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Abstract

The unifying theme of all three chapters of this dissertation is incomplete in-

formation games. Each chapter investigates two essential components, namely

beliefs and knowledge, of incomplete information games. In particular, the

first two chapter studies an alternative equilibrium notion of Sákovics (2001)-

mirage equilibrium- and the final chapter introduces a new notion of metric to

measure the distance between partitions. All relevant notations and definitions

are defined for each chapter so that any of them can be read independently.

In the first chapter, I restudy the Purification theorem of Harsanyi (1973)

by relaxing the common knowledge assumption on priors for 2 × 2 games.

I show that the limit of the (Mirage) equilibrium points in perturbed games

generically converge to a pure strategy of the original complete information.

This result, unlike the original one in which the limit is a mixed equilibrium

point, is reminiscent of risk dominance criterion of Carlsson and van Damme

(1993). I also study the conditions for different hierarchy levels that yields

risk dominant outcome for coordination games. That is, I give conditions (first

order stochastic dominance and monotone likelihood ratio order) that yield

the risk dominant outcome of a coordination game as the limit of perturbed

game á la Harsanyi (1973).

In the second chapter, I attempt to provide a generalization of mirage equi-

librium for dynamic games in the context of Cournot duopoly in which costs

are private information. The task of extending the definition of mirage equilib-

5



rium is a nontrivial issue since it is not clear on which level of finite hierarchies

of beliefs the update takes place. I take a short-cut to tackle this problem and

instead of working on beliefs (probability distributions) directly, I work on the

support of them. Broadly speaking, players update their beliefs by eliminating

the support of ”types” that do not explain the opponents’ behavior. I show that

the limit of this update process converges to a Nash equilibrium of the corre-

sponding complete information game. I also show that the rate of convergence

is linear.

In the third chapter, I define a new metric to measure the distance between

the partitions of a given finite set. I compare the proposed metric with the ones

in the literature through examples.
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Chapter 1

Purification without Common

Knowledge of Priors

1.1 Introduction

A mixed strategy Nash equilibrium, unlike a pure one, has been controversial

for at least two reasons. Firstly, in a mixed strategy equilibrium, a player’s own

payoffs do not have any impact on that player’s equilibrium playing probabil-

ities. However, this insensitivity has been challenged by many experiments

(see, e.g., Ochs (1995), Goeree and Holt (2001)). Secondly, equilibrium points

in a mixed strategy fail to satisfy a very basic stability notion. That is, any

player in a mixed strategy can deviate from his equilibrium strategy without

any cost. Indeed, any pure strategy to which a positive probability is assigned

by the equilibrium mixed strategy or any arbitrary probability mixture of such

strategies can be used even if the other players do not change their equilibrium

mixing probabilities. Therefore, it is necessary to provide a compelling ratio-

nale, or at least a justification, for the play of mixed strategies in equilibrium.

The first justification, also known as the classical view, dates back to von

Neumann and Morgenstern (1944). They argue that mixed strategies are ap-
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pealing for players because they prevent their strategies being discovered.

Since using a pure strategy can be discovered by an opponent easily, play-

ers would like to randomize to protect themselves. Although this explanation

is sufficient and persuasive for a certain class of games1, in a very large class of

games players may want to reveal their strategies to coordinate on an equilib-

rium. In the stag hunt game, for example, each player will be happy to reveal

his strategy in order to coordinate on the Pareto dominant outcome. For those

games which require coordination or that involve mutual gains, players do not

want to conceal their strategies. Therefore, a satisfactory account is needed to

explain mixed strategy equilibrium playing in a broader context.

The other approach to justify mixed playing was, also known as the Bayesian

view, proposed by Harsanyi (1973). Harsanyi argues that even if players have

complete knowledge of their own payoffs, their knowledge about the payoffs

of the other players is incomplete. Thus, payoffs in the complete informa-

tion games capture the situation approximately, however, in reality, players

might have some private inclination to play a certain action. The behavior of

such players can be considered as random from the perspective of an outsider,

whether they are a player or an observer. Thus, mixed strategy stems from

fluctuations in a player’s utility. Formally, these small fluctuations in utility

transform a complete information game into a Bayesian game. In this frame-

work, Harsanyi shows that generically any equilibrium (pure or mixed) can be

“purified” as the limit of a pure Bayesian equilibrium of a close-by game.

More recently, Reny and Robson (2004) provide a unification result by con-

solidating both classical and Bayesian views on this matter. Their explanation,

however, does not provide a “real” explanation for the use of mixed strategies.

They consider a complete information game and a corresponding incomplete

information game in which each player’s type is the probability he assigns to

1The primary focus of von Neumann and Morgenstern (1944) is zero-sum games in which
players have pure conflict.
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the event that his mixed strategy in the complete information game is discov-

ered by the other players. This explanation, however, assumes mixed strategy

playing in the first place. Since Harsanyi’s argument provides the real explana-

tion for large class games, we will take his “fluctuations in payoff” argument

as the explanation of mixed strategy playing.2.

Although Harsanyi’s argument is compelling and resolves the instability

problem, empirical evidence about mixed strategy is still controversial. Walker

and Wooders (2001) use professional tennis players and find that play of these

players follow quite closely to the predictions of the theory. Similarly, Chiap-

pori et al. (2002) use penalty kicks in professional soccer games and obtain a

similar result. Behavior in the lab (See Walker and Wooders (2008) for details.),

however, is inconsistent with the theory. In general, studies which are based

on laboratory experiments have generally disagreed with the studies based on

field data. More specifically, whilst the latter confirms the theory, the former

contradicts it. We explain this dichotomy in the light of our main result, Propo-

sition 1.2. We use Harsanyi’s argument with a modification. In particular, we

relate mixed playing with the absence or presence of common knowledge of

priors. That is, Harsanyi assumes that the fluctuations (or uncertainties about

other player’s payoff) in players’ payoff functions are a random vector and

their distribution is known to all players i.e., common knowledge of priors.3

The salient fact behind the uncertainty assumption is quite intuitive. Since

players could not know the exact payoffs of their opponents, their knowledge

about the payoffs of the other players could be inexact and this inexactness

is represented by this uncertainty. With this line of thinking, however, it is

difficult to agree with the claim that the players have somewhat inexact infor-

2This explanation is the most common and accepted one among economists. See Osborne
and Rubinstein (1994). Note, however, that there might be a mixed strategy equilibria different
from the Harsanyi outcome.

3Note that there is a tendency in the literature to take priors as common to all players. This
assumption, also known as the Harsanyi doctrine, was not imposed in Harsanyi (1973).
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mation about the other players’ payoff function and that each player knows

exactly the form (extent) of this inexactness. This seems to bypass subjective

judgments (beliefs or probabilities) which are perhaps the core of the issue. In

principle, even if players share the same beliefs about an event this informa-

tion may not be known by all players. Technically, this information need not be

common knowledge among the players. This forces us to question the notion

of common knowledge of prior assumptions (CKPA) in this context.

One solution to this problem is to incorporate more types, proposed in

Harsanyi (1967, 1968a,b) and constructed in Mertens and Zamir (1985), and to

recover CKPA in the context of universal type space in which any incomplete in-

formation about a strategic situation can be embedded. Even though universal

type space is an intriguing mathematical object, it has a highly complex struc-

ture due to its constructive nature. To illustrate this point, consider two players

with a basic uncertainty about the state of nature with two elements. Suppose

for simplicity, it is only player 1 who is uncertain about whether the state is the

first or the second. This uncertainty can be described by (q, 1−q) where player

1 ascribes probability q to the state of nature being the first one. Then player

2’s belief about q is a probability distribution. Furthermore, player 1’s beliefs

about 2’s beliefs about q, a member of a second-order belief hierarchy, is a

distribution over distributions, which is an element of an infinite-dimensional

vector space. As it can already be seen, the mathematical structure of the uni-

versal type space is far more complicated since it includes an infinite hierarchy.

Therefore, in practice, there should be enough common knowledge in order to

carry out a tractable analysis.

We adopt an alternative and perhaps a more practical way to handle the sit-

uation without CKPA in the purification context. To that end, we employ the

Mirage Equilibrium (ME) proposed by Sákovics (2001) as a generalization of
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Bayesian Nash Equilibrium (BNE).4 Experimental studies (see Crawford et al.

(2013), for a survey of the literature) reveal that subjects seem to have a finite

depth of reasoning in a strategic environment. ME captures this empirically

plausible fact by postulating finite-order belief hierarchies. Moreover, ME cap-

tures a truly subjective “small” world of a player as in Savage (1972) by allow-

ing a world without CKPA.

1.2 Related Literature

The notion of common knowledge and priors have been extensively investi-

gated in the literature. Unlike us, Rubinstein (1989) and Monderer and Samet

(1989) are primarily concerned with the common knowledge concept in gen-

eral. Our primary concern will be CKPA in the context of the purification the-

orem since it is hard to justify the existence of commonly known prior distri-

butions or an “objective” probability distribution (Morris, 1995) especially for

a one-shot interaction. The CKPA assumption had also been investigated on a

more conceptual level for incomplete information games (see, e.g., Gul (1998),

Lipman (2003)).

Radner and Rosenthal (1982) study the existence part of the purification

theorem with different assumptions. They show that independence of fluctu-

ations across players is important and that the purification theorem fails when

there is a correlated information structure. Aumann et al. (1983) show that

if the conditional distribution of fluctuations of a player over the fluctuations

of other players is atomless then we can escape Radner and Rosenthal (1982)

conclusion. In particular, if the independence assumption is not satisfied the

purification theorem holds approximately. This paper can be considered as

a continuation of these studies. The primary concern in this study, however,

4We limit ourselves to a need-based presentation of Mirage equilibrium. For a more thor-
ough and a formal treatment, we refer the reader to the original source.
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is not the independence assumption, but common knowledge of priors. In a

sense, this study relaxes another assumption of the purification theorem and

complements these two studies.

This paper can also be related to Carlsson and van Damme (1993). The

global games approach of Carlsson and van Damme (1993) uses the utility

fluctuation argument of Harsanyi (1973). However, unlike the purification the-

orem this approach allows for correlation of signals. As a result, the prediction

of this approach is not a mixed strategy, but a pure one. More particularly, the

global games approach refines the risk dominant pure equilibrium for 2 × 2

games. This paper reconciles these two different approaches. See section 1.5

for more on this.

1.3 Notation and Definitions

Let Γ be a 2× 2 non-cooperative game. Denote the kth pure strategy of player i

as ski and the set of all pure strategies for him as Si. We shall denote the space

of player i’s mixed strategies by Σi, where any mixed strategy σi assigns the

probability σi(ski ) to the strategy ski . As usual supp(f) stands for the support of

a function f and conv(A) represents the convex hull of a set A. If the players

use the pure strategy profile s = (ski , s
m
−i) then player i will obtain the payoff

Ui(s) = vk,mi .

A given strategy σi of player i is a best response to the other player’s strat-

egy choice σ−i if

Ui(σi, σ−i) ≥ Ui(σ
′
i, σ−i), ∀σ′i ∈ Σi.

A given strategy profile σ = (σi, σ−i) is a Nash equilibrium if every component
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σi of σ is a best response of player i to the corresponding strategy of the other

players.

Following Harsanyi, we shall define σ = (σi, σ−i) as strong equilibrium if

for all player i,

Ui(σi, σ−i) > Ui(σ
′
i, σ−i), ∀σ′i 6= σi.

If σ is a strong5 equilibrium point, given the other player’s strategy, each player

i has a unique best response in equilibrium. Therefore, a strong equilibrium

must be a pure strategy equilibrium.

An equilibrium point σ = (σi, σ−i) is quasi-strong, if there is no player i such

that

Ui(σ̃i, σ−i) ≥ Ui(σ
′, σ−i), ∀σ′i ∈ Σi, σ̃i /∈ conv(supp(σi)).

That is, σ is a quasi-strong equilibrium if all the best responses for player i

to the strategy σ−i is a member of the convex hull of the support of σi. Since

the purification theorem does not hold for games which contain equilibria that

are not quasi-strong, we assume Γ does not contain any such equilibrium.

In a perturbed game, Γ∗(ε)6, each player i has a payoff shock that is private

information. Thus, the payoff of player i when he chooses his kth strategy and

the other players choose their mth strategy can be written as

Ui(s) = vk,mi + ϕki , (1.1)

where ϕki is the shock (or the fluctuation) of kth pure strategy of player i. The

main idea in Harsanyi’s theorem is to observe players’ behavior when the ef-

fect of fluctuations ϕki vanishes. Although this analysis can be carried out in

different ways7 we proceed by decomposing ϕki into two parts so that ϕki = εθki

5This equilibrium should not be confused with the strong equilibrium of Aumann (1959)
6In order to show the role of ε in the game, we use Γ∗(ε) notation. So, Γ := Γ∗(0).
7See Gibbons (1992) for an example.
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where ε > 0, and consider the limit ε→ 0 as in Harsanyi (1973). Hence,

Ui(s) = vk,mi + εθki . (1.2)

We shall assume that random vectors θi and θj , j 6= i, are distributed inde-

pendently. In order to define the equilibrium strategies we use δi where,

δi := θ1
i − θ2

i .

