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Abstract

In Chapter 1 I study the iterative strategy elimination mechanisms for normal

form games. The literature is mostly clustered around the order of elimination.

The conventional elimination also requires more strict knowledge assumptions if

the elimination is iterative. I define an elimination process which requires weaker

rationality. I establish some preliminary results suggesting that my mechanism is

order independent whenever iterative elimination of weakly dominated strategies

(IEWDS) is so. I also specify conditions under which the “undercutting problem”

occurs. Comparison of other elimination mechanisms in the literature (Iterated

Weak Strategy Elimination, Iterated Strict Strategy Elimination, Generalized

Strategy Eliminability Criterion, RBEU, Dekel-Fudenberg Procedure, Asheim-

Dufwenberg Procedure) and mine is also studied to some extent. In Chapter 2

I study the axiomatic characterization of a well-known bankruptcy rule: Pro-

portional Division (PROP). The rule allocates shares proportional to agents’

claims and hence, is intuitive according to many authors. I give supporting

evidence to this opinion by first defining a new type of consistency requirement,

i.e. union−consistency and showing that PROP is the only rule that satisfies

anonymity, continuity and union−consistency. Note that anonymity and conti-

nuity are very general requirements and satisfied by almost all the rules that have

been studied in this literature. Thus, I prove that we can choose a unique rule

among them by only requiring union−consistency. Then, I define a bankruptcy

operator and give some intuition on it. A bankruptcy operator is a mapping from
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the set of bankruptcy operators to itself. I prove that any rule will converge to

PROP under this operator as the claims increase. I show nice characteristics of

the operator some of which are related to PROP. I also give a definition for con-

tinuity of an operator. In Chapter 3 investigate risk-averse investors’ behaviour

towards a risky firm. In order to find Pareto Optimal allocations regarding a joint

venture, I employ a 2-stage game, first stage of which involves a social-planner

committing to an ex-post bankruptcy rule. A bankruptcy rule is a set of sug-

gestions for solving each possible bankruptcy problem. A bankruptcy problem

occurs when there is not enough endowment to allocate to the agents each of

whom has a claim on it. I devise the game-theoretic approach posed in Kıbrıs

and Kıbrıs (2013) and extend it further. In fact, that paper considers a compar-

ison among 4 renowned bankruptcy rules whereas mine do not restrict attention

to any particular rule but rather aim to find a Pareto Optimal(PO) one. I start

with 2 agent case in order to give some insight to the reader and then, generalise

the results to an arbitrary number of investors. I find socially desirable (PO)

allocations and show that the same can be achieved through financial markets by

the help of some well-known results.
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Chapter 1

Iterative Elimination with Recall

1.1 Motivation and Literature Review

As is well known, the most widely studied and probably the most important is-

sue in game theory is that of making predictions about outcomes of games or at

least making predictions about payoffs that might be obtained, to the extent that

the predictions about the outcomes allow. Broadly speaking, one can consider

two main approaches used in the literature regarding this endeavor. The first

approach, which is also widely used in other disciplines such as evolutionary bi-

ology, computer science and political science, involves the well-known concept of

”equilibrium”, which prescribes strategy profiles that might emerge as outcomes.

The second approach are iterative methods in which unanticipated strategies are

removed from consideration. Such methods focus on which strategies cannot be

played rather than which can be played. In both approaches, the state of knowl-

edge the players are in and their ability to use reason and deduce from others’

reasonings, play an important role. There is, however, a significant difference

between the two approaches in terms of how they use internally consistent belief

systems. Nash equilibrium assumes certain restrictions on agents’ expectations

and argues that agents will expect others to play equilibrium strategies in order

to justify the outcomes it suggests. By contrast, iterative methods are concerned
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with making predictions using rationality alone. Bernheim (1984) says that

”. . . the notion of an equilibrium has little intrinsic appeal within a strate-
gic context. When an agent reaches a decision in ignorance of the strategies
adopted by other players, rationality consists of making a choice which is
justifiable by an internally consistent system of beliefs, rather than one
which is optimal, post hoc. This point of view is not original; indeed, most
serious justifications of the Nash hypothesis embrace such an approach,
arguing that agents will expect the game to yield a Nash outcome, and
consequently will choose their equilibrium strategies. Nevertheless, when
we think in terms of maximizing utility subject to expectations rather than
realizations, it becomes clear that the Nash hypothesis, far from being a
consequence of rationality, arises from certain restrictions on agents’ ex-
pectations which may or may not be plausible, depending upon the game
being played. We are then quite naturally led to ask: are there any restric-
tions of individuals’ expectations (and hence choices) which are required
by rationality alone, rather than by (subjective) plausibility?”

The most common assumption is that the players use a common criterion

when throwing strategies out, and that this criterion is common knowledge. Strict

dominance and weak dominance are at the core of such possible criteria. Although

the term ”dominance solvability” is coined by Moulin (1979), the tradition of

using such criteria dates back to Luce and Raiffa (1957), and is also used as early

as Farquharson (1969) to study voting schemes.

Using such criteria for eliminating strategies and assuming common knowl-

edge may lead to further eliminations as each player will also take into account

which strategies her opponents will eliminate, and as a consequence which strate-

gies of her own will become ”eligible” for elimination. However, the players may

iterate different sequences of reasoning and draw conclusions that do not agree

with each other. Nevertheless, it is commonly known that iterated elimination

of strictly dominated strategies (IESDS) results in a unique set of strategies in a

finite normal form game. Moreover, Moulin (1984) shows that the same applies

to Cournot duopoly, i.e., only the Nash equilibrium remains in a Cournot game

after sequential elimination of different levels of output. In addition, Dufwenberg

and Stegeman (2002) prove that IESDS may be an order-dependent procedure
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when strategy spaces larger than finite sets are considered, and that it may gen-

erate spurious Nash equilibria. They also establish that if the strategy spaces are

compact in Hausdorff spaces and the payoff functions are upper semi-continuous,

IEWDS succeeds in yielding a prediction, whereas it is not the case in most of

the larger classes of games. They prove an order-independence result for IESDS

under such a class of games. Additionally, they establish that when the players

have well-defined best-response correspondences, IESDS preserves Nash equilib-

ria. Gilboa et al. (1990) establish sufficient conditions for order-independence

for various types of eliminations and show that IESDS satisfy them in finite

normal-form games.

On the other hand, the conditions in Gilboa et al. (1990) are not satisfied by

iterative elimination of weakly dominated strategies (IEWDS). This is why things

are not as straightforward when it comes to IEWDS as the order-independence

problem persists even if we restrict attention to finite normal-form games. Be-

sides, there has been a long discussion on whether the knowledge of not playing

weakly dominated strategies automatically leads to IEWDS. Samuelson (1992)

argues that the answer to this question is “no”. He proves that common knowl-

edge does not guarantee order-independence, nor does it guarantee a solution to

the players. Hillas and Samet (2014b) write:

”Despite the awareness of the problem, no suggestion has been made how
to fix the process of iterated elimination of weakly dominated strategies in
order to capture common knowledge of weak dominance rationality, due to
the lack of formalization of weak dominance rationality”.

They show that when it is common knowledge that the players do not play

weakly dominated strategies, they must play profiles that survive flaws of the

weakly dominated strategies process, which is described by Stalnaker (1994).

Hillas and Samet (2014a) establish weak/strong non-probabilistic correlated equi-

librium which suggests typically a collection of profiles as it can be perceived in the

fashion of correlated equilibrium defined in Aumann (1974).Aumann (1987)em-

9



ploys common knowledge of Bayesian rationality and assumes that beliefs are

derived from a common prior. Unlike his paper, Hillas and Samet (2014a) use

weak/strong rationality. A player is weakly rational if she does not play strictly

dominated strategies, and strongly rational if she does not play weakly dominated

strategies.

Besides defining the concept of dominance solvability, Moulin (1979) also uses

it to show that some important classes of voting games are dominance solvable.

A game is said to be dominance solvable if all outcomes obtained by apply-

ing IEWDS yield the same payoff profile. Mariotti (2000) defines ”maximum

games” and shows that they are dominance solvable. He also establishes that

an important subclass of such games is dominance solvable on the unique Pareto

dominant outcome. Ewerhart (2002) proves that any 2-person strictly competi-

tive game with n outcomes is solvable in (n − 1) stages of IEWDS. Kukushkin

(2012) studies dominance solvability and best-response dominance solvability in

finite games. Börgers and Janssen (1995) establish a condition which is necessary

and sufficient for a Cournot game to be dominance solvable.

The reason why common knowledge of players’ rationality does not directly

justify IEWDS, is that the principle of rationality is not fully applied. In other

words, the strategies that were weakly dominated in some stage of elimination,

may become weakly undominated later on. There are numerous solutions offered

in order to deal with this issue. One such solution is the reasoning based expected

utility procedure (RBEU), suggested by Cubitt and Sugden (2011). RBEU comes

to a halt, producing a trinary partition of strategies, and this provides a partial

answer to the question of order-independence and full employment of common

rationality. Unlike many other procedures, RBEU generates a trinary partition

as there remains a category of strategies about which the mechanism does not

make any definite assertions. Nevertheless, it provides a reasoning procedure

which removes mutually inconsistent conclusions that may be held by different
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players.

An alternative approach is chosen by Börgers (1994) by replacing common

knowledge of rationality with ”approximate common knowledge” which is dis-

cussed by Monderer and Samet (1989) and Stinchcombe (1988). Using this ap-

proach, he justifies the procedure introduced by Dekel and Fudenberg (1990).The

Dekel and Fudenberg procedure utilises maximal elimination of weakly dominated

strategies at the first stage, and then continues with IESDS.Cheng and Wellman

(2007) study a modified version of IEWDS. They weaken the weak dominance

condition and allow a more aggressive pruning of strategies, and also show some

important implications of this technique regarding the equilibria that survive it-

erated elimination. As with many other papers in the literature, they consider

elimination by mixed strategies but impose a condition which does not permit

a strategy si to be eliminated by a mixture that also includes si. They define

δ−dominance such that a mixed strategy σi can eliminate a pure strategy si al-

though it yields payoffs lower by δ against some opponent profiles. In some sense,

σi can be said to approximately weakly dominate si. They also establish that the

equilibria of a game obtained by iteratively eliminating δ−dominated strategies

will be approximate equilibria of the original game. Unfortunately, their proce-

dure is order-dependent, and the approximate equilibria that survive depend on

the order of elimination as well.

The closest procedure to ours in the literature is Asheim and Dufwenberg

(2003).They define fully permissible strategy sets using an algorithm that elimi-

nates subsets of the entire strategy set. In the procedure they establish, players

treat sets of strategies as choice sets. Their work relies on the assumption that

players hold a common belief that each player prefers si to ti if and only if si

weakly dominates ti on the set of the opponent’s strategies, or on the union of

choice sets that are deemed possible for the opponent. This assumption con-

structs a link between the strategies that survive up to some stage of elimination
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and the entire set. Notice that in a given stage, a strategy which is not weakly

dominated on the set of the opponent’s strategies that also survive until that

stage, may be eliminated due to being weakly dominated when the entire set is

considered. In the present paper, we show that such an ad hoc assumption is not

necessary in an important class of games. That is, once this condition on choice

sets is removed, the Asheim and Dufwenberg procedure produces the same results

as ours. However, while they prove their findings for the 2-player case only, we

allow for an arbitrary number of players. In other words, we show that EWR is

well defined in TDI games and produces the same admissible set of strategies as

IEWDS.

It is noteworthy that although many of the papers above consider elimination

by mixed strategies, Marx and Swinkels (1997), which is the results-wise closest

paper to ours, also considers elimination by pure strategies alone. The following

example demonstrates that allowing elimination by mixtures may have an effect

on which strategies should be eliminated.

Example 1.

U M D

L ., 10 ., 0 ., 0

R ., 0 ., 4 ., 10

In the example above, although M is not weakly dominated by either U or

D, it is so by the mixture (U, 0.5;D, 0.5) where both U and D are played with

probability 0.5. We also know that if a pure strategy si yields a higher payoff than

a mixed strategy σi against some mixed opponent profile σ−i, then σ−i assigns

positive probability to a pure strategy sj against which si generates a higher

payoff than σi. That is why weak domination against mixtures does not increase

the chance of a strategy being recalled, an operation we define in the following

section. However, as the effect of deletion of an opponent’s strategy on one’s

own strategies is uncertain, we are far from making any statements on whether

allowing mixtures will make our procedure stronger or not.
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1.2 Model

Let I = {1, 2, ..., n} be the set of players. A typical strategy of player i is denoted

by si. Let Si be the finite set of strategies that are available to player i. A strategy

profile is a vector which is an ordered collection of strategies denoted by s =

(s1, s2, ..., sn) whose ith component shows si of i. S = ×i∈ISi is the set of strategy

profiles. πi : S → R is the payoff function of player i. The structure of the game is

common knowledge and each player is assumed to be rational. Furthermore, we

are interested in games where rationality of agents is also common knowledge(so

that iterative reasoning applies). Π = (π1, π2, ..., πn) is the payoff function. A

finite normal-form game is an ordered tuple Γ = (I, S,Π).

