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Lay summary  

Under future global change scenarios predicted by the IPCC (Intergovermental Panel 

on Climate Change), many aspects of the environment will change simultaneously. 

Within aquatic environments, environmental changes will include warmer 

temperatures, elevated CO2 and lower pH. However, these changes will not occur in 

isolation, and changes in light intensity, nutrients, UV radiation and man-made 

alterations, will likely have further impacts on wild populations. Environmental 

changes that produce a change to traits associated with fitness (here I used growth 

rates) are referred to as “drivers”. There are urgent calls for investigations to increase 

the number of environmental drivers (NED) that they investigate, so that better 

predictions on the outcome of multiple environmental drivers (MEDs) can be made 

for lab organisms and extended to wild populations. Of particular importance are the 

small photosynthetic plants that live in aquatic environments, these are called 

microalgae. Fifty percent of the oxygen we breath is produced by microalgae. They 

are the primary producers upon which aquatic ecosystems depend, forming the base 

of food chains and are therefore important for larger organisms such as fish, sharks, 

whales and humans. They consume more between 30 – 50% of the global carbon 

dioxide in the atmosphere, and so play an important role in future atmospheric CO2, 

and CO2 driven changes, such as ocean acidification. In short, no other plant does so 

much.  Microalgae have huge potential to persist under MEDs, as they grow in large 

populations and reproduce quickly, and this allows microalgae to adapt to MEDs 

relatively quickly.  

 

My Ph.D work tests the effect of adding more environmental drivers on the growth 

rate of the microalga Chlamydomonas reinhardtii. This will reveal how evolution in 

the face of a single environmental driver differs from evolution to many (up to eight) 

simultaneous environmental drivers. For this experiment, I used environmental 

drivers that are relevant to understanding how populations of microalgae may evolve 

to MEDs in natural environments (including elevated temperatures, increased CO2, 

reduced light intensity, reduced phosphate, UV radiation, reduced pH, general 
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nutrient depletion and the addition of a herbicide). I found that populations of C. 

reinhardtii do evolve in response to increasing NED, and environmental quality is a 

good predictor of how much populations will evolve in their environment. Using 

ninety-six different environments (with 0 to 8 environmental drivers) I disentangled 

the effect of the NED and the identity of environmental drivers and found that the 

single environmental drivers, including the environmental driver with the largest 

effect on growth rates, are important for making predictions on the short- and long-

term effects of MEDs. Furthermore, short- and long-term growth rates in 

environments with MEDs are remarkably similar, allowing me to make predictions 

on the long-term effect of MEDs, using short-term experiments.  
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Abstract  

In my thesis I present data collected from a long-term selection experiment using the 

freshwater model organism Chlamydomonas reinhardtii. The selection experiment 

was designed to disentangle the effects of the number of multiple environmental 

drivers (MEDs) and the identity of those environmental drivers including high CO2, 

high temperature, general nutrient depletion, reduced light intensity, reduced 

phosphate availability, the addition of a herbicide, UV radiation and reduced pH.  

Using up to eight environmental drivers, I show how simple organisms such as C. 

reinhardtii evolve in response to MEDs.   

 

The first step in this investigation is to examine the short-term response of MEDs. 

Data collected at the beginning of the selection experiment will provide insight into 

the early stages of microevolution by investigating key differences in the short-term 

(plastic) responses to few vs. many MEDs. Here, I focus on how the data collected 

from the responses to single environmental drivers can help us predict the responses 

to MEDs by using ecological models (additive, comparative, multiplicative). I show 

that the short-term plastic responses to single environmental drivers can predict the 

effect of MEDs using the comparative model because the response is largely driven 

by the single dominant driver present. I also demonstrate the importance of the 

number of environmental drivers (NED) for making predictions from the single 

environmental drivers and show that predictions become more reliable as the NED 

increases.  The results gathered from short-term responses provide evidence that 

single environmental driver studies are useful for predicting the effect of MEDs. 

After evolution, I found that the strength of selection varies with NED in a 

predictable way, which connects the NED to the evolutionary response (size of the 

direct response) through the strength of selection. Here, I used statistical models to 

quantify the effect of NED on the evolutionary response to MEDs and then 

interpreted this by considering the possible genetic constraints on adaptation to 

MEDs.  
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A subset of populations evolved in environments with five environmental drivers and 

all populations evolved in the single environmental driver environments are used to 

examine how adapting to single vs. many environmental drivers affect local 

adaptation. I examine how populations selected in environments with one 

environmental driver, five environmental drivers and the evolved control, differ in 

their response to new environments with the same NED, environments with different 

NED, and a novel environment. I found that there is a relationship between local 

adaptation and the strength of selection in the local environment and patterns of local 

adaptation are affected by the NED of new environments. Lastly, I present the 

phenotypic consequences of evolution under MEDs. I found that before evolution, 

measures of chlorophyll content and cell size decline with increasing NED. 

However, after evolution the relationship between chlorophyll content and cell size 

with NED is weaker because populations converge on the same phenotypes as they 

evolve.  I also present a case-study of how mass spectrometry methods can be used 

to better understand underlying molecular mechanisms of two phenotypes 

(chlorophyll positive and chlorophyll negative cells).  

 

This selection experiment is a good example of how laboratory investigations and 

model organisms can be used to design experiments with enough replication to have 

high statistical power in order to make more accurate predictions on the short- long-

term effects of MEDs. Whilst there have been some studies on the effects of MEDs, 

these studies rarely have more than three environmental drivers (sometimes 5 

environmental drivers) and there are only a handful of long-term MED studies. This 

study can be used to develop a priori hypotheses for investigating how 

environmental change will shape natural microbial communities, and is especially 

useful for organisms where long-term studies with multiple environmental drivers 

are unfeasible.  
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Specific Terminology 

 

Control plastic response: plastic response of the evolved control populations in new 

environments. 

 

Correlated response: The correlated response to selection was calculated by 

measuring the difference in population growth rate between the MED-evolved 

populations and evolved control populations when assayed in the control 

environment.  

 

Direct response: The direct response to selection was calculated by measuring the 

difference in population growth between the MED-evolved populations and evolved 

control populations when assayed in the selection environments. 

 

Environmental Drivers:  The individual environmental drivers that make up each 

regime (e.g. temperature). It was required that they impact positively or negatively 

on growth rate.  

 

Evolved control populations: Populations that have evolved in the control 

environment. 

 

MED-evolved populations: Populations that have evolved in environments with 

multiple environmental drivers (NED = 1 – 8). 

 

Evolved NED = 1 populations: Populations selected in environments with one 

environmental driver. 
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Evolved NED = 5 populations: Populations selected in environments with five 

environmental drivers. 

 

MED-evolved plastic response: Plastic response of MED-evolved populations new 

environments. 

MED: Multiple Environmental Drivers. 

 

NED = 1 Assay Environments: Assay environments with a single environmental 

driver. 

 

NED = 5 Assay Environments: Assay environments with a five environmental 

drivers. 

 

NED: The number of environmental drivers in a regime (e.g. temperature is NED 

=1, temperature/CO2/pH is NED = 3). 

 

Negative Pleiotropy: Mutations that effect multiple traits and at least one new trait 

value is in the opposite direction of selection. Trait values with consistently negative 

effects in new environments are also referred to as negative pleiotropy or selectional 

pleiotropy (see Paaby & Rockman (2013)). 

 

Overlap: A measure of how much overlap (or shared environmental drivers) exist 

between regimes within the same NED level. A value of 0 indicates that no 

environmental drivers are shared between different regimes within the same NED, 

and a value of one indicates that all environmental drivers are shared between the 

regimes within the same NED (note that all regimes are unique and therefore all 

measures of overlap are less than one).   
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Pleiotropy: A single mutation that has an effect on multiple traits under selection.   

 

Positive Pleiotropy: Mutations that effect multiple traits and new trait values are all 

in the same direction of selection. Trait values with consistently positive effects in 

new environments are also referred to as positive pleiotropy (see Paaby & Rockman 

(2013)). 

 

Regime: the identity of the combination of environmental drivers (e.g. 

temperature/CO2/pH). 

 

Selection environments: General term referring to all regimes where population 

evolved (NED 0-8). 

 

Similarity:  Similarity is calculated between selection and assay environments (or 

home and away environments). A value of zero indicates that no environmental 

drivers are shared between the selection and assay environment. A value of one 

indicates that all environmental drivers are shared between the selection and assay 

environment. 
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1 Chapter 1 - General Introduction  

 

The focus of my thesis is uncovering the short- and long-term responses of a 

photosynthetic microalgae to multiple environmental drivers (MEDs). Global change 

will involve multiple environmental changes in all ecosystems.  For example, in 

aquatic ecosystems changes in carbon, pH, temperature, salinity, mixing etc. will all 

occur at once - and this is without even considering changes in the organisms 

themselves. For this investigation designed a selection experiment using the model 

microalga Chlamydomonas reinhardtii, so that the cost (or benefit) of the plastic and 

evolved response to MEDs could be measured. By using a large number of drivers 

(up to eight) in different combinations, the effects of the number of environmental 

drivers (NED) and the identities of the drivers can be disentangled. For example, 

when only one environmental change occurs, the identity of that change is likely to 

be very important in determining evolutionary outcomes, and we expect populations 

evolved under high CO2 conditions and low phosphate conditions, for example, to 

differ from each other both in terms of their change in fitness over time and in their 

phenotypes.  However, it is less obvious why populations that evolved in conditions 

where CO2, pH, temperature, light, and phosphate levels have all changed 

simultaneously should differ from populations that have evolved under conditions 

where the same number but different identity of environmental changes have 

occurred. Whilst both theoretical and applied research often assume multiple 

environmental drivers have an additive interaction (Halpern et al., 2007, 2008a; Ban 

& Alder, 2008; Crain et al., 2008), there is little empirical evidence that the additive 

model can be explain interactions between multiple environmental drivers 

(Christensen et al., 2006; Harvey et al., 2013). Many experiments demonstrate that 

the effect of pairs of environmental drivers are often less than sum of the the single 

effects (additive), or the effects of the single drivers are reversed when in 

combination (Crain et al., 2008; Jackson et al., 2015). Therefore, we cannot make 

inferences on the effect of MEDs based on investigations of single and paired 

environmental drivers (Folt & Chen, 1999; Christensen et al., 2006). Designing an 

experiment where there are many environments with the same number of 
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environmental drivers (NED), but where the identities of the drivers themselves 

differ, allows me to determine if there is a predictable transition point, where the 

NED becomes more important than the identity of the environmental drivers. The 

results from my thesis work will provide guidelines for designing future similar 

experiments with natural phytoplankton assemblages with strong a priori 

hypotheses. 

 

1.1.1 Global change, evolution and MEDs 

 

Species across the globe are experiencing drastic changes in environmental 

conditions as a result of human activities. Climate change induced by increased 

greenhouse gas emissions has emerged as a top concern, both scientifically and 

politically (Kerr 2007; Moss et al. 2010). Consequently, changes to the natural 

environment are occurring at an unprecedented rate, with many environmental 

changes occurring simultaneously (Meehl et al., 2007; Gruber, 2011; IPCC, 2013), 

and increasing evidence that it has already affected wild populations (Parmesan, 

2006).  The complex nature of global environmental change cannot be represented in 

laboratory experiments, which has led to the criticisms that such experiments likely 

have limited predictive power about wild populations (Boyd & Hutchins 2012; Boyd 

et al. 2015a). In particular, the effect of MEDs on natural populations, communities 

and even in laboratory cultures of model organisms, are not well understood, and we 

currently lack knowledge on the synergistic effects of the main climate variables on 

physiological and evolutionary responses (Folt & Chen, 1999; Crain et al., 2008; 

Darling & Côté, 2008).    

 

Photo-autotrophic microalga are particularly interesting, partly because of their 

ecological importance as they are responsible for approximately fifty percent of 

global primary productivity (Myers, 1995; Beardall & Stojkovic, 2006; Ormerod et 

al., 2010; Reusch & Boyd, 2013). Microalga are themselves drivers of global change, 

playing a key role in the biological carbon pump (Beardall & Raven, 2004).  In 
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addition, the short generation times of microbes (hours to a few days) mean that 

evolutionary changes can occur on human time scales of months, years, or decades. 

Global change causes changes to trait evolution in microbes, which has the potential 

to cause changes in bloom events, primary production, and species composition 

(Beardall & Stojkovic, 2006; Harley et al., 2006; Collins et al., 2013). Because of 

their ecological importance, many short-term experiments have been performed to 

predict the effect of global change on phytoplankton physiology with particular 

emphasis on the effects of elevated CO2 (Collins & Bell, 2004; Zondervan, 2007; 

Berge et al., 2010; Low-décarie et al., 2013) and temperature (Falk et al., 1990; Fu et 

al., 2007; Feng et al., 2009; Thomas et al., 2012; Boyd et al., 2013), on a few model 

species. It is crucial that we understand evolutionary responses to global change if 

we are to make informed predictions on how phytoplankton populations will differ 

(for example, growth rates, cell size, chlorophyll content, population size) in the 

future (Collins & Bell, 2004).   

	

Using up to eight environmental drivers to investigate the effect of MEDs has never 

been done before and many models predict a “doom and gloom” scenario of global 

change and its effects on the natural environment (Houghton, 2001).  However, no 

investigations have quantified the long-term effect of MEDs in terms of adaptation, 

an important mechanism when overcoming long-term changes to the environment 

(Gienapp et al., 2008).  

 

1.1.2 Environmental drivers 

 

There are many environmental drivers that are predicted to change at varying rates 

and intensities, at both global and local scales (Meehl et al., 2007). These include 

atmospheric and oceanic carbon dioxide levels, acidification, rising temperatures and 

ultraviolet-B radiation (Beardall & Stojkovic, 2006; Gruber, 2011; Hoffmann & 

Sgrò, 2011; Boyd & Hutchins, 2012). These are some of the big players in global 

change, but there are also many other environmental changes associated with global 



 

 4 

change that have the potential to affect organisms, including reduced light 

availability, nutrient availability and phosphorus availability (Meehl et al., 2007). 

There are also indirect effects, such as water column stratification as a result of 

warming, which causes nutrients to be locked away at lower depths in the water 

column, making these nutrients inaccessible to non-motile plankton (Gruber, 2011; 

Bopp et al., 2013). Elevated temperatures also exacerbate eutrophication in 

freshwater environments (McKee et al., 2003), which has further consequences on 

grazing, predator prey dynamics and nutrient stoichiometry (De Senerpont Domis et 

al., 2014).  As global temperatures continue to rise, we should expect to see increases 

in land run-off in aquatic environments due to a rise in the prevalence of 

unpredictable and more extreme weather events (Easterling et al., 2000; IPCC, 

2013).  This, together with marine seston and particulate matter in the water column, 

will drastically lower the amount of light penetrating the water column in marine 

systems (Harley et al., 2006). In freshwater systems, shading will increase with 

increasing macrophyte and phytoplankton abundances due to eutrophication (McKee 

et al., 2003).  Alongside temperature-driven effects, anthropogenic activities and 

increased anthropogenic land use will reduce water quality and increase the 

concentration of pollutants, such as herbicides, which will have an impact on aquatic 

microalgae (Abou-Waly & Abou-Setta, 1991; Rioboo et al., 2002; Huertas et al., 

2010; Larras et al., 2013). These, and many other changes in aquatic ecosystems will 

occur simultaneously, yet experimental tests of the impact of large numbers of 

simultaneous environmental changes remain scarce (see Figure 1.1 for illustration of 

MEDs in aquatic environment).  
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Figure 1.1 Schematic diagram illustrates possible MEDs that occur simultaneously in aquatic 

environments. These include, increased UV radiation, elevated temperature, resulting in 

increased stratification (indicated by solid horizontal lines). Stratified waters result in 

nutrients being locked away, inaccessible to non-motile microorganisms that occupy the 

littoral zone.  As atmospheric CO2 increases, dissolved CO2 in the form of carbonic acid 

results in a reduction in pH. Finally, increasing extreme weather events and land use 

activities will increase the incidence of land runoff. Note that the eight environmental drivers 

that are used in the present study are listed in the grey box.  
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Chlamydomonas reinhardtii is a unicellular freshwater alga and common laboratory 

model system for experimental evolution. There is a long history of ecologists and 

evolutionary biologists using model organisms in their research. Srivastava et al. 

(2004) suggest that this is because model systems have three useful features, 

tractability, generality and realism, essential for guiding future investigations. The 

purpose of the present study is to provide a framework which future experiments 

using ecologically important, non-model, marine and freshwater microalgae, can 

build upon. Using C. reinhardtii in the present study allows us to use standard 

methods and measurements so that we can easily compare results between the 

experiments presented here and those done by others. In addition, C. reinhardtii is 

more suitable than other model organisms such as Escherichia coli or Pseudomonas 

fluorescens, traditionally used in experimental evolution, as we can compare changes 

in cell size, chlorophyll content, and growth rate more easily with non-model 

microalgae. Marine microalgae cultures are usually grown in low densities, are 

labour intensive to culture over long time periods, and cannot be preserved for 

additional analysis following selection (but see Lohbeck et al. (2012)). C. reinhardtii, 

on the other hand, has well established experimental techniques, available genomic 

and molecular data, and short generation times that allow evolution experiments to 

be carried out in the time of a PhD project. This means that experimental variables 

are easily manipulated, high culture densities and level of replication are easily 

achieved, and cultures can be preserved for long periods of time so that selected 

populations can be compared with ancestors and additional analysis can be 

performed (Elena & Lenski, 2003; Bennett & Hughes, 2009). For these reasons we 

have the power to generate specific a priori hypotheses of the effects of MEDs on 

non-model microalgae (Benton et al., 2007). 

 

The drivers in this experiment were chosen because they are studied as single 

environmental changes (Beardall et al., 2009; Troedsson et al., 2012), occur in many 

aquatic ecosystems (Gruber, 2011), and are “drivers” (sensu Boyd and Hutchins, 

2012) in that they elicit a response in C. reinhardtii (the organism used for this study; 

see Table 1-1), and many other microbes (the green alga Chlorella pyrenoidosa, 
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Sorokin and Krauss, 1958; diatoms, Falk et al., 1990; marine phytoplankton 

communities, Smith et al., 1992, Sinha and Hader, 2002; Larras et al., 2013; the 

green alga Selenastrum capricornutum, Mayer et al., 1998; E. huxleyi, Engel et al., 

2005, Riebesell et al., 2000; diatoms dinoflagellates and rhodophytes, van, Dam et 

al., 2012). Whenever possible, control and test environments reflect anticipated 

changes in the natural world. For example, the control environment uses 430ppm 

CO2, and the test environments uses 2000ppm CO2, in line with the more extreme 

IPCC predictions (IPCC, 2013). In other cases, the test environment value was 

chosen using pilot studies. All environmental drivers were investigated alone in order 

to discover if the response of the single environmental drivers can be used to predict 

their joint effect, and if the outcome of the joint effect can be predicted from the 

number of environmental drivers (NED), or if effects are specific to particular 

combinations of environmental drivers (regimes).  

 

1.1.3 Understanding interactions between MEDs 

 

We can predict with some degree of accuracy the identity of the environmental 

drivers that will change in the future (Easterling et al., 2000; Meehl et al., 2007), and 

how they interact physically or chemically outside organisms. For example, 

antagonistic interactions reduces solubility of CO2 , and O2 in the ocean under 

elevated temperatures (Gruber, 2011; Bopp et al., 2013). Where possible, 

interactions between environmental drivers are controlled in the present study for 

example, increasing CO2 has no effect on the pH of the media (another 

environmental driver). This is so that I can disentangle the number and identity of 

environmental drivers, without interferences from the antagonistic or synergistic 

interactions between environmental drivers.  

 

Predicting the outcome (i.e. the resultant net outcome for the organism) of 

environmental drivers and interactions between MEDs requires further research 

(Boyd & Hutchins, 2012). There are few empirical studies investigating 
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physiological outcomes in response to MEDs beyond three environmental drivers 

(Folt et al, 1999; Crain et al, 2008), and only a handful of evolutionary studies that 

use two or three environmental drivers (Tatters et al., 2013a; Schlüter et al., 2014). 

Many argue that inferences made from single-factor experiments are severely limited 

(Hoffman et al, 2003, Collins and Gardner, 2009), and that responses to individual 

environmental changes are probably poor predictors of responses to the combination 

of those same changes (Folt & Chen, 1999; Gruber, 2011; Boyd & Hutchins, 2012; 

Gao et al., 2012). Meta-analyses demonstrate that interactions between pairs of 

drivers are not predictable from knowing the effect of the single environmental 

drivers (Didham et al., 2007; Crain et al., 2008; Darling & Côté, 2008; Harvey et al., 

2013; Jackson et al., 2015). For example, the effects of ocean acidification and 

elevated temperature have been investigated both separately and in combination and 

often show synergistic effects across a range of ecological measurements (Harvey et 

al., 2013). Studies that investigate the combined effect of more than two 

environmental drivers are severely limited and so we currently lack empirical 

evidence of the interactive effect of MEDs, and if they are predictable from the 

individual effects of environment drivers in isolation (Vinebrooke et al., 2004). In 

this study, I measure the outcome of interactions between MEDs (up to eight) on 

populations of C. reinhardtii. The outcome of interactions between environmental 

drivers may be predictable, using simple models for example, additive, 

multiplicative, or comparative interactions, which can further be characterised by 

whether there are antagonistic or synergistic effects. Alternately, interactions 

between drivers may be unpredictable (models are discussed in more detail in the 

next section).  

 

1.1.4 Predicting the outcome of MEDs using models 

 

Existing models that are used to predict the intensity of chemical mixtures do so 

based on the effects of each chemical alone and their mode of action. When using the 

effects of individual drivers, drivers A and B may have an effect on the same target 
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site and this effect may be similar (increasing the intensity of the effect on the 

organism when combined, with no change in intensity when one is substituted at a 

constant ratio for any proportion of the other), or dissimilar (A and B act on the same 

target site but with different outcomes, their combined effect may be greater or less 

than the sum of their individual effects depending on correlations between A and B), 

or they may act completely independently from each other on different target sites.  

This information can be used to calculate the expected effect of more than one 

simultaneous environmental change on organisms (Bliss, 1939; Berenbaum, 1989). 

For mixtures where modes of action are the same the concentration addition 

concept is used. When the modes of action are dissimilar the independent action 

concept is used (Backhaus & Altenburger, 2000; Faust et al., 2003; Backhaus et al., 

2004). Both concepts predict the intensity of drivers when in combination from the 

effects of A and B alone. In addition, the concentration addition concept can predict 

the effect of the concentration of MEDs, from knowing the specific concentration of 

each driver. Both concepts require concentration–response curves of all individual 

drivers (Bliss, 1939; Backhaus & Altenburger, 2000). Bliss (1939) was the first to 

apply the independent joint action model (or Bliss model) to biological data. An 

equation by Bliss (1939) describes the correlation between drivers A and B:  

pC = pA + pB (1-pA)(1- r) 

where pC is the proportion mortality by the combination of the individual 

effects of drivers pA, and pB, when pA > pB, and r is the correlation of effects between 

A and B, regardless of the percentage composition or dosage of the mixture. 

However, using this equation it is difficult to scale up beyond two environmental 

drivers and a revised equation is suggested by Backhaus and Altenburger (2000), 

where the concept of independent action remains based on the assumption that the 

compounds of a given mixture act on different physiological systems within the 

exposed organisms. The mathematical formulation is as follows:   

E "#$% = 	E	 "1	 +	…+ 	"+ = 1 −		 [1 − . "$ ]
0

123
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where E(cMix ) denotes the predicted effect (scaled from 0–1) of an n-

compound mixture, ci is again the concentration of the ith compound, and E(ci ) is 

the effect of that concentration if the compound is applied singly (Backhaus & 

Altenburger, 2000; Backhaus et al., 2004).  

 

Although there is some evidence to suggest that the environmental drivers used here 

are acting broadly on the same basic physiological processes (Table 1-1), it cannot be 

inferred from this evidence what the specific modes of action are, or what their 

specific targets are.  For example, in the context of pharmacology where the 

pharmodynamics of common antibiotics are well studied on multiple organisms, the 

concentration addition and the independent action model yield accurate predictions 

of the joint effect of antibiotics (Faust et al., 2003; Ankomah et al., 2013; Ma et al., 

2014). Fischer et al. (2010) applied the independent joint action and the 

concentration addition model to the joint effects of a chemical (the herbicide 

atrazine) and an environmental stress (high light) on C. reinhardtii. These drivers 

have the same mode of action in that they both inhibit photosynthesis, but they do 

not have the same target site. High light causes non-photochemical quenching of 

excess light energy and adjustment of the photosystem stoichiometry in most 

photosynthetic organisms including C. reinhardtii. As a result, high levels are 

tolerated without too much cellular damage, but photosynthesis and growth 

(conventional metrics of stress) are reduced (Mayer et al., 1998; Lin et al., 1999; 

Fischer et al., 2010). The herbicide atrazine (also used in this investigation) directly 

blocks the photosynthetic machinery, thus reducing photosynthesis and growth 

(Fischer et al., 2010; Lagator et al., 2013). Fischer et al. (2010) found that the 

independent action model predicted the observed effects, but the expected effect 

varied between the variable end points in cell number-based growth rates and optical 

density-based growth rates. In addition, whilst the combination of abiotic (high light) 

and chemical (atrazine) drivers do not fulfil the requirements of the independent 

action or concentration addition model, as the two stressors neither act fully 

independently nor do they have exactly the same target site (Faust et al., 2003), both 

models adequately describe the effect of the joint effect. This is supported by van 
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Dam et al. (2012) who also applied the independent action model to environmental 

data on the effects of elevated temperature (abiotic) and herbicides (chemical), and 

found that this model described their combined effects on photosystem II (PSII) in 

phytoplankton species. 

