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ABSTRACT 

 

Over the past few decades, the value and weight of freight shipments have grown steadily 

in both developed and developing countries. A recent statistic in the U.S. reveals that weight of 

shipments increased from 18,879 to 19,662 million tons between 2007 and 2012 (1). It is also 

expected that this amount will increase to 28,520 million tons by 2040 (1). It is worth mentioning 

that 67 percent of shipments are shipped by truck mode in 2012. The monetary value of freight is 

expected to escalate even faster than weight. This value is estimated to rise from US$ 882 per ton 

in 2007 to US$ 1,377 per ton in 2040. As a result, freight transportation management and 

modeling has aroused the interest of both public sector and groups of firms to improve the 

efficiency of the business operations. Traffic assignment plays a central role in the current freight 

modeling, and freight route analysis is of fundamental importance in understanding the truck 

flows explicitly. 

In the first part of this thesis, large streams of truck-GPS data from the American 

Transportation Research Institute (ATRI) are cleaned, processed, and analyzed using easy to 

implement and practical procedures to study the diversity of observed truck routes between a 

given origin-destination (OD) pair. This is because, for any given OD pair, the analyst could 

observe and compare the route choices of a large number of trips, as opposed to observing only 

one or a few trips. Doing so helps in quantifying the number of different routes taken by trucks 

between an OD pair and paves the way for a systematic analysis of the “diversity” in route 

choices between any OD pair. This thesis develops methods to measure the diversity of routes 



xi 

 

between a given OD pair and identifies unique routes used between the given OD pair. From a 

practical standpoint, such analysis of the diversity in observed route choices helps in improving 

the existing route choice set generation algorithms. 

In the second part of the thesis, the methodologies developed in the first part are 

implemented in an FDOT sponsored project entitled “GPS Data for Truck-Route Choice 

Analysis of Port Everglades Petroleum Commodity Flows”. This project aims to use truck-GPS 

data from ATRI to derive petroleum tanker trucks’ travel path (or route) information, describing 

the routes that the tanker trucks take to travel from Port Everglades to their final delivery points.  
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CHAPTER 1 : INTRODUCTION 

 

1.1 Background 

Understanding freight movement and planning infrastructure policy responses to manage 

this movement is critical for a well-functioning economy. In the United States, data from the 

Freight Analysis Framework (FAF) shows that total freight movements are expected to grow 

from 19.7 billion tons in 2012 to 28.5 billion tons in 2040 (an overall growth of 45 percent or 1.3 

percent annually).  The value of freight is expected to grow at an even faster rate from $17.4 

Trillion in 2012 to $39.3 Trillion in 2040 (a growth of 126 percent or three percent annually) (1).   

Further, the dominance of truck is expected to continue with around 70 percent of all 

commodities will be shipped (by weight) by trucks (1). All this freight movement by trucks 

contributes to congestion and causes extensive wear and tear to the infrastructure. Therefore, 

knowing how trucks travel and the paths they take will help design policy responses that allow 

for maintenance of infrastructure, improved reliability, and congestion mitigation. 

One way to understand the paths trucks take is to make use of the data from advanced 

vehicle monitoring (AVM) systems that allow remote monitoring of truck fleets using 

Geographical Positioning Systems (GPS) technology-based Automatic Vehicle Location (AVL) 

systems.  The availability of this GPS data provides the means to develop a deeper understanding 

of the paths trucks take when traveling over long distances. Using GPS data for studying truck 

paths imposes several challenges such as digesting large stream of GPS data points, converting 

GPS data into truck paths, and investigating truck paths in terms of similarity or variability. As 
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traditional methods for dealing with the above-mentioned challenges are either outdated or 

impractical, new methodologies have to be developed to deal with such challenges effectively.  

1.2 Motivation 

Freight transportation management and modeling has aroused the interest of both public 

sector and groups of firms to improve the efficiency of the freight business operations. Traffic 

assignment plays a central role in the current freight modeling, and freight route analysis is of 

fundamental importance in understanding the truck flows explicitly. 

Following the more advances in freight transportation modeling, data collection and 

calibration processes have drawn a notable attention among planners and practitioners. In 2000, 

President Clinton announced the termination of the selective availability of GPS data, which 

significantly improved GPS accuracy and made it a viable option to monitor the freight travel 

behavior. Freight firms, consequently, use GPS to manage their equipment and capture truck 

data. Availability of such detailed data to the public sector has opened a new gate for freight 

route choice analysis. Improvements in data gathering and modeling capabilities have attenuated 

erroneous predictions in freight transportation modeling. Recent studies benefit from GPS 

information to explore and predict more accurate essential trip data elements. Little is known, 

however, about the accuracy of extracted route elements when using the less frequent GPS 

points. 

The current study is an attempt to investigate truck route generation and variability 

analyses by using probe data drawn from GPS devices installed on trucks. Unprecedented 

partnership between private-sector truck data providers and freight carriers has opened up an 

opportunity to collect GPS data and provide it to public agencies in recent years. A joint venture 

between ATRI and the Federal Highway Administration (FHWA) is a good example of such 



3 

 

partnership that aim at developing a national system for monitoring freight performance 

measures (FPM) in the U.S. This FPM data contains GPS data collected from trucking 

companies that use GPS-based AVM technologies to keep track of their fleet. The FPS data 

contains large traces of GPS for trucks that travel on major corridors in the country (and Florida). 

This type of data provides professionals, freight stakeholders, and transportation researchers with 

an excellent opportunity to understand and measure freight behavior ranging from county-wide 

to nation-wide scale.  

The first part of this thesis aims to introduce a general and practical framework for data 

cleaning, processing, and map-matching that enables both researchers and practitioners to deal 

with less frequent, but large number of data over a long period of time. The framework is quite 

distinct from previous studies in a couple of ways. First, the GPS data used for this study is less 

frequent as opposed to other similar studies. High frequency GPS data includes coordinates 

every one or two seconds while this study proposes a framework that enables us to generate 

routes for data with frequency of five to twenty minutes. Second, the number of data used in this 

study is significantly larger than other studies that focus on route generation methods. In terms of 

map-matched routes, particularly, this thesis utilizes a framework to generate the routes for more 

than 78,000 trips while similar efforts have usually been made for less than 50,000 trips. Third, 

the geographical scale of the data is large. The data includes the trucks that crossed the border or 

moved within the state of Florida for four months in 2010. As a result, the route generation 

problem needs to be solved on a statewide level, taking into account urban and rural geographies. 

Most route generation methods investigate the issue in an urban setting where the roadway 

network is dense. In this case, however, we mainly deal with routes that stretch throughout rural 
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areas, which have been overlooked in the current literature. The findings of this study are the 

building block for route choice generation and selection analyses. 

The second part of the thesis is the implementation of the methodology developed in the 

first part within the context of a Florida Department of Transportation (FDOT) funded project. 

All the steps taken to complete the project will also be explained. FDOT District 4 is currently 

conducting the "Port Everglades Petroleum Commodity Flow Pilot Study". This is a proof-of-

concept data collection pilot project jointly sponsored by the FHWA through its SHRP2 C20 

program. The purpose of the project is to find an innovative methodology to collect and analyze 

petroleum flow data in and out of Port Everglades to better understand the supply-demand 

dynamics of the petroleum commodities in South Florida.  

The information needed for the above-mentioned project includes the petroleum origin 

and destination data describing the supply side and demand side of the petroleum products, 

preferably at the Traffic Analysis Zone (TAZ) and Micro Analysis Zone (MAZ) level. Also 

needed is the truck travel path (or route choice) information of the petroleum tanker trucks for 

their travel between Port Everglades (PEV) and the final delivery points.  

1.3 Objectives 

1.3.1 First Part 

The overarching goal of this thesis in the first part is to develop a methodology for 

generating and investigating trucks’ route choices using GPS data. The proposed methodology 

should be an easy to implement and practical procedure that can digest large streams of GPS 

points with low frequency. The large number of GPS data points provides an unprecedented 

opportunity to develop rich observed truck route choice sets that can be useful for improving 

route choice set generation algorithms. The framework presented in the first part of this thesis is 
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meant to achieve two goals, 1) to generate truck routes from a large stream of GPS data; 2) to 

measure the variability of routes between an OD pair. Findings from this effort can help improve 

route choice set generation algorithms.  

1.3.1.1 Processing and Cleaning ATRI GPS Data  

The first part of the thesis is done based on more than 145 million raw truck GPS data 

points gathered by ATRI between March and June in 2010 for Florida. These GPS points 

correspond to a sample of trucks that traveled within, into, and out of state of Florida. 

Subsequently, an algorithm developed by Thakur et al. (2) is used to convert the GPS data into 

1.2 million truck trips.  

Considering the main objective of this thesis, characteristics of the data such as data type, 

data frequency, and data coverage have to be investigated so that the proper portion of data is 

selected for further analysis. This task involves measuring the spatial gap and temporal gap 

(hereafter, ping-rate) between consecutive GPS points and comparing spatial gap and ping-rate 

between different types of data. This is an important step because the main goal in the first part 

of this thesis is to design a technique that can convert GPS data into truck route on a roadway 

network. As a result, insights into nature of the GPS data define the path towards building such 

techniques.  

Moreover, the coverage of the data has to be determined. This is done through observing 

the geographical distributions of truck trips. An algorithm developed by Thakur et al. (2) with 

some minor changes has been used to convert the raw GPS data into truck trips. Then, 

distributions of truck trips between OD pairs inside and outside of Florida are obtained to better 

understand the spatial characteristics of truck trips. This will help devise a process to select trips 

that are suitable for further analysis. 
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The last task in this objective is to detect possible anomalies in GPS data that can 

negatively impact the final results of this thesis. These anomalies exist due to systematic errors in 

GPS receivers or devices. Erroneous time stamps, incorrectly recorded latitudes or longitudes are 

examples of such anomalies. Therefore, a procedure has to be put in place to clean the GPS data 

(and resulted truck trips) from data anomalies. 

1.3.1.2 Procedure to Generate Routes from Raw GPS Data 

The first objective of this thesis is to develop a method for extracting the route taken by a 

truck on a roadway network using raw GPS data. This task consists of two steps, namely, map-

matching and route generation. Quddus et al. (3) defines map-matching as a technique that uses a 

combination of GPS data and roadway network data to identify the correct link that has been 

traversed by the vehicle on the network. Map-matching is the first step towards generating the 

route taken by trucks on the network. 

1.3.1.3 Variability Measure 

This objective is geared towards creating a tool for measuring the variability of derived 

routes from GPS data. Being able to measure similarities or differences between truck routes on 

a network is an important step towards understanding truck route choice behavior. The large 

number of GPS data points provides an unprecedented opportunity to develop rich observed 

truck route choice sets that can be useful for improving route choice set generation algorithms. 

This objective is meant to measure the variability of routes generated between a given OD pair 

that can help improve route choice set generation algorithms. 

1.3.2 Second Part 

The second part of the thesis describes the implementation of the proposed methodology 

within the context of an FDOT District 4 project entitled “GPS Data for Truck-Route Choice 



7 

 

Analysis of Port Everglades Petroleum Commodity Flows”. This project aims to use truck-GPS 

data from ATRI to derive petroleum tanker trucks’ travel path (or route) information, describing 

the routes that the tanker trucks take to travel from Port Everglades to their final delivery points. 

To this end, following goals are investigated in detail. 

1.3.2.1 Objective 1: Gather ATRI’s Truck-GPS Data 

This task established a non-disclosure agreement (NDA) between ATRI and USF to 

protect the confidentiality of the GPS data that ATRI shared with USF. The agreement allowed 

for the aggregate results and data products from the research to be delivered. However, the 

agreement did not allow either the raw GPS data or individual GPS data points to be shared with 

anyone outside the research team at USF.  

Once the NDA was in place, ATRI extracted and shared the relevant truck-GPS data with 

USF. This included eight-weeks of GPS data of trucks in the months of September 2014 and 

March 2015 for the 12-county region served by the Port Everglades –Miami-Dade, Broward, 

Palm Beach, Monroe, Martin, St. Lucie, Indian River, Okeechobee, Glades, Hendry, Lee, and 

Collier Counties. ATRI extracted and provide to USF raw GPS data on trucks originating in the 

Port Everglades (PEV) and traveling in the 12-county region.  

In addition to the truck-GPS data, the following other data were needed for this work: 

1) A shape file of TAZs or MAZs in the 12-county region, 

2) A shape file of a detailed highway network in the 12-county region, 

3) A shape file of the gas stations in the 12-county region, and 

4) A shape file of PEV, identifying specific locations within the port where petroleum 

tanker trucks might originate from. 
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The research team relied on FDOT District 4 and their consulting team to obtain the 

information above. 