By s−i, π−i we will denote the strategy profile and payoff functions of the oppo-

nents’ of player i, respectively. S−i = ×j 6=iSj and Π−i = (π1, π2, ...πi−1, πi+1, ..., πn)

will denote the set of strategy profiles and payoff functions of i’s opponents, re-

spectively. Let Φ =
⋃
i∈I Si and W ⊆ Φ. W is said to be a restriction of Φ if

it includes at least one strategy of each player, i.e., W ∩ Si 6= ∅ for each i ∈ I.

The strategies in a given restriction W of Φ that belong to player i are denoted

by Wi = W ∩ Si. The set of strategy profiles that can be constructed by using

strategies in a restriction W are given by Sw = ×i∈IWi, with a typical element

represented by sw ∈ Sw. We will denote by swi ∈ Wi player i’s strategy in sw.

We need to make the distinction between W and s, as W might include more

than one strategy of any agent and it does not pair up a player’s strategies with

the strategies of her opponents.

Definition 1. i) For any ti, si ∈ Si, ti strictly dominates si on W−i, if we have

πi(ti, s
w
−i) > πi(si, s

w
−i) for all sw−i ∈ Sw−i..

ii) For any ti, si ∈ Si, ti weakly dominates si on W−i, if we have πi(ti, s
w
−i) ≥

πi(si, s
w
−i) for all sw−i ∈ Sw−i and πi(ti, z−i) > πi(si, z−i) for some z−i ∈ Swi .

The exercise of eliminating weakly dominated strategies is performed at the
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thought level and does not involve any commitment. It is merely a process of

reasoning. Therefore, the players are not bound by the remaining strategies but

rather benefit from not playing them as a consequence of their rationality. Once

the players eliminate weakly dominated strategies, they face a similar situation:

A new game possibly comprising strategies which became weakly dominated after

the first stage of elimination. It is natural to expect the other players to follow a

similar approach. Thus, the same reasoning will apply iteratively until no weakly

dominated strategy remains. As there is more than one path of elimination, in

order for the players to reach a final set of surviving strategies, some coherency

among the reasoning of the players is required. One may argue that in order to

further proceed with the iterative elimination, a player needs to be certain about

which strategies are deleted in the previous stages by his opponents so that he

can adequately choose strategies to delete at that stage. Although there might

be more than one path of elimination and the player cannot know which one to

follow, she can work out the resulting ”reduced game” of each path and still act

if all paths lead to the survival of the same strategies. If she knows that it is the

unique reduced game regardless of the elimination path followed and that other

players work it out too, and others also know that each player works out the same

outcome and so on, the deletion occurs just as it does when there is a single path.

Hence, what matters is the reduced game. With regard to this point, Gretlein

(1983) proves order independence of elimination paths for games where players

have strict preferences over the outcomes. In such games, given her opponents’

strategy vector, a player can be indifferent between two strategies only if both

result in the same outcome. Rochet (1980) identifies a class of games which also

satisfy order independence, namely, any finite normal form game with a payoff

matrix that satisfies the following condition:
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πi(s) = πi(t) =⇒ πj(s) = πj(t) for all i, j ∈ I and for all s, t ∈ S.

Marx and Swinkels (1997)) prove order independence for a wider class of

games, games that satisfy transference of decision maker indifference (TDI).

Definition 2. A normal form game Γ = (I, S,Π) satisfies TDI if we have for all

i,∈ I , ri, ti ∈ Si and s−i ∈ S−i;

πi(ri, s−i) = πi(ti, s−i) =⇒ πj(ri, s−i) = πj(ti, s−i)

Note that Marx and Swinkels (1997) extend their results to mixed strategies

as well.TDI is very similar to non-bossiness condition in social choice. Basically, it

states that, given a strategy profile, no player should be able to change some other

player‘s payoff without changing his own payoff by playing a different strategy.

Marx and Swinkels (1997) provide many examples that satisfy TDI including

patent races, oligopoly with an endogenous number of firms, first price auctions,

public good provision games etc. We take the following definition from Marx and

Swinkels (1997).

Definition 3. Let V be a restriction of Φ and let W be a restriction of V. Then,

W is a reduction of V by weak dominance if W = V \X1, X2, ..., Xm where ∀k,

Xk ⊂ Φ and ∀xi ∈ Xk, ∃zi ∈ V \X1
i , ..., X

k
i such that zi weakly dominates xi on

V \X1
−i, ..., X

k
−i. W is a full reduction of V by weak dominance if W is a reduction

of V by weak dominance and no strategies in Wi are weakly dominated on W−i

for all i ∈ I.

The above definition is saying that a set is a reduction of its superset only if

the difference consists of strategies that were weakly dominated on the superset.

In other words, in order to obtain a reduction of a set, either some of the weakly
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dominated strategies should be removed or the set should remain the same. As

opposed to EWR new strategies cannot be added. Nor can strategies that are

not weakly dominated be eliminated. Note that according to the definition above,

a reduction of Φ is also a reduction of itself. Below is the definition from Hillas

and Samet (2014b) which is equivalent.

Definition 4. A process of iterated elimination of weakly dominated strategies

consists of sequences of strategy profile sets (S0, S1, ..., Sm), where S0 = S, and

for k ≥ 1, Sk = ×iSki where Ski is obtained from Sk−1
i by eliminating some

strategies in the latter set which are weakly dominated relative to Sk−1
−i . In the

sets Smi there are no weakly dominated strategies relative to Sm−i.

Next we define iterated elimination with recall (hereafter EWR).

Definition 5. Let Ψ be a restriction of Φ. A process of EWR is a sequence of

restrictions (Ψ0,Ψ1, ...,Ψm) such that Ψ0 = Ψ and for k ∈ {1, ...,m} ∀ zi ∈

Ψk−1
i \Ψk

i , ∃ xi ∈ Ψk
i where xi weakly dominates zi on Ψk−1

−i , ∀zi ∈ Ψk
i /Ψ

k−1
i , @

xi ∈ Ψk
i ∩ Ψk−1

−i where xi weakly dominates zi on Ψk
−i ∩ Ψk−1

−i and ∀ zi ∈ Ψ\Ψm,

∃ xi ∈ Ψm
i such that xi weakly dominates zi on Ψm

−i. In the sets Ψm
i there are no

weakly dominated strategies relative to Ψm
−i.

Unlike IEWDS, the size of the set does not necessarily shrink at each step.

At each EWR stage, first some of the weakly dominated strategies are eliminated.

Then, before proceeding to the next stage, some of the previously removed strate-

gies are recalled back if they are not weakly dominated with respect to the new

set. Notice that a strategy which became weakly undominated after some strate-

gies are deleted, does not have to be recalled right away. On the other hand,

a strategy which is recalled has to be weakly undominated with respect to the

new set obtained after the deletion. This process goes on until there is no weakly

dominated strategy left to eliminate and no strategy to recall. Regarding the ex-

tent to which rationality and common knowledge of rationality assumptions are
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employed, we can consider EWR as a criticism of iterated elimination of weakly

dominated strategies (hereafter IEWDS). Since a player’s opponents’ strategies

are also going through the process of elimination in IEWDS, some of his strate-

gies which were eliminated at previous stages might become undominated. As

applying rationality does not exclude such strategies from being played, his op-

ponents need to consider them valid while further iterating the elimination. Also

when deleting strategies at following stages, the player knows that his opponents

consider such strategies of his admissible and then, the same kind of iterated logic

follows. Consider the following example:

Example 2.

Player 1

Player 2

a1 a2 a3 a4 a5

b1 5, 0 5, 1 3, 6 4, 1, 2, 6

b2 3, 1 2, 2 3, 7 3, 0 2, 0

The game has 3 Nash Equilibria (NE) and these are (a3, b1), (a3, b2), (a5, b1).

A possible path of IEWDS is eliminating all weakly dominated strategies of a

player at once. Notice that b1 and a3 are weakly dominating strategies for player

1 and player 2, respectively. Therefore, the remaining strategies would be a3

and b1. Another path of elimination might be (b2, a1, a2, a4) with the remaining

strategies {a3, a5, b1} . The latter path retains the NE (a3, b1) but also (a5, b1).

On the other hand, all paths of EWR eliminate (a1, a2, a4, a5) and the strategies

{a3, b1, b2} survive. For instance, we have

Ψ0 = {{b1, b2} ∪ {a1, a2, a3, a4, a5}}

Ψ1 = {{b1} ∪ {a3}}

Ψ2 = {{b1} ∪ {a3, a5}}

Ψ3 = {{b1, b2} ∪ {a3, a5}}

Ψ4 = {{b1, b2} ∪ {a3}}
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or

Ψ0 = {{b1, b2} ∪ {a1, a2, a3, a4, a5}}

Ψ1 = {{b1, b2} ∪ {a3}}

which is more straightforward.

The intuition is that each player has a weakly dominating strategy and against

player 1’s weakly dominating b1, player 2 wishes to play either a3 or a5 against

player 2’s weakly dominating a3, player 1 is indifferent between playing b1 or b2.

However, player 1 is still as well-off by playing either of the 2 strategies given that

player 2 chooses a5(She can play a5 if she anticipates that player 1 will play b1).

Yet, recalling b2 will make a5 weakly dominated again and player 2 will adhere

to a3.

1.2.1 The Undercutting Problem

EWR gets stuck in an infinite cycle when applied to some games. i.e. players

cannot certainly predict which strategies are admissible, which strategies their op-

ponents think are admissible, which strategies their opponents think they think

are admissible and so on ad infinitum. In such games, no matter which succes-

sive stages of reasoning are iterated by the players, it is impossible to reach a

conclusion about which strategies are permitted as a result of perfectly rational

calculation and common knowledge of perfectly rational calculation. Unfortu-

nately, this argument would still be valid even if the players could correlate their

reasonings or commit to the same steps of iterated elimination and recall. The

epistemic foundations of problems which may arise due to a tension between

”common knowledge that the players don’t play weakly dominated strategies”

and admissibility were laid by Samuelson (1992) without asserting a new proce-
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dure of elimination. Cubitt and Sugden (2011) also addresses the same problem

and suggests RBEU. Asheim and Dufwenberg (2003) resolves this issue by im-

posing that no strategy which is weakly dominated in the entire set of strategies

can be permitted in the choice sets that survive iterated steps of elimination. Our

paper shows that without such an additional requirement, EWR is sufficient to

yield the desired result. More formally, we say that an EWR process Ψ ends up in

an infinite cycle if there does not exist a sequence of restrictions (Ψ0,Ψ1, ...,Ψn)

where a strategy is weakly dominated if and only if it does not belong to Ψn.

Consider the example below:

Example 3.

a1 a2

b1 1, 1 1, 0

b2 1,−1 −1, 1

There is a unique IEWDS path which is ;

∆0 = {{b1, b2} ∪ {a1, a2}}

∆1 = {{b1} ∪ {a1, a2}}

∆2 = {{b1} ∪ {a1}}

There is also a unique EWR path which is an infinite sequence of restrictions;

For k = 0, 1, 2, ...



Ψ4k = {{b1, b2} ∪ {a1, a2}}

Ψ4k+1 = {{b1} ∪ {a1, a2}}

Ψ4k+2 = {{b1} ∪ {a1}}

Ψ4k+3 = {{b1, b2} ∪ {a1}}


A presumably fruitful way of attempting to characterize the existence of EWR

and its uniqueness is to tackle these two problems by considering sets of strate-

gies and relations among those sets rather than dealing with the elimination and

recall processes themselves. This is the same approach utilised in Asheim and
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Dufwenberg (2003) with some minor changes. It is also along the lines of ad-

missible sets approach and related common knowledge of rationality assumptions

which are widely discussed in Samuelson (1992), Brandenburger and Friedenberg

(2010), Brandenburger et al. (2008) and Börgers (1994). On that account, the fol-

lowing discussion of ”fixed restrictions’ and some conjectures we formulise might

be helpful and provide some insight on what actually changes in the structure of

surviving strategies and the deleted ones when we switch from IEWDS to EWR.

We will postulate the following conjecture:

Claim 1. Let Θ =
⋃

W⊆Φ and ∀i∈I W∩Si 6=∅
W i.e. Θ is the set of all restrictions.

