0; r] and stays constant after that. When the di¤erence between the contestants�

abilities is relatively big (c > 3:5665), the expected total e¤ort increases with an

increase of r until r reaches the optimal point br where br < r, after that total

e¤ort decreases in region (br; 2] with an increase of r and stays constant in region
[2;+1). We also �nd that the optimal accuracy level (br) decreases when the
contestants become more di¤erent in ability. Therefore, in a contest with players

who are heterogeneous in ability, it is not always true that the more accurate the

25With symmetric contestants, r = 2, the expected total e¤ort is fully dissipated when r � 2.
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better, especially when there is a big di¤erence between the contestants�abilities.

Although it is reasonable to assume that there is always room for the contest

designer to reduce his accuracy as long as r > 0, in many cases the contest de-

signer�s ability of increasing accuracy is bounded above. In cases where the feasible

accuracy level is in the region (0; r], we can restrict attention to pure-strategies. In

such cases we have a unique optimal accuracy level br. However, if accuracy levels
above r are possible, we need to consider mixed-strategies. Although we still have

the same optimal accuracy level for the equilibria we characterize, we are unable to

rule out the existence of other mixed strategy equilibria. Therefore, our strongest

results are for cases where there is this upper limit r on accuracy levels.

In recent years with the rapid development of technologies, some people have

argued that it is time to introduce high-tech into sports (like tennis, football and

basketball, etc.) to make the outcomes of the games a more accurate re�ection

of ability. In many cases, this has already been done. However, our model shows

one reason for not using accuracy increasing technologies such as replays. If we

think of sportsmen as having di¤erent inherent abilities then more accuracy may

reduce the e¤ort that they put into training and therefore reduce skill levels and

the entertainment value of the games.
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2.4 Appendix 2A

Assume there exists a pure-strategy equilibrium and in the equilibrium: contestant

1 makes an e¤ort e�1 = a and contestant 2 makes an e¤ort e�2 = b (a > b since

contestant 1 is more able). From contestant 1�s point of view, given contestant

2 makes an e¤ort b, he would want to choose an e¤ort level x to maximize his

expected pro�t �1 where

�1 =
xr

xr + br
V � c1x;

d�1
dx

= 0) brxr�1rV

(br + xr)2
= c1:

In equilibrium, contestant 1 chooses x = a to maximize his expected pro�t, then:

brar�1rV

(br + ar)2
= c1: (57)

From contestant 2�s point of view, given contestant 1 makes an e¤ort a, he would

want to choose an e¤ort level y to maximize his expected pro�t �2 where

�2 =
yr

yr + ar
V � c2x;

d�2
dx

= 0) aryr�1rV

(ar + yr)2
= c2:

In equilibrium, contestant 2 chooses y = b to maximize his expected pro�t, then:

arbr�1rV

(ar + br)2
= c2; (58)

(57)

(58)
) a =

c2
c1
b = cb:

Substituting a =
c2
c1
b into (57), we have

br(
c2
c1
b)r�1rV

(br + (
c2
c1
b)r)2

= c1;

61



) e�2 = b =
cr1c

r
2rV

c2(cr1 + c
r
2)
2
;

) e�1 = a =
cr1c

r
2rV

c1(cr1 + c
r
2)
2
:

Next, we show the second order conditions are always satis�ed when e1 = e�1

and e2 = e�2, i.e.,

d2�1
de21

je1=e�1; e2=e�2 < 0;
d2�2
de22

je1=e�1; e2=e�2 < 0:

Given contestant 2 makes an e¤ort b, if contestant 1 makes an e¤ort e1, his expected

pro�t would be:

�1je2=b =
er1

er1 + b
r
V � c1e1;

) d2�1
de21

je2=b =
brrV e�2+r1 (br(r � 1))� (r + 1)er1)

(er1 + b
r)3

: (59)

Substituting e1 = a = cb into (59), we have

d2�1
de21

je1=a; e2=b = �
rV a�2+rb2r

(ar + br)3
[(r + 1)cr � (r � 1)]:

* �rV a
�2+rb2r

(ar + br)3
< 0 and [(r + 1)cr � (r � 1)] > (1 + r) + 1� r = 2 > 0;

) d2�1
de21

je1=a; e2=b < 0:

Given contestant 1 makes an e¤ort a, if contestant 2 makes an e¤ort e2, his ex-

pected pro�t would be:

�2je1=a =
er2

er2 + a
r
V � ce2 )

d2�2
de22

je1=a =
arrV e�2+r2 (ar(r � 1))� (r + 1)er2)

(ar + er2)
3

: (60)

Substituting e2 = b and a = cb into (60), we have

d2�2
de22

je1=a; e2=b =
arrV b�2+2r

(ar + br)3
[cr(r � 1))� (r + 1)];
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* �2 � 0) cr(r � 1) � 1

) cr(r � 1))� (r + 1) � �r < 0

) d2�2
de22

je1=a; e2=b < 0:

2.5 Appendix 2B

�1je1=a; e2=b =
ar

ar + br
V � c1a =

cr(1 + cr � r)V
(1 + cr)2

� 0

) cr � r � 1;

�2je1=a; e2=b =
br

ar + br
V � c2b =

(1� cr(r � 1))V
(1 + cr)2

� 0

) cr(r � 1) � 1:

therefore,

�1je1=e�1; e2=e�2 � 0) cr � r � 1; (61)

�2je1=e�1; e2=e�2 � 0) cr(r � 1) � 1: (62)

When r � 1, it is always the case that cr(r� 1) � 1 and cr � r� 1, thus the pure-

strategy equilibrium always exists. When r > 1, to make sure the pure-strategy

equilibrium exists, by (61) and (62) the following condition must hold:

r � 1 � cr � 1

r � 1 : (63)

If (63) holds, it must be the case that r � 2, otherwise r � 1 > 1=(r � 1). When

r � 2, we always have r � 1 � cr. So (63) changes to

cr � 1

r � 1 :

Given c constant, to make sure that the pure-strategy equilibrium exists, it must

be the case that

r � r, where r satis�es cr = 1

r � 1 :
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Let f(c; r) = cr � 1

r � 1 = 0, we have

@f

@c
= cr�1r > 0 and

@f

@r
=

1

(r � 1)2 + c
r log c > 0

df =
@f

@c
dc+

@f

@r
dr = 0

) dr

dc
= �

(@f
@c
)

(@f
@r
)
< 0:

When c = 1, cr � 1

r � 1 = 1�
1

r � 1 = 0;

) r = 2;

When c ! +1, lim
c!+1

cr � 1

r � 1 = 0

) r ! 1:

So, we can safely conclude that when c increases from 1 to +1, r decreases from

2 to 1.

2.6 Appendix 2C

Let f(r) = 1 + cr � (cr � 1)r log c, from (43),( 44) and (45) we can derive:

dTE

dr
=

cr�1(1 + c)V

(1 + cr)3
f(r)

de�1
dr

=
cr�1V

(1 + cr)3
f(r)

de�2
dr

=
crV

(1 + cr)3
f(r)

Thus, the signs of
dTE

dr
,
de�1
dr

and
de�2
dr

are all determined on the sign of f(r).

df(r)

dr
= [1� cr log cr] log c, d

2f(r)

dr2
= �cr(log c)2[1 + r log c] < 0:

f(r)jr=0 = 2 > 0,
df(r)

dr
jr=0 = log c > 0, and

df(r)

dr
decreases as r increases (since

d2f(r)

dr2
< 0). Let r = br where

f(br) = 1 + cbr � (cbr � 1) log cbr = 0 () cbr � 4:68):
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Therefore, we can conclude that

f(r) > 0 when r < br;
f(r) = 0 when r = br;
f(r) < 0 when r > br;

i.e.,

dTE

dr
(
de�1
dr
;
de�2
dr
) > 0 when r < br

dTE

dr
(
de�1
dr
;
de�2
dr
) = 0 when r = br

dTE

dr
(
de�1
dr
;
de�2
dr
) < 0 when r > br

where br satis�es
1 + cbr � (cbr � 1) log cbr = 0 () cbr � 4:68):

2.7 Appendix 2D

When br � 1; cbr � 4:68) c � 4:68;

When br > 1; cbr � 1=(br � 1) and cbr � 4:68
) 4:68 � 1=(br � 1)
) br � 1:21368, and cbr � 4:68
) c � 3:5665:

So to make sure br locates in the region [0; r], we need c � 3:5665. In other

words, to ensure that dTE=dr < 0 happens in the region where r 2 [0; r], we need

c > 3:5665.

lim
r!0
e�1 = lim

r!0

crrV

c1(1 + cr)2
=
1� 0� V
c1(1 + 1)2

= 0;

lim
r!0
e�2 = lim

r!0

cr�1rV

c1(1 + cr)2
=
(1=c)� 0� V
c1(1 + 1)2

= 0;
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lim
r!0
TE = lim

r!0

(cr�1 + cr)rV

c1(1 + cr)2
=
((1=c) + c)� 0� V

c1(1 + 1)2
= 0:

2.8 Appendix 2E

Substituting (40) into (38), we have

��1 =
cr(1 + cr � r)V
(1 + cr)2

;

��2 =
(1 + cr � crr)V
(1 + cr)2

:

Then we further derive that

@��1
@r

=
�crV [(1 + cr � (1� r + cr(1 + r)) log c]

(1 + cr)3
;

@��2
@r

=
�crV [1 + cr + (1 + r + cr(1� r)) log c]

(1 + cr)3
:

Since cr � r � 1, we can derive that

1 + r + cr(1� r) � 1 + r + (r � 1)(1� r) = (3� r)r > 0:

Therefore,
@��2
@r

< 0. The sign of
@��1
@r

depends on the sign of g(c; r) where

g(c; r) = (1� r + cr(1 + r)) log c� (1 + cr);

@g

@c
=
cr � (r � 1) + crr(1 + r) log c

c
> 0 since cr � r � 1:

So g increases as c increases. We also derive

@g

@r
= (cr(1 + r) log c� 1) log c; (64)

gjr=0 = 2(log c� 1): (65)

From (64) and (65), we can see that when c � e � 2:718,

gjr=0 = 2(log c� 1) � 0 and
@g

@r
= (cr(1 + r) log c� 1) log c > 0:
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So when c is big (c � e � 2:718), @��1=@r � 0 for all r 2 (0; r]. When c < e � 2:718,

there are two possible cases. The �rst case is when c is small where g � 0 for all r.

The second case is when c is medium, although gjr=0 < 0, g increases with r when

@g=@r = (cr(1+r) log c�1) log c > 0 and g > 0 after r exceeds some certain value.

To sum up, when c is small, @��1=@r � 0 for all r, when c is medium, @��1=@r � 0

for small r and @��1=@r > 0 for big r, and when c is big @�
�
1=@r � 0 for all r.

2.9 Appendix 2F

From contestant 1�s point of view, given his opponent�s strategy is staying inactive

with probability 1� p and biding y� with probability p. His expected pro�t is

E�1 = fp
xr

(xr + y�r)
+ (1� p)gV � c1x: (66)

Since x� is the maximizer of (66), then we have

c1((x
�)r + (y�)r)2 = (y�)r(x�)�1+rprV: (67)

Given contestant 1 bids x�, contestant 2�s expected pro�t is

E�2 =
yr

(yr + (x�)r)
V � c2y: (68)

Since y� is the maximizer of (68), then we have

c2((x
�)r + (y�)r)2 = (x�)r(y�)�1+rrV: (69)

Because contestant 2�s expected revenue is always zero in equilibrium, then we

have

E�2jy=y� =
(y�)r

((y�)r + (x�)r)
V � c2(y�) = 0: (70)

From (67) and (69), we have

1

c1
(y�)r(x�)�1+rprV =

1

c2
(x�)r(y�)�1+rV
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) x� = (
c2
c1
)py� = cpy�: (71)

Substituting (71) into (70), we have

y� =
V

c2(1 + (cp)r)
; (72)

x� =
cpV

c2(1 + (cp)r)
: (73)

Substituting (71) into (69), we have

y� =
(cp)rrV

c2(1 + (cp)r)2
=

(cp)rr

(1 + (cp)r)
(

V

c2(1 + (cp)r)
) =

(cp)rr

(1 + (cp)r)
y�;

) prcr =
1

(r � 1) ; (74)

) p =
1

c
(r � 1)� 1

r : (75)

Substituting (74) into (72) and (73), we have

y� =
1

c2
(1� 1

r
)V;

x� = (r � 1)� 1
r
1

c2
(1� 1

r
)V:

To make sure of the existence of the mixed-strategy equilibrium we proposed,

we need to check the second order conditions when r 2 [r; 2]

(66)) d2E�1
dx2

=
�prV x�2+ryr
(xr + yr)3

[(1 + r)xr � (r � 1)yr)]:

In equilibrium x = cpy, prcr = (r � 1)�1;

* (1 + r)xr � (r � 1)yr

= yr((1� r) + (1 + r)prcr)

=
yrr(3� r)
(r � 1) > 0 since 1 < r � r � 2;

) d2E�1
dx2

jx=x�; y=y� < 0 when r � r � 2:
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E�2 =
yr

(yr + xr)
V � c2y )

d2E�2
dy2

=
rV y�2+rxr((r � 1)xr � (1 + r)yr)

(xr + yr)3
;

and also

(r � 1)xr � (1 + r)yr = ((r � 1)prcr � (1 + r))yr = �ryr < 0:

) d
2E�2
dy2

jx=x�; y=y� < 0 when r � r � 2:

Therefore, we can safely express the expected total e¤ort in equilibrium as follows

E(TE)m = x� + py�

= (r � 1)� 1
r (1� 1

r
)(1 +

1

c
)
1

c2
V: (76)
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3 Chapter 3: The Power Contest Success Func-

tion and the Power Contest Defeat Function

3.1 Introduction

In the theory of contests, we can distinguish between two main branches in the

literature. Firstly, perfectly discriminating contests �e¤ort is perfectly observable

and the contestants making irreversible e¤ort are designated the winners according

to their e¤ort levels: the highest-e¤ort contestant wins the �rst prize, the second

highest-e¤ort contestant wins the second prize and so on. Perfectly discriminat-

ing contests have been studied extensively by Hillman and Samet (1987), Hillman

and Riley (1989) and Krishna & Morgan (1997) for the case of a single prize,

and the cases of several prizes has also been studied by Clark and Riis(1998) and

Moldovanu and Sela (2001), among others. Secondly, imperfectly discriminating

contests � e¤ort is not perfectly observable, so the contestant who expends the

largest e¤ort may not win the prize, but the probability of a particular contestant

winning is increasing in his e¤ort and decreasing in the e¤ort of the opponents�. In

either literature, the focus has been on the case in which a number of contestants

compete to win prizes and much less attention is paid to punishing the bottom

players. However, except rewarding top players (winners), punishing bottom play-

ers (losers) is also a popular way to motivate contestants to compete and actually

occurs often in practice. For instance, when assigning University course marks, 5%

of the students will be failed; or the worst interns will be �red at the end of their

internship. What conclusions can we draw if we consider punishments in contests?

In Chapter 1, we look at punishment in the literature on perfectly discriminating

contests, this paper (Chapter 3) is an attempt to take both prizes and punishments

into account in the literature on imperfectly discriminating contests.
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The Power Contest Success Function (the Power CSF, proposed by Tullock

in 1980), has been much used to select the winner or multiple winners in the

literature on imperfectly discriminating contests. However, things become more

complicated in a technical way when the contest designer wants to identify the

bottom players in order to punish them. This is because we need the whole rank

of all contestants to identify the bottom players (i.e. the losers) in the Power

CSF mechanism. In this paper, we propose the Power Contest Defeat Function

(Power CDF) which successively eliminates the loser at a time. We show that the

Power CDF has the same good qualities as the Power CSF and is more realistic

in some cases. For instance, suppose several cities are in a competition to host

the Olympic Games, one city is going to be eliminated in each round until only

one city remains, which is the winner � in the contest of hosting 2012 Olympic

games, Moscow was eliminated in the �rst round, New York in the second round,

and then Madrid in the third round, Paris was eliminated in the last round and

so the winner was London.

In this paper we look at both the Power CSF mechanism (selecting winners in

sequence) and the Power CDF mechanism (selecting losers in sequence) and show

that punishments increase expected total e¤orts signi�cantly. More interestingly,

we also �nd that when the contestants�e¤ort levels are di¤erent, the Power CDF

mechanism is more accurate in �nding the correct winner (the one who makes the

greatest e¤ort) and the Power CSF mechanism is more accurate in �nding the

correct loser (the one who makes the smallest e¤ort). In other words, the multi-

step mechanism provides more accuracy in �nding the correct winner or loser.