1.3.2.2 Objective 2: Identify & Separate Petroleum Tanker Trucks 

ATRI provided to USF raw GPS data on trucks originating at PEV and traveling in the 

12-county region identified above. However, it was not necessary that all those trucks carry 

petroleum products. Therefore, this task developed simple rules or heuristics to identify and 

separate petroleum tanker trucks originating at PEV based on the land-uses (particularly gas 

terminals at PEV) of the locations visited by the trucks.  

1.3.2.3 Objective 3: Derive Trip Chains of Trucks 

The raw GPS data was converted into a database of truck trip chains. The algorithms 

developed previously by Thakur et al. (2) were utilized in this task. However, the algorithms 

were developed primarily for the purpose of deriving individual trips, as opposed to deriving trip 

chains. As part of this project, such algorithms were modified to derive trip chains from the raw-

GPS data. 

1.3.2.4 Objective 4: Derive Truck Travel Paths 

This task derived the travel paths for tanker trucks traveling between PEV and gas 

stations. For each truck trip between PEV and a gas station, the travel route was derived in the 

form of a GIS shapefile. 

1.4 Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 provides a review of the 

literature on map-matching methods and route variability measurements. Chapter 3 describes the 

GPS data used for developing the methodology in the first part of the thesis. Chapter 4 defines 

the algorithms for data preparation, route generation, and route variability measurement. Chapter 
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5 presents the conclusion of the first part of the thesis and recommendations for future research. 

Chapter 6 is the beginning of the second part of the thesis and presents an overview of the data 

used in the FDOT project. Chapter 7 describes characteristics of tanker truck trips and steps 

taken to derive their trip chains. Chapter 8 presents implementation of the methodology 

developed in the first part of the thesis to derive tanker trucks’ routes. Chapter 9 summarizes the 

findings in the second part of the thesis and identifies opportunities for future research
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CHAPTER 2 : LITERATURE REVIEW 

 

2.1 Introduction 

This section of the study discusses the literature on how the roadway network performs 

for trucks, followed by a review on the studies that review both map-matching and validation 

processes along with route variability. This research does not aim to introduce a new method, 

rather to borrow efficient solutions to build the desired algorithm for truck route analysis. 

Therefore, the review of both trip selection and map-matching processes are essential. 

2.2 Previous Studies on Map-matching Methods 

Map-matching technique may date back to 1996, in which Kim et al. (4) introduced a 

simple algorithm that mapped the GPS points to the closest node or shape point in the network. 

Ever since, a mushrooming literature has evolved varying from simple methods to complex 

mathematical techniques. Ochieng et al. (5) discussed comprehensively the pros and cons of each 

common method. From the methodology side, developed algorithms fall into four major 

categories, namely, geometric based, geometric and topologic based, probabilistic based, and 

advanced algorithms. The geometric based algorithm uses the distance of either point-to-curve or 

curve-to-curve, or the angle of curve-to-curve for map-matching. While the geometric and 

topologic based algorithm diminishes the incorrect candidate points by considering the 

connectivity of the network elements. Ochieng et al. (5) pioneered the probabilistic based 

algorithm that uses a confidence region defined around each GPS point. Then, the confidence 

region is imposed on the road network to understand the road segments. The choosing of 
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appropriate segments, finally, is carried out by closeness, connectivity, and heading criteria. 

Following the Kalman filter method, several complex algorithms such as hybrid Bayesian 

network, fuzzy logical model, Belief function, and Dempster-Shafer theory of evidence have 

growingly emerged in the field of traffic network analysis. These methods shaped the kernel of 

advanced map-matching algorithms. Table 2.1 summarizes previous efforts for map-matching 

analysis with a wide diversity in analysis methods.  

2.3 Previous Studies on Route Validation 

From the validation side, studies might be divided into three major categories, namely, 

site based methods, comparison methods, and analytical methods. In site based methods a field 

test is implemented. A vehicle carrying a probe system then traverses a pre-chosen route. The 

points from the probe system are map-matched using the algorithm and finally, the pre-chosen 

route and the produced route are compared. Ochieng et al. (5), Yang et al. (6), and Dhakar (7) 

have effectively implemented site based methods for route validation. The advantage of site-

based approach is that it truly measures the accuracy of the map-matching algorithm. On the 

other hand, the involved costs limit its implementation. Xu et al. (8) and Chen et al. (9) have 

utilized comparison methods to validate the map-matching algorithm. The former compares the 

results with an already validated map-matched data while the latter proposes to time-sample the 

data and compare the results with the original data. While comparison methods overcome some 

of the difficulties of site based methods, they demand for either larger datasets or already 

validated data. Feasibility and continuity analysis done by Hess et al. (10), and correct road 

matching ratio implemented by Jagadeesh et al. (11) are considered analytical methods that are 

successfully implemented. Analytical methods are more frugal in terms of cost of 
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implementation but they still need an already validated dataset serving as the base of 

comparison. 

Table 2.1 Summary of literature on map-matching and route validation 

 

 
 

2.4 Gaps in the Literature 

The current literature of map-matching algorithms has certain gaps that preclude the 

author from applying them on the less frequent GPS point data. First, as shown in Table 2.1, 

previous empirical analyses have proposed methods that are valid only for high frequency GPS 

points. Consequently, employing these methods where consecutive temporal gap between GPS 

points is more than 10 minutes may demolish the accuracy of results. In the truck route choice 

analysis, the extracted data from in-vehicle GPS devices presents less frequent GPS points. 

Hence, building the results on the previous map-matching analysis hinders a fine-grained 

analysis of truck movements on the road network. Second, most of the map-matching techniques 

that are summarized here deal with very dense urban networks and in turn, are very complicated 

to match the GPS points to the right links as precisely as possible. The data used in this thesis, on 

the other hand, belongs to long-haul trucks that usually traverse major highways and arterials as 
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they travel, and do not appear in dense urban areas for the most part of their trip. Hence, the fact 

that trucks usually appear on major highways demands for a less complicated map-matching 

approach.  

To the best of the author’s knowledge, there are a few studies on truck route generation 

and analysis that propose a practical algorithm for map-matching and validation of large streams 

of GPS data. The current research, therefore, is an attempt to bridge the above-mentioned gaps 

by shedding some light on how to turn truck GPS data into truck trip routes so that they can be 

used to understand truck movement behavior. This thesis proposes a simple, yet effective 

algorithm for turning truck GPS data into truck trip routes and their respective links. The main 

idea of this approach is rooted in the nearest link and second nearest link algorithm introduced by 

Yang in 2005. 
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CHAPTER 3 : DATA AND MEASUREMENT 

 

3.1 Introduction 

The first part of the thesis is done based on more than 145 million raw truck GPS data 

points gathered by ATRI between March and June in 2010 for Florida. Characteristics of the data 

such as data type, data frequency, and data coverage are investigated in this chapter. This task 

involves measuring the spatial gap and ping-rate between consecutive GPS points and comparing 

spatial gap and ping-rate between different types of data. This is an important step because it 

leads to design a technique that can convert GPS data into truck route on the roadway network.  

3.2 Characteristics of ATRI GPS Data 

ATRI’s truck GPS data represent a sample of truck flows within, coming into, and going 

out of Florida. This sample is not a census of all trucks traveling in the state. Also, it is unknown 

what proportion of heavy truck flows in the state is represented by this data sample. To address 

this question, truck traffic flows implied by one-week of ATRI’s truck GPS data were compared 

with truck counts data from more than 200 Telemetered Traffic Monitoring Sites (TTMS) in the 

state. The results from this analysis suggest that, at an aggregate level, the ATRI data provides 

10.1 percent coverage of heavy truck flows observed in Florida. When the coverage was 

examined separately for different highway facilities (based on functional classification), the 

results suggest that the data provide a representative coverage of truck flows through different 

types of highway facilities in the state (6). 
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The final data includes a unique ID number assigned to each truck (hereafter truck ID), 

spatial characteristics such as latitude and longitude of the GPS points, and temporal 

characteristics such as date and time. “Unique Truck ID” is a random number assigned to each 

vehicle and cannot be used to trace back the actual vehicle from the trucking company. Truck ID 

however, can be used to distinguish between different trucks in the database for trip 

measurement purposes. A subset of the data has instantaneous speed of the corresponding truck 

for each GPS record (henceforth called data with spot speed) and the remaining portion of the 

data does not have such information (henceforth called data without spot speed). The spatial and 

temporal characteristics of the data play an important role in the accuracy and feasibility of the 

route generation. The frequency and spatial gap have a positive correlation with the accuracy of 

the final generated routes. Higher ping-rates in the data result in routes that are more accurate. 

However, it should be kept in mind that in some cases while the ping-rate is small, the spatial 

gap between two consecutive GPS points can be quite large resulting in errors. Therefore it is 

necessary to consider the spatial gap between consecutive GPS points to increase the accuracy of 

data. While being mindful of these spatial and temporal gaps, it is also necessary to understand 

that the feasibility of truck route generation is dependent on the amount of GPS data available for 

use. Therefore, selecting a sufficient number of GPS observations while minimizing the spatial 

and temporal gaps is critical to obtaining a meaningful dataset.    

The goal of obtaining a meaningful dataset is achieved by a two-step process. First the 

data is compared with and without spot speed. Tables 3.1 and 3.2 show, respectively, the cross-

tabulation of the data by spatial gap and ping rate with and without spot speed. Comparing the 

two tables reveal that data without spot speed is coarser than data with spot speed. While Table 
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3.1 shows that the 25 percent of observations with spot speeds have a ping-rate of 15 minutes or 

less and spatial gap of 15 miles or less. 

Table 3.1 Cross-tabulation between largest ping rate and its corresponding spatial 

difference for GPS data with spot speed 

 

 
 

Table 3.2 shows that 44 percent of observations without spot speeds have ping-rates 

greater than 45 minutes and a spatial gap greater than 30 miles. Such large spatial gaps and ping 

rates impose practical difficulties on route generation efforts. The main problem with large 

spatial gaps and ping rates is that the location of the truck is unknown between two consecutive 

GPS points. Additionally, there is no other source of information that can help identify the 

location of the truck during large spatial gaps (or ping rates). For example, there is no other 

information on trucking companies, the usual routes their fleet take, or type of commodities that 

they carry. Therefore, large scale simplifying assumptions have to be made regarding the route 

choice of the trucks in order to generate routes. This will result in generated routes that can 

significantly be different from the real routes taken by those trucks.  Therefore, it is better not to 

use data without spot speed and select data with spot speed that is more frequent for further 

analysis.  



17 

 

Next step is to impose some spatial gap and ping rate limitations on data with spot speed 

in order to select the final portion of data for route generation. Even though data with spot speed 

is more frequent than data without spot speed, there are some rare streams of GPS points with 

spot speed that have large spatial gaps or ping rates. Therefore, such streams of data must be 

removed while a significant portion of data is remained in order to make meaningful analysis of 

generated routes in future. To this end, observations of relationships between spatial gap and 

ping rate in data with spot speed revealed that maximum spatial gap of 20 miles and maximum 

ping rate of 20 minutes is ideal. This means that when GPS points of a trip is observed if the 

largest ping rate amongst those GPS points is less than 20 minutes and the spatial gap 

corresponding to the largest ping rate is less than 20 miles, then that trip and its GPS points are 

kept for future analysis. To save more data in this process, those trips whose largest ping rate is 

greater than 20 minutes but the corresponding spatial gap is less than 5 miles are also kept. This 

is because in route generation the spatial gap between consecutive GPS points matter the most. 

Therefore, streams of GPS points that have small spatial gaps must be retained regardless of their 

corresponding ping rates.  

To recap, the final data includes two portions of data with spot speed: (1) GPS points 

with a spatial gap of less than 20 miles and a ping-rate of less than 20 minutes; and (2) GPS 

points with a ping-rate of more than 20 minutes but with a spatial gap of less than 5 miles. These 

criteria result in more than 97 percent of the data with spot speed being retained which is an 

acceptable amount for further analysis. 
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Table 3.2 Cross-tabulation between largest ping rate and its corresponding spatial 

difference for GPS data without spot speed 

 

 
 

3.3 Anomalies in GPS Data 

Even though GPS data is usually of high quality in terms of consistency and accuracy, 

some rare anomalies can still be found in stream of GPS data. Such anomalies are inevitable due 

to systematic errors of GPS satellites and GPS receiver devices. It is important to detected and 

properly handle these anomalies to produce valuable results in future steps. 