Let F = Θ � 2Θ be a mapping such that F (W ) =
⋃

1≤j≤n
Fj(W ) where Fi(W ) =

{si ∈ Si : si is not weakly dominated by some ti ∈ Si on W−i}. Then, EWR is

order-independent if and only if for any W , W ‘ ∈ Θ such that F (W ) = W and

F (W ‘) = W ‘, we have either W ⊆ W ‘ or W ‘ ⊆ W.

If F (W ) = W , then we call W a fixed restriction of Φ. Notice that F maps

each restriction W of Φ to a restriction of Φ. The condition required by the claim

above is ruling out cases where we have a fixed restriction which contains all other

fixed restrictions but also there exists two fixed restrictions each of which contains

at least one strategy that is not included in the other. i.e. whenever we have

W,W ‘ ⊆ W“ and W/W ‘ 6= ∅ ∧ W ‘/W 6= ∅ where F (W ) = W, F (W ‘) = W ‘and

F (W“) = W“, EWR is order-dependent. In other words, it requires a sequence

of restrictions (W 1,W 2, ...,W k) where W 1 ⊆ W 2 ⊆ ... ⊆ W k. In a 2-person

game, however, there might be two strategies constituting a Nash-Equilibrium

by yielding extremely large payoffs against each other. Say s1 ≡ max
s∈S1

π1(s, s2)

and s2 ≡ max
s∈s2

π2(s1, s) where s1 and s2 are player 1’s and player 2’s strategies,

respectively. i.e. there is no other strategy of player 1 which gives a payoff higher

than or equal to what s1 gives against s2, and vice versa. In this case, there is no

EWR stage where one of these two strategies can be eliminated. Also, we have

F ({s1, s2}) = {s1, s2}. Still, these two strategies might generate lower payoffs
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than other strategies that are available. Assume we have F (W ) = W where

W = S/ {s1, s2} . Then, no strategy is eliminated and the only EWR reduction

is the set of all strategies.

Instead, we can possibly revise the condition in four ways: First, we can allow

for fixed restrictions whose intersection is empty, yet with an exception of a fixed

restriction which is superset of other fixed restrictions. Second, we can allow for

the first revision above but without such a superset. Third, we can allow for fixed

restrictions W and W ‘ where W/W ‘ 6= ∅ ∧ W ‘/W 6= ∅ and W ∩W ‘ 6= ∅. Fourth,

we can also require a superset as in the first revision and use the third revision

along with this requirement. As we also want to account for redundant strategies,

arguably the best way to construct the conjecture is the fourth. Hence, we will

incorporate the following condition, instead:

”For a given set of fixed restrictions W =
{
W 1,W 2, ...,W k

}
, ∃W h ∈ W with

W h =
⋃

1≤j≤k
W j if and only if EWR is order-independent”.

In addition, an alternative and convenient approach may be taken into con-

sideration by defining a fixed restriction in a different way:

Fixed Restriction. For each i ∈ I,let

Fi(W ) =


sj ∈ Sj : j 6= i and sj is a component of some profile s−i in a

restriction on which the set of weakly undominated strategies

that belong to player i is Wi


Then, W is a fixed restriction of F if for each i ∈ I we have W−i ∈ Fi(W ).

Note that with this definition of a fixed restriction, we are actually considering

fixed points of n different correspondences.

One might easily recognise that according to the former definition of a fixed

restriction, any strategy of player i which is not weakly dominated on W−i is

included in Fi(W ) whereas we have only opponents’ strategies in the set Fi(W )

with respect to the latter definition. In fact, there might exist more than one set
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of opponents’ profiles on which the set of weakly undominated strategies that

belong to player i is the same. Therefore, each Fi(W ) involves a correspondence

which links player i’s strategy subsets to subsets of opponents’ strategies. Notice

that although the two definitions are equivalent, they may require different tech-

nicalities. With the first sort of fixed restriction used in such assertions as ours,

we are more likely to encounter fixed point theorems in the conventional sense.

On the other hand, the second definition promises a rather intricate but possibly

dynamic and cyclical structure which requires different tools to describe and to

deal with.

Conjecture 1. Undercutting problem occurs if and only if @ a restriction W of

Φ such that Fi(W−i) = Wi for all i ∈ I.

Conjecture 2. For any Γ, ∃ a path of IEWDS which gives EWR(Γ) if ∃ a

non-empty restriction W of Φ such that Fi(W−i) = Wi for all i ∈ I.

Theorem 1. Let Γ be a finite normal form game which satisfies TDI. Then,

EWR(Γ) is well-defined. Furthermore, there exists an EWR path that gives the

same reduction as IEWDS.

Proof. Let ∆ = (∆0,∆1, ...,∆m) be a process of IEWDS with maximal elimina-

tion. i.e. Each player removes all weakly dominated strategies at once at a given

stage. The EWR path Ψ we are going to define involves no recall for the first

m stages. i.e. Ψh = ∆h for 0 ≤ h ≤ m. Consider the strategies in ∆m−1/∆m.

Let sj ∈ ∆m−1/∆m be such that it can be recalled at stage (m + 1). As sj is

weakly dominated by some other strategy on ∆m−1 and ∆m ⊂ ∆m−1, ∃tj ∈ ∆m

such that @s−j ∈ ∆m
−j with πj(sj, s−j) > πj(tj, s−j). Then, ∀s−j ∈ ∆m

−j, we have

πj(sj, s−j) = πj(tj, s−j). Define Ψm+1 = ∆m ∪ {sj} . Namely, we recall only a

single strategy, if there is any, and it belongs to the set of strategies eliminated

at the final stage of IEWDS. There is no weakly dominated strategy in Ψm+1 and

we recall another strategy si ∈ ∆m−1/∆m, if there is any where i ∈ I. i.e. i is
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not necessarily a different player, we can have i = j. Since si is also eliminated

at stage m, the argument we used for sj applies to si as well. i.e. ∃ti ∈ ∆m such

that either ∀s−i ∈ ∆m
−i ∪ {sj} , we have πi(si, s−i) = πi(ti, s−i) or ∀s−i ∈ ∆m

−i,

πi(ti, s−i) ≥ πi(si, s−i) and for some s−i ∈ ∆m
−i, πi(ti, s−i) > πi(si, s−i) and for

some s−ij ∈ ∆m
−ij we have πi(si, sj, s−ij) > πi(ti, sj, s−ij)(One of these two condi-

tions should apply to any strategy tj ∈ ∆m with which sj generates equal payoffs

on ∆m
−j. Hence, it should apply to the strategy which eliminated sj at stagem as sj

is recalled back to a restriction with same payoff structure as the IEWDS reduc-

tion) Suppose the latter holds. Then, since s−j, s−ij ∈ ∆m =⇒ s−j, s−ij ∈ ∆m−1,

si wouldn‘t be weakly dominated by ti on ∆m−1
−i . Thus, ∀s−i ∈ ∆m

−i ∪ {sj} ,

πi(si, s−i) = πi(ti, s−i). As a consequence, ∀ s−ij ∈ ∆m
−ij, by TDI we have

πj(tj, ti, s−ij) = πj(sj, ti, s−ij) =⇒ πI(tj, ti, s−ij) = πI(sj, ti, s−ij) (1.1)

πi(sj, ti, s−ij) = πi(sj, si, s−ij) =⇒ πI(sj, ti, s−ij) = πI(sj, si, s−ij) (1.2)

πi(tj, ti, s−ij) = πi(tj, si, s−ij) =⇒ πI(tj, ti, s−ij) = πI(tj, si, s−ij) (1.3)

Hence, by ( 1.1), (2) and (3),

πI(tj, ti, s−ij) = πI(sj, ti, s−ij) = πI(tj, si, s−ij) = πI(sj, si, s−ij).

i.e. the payoff structure of ∆m is preserved by ∆m ∪ {si, sj} as any payoff profile

that can be constructed by the latter set can also be constructed by the for-

mer. In other words, si and sj are redundant to ∆m. Furthermore, there is no

weakly dominated strategy in the set ∆m ∪ {si, sj} . One can easily show that

the same argument applies if we continue to recall strategies one by one from the

set ∆m−1/∆m. If there isn’t any strategy to recall in the set ∆m−1/∆m to begin

with, then we apply the same procedure to ∆m−2/∆m−1. If there is no strategy

to recall in ∆m−2/∆m−1, then we recall a single strategy from ∆m−3/∆m−2 and
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so on.

For 1 < k < m, assume there exists a strategy sj ∈ ∆m−p/∆m−p+1 for some

p > k which is not weakly dominated on Ψk. If for each tj ∈ Ψk, ∃s−j ∈ Ψk
−j

such that πj(sj, s−j) > πj(tj, s−j), then since Ψk ⊂ ∆m−p, @tj ∈ ∆m−p such

that tj weakly dominates sj on ∆m−p and sj ∈ ∆m−p+1. Contradiction. Thus,

∃tj ∈ Ψk such that ∀s−j ∈ Ψk
−j we have πj(tj, s−j) ≥ πj(sj, s−j) and as sj is

not weakly dominated on Ψk, ∀s−j ∈ Ψk
−j, πj(tj, s−j) = πj(sj, s−j). For each

step k of Ψ with k > 1 and after each strategy sj we recall at that stage, we

are going to recall all strategies that are eliminated after sj in ∆ process and

became weakly undominated once sj is recalled. Let si ∈ Si be a such strategy.

Then, ∃ti ∈ Ψk such that ti weakly dominates si on Ψk
−i but ∃s−i ∈ Ψk+1

−i such

that πi(si, s−i) > πi(ti, s−i). Then, sj is a component of s−i as Ψk+1/Ψk = {sj}.

i.e. πi(si, sj, s−ij) > πi(ti, sj, s−ij) for some s−ij ∈ Ψk
−ij. Since πj(ti, sj, s−ij) =

πj(ti, tj, s−ij), by TDI we have πi(ti, sj, s−ij) = πi(ti, tj, s−ij). Again by TDI,

if πj(si, sj, s−ij) = πj(si, tj, s−ij), then πi(si, sj, s−ij) = πi(si, tj, s−ij) Thus,

πi(si, sj, s−ij) > πi(ti, sj, s−ij) =⇒ πi(si, tj, s−ij) > πi(ti, tj, s−ij). As tj and

s−ij are not weakly dominated at the stage where si is weakly dominated by ti,

we have a contradiction. Since si is an arbitrarily chosen among the strategies

eliminated after sj, no strategy eliminated after sj will be recalled after sj. Finally

we run induction on strategies which are eliminated at a given stage and then,

on stages until we get to the first stage of Ψ. Hence, proof is complete.

Next, we evoke the issue of order-independence and show that a result similar

to the one which holds for IEWDS is also true for EWR. In the following theorem,

we abuse the notation for convenience and write that a profile is an element of a

set of strategies whenever it is constructed solely by strategies from that set. A

similar notation is used for opponent strategies etc. All the superscripts are for

stages and all the subscripts are for players.

For the first two parts of the following theorem, we employ the same approach.
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We take two sets one of which is a subset of the other, A ⊂ B where A is

the set obtained by IEWDS(EWR) and B is the set obtained by applying a

correspondence (that will be defined in the proof) on the reduction set obtained

by IEWDS and on the reduction set obtained by EWR for the first and the

second parts’ respectively. We consider an arbitrarily chosen si ∈ B/A and show

that si cannot be eliminated by a strategy from A, B/A or S/B when IEWDS is

applied for the first case and EWR for the second.

Theorem 2. For a finite normal form game Γ that satisfies TDI, we have

EWR(Γ) = IEWDS(Γ) where IEWDS(Γ) is the unique reduction obtained

by applying TDI. i.e. the reduction obtained by EWR and the reduction obtained

by IEWDS are equivalent up to redundant strategies. Therefore, for such games

EWR is also order-independent.