The Power CSF mechanism and the Power CDF mechanism imply two di¤erent

procedures and yield di¤erent results. In the mean time, compared with the Power

CSF mechanism, the Power CDF mechanism is no more complicated and more

realistic in some cases, then why hasn�t the Power CDF been proposed and used
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before while the Power CSF has been studied extensively since it was proposed by

Tullock in 1980? The main reason might be because in the literature on contests,

the focus has been on the top players who can acquire prizes (i.e. the winners)

and less attention has been paid to the bottom players who can be punished (i.e.

the losers).

3.2 The Power Contest Success Function (CSF)

3.2.1 De�nition of the Power CSF

In an imperfectly discriminating contest, all contestants compete for prizes by

expending e¤ort so as to increase their probability of winning. In this literature,

a critical component of a contest is the Contest Success Function (CSF) which

provides each player�s probability of winning for any given level of e¤orts. The

Power CSF26 was �rst proposed by Tullock (1980) to study the problem of rival

rent-seekers who expend resources to in�uence the policy outcome in their favor,

and it has been widely employed and analyzed in research since then. The Power

CSF can be expressed as follows:

pi(e) =
eriPn
j=1 e

r
j

if maxfe1; :::eng > 0;

pi(e) = 1=n otherwise,

where e = (e1; e2; :::; :en) denotes a vector of e¤orts for the n players. In the above

Power CSF, there are n contestants, ei refers to the e¤ort contestant i makes

and pi(e) refers to the probability that contestant i wins the contest. We assume

that the parameter r is an exogenous variable where r � 0. Mathematically, r is

the elasticity of the odds of winning27 for contestant i. It is often interpreted as

26It also has been called the Tullock CSF.

27Note here r =
d ln[pi(e)=(1� pi(e))]

d ln ei
; i.e., r measures the percentage changes of pi(e)=(1 �

pi(e)) in response to one percent change of ei.
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indicating returns to scale in e¤orts: if r > 1, r < 1 or r = 1, then returns to

scale are increasing, decreasing or constant. So r can be seen as the discriminatory

power of the Power CSF. Note that as r ! +1 the Power CSF becomes perfectly

discriminating.

What are the reasons why the Power CSF has been used extensively in the

literature apart from its analytical convenience? Skaperdas (1996) derives the

Power CSF from easily interpretable axioms, which justi�es the Power CSF by

showing that the Power CSF is the only continuous success functional form which

satis�es all the following axioms28.

1.
P

i2n pi(e) = 1 and pi(e) � 0.

2. For all i 2 n, pi(e) is increasing in ei and decreasing in ej for all i 6= j.

3. For any two di¤erent contestants i 6= j (given other contestants�e¤orts the

same), pi(e) = pj(e) if ei = ej.

4. Let N be the set of players who may participate in a contest. Denote by

pMi (e) the i
th contestant�s probability of success who participates in a contest

among the members of the subsetM (i:e: M � N) which we assume to have

at least two elements and
P

j2M pj(e) > 0, p
M
i (e) = pi(e)=[

P
j2M pj(e)].

5. pMi (e) is independent of the e¤orts of the players who are not included in the

subset M (� N).

6. Let �e = (�e1; �e2; :::; �en), then pi(�e) = pi(e).

3.2.2 The Power CSF Mechanism

In the literature on imperfectly discriminating contests, most papers focus on the

�rst-prize contest in which the winner is determined by applying the Power CSF
28For a review of the general properties of Contest Success Functions, see Skaperdas(1996).
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once, there is relatively little on multi-prize context. Berry (1993) and Clark and

Riis (1996) present a method, based on an imperfectly discriminating rent-seeking

game, for distributing several homogeneous rents in which each player may win no

more than once. Clark and Riis (1998 c) present a contribution to the analysis of

imperfectly discriminating rent-seeking contests with several positive prizes.

In the imperfectly discriminating context with multiple prizes, the following

procedure has been much used to select multiple winners, which we call the Power

CSF mechanism in this paper. Given each contestant has made his e¤ort, �rstly,

the contest designer29 selects the winner (the one who gets the �rst prize) by

applying the Power CSF once, then the contest designer takes the winner out

and he selects the second winner (the one who gets the second prize) among the

remaining contestants by applying the Power CSF again30. This procedure goes

on until the last winner has been chosen. Intuitively, the Power CSF mechanism

describes a procedure selecting winners in sequence, i.e., from the �rst player who

gets the �rst prize to the player who gets the last prize.

Example 1 In a contest with three contestants, with a Power CSF where r = 1,

suppose the contestants� e¤ort levels are e1 = 1, e2 = 2, e3 = 3 respectively.

Assume the contest designer allocates three prizes31 where a1 > a2 > a3. Each

contestant has a certain probability of winning any of the prizes in the Power CSF

mechanism. We list all the possible ranks and their corresponding probabilities in

table 1.
29It can also be called the contest administrator.
30Note that the Power CSF can be used several times in this context due to it satisfying

Property 4 above (see Skaperdas (1996)).
31Here, the prizes do not necessarily have to be positive, some might be negative prizes, i.e.,

punishments to the bottom players.
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Rank Order Probability

123 4=60

132 6=60

231 15=60

213 5=60

312 10=60

321 20=60
Table 1

It can be seen that in each row of table 1, the left part refers to the rank of the

contestants and the right part refers to the probability of this rank occurring. For

example, the �rst row f123; 4=60g indicates there is a 4=60 chance that this contest

will end up with rank 123 (rank 123 means contestant 1 wins a1, contestant 2 wins

a2 and contestant 3 wins a3). The following is how we calculate this probability:

given e1 = 1, e2 = 2 and e3 = 3, there is a probability of 1=(1 + 2 + 3) = 1=6

that contestant 1 is selected as the winner who gets a1. Given a1 is allocated

to contestant 1, between contestant 2 and contestant 3, there is a probability of

2=(2 + 3) = 2=5 that contestant 2 is selected as the winner who gets a2. So the

probability of rank 123 occurring is 1=6� 2=5 = 4=60. By a similar procedure, we

can calculate the probabilities of all other possible results.

3.2.3 The Power CSF Model

We state the assumptions of the Power CSF model as follows:

1. There are n contestants and n prizes: a1 > a2 > a3::: > an�1 > an. Note

here we do not assume the prizes must be positive, that is to say, there could

be some zero prizes and negative prizes (i.e. punishments) for the bottom

players.32

32The main di¤erences between this model and that in Derek J. Clark and Chiristian Riis
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2. Every contestant has the same linear cost function: cost = x, where x is the

e¤ort level; i.e., contestants are symmetric in ability.

3. Contestants are risk neutral and rational; the value of prizes (a1, a2, :::, an)

and the discriminatory power (r) are public information.

4. The result of the contest is determined by the Power CSF mechanism.

We prove the following proposition in Appendix 3A:

Proposition 10 In a unique symmetric pure-strategy equilibrium33 of the Power

CSF model, the average34 e¤ort (AEs) which each contestant makes is:

AEs =
r

n
[(1� 1

n
)a1 + :::+ ciai + :::+ (1�

1

n
� :::� 1

2
� 1)an] (77)

where

ci = 1�
Pi�1

j=0

1

n� j : (78)

From the expression of ci, we can derive

c1 = 1�
1

n
(79)

cn = 1�
Pn�1

j=0

1

n� j = �
Pn

t=2

1

t

)j cn j= �cn =
Pn

t=2

1

t
(80)

By analyzing (78), (79) and (80) in Appendix 3A, we prove the following results:

(1998 c) are: in their model with n contestants there are k prizes where 1 � k < n and all prizes

must be strictly positive.
33Note that r has to be located in a certain region to ensure the existance of the symmetric

equilibrium. Because the focus of this paper is on the analysis of the equilibrium rather than the

conditions of its existance, we put all the relavant discussions and proof in Appendix 3B.
34Here "average" does not suggest there is a distribution on contestants�e¤ort levels because

every contestant makes the same e¤ort in the symmetric equilibrium.