There are two main issues that are found during this research in stream of GPS data that 

can be problematic for route generation practices. First, there might be a loss of data signal for a 

period of time during a trip. This means that for a considerable amount of distance and time 

during a trip there are no GPS records in the data. This is a problem with regard to route 

generation because it is not clear what route alternatives have been taken by the truck during the 

loss of signal. Therefore, any estimation during this time interval will impose a significant error 

on the final predicted route for that trip. Consequently, it is reasonable to remove such trips from 

the dataset in order to avoid problematic trips. Second, some consecutive GPS records show very 

high average speeds. For example, the average speed between two consecutive GPS points is 
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more than 100 mph. It is common knowledge that trucks usually travel around 60 mph and 

therefore, very high average speeds during the trip is not reasonable. The reason to observing 

such high average speeds is systematic errors in GPS systems that cause wrong records of time 

stamps, latitudes, or longitudes. Having trips with irrational average speeds will also impose the 

danger of wrong route estimation in future analysis. As a result such trips should also be 

removed from the data set. 

To protect the final dataset from such anomalies conditions (b) and (c) are added to Stage 

3 in Section 4.3 of Chapter 4. These conditions remove trips that have unreasonably large spatial 

gaps or average speeds between consecutive GPS points.



20 

 

 

 

 

 

 

CHAPTER 4 : PROCEDURE TO GENERATE ROUTES FROM RAW GPS DATA 

 

4.1 Introduction 

In order to investigate truck route generation and variability a two-phase framework was 

developed. The first phase predominantly was dedicated to data processing, data preparation, and 

map-matching. Map-matching is a process during which GPS points are snapped to their correct 

links on a roadway network. Before this step, GPS data has to be converted into trips, then 

processed and be ready for map-matching. Then route generation procedure is implemented to 

generate routes from map-matched GPS points. In the second phase, the framework for the 

variability of routes between OD pairs is laid out. A measurement is introduced to identify 

different routes between a given OD pair in order to better understand truckers’ route choice 

behavior. 

4.2 Raw GPS Data to Trips 

As a first step, the raw GPS data needed to be converted to truck trips in order to be ready 

for route generation. The process is summarized below (7): 

1) Identify stops based on spatial movement and speed between consecutive GPS points 

(<5mph) 

2) Derive a preliminary set of trips based on a minimum dwell-time buffer of 5 min 

(eliminate stops of duration < 5 min) 

3) Eliminate rest stops 

a) Used a rest-areas land-use file (very useful but not exhaustive of all rest areas) 
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b) Eliminated stops in close proximity of interstates (< 800 ft.) 

c) Join consecutive trips ending and beginning at rest stops 

4) Find circular trips (with ratio of air distance to network distance < 0.7) 

5) Break circular trips into shorter (valid) trips by allowing smaller stop dwell-time buffers 

at the destinations (redo Steps 3 and 4) 

6) Join insignificant (< 1mile) trips to a preceding long trip or eliminate them 

The procedure above has been developed and discussed by Thakur et al. (2) with a few 

changes. A trip in this thesis is defined as a displacement between a starting point and a stopping 

point. That means a journey with multiple stops is broken into multiple trips. Suppose a truck 

travels between origin A and destination B (Figure 4.1). Suppose that the truck stops at C 

between A and B for 30 minutes to make a small delivery. Therefore, the journey between A and 

B is two trips, one between A and C and another between C and B. Considering the route choice 

behavior of the truck, the route that has been taken in the trip from A to C affects the route 

choice between C and B. Consequently, a correct interpretation cannot be made regarding the 

truck’s route choice behavior from A to B if C is disregarded. Subsequently, the two trips 

discussed here should be considered individually exclusive in order to correctly understand the 

route choice behavior. Moreover, observations that have been done during this research showed 

that the journey between A and B is not necessarily the shortest path because the truck had to 

stop at an intermediate point (i.e., C in this example). As a result the route taken by the truck 

between A and B is counter-intuitive. This issue is even more complex when there is no other 

source of information on the decision maker’s side (i.e., truckers). Therefore, journeys that 

include multiple stops have to be broken into trips. That is why a minimum dwell-time of 5 

minutes is used in the algorithm above.  
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Figure 4.1 Example of a journey containing two trips 

 

Having the GPS data converted to truck trips, some data filtering is needed before map-

matching and route generation. This data filtering is aimed at removing GPS points that are 

difficult to map-match, or are not of high value when route generation procedure is implemented. 

Removing such GPS points is an important step toward developing an efficient route generation 

and map-matching procedure because this thesis deals with big GPS data. Technical competency 

is always of high importance when dealing with big data because the data size can cause very 

time-consuming processes. Therefore, it is imperative to reduce the size of the data to keep the 

processes efficient.  

4.3 Map-matching Dataset Preparation 

Following the conversion of raw GPS data to trips, the data was prepared further to 

obtain a dataset for map-matching. The stages in this process are summarized below.  

1) Stage 1: Select trips that have all the following criteria: 

a) Both ends in FL since the available network (i.e., Navteq) data covered only 

Florida; 

b) Don’t start and end in the same TAZ (traffic analysis zone) since we are interested 

in capturing the route variability between different origin-destination pairs; 

c) 
direct OD distance

trip length
 > 0.7 to avoid circuitous routes that are typically undertaken by 

short haul trucks and is not of interest in this study; and 
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d) Belonging to OD pairs that have equal to or greater than 20 trips to avoid low trip 

frequencies as they don’t have variability of routes for a given OD pair.  

e) Length > 5 miles to exclude urban/short-haul trips. 

2) Stage 2: Get the GPS points belonging to the output of stage 1 

3) Stage 3: Keep the trips and corresponding GPS points that satisfy the following 

conditions. The first two criteria below are explained in Sections 3.2 and 3.3 of Chapter 

3. The third criterion eliminates cases where there are very small (or even zero) ping rates 

while the corresponding spatial gap is not zero. Such cases happen due to systematic 

errors in GPS receiver devices. 

a) Ping rate criteria: 

i.  maximum ping rate < = 20 minutes and corresponding spatial gap < = 20 

miles, or 

ii. Maximum ping rate > 20 minutes and corresponding spatial gap < = 5 

miles 

b) spatial gap criteria : maximum spatial gap < = 20 miles 

c) average velocity criteria: maximum average velocity (i.e.,
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑔𝑎𝑝

𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
) between 

consecutive GPS points < = 100 mph 

4) Stage 4: Time sample GPS points of each trip every 5 minutes to reduce computation 

costs.  

5) Stage 5: Remove GPS points within one mile radius of origin/destination for each trip. 

Doing so eliminates wrong route estimations near points of origin/destination. A lot of 

times the network is not fine enough within the one mile buffer of origin/destination and 

that leads to loops (irrational circular maneuvers) ingenerated routes close to trip ends. 
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Removing GPS points within one-mile buffer around origin/destination helps avoid such 

loops. This step also removes origin and destination GPS points. These points are later 

added at the last step of map-matching algorithm. 

6) Stage 6: Remove GPS points with spot speed < 20 mph. This helps eliminate situations 

when the truck reduced its speed to stop during the trip. Such stops would cause detours 

in the generated routes which would have led to false interpretations of route variability.  

7) Stage 7: Remove trips that have less than 3 GPS points. Such trips were removed to avoid 

false route generation that might have resulted from lack of GPS data. 

1,583,164 trips (corresponding to 53,185,413 GPS points with spot speed) existed in the 

dataset before implementing the data preparation stages. 84,236 trips (corresponding to 725,483 

GPS points with spot speed) were retained after implementing all the data preparation stages. 

4.4 Map-matching 

The next step is to apply the map-matching algorithm to the 84,236 trips from Step 2. 

This algorithm is a modified version of an algorithm introduced by Yang et al. (6).The map-

matching algorithm is as follows: 

1) Step 1: Find the closest and second closest link to each GPS point. D1 and D2 denote the 

distance from each GPS point to closest link and second closest link, respectively. 

2) Step 2: If D1 > 1000 ft. then remove the GPS point. GPS points that have no links within 

their 1000 ft. buffer are very difficult to map-match. This step eliminates such GPS points 

to avoid matching them to the wrong link. 

3) Step 3: If  
𝐷2

𝐷1
> 2 then go to Step 4, else go to Step 5. 

4) Step 4: If D1 + D2 > 35 ft. then match the GPS point to the closest link. Otherwise, 

remove the GPS point. This step has been implemented to avoid matching GPS points to 
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the wrong link at interchanges or near ramps. Since links are very close to each other at 

such places, D1 and D2 might be smaller than GPS maximum accuracy that can lead to 

matching the GPS point to a wrong link. Therefore, there should be a lower bound on 

D1+D2 to make sure D1+D2 is greater than twice of GPS maximum accuracy. This 

lower bound has set to be 35 ft. because GPS maximum accuracy is 5 meters (16.4 ft.) 

according to Department of Defense report (12). 

5) Step 5: Make a 65 ft. buffer around each GPS point that did not satisfy the ratio in “Step 

3”. If there is only one intersection node falling in that buffer, then match the point to the 

intersection. Otherwise, remove the GPS point. This step deals with situations where a 

GPS point is close to an intersection. If the GPS point is near an intersection and only one 

intersection node falls in the 65 ft. buffer then the GPS point is matched to the 

intersection node. This is because some intersections have more than one node in Navteq. 

Consequently, two or more nodes might fall inside the 65 ft. buffer around a GPS point. 

Since it is difficult to decide to which node the GPS point should be matched to, it was 

decided to remove GPS points that have two or more intersection nodes falling inside 

their buffers.  

6) Step 6: Add the origin and destination GPS points to the data for each trip. 

7) Step 7: Remove any trip that has less than 5 GPS points. Some trips lose most of their 

GPS points after the map-matching algorithm is implemented. Therefore, generating the 

routes for such trips will impose high chances of errors. To avoid such routes, trips with 

less than 5 GPS points are removed.  

Figure 4.2 shows the algorithm for the map-matching process. After the map-matching 

process was implemented the dataset had 78,381 trips for which routes were generated. This 
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map-matching algorithm provides a good balance on the tradeoff between accuracy of results 

and the relative size of the data. Most map-matching methods that result in very high accuracy 

outputs utilize complicated algorithms that are costly in terms of replication and implementation. 

Furthermore, such algorithms are not tested against large GPS datasets. In addition, such 

complicated algorithms are not available in the public domain making implementation difficult. 

The proposed method in this study on the other hand, benefits from a much less complicated 

algorithm that can easily handle a large GPS dataset while maintaining a satisfactory level of 

accuracy. Equally important, it can be implemented using widely used software packages such as 

ArcMap thereby helping reach a wider audience which results in better data being available to 

all. 
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Figure 4.2 Map-matching algorithm 
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4.5 Route Generation 

Due to the infrequent nature of the GPS data in this study, the map-matching algorithm 

detailed in Section 4.4 does not capture all links in a trip.  Consequently, missing links need to be 

found so that a route can be generated for each trip. To this end, ArcMap 10.3 Network Analyst 

extension was employed to generate the routes for map-matched GPS points. Network Analyst 

utilizes a modified version of Dijkstra's algorithm to find shortest paths between two points. For 

each trip, the shortest path between consecutive GPS points was found based on minimizing 

travel time.  

The final output of route generation is a GIS shapefile in which each feature is a network 

link that contains network information as well as trip information. Figure 4.3 (a) shows an 

overall view of the generated routes for 78,381 trips that belong to 2,237 OD pairs in Florida. 

Figure 4.3 (b) is an example of generated routes for one specific OD pair with 218 trips. In this 

example the origin TAZ is in Polk County (in central Florida) and the destination TAZ is in 

Miami-Dade County (in south east of Florida). Figure 4.4 shows the route length distribution for 

78,381 trips. The resulting distribution is intuitive; there are few trips whose lengths are greater 

than 500 miles because longer trips usually stretch out of Florida. In addition, if a truck stops 

more than 5 minutes during its trip, that stop is called a destination resulting in breaking the trip. 

This reduces the probability of capturing trips longer than 500 miles. Trips that are 5 miles or 

shorter do not exist in the final dataset since such trips were eliminated during the procedure in 

Section 4.3.  
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Figure 4.4 Route Length distribution of all 78,381 generated trips 

 

4.6 Route Feasibility and Validation 

The generated routes were validated in terms of feasibility and consistency. Routes are 

consistent if:  
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1) the direction of the travel is consistent throughout the entire route 

2) there are no loops  throughout the entire route 

And feasible if and only if: 

3) there are no impossible maneuvers throughout the entire route (impossible maneuvers 

such as jumping off a bridge)  

80 trips were selected and then followed on Google Earth for validation checks. Table 4.1 lists 

all the 80 trips that were selected for feasibility and consistency checks with their corresponding 

trip time and trip length information. The last column from left in this table illustrates the status 

of each trip with regard to feasibility and consistency checks. As can be observed, all the 80 

routes are marked as “Ok” which means they are all feasible and consistent. Figure 4.5 shows the 

route length distribution for these 80 trips. Two in five trips are between 200 and 500 miles. This 

is because such trips have a higher chance of inconsistency or infeasibility. Table 4.2 illustrates 

the cross-tabulation of the data by spatial gap and ping rate for the 80 trips. This cross-tabulation 

shows that the 80 trips are a good representative of the population in terms of ping-rate and 

spatial gap. 