Proof. Let ∆ = (∆0,∆1, ...,∆m) be a sequence of IEWDS restrictions where

∆0 = Φ and ∆m is the IEWDS reduction of Φ. Let Ψ = (Ψ0,Ψ1, ...,Ψn) be a

sequence of EWR restrictions with Ψ0 = Φ and Ψn being an EWR reduction

of Φ. We want to show that for any i ∈ I and si ∈ Si, si ∈ EWR(Γ) ⇐⇒

si ∈ IEWDS(Γ). In order to do so, we are going to show that neither Ψn nor

∆m is a proper subset of the other and it is not the case that both of them

include a strategy which is not an element of the other. i.e. ¬ [Ψn ⊂ ∆m] and

¬ [∆m ⊂ Ψn] and ¬ [Ψn/∆m 6= ∅ and ∆m/Ψn 6= ∅] .Assume ∆m ⊂ Ψn with si ∈

Ψn/∆m. Then, there exists ∆k and ∆k−1 such that si ∈ ∆k−1/∆k and ti ∈ Si

such that ti weakly dominates si on ∆k−1. We also know that if a strategy xi

weakly dominates yi on a superset of ∆m, then @ any opponent profile s−i ∈ ∆m
−i

such that πi(yi, s−i) > πi(xi, s−i) (otherwise, since strategies that construct s−i

are also elements of the superset of ∆m, xi wouldn’t weakly dominate yi). Since

∆m ⊂ ∆k−1 and ti weakly dominates si on ∆k−1, @ any opponent profile s−i ∈ ∆m
−i

such that πi(si, s−i) > πi(ti, s−i) . If ti is eliminated in some interim stage r such

that k − 1 < r < m, then there exists pi ∈ Si such that pi weakly dominates
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ti on ∆r
−i and @ any s−i ∈ ∆m

−i such that πi(ti, s−i) > πi(pi, s−i). Hence, @

s−i ∈ ∆m
−i such that πi(si, s−i) > πi(pi, s−i). If pi is also eliminated at stage

s with r < s < m, then there exists vi such that vi weakly dominates pi on

∆s
−i and for all s−i ∈ ∆m

−i we have πi(vi, s−i) ≥ πi(pi, s−i) and so on. Since we

have a finite number of stages and strategies, there exists zi ∈ ∆m for which @

s−i ∈ ∆m
−i such that πi(si, s−i) > πi(zi, s−i). On the other hand, zi, si ∈ Ψn.i.e.

zi does not weakly dominate si on Ψn
−i. If ∀si ∈ Ψn/∆m and such zi ∈ ∆m, then

∀s−i ∈ Ψn
−i we have πi(si, s−i) = πi(zi, s−i) and the claim is true. Assume not.

Then, there exists s−i ∈ Ψn
−i with at least one strategy sj ∈ Ψn/∆m such that

πi(si, s−i) > πi(zi, s−i). By the same token, sj ∈ Ψn/∆m =⇒ ∃tj ∈ ∆m such

that ∀s−j ∈ ∆m
−j , we have πj(tj, s−j) ≥ πj(sj, s−j). Then, either

@s−j ∈ Ψn \∆m s.t. πj(sj, s−j) > πj(tj, s−j) and

∃s−j ∈ ∆m
−j s.t. π(tj, s−j) > π(sj, s−j) (1.4)

or

∀s−j ∈ Ψn, πj(sj, s−j) = πj(tj, s−j). (1.5)

If (1.4) holds, then sj /∈ Ψn as it would be weakly dominated by tj on Ψn
−j.

A contradiction. If (1.5) holds, by TDI πi(sj, s−j) > πi(tj, s−j), i.e., for all

s−ij ∈ Ψn
−ij,

πj(si, sj, s−ij) = πj(si, tj, s−ij) =⇒ πi(si, sj, s−ij) = πi(si, tj, s−ij) (1.6)

and

πj(ti, sj, s−ij) = πj(ti, tj, s−ij) =⇒ πi(ti, sj, s−ij) = πi(ti, tj, s−ij). (1.7)
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Since πi(si, sj, s−ij) > πi(ti, sj, s−ij) for some s−ij ∈ Ψn
−ij, by (1.6) and (1.7) we

have

πi(si, tj, s−ij) > πi(ti, tj, s−ij) (1.8)

for such s−ij ∈ Ψn
−ij.

Therefore, if for each component sk ∈ Ψn/∆m of s−j (2) holds, then follow-

ing from (1.8), we have πi(si, t−i) > πi(ti, t−i) where t−i ∈ ∆m
−i. A contradic-

tion. Hence, there exists an sj ∈ Ψn/∆m, an s−j with at least one component

from Ψn/∆m and a tj ∈ ∆m such that tj weakly dominates sj on ∆m
−j and

πj(sj, s−j) > πj(tj, s−j) with sj being a component of s−i where πi(si, s−i) >

πi(ti, s−i). Therefore, for each si ∈ Ψn/∆m for which @ti ∈ ∆m such that for

all s−i ∈ Ψn
−i πi(si, s−i) = πi(ti, s−i) there exists a such sj. Denote the set of

such sj by α(si, ti). Let α(si) =
⋃

ti∈∆m
i

α(si, ti). Let α(α(si)) = α2 be the union

of set of strategies obtained by applying α to each strategy in α(si). Consider

the sequence (α(si), α
2(si), ...). Since we have a finite number of strategies, we

have αk(si) ⊆
⋃

1≤j≤k−1

αj(si) for some finite k. Set αk(si) = α. Consider the first

strategy eliminated from α by IEWDS. For each ti ∈ ∆m and si ∈ α, there exists

either

(a) t−i ∈ ∆m
−i such that πi(si, t−i) > πi(ti, t−i) or

(b) s−i ∈ ∆m
−i
⋃
α such that πi(si, s−i) > πi(ti, s−i)

p

Therefore, the first strategy cannot be eliminated by a strategy from ∆m. If

the first strategy is eliminated by a strategy gi ∈ Si/Ψ
n
i , then πi(gi, s−i) ≥

πi(si, s−i) ∀s−i ∈ ∆m
⋃
α. Note that we can construct an opponent profile s−i ∈

∆m
⋃
α since each player has at least one strategy in ∆m(because it is the reduc-

tion obtained by IEWDS). We also know that here exists a strategy ei ∈ Ψn
i

such that ei weakly dominates gi on Ψ−i and for each si ∈ Ψn
i there exists a profile

s−i ∈ Ψn
−i such that πi(si, s−i) > πi(gi, s−i) since otherwise gi would be recalled

back to Ψn. By (a) and (b), there exists s−i ∈ ∆m
⋃
α for each si ∈ α and each
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ti ∈ ∆m such that πi(si, s−i) > πi(ti, s−i). Therefore, for each ti ∈ ∆m there exists

s−i ∈ ∆m
⋃
α such that πi(gi, s−i) > πi(ti, s−i). Moreover, for each yi ∈ Ψn such

that πi(yi, s−i) = πi(ti, s−i) where ti ∈ ∆m and s−i ∈ Ψn
−i (i.e. yi ∈ Ψn/ [∆m

⋃
α]),

we have πi(gi, s−i) > πi(yi, s−i) for some s−i ∈ ∆m
⋃
α. Hence, a strategy which

weakly dominates gi on Ψn
−i cannot be an element of Ψn/ [∆m

⋃
α] or ∆m and

has to be an element of α. Since πi(gi, s−i) ≥ πi(si, s−i) ∀s−i ∈ ∆m
⋃
α and

πi(si, s−i) ≥ πi(gi, s−i) ∀s−i ∈ Ψn
−i, we have πi(gi, s−i) = πi(si, s−i) ∀s−i ∈

∆m
⋃
α. By TDI, πi(gi, s−i) = πi(si, s−i) =⇒ πI(gi, s−i) = πI(si, s−i). i.e.

For each sj ∈ α and ti ∈ ∆m and s−ij ∈ ∆m
⋃
α, we have πj(si, sj, s−ij) >

πj(si, tj, s−ij) =⇒ πj(gi, sj, s−ij) > πj(gi, tj, s−ij). Therefore, α(si) = α(gi) and

α′ = α(s1)
⋃
α(s2)

⋃
...
⋃
α(si−1)

⋃
...
⋃
α(gi)

⋃
α(si+1)

⋃
...
⋃
α(sI) where I also

represents the number of players in the set I. (gi replaces si in ∆m
⋃
α and the

payoff structures are preserved, so are the weak dominance relations).

Then we consider the first strategy eliminated from ∆m
⋃
α′ by IEWDS. By

the same arguments we used for the first strategy eliminated from ∆m
⋃
α, it

cannot be eliminated by a strategy from ∆m. If it’s eliminated by a strategy from

S/Ψn, then we have a new collection α′′ of sets of strategies such that the first

strategy eliminated from ∆m
⋃
α′′ by IEWDS cannot be eliminated by a strategy

from ∆m and so on. Since we have a finite number of strategies, the first strategy

eliminated from one of those collections must be eliminated by a strategy which

is also an element of the same collection. Without loss of generality, say si ∈ α

is eliminated by hi ∈ α. Then, for each s−i ∈ ∆m
⋃
α, πi(hi, s−i) ≥ πi(si, s−i).

If there exists s−i ∈ ∆m
⋃
α such that πi(hi, s−i) > πi(si, s−i), then there exists

s−i ∈ Ψn with at least one component from Ψn/ [∆m
⋃
α] such that πi(si, s−i) >

πi(hi, s−i). For each such component sj ∈ Ψn/ [∆m
⋃
α] , since πj(si, sj, s−ij) =

πj(si, tj, s−ij) for some tj ∈ ∆m, by TDI we have πi(si, sj, s−ij) = πi(si, tj, s−ij)

and πi(hi, sj, s−ij) = πi(hi, tj, s−ij) for all s−ij ∈ Ψn
−ij. Therefore, πi(hi, sj, s−ij) >

πi(si, sj, s−ij) =⇒ πi(hi, tj, s−ij) = πi(si, tj, s−ij). By replacing each such com-
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ponent sj ∈ Ψn/ [∆m
⋃
α] of s−i where πi(si, s−i) > πi(hi, s−i) with tj ∈ ∆m such

that πj(tj, s−j) = πj(sj, s−j) ∀s−j ∈ Ψn
−j, we construct s−i ∈ ∆m

⋃
α such that

πi(si, s−i) > πi(hi, s−i). A contradiction. Hence, πi(si, s−i) = πi(hi, s−i) for all

s−i ∈ ∆m
⋃
α.By TDI, πi(hi, s−i) = πi(si, s−i) =⇒ πI(hi, s−i) = πI(si, s−i).

i.e. For each sj ∈ α and ti ∈ ∆m and s−ij ∈ ∆m
⋃
α, we have πj(si, sj, s−ij) >

πj(si, tj, s−ij) =⇒ πj(hi, sj, s−ij) > πj(hi, tj, s−ij). Therefore, α(si) = α(hi) and

g α′ = α(s1)
⋃
α(s2)

⋃
...
⋃
α(si−1)

⋃
...
⋃
α(hi)

⋃
α(si+1)

⋃
...
⋃
α(sI) where I

also represents the number of players in the set I. (hi replaces si in ∆m
⋃
α and

the payoff structures are preserved, so are the weak dominance relations).

Then, we consider the first strategy eliminated from ∆m
⋃
α′ by IEWDS.

By the same arguments we used for the first strategy eliminated from ∆m
⋃
α,

it cannot be eliminated by a strategy from ∆m. If it’s eliminated by a strategy

from S/Ψn, then we have a new collection α′′ of sets of strategies such that the

first strategy eliminated from ∆m
⋃
α′′ by IEWDS cannot be eliminated by a

strategy from ∆m and so on. Since we have a finite number of strategies, the

first strategy eliminated from one of those collections must be eliminated by a

strategy which is also an element of the same collection and so on.

On the contrary, assume Ψn ⊂ ∆m. For some k ∈ N, we have sj ∈ Ψh−1/Ψh =⇒

sj /∈ ∆m/Ψn where 1 ≤ h ≤ k. Let si ∈ ∆m/Ψnwith si ∈ Ψk/Ψk+1 such that

for 1 ≤ h ≤ k we have sj ∈ ∆m/Ψn =⇒ sj /∈ Ψh−1/Ψh. Namely, si is the

first strategy eliminated from ∆m/Ψn by EWR. Assume that for k such that

sj ∈ Ψk =⇒ sj ∈ Ψk+1 where sj ∈ ∆m/Ψn, we have st ∈ Ψk =⇒ st ∈ Ψk+1

for all t ∈ I. That is, prior to the elimination of the first strategy from ∆m/Ψn,

no strategy is eliminated from Ψn, either. Consequently, before the stage where

si is weakly dominated, all the other strategies in ∆m have survived the pre-

vious stages, too. si is weakly dominated for the first time at some stage by

ti ∈ ∆m =⇒
[
sj ∈ ∆m =⇒ sj ∈ Ψk

]
. Since si ∈ ∆m/Ψn, for each ti ∈ Ψn

i

such that ti weakly dominates si on Ψn, ∃s−i ∈ ∆m
−i with at least one strategy
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from ∆m/Ψn such that πi(si, s−i) > πi(ti, s−i). As the components of s−i are also

elements of Ψk, si cannot be eliminated by ti ∈ Ψn
i

Conversely, assume that ∃tj ∈ Ψn and k ∈ N such that tj /∈ Ψk and si ∈

Ψk. Indeed, let tj be the first strategy eliminated from Ψn (hence recalled at a

later stage) before any strategy is eliminated from ∆m/Ψn. (Here, j and i aren’t

necessarily distinct players as they are throughout the rest of the proof). Since

tj ∈ Ψn, we have either

For each tj ∈ Ψn
j and sj ∈ S,∃t−j ∈ Ψn

−j s.t. πj(tj, t−j) > πj(sj, t−j) (1.9)

or

∃ej ∈ Ψn
j such that πj(tj, t−j) = πj(ej, t−j)∀t−j ∈ Ψn

−j and ∃s−j with

at least one component from S/Ψn such that πj(ej, s−j) > πj(tj, s−j)

and there does not exist any s−j ∈ Ψn
−j such that πj(tj, s−j) > πj(ej, s−j)

where tj is weakly dominated by ej at stage k. (1.10)

.a.