Furthermore, suppose that δi is distributed with the continuous density func-

tion fi on the real line. The corresponding cumulative distribution function

Fi is assumed to be strictly increasing and is continuous. Similarly, we shall

define

vmi := v1,m
i − v2,m

i

which represents player i’s gain by choosing his first strategy over the second

one when player j chooses his mth strategy.

Lastly, each player’s strategy in the Bayesian game Γ?(ε) is a function si :

R × Bi → Si where R denotes real numbers and Bi represents the belief struc-

ture of player i. In equilibrium, we assume each player will follow a threshold

strategy of the form that

si(δi) =


s1
i , if δi ≥ zi(Bi)

s2
i , if δi < zi(B〉),

where zi is the threshold level of player i and it depends on the belief struc-

ture Bi of player i. Intuitively, this strategy says that if the benefit of playing

first strategy, s1
i , is sufficiently high, then player i chooses her first strategy,

otherwise he chooses his second strategy, s2
i .
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1.4 Analysis

In this section we provide the mixed equilibrium for Γ?(0); purification theo-

rem and ME for Γ?(ε) to make comparisons as easy and explicit as possible.

1.4.1 Mixed Strategy Equilibrium

We first consider the mixed strategy equilibrium of Γ?(0) in order to motivate

Harsanyi’s theorem. An easy calculation8 yields that player i uses his first

strategy s1
i with the probability pi =

v2j
v2j−v1j

.

1.4.2 Purification Theorem

In this section, we reproduce Harsanyi’s theorem for our simple set-up. Note

that for this subsection, we assume that the distribution functions Fi of each

player i is common knowledge. Since players’ strategies have already been

discussed earlier, we directly present a simple version of the original result.

Proposition 1.1. As fluctuations disappear, ε→ 0, the limit of the probability distri-

bution induced by (essentially) unique pure Bayesian equilibrium of Γ∗(ε) converges

to the mixed equilibrium of Γ?(0).

We present a simple version of the proof here in order to facilitate the com-

parison with the later results.

Proof. Player i chooses strategy s1
i if his expected gain is sufficiently high. That

is, assuming player j uses threshold zj player i will play s1
i if,

(v1
i + εδi) Pr(δj ≥ zj) + (v2

i + εδi) Pr(δj < zj) ≥ 0. (1.3)

8See appendix for details.
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Rearranging this equation yields the following threshold for player i,

εzi = Fj(zj)(v
1
i − v2

i )− v1
i .

Similarly,

εzj = Fi(zi)(v
1
j − v2

j )− v1
j .

Since we are interested in the probability of playing a given strategy, say s2
i , it

is not necessary to find the threshold levels of each player explicitly. Observe

that zi = F−1
i

(εzj + v1
j

v1
j − v2

j

)
. Thus, the probability of playing s2

i is given by,

Pr(δi < zi) = Fi(zi) = Fi

[
F−1
i

(
εzj + v1

j

v1
j − v2

j

)]
=
εzj + v1

j

v1
j − v2

j

.

As ε approaches 0, the probability of playing strategy s2
i for player i approaches

the mixed strategy equilibrium of Γ(0) in which player i plays s2
i with proba-

bility v1
j/(v

1
j − v2

j ).That is,

lim
ε→0

Pr(s2
i ) = 1− pi =

v1
j

v1
j − v2

j

,

where Pr(s2
i ) denotes player i’s probability of playing his second strategy.

Although player i has no intention to randomize, the small fluctuations in

his utility induce him to use pure strategies with approximately the same prob-

abilities as prescribed by the mixed equilibrium strategy. This result shows

that the mixed strategy equilibrium is nothing, but a pure strategy Bayesian

equilibrium of a bigger (or close-by) game.

1.4.3 Mirage Equilibrium

We now consider again the perturbed game Γ∗(ε), relaxing the common knowl-

edge of priors by using a finite-level belief system. We assume a simple belief
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structure. However, the crux of the analysis will not change with a different

belief structure so long as the common knowledge assumption is not main-

tained.

Player i believes that,

i) his opponent’s shock difference, δj is distributed with a density function

f ij and a cumulative distribution function(cdf) F i
j .

ii) player j believes that δi is distributed with cdf F ij
i .

iii) player j believes that player i believes that δj is distributed with F iji
j .

These beliefs are called parametric beliefs which in general describe the

higher-order beliefs of a player about the underlying attribute (payoff) space.

Additionally, players have strategic beliefs which capture the strategic uncer-

tainty of players about each other. The main distinction between these beliefs is

that while those in the former group are exogenous9, those in the latter group

are endogenous for rational agents. Putting it another way, the parametric

beliefs are part of the question/data, while the strategic ones are part of the

answer/prediction.

Note that in this context there are different thresholds associated with dif-

ferent beliefs. Hence, we label each threshold with associated distribution so

that a threshold like ziji - the belief i has about j’s belief about i’s threshold - is

associated with F ij
i .

In a Mirage equilibrium, each player is considered as a Bayesian decision-

maker in the sense that his decision is based entirely on his beliefs without

any restrictions. Nyarko (2010) and Hellman and Samet (2012) show that

the set of states in which the common prior assumption holds is small in the

9The real problem is to not identify the source of these beliefs. BNE by using CKPA implic-
itly assumes that depending on the situation there exists an “objective” probability distribu-
tion from which posteriors can be derived, whereas ME allows “subjective” probabilities as in
Savage (1972).
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measure-theoretic and topological sense, respectively. Mirage equilibrium al-

lows a richer set of states where even inconsistent beliefs are possible. As men-

tioned before, ME incorporates the idea that players hold finite-order belief

systems which are supported in both empirical and theoretical realms10.

This final point, though a relevant phenomenon, yields the following prob-

lem: At each level, each player tries to construct the best response given his

belief at that layer. In the last layer of the belief hierarchy, however, since he

has no other beliefs available, he cannot construct the best response. In other

words, because of finiteness, after k steps, players need a belief for the k + 1th

step to construct their best response and to close the system. ME resolves the

problem by using the belief of the same player in the previous level. Hence, in

the absence of the actual belief, players “use the closest proxy available” to sub-

stitute the missing belief. More particularly, let zi be a best reply to zij with the

corresponding belief F i
j (.). Note that zi can be written as a function of first or-

der strategic and parametric beliefs. Similarly, zij is a best reply to ziji with the

corresponding belief F ij
i . Finally, ziji is a best reply to some strategic belief, say

zijij , with the corresponding belief F iji
j . This last strategic belief, zijij , however,

can be picked arbitrarily since there is no higher order parametric belief F ijij
i

that can be used to form it. In the absence of such higher order belief, player i

would prefer using the rationalized lower level strategic belief zij to picking an

arbitrary one. Thus, he substitutes zijij with zij and after this substitution, we

will be able to solve the system of equations in the backward induction manner

to get optimal action as a function of beliefs player i has.

The following result is the main finding of this chapter and it will provide

a rigorous presentation of the informal discussion given in the previous para-

graph.

Proposition 1.2. For player i in Γ∗(ε), Mirage equilibrium strategy is characterized

10See Sákovics (2001), for details.
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by the solution of the following system,

εzi = F i
j (z

i
j)(v

1
i − v2

i )− v1
i

εzij = F ij
i (ziji )(v1

j − v2
j )− v1

j

εziji = F iji
j (zij)(v

1
i − v2

i )− v1
i .

The resulting probability of playing his second strategy, Pr(s2
i ), is given by,

Fi


F i

j

[
(F iji

j )−1

(
ε
(
F ij
i

)−1
(
εzij+v1j
v1j−v2j

)
+ v1

i

v1
i − v2

i

)]
(v1
i − v2

i )− v1
i

/ε

 . (1.4)

If F i
j

[
(F iji

j )−1(1− pj)
]
6= 1− pj then either limε→0 Pr(s2

i ) = 0 or limε→0 Pr(s2
i ) = 1.

That is, as long as F i
j and F iji

j do not intersect at the mixed strategy equilibrium point

of the unperturbed game Γ?(0) i.e., 1− pj , as noise vanishes this probability converges

to 0 or 1, indicating a pure strategy play for player i in Γ?(0).

The proof of the claim follows the pattern of the proof of the proposition

1.1. The role of strategic and parametric beliefs, however, can be seen explic-

itly. We shall first find strategic beliefs of player i. This will allow us to find

probability Pr(s2
i ) of playing the second strategy for player i. We will evaluate

this probability when ε approaches to zero as we did in the proof of 1.1.

Proof. Players’ problems will not change structurally except that they solve

a similar problem in different layers with (possibly) different beliefs. That is,

player i’s best response to a strategic belief conditional on his parametric belief

in the first layer is given by,

εzi = F i
j (z

i
j)(v

1
i − v2

i )− v1
i . (1.5)

which is obtained by simplifying (1.3) according to the belief structure given

above.
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Since player i’s problem depends on the threshold of player j, he needs

a belief about it. He considers player j’s problem in light of his beliefs. So,

player i believes that player j considers the following:

εzij = F ij
i (ziji )(v1

j − v2
j )− v1

j . (1.6)

Similarly, this problem requires consideration of another problem that gives

information about ziji . Indeed, player i needs to consider player j’s considera-

tion about player i’s problem so that,

εziji = F iji
j (zijij )(v1

i − v2
i )− v1

i .

As it can be seen the solution of this problem requires more information. In

particular, to write this problem player i needs a belief of zijij for which he must

have F ijij
i . As explained before, since player i has no such parametric belief to

use, he cannot discipline the corresponding strategic belief. In the absence of

such strategic belief, he will substitute it with the closest proxy available. That

is, player i will use his first layer strategic belief as third layer one. This yields,

εziji = F iji
j (zij)(v

1
i − v2

i )− v1
i , (1.7)

where player i replaces zijij with zij .

Now, player i can solve (1.5)-(1.7) to find the optimal threshold, zi in ME.

By rearranging (1.6), (1.7) and (1.5), respectively, we have,

ziji = (F ij
i )−1

(
εzij + v1

j

v1
j − v2

j

)

zij = (F iji
j )−1

(
εziji + v1

i

v1
i − v2

i

)

zi =
F i
j (z

i
j)(v

1
i − v2

i )− v1
i

ε
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Now, by combining these three equations we obtain the probability of using

his second strategy for player i, Pr(s2
i ), as

Fi


F i

j

[
(F iji

j )−1

(
ε
(
F ij
i

)−1
(
εzij+v1j
v1j−v2j

)
+ v1

i

v1
i − v2

i︸ ︷︷ ︸
p

)]
(v1
i − v2

i )− v1
i


/

ε

 . (1.8)

As ε approaches to zero, zij approaches to (F iji)−1(v1
i /(v

1
i − v2

i )). Thus,

lim
ε→0

Pr(s2
i ) = lim

ε→0
Fi

[
k(v1

i − v2
i )− v1

i

ε

]
where k := F i

j

[
(F iji

j )−1(1−pj)
]

and 1−pj =
v1i

v1i−v2i
. Hence, as long asF i

j

[
(F iji

j )−1(1−

pj)
]
6= 1− pj this limit converges to 0 or 1.

Note that in the general version of this problem, player i is going to solve

a similar problem with more layers and/or more players. The result holds for

these cases as well, but the relationship between higher order beliefs will not be

limited with the second-layer, F i
j , and fourth-layer, F i

j ji. Let us briefly outline

the analysis when player i has an n layer. The last layer of the strategic belief

will be substituted by a lower level one as shown above. The nth layer and

n− 2th layer strategic beliefs will be on the same object e.g., player j’s strategy.

Extending this argument to the layer n− 4, n− 6, . . . etc. we can conclude that

all of them are about the same strategic object. Now, our result will fail if all

these beliefs ascribe the same probability to the same event i.e., the event that

i’s opponent uses his second strategy. So as long as this condition fails our

result holds. Clearly, having all those beliefs ascribe the same probability to

this event is very unlikely as this event is a zero probability event.11

Figure 1.1 makes the mechanics of the result more transparent.12 The single

crossing case represents a class of situations in which a player has noisy higher-

11This event is choosing a particular on the interval [0, 1] and it is a zero probability event.
12See appendix 1.B for the numerical examples
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order beliefs. In particular, his third-order belief is noisier than the first-order

one i.e., it has higher variance. What a player does in ME is to first solve the

problem by using higher order beliefs to obtain a solution, p in (1.8). Then

he puts this solution into the third-order level (red curve) and then puts this

inverse back to the first order belief (blue curve) which gives p′. Since p′ is

higher than p, it becomes arbitrarily big when noise disappears which indi-

cates Fi(p′ − p)/ε. This means that the player chooses his second strategy with

probability 1. Note that we can conclude what a player does with the same

argument, as long as p and horizontal coordinate of E do not coincide. If they

do coincide, it is not possible to conclude directly that the player plays a pure

strategy for sure.13

The stochastic dominance case is more trouble-free because there is no in-

tersection point. Therefore, our claim always holds. In this case, again the

player uses p initially on his third order level belief to find out the inverse point

and uses this point in his first order level belief, which yields p′. This means

that the player chooses his second strategy with probability 0, or equivalently

he chooses his first strategy with probability 1. Note that, if both players have

the same stochastic dominance relationship between the third and the first or-

der beliefs then it is possible for them to coordinate on a particular outcome

without any other requirement.

