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ABSTRACT 
 

 Reinforced concrete structures are expected to have a long service life with minimal 

maintenance. Corrosion of reinforcing steel is a major factor in reducing concrete structure 

lifespan, as corrosion products occupy a larger volume than that of the consumed steel and 

generate tensile stresses that crack the concrete cover. Procedures to control corrosion in 

traditional concrete, which is made with Portland-cement (PC), have been well established. 

However, in recent years novel concrete materials based on alternatives to normally cured PC 

have been developed in response to global needs to reduce greenhouse gases emissions. In 

particular, a promising new cement has emerged that cures into concrete in a CO2/water 

environment resulting in a silica and calcium carbonate matrix. This material has the potential to 

lower the release of greenhouse gases into the environment at the time that provides a more 

efficient use of resources. This new material poses a reinforcement corrosion control challenge 

because unlike PC based materials, the pore water of the carbonated material has a significantly 

lower pore water pH value, thus making it more difficult to retain a stable passive film. On the 

other hand, other properties of the new material, including high electric resistivity, may 

contribute in mitigating the corrosion process. The corrosion behavior of steel reinforcement in 

these circumstances needs to be investigated.  

To evaluate the corrosion behavior of steel in concrete, plain steel rebars were tested with 

various surface finishes including: as received (mill scale), sandblasted and epoxy coated with 

intentional coating breaks. The specimens were exposed to environments including fresh distilled 

water, mildly corrosive water, salt water and an atmospheric environment with 85% relative 
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humidity. The open circuit potential was monitored to determine the time when the activation of 

the steel surface likely occurred. The corrosion rate of the specimens was determined by means 

of electrochemical impedance spectroscopy (EIS), the applicability of this technique to corrosion 

evaluation in novel cementitious media is discussed as well. 

Specimens exposed to air at 85% RH appeared to retain a passive steel condition during 

the entire exposure period. Apparent corrosion rates (ACR) were extremely low. Pending 

confirmation by prolonged testing, this result is encouraging for applications such as indoor 

hollow slabs and similar structural components not subject to direct wetting. 

Specimens exposed to immersion regimes in Fresh, Mild and Salt water media showed 

signs of activation after a very short time (days-week) of exposure. Corrosion assessment thus 

occurred predominantly in the corrosion propagation stage. Early activation is thought to reflect 

a combination of rapid water absorption and only moderately alkaline pH (~8.8) of the concrete 

assessed.  

The ACRs for plain and sandblasted rebar in the Fresh and Mild water regimes were very 

low, e.g, < 2 µm/y. If confirmed by further evaluation, applications for contact with fresh natural 

water with moderate service life needs might in principle be achievable. The novel concrete 

assessed here exhibited much higher resistivity values than conventional PC concrete under 

similar conditions. This higher resistivity may have been an important factor in limiting 

corrosion rate. 

ACRs or plain and sandblasted rebar in the salt water exposure were initially significantly 

greater that those indicated above, as expected, given the highly aggressive nature of the 

medium. Those ACR values, if sustained, would cause concrete cracking in an OPC application 

in a short time, on the order of only a few years. ACRs however decreased with exposure time; 
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those results need careful follow up evaluation for possible artifacts such as excessive water 

pickup from salt deliquescence, which could have transport-limited the rate of the cathodic 

reaction.  

ACRs of epoxy-coated rebar specimens were extremely small in all test conditions. 

However, this result may stem from limitations of the EIS tests to detect undercoating corrosion 

and interpretation of this finding needs to be postponed until future autopsy of test specimens.  

The investigation illustrated an array of methodologies that can be deployed to evaluate 

the corrosion performance of reinforcement in new media and provide a framework for extended 

investigations.   
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CHAPTER 1: INTRODUCTION 

Cement 

Cement is a finely ground powder  that sets to a hard mass when mixed with water [1]. It 

is commonly referred to, as the binding material used in infrastructure and civil engineering 

construction, with its most common application being the adhesive within concrete. Cement is a 

material of diverse chemical composition, nonetheless, the most widely used is ordinary Portland 

cement (OPC). The extensive availability and low cost of cement makes it one of the most 

widely used materials in the world [2]. 

PC consists mainly of compounds of lime (calcium oxide, CaO), mixed with silica 

(silicon dioxide, SiO2) and alumina (aluminum oxide, Al2O3) [1]. High quality cements require 

raw materials of high purity and uniform composition. Limestone (calcium carbonate, CaCO3) is 

the most common source of calcium oxide, although other forms of calcium carbonate can be 

used. Iron-bearing aluminosilicates are commonly used as the primary source of silica [3]. 

Carbon Dioxide Emissions from the Cement Manufacturing Process 

The emission of carbon dioxide (CO2) in industrial processes represents an increasing 

concern due to the various ways CO2 impacts the environment, predominately through climate 

change. Organizations and companies are taking this concern more seriously, goals and standards 

are being set to reduce the CO2 emissions in manufacturing processes. In 2013, the global CO2 

emissions due to fossil fuel use and cement production were 36 Gtons. Specifically, the 

emissions from the cement industry accounted for 5.5% of global CO2 emissions [4]. 

Additionally, with the expected increase in population, concrete demand from the construction 
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industry is anticipated to rise. Therefore, if no other alternative is considered, the carbon 

footprint of the PC industry will continue to surge. 

 Cement production accounts for the majority of the CO2 emissions associated with 

concrete. Unlike other materials, 40% of the CO2 emitted during cement production is related to 

fuel and electricity [2, 5]. The remaining 60% is emitted as a byproduct of clinker production. 

During this process, the calcium carbonate is calcinated and converted to lime, the primary 

component of cement. The simplified stoichiometric relationship is shown below: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3  
∆
→  𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝑂𝑂2 (1) 

Reducing Carbon Dioxide Emissions in the Cement Manufacturing Process 

There is increasing awareness of the need to reduce the emission of CO2 in the cement 

production process. Considering that 60% of the emissions come from the use of limestone, 

altering the usage of this material is a promising way to reduce the carbon footprint of the 

process. 

A Promising New Cement – Solidia Technologies 

In the context of possible avenues to reduce limestone usage, a low lime containing non-

hydraulic cement that cures into concrete in a CO2/water environment has been recently 

introduced under a process patented by Solidia Technologies1. In that approach, about 5% of the 

resulting concrete mass is sequestered CO2 [6]. The result is a silica and calcium carbonate 

bonding matrix that can be designed to provide compressive strength, abrasion resistance and 

freeze-thaw cycling resilience. Solidia CementTM (SC) is a Calcium Silicate Based Cement and 

requires less limestone than OPC. In addition, the heat energy requirements in the kiln are lower, 

thus reducing the CO2 emissions up to an additional 30%.  

1 Solidia CementTM is a registered trademark of Solidia Technologies 
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It reduces the CO2 footprint associated with the manufacturing and use of cement (the use 

being in concrete) by 70%, as shown in Figure 1. 

 

 

 

 

 

 
 
 

Figure 1: Net Savings in Carbon Dioxide Emissions with SC- based Concrete. Adapted from [6]. 

Considering that ~5% of the CO2 emissions come from the cement industry along with 

the fact that the global CO2 emissions are in the order of ~30 Gtons, the use of an alternative 

green concrete can have a considerable impact on the greenhouse gas emissions reduction that 

could conceivably be in the order of ~0.5 Gtons (considering only the cement making process) if 

all cement manufacturers worldwide adopted that process. Moreover, in the context of improving 

environmental sustainability, Solidia ConcreteTM, 2 (SC-concrete) contributes not only in 

reducing the carbon footprint from the concrete making process, in addition, the process uses a 

significant lower amount of water. Same as with OPC, the concrete assemblies made with SC-

concrete require water for forming and shaping. Inversely, the water used in the concrete 

formulations based on SC is not consumed chemically, therefore it can be recovered during the 

curing process with carbon dioxide. 

 

2 Solidia ConcreteTM is a registered trademark of Solidia Technologies 
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 On average, ~75% of the water used in the developmental variation of the SC-concrete 

formulation can be recovered. If SC-concrete were used as an alternative to PC based concrete, 

the annual global water savings could approach approximately 2 billion tons, or two trillion liters 

[7]. 

The Reinforcement Corrosion Control Challenge 

Reinforced concrete structures are expected to have a long service life with minimal 

maintenance. Corrosion of reinforcing steel is a major factor in reducing lifespan. Corrosion 

products occupy a larger volume than that of the consumed steel, generating tensile stresses that 

crack the concrete cover [8, 9]. Corrosion control in OPC concrete is well established because 

the pore water pH of the PC based concrete is alkaline (pH ~13). Thus, the reinforcement 

develops a passive layer that extends the service life of the structure considerably. However, 

conditions for SC-concrete are different. In this material cured by carbonation, the pore water has 

a significantly lower pore water pH (e.g., 9) than that of OPC, making it more difficult to retain a 

stable passive film on the steel. Thus, the structure is more vulnerable to corrosion damage from 

the early stages of exposure. However, several factors beyond pore water pH also influence the 

corrosion behavior in reinforced concrete structures. Properties of the new material, such as high 

electric resistivity, may be important factors in mitigating corrosion. Moreover, rebar corrosion 

resistance may vary with surface treatment or improve with the use of protective coatings. 