Consistency and feasibility checks are done simultaneously when the route is followed on 

Google Earth. To check the consistency, each generated route was compared to the route from 

Google Earth to determine if the generated route shows the same direction through the entire trip. 

For example if the truck has to take the north bound direction on the highway to get to the 

destination, the generated route should show that the truck has maintained that direction through 

the entire trip.  

For feasibility check, each trip is observed at interchanges or overpasses or ramp 

junctions to see if the generated route shows any impossible maneuvers at such locations. Figure 
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4.6 shows an example of consistency and feasibility check for one trip. The yellow arrow shows 

the direction of travel depicted by the generated route. It is consistent through the entire trip. 

Moreover, there are no impossible maneuvers at interchanges or overpasses, meaning that the 

route is feasible. All 80 routes passed the consistency and feasibility checks. 

Another validation concern was to verify if time-sampling the GPS data changes the 

original routes of trips. To examine this issue 45 randomly chosen trips were map-matched 

without time-sampling. Next, the same 45 trips were map-matched using time-sampling. Routes 

for both sets of trips were generated and then compared. It was found that generated routes for 

both sets of trips were similar This shows that time-sampling the GPS data at a 5-minute rate can 

reduce the computation time for map-matching while not damaging the original map of a route. 

Figure 4.7 shows an example comparing routes before time-sampling and after time-sampling. 

The routes do not change by implementing time-sampling. 

4.7 Route Variability Measure 

Generating truck route choice sets is the first step towards building truck route choice 

models and the first five steps detail a process that can be an improvement to generating truck 

route choice sets. There are three main approaches for generating choice sets (11). The first 

approach is modelling the membership of each route alternative in the final choice set explicitly. 

This approach is too costly in terms of computation complexity and therefore, cannot be used 

even for medium sized problems. The second approach which is based on heuristic 

approximations of the explicit choice set models, is tricky to implement. This approach is based 

on the assumption that the universal choice set is known to the observer. The third approach is 

based on establishing the master set for all route alternatives and then reducing the master set for 
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each individual route to obtain the individual choice set. Attractiveness, plausibility and route 

similarity are factors to be considered when the master set is reduced for each individual route. 

Route similarity is usually interpreted as route overlap in a sense that the more two routes 

overlap, the more similar they are. Routes with little overlap are considered as unique routes. In a 

network as complex as a statewide road network there is an extensive number of overlapping 

route alternatives that exist between any given OD pair. Only unique routes need to be kept in 

the final choice set for future route choice modeling. In order to generate route choice sets we 

use a Path Size similarity measurement approach for identifying unique routes between OD 

pairs. The reason for choosing this approach is twofold. First, it is capable of identifying routes 

that are partly shared with one distinct route and partly shared with another distinct route. For 

example, if route i shares 40 percent of its length with distinct route A and the other 50 percent 

of its length with distinct route B, the proposed algorithm identifies route i as a distinct route. 

Second and equally important, it is easy to implement and not computationally costly.  

The approach based on the total length of shared links and the algorithm is as follows:  

1) Step 1: Identify the first route (in the dataset) and consider it as a unique route. 

2) Step 2: Get the next route and find its shared links with each unique route.  

3) Step 3: Compute “shared link length ratio” between the current route and each of the 

unique routes. 

4) Step 4: If any of the computed ratios is greater than 0.75 then dismiss the route. 

Otherwise, add it to the unique routes.   

5) Step 5: Go to  Step 2 

shared link length ratio =  
∑ li

kn
i=1

∑ lj
kN

j=1

 

𝒍𝒊
𝒌= length of link i in route k 
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𝒍𝒋
𝒌= length of link j in route k 

n = number of shared links for route k 

N = number of all links in route k 

If this ratio for route k is less than 0.75 comparing to each unique route, then route k is 

considered a unique route. This series of comparisons continue until all the unique routes are 

found. The proposed algorithm for identifying unique routes is implemented on 10 different OD 

pairs. All the OD pairs selected for unique route identification were at least 50 miles apart and 

had more than 50 trips. To better analyze the issue of route variability detours are not taken into 

consideration. Detours are significantly longer than the majority of routes between an OD pair. 

One cannot draw a concrete conclusion regarding the reason behind occurrence of detours based 

solely on GPS data. However, one viable assumption in the context of this study could be that 

detours happen due to some minor deliveries along the main trip. After a series of experiments, it 

was found that most detours are longer than the 90
th

 percentile of the longest route for 10 OD 

pairs. Therefore, for each OD pair all the trips falling under 90 percentile of the longest route 

were selected in order to exclude possible detours. Subsequently, unique routes were identified 

using the algorithm that is discussed earlier. Figure 4.8 shows an example of identified unique 

routes for five OD pairs.  

The results suggest that one of the key factors that impact truck route choice variability is 

the network structure between the OD pair. The more competitive routes are available, the more 

different routes are observed. Case 2 in Figure 4.8 illustrates this phenomenon. On the other 

hand, where there are only one or two viable route options available, less variability is observed 

in the chosen routes between the OD pair. Case 3 is an example of this situation.   
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4.8 Validation 

The results were validated in two separate phases. In the first phase, the identified unique 

routes for each OD pair were manually compared to all the 90
th

 percentile routes to check if the 

identified routes cover most of the variations. In the second phase, within each OD pair 

identified routes were compared to each other to check they do not overlap more than 75% of the 

route length. This validation was done for all the 10 OD pairs and the results show that the 

performance of the algorithm is satisfactory. Table 4.3 illustrates the results for route variation 

measurement. 

The diversity between the routes for OD pairs primarily depends on the network structure 

and availability of competitive route alternatives. For example cases one and two in Table 4.3  

are quite different in number of different routes while their OD distance and number of routes are 

very close. The fact that for longer routes the diversity of routes is low can be explained in the 

context of study region. In Florida, interstates I-75 and I-95 are two major interstates in north-

south direction. Both interstates are stretched along the longer side of the state. I-10 is another 

major interstate that is in east-west direction connecting the panhandle to the east coast of 

Florida. Therefore, most trips longer than 200 miles end up on these three options and as a result, 

route diversity for trips longer than 200 miles is low.  
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Figure 4.5 Route length distribution for selected 80 trips 

 

Table 4.1 General trip information for 80 routes selected for feasibility and consistency 

checks 

 

Case Number Route number Trip Time(minutes) Trip Length(miles) Status 

1 10718 75 82 Ok 

2 11042 81 89 Ok 

3 11113 90 96 Ok 

4 114552 379 459 Ok 

5 13 200 226 Ok 

6 14648 200 229 Ok 

7 14773 247 299 Ok 

8 14795 247 300 Ok 

9 14797 70 68 Ok 

10 14807 282 343 Ok 

11 14839 247 302 Ok 

12 14894 84 85 Ok 

13 14939 65 69 Ok 

14 15724 40 38 Ok 

15 15760 40 38 Ok 

16 15780 41 38 Ok 

17 16202 63 67 Ok 

18 16257 75 82 Ok 

19 1626 187 203 Ok 
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Table 4.1 (Continued) 

 

20 16623 79 73 Ok 

21 1735 189 221 Ok 

22 1788 100 115 Ok 

23 1844 96 111 Ok 

24 185 240 267 Ok 

25 1871 248 279 Ok 

26 1907 173 196 Ok 

27 2259 190 217 Ok 

28 2805 182 212 Ok 

29 2806 174 205 Ok 

30 2866 261 306 Ok 

31 2883 184 209 Ok 

32 2944 150 163 Ok 

33 2953 45 35 Ok 

34 2960 47 50 Ok 

35 2961 149 163 Ok 

36 2997 91 99 Ok 

37 3737 55 58 Ok 

38 421 186 213 Ok 

39 44 151 179 Ok 

40 4977 39 44 Ok 

41 5041 31 25 Ok 

42 5197 57 50 Ok 

43 58 147 180 Ok 

44 7434 45 45 Ok 

45 7793 24 21 Ok 

46 7818 51 50 Ok 

47 7831 55 61 Ok 

48 8474 72 80 Ok 

49 8675 59 57 Ok 

50 92 129 152 Ok 

51 759 52 51 Ok 

52 244 60 61 Ok 

53 756 61 58 Ok 

54 601 250 306 Ok 

55 801 289 353 Ok 

56 318 117 107 Ok 

57 831 301 355 Ok 
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Table 4.1 (Continued) 

 

58 113 244 297 Ok 

59 128 234 291 Ok 

60 100 239 293 Ok 

61 85 73 81 Ok 

62 687 61 57 Ok 

63 720 61 59 Ok 

64 68 131 143 Ok 

65 165 18 15 Ok 

66 326 116 112 Ok 

67 13511 130 118 Ok 

68 14353 259 253 Ok 

69 16070 325 302 Ok 

70 174 196 183 Ok 

71 17999 321 286 Ok 

72 23240 251 225 Ok 

73 50345 270 231 Ok 

74 52905 187 197 Ok 

75 111147 236 243 Ok 

76 115020 311 285 Ok 

77 117122 329 325 Ok 

78 119952 250 241 Ok 

79 138428 229 211 Ok 

80 91341 252 262 Ok 

 

Table 4.2 Spatial gap vs. ping rate for selected 80 trips 
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Table 4.3 Route variation measurement results 

 

Case 

OD 

Distance 

(miles) 

Number of Trips 
Number of 

Unique Routes 

1 55 197 6 

2 57 197 2 

3 91 94 6 

4 117 237 10 

5 156 91 4 

6 189 86 2 

7 219 196 2 

8 224 72 1 

9 348 48 2 

10 375 100 1 

 
Location  

Route 

 

 

Origin 

 

Interchange/overpass 

 

 

Figure 4.6 Consistency and feasibility check for one trip 

 

Origin 

Destination 
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Interchange/overpass 

 

Destination 

 

 

Figure 4.6 (Continued) 

 

Case 

number 

Before time-sampling After time-sampling 

Are the 

routes 

similar? 

1 

  

Yes 

 

Figure 4.7 Routes with and without time sampling 

 

Origin 
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Origin 

Destination 
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2 

  

Yes 

3 

  

Yes 

 

Figure 4.7 (Continued) 
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Figure 4.8 90th percentile and unique routes 
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Figure 4.8 (Continued) 
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CHAPTER 5 : CONCLUSION OF THE FIRST PART 

 

5.1 Conclusions 

Trucks play a pivotal role to meet the ever increasing demand for freight movement. In 

this context, the availability of GPS data in recent years has attracted the attention of both 

researchers and practitioners. As a result, a considerable number of studies have been dedicated 

to investigate this subject during the past years. The existing literature does not expand on route 

generation algorithms for low frequency (5 to 20 minutes) GPS data. Moreover, the previous 

route generation algorithms are mainly geared toward dense urban networks rather than rural 

networks. Considering route variability analysis, few studies attempt to introduce a practical 

method for identifying different routes between an OD pair. This study is an attempt to fill gaps 

in literature with regard to route generation algorithms as well as route variation quantification. 

5.2 Map-matching and Route Generation 

From a methodological point of view, map-matching based on closest link and second 

closest link along with modified Dijkstra’s method for generating routes have shown satisfactory 

results. Validation checks have been done by randomly selecting routes and following them on 

Google Earth to evaluate their feasibility and consistency. As far as route variation analysis is 

concerned, comparing each route with each of previous unique routes resulted in capturing most 

of the possible observed route variations. To check the findings from this part, for each OD, 

identified unique routes were manually compared to all of the observed routes to make sure that 

all the possible variations are captured in the unique routes quota. Furthermore, between each 
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OD pair unique routes were compared with each other to make sure that their overlap is less than 

75% of the route length. These validation checks confirmed the proposed method for identifying 

unique routes in this thesis. 

From a practical standpoint, the proposed methods are easy to implement with a 

satisfactory level of accuracy. Most studies use complex methods to map-match GPS data and 

generate routes. The methods developed here are more practical and can be immediately put into 

practice and help agencies address policy concerns. Moreover, the methodology is frugal in 

terms of time considering the size of data and network. The total time needed for map-matching 

and generating routes proposed in this study is less than 5 hours. This is an advantage over 

previous works that usually deal with relatively much smaller GPS datasets. More importantly, 

an effective, yet simple method for identifying unique truck routes is introduced that can be used 

in choice set generation practices.  