 

The independent joint action and the concentration addition models may be useful 

for understanding the combined effects of MEDs. However, more research is 

required to uncover the mode of actions and target sites of many environmental 

drivers. In addition, many key drivers (such as increased temperature) affect a broad 

range of metabolic processes (Davison, 1991; Tomanek, 2014). Without molecular 

data to pinpoint the mode of action for each driver, we cannot assume that drivers 

that produce the same effect on organisms share the same mode of action or target 

site. For instance, in C. reinhardtii, elevated CO2 usually increases growth (decreases 

cell division times), whilst elevated temperature will decrease growth, but both will 

act on different target sites (Table 1-1), and this fits the independent joint action 

model. Other drivers may have the same effect on the study organism for example, 

elevated temperature and the herbicide atrazine produce the same outcome on growth 

in C. reinhardtii but their mode of action and specific target sites may differ.  

 

The environmental drivers used in the present study cannot be definitively 

categorised as similar or dissimilar in action. For this reason, traditional models such 

as, the additive, multiplicative and comparative models are better suited to this study 

for predicting the outcome of MEDs from the effect of the single environmental 

drivers alone. The additive model is commonly used to predict the combined effect 

environmental drivers using he sum of the individual effects (Halpern et al., 2008b). 

For the multiplicative model, the combined effect is equal to the product of 

individual effect of the individual environmental drivers. The comparative model 

describes an effect that is equal to the driver with the largest positive or negative 

effect alone (dominant environmental driver), and other environmental drivers with  

smaller effects alone have no additional effect (Folt & Chen, 1999).  
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1.1.5 Cases where the effect of MEDs cannot be predicted from 

the effects of the individual environmental drivers alone 

 

A third class of effect (following the independent joint action and the concentration 

addition models) that cannot be calculated or predicted from knowing the drivers 

alone are synergistic or antagonistic interactions between drivers (Bliss, 1939). For 

example, when driver A and B are in mixture, they interact either synergistically (the 

effects of driver A and B are larger than predicted by an additive model), or 

antagonistically (the effects of driver A and B are less than predicted by an additive 

model). In order to best measure the interactive effect of MEDs, the appropriate 

model must be used that best fits the mechanism in which environmental drivers are 

acting. Choosing the appropriate model is important to avoid errors in classifying 

interactions between MEDs.  For example, if the additive model was used 

inappropriately to predict the effect of drivers that are mechanistically explained by 

the comparative model, then synergistic interactions will be overestimated (Figure 

1.2). For example, interactions between nutrients are best described by the 

comparative model and is synonymous with Liebig’s law of the minimum which 

states that growth is limited by a single limiting nutrient and when other nutrients in 

the environment are altered (either up or down) there is no additional effect on 

growth (de Baar, 1994; Folt & Chen, 1999; Boyd & Brown, 2015).  

 

The information gathered on the single drivers is crucial in order to verify that the 

correct model is being used.  For instance, if the predicted outcome was not expected 

or if interactions (antagonistic or synergistic) cannot explain the effect of MEDs, the 

alternative is that an incorrect model is being used, and we do not know enough 

about how the individual drivers act on the organism.  Our ability to determine 

whether or not the data fit a model depends on the current state of knowledge at the 

time of observation, and as such interactions between drivers can be reclassified as 

more is learned about their mode action (Berenbaum, 1989). However, this is a 

difficult position for those researchers aiming to predict the outcome of MEDs on 
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ecologically important, threatened or endangered organisms, where conservation 

efforts and management strategies are supported by information gathered on how 

organism will respond to future global change (van Dam et al., 2012).  

 

 
Figure 1.2 Schematic diagram illustrates that choosing the model that best fits the data is 

important in order to avoid misidentifying synergistic and antagonistic interactions. The 

observed growth rates (black line) fit the comparative model (red line) and the interactions 

are described as synergistic as the observed growth rates are lower than expected under the 

comparative model. If the additive model (blue line) is used, interactions in the observed 

data are described as antagonistic as the observed growth rates are higher than predicted 

under the additive model. 

 

  

NED

Gr
ow

th
*R
at
e

Observed* *data
Expected*under* comparative*model
Expected*under* additive*model

Antagonistic*interaction

Synergistic*interaction

Antagonistic*interaction

Synergistic*interaction



 

 14 

1.1.6 Predicting the evolutionary response to MEDs   

 

There are currently no theoretical investigations that describe evolutionary outcomes 

of adapting to many different simultaneous environmental drivers.	The process of 

adaptation has been studied for many decades; theoretical, modelling and 

experimental studies have provided detailed insights into adaptation in simple 

environments (Lenski & Travisano, 1994), temporally and spatially complex 

environments (Bell, 1997; Bell and Reboud, 1997; Bailey and Kassen, 2012), 

evolution of complex organisms (Orr, 2000; Wagner & Zhang, 2011), evolution 

under continuous environmental change (a moving adaptive optimum), including 

varying rates of environmental change (Collins et al., 2007; Collins & De Meaux, 

2009), revealing underlying genetic processes (Koornneef et al., 2004; Hoffmann & 

Willi, 2008).  Experiments investigating adaptation to complex vs. simple 

environments in the form of multiple vs. single sugar resources found that 

evolutionary outcomes depend on spatial and temporal structure of resource 

availability (Bailey and Kassen, 2012).  While natural experiments are experiments 

in complex environments, the effect of this complexity has not been quantitatively 

compared with evolution in simple environments (Collins and Bell, 2006).  

Enclosure (mesocosm) experiments are an important step in taking simple laboratory 

experiments closer to the realism of the natural world, providing important insights 

into how whole communities might evolve and interact under future global change 

scenarios (Engel et al., 2005; Scheinin et al., 2015), however currently we cannot 

disentangle the effects of MEDs within mesocosm. In addition, studies investigating 

how populations evolved under past climatic changes provide insight into how 

populations might evolve in the future global climate change (Orsini et al., 2013). 

However, important questions remain unanswered, such as; What are the 

evolutionary outcomes of evolving in single environmental drivers vs. MEDs? What 

impact will adaptation have on organisms as the environment continues to change? 

How will populations change following evolution under MEDs?  
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Existing evolutionary theory suggests that increasing organismal complexity 

increases the cost of adaptation (Fisher, 1930; Orr, 2000). The effect of organismal 

complexity is simply modelled in Fisher’s (1930) geometric model of adaptation 

which states that when an organism has a complexity of n, beneficial mutations of a 

fixed size have a reduced effect on the rate of adaptation r, and the improvement due 

to fixation of beneficial mutations (distance travelled towards the optimum) 

decreases as n increases.  However, this theory may be used to guide ecological 

predictions on the long term response to MEDs. Instead of predicting the effect of 

complex organisms evolving in simple environments, I want predict the effect of 

complex environment (with MEDs) on the evolution of simple organisms (C. 

reinhardtii). I predict that as NED increases, the extent of adaptation over a fixed 

period of time in simple organisms will decrease, as beneficial mutations will move 

populations a lower proportion of the distance towards the optimum (Figure 1.3). 
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Figure 1.3 Schematic diagram illustrates that adapting to two environmental drivers is slower 

than adaptation to one environmental driver. Adaptive walks can take place in any direction 

towards the optimum phenotype, however, red arrows indicate where adaptive steps are 

constrained when adapting to two environmental changes. The rate of adaptation is reduced 

in populations with two traits under selection as a beneficial mutation of a fixed size will 

move populations smaller distances toward the optimum (red arrows), than populations with 

a single trait under selection (green arrow) (Fisher, 1930). Positive pleiotropy will speed up 

the rate of adaptation, as a mutation that changes trait values of trait 1 and trait 2 in the same 

direction of selection and will move the population further towards the optimum (green and 

red arrow). On the other hand, negative pleiotropic interactions will reduce the rate of 

improvement, due to a mutation that changes one trait value in the same direction of 

selection but changes the second trait value in the opposite direction of selection, resulting in 

a smaller step towards the optimum (blue and red arrow). 	
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1.1.7 Experimental evolution  

 

In this thesis, I address the effect of long-term growth under MEDs using the model 

algae C. reinhardtii. This experiment follows from experimental evolution studies 

that aim to uncover the role of evolution in the response of microbes to future 

environmental drivers (Collins & Bell, 2004; Lohbeck et al., 2012; Low-décarie et 

al., 2013; Schaum et al., 2014). Microbial experimental evolution investigations have 

been traditionally used to deepen our understanding of basic evolutionary theory 

(Buckling et al, 2009; Collins, 2012). However, more commonly microbial 

experimental evolution can also be used to gain a better understanding of the 

properties of microbes of specific interest that may be of ecological, economic or 

medical importance.  For example, identifying the phenotypic outcomes of 

coccolithophore species evolved at high CO2 (E. huxleyi; Lohbeck et al, 2012), due 

to the impact of ocean acidification on CaCO3 production, and photosynthesis, which 

in turn feeds back into the carbon pump.  A second example of a case where research 

is motivated by interest in how a specific microbe evolves in a particular 

environment is the evolution of biofilm development in P. aeruginosa (the cause of 

chronic lung disease in cystic fibrosis patients), which facilitates phenotypic 

radiation and adaptability in response to antibiotic treatment (Luján et al, 2011).  The 

work in this thesis contributes to gaining a better understanding of basic evolutionary 

theory and a better understanding of evolution of microbes of interest, as we gain a 

better understanding of the evolutionary response of simple organisms to MEDs in 

their environment, which is relevant to understanding how phytoplankton evolve in 

response to global change.  
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1.1.8 Goals of the study 

 

In chapter 2, I examine the short-term response to MEDs.  This will provide insight 

into the early stages of the microevolution process, and investigates key differences 

in the short-term (plastic) responses to single vs. multiple environmental changes. I 

do this by measuring population growth responses over different NED (0 to 8) to 

calculate the contributions of the identity of the particular environmental drivers and 

the NED. Chapter 3 reveals the evolutionary response following 95 transfers in the 

selection environments with MEDs (1 – 8 environmental drives) and the control 

environment (no environmental drivers), so that the MED-evolved response can be 

compared with the evolved control populations to calculate the direct and correlated 

response to selection.  In chapter 4, I investigate the outcome of selection in 

environments with one or five environmental drivers, in new environments with the 

same NED, different NED and a novel environment, and compare the responses with 

the evolved control.  This experiment was designed to uncover differences in the 

outcome of selection in simple environments and environments with MEDs. Finally, 

in chapter 5, I directly compare the plastic and evolved responses as NED increases 

including, growth rates, chlorophyll content, cell size. This is an important step in 

order to provide guidelines for planning future experiments investigating the impact 

on MEDs on non-model organisms.  The experimental design for chapters 2, 3 and 5 

is illustrated in Figure 1.4.
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Figure 1.4  Schematic diagram illustrates the experimental design of the study.  The founding 

population was split into 96 different environments (environments are represented here by square 

boxes) containing 1 to 8 NED (6 examples of MED environments are shown here and represented 

by the different pattern backgrounds), and the benign control environment (white background). (a) 

Founding populations were inoculated using a single colony of Chlamydomonas reinhardtii and 

as such lack genetic variation. (b) The acclimation response was measured at the very beginning 

of the selection experiment (T0) in order to calculate the drop in population fitness when placed 

suddenly into a new environment with between 1 to 8 NEDs. (c) Populations evolved in each 

selection environment for 95 transfers.  This provides enough time for genetic variation to 

increase and for adaptive variants within the populations to arise in response to the new 

environments with MEDs (as a result of fixation of beneficial mutations). (d) The evolved control 

populations evolved alongside the MED-evolved populations so that evolution to laboratory 

conditions could be accounted for. At the end of the selection experiment evolved populations 

were assayed in their selection environment and the control environment in order to calculate the 

direct and correlated responses to selection.   
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Table 1-1  Review of current knowledge of the mode of action of environmental drivers used in this study (herbicide, elevated temperature, low light 

intensity, reduced pH, elevated CO2, general nutrient depletion, UV and reduced phosphate), on C. reinhardtii. 

Environmental 
driver 

Mode of action  Mode of action with other environmental 
drivers 

References 

 

Herbicide: 
Atrazine  

1. Block the photosynthetic electron transport chain. 
2. Photosystem II inhibitor. 

 

a) Toxicity found to decrease with 
increasing light irradiance.   

b) In high light photoinhibition protects 
photosynthetic organisms from phot-
oxidative damage.  

1. (Fischer et al., 2010) 
2. (Lagator et al., 2013) 
a) (Mayer et al., 1998; Lin et al., 

1999) 

High 
Temperature  

1. Photodamage: causes reductions in maximum PSII quantum 
yield.  Also bleaching through loss of chlorophyll a (diatoms 
and dinoflagellates symbionts). 

2. Denaturing of proteins and nucleic acids, dissociation of protein 
complexes, and the destabilisation of membrane structure. 

 

a) Photoinhibition is both temperature and 
light dependent: 
At high temperatures (27 oC) 50% 
photoinhibition requires higher light 
intensities than lower temperatures 
(12oC) in C. reinhardtii. In addition 
high temperatures show less efficient 
recovery of photoinhibition. 

1. (Falk et al., 1990; van Dam et 
al., 2012) 

2. (Larras et al., 2013; Kobayashi 
et al., 2014) 

a) (Falk et al., 1990). 
Also  See review by 
(Zondervan, 2007) 

Low Light 
Intensity  

1. In contrast to high light, low light allows relatively high 
efficiency of utilization of incident energy without the need to 
employ protection mechanisms such as, non-photochemical 
quenching of excess light energy and adjustment of PS 
stoichiometry. 

2. Both chlorophylls a and b increased slightly with decreases in 
photon flux density in C. reinhardtii.  

a) Low light is beneficial when combined 
with limiting CO2, nutrient depletion and 
phosphate depletion, where even a 
relatively low light is excessive and 
photoprotective mechanisms are switched 
on. 

1. (Sorokin & Krauss, 1958; 
Fischer et al., 2010) 

2. (Osborne & Raven, 1986) 
a) (Harris, 1989; Falk et al., 

1990) 

Low pH 1. Decreased growth and photosynthesis at pH 1.5, 4 and 7 are 
likely a result of internal acidification or alkalization in 
acidophilic C. acidophila (optimum growth rates at pH 2.6–3). 

2. Intrathylakoid acidification is suggested as a cause of limitation 
of electron donation to P680. Evidence for a donor-side limitation 
of PS II at low pH comes from time-resolved spectroscopic 
studies of reduction of P+

680. 

a) C. acidophila (optimum growth rates at 
pH 2.6–3), growing at pH 4 in high 
light (180 µmol m – 2 ms – 1) conditions, 
dark respiration was 71% of gross O2 
evolution and growth rates were 
reduced which indicate extremely 
stressful conditions. 

• Increasing pH to pH 4 causes the 

1. (Gerloff-Elias et al., 2005) 
2. (Krause & Weis, 1991) 
a) (Gerloff-Elias et al., 2005) 
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electrical potential across the 
plasmalemma to become inside-
negative. As a result, nutrient 
acquisition is likely hampered due to a 
reversal in transport of H+ across the 
plasmalemma, as most nutrient 
transport is coupled to H+ co-transport. 

High CO2 
1. Stimulates carbon fixation during photosynthesis 
2. Reduce the need for CCM activity and thereby lower the 

metabolic costs of inorganic carbon acquisition. 

a) C. reinhardtii grown in high-CO2 were 
less photoinhibited, and showed better 
recovery in dim light or darkness during the 
initial period of the recovery process. 

1. (Riebesell, 2004) 
2. (Engel et al., 2005; Collins & 

Bell, 2006) 
a) (Yang et al., 2001) 

Nutrient 
depletion  

1. General nutrient depletion has effects on respiration and 
photosynthesis.  

• Iron-deficient Chlamydomonas cells re-adjust metabolism by 
reducing light delivery to photosystem I (to avoid photo-
oxidative damage resulting from compromised FeS clusters). 

• The chloroplast is a major iron-utilizing organelle.  
• Copper-deficient Chlamydomonas cells induce a copper 

assimilation pathway consisting of a cell surface reductase and a 
Cu+ transporter (presumed CTR homologue). 

• Magnesium is abundant in photosynthetic pathways. 
2. Nutrient-limited Chlamydomonas cells dissipate energy by 

nonphotchemical quenching of chlorophyll autofluorescence. 
3. Cessation of growth and regulation of photosynthetic electron 

transport have been characterised as a general response to adjust 
metabolism and sustain viability when nutrient levels fall. 
General nutrient depletion is also characterised by the decline of 
photosynthetic electron transport in Chlamydomonas cells and a 
transition of the photosynthetic apparatus to state 2, which 
allows them to more effectively dissipate excess absorbed 
excitation energy and with a reduction O2 evolution (reduced by 
75%) at subsaturation light levels. 

 1. (Bölling & Fiehn, 2005; 
Merchant et al., 2006) 

2. (Wykoff et al., 1998) 
3. (Grossman, Arthur, Takahashi, 

2001) 

 

Ultra Violet-B  1. Damage to photosynthetic processes, increase in photoinhibition 
2. UV can induce changes in the molecular structure of the DNA 

a) The survival of the bacteriophage T4 
exposed to ultraviolet radiation grew 

1. (Smith et al., 1992) 
2. (Sinha & Hader, 2002) 
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• DNA lesions interfere with DNA transcription and replication 
and can lead to misreadings of the genetic code causing 
mutations and death.  

• UV radiation is known to inhibit the ability of phytoplankton to 
move and orient within the water column. 

with increasing temperatures (from 
20oC to 40 oC) a) (Conkling & Drake, 1984) 

Phosphate 
depletion  

1. Phosphate is a vital macronutrient due to its necessity in the 
manufacturing of DNA, RNA and lipids and involvement in 
biosynthetic processes. 

2. Quantitation of the partial reactions of photosynthetic electron 
transport demonstrated that the light-saturated rate of 
photosystem (PS) I activity was unaffected by P or S limitation, 
whereas light-saturated PSII activity was reduced by more than 
50%. 

 1. (Irihimovitch & Yehudai-
Resheff, 2008; Hartmann et al., 
2011) 

2. (Bölling & Fiehn, 2005) 
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2 Chapter 2 – The plastic response of C. reinhardtii to 

multiple environmental drivers  

 

2.1 Chapter summary  

 

In this chapter, I focus on understanding the initial response of C. reinhardtii to 

MEDs.  I measured the plastic response of C. reinhardtii in environments with 

multiple environmental drivers (MEDs). I predicted that the population growth rate 

of C. reinhardtii would decrease as the number of environmental drivers (NED) 

increases from one to eight, and this is due to the combined negative effects of the 

environmental drivers. I explore how the effects of MEDs can be predicted using the 

NED and/or the effect of the single environmental drivers in the absence of 

information about interactions between drivers.  By virtue of the experimental design 

the effect of MED and NED can be disentangled; the effect of regimes within the 

same NED can be compared in order to identify if the NED can be used to predict the 

outcome of MEDs. The additive, multiplicative and comparative models were used 

to assess if the response to growing with MEDs can be predicted using responses to 

growing with the single environmental drivers that make up the MED regimes.  

While all organisms experience simultaneous environmental changes, I use a 

eukaryotic photosynthetic microbe as my model system, and so focus on microbial 

responses throughout my thesis.  

 

2.2 Abstract   

 

I found that the population growth rate of C. reinhardtii decreases as the number of 

environmental drivers (NED) increases from one to eight. This trend is explained 

using the comparative model and the growth rates in the presence of the most 
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dominant environmental driver. Not all environmental drivers have negative effects. 

Here, elevated CO2 enhances growth rates of C. reinhardtii and I found that when 

drivers with negative effects on growth are combined with high CO2 the drop in 

growth rate is smaller than in cases where CO2 is absent, but the general trend of 

decreasing growth rate with increasing NED is still observed. The data presented in 

this chapter demonstrate that knowing the effect of the single environmental drivers, 

especially the dominant environmental driver, is important for making predictions on 

the effects of the same environmental drivers when in combination.  

 

2.3 Introduction  

 

Studies on how global change will impact photoautotrophic microbes in both 

freshwater (Folt & Chen, 1999; Christensen et al., 2006) and marine systems (Boyd 

et al., 2013; Boyd & Brown, 2015) focus on a few key environmental drivers such as 

changes in temperature, CO2, light levels and pH. In cases where multiple driver 

experiments are carried out, they rarely exceed three environmental drivers (Crain et 

al., 2008; Boyd & Hutchins, 2012).  This means that even when MED studies are 

carried out, we still need a way to scale up from few to many drivers. Three types of 

interactions between drivers are possible; environmental drivers may buffer the 

effects of additional drivers (antagonistic interaction; Fischer et al., 2010), exacerbate 

the effects of additional drivers (synergistic interaction; Pörtner et al., 2005), or there 

may be no additional effect when adding more environmental drivers, and these 

interactions might depend on the identity, the number, or the intensity of 

environmental drivers. Here I measure the effect of increasing the number of 

environmental drivers (up to eight) in a novel environment, in order to determine if 

there are any trends in the effects when NED increases and if these trends can be 

predicted.  
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2.3.1 The effects of MEDs   

 

Physiological responses to environmental drivers associated with global change have 

been studied reasonably well in isolation in a wide variety of organisms such as 

freshwater phytoplankton (Rioboo et al., 2002; Christensen et al., 2006), marine 

phytoplankton (Riebesell, 2004; Boyd et al., 2013), plants (McKay et al., 2003) and 

invertebrates (Dupont et al., 2008, 2010), (see review by Crain et al. 2008). 

Physiological studies are beginning to investigate the effects of MEDs by using two 

or three environmental changes (Harley et al., 2006; Hutchins et al., 2007; 

Zondervan, 2007; Crain et al., 2008; Rost et al., 2008; Gruber, 2011; Hoffmann & 

Sgrò, 2011).  That being said, experiments investigating the interactive effects of two 

or three environmental drivers may have little or no predictive power on the effect of 

multiple environmental drivers as NED increases (beyond three environmental 

drivers) because of unexpected synergistic or antagonistic interactions between 

drivers (Folt & Chen, 1999; Hoffman et al., 2003; Christensen et al., 2006; Ormerod 

et al., 2010; Gao et al., 2012).    

 

Many of the effects of MEDs on different organisms are rarely predictable and vary 

greatly between species and life stages even when the same drivers are studied 

(Byrne & Przeslawski, 2013) and predictions made may not hold when different 

identities and intensities of environmental drivers are measured in combination 

(Crain et al., 2008). This has historically placed limits on investigating how large 

numbers of environmental drivers affect organismal responses, though using 

scenarios (Boyd et al. 2015b) is one way to get around this, as explained in the next 

section. 

 

 



 

 26 

2.3.2 Predicting the effect of MEDs: Scenarios 

 

Depending on the goal of the research and resources available, there are two 

approaches for designing MED manipulation experiments. One way to predict the 

action of MEDs is to use scenarios, where interest is on the interaction between 

environmental drivers that are likely to occur together under future scenarios so that 

predictions can be made. Scenario based experiments capture regional environmental 

changes and relationships among the suite of drivers on an organism in order to 

predict how the study organisms will deal with the future scenario (Boyd et al. 

2015b).  This is a very powerful tool when we are interested in the effects of specific 

combinations of drivers and their interactions, on specific organisms. For example, 

Boyd et al. (2015b), demonstrate that the joint effect of five regional environmental 

drivers (elevated light intensity/ elevated temperature/ elevated iron/ reduced 

nutrients/ elevated CO2) had a cumulative effect on a sub-Antarctic diatom, where 

the positive effects of warming and iron availability buffered the effects of reduced 

nutrients. Moreover, this study confirms that physiological responses to MEDs are 

not predictable from the effect of the individual drivers alone due to non-additive 

interactions between environmental drivers. This type of study relies on 

understanding the physiological influence of each driver alone on the study 

organism, so that more targeted manipulation experiments can be designed that have 

the power to measure interactions between drivers. In this case, temperature was 

found to be a dominant driver, which allowed the remaining four drivers to be 

grouped together, removing the need for much larger factorial experimental designs. 