76



Proposition 11 In a unique symmetric pure-strategy equilibrium of the Power

CSF model: (a) when n is large, there exists k� � b0:632nc where c1; c2; :::; ck��1
are positive and ck� ; ck�+1; :::; cn are negative35, (b) ci > ci+1, (c)

Pn
i=1 ci = 0,

(d) c1 is smaller than j cn j for n � 3 (notice a1 =j an jfor n = 2), (e) when n

increases, j cn j increases faster than c1.

Among the above results, (a) indicates that, from a1 to an, (approximately)

the �rst 63.2% prizes have positive e¤ect on increasing total e¤ort while the other

prizes have negative e¤ect on increasing total e¤ort. Notice that the prizes which

locate behind the critical prize (ak�), i.e., ak� ; ak�+1; :::; an, have negative e¤ect on

increasing average e¤ort (since ck� ; ck�+1; :::; cn are negative). We can treat these

prizes as punishments by making them negative, which means if a contestant gets

this position, he will be punished by su¤ering a loss.

(b) tells us that di¤erent prizes have di¤erent e¤ects on increasing average

e¤ort. Among all prizes, an increase in the �rst prize has the biggest e¤ect on

increasing average e¤ort, an increase in the second prize has the second biggest

e¤ect, ......, an increase in the ith prize has the ith biggest e¤ect; and among

all punishments, an increase in the last punishment36 (pn = �an) has the biggest

e¤ect and an increase in the second last punishment (pn�1 = �an�1) has the second

biggest e¤ect, ......, an increase in the last ith punishment has the ith biggest e¤ect

and so on. For instance, in the 6-contestant case, the average e¤ort is:

x =
r

6
(
50

60
a1 +

38

60
a2 +

23

60
a3 +

3

60
a4 �

27

60
a5 �

87

60
a6);

35Firstly, note that bxc or floor(x) is the function that returns the highest integer less than

or equal to x. For example, for n = 10, k� � b0:632 � 10c = b6:32c = 6. Secondly, note

k� � b0:632nc is a rough approximately true, but this equation becomes much more accurate as

n gets large, where k� � b(1� e�1)nc:
36The last punishment refers to the punishment to a player who ranks last in a contest, and

the second last punishment refers to the punishment to a player who ranks second last in the

contest.
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then

c1 =
50

60
; c2 =

38

60
; c3 =

23

60
; c4 =

3

60
; c5 = �

27

60
; c6 = �

87

60
:

Since c5 and c6 are negative, substituting p5 and p6 for �a5 and �a6 (pi refers to

the punishment a player receives if he ranks ith among all contestants), let cp5 and

cp6 be the coe¢ cients of p5 and p6, so we write:

x =
r

6
(c1a1 + c2a2 + c3a3 + c4a4 + c

p
5p5 + c

p
6p6);

where

c1 =
50

60
; c2 =

38

60
; c3 =

23

60
; c4 =

3

60
; cp5 =

27

60
; cp6 =

87

60
:

We can see among the positive prizes:

c1 =
50

60
> c2 =

38

60
> c3 =

23

60
;

and among the punishments:

cp6 =
87

60
> cp5 =

27

60
:

So from (b) we can clearly see that: if there is a total prize (punishment) sum and

the contest designer determines the distribution of the total prize (punishment)

sum among the di¤erent prizes (punishments), as long as the participation con-

straints hold, in order to maximize total e¤ort it is always optimal for the designer

to allocate the entire prize (punishment) sum to a single prize (punishment), i.e.,

to make a1 and pn (i:e:� an) as big as possible.

(c) simply states that if every prize is increased by the same amount, say

�a, the average e¤ort does not change (�AEs =
Pn

i=1 ci�a = �a
Pn

i=1 ci = 0).

Because in this model we assume there is a prize for each contestant, increasing

every prize by the same amount means every contestant is better o¤ by the same

amount, however, the competition between all contestants is the same as before.

Therefore, everyone makes the same e¤ort in equilibrium after the change.
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More surprisingly, (d) and (e) indicate that in the Power CSF mechanism with

n � 3 contestants, the last punishment is always more e¤ective in increasing

average e¤ort than the �rst prize, and if the number of contestants increases, the

last punishment would become more and more e¤ective in increasing average e¤ort

compared with the �rst prize. For instance: in a 3-contestant case:

x =
r

18c
(4a1 + a2 � 5a3) =

r

18c
(4a1 + a2 + 5p3):

By looking at the above equation, it can be seen that if the contest designer

increases 1 unit (monetary material) on the �rst prize (i.e. a1), holding other

prizes �xed, the average e¤ort will increase by 4r=18 units. If the contest designer

increases 1 unit on the last punishment (i.e. p3), the average e¤ort will increase

by 5r=18 units. This is also true in all n-contestant cases for n � 3.

Why is the last punishment more e¤ective than the �rst prize on increasing the

average e¤ort? In our model, getting the last punishment means the bottom player

will lose pn and getting the �rst prize means the top player will gain a1. According

to the assumptions of our model, contestants are risk neutral, one might expect

that if pn = a1, the incentive of a player trying to get the �rst prize should be as

big as the incentive of a player trying to avoid the punishment, in other words, the

�rst prize and last punishment should have the same e¤ect in increasing average

e¤ort. But from result (b), the last punishment is always more e¤ective than �rst

prize in increasing average e¤ort. How should we explain this paradox? The key to

answering this question lies in the Power CSF mechanism we use. We will discuss

this question later in this paper.

3.3 The Power Contest Defeat Function (CDF)

The Power CSF has been much used to select winners in the literature on imper-

fectly discriminating contests. However, things are more complicated in a technical
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way when the contest designer wants to identify the bottom players in order to

punish them. This is because we need the whole rank of all contestants to identify

the bottom players (i.e. the losers) in the Power CSF mechanism. Are there other

mechanisms which can be used beside the Power CSF mechanism? If there are,

will the results di¤er and can the di¤erence help us to understand the paradox we

raise before?

In this section we propose the Power Contest Defeat Function (CDF) and

consider selecting losers in sequence in the Power CDF Mechanism. In practice,

there are many applications which have a similar procedure on ranking contestants

or candidates. For instance, suppose several cities are in a competition of hosting

the Olympic Games, one city will be eliminated in each round until only one city

remains, which is the winner. As in the contest of hosting 2012 Olympic games,

Moscow was eliminated in the �rst round, New York in the second round, and

then Madrid in the third round, Paris was eliminated in the last round and so the

winner was London. There are other examples, as in some real beauty contests or

TV shows, the judges don�t select the winner directly, they eliminate one or several

contestants in each round until one contestant is left, then the last contestant is the

winner and the rank of all contestants can be derived from the order of elimination.

3.3.1 De�nition of the Power CDF

We de�ne the power Contest Defeat Function (the Power CDF) as follows:

pi(e) =
e�riPn
j=1 e

�r
j

if minfe1; :::eng > 0;

pi(e) =
1

m
for ei = 0 and pi(e) = 0 for ei > 0 otherwise,

where e = (e1; e2; :::; :en) denotes a vector of e¤orts for the n players and m is the

number of contestants making zero e¤ort.
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In the above Power CDF, there are n contestants, ei refers to the e¤ort con-

testant i makes and pi refers to the probability of contestant i losing. As in the

Power CSF, the parameter r is an exogenous variable where r � 0 and r here can

be interpreted as indicating returns to scale in e¤orts. If r > 1, r < 1 or r = 1,

then returns to scale are increasing, decreasing or constant. So r is the discrimina-

tory power of the Power CDF and as r ! +1 the Power CDF becomes perfectly

discriminating. It is straightforward to show that the Power CDF satis�es all the

following axioms (which are similar with the axioms that the Power CSF satis�es).

1.
P

i2n pi(e) = 1 and pi(e) � 0.

2. For all i 2 n, pi(e) is decreasing in ei and increasing in ej for all i 6= j.

3. For any two di¤erent contestants i 6= j (given other contestants�e¤orts the

same), pi(e) = pj(e) if ei = ej.

4. Let N be the set of players who may participate in a contest. Denote by

pMi (e) the i
th contestant�s probability of losing who participates in a contest

among the members of the subsetM (i:e: M � N) which we assume to have

at least two elements and
P

j2M pj(e) > 0, p
M
i (e) = pi(e)=[

P
j2M pj(e)]:

5. pMi (e) is independent of the e¤orts of the players not included in the subset

M(� N).