5.3 Opportunities for Future Research 

While this thesis opens an avenue to explore truck route choice analysis, relying on GPS 

data has some limitations that need to be addressed in future research. One of the main 

challenges is lack of information on the decision makers’ side. The availability of such 

information can be used to better estimate the travel path of a truck where the frequency of GPS 

data is low. Another limitation in this study is considerably low-frequency GPS data compared to 

similar studies. The low frequency nature of the data has imposed filtering criteria that leads to 

eliminating portions of data. As far as map-matching is concerned, it would be interesting to 

compare the performance of proposed algorithm with that of other algorithms, namely, 

probabilistic based, and geometric and topologic based algorithms. Such comparisons may lead 

to upgrades to the current proposed algorithms. 
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CHAPTER 6 : AN OVERVIEW OF THE DATA USED IN THE PROJECT 

 

6.1 Introduction 

This chapter is the beginning of the second part of this thesis. In this part, the 

methodology developed for route generation in previous chapters is implemented in a project 

sponsored by FDOT. The goal of the project is to derive routes of tanker trucks that deliver fuel 

commodities from Port Everglades (PEV) to 12 counties in southern Florida. This chapter 

provides a background on ATRI’s truck GPS data and other data that were of use in the project. 

This chapter also introduces a method that has been used to separate tanker trucks’ GPS data 

from other trucks’ GPS data. 

6.2 ATRI GPS Data 

In this project the GPS data for two months, September 2014 and March 2015, was 

obtained from ATRI. This data covers tanker trucks visiting 12 counties in Florida: Miami-Dade, 

Broward, Palm Beach, Monroe, Martin, St. Lucie, Indian River, Okeechobee, Glades, Hendry, 

Lee, and Collier. At a minimum each record of data from ATRI has the following information: 

1) Unit information: a specific ID (truck ID henceforth) number belonging to the truck 

2) Temporal information: time stamp of the time when the position of the truck was 

recorded in the following format: MM/DD/YYYY HH:MM:SS 

3) Geographical information : the latitude and longitude that locates the location of the truck 

Data provided by ATRI was divided into two formats, D1 and D2, for each month. The 

characteristics of D1 and D2 data are listed below: 
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1) D1 : 

a)  Includes the truck instantaneous speed (spot speed) in addition to the above-

mentioned information 

b) Truck ID rotates every 24 hours 

2) D2: 

a) Does not include spot speed of the truck 

b) Truck ID is static 

A sample record of D1 data looks as below. 

Unique Truck ID  Time/Date Stamp  Speed  Latitude Longitude 

absdefghi12232123  05/03/2011 01:55:55  25  33.915932  -84.494760  

 

Figure 6.1 An example of raw D1 data 

 

And a sample record of D2 data looks as below. 

Unique Truck ID  Time/Date Stamp  Latitude Longitude 

12232123  05/03/2011 01:55:55  33.915932  -84.494760  

 

Figure 6.2 An example of raw D2 data 

 

It must be noted that “Unique Truck ID” is a random number assigned to each vehicle 

and cannot be used to trace back the actual vehicle from the trucking company. Truck ID 

however, can be used to distinguish between different trucks in the database for trip 

measurement purposes. Moreover, a truck cannot be tracked for more than 24 hours in D1 data. 

For example, if there are two days of data for one truck in D1 dataset, the truck ID in the first 

day is different from the truck ID in the second day for that truck. In D2 data on the other hand, 

truck IDs are static throughout the dataset and therefore, a truck can be tracked for several days. 

6.2.1 Data Coverage 

Main characteristics of the data such as number of days of data, number of trucks, and 

number of GPS points were investigated. For both months of data, D2 data was significantly 
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richer than D1 data in terms of number of days the data was available for, number of GPS 

records (points), and number of trucks .Table 6.1 shows the data coverage for the two months.  

One of the important attributes of GPS data is the ping-rate between consecutive GPS 

points. The higher the ping rate, the more frequent the GPS data. Another attribute of GPS data 

that has importance is the spatial gap between consecutive GPS points. Spatial gap and ping rate 

are indirectly related in a sense that the higher the ping rate, the smaller the spatial gap. Tables 

6.2, 6.3, 6.4 and 6.5 illustrate this relationship for each type of data separately. These tables show 

that D1 data is more frequent than D2 data for both months. In addition, a comparison between 

table 6.3 (or 6.5) and table 3.1 reveals that D2 data is very similar to the data used in the first part 

of the thesis in terms of ping rate and spatial gap. Moreover, the majority of data in this project is 

D2 and therefore, it is reasonable to implement the developed methodologies in previous 

chapters for this project.  

Table 6.1 Attributes of the September 2014 and March 2015 GPS data  

 

 
September 2014 March 2015 

Total 
D1 D2 D1 D2 

# Days of data 10 30 22 31 94 

# Truck IDs 11 44 34 52 141 

# GPS Points 8,621 86,606 35,182 112,009 242,418 

 

Table 6.1 shows that there were 141 total truck IDs in the dataset. It must be noted that 

this number is only the sum of all the truck IDs existing in both months of data, and it is not the 

number of total unique truck IDs.  
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Table 6.2 Cross-tabulation of spatial gap against ping rate for September 2014 – D1 data 

 

 
 

Table 6.3 Cross-tabulation of spatial gap against ping rate for September 2014 – D2 data 

 

 
 

In fact, there were 19 truck IDs that were shared between two months of September 2014 

and March 2015 and therefore, total number of unique truck IDs is 122. 
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Table 6.4 Cross-tabulation of spatial gap against ping rate for March 2015 – D1 data 

 

 
 

Table 6.5 Cross-tabulation of spatial gap against ping rate for March 2015 – D2 data 

 

 
 

6.2.2 Separating Tanker Trucks from Other Trucks 

One of the tasks in this project was to separate the GPS data belonging to tanker trucks 

from the GPS data belonging to other trucks. It has to be mentioned that tanker trucks that carry 
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fuel commodities from PEV to fuel recipients in 12-county area, load the commodities at 

designated terminals in PEV. Figure 6.3 illustrates the location of these terminals in PEV. 

Initially a GIS shapefile containing 13 terminal points was provided to the research team. After 

removing and adding a couple of terminals by the project team, the analysis was continued with 

14 terminals in PEV. 

To separate tanker trucks from other trucks, a polygon was drawn around each terminal 

so that if a tanker truck had stopped at that terminal to load fuel commodities, its GPS data 

would have been captured in the polygon. Subsequently, these polygons were saved as a GIS 

shapefile and sent to ATRI. ATRI then provided the research team with the GPS data that fell 

inside the polygons. In total there were 14 terminals for which the polygons were drawn. Figure 

6.4 shows the polygon around terminal 1. The polygon is in red and the terminal is in yellow 

circle. The polygons were usually extended beyond limits of the actual terminals to capture any 

GPS point with a small distance from the actual terminal due to GPS spatial errors. The rest of 

the polygons around other terminals can be found in Appendix A. 

6.3 Fuel Recipient Data 

Gas stations are the main delivery destinations of tanker trucks that load fuel 

commodities at PEV. In addition to gas stations, there are other fuel recipients such as 

government agencies, agricultural establishments, and industrial establishments that receive fuel 

from tanker trucks in the 12-county region. In order to investigate what proportion of the gas 

stations or other fuel recipients receive fuel from PEV two sets of fuel recipient data were 

provided to the research team. One set of data came from Department of Revenue (DOR) 

surveys and the second dataset came from HERE which is a map service and location data 
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provider. The two datasets were investigated and compared and their advantages and 

disadvantages are discussed in the remaining of this section. 

 
 

Figure 6.3 Location of the terminals (yellow points) in PEV and their associated number (in 

red) 

 

 
 

Figure 6.4 Terminal 1 (in yellow circle) and the red polygon used for GPS data extraction 

 

6.3.1 DOR Data 

This data set included 2315 facilities that consisted of gas stations and other fuel 

recipients such as agricultural, industrial, and government facilities. Gas stations account for 

69% of the facilities in DOR data and the rest of the facilities (i.e., agricultural, industrial, and 
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government facilities) are considered as “other fuel recipients”. This dataset was incomplete in 

terms of covering all the active gas stations in the 12-county region. This was revealed through a 

comparison between gas stations available in Google Earth and gas stations available in DOR 

data.  

DOR data was the only source of information on any fuel recipients other than gas 

stations. As mentioned before these fuel recipients were agricultural, industrial, or government 

facilities that received fuel commodities from PEV. Such fuel recipients are referred to as “other 

fuel recipients” from this point forward in this thesis. Moreover, in this project it was important 

to know what percentages of trucks serve other fuel recipients and therefore, they were separated 

from gas stations in future analysis. 

6.3.2 HERE Data 

HERE data contained 1841 gas stations in the 12-county region. There were no other 

facility type other than gas stations in HERE data. HERE data was also incomplete in terms of 

encompassing all the active gas station in the 12-county region. This was revealed through 

comparing active gas stations in HERE with active gas stations in Google Earth. Therefore, both 

datasets, namely DOR and HERE, were incomplete. Moreover, both datasets had some level of 

gas station data overlap when compared to each other. 

6.3.3 Comparison between DOR and HERE Data 

The two datasets were not complete as mentioned earlier. Moreover, they showed some 

degree of overlap in terms of geocoded gas stations when both layers of DOR and HERE were 

compared. Figure 6.5 demonstrates two overlapping points, one from HERE and the other from 

DOR, that geocode one gas station. The variable “x” is the spatial difference between these two 

overlapping points. For most of overlapping points in HERE and DOR data, x was found highly 



51 

 

varied and in turn, it was not possible to establish a limit on x to distinguish between overlapping 

and non-overlapping points. This led to using a combination of both DOR and HERE data 

(without removing overlapping points) to identify trip origins (destinations) location 

descriptions. In order to accurately identify trip origins (destinations) location descriptions, each 

trip origin (destination) was observed in Google Earth using clusters technique. This technique 

will be explained in details in the coming chapters. 

 

 
 

Figure 6.5 Overlapping points from HERE (red) and DOR (blue)  
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CHAPTER 7 : DERIVING TRIP CHAINS FOR TANKER TRUCKS 

 

7.1 Introduction 

This chapter goes over the procedure used for converting raw GPS data into truck trips 

and deriving trip chains. American Transportation Research Institute (ATRI) provided the 

research team with GPS data belonging to tanker trucks travelling within the 12-county region. 

First, this data was converted to truck trips using a trip conversion algorithm developed by 

Thakur et al. (2). Then trip characteristics such as trip length, trip time, and trip speed 

distributions were measured. Later, certain criteria were introduced to build the chain of trips 

made by each truck. By following such trip chains one can learn the trip patterns of tanker trucks 

that carry fuel commodities in the 12-county region. 

7.2 Algorithm Description 

The overall procedure to convert raw GPS data to truck trips is listed below: 

1) Clean, read and sort raw GPS data in a chronological order for each truck ID. At the end 

of this step all the GPS data belonging to each truck ID is grouped together in the 

chronological order. 

2) Identify stops (i.e., trip ends) based on spatial movement, time gap, and speed between 

consecutive GPS points. 

a) Derive a preliminary set of trips based on a minimum stop dwell-time buffer 

value. Use 5 minutes of dwell-time. 

3) Conduct additional quality check and eliminate trips that do not satisfy quality criteria 
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The original version of the above-mentioned algorithm is developed and explained by 

Thakur et al. (2). However for this project, the following changes were made to the original 

version of the algorithm.  

First, a minimum dwell-time of 5 minutes was used in order to capture all the possible 

stops that tanker trucks make. This is because the dwell-time for fuel delivery can be quite varied 

based on type of truck or fuel recipient. As a result, in order to avoid missing any fuel delivery 

stops the minimum dwell time was set to 5 minutes so that all the possible valid stops could be 

captured.  

Second, all the trips that were shorter than 1 mile were captured because short fuel 

delivery trips could happen considering the notable number of gas stations located within 1 mile 

of PEV. Moreover, a tanker truck can make multiple fuel delivery stops at multiple gas stations 

that are located within 1 mile of each other. 

 Third, no consecutive trips were joined based on destination or origin facility type at this 

step. This means that if a truck ended its first trip at a rest stop, and started its next trip from the 

same rest stop, the two trips were not joined (in the original version of the algorithm such trips 

would be joined). The reason for not joining such trips was to capture all the possible fuel 

delivery stops. It was observed that there are quite a few rest stops that have gas stations. 

Therefore, most of the stops made there by tanker trucks were for fuel delivery purposes rather 

than recreational purposes.  

This algorithm was applied to 242,218 raw GPS points which resulted in 14,598 trips. 

Table 7.1 summarizes the results from converting 242,218 GPS points into 14,598 trips. 
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Table 7.1 General trip statistics for 14,598 extracted trips 

 

 
 

7.2.1 Validation Checks 

100 trips were randomly selected to check their trip ends’ locations. The purpose of this 

validation check was to test if origins and destinations of extracted trips were in valid locations. 

The definition of a valid location is a gas station, PEV terminals, distribution center, other fuel 

recipients, etc. If a trip end (i.e., origin or destination) fell on the roadway then that trip end was 

invalid and flagged as “roadway”.  Table 7.2 illustrates the location description of trip ends 

belonging to 100 trips selected for validation checks. 