Scenario based studies are an efficient and powerful tools to quantify the effect of 

MEDs and their interactions if the purpose of the studies is to predict the effect of a 

known suite of environmental changes on an organism.  The experiment in this 

chapter complements scenario based experiments, as interactions between drivers are 

measured with high replication within NED levels, allowing general trends in the 

effect of increasing NED to be investigated.  
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2.3.3 Predicting the effect of MEDs: Interactions 

 

An alternative to using scenarios is to model or measure the interaction effect of 

environmental drivers on organisms. Traditionally, MED studies investigate up to 

three different environmental drivers where interactive effects are measured and 

important drivers identified (Folt & Chen, 1999; Crain et al., 2008; Rost et al., 2008; 

Hoffmann & Sgrò, 2011; Bopp et al., 2013). However, whilst measuring interactions 

between drivers of interest is often informative (Dupon & Pörtner, 2013), all 

combinations of environmental drivers must be empirically measured, including all 

organisms and life stages of interest (Byrne & Przeslawski, 2013; Cross et al., 2015), 

as the effect of MEDs rarely conform to a single model (additive, multiplicative, 

comparative). This means that data is time consuming to collect and the size of 

experiments are often limited. 

 

Here, I measure interactions between environmental drivers when up to eight 

environmental drivers are present in order to identify if there is a general trend when 

NED is increased beyond the range usually studied in the lab. In addition, I use the 

information from the effects of the individual environmental drivers alone in order to 

see if they conform to a model of interaction (additive, multiplicative, comparative) 

when they are combined.  In all cases, I measure the action of MEDs through their 

effect on population growth rates. 

 

2.4 Methods and Materials 

 

2.4.1 Experimental design 

 

All populations were founded from a single cell of C. reinhardtii (CC-2931, mt-; 

Chlamydomonas Resource Centre, University of Minnesota), grown in sterile 
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Sueoka's high salt medium, buffered with Tris HCl (HSMT), under continuous 

rotation (50 rpm) at 25 ◦C and constant light at 32 µmolm−2 s−1 photon flux density 

(Fisher Scientific Traceable dual range light meter), at 420ppm CO2 (Table 2-1,Table 

2-2). These variables were controlled using incubators (Infors AG CH-4103). This 

strain of C. reinhardtii is from a culture collection, and has been grown in the lab for 

over 7 years – this media, temperature, and light levels represent the usual benign 

growth conditions for this strain. 

 

2.4.2 Culture Environments 

 

Replicate single-genotype populations were grown in replicate novel environments 

that differed from a benign control environment (430ppm CO2, pH 7.2, temperature 

25 oC, full light and nutrients, no herbicide and no UV) by 1 to 8 of the following 

parameters: increased CO2 to 2000ppm, temperature to 26oC, decreased pH to 6.5, 

light levels to18 μmol m-2 s-1, reduced phosphate to 1.69 mM, general nutrient 

depletion by 75%, and added 0.5 µM of the herbicide atrazine.  In addition, test 

environments with UV were exposed to a dose 8.1 KJ.m-2 UV radiation once a week 

as part of the batch culture protocol (Table 2-1,Table 2-2). There are ninety-six test 

environments in total in this study and 288 populations (3 independent replicate 

populations per test environment x 96 test environments, Table 2-3). Cultures were 

grown in 48-well plates containing 1.6 mL of culture media. Each population was 

acclimated to its test environment for seven days (three generations), and then 

transferred to fresh test environment medium for each regime.  

 

Details of how individual drivers were manipulated and the reasoning behind specific 

manipulations are below. These eight environmental drivers were chosen because 

they are often studied singly as distinct environmental changes, occur as part of 

global change, and most are known to affect cellular processes.  Four requirements 

were fulfilled when choosing intensities of each environmental driver:  First, the 

environmental drivers had to be ecologically realistic for microbes in aquatic 
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systems.  Second, it must be possible to use the environmental change in an 

experiment with Chlamydomonas.  For instance, nitrogen limitation is ecologically 

important but cannot be used as nitrogen directly affects C. reinhardtii by 

encouraging sexual reproduction between mating-types (Harris, 2001).  Third, the 

change had to be simple enough to implement that it could be used in a large, long-

term experiment. For example, iron is an ecologically important trace element that 

was omitted due to labour intensive protocols needed to remove trace levels of iron 

from the environment.  Forth, rapid extinctions should be avoided in environments 

that contained only one driver.  Though extinction is one possible outcome of 

populations being exposed to changes in environments, the goal of this study is to 

learn how responses to one environmental driver predict responses to multiple 

environmental drivers and this requires non-zero measures of growth in the single 

driver environments. Lastly, environmental drivers must produce a change (negative 

or positive) in growth rate and for this reason some intensities of environmental 

drivers differ from intensities used in other published investigations.   

 

pH is an example of an environmental change that meets all criteria. However, since 

C. reinhardtii are able to persist in pH levels lower than those predicted under future 

climate change scenarios, pH was furthered reduced in order for there to be a 

measurable drop in relative fitness of about ten percent when tested in isolation. Ten 

percent deterioration in fitness is a strong selection pressure so that natural selection 

will act for adaptation to occur during the selection experiment. The pH of all Media 

used in this experiment was buffered using Tris hydrochloride in order to separate 

the effects of pH and CO2 when in combination. With the exception of CO2/pH, I did 

not attempt to control chemical interactions between drivers; these interactions may 

contribute to organismal responses and to subsequent patterns of how response scales 

with the number of drivers. Because this study aimed to understand average biotic 

responses with increasing numbers of drivers, I designed an experiment that included 

as many drivers as possible – this necessarily means that we cannot address specific 

mechanistic interactions amongst drivers. 
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Temperature: A conductive heat-mat (Exo Terra heat wave substrate heat mat) was 

placed under the 48-well plates that were used for culturing to increase the 

temperature of the culture media to 26oC. This did not affect the overall temperature 

of the incubator and was controlled using a thermostat (Rootit heat mat thermostat). 

My reasoning is that a 1 oC rise in temperature a) could be produced without 

affecting the overall temperature of the incubator or causing condensation on the 

culture vessel lid, b) falls within the range of predicted temperature rises for aquatic 

ecosystems (Bindoff et al., 2007) and c) produces a change in growth rate in C. 

reinhardtii and can thus act as a driver, but does not cause mortality (we wanted to 

avoid large numbers of extinctions during the experiment). 

 

CO2: Sterile breathable films (AeraSeal breathable sealing film) were used instead of 

the of the 48-well plate lids that came with the plates. This allows increased CO2 

diffusion into the media. While we did not quantify the precise level of CO2 in the 

media, growth in the high-CO2 conditions was stimulated, indicating that it was 

acting as a driver, which is all that was needed for the purpose of this study. CO2 

levels in the test environments were chosen based on projected CO2 levels, and are in 

line with other experiments investigating responses of microalgae to CO2 

enrichment. 

 

pH: The pH of the culture media was altered by adding 2% HCl. This required one to 

two drops per litre of HSMT, so the concentration of nutrients was not altered by 

changes in volume. The pH was measure with a pH meter (Thermo Orion Star A121 

pH Portable Meter) and buffered by adding Tris-HCL. Even though this drop in pH 

(0.7 units) is large relative to changes expected in marine ecosystems (Bindoff et al., 

2007) it is well within those experienced in freshwater systems (Harris, 1989). Based 

on pilot work, this drop reliably affects growth in the C. reinhardtii in the laboratory 

cultures.  
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UV: A UV lamp (UVM-57) was used in order to provide a dose of UV radiation at 

acclimation and at T0 (Appendix 1; Figure 7.1). The breathable films were removed 

from the culture plates under sterile conditions during UV radiation. The lamp was 

mounted 5.1 cm from the surface of the culture plates providing an irradiative force 

of 33.75 W.cm-2. Populations were irradiated for 4 mins and this corresponds to a 

UV dose of 8.1 KJ.m-2 (Hessen et al., 1995; Häder et al., 2007).  

 

Light intensity: Overall light intensity was reduced by approximately 40% using a 

neutral density light filter (0.15 Neutral Density filter), designed to reduce the light 

intensity across all wavelengths equally and attenuate light by absorption with 

minimal reflection. The filter was secured to the top of the experimental plates 

allowing sufficient room for air to circulate. My rationale for decreasing rather than 

increasing light was pragmatic; it is possible to put a filter on some of the culture 

vessels, but difficult to selectively increase light levels reliably for only a few 

populations during an experiment of this size. Additionally, increasing light levels 

for C. reinhardtii often leads to bleaching and mortality (Müller et al., 2001; Fischer 

et al., 2006). We found that with this strain the light intensity used was high enough 

for growth but limited the amount of bleaching in populations, even in environments 

that contained many other stressful drivers. 

	

Herbicide: Atrazine was used at a concentration of 50µM in HSMT. Atrazine was 

then added to the culture media used for this treatment freshly whenever populations 

were transferred into fresh media. Based on pilot work and published studies (Fischer 

et al., 2010), this concentration of atrazine reliably affects growth in the C. 

reinhardtii genotype used.  

 

Nutrients: All nutrients within Hunter’s trace elements (HTE) were reduced equally 

to a concentration factor of 0.25 relative to the control concentration (see Table 2-2 

for concentration of each nutrient within HTE). Since laboratory strains are used to 

growing in rich media such as HSMT, increasing trace nutrients has no measurable 
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effect on growth. The dilution factor of general nutrients used in this experiment was 

determined during pilot studies.  

 

Phosphate: Phosphate was reduced to a concentration factor of 0.125, relative to the 

control concentration (Harris, 1989). Salts lost by the removal of dipotassium 

phosphate (K2HPO4) and monopotassium phosphate (KH2PO4) were replaced with 

potassium chloride (KCl). The level of phosphate needed to act as a driver was based 

on pilot work and previous studies by Collins & De Meaux (2009).  

 

We refer to each unique combination of environmental changes as a “regime”, and 

the number of environmental changes that make up a regime as NED.  For example, 

a regime with increased temperature and CO2 has a NED of two, whereas a regime 

with increased temperature only has NED of one. Each individual environmental 

driver was tested alone at varying strengths in preliminary trials to ensure that all 

environmental changes had an effect, and that none of the effects were lethal or near-

lethal. Whenever possible, changes in environmental parameters were based on 

predictions for how these parameters are likely to change in natural systems (Hader, 

2000; Wu et al., 2000; Harley et al., 2006; Bindoff et al., 2007; Meehl et al., 2007; 

Gruber, 2011; Bopp et al., 2013).  In choosing regimes at each NED level, where 

possible environmental drivers should be nested as NED increases from 1 to 8, for 

example CO2, CO2/pH and CO2/pH/temp, so that the effect of sequentially adding 

one more environmental driver can be measured. Otherwise, environmental drivers 

were chosen at random where there were many options of combinations of 

environmental drivers possible (e.g. NED = 5). For all combinations of 

environmental drivers (NED 1-8) see Table 2-3.  
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2.4.3 Population growth  

 

Cell counts were performed every 24 hr for a total of 120 hr using BD FACSCanto II 

(BD Biosciences, Oxford, UK) flow cytometer calibrated with CS&T beads. The 

data were acquired with the BD FACSDiva v6 software.  Each culture was counted 

twice.  The cell counts were transformed into cells per millimetre and the average 

rate of divisions per day was calculated for each replicate.  Growth rate was 

calculated as using Equation 2-1.  

 

 

 

            
Equation 2-1 

      

where Nt is the cell density (cells/ ml) at time t (hours) and N0 is the cell 

density at time t0. This calculation was used because different environments 

produced different shaped growth curves (Appendix 1; Figure 7.3- Figure 7.6), and 

the usual metric of maximum growth rate was not useful, whereas this measures the 

average number of divisions per day per population per transfer cycle, and allows the 

meaningful comparison of populations with different growth strategies (Collins, 

2011a). This is appropriate for the experiment – one possible response of population 

growth to some of the test environments, such as those that are nutrient-deplete, is 

that maximum population size may decrease (Appendix 1 Figure 7.7), or a lag time 

may change, or maximum growth rate may change, thus limiting population growth 

in batch culture. In the present experiment, populations in the control environment 

were never nutrient-limited (cultures never reached carrying capacity). The metric 

used allows us to compare of population-level responses across the range of stressful 

and enriched environments in this experiment. 
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In addition to the number of divisions (d-1), the change in the number of cells over 

time was calculated using Equation 2-2. 

 

             Change in the number of cells (!"#) = &' −	&*
+ − +*

 

Equation 2-2 
 

 
In Equation 2-2, log transformations of the data were not performed as was 

done in Equation 2-1. See appendix 2, section 7.1.1, for further comparisons between 

analysis of changes in the number of cells and rate of division (d-1) (Figure 7.8). 

 

2.4.4 Extinction probabilities  

 

The fold increase in the chance of extinction (Pext) relative to the control was 

calculated as the ratio of 1- the chance of at least one rescue mutation spreading 

before the population goes extinct from Bell (2013), using Equation 2-3. 

 

Pext(1)/Pext(0) = exp(|r0| -|r1|) 

         Equation 2-3 

 

where the probability that at least one beneficial mutation will spread is given 

by P = 1-exp(-B), such that Pext = exp(-B), and B = 2N0Uϕr1/|r0|, where N0 is the 

initial population size, U is the population mutation rate, ϕ is the fraction of 

mutations that are beneficial and r1 and r0 are the Malthusian rates of population 

increase in the changed and control environments, respectively, assuming that the 

genomic mutation rates (U) and proportion of beneficial mutations (ϕ) do not differ 

between the control and changed environments.  
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2.4.5 Overlap of NED between regimes 

 

Each regime, by definition, is unique. However, because regimes become more 

similar as the number of environmental drivers increase, overlap between the drivers 

making up different regimes for a given NED was calculated as an average pairwise 

difference between regimes, where each environmental driver is coded as a binary 

variable (present or absent). Average overlap for each NED is calculated as 1 – 

(average pairwise distance). The degree of overlap for test environments with 0, 8 

and one environmental drivers is zero as there is only one control regime, one regime 

with all eight environmental drivers and in test environments with one driver, all 

eight changes were assayed alone. The analysis was performed the same way for 

each subset of the data (including the case study and full dataset less CO2).  

 

2.4.6 Overlap of environmental drivers between regimes  

 

In this experiment, only eight possible environmental drivers were present to choose 

from, so that as the level of NED increases, the probability of including at least one 

highly detrimental environmental change increases rapidly, with that probably 

reaching 1 for NED = 8. Since I found that the population growth rate is largely 

determined by the single dominant environmental driver, using a finite number of 

environments should overestimate the average decrease in growth in environments 

with a high NED. Since using a finite number of environmental drivers is necessary 

in a laboratory experiment, we verified that the results presented here are robust even 

if the probability of including at least one highly detrimental environmental change 

remains constant as the NED increases (Figure 7.9). The effect of sampling from a 

finite number of possible environmental drivers was explored using a simulation 

written in R. Using finite (eight) and infinite environmental drivers, with the same 

distribution of effects on growth rate for single environmental drivers as in the focal 

experiment, the expected growth rates were simulated at different levels of NED, 
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while holding the probability of sampling an environment with each growth effect 

constant. The measured number of cell divisions per day for each of the single 

environmental drivers were sampled either with (infinite possible environmental 

drivers) or without (finite possible environmental drivers) replacement to form 

environments with between 1 and 8 NED, and the growth at each given level of NED 

calculated as the minimum growth of all effects present. The simulation was run 

10000 times.  

 

2.4.7 The comparative, multiplicative and additive models 

 

Expected numbers of division (Nexp) for each regime were calculated for each of 

three models (comparative, multiplicative and additive), using the observed number 

of divisions (Nobs) measured for NED = 1, where each driver is experienced alone. 

For the comparative model, Nexp is equal to the most dominant individual 

environmental driver relative to the control (1- Nobs). For example, if herbicide 

causes the largest change in population growth, any other driver present within that 

regime would have no additional effect. For the additive model, Nexp is calculated as 

the sum effects of all individual drivers when experienced alone (at NED = 1) that 

make up each regime. For the multiplicative model, Nexp is the product of Nobs for 

each of the drivers present in the regime when they are experienced alone (at 

NED=1). Model fits were compared using the R2 values. The Nexp for each model 

(comparative, multiplicative and additive) was fit against the Nobs using a linear 

model. This was completed in R using the lm function within the R basic package. 

Deviants were identified by calculating the difference between the observed growth 

rate and the predicted growth rate (under the comparative, multiplicative and additive 

model), as Nexp - Nobs. For each model, a threshold for the difference between the Nexp 

and Nobs was set; additive < 0.17 difference, multiplicative < 0.15 difference, and 

comparative < 0.1 difference. These levels were chosen as they explain a minimum 

of 80% of the variation (R2 > 0.8). For each model, deviants were identified as all 

populations with R2 < 0.8. The number of populations with R2 > 0.8 differed for each 
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model; additive = 92 populations (out of 288 populations), multiplicative = 140 

populations and comparative = 155 populations.  

 

2.4.8 Statistical analysis 

 

The effect of the identity and NED on average rate of cell division (d-1) was analysed 

using a mixed model in R (R Core Team, 2013), using the packages lme4 and 

lmerTest. NED (0-8) is a fixed factor as is overlap between regimes within each level 

of NED (measured as the average number of shared drivers between different test 

environments for a given NED – see above). Regime and replicates within for each 

regime are random factors. To directly compare the contributions of fixed and 

random factors to variance, the percent contribution of fixed factors was estimated 

(Table 7-1) by using Equation 2-4. 

 

   

         
Equation 2-4

 

where  is the variance of the fixed effect, b is the slope of the fixed effect 

estimated by the mixed effects model, se is the standard error of the fixed effect as 

estimated by the mixed effects model and  is the variance of the response 

variable.   

 

A Post hoc mixed model was completed in order to identify any effect caused by the 

environmental drivers themselves (i.e. CO2 or temperature).  The eight environmental 

drivers nested within NED were added to the random part of the model in place of 

regime, as described above, as all environmental drivers that make up each regime 

are now included in the model.   

Percentage of Fixed Effect Variance = σ F
2 × (b2  - se2 )

σX
2

"

#
$$

%

&
''×100
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Table 2-1 A comparison of the control environment and the environmental changes that will 

be used in the treatment regimes in experiment 1.  

Environmental drivers Control  Treatment pH of Culture Media  

CO2 (ppm) 420 2000 7.2 

pH 7.2 6.5 6.5 

Temperature (oC) 25 26 7.2 

Phosphorus (mM) 13.56 1.69 7.2 

Nutrients* (concentration factor) 1 0.25 7.2 

Herbicide (µM) 0 0.5 7.2 

UVB dose (KJ.m-2) 0 8.1 7.2 

Light intensity (μmol m-2 s-1) 32 18 7.2 

* see Table 2-2 for concentration of all nutrients. 

 

Table 2-2 Concentration of Hutner’s Trace Elements in 1 litre of HSMT culture media in 

control and treatment (nutrient depletion) environments. 

 Hutner's Trace Elements Control (mM) Treatment (mM) 

Na2EDTA· 2H2O  0.134 0.034 

ZnSO4 · 7H2O  0.077 0.019 

H3BO3  0.184 0.046 

MnCl2 · 4H2O  0.026 0.006 

FeSO4 · 7H2O  0.013 0.003 

CoCl2 · 6H2O  0.007 0.002 

CuSO4· 5H2O  0.006 0.002 

(NH4)6Mo7O24 · 4H2O  0.890 0.222 
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Table 2-3 Environmental changes and their combinations in each unique regime environment.   

 NED Regimes No. of 

Regimes 

0 Control 1 

1  CO2 Temp  LI pH P Herb  ND  UV 8 

2 CO2/Temp CO2/ LI CO2/ pH CO2/ P CO2/ Herb CO2/ ND CO2/ UV   15 

Temp/ pH Temp/ LI pH/ UV P/ LI Herb/ UV UV/ ND UV/ LI pH/ P 

3 CO2/ Temp/ 
pH 

CO2/ Temp/ 
LI 

CO2/ pH/ UV CO2/ P/ LI CO2/ Herb/ UV CO2/ UV/ ND CO2/ UV/ LI CO2/ pH/ P 16 

Temp/ pH/ LI Temp/ LI/ 
Herb 

pH/ UV/ ND P/ LI/ Herb Herb/ UV/ ND UV/ ND/ P UV/ LI/ pH pH/ P/ UV 

4 CO2/ Temp/ 
pH/ LI 

CO2/ Temp/ 
LI/ Herb 

CO2/ pH/ UV/ ND CO2/ LI/ Herb CO2/ Herb/ UV/ 
ND 

CO2/ UV/ ND/ P CO2/ UV/ LI/ 
pH 

CO2/ pH/ P/ 
UV 

16 

Temp/ pH/ LI/ 
UV 

Temp/ LI/ 
Herb/ pH 

pH/ UV/ ND/ LI P/ LI/ Herb/ ND Herb/ UV/ ND/ 
pH 

UV/ ND/ P/ LI UV/ LI/ pH/ P  pH/ P/ UV/ 
Herb 

5 CO2/ Temp/ 
pH/ LI/ UV 

CO2/ Temp/ 
LI/ Herb/ pH 

CO2/ pH/ UV/ 
ND/ LI 

CO2/ P/ LI/ 
Herb/ ND 

CO2/ Herb/ UV/ 
ND/ pH 

CO2/ UV/ ND/ P/ 
LI 

CO2/ UV/ LI/ 
pH/ P 

CO2/ pH/ P/ 
UV/ Herb 

16 

Temp/ pH/ LI/ 
UV/ ND 

Temp/ LI/ 
Herb/ pH/ UV 

pH/ UV/ ND/ LI/ 
Herb 

P/ LI/ Herb/ 
ND/ pH 

Herb/ UV/ ND/ 
pH/ P 

UV/ ND/ P/ LI/ 
Herb 

UV/ LI/ pH/ P/ 
ND 

pH/ P/ UV/ 
Herb/ LI 

6 CO2/ Temp/ 
pH/ LI/ UV/ 
ND 

CO2/ Temp/ 
LI/ Herb/ pH/ 
UV 

CO2/ pH/ UV/ 
ND/ LI/ Herb 

CO2/ P/ LI/ 
Herb/ ND/ pH 

CO2/ Herb/ UV/ 
ND/ pH/ P 

CO2/ UV/ ND/ P/ 
LI/ Herb 

CO2/ UV/ LI/ 
pH/ P/ ND 

CO2/ pH/ P/ 
UV/ Herb/ LI 

15 

Temp/ pH/ LI/ 
UV/ ND/ Herb 

Temp/ LI/ 
Herb/ pH/ UV/ 
P 

pH/ UV/ ND/ LI/ 
Herb/ P 

P/ LI/ Herb/ 
ND/ pH/ Temp 

Herb/ UV/ ND/ 
pH/ P/ Temp 

ND/ Temp/ P/ LI/ 
UV/ Herb 

Temp/ pH/ LI/ 
P/ ND/ UV 
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7 CO2/ Temp/ 
pH/ LI/ UV/ 
ND/ Herb 

CO2/ Temp/ 
LI/ Herb/ pH/ 
UV/ P 

CO2/ pH/ UV/ 
ND/ LI/ Herb/ P 

CO2/ P/ LI/ 
Herb/ ND/ pH/ 
Temp 

CO2/ Herb/ UV/ 
ND/ pH/ P/ 
Temp 

CO2/ ND/ Temp/ 
P/ LI/ UV/ Herb 

CO2/ Temp/ pH/ 
LI/ P/ ND/ UV 

Temp/ pH/ LI/ 
UV/ ND/ 
Herb/ P 

8 

8 CO2/ Temp/ pH/ LI/ UV/ ND/ Herb/ P 1 

CO2, CO2 enrichment; Temp, elevated temperature; Li, reduced light intensity; pH, reduced pH; P, phosphate starvation; Herb, herbicide; ND, 

general nutrient depletion; and UV, Ultraviolet-B radiation
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2.5 Results 

 

2.5.1 NED drives changes in growth of C. reinhardtii.  

 

Population growth rate declines as NED increases (Figure 2.1; F1,93 = 11.18, P = 

0.001), apart from NED level two, which shows a slight increase in growth rate (0.52 

divisions (d-1). At NED level eight, the growth rate C. reinhardtii was 0.2 divisions 

(d-1), which is a decrease of 68% relative to the control (0.68 day-1).  By virtue of the 

experimental design there are many replicates of each NED level with the exception 

of NED one and eight, and the effects of both NED and regime on growth rate can be 

investigated.  Regime and overlap between regimes explains some (32% and 10% 

respectively) of the decrease in population growth rate. However, the NED itself 

explains approximately 37% of the decrease in growth rate independently of the 

particular combination of environmental changes involved.   
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Figure 2.1 Population growth rate of C. reinhardtii under 0 to 8 environmental drivers. Black 

data points and bars represent mean and standard deviation between regimes within a given 

level of NED. See Table 2-3 for regimes. Coloured points indicate the mean and variance of 

individual regimes (96 regimes total, see Figure 7.11 for identity of regimes). The grey 

dashed line indicates the growth rate of the evolved control in the control environment.  