6. Let �e = (�e1; �e2; :::; �en), then pi(�e) = pi(e).

3.3.2 The Power CDF Mechanism

In a Power CDF mechanism contest designer selects losers in sequence, i.e., from

the �rst loser to the last loser (it is obvious that the last loser is the winner).

Consider again Example 1 when the Power CSF is replaced with the Power CDF
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(with r = 1). Each contestant has a certain probability of winning any of the

prizes in the Power CDF mechanism. We list all the possible ranks and their

corresponding probabilities in the following table.

Rank Order Probability

123 40=660

132 45=660

231 144=660

213 80=660

312 135=660

321 216=660
Table 2

In each row of table 2, the left part refers to the rank of the contestant and the

right part refers to the probability of this rank occurring. For example, the �rst

row (123; 40=660)means there is a 40=660 chance that this contest will end up with

rank 123. The following is how we calculate this probability. Given e1 = 1; e2 = 2

and e3 = 3, there is a probability of (13)=(1 +
1
2
+ 1

3
) = 2=11 that contestant 3 is

selected as the �rst loser (i.e. he gets a3). Then among the remaining contestants,

i.e., contestant 1 and contestant 2, there is a probability of (1
2
)=(1 + 1

2
) = 1=3

that contestant 2 is selected as the loser. So probability of rank 123 occurring

is (2=11) � (1=3) = 40=660. Similarly, we can calculate the probabilities of other

possible ranks. Therefore, the Power CDF mechanism actually implies a procedure

of �nding the rank of the contestants by selecting losers in sequence.

3.3.3 The Power CDF Model

The assumptions of the Power CDF model are the same as those of the Power CSF

model except that the result of the contest is determined by the CDF mechanism
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instead of the Power CSF mechanism. In Appendix 3A, we prove the following

proposition.

Proposition 12 In a unique symmetric pure-strategy equilibrium37 of the Power

CDF model, the average38 e¤ort (AEl) which each contestant makes is:

AEl =
r

n
[(
1

n
+

1

n� 1 + :::+
1

2
+ 1� 1)a1 + :::+ ciai + :::+ (

1

n
� 1)an]; (81)

where

ci = �1 +
Pn�i

j=0

1

n� j : (82)

By comparing the results between the Power CSF mechanism and the Power

CDF mechanism, i.e., (77) and (81), we �nd that in a n-contestant case, the coef-

�cients in the two expressions of the average e¤ort are connected in the following

forms:

cli = �csn�i+1;

where csi represents ci in the Power CSF mechanism and cli represents ci in the

Power CDF mechanism.

Proof. From (78) and (82), we have

csi = 1�
Pi�1

j=0

1

n� j and c
l
i = �1 +

Pn�i
j=0

1

n� j ,

it follows that,

�csn�i+1 =
Pn�i+1�1

j=0

1

n� j � 1 =
Pn�i

j=0

1

n� j � 1 = c
l
i.

Since cli = �csn�i+1, we can simply derive the following proposition from Propo-

sition 11.
37Note that r has to be located in a certain region to ensure the existance of the symmetric

equilibrium. See Appendix 3B for details.
38Here "average" does not suggest there is a distribution on contestants�e¤ort levels because

every contestant makes the same e¤ort in the symmetric equilibrium.
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Proposition 13 In a unique symmetric pure-strategy equilibrium of the Power

CDF model: (a) c1; c2; :::; ck��1 are positive and ck� ; ck�+1; :::; cn are negative, where

k� � d0:368ne when n is large,39 (b) ci decreases when i increases, (d)
Pn

i=1 ci = 0,

c1 is always bigger than j cn j for n � 3 (c1 =j cn j for n = 2), (e) when n increases,

j cn j increases more slowly than c1.

Among the above results, (b) and (c) tell very similar intuitions to that in

the Power CSF mechanism. However, (a) indicates that (approximately) the �rst

36.8% prizes have positive e¤ect on increasing total e¤ort while 63.2% in the Power

CSF mechanism. (d) and (e) show that under the Power CDF mechanism, the

�rst prize is always more e¤ective than the last punishment, and if the number

of the contestants increases, the �rst prize will become more and more e¤ective

compared with the last punishment. So the results of (a), (d) and (e) is just the

reverse of what we �nd under the Power CSF mechanism. In the next section, we

will try to investigate this di¤erence from a di¤erent angle.

3.4 Selecting the Highest Ability

In the Power CSF model and the Power CDF model, we analyze a symmetric

equilibrium where each contestant makes the same e¤ort. In this section, we look

at a di¤erent situation where contestants are heterogenous and each contestant

has the same (very short) time constraint of making e¤ort. For example, when a

company wants to recruit new employees, the recruiter will set written exam or

interview for each applicant. In the given time period of the exam or interview,

each applicant will do their best to impress the recruiter, i.e., make the most

39Firstly, dxe or ceiling(x) is the function that returns the smallest integer not less than x. For

example, when n = 100, k� � d0:368� 100e = d36:8e = 37. Secondly, note that k� � d0:368ne is

only approximately true, this equation gets much more accurate when n gets larger, when n is

very large, k� � d(e�1)ne:
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possible e¤ort. Therefore, contestants make e¤ort according to their abilities,

i.e., more/less able contestant make more/less e¤ort. Notice that each contestant

will do his/her best in the �xed time period because the marginal revenue of

making e¤ort is always more than the marginal cost of making e¤ort. We can see

that in these cases, the contest designer (the recruiter in the example) wants to

select the correct winner instead of maximizing the total e¤ort. In the following

discussion, we try to look at the accuracy level of selecting the correct winner/loser

in the Power CSF mechanism and the Power CDF mechanism40 given that the

contestants are making di¤erent levels of e¤ort.

3.4.1 An Example

In the contest of Example 1, table 1 and 2 can be summarized by the following

table:

CSF CDF

123::::::(44=660) 123::::::(40=660)

132::::::(66=660) 132::::::(45=660)

231:::::(165=660) 231:::::(144=660)

213::::::(55=660) 213::::::(80=660)

312:::::(110=660) 312:::::(135=660)

321:::::(220=660) 321:::::(216=660)
Table 4

We can derive table 5 from table 4:41

40We assume that the contest designer can choose between the two mechanisms with r being

the same.

41
110=660 + 220=660 = 330=660 135=660 + 216=660 = 351=660

165=660 + 220=660 = 385=660 144=660 + 216=660 = 360=660
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CSF CDF

Probability of selecting the correct winner 330=660 351=660

Probability of selecting the correct loser 385=660 360=660
Table 5

From the comparison of the results in table 5, we make the following conjecture:

Conjecture 1 Given that the contestants are making di¤erent levels of e¤ort,

the Power CSF mechanism is more accurate in �nding the correct loser while the

Power CDF mechanism is more accurate in �nding the correct winner.

Next, we attempt to establish the above conjecture in a more general context

than the example.

3.4.2 3-contestant case

In a 3-contestant case with (very short) time constraint of making e¤ort, assume

that contestant 3 is the most able one and makes the highest e¤ort, contestant

1 is the least able one and makes the smallest e¤ort, i.e., e1 < e2 < e3. Can we

prove the probability of picking contestant 3 as the winner under the Power CSF

mechanism is always smaller than that under the Power CDF mechanism and the

probability of picking contestant 1 as the loser under the Power CSF mechanism is

always bigger than that under the Power CDF mechanism (like we conjectured)?

The answer is positive.

Claim 1 In a 3-contestant model with r being the same in both mechanisms, when

the contestants make di¤erent e¤ort levels, the probability of selecting the correct

winner in the Power CSF mechanism is always smaller than that in the Power

CDF mechanism, and the probability of selecting the correct loser in the Power

CSF mechanism is always bigger than that in the Power CDF mechanism.
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Proof. Let ps and pl be the probability that contestant 3 wins the �rst prize under

the Power CSF mechanism and the Power CDF mechanism respectively, then we

derive:

ps =
er3

er1 + e
r
2 + e

r
3

;

pl = p(rank 321) + p(rank 312)

= (
e�r1

e�r1 + e�r2 + e�r3
)(

e�r2
e�r2 + e�r3

) + (
e�r2

e�r1 + e�r2 + e�r3
)(

e�r1
e�r1 + e�r3

)

= (
er3

er1e
r
2 + e

r
2e
r
3 + e

r
1e
r
3

)(
er2e

r
3

er2 + e
r
3

+
er1e

r
3

er1 + e
r
3

);

then

ps � pl =
er3

er1 + e
r
2 + e

r
3

� ( er3
er1e

r
2 + e

r
2e
r
3 + e

r
1e
r
3

)(
er2e

r
3

er2 + e
r
3

+
er1e

r
3

er1 + e
r
3

)

=
�er1er2er3(e2r3 � er1er2)

(er1 + e
r
3)(e

r
2 + e

r
3)(e

r
1 + e

r
2 + e

r
3)(e

r
1e
r
3 + e

r
2e
r
3 + e

r
1e
r
2)
;

* 0 < e1 < e2 < e3 ) e2r3 � er1er2 > 0; ) ps � pl < 0:

Therefore, in a 3-contestant case with contestants making di¤erent e¤ort levels,

the probability of selecting the correct winner in the Power CDF mechanism is

always bigger than that in the Power CSF mechanism.