Let us discuss a case where proposition 1.2 fails.14 If F i
j ≡ F iji

j so that what

player i believes for distribution of j is same as what player i believes j believes

i believes about it. In this case (1.8) is reduced to

Fi

[
(F ij

i )−1
(εzij + v1

j

v1
j − v2

j

)]
13Since this situation yields Fi(0), it is impossible to draw conclusions about any probability

without knowing Fi.
14When v1i = v2i = 0 proposition 1.2 claim also fails, but this means the game has (infinitely)

many equilibria that are not quasi-strong.
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F i
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F iji
j
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p
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(a) Single Crossing

1

0

F iji
j F i

j

p

p′

(b) Stochastic Dominance

Figure 1.1: Player’s first order - blue one - and third order - red one - beliefs in
Mirage Equilibrium

Again depending on the structure of the cumulative distribution functions,

this probability can converge different numbers. However, this case can be

considered as non-generic given the richness of the other possibilities. Note

also that when Fi ≡ F ij
i we turn back to the purification theorem. Combin-

ing with the initial condition, we will restore the purification theorem only if

Fi ≡ F ij
i and F i

j ≡ F iji
j . So as long as the parametric beliefs about the same ob-

jects are the same, we can purify the limit of Mirage equilibrium points in the

Harsanyi sense. To comprehend the strong equality requirements consider,

for instance, the first equality of Fi ≡ F ij
i . This equality means that player i

believes that player j believes the true distribution of shocks of player i. Sim-

ilarly, F i
j ≡ F iji

j means that what player i believes, and what player i believes

that player j believes that player i believes about the distributions of shocks

of player j are the same. Considering the rich possibilities for those beliefs,

it would be fair to say that restoring the purification theorem requires strong

restrictions on higher order parametric beliefs.
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1.5 Coordination Games

The conclusion we reached in the previous section is reminiscent of the risk

dominance criterion for coordination games. This class of games is identified

with multiple pure strategy Nash equilibria in which players try to coordi-

nate their actions on one of those equilibria. In coordination games with two

players, the players try to coordinate their actions on either payoff or risk dom-

inant equilibrium.15 The refinement approach proposed by Carlsson and van

Damme (1993) predicts the risk dominant equilibrium in these games. They

also work on a perturbed version of normal form games and carry out a sta-

bility analysis. However, while this perturbation allows players to make infer-

ences about their opponent’s payoff, in the Harsanyi approach, because of the

independence of noises, such inferences are not possible. As a result, these two

approaches reach different conclusions. Indeed, while Harsanyi (1973) justifies

mixed strategy equilibrium if any exists, Carlsson and van Damme (1993) re-

fines a risk dominant pure equilibrium point. In the light of our result, we pose

the following question: Under what conditions does a Mirage equilibrium rec-

oncile these two different approaches?

Consider a generic symmetric16 two-player coordination game given in fig-

ure 1.2. The payoffs in this game are so that A > B, D > C, A > D and

H G
H A, A C, B
G B, C D, D

Figure 1.2: A generic coordination game

D − C ≥ A− B.17 Observe that the first set of specifications about the payoffs

(i.e., A > D > C and A > B), guarantees three Nash equilibria for this game.

We shall say that the strategy pair (H,H) payoff dominates the strategy pair

15Mixed equilibrium in these games are Pareto dominated by pure equilibria.
16The result holds for asymmetric setup as well
17To call this game a coordination game it is enough to have A > B, D > C
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(G,G) if A > D. We shall also say that the strategy pair (G,G) risk dominates

the strategy pair (H,H) if the product of the deviation losses is highest for

(G,G) (Harsanyi and Selten, 1988, p. 216). Thus, (G,G) risk dominates (H,H)

if and only if (D−C)2 ≥ (A−B)2. Observe that the specificationD−C ≥ A−B

implies that (G,G) is risk dominates (H,H).

Corollary 1.1. If F iji
j first-order stochastically dominates F i

j , F
iji
j �FOSD F i

j , then

in the limit of ME as the perturbation vanishes player i chooses his second action G.

Proof. By first-order stochastic dominance, F i
j (F

iji
j (1− pj))−1 > 1− pj and the

result directly follows from proposition 1.2.

1

0

E2

E3

E4

E5

E6

E7

F j
i

F iji
j

Payoff
Dominant

Risk
Dominant

Payoff
Dominant

Risk
Dominant

Payoff
Dominant

Risk
Dominant

Figure 1.3: ME in Coordination Game

This corollary provides a condition when we can obtain a risk dominant

equilibrium if we allow for perturbations á la Harsanyi (1973) without CKPA.

Figure 1.3 shows some highly stylized beliefs to summarize the results of the

main theorem and the corollary given above. By corollary 1.1, whenever the
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third-layer parametric belief -red one - stochastically dominates the first-layer

belief - blue one -, ME predicts risk dominant action. Points between E3-E4

and E5-E6 correspond to action G. Similarly, points between E2-E3, E4-E5

and E6-E7 correspond to action H . Thus, whenever players have the same

stochastic dominance in those regions18, ME predicts as in the figure. For

the set {E2, E3, E4, E4, E6, E7} of intersection points, we cannot predict the

choice of the player without a reference to the actual belief hierarchy. Depend-

ing on the distributions, the player may play as in mixed strategy playing or

he may randomize with different probabilities.

Our next corollary is based on a statistical property: monotone likelihood

ratio (MLR). Roughly, if a probability density function f(.) satisfies MLR with

respect to another probability density function g(.) then the higher value of the

observation the more (less) likely it is to come from f(.) (g(.)). Formally,

Definition 1.1. The distribution function f(.) of a random variable X (monotone)

likelihood ratio dominates the distribution function g(.) of the same random variable if

f(.)/g(.) is nondecreasing.

Corollary 1.2. If F iji
j is larger than F i

j , F i
j �MLR F iji

j for each player i, in the

sense of monotone likelihood ratio then as noise disappears players coordinate on a

risk dominant equilibrium.

Proof. It is well known (see Shaked and Shantikumar (2007)) that monotone

likelihood ratio implies first-order stochastic dominance, and we haveF i
j �FOSD

F iji
j . The result, then follows from corollary 1.1.

Although MLR is a strong property it has various applications in economics

(see, for example, Athey (2002)). In the context of proposition 1.2, the property

can be attributed to the relative optimism (or, pessimism) in the higher be-

lief system of the players in our set-up. That is, since player i believes that

18We do not assume identical distributions across different players. We assume the same
dominance relation across layers for both layers, even if distributions are completely different.
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player j believes that player i believes player j’s payoffs are subject to (rela-

tively) higher shocks, player i’s third-order level parametric beliefs are larger,

in the sense of monotone likelihood ratio than his first order one. In short, this

relative optimism (or pessimism) in the belief system induce the monotone

likelihood ratio property.19

1.6 Conclusion

The result indicating a pure play in the limit might be useful when interpret-

ing the empirical relevance of mixed strategies. While some experimental ev-

idence is consistent with the play of mixed strategy Nash equilibrium, some

others reject it. The first group of papers that accept mixed strategy play is

based on the field data where they used data from professional tennis and

soccer matches (See, Walker and Wooders (2001), Chiappori et al. (2002) and

Palacios-Huerta (2003).). If we accept Harsanyi’s explanation for the mixed

play, then one would argue that the distributions of the shocks of the play-

ers in the field are much closer to common knowledge case than in the lab.

Goalkeepers, for instance, may have a pretty good estimate about the mood20

of the kicker, or conversely, the kicker may know the inclination of the goal-

keeper in a probabilistic sense. If we interpret these situations in the light of

Harsanyi’s explanation of mixed play, we can say that mixed strategy playing

would emerge as the shocks i.e., the importance of mood or inclination, be-

comes smaller. In a lab environment, however, it would be hard to argue that

the distribution of these shocks are common knowledge. In general, players

do not know each other or they do not know the identity of their opponents.

19Although MLR property is strong and we can recover our result with weaker conditions,
for instance assuming monotone probability ratio, MPR - see Eeckhoudt and Gollier (1995) -,
order also produces the same result, however the intuitive justification for weaker conditions
may not be as easy as MLR.

20Perhaps the kicker is in the “right mood” and scoring a goal would give a little bit higher
payoff than if he were not.
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So we can say that the common knowledge of priors assumption is not sat-

isfied in these environments, it is, therefore, expected to reject play of Nash

mixed strategy equilibrium in the light of Proposition 1.2. In fact, it may be

the case that, one player may get extra “(dis) utility” playing cooperatively in

Prisoner’s Dilemma game depending on some random variable (mood, time

of the day etc.).

We would like to conclude with a warning about the interpretation of our

result. We do not claim our result explains the play of mixed strategy. There

are many factors21 that may explain different aspects of mixed play. We claim

that if Harsanyi’s explanation is relevant for subjects, that is, if there are some

private small shocks that cause small changes in payoffs, then in the light of

our main result we can say that priors being common knowledge or not may

explain the mixed play.

21Experience of players, nature of the game etc. See Walker and Wooders (2008) for a good
exposition on empirical relevance of mixed play.
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Appendix

1.A Mixed Strategy

For each player i, his expected payoff from playing his first strategy is given

by,

E(s1
i ) = v1,1

i pj + v1,2
i (1− pj),

where pj denotes player j’s probability of playing her first strategy s1
j . Simi-

larly, player i’s expected payoff from playing his second strategy is given by,

E(s2
i ) = v2,1

i pj + v2,2
i (1− pj).

Equalizing these expected payoffs yields pj = v2
i /(v

2
i − v1

i ).

1.B Numerical Examples

In this section, we shall give some examples to illustrate how our claim applies

to different games. Additionally, we shall demonstrate how our claim fails

for games in which players think that their opponents play exactly with the

probabilities prescribed in the mixed strategy equilibrium of the unperturbed

game. Consider the following games:

For each game Γt, we shall define the perturbed game Γ∗t as in equation 1.2.
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a1
2 a2

2

a1
1 1, 5 4, 1
a2

1 2, 1 0, 3

Γ1

a1
2 a2

2

a1
1 5, 5 0, 4
a2

1 4, 0 2, 2

Γ2

a1
2 a2

2

a1
1 0, 0 0,−1
a2

1 1, 0 −1, 3

Γ3

a1
2 a2

2

a1
1 1,−1 −1, 1
a2

1 −1, 1 1,−1

Γ4

For the sake of simplicity, we choose the following uniform distributions:

Fi ∼ U(−αi,+αi), F i
j ∼ U(−βi,+βi), F ij

i ∼ U(−α′i,+α′i), F iji
j ∼ U(−β′i,+β′i)

For Γ1 the only equilibrium is the mixed one in which player 1 uses his

first strategy with 1/3 probability and player 2 uses his first strategy with 4/5

probability. In view of proposition 1.2 player 1 solves

εz1 = −5
z1

2 + β1

2β1

+ 1 =
−5z1

2 − 3β1

2β1

εz1
2 = 6

z12
1 + α′1
2α′1

− 4 =
3z12

1 − α′1
α′1

εz12
1 = −5

z1
2 + β′1
2β′1

+ 1 =
−5z1

2 − 3β′1
2β′1

If we multiply the second equation with ε and combine this with the third

equation, we obtain z1
2 as

z1
2 =
−(9β′1 + 2α′1β

′
1ε)

2α′1β
′
1ε

2 + 15
=
−(9β′1 +Kε)

Kε2 + 15

where K = 2α′1β
′
1. By using the first equation and z1

2 , we can find player 1’s

threshold and probability of playing his second strategy. Hence,

z1 =
5(9β′1 +Kε)− 3β1(Kε2 + 15)

2εβ1(Kε2 + 15)

Pr(a2
1) =

5(9β′1 +Kε)− 3β1(Kε2 + 15) + 2εα1β1(Kε+ 15)

4εα1β1(Kε2 + 15)
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Similar analysis yields the following equations for player 2:

z2 =
3(5β′2 − 3Mε)− β2(2Mε2 + 15)

εβ2(2Mε2 + 15)

Pr(a2
2) =

3(5β′2 − 3Mε)− β2(2Mε2 + 15) + εα2β2(2Mε2 + 15)

2εα2β2(2Mε2 + 15)

where M = α′2β
′
2. Note that depending on the values of βi and β′i playing

second strategy for player i, Pr(a2
i ), converges either to 0 or 1.

For Γ2, observe that there are two pure Nash equilibria and a mixed one.

For this game, players’ thresholds and prescribed probabilities in Mirage equi-

librium are as following:

zi =
9β′i + 3Kε+ βi(2Kε

2 − 9)

2εβi(2Kε2 − 9)

Pr(a2
i ) =

9β′i + 3Kε+ βi(2Kε
2 − 9) + 2εαiβi(2Kε

2 − 9)

4εαiβi(2Kε2 − 9)

As in the previous example this probability converges to 0 or 1 depending on

the values of βi and β′i. Note that this general pattern related with the upper-

bound of the support does not hold in general. If we change distributions from

uniform to normal for instance, then the parameter that determines the value

of convergence becomes the means of the distributions.