If (1.9) holds, then tj cannot be the first strategy eliminated from Ψn. Assume

(1.10) holds. Then, since ej, kj ∈ Ψn ⊂ ∆m, for all s−j ∈ ∆m
−j, we have

πj(tj, s−j) = πj(ej, s−j). By TDI, πI(tj, s−j) = πI(ej, s−j) for all s−j ∈ ∆m
−j.

In particular, πi(si, tj, s−ij) = πi(si, ej, s−ij) and πi(ti, tj, s−ij) = πi(ti, ej, s−ij)

where s−ij ∈ ∆m
−ij and si is the first strategy eliminated from ∆m/Ψn with ti being

the strategy that weakly dominates it. Since πi(si, tj, s−ij) > πi(ti, tj, s−ij) =⇒

πi(si, ej, s−ij) > πi(ti, ej, s−ij), the elimination of tj does not make si weakly domi-

nated by ti.

Assume that before the first strategy from ∆m/Ψn is eliminated and after the

first strategy from Ψn is eliminated, some strategy gk ∈ Ψn
k is also eliminated.
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(Notice that all the statements are true regardless of whether only one strategy

is eliminated from Ψn at stage k where 1 ≤ h ≤ k − 1, sj ∈ Ψn
j =⇒ sj ∈ Ψh

j or

many.) Since for each s−j ∈ ∆m
−j ∃ej such that πj(tj, s−j) = πj(ej, s−j), for each

sk ∈ ∆m
k , and each s−kj ∈ ∆m

−kj by TDI we have:

πj(gk, tj, s−kj) = πj(gk, ej, s−kj) =⇒ πk(gk, tj, s−kj) = πk(gk, ej, s−kj) (1.11)

πj(sk, tj, s−kj) = πj(sk, ej, s−kj) =⇒ πk(sk, tj, s−kj) = πk(sk, ej, s−kj) (1.12)

From (1.11) and (1.12) we have

πk(gk, tj, s−kj) > πk(sk, tj, s−kj) =⇒ πk(gk, ej, s−kj) > πk(sk, ej, s−kj).

Hence, gk ∈ Ψn
kcannot be weakly dominated by some strategy sk ∈ ∆m

k . For each

sk ∈ ∆m/Ψn, ∃s−k ∈ Ψn
−k such that πk(gk, s−k) > πk(sk, s−k)(Otherwise sk would

be recalled). One component of s−k ∈ Ψn
−k may be eliminated in one of the earlier

stages but (8) and (9) apply again. Therefore, gk can be eliminated only by a

strategy also from Ψn
k . Thus, the first strategy eliminated from ∆m/Ψn cannot

be eliminated by a strategy from Ψn.

Assume that the first strategy si eliminated from ∆m/Ψn is eliminated by a

strategy ti which is also from ∆m/Ψn. Since si, ti ∈ ∆m, we have either

(c)∀s−i ∈ ∆m
−i, πi(si, s−i) = πi(ti, s−i) or

(d) ∃s−i, t−i ∈ ∆m
−i such that πi(si, s−i) = πi(ti, s−i) and

πi(ti, t−i) > πi(si, t−i)

If (d) holds, since si is the first strategy to be eliminated from ∆m/Ψn

and all such s−i, t−i ∈ ∆m
−i profiles have survived, then si is not weakly dom-

inated at this stage. Assume (c) holds. Since si ∈ ∆m/Ψn, ∃ki such that

ki weakly dominates si on Ψn and ∃s−i ∈ ∆m
−i with at least one component

from ∆m/Ψn such that πi(si, s−i) > πi(ki, s−i) for such si and ki. Then, we de-
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fine correspondence β which is similar to α we had defined earlier: β(si, ki) =

{sj : j 6= i and sj is a component of some s−i such that πi(si, s−i) > πi(ki, s−i)} Since

πi(si, s−i) > πi(ki, s−i) =⇒ πi(ti, s−i) > πi(ki, s−i) for all s−i ∈ ∆m
−i, β(si, ki) =

β(ti, ki) By the same reasoning we employed for the case with α, we conclude

that the first strategy eliminated from ∆m/Ψn is not eliminated by a strategy

from ∆m/Ψn. Therefore, we have ¬ [Ψn ⊂ ∆m] .

(Notice that the first strategy eliminated from ∆m/Ψn may be recalled at a

later stage. Our result still holds, though)

Finally, assume we have both ∆m/Ψn 6= ∅ and Ψn/∆m 6= ∅. Then, there are

two possible cases, either ∆m ∩ Ψn 6= ∅ or ∆m ∩ Ψn = ∅. Assume ∆m ∩ Ψn 6= ∅.

∃ a k ∈ N and a restriction ∆k from the sequence (∆0,∆1, ...,∆m) such that si ∈

Ψn/∆m =⇒ si ∈ ∆h for 1 ≤ h ≤ k and ∃ si ∈ Ψn/∆m such that si ∈ ∆k−1/∆k.

i.e. si is the first strategy eliminated from Ψn/∆m in a given IEWDS process.

Therefore, ∃ ti ∈ ∆k such that for all s−i ∈ ∆k−1, πi(ti, s−i) ≥ πi(si, s−i). Since

no strategy is yet eliminated from Ψn/∆m in stage (k − 1) and all the strategies

in ∆m(and hence ∆m ∩ Ψn) survive IEWDS, we have Ψn ⊂ ∆k−1. Then, for

each s−i ∈ Ψn
−i, πi(ti, s−i) ≥ πi(si, s−i) and ti ∈ Ψn. Since si is also an element

of Ψn, we have πi(ti, s−i) = πi(si, s−i) for all s−i ∈ Ψn
−i. Let Gk be the set of

strategies which are elements of Ψn/∆m and which are eliminated at stage k. Let

the strategies Gk = {si, gj, ..., xp} be eliminated by {ti, hj, ..., yp} , respectively.

Then, {ti, hj, ..., yp} ⊂ Ψn. By TDI, ∀s−ijkp ∈ Ψn
−ijkp, ∀ck, dk ∈ Ψn

k ,

πi(si, gj, xp, ck, s−ijkp) = πi(ti, gj, xp, ck, s−ijkp) =⇒ (1.13)

πk(si, gj, xp, ck, s−ijkp) = πk(ti, gj, xp, ck, s−ijkp)

and

πi(si, gj, xp, dk, s−ijkp) = πi(ti, gj, xp, dk, s−ijkp) =⇒ (1.14)

πk(si, gj, xp, dk, s−ijkp) = πk(ti, gj, xp, dk, s−ijkp).
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By (1.13) and (1.14),

πk(si, gj, xp, ck, s−ijkp) ≥ πk(si, gj, xp, dk, s−ijkp) =⇒ (1.15)

πk(ti, gj, xp, ck, s−ijkp) ≥ πk(ti, gj, xp, dk, s−ijkp),

without loss of generality. By the same token,

πj(ti, gj, xp, ck, s−ijkp) = πj(ti, hj, xp, ck, s−ijkp) =⇒ (1.16)

πi(ti, gj, xp, ck, s−ijkp) = πi(ti, hj, xp, ck, s−ijkp) =⇒

πk(ti, gj, xp, ck, s−ijkp) = πk(ti, hj, xp, ck, s−ijkp),

and

πj(ti, gj, xp, dk, s−ijkp) = πj(ti, hj, xp, dk, s−ijkp) =⇒ (1.17)

πi(ti, gj, xp, dk, s−ijkp) = πi(ti, hj, xp, dk, s−ijkp) =⇒

πk(ti, gj, xp, dk, s−ijkp) = πk(ti, hj, xp, dk, s−ijkp).

By (1.15), (1.16), (1.17), we have

πk(ti, hj, xp, ck, s−ijkp) ≥ πk(ti, hj, xp, dk, s−ijkp),

and iterating further

πk(ti, hj, yp, ck, s−ijkp) ≥ πk(ti, hj, yp, dk, s−ijkp),

and so on. Notice that for any combination of strategies from Gk, we have a

corresponding combination of strategies from ∆m ∩Ψn which preserves the weak

dominance relation between ck and dk. Hence, for any s−k ∈ Ψn
−k, ∃ t−k ∈ Ψn/Gk

such that for all ck, dk ∈ Ψn, we have πk(ck, s−k) ≥ πk(dk, s−k) =⇒ πk(ck, t−k) ≥
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πk(dk, t−k).

Consider the strategies eliminated at stage (k + 1) in Ψn/∆m, if any. For

each si ∈ Gk+1, ∃ti ∈ ∆k+1 such that ti weakly dominates si on ∆k. If ti /∈ Ψn,

then ∃hi ∈ Ψn such that hi weakly dominates ti on Ψn
−i. Since s−i ∈ Ψn/Gk =⇒

s−i ∈ ∆k, we have s−i ∈ Ψn/Gk =⇒ πi(ti, s−i) ≥ πi(si, s−i). Then, as s−i ∈

Ψn/Gk, we have πi(hi, s−i) ≥ πi(ti, s−i) and therefore, πi(hi, s−i) ≥ πi(si, s−i)

Since for each s−i ∈ Ψn/Gk ∃ t−i ∈ Ψn
−i such that πi(si, s−i) = πi(si, t−i) and

πi(hi, s−i) = πi(hi, t−i) as shown above, we conclude that πi(hi, t−i) ≥ πi(si, t−i)

for all t−i ∈ Ψn
−i. Since both siand hi are elements of Ψn

i , then πi(hi, t−i) =

πi(si, t−i) ∀t−i ∈ Ψn
−i. Thus, by iterating the argument in the equations above

and running induction on Gk, Gk+1, ..., Gm, for each si ∈ Gk ∪ Gk+1 ∪ ... ∪ Gm,

∃ hi ∈ ∆m ∩ Ψn such that πi(hi, s−i) = πi(si, s−i) ∀s−i ∈ Ψn
−i. Hence, Ψn and

∆m ∩ Ψn are equivalent up to redundant strategies. Consequently, it is enough

to show that ∆m is also strategically equivalent to ∆m ∩ Ψn(up to redundant

strategies)

Consider the first strategy sj eliminated from ∆m/Ψn in the EWR process

Ψ. i.e. ∃k ∈ N and a restriction Ψk from the sequence (Ψ0,Ψ1, ...,Ψn) such

that sj ∈ ∆m/Ψn =⇒ sj ∈ Ψh for 1 ≤ h < k − 1 and ∃sj ∈ ∆m/Ψn with

sj ∈ Ψk−1/Ψk. Suppose that ∃tj ∈ ∆m ∩Ψn such that tj weakly dominates sj on

Ψk−1. As tj, sj ∈ ∆m, we have either

∀s−j ∈ ∆m
−j, πj(sj, s−j) = πj(tj, s−j) (e)

or

∃s−j, t−j ∈ ∆m
−j s.t. πj(sj, s−j) > πj(tj, s−j) and πj(tj, t−j) > πj(sj, t−j). (f)

If (f) holds, then sj cannot be weakly dominated by tj as ∆m ⊆ ∆k−1. Assume

(e) holds. Then, sj is redundant. Then, it follows from the same idea in (1.15),
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(1.16), (1.17) that either all strategies in ∆m/Ψn are redundant or the first

strategy which is not redundant and eliminated cannot be eliminated by some

tj ∈ ∆m ∩Ψn.

If the first strategy sj eliminated from ∆m/Ψn is eliminated by a strategy

tj ∈ ∆m/Ψn, since ∆m ⊆ ∆k−1 and sj, tj ∈ ∆m, then πj(sj, s−j) = πj(tj, s−j) for

all s−j ∈ ∆m
−j. Then, it follows from the same idea in (1.15), (1.16), (1.17) that

sj is not weakly dominated by some tj ∈ ∆m/Ψn.