By a similar procedure, we can also prove that the probability of selecting the

correct winner (contestant 1) in the Power CDF is bigger than that in the Power

CSF mechanism. In other words, the Power CSF mechanism is more accurate

in �nding the correct loser and the Power CDF mechanism is more accurate in

�nding the correct winner.

3.4.3 n-contestant case

We have shown that in a 3-contestant case with contestants making di¤erent e¤ort

levels, the Power CDF (CSF) mechanism is more accurate in �nding the correct
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winner (loser). To make this argument stronger, we are going to analyze a speci�c

model with n contestants.

Claim 2 In a n-contestant model (where n � 3) with r being the same in both

mechanisms, suppose only one contestant, say contestant 1, makes an e¤ort e

while all other contestants make the same e¤ort level which we normalize it to 1,

e 6= 1. When e > 1, the probability of selecting the correct winner ( i.e. contestant

1) in the Power CDF mechanism is always bigger than that in the Power CSF

mechanism; while when e < 1, the probability of selecting the correct loser (i.e.

contestant 1) in the Power CSF mechanism is always bigger than that in the Power

CDF mechanism.

Proof. When e > 1, for a 3-contestant case, it is always the case that

pl3 � ps3 = (
2

e�r + 2
)(

1

e�r + 1
)� er

er + 2

=
er(er + 1)

(1 + 2er)(1 + er)(2 + er)
> 0:

Next step, we want to prove that for n � 3,

pln+1 � psn+1 > 0 if pln � psn > 0;

psn =
er

er + n� 1 ; p
s
n+1 =

er

er + n

) psn+1 = (
er + n� 1
er + n

)psn;

and

pln = (
n� 1

e�r + n� 1):::(
2

e�r + 2
)(

1

e�r + 1
);

pln+1 = (
n

e�r + n
)(

n� 1
e�r + n� 1):::(

2

e�r + 2
)(

1

e�r + 1
)

) pln+1 = (
n

e�r + n
)pln:
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Given pln > p
s
n, we can derive p

l
n+1 > p

s
n+1 because:

er > 1 since n � 3

) (n� 1)er > n� 1

) 1

ner + 1
<

1

er + n

) 1� 1

ner + 1
> 1� 1

er + n

) n

e�r + n
>
er + n� 1
er + n

) (
n

e�r + n
)pln > (

er + n� 1
er + n

)psn:

So for any n � 3,

pln � psn > 0) pln+1 � psn+1 > 0:

If we change the assumptions a bit by assuming that contestant 1 makes the

lowest e¤ort, i.e., e < 1 and all other contestants make the same e¤ort 1. By a

similar procedure, we can prove that the probability of �nding the correct loser

(contestant 1) in the Power CSF mechanism is always bigger than that in the

Power CDF mechanism.

3.5 Concluding Comments

The above results, at least to some extent, con�rm our conjecture �given that the

contestants are making di¤erent levels of e¤ort (according to their abilities), the

Power CSF mechanism is more accurate in �nding the correct loser and the Power

CDF mechanism is more accurate in �nding the correct winner. Why? In the

Power CSF mechanism, the contest designer only uses one step (apply the Power

CSF once) to select the winner among all contestants, while in the Power CDF

mechanism (with n contestants) the contest designer needs to use multiple steps

(apply the Power CDF n� 1 times) to �nd the winner. According to our results,

given r the same in both mechanisms, the multi-step mechanism (i.e. the Power
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CDF mechanism) provides more accuracy in �nding the correct winner; while

when the aim is to �nd the correct loser, the Power CSF mechanism, which takes

multiple steps to �nd the loser, is more accurate than the Power CDF mechanism

which selects the loser in one step. Therefore, the multi-step mechanism has an

advantage in �nding the correct winner/loser. With the same level of r, it is

not straightforward to see why the multi-step mechanism provides more accuracy.

Intuitively, the reason is that in the multi-step mechanism, with the number of

contestants decreasing, the contest designer is more likely to choose the correct

contestant among all remaining contestants.

With the same r in both mechanisms, if the last punishment and the �rst prize

are the same amount monetarily, a rational risk neutral contestant will take the

last punishment more seriously in the Power CSF mechanism and take the �rst

prize more seriously in the Power CDF mechanism. This is because the Power

CSF mechanism is more accurate in punishing the one who makes the lowest

e¤ort and the Power CDF mechanism is more accurate in rewarding the one who

makes the highest e¤ort. This also gives an explanation why the last punishment

is more e¤ective than the �rst prize in increasing average e¤ort in the Power

CSF mechanism and the �rst prize is more e¤ective than the last punishment in

increasing average e¤ort in the Power CDF mechanism.

3.6 Appendix 3A

Proof of Proposition 10

Our aim is to prove that in a symmetric pure-strategy equilibrium, the expression

of average e¤ort each contestant makes is AEs. We prove it by mathematical

induction.
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First-step. In a 2-contestant case with prizes: a1 > a2, the Power CSF gives:

p1 =
er1

er1 + e
r
2

; p2 =
er2

er1 + e
r
2

;

where pi is contestant i�probability of winning and ei is contestant i�e¤ort.

L1 = p1a1 + (1� p1)a2 � e1 =
er1a1 + e

r
2a2

er1 + e
r
2

� e1;

L2 = p2a1 + (1� p2)a2 � e2 =
er2a1 + e

r
1a2

er1 + e
r
2

� e2;

where Li is contestant i�s expected utility. Each contestant maximizes his expected

revenue, in the symmetric pure-strategy equilibrium42 (contestants 1 and 2 will

make the same level of e¤ort since they are symmetric), e1 = e2 = x, then:

@L1
@e1

= 0) x =
r(a1 � a2)

4
:

By substituting n = 2 into (77)

AEs =
r

2
[(1� 1

2
)a1 + (1�

1

2
� 1)a2] =

r(a1 � a2)
4

= x;

so equation (77) holds when n = 2. Existence (of the equilibrium) requires:

@2L1
@e21

< 0, a1 > a2:

Participation constraint requires:

L1;2 =
(a1 + a2)

2
� r(a1 � a2)

4
� 0) r � 2a1 + 2a2

a1 � a2
:

Second-step. Assume that equation (77) is true in a t-contestant case where

t � 2,

AEst =
r

t
[(1� 1

t
)a1 + :::+ ciai + :::+ (1�

1

t
� :::� 1

2
� 1)at];

42In this paper, we restrict our attention to the unique symmetric equilibrium for simplicity,

it remains to be investigated whether there could exist an asymmetric equilibrium.
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where

ci = 1�
Pi�1

j=0

1

t� j ;

then our task is to prove in the t+ 1 case,

AEst+1 =
r

t+ 1
[(1� 1

t+ 1
)a1 + :::+ ciai + :::+ (1�

1

t+ 1
� 1
t
� :::� 1

2
� 1)at+1];

where

ci = 1�
Pi�1

j=0

1

t+ 1� j :

In the symmetric pure-strategy equilibrium of the t-contestant and (t+1)-contestant

cases, from any contestant�s point of view, say contestant 1, given all other con-

testants are making the same e¤ort x,

U t = Lt1a1 + L
t
2a2 + :::+ L

t
iai + :::+ L

t
tat � e1;

U t+1 = Lt+11 a1 + L
t+1
2 a2 + :::+ L

t+1
i ai + :::+ L

t+1
t+1at � e1;

where U t and U t+1 are the expected utilities for contestant 1 in the t contestant

case and (t+1) contestant case respectively; and Lti and L
t+1
i are the probabilities

of winning the ith prize (ai) for contestant 1 in the t-contestant case and the

(t+1)-contestant case respectively. Therefore, Lti or L
t+1
i are the probabilities that

contestant 1 is chosen as the winner in the ith "round" (which indicates contestant

1 has not been chosen as a winner in all previous i� 1 rounds). So given that the

other contestants are making e¤ort x, we can derive:

Lti =
P t�1i�1 x

(i�1)rer1
[er1 + (t� 1)xr][er1 + (t� 2)xr]:::[er1 + (t� i+ 1)xr][er1 + (t� i)xr]

; (83)

Lt+1i =
P ti�1x

(i�1)rer1
[er1 + tx

r][er1 + (t� 1)xr]:::[er1 + (t� i+ 2)xr][er1 + (t� i+ 1)xr]
; (84)

where

P t�1i�1 =
(t� 1)!
(t� i)! = (t� 1)(t� 2):::(t� i+ 1);

P ti�1 =
t!