The other two games are chosen to show how players play when they be-

lieve that the opponent randomizes exactly the same as in the mixed strategy

equilibrium. Note that for this event i.e., players’ beliefs coinciding with mixed

strategy equilibrium playing, our claim about choosing pure strategy might

not hold. In addition to crystallizing this point, these examples enable us to

compare deviation for each player from his own mixed strategy equilibrium

play.

For Γ3, player 1’s problem in Mirage equilibrium is defined by the follow-
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ing system of equations:

εz1 =
−z1

2

β1

εz1
2 =

2z12
1 + α′1
α′1

εz12
1 =

−z1
2

β′1

This yields z1
2 =

εα′1β
′
1

α′1β
′
1ε

2 + 2
that implies as noise disappears player 1 thinks his

opponent uses his second strategy with 1/2 probability which is the same as

mixed strategy play of player 2 in the normal form game. Given z1
2 ,

z1 =
−α′1β′1

β1(α′1β
′
1ε

2 + 2)

Pr(a2
1) =

−α′1β′1 + α1β1(α′1β
′
1ε

2 + 2)

2α1β1(α′1β
′
1ε

2 + 2)

As ε goes to zero this probability converges to
2α1β1 − α′1β′1

4α1β1

which may or may

not be the mixed strategy play in the normal form game. Surprisingly, player

2’s probability converges 0 or 1 as in the previous examples. The reason is that,

as it could be realized, player 2, unlike player 1, does not think his opponent

plays with the same probability as in the mixed strategy equilibrium.

The last example is also in the same spirit with a little twist. Player i’s

Mirage strategy can be described as the solution of the following system of

equations:
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εzi = 4
zij + βi

2βi
− 2 =

4zij
2βi

εzij = 4
ziji + α′i

2α′i
− 2 =

4ziji
2αi

εziji =
zij + β′i

2β′i
− 2 =

4zij
2β′i

The solution of this system yields zi = 0. Thus, for player i, the Mirage

equilibrium predicts that he will use his second strategy with 1/2 probability

as in mixed strategy playing. Note that these results do not hold, if we change

the parameters of the uniform distribution or the distribution itself.
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Chapter 2

Dynamic Mirage Equilibrium: An

Example

2.1 Introduction

Consider a standard Cournot duopoly model in which each firm knows its

own cost, but is unsure about the cost of the other firm. How should firms

decide their production levels? The difficulty in answering this question stems

from sequential expectations (Harsanyi, 1967). That is, firm one’s production

level depends on what it expects about firm two’s production, which in turn

depends on firm one’s expectation about the cost of firm two. This expectation

of firm one about the cost of firm two is called ‘first-order expectation’.1 Since

the same logic is true for firm two, then firm one’s expectations about the first-

order expectation of firm two, called ‘second-order expectation’, affects this

decision. Continuing this process yields an infinite sequence of expectations

about the unknown parameters for each player, which may also be called para-

metric beliefs. Harsanyi (1967) considers this approach very complicated and

cumbersome and offers a general framework to transform this situation into

1In general, first-order and higher-order beliefs are defined over the state of nature. In this
context the state of nature is identified with the vector cost parameters.
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the following one: Consider the same duopoly, but assume that the probabil-

ity distribution P of the cost parameters is commonly known. Then the issue

of such sequences of higher and higher-order reciprocals do not arise. More-

over, this transformation (also known as Harsanyi program) does provide an

answer to the question: “How should firms decide their production levels?”

Another possible modification of the initial situation is the following: Con-

sider the same duopoly and that each firm is endowed with a finite number of

parametric beliefs2 and that these beliefs are part of the private information so

the beliefs are not common knowledge. Arguably, many real life situations cor-

respond to this modification. Indeed, it is hard to justify a commonly known

probability distribution for real life examples. The complication of original

situations arises from the subjective nature of expectations. Indeed, if the un-

derlying uncertainty can not be modeled with an objective distribution, then

applying the Harsanyi program may be inappropriate. Indeed, the idea of

Bayes equivalence (Harsanyi, 1967, pp. 174-175) critically depends on the exis-

tence of an objective probability distribution. In the absence of such an object,

we cannot transform the original incomplete information game to an imper-

fect information one. Hence, the question is: How should firms decide their

production in this situation? Or, in general, how do we describe the actions

(or the strategies) of the players in an incomplete information game in which

priors are also part of the private information?

Sákovics (2001) proposed a solution concept called ‘mirage equilibrium’

for such games of incomplete information3. This solution concept is defined

for static incomplete information games and the immediate question is: can

this equilibrium be applied to dynamic games? Since many real life problems

2Experimental evidence suggests that individuals have a finite depth of reasoning. See
Crawford et al. (2013) for a survey of this literature.

3Battigalli (2003) calls them “genuine incomplete information”. We agree with this classifi-
cation since incomplete games of incomplete information with a prior are a very small subset
of the incomplete information games. See Nyarko (2010) and Hellman and Samet (2012) for
more on this issue.
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are inherently dynamic, being able to apply this concept beyond the important

but limited class of static games is of great interest.

Sákovics (2001) also emphasized the importance of expanding Mirage equi-

librium to dynamic games. However, it did not provide a feasible way. This

chapter addresses this issue. It does not prove a general result nor does it pro-

vide a complete answer, but it shows a way to apply Mirage equilibrium in the

context of a dynamic environment. In particular, we apply Mirage equilibrium

to the repeated Cournot duopoly model in which uncertainty is about the cost

parameter(s).

We show that if players are myopic in the sense that they just consider

the instantaneous payoffs without considering the future implications of their

actions, then players can learn the true cost parameter of their opponents un-

der Mirage equilibrium. The learning occurs by iterated elimination of un-

justifiable types for the observed action. That is, players do not consider the

types that do not explain the action of the opponents. Thus, the game eventu-

ally becomes a complete information game and players play according to the

Nash equilibrium of the underlying complete information game. Because of

the framework we are using and of the dynamic nature of the problem, this

result can be assessed from different aspects. One important aspect of our re-

sult is that learning is driven by unexpected events. So each period a player

updates his beliefs if the realized outcome is different from the expected out-

come. Unlike, (separating) Bayesian equilibrium, however, the learning does

not occur at the end of the first period. That is, the learning described in here

is slow but eventually complete.

The learning literature, in general, has two contradicting views about learn-

ing to play Nash equilibrium. Papers such as Kalai and Lehrer (1993), Jordan

(1995) and Nyarko (1998) argue that the actual play converges to Nash equilib-

rium in a repeated environment. On the other hand, papers such as Nachbar
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(1997) and Foster and Young (2001) argue about the limitations of the assump-

tions of these convergence results and insist on the difficulty, or even the im-

possibility, of predicting the behavior of rational agents. Our findings in some

sense have some common ground with the papers in the first group, however,

since the notion of common knowledge in Mirage equilibrium, unlike the pa-

pers mentioned above, is in its weakest form, it is hard to compare our findings

with theirs.

The literature in which incomplete information games are investigated is

quite substantial yet again no paper in this group is directly comparable with

Mirage equilibrium. The substantial part of this literature (see for example

Battigalli and Siniscalchi (1999), Battigalli and Siniscalchi (2003) and Dekel

et al. (2007)) investigates epistemic issues, formalizes rationality notion and

beliefs, and investigates their implications regarding the play in a game. The

main ingredients of this literature are the universal type space constructions

of Mertens and Zamir (1985) and the rationalizability notion of Pearce (1984)

and Bernheim (1984). Battigalli and Bonanno (1999) provide an almost com-

plete summary of this literature. The closest paper to ours in this literature

is Nyarko (1997) which studies an incomplete information game with a finite

set of attributes where each agent is endowed with an infinite belief hierarchy.

He shows that under some conditions4 players will learn the true attribute of

their opponents or “fundamentals of the economy” (as the way he describes

it), hence the actual play of the game converges to the Nash equilibrium of

the complete information game. We discuss the general logic of convergence

results in the last part where we also touch upon differences between Nyarko

(1997) and this paper.

The rest of the paper is organized as follows: in section 2.2 we reintroduce

mirage equilibrium, then in sections 2.3 and 2.4 we discuss Cournot duopoly

4These conditions are; (i) contraction of best responses and (ii) mutual absolute continuity.
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model with one-sided asymmetric information; we then move onto two-sided

asymmetric case in section 2.5, and conclude with section 2.6 where we discuss

some important aspect of the learning process described in this paper.

2.2 Mirage Equilibrium

In this section, we give the Mirage Equilibrium (ME) definition for Bayesian

games without common knowledge of priors. The two most relevant proper-

ties of ME are as follows:

(a) Unlike Bayes Nash Equilibrium (BNE) it enables us to handle incomplete

information games without prior beliefs over the attribute space being

common knowledge (CK).

(b) Contrary to the universal type space construction due to Mertens and Za-

mir (1985), it assumes finite belief hierarchy.

On the one hand we have BNE putting strong and restrictive assumptions on

the beliefs of each player where priors are CK, and on the other hand, there is

the (complex) universal type space construction in which players have infinite

belief hierarchies about the underlying uncertainty, whether on strategies or

on fundamental uncertainty. ME, however, discards the restriction on beliefs

without being too intricate or complex. In fact, ME can be considered as a be-

lief equivalent version of the level-k theory. Loosely speaking, agents choose

best responses according to their cognitive hierarchy in level-k thinking. In

ME, however, people choose best responses according to their belief hierarchy

which is a collection of finite parametric beliefs about some attribute space.

In this equilibrium concept, parametric beliefs - beliefs about attributes,- and

strategic beliefs -beliefs about strategies,- are evaluated separately. Therefore,

we define the game structure and belief structures separately. For a detailed
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discussion of belief structures in ME and other equilibrium concepts for in-

complete information games, see Sákovics (2001) and references therein.

Consider the quadruple Γ ≡ 〈N, (Ki)i∈N , (Si)i∈N , (Vi)i∈N〉where:

• N = {1, 2} is a finite set of players;

• K =
∏

i∈N Ki, where Ki is the attribute (type) space of player i;

• S =
∏

i∈N Si, where Si is a set of feasible mixed actions for player i; and

• Vi : K × S → R is the utility function for player i.

Adding a belief Ri over the attribute space (priors) for each player completes

the description of Harsanyi’s construction of a Bayesian game, which is as-

sumed to be common knowledge. The general tendency in the literature is

to assume a common prior (CP). In this case, beliefs are said to be consistent.

The main argument behind CP is not to have “agreeing to disagree” type of

arguments (see Binmore (1987) and Binmore (1988) for further on this issue.).

Define player i’s parametric beliefs as follows:

(For a set A, we denote the set of probability distributions on A by ∆(A).)

• R1
i ∈ ∆(K) is player i’s first-order belief. It is a probability distribution

over the attribute space.

• R2
i ∈ ∆(∆(K)) is player i’s second-order belief. It is a probability distri-

bution over the first order beliefs of player j and so on.

Note that in general the set of second order beliefs is represented by ∆(K×

∆(K)) which allows correlation for different players’ beliefs. We restrict our-

selves to the cases where beliefs are independent across layers i.e., correlation

is excluded. We were not able to extend our analysis to this general case.

The following remark will be helpful to represent higher order beliefs in a

simple way and to represent strategies as a function of the attributes.
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Remark 1. To any belief R2
i , corresponds a belief ri ∈ ∆(K) which almost al-

ways assigns the same probabilities as R2
i to the same events. To make this

claim more rigorous, let A be σ-field on K, and define ∆(K) to be the space of

all probability measures on (K,A). Now let F be the σ-field on ∆(K) gener-

ated by the collection of probability maps P 7→ P (A) for A ∈ A. Now, for any

probability measure R2 on (∆(K),F) we can define r ∈ ∆(K) by5

r(A) =

∫
∆(K)

P (A)R2(dP ).

This is the usual integral of a random variable on the probability space

(∆(K),F , R2). It is easy to check that r(.) defines a genuine probability mea-

sure on (K,A).

The strategy σi(.) of player i will be a mapping from his attribute space Ki

to his set of mixed actions Si.

Definition 2.1. Player i’s best response with belief Ri to the strategy profile σ−i,

denoted σi ∈ BR(σ−i, Ri) is given by 6,

BR(σ−i, Ri) := arg max
σ′i∈Si

EUi(σ
′
i, σ−i),

:= arg max
σ′i

∑
k−i∈K−i

Ri(ki, k−i)Vi ((σ
′
i, σ−i), ki, k−i) .

In BNE, there exists a commonly known probability distribution R∗, which

is also known as CP, such that Ri = R? for every player i. Therefore, each

player uses this belief to calculate his best response in BNE. Harsanyi (1967)

uses common knowledge assumption to avoid the sequence of expectations

which comes out naturally in any incomplete information game as we dis-

cussed before. ME turns back to these expectations (or beliefs) by not imposing
5Note that for an arbitrary measure µ,

∫
fdµ,

∫
f(x)µ(dx) and

∫
f(x)dµ(x) represent the

same thing.
6Expected utility given here is the ex interim expected utility. For details see Shoham and

Leyton-Brown (2008).
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common knowledge assumption for a given incomplete information game. So

ME uses the belief hierarchy (beliefs and higher order beliefs) as the primitive

data.