Assume sj is eliminated by some tj /∈ ∆m∪Ψn, then. Since tj /∈ ∆m, ∃gj ∈ ∆m

such that πj(gj, g−j) ≥ πj(tj, g−j) for all g−j ∈ ∆m
−j. If tj weakly dominates sj on

∆m, then πj(gj, g−j) ≥ πj(tj, g−j) ≥ πj(sj, g−j) for all g−j ∈ ∆m
−j and πj(gj, g−j) ≥

πj(tj, g−j) > πj(sj, g−j) for some g−j ∈ ∆m
−j. i.e. gj also weakly dominates sj on

∆m but as sj, gj ∈ ∆m, we have a contradiction. Thus, πj(sj, s−j) = πj(tj, s−j) for

all s−j ∈ ∆m
−j. If @gj ∈ ∆m such that πj(sj, s−j) = πj(gj, s−j) for all s−j ∈ ∆m

−j,

then, for each gj ∈ ∆m
j ∃s−j ∈ ∆m

−j such that πj(sj, s−j) > πj(gj, s−j) As

∀s−j ∈ ∆m
−j we have πj(sj, s−j) = πj(tj, s−j), then for each gj ∈ ∆m

j ∃s−j ∈ ∆m
−j

such that πj(tj, s−j) > πj(gj, s−j). Hence, tj ∈ ∆m
j . Contradiction. Thus, sj is

not eliminated by some tj /∈ ∆m ∪ Ψn and we cannot have ∆m/Ψn 6= ∅ and

Ψn/∆m 6= ∅ and ∆m ∩Ψn 6= ∅.

On the contrary, suppose ∆m ∩ Ψn = ∅. Consider the first strategy sj elimi-

nated from Ψn in a given IEWDS process. Let sj ∈ ∆k−1/∆k. Since Ψn ⊆ ∆k−1,

for each tj /∈ Ψn ∃s−j ∈ Ψn
−j such that πj(sj, s−j) > πj(tj, s−j). Therefore, no

tj /∈ Ψn can weakly dominate sj on ∆k−1. Suppose sj is weakly dominated by some

tj ∈ Ψn on ∆k−1. As sj, tj ∈ Ψn and Ψn ⊆ ∆k−1, we have πj(sj, s−j) = πj(tj, s−j)

for all s−j ∈ Ψn
−j. It follows from the same idea in (1.15), (1.16), (1.17) that

elimination of sj does not change the payoff structure. Thus, the proof is com-

plete.

While EWR and IEWDS suggest payoff equivalent sets of solutions in TDI

games, one may wonder if one concept prevails over the other when we turn
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attention to games that don’t satisfy TDI. We have already seen that IEWDS

has an advantage over EWR when it comes to making predictions about games

with ’undercutting problem’. In order to demonstrate that it is not always the

case, let’s compare EWR and IEWDS by using our first example in the light

of TDI. There are two different reductions one can obtain by devising IEWDS

which are {a3, b1} and {a3, a5, b1}. Notice that these reductions are not payoff

equivalent as we have π(b1, a5) = (6, 2) 6= (6, 3) = π(b1, a3). This is due to the fact

that the game does not satisfy TDI. We have π2(b1, a3) = π2(b1, a5) = 6, although

π1(b1, a3) = 3 and π1(b1, a5) = 2. i.e. When player 2 changes her strategy from

{a3} to {a5} while player 1 is playing {b1}, she does not change her own payoff but

her opponent’s. Nevertheless, we have a unique EWR reduction which includes

the strategy profile (b2, a3) and the associated payoff profile (3, 7), a payoff profile

that cannot be obtained by strategy profiles that survive at least one of the

two IEWDS paths. This counterexample proves two things: First, EWR and

IEWDS are not equivalent solution concepts if we don’t restrict attention to TDI

games but consider the entire set of finite normal-form games. Second, there are

games in which EWR is order-independent but IEWDS is not. An interesting

question which might arouse the reader’s curiosity as EWR and IEWDS predict

different Nash-Equilibria (NE) in the example mentioned above: Is there any

logical relation between Nash-Equilibria deemed possible to arise by EWR and

IEWDS? Under which conditions can one expect a NE to become more likely to

be played if the strategies involved survive both concepts of iterative elimination?
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Chapter 2

A Characterization of The

Proportional Rule

2.1 Motivation and Literature Review

A bankruptcy arises when there is a scarce resource and conflicting claims over it.

Since the available resource is in sufficient to honour all the claims, many different

suggestons on how to divide may arise. The common aspect of these suggestios

is that no claimant gets more than his claim and nobody gets a negative share.

A very common example of a bankruptcy problem is the process of liquidation of

an insolvent firm among its creditors.

The study of bankruptcy problems has a historical tradition and dates back to

the Babylonian Talmud. The Talmud involves two examples regarding bankruptcy

situations one of which is about two men conflicting over how to share of a gar-

ment. The second one involves a man who leaves mutually inconsistent bequests

to his three wifes. Nevertheless, it provides only numerical examples and no

generalization. The most popular generalization of those numbers is probably

suggested by Aumann and Maschler (1985). Although the problem is very intu-

itive and old, the formal study of it started as late as O’Neill (1982).Traditionally,
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there has been two main branches in the literature, axiomatic bankruptcy which

aims to characterize bankruptcy rules by some normative but highly regarded

properties and game theoretical approach which aims to design games solutions

of which coincide with bankruptcy rules. In the present paper, we take the first

approach and define union−consistency in order to characterize the proportional

rule. Consistency and its variations have been widely used for characterizing

rules. Young (1987) uses consistency along with equal treatment of equals and

continuity to characterize parametric rules. Kaminski (2006) generalizes Young’s

result. Thomson (2007) develops a technique which determines whether a rule

which is defined for 2-agents can be generalized to an arbitrary number of agents

Dagan et al. (1997) shows that there may be particular solutions without a con-

sistent extension. Moulin (2000) uses consistency in order to obtain a joint char-

acterization of the proportional rule, the constrained equal awards rule and the

constrained equal losses rule. Chun (1999) proves that a consistent rule also

satisfies converse consistency Herrero and Villar (2001) considers the same class

of rules as in Moulin (2000) and obtain separate characterization results for the

constrained equal awards rule, the constrained equal losses rule and the Talmud

rule. Since our union−Consistency is a group property, it is noexaggeration to

say that it is loosely related to Chambers and Thomson (2002) which study group

order preservation. They also use a similar approach to ours in their proof.That

is why they require claims continuity as well. They characterise PROP. as our

paper do but they use group order preservation, claims continuity and consis-

tency. Since claims continuity and consistency are satisfied by a large class of

rules, the key assumption in their result is group order preservation which is de-

fined as ”given two groups of claimants, suppose that the sum of the claims of

the members of the first group is greater than or equal to the sum of the claims

of the members of the second group. Then, similar inequalities should hold for

the sums of the awards to the members of the two groups, and for the sums of
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the losses incurred by the members of two groups”, as it appears in their paper.

However, the assertion of union consistency does not stick to the original claims

problem, as the union of groups chosen for comparison does not have to be equal

to that of the original problem‘s, but rather decides what each group should get

by evaluating the conflicting claims of the groups in a new problem created by

considering the sum of the claims of the members of each group as an individual

claim. In addition, union consistency requires an equality between the awards

received by the groups whereas group order preservation requires a ”greater than

or equal to”. Dagan and Volij (1997) also prove results on extensions of bilateral

rules using consistency and average consistency. They analyze how to extend a

given bilateral principle to a unique consistent rule and relate it to a family of

binary relations.

It is worth mentioning that Thomson (2003) provides a detailed survey on

bankruptcy rules.

2.1.1 union−Consistency

Definition 6. (Claims Problem) A claims problem is an ordered pair (E; d) ∈

R+ × Rn
++ where d = (d1, ..., dn) and

∑n
i=1 di > E.

We denote by N = {1, 2, ..., n} a set of claimants each of whom has some claim

on an endowment E. The class of claims problems involving n agents and the class

of all claims problems are denoted by Dn and D, respectively. i.e D = ∪N∈ηDN

where η is the set of all non-empty subsets of N where it denotes natural numbers.

Definition 7. An n-tuple vector x = (x1, x2, ..., xn) is said to be a solution to or

an allocation for the claims problem (E; d) if

i) 0 ≤ xi ≤ di for all i ∈ N ,

ii)
∑

i∈N xi = E.
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Here, xi is interpreted as claimant i’s share from E. Let’s denote the family

of allocations for a given claims problem (E; d) by A(E; d).

Definition 8. (Bankruptcy Rule) A bankruptcy rule φ : D → ∪N∈ηRN
+ is a

function that maps each each claims problem to an allocation.

Definition 9. (Proportional Rule) For each (E; d) ∈ D, PROP (E; d) ≡ (E. di∑
j∈N dj

)ni=1

Definition 10. (Anonymity) A rule φ satisfies anonymity if for each (E; d) ∈ D,

each π ∈ ΠN and each i ∈ N , φπ(i)((E; d
π(i)

) = φi(E; d) where ΠN denotes the

class of bijections from N into itself.

Definition 11. (Claims Continuity) A rule φ satisfies claims continuity if for

each sequence {(Ev; dv)}∞v=1 of elements of Dn and each (E; d) ∈ Dn, if(Ev; dv)→

(E; d) and for each v ∈ N Ev = E, then φ(Ev; dv)→ φ(Ev; dv).

Definition 12. (Union−consistency) A rule φ is said to be union−consistent

iff for each (E; d) and for any 2 non-empty, disjoint subsets S1 and S2 of N we

have;

∑
i∈S1

φi(E; d) = φS1(
∑

j∈S1∪S2

φj(E; d); (
∑
i∈S1

di,
∑
j∈S2

dj))

In a sense, union consistency requires fairness among all subgroups. The

intuition is that some group of claimants may appeal to court claiming that some

other group is favoured against them. From a different perspective, addition of

new claimants and extra endowment for the new claimants should not favour one

group over the other.

Proposition 1. PROP is the only rule that satisfies both anonymity, union-

consistency and continuity.

Proof. (Sufficiency) PROP is trivially anonymous. For union−consistency,

consider an arbitrary (E; d) ∈ D. For any S1, S2 with S1∩S2 = ∅, S1, S2 6= ∅ and
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S1, S2 ⊂ N, we have

∑
i∈S1

PROPi(E; d) =
∑

i∈S1∪S2

E.
di∑
j∈N dj

PROP1

(
E.

∑
i∈S1∪S2

di∑
j∈N dj

; (
∑
i∈S1

di,
∑
j∈S2

dj)

)

= E.
∑

i∈S1∪S2

di∑
j∈N dj

.

∑
i∈S1

di∑
j∈S1∪S2

dj
=
E.
∑

i∈S1∪S2
di∑

j∈N dj
.

(Necessity) On the contrary, let R satisfy continuity and union−consistency.

Assume that
∑

i∈N di is rational and there exists a rational dj for some j ∈ N.

For an arbitrary (E; d), consider the following 3 problems;

i) (E; (d1, d2, ..., dn)),

ii) (E; (d1,
∑N

j=2 dj)),

iii) (E; (d
′
1, d

′
2, ..., d

′

k, ...d
′

k+M))

where d
′
i = d

′
j for all i, j ∈ {1, 2, ..., k +M} and

∑k
j=1 d

′
j = d1,

∑k+M
j=k+1 d

′
j =∑N

j=2 dj.

Notice that iii) is well defined due to our assumption.(By anonymity, we can

assume d1 is rational. Set d1 = a
b

and
∑N

j=2 dj = c
d

where a, b, c, d ∈ Z+. Then,∑
i∈N di = a.d+b.c

b.d

Consider (d
′
1, d

′
2, ..., d

′

k, ..., d
′

k+m) where d
′
i = d

′
j = 1

b.d
for all i, j ∈ {1, 2, ..., k +M}

and
∑k

j=1 d
′
j = a

b
,
∑k+M

j=k+1 d
′
j =

∑N
j=2

c
d

i.e. k
b.d

= a
b
⇒ k = a/b

1/b.d
= a.d ∈ Z+ and

M = c/d
1/b.d

= c.b ∈ Z+. i.e. we have a positive integer number of claimants. How-

ever, if either di is irrational for all i ∈ N or
∑

i∈N di is irrational, then this is

not necessarily the case.)

Since by anonymity, Ri(E; (d
′
1, d

′
2, ..., d

′

k+M)) = Rj(E; (d
′
1, d

′
2, ..., d

′

k+M)) =

E. 1
k+M

= E. 1
a.d+b.c

, we have by union−consistency,

R1(E; (d1, d2, ..., dn) = R1(E; (d1,
N∑
j=2

dj)) =
k∑
j=1

Rj(E; (d
′

1, d
′

2, ..., d
′

k+M))

=
k∑
j=1

E

a.d+ b.c
=

a.d

a.d+ b.c
.E = E.

d1∑
j∈N dj

= PROP1(E; (d1, d2, ..., dN))
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as desired.