Figures 7.1, 7.2, and 7.3 illustrate trip length, trip time, and average trip speed 

distributions for 100 validation trips, respectively. Same distributions for the whole 14,598 

extracted trips are provided in Section 7.3. Comparing length, time and average speed 
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distributions between all 14,598 trips and 100 trips selected for validation, selected trips seem to 

be a good representative of the population. Moreover, the validation check results summarized in 

Table 7.2 show that most of trip ends fall on valid locations. Only 4% of trip origins and 11% of 

trip destinations were found on the roadway. Even though such percentages are still at a 

satisfactory level, there is a major reason why still a few trip ends were observed on the roadway. 

This reason is explained in detail in Section C.3 of Appendix C. 

Table 7.2 Summary of trip end location description of 100 trips selected for validation  

checks 

 

  Origin Destination 

 PEV Terminal 37 34 

Gas Station 47 44 

Distribution Center 9 8 

Other 3 3 

Roadway 4 11 

Sum 100 100 

 

 
 

Figure 7.1 Trip length distribution for 100 validation trips 
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Figure 7.2 Trip time distribution for 100 validation trips 

 

 
 

Figure 7.3 Trip speed distribution for 100 validation trips 
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region while rest of the data is stretched to the west. This geographical distribution of GPS points 

impacts the distribution of trip characteristics, namely, trip length and trip time.  Figure 7.5 

shows the trip length distribution of all 14,598 trips derived from the data. As can be observed, 

the distribution is divided into two portions. The first portion is trips less than 35 miles which 

mostly cover the eastern area of 12-county region. The second portion is trips more than 35 miles 

that cover the western area of 12-county region. The reason for this division is that gas stations 

or other fuel recipients are predominantly located on the east coast rather than west coast of 12-

county region, and in the middle (gator alley) there are not many gas stations or fuel recipients 

that can attract fuel delivery trips. Figure 7.6 illustrates the trip time distribution of all 14,598 

trips derived from two months of data. Similarly, the trip time distribution is also divide into two 

portions, one portion belongs to trips covering the eastern area of 12-county region whose trip 

time is less than 50 minutes, and the other portion belongs to trips covering the western area of 

12-county region whose trip time is more than 50 minutes. It must be noted that trip time 

represents the time interval during which the truck was moving and it also includes any traffic 

stops less than 5 minutes. Finally, Figure 7.7 shows average trip speed distribution for all 14,598 

trips. Expectedly, there are few trips with average speed of 70 mph or above. Each of the 

following distributions for each separate month and each separate data type (i.e., D1 or D2) is 

included in the appendix B. 
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Figure 7.4 12-county region in south Florida, sample of ATRI GPS points (red dots), and 

study boundary (large blue polygon) 

 

 
 

Figure 7.5 Trip length distribution of all 14,598 trips 
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Figure 7.6 Trip time distribution of all 14,598 trips 

 

 
 

Figure 7.7 Average trip speed distribution of all 14,598 trips 
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data. To address all the issues mentioned above, the location description of extracted trip ends 

had to be identified. 

The main idea for identifying trip ends’ location descriptions was based on observing the 

land use of trip ends in Google Earth. Since going through all the 14,598 trip ends was 

practically impossible the idea of grouping close trip ends was proposed. This idea helped reduce 

the load of trip end land uses that had to be observed in Google Earth. The algorithm below 

illustrates how these grouped trip ends (hereafter clusters) were made. First, two terms have to be 

explained. Place ID: an ID number for a unique location visited by trip ends. A gas station is an 

example of a unique location. Unique ID: a combination of rounded trip end longitude (hereafter 

X) and latitude (hereafter Y) to three decimal places. X and Y belong to trip ends. An example of 

unique ID:  27.122_-82.454. 

The following describes the algorithm: 

1) Round the GPS Y and X to three decimal places to capture points within 320ft of each 

other. After rounding, there are unique values of rounded Y coordinates (e.g.: 27.122) 

and X coordinates (e.g.: -82.454). 

2) Combine the rounded Y and X coordinates to create unique IDs  

3) Extract the first original GPS coordinates for each unique ID (i.e., non-rounded Y and X) 

and call them “unique ID representatives”. 

4) First Run:  

a) Sort the dataset by original Y coordinates and then original X coordinates 

b) Calculate the distance between consecutive unique ID representatives   

c) Calculate the difference in GPS coordinates between unique ID representatives 
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d) Combine consecutive unique ID representatives that are less than 1000 ft apart to 

identify place IDs  

e) Calculate the total distance between the first and the last unique ID 

representatives of a place ID. If the total distance is more than 1000 ft, the place 

ID is then subdivided into two or more place IDs to make the total distance less 

than 1000 ft. 

f) Select all new place IDs obtained after the first run. 

5) Second Run:  

a) Sort the first set of new place IDs by original X coordinates and then original Y 

coordinates to recapture the points that may satisfy the spacing conditions but 

were too far apart due to the nature of the data sorting order. Perform the same 

steps from 4.b to 4.e.  

b) Select all of the new place IDs obtained after the second run  

6) Repeat the same procedure for the third and fourth  

7) End the sorting and iterating process to identify place IDs because the number of unique 

place IDs has reached its minimum 

8) Label each place ID with “New cluster #”. With # ranging from 1 to the total number of 

clusters 

Identifying the location description of clusters was done using a combination of Google 

Earth, HERE, and DOR data. As discussed earlier, HERE and DOR data do not include the 

entire active gas stations or other fuel recipients in the 12-county region in Florida. Moreover, 

both sources of data have shown some anomalies in terms of geocoded gas stations or other fuel 

recipients. For example, a geocoded point representing a gas station in HERE or DOR data is not 
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exactly falling on its corresponding gas station in Google Earth. These anomalies were corrected 

while identifying the trip ends’ location descriptions. To this end, all three layers of clusters, 

HERE, and DOR data were imported in Google Earth. Then, clusters’ locations were observed. 

If HERE or DOR data points were falling on the exact location of clusters, then the clusters were 

just marked with the location description of HERE or DOR points. If HERE or DOR points were 

not falling on the exact location of clusters but were within 500 ft of the clusters then the 

coordinates of HERE or DOR points were updated to the exact coordinates of clusters. 

Otherwise, the coordinates of clusters were recorded as new gas stations or fuel recipients if 

clusters were in gas stations or fuel recipients. 

Table 7.3 illustrates the land use description distribution of origins and destination for all 

14,598 trips after implementing the algorithm described above. As can be observed around 40% 

and 35% of trip origins and destinations are observed in gas stations and PEV, respectively. This 

result is expected because these trips belong to tanker trucks that mainly deliver fuel to gas 

stations. Next large percentage in the table belongs to distribution centers (13 % for both origins 

and destinations). The fact that the share of distribution centers are very close for both origin and 

destinations suggests that some trucks mainly travel between distribution centers and in turn, are 

not delivering fuel. It is possible to have a few trucks in the data that do not deliver fuel. Such 

trucks were eliminated in further steps (next sections explains how this elimination was done). 

Lastly, some trip ends were observed on the roadway. This is not an issue of the trip conversion 

algorithm but rather an issue of the study boundary. Section C.3 in Appendix C explains how the 

study boundary causes some on-the-road trip ends. 
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Table 7.3 Land use description distribution for the trip origins and destinations of the total 

14,598 trips 

 

 
 

7.5 Cleaning the Trip Dataset 

Extracted trips from ATRI data needed to be cleaned to be suitable for further analysis. 

To this ends, trucks that did not predominantly visit PEV had to be removed from the trip file. 

These kinds of trucks most probably are not tanker trucks and therefore are not of interest in this 

project. Moreover, if the first (last) trip of a truck has its origin (destination) on the roadway, that 

trip should be removed. This had to be done in order to have the first (last) trip of a truck start 

(end) at a valid location. In addition, trips with origin, or destination, or both on the roadway had 

to be addressed.  These trips were either joined to their next (previous) trip or had their origin 

(destination) replaced by the previous (next) destination (origin). Lastly, truck IDs that belonged 

to the same truck s in D1 data had to be identified. Since truck IDs rotate every 24 hours in D1 

data, it might include trucks with two different truck IDs in two consecutive days. By finding 

those trucks and changing the truck ID in the second day back to the truck ID in the first day, 

that truck could be followed for two consecutive days. All the four data cleaning tasks that were 

described above are listed below: 
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1) Remove 27 truck IDs that did not mainly deliver fuel commodities  

2) Remove 36 trips at the start or end of data stream whose ends are on the roadway  

3) Join or remove trips with origin or destination on the roadway based on certain criteria  

4) Join 3pairs of truck IDs from D1 data based on certain criteria  

Appendix C will illustrate each trip cleaning task in more details. Table 7.4 illustrates the 

land use description distribution of origins and destinations after taking the above-mentioned trip 

cleaning steps. As can be observed, shares of “distribution center” and “on the road” have 

dropped after cleaning the trip dataset and a total number of 12,649 trips were remained for 

further analysis.  

Table 7.4 Land use description distribution for the trip origins and destinations for 12,649 

trips after cleaning the trip file 

 

 
 

7.6 Deriving Trip Chains 

This section illustrates the process of deriving trip chains. A trip chain is a series of trips 

made by a truck in chronological order. A truck makes a chain of trips per day and therefore, 

building trip chains helps understand the behavior of tanker trucks. It also makes it possible to 

follow a chain of trips made by a truck for trip measurement analysis purposes. 
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Total number of trips derived from ATRI data was 14,598. Subsequently, a trip clearing 

process was implemented to make the dataset ready for building trip chains. This process 

resulted in keeping 12,649 trips in the dataset. 

For the final 12,649 trips there were 12,538 consecutive trip pairs corresponding to 111 

unique truck IDs. A trip pair in this context refers to two consecutive trips made by a truck. For 

example, if truck A makes three trips and truck B makes four trips, then there will be two trip 

pairs for truck A and three trip pairs for truck B. Figure 7.11 illustrates the relationship between 

spatial gap and temporal gap for 12,538 trip pairs. Spatial gap is the spatial distance between the 

destination of the first trip and the origin of the second trip in a trip pair. Similarly, temporal gap 

is the temporal difference between the destination of the first trip and the origin of the second 

trip in a trip pair. As can be observed in Figure 7.11, the majority of trip pairs have a spatial gap 

of less than 1 mile. Moreover, 8% of trip pairs have a temporal gap of more than 120 minutes 

(two hours). 

There are 10,794 trip pairs (86% of the total 12,538 trip pairs) in which the land use 

description of the first trip’s destination and the second trip’s origin are the same. These 10,794 

trip pairs are called “matching trip pairs”. 98% of matching trip pairs (10,624 trip pairs) have the 

spatial gap of less than 1 mile. These statistics mean that there was strong connectivity between 

consecutive trips. Moreover, these statistics were used to define the criteria for building trip 

chains.  

As long as trip chain criteria are concerned, it is worth understanding the spatial gap 

distribution for non-matching trip pairs (i.e. trip pairs in which the location description for the 

first trip’s destination and the second trip’s origin does not match). Figure 7.8 shows the spatial 

gap distribution for 1,744 non-matching trip pairs. The figure shows that a significant portion 
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(38%) of non-matching trip pairs fall within 1 mile of spatial gap. This means that choosing 1 

mile spatial gap as one of the trip chain building criteria would also capture a significant portion 

of non-matching trips. 

7.6.1 Procedure for Deriving Trip Chains 

To build trip chains the following criteria were used. 

1) Spatial gap < 1 mile 

2) Temporal gap < 4 hours 

The spatial gap less than 1 mile was proposed based on the discussion in the previous 

section. To put it in a nutshell, the spatial gap for the majority of trip pairs was less than 1 mile 

and in turn, 1 mile of spatial gap was chosen as the first criteria for building trip chains. 

Moreover, based on the discussions between the research team and FDOT 4 officials and 

consultants, it was decided to add a temporal gap of 4 hours as the second criteria. This means 

that if the temporal gap between the one trip’s origin and the next trip’s destination was more 

than 4 hours then the chain of trips was broken. 

Based on the above-mentioned criteria, 1,320 trip chains were built that included 11,918 

trips. Figure 7.9 shows the distribution of number of trips existing in trip chains. As can be 

observed the majority of trip chains include five or less number of trips. Figure 7.10 shows a 

zoomed-in distribution of trip chains with five or less number of trips. It is noteworthy that there 

are a significant number of trip chains with high number of trips (Figure 7.9). Specifically 2% of 

trip chains include more than 50 trips. This is because trucks could be tracked for several days in 

a row and therefore, they have built trip chains with high number of trips. 