(t� i+ 1)! = t(t� 1):::(t� i+ 2):
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Contestant 1 maximizes his utility,

@U t

@e1
= 0)

Pt
i=1

@Lti
@e1

ai = 1: (85)

Because (77) is true in the t-contestant case,

(77) ) x =
Pt

i=1

r

t
(1�

Pi�1
j=0

1

t� j )ai (86)

)
Pn

i=1

r

tx
(1�

Pi�1
j=0

1

t� j )ai = 1; (87)

(85) and (87))
Pt

i=1

@Lti
@e1

ai =
Pt

i=1

r

tx
(1�

Pi�1
j=0

1

t� j )ai: (88)

For any given fa1; a2; :::; atg, (88) always holds if and only if

@Lti
@e1

=
r

tx
(1�

Pi�1
j=0

1

t� j ): (89)

Therefore, we conclude (77) holds for n = t given (89) holds. Similarly, we can

derive that (77) holds for n = t+ 1 given

@Lt+1i

@e1
=

r

(t+ 1)x
(1�

Pi�1
j=0

1

t+ 1� j ): (90)

So the our aim is to show (90) holds if (89) holds. The following is the proof.

From (83) and (84), we have

Lt+1i =
P ti�1[e

r
1 + (t� i)xr]

P t�1i�1 [e
r
1 + tx

r]
Lti =

P ti�1
P t�1i�1

(1� ixr

er1 + tx
r
)Lti;

) @Lt+1i

@e1
=
P ti�1
P t�1i�1

[
rixrer�11

(er1 + tx
r)2
Lti + (1�

ixr

er1 + tx
r
)(
@Lti
@e1

)]: (91)

Substituting e1 = x into (83):

Lti =
(t� 1)(t� 2):::(t� i+ 1)xir
t(t� 1):::(t� i+ 1)xir =

1

t
: (92)

Substituting (92), into (91):

@Lt+1i

@e1
=

t(t� 1):::(t� i)(t� i+ 1)
(t� 1)(t� 2):::(t� i) [

rixrer�11

t(er1 + tx
r)2
+ (1� ixr

er1 + tx
r
)(
@Lti
@e1

)]

= (
t

t� i+ 1)[
rixrer�11

t(er1 + tx
r)2
+ (1� ixr

er1 + tx
r
)(
@Lti
@e1

)]: (93)
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Substituting e1 = x and (89) into (93), we derive

@Lt+1i

@e1
=

r

x(t+ 1)
[

1

(t� i+ 1) �
1

t+ 1
+ (1�

Pi�1
j=0

1

t� j )]

=
r

x(t+ 1)
[

1

(t� i+ 1) �
1

t+ 1
+ 1� (1

t
+

1

t� 1 + :::+
1

t� i+ 1)]

=
r

x(t+ 1)
[1� ( 1

t+ 1
+
1

t
+

1

t� 1 + :::+
1

t� i+ 2)]

=
r

x(t+ 1)
(1�

Pi�1
j=0

1

t+ 1� j );

which is exactly (90) and completes the proof.

Proof of Proposition 11

Proof of (a):

ck�+1 = 1�
Pk�

j=0

1

n� j � 0)
Pk�

j=0

1

n� j � 1;

since Pk�

j=0

1

n� j =
Pk�

j=0

1=n

1� j=n =
1

n

Pk�

j=0

1

1� j=n;

when n is large, we have:

1

n

Pk�

j=0

1

1� j=n � lim
n!1

1

n

Pk�

j=0

1

1� j=n =
Z k�=n

0

1

1� tdt � 1;

) k�

n
� e� 1

e
� 0:632) k� � 0:632n:

Proof of (c):

Pn
i=1 ci = c1 + c2 + :::+ cn

= (1� 1

n
) + (1� 1

n
� 1

n� 1) + :::+ (1�
1

n
� 1

n� 1 �
1

2
� 1)n

= n� fn 1
n
+ (n� 1)( 1

n� 1) + (n� 2)(
1

n� 2) + :::+ 2(
1

2
) + 1g

= n� n = 0:

Proof of (d) and (e):
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c1 = 1�
1

n
, when n increases from n to n+ 1, c1 will increase by

(1� 1

n+ 1
)� (1� 1

n
) =

1

n(n+ 1)
;

relatively, �cn will increase by

(
1

2
+
1

3
+ :::+

1

n
+

1

n+ 1
)� (1

2
+
1

3
+ :::+

1

n
) =

1

n+ 1
;

Since
1

n+ 1
>

1

n(n+ 1)
;

so when n increases, j cn j increases relatively faster than c1. When n = 2, c1 =j cn j

and when n = 3,

c1 =
4

18
<j cn j=

5

18
:

Since we have proved that when n increases, j cn j increases relatively faster than

c1, we conclude that c1 is always smaller than j cn j for n 2 [3;+1).

Proof of Proposition 12

We prove it by mathematical induction.

First-step. In a 2-contestant case with prizes a1 > a2, according to the Power

CDF:

p1 =
e�r1

e�r1 + e�r2
; p2 =

e�r2
e�r1 + e�r2

;

where pi is contestant i�s probability of losing and ei is contestant i�s e¤ort.

L1 = (1� p1)a1 + p1a2 � e1 =
e�r2

e�r1 + e�r2
a1 +

e�r1
e�r1 + e�r2

a2 � e1;

L2 = (1� p2)a1 + p2a2 � e2 =
e�r1

e�r1 + e�r2
a1 +

e�r2
e�r1 + e�r2

a2 � e2;

where Li is contestant i�s expected utility. Each contestant maximizes his revenue,

in the symmetric pure-strategy equilibrium43, player 1 and player 2 will make the
43In this paper, we restrict our attention to the unique symmetric pure-strategy equilibrium

for simplicity, it remains to be investigated whether there could exist asymmetric equilibria.
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same level of e¤ort, i.e., e1 = e2 = x, by �rst order conditions:

x =
r(a1 � a2)

4
;

so equation (81) holds when n = 2. We can see that the bigger (a1 � a2) is, the

more e¤ort each contestant makes.

Existence requires

L�1;2 =
1

2
(a1 + a2)�

r(a1 � a2)
4

� 0;

) r � 2(a1 + a2)

(a1 � a2)
: (94)

So in the 2-contestant case to ensure the existence of the symmetric pure-strategy

equilibrium, r has to be in certain region �(94) must hold.