Information on the resulting corrosion conditions is needed and addressed by this work. 

Objective 

The research described in this thesis seeks to provide an initial assessment of the 

corrosion performance of plain and alternative reinforcing steels embedded in a developmental 

version of SC-concrete.   
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The assessment is intended to aid in determining the feasibility and potential use of this 

material for construction purposes when the structures are exposed to specific service regimes 

relevant to the expected deployment environment.  

Approach 

• Test reinforced SC-concrete specimens containing plain steel rebars with various surface 

finishes and a protective coating, and exposure to environments spanning a wide range of 

corrosion severity 

• Test will be conducted in environments simulating both sheltered indoor and chloride-

free outdoor regimes (expected initial deployment service applications for the 

developmental variation of SC-concrete). Salt water exposure tested as an extreme 

regime control 

• Determine corrosion rates and evolution under the various environmental conditions 

evaluated 

• Determine material properties that may impact corrosion performance 
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CHAPTER 2: REVIEW OF FUNDAMENTALS 

Corrosion 

Corrosion is defined as the deterioration of a metal because of reaction with its 

environment [8]. When a material is being selected for structural, engineering or architectural 

applications, corrosion resistance always has an important role to play. Moreover, when 

discussing the corrosion resistance of a material, the rate of corrosion is one of the primary 

factors to be determined.  

Electrochemical Considerations 

When corrosion occurs, the corroding material loses at least one electron, while a 

chemical specie in the surrounding environment consumes them. This is called a redox reaction; 

in this reaction, the species losing the electron is being “oxidized” and the other species that 

gains the electrons is being “reduced”. Equation 2 shows the reaction between iron (Fe) and 

oxygen (O2), where iron (Fe) is the element being oxidized and oxygen (O2) is being reduced. If 

the oxidized reaction or reduction reaction are considered individually, they are regarded as a 

half-reaction. This is better illustrated in Equation 3 and Equation 4 

 2𝐹𝐹𝐹𝐹 + 2𝐻𝐻2𝑂𝑂 + 𝑂𝑂2  → 2𝐹𝐹𝐹𝐹2+ + 4𝑂𝑂𝐻𝐻−  → 2𝐹𝐹𝐹𝐹(𝑂𝑂𝑂𝑂)2   (2) 

 𝐹𝐹𝐹𝐹 →  𝐹𝐹𝐹𝐹2+ + 2𝑒𝑒 (3) 

 𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂 + 4𝑒𝑒 → 4𝑂𝑂𝐻𝐻− (4) 

For corrosion to occur, four components have to be present:  

• Anode: The location where the species will be oxidized 

• Cathode: The location where the species will be reduced 
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• Electrolyte: Ionized solution 

• Electronic pathway: Path that allows electron transfer 

When a system is at equilibrium, there is no net chemical reaction. This point of 

equilibrium is associated with an equilibrium potential, which by convention is zero “0”. If this 

equilibrium potential is changed, there would be current flow, and the system would be 

polarized.  

Some otherwise highly reactive metals such as iron, chromium, nickel and titanium lose 

chemical reactivity under certain environmental conditions [8, 10].  This property of some 

materials is known as passivity, resulting from the formation of a protective surface film. In the 

case of iron, within a certain range of potential and at certain range of pH (typically alkaline), the 

iron develops a very thin (e.g., 3 nm) layer of protective oxide, and corrosion under these 

conditions is extremely slow. This is the case for reinforced OPC concrete, where the pore water 

pH is ~13 for which the passive film is stable. Consequently, corrosion is not severe until the 

passive layer breaks down. When this occurs, the metal goes into the active state. This passivity 

break down can occur by the action of external agents.  

Corrosion of Steel in Concrete 

Reinforcing steel bars are placed in concrete to provide resistance to tensile stresses [11]. 

OPC based concrete is characterized by alkaline pore water (pH ~13) causing the rebar surface to 

passivate. Nevertheless, depassivation of the metal can occur due to the penetration of chloride 

ions from the environment into the concrete and/or by interaction of the pore water of the 

concrete with carbon dioxide which can lower the pore water pH causing the metal to 

depassivate. According to Tuutti’s model for steel corrosion sequence in concrete (see Figure 2) 

[12], the phase where this aggressive agents start penetrating the concrete cover until a 
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determined threshold value it is reached and corrosion begins, is known as initiation stage. Then, 

the propagation stage will take place and several factors such as resistivity of the concrete, 

porosity and moisture content of the pore water in the concrete, will influence the rate at which 

corrosion occurs.   

 

 

 

 

 

 

 

Figure 2: Schematic for Steel Corrosion Sequence in Concrete. Adapted from [12] 
 

Once the corrosion process has initiated, the iron dissolution (anodic reaction) and 

oxygen reduction (cathodic reaction) will start to take place, this is known as the propagation 

period. In reinforcing concrete undergoing corrosion, the electrolyte will be the water in the pore 

network and the electronic pathway would be the rebar. 

Corrosion products occupy a larger volume than that of the consumed steel, generating 

tensile stresses that crack the concrete cover [8, 9] when a given amount of corrosion has been 

reached. The resulting damage increases with time until it reaches a limit state that could make 

the structure unserviceable (serviceability limit state) or even seriously affecting structural 
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integrity (ultimate limit state) [13]. When the limit state is reached, the nominal service life of 

the structure and the end of the propagation stage have both been reached as well.   

Thus, when considering an alternative to OPC based concrete, is important to assess the 

corrosion performance of the new material and have an understanding of the concrete properties 

that may have an impact in such corrosion performance and of the resulting corrosion rates.  

Some of the concrete properties valuable for understanding corrosion behavior are: 

• Porosity: Porosity of the concrete is an important parameter that can impact mechanical 

behavior and transport properties. Transport properties are intimately related to various 

durability problems [14]. From a corrosion standpoint, porosity affects the mobility of 

water and substances around the steel [12]. Initially when concrete is exposed to water, 

the concrete will start to absorb it. This is known as capillary sorption. Thus, the pore 

network represents a pathway for potential aggressive agents to reach the reinforcement 

and initiate a degradation process. Moreover, this matrix can affect the oxygen diffusivity 

through the concrete cover 

• Resistivity: Electrical resistivity is an indication of the combined effect of  the amount of 

moisture in the pores, the size and tortuosity of the pore system, and the resistivity of the 

pore solution itself [15]. Concrete with high resistivity could retard the corrosion process 

by restricting the efficiency of the electrolytic pathway between anodic and cathodic 

regions. Moisture Content: Moisture content  is a measure of the amount of electrolyte in 

the pore system [12]. Moisture has an effect in the initiation time for reinforcing 

corrosion. It can provide a faster pathway for chloride ion penetration (which happens 

through the liquid phase). In the propagation stage, moisture has an influence in the 

corrosion rate; intermediate moisture conditions provide access of oxygen giving as well 
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an electrolytic pathway between anodic and cathodic regions. [16] However, very high 

moisture content can impede oxygen access by blocking the oxygen transport pathway 

that would have existed through the unfilled portion of the pores, and actually lower the 

corrosion rate as a result. At the other extreme, very low moisture would allow fast 

oxygen access, but with very limited electrolyte transport thus also lowering corrosion 

rates.  

• Pore Water pH: It has been determined that the pH of the pore water has an influence on 

the passivation of a material and is a useful property to better understand its behavior 

from a corrosion standpoint. The Pourbaix diagram, is a map that shows the regimes of 

stability of the passive film layer as a function of the potential and pH of the surrounding 

environment. Therefore, they are frequently used to predict the effect of pore water pH in 

the system. For PC based reinforced concrete, the pH is ~13 and  for this pH value, iron 

shows  passive behavior in a range of potential  between  -0.2 and 0.2 V vs the standard 

hydrogen electrode at 25C [17] meaning that, under these conditions, corrosion is very 

slow.  

Techniques for Establishing Corrosion Performance Addressed by this Work 

• Open Circuit Potential (OCP) 

A rebar embedded in concrete reaches a mixed potential against a reference electrode. 

This potential is a result of the interactions between the iron oxidation and oxygen reduction. 

When corrosion initiates, the dissolution of iron is faster and the potential would shift toward 

more negative values, when this shift occurs the system will be activated [11]. Therefore, the 

open circuit potential measurement serves as an indication of the probability of corrosion, or 
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corrosion state of the system. The open circuit potential measurements do not represent an 

indication of the corrosion rate of the system. 