Definition 2.2. An n-layer belief hierarchy Bn
i = (Ri, R

j
i , . . . , R

j,...,
i ) is the collection

of the first-order belief , Ri -a probability distribution over the attribute space-; the

second-order belief, Rj
i -a probability distribution over the first order beliefs of player

j-, and so on until the n− th-order belief, Rj,...,
i .

Remark 2. Note that all members of Bn
i are in ∆(K) following remark 1 given

before. It is also possible to model more complex beliefs within this frame-

work. Indeed, in a very general construction à la Mertens and Zamir (1985)

we can write B∞i where correlation in higher order beliefs are possible. The

so-called universal type space construction of Mertens and Zamir (1985) con-

tains all possible B∞i pertaining to underlying uncertainty and higher order

beliefs. Thus, a belief hierarchy in ME can be considered a truncated version

of a member of universal type space. One important aspect of the universal

type space construction is that it can be constructed over any basic uncertainty

space7 whereas in ME the construction is based on the space of (utility) param-

eters which is naturally called parametric beliefs.

Definition 2.3 ( Sákovics, 2001). Given a 3-layer belief system for player i, a strategy

σi(.) of player i forms part of a Mirage equilibrium profile if and only if there exists

strategies σij(.)8, σiji (.) with j 6= i such that

• σi ∈ BR(σij, Ri).

• σij ∈ BR(σiji , R
j
i ).

• σiji ∈ BR(σij, R
ji
i ).

7Ahn (2007), for instance, constructs hierarchies of ambiguous beliefs where players do not
have precise beliefs but instead have set of beliefs.

8For strategy σ, superscripts represent who thinks about σ and subscript represents whose
variable σ is. For beliefR, superscripts represent who thinks, whilst subscript represent whose
belief it is.
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Note that this definition can easily be extended to any finite-layer belief

system, but we take a three layer system so that it shows the crucial aspects

of Mirage equilibrium and saves us from tedious algebra. The key difference

between ME and BNE is that the latter “closes” the model with a restriction on

parametric beliefs, namely CK assumption on priors; but the former closes the

model with a restriction on strategic beliefs, namely substitution assumption

on the last layer strategies. That is, choosing σiji in definition 2.3 agent i should,

in principle, respond to σijij which depends on additional belief, namely Rjij
i .

In the absence of such belief, player i is free to choose any strategic belief. ME

disciplines this arbitrariness by using a lower level belief. More particularly, it

uses σij and this closes the system. The behavior of player i can be interpreted

as if the higher orders beliefs Rji
i and Rj

i were common knowledge. Thus, in

the higher level player i believes that he and player j plays BNE with different

priors. He then uses his belief Ri to best respond to what he believes player j

does i.e. σij .

After this very brief introduction of ME, we are going to investigate it in a

dynamic environment. The update process of different parametric beliefs is a

nontrivial issue requiring a delicate analysis. Our analysis on this matter is a

crude first step which does not offer a general method that can be used for any

game where ME is applicable.

For the following sections, we shall consider a linear Cournot duopoly

model in which there is an informational asymmetry about the cost function.9

Suppose Ann and Bob are two duopolist who compete in quantities. We as-

sume that they are myopic in the sense that they just consider the current pe-

riod’s profit. It is common knowledge that the inverse demand function has a

linear form of p = m− n(qi + qj) and the cost function also has a linear form of

Ci(q) = kiqi. The constant unit cost ki, however, is particular to each player. We

9In another very popular version of the Cournot duopoly model demand is unknown.
Other than interpretation, our analysis remains intact in this version.
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assume that: (i)m > ki (ii)m+ ki − 2kj > 0 and (iii)n > 0 .10 For simplicity,

suppose Bob’s unit cost is commonly known to be kB = 1. However, Ann’s

cost is only known to her. To complete the description of the game we need

the beliefs of each player about kA, and to keep analysis simple we assume an

elementary belief structure for each player. To make the analysis as explicit as

possible, we start our analysis with a situation where the value of kA comes

from a finite set and then we extend our analysis to an infinite set.

2.3 Cournot with Finite Attribute Set

In this section, we start with the simplest case where k ∈ {1, 2}. Bob’s prior

is that, with probability α, k = 1, and k = 2 with the complement probability

1−α. Also, he believes that Ann’s belief about α is described by the probability

density function, γ(.). To complete the description we are going to assume

Ann’s belief system is represented by β i.e., Ann believes that Bob believes,

with probability β, k = 1.

Bob’s Mirage strategy, b, can be deduced from the solution of the following

system11:

b = arg max
q

q
(
m− n

(
q + αaB1 + (1− α)aB2

)
− 1
)
,

aB1 = arg max
q

q
(
m− n(q + bBA)− 1

)
,

aB2 = arg max
q

q
(
m− n(q + bBA)− 2

)
,

bBA = arg max
q

∫
q
(
m− n

(
q + yaB1 + (1− y)aB2

)
− 1
)
γ(y)dy.

These equations represent how Bob evaluates the maximization problems

for himself and Ann. For instance, bBA, is what Bob thinks that Ann thinks that
10The conditions (i) and (ii) ensures existence whilst the last condition ensures uniqueness.
11ak denotes the production of Ann if her type is k.
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Bob plays, and Bob evaluates this, as expected, by using his belief about Ann’s

belief about Bob’s belief, namely γ(.). Other equations can be interpreted sim-

ilarly. Starting from the last equations we can solve this system in backward

induction manner to obtain,

bBA =
m− γ̄

3n
,

aB1 =
2m− 3 + γ̄

6n
aB2 =

2m− 6 + γ̄

6n
,

b =
4m− (3α + γ̄)

12n

where γ̄ is the mean of γ(.). Similarly, the solution of the following system

yields Ann’s Mirage strategy12:

ak = arg max
q

q
(
m− n(q + bA)− k

)
,

bA = arg max
q

q
(
m− n

(
q + βaAB1 + (1− β)aAB2

)
− 1
)
,

aABk = arg max
q

q
(
m− n(q + bA)− k

)
.

Thus,

ak = aABk =
2m− 3k + β

6n
, bA =

m− β
3n

.

Suppose Ann’s actual production ak is different from Bob’s (conditional)

expectations about it, aBk . In this case, Bob tries to update the upper-level para-

metric belief γ(.) which is a key component of his expectation about Ann’s

production. Without loss of generality suppose k’s real value is 1. Then, Bob

12Note that one can easily observe the similarity of equations across players. The reason
of this similarity is the rationality of players. Even if each player knows the maximization
problem of the other player, the differences in beliefs causes different expectations for different
players. In a sense, each player knows what is going to be maximized objectively, but their
assessment about constraints may differ.
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tries to reconcile Ann’s action with his belief. Even if he does not know the

components of a1 or a2, he can do a reverse engineering to update his belief. In

particular, when Bob observes the actual action of Ann, a1, he wants to check

whether this action may belong to Ann for k = 2. This means that aB2 should

have been equal to a1, but this means that γ̄ ≥ 3 which is impossible. So, he

concludes that the only way of observing this action is that k = 1 for Ann.

Hence, even if Bob does not know what belief Ann holds to produce a1, he

knows no belief can justify certain actions for certain type(s). Therefore, Bob

figures out the true type of his opponent. Since Ann can do the same analysis

she is able to figure out that Bob would learn her true type. It is easy to verify

the same conclusion will be reached when k = 2 too. Therefore, players learn

the true types in one period just like they learn in BNE.13

We make the update mechanism a bit more transparent by looking at the

same problem with an extended attribute set. Before making a big jump let

us probe the same problem with an attribute set {k1 = 1, k2 = 3/2, k3 = 2}.

Let us represent the first order belief as (α1, α2, α3) where αi is the probability

of having ki and
∑

i αi = 1. Note that the belief we consider for the previous

case can be obtained by setting α1 = α, α2 = 0 and α3 = 1 − α. Suppose the

integrated out version14 of third order belief is γ̄1, γ̄2, γ̄3 with
∑

i γ̄i = 1. The

Mirage strategy of Bob is obtained by solving the following system:

bBA =
m− 2

3n
+

1

3n

∑
i

γ̄iki (2.1)

aBki =
2m− 3ki + 2

6n
− 1

6n

∑
i

γ̄iki (2.2)

bB =
m− 2

3n
+

1

4n

∑
i

αiki +
1

12n

∑
i

γ̄iki (2.3)

For Ann, let us represent the first order belief (β1, β2, β3). Thus, the mirage

13See Appendix 2.A for details.
14See Appendix 2.B for details.
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strategy of Ann is obtained by solving the following system:

bA =
m− 2

3n
+

1

3n

∑
i

βiki

aABki = aki =
2m− 3ki + 2

6n
− 1

6n

∑
i

βiki

From this, we can infer boundaries for Bob’s expectation of Ann’s produc-

tion, aBki . By using equation (2.2), Bob would reason in the following way15:

• If the true value of ki is 1, then the first component of the equation (2.2)

will be 2m−1
6n

. The second part which is a convex combination of different

values of ki achieves its minimum value when γ̄iki = 1 and maximum

value when γ̄iki = 2. Therefore,

aBk1 ∈ [
2m− 3

6n
,
2m− 2

6n
]

• If the true value of ki is 3/2 then the first component of the equation (2.2)

will be 2m−2.5
6n

. The second part which is a convex combination of different

values of ki achieves its minimum value when γ̄iki = 1 and maximum

value when γ̄iki = 2. Therefore,

aBk2 ∈ [
2m− 4.5

6n
,
2m− 3.5

6n
]

• If the true value of ki is 2 then the first component of the equation (2.2)

will be 2m−4
6n

. The second part which is a convex combination of different

values of ki achieves its minimum value when γ̄iki = 1 and maximum

value when γ̄iki = 2. Therefore,

aBk3 ∈ [
2m− 6

6n
,
2m− 5

6n
]

15This reasoning is same as reverse engineering mentioned before. The idea is to exploit
rationality of the other agent in order to eliminate some of the cost parameters that are incon-
sistent with the realized outcome.
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It is easy to verify by using the aki equation that Ann produces in that region

if the true value is aki . Thus Bob is able to map each ki with a certain subset of

action space.16 Since these sets are disjoint, the observed action itself is enough

to learn the attribute of a player.

As might be realized, enlarging type space causes actions of different types

to intertwine. To make this point more explicit we are going to take it one

step further by increasing the type set once again. Suppose now the type set is

given as {k1 = 1, k2 = 5/4, k3 = 7/4, k4 = 2}. As in the previous case, Bob can

associate types with subsets of actions. Indeed, aBk1 ∈ [(2m−3)/6n, (2m−2)/6n],

aBk2 ∈ [(2m − 3.75)/6n, (2m − 2.75)/6n],aBk3 ∈ [(2m − 5.25)/6n, (2m − 4.25)/6n]

and aBk4 ∈ [(2m− 6)/6n, (2m− 5)/6n]. Unlike previous cases, he is now unable

to distinguish k3 and k4 or k1 and k2 by observing their actions because, in a

certain subset of the attribute space, actions for different types overlap. This

can be seen in Figure 2.1. For example, the bold area is common actions for k3

and k4 hence, when Bob observes an outcome from this area he cannot infer

which value of ki causes this action. Nevertheless, any action in that region

indicates that Ann would not take such action had she been k1 or k2. In other

words, Bob does not learn which type Ann is, but he does learn which type

she is not. This implies the new attribute set is {k3 = 7/4, k4 = 2}.

After observing actions Bob puts zero weight on k1 = 1 and k2 = 5/4, he

reasons in the way we described above and the expectations become aBk3 ∈

[(2m − 5.25)/6n, (2m − 5)/6n] and aBk4 ∈ [(2m − 6)/6n, (2m − 5.75)/6n]. He

proceeds to eliminate types with this updated beliefs and he will learn the

true type of Ann as in the previous case. In the next section we extend this

elimination logic to the case in which the attribute set is infinite.

16This is a correspondence from type space to action space.
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Type− 4

Type− 3

Type− 2

Type− 1

Figure 2.1: Possible actions for all types

2.4 Cournot with Continuum Attribute Set

In this section, we assume a continuum of types. Thus we keep the same set-up

with k ∈ [1, 2].17 For Bob,

• his prior is given by the distribution function F1. So, he believes that k is

distributed according to the cumulative distribution function (CDF) F1.

• his belief about Ann’s belief about his belief about k is represented by

CDF F2. Note that F2 is an integrated out version of some other object.

So F2 and r given in the remark above are of the same nature.

Since Ann knows Bob’s attribute, we only describe her belief about Bob’s

belief about Ann’s attribute which is given by G which is integrated out ver-

sion of some other object.18 In principal, G ≡ F2 is possible, but obviously, the

more interesting case is to allow them to be different.