Second-step. Assume that equation (81) is true in t-contestant case:

AEl =
r

t
[(
1

t
+

1

t� 1 + :::+
1

2
+ 1� 1)a1 + :::+ ciai + :::+ (

1

t
� 1)at]; (95)

where

ci = �1 +
Pn�i

j=0

1

t� j : (96)

Then our task is to prove in t+ 1 case,

AEl =
r

t+ 1
[(

1

t+ 1
+
1

t
+ :::+

1

2
+1�1)a1+ :::+ ciai+ :::+(

1

t+ 1
�1)at+1]; (97)

where

ci = �1 +
Pt+1�i

j=0

1

t+ 1� j : (98)

In the symmetric pure-strategy equilibrium of the t-contestant case and (t+1)-

contestant case, from any contestant�s point of view, say contestant 1, given that

all the other contestants are making e¤ort x, his utilities are:

U t = Rt1a1 +R
t
2a2 + :::+R

t
iai + :::+R

t
nat � e1;

U t+1 = Rt+11 a1 +R
t+1
2 a2 + :::+R

t+1
i ai + :::+R

t+1
t+1at � e1;
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where U t and U t+1 are the expected utilities for contest 1 in t-contestant case and

(t+1) contestant case respectively. Rti and R
t+1
i are the probabilities of winning

the ith prize (ai) for contestant 1 in a t-contestant case and (t+1)-contestant case

respectively. Therefore, Rti is the probability that contestant 1 is chosen as the

loser in the (t+ 1� i)th round (which means he has not been chosen as a loser in

the previous t� i rounds). So given all the other contestants making e¤ort x, we

derive

Rti =
P t�1t�i x

�(t�i)re�r1
[e�r1 + (t� 1)x�r][e�r1 + (t� 2)x�r]:::[e�r1 + ix�r][e�r1 + (i� 1)x�r]

; (99)

Rt+1i =
P tt+1�ix

�(t+1�i)re�r1
[e�r1 + tx�r][e�r1 + (t� 1)x�r]:::[e�r1 + ix�r][e�r1 + (i� 1)x�r]

; (100)

where

P t�1t�i =
(t� 1)!
(i� 1)! = (t� 1)(t� 2):::(i+ 1)i;

P tt+1�i =
t!

(i� 1)! = t(t� 1):::(i+ 1)i:

In equilibrium, contestant 1 maximizes his utility,

@U t

@e1
= 0)

Pt
i=1

@Rti
@e1

ai = 1: (101)

In the t-contestant case,

(81) ) x =
Pt

i=1

r

t
(�1 +

Pt�i
j=0

1

t� j )ai

)
Pt

i=1

r

tx
(�1 +

Pt�i
j=0

1

t� j )ai = 1; (102)

(101) and (102))
Pt

i=1

@Rti
@e1

ai =
Pt

i=1

r

tx
(�1 +

Pt�i
j=0

1

t� j )ai: (103)

For any given values of fa1; a2; :::; atg, (103) always holds if and only if

@Rti
@e1

=
r

tx
(�1 +

Pt�i
j=0

1

t� j ): (104)
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Therefore, we conclude (81) holds for n = t given (104) holds. Similarly, we can

derive that (81) holds for n = t+ 1 given

@Rt+1i

@e1
=

r

(t+ 1)x
(�1 +

Pt+1�i
j=0

1

t+ 1� j ): (105)

So the our aim is to show (105) holds if (104) holds. The following is the proof.

From (99) and (100), we derive

Rt+1i =
P tt+1�i
P t�1t�i

(
x�r

e�r1 + tx�r
)Rti

) @Rt+1i

@e1
=
P tt+1�i
P t�1t�i

[
e�1+rrxr

(ert+ xr)2
Rti + (

x�r

e�r1 + tx�r
)(
@Rti
@e1

)]: (106)

Substituting e1 = x into (99):

Rti =
(t� 1):::ix�(t+1�i)r
t(t� 1):::ix�(t+1�i)r =

1

t
: (107)

Substituting (107), (104) and e1 = x into (106):

@Rt+1i

@e1
=

t(t� 1):::i
(t� 1)(t� 2):::i [

x�1+rrxr

(xrt+ xr)2
(
1

t
) + (

x�r

x�r + tx�r
)
r

tx
(�1 +

Pt�i
j=0

1

t� j )]

=
r

x(1 + t)
[

1

(1 + t)
+ (�1 +

Pt�i
j=0

1

t� j )]

=
r

x(t+ 1)
[�1 +

Pt+1�i
j=0

1

t+ 1� j ];

which is exactly (105) and completes the proof.

3.7 Appendix 3B

(a) In the pure-strategy equilibrium of the Power CSF model,

EUi =
eri

eri + (n� 1)xr
a1 +

(n� 1)xreri
[eri + (n� 1)xr][eri + (n� 2)xr]

a2 + :::

+
(n� 1)(n� 2):::(n� t)xtreri

[eri + (n� 1)xr][eri + (n� 2)xr]:::[eri + (n� t� 1)xr]
at+1 + :::

+
(n� 1)(n� 2):::1� x(n�1)reri

[eri + (n� 1)xr][eri + (n� 2)xr]:::[eri + xr]
an � ei:
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De�ning � =
eri
xr
, where

x = AEs =
Pn

i=1

r

n
(1�

Pi�1
j=0

1

n� j )ai: (108)

Then we can express EUi as follows:

EUi =
�

�+ (n� 1)a1+
(n� 1)�

[�+ (n� 1)][�+ (n� 2)]a2 + :::

+
(n� 1)(n� 2):::(n� t)�

[�+ (n� 1)][�+ (n� 2)]:::[�+ (n� t� 1)]at+1 + :::

+
(n� 1)(n� 2):::1� �

[�+ (n� 1)][�+ (n� 2)]:::[�+ 1]an � ei:

Mathematically, EUi can be written in the following form:

EUi = f 1
n

Pn
i=1[(�

Qi�1
t=0

n� t
n� t+ �� 1)aig � ei

= f 1
n

Pn
i=1[(�

Qi�1
t=0

n� t
n� t+ �� 1)aig � (

eri
xr
)
1
rx

= f 1
n

Pn
i=1[(�

Qi�1
t=0

n� t
n� t+ �� 1)aig � �

1
rx:

Substituting (108) into the above equation, we have

EUi =
1

n

Pn
i=1[(�

Qi�1
t=0

n� t
n� t+ �� 1)� r(1�

Pi�1
t=0

1

n� t)�
1
r ]ai:

Hence, the expected utility is expressed as a function of �. The �rst and second

order conditions for a local interior maximum are the following. When � = 1, the

�rst order condition is:

1

n

Pn
i=1[(

Qi�1
t=0

n� t
n� t+ �� 1)(1�

Pi�1
t=0

�

n� t+ �� 1)�(1�
Pi�1

t=0

1

n� t)�
1
r
�1]ai = 0:

But to make sure � = 1 is a local interior maximum, we have to make sure the

following condition holds:

signf@
2EUi

@�2
j�=1g = signf

Pn
i=1 ai(1�

Pi�1
t=0

�

n� t+ �� 1)
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�[(1�
Pi�1

t=0

�

n� t+ �� 1)�
1

r
�

Pi�1
t=0

�

n� t+ �� 1(1�
�

n� t+ �� 1)

1�
Pi�1

t=0

�

n� t+ �� 1

]g < 0:

Therefore, to ensure the point � = 1 is a local maximum,

r <

Pn
i=1 ai(1�

Pi�1
t=0

1

n� t)Pn
i=1 ai[(1�

Pi�1
t=0

1

n� t)
2 �

Pi�1
t=0

1

n� t(1�
1

n� t)]
= rsec (109)

if the denominator of rsec is positive, and r > rsec when the denominator is nega-

tive44.

Participation constraint requires

EU =
1

n

Pn
i=1 ai � x

=
1

n

Pn
i=1 ai �

r

n

Pn
i=1 ai(1�

Pi=1
t=0

1

n� t) � 0

) r �
Pn

i=1 aiPn
i=1 ai(1�

Pi�1
t=0

1

n� t)
: (110)

To sum up, r has to be located in a certain region to ensure the existence of

the symmetric pure-strategy equilibrium, i.e., (109) and (110) both hold simulta-

neously.

(b) In the pure-strategy equilibrium of the Power CDF model, by a similar

procedure with (a), we show that to ensure the existence of the symmetric pure-

strategy equilibrium, the following conditions must hold:

r <

Pn
i=1 an+1�i(�1 +

Pi�1
t=0

1

n� t)Pn
i=1 an+1�i[(1�

Pi�1
t=0

1

n� t)
2 �

Pi�1
t=0

1

n� t(1�
1

n� t)]
= rsec (111)

44Notice that he numerator of rsec is always bigger than zero since

nX
i=1

ai(1�
i�1X
t=0

1

n� t ) = AE
s > 0.
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if the denominator of rsec is positive, and r > rsec when the denominator is nega-

tive45; and

r �
Pn

i=1 aiPn
i=1 ai[(

Pn�i
t=0

1

n� t)� 1]
: (112)

45Notice that the numerator of rsec is always bigger than zero since

nX
i=1

an+1�i(�1 +
i�1X
t=0

1

n� t ) =
nX
i=1

ai(�1 +
n�iX
t=0

1

n� t ) = AE
l > 0:
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