• Electrochemical impedance spectroscopy (EIS) 

 This technique consists on slightly changing the electric potential of the steel (typically 

less than 10 mV) at a predetermined frequency by means of an electric oscilator connected the 

steel (working electrode) and to a counter electrode to complete the circuit through the concrete. 

The voltage is controlled by an automatic potentiostat. Afterwards, the voltage and current are 

recorded as a function of frequency. Measurements of the amplitude and phase angle of the 

excitation current and the potential response are made over a wide range of frequencies that 

usually go from 1 mHz to 1kHz. Each frequency would define the complex vector 

electrochemical impedance “Z”, determined by the ratio of the potential response phasor (V) to 

the excitation current density phasor (i) [18]. Therefore, the measurements at different 

frequencies can be represented by a group of points in a complex plane. This is known as the 

Nyquist diagram. 

 When the system has a simple behavior, there is a relationship between the corrosion 

current Icorr and the polarization resistance Rp given by the deviation of potential of the system 

and current response.  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐵𝐵 𝑅𝑅𝑅𝑅�  (6) 

Icorr = Corrosion current 

B = Stern-Geary Constant determined by the kinetic properties of the system (approximate value 

of 0.026 V for steel in concrete) [18] 

Rp = Polarization resistance 
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Rp 

Rs 

Cdl 

Once Icorr has been established, the current density icorr is determined by dividing Icorr 

over the steel area exposed in the concrete (for the specimens evaluated in this Thesis is 

equivalent to 40cm2). Finally, the corrosion rate C.R can be obtained by means of the following 

equation [19]: 

 𝐶𝐶.𝑅𝑅. = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐾𝐾 (7) 

C.R = Corrosion rate (um / y)  

icorr = Corrosion density (µA / cm2) 

K = Penetration rate equivalent constant (for iron = 11.68 (um/y)/(uA/cm2) [19] 

 However, the measurement of the polarization resistance “Rp” is often affected by the 

interfacial capacitance of the steel “Cdl” in parallel with Rp. Moreover, the electrolyte resistance 

“Rs” of the concrete is between the point where the potential is measured (reference electrode) 

and the surface of the steel. The system to be evaluated can then be considered in terms of a 

simplified equivalent circuit as the one shown in Figure 3. Moreover, the interfacial capacitance 

is often a non-ideal component requiring additional consideration during analysis of the results. 

 

 

 

 

 

 

Figure 3: Equivalent Circuit for the System under Consideration  
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Rs Rp 
Z’ 

-Z’’ 
Decreasing frequency 

The theory of alternating current establishes that a circuit of this type would have a 

Nyquist diagram similar to the one in Figure 4.  Therefore, by means of electrochemical 

impedance spectroscopy it is possible to establish the corrosion rate of the system through Rp 

and estimate   the concrete resistivity through Rs. Typically, the Rp of the system can be found 

during the low frequency sweep, which is shown as a semicircle in the Nyquist diagram. In most 

cases, a full semicircle will not be present, but the data can be extrapolated to obtain Rp, and thus 

the apparent corrosion rate (ACR) of the system using Equation 6 and 7. Computer fitting of the 

results is usually made by means of commercially available software [20] to obtain an estimate 

of the value of Rp. That procedure was used to analyze the data obtained in this Thesis using the 

Echem Analyst software provided by Gamry Instruments, (Warminster, PA, US) 

 

 

 

 

 

 

 

 

 

 

Figure 4: Nyquist Diagram 

 
Carbonation of Concrete Structures and Corrosion Rates 

 In OPC based concrete, carbonation of the concrete by action of carbon dioxide in the 

solid and liquid phase leads mainly to the formation of calcium carbonate by reaction of the CO2 

with hydrated species within the concrete such as Ca(OH)2. This process tends to be slow and it 
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affects some important properties of the concrete that, as previously discussed, have an effect on 

the corrosion initiation of the system.  

 The process of carbonation decreases the pore water pH of the concrete. Moreover, when 

carbonation reaches a specific depth, it can cause passivity break down and corrosion starts to 

take place. Several factors influence the rate of carbonation penetration such as: cement 

composition, porosity and relative humidity [21].  

 Table 1 presents a classification for different corrosion damage levels as a function of the 

corrosion rate based on the type of aggressive agent initiating corrosion and the moisture of the 

concrete [22, 23]:  

Table 1: Risk of Damage for Reinforced Concrete in Relation to Corrosion Rates and Concrete 
Condition 

Risk of 
Damage 

Range of CR 
uA/cm^2, (um/yr) Condition 

Very low <0.1 (<1.17) Very dry or carbonated concrete 
with no chloride contamination 

Low 0.1 - 0.5 (1.17-
5.84) 

Dry concrete, carbonated or with 
mild chloride contamination 

Moderate 0.5 - 1 (5.84 - 
11.68) 

Humid concrete, carbonated or 
with mild chloride contamination 

High 1 - 10 (11.68 - 
116.8) 

High humidity concrete, 
carbonation or affected by chloride 

attack 

Very High >10 (> 116.8) High humidity and highly 
contaminated with chlorides 

 In the case of concrete made with SC, the curing process is carried out with carbon 

dioxide. In this case, the material is carbonated from the beginning and without the presence of 

hydroxide species and alkali ions in the bonding matrix, a mildly alkaline environment is 

expected. This will make the formation of the passive layer on the rebar difficult. However, 

passivity of iron is not the only factor that affects the corrosion behavior of the system. Material 
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properties, such as porosity and resistivity, have an influence as well. Therefore, determination 

of such properties, along with the corrosion performance of the material are addressed by this 

work. In general, it may be thought that steel in SC-concrete could have corrosion performance 

that will relate to some extent to that of carbonated OPC concrete. This issue will be considered 

again later in the view of the experimental results.  

Microbial Induced Corrosion (MIC) 

 The activity of certain living organisms can have an effect on the corrosion process of a 

system. Certain type of bacteria can have an influence in the rate of anodic and cathodic 

reactions that may enhance or in some cases retard the corrosion process [8]. In particular there 

are two species that have a significant impact on the corrosion process and durability of 

reinforced concrete particularly within wastewater environments or where the conditions for 

microbial growth are favored. Those are sulfate reducing bacteria (SRB) and sulfur oxidizing 

bacteria (SOB). SRB is a type of bacteria that under anaerobic conditions reduce sulfate ions to 

hydrogen sulfide. 

Hydrogen sulfide tends to accelerate the metal dissolution. Moreover, if the hydrogen 

sulfide gas encounters with SOB which growth is prevalent in aerobic conditions and preferably 

low pH environments, sulfuric acid can be formed which in sufficient amounts could aggravate 

the corrosion process by decreasing the pH of the pore water within the concrete and promoting 

depassivation with consequent acid and sulfate attack [24]. There are other microorganisms that 

may indirectly have an influence in the corrosion rates of the system such as iron oxidizing 

bacteria (IOB) that at near neutral pH and typically microaerophilic conditions oxidizes ferrous 

ions to ferric ions. 
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This can lead to the formation of bulky iron oxides deposits that can enhance the 

corrosion rate of the system and reduce even more the life of a structure since the ferric oxides 

are more voluminous than ferrous oxides [25]. Moreover, the growth of iron bacteria can 

produce tubercles that promote crevice attack. Finally, chemoheterotrophic bacteria produce 

carbon dioxide that in typical OPC can produce carbonation, lowering the pH of the system, thus, 

enhancing the corrosion process. 

The system conditions such as pH and oxygen concentration can favor or inhibit 

microbial catalysis for this processes to occur. For example, SRB typically grows in anoxic 

environment at pH near neutrality. Conversely, SOB is favored in aerobic conditions at low pH. 

While MIC is a well-documented  mechanism of corrosion of the external surface of POC 

concrete itself, for example in sewers, MIC of the steel reinforcement inside the concrete has 

received little attention in the literature [26] possibly because the microorganisms that could be 

responsible for MIC may not encounter sufficiently favorable growth or nutrient conditions in 

the high pH pore water of OPC.  The novel concrete examined here, compared to OPC may be in 

principle be more susceptible to MIC given the only mildly alkaline pH. This potential 

mechanism of induced corrosion should receive further study and consideration in the future.  
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CHAPTER 3: METHODOLOGY 
 

Material Data 

Surface Conditions of Reinforcement Bars 

 The reinforcement bars used were supplied by GERDAU, Jacksonville, FL, US. 

Uncoated steel bars wre made of  of plain carbon steel meeting ASTM A-615 [27] specifications. 