Bob’s Mirage strategy can be obtained by solving the following system:

bB = arg max
q

q
(
m− n

(
q + E1(aBk )

)
− 1
)
,

aBk = arg max
q

q(m− n(q + bBAB )− k),

bBA = arg max
q

q
(
m− n

(
q + E2(aBk )

)
− 1
)
.

where E1(.) and E2(.) represents expected value operators in which expecta-

tions are taken by using F1(.) and F2(.), respectively. The solution of this sys-

17Note that we dropped subscript i which was used for indexing purposes before.
18See Remark 1 and Appendix 2.B.
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tem yields:

bBA =
m− 2

3n
+

1

3n

∫ 2

1

kdF2, (2.4)

aBk =
2m− 3k + 2

6n
− 1

6n

∫ 2

1

kdF2, (2.5)

bB =
m− 2

3n
+

1

4n

∫ 2

1

kdF1 +
1

12n

∫ 2

1

kdF2. (2.6)

Similarly for Ann, the Mirage strategy is obtained by solving the following

system:

ak = arg max
q

q
(
m− n(q + bAB)− k

)
,

bA = arg max
q

q
(
m− n

(
q + E(aABk,A)

)
− 1
)
,

aABk = arg max
q

q(m− n(q + bAB)− k).

The solutions of this system are given by:

aABk =
2m− 3k + 2

6n
− 1

6n

∫ 2

1

kdG, (2.7)

bA =
m− 2

3n
+

1

3n

∫ 2

1

kdG, (2.8)

ak =
2m− 3k + 2

6n
− 1

6n

∫ 2

1

kdG. (2.9)

When Bob’s expectation about Ann’s production , aBk , and Ann’s real pro-

duction, ak, agree with each other there is no need to update the beliefs. The

more interesting case is, obviously, when those two values differ. We are going

to proceed period by period as in the discrete version.

Initially the players’ actions are given by (2.6) and (2.9). From Bob’s per-

spective Ann ’s production ak is a black box since he does not really know

the components of ak.19 Therefore, he tries to reconcile what he believes and

19The asserted arguments hereafter are equally valid for Ann.
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what he observes. For notational simplicity we are going to ignore k in ak and

represent action of Ann in period t as at. Possible values of k is in interval

I0 = [l0, h0] where l0 = 1 and h0 = 2. Given (2.5) and k, Bob’s expectation about

Ann’s action aB should lie in [2m−3k
6n

, 2m−3k+1
6n

]. Suppose the realized value for k

is k0, so

a1 =
2m− 3k0 + 2

6n
− 1

6n

∫
I0

kdG.

Once Bob observes a1, he eliminates types for which a1 cannot be a best re-

sponse. In other words, observing a1 leads Bob to use a new type set which

does not contradict a1. Hence at the end of period 1, the type set is I1 =

[l1, h1] ∩ I0 where l1 =
2m− 6na1

3
and h1 =

2m+ 1− 6na1

3
.

Note that we take intersection because it is clear that any type lower than 1

or higher than 2 is not possible. If we do not allow such intersection the learn-

ing we described here in detail does not work, because some values in the

updated interval [l1, h1] can justify the action of Ann, even though they are im-

possible to be materialized. This would essentially be the same as considering

a different support than the actual one.20

In the second period, Ann’s action is:

a2 =
2m− 3k0 + 2

6n
− 1

6n

∫
I1

kdG′,

where G′ is the updated cumulative distribution function. Note that there is

no restriction on how update should be for G to obtain G′.

After observing actions the update takes place and Bob’s expectation, for

a given k, lies in the interval [(2m − 3k + 2 − h1)/6n, (2m − 3k + 2 − l1)/6n].

Again, once Bob observes a2 he associates a new type set I2 = [l2, h2]∩I0 where

l2 = (2m + 2 − 6na2 − h1)/3 and h2 = (2m + 2 − 6na2 − l1)/3, for the given

observation.
20See the final section for more on this.
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In the next period, the player will use this new set, thereby Ann’s action is

given by

a3 =
2m− 3k0 + 2

6n
− 1

6n

∫
I2

kdG′′,

where G′′ is the updated cumulative distribution function and Bob’s expecta-

tion, for a given k, lies in the interval [(2m−3k+2−h2)/6n, (2m−3k+2−l2)/6n].

Therefore, the new set players use is the interval I3 = [l3, h3] ∩ I0 where l3 =

(2m+ 2− 6na3 − h2)/3 and h3 = (2m+ 2− 6na3 − l2)/3.

In general the given pattern implies that for each t,

at =
2m− 3k0 + 2

6n
− 1

6n

∫
It−1

kdGt−1 and It = [lt, ht] ∩ I0

where lt =
2m+ 2− 6nat − ht−1

3
, ht =

2m+ 2− 6nat − lt−1

3
and Gt−1 is the

cumulative distribution function which is obtained from G by updating it t−1

times. This process describes how players choose actions and how update

process takes place in period t.

We show that the process given above leads Bob to learn the true cost pa-

rameter of Ann. The following lemmas pave the way for the main result.

Lemma 2.1. It 6= ∅ for all t. In particular, k0 ∈ It for all t.

Proof. We prove this claim by induction. It is true by definition that k0 ∈ I0.

Now, suppose k0 ∈ It−1. Hence, it is enough to show that k0 ∈ [lt, ht]. By

definition of at,

at =
2m− 3k0 + 2

6n
− 1

6n

∫
It−1

kdGt−1.

Note that the value of the last integral, which is an expected value, is between

[lt−1, ht−1] since lt−1 and ht−1 are the minimum and maximum values for this
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expectation, respectively. By definition of lt and ht, we can write

lt =
1

3

(
2m+ 2− (2m− 3k0 + 2−

∫
It−1

k dGt−1)− ht−1

)
= k0 +

1

3

( ∫
t−1

k dGt−1 − ht−1

)
ht =

1

3

(
2m+ 2− (2m− 3k0 + 2−

∫
It−1

k dGt−1)− lt−1

)
= k0 +

1

3

( ∫
It−1

k dGt−1 − lt−1

)
which implies k0 ∈ It, as desired.

The next lemma shows that the sequence {It} of intervals are shrinking.

Before the statement and the proof of this lemma, we provide the following

definition of the rate of convergence.

Definition 2.4 (Q-Convergence). Assume limt→∞ xt = x?. Convergence is said to

be with order Q if there exists a constant c > 0 such that

lim
t→∞

| xt+1 − x? |
| xt − x? |Q

= c.

The number Q is called the order of convergence for the sequence {xt} and determines

the rate of convergence as follows:

1. If Q = 1 and c = 1 then convergence is said to be sublinear.

2. If Q = 1 and 0 < c < 1 then convergence is said to be linear.

3. If Q > 1 then convergence is said to be superlinear.

Lemma 2.2. The length of intervals It converges to zero as t increases. Moreover, the

convergence is linear.

Proof. Denote length of intervals with diam. Thus

diam It = ht − lt =
ht−1 − lt−1

3
= · · · = h0 − l0

3t

58



Therefore limt→∞ diam It = 0. Also, by the previous definition, it is trivial to

see that Q = 1 and c = 1/3. Hence this convergence is linear.

Prima facie, this result might be considered as disappointing since linear

convergence is relatively slow. However, it is important to note that this con-

vergence speed is roughly the convergence speed of intervals, and that at-

tribute sequence as members of these intervals may well converge faster than

the intervals. The linear convergence result can be interpreted as the slow-

est speed of convergence for the attribute sequence. That is, this result can

be considered as the lower bound for the convergence speed of the attribute

sequence.

Finally, our main result is given by,

Proposition 2.1. In the limit of the update mechanism described, the only remaining

type set will be the true type {k0}.

Proof. It follows at once from Lemma 2.1 and Lemma 2.2 given above.

This process might be considered as a statistical test for the true type. Any

candidate type passing this test in every period can be evaluated as “possibly

true” since it always goes along well with the observed actions. It is rather

intuitive to think that this update process ends up with the true parameter be-

cause the true type is the only one that will always be considered as “possibly

true”.

2.5 Two-Sided Asymmetry

So far we have assumed one-sided informational asymmetry in which only

one player has uncertainty about the cost parameter of the other party. In this

section, we extend our analysis for two-sided asymmetry where each player is

uncertain about the cost parameter of the other player.
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Reconsider the simplest case with two-sided uncertainty where each player

knows his/her cost parameter but does not know about the cost parameter

of the opponent. Suppose each player’s cost parameter is ki ∈ {1, 2}. Note

that we consider a symmetric support for the cost parameters because (i) intu-

itively, this case is more interesting than a case where supports are asymmetric

21 and, (ii) it allows us to avoid introducing additional notations.

Bob’s first order belief is still about the cost parameter of Ann and we use

α to represent it as before. Bob’s second order belief is a distribution γ(.) over

the first order belief of Ann. Note that we still keep independence assumption.

In a general situation, this belief should be a distribution over the Cartesian

product of the set of cost parameter of Bob and the set of first order belief of

Ann. Lastly, Bob’s third order belief is a distribution ζ(.) over the second order

belief of Ann.

Similarly, Ann’s first order belief is about the cost parameter of Bob, and

we use β to represent it as before. Ann’s second order belief is a distribution

δ(.) over the first order belief of Bob. Finally, Ann’s third order belief is a

distribution η(.) over the second order belief of Ann.

As before, Bob’s Mirage strategy can be obtained by solving the following

system:

bkB = arg max
q

q
(
m− n

(
q + αaB1 + (1− α)aB2

)
− kB

)
,

aBkA = arg max
q

q
(
m− n(q + γ̄bBA1 + (1− γ̄)bBA2 )− kA

)
,

bBAkB = arg max
q

q
(
m− n

(
q + ζ̄aB1 + (1− ζ̄)aB2

)
− kB

)
,

where γ̄ and ζ̄ are obtained from γ and ζ by integrating them out, respectively.

21In asymmetric case, the player who has higher cost may choose not to produce if the
difference between the cost parameters is sufficiently high. So to have a positive production
for each player we need to have sufficiently close cost parameters.
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This gives us:

bBA1 =
2m− 1

6n
+

1

6n
γ̄ − 1

3n
ζ̄, bBA2 =

m− 2

3n
+

1

6n
γ̄ − 1

3n
ζ̄

aB1 =
2m− 1

6n
− 1

3n
γ̄ +

1

6n
ζ̄, aB2 =

m− 2

3n
− 1

3n
γ̄ +

1

6n
ζ̄

b1 =
2m− 1

6n
+

1

6n
γ̄ − 1

12n
ζ̄ − 1

4n
α, b2 =

m− 2

3n
+

1

6n
γ̄ − 1

12n
ζ̄ − 1

4n
α.

Similarly, Ann’s Mirage strategy can be obtained by solving the following

system:

ak = arg max
q

q
(
m− n

(
q + βbA1 + (1− β)bA2

)
− kA

)
,

bAkB = arg max
q

q
(
m− n

(
q + δ̄aAB1 + (1− δ̄)aAB2

)
− kB

)
,

aABkA = arg max
q

q
(
m− n

(
q + η̄bA1 + (1− η̄)bA2

)
− kA

)
,

where δ̄ and η̄ are obtained from δ and η by integrating them out, respectively.

The solutions of this system, then, yields

aAB1 =
2m− 1

6n
+

1

6n
δ̄ − 1

3n
η̄, aAB2 =

m− 2

3n
+

1

6n
δ̄ − 1

3n
η̄

bA1 =
2m− 1

6n
− 1

3n
δ̄ +

1

6n
η̄, bA2 =

m− 2

3n
− 1

3n
δ̄ +

1

6n
η̄

a1 =
2m− 1

6n
+

1

6n
δ̄ − 1

12n
η̄ − 1

4n
β, a2 =

m− 2

3n
+

1

6n
δ̄ − 1

12n
η̄ − 1

4n
β.

As before, we can infer boundaries for each player. For example, Bob’s

beliefs about Ann’s production for each type are,

aB1 ∈ [
m− 1.5

3n
,
m

3n
] and aB2 ∈ [

m− 3

3n
,
m− 1.5

3n
].

Indeed, these intervals are valid for Ann’s production, hence, we can say that

Bob can distinguish Ann’s type by observing her action. Similar consideration

confirms that Ann can also distinguish Bob’s type by observing her action.
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If we enlarge the set of cost parameters as in the one-sided asymmetric info

case, we obtain:

Proposition 2.2. In the limit of the update mechanism, each player learns the true

cost parameter of the other side.

Note that the proof follows the same steps as in the proof of Proposition 2.1.

Rather than repeating the proof, we give the logic of the result in a geometric

way. Figure 2.1 shows the implication of common knowledge of rationality.

A axis represents the production level for Ann (or the action of Ann) and B

axis represents the production level for Bob. For player i, the best response

curve is represented by BRi. To distinguish different cost parameters for Ann,

we denote her best response curve BRh
A when her cost parameter is low so

that she can be considered as a “high” or an “efficient” type. BRl
A should be

understood in a similar way.