Let either
∑

i∈N di or each di be irrational. Either case, we have at least

one irrational di. Since Q is dense in R, we can choose
(
dvj
)
j∈N such that dvj is

rational and dvj → dj where dj is irrational. We also have d → d∗ ⇔ di → d∗i

for each i ∈ N. Let (E; dv) be sequence of claims problems with dvi ∈ Q for

i = 1, 2, ..., N and v = 1, 2, ... and (E; dv) → (E; d). Since R is union-consistent

and continuous, we have R(E; dv) = PROP (E; dv) and limdv→d PROP (E; dv) =

limdv→dR(E; dv) = R(E; d) = PROP (E; d) as PROP is continuous.
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Chapter 3

Risk Averse Investors Behavior

towards a Risky Firm

We extend the investment game which was first suggested in Kıbrıs and Kıbrıs

(2013). In the model, there is an arbitrary number of agents each of which is

endowed with a Constant-Absolute Risk Aversion(CARA) utility function. The

agents are presented the opportunity to invest in a risky project whose outcome

will either be success or be failure based on a Bernoulli Distribution function.

In case of a failure, total value of the investment is allocated among the agents

according to a bankruptcy rule. Kıbrıs and Kıbrıs (2013) compare 4 most common

rules in the literature whereas we relax the assumption that no agent can receive

more than his investment, in case of a failure. By doing so, we are allowing

the agents to receive amounts which are not possible under standard bankruptcy

rules. Hence, we are looking for optimality in a larger set of possible payoffs.

In real world situations, there are different types of agents some of which can

receive gains on investment even in the case of a failure. For instance, as opposed

to shareholders, some creditors may receive more than what they put in. In that

sense, our model can be considered as a better approximation to reality. We

also drop the assumption that each agent will receive a constant interest rate in

case of a success. Our aim is to account for all possible bankruptcy rules, and
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even other allocations which do not adhere to properties that are imposed by

bankruptcy rules, and to determine the optimal allocation a social planner would

choose without violating the individual rationality constraints. We first show

that only the total amount of investment matters, i.e. as long as the level of total

investment is the same, how much each investor contributes has no influence on

welfare and proceed to show that the optimal allocation can be obtained via a

free-market mechanism in which agents can trade payments in different states of

the world. We also show that no matter which rule is announced by the social

planner, the optimal amount of total investment is equal to the amount which

also emerges from the competitive game that utilises the proportional rule.

Following the main idea of Kıbrıs and Kıbrıs (2013) we investigate the Pareto

Optimal allocations regarding a joint venture(risky firm).

3.1 The Setting of Kıbrıs and Kıbrıs (2013)

Denote the set of investors/agents by N = {1, . . . , n}. Each agent i’s preferences

are represented by a constant-absolute risk aversion (CARA) utility function

ui : <+ → < where ui(x) = −e−aix. Here, ai is agent i’s risk-aversion constant

and their analysis relies on the assumption that ai > 0 ∀i ∈ N, that is, the

agents are risk averse. Also, a1 ≤ ... ≤ an without loss of generality.

There is a risky firm whose ex-ante value is determined by the total value of

investments made by the agents.i.e.,
∑
i

si where si is the investment of agent

i. Furthermore, agents choose their investments si ∈ <+ simultaneously. They

borrow from an outside market and the interest rate is normalized to 0. There

are 2 states of the world: with probability p ∈ (0, 1) the firm succeeds and the

total value of the firm becomes (1 + r)
∑

i si and with (1− p) probability it fails

and the total value shrinks to β
∑
i

si. It is assumed that r > 0 and 0 < β < 1.

After the realization of the state of the world, the total value is to be distributed

among the agents.
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The division method used at this point might capture some desirable proper-

ties. For example:

1. Given the method, this competitive game might lead to a Pareto Optimal

allocation in either the utilitarian sense or the egalitarian sense.

2. It might maximize the volume of investments.

Kıbrıs and Kıbrıs (2013) do not check for Pareto Optimality but rather com-

pare a limited subset of possible division methods evaluated according to util-

itarian and egalitarian welfare. While employing the same notions in order to

measure welfare, we consider the set of all possible allocations of the ex-post

total value and, therefore, characterize the Pareto optimal ones.

Moreover, the welfare levels in Kıbrıs and Kıbrıs (2013) concern only 2 agents

with equal Pareto weights (the latter is valid for utilitarian welfare).

Their definitions as they appear in their paper are as follows:

Definition 13 (Utilitarian Social Welfare). The utilitarian social welfare at the

Nash Equilibrium (NE, henceforth) of the 2 agent game induced by an allocation

rule F is given by;

UT F (p, r, β, a1, a2) = UF
1 (ε(GF )) + UF

2 (ε(GF ))

where the game GF is defined by the parameters (p, r, β, a1, a2), UF
i (·) is agent i’s

utility and ε(GF ) is an equilibrium of the game.

Definition 14 (Egalitarian Social Welfare). The egalitarian social welfare at the

N.E. of the 2 agent-game induced by an allocation rule F is given by

EGF (p, r, β, a1, a2) = min
{
UF

1 (ε(GF ), UF
2 (ε(GF ))

}
where again the game GF is defined by the parameters (p, r, β, a1, a2) and ε(GF ) is
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an equilibrium; it is the minimum utility an agent gets at an equilibrium induced

by F .

3.1.1 Common Allocation (Bankruptcy Rules)

Bankruptcy occurs in the state of the world where the value of output is β of the

initial investment, but Kıbrıs and Kıbrıs (2013) assume that in the other state

each agent gets the full return (1 + r) times their investment.

Definition 15 (Proportional Rule). For each i ∈ N , proi(s) = βsi where si

is the investment choice of agent i ∈ N and s is the investment vector.i.e. each

agent gets a proportion β of his claim where we equate ”claim” with the value of

the initial investment.

Definition 16 (Constrained Equal Losses). For each i ∈ N , CELi(s) = max {si − ϕ, 0}

where ϕ ∈ <+ satisfies
∑

i∈N max {si − ϕ, 0} = β
∑

i∈N si.

Note that in order to find equilibrium under CEA and CEL, Kıbrıs and Kıbrıs

first prove that not all combinations of parameters lead to a NE under CEL/CEA.

They then show that for the 2 agents case if there exists a NE it must be identical

to those of EL/EA respectively.where EL/EA are allocations such that agents

lose/receive the same amount.

Definition 17. For each i ∈ N , CEAi(s) = min {si, ϕ} where ϕ ∈ <+ satisfies∑
i∈N

min {ϕ, si} = β
∑
i∈N

si.

Proposition 2 (Kıbrıs and Kıbrıs (2013)). If ln
(

rp
(1−p)(1−β)

)
≤ 0, then GamePROP

has a unique dominant strategy equilibrium (0, ..., 0). Otherwise, the game has a

unique dominant strategy equilibrium s∗ in which each agent i chooses a positive

investment level s∗i given by

s∗i =
1

ai(r + 1− β)
ln

(
rp

(1− p)(1− β)

)
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3.2 Our Setting

We relax the assupmtion that no agent can receive more than his investment,

in case of a failure. We also drop the assumption that each agent will get an

interest rate of r, in case of success. Our aim is to determine the optimal allocation

social planner (S.P. hereafter) chooses without violating the individual rationality

constraints.

Therefore, we first present the social planner problem for the 2 agent case

without imposing the constraints F s
i ≥ 0 and F f

i ≥ 0 where F s
i and F f

i represent

player i’s shares in the case of success and failure respectively. We shall see that

they are not binding for a fairly large set of parameters.

We solve the problem in 2 steps for simplicity: First, we assume that agents’

investment levels (x1, x2) are given and find the allocations in the case of success

and failure as a function of them. Then, we see that what matters to the agents

is not the individual investments but rather the total investment. Then, we solve

the total utility maximization problem with respect to the total investment.

3.2.1 Social Planner’s Problem for 2 Agents

maxλ1

[
pu1(F s

1 − x1) + (1− p)u1(F f
1 − x1)

]
+λ2

[
pu2(F s

2 − x2) + (1− p)u2(F f
2 − x2)

]
such that

F s
1 + F s

2 = (1 + r)(x1 + x2) (1)

and

F f
1 + F f

2 = β(x1 + x2). (2)

Alternatively, we can plug (1) and (2) in and solve the unconstrained problem

and if 0 ≤ F s
1 ≤ (1 + r)(x1 + x2) and 0 ≤ F f

1 ≤ β(x1 + x2) then the constraints
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F s
i ≥ 0 and F f

i ≥ 0 for i = 1, 2 are not binding Then, the Lagrangian is;

L = λ1

[
−p.e−a1(F s1−x1) + (1− p)(−e−a1(F f1 −x1))

]
+

λ2

[
−p.e−a2((1+r)(x1+x2)−F s1−x2) + (1− p)(−)e−a2(β(x1+x2)−F f1 −x2)

]
.

Then solving for the 1st order conditions we find:

F s
1 =

ln(a1λ1

a2λ2
) + a2(1 + r)(x1 + x2)− a2x2 + a1x1

(a1 + a2)
,

F s
2 = (1 + r)(x1 + x2)−

ln(a1λ1

a2λ2
) + a2(1 + r)(x1 + x2)− a2x2 + a1x1

a1 + a2

,

F f
1 =

ln(a1λ1

a2λ2
) + a2β(x1 + x2)− a2x2 + a1x1

a1 + a2

,

and

F f
2 = β(x1 + x2)− F f

1 = β(x1 + x2)−
ln(a1λ1

a2λ2
) + a2β(x1 + x2)− a2x2 + a1x1

a1 + a2

.

This is the solution to the planner’s problem given x1 and x2. Now we consider

the prior choice of investments. Set Ψ = (x1 + x2).

We then have

u1(F s
1 − x1) = −e−a1(ln(

a1λ1
a2λ2

)
1

a1+a2 )
.e
−a1a2rΨ
a1+a2

= −e
−a1a2rΨ
a1+a2 .(

a1λ1

a2λ2

)
−a1
a1+a2

u2(F s
2 − x2) = −e

−a1a2rΨ
a1+a2 .(

a1λ1

a2λ2

)
a2

a1+a2

u1(F f
1 − x1) = −e

−a1a2(β−1)Ψ
a1+a2 .(

a1λ1

a2λ2

)
−a1
a1+a2

u2(F f
2 − x2) = (−1).e

−a1a2(β−1)Ψ
a1+a2 .(

a1λ1

a2λ2

)
a2

a1+a2 .

It is worth mentioning that x1 and x2 enter only through Ψ. The intuition that
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the production function is additive in their investments, and that the preferences

are quasi-linear –i.e. the fact that return/loss less investment, all goes inside the

utility function. The S.P. chooses Ψ to maximize

λ1

[
−pe

−a1a2rΨ
a1+a2 .(

a1λ1

a2λ2

)
−a1
a1+a2 .e−a1a2rΨ/a1+a2 − (1− p)e

−a1a2(β−1)Ψ
a1+a2 .(

a1λ1

a2λ2

)
−a1
a1+a2

]
+

λ2

[
−pe

−a1a2rΨ
a1+a2 .(

a1λ1

a2λ2

)
a2

a1+a2 − (1− p)e
−a1a2(β−1)Ψ

a1+a2 .(
a1λ1

a2λ2

)
a2

a1+a2

]
. (3)

We then get:

arg max(3) = Ψ∗ =


ln(

rp

(1− p)(1− β)
) · a1 + a2

a1 + a2(1− β + r)
for rp ≥ (1− p)(1− β)

0 otherwise

Ψ∗ is independent of λi as the quasi-linear structure implies that surplus is

maximised independently of λi but the Pareto weights determine the split of

surplus.

Note that Ψ∗is the total investment level in the two agent GamePr op. Intu-

itively, if the condition rp ≥ (1− p)(1− β) holds, on average the project yields a

nonnegative return, and when this is strict, a small positive investment will yield

a positive first-order gain, while the increase in variance will be second-order, so

investment must be positive.

Remark 1. One should notice that the P.O. allocation might yield utility levels

different from those of the competitive game under PROP. With 2 agents. For

them to be equal,

(
a1λ1

a2λ2

)a2/a1 + a2
=

(
a1λ1

a2λ2

)−a/a1 + a2

= 1

must hold. Since the S.P. is concerned with sum of utilities, he exploits the fact
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that more risk-averse agents are more productive in the case of success and vice

versa

In order to have a feasible allocation, no agent should receive a negative pay-

ment in any state of the world. The allocation is feasible if it satisfies the follow-

ing:

1. 0 ≤ F s
1 ≤ (1 + r)Ψ,

2. F s
1 + F s

2 = (1 + r)Ψ,

3. 0 ≤ F f
1 ≤ βΨ

4. F f
1 + F f

2 = βΨ

One can check that the four conditions above hold for a very large portion of

the parameter space.