Epoxy-coated bars, also carbon steel,  were supplied for the same source and met ASTM A-775 

specifications [28]  All bars were 0.5” (1.27 cm) in diameter (#4 rebar size). The bars were cut to 

segments of 6” (15.24 cm) in length. Three reinforcing bar (rebar) conditions were tested: 

• Mill Scale “MS”: This is ASTM A-615 rebar of the most common type used as 

reinforcement for concrete applications, and in its as-produced mill condition. Mill scale 

is the high temperature oxide layer formed during the manufacturing of the rebar. 

• Sandblasted “SB”: This material is used as reference for comparison with alternative 

coatings. The sandblasted rebars were made of normal production ASTM A-615 rebar 

that had the mill scale removed by using abrasive material blown against the surface at 

elevated pressure, leaving a bare metal surface.  

• Epoxy coated with 0.25% surface breaks “EC”: This widely available corrosion resistant 

material is prepared with rebar stock originally satisfying ASTM A-615 [27] 

specifications and then processed by sandblasting and coating with a 2-component 

powdered epoxy compound cured at elevated temperature. The intentional coating breaks 

were introduced by filing at regular intervals to obtain ~ 1mm2 breaks to assess possible 

vulnerability in this medium. 
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Concrete  

 The concrete tested in these experiments was a proprietary variation of SC provided by 

Solidia Technologies®, Piscataway Township, NJ, United States. The manufacturing process of 

SC is similar to that of OPC, in fact it can be made in all plants designed to manufacture OPC. 

However, despite its similarities in the chemical raw materials and manufacturing process, they 

possess different profiles (Table 2). Conversely, SC cures in a CO2/water environment and this 

process takes ~1 day. In the case of OPC based concrete, the curing process takes ~28 days and it 

is carried out with water.   

Table 2: Relevant Properties of OPC vs SC. Adapted from [6] 
 
  

 

 

 

 

For experimental purposes, cylindrical specimens made with the developmental variation 

of SC-concrete were prepared and cured at the research facilities of Solidia Technologies. 

Twenty seven reinforced concrete specimens (nine for each type of rebar) and eleven plain 

concrete specimens that were part of an extended experimental matrix were used throughout the 

duration of the experiments addressed in this Thesis. The concrete portions of all the specimens 

measured 3” (7.62 cm) in diameter and 6” (15.24 cm) in length. The reinforced and plain 

concrete specimens are shown in Figure 5. 

 
OPC SC 

Basic Chemistry 
Ca3SiO5 - 

Ca2SiO4 CaSiO3 
Raw Materials     

Wt. % Limestone 80% 55% 
Wt % Shale/Clay/Sand 20% 45% 

Max. Kiln temp. 1500˚C 1200˚C 
CO2/t of cement 800 Kg 550 Kg 

Energy/t of cement 5.4 Gj 3.8 Gj 
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Figure 6 shows a detailed schematic and dimensions for a reinforced concrete specimen. 

For non-EC specimens, a 1 inch long region around the level where the rebar emerges from the 

concrete was covered with a layer of two-component epoxy to avoid corrosion at that interface, 

which would not have been representative of the behavior of interest.   

 

 

 

 

 
 

 

 
Figure 5: A Batch of Reinforced and Plain Concrete Specimens that Includes those Addressed in 
this Thesis. 
 

  

 

 

 

 

 

 

 

Figure 6: Schematic of a Reinforced Concrete Specimen 
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Experimental Setup: Exposure Regimes 

 The following exposure regimes were selected for evaluation with the indicated rationale: 

• Atmospheric environment with 85% relative humidity: Simulating indoor service 

• Partial submersion in distilled water (FW) : Simulating outdoor chloride – free service 

• Partial submersion in mildly corrosive water (MW): 100 ppm of chloride ions introduced 

as sodium chloride (NaCl) and 200 ppm of sulfate ions introduced as sodium sulfate 

(Na2SO4). Simulating an environment slightly more aggressive than fresh water, 

representative of conditions that are sometimes considered to be representative of the 

boundary between acceptable and unacceptable service severity [29]. 

• Partial submersion in salt water water (SW) : The salt water was prepared with distilled 

water with 5% w/w (NaCl).  Salt water simulating extremely aggressive marine 

conditions as a bounding case. The Cl- ion content, about 1 M,  was intended to be 

somewhat more aggressive than that encountered in natural sea water regimes [30], but 

for simplicity no other major ions were incorporated in this medium.  

A schematic of a reinforced specimen exposed to an immersion regime Figure 7. All tests 

were performed in triplicate and at laboratory/ambient temperature (~25 +/- 3˚C). For the 

immersion regimes, the tests were accelerated via partial immersion considering a worst case 

scenario. Partial immersion is a highly aggressive condition with the following characteristics 

[16]: 

• Promotes species entry via fast sorption 

• Evaporative concentration near waterline 

• Strong electrolyte presence in lower part of specimen 

• Fast oxygen access in upper part (part not submerged)  
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• Promotes formation of active corrosion macrocell 

• Rapid evolution towards a corrosion propagation mode 

 

 

 

 

 
 

 
Figure 7: Schematic of Reinforced Specimen Exposed to an Immersion Regime 

 
Experimental Setup of Immersion Regimes 

 The specimens were placed in a plastic tray of 15.5” (39.37 cm) by 16.5” (41.91 cm) 

holding a number of specimens that included those used in this study (triplicate specimens of 

each type of reinforcement condition). The fresh water, mild water and salt water solutions were 

prepared accordingly to the specifications mentioned above and the specimens were submerged 

to cover 2” (5.08 cm) in length of the specimens. An MC DAQ data acquisition system was used 

to measure the open circuit potential for each specimen as to be used as one metric for 

determining whether corrosion is taking place.  

For this purpose, each tray had an activated titanium electrode [31] that served as a 

reference electrode; each specimen was identified, connected and programmed into the data 

logger. Therefore, the electric potentials could be monitored in real time and the data could be 

easily collected for further analysis; Figure 8 shows a schematic of the specimens under 

immersion conditions. For comparative purposes, regular calibrations of the activated titanium 

reference electrodes versus a saturated calomel electrode (SCE) were performed. The saturated 
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calomel electrode was chosen because of its common usage as an electrochemical reference. 

However, the use of titanium reference electrodes in this case was imperative because they are 

generally less affected by prolonged contact with the solution and thus more suitable for long 

term analysis of the specimens on immersed regimes. 

 

 

 

 
 
 
 

Figure 8: Schematic of the Specimens Placed in the Tray and Connected to a Data Logger 
 

Figure 9 shows the appearance after ~3 months of the specimens exposed to mild water 

and Figure 10 shows the appearance after ~3 months of the specimens exposed to salt water. 

Notice in this case the efflorescence or ring of salt, a phenomena that consists of deposited salts 

that are leached out of the concrete and are crystalized on subsequent evaporation of the water or 

interaction with carbon dioxide from the atmosphere [3]. This efflorescence can be seen on the 

specimens exposed to salt water in Figure 10. 

 

 

 
 

 

Figure 9: Batch of Specimens Exposed to Mild Water that Includes those Evaluated in this 
Thesis 
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Figure 10: Batch of Specimens Exposed to Salt Water that Includes those Evaluated in this 
Thesis 
 
Conductivity of the Solutions 

Is expected that the level of water in the trays will diminish progressively as the trays are 

exposed to the atmosphere due to evaporation. To compensate, fresh distilled water was added to 

the trays to maintain the specimens 2” (5.08 cm) depth of submersion. However, the constant 

addition of distilled water along with frequent mobilization of the specimens into and out of the 

trays for further examination eventually led to the dilution of the mild and salt water solutions, 

thus decreasing the conductivity of the solutions. When this occurred, the addition of an 

appropriate amount of the respective ionic solutions to the trays instead of fresh water was the 

next step.  

To further monitor the conductivity, resistance of the solution was measured using a 

Nilsson meter and a probe with known length and cross sectional area. The experimental setup is 

on Figure 11. Once all the connections were made, the probe was cured with distilled water and 

then fully submerged in the tray where the solution conductivity was going to be determined 

(without disturbing the concrete specimens in the tray). The resistance was detected and properly 

recorded along with the temperature of the solution in the tray. Finally, the probe was carefully 

washed with distilled water before proper storage. 
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Figure 11: Experimental Setup for Conductivity Measurements 
 

With all the gathered data, the resistance was converted to resistivity and conductivity 

according to the following mathematical equations. 

 

 

𝑅𝑅 =  
𝜌𝜌𝜌𝜌
𝐴𝐴  (8) 

where: 

R = resistance (ohm) 

ρ = resistivity (ohm·cm) 

L = length of the probe (cm) 

A = cross sectional area of the probe (cm2) 

Finally, the conductivity σ (mS/cm) is the inverse of the resistivity, ρ. 

 𝜎𝜎 =  
1
𝜌𝜌 

(9) 

Since the conductivity changes with temperature, all the results were temperature 

corrected to 22˚C following Equation 10 [32].  