  

NED	
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2.5.2 Interactions between environmental drivers 

 

Given that regime explains some of the variation in the response to NED, 

interactions between environmental drivers within each regime were explored using 

the comparative, multiplicative and additive models. The best predictor of the drop in 

fitness is the single dominant environmental driver, so that the effect of increasing 

NED on population growth is best fit by a comparative model (Figure 2.2A; R2 = 

0.43; P < .0001). Using this model, the effect of environmental drivers in 

combination is determined by the single dominant (positive or negative) 

environmental driver present.  The multiplicative and additive models were worse 

fits than the comparative model (multiplicative model: Figure 2.2B; R2 = 0.33, P < 

.0001; additive model: Figure 2.2C; R2 = 0.25, P < .0001).  Regimes that do not fit 

any type of interaction were identified using a threshold of R2 > 0.8. Populations 

growing in each regime were classified as either ‘deviant’ if they fell below the 

threshold (R2 < 0.8), ‘comparative’, ‘additive’ or ‘multiplicative’, if they were equal 

to or higher than the threshold (R2 > 0.8; Figure 2.3 - Figure 2.5). As expected from 

the model fits (Figure 2.2A-C) the majority of populations growing in each regime 

are comparative, then additive and finally multiplicative. However, a large 

proportion of populations (36%) are ‘true deviants’ and fail to be categorised into 

any of the model groups (Figure 2.6).  The majority of these true deviant populations 

have some of the highest growth rates observed and these interactions are not 

predicted by any model. 
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Figure 2.2 Population growth rate of C. reinhardtii under 0 to 8 environmental drivers (a) is 

best explained by the comparative model. Population growth rates (mean and standard 

deviation) predicted by a model (white triangles) alongside observed values (black circles), 

followed by goodness of fit, for three models. (b) Comparative model (R2 = 0.43, P < .0001). 

(c) Multiplicative model (R2 = 0.33, P < .0001). (d) Additive model (R2 = 0.25, P < .0001); 

extinction is predicted in environments with >5 changes. Red dashed line indicates 

population extinction, and shows that under the additive model, populations will go extinct at 

NED > 4. Coloured points in panel a, indicate the mean and standard deviation of individual 

regimes (96 regimes total, see Figure 7.11 for identity of regimes). 
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Figure 2.3 Deviants from the comparative model. Observed population growth rates (open 

circles) plotted alongside the expected growth rate under the comparative model (solid line). 

Populations that fit the comparative model (R2 > 0.8) are coloured in red. Deviant 

populations that do not fit the comparative model (R2 < 0.8) are coloured in blue. 
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Figure 2.4 Deviants from the multiplicative model. Observed population growth rates (open 

circles) plotted alongside the expected growth rate under the multiplicative model (solid 

line).  Populations that fit the multiplicative model (R2 > 0.8) are coloured in red. Deviant 

populations that do not fit the multiplicative model (R2 < 0.8) are coloured in blue. 
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Figure 2.5 Deviants from the additive model. Observed population growth rates (open 

circles) plotted alongside the expected growth rate under the additive model (solid line).  

Populations that fit the additive model (R2 > 0.8) are coloured in red. Deviant populations 

that do not fit the additive model (R2 < 0.8) are coloured in blue. 
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Figure 2.6 Observed population growth rates (open circles), under increasing NED (0 – 8). 

Populations that fit the comparative model only (R2 > 0.8) are coloured in orange. 

Populations that fit the additive and multiplicative models (R2 > 0.8) are coloured in green. 

Populations that fit the comparative and additive models (R2 > 0.8) are coloured in purple.  

Populations that fit the comparative and multiplicative models (R2 > 0.8) are coloured in 

pink. Populations that fit the comparative, multiplicative and additive models (R2 > 0.8) are 

coloured in red. Deviant populations that do not with any of the models (R2 < 0.8) are 

coloured in blue. 

 

 

NED	
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2.5.3 Case study – Temperature, CO2 and pH 

 

Most MED studies for photosynthetic microbes focus on three drivers: changes in 

temperature, pH, and CO2 (Carpenter, 1992; Gruber, 2011). To understand how these 

intensively-studied environmental drivers affect growth when they occur in the 

context of additional environmental drivers, the effect of these three environmental 

drivers either alone, in pairs, all together, or in various combinations as part of 

regimes with additional drivers is presented as a case study (see Figure 2.7). When 

only a single environmental driver is present, populations grow fastest under CO2 

enrichment, slower under lowered pH, and slowest at increased temperature, 

however these differences in growth rate are not significant due to high variation 

within within regime. However, when combined as pairs, the effect of CO2 

enrichment counteracts the effect of temperature so that these populations have 

higher growth rates than when temperature changes alone, whereas the combined 

effects of high CO2 and low pH is to lower population growth rates (Figure 2.7). 

While both lower pH and higher temperature reduce growth rates on their own, 

populations subjected to both environmental drivers at the same time grow faster 

than those subjected to either environmental driver alone. Differences between 

growth rates within environmental driver pairs are not significant due to high 

variation within regimes.  When all three environmental changes occur together, 

populations grow faster than under any of the single or paired cases.  
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Figure 2.7 Population growth rates of C. reinhardtii in environments containing high CO2, 

low pH, and high temperature. Each point shows mean and standard deviation for 3 replicate 

populations. The identity of regimes is indicated by colour. The colour and pattern of lines 

shows unique patterns of adding NED to environments. In general, population growth drops 

when environmental changes of larger effect than previously present (herbicide, nutrient 

depletion and phosphate starvation) are added. Herb, Herbicide; Li, light intensity; Temp, 

temperature; Co2, CO2; P, phosphate; ND, nutrient depletion; UV, ultra-violet radiation. 
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Interesting interactions between CO2, pH, temperature and additional environmental 

drivers are evident as NED increases.  When combined with changes in CO2, pH and 

temperature, reduced light intensity (at NED=4) does not affect growth in C. 

reinhardtii, although light intensity does affect growth on its own. The addition of 

herbicide, which is one of the strongest individual environmental drivers (decreasing 

growth rates) in the experiment, at NED=5, significantly reduces growth relative to 

NED=4. Generally, this trend is followed, where growth drops as NED level 

increases, largely as a result of a more dominant environmental drivers being more 

likely to be present. While the interactions between individual environmental 

changes are somewhat idiosyncratic when we examine this reduced data set, the 

overall pattern found in the full dataset, where the effect on growth is largely 

determined by the single dominant environmental change, is still informative. The 

effect of NED remains significant (Figure 2.8A; F1,16  = 10.142, P = 0.006), 

regardless of the identity of the environmental changes.  The comparative model 

remains the best fit (Figure 2.8B; R2 = 0.36, P < .0001).  The multiplicative and 

additive models are worse fits than the comparative model (multiplicative model: 

Figure 2.8C, R2 = 0.26; P < .0001; additive model: Figure 2.8D, R2 = 0.3, P < .0001). 

The results from the case study suggest that investigations examining the effects of 

two or three environmental drivers, cannot predict the effect when additional 

environmental drivers are added, as interactions are idiosyncratic. However, I found 

when up to 8 environmental drivers are investigated in the case study, interactions 

become more predictable under the comparative model, albeit with a reduced 

relationship (R2) between the observed growth rates and the growth rates predicted 

using the single environmental drivers, and this is due to the smaller sample size. 
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Figure 2.8 Population growth rates of C. reinhardtii in environments containing high CO2, 

low pH, and high temperature under increasing NED (0 - 8). Only regimes used in the case 

study displayed. Solid black circles show the observed average population growth rates (± 

SD) between regimes, at each NED. Coloured points show the average growth rate (± SD) of 

replicate populations within each regime (18 total) (a). Open triangles show the expected 

mean population growth rate (± SD) under the comparative model (b), the multiplicative 

model (c) and the additive model (D). Red dashed line shows population extinction at zero 

number of divisions. 
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2.5.4 Post hoc analysis 

 

Post hoc analysis revealed that the effect of NED is important regardless of the 

identity of the individual environmental drivers that make up each regime (Figure 

2.1; F1,90 = 8.000, P = 0.006).  Some of the variation in the model is explained by four 

environmental drivers; CO2 (12%), phosphate (11%), herbicide (5 %) and UVB 

(4%).  The NED is still important and explains a large proportion of the variance 

observed in the model (19%). 

 

2.5.5 The effect of removing CO2 enriched environments  

 

When considering only those populations growing in regimes that include (amongst 

other drivers) high CO2 , changes in growth rate of C. reinhardtii are driven by NED 

(Figure 2.9A; F1,45 = 8.060, P = 0.007), which is consistent with the full data set; as 

NED increases the number of divisions (d-1) decrease (high CO2 dataset intercept = 

0.51 and slope = -0.04; full dataset intercept = 0.56 and slope = -0.03; Z-test = 0.28). 

The effect of increasing the number of simultaneous environmental changes on 

growth is still best explained by a comparative model (Figure 2.9B; R2 = 0.58, P < 

.0001).  The multiplicative and additive models were worse fits than the comparative 

model (multiplicative model: Figure 2.9C, R2 = 0.44, P < .0001; and additive model: 

Figure 2.9D, R2 = 0.33, P < .0001). The effect of the dominant driver is mitigated by 

high CO2, such that the average growth at any given level of NED is higher than 

expected from the comparative model. When environments containing CO2 

enrichment are removed from the dataset, the fit with all three models (Figure 2.9) is 

improved, mainly because CO2 enrichment causes an increase in growth when it is 

part of a complex environmental change. 
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Figure 2.9 Population growth rate of C. reinhardtii under increasing NED (0 – 7), excluding 

high CO2. Solid black circles show the observed average population growth rates (± SD) 

between regimes, at each NED. Coloured points show the average growth rate (± SD) of 

replicate populations within each regime (48 regimes total, see Figure 7.12 for identity of 

regimes) (a). Open triangles show the expected mean population growth rate (± SD) under 

the comparative model (b), the multiplicative model (c) and the additive model (d). Red 

dashed line shows population extinction at zero number of divisions. 
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2.5.6 The effect of Environmental Overlap  

 

In the present experiment, as environments become more complex overlap between 

environmental drivers between regimes (within each NED) increases. The overlap 

between regimes within NED levels explains 10% of the variation in growth seen 

here (Figure 2.1; F1,5 = 13.092, P = 0.014). As such overlap of environmental change 

has little effect on the amount variation in growth rate between regimes at each level 

of NED. In addition, I found no significant relationship between NED and the 

variation in growth rates between regimes (nested within NED) (R2 = 0.06, P = 

0.53). No variation is present at NED = 0 and NED = 8, which necessarily contain 

only a single regime each. Variation between regimes within each NED increases 

from NED = 1 and is highest at NED = 2 and three.  Variation between regimes 

decreases from NED = 3 to and is lowest at NED = 6. A simulation was run of the 

same experiment using infinite environments with the same distribution of effects on 

growth for single environmental changes as in the focal experiment. After 1000 

iterations it was found that using a finite number of possible environmental changes 

(in the present study) slightly underestimates growth rates in regimes with many 

drivers, but the effect is small (Appendix 1, Figure 7.9), confirming that the increase 

in overlap between regimes with increasing the number of drivers does not explain 

the overall pattern of the data.   

 

2.6 Discussion 

 

To date no experiment has had the power to pull apart the effect of the number and 

the identity of environmental changes. I have shown here that the number of 

environmental changes can be used to explain population growth responses to 

MEDs. Whilst changes in growth rates are driven by the single dominant 

environmental drivers, the drop in growth becomes more predictable as the NED 

increases.  This also highlights an important point that understanding the type of 



 

 56 

interaction and using the appropriate model is essential in order to determine if 

interactions are either synergistic or antagonistic (Folt & Chen, 1999). This is 

important, because if a model is incorrectly used to explain the interactions between 

MEDs, any deviations from the model will be defined as either antagonistic or 

synergic depending on the direction of the effect of the environmental drivers alone 

(Piggott et al., 2015) (Figure 1.2).  

 

2.6.1 Population growth rate of C. reinhardtii under increasing 

NED 

 

Population growth rates decrease with increasing NED, regardless of the identity of 

the environmental drivers (Figure 2.1), and is driven by the dominant environmental 

driver (Figure 2.2A).  Therefore, the relationship between NED and population 

growth is described best by the comparative model. In the present study, herbicide 

and phosphate depletion are dominant environmental drivers (Figure 7.2), and so 

when more drivers are added as NED increases, no additional effect will be observed 

on the rate of cell division of C. reinhardtii. The relationship between the number of 

environmental drivers and dominant environmental drivers increases in strength and 

becomes more predictable as NED increases (Figure 2.7). This means that we can 

predict the effect of MEDs on organismal growth rate as long as we know the effect 

of the single drivers alone, or even the NED. The trend presented here is particularly 

useful if investigators are interested in the outcome of high NED. For example, if the 

investigator is interested in the outcome of seven environmental drives, and the effect 

of the dominant environmental driver is known, then predictions on the effects when 

seven environmental drivers are combined, can be made using the comparative 

model. However, knowing the dominant environmental driver is not useful for 

investigators that want to predict the outcome of any three environmental drivers in 

combination. 
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2.6.2 The effect of environmental overlap on MEDs 

 

Though overlap between regimes explains very little of the variance in growth 

(Figure 2.1), using a finite number of environments slightly overestimates the 

average decrease in growth in environments as NED increases (Appendix 1, Figure 

7.9). Environmental changes in the natural environment are inherently complex and 

we expect many aspects of the environment to change in the future under the 

framework of global change (Gruber, 2011).  Given that few environmental drivers 

of interest for global change are truly novel or outside the range of current 

environments (Gienapp et al., 2008), most drivers should have relatively small 

effects on organismal function. However, a subset of environmental drivers will have 

large effects on organisms, and the chance of a dominant environmental driver 

arising increases as NED increases (Appendix 1, Figure 7.10), and this is supported 

by the simulation data (Appendix 1, Figure 7.9). It is expected that the natural world 

will lie somewhere in between finite and infinite outputs of the simulation data, with 

the dominant environmental changes at high NED driving the effects of MEDs. 

Though expected growth rates from the comparative model are overestimated in the 

simulation, the prediction that dominant drivers will have large effects on growth as 

NED increases in natural communities still holds. Possible experimental avenues to 

correlate findings of laboratory experiments and the natural world are discussed in 

chapter 6.  

 

2.6.3 The case study shows that single drivers lose predictive 

power when NED is low 

 

When a few environmental drivers are investigated further, the level of NED 

becomes more important when forming predictions on the combined effect of 

environmental drivers. CO2, temperature and pH were investigated further (Figure 

2.7), as they have been studied reasonably well in isolation (Riebesell et al., 2000; 
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Yang et al., 2001; Yang & Gao, 2003; Riebesell, 2004; Rost et al., 2008; Fulweiler et 

al., 2011; Boyd et al., 2013), in pairs (Barko et al., 1982; Riebesell, 2004; Schippers 

et al., 2004; Ventura et al., 2008; Feng et al., 2009), and, rarely, all together (Feng et 

al., 2008). Note that some methods used in multiple driver experiments investigating 

the effects of elevated CO2 do not separate the interactions of CO2 and acidifying 

media at the physical-chemical level and are therefore unable to separate the 

outcome effects of pH and CO2 at the organismal level. These drivers are also well 

represented in biogeochemical climate change models (Meehl et al., 2007; Bopp et 

al., 2013; IPCC, 2013), providing a framework for designing MED and scenario-

based experiments in order to predict how these environmental drivers might affect 

natural communities (Boyd et al. 2015b; Wohlers et al. 2009; Dupont et al. 2010; 

Pörtner 2012). For this reason, CO2, temperature and pH were explored more closely 

here. Like with the full dataset, population growth rate decreases with increasing 

NED, independently of the identity of the environmental changes (Figure 7.13).  

However, the fit of the model is worse, and this is due to having low replication, 

unlike the full dataset.  

 

2.6.4 The comparative model predicts the outcome of MEDs in the 

case study  

 

The comparative model is still the best model for predicting the effect of MED when 

replication levels are low, as changes in the number of divisions are still largely 

driven by the most dominant environmental change (Figure 2.8).  The best example 

of this is reduced light intensity, which has a small effect on population growth rate 

when alone and when in combination with other environmental changes (Figure 2.7). 

The effects of light intensity are masked by more dominant environmental drivers 

and as such reduced light intensity fits the conditions of the comparative model and 

violate the conditions of the multiplicative and the additive models. In the complete 

dataset, light intensity is present in 85% of the regimes where population growth is 
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driven the dominant environmental drivers and are predicted by the comparative 

model (Figure 2.6).   

 

Synergistic and antagonistic interactions are also observed in the case study (Figure 

2.7). For example, when both phosphate (P) and nutrient depletion (ND) are limited 

in combination with other environmental changes, the effect on the overall growth 

rate is greater than that expected under the comparative model - indicating that this is 

a synergistic interaction (Figure 2.7). Like many other studies, this suggests C. 

reinhardtii is limited by both resources which is not in agreement with the 

comparative model or the analogous Liebig’s law (de Baar, 1994; Arrigo, 2005). On 

the other hand, when only one resource is limiting (P or ND) these environmental 

changes may be interacting with other environmental drivers.  For example, at high 

NED, the addition of nutrient depletion (ND) has very little effect and is masked by 

the dominant effects of herbicide. ND and herbicide therefore have a comparative 

interaction, whereas, phosphate limitation and herbicide have an antagonistic 

interaction (Figure 2.7). This is surprising as both herbicide and phosphate are 

dominant environmental drivers in most regimes.  

 

The herbicide used here is atrazine which directly blocks the photosynthetic electron 

transport chain reducing photosynthetic efficiency (Fischer et al., 2010). Phosphate is 

a limiting factor in many natural environments yet it is a necessary macronutrient 

that photosynthetic organisms like C. reinhardtii require in large amounts 

(Irihimovitch & Yehudai-Resheff, 2008). Fischer et al. (2010) suggests protection 

mechanisms such as nonphotochemical quenching (NPQ) to explain the antagonistic 

interaction observed between atrazine and high light in C. reinhardtii.  NPQ of 

chlorophyll autofluorescence is an extremely powerful and flexible tool in which 

photosynthetic organisms can acclimate and tolerate environmental stresses, most 

notably excess light levels (Müller et al., 2001; Bonente et al., 2012). However, NPQ 

can be influenced by other environmental factors such as heat, or freeze/thawing 

(Krause & Weis, 1991), and is likely to be beneficial if photosynthesis-inhibiting 
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herbicides such as atrazine when present in the environment. Antagonistic 

interactions between phosphate depletion and other environmental changes have also 

been documented in a nitrogen fixing species (Trichodesmium; Hutchins et al., 

2007). Hutchins et al. (2007) suggest that phosphate limited populations are also CO2 

limited and in the presence of high CO2 the population growth rate is elevated. The 

data presented in this case study agrees in part with the suggestion that elevated CO2  

predicted under the framework of global change may have the potential to offset the 

effects of multiple environmental changes, including phosphate limited 

environments. However, the presented case study also shows that when nutrients and 

phosphate are co-limiting growth rate can no longer be recovered by high CO2.  

 

2.6.5 Interactions between environmental drivers 

 

Synergistic and additive interactions are common in studies investigating pairs of 

environmental changes.  For example, increased acidification and Ultra violet 

radiation (Gao et al., 2009), elevated CO2 and increased light exposure (Gao et al., 

2012), elevated CO2 and nitrogen limitation (Sciandra et al., 2003; Lefebvre et al., 

2012), high light and increased herbicide concentrations (Fischer et al., 2010), 

warming and elevated CO2 (Schlüter et al., 2014).  This trend has also been 

documented in experiments with three environmental changes such as elevated CO2, 

reduced O2 and increased temperatures (synergistic effects reviewed by Langenbuch 

& Michaelidis 2005), warming, drought, and acidification (Christensen et al., 2006) 

and elevated CO2 and nutrient limitation and high light levels (Leonardos & Geider, 

2005).  Antagonistic interactions are also demonstrated between antibiotics 

(Ankomah et al., 2013; Ocampo et al., 2014), pH and temperature (Christensen et 

al., 2006), herbicides and light intensity (Fischer et al., 2010), pH and increasing 

salinity (Koprivnikar et al., 2010). In addition, see reviews by Jackson et al. (2015), 

Crain et al., (2008) and Darling and Côté, (2008). 
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Interactions between environmental drivers are indeed informative for understanding 

how organism will respond to MEDs, however the outcome of interactions between 

drivers is not predictable and so the average interaction cannot be predicted when 

NED is low. If the goal of an experiment is to understand the outcome of interactions 

between MEDs then interactions must be measured empirically as inferences cannot 

be made using the individual effects of the environmental drivers. In addition, the 

idiosyncratic effects of multiple driver experiments using between two and three 

drivers cannot be used to make predictions on the effects of these same drivers when 

NED is increased (Byrne & Przeslawski 2013).  

 

2.6.6 The predictive power of scenarios 

 

When NED is low the outcome of MED cannot be predicted, and scenarios must be 

used (Boyd et al. 2015b).  Boyd et al. (2015b) used future climate change projections 

to predict the effect of changing temperature, nutrients, iron, CO2 and light intensity, 

and found that where growth rates are promoted in warming and iron rich 

environments, the negative effects of the remaining three environmental drivers are 

mitigated when in combination. Using data in the present study it was possible to 

recreate a similar scenario, using CO2, phosphate limitation, general nutrient 

depletion, reduced light intensity and increased temperature, in order to replicate a 

five driver experiment (Appendix 1, Figure 7.13).  The effects of five environmental 

drivers produced idiosyncratic patterns and predictions from the single drivers alone 

could not predict their effect in combination. Though, a conventional factorial design 

could not be replicated using these five drivers, low replication within NED level 

greatly limits the predictive power of MEDs. 
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2.6.7 Elevated CO2 mitigates the negative effects of additional 

environmental drivers 

 

The data presented here is best described as antagonistic comparative, as CO2 buffers 

the negative effects of additional drivers.  In my study, the models underestimate the 

growth rate of populations of C. reinhardtii under MEDs (Figure 2.9). The 

comparative model assumes that there are no interactions between non-dominant 

environmental changes.  However, in some cases, non-dominant environmental 

drivers may mitigate or exacerbate the effects of the dominant driver, a result also 

observed by Folt & Chen (1999). For example, high CO2 is not the dominant 

environmental driver in most of the regimes, as the individual effect on growth rate is 

small, but it does affect growth rates in many regimes.  Increasing CO2 enriches the 

environment and this can be stressful, exacerbating the negative effect of other 

individual changes (synergistic interaction; see Piggott et al. (2015)), or it can elevate 

the growth rate even when other environmental changes including the dominant 

change are present (+ antagonistic if growth rate is less than the effect of CO2 alone, 

or – antagonistic if growth rates is greater than the effect of CO2 alone; Piggott et al. 

(2015)) (Schippers et al. 2004).  The antagonistic interaction is more common 

between CO2 and other combinations of environmental changes in my study (Figure 

2.7).  If we remove all regimes with elevated CO2 from the dataset, the general trend 

of decreasing growth rate with increasing NED still holds, with an improved fit with 

all the models as CO2 is no longer elevating the mean fitness at each NED level 

(Figure 2.9).  

 

CO2 therefore has the potential to mitigate the negative effects of many 

environmental drivers, so that populations have improved growth rates in response to 

MEDs when CO2 is present (Figure 2.9, Appendix 1, Figure 7.13), at least at the 

short-term. This is supported by research on the physiological and biochemical 

responses to elevated CO2, high temperature and reduced water in Arabidopsis by 

Zinta et al.(2014), who demonstrate the stress-mitigating CO2 effect operates through 
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up-regulation of antioxidant defence metabolism in addition to reduced 

photorespiration. However, there are some environmental drivers that have 

synergistic interactions with high CO2.  For example, elevated CO2 and reduced pH 

have a synergistic interaction in the present study (growth rates are lower than both 

single environmental drivers alone) (Figure 2.7), which may be a result of limitations 

in the electron donation in PSII at low pH (see Gerloff-Elias et al. (2005); Krause & 

Weis (1991)), which is exacerbated by elevated CO2.  Another explanation is that 

when under photosystem stress, the CO2-concentrating mechanisms (CCM) is down-

regulated which reduces growth rates (Hopkinson et al., 2011; Gao et al., 2012). The 

synergistic interaction between elevated CO2 and reduced pH observed here, is 

similar to the synergistic interaction between high light (which causes cellular stress 

due to production of reactive oxygen species (ROS)) and elevated CO2, which 

interact and increase oxidative stress in diatoms (Gao et al., 2012). Although, 

mechanistic synergistic interactions are reasonable well understood between elevated 

CO2 and and pH in ocean acidification studies (Boyd & Hutchins, 2012), their 

individual effect on organisms are rarely disentangled (Gao et al., 2012).  