It is a well-known fact22 that common knowledge of rationality implies that

the players will choose only strategies that survive the iterated elimination of

strictly dominated strategies. Therefore, Bob and Ann eliminate any action in

the region I because they are strictly dominated by the monopoly action and

both players know this. Since Bob will not use any action in that region, each

player eliminates actions in the region I ′ since any action in that region would

mean that Ann would think that Bob would pick an action from region I which

contradicts with the common knowledge of rationality. Similarly, each player

eliminates every action of Ann in the region II since every action in that region

is strictly dominated by monopoly outputs for each type. This implies the

elimination of strategies from the region II ′. Note that since strategy spaces

are compact and payoff functions are continuous, then the order of deletion

does not matter (See, Dufwenberg and Stegeman (2002).). As a result, the limit

of iterated elimination of strictly dominated strategies leads us to the rectangle

22See, Battigalli and Bonanno (1999) for a thorough discussion.
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Figure 2.1: Implication of rationality

PQRS. Therefore, Ann and Bob in Mirage equilibrium choose their actions

in this region since rationality is common knowledge by definition of Mirage

equilibrium.23

The update mechanism primarily relies on this information. Consider ac-

tion a for Ann shown in figure 2.2. This action could not be a best response

if Ann had a low cost parameter because this would imply that Ann would

consider b as the action of Bob which contradicts the (common knowledge) ra-

tionality of Bob. Observe that this does not reveal any information about the

true cost parameter or the type of Ann, however, it allows Bob to infer that she

cannot have a low cost parameter or more precisely this action cannot be justi-

23Note that in Mirage equilibrium we take the common knowledge of rationality as granted,
however, many epistemic models use much weaker assumptions than this and investigate
the equilibrium implications of these weaker assumptions. Therefore, constructions of belief
hierarchies in those models contain parametric beliefs and beliefs about rationality. See Dekel
and Siniscalchi (2015) for a recent review of such epistemic models.
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Figure 2.2: Update after observation

fied for best response curve BRh
A. This implies the elimination of that type or

more precisely, elimination of low cost parameter from the set of cost param-

eters. In general, any best response curve which does not justify the observed

action will be eliminated, as well as the cost parameter. By continuing this

elimination process players learn the true cost parameter of their opponent.

Figure 2.3 summarizes the same logic for the two-sided asymmetric case.

PQRS can be obtained by eliminating strictly dominated strategies as a result

of the common knowledge of rationality. Once again, the region we obtain is

order independent. Now suppose Ann and Bob pick actions a and b, respec-

tively. If Ann were using best response curveBRh
A, she would think Bob would

pick b̂. In other words, “high type” Ann would take action a by conjecturing

b̂ as Bob’s action. However, this conjecture contradicts with common knowl-

edge of rationality, hence, Ann’s action a implies Ann cannot be a high type.
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Figure 2.3: Update in two-sided asymmetric case

Similarly, Bob’s action b cannot be justified withBRh
B which requires that Bob’s

conjecture about Ann’s action is â. The update mechanism is again based on

eliminating unjustifiable types for an observed action. We address some im-

portant aspects of this learning and put forward some issues regarding implicit

assumptions for consideration in the next section.

2.6 Discussion

In general, this result tells us that a player can learn eventually the true type(s)

under ME strategy. Moreover, unlike BNE where learning occurs almost im-

mediately, it takes time to learn in ME. Note that this process can always be

used as a rule of thumb even for finitely repeated games. For instance, sup-
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pose that the players played this game for 10 periods, then at the end of the

last period, they could obtain a smaller interval for possible types by using

the elimination described before. So, this process can be used as a heuristic

in different environments. The other point worth emphasizing is that the up-

date mechanism described here is an implication of rationality. Players update

by eliminating types that do not conform to the actions observed. In a sense,

the primary concern of agents is the support, not the distribution itself. This

means the following: Suppose a player starts with a uniform distribution in

the support [1, 2] then after an update, he may obtain a new support while he

may still believe the distribution is a uniform one. Assume, however, the true

distribution of types is a (truncated) normal distribution for the given support.

That is, when an agent is being asked about what is the probability of having

any type k, his reply will be calculated upon uniform distribution, whereas

the true probability of this event should be calculated by using normal distri-

bution.24 In this update mechanism, we cannot talk about learning the true

distribution - in this case, normal distribution - of types.

Our insight into the learning process is based on eliminating “types” that

are not justifying the play of the opponent. Although it is a tedious and non-

innovative method, it has one important advantage: It avoids the unpleasant

process of defining an update mechanism. That is, if we had to construct the

update mechanism with purely probabilistic tools, we would need to be more

explicit about the update mechanism because of the zero probability events. In

the Cournot example discussed above, players’ expectation about the action of

the other player is not realized. So the realized outcome is an unexpected event

i.e., zero probability event. Therefore, a more sophisticated approach would

define the conditional probabilities on measure zero events. Our approach,

even if being simple, allows us to avoid this issue so that without putting any

24Note that the resulting probability may coincide even though distributions are different
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restriction on how this update takes place we can continue our analysis.

The most important aspect of this learning process is that the cost param-

eter is fixed throughout the game. This allows players to safely eliminate cost

parameters that are not justified by observed behavior. If the cost parameter

had a “dynamic nature” i.e., changing every period, then our learning process

would not work at all simply because although some cost parameters would

not justify the past action they may still be realized in future periods. Note

that we do not claim no learning occurs. Perhaps, players try to learn the dis-

tribution of cost parameters, but the learning we described would fail in this

environment.

Another important ingredient of our learning process, although it is not im-

mediate, is the myopic agents. Thus each player cares about the instantaneous

payoff without contemplating the implications of their actions or their oppo-

nent’s actions. For instance, in the one-sided asymmetric information case

given above, Ann never considered behaving differently than her true type.

In a proper repeated game environment in which players discount future pay-

offs, Ann might get a higher payoff to behave differently than her type dictates.

In this case, players could not eliminate types that would not justify actions.

Therefore, it is important to have myopic agents in this result.

Another ingredient of this learning standing in the background, is that the

players know the support of the cost parameter of their opponents. To un-

derstand the importance of this assumption, consider a situation where Bob

contemplates different support from the actual support of the cost parameter

of Ann. When he observes the action there are two possibilities: (i) he cannot

justify this action for any cost parameter with any belief so he has to consider

another support, or (ii) he can justify this action for some cost parameter and

for some beliefs. In case (i) Bob has not learned anything and in case (ii) he

has learned the wrong thing. Therefore, it is important for Bob to know the
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true support. One of the weakest forms of this assumption can be absolute

continuity (See Nyarko (1998)) which in our context implies that Bob assigns

a positive probability to the true cost parameter, not the whole support. We

believe anything weaker than this assumption may not lead to the learning

described here.

One question that might be relevant in this context is the rate of conver-

gence of this learning process for which we have provided an answer. A more

sophisticated approach answering this question would be to invoke a martin-

gale convergence theorem25 and to use a metric such as Boylan (1971). The

problem with this approach is that it requires a probability space which means

an “objective” underlying probability measure. Mirage equilibrium, by def-

inition, excludes this. There might be another way to resolve this issue and

answer this question in a sensible way, but we were not able to find it.

25See Nyarko (1997) for an application of such theorems.
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Appendix

2.A Bayes Nash Equilibrium (BNE)

In this section, we are going to derive Bayes Nash Equilibrium of the Cournot

game described above. Our discussion will be rather loose and we are going

to take Bayes Nash Equilibrium as granted without redefining it.

To use BNE we are going to postulate there is a common prior from which

every player’s beliefs are derived. Let us take Bob’s prior α as the common

prior and assume that it is common knowledge, so that every higher order

belief is putting probability one on α. The following equations define BNE:

b = arg max
q

q (m− n (q + αa1 + (1− α)a2)− 1) ,

a1 = arg max
q

q (m− n(q + b)− 1) ,

a2 = arg max
q

q (m− n(q + b)− 2) ,

Note that in BNE, players expectations about the other players’ strategies

are true in the equilibrium. This is why we do not need any superscript on

strategies b, a1 and a2. The solution of this system yields,

72



b =
m− α

3n
,

a1 =
2m− 3 + α

6n
, a2 =

2m− 6 + α

6n
.

So this tells us that Ann chooses a1 if the value of k = 1. Moreover, Bob is

expecting this outcome when k = 1. The same is true for k = 2. Therefore, Bob

will learn the true type of Ann at the end of the first period. This conclusion is

true even if the set of possible k is uncountable.

2.B Integrating out

In this section, we are going to give details of integrating out expected val-

ues when the attribute set is {1, 3/2, 2}. Since the same operation is trivial for

an attribute set with two elements, our choice of the attribute set with three

elements makes it easier to understand this operation with larger sets. For no-

tational simplicity, we are going to leave arg max operator out of equations,

but it is important to keep in mind that final outcome is going to be maximized

by choosing variable q.
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bBA =

∫
y2

∫
y1

q
(
m− n(q + y1a

B
1 + y2a

B
2 + (1− y1 − y2)aB3 )− 1

)
γ(y1, y2)dy1dy2.

= q

∫
y2

(
(m− 1)γ̂(y2)− n

(
qγ̂(y2) + aB1

∫
y1

y1γ(y1, y2)dy1 + aB2 y2γ̂(y2)

+ aB3 (γ̂(y2)−
∫
y1

y1γ(y1, y2)dy1 − y2γ̂(y2)
))

dy2.

= q
(

(m− 1)

∫
y2

γ̂(y2)dy2 − n
(
q

∫
y2

γ̂(y2)dy2 + aB1

∫
y2

E[Y1 | Y2 = y2]dy2

+ aB2

∫
y2

y2γ̂(y2)dy2 + aB3 (

∫
y2

γ̂(y2)dy2 −
∫
y2

E[Y1 | Y2 = y2]dy2

−
∫
y2

y2γ̂(y2)dy2)
))
.

= q
(

(m− 1)− n
(
q + aB1,AE[E[Y1 | Y2]] + aB2 E[Y2] + aB3 (1− E[E[Y1 | Y2]]− E[Y2])

))
.

= q
(

(m− 1)− n
(
q + aB1 E[Y1] + aB2 E[Y2] + aB3 (1− E[Y1]− E[Y2])

))
.

= q
(

(m− 1)− n
(
q + aB1,Aγ̄1 + aB2 γ̄2 + aB3 (1− γ̄1 − γ̄2)

))
.

= q
(

(m− 1)− n
(
q + aB1 γ̄1 + aB2 γ̄2 + aB3 γ̄3

))

where γ̂(.) is the marginal distribution of y2, E[.] is the expectation operator,

and γ̄i is the expected value of yi with pdf γ(., .)

2.C FOCs

The following is the first order conditions of the mirage system for Bob:

bB =
1

2n
(m− 1− E1(aBk )),

aBk =
m− k − nbBA

2n
,

bBA =
1

2n
(m− 1− E2(aBk )).
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Similarly, we have the following first order conditions for Ann:

ak =
m− nbA − k

2n
,

bA =
(m− E(aABk )− 1)

2n
,

aABk =
m− bA

2n
.
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Chapter 3

A Metric for Partitions

3.1 Introduction

Modelling knowledge with partitions is very common and almost unique in

game theory and information economics. In this construction, each individual

is endowed with a partition of the set of possible states which can be inter-

preted as the knowledge of the players. One interpretation of such models is

that a partition, or in particular the cells of a partition, represents the state of

the mind (see, for example, Zamir (2008)) for the individual. The aim of this

chapter is to offer a metric that measures partitions in the light of this inter-

pretation. The need for this metric stems from the need to measure distances

when there is no well-defined probability space for the underlying type space

such as Mirage equilibrium. As discussed in earlier chapters, players in Mi-

rage equilibrium uses subjective belief hierarchies and even if there is a true

probability space in which these hierarchies can be embedded, players may

not be aware of it due to the lack of common knowledge. All the metrics used

in the literature require a true probability space since they rely on a unique

probability measure to define a distance function. Our construction does not

rely on probabilistic tools, but counting or combinatorial tools. Therefore it

does not require a true probability measure, but as any combinatorial method,
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it induces a probability over the set of possible states. According to the pro-

posed metric the distance between two partitions is the weighted average of

the non-empty symmetric differences of each cell that contain each element of

the set by excluding double counting.

Although it is possible to use this metric as an index for other purposes

such as cluster analysis, categorization theory or even data mining given the

common usage of partitions in these areas (see Wagner and Wagner (2007) for a

thorough coverage), our primary motivation is to measure partitions for game

theory or decision theory.

The rest of the paper is organized in the following way: the next section

gives the relevant notations and definitions and introduces the proposed met-

ric. After that, we compare some important distance measures defined in the

literature with the proposed one through examples.

3.2 Notations and the metric

Let Ω be a finite set with n members. We say that a collection P = {P (ω)}ω∈Ω

of sets is a partition of Ω, and call the P (ω) the atoms of the partition, if

P (ω) ∩ P (ω′) = ∅ for ω 6= ω′, and
⋃
ω

P (ω) = Ω.

In the interpretation, Ω is the set of all possible states ω that is relevant to the

situation at hand. When some state ω0 is realized a player’s knowledge will

be represented by some atom that contains ω0. That is, the player knows that

one element of P (w0) is the true state but he does not know which one. Any

member ω in P (ω0) is indistinguishable from each other from the viewpoint of

the player.

The idea of metric we propose is to give a weight to how far each element

is placed in different partitions - we exclude the double counting - and to sum
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these weights as the distance between partitions. Let P be the set of all par-

titions of Ω. Consider two arbitrary members P and Q of this set. We can

interpret each partition as the prior information of each player. Define the

symmetric difference of two arbitrary sets A and B, denoted by A∆B, as

A∆B := (A \B) ∪ (B \ A).