 𝜎𝜎2 =  
𝜎𝜎1

1 + 𝑇𝑇𝑇𝑇 ∗ (𝑇𝑇1 −  𝑇𝑇2) (10) 

where:  
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σ2 = New conductivity value corrected to a fixed temperature (mS/cm) 

σ1 = Conductivity obtained at the experimental temperature (mS/cm) 

TC = Temperature coefficient of inorganic electrolytes at 18˚C (mS/cm - ˚C) 

T1 = Temperature recorded during the experiment (˚C) 

T2 = Fixed temperature (˚C) 

Figure 12 illustrates the conductivity values for the solutions throughout the course of the 

experiments. These values are consistent with expected values based on solution composition. 

 

 

 

 

 

 

Figure 12: Conductivity of the Solutions used for the Exposure Regimes  
 
Electrochemical Impedance Spectroscopy (EIS) 

 Electrochemical impedance spectroscopy is one of the most common techniques to 

estimate corrosion rates of a system. A Gamry Instruments, Model Reference 600 

potentiostat/galvanostat/ZRA (Warminster, PA, US) was used for this purpose. The specimens 

were tested in the frequency range of 100 kHz to 0.1 mHz with a 10 mV r.m.s. excitation 

amplitude. A schematic of the cell is shown in Figure 13. 
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Figure 13: EIS Test Cell for Immersion Regimes 

Components of the EIS test cell for immersion regimes 

• Reinforcing bar as working electrode 

• Activated titanium counter electrode  

• Saturated calomel reference electrode (SCE) 

• Test solution and solution level same as that in tray 

• After testing, specimens returned to the correspondent exposure tray 

Concrete Resistivity 

 The resistivity of the concrete was estimated from the electrochemical impedance 

spectroscopy tests, assuming that the a.c. potential between the rebar and the surface of the 

concrete varies only radially and in the immersed zone for simplicity (Figure 14). Thus, Equation 

(11) applies [33]. 

 

 

 

Figure 14: Schematic of Immersed Zone of the Concrete Specimen 
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𝜌𝜌 =
𝑅𝑅𝑠𝑠 ∗ 2𝜋𝜋 ∗ 𝑍𝑍

ln(𝑅𝑅𝑟𝑟)
 (11) 

where: 

Rs = solution resistance (obtained by EIS) ohm 

ρ = concrete resistivity (ohm·cm) 

Z = length of the bar (cm) 

R = diameter of the specimen (cm) 

r = diameter of the rebar (cm) 

Finally, it was assumed that the rebar extends fully to the bottom of the specimen. This 

simplified abstraction is illustrated in Figure 15. 

 
Figure 15: Abstraction for Immersion Regimes (Concrete Resistivity). 

Experimental Setup of Atmospheric Regime 

 For the atmospheric regime, three specimens for each type of reinforcement were placed 

in a chamber with 85% relative humidity (RH). Saturated Potassium Chloride KCl was used to 

replicate this relative humidity condition in the closed environment [34]. To determine the 

relative humidity of the environment a hygrometer from Taylor Precision Products Inc. 

(Rochester, NY, USA) was used. Figure 16 shows the specimens placed in this exposure regime. 
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Figure 16: Batch of Specimens Exposed to 85% Relative Humidity that Includes those Evaluated 
in this Thesis 
 
Open Circuit Potential Measurements 

 The specimens exposed to 85% relative humidity were regularly taken out of the chamber 

for potential measurements. An MCM meter LC-4 from M.C. Miller Co., Inc. (Ringwood, NJ, 

USA) was used for this purpose along with a SCE. A schematic of the system is on Figure 17. A 

humid sponge was placed against the bottom of the SCE for better contact with the specimen. 

The open circuit potential of the rebar was then measured using the SCE as reference.  

 

 
 

 

 

 

 

 

 

 

Figure 17: Schematic of Potential Measurements for Specimens in 85% RH 
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Electrochemical Impedance Spectroscopy 

 This technique was used following the same premises and parameters as those of the 

immersion regimes.  Comparable to the procedure for the immersed specimens, the Gamry 

Instruments, Reference 600 potentiostat/galvanostat/ZRA (Warminster, PA, US) was used and 

the specimens were tested in a range of 100 kHz to 0.1 mHz with a 10 mV r.m.s. excitation 

amplitude. A schematic of the cell is shown in the Figure 18. 

 
Figure 18: EIS Cell for 85% RH Regime 

 
Components of the EIS test cell for immersion regimes 

• Reinforcing bar as the working electrode 

• Clamped conductive rubber ring dual counter electrode, does not alter humidity condition 

of concrete. 

• Activated titanium reference electrode embedded in grout near surface 

• Specimens tested temporarily outside chamber, placed in a chamber that replicates the 

humidity conditions to reduce drying in lab air 

• After testing, specimens returned to 85% RH chamber 
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Concrete Resistivity 

 For determining the concrete resistivity of the specimens exposed to 85% relative 

humidity, the same procedure as to that of immersed regimes was followed using Equation 11. 

However, in this case, roughly the total length Zt (Figure 19) of the specimen was exposed to the 

environment, hence it was used as Z for the calculations. For simplicity, it was assumed that the 

rebar extended to the bottom of the specimen.  

 
Figure 19: Simplified Schematic of Specimen Exposed to 85% RH for Resistivity Calculation 

 
Experimental Procedure: Other Material Properties 

Material Properties: Volumetric Porosity 

 The volumetric porosity of a material is given by equation 12 
 
 
 

% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
(12) 

 
Three plain concrete specimens with 3” diameter and 6” length in the as-received were 

selected for this experiment. Initially they were submerged in water to half their length (3”; 7.62 

cm) in a closed chamber (to maintain 100% relative humidity). The amount of water uptake was 

continuously monitored by weighting the specimens on a 0.1 g precision digital balance.  After 

approximately one week of exposure, the specimens were taken to full immersion and they were 
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frequently weighted until there was no more mass gain and the levels were stabilized. With that 

data, the part of the porosity that was not filled in the as-received conditions was calculated, 

taking into account that the volume of the voids per cm3 will be equivalent to the maximum mass 

of water in grams that the specimen gained, at the particular moment when stabilization is 

reached, assuming that all the pores within the concrete are completely filled with water. The 

volume of the 3” (7.62 cm) by 6” (15.24 cm) concrete specimens is 695 cm3.  

 To obtain an indication of the total volumetric porosity of the material it was necessary 

also to obtain the evaporable amount of water of the as-received specimens. For this, another 

three plain concrete specimens of 3” (7.62 cm) diameter and 6” (15.24 cm) length were used. 

Their as-received weight was recorded and following ASTM C642 [35] specifications for oven-

dry mass determination, they were placed in a Thelco GCA/Precision Scientific oven at 104˚C 

for a time greater than 24 hours. Afterwards, the specimens were placed in a desiccator for ~1 

hour and then, the mass was measured. The process was repeated until the difference in the last 

two mass measurements was lesser than 0.5%. With this information, the volume of the voids 

that were filled with water in the as-received material was determined and added to the volume 

of the voids that were not filled with water in the as-received condition (obtained from the other 

set of 3 specimens) to estimate the total volumetric porosity. 

Material Properties: Weight Gain in Test Media 

 An important property that was assessed over the course of the experiment, is related to 

the weight that the reinforced concrete specimen gains when it is exposed to a certain 

environment. This is indicative of extent/speed of capillary absorption of the material. Therefore, 

it is an important parameter from a corrosion initiation standpoint. 
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 Three specimens for each immersed exposure condition (one for each type of 

reinforcement) were randomly selected for monitoring. In the case of the 85% RH exposure, all 

the specimens were monitored. All the selected specimens were regularly weighted for this 

purpose. For the immersion regimes, the excess of water was gently dried with paper towels 

before weighing every time. A 0.1 g precision digital balance was used. 

Material Properties: Native Internal Humidity 

To determine the native humidity of the concrete, eight plain concrete specimens of 3” 

(7.62 cm) diameter, 6” (15.24 cm) length were randomly selected. To establish the internal 

humidity, duplicate specimens were exposed to four different relative humidity conditions and 

their mass gain or loss was monitored frequently using a 0.1 g precision analytical balance. With 

the gathered data, the internal relative humidity of the material can then be estimated. The 

environments selected for the experiment are the following: 

• 62% relative humidity: laboratory exposure, (RH confirmed with a hygrometer from 

Taylor Precision Products Inc. (Rochester, NY, USA)) 

• 75% relative humidity: A closed chamber with a saturated solution of sodium chloride 

NaCl provided this condition. 

• 85% relative humidity: A closed chamber with a saturated solution of potassium chloride 

KCl provided this condition. 

• 100% relative humidity: A closed chamber with fresh water that was not in direct contact 

with the specimens was used for this purpose.   