 

Whilst the mitigating effects of high CO2 makes intuitive sense in photosynthetic 

green algae, the effects of elevated CO2 are likely to have different effects on a 

different species, including calcifying phytoplankton. Emiliania huxleyi show 

reduced rates of calcification of their skeleton, due to altered seawater biochemistry 

as a result of elevated CO2 and increased acidification of seawater (decreasing 

concentrations of CO3
2-) (Riebesell et al., 2000; Beaufort et al., 2011; Schlüter et al., 

2014). However, other environmental drivers may be protective and mitigate the 

effects of dominant environmental drivers in other species.  Environmental drivers 

with mitigating effects may be important in maintaining growth and reproduction 

levels under high NED predicted in the future.   
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2.7 Conclusion  

 

Here, I have demonstrated that average changes in population growth in a model 

microalga are largely predictable from either the number of environmental drivers, or 

the effect of the single most detrimental driver, in cases where a large number of 

environmental drivers occur together. Multiple driver experiments and models are 

growing in number and this paper contributes to this field by providing a method 

which predicts the general effect of MEDs.  Mechanistic understandings on the effect 

of interactions have been traded in favour of predictive power, and this method is 

appropriate when there is uncertainty around the identity of environmental drivers 

that are likely to change, the intensity of these drivers, and organisms likely to be 

affected, or when responses on organisms of interest cannot be gathered. This 

method is also useful for designing more ‘realistic’ experiments that include more 

than one genotype, species or trophic level. As the complexity of MEDs experiments 

increase more efficient methods such as this (and complimentary scenario based 

experiments), will be required in order for the experiments to be manageable whilst 

retaining predictive power.  
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3 Chapter 3 – The evolutionary response of C. reinhardtii to 
MEDs  

 

3.1 Chapter summary 

 

This experiment follows on from chapter 2 where I measured the plastic response of the 

founding population to MEDs, and in doing so, quantified the change in fitness before 

evolution. In this chapter, I explore how the number of environmental drivers affects 

evolution in an initially isogenic population. I grew replicate populations of Chlamydomonas 

reinhardtii in the same 96 regimes as I used in chapter 2. The regimes contained between 

one and eight different environmental drivers, including elevated temperature, CO2 and 

UVB, reduced light intensity and phosphate, acidification, nutrient depletion and the addition 

of a herbicide for ∼350 generations (95 transfers) in batch culture. All populations were 

founded from a single colony that was grown in the control media for seven days so that 

initial genetic variation was low and it is likely that all adaptive variants arose through novel 

heritable variation during the selection experiment. At the end of the selection experiment, I 

measured the growth rate of the MED-evolved populations in their selection environments 

and the growth rate of the evolved control populations in the same selection environments, to 

calculate the direct response to selection. I also measured the fitness of all populations in the 

control environment to calculate the correlated response to selection (experimental design 

illustrated in Figure 1.4).  

 

3.2 Abstract 

 

MEDs interactively influence growth rates of groups of organisms such as marine 

and freshwater phytoplankton, but it is unknown how evolving in response to the 

MEDs predicted under global change will impact phytoplankton growth. Based on 

Fisher’s (1930) geometric model of adaptation, which states that the rate of 

adaptation decreases as the number of independent traits under selection increases, I 
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hypothesise that the fitness of C. reinhardtii will decrease in a predictable way with 

increasing NED, due to an increase in the number of traits under selection (as NED 

increases). However, I found that populations evolving in higher NED environments 

have a larger direct response to selection. I demonstrate that the direct response to 

selection in environments with MEDs correlates with the strength of selection.  As 

NED increases, the strength of selection increases, and the change in the strength of 

selection is predicable from knowing the number of environmental drivers. I found 

that even when adaptation occurs under MED, ancestral growth rates are not 

restored, and I propose that this is due to the high NED environments being lower 

quality environments than the control environment. The growth rates of MED-

evolved populations decrease with increasing NED, but the majority of the variation 

in evolved growth rate is explained by the identity of the selection environment. In 

addition, environmental drivers that cause starvation (reduced phosphate) were found 

to constrain the evolutionary response, probably by reducing the maximum growth 

rate of populations.  This is consistent with the short-term response where the 

dominant environmental drivers determine growth rates. Crucially, I found that 

predictions can be made on the long-term response to MEDs, by knowing the plastic 

response (the drop in fitness), in the same environments. This is particularly useful 

since many ecological predications are almost exclusively based on the findings of 

short-term experiments.   

 

3.3 Introduction  

 

The purpose of this study is to extend our understanding of adaptation to include 

evolution under MEDs. Predicting the long-term effect of MEDs is particularly 

important for ecologically important organisms such as aquatic phytoplankton, that 

have short generation times, and can evolve in relatively short timescales (months 

and years) in response to MEDs predicted under future global change scenarios 

(Collins et al., 2013; Reusch & Boyd, 2013; Yampolsky et al., 2014). Physiological 

responses to MEDs associated with global change have been studied reasonably well 
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in marine (see review by Crain et al, 2008) and freshwater (see review by Folt & 

Chen 1999) microalgae, and there are an increasing number of investigations into 

evolutionary outcomes of single environmental drivers (review by Collins et al. 

2014). MED studies investigating evolutionary outcomes in the face of many 

different environmental drivers are limited, rarely investigating more than two 

environmental drivers (Beardall et al, 2009), and the outcome of interactions 

between MEDs over micro-evolutionary timescales is largely unknown (Reusch & 

Boyd, 2013).   

 

3.3.1 Can plastic responses predict the evolutionary response to 

MEDs? 

 

Physiological responses do not always remain the same over microevolutionary 

timescales (Godbold & Solan, 2013). For example, a characteristic plastic response 

of chlorophytes to elevated CO2 is faster growth rates (Yang & Gao, 2003; Low-

Décarie et al., 2011), however after evolution, growth rates can become insensitive 

to elevated CO2 (Collins & Bell 2004; Low-décarie et al. 2013). This is in agreement 

with results obtained from natural microalgae assemblages (three genera: Tetracystis 

sp., Chloranomala sp. and Chlorococcum sp.), collected from high CO2 springs 

(Collins & Bell, 2006). Collins and Bell demonstrated that high CO2 (1000ppm) 

adapted C. reinhardtii are no longer able to induce high-affinity CO2 uptake at 

ambient CO2 due to the down regulation of the carbon concentrating mechanism 

(CCM) (Collins et al., 2006). Support for down regulation of CCM has also been 

found in the coccolithophore, Gephyrocapsa oceanic. Jin et al. (2013) found that 

after ∼670 generations under high CO2 (1000 µatm) conditions, chlorophyll a 

content is reduced in ambient CO2, suggesting that there is a reduced need for light 

harvesting associated with reduced activity or inactive CCM (Jin et al., 2013). These 

investigations demonstrate uncertainties that changes in the regulation of CCM can 

have on our ability to predict the long-term effect of elevated CO2 on photosynthetic 

organisms - long-term experiments are required.  
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3.3.2 Adaptation to environmental changes 

 

Adaptation in Fisher’s geometric model (1930) is determined by three elements; the 

distance, d, of the current trait from the optimum, the magnitude of change, r, of the 

current trait towards optimum and the number of dimensions or characters, n, of the 

trait(s) under selection.  The magnitude of r cannot exceed that of d, as this would 

move the current trait away from the optimum.  In addition, mutations with a large 

effect on r have extremely low probabilities of improving fitness.  Conversely, 

mutations with a small effect on r have a much higher probability of being 

advantageous, with a probability of 0.5 when r is close to zero (Equation 3-1 ;Fisher 

1930).  Thus, the size of the adaptive steps towards the optimum is characterised by 

an initial rapid rise in fitness, followed by a gradual slowing as the current trait 

approaches the optimum (Orr 2000). However, Kimura (1983) shows that small 

mutations must also escape loss via genetic drift. As such, adaptation will most likely 

involve mutations of an intermediate size (Orr 2005; Orr 2006). 

 

Probability of improving fitness	= 12 1 − &
'  

   

Equation 3-1 

Fisher (1930) assumes all beneficial mutations will have an equal effect on all traits 

under selection, also known as universal pleiotropy (Orr, 2000; Tenaillon, 2014), and 

as n increases the fitness gain from a beneficial mutation of a fixed size will decrease 

in a geometric sequence (Fisher, 1930; Orr 2000). Fisher (1930) uses this theory to 

show that complex organisms adapt more slowly than simple ones, as complex 

organisms with a large number traits under selection will have a smaller fitness gain 

from beneficial mutation and populations will move more slowly towards the 

optimum (Equation 3-2; Fisher, 1930), illustrated in Figure 1.3. 

. 
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Equation 3-2 

 

3.3.3 Genetic constraints on adaptation 

 

There are many factors that may constrain responses to natural selection, such as lack 

of genetic variance and antagonistic correlations among traits (negative pleiotropy) 

(Czesak et al., 2006; Reed et al., 2011). Negative pleiotropic interactions between 

multiple traits under selection will result in either a smaller step towards the optimum 

(Figure 1.3) or if the deleterious effects of new trait values are greater than the 

beneficial effects (the net effect of the mutation is non-adaptive), then the population 

must wait for a new beneficial mutation to arise and fix within the population. 

Etterson and Shaw (2001), demonstrate that despite genetic variance for traits (in this 

case, leaf number and reproductive stage, and leaf number and leaf thickness) under 

selection, antagonistic genetic correlations limit adaptive evolution within 

populations of Chamaecrista fasciculate when placed in warmer and more arid 

environments, predicated under future global change scenarios. The direction of 

pleiotropic interactions is important and has fundamental evolutionary consequences. 

For example, positive pleiotropic interactions among traits under selection can move 

populations towards the optimum faster, as beneficial mutations increase the fitness 

of more than one trait under selection (Figure 1.3) (Agrawal & Stinchcombe 2009; 

Reed et al. 2011).  

 

 

 

Rate of adaptation = r
d

n
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3.3.4 As NED increases, extreme environmental conditions may 

prevent adaptation  

 

Environments that are at the edge of a species’ tolerance are often categorised as 

extreme (Pörtner et al., 2005), and are commonly studied using reaction norms 

(Chevin et al., 2010a).  Here I define extreme environments in the same way. At high 

NED, extreme environments are those that reduce survival of C. reinhardtii, and as 

such, may indicate a tipping point where increasing NED any further will increase 

the risk of extinction (Chevin et al., 2010a). In order to survive extreme 

environments, resistant genotypes must be able to spread throughout the population 

and restore growth before populations go extinct (Gomulkiewicz & Holt, 1995), and 

this is described as evolutionary rescue (Bell & Collins, 2008).  In addition to 

variance in relative fitness, which is required for adaptation, evolutionary rescue 

requires variation in absolute fitness (Bell, 2013a).  However, the probability of 

evolutionary rescue after environmental change depends upon the initial population 

size (Gomulkiewicz & Holt, 1995; Bell & Gonzalez, 2009), the rate of environmental 

change and the supply of genetic variation (Agashe et al., 2011; Lachapelle & Bell, 

2012). Maximum fitness may be lower in more extreme environments because of 

physiological constraints that prevent growth rates from increasing, resulting in new 

intermediate optimum values (Chevin et al., 2010a). Alternatively, populations 

growing in very stressful environments (without the ability to disperse) will go 

extinct if adaptation is insufficient to allow the populations to sustain long-term 

growth in stressful environments (Gienapp et al., 2008). 

 

3.3.5 The long-term of effect of growth under MEDs  

 

Environmental changes predicted under global change scenarios are unlikely to occur 

in isolation, and interactions between environmental changes in experimental and 

natural environments are often synergistic or antagonistic, rather than additive (Folt 
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& Chen, 1999; Crain et al., 2008; Gao et al., 2012; Byrne & Przeslawski, 2013). 

When MED experiments have more than two or three drivers (see chapter 2), plastic 

responses are driven by the dominant environmental driver (chapter 2).  However, 

the long-term effect of MEDs such as those expected under global change, have not 

been investigated beyond two environmental drivers. Schlüter et al. (2014), 

investigated the effect of high temperature (26.3 oC) in populations of Emiliania 

huxleyi adapted to ambient (400 µatm), medium (1,100 µatm) and high (2,200 µatm) 

pCO2.  E. huxleyi populations adapted to elevated temperatures were found to grow 

significantly better at high temperatures compared with evolved control populations, 

in all CO2 conditions.  However, populations adapted to high temperature suffer 

reduced growth rates relative to evolved control populations, when grown at ambient 

temperature (15 oC).  Tatters et al. (2013), demonstrate that changes in community 

composition will occur under MEDs. After 12 months of growing at three levels of 

CO2 and elevated temperature (ambient + 5 oC), the abundance of species of a mixed 

diatom community are significantly reduced: the effect of temperature alone 

significantly reduces species diversity and only Cylindrotheca fusiformis remain after 

selection, regardless of CO2 levels. Although evolutionary responses to the 

environmental drivers were not detected, Tatters et al. demonstrate that community 

composition is likely to be altered and communities will look different under 

elevated CO2 alone and when in combination with elevated temperature. However, 

the change in community composition was consistent in both short- and long-term 

experiments, suggesting that predictions can at least sometimes be made from short-

term experiments where long-term experiments are not possible.   

 

3.3.6 The evolutionary response of a simple organism to MEDs 

 

My hypothesis that populations evolve less, or more slowly, at high NED is based on 

more independent traits being under selection as NED increases. It is reasonable to 

suppose that there is a positive relationship between n and NED if responses to 

environmental change are not completely general. For instance, when CO2 changes 
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alone and when CO2 and temperature change together. We might expect that the 

number of traits under selection increases when both drivers are present if there are 

some traits that respond only to changes in CO2 levels and/or traits that respond only 

to changes in temperature, even if some traits respond in the same way to changes in 

CO2 or changes in temperature. In this case, the number of traits under selection goes 

up between NED = 1 and NED = 2. Alternatively, when CO2 and temperature change 

simultaneously and if all traits under selection are the same for both environmental 

drivers individually, the number of independent traits under selection remains the 

same as NED increases from 1 to 2.  

 

As the number of independent traits under selection increase, the rate of adaptation is 

reduced (Figure 1.3). And this is because the new trait value must be favoured by 

both drivers in order for it to be fixed by natural selection. Otherwise, if new trait 

values are in the opposite direction of selection for one environmental driver, the 

new trait value must have a net positive effect on fitness in the selection environment 

in order to be fixed by natural selection, but will suffer a reduced fitness gain from 

the beneficial mutation (Figure 1.3). As the number of traits under selection increases 

with increasing NED the chance that all new trait values will be favoured by all 

environmental drivers is reduced. Therefore, selection on more independent traits 

slows adaptation.  Pleiotropy will speed up rate of improvement if new trait values 

are in the same direction of selection for both environmental drivers (positive 

pleiotropy), but will reduce the speed of evolution if new trait values are against the 

direction of selection for both environmental drivers (negative pleiotropy).   

 

3.4 Methods and Materials 

 

Details of culture environments and measures of population growth rate can be found 

in chapter 2, section 2.4 Methods and Materials, pages 27 - 37. 
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3.4.1 Selection experiment 

 

All populations were founded from a single cell of C. reinhardtii (CC-2931, mt-; 

Chlamydomonas Resource Centre, University of Minnesota), grown in sterile 

Sueoka's high salt medium, buffered with Tris HCl (HSMT; Harris 1989) (Table 2-1, 

Table 2-2), and subsequently split into 576 populations (6 independent replicate 

populations per regime x 96 regimes; Table 2-3). Using a single cell to found all 

populations removes standing genetic variation and ensures that evolution within 

populations uses de novo variation (see Figure 1.4 for schematic diagram of the 

experimental design for the selection experiment). Environmental drivers (see 

chapter 2, section 2.4.2 for details of environmental drivers used to measure the 

initial and evolved response to selection) were implemented in a single step at the 

beginning of the selection experiment and include 1 to 8 of the following parameters 

(the control level is shown in brackets): increased CO2 to 2000ppm (420ppm), 

temperature to 26oC (25oC), decreased pH to 6.5 (7.2 pH), light levels to 18 µmol m-

2 s-1 (32 µmol m-2 s-1), reduced phosphate to 1.69 mM (13.56 mM), general nutrient 

depletion by 75% (100% nutrients), and added 0.5 µM of the herbicide atrazine. Test 

environments with UV were exposed to a dose 8.1 KJ.m-2 UV radiation once a week. 

All populations were grown in 96-well plates containing 250 µL of culture media 

and were propagated by batch culture (50 µL of growing cells were transferred into 

200 µL of fresh media), for 95 transfers in their selection environments, with 3 – 4 

days between transfers, for a total of approximately 350 asexual generations. 

Populations evolved in environments with least one driver are referred to as MED-

evolved populations. Populations evolved in the control environment are referred to 

as control populations. Here, environments that populations were not evolved in are 

referred to as assay environments and the NED of assay environments are referred to 

as assay NED. 

 

Some populations went extinct during the selection experiment. Regimes where all 

populations went extinct during the selection experiment include herbicide (NED = 
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1) and the regime with all eight drivers (NED = 8). After the initial extinction of all 

populations within NED = 8 (at transfer number 4, approximately 12 generations into 

the experiment), the volume of cells transferred during batch culture was increased 

by 100% in order to prevent further extinctions so that observations in this regime 

could be continued. However, NED = 8 populations were excluded from the analysis 

due to differences in transfer regime and because, relative to other populations, they 

have a fitness of zero because they went extinct. Although evolved NED = 8 

populations were not included in the analysis, the response to selection (given that 

populations could evolve under different transfer regime) to eight environmental 

drivers is shown in all figures.   

 

3.4.2 Assays – Fitness after evolution  

 

For all calculations of the direct and correlated response to selection, each population 

was acclimated to the assay environment for 4 days and then transferred to fresh 

medium at equal cell density (approximately 41,000 cells/ml). Cell counts were 

performed at 0 and 72 hours of growth in fresh medium using a BD FACSCanto II 

(BD Biosciences, Oxford, UK) flow cytometer calibrated with CS&T beads. Due to 

the size of the assays, cell counts were performed in batches. Regimes were 

randomly assigned to a batch and technical replicates were counted within a single 

batch. The effect of batch number on growth rates is included in the analysis (see 

below). The data were acquired with the BD FACSDiva v6 software. Each culture 

was counted three times. The cell counts were transformed into cells per ml and the 

average number of divisions per day was calculated using Equation 3-3.  
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         Equation 3-3 

 

where Nt is the cell density (cells/ ml) at time t (hours) and N0 is the cell 

density at time t0. This calculation allows the comparison of populations with 

different growth strategies, and reflects the number of cell division per starting cell, 

so that the measurement is not sensitive to small differences in the initial number of 

cells (Collins, 2011a). None of the populations in the experiment reached carrying 

capacity with the transfer regime and assays used.  

 

The direct response to selection was measured by comparing the growth of an MED-

evolved population and a control population in the appropriate MED selection 

environment. The correlated response to selection in the MED-evolved populations 

was measured in the control environment relative to the evolved control in the 

control environment. The plastic response to environmental change (the response in 

the absence of evolution in that environment) was measured by comparing the 

growth rate of the control populations in the appropriate MED selection environment 

with the growth rate of that same control population in the control environment. 

Evolved controls were used in order to account for the effects of adaptation to 

general culturing and laboratory conditions. Both the direct and correlated responses 

to selection were calculated using Equation 3-4, and the differences between MED-

evolved populations and evolved control populations are scaled relative to the 

number of divisions (d-1) of the control in the relevant the MED environment for the 

direct response and the control environment for the correlated response.  
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Equation 3-4 

 

where E is the number of divisions (d-1) of MED-evolved populations 

selected in environments with MEDs, and C is the number of divisions (d-1) of 

evolved control populations selected in the control environment, measured in the 

appropriate environment. Measurements were carried out at the end of the selection 

experiment, after 95 transfers in each regime. All populations were acclimated to 

their assay regimes for one transfer cycle (4 days), before growth measurements were 

carried out over 72 hours. 

 

3.4.3 Statistical Analysis  

 

The effect of the identity and NED on absolute growth rates was analysed using a 

mixed model in R (R Core Team, 2013), using the packages lme4 and lmerTest. 

NED (0-8) is a fixed factor, as is overlap between regimes within each level of NED 

(measured as the average number of shared drivers between different test 

environments for a given NED; see chapter 2, section 2.4.6). Regime, batch and 

evolved populations within each regime were taken as random factors. The same 

model was used for analysis of the direct response to selection, with the strength of 

selection included as a fixed effect in the mixed model.  A post-hoc mixed model 

was used to identify any variation in the direct response and absolute growth rate 

explained by identity of each environmental driver (i.e. CO2 or temperature). The 

eight environmental drivers, nested within NED, were added to the random part of 

the model in place of regime, as described above. Regimes within NED = 8 were 

excluded from the analysis due to differences in transfer regime that were necessary 

to avoid extinctions. In order to determine if NED drives changes in the direct 

response when the strength of selection does not vary, a subset of data, where the 

s =
E −C( )
C
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variation in the direct response to selection is highest (all NED levels are sampled) 

and the strength of selection is fixed (2.4 <1-s < 2.6), was analysed using a mixed 

model. The NED and overlap are taken as fixed, and batch, regime and evolved 

populations are taken as random.  

 

To directly compare the contributions of fixed and random factors to variance, the 

percent contribution of fixed factors was estimated using Equation 3-5. 

 

  

Equation 3-5 

where  is the variance of the fixed effect, b is the slope of the fixed effect 

estimated by the mixed effects model, se is the standard error of the fixed effect as 

estimated by the mixed effects model and  is the variance of the response 

variable.  

 

3.5 Results  

 

3.5.1 The evolutionary response of C. reinhardtii to MEDs can be 

predicted from the strength of selection 

 

As NED increases, the direct response to selection increases (Figure 3.1; the effect of 

the strength of selection on the direct response of the MED-evolved populations; F1,90 

= 14.251, P < 0.0003). This is probably driven by the strength of selection. The 

evolved replicate populations within each regime explains the majority of the 

variation in the direct response of the MED-evolved populations (35%), with the 

Percentage of Fixed Effect Variance = σ F
2 × (b2  - se2 )
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strength of selection and the identity of the selection environments explaining 18% 

and 19% respectively. The NED of the selection environment explains less than one 

percent of the variation of the direct response to selection, and this is not statistically 

significant (Figure 3.1; the effect of NED on the direct response of the MED-evolved 

populations; F1,128= 1.416, P = 0.236). The the strength of selection is measured 

using the evolved control populations when grown in each selection environment, 

relative to the to the growth rate in the control environment (Figure 3.2, light grey 

boxplots). Growth rates of the evolved control populations decreases with increasing 

NED (Figure 3.2; the effect of NED on the growth rate of evolved control 

populations; F1,98 = 11.987, P <0.0001). However, due to high variation in growth 

rates between the evolved control populations in the single environmental drivers 

(Appendix 4, Figure 8.1), predicting the combined effect from the single 

environmental drivers (using the comparative, additive and multiplicative models) is 

not useful here (as was done in chapter 2).  

 

The growth rates of the MED-evolved populations follow the trend of decreasing 

growth rate as NED increases, until NED is greater than 4, where there is little 

change in growth until NED = 7, and growth rates are lowest (Figure 3.2; the effect 

of NED on the growth rate of MED-evolved populations; F1,130 = 3.42, P =0.0665). 

Note that NED = 8 is not included in this analysis, due to differences in transfer 

regime (see methods and materials). The evolved replicate populations explain the 

majority of the variation in growth rates of the MED-evolved populations (42%), 

with the identity of the selection environment and NED explaining 15% and 5% 

respectively.   
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Figure 3.1 Box plots show the direct response to selection measured as number of divisions 

relative to control populations assayed in the same assay environment. Open circles show the 

average direct response of evolved populations evolved in each regime within NED 1 - 8. 

The dashed line indicates that there is no difference between the growth rate of the evolved 

control and the MED-evolved populations, in the same selection environment.  
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Figure 3.2 Number of divisions of evolved control populations (red) and MED-evolved 

populations (blue) assayed in the section regimes containing between 0 and 8 NED.  The 

coloured bands in the middle of the box plot denote the median value, the bottom and top of 

the red/blue boxes represent the 1st and 3rd quartile of the data, respectively. The ‘whiskers’ 

extending from the boxes indicate the positions of the lowest and highest values in the data. 