Figure 7.12 and 7.13 show the length distribution and time distribution, respectively, for 

all 1,320 trip chains. As can be observed, there were a few trip chains with more than 1000 miles 
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length and consequently more than 1440 minutes (one day) duration. This is because some trucks 

have been tracked for more than one day and as a result, their trip chains are long in terms of 

length and time. 

This project particularly aims at deriving routes of tanker trucks that carry fuel 

commodities from PEV to fuel recipients (including gas stations and other fuel recipients) in the 

12-county region. To this end, it was important to identify those trip chains that visit PEV at least 

once. There were 807 trip chains out of 1,320 total trip chains that visited PEV at least once. 

Figure 7.16 illustrates the distribution of trip chains among number of trips for 807 trip chains 

that visit PEV at least once. Figure 7.17 shows a similar distribution to Figure 7.16 for trip chains 

with 5 trips or less. Comparing Figure 7.16 with 7.9 reveals that trip chains visiting PEV 

generally have higher number of trips. This is encouraging because trip chains that visit PEV are 

of interest in the context of this project. Additionally, such trips are less likely to be broken due 

to the study boundary and therefore, they contain higher number of trips. Figure 7.18 and 7.19 

illustrate distributions of trip chain length and trip chain time, respectively, for 807 trip chains 

visiting PEV. Comparing these figures with those of 1,320 trip chains shows that 807 trip chains 

are relatively longer both in terms of trip length and trip time. This is expected because trip 

chains that visit PEV contain higher number of trips compared to all 1,320 trip chains. Table 7.5 

illustrates the location description distribution of origins and destinations of 807 trip chains. 

Shares of PEV and gas station in this table are relatively higher than other location descriptions. 

This is expected because these trip chains visit PEV at least once and therefore, they contain fuel 

delivery trips. Table 7.6 shows the location description distribution of other 513 trip chains that 

did not visit PEV. In this table, the percentages of “On the road” are quite high for both origins 

and destinations. On the other hand, shares of PEV and gas stations are relatively low compared 
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to Table 7.5. This is because these trip chains were originally part of a bigger chain but were cut 

because their corresponding trucks had crossed the study boundary.   

Figure 7.14 and 7.15 show profiles of starting time and ending time of 1,320 trip chains, 

respectively. As expected, there is a spike at 8:00 AM in Figure 7.14 which corresponds to the 

AM peak. There is also a spike in Figure 7.15 around 17:00 PM which corresponds to the PM 

peak. In both figures there are spikes close to midnight. This is because the stream of truck data 

usually starts or ends around midnight (12:00 AM). These figures show that tanker truck trip 

chains start or end around usual AM and PM peak hours, respectively. 

 
 

Figure 7.8 Spatial gap distribution for non-matching trip pairs (N = 1,744 trip pairs) 
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Figure 7.9 Distribution of trip chains among number of trips (N = 1,320 trip chains) 

 

 
 

Figure 7.10 Distribution of trip chains among number of trips (number of trips =< 5) 

(n=822 trip chains) 
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Figure 7.11 3-D histogram of spatial gap vs. temporal gap (N = 12,538 trip pairs) 
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Figure 7.12 Trip chain length distribution (N=1,320 trip chains) 

 

 
 

Figure 7.13 Trip chain time distribution (N = 1,320 trip chains) 
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Figure 7.14 Profile of starting time of the trip chains (N = 1,320 trip chains) 

 

 
 

Figure 7.15 Profile of ending time of the trip chains (N = 1,320 trip chains) 
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Table 7.5 Location distribution for starting and ending points of 807 trip chains that have 

visited PEV at least once 

 

 
 

Table 7.6 Location distribution for starting and ending points of 513 trip chains that do not 

visit PEV 
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Figure 7.16 Distribution of number of trips per trip chain for trip chains that visit PEV at 

least once (N = 807 trip chains) 

 

 
 

Figure 7.17 Distribution of number of trips per trip chain for trip chains that visit PEV at 

least once (N = 328 trip chains) 
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Figure 7.18 Trip chain length distribution for trip chains that visit PEV at least once 

(N=807 trip chains) 

 

 
 

Figure 7.19 Trip chain time distribution for trip chains that visit PEV at least once (N = 

807 trip chains) 
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CHAPTER 8 : DERIVING TRIP ROUTES 

 

8.1 Introduction 

The ultimate objective of this project was to derive routes for tanker trucks that load fuel 

commodities at PEV.  14,598 tanker truck trips were extracted from GPS data, cleaned, and 

analyzed in previous steps. Subsequently, 1,320 trip chains were built for which routes had to be 

generated using the techniques presented in the first part of this thesis. This part consisted of two 

steps, namely, map-matching and route generation. These two steps are explained in the coming 

sections.  

8.2 Map-matching Algorithm 

The first step toward deriving truck routes using GPS data is map-matching. The 

methodology developed in Chapter 4 was implemented here with a few changes. First, an 

extensive data preparation like Section 4.3 was not necessary here. This is because such data 

preparation eliminates many small trips in trip chains. Eliminating such trips would break the 

continuity of trip chains. However, a minor data processing was done in order to improve the 

quality of derived routes.  This data processing removed all the GPS points within 30 ft of origin 

and destination of each trip (a similar procedure to Stage 5 of Section 4.3). Doing so reduced the 

chance of wrong route estimations near origins or destinations while kept most of the GPS points 

in the dataset. 

Second, in the map-matching algorithm used in the project a buffer zone of 500 ft was 

used as opposed to the previously-used 1000 ft in Step 2 of Section 4.4 . This is because tanker 
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trucks mostly make trips in urban areas as opposed to rural. Therefore, they are mostly observed 

in dense places on the network where the distance between links is usually small. As a result, a 

smaller buffer zone has to be used in Step 2 of map-matching to decrease the chance of snapping 

GPS points to wrong links in dense areas. 

11,907 trips were successfully map-matched using the above-mentioned algorithm. Only 

11 trips from the original 11,918 trips were missed due to elimination of some GPS points in the 

algorithm. The next step in deriving routes was generating the routes using map-matched GPS 

points. 

8.3 Route Generation 

Due to the infrequent nature of the GPS data in this project, the map-matching algorithm 

explained above does not capture all links in a trip.  Consequently, missing links need to be 

found so that a route can be generated for each trip. To this end, ArcMap 10.3 Network Analyst 

extension was employed to generate the routes for map-matched GPS points. Network Analyst 

utilizes a modified version of Dijkstra's algorithm (2) to find shortest paths between two points. 

For each trip, the shortest path between consecutive GPS points was found based on minimizing 

travel time.  

The final output of route generation was a GIS shapefile in which each feature is a route 

link that contains trip information. Figure 8.1 shows an overall view of the generated routes for 

11,907 trips that belong to 1,320 trip chains in the 12-county region.  

8.4 Validation 

Generated routes were validated in terms of feasibility and consistency. Routes are 

consistent if:  

1) The direction of the travel is consistent throughout the entire route 
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2) There are no loops  throughout the entire route 

3) There are no missed links in routes 

And feasible if and only if: 

4) There are no impossible maneuvers throughout the entire route (impossible maneuvers 

such as jumping off a bridge)  

50 trips were selected and then followed on Google Earth for validation checks. 

Consistency and feasibility checks are done simultaneously when the route is followed on 

Google Earth. To check the consistency, each generated route was compared to the route from 

Google Earth to determine if the generated route shows the same direction through the entire trip. 

For feasibility check, each trip is observed at interchanges or overpasses or ramp junctions to see 

if the generated route shows any impossible maneuvers at such locations. To check the 

connectivity, each route was checked for any missing links while being followed on Google 

Earth. Table 8.1 lists all the 50 trips that were selected for feasibility, consistency, and 

connectivity checks with their corresponding trip time and trip length information. The last 

column from left in this table illustrates the status of each trip with regard to feasibility and 

consistency checks. As can be observed, all the 48 out of 50 routes are marked as “Ok” which 

means they are all feasible, consistent, and connected. Results from validation checks show that 

only two trips out of 50 had a loop in their derived routes which is satisfactory. Figure 8.2 

illustrates the trip length distribution of trips selected for validation checks. As can be observed, 

the distribution encompasses almost all type of trip lengths in order to be a good representative 

of the population. 
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Figure 8.1 Final 11,907 derived routes 

 

 
 

Figure 8.2 Trip length distribution of 50 trips selected for validation checks 

 

Table 8.1 General trip information for 50 routes selected for feasibility, consistency, and 

connectivity checks 
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Table 8.1 (Continued) 

 
4 6 0.2 1 Ok 

5 7 3.0 15 Ok 

6 9 0.1 1 Ok 

7 10 0.8 5 Ok 

8 11 79.4 86 Ok 

9 12 21.5 27 Ok 

10 13 102.8 120 Ok 

11 14 22.2 43 Ok 

12 15 24.8 56 Ok 

13 16 3.0 10 Ok 

14 17 79.4 89 Ok 

15 18 60.8 70 Ok 

16 19 138.7 154 Ok 

17 20 21.7 39 Ok 

18 21 21.1 42 Ok 

19 23 78.9 89 Ok 

20 24 21.4 26 Ok 

21 26 96.1 115 Ok 

22 27 99.9 110 Ok 

23 28 40.4 44 Ok 

24 29 136.6 138 Ok 

25 30 0.4 2 Ok 

26 31 135.6 126 Ok 

27 32 28.8 32 Ok 

28 33 100.0 93 Ok 

29 34 65.7 63 Ok 

30 35 23.3 37 Ok 

31 36 22.4 35 Ok 

32 37 33.7 59 Ok 

33 38 2.3 7 Ok 

34 39 24.3 41 Not Ok 

35 46 36.9 70 Ok 

36 47 33.3 46 Ok 

37 48 23.0 44 Ok 

38 49 20.6 29 Ok 

39 50 15.9 28 Ok 

40 1993 212.3 256 Not Ok 

41 2248 224.7 200 Ok 

42 5836 176.7 155 Ok 

43 6082 202.2 180 Ok 

44 6091 181.9 184 Ok 

45 6280 205.6 191 Ok 

46 6372 177.1 156 Ok 

47 10009 59 43 Ok 

48 11678 183.5 283 Ok 

49 12010 12 8.2 Ok 

50 12088 35 24 Ok 
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Figure 8.3 illustrates an example of a route that has been followed on Google Earth for 

feasibility, consistency, and connectivity checks. 

 

Trip number 3 

The whole 

route 

 

Origin 

 

Overpass 

 

Destination 

 

 

Figure 8.3 An example of following a route for feasibility and consistency check 
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CHAPTER 9 : CONCLUSION OF THE SECOND PART 

 

9.1 Conclusion 

The second part this thesis showed the successful implementation of the route generation 

procedures developed in the first part for an FDOT sponsored project. The goal of the project 

was to use ATRI GPS data to derive routes for tanker trucks’ serving Port Everglades and 12 

counties in southern Florida. 

9.2 Gathering ATRI’s Truck GPS Data and Separating Petroleum Tanker Trucks  

The project resulted in combining objective 1 and objective 2 in one step process. Tanker 

truck trips originate from certain fuel terminals at PEV. Tanker trucks load fuel commodities at 

these terminals and then carry the fuel to their destinations. A polygon was drawn around each 

terminal in PEV and sent to ATRI so that ATRI would extract only those trucks’ GPS points that 

fell inside the polygons. ATRI provided the research team with GPS data from two months of 

September 2014 and March 2015. The polygon technique mostly eliminated the chance of other 

trucks’ GPS data being in the final dataset. Further analysis of tanker truck trips revealed that 

there were still some trucks in the data that did not predominantly make fuel delivery trips. Such 

trucks and their respective trips were removed before trip routes were derived.  

9.3 Derive Trip Chains of Trucks Originating at PEV 

1,320 trip chains were derived that corresponded to 11,918 trips and 95 unique truck IDs. 

807 trip chains out of 1,320 visited PEV at least once. Such trip chains mostly started (ended) in 

either PEV or gas stations. 513 trip chains out of 1,320 did not visit PEV and they were mostly 
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incomplete because their respective truck had exited the 12-county study area (12-county study 

area consisted of: Miami-Dade, Broward, Palm Beach, Monroe, Martin, St. Lucie, Indian River, 

Okeechobee, Glades, Hendry, Lee, and Collier Counties). The effort to derive trip chains 

included the steps below. 

9.3.1 Modifying Trip Extraction Algorithm and Extracting Truck Trips 

The raw GPS data was converted into a database of truck trips. The algorithms developed 

previously by Thakur et al. (2) were utilized in this step. However, the algorithms were 

developed primarily for the purpose of deriving long-haul trips. In this project these algorithms 

were modified so that urban trips could be extracted from raw GPS data. Running the algorithm 

resulted in 14,598 truck trips from two months of data. 