In addition, data gathered for the weight gain evolution of reinforced concrete specimens 

exposed to 85% RH was included for the analysis since it was readily available and provided 

another point to support the results obtained.  
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During the course of the experiments it was found that the mass was changing 

approximately with the square root of time, as it is seen often in diffusion controlled processes 

[36]; Thus, the behavior was assumed to be taking place  according to the following equation: 

For each environment considered, K can be determined as the slope obtained by plotting 

the change of mass as function of time and fitting the results via a least square error trend line 

according to Equation 13. With that information, the native moisture can be determined as the 

point where K is equal to zero implicating that the specimen is in equilibrium with the 

surrounding environment and neither gains or loses weight. This can be easily determined by 

plotting the K average values for each environmental condition and interpolating for the value 

where K equals zero. 

Material Properties: Pore Water pH 

Two plain concrete specimens with 3” diameter and 6” length were selected for this 

experiment. The in-situ leaching method for pH determination was followed [21]. For this, the 

specimens were placed in a 100% RH environment and allowed to stabilize for one month. After 

that, three holes were drilled into the upper part of the specimens using a hammer drill with a 

1/16 in. (0.16 cm) masonry drill bit with 3 cm of separation from each other, as can be seen in 

Figure 20. Afterwards, an acrylic washer was placed on top of the holes, fixed with fast drying 

epoxy and the hole was closed with a rubber cap.  

The holes were filled with distilled water up to the bottom of the plastic washer, returned 

to the 100% RH chamber and monitored periodically for absorption loss into the surrounding 

concrete, the water added equilibrated with the water in the pore network, meaning there was no 

 𝑚𝑚 = 𝐾𝐾 ∗ √𝑡𝑡 (13) 
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more water loss due to absorption into the surrounding concrete. In this specific case, the 

stabilization was achieved after ~10 days.  

The pore water pH was determined by detecting the potential difference between the 

reference and sensing electrode when immersed in the pore water solution with a pH meter 

model 140 from Corning Inc (Corning, NY, USA); using an activated Titanium microelectrode 

and a silver-silver chloride (SSC) reference electrode at laboratory temperature (~25 +/- 3 °C). 

Initially a calibration curve was made with buffered solutions for pH 7, 8, 9 and 10 to be 

able to determine the range of potential of the pore water. Afterwards, the measurements were 

conducted by introducing the reference electrode into the reference hole and the glass electrode 

into either hole 1 or 2 (see Figure 20), both electrodes were submerged for 30 seconds and the 

potential measurement was recorded. The procedure was repeated with buffered solutions of pH 

8 and pH 9 or pH 9 and 10 accordingly.  

The measurements were done by triplicate in the 4 testing holes (two for each specimen). 

Finally, the potential readings were converted to pH values using linear potential 

interpolation/extrapolation from the calibration points.  

 

 

 

 

  

 

   

Figure 20: Schematic of ISL Experimental Setup and Example of Specimen Evaluated in This 
Thesis. Source: Sagüés et. al. [21]
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CHAPTER 4: RESULTS AND DISCUSSION 

Evaluation Period 

Test exposures were successfully conducted over a period of ~170 days. While that 

period is short compared with the expected service life of most components in actual 

applications, the early information obtained in this investigation nevertheless provided important 

insight on the corrosion performance of steel in the developmental variation of SC-concrete 

examined here. Additional monitoring for a longer period is anticipated in follow up work. 

Potential Measurements 

Potential measurements are shown in Figures 21-24. For the 85% RH atmospheric 

exposure there was indication of generally passive behavior (no potential drop), for all rebar 

surface conditions examined over the entire test period. 

 

 

 

 

 

 

Figure 21: Potentials of Specimens Exposed to 85% RH  
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 For the three immersion regimes, all rebar surface conditions showed a potential drop 

indicative of early activation (typically after ~1 week of exposure). Notice that for EC rebar, 

activation took place on the very small coating break zones. Differentiation in activation times 

between surface conditions was small in absolute terms in the context of the overall test duration.  

EC rebar behavior, shifting to more positive potentials later on likely reflects lower probability 

of stable activation due to the very small (0.25%) fraction of exposed metal. 

 

 

 

 

 

 

Figure 22: Potentials of Specimens Exposed to Fresh Water 

 

 

 

 

 

Figure 23: Potentials of Specimens Exposed to Mild Water 
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Figure 24: Potentials of Specimens Exposed to Salt Water 
 

EIS Results and Apparent Corrosion Rates over Time 

  Figures 25 and 26 show examples of typical EIS behavior for specimens with high and 

low values of ACR respectively. The results are shown in both Nyquist and Bode [18] format, 

and present a number of commonly encountered complications [11] above those of the highly 

simplified diagram that was shown in Figure 4. A high frequency semicircle that is sometimes 

visible is related to the concrete dielectric properties and not to the corrosion rate. The 

polarization resistance Rp was estimated, as shown in Figure 26, by fitting to a basic nominal Rs 

(not always the same as that used for resistivity measurements) in series with Rp/CPE parallel 

combination model fitting with the software package indicated earlier; the lowest two frequency 

decades of data points were used, corresponding to the partial low frequency semicircle in the 

diagram. The results provide rough estimates of apparent corrosion rates, often only indicative of 

an upper bound of corrosion rate. Therefore, the results are reported as an ACR. For concrete 

resistivity measurements, only the high frequency part of the EIS diagrams was used, adopting 

for the value of Rs the real part of the impedance at the point of lowest imaginary component, 

before the onset of the region that eventually forms the low frequency loop, coinciding with the 

end of the high frequency loop if that one was readily apparent.   
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Figure 25: Output of EIS Data for Sandblasted Specimen Exposed to Salt Water at ~1 Month of 
Exposure. Line in the Nyquist Diagram Represents Computer Fit to Lowest 2 Decades of 
Frequency Data. Fit Rp Value was 1.3 k ohm. After Accounting for Specimen Surface Area 
ACR was 5.8 µm/y. Value of Rs for Estimating Concrete Resistivity was ~260 ohm. 
 

 

 

 

 

 

 

Figure 26: Output of EIS Data for Sandblasted Specimen Exposed to Fresh Water at ~3 Months 
of Exposure. Line in the Nyquist Diagram Represents Computer Fit to Lowest 2 Decades of 
Frequency Data. Fit Rp Value was 43 k ohm. After Accounting for Specimen Surface Area ACR 
was 0.18 µm/y. Value of Rs for Estimating Concrete Resistivity was ~20,000 ohm. 

 
Figures 27 and 28 illustrate the ACR values as function of time of exposure determined 

for all specimens by the analysis indicated above. For 85% RH exposures only very limited data 

were available due to high uncertainty in evaluating EIS spectra in high resistivity media. 

Nevertheless the available results, indicated extremely low ACR values for the not epoxy-coated 

specimens in this environment (< 0.15 µm/y), consistent with the potential measurements 

indicative of passive behavior. For epoxy-coated specimens the ACR was even smaller than for 

the other conditions.  
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For fresh and mild water exposure, the not epoxy-coated specimens showed ACRs that 

near the end of the test period were greater than those for the 85% RH condition, but with values 

still only about 0.3 to 2 µm/y. For salt water exposure the ACR values for not epoxy-coated 

specimens were, surprisingly, not dramatically higher than those in the fresh and mild water 

regimes.Variations of ACRs with time appeared to indicate a modest decreasing trend in some of 

the cases, but longer term testing will be needed for confirmation. The EIS results for all the 

immersion regimes were consistent with the OCP measurements, which showed early activation 

of the specimens, albeit the ACRs in these cases turned out to be quite low. In all exposure 

categories ACR for Epoxy Coated bars were extremely small, as much as two orders of 

magnitude lower than those for the other conditions. It is noted, however, that for epoxy coated 

rebar the EIS method may not be able to sufficiently detect any corrosion that could be taking 

place at the metal-coating interface around the existing small coating breaks, so specimen 

autopsy will be necessary to examine that possibility.  

Figure 29 shows a comparative summary of the ACR at approximately 5 months of 

exposure, consistent with the above observations. Notably, for all exposure regimes there was no 

clearly evident differentiation observed between the ACR behavior of the Mill Scale and 

Sandblasted specimens.  