Coloured points show the average number of divisions of evolved control populations and 

MED-evolved populations, within each regime.  The dashed line shows the average growth 

rate of the evolved control populations in the control environment (NED = 0). Although 

evolved NED = 8 populations were not included in the analysis, it is displayed here to show 

the growth rate of populations they had not gone extinct during the selection experiment. 
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3.5.2 The strength of selection can be predicted from knowing the 

NED 

 

The importance of the strength of selection in the evolutionary response to MEDs is 

supported by a positive correlation between the strength of selection and the direct 

response (Figure 3.3; R2 = 0.23, P < 0.0001). At NED = 1 - 3 the strength of 

selection is weaker than selection environments with higher NED (greater than 3), 

resulting in a small direct response (Figure 3.3). The increase in the strength of 

selection with increasing NED corresponds with an increase in the proportion of 

significantly positive direct responses (Appendix 2; Figure 8.2). The exception to this 

is regimes within NED = 7, which have the largest drop in growth rate and the 

smallest direct responses (Figure 3.4 and Appendix 2; Figure 8.9). This result may 

indicate that there is a physiological constraint on maximum growth rates of 

populations growing at high NED, or that adaptation is slower at very high NED. 

Although, Figure 3.5 shows that there is a physiological limit on growth rate when 

phosphate is reduced, growth is relatively unaffected by reduced nutrients. 

Alternatively, this result may indicate that more time is required for beneficial 

mutations to arise at NED = 7. Note that Appendix 2, Figure 8.3 - Figure 8.9, show 

the identity of all regimes and r-squared and p-values from linear regression analysis 

between the average rate of cell division (d-1) of the MED-evolved populations and 

the strength of selection in the selection environments. 

 

When the strength of selection is fixed, and only the strength of selection where the 

variation in the direct response to selection is highest is analysed (2.4 <1-s < 2.6), 

there is no relationship between the direct response and NED (all NED levels are 

sampled within this threshold) (Figure 3.6; R2 = 0.016, P = 0.041). This indicates that 

when the strength of selection is similar across all selection environments NED does 

not determine the direct response and this is consisted with the full dataset. However, 

the relationship between NED and the direct response to selection is not consistent 

between the full dataset and the reduced dataset where the strength of selection is 
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fixed (2.4 < 1-s <2.6); the direct response increases slightly with increasing NED 

using the full dataset (intercept = 1.10 and slope = 0.12), but decreases with 

increasing NED under a fixed strength of selection (intercept = 1.29 and slope = -

0.17; Z = 11.84).  
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Figure 3.3 There is a positive correlation between the strength of selection and the direct 

response of the MED-evolved populations, assayed in environments with MEDs (1 – 8 

NED).  Coloured circles show the response in each regime coloured according to NED (1 to 

8). Solid line shows the results of the linear regression, and dashed line shows the expected 

growth rate if the evolved response equals the acclimation response (i.e. control response 

1:1).  
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Figure 3.4 There is a negative correlation between the strength of selection and the 

growth rate of the MED-evolved populations, assayed in environments with MEDs.  

Different colours show the average growth rates between all evolved replicate 

populations within each regime (± SD), within each level of NED (panels labelled 1 

to 7). The dashed line shows the expected growth rate if the evolved response	equals 

the evolved control populations. The dotted horizontal line shows the average rate of 

cell divisions (d-1) of the evolved control populations in the control environment. See 

Figure 8.3 to Figure 8.9 for identity of regimes within each NED level. 	
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Figure 3.5 Nutritional availability determines the maximum growth rate of MED-evolved 

populations. Each panel label indicates the nutritional quality of the environment; top left, 

general nutrient replete and phosphate (P) replete; top right, low nutrients and P replete; 

bottom left, general nutrients replete and low P; bottom left, low nutrients and low P. Dashed 

line indicates the growth rate of the evolved control population in the control environment. 
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Figure 3.6 There is no correlation between the NED of the selection environments and the 

direct response to selection of MED-evolved populations when the strength of selection is 

fixed (2.4 < 1-s <2.6).  Open circles show the average direct response to selection of each 

evolved population. Dashed lines indicates where there is no difference in growth rate 

between the MED-evolved populations and the evolved control population. Solid line 

indicates the slope and intercept calculated using linear mixed effects model. 
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3.5.3 The correlated response to selection  

 

There is no relationship between the NED of the selection environment and the 

correlated response to selection (Figure 3.7; the effect of NED on the correlated 

response; F1,137 = 0.21, P = 0.64). Most notable however, is NED = 7, which shows 

the largest variation between replicate populations growing in each regime when they 

are assayed in the control environment. This response also highlights that although 

adaptation is not detectable from the direct response and the growth rates of evolved 

populations within NED = 7, it is obvious that different adaptive strategies have 

evolved both between and within regimes, which have different plastic responses 

when grown in the control environment (Figure 3.7).   
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Figure 3.7 Correlated response to evolution in selection environments. Box plots show the 

number of divisions (d-1) of the evolved populations from the selection environment relative 

to the number of divisions (d-1) of the control populations in the control environment. Open 

circles show the average correlation response between evolved replicate populations within 

each regime under 0 to 8 NED.    
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3.5.4 The effect of each environmental driver  

 

Post hoc analysis reveals that the dominant environmental drivers (identified in 

chapter 2), reduced phosphate and herbicide, explain most of the variation in the 

growth rates of the MED-evolved populations (9% and 10% respectively). This is 

comparable with the short-term response (before evolution), which shows that 

variation in growth rate is explained by four environmental changes, CO2 (12%), 

phosphate (11%), herbicide (5 %) and UVB (4%) (Chapter 2, section 0). However, 

the effect of temperature is more important following evolution (3%), and CO2 is less 

important following evolution (1%). Light intensity, pH, nutrient depletion and UVB 

do not contribute to the variation in growth rate of the MED-evolved populations. 

NED contributes approximately 8% to the variation however, the effect of NED is 

not significant (Figure 3.2; post hoc – the effect of NED and individual drivers on 

growth rates; F1265 = 2.14, P = 0.145), and the majority of the variation is explained 

by the evolved replicate populations within each selection environment (39%).  

 

The post hoc analysis on the direct response to selection is consistent with the post 

hoc analysis on growth rates of MED-evolved populations. The environmental 

drivers of reduced phosphate and herbicide explains the largest amount of variation 

relative to the other environmental drives (9% and 5% respectively), with elevated 

temperature and CO2 explaining some variation (1% each).  Light intensity, pH, 

nutrient depletion and UVB contribute nothing to the variation observed by the 

selected populations. The strength of selection and the evolved population explain 

the majority of the variation (27% and 37% respectively) (Figure 3.1; post hoc – the 

effect of strength of selection and individual drivers on the direct response; F1,265 = 

2.12, P = 0.145). See Appendix 2, Table 8-1 – 8-6 for mixed model outputs. 
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3.6 Discussion 

 

3.6.1 The strength of selection predicts the evolutionary response 

of C. reinhardtii grown under MEDs 

 

I have shown here that in environments with MEDs, the strength of selection, 

estimated by the plastic response of the evolved control populations in the selection 

environments, can explain most of the variation in the direct response to selection of 

C. reinhardtii (Figure 3.2), regardless of the identity of environmental drivers. As 

NED increases, so does the strength of selection (Figure 3.1). The plastic response of 

the evolved control populations in the selection environments can be predicted from 

the NED, making acclimation growth rates a good predictor of the magnitude of the 

evolutionary response to MEDs, at least in terms of growth rate. Previous studies, 

using the marine alga Ostreococcus tauri found that plastic responses of the ancestor 

predict the extent (though not the direction) of evolution in the face of elevated pCO2 

(Schaum & Collins, 2014). This is important because microbes such as marine and 

freshwater microalgae will evolve over relatively short times scales, due to their 

short generation times (hours – days) and large population sizes (Collins, 2012). 

Predicting the effect of MEDs on the evolutionary response is necessary to 

understand how populations of microalgae will change under future global change 

scenarios.  

 

3.6.2 The evolutionary response to MEDs cannot be predicted 

from the NED of the selection environments 

 

I found that the direct response to selection of C. reinhardtii increases with NED 

until it drops again at NED = 7 (Figure 3.1). Based on Fisher’s geometric model of 

adaptation, I hypothesised that the rate (and thus the extent over a fixed period of 
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time) of adaptation would decrease as NED increases. However, the direct response 

seen here may be explained by the data not fulfilling the three main assumptions of 

Fisher’s model. First, it is predicted under Fisher’s (1930) model that as the number 

of n dimensions increase, the number of independent traits under selection will 

increase. The number of independent traits under selection is not empirically 

measured in the present study however, based on Fisher’s model it was predicted that 

the number of independent traits would increase with increasing NED (see Figure 

3.8). It is possible that in this study, the traits that were under strongest selection 

were the same across many of the regimes, such that the increase in the number of 

independent traits under selection with NED was either small or irregular. Second, 

Fisher assumes all beneficial mutations will have an equal effect on all traits under 

selection (universal pleiotropy), and so a beneficial mutation of a fixed size, will 

have a smaller fitness gain as the number of independent traits increase (Fisher, 

1930; Orr 2000).  However, there is little empirical support for universal pleiotropy 

(but see Paaby & Rockman (2013); Hill & Zhang (2012)). Restricted pleiotropy or 

modular pleiotropy, is based on the assumption that beneficial mutations effect 

functional combinations of phenotypic traits (Wagner & Zhang, 2011), and is a more 

widely supported model for the evolution of complex organisms  (Chevin et al., 

2010b; Wang et al., 2010). Furthermore, an alternative hypothesis based on restricted 

pleiotropy may be useful for understanding evolution under MEDs. If we assume that 

many environmental drivers will have similar effects on phenotypic traits (as 

indicated in Table 1-1) and pleiotropy is more common when traits are correlated 

(Czesak et al., 2006), restricted positive pleiotropy should increase the rate of 

adaptation without incurring a cost to other uncorrelated traits (Chevin et al., 2010b; 

Wagner & Zhang, 2011).  

 

Third, Fisher assumes that the strength of selection is constant across the number of n 

dimensions (Fisher, 1930).  When I consider populations that are evolving under the 

same strength of selection (2.4 < 1-s <2.6), where the variation in the direct response 

to selection is highest, there is no relationship between the direct response and NED 

(Figure 3.6).  This is consistent that there is no relationship between NED and the 
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number of independent traits as predicted in the hypothesis based Fisher’s (1930) 

model. Alternatively, the relationship between NED and the number of independent 

traits may not be linear (alternative relationships between NED and the number of 

independent traits are illustrated in Figure 3.8).  
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Figure 3.8 Illustration to show three possible outcomes of NED on the number of 

independent traits under selection. The number of traits under selection will saturate at a 

certain point shown here by the dashed line. Linear increase shown by the red solid line is 

hypothesised in the present study. Alternatively, saturation could happen earlier than 

predicted, such as NED 3-4 as shown here by the green solid line. Another outcome of 

increasing NED, is a slow increase in the number of traits under selection as NED increases 

until a tipping point is reached for instance, at NED > 5, where the number of independent 

traits increases rapidly (blue solid line).  
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Pleiotropic interactions between traits will directly affect the fitness gain of 

beneficial mutations. If the assumption that the number of traits under selection 

increases with NED holds (as illustrated in Figure 3.8), it is predicted that 

populations selected in high NED will have to wait for mutations to arise that have a 

net positive effect on all traits under selection, and the chance of a mutation being 

positive in all traits under selection declines with increasing NED.  Cooper et al. 

(2007) found support for this hypothesis as they found a negative relationship 

between the number of pleiotropic traits and relative fitness in the yeast S. cerevisiae. 

In contrast, I found that the rate of adaptation increases as NED increases and that 

the rate of adaptation correlates with the strength of selection. One explanation is that 

positive pleiotropy is more important when multiple environmental drivers change 

simultaneously. The rate of adaptation is expected to increase with positive 

pleiotropic interactions between traits, as only one beneficial mutation is required to 

improve the fitness of all traits under selection (Figure 1.3). 

 

Negative pleiotropy is the most intuitive outcome of high dimensionality under 

Fisher’s geometric model, as the chance that a beneficial mutation will have positive 

effect on orthogonal characters decreases with the increasing n. However, in the 

present study, environmental drivers may be positively correlated increasing the 

opportunity for beneficial mutations to increase the trait value of correlated traits in 

the same direction of selection, referred to as reinforcing selection by Etterson & 

Shaw (2001). However, the effects of positive pleiotropy in response to MEDs may 

be underestimated in evolutionary theory (Ostrowski et al., 2005), such as evolution 

of specialisation (Cooper & Lenski, 2000) and constraints on adaptation (Barton & 

Keightley, 2002). Travisano et al. (1995) found that positive pleiotropy is common 

when E. coli evolved (for 2000 generations) in glucose-limited environments are 

assayed in novel environments, and demonstrate that the sign of pleiotropy varies 

consistently with the type of environment. Leiby & Marx (2014) found that whilst 

both negative and positive pleiotropy determine the growth rate of E. coli in novel 

environments (following evolution in a glucose environment for twenty- and fifty-

thousand generations), positive pleiotropy was found to be more important than 
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expected (based on previous Biolog assays; Cooper & Lenski 2000). In addition, 

high mutation rates correlate with reduced fitness in novel environments and indicate 

that mutation accumulation produces specialisation, resulting in negative effects in 

novel environments and not negative pleiotropy between traits. The effects of 

pleiotropy when MED-evolved populations of C. reinhardtii are assayed in novel 

environments will be investigated in Chapter 4.   

 

3.6.3 Adaptation does not completely reverse the initial drop in 

growth rates experienced in MED environments  

 

Adaptation to MEDs over hundreds of generations (~350 generations), is not enough 

to restore growth rates back to that of the evolved control populations in the control 

environment (Figure 3.2 and Figure 3.4). This is reflected in NED = 4 to 6, which 

show the highest direct response to selection, but still have low growth rates relative 

to the evolved control populations in the control environment (Figure 3.2). One 

explanation for relatively slow growth after 350 generations in the selection 

environment is limited adaptation at high NED (NED > 3). Populations in high NED 

environments are smaller than those in low NED environments (Figure 8.10), and 

small populations sizes have longer waiting times for beneficial mutation to arise due 

to smaller mutation supply rate (Nu). Waiting time was calculated using the total 

mutation rate of (3.23 x10-10; Ness et al. 2012) as 1/(2Nus) (Bell, 2008). I found that 

waiting time is equal across NED levels (Appendix 2, Figure 8.11; R2 = 0.033, P < 

0.0001), so this is unlikely to be driving these results. The fixation time of beneficial 

mutations depends on the strength of selection however, in large asexual populations 

fixation time increases with population size, due to competition between genotypes 

with beneficial mutations (clonal interference) (Elena & Lenski, 2003; Maddamsetti 

et al., 2015). As such, it is expected that fixation time decrease as the strength of 

selection increases and population size decreases (with increasing NED), and this is 

what I found here (Appendix 2, Figure 8.12; R2 = 0.22, P < 0.0001) (Bell, 2008).  
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Although waiting and fixation time cannot help explain the drop in growth following 

evolution at high NED. I suggest that, physiological constraints may limit the 

maximum growth rate in poor (high NED) environments i.e. – there are no beneficial 

mutations available that would restore growth to ancestral values, even though 

populations in high NED environments have large direct responses to selection.  

 

3.6.4 Genetic constraints on adaptation to MEDs 

 

The dynamics of evolving populations are often discussed in terms of movement on 

an adaptive landscape, where high fitness is represented as peaks and low fitness as 

valleys (Colegrave & Collins, 2008). Even with relatively equal waiting times for 

mutations across different NED environments, pleiotropic interactions may require 

exceptionally rare beneficial mutations. Negative pleiotropic interactions between 

traits require beneficial mutations that have a net positive effect on all traits. 

However, if negative correlations between traits cannot be overcome, rare beneficial 

mutation(s) that enable populations to effectively cross a valley in the fitness 

landscape are required. At high NED (NED ≥ 4) where, there is evidence of 

adaptation, new beneficial mutations may enable populations to climb an alternative 

fitness peak, allowing populations to reach a new local optimum, resulting in an 

intermediate level of maximum fitness (Chevin et al., 2010a, 2010b). Alternatively, 

populations will go extinct before a rare beneficial mutation arises, for instance at 

NED = 8.  

 

Given the lack of standing genetic variation at the start of the selection experiment, 

beneficial mutations may take some time to arise. If the experiment were allowed to 

run for longer, the growth rates of the MED-evolved populations may have been 

restored giving enough time to allow for the fixation of beneficial mutations (Collins 

et al., 2013).  
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3.6.5 Physiological constraints on adaptation to MEDs 

 

The pattern of decreasing growth rate with increasing NED may also be the result of 

physiological constraints leading to reduced maximum growth rates.  Starvation 

limits the maximum growth rate and the chance of the selection environment 

containing either reduced nutrients or reduced phosphate (or both) increases with 

NED. When selection environments containing reduced phosphate are compared to 

phosphate replete environments it appears that the growth rates are reduced across all 

NED (1-8) low-phosphate environments, relative to phosphate replete environments 

(Figure 3.5). In particular, low growth rates across all regimes within NED = 7, may 

be due to reduced phosphate (in all but one selection environment in NED = 7), 

producing a new physiological limit, where C. reinhardtii cannot increase growth 

rates, even after evolution. The evolved control populations, assayed in environments 

with reduced phosphate (after acclimation for one transfer cycle), are able to grow 

better than the MED-evolved populations. This may be due to a range of mechanisms 

that allow C. reinhardtii to store phosphate over more than one cell division cycle 

(Irihimovitch & Yehudai-Resheff, 2008). A second possibility is that in the short-

term or in otherwise good environments, other resources can be reallocated to 

increase phosphate uptake. Alternatively, cells may be in worse general condition 

following hundreds of generations of phosphate starvation than after only a few 

generations of phosphate starvation. Growth rates are unaffected by general nutrient 

depletion and differences between limited growth rates in reduced phosphate and 

general nutrient depletion environments may simply be due to the differences in the 

amount of each nutrient required by C. reinhardtii (for concentrations of all nutrients 

see chapter 2, Table 2-2).  Phosphate is an important resource that C. reinhardtii 

requires in relatively large amounts. In addition, general nutrient depletion 

experiments (where general nutrients and phosphate are reduced together) are 

characterised by specific responses to reduced phosphate, including mobilisation and 

transport of phosphate (Irihimovitch & Yehudai-Resheff, 2008). 
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3.6.6 Extreme environments prevent adaptation to MEDs 

 

The relationship between the strength of selection and the evolutionary response of 

the MED-evolved populations breaks down and adaptation is limited when NED is 

greater than 6 (Figure 3.1 and Figure 8.2). During the selection experiment, all 

populations selected at NED = 8 were unable to survive the transfer schedule 

(extinction occurred at transfer 4), and only by increasing the population size 

(increasing the volume of cells transferred), did these populations persist. Enhanced 

population sizes allowed populations in NED = 8 to avoid extinction and to adapt.  

Other empirical studies have similar findings; Bell and Gonzalez (2009), demonstrate 

that large initial population sizes of Saccharomyces cerevisiae are more likely to be 

rescued when exposed to high salt concentration (125 g L-1).   

 

The lack of standing genetic variation of founding populations and small population 

sizes reduce the probability of evolutionary rescue for all populations under selection 

within NED = 8 (Figure 3.2). Agashe et al. (2011) found that populations of the 

beetle Tribolium castaneum with high founding genetic variation successfully 

prevent extinction. Lachapelle and Bell (2012), also indicate the importance of high 

standing genetic variation and recombination events in the ability of C. reinhardtii to 

survive increasingly stressful environments with progressively higher salt 

concentrations. The rate of environmental change also plays an important role in 

determining adaptive potential of the MED-evolved populations. All populations 

were transferred immediately to each selection environment. Therefore, there was no 

opportunity to adapt gradually to a steadily changing environment (gradually 

increasing in NED or intensity of drivers) (Collins & De Meaux, 2009).  

 

The results collected in this chapter support the risk of extinction calculations for the 

founding populations (Chapter 2, Equation 2-3).  From this calculation it was 

predicted that as NED increased, the risk of extinction would increase (Appendix 1; 

Figure 7.14). In addition, the limited direct response to selection and high extinction 
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risks predicted based on the plastic responses of the founding populations suggest 

that the number of environmental drivers that C. reinhardtii can survive saturates at 

NED = 7, and increasing to NED = 8 causes widespread extinction.  

 

3.7 Conclusion  

 

The results from this study suggest that using short-term acclimation investigations 

and knowing the effect of the single environmental drivers, including identifying the 

dominant environmental driver, can be used to predict the direct response to 

selection, at least in terms of population growth rates. The NED and the dominant 

environmental drivers can predict the evolutionary response to MEDs, without 

knowing the plastic response of the evolved control populations in each test 

environment. The ability to predict the outcome of MEDs from the initial response is 

important as much of the data collected on the effects of MEDs are based on short-

term experiments and multi-generational experiments are not always feasible. 
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4 Chapter 4 – The outcome of evolution under a single 

environmental driver vs. five environmental drivers  

 

4.1 Chapter summary 

 

In this chapter, I examine the consequences of the selection history for fitness in new 

environments. To do this, I measured the growth rate of populations evolved in 

environments with five environmental drivers, a single environmental driver, and 

populations evolved in the control environment, when assayed in environments that 

have the same NED, different NED, and one novel environment. Specifically, I 

address the following questions:  

(1) Is there any difference in the response to new environments after evolving with 

either 1 or 5 environmental drivers? Do evolved NED = 5 populations grow better in 

other NED = 5 environments than evolved NED = 1 populations (and vice versa)?  

(2) Does evolution at a given NED level (1 or 5) have any effect on environmental 

variance when assayed in new environments with the same NED or different NED 

level?  

(3) Lastly, is there an advantage to evolving in more stressful environments?  For 

instance, do populations evolved in poor quality environments, indicated by a larger 

initial drop in fitness have a higher fitness in new environments? 

 

4.2 Abstract 

 

The strength of selection is important for predicting how future of aquatic 

microalgae, evolved under MEDs, will persist as the environment continues to 

change. Here, I measure how the number and identity of MEDs affect the ability of 

evolved populations of C. reinhardtii to grow in new environments. I found that the 
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strength of selection is useful for predicting the response of evolved populations to 

new environments. Populations evolved in high NED environments (NED = 5) grow 

better in their selection environments than new environments, compared with 

populations evolved low NED environments (NED = 1), and this is due stronger 

selection in NED = 5 environments than NED = 1 environments.  Evolved NED = 1 

populations are evolving in comparatively better quality environments and the 

strength of selection is lower resulting in growth rates that are similar between new 

environments and the selection environments. In contrast, growth of evolved NED = 

5 populations is lowest in NED = 1 environments, and in some cases there is little 

change in growth rates in alternative NED = 5 environments, suggesting that 

mutations that improve fitness in evolved NED = 5 selection environments, also 

improve fitness in the alternative NED = 5 environments, but reduce fitness in NED 

= 1 environments. The strength to of selection and the quality of new environments 

may provide useful information for making predictions on the responses of evolved 

populations to continued environmental changes.  

 

4.3 Introduction  

 

An important question that faces biologists today is how organismal phenotypes will 

respond to continued environmental change (Etterson, 2004a, 2004b; Chevin et al., 

2013; Sikkink et al., 2015). One key way that evolutionary biologists address these 

questions is by studying the extent of local adaptation in different environments. In 

the absence of gene flow, populations will diversify and beneficial mutations will be 

selected to improve fitness of the local population in their local environment, 

regardless of the consequences in alternative environments. However, understanding 

the consequences of local adaptation in new environments is particularly relevant 

under future global change scenarios, where many aspects of the environment are 

expected to change simultaneously, at unprecedented rates and new environments 

may fall outside the range of environmental conditions normally experienced 

(Reusch & Boyd, 2013). Here, local adaptation is defined as a drop in growth rate 
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when population are growing in a new environment that they were not evolved in. 

Local adaptation will be investigated in the present study by measuring evolved 

population responses in new environments relative to their growth rates in their local 

environment.  

 

4.3.1 Selection history and growth in new environments 

 

Reciprocal transplant and common garden experiments are regularly used to 

understand pleotropic interactions between traits in different environments and 

uncover patterns of local adaptation (Etterson, 2004a, 2004b).  Experiments 

investigating the effect of selective history and trade-offs in new environments often 

use a large number of novel of environments in order to detect or measure genotype 

by environment (GXE) interactions (Bell, 1991, 1992, 1997; Bell & Reboud, 1997).  

In addition, through the use of biolog assay plates (Cooper & Lenski, 2000; MacLean 

& Bell, 2002; Bataillon et al., 2011; Melnyk & Kassen, 2011; Hall, 2013), 

environments can be defined by their carbon sources, and then growth on different 

carbon sources can be used to measure genetic correlations among novel 

environments in populations with different selection histories. This has provided 

researchers with the opportunity to investigate the processes underlying ecological 

specialisation in microbes (Cooper & Lenski, 2000), the effects of antibiotic 

resistance (Hall, 2013), the evolution of niche breadth (MacLean & Bell, 2002), and 

the effect of the adaptive landscape on the repeatability of adaptation evolution 

(Melnyk & Kassen, 2011).  