Proposition 3. If there are N agents playing the investment game and the

S.P.chooses investment levels as well as the allocations in both states of the

world by respecting the individual rationality constraints, then the total invest-

ment Ψ∗ = 0 if pr < (1− p)(1− β). Otherwise,

Ψ∗ =

ln( pr
(1−p)(1−β)

).
∑
j

1/aj

1− β + r

i.e. the level of investment underGamePROP is preserved. However, depending on

the S.P.’s preferences, PROP is not th only P.O allocation. Moreover, individual

levels of investment do not matter.

3.2.2 Social Planner’s Problem for N Agents

max
F si ,F

f
i

p
∑
i

λiui(F
s
i − xi) + (1− p)

∑
i

λiui(F
f
i − xi)

where
∑

i F
s
i = (1 + r)

∑
i xi,

∑
i F

f
i = β

∑
i xi and F j

i ≥ 0, j = s, f. For all

i ∈ N, the last set of constraints, however, might not be binding. Therefore, we
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ignore them at this point and check whether the condition is satisfied after the

maximization.

Solving for the first order conditions, we find:

F s
i = xi −

ln
(
α1/pλiai

)
ai

and

F f
i = xi −

ln
(
α2/(1− p)λiai

)
ai

for all i ∈ N where

α1 = 1∑
i

1
ai

√
e
−r.

∑
i
xi.∏

i

(pλiai)
1
ai

and

α2 = 1∑
i

1
/ai

√
e

(1−β).
∑
i
xi.∏

i

((1− p)λiai)
1/ai .

As in the two agent case, the utilities depend on Ψ =
∑

i xi and not on

individual investments levels.

Hence, the S.P. will choose the social utility maximising level of Ψ, i.e.,

arg max
∑
i

λi[−p.e

 −rΨ∑
i

1
ai

+
∑
k

[ln(pλkaki)]
1
ak

∑
j

1
aj
−ln(pλiai)



−(1− p).e

 (1−β)Ψ∑
j

1
aj

+
∑
k

ln((1−p)λkia

1

ak
∑
j

1
aj

ki


−ln(pλiai)

which yields the optimal level of total investment:

Ψ∗ =

ln( pr
(1−p)(1−β)

).
∑
j

1/aj

1− β + r

which is equal to the total value of investments in the proportional game.

Note: Notice that if pr < (1 − p)(1 − β) then Ψ∗ is not determined. This is
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because the investment will have a negative expected value in this case and it is

optimal not to invest anything at all.

Since the agents are borrowing from outside, S.P. only decides how much

each agent will lose or gain. The payment scheme depends on the individual

investment so that the earnings don’t depend on individual investments but on

the sum of investments. (Moreover, there are no externalities in GamePROP so

the S.P. is effectively maximizing each agent’s utility separately, that’s why our

result holds and Kıbrıs and Kıbrıs (2013) find a dominant strategy equilibrium).

Proposition 4. Among the class of bankruptcy rules, PROP is P.O, but it is

not unique.

Another important issue is whether PROP. is a P.O. rule and whether it is

unique. In order to see if that‘s the case, we are going to consider all possible

allocation schemes in the case of a failure. i.e. we will not be interested in how

the agents share the surplus in the case of success as in that scenario there is

going to be a higher income to share than the amount invested in the venture.

Translating this to the language of bankruptcy, the endowment to be distributed

will exceed the sum of the claims, hence it will be possible to jointly honour all

the claims. Nevertheless, we need to make an assumption on how the success

profits will be divided since agents’ utilities also depend on this variable. One

may expect to see different levels of losses for each agent depending on what the

S.P. assigns to each of them in the case of success. Since we have assumed that

the production technology is quasi-linear, we may start by assuming that each

agent will receive a profit equal to ”r” portion of her investment. In other words,

we are going to impose proportional allocation of gains. If we do so, however,

we can intuitively anticipate proportional division in the case of failure as the

ability of S.P. to allocate will be limited to the failure event. i.e. even if one of

the agents promise a higher marginal utility than the other if the S.P. transfers

an infinitesimal unit from the latter to the former when the venture is successful
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and vice versa in the failure case, since transfers in the case of success won‘t

be allowed, an allocaton different than PROP. might lead to a marginal utility

discrepancy. Thus, it appears to be reasonable to predict that the S.P. will want

to make marginal utilities of agents match with each oter and choose proportional

allocation as the utilities are CARA.

One other thing is that the feasibility restrictions have to be tightened up.

Instead of requiring that no agent receives more than what’s available in the

case of success, we confine each agent’s maximum earning to a proportion of her

investment. The constraints defined for the failure case, however, will remain the

same. Therefore, we revisit our baseline model with 2 agents. The S.P.’s problem

is :

max
F f1 ,F

f
2

λ1[pu1(rx1) + (1− p)u1(F f
1 − x1)] + λ2[pu2(rx2) + (1− p)u2(F f

2 − x2)]

such that

F f
1 + F f

2 = β(x1 + x2) (1)

and

0 ≤ F f
1 ≤ β(x1 + x2). (2)

Plugging F f
2 = β(x1 + x2)− F f

1 in the equation, we write the Lagrangian:

L = λ1[−p.e−a1rx1 + (1− p)(−e−a1(F f1 −x1)] +

λ2[−p.e−a2rx2 + (1− p)(−)e−a2(β(x1+x2)−F f1 −x2)]+

µ1F
f
1 + µ2(β(x1 + x2)− F f

1 )

which gives optimality and complementarity conditions;
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a1λ1(1− p)(−e−a1(F f1 −x1) − a2λ2(1− p)e−a2(β(x1+x2)−F f1 −x2) + µ1 − µ2 = 0 (1)

µ1F
f
1 = 0 (2)

µ2(β(x1 + x2)− F f
1 ) = 0 (3)

−F f
1 ≤ 0 (4)

F f
1 − β(x1 + x2) ≤ 0 (5)

µ1, µ2 ≤ 0 (6)

Then; from (2) and (3), one of the following must hold;

µ1 = µ2 = 0 (1)

β(x1 + x2)− F f
1 = µ1 = 0 (2)

β(x1 + x2)− F f
1 = F f

1 = 0 (3)

F f
1 = µ2 = 0 (4)

(3) can be satisfied only if the S.P. decides to make no investment at all. Since it

may occur only depending on the parameters of the production technology and

once we have such parameters, there is not going to be any investment regardless

of the risk aversion coefficients or the allocation rule used.Therefore, we rule out

(3). If (2) or (4) holds, then we have a corner solution and the S.P.allocates all

the remaining endowment to the first agent in case (2), and to the second agent

in case (4). Since we have fixed the returns in the success case and for each agent

the return cannot be greater than her investment, as there is the risk losing all the

investment, it yields negative expected returns for one of the agents and violates

individual rationality. With such a rule, regardless of whether the S.P. chooses

the investment levels or the agents do, the optimal(or the chosen) investment
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would be 0 for one of the agents. (Actually, it would be 0 for the more risk averse

investor) Hence, we have µ1 = µ2 = 0. Plugging µ1 = µ2 = 0 in (1) and solving

for F f
1 we find:

F f
1 =

ln(a1λ1

a2λ2
) + a2β(x1 + x2)− a2x2 + a1x1

a1 + a2

which is the same equation we found without fixing the success returns. The

reason is that the S.P. treats the two different events separately. Above equation

also shows that one can find λ1, λ2 such that PROP. is a P.O. rule but it is not

unique.

Note that the same result also applies to the case with an arbitrary number

of agents.

3.2.3 Difficulties in Applying the P.O. Allocation

In order to apply the P.O. outcome in this setting, the S.P. has to have complete

knowledge about the agents’ preferences over the lotteries generated by this risky

venture. In a realistic marketplace where there are several potential investors, it

is too optimistic to say that it is a realistic assumption. Therefore, in order to

apply these levels of investments and allocations, the S.P. has to come up with a

mechanism which will reveal the preferences correctly.

A solution to this problem might be a free market mechanism where agents

can trade their potential gains and potential losses. Since at a given allocation, it

is possible to see different marginal utilities, even each agent is receiving exactly

the same payments in each state of the world, agents with different risk attitudes

might benefit from such trade.
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3.2.4 Trading the Different Payments in Different States

of the World

Once the investment levels and the corresponding allocation scheme is deter-

mined, all agents know how much they are going to be paid in two different

outcomes. Regarding the type of utility functions they have, one can view them

as traders in a marketplace with two goods as endowment: the payment in the

case of “success” and the payment in the case of “failure”. Once these two are

allowed to be exchanged, we will end up with a pure exchange economy after the

allocation is determined. Hence, we will be able to apply two renowned theorems

in order to justife this method.

Definition 18. ( Pure Exchange Economy) A pure exchange economy ε

with consumption space X and set of agents N, is

ε = {ei,�i}i∈N , where ei ∈ X and � ∈ X × X denote the agent i’s initial

endownment and preferences, respectively.

Theorem 3. ( First Theorem of Welfare Economics) For any exchange

economy ε, where agents preferences are given by continuous, complete, preorders

satisfying local non-satiation CE(E) ⊆PO(E).

Definition 19. ( Local Non-Satiation) A preference relation � ∈ X×X is locally

non-satiated if for all x ∈ X and all ε > 0 there exists y ∈ X with ‖y − x‖ < ε

and y � x.

Since the agents in our setting have monotonic prefrences and local non-

satiation is implied by monotonicity, one of the requirements to be able to apply

the theorem is automatically satisfied.

Theorem 4. ( Social Planner’s Problem and Pareto Weights) If every agent i’s

preferences are represented by a continuous, strictly increasing and concave utility

function ui : X → <(0 ∈ X), and ei >> 0 then an allocation x∗ ∈ Xn is P.O. if
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and only if there exists θ∗ ∈ ∆(N) and x∗ solves the social planner’s problem for

ε at θ∗ given by maxx∈F (ε)

∑
i∈N θ

∗
i ui(xi).

It is easy to verify that u
i
(.) is continuous and strictly increasing in both

arguments.Thus, it is enough to check for concavity.

Theorem 5. (Checking for Concavity) A twice continuously differentiable func-

tion f is concave if the Hessian matrix H(x) is negative semi-definite at all points

x.

As a result, we need to check for the eigenvalues of the matrix H(s, f) =

∂2ui/∂s2 ∂2ui/∂f∂s

∂2ui/∂s∂f
∂2ui/∂f 2

Where the endownments in the case of “success” and “failure” are denoted

by s and f, respectively.

Since the eigenvalues are all negative and the utility functions are concave,

then we conclude that the preferences satisfy the desired properties and, thus,

the theorems hold. As a result, the price mechanism is efficient and will correct

any error the S.P. makes when allocating the liquidated firm.

3.3 Conclusion

The model presented in Kıbrıs and Kıbrıs (2013) does not account for some of

the situations which occur in real life. Namely, they do not allow for any investor

to receive more than her claim. Moreover, they conduct their analysis for only

the 4 most common rules in the literature. However, these are the most favoured

rules in the literature. All of them are studied and suggested by various authors

on both axiomatic and game theoretic grounds. In order to adopt a more realistic

approach to risky investments, we assume that investors’ possible gains are not

determined by individual contributions. Yet, we assume the same sort of utility

function which is also used in the analysis of Kıbrıs and Kıbrıs (2013). This
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leads to the result that the socially optimal level of welfare is not dependent

on individual levels of investment, although the investors have different attitudes

towards risk. We get this result by exploiting the fact that the production function

is additive in investors’ contributions and that the preferences are quasi-linear.

On a modified version of the model, we impose that each agent‘s profit is a

fixed fraction of her investment in the case of success. On the other hand, we leave

the constraints for the failure case unchanged and solve the S.P.‘s problem. By

doing so, not only do we show that PROP. is P.O. among the class of bankruptcy

rules but we also establish that it is a P.O. way of distributing the ex-post welfare

even if the S.P. is not restricted to give each agent at most as much as she

invests. This may explain why PROP. is also used in real ventures. However,

it is noteworthy that PROP. is not the only P.O. way of allocation. In fact, we

have an abundance of P.O. allocations. Moreover, since different risk aversion

coefficients require different Pareto weights, given the Pareto weights of the S.P.,

a different allocation needs to be chosen since no allocation is P.O. for all levels

of risk-aversion.

In that case, S.P. encounters the problem of having incomplete information

about agents‘ preferences. In order to cope with the problem, we suggest a

market mechanism where agents can trade their potential gains and potential

losses. freely. By making use of some well-known results, we conclude that the

mechanism ends up with a P.O. allocation.
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