 

 

 

 

 

Figure 27: CR of Specimens Exposed to 85% RH and Fresh Water 
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Figure 28: CR of the Specimens Exposed to Mild Water and Salt Water 

 

 

 

 

 

Figure 29: Summary of ACR after ~5 Months of Exposure 

Concrete Resistivity 

Figure 30 shows the values obtained for the concrete resistivity. As discussed in more 

detail later,  compared with the values commonly encountered in chloride free OPC concrete 

[37], resistivity of this particular SC-concrete type was very high for the immersed portion of the 

specimens in fresh and mild water environments ( ~1 order of magnitude higher), and extremely 

high for the specimens in the 85% RH chamber (over 2orders of magnitude higher).  Only the 

immersed portion in the salt water solution developed relatively low resistivity values, 

comparable to those of a medium permeability OP concrete [37]. 
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Note that as expected, the results were about the same for all types of bare metal rebar 

finish, since the resistivity is a property of the concrete and not of the embedded rebar which, for 

this parameter test, served only as a current and potential measuring electrode. Interfacial 

polarization of the steel is not important at the typical frequency giving Rs in the EIS diagram. 

No values are reported for EC rebar specimens as the insulating epoxy coating introduces added 

resistance not included in Equation 11. 

 

 

 

 

 

 

Figure 30: Concrete Resistivity Measured Using the Indicated Rebars as Electrodes 

The Resistivity Formation Factor [38] of a porous solid or resistivity Rp filled with a 

fluid or resistivity Rf is defined as:  

𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 (13) 

For many tightly porous solids with medium-low porosity and a relatively inert, low 

solubility matrix (for example natural limestone), RFF is on the order of several hundred. RFF 

was calculated for the present specimens, assuming that during the exposure period to date, the 

external solution has permeated through most of the pore network of the submerged part, results 

are shown in Table 3. 
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Table 3: RFF (Average of Results for each Immersed Regime) 
 
  

 

 

 The SC-concrete type examined here displayed RFF values that are on the order of those 

expected for relatively inert natural materials with appreciably low porosity and tortuosity [39]. 

These findings support the internal consistence of the results to date and expectations of 

sustaining very high concrete resistivity in exposure environments with water of low to moderate 

ionic content. 

Relative Porosity 

Figure 31 shows the water uptake for one of the specimens evaluated. As can be seen, the 

water uptake reached ~50% of saturation level after approximately only 3 days, suggesting very 

fast water pickup. The estimated volumetric porosity not filled with water in the as-received 

condition was 5.0 %, with a standard deviation of 0.2%. The separate experiments in which as-

received specimens were oven-dried indicated that the as-received evaporable water content was 

~1 % of the specimen mass, corresponding to about 2.6 % of the specimen volume. Hence the 

overall volumetric porosity estimated by these specimens is 7.6%. 

Water 
Solution 

Solution 
Conductivity 

mS/cm 

Solution 
Resistivity          
kohm-cm 

Concrete 
Resisitivity       
kohm-cm 

Approximate 
Resistivity 
Formation 

Factor 

Fresh 0.2 5.00 236 47 
Mild 0.55 1.82 150 83 
Salt 63 0.02 6 378 
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Figure 31: Example of Void Volume (As Percentage of Specimen Volume) Filled as Function of 
Time by Absorbed Water in an Immersion Test Conducted with an As-Received Specimen of the 
Developmental Variation of SC-Concrete Investigated.  Absorption Reached a Plateau at ~ 5%. 
Initial Moisture-Filled Porosity was ~2.6% Based on Tests in Other Specimens.  
 
 
Weight Gain in Test Media 

 Figure 32 shows the results obtained for the weight gain during exposure to the test 

media for selected specimens. For the immersion regimes, it can be seen that after three days the 

specimens gained 1% weight, approaching 2.5% after 1000 hours. From the standpoint of 

possible reinforcement susceptibility to corrosion such water pickup rate may be considered to 

be very fast, and is consistent with the early onset of activation seen in the immersion regimes. 

The specimens that gained ~3.5% weight were exposed to salt water, with salt efflorescence (not 

bulk absorption) accounting for the excess weight presented. For the specimens exposed to 85% 

RH the water uptake was only ~1% after 100 days, by which time the weight had reached a 

steady - state regime. As it will be shown below, the native internal humidity of the SC-concrete 

type assessed here is not much different from 85%, hence the small weight change in this 

medium.  
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Figure 32: Fraction of Weight Gain for Exposure Regimes 

Native Internal Humidity  

 Figure 33 shows a summary of the native internal humidity results. The duplicate 

specimens were exposed to the specified relative humidity environments for ~85 days. All the 

data from each environment were gathered and analyzed to graphically determine the point 

where there was not net gain or loss (K=0). That points indicates the moisture content of the 

material.  

Note that the reinforced concrete specimens exposed to a relative humidity of 85% (used 

only data for the first 24 days) had a small positive K value and the plain concrete specimens 

exposed to the same environment had a small negative K value. In absolute terms this difference 

was very small and could possibly be attributed to the fact that the blank and the reinforced 

specimens came from different SC-concrete production batches.  

In general, specimens exposed to a relative humidity equal or lower than 85% had a 

negative K value and the specimens exposed to a relative humidity equal or higher than 85% had 

a positive K value. For this developmental variation of SC-concrete, the native moisture content 

was therefore estimated to be ~85%. 
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Figure 33: Native Humidity Results Summary 

pH of the Pore Water 

 Figure 34 illustrate a schematic for the arrangement of the holes in the concrete and 

Figure 35 shows one example of the results obtained. After ~ 10 days of exposure of the two 

selected specimens for pore water pH determination a first set of measurements was taken by 

using an activated titanium microelectrode  and a silver-silver chloride (SSC) reference electrode 

at laboratory temperature (~25 +/- 3 °C).  

The ISL method was performed until no significant variation of pH was encountered. The 

pH obtained from an average of 4 values at 2.5 weeks of exposure was 8.8 with a standard 

deviation of 0.2. It was noted that stabilization occurred towards higher pH values.  
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CHAPTER 5: SIGNIFICANCE OF FINDINGS 
  

Corrosion Rate Considerations 

 The array of experimental methods deployed in this investigation provided useful insight 

on the corrosion behavior of reinforcement in this novel material.  

 The behavior of not-epoxy coated reinforcement will be considered first. As the 

experiments did not show strong differentiation between the mill scale and sandblasted 

conditions the following comments will be considered to apply to both categories equally. The 

ACR values obtained are compared in Figure 36 to typical corrosion rates  illustrated by 

Gonzalez et al. [22] for a number of exposure conditions for reinforcement embedded in OCP 

concrete when the reinforcement  is in the passive condition, and for various conditions after the 

active corrosion propagation stage has started.  

 Specimens exposed to 85% R.H., a condition which is of interest for service that may 

involve sheltered structural components with exposure to moisture but no direct water contact, 

showed indications of extended preservation of the passive condition and extremely low ACRs; 

those values fall well within the range indicated by Gonzalez et al. for the passive condition in 

OPC.  

 Exposure to the Fresh Water regime resulted in rapid indications of steel activation, but 

despite that the ACRs, while finite, were quite small and after a few months of exposure the 

values obtained were not much above those typical of passive steel in OPC, or at the very low 

end of the range of corrosion rates encountered for actively corroding steel in OPC.   

 



47 
 

 

 

 

 

 

 

 

Figure 34: ACR Comparison between SC-Concrete and OPC-Concrete. Source: Gonzalez. et al. 
[22] 

 Exposure to the mildly aggressive water regime also resulted in evidence of rapid early 

activation, but the subsequent ACR values tended to be very modest, comparable to those seen at 

the low end of corrosion rates for carbonated OCP without chloride contamination and low 

moisture content. The ACR values for this regime were lower than those typical of humid 

carbonated concrete, which would have been considered otherwise to be a corrosion analog for 

SC-concrete as noted earlier [22].  

 Surprisingly, exposure in the salt water regime, which also resulted in clear signs of early 

steel activation, yielded ACR values that while moderately high at the beginning, tended to 

stabilize later on toward small values comparable to those of the mild water regime. Those 

values are much lower than the corrosion rates often observed for partially aerated, highly 

humid, highly chloride contaminated OPC during the corrosion propagation stage, as cited by 

Gonzalez. A possible explanation for this behavior is discussed later.  

 The ACR of epoxy coated steel was extremely low in all cases. However, as noted earlier 

in this case specimen autopsies are essential to ascertain that the indications of low ACRs are not  

a result of limitation of the EIS tests to detect undercoating corrosion [40]. Therefore, further 
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discussion of this material as a possible corrosion control approach for SC-concrete will be left 

for future consideration after additional evidence is obtained.  

 The results for the regular rebar will also require confirmation by autopsy examination of 

selected specimens after a longer test time has been accrued. Nevertheless, possible artifacts 

complicating interpretation of EIS assessment are less likely than in the case of epoxy coated 

rebar and some initial impressions may be indicated as follows. 

Prospects for Corrosion Performance of Plain Rebar 

 The following comments are based on the short period of evaluation to date and therefore 

must be viewed only as preliminary impressions, subject to later evaluation over longer test 

periods followed by autopsy of the specimens. Nevertheless, some valuable insights may be 

made at this stage and are presented here with the understanding that the above caution applies.  