 

Investigations that focus on GXE interactions will likely be useful for understanding 

selection to environmental changes, as they can identify genotypes that can most 

rapidly respond to environmental change, and genotypes that are vulnerable to future 

environmental changes predicted under global change scenarios (Reusch & Boyd, 

2013).  There are many experiments that investigate the distribution of fitness effects 

(DFE) of beneficial mutations among different environments in order to uncover if 
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DFE are environment specific.  Bank et al. (2014) found that whilst the DFE of 

beneficial mutations in S. cerevisiae was very similar across six environmental 

conditions (including, salinity and temperature), GXE interactions are important, and 

so the environment determines fitness effect of individual beneficial mutations. 

However, other investigations found that DFE is not environment dependent (Kassen 

& Bataillon, 2006). Bataillon et al. (2011) suggest that experimental estimates of 

DFE among new environments are conflicting due to limited number genotypes and 

environmental conditions used. Using 95 different carbon sources and 18 mutants 

with beneficial mutations the authors found that there is no substantial cost of 

beneficial mutations in new environments and GXE interactions between different 

mutants are very similar.  

 

Here, I investigate the outcome of evolution in low NED (NED = 1) and high NED 

(NED = 5) environments, when evolved populations are grown in new environments 

with high (NED = 5) and low (NED = 1) NED, and different combinations of 

environmental drives. In addition, growth will be measured in a novel environment 

that has not been encountered before, 0.2 µM copper sulphate (CuSO4).  

 

4.3.2 Mutations that are beneficial in one environment may have a 

different fitness effect in another environment  

 

The direction of pleiotropy is important for understanding how populations will 

respond to environmental change (Reed et al., 2011). New trait values that improve 

fitness in one environment may be in the opposite direction of selection in a new 

environment, reducing the fitness of populations and this is known as negative 

pleiotropy (Paaby & Rockman, 2013). Negative pleiotropy can reduce long-term 

fitness and may result in population having a narrow niche breadth, and is sometimes 

referred to as the cost of beneficial mutations (Kassen, 2002; Bataillon et al., 2011). 

Alternatively, changes to trait values (as a result of beneficial mutations) may be in 
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the same direction as selection in new environments, allowing populations to 

diversify into the new environment, increasing the niche breadth of the population 

(Buckling et al., 2003). However, Chevin (2013) modelled genetic correlations 

between traits under selection in randomly changing environments and demonstrated 

that although genetic correlations between traits in the same direction as selection 

may result in increased rate of adaptation, the long term-fitness may still be 

constrained by genetic correlations depending on the patterns and predictability of 

environmental changes.  

 

Negative pleiotropic interactions contribute to maintaining patterns of local 

adaptation, as they prevent populations performing well across all environments. 

Negative pleiotropy is common after selection in uniform environments, as is 

evidenced by fitness decline in other environments. The effect selection history on 

the distribution of fitness effects of beneficial mutations has been tackled by 

investigating the evolution of growth rates of simple organisms grown with different 

carbon sources. Travisano et al., (1995) found that after selection for 2000 

generations in glucose-limited environment, populations of E. coli were unable to 

grow in maltose but were able to grow in lactose (both sugars had not been 

encountered for 2000 generations). The authors suggest that this is as a result of 

negative pleiotropic interactions in mutations that allow more efficient glucose 

uptake at a cost to maltose uptake. In addition, growth in novel environments 

revealed genetic diversity between selected populations that was not apparent in the 

relative fitness measurements during the selection experiment. Cooper and Lenski 

(2000) found that after 20,000 generations of selection in glucose, the majority of 

populations of E. coli populations showed poorer growth in all 27 different carbon 

sources than their ancestor, and in 16 environments they also showed a significant 

decay in catabolic functions. This indicated a cost to selection on a single sugar 

(glucose media) due to negative pleiotropy, and resulted in ecological specialisation 

of the genotypes. Costs of beneficial mutation have also been investigated using 

changing temperatures. Bennett and Lenski, (2007) found that trade-offs are not 

universal in E. coli selected at 20oC for 2,000 generations, when they are 
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subsequently assayed at 40oC. However, trade-offs as a result of selection at a cooler 

temperature were apparent in 15 out of 24 populations.   

 

In contrast positive pleiotropy breaks down patterns of local adaptation. Ostrowski et 

al, (2005) found that that E. coli selected in glucose media for 400 generations 

increased in relative fitness when grown in five novel carbon sources. However, 

positive pleiotropy can be problematic when considering antibiotic resistance, as 

resistant genotypes may be both resistant and have higher fitness in other 

environments (Kassen & Bataillon, 2006). In P. fluorescens, antibiotic resistant 

mutations were beneficial in the ancestral environment and remained beneficial or 

neutral, across 95 different carbon sources.  

	

4.3.3 Generalists versus specialists   

 

Studies investigating the evolution of generalists and specialists disentangle the 

microevolutionary effects on niche breadth and local adaptation (Barrett et al., 2005; 

Jasmin & Kassen, 2007a). Specialists are adapted to specific environmental 

conditions, however growth is reduced when the environment changes. Patterns of 

local adaptation and narrow niche breadth of specialists are governed by genetic 

constraints such as negative pleiotropic interactions in new environments and 

mutation accumulation. Cooper & Lenski (2000), found that negative pleiotropic 

interactions caused ecological specialisation in E. coli selected on a single sugar 

source. In contrast, generalists often have roughly equal performance across several 

environmental conditions and as a result have a wider niche breadth. However, this 

generally comes at a cost to maximum fitness when growth is compared with 

specialist genotypes in the same environment (Barrett et al., 2005; Chevin et al., 

2010a).  
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Experimental evolution investigations are commonly used to understand the 

evolution of specialist and generalists genotypes, and the outcome to fitness when the 

environment changes (Kassen, 2002). Evolution in heterogeneous environments 

(such as an environment with a mixture of carbon sources), does not necessarily lead 

to the evolution of perfect or broad generalists i.e. genotypes that are able to take 

advantage of all patches in the environments.  Populations of P. fluorescens selected 

in complex environments with up to eight different carbon sources evolved higher 

growth rates than their ancestor when assayed in complex environments. In addition, 

high variation between populations selected in complex environments revealed an 

increase in niche width, where different genotypes were able to use different sugars 

in complex environments, with the fittest genotype varying between different sugars.  

However, no evolved genotype was able to use all of the sugars, with different 

generalists using different combinations of sugars (i.e. – having different niches). As 

such, evolution in complex environments is often characterised by many imperfect-

overlapping generalists that are neither complete generalists nor complete specialists 

(Barrett et al., 2005).  

 

Environmental productivity may affect the evolution of specialists as it is expected 

that specialists will be well adapted to the most productive part of a heterogeneous 

environment (Jasmin & Kassen, 2007b). Jasmin and Kassen (2007b) found that 

environmental productivity and the degree of environmental contrast (variance 

between patches) were important for evolution of specialists, and the response to 

selection was dominated by adaptation to the most productive patch.  The authors 

support this in part by pointing out that they found that specialists evolved in 

spatially and temporally heterogeneous environments containing multiple carbon 

sources. However, specialists adapted to the least productive substrate and this may 

be due to genetic constraints to evolution in variable environments.  
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4.3.4 Local adaptation  

 

In the absence other forces, in particular gene flow, local populations will evolve 

traits that are advantageous in the local environment so long as beneficial variants are 

accessible. There are two commonly used measurements of local adaptation: (1) 

home vs. away (HA) comparisons show that performance of the evolved populations 

is a result of the process of local adaptation by comparing the response of evolved 

populations in alternative environments. Alternatively, (2) local vs. foreign (LF) 

comparisons indicate population are locally adapted if evolved populations are the 

fittest in their selection environment (local environment), compared within foreign 

populations (with alternative selection environments) (Kaltz & Shykoff, 1998; 

Kawecki & Ebert, 2004). Four examples of possible outcomes of a reciprocal 

transplant experiment are given in Figure 4.1, indicating differences between HA and 

LF measurements of local adaptation.  

 

NED = 1 environments are expected to produce specialists that are locally adapted to 

the selection environment, but will pay a cost if the environment changes due to 

negative pleiotropic interactions (i.e. traits that improve fitness in the selection 

environment reduce fitness in new environments). This is supported by a number of 

experiments that show that evolution in constant, uniform environments produces 

specialist genotypes (see review by Kassen 2002). On the other hand, it is expected 

that evolved NED = 5 populations will be less locally adapted in environments with 

MEDs. This is due to increased similarity between home and away environments in 

evolved NED = 5 populations. Similarity may increase the chance of positive 

pleiotropic interactions (i.e. trait values which improve fitness in the selection 

environments are beneficial in new environments). This is consistent with studies 

that demonstrated that evolution in complex environments, i.e. spatially and 

temporally fluctuating environments, selects for generalists (Kassen, 2002; Jasmin & 

Kassen, 2007a), constraining local adaptation.  
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Figure 4.1 Schematic diagram illustrating fitness comparisons between populations evolved 

in different selection environments. (a) In a reciprocal transplant experiment, local 

adaptation is evident if each local population (selection environment is the same colour as 

the filled circles) has higher fitness than any other foreign population in the same 

environment (local vs. foreign or LF), with a trade-off in fitness when growing in 

environments that populations are not selected in (home vs. away or HA). (b) Environment 1 

supports high fitness regardless of selection history, whereas fitness in environment 2 

depends on the selection history of the populations. Only by measuring HA, is local 

adaptation evident in population A. However, the opposite is true for population B; local 

adaptation is apparent from LF but not HA measures of local adaptation. (c) Alternatively, 

populations that have high fitness in their selection environment will have equally high 

fitness in alternative environments, and populations with reduced fitness in their selection 

environment will also have reduced fitness in an alternative environment – the genotype is 

more important than the environment at determining fitness. Local adaptation is evident from 

LF measures of local adaptation in population A. Population B shows no evidence of local 

adaptation using both LF and HA measures of local adaptation. (d) In addition, growth rates 

may be driven by the quality of the environment, and differences in the environments will 

have the same effect on fitness of populations A and B, regardless of selection history. Local 

adaptation is evident in population A using HA measures of local adaptation, however 
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population B shows no evidence of local adaptation using both LF and HA measures of local 

adaptation. 

 

4.3.5 Local adaptation and global change 

 

How does the number of environmental drivers affect local adaptation? Here I have 

introduced some ideas that have already been tested in the lab using multiple carbon 

sources (Barrett et al., 2005; Jasmin & Kassen, 2007a) and antibiotics (Ankomah et 

al., 2013; Ma et al., 2014; Ocampo et al., 2014). Like the present study, these 

investigations aim to understand how the selection history of evolved populations 

will affect their ability to grow in new environments. I use populations evolved in 

NED =1 and NED = 5 selection environments in order to uncover if NED can predict 

the growth rates of evolved populations in new environments.  One common way to 

address this is by looking at the degree of local adaptation that evolves. If evolution 

in MEDs produces generalist populations with large nice breadths, then these 

populations may be better able to persist as the environment continues to change 

(Dullinger et al., 2012; Lavergne et al., 2013). This is supported by ecological 

models, which predict that specialists should decline more quickly than generalists 

when environmental conditions change (Thuiller et al., 2005). 

 

If the outcome of evolution to MEDs is ecological specialisation, then populations 

may decline if the environment changes (Slatyer et al., 2013). Ecological models 

show that following environmental change, generalist genotypes occupy the 

expanding range and increase in the centre of the shifting range. In contrast, 

specialist genotypes occupy the retracting margin and are locally maladapted due to 

reduced population size and founder events, resulting in reduced ability for 

population persistence under global change (Cobben et al., 2012).  
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4.4 Methods 

 

4.4.1 Experimental design 

 

Evolved populations from the control, NED =1 and NED = 5 regimes were used to 

compare the effects of selection in high NED, low NED, and the control 

environment. Seven NED=5 regimes were chosen at random, and all NED = 1 

regimes with extant populations were used. Populations from the herbicide NED=1 

regimes went extinct during the evolution experiment in chapter 3. Three replicate 

populations evolved in each regime were used for this experiment. The control 

environment and CuSO4 environment were also used. This makes eighteen assay 

environments in total (Table 4-1). CuSO4 is a novel environment that evolved 

populations have not encountered before. Based on pilot work, 0.2 µM concentration 

of CuSO4 reliably affects growth in the C. reinhardtii evolved control populations 

(Figure 9.1). Details of experimental design, culture environments and measures of 

population growth can be found in chapter 2, section 2.4 Methods and Materials, 

(pages 27 - 37). Details of the selection experiment and measure of population 

growth following 95 transfers in the selection environment (after evolution), can be 

found in Chapter 3, section 3.4.1 (page 73). 
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Table 4-1 List of regimes used to measure local adaptation including, the control 

environment, all NED = 1 assay environments, a subset of NED = 5 environments, all eight 

environmental drivers and a novel environment, copper sulphate (0.2 µM) 

Regimes 

 

NED 

Control 0 

CO2 1 

Herb 1 

LI 1 

ND 1 

P 1 

pH 1 

Temp 1 

UV 1 

CO2/pH/P/UV/Herb 5 

CO2/pH/UV/ND/LI 5 

CO2/Temp/LI/Herb/pH 5 

CO2/UV/ND/P/LI 5 

pH/UV/ND/LI/Herb 5 

Temp/pH/LI/UV/ND 5 

UV/LI/pH/P/ND 5 

CO2/Temp/pH/LI/UV/ND/Herb/P 8 

Copper novel 

CO2, elevated CO2; Temp, elevated temperature; LI, reduced light intensity; ND, nutrient depletion; 

Herb, herbicide; P, phosphate depletion; pH, reduced pH; UV, UV-B radiation, Copper, novel 

environment copper sulphate (concentration) 
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4.4.2 Population growth  

 

Each population was acclimated to the assay environment for 4 days and then 

transferred to fresh media at equal cell density (approximately 41,000 cells/ml). Each 

assay was completed two times. The number of divisions per day was calculated as 

using Equation 2-1 (Chapter 2; page 33). Cell counts were performed at time zero 

and after 120 hours using a BD FACSCanto II (BD Biosciences, Oxford, UK) flow 

cytometer calibrated with CS&T beads. Due to the size of the assays, cell counts 

were performed in batches. Regimes were randomly assigned to a batch and 

technical replicates were counted within a batch. For reciprocal transplants, each 

population was assayed in all environments in a single batch (including technical 

replicates), with populations randomly assigned to a batch. The effect of batch 

number on growth rates is included in the analysis (see below). The data were 

acquired with the BD FACSDiva v6 software. Each culture was counted twice.  The 

cell counts were transformed into cells per millimetre and the average rate of 

divisions per day was calculated for each technical replicate.   

 

The direct and correlated responses to selection were calculated for each evolved 

population (15 total) using Equation 3-4 (Chapter 3; page 76 ). In order to measure 

the degree of local adaptation following evolution, the ‘home vs. away’ (HA) 

definition of local adaptation was calculated as the mean growth rate of each 

population in the selection environment (home), minus the mean growth rate in all 

environments that MED-evolved populations were not selected in (away) (Blanquart 

et al., 2013). However, to account for the effect of environmental quality on growth 

rates of the MED-evolved populations, the difference in growth rates between the 

MED-evolved populations and control populations in each selection environment and 

new environments was calculated. Thus, if growth rates in the home environment 

(direct response) are greater than growth rates in foreign environments (MED-

evolved population growth rate – control population growth rate) populations are 

locally adapted to the home environment. In addition, patterns of local adaptation 
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were uncovered by ranking each MED-evolved population by growth rate in each 

environment, defined as the local vs. foreign (LF) measure of local adaptation 

(Blanquart et al., 2013) (14 environments were used here). Local adaptation is 

apparent if the local population is ranked higher than foreign populations.  

 

To account for the effect of shared environmental drivers between home and away 

environments used in the reciprocal transplant, on the growth rates of evolved 

populations, the degree of similarity was calculated. Similarity was calculated as an 

average pairwise difference between regimes, where each environmental driver is 

coded as a binary variable (present or absent). Average similarity between each home 

and away environment is calculated as 1 – average pairwise distance. A value of zero 

indicates that no environmental drivers between the home environment and away 

environment are shared and a value of 1 indicates that all environmental drivers 

between the home and away environment are shared. Similarity was included in the 

mixed model analysis (see below).  

 

4.4.3 Statistical analysis 

 

The effect of the selection NED, selection environment, assay NED, assay 

environment and their interactions on absolute growth rate and the correlated 

response was analysed using a mixed model in R (R Core Team, 2013), using the 

packages lme4 and lmerTest. In forming the random and fixed groups of the mixed 

effect model, assay NED, selection NED, the interaction between assay and selection 

NED, and similarity have been taken as fixed effects, while selection environment, 

assay environment, the interaction between selection and assay environment, batch 

number, evolved populations and the interaction between evolved population (nested 

within regime and NED) and the assay regime (nested within assay NED) have been 

taken as random effects. The justification is that the specific populations used in the 

assay were chosen randomly from the subset of populations that had been evolved 

within the selection environment (Chapter 3). In addition, each selection and assay 
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environment was randomly chosen from subset of 15 NED = 5 environments (all 

NED = 1 environments were used). To directly compare the contributions of fixed 

and random factors to variance, the percent contribution of fixed factors was 

estimated using Equation 3-5 (chapter 3, page 77). 

 

Patterns of LF local adaptation were uncovered by ranking each evolved population 

by growth rate in each assay environment (14 environments that have a local 

population were used). Local adaptation is apparent if the local population is ranked 

higher than foreign evolved populations. A Chi-squared goodness of fit test was used 

to test the null hypothesis that there is no significant difference between the 

distribution of average ranked fitness of the evolved control population (ranked out 

of 15) across 14 different assay environments and the observed distribution of 

average ranked fitness of evolved NED = 1 and NED = 5 populations grown in the 

same assay environments. The expected frequencies are calculated using the 

frequencies of the ranked fitness of the evolved control populations (control.freq), 

relative to the sum of the frequencies of ranked fitness of the evolved control 

populations (expected frequencies = control.freq / sum of control.freq). The expected 

rank order of NED = 1 and NED = 5 populations was then calculated using  Chi-

squared goodness of fit test and compared with observed ranked fitness of NED = 1 

and NED = 5 populations (Table.9-6). This was performed in the using the base R 

package, within R. 
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4.5 Results 

 

4.5.1 Interactions between selection and assay environments are 

important for determining growth rates of evolved 

populations 

 

The main question that this experiment was designed to answer, is how the number 

of environmental drivers in each selection environment effects the growth rate of 

evolved populations in new environments. I find that there is a significant interaction 

between selection NED and Assay NED (Figure 4.2; the effect of the interaction 

between selection NED and assay NED on the growth rate of evolved populations; 

F1,210 = 12.57, P = 0.002). The interaction between selection environments and assay 

environments is not influenced by similarity between the drivers within the selection 

and assay environments, which explains almost none of the variation (<1%) (Figure 

4.3; the effect of similarity on the growth rate of evolved control populations; F1,228 = 

0.003, P = 0.064). See Table 9-1, Table 9-2 for model output. Figure 4.2 shows that 

overall growth rates of the evolved control, evolved NED = 1 and evolved NED = 5 

populations are higher when assayed in NED = 1 environments, decreasing as NED 

of the assay environments increases from one to five (explaining 17% of the variance 

in growth rate), and this trend is significant (Figure 4.2; the effect of the assay NED 

on the growth rate of evolved populations; F1,19 = 10.30, P = 0.001). However, there 

is a lot of variation in this pattern and this is due to the interaction between the 

evolved populations and assay environments which explains 31% of the variation the 

in growth rates. In addition, the evolved populations explain some of variation 

(10%), and the assay environment explains 28% of the variation in growth (Figure 

9.2).  
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Figure 4.2 Rate of cell division (d-1) of evolved populations in assay environments with 

different numbers of environmental drivers (NED = 1, 5 and 8) and the control environment. 

Coloured boxplots show the growth rate of the evolved populations selected in NED =1 

(green), NED = 5 (blue) and the control (red) environment. Each panel label indicates the 

number of environmental drivers in each assay environment. Dashed lines show the growth 

rate of the evolved control in the control environment. 
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Figure 4.3 There is no relationship between the average rate of cell division (d-1) of evolved 

populations and similarity between the selection environments and the assay environments.  

Similarity ranges from zero (no environmental drivers are shared between the selection and 

assay environments) to one (all environmental drivers are the same between the selection and 

assay environments). Coloured circles show the growth rate of the evolved populations 

selected in NED =1 (green), NED = 5 (blue) and the control (red) environment. 
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4.5.2 Response of evolved NED = 1 and evolved NED = 5 

populations to new environments 

 

The majority of populations show adaptation in their selection environment, as 

measured by a positive direct response to selection (Figure 4.4).  However, evolved 

populations with reduced growth rate relative to the evolved control populations in 

their selection environment (indicative by a negative direct response to selection) are 

able to persist in more stressful environments and this is examined in the discussion 

(Figure 4.2). Evolved NED = 5 populations within each selection environment show 

more variation in the direct response to selection when compared with evolved NED 

= 1 populations (Figure 4.4). This may indicate that there are more evolutionary 

trajectories available when evolving with five environmental drivers than with a 

single driver.   

 

Absolute growth rates are highest in the control environment for all evolved 

populations, with the slowest growth rates in the most stressful environments 

(herbicide, copper sulphate and NED = 8) (Figure 9.2). There are marginal 

differences observed between the growth rates of the evolved control, evolved NED 

= 1 and evolved NED = 5 populations when they are growing in non-selected 

environments (Figure 4.5).  As a result, the correlated responses vary around zero 

(indicating growth is equal to the control). In addition, neither evolved NED = 1 or 

evolved NED =5 populations have the highest growth rates across all new 

environments (Figure 4.5). However, the rank order of growth rates of evolved 

populations across all environments, may indicate that evolved NED = 1 populations 

grow better in better quality environments (as indicated by the rank order of evolved 

control population) and evolved NED = 5 populations perform better in poor quality 

environments (Figure 4.8). However, it should be noted that variation in growth rates 

between evolved populations grown under the same selection environment is high 

and overall differences between the average growth of populations selected in 

difference environments is not significant (Figure 9.4). 
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Figure 4.4 Box plots showing the direct response to selection of populations MED-evolved 

populations (colour indicates selection environment) with one and five environmental 

drivers. Dashed line indicates no difference between the growth rate of the MED-evolved 

populations and the evolved control populations in the same environment. 
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Figure 4.5 Correlated response of evolved NED = 1 (red boxplot) and evolved NED = 5 

(blue boxplot) populations grown in assay environments with different numbers of 

environmental drivers (NED = 1, 5 and 8) and the control environment. Each panel label 

indicates the number of environmental drivers in each assay environment. Dashed line 

indicates no difference between the growth rate of the MED-evolved populations and the 

evolved control populations. 
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4.5.3 Local adaptation is more common in evolved NED = 5 

populations than evolved NED = 1 populations 

 

There is evidence of local adaptation in some evolved NED = 1 and evolved NED = 

5 populations (shown by the stars in Figure 4.6). However, when the NED of the 

assay environment are taken into consideration, patterns of local adaptation are more 

common in evolved NED = 5 populations (shown by the stars in Figure 4.7; the 

effect of the interaction between NED of selection environment and NED of the assay 

environment on the correlated response of evolved populations; F1,209 = 12.86, P = 

0.001). Variation in the correlated response to selection is explained largely by the 

interaction between evolved populations within the selection environments (nested 

within selection NED) and the assay environment (nested within assay NED), 

explaining 43%.  The evolved populations and the assay environment each explains 

15% of the variation in growth rate (see Table 9-3 and Table 9-4 for mixed model 

output). Local adaptation was calculated as the difference between the direct 

response in the home environment and the growth rate in new environment (minus 

the average growth rate of the evolved control populations in the same environment) 

(Figure 4.6, Figure 4.7). A direct response that is greater than the growth rate in new 

environments indicates that there is ecological specialisation within the selection 

environment, with reduced growth when the population is growing in new 

environments.  
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Figure 4.6 The average response to selection of evolved NED 1 and evolved NED 5 

populations assayed in 17 different new environments. Response to selection is calculated as 

the difference between the direct response and the growth rate in new environments (minus 

the growth rate of the evolved control in the same environment). If growth rates in the home 

environment (direct response) are greater than growth rates in the new environments (MED-

evolved population growth rate – control population growth rate), populations are locally 

adapted to the selection environment (indicated by a star). Each circle shows the mean 

response to selection of each evolved replicate population (± SD) across all assay 

environments.  Dashed line indicates no difference between the growth in new environments 

and the home environment (data points above the dashed line show higher growth in home 

environment than new environments, and data points below the dashed line show lower 

growth in the home environment than new environments).  Each panel is labelled with the 

NED of the selection environment. 
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When the correlated responses for each NED assay environment is considered 

separately, it becomes clear that evolved NED = 1 and evolved NED = 5 populations 

deal with the number of environmental drivers differently (Figure 4.7). Some 

populations selected in NED = 5 environments only show patterns of local adaptation 

when grown in NED = 1 environments i.e. growth in local environment is higher 

compared foreign NED = 1 environments (single star, Figure 4.7). In many cases, 

evolved NED = 5 populations grow better in foreign NED = 5 environments (i.e. 

growth rates are higher in NED = 5 environments than the local environment and 

alternative NED = 1 environments). This indicates that evolved populations are not 

responding to improved environmental quality in NED = 1 environments (indicated 

by the decline in growth rate of the evolved control populations as NED increases), 

and may indicate that NED of the assay environment is important following selection 

in high NED environments (NED =5). In contrast, evolved NED = 1 populations 

perform similarly well in foreign NED = 1 and NED = 5 environments and the local 

environment. In addition, patterns of local adaptation are stronger in populations that 

have a positive direct response to selection (for example, populations evolved in 

elevated UV  (NED =1), and pH/UV/ND/LI/Herb in (Ned = 5)  (Figure 4.4).  
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Figure 4.7 The average response to selection of evolved NED 1 and evolved NED 5 

populations assayed in 17 different new environments. Coloured points indicate the response 

to selection in NED = 1 (green) and NED = 5 (blue) assay environments. Response to 

selection is calculated as the difference between the direct response and the growth rate in 

new environments (minus the growth rate of the evolved control in the same environment). If 

growth rates in the home environment (direct response) are greater than growth rates in the 

new environments (MED-evolved population growth rate – control population growth rate), 

populations are locally adapted to the selection environment (indicated by a star). Each circle 

shows the mean response of the evolved replicate populations (± SD).  Dashed line indicates 

no difference between the growth in new environments and the home environment (data 

points above the dashed line show higher growth in home environment than new 

environments, and data points below the dashed line show lower growth in the home 

environment than new environments).  Each panel is labelled with the NED of the selection 

environment. 