9.3.2 Identifying Characteristics of Truck Trips 

One of the outcomes of this project was calculating trip measurements such as trip length, 

trip time, and trip speed for extracted trips. This information can be used for further tanker truck 

travel modelling and analysis. Moreover, one of the important outcomes of this project was 

identifying land use description of origins and destinations of all 14,598 trips. This has been 

done through developing an algorithm for grouping trip ends in “clusters” and then identifying 

each cluster’s land use using Google Earth. 

9.3.3 Rectifying and Enriching Existing Data on Fuel Recipients 

The project consultants provided with two sources of data on fuel recipients in 12-county 

region, namely Department of Revenue (DOR) data and HERE data. Both datasets were 

incomplete in terms of active gas station coverage in the 12-county region. In addition, both 

datasets showed some anomalies with regard to geocoded gas stations or other fuel recipients. 

This project resulted in correcting wrongly geocoded gas stations or other fuel recipients in both 
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datasets and also adding around 100 new gas stations to the dataset through analyzing tanker 

truck trips’ destinations. The rectified and enriched final fuel recipient dataset that included 

DOR, HERE, and new gas station data, was produced in form of a GIS shapefile. 

9.4 Deriving Trip Routes 

This project resulted in deriving 11,907 trip routes out of 11,918 trips belonging to 1,320 

trip chains. An effective yet simple algorithm developed in the first part of this thesis was used to 

derive these routes. Derived routes were later converted into route links and were provided in 

form of a GIS file. This GIS file which was delivered to FDOT district 4 as the final product 

included some trip level information such as trip length, trip time, origin or destination land use 

description, etc. 

9.5 Opportunities for Future Research 

The work done in this project can be extended in a few directions. First, extracted trips 

from this project can be used for further travel behavior analyses such as origin-destination 

matrix estimation (ODME). Such analyses provide valuable insights into fuel commodity flows 

throughout the region. Moreover, the results from the project can be used to build tanker truck 

route choice sets. Route choices sets then can be further explored for tanker truck route choice 

modelling. Route choice modelling can lead to important interpretations regarding which routes 

are usually used by tanker trucks or what incentives impact tanker trucks to choose a particular 

route. The output of such analysis will be very useful for freight policy makers and stakeholder. 

Another opportunity that results from this study provide is the chance to introduce route 

variability measures specifically for tanker trucks. These measurements can be utilized to 

improve tanker truck choice set generation models. Rich choice set generation models then open 

the path for better modelling of tanker trucks’ route choice. 
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The fact that the data used in this project is specific to tanker trucks opens this 

opportunity to compare the results with similar studies that include all types of trucks. The focus 

of such comparisons will be if the travel behavior of tanker trucks is significantly different from 

other types of trucks. The interpretations and insights from such efforts can be used by 

researchers and freight policy makers. 
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APPENDIX A: POLYGONS AROUND PORT EVERGLADES FUEL TERMINALS 

 

This appendix provides all the polygons drawn around fuel terminals at Port Everglades. 

The polygons are shown in red and the actual fuel terminals are shown in yellow circles. These 

red polygons were used to separate tanker truck GPS data from other types of trucks’ GPS data. 

Basically, ATRI provided the research team with only those GPS points that fell inside the red 

polygons. Since mostly tanker trucks stop at the fuel terminals, by capturing the GPS points 

falling in the red polygons, one can capture tanker truck GPS data. 

 
 

Figure A.1 Terminal 1 (in yellow circle) and the red polygon used for GPS data extraction 
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Figure A.2 Terminal 2 (in yellow circle) and the red polygon used for GPS data extraction 

 

 
 

Figure A.3 Terminal 5 (in yellow circle) and the red polygon used for GPS data extraction 
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Figure A.4 Terminal 7 (in yellow circle) and the red polygon used for GPS data extraction 

 

 
 

Figure A.5 Terminal 11 (in yellow circle) and the red polygon used for GPS data extraction 
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Figure A.6 Terminal 12 (in yellow circle) and the red polygon used for GPS data extraction 

 

 
 

Figure A.7 Terminal 13 (in yellow circle) and the red polygon used for GPS data extraction 
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Figure A.8 Terminal 14 (in yellow circle) and the red polygon used for GPS data extraction 

 

 
 

Figure A.9 Terminal 15 (in yellow circle) and the red polygon used for GPS data extraction 
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Figure A.10 Terminals 3, 4, and 10 (in yellow circle) and the red polygon used for GPS data 

extraction 

 

 
 

Figure A.11 Terminals 6 and 9 (in yellow circle) and the red polygon used for GPS data 

extraction 
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APPENDIX B: TRUCK TRIP CHARACTERISTICS 

 

This appendix provides distributions of trip length, trip time, and trip average speed for 

extracted trips from two months of data. The above-mentioned distributions are provided for 

each data type (i.e., D1 data and D2 data) separately. These distributions can be used for tanker-

truck modelling purposes in the 12-county region in Florida. 

 

 
 

Figure B.1 Trip length distribution for all trips extracted from D2 data (N = 14,162 trips) 
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Figure B.2 Trip length distribution for all trips extracted from D1 data (N = 436 trips) 

 

 
 

Figure B.3 Trip time distribution for all trips extracted from D2 data (N = 14,162 trips) 
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Figure B.4 Trip time distribution for all trips extracted from D1 data (N = 436 trips) 

 

 
 

Figure B.5 Trip average speed distribution for all trips extracted from D2 data (N = 14,162 

trips) 
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Figure B.6 Trip average speed distribution for all trips extracted from D1 data (N = 436 

trips). 
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APPENDIX C: TRIP FILE CLEANING TASKS 

 

This appendix presents trip cleaning tasks in details. There were 14,598 total trips 

extracted from two months of ATRI data, namely September 2014 and March 2015. Some of 

these trips were non-fuel delivery trips, or had trip ends on the roadway. This appendix explains 

the four different tasks taken to address issues such as non-fuel delivery trips or on-the-road trip 

ends. 

C.1 Removing Non-Fuel Delivery Trips 

In this project the main goal is to derive the routes for fuel-delivery trips going from (to) 

PEV. Since fuel-delivery trips are made by tanker trucks, tanker trucks’ GPS data had to be 

separated from other trucks’ GPS data. Currently ATRI do not offer GPS data classified based on 

the type of truck. Therefore, a solution had to be proposed to only capture tanker trucks’ GPS 

data from the pool of ATRI data. 

The proposed solution was drawing polygons around fuel terminals in PEV and selecting 

only those GPS data that fell inside the polygons. Although this method proved to be effective, 

there were still some GPS data obtained from ATRI that belonged to other types of trucks rather 

than tanker trucks. Such GPS data corresponded to non-fuel-delivery trips made by non-tanker. 

Therefore, non-tanker trucks and their respective trips had to be removed. 

27 truck IDs were identified that seemed no to belong to tanker trucks. These truck IDs 

had either of the following features: 

1) Mainly served distribution centers as opposed to gas stations and other fuel recipients 
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2) Visited PEV relatively fewer times than gas stations or distribution centers 

These trucks either mainly served distribution centers or visited gas stations much more 

frequently than PEV. The latter happened probably because these trucks needed to buy fuel 

while the former suggests that these trucks were not tanker trucks. Either case, such truck IDs 

had to be removed from the data. 

Figure C.1 shows the trip length distribution of trips belonging to truck IDs removed 

from the data. This figure shows that the majority (60%) of these trips are short trips (less than 5 

miles). Therefore, it is unlikely that these trips belong to tanker trucks that deliver fuel 

commodities from PEV to fuel recipients. Moreover, a significant portion (26 %) of trips in 

Figure C.1 is less than 1 mile. This means that these trips were most probably happening at the 

same location and therefore, were better to be removed. 

C.2 Solving Trip Ends on the Road 

Table C.1 shows that some portions of trip ends fell on the roadway. This issue happened 

mainly because a study boundary was imposed on the GPS data and therefore, when trucks 

exited the study area their stream of GPS data was cut off until they entered the study area again. 

If the origin (destination) of the first (last) trip of a truck ID was on the roadway, that trip was 

considered incomplete. Such incomplete trips were removed because the first (last) trip of a truck 

ID had to start (end) at a valid location.  

36 trips were identified that were the starting (ending) trip of a truck ID and their origins 

(destinations) were on the roadway. These trips were removed immediately after the procedure in 

Section C.1. Table C.3 shows the location description distribution of remaining trips after 

removing non-tanker truck IDs (and their respective trips) and the above-mentioned 36 trips. As 
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can be observed, the percentages of “Distribution center” have dropped from 13.1 % in Table 

C.1 to around 5% in Table C.2. 

C.3 Joining/Replacing Trip Ends on the Roadway 

There were 1,273 trip destinations and 378 trip origins on the roadway after removing 

non-tanker trucks and 36 trips (after steps taken in Section C.1 and Section C.2). There were 

three different cases for trip ends on the roadway. Case (1): current trip destination on the 

roadway and the next trip origin in a valid location, case (2): current trip origin on the roadway 

and the previous trip destination in a valid location, and case (3): current trip destination and next 

trip origin both on the roadway. These three cases were addressed as below:  

1) For case (1): replace 110 on-the-road destinations by the next valid origin within 1 mile 

distance 

2) For case (2): replace 34 on-the-road origins by the previous valid destination within 1 

mile distance 

3) For case (3): Join 34 trip pairs in which the current trip destination and next trip origin 

both are on the roadway. There were 309 trip pairs with case (3) condition, 34 out of 309 

trip pairs were within one mile and 45 minutes of each other. 

Having addressed three different cases where trip ends fell on the roadway, it is worth 

mentioning why this phenomenon happened. The list below explains the reasons why this many 

trip ends were observed on the roadway: 

1) The study boundary: This is the primary reason for observing trip ends on the roadway. 

The stream of GPS data for trucks traveling outside the study area was cut by the study 

boundary. Therefore, there were some incomplete trips whose destinations were on the 

roadway and close to the study boundary. Figure C.2 shows all the destinations falling on 
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the roadway and the 12-county study boundary (red polygon) implemented by ATRI. 

These destinations were also observed on the north bound of the roadway. That means 

the stream of data was cut when the trucks were going out of the boundary. Similarly, 

Figure C.3 shows all the origins falling on the roadway. Red polygon is the study 

boundary implemented by ATRI. Close observations using Google Earth showed that 

almost all of on-the-road origins on I-75 and I-95 were on the south bound of the 

roadway. That means GPS data stream was resumed as soon as trucks had entered the 

study area. 

2) Slow movements of trucks: If a truck moves slower than 5 mph for more than 5 minutes 

then it is considered that the truck has stopped. Some trucks met this criterion in traffic 

stops and therefore, their trip origins or destinations were captured on the road. This case 

was usually observed far from the study boundary and mostly in urban areas. The criteria 

for joining on-the-road trips were designed to resolve on-the-road trip ends that happen 

for slow movement of trucks. 

C.4 Joining Truck IDs from D1 Data 

In D1 data truck IDs rotate every 24 hours. Therefore, there might be some tanker trucks 

that had appeared in D1 data with two different truck IDs in two consecutive days. Since it was 

important in this project to follow the chain of tanker trucks as much as possible, a task was 

created to identify tanker trucks that appeared with different truck IDs in two or more 

consecutive days in D1 data. 

To this end, the spatial gap and temporal gap between truck IDs in D1 data had to be 

observed. The spatial gap (temporal gap) is the distance (time difference) between the last GPS 

point of current truck ID and the first GPS point of the next truck ID. Figure C.4 and C.5 show 
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the distribution of spatial gap and temporal gap, respectively, for 44 truck IDs in D1 data 

(September 2014 and March 2015 combined).Consequently, if the spatial gap was less than one 

mile and the temporal gap was less than 60 minutes, the two truck IDs were considered to belong 

to the same tanker truck. Three pairs of truck IDs were found that satisfied these criteria and 

therefore, the second truck ID in each pair was changed to the first truck ID. 

Table C.5 shows the land use description distribution of remaining trips after trip ends on 

the road were joined or replaced, and three pairs of truck IDs in D1 data were joined. These 

12,649 trips were the final output of trip cleaning tasks. 

 

 
 

Figure C.1 Trip length distribution of 27 truck IDs removed from D1 and D2 data 

(September 2014 and March 2015 combined) (N = 1,879 trips) 
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Table C.1 Land use description distribution for the trip origins and destinations of the total 

14,598 trips 

 

 
 

 
 

Figure C.2 All 1,273 on-the-road trip destinations shown in blue dots 
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Figure C.3 All of the 378 on-the-road trip origins 

 

 

Figure C.4 Distribution of spatial gap between consecutive truck IDs (N = 44 truck ID 

pairs) 
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Table C.2 Land use description distribution for the trip origins and destinations of 12,649 

trips  
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Figure C.5 Distribution of temporal gap between consecutive truck IDs (N = 44 truck ID 

pairs) 
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