 For atmospheric exposure in moderately moist environments (e.g. the 85% RH test 

condition) the corrosion performance of plain steel in the SC-concrete type examined appears to 

be promising. This result is encouraging for applications, such as indoor hollow slabs and similar 

structural components, not subject to direct wetting.  

 Direct exposure to the fresh and the slightly aggressive mild water media did result in 

nearly immediate initiation of active corrosion, indicative of a very short corrosion initiation 

stage. This interpretation is consistent with the observation of a very fast water penetration 

mechanism, as observed in the specimens that were monitored for weight gain under partial 

immersion. The mildly alkaline character of the pore water plays a role in this early activation as 

well: with the increase in moisture,  and without a passive film to avoid the anodic reaction, all 

the key components that must be present for corrosion to occur are present and therefore the 

system experiences corrosion propagation already at the  early stages of service.  
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  The corrosion behavior in these environments therefore appears to be dictated 

predominantly by performance during the propagation stage. The ACRs were very low, however, 

on the order of only < 2 µm/y. Those values are nevertheless not negligible, as such rates might 

result in corrosion induced cracking after as little as a decade  or as much as some decades of 

service, much as for OPC concrete after the end of the corrosion initiation period [9] in situations 

of moderate to low corrosion rates. If the behavior shown in the short tests reported in this thesis 

is confirmed by extended testing, applications for contact with fresh natural water where service 

life is needed for only moderate periods might be achievable without any additional corrosion 

protection provisions. 

Overall, the behavior observed suggests that, despite the rapid activation of the steel 

surface, other properties of the developmental variation of the SC-concrete evaluated, such as its 

very high resistivity, may be acting as factors strongly mitigating the corrosion process. In that 

context, the concrete type assessed here exhibited very high resistivity in the Fresh Water and 

Mild Water tests, and extremely high resistivity in the 85% RH moist atmospheric exposure  

compared to a selection of typical values for water-saturated OPC (Figure 37) [41]. Such high 

resistivity can introduce large amounts of electric resistance polarization, especially of the anodic 

reaction, when corrosion macrocells are the main modality of corrosion distribution on the steel 

surface thus accounting at least in part for the very low ACR values observed.  

Caution applies however on some issues that could lead to overoptimistic interpretation 

of the observed ACR values. In particular, the high resistivity of the medium may result in EIS 

underestimation of the corrosion rate of small localized active regions [42]. Additionally, given 

the tendency of the concrete assessed for rapid and strong water absorption observed earlier,   the 

partial immersion regime might have resulted in a greater degree of water saturation in the upper 
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parts of the test specimens than initially anticipated. The extent of diffusional polarization of the 

cathodic oxygen reduction reaction could have accordingly been greater with consequent 

decrease of the overall corrosion rate. The uncertainty from these possible causes requires 

resolution via terminal specimen autopsy as indicated earlier, and by follow up experiments such 

as temporary removal of specimens from the test tank to allow for water evaporation and 

concurrent EIS measurements to detect any significant changes.  

  

   

  

 

 

 

 

 

 

 

Figure 35: Influence of Cement Type on Electrical Resistivity of Saturated Concrete. In the 
Figure: OPC1, OPC2: Ordinary Portland Cement Saturated, MP: Modified Portland Cement 
Saturated (20% fly ash), HS: High Strength Portland Cement Saturated, SC FW: SC-concrete* 
saturated with fresh water, SC MW: SC-concrete* Saturated with Mild Water, SC SW: SC-
concrete* Saturated with Salt Water, SC 85% RH:  SC-concrete* exposed to 85% RH.  (*of the 
type assessed in this investigation).  
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 Direct exposure to the salt water medium resulted in nearly immediate activation as well 

with the same implications noted above for the fresh/mild water group. The ACRs were initially 

notably greater that those of the previously discussed group, as expected given the highly 

aggressive nature of the medium. Those ACR values, if sustained, would cause concrete cracking 

in an OPC application in a short time, on the order of only a few years. The ACRs decreased 

rapidly however, to values comparable to those of the mild water group. This decrease in such 

otherwise aggressive environment must be carefully examined for possible artifacts in the light 

of the concerns discussed earlier. Underestimation of corrosion rates from EIS resistivity 

artifacts is less likely than in the fresh/mild water experiments as in salt water the SC type 

assessed here exhibited, as expected, resistivity values that were not very large (Figure 37). The 

other artifact mentioned, excessive water pickup, merits more attention as the evaporative salt 

accumulation might have assisted more water pickup via deliquescence. As indicated above, 

longer term resolution of uncertainty will require terminal autopsy and temporary drying/EIS 

assessments.  

Methodology Considerations 

          It is emphasized that the experiments addressed in this Thesis are only one component of a 

more extended group of evaluations of developmental variations of SC-concrete and other 

alternative rebar conditions. Nevertheless, the evaluations served to illustrate the array of 

methodologies that can be deployed to evaluate the corrosion performance of reinforcement in 

new media and provide a framework for extended investigations. As indicated before, prolonged 

evaluation and terminal autopsies beyond these initial months of exposure will be required for a 

more definitive assessment of corrosion related durability. 
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Follow Up Work 

 As indicated in the above discussion, extension of this work to achieve longer exposure 

times (e.g. one year or more).is needed to ascertain the early behavior trends identified so far.  

 Autopsy of the specimens is anticipated to validate electrochemical impedance data. 

Specifically in the case of EC rebar where is necessary to determine if corrosion was taking place 

underneath the coating.  

 Additional experiments where specimens exposed to immersion in salt water are allowed 

to dry for a period of time to evaluate possible impact in corrosion rates are also anticipated. 

 Work should be also extended to other developmental formulations of the SC-concrete 

and surface conditions to expand the assessment matrix and provide valuable information related 

with the potential durability of the reinforced concrete. 
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CHAPTER 6: CONCLUSIONS 
 

 Reinforced concrete made with a developmental type of Solidia CementTM (SC) concrete 

and plain steel rebar in the as received and sandblasted condition, as well as epoxy coated rebar 

was evaluated for about 5 months for corrosion behavior  in air at  85% RH and partial 

immersion regimes with fresh water, mild water and salt water. The main findings of this study 

are indicated below: 

• Specimens exposed to air at 85% RH appeared to retain a passive steel condition during 

the entire exposure period. Apparent corrosion rates (ACR) derived from electrochemical 

impedance spectroscopy (EIS) were extremely low. Pending confirmation by prolonged 

testing, this result is encouraging for applications such as indoor hollow slabs and similar 

structural components not subject to direct wetting. 

• Specimens exposed to immersion regimes in Fresh, Mild and Salt water media showed 

signs of activation after a very short time (days-week) of exposure. Corrosion assessment 

thus occurred predominantly in the corrosion propagation stage. Early activation is 

thought to reflect a combination of rapid water absorption and only moderately alkaline 

pH (~8.8) of the concrete assessed.  

• The ACRs for plain and sandblasted rebar in the Fresh and Mild water regimes were very 

low, e.g, < 2 µm/y. If confirmed by further evaluation, applications for contact with fresh 

natural water where service life is needed for only moderate periods might be achievable. 

The SC-concrete assessed here exhibited much higher resistivity values than conventional 
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PC concrete in similar conditions. This higher resistivity may have been an important 

factor in limiting corrosion rate. 

• ACRs of plain and sandblasted rebar in the salt water exposure were initially notably 

greater that those indicated above, as expected given the highly aggressive nature of the 

medium. Those ACR values, if sustained, would cause concrete cracking in an OPC 

application in a short time, on the order of only a few years. ACRs however decreased 

with exposure time but those results need careful follow up evaluation for possible 

artifacts such as excessive water pickup from salt deliquescence, which could have 

transport-limited the rate of the cathodic reaction.  

• ACRs of epoxy-coated rebar specimens (which had 0.25% intentional surface flaws) 

were extremely small in all test conditions. However, this result may stem from 

limitations of the EIS tests to detect undercoating corrosion and interpretation of this 

finding needs to be postponed until future autopsy of test specimens.  
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APPENDIX A: LIST OF SYMBOLS 
 

ACR Apparent Corrosion Rate 

Cdl Interfacial Capacitance of the Steel 

CSE Saturated Calomel Electrode 

EC Epoxy Coated 

EIS Electrochemical Impedance Spectroscopy 

FW Fresh Water 

MIC Microbial Induced Corrosion 

MW Mild Water 

MS Mill Scale 

OPC Ordinary Portland Cement 

PC Portland Cement 

RFF Resistivity Formation Factor 

RH Relative Humidity 

Rp Polarization Resistance 

Rs Electrolyte Resistance 

SC Solidia Cement 

SW Salt Water 

SB Sandblasted 
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APPENDIX B: COPYRIGHT PERMISSIONS 
 

Below is permission for the use of Figure 34. 
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