Now consider the collection S of symmetric differences given by,

S := {P (ωi)∆Q(ωi) 6= ∅ : P (ωi) ∈ P , Q(ωi) ∈ Q, i = 1, . . . , n} = {S(ωj)}j

The collection S contains symmetric differences of atoms in each partition that

contain ω. Note that we may have

P (ωi)∆Q(ωi) = P (ωj)∆Q(ωj) for some i 6= j.

To make this point explicit consider the partitions given in Example 3.1 below.

It is not difficult to see that

P (ω2)∆Q(ω2) = P (ω3)∆Q(ω3) = {ω1}.

Note that S contains only one of those such repetitive sets and this precludes

double counting.

Definition 3.1. Define ρ : P ×P → R

ρ(P ,Q) :=
∑

S(ω)∈S

r(
n

s

)

where | S(ω) |= s, r is the total number of sets in S with cardinality s, and ri is the

cardinality of sets in S with i elements.
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Given two partitions P and Q, this definition takes the collection S of

nonempty symmetric differences that contain each member ω of Ω (note that

each member S(ω) of the collection S is a set). In this collection S, we count

the number of sets with the same cardinality s, given by r. Then we weight

this number r with
(
n

s

)
i.e., number of s-subsets. In a sense, we sum the prob-

ability of getting an s-subset in the collection S for different values of s that

symmetric differences produce.

To make sense out of the definition consider the following example.

Example 3.1. Let Ω = {ω1, ω2, ω3} with two partitions P = {{ω1, ω3}, {ω2}} and

Q = {{ω1, ω2}, {ω3}}. Then S = {S(ω1), S(ω2), S(ω3)} = {{ω2, ω3}, {ω1}}. To

find the distance consider first the set {ω2, ω3} in S which has the cardinality 2

and it is the only such set. Thus r = 1 , s = 2 and
(

3

2

)
= 3. Similarly, for the

set {ω1}we have r = 1, s = 1 and
(

3

1

)
= 3. The distance ρ(P ,Q) is then 2/3.

Proposition 3.1. The function ρ is a metric on the set P of all partitions for a given

Ω.

Proof. (1) ρ(P ,Q) = 0 implies r = 0 for each set S(ω) in S. In other words col-

lection of symmetric differences contain empty sets. That is P (ω)∆Q(ω) =

∅which implies P (ω) = Q(ω). Hence every ω is assigned in the same atoms

in both P and Q. Thus, P = Q.

Conversely, it is immediate to conclude that P = Q implies ρ(P ,Q) = 0.

(2) Since symmetric differences in sets by definition satisfy symmetry, we have

ρ(P ,Q) = ρ(Q,P).

(3) To finish the proof we need to show for arbitrary P ,Q andR

ρ(P ,Q) ≤ ρ(P ,R) + ρ(R,Q)
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We prove the claim by induction on | Ω |= n. The claim is trivial when

n = 1.

Suppose now the claim is true for some n i.e., | Ω |= n. Consider now the

set Ω ∪ {ω0} so that the cardinality is n + 1. Consider arbitrary partitions

P , Q and R of Ω ∪ {ω0}. Note that by excluding ω0 from the atom P (ω0)

of P that contains it, we obtain a partition P ′ of Ω. Similarly we obtain

partitions Q′, R′ from Q and R by excluding ω0, respectively. In other

words, partitions P , Q and R can be obtained, by including ω0 into the

appropriate atom, from the partitions P ′,Q′ andR′ of Ω, respectively.

There are two possibilities for adding a new element to a given partition. It

can either be added as a singleton - the atom contains only the new element

- or it can be included into one of the existing atoms. With the abuse of

notation, let us denote the former case X ⊕ x and the latter case X ] x for

an arbitrary partition X and an arbitrary new element x.

(3.1) Suppose we obtain each partition by adding ω0 separately. That is

P := P ′ ⊕ ω0, Q := Q′ ⊕ ω0, R := R′ ⊕ ω0

So by induction hypothesis we have

ρ(P ′,Q′) ≤ ρ(P ′,R′) + ρ(R′,Q′).

Then since {S(ω0)} = ∅ in every collection of symmetric differences,

and the other {S(ω)} would not change, the above equation implies

that

ρ(P ,Q) ≤ ρ(P ,R) + ρ(R,Q).

(3.2) Consider now ω0 is included one of the existing atoms of the given

partitions, say P ′. That is
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P := P ′ ] ω0, Q := Q′ ⊕ ω0, R := R′ ⊕ ω0

Now suppose P ′(ωi) is the atom that contains ω0 in P . So the only

difference between P ′ and P is that the atom P ′(ωi) includes ω0 in ad-

dition to other elements. Then symmetric difference P ′(ωi)∆Q′(ωi) =

S(ωi) will include ω0 which causes change in the left-hand side of the

triangle inequality. Also, S(ω0) may cause a change. However there

will be identical changes in left hand side of the triangle inequality

through a change in P ′(ωi)∆R
′(ωi)S̃(ωi). This is also true for S̃(ω0).

Finally, the last component will not change because Q andR contain

ω0 as an atom so symmetric differences will not change and Ŝ(ω0) = ∅.

As in the previous case the conclusion follows.

Note that with a similar argument we can show similar cases where

ω0 is added two partitions as a singleton and added into the remain-

ing one as part of the existing atoms. Formally, by the symmetry of

arguments, this case implies the same conclusion for the following

cases.

P := P ′ ⊕ ω0, Q := Q′ ] ω0, R := R′ ⊕ ω0,

P := P ′ ⊕ ω0, Q := Q′ ⊕ ω0, R := R′ ] ω0.

(3.3) Consider now another case where ω0 is included only in one partition,

say P , as a separate atom. That is

P := P ′ ⊕ ω0, Q := Q′ ] ω0, R := R′ ] ω0.

Now suppose Q′(ωi) and R′(ωj) are the atoms including ω0 in Q and

R, respectively. This will cause a change in P ′(ωi)∆Q
′(ωi) = S(ωi)
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and symmetric differences of every component in these atoms. So

left-hand side of the triangle inequality will change, however, sym-

metrical changes will happen on the right-hand side because of sym-

metrical differences of atoms of P and R. If we include symmetric

differences of atoms of Q andR the result follows.

(3.4) Note that the last case in which ω0 added to existing atoms of P ′, Q′

andR′ follows the same logic with the initial case where ω0 added as

a separate atom to each of the partitions.

The list covers all possible cases and the claim follows by induction.

The logic of the above proof is that adding a new element to create new

partitions would create similar effects on each side of the inequality. The only

change then is to have one more element in the denominator of the formula,

but this means only rescaling without effecting the direction of the inequality.

3.3 Comparison with other metrics

The distance measures for partitions proposed in the literature are mostly dis-

tance indices which can be categorized into three groups1: indices constructed

with a combinatoric approach, indices constructed with informational approach

and metrics that rely on tools from probability (or, measure theoretic metrics).

Roughly speaking, the indices in the former group have been constructed by

counting the number of pairs that agree in different partitions such as Mirkin

and Chernyi (1970) and William (1971) or by counting the number of pairs that

disagree in different partitions such as Arabie and Boorman (1973). Note that

indices constructed by counting the agreed pairs such as the Rand index are

not a metric since the distance between two identical partitions is 1 according

1Note that this classification is not common nor uniform.
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to them. Counting disagreed pairs, however, solves this problem and estab-

lishes a metric.

The construction of the indices in the second group is based on Shannon

(1948) entropy such as De Mántaras (1991) and Simovici and Jaroszewicz (2003).

The logic behind these indices is to make a random variable by using the par-

tition structure to employ entropy which is introduced for a random variable

distribution. The desired random variable is obtained by taking the ratio of

cardinality of each atom to the cardinality of the original set. That is given a

finite set Ω with cardinality | Ω |= n, consider the partition P = {Pi}ki=1 where

Pi is an atom of P . Assuming that all elements of Ω have the same probability

of being picked, and choosing an element ω of Ω at random, the probability

that this element is in partition Pi ∈ P is pi = |Pi|
n

. Then the entropy associated

with partition P is

H(P) = −
k∑
i=1

pi log2 pi.

Moreover, given another partition Q = {Qj}lj=1 of Ω, where Qj is an atom of

Q, the mutual information between P and Q is defined as

I(P ,Q) =
k∑
i=1

l∑
j=1

pi,j log2

pi,j
pipj

where pi,j =
|Pi∩Qj |

n
. The entropy based metrics mentioned before use this

notion of mutual information to define metrics (see Wagner and Wagner (2007)

for a thorough discussion of entropy based metrics).

The metrics in the last group are more common in economic theory. One

of the earliest forms of such (semi) metric is due to Boylan (1971). The (semi)

metric is defined on sub-sigma-algebras of a given measure space and it al-

lows to measure the differences between information structures. Allen (1983),

Stinchcombe (1990) and Monderer and Samet (1996) use this metric to mea-

sure informational differences and to topologize abstract space of information.
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Recently, Mohlin (2015) proposed another metric for the same purpose. This

metric weights symmetric differences of each cell with their intersection.

We now compare our metric with the ones in the last group. The main

reason for this is that the metrics in the last group have wide usage in eco-

nomic theory or are proposed for economic theory in mind. The metrics in the

other groups are designed for cluster analysis or data mining purposes and

measuring distances with these metrics generally produce counter-intuitive

results in the context of game theory or decision theory. Also, metric proposed

by Mohlin (2015) have a very close relation with the metrics in the first two

groups. So assessing one of them would give enough idea about the implica-

tions of the other.

Before proceeding let us first give the definitions of these two metrics.

Definition 3.2 (Boylan (1971)). Let (Ω,B, µ) be a finite measure space. The function

ρb given by

ρb(P ,Q) := sup
P∈P

inf
Q∈Q

µ(P∆Q) + sup
Q∈Q

inf
P∈P

µ(P∆Q)

defined on sub-sigma-algebras of B is a semi-metric.

Definition 3.3 (Mohlin (2015)). Let (Ω,B, µ) be a finite measure space. The function

ρm given by

ρm(P ,Q) :=
∑

P (ω)∈P

∑
Q(ω)∈Q

µ
(
P (ω) ∩ µ(Q(ω))

)
µ
(
P (ω)∆Q(ω)

)
defined on P is a metric.

In the following example consider µ as the counting measure i.e., the cardi-

nality of each set at hand.

Example 3.2. Consider again Ω = {ω1, ω2, ω3}with the partitionsP = {{ω1, ω3}, {ω2}},

Q = {{ω1}, {ω2}, {ω3}} and R = {{ω1, ω2, ω3}}. Intuitively, moving from P to

Q and toR should have the same distance because of the symmetry of the sit-

uation. That is, moving from P toQmeans distinguishing one more thing and
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moving fromP toQmeans mixing up one more thing so that the distance from

moving P to Q and toR should be the same. The following table summarizes

the distance for each of the metrics.

Metric P ,Q P ,R R,Q
ρ 2/3 2/3 1
ρb 2 3 4
ρm 2 4 2

Table 3.1: Distances according to different metrics

Observe that the equality ρm(P ,Q) = ρm(R,Q) is highly counterintuitive.

Note that the results above can be checked for different partitions and dif-

ferent finite sets as well. The reason that we propose our metric is to measure

informational differences as intuitively as possible. Also, our measure offers a

unique way of measurement. The other two metrics are sensitive to the mea-

sure µ. It is also difficult to make sense of these metrics if we allow two differ-

ent measures µ and µ′ for different individuals. So in that sense, it is difficult

to use these metrics with heterogeneous or multiple priors.

To make some of the arguments in the previous paragraph consider the

following situation. A planner wants to get certain action A from a group of

agents and to achieve that, he can allocate knowledge with some cost function

c(.). Without being technical, we assume that cost technology should satisfy

c′(.) > 0 so that providing (more) knowledge should be (more) costly. For

simplicity, suppose that agents will do A so long as all the states are distin-

guishable i.e., each atom is a singleton. Formally, let Ω = {ω1, ω2, ω3} be the

states of the world and player iwill do action A if and only if his knowledge Pi

is given by Pi = {{ω1}, {ω2}, {ω3}}. Furthermore, suppose that initially agents

have no knowledge except the states of the world so that their knowledge is

Si = {{ω1, ω2, ω3}} for i = 1, 2. Assume that the initial beliefs are such that

µ(Ω) = 1 and µ(A) = 0 for any A ⊂ Ω.2

2Any non-additive probability measure will do the job.
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If we want to measure this cost with the metrics discussed above, that is the

cost of information is equal to the distance between two partitions Si and Pi,

we can see that both Boylan metric and the metric proposed by Mohlin (2015)

yield 0. This means that there is no cost (!) of providing information for the

principal. In this setting our metric measures this distance 1 which at least

captures the trade-off between incentive and cost.

3.4 Conclusion

This paper proposed a metric for partitions. Although it can be useful in data

mining and clustering analysis, our hope is that it can be applied primarily to

game theoretic and decision theoretic situations. One possible set-up where

this metric is useful would be information design problems in which a princi-

pal sets up an information structure to obtain a certain outcome. If the infor-

mation design is a costly task, then the metric proposed in this paper can be

used to measure the cost of alternative designs.
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