 



 

 126 

 

Patterns of local adaptation were also uncovered using LF measures of local 

adaptation. Overall, the local populations grow faster in their selection environment 

than the majority of foreign populations (evolved in alternative selection 

environments), but are not always ranked first (Figure 4.8). The exception is local 

populations evolved at elevated CO2 only. Here, the evolved populations under 

elevated CO2 are ranked last. One explanation is that selection at high CO2 reduces 

the need for CCM activity, thereby lowering the metabolic costs of inorganic carbon 

acquisition, and this is consistent with what other studies have found when 

photosynthetic algae are evolved at elevated CO2 (C. reinhardtii, Collins & Bell 

(2004)). Evidence of local adaptation is stronger in evolved NED = 5 populations 

than in evolved NED = 1 populations, when comparing the average rank fitness in 

the local environment of the evolved populations (average rank of evolved NED = 1 

populations is 5.6 and the average rank of evolved NED = 5 populations is 4.5).  In 

addition, the fitness rank of evolved populations in each assay environment deviates 

from the distribution of ranked fitness of the evolved control populations in the same 

environments. Chi-squared goodness of fit test shows that the expected distribution 

of the evolved NED = 1 and evolved NED = 5 populations are significantly different 

from a from the expected frequencies of the evolved control population (Figure 4.8; 

χ2 = 26.44, df = 14, P < 0.023).  See Table.9-6 for observed and expected 

distributions of average rank fitness of NED = 1 and NED = 5. 
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Figure 4.8 The rank order of the average growth rate of evolved replicate populations 

growing in each assay environment. Gold-filled squares show the rank position of local 

populations (evolved in the assay environment), and dark grey-filled squares show the rank 

position of foreign NED = 1 populations, light grey squares show the rank position of 

foreign NED = 5 populations and black filled squares show the rank position of the evolved 

control populations. Each panel is labelled with the NED of the assay environment. 
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Overall, HA measures of local adaptation reveal that the evolved NED = 5 

populations are locally adapted to their selection environment, with a trade-off in 

growth when evolved NED = 5 populations are grown in NED = 1 assay 

environments, and in some cases no trade-off in growth when grown in alternative 

NED = 5 assay environments (Figure 4.7). This is supported by LF measures of local 

adaptation, as evolved NED = 5 populations have lower ranked fitness in the NED = 

1 assay environments (Figure 4.8). There are more examples of local adaptation in 

evolved NED = 1 populations using LF measures of local adaptation than with HA 

measures of local adaptation. Although many evolved NED = 1 populations are 

ranked highly in LF measures of local adaptation, growth rates between local and 

foreign populations in each selection environment are very similar for both evolved 

NED = 1 and evolved NED = 5 populations (Figure 9.3). In addition, HA measures 

of local adaptation are more accurate in this study because calculations use the 

growth rate of evolved populations in the home environment and new environments, 

minus the growth rate of the average evolved control population in the same 

environments, which accounts for the quality of the assay environments. Traditional 

HA measures of local adaptation (Figure 9.4) measure the growth rate of the evolved 

populations in the local environment and in alternative environments, and it is 

unclear if a population grows better in an alternative environment due to positive 

pleiotropic interactions between home and away environments, or because the away 

environment is of better quality and therefore supports higher growth rates (see 

Kawecki and Ebert, 2004; Blanquart et al., 2013 for detailed description of 

measurements of local adaptation). 

 

4.5.4 Selection NED and Assay NED have no effect on variance of 

growth rates  

 

All populations were assayed in new environments that have either the same or 

different NED from their selection environment. However, assay NED has no 

significant effect on the variance in growth rate between evolved populations, 
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growing in different regimes, within each selection NED (Figure 9.2; the effect of 

assay NED on the variance in growth of populations with in each NED; F1,17 = 0.27, 

P = 0.41).  This result does not support the hypothesis that variance between 

populations evolved at a given NED would be lower when assayed in environments 

with the same NED than variance when grown in environments with different NED. 

 

4.5.5 MED-evolved populations grow faster than evolved control 

populations in novel environments  

 

When populations were assayed in the CuSO4 environment (which has not been 

encountered before by the evolved populations), evolved NED = 1 populations 

(mean of 7 regimes = 0.98 cell divisions (d-1), ± 0.44 cell divisions (d-1); average ± 

SD) and evolved NED = 5 populations (mean of 6 regimes = 0.77 cell divisions (d-1), 

± 0.22 cell divisions (d-1)) are able to maintain higher growth rates than the evolved 

control populations (single control regime with three biological replicates = 0.80 cell 

divisions (d-1), ± 0.72 cell divisions (d-1)) (Figure 4.9). Whilst selection NED 

explains 55% of the variation in the growth rate of evolved populations in the CuSO4 

environment, the effect of selection NED on growth rate is not significant effect 

(Figure 4.9; F1,9 = 0.04, P = 0.84), and this may be explained by the small sample 

size of control populations, as there is only one selection NED = 0 environment 

(control). In addition, there are small differences in growth rates between evolved 

NED = 1 and evolved NED = 5 populations, and evolved populations (nested within 

each selection environment and NED) explains 26% of the variance in growth rates 

in the mixed model.   
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Figure 4.9 Average rate of cell division (d-1) of evolved populations (NED = 0, 1 and 5) 

grown in copper sulphate (0.2 µM). Coloured boxplots show selection environments of 

evolved populations. Dashed lines shows the growth rate of the evolved control populations 

in the control environment. 
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4.6 Discussion  

 

4.6.1 Interactions between selection history and assay 

environment affect C. reinhardtii growth in new 

environments 

 

This study was designed to determine if the number of environmental drivers during 

recent evolution affected growth in new environments. New environments differed 

from selection environments both in terms of the identity of the drivers involved, but 

also in the number of drivers present (Figure 4.2). I find that the NED of the 

selection environment, although significant, only explains a small amount of 

variation in growth rate, and that interactions between evolved populations and assay 

environment (GXE) explain the majority of the variation in growth across all 

environments. Thus, the selection history of each evolved populations is important 

for determining how well they grow in new environments, but the magnitude of the 

effect is environment specific.  

 

4.6.2 Local adaptation cannot be predicted using similarity 

between selection and assay environments 

 

There are many studies that demonstrate that fluctuations in environmental variables 

select for generalists as a result of pre-adaptation. For example, S. marcescens, 

exposed to fluctuating temperatures (daily variation in temperature between 24oC 

and 38oC, mean of 31oC), were able to outperform strains selected at 31oC (all strains 

originally maintained at 25oC). The generalist grown in fluctuating temperatures are 

pre-adapted for growth at high temperatures, due to exposure at very high 

temperatures during the selection experiment. Physiologists describe organisms with 

an the ability to persist under future environmental changes due to their past 
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environmental experiences as pre-adapted (Dupont et al., 2010). For example, sea 

urchins that inhabit fluctuating pH conditions in polar seas become pre-adapted to 

future pH conditions when exposed to reduced pH in the lab (Clark et al., 2009). 

Similarly, evolved population of C. reinhardtii evolved in environments with five 

environmental drivers may be pre-adapted to growing in new environments that 

share some environmental drivers with the selection environment, due to positive 

correlations between traits values that improve fitness in the selection environment, 

and new environments (Etterson, 2004a).  

 

Based on the above, I predicted that increased similarity between assay environments 

and selection environments with five environmental drivers (i.e. more environmental 

drivers are shared between the assay and selection environments), would break down 

patterns of local adaptation in evolved NED = 5 populations, and as a result growth 

rates in the selection environments and assay environments would be similar. I 

predicted that evolved NED = 1 populations would show evidence of local 

adaptation, with reduced growth rates in new environments and this is due to low 

similarity (little or no shared environmental drivers) between the assay and selection 

environments. The results presented here do not fall in line with these predictions, 

and I found that there are more instances of local adaptation in evolved NED = 5 

populations (6/12) than in evolved NED = 1 populations (2/14) (Figure 4.6), and that 

the pattern of local adaptation varies with assay NED in evolved NED = 5 

populations (Figure 4.7). LF calculations revealed similar patterns in evolved NED = 

1 and evolved NED = 5 populations, and indicate that local populations are more fit 

in their local environment than expected by chance (Figure 4.8). HA measures of 

local adaptation show that there is little local adaptation evident in populations 

evolved in NED = 1 environments, with a few exceptions.  Populations evolved in 

elevated temperature show evidence of local adaptation based on their growth in 

NED = 5 assay environments, and populations evolved under UV appear locally 

adapted when grown in NED = 1 assay environments.  In addition, PCA results show 

that evolved NED = 5 populations are more specialised in their response to high 

NED environments, environments that contain more dominant environmental drivers 
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such as herbicide (identified as a dominant environmental driver in chapter 2 and 

chapter 3), and to copper sulphate (a poor quality environment, indicated by the 

evolved control, Figure 4.9). Populations evolved in NED = 1 environments show no 

obvious clustering, which indicates consistent growth across all environments 

(Figure 9.5 and Figure 9.6).  

  

4.6.3 The strength of selection effects the outcome of evolution  

 

Populations that show more evidence of local adaptation measured by HA also have 

the largest direct response to selection (Figure 4.4 and Figure 4.7). In chapter 3, I 

demonstrated that the response to selection is correlated with the strength of 

selection. This means that the distance travelled towards the optimum is greater 

simply because the optimum phenotype is further away from the ancestral phenotype 

(MacLean & Bell, 2002).  Beneficial mutations that improve fitness in the local 

selection environment may be deleterious in an alternative environment due to 

negative pleiotropic interactions, and the chance that a beneficial mutation is 

deleterious in a new environment is positively correlated with the size of beneficial 

mutation (Eyre-Walker & Keightley, 2007). As the fitness of populations with a 

direct response to selection improves, trait divergence increases, and evolved 

populations become locally adapted to the selection environment. This was seen by 

Buckling et al., (2003) who found that as fitness increased in P. fluorescens the 

ability to diversify was reduced. This is consistent with studies that found increased 

trait divergence in poor quality environments, where the strength of selection is 

presumably high (see review by Litchman and Klausmeier, 2008). 

 

Based on this, it is plausible that in my study the reduced ability for growth in new 

environments is caused by negative pleiotropy. This would result in local adaptation 

in environments where the strength of selection is high, which is what I see. In 

addition, the cost of mutations with large effect on fitness in new environments may 

explain why evolved populations with the largest direct response show more 
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evidence of local adaptation.  This is consistent with Barrett et al., (2005), who found 

that populations evolved in poor quality environments were more locally adapted.  

 

4.6.4 The NED of the selection environment partially explains 

patterns of local adaptation  

 

A specific question that this chapter set out to answer is how the number of 

environmental drivers affects local adaptation.  Interestingly, in some cases, there is 

no evidence of local adaptation when some evolved NED = 5 populations are 

assayed in alternative NED = 5 assay environments (blue circles fall below the 

dashed line in Figure 4.7). This could indicate that evolved NED = 5 populations are 

responding to the NED of the assay environments and traits that improve fitness the 

local environment with five environmental drivers are positively correlated with 

alternative NED = 5 assay environments. One possible explanation is that the 

identity of environmental drivers is less important as NED increases (NED = 5), and 

the NED is more important. This would enable evolved NED = 5 populations to have 

equal growth rates across NED = 5 assay environments, regardless of the identity of 

environmental drivers. This pattern of improved growth in NED = 5 environments is 

observed in half the evolve NED = 5 environments (3/5). It is less clear how 

populations that have evolved a general response to five environmental drivers would 

deal with NED = 1 assay environments, however, I found that in the majority of 

cases, evolved NED = 5 populations grow poorly in NED = 1 environments. This 

suggests that traits that improve fitness in NED = 5 environments reduce fitness in 

NED = 1 environments.  

 

This explanation of local adaptation in evolved NED = 5 populations suggests that 

the identity of single environmental drivers is more important. However, there is no 

evidence of increased specialisation in the single environmental drivers (apart from 

those drivers identified with large direct responses). In many cases evolved NED = 1 
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population have improved growth rates when assayed in new environments, with 

little differences in response to NED =1 and NED = 5 assay environments. Similar 

growth across new environments indicates that evolved NED = 1 populations are 

more generalist than NED = 5 evolved populations. However, the strength of 

selection is low in these environments, and hence the direct response to selection is 

reduced in the majority of evolved NED = 1 populations, and the correlated response 

to selection is not predictable. 

 

4.6.5 Local adaptation and environmental quality  

 

The evolution of specialists and generalists has been previously investigated using 

single sugar resources, where the metabolic pathways are well defined and the 

outcome of selection can be understood by considering the effects of metabolic 

changes (MacLean & Bell, 2002). In contrast, while we know that the single driver 

environments are more simple than the NED = 5 environments, we have little 

information on metabolic responses to each driver (Chapter 1; Table 1-1) or on how 

differences or similarities in metabolic responses to drivers might contribute to 

generalists and specialist genotypes.  Here, I interpret my results partly as responses 

to environmental quality. This approach was also taken by Bell and Reboud, (1997), 

who found that population of C. reinhardtii evolved in the better quality light 

environments showed greater environmental variance than that those populations 

evolved in the more stressful dark environment. A review by Falconer (1990) also 

suggests that selection in good quality environments leads to increased  

environmental variance, and that generalists are more likely to evolve in uniform 

environments.  Similar results to selection in uniform environments have been found 

in investigations of antibiotic resistance. Hall (2013) found that evolved resistant 

genotypes of E. coli are able to grow as well as the ancestor in some assay 

environments (31 single-carbon-source environments on Biolog Plates), and that 

GXE interactions observed may be a result of indirect effects to selection that 

contribute to the changes in growth across antibiotic-free environments. Similar 
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results were reported by Bataillon et al., (2011), who found that antibiotic resistant 

are able to grow in a wide range of alternative environments.   

 

4.6.6 Response to a novel environment  

 

Evolved populations were grown in copper sulphate, a novel stressful environment, 

in order to determine if there is an advantage to evolving in poor quality 

environments when confronted with a new stressful environment.  There is some 

evidence that evolving in more stressful environments results in selection for general 

stress tolerance traits (Sikkink et al., 2015). Therefore, it is expected that as 

environments becomes more stressful with increasing NED, that populations will 

favour traits characteristic of stress tolerance, such as slow growth (Stanton et al., 

2000). Here, I found that growth rates of evolved NED = 1 and NED = 5 populations 

are very similar, with NED = 1 populations growing on average slightly faster than 

NED = 5 populations (Figure 4.9). However, growth rates of evolved NED = 1 and 

NED = 5 populations are much greater than the evolved control populations, which 

failed to grow when exposed to copper sulphate. This supports the assumption that 

characteristics that favour stress tolerance may be selected for in more stressful 

environments, but it does not show that stress tolerance is affected by NED. 

 

In addition, slow growth may explain why evolved NED = 5 populations grown in 

foreign NED = 5 assay environments have, on average, slower growth rates than both 

evolved NED = 1 populations and control populations.  Evolved NED = 5 

populations may have been under selection for stress tolerance traits, which can 

allow populations to persist in stressful or toxic environments. Slow growth is a well-

characterised stress tolerance trait, due to a reduction in metabolism and uptake of 

poisons (Rangel, 2011). This has been empirically shown by Ketola et al., (2013) 

who selected S. marcescens for slow growth in order to increase overall growth 

among novel environments. Growing slow may then also be beneficial when assayed 

in stressful novel environments such as copper sulphate or herbicide 
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4.6.7 Conclusion 

 

There is some evidence that the strength of selection in the local environment is 

important for determining the extent of local adaptation in evolved populations. The 

results from this chapter suggest that organisms evolved in poor quality 

environments (where the strength of selection is high) will be more locally adapted 

than populations that inhabit better quality environments (where the strength of 

selection is low). However, I also demonstrate that interactions between NED of the 

selection environment and new environment may be important in explaining the 

growth of evolved NED = 5 populations in new environments. In some cases, growth 

rates of evolved NED = 5 populations are improved when assayed in alternative 

environments with the same NED. This is not the case for evolved NED = 1 

populations, which show no consistent trend in growth in new environments. This 

may indicate that we may be able to predict the response of populations that in 

inhabit poor quality environments, when exposed to new environments, given some 

information on whether the environments are of comparable quality. Future 

experiments should build on these results by including more selection histories with 

different NED and different environmental drivers, in order to establish if predictions 

can be made by knowing the NED of the selection environments.  
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5 Chapter 5 - Phenotypic consequences of multiple 

environmental changes before and after evolution 

 

5.1 Chapter summary  

 

Predictions on the long-term response of natural organisms to global change are 

almost exclusively based on short-term experiments. For this reason, I compared the 

short- and long-term response of C. reinhardtii to MEDs, to link plastic and 

evolutionary responses to MEDs. I compared the growth rates, the proportion of 

chlorophyll positive cells, chlorophyll autofluorescence per cell volume (1/µm3), and 

cell size, before evolution, and following 95 transfers in each regime. Because 

chlorophyll autofluorescence is an easily measured trait in the lab and in the field, I 

further analysed subpopulations with different chlorophyll autofluorescence 

properties to measure the relationship between chlorophyll autofluorescence and 

growth rate.  

 

5.1.1 Abstract 

 

How does the response of C. reinhardtii to MEDs differ before and after evolution? 

This is an important question if we are interested in using the wealth of physiology 

studies available to predict long-term responses of organisms to MEDs. Following 

evolution, physiological measurements (such as cell size and chlorophyll content) 

that were once correlated with growth rates (before evolution), no longer scale with 

NED following evolution, and evolved populations converge on the same 

phenotypes. In addition, in chapter 3 I demonstrated that the strength of selection 

(measured using the evolved control populations) can predict evolutionary changes 

in growth rates of C. reinhardtii, growing under increasing NED. The data presented 

here confirm that the plastic response collected using the founder populations can 
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predict the change in growth rates of the evolved populations, enabling predictions to 

be made without running long-term selection experiments.  

 

5.2 Introduction  

 

MED experiments are rarely carried out over hundreds of generations and there only 

a handful of investigations that directly compare the plastic and evolutionary 

response to MEDs (Benincà et al., 2008; Tatters et al., 2013a, 2013b). However, the 

question of how short- and long-term responses to MEDs are related to each other is 

important in order meet the challenge of applying the results of manipulation 

experiments in the lab to predict the outcome of global change in natural populations 

(Boyd & Hutchins, 2012; Collins et al., 2013; Petchey et al., 2015), where short-term 

manipulations are often used to predict long-term responses (Tatters et al. 2013). In 

order to answer this question, many phenotypic responses, including growth rate, 

chlorophyll autofluorescence, cell size, were measured at the beginning and at the 

end of the selection experiment, so that the plastic and evolved responses to MEDs 

can be compared.  

 

5.2.1 Physiological changes in natural communities  

 

Variations in physiology in response to MEDs has important ramifications, not only 

for the organisms under investigation, but for natural freshwater and marine 

communities. Marine and freshwater phytoplankton are the base of aquatic food 

webs, and physiological changes will have consequences for higher trophic levels 

(Boyd & Hutchins 2012; Beardall & Stojkovic 2006). For example, reduction in cell 

size may result in grazers that size-select food, not being able to physically consume 

larger cells (Christaki et al., 1999; Cuevas, 2006), potentially altering food web 

structure (Carpenter et al., 1987). The reduction of food quality available to higher 

trophic levels, indicated by a reduction in fatty acid composition, has been measured 
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experimentally in response to single drivers such as UVB, where impaired energy 

transfer to the next trophic level was observed (De Lange & Van Reeuwijk, 2003; 

Tank et al., 2013). A reduction in primary productivity, as a result of changes in 

photosynthetic carbon fixation (Falkowski, 1998), will reduce energy transfer to 

higher trophic levels (Wohlers et al., 2009). Typically, the plastic response to 

elevated CO2, results in an increase in growth and photosynthesis (Low-Décarie et 

al., 2014) however, how this response scales up as more environmental drivers are 

added (Gao et al., 2012; Todgham & Stillman, 2013), and over evolutionary times 

scales (Collins & Bell, 2004) remains unknown.     

 

5.2.2 The effect of MEDs is revealed by phenotypic measurements 

 

Physiological changes in cell size and chlorophyll content are commonly measured 

in investigations which aim to characterise the physiological responses of 

Chlamydomonas spp. and other photosynthetic eukaryotes to environmental drivers 

(Prado et al., 2011, 2012; Herrero et al., 2012). For example, Rioboo et al. (2009) 

demonstrated that in response to increasing concentrations of the photosynthesis-

inhibiting herbicide terbutryn, Chlorella vulgaris show a decrease in chlorophyll 

autofluorescence. In addition, C. moewusii cultures exposed to increasing paraquat 

concentrations also show a decrease in chlorophyll autofluorescence (Prado et al., 

2011). Some investigations also found a relationship between chlorophyll bleaching 

and reduced cell viability, alongside reduced cell size (Prado et al., 2011). Cell size 

has been found to change in response to stressful environments. For example, the cell 

size of C. vulgaris decreases in a dose dependent manner in response to terbutryn, 

though the response was reversed when length of exposure increased to 48 h (Rioboo 

et al., 2009). Cell size of photosynthetic microalgae has also been found to increase 

in response to the heavy metal cadmium (Jamers et al., 2009), and herbicide 

exposures (Rioboo et al., 2002; Prado et al., 2011; Herrero et al., 2012). 
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The loss of chlorophyll autofluorescence can be related to the irreversible damage of 

photosystem II (PSII), the main source of in vivo chlorophyll autofluorescence 

(Herrero et al., 2012). In addition, reactive oxygen species (ROS), produced in 

response to photosystem interfering herbicides such as atrazine (used here), can also 

cause chlorophyll bleaching (Pouneva, 1997; Prado et al., 2011). Many of the 

environmental drivers used here have been shown to interfere with PSII in C. 

reinhardtii (Table 1-1). In this study C. reinhardtii is grown in carbon free media, so 

that carbon must be acquired through photosynthesis, which in turn requires 

functional chlorophyll.  Therefore, there should be strong selection pressure to 

maintain chlorophyll to ensure survival, even in poor quality environments. This 

close link between acquiring a necessary nutrient (carbon) and growth suggests that 

chlorophyll content, which is easy to measure even in the field or in samples that 

cannot be cultured, is potentially a good indicator of population fitness (Molina-

Montenegro et al., 2013). Cell size is an essential characteristic of all unicellular 

organisms, and in C. reinhardtii cell size is also related to population growth through 

its effect on cell division, as a critical threshold size must be reached before cells 

divide (Harris, 2001; Matsumura et al., 2003; Machado & Soares, 2014). These 

investigations provide support for the usefulness of chlorophyll autofluorescence and 

cell size, and their relationship with the physiological status of cells growing in 

different regimes. 

 

5.2.3 Flow cytometry measures physiological change in C. 

reinhardtii grown in MEDs 

 

Flow cytometry provides detailed information of the physiological status of the 

individual cells (Veldhuis & Kraay, 2000). With this technique, autofluorescence 

may be used to distinguish between different populations or subpopulations. For 

example, the morphology of non-viable bleached cells and viable chlorophyll 

positive cells have been investigated separately in C. moewusii (Prado et al., 2011). 

In addition, a fluorescent dye may be used to specifically label the cell population of 
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interest or monitor organelle function (Dubelaar & Jonker, 2000; Kay et al., 2013). 

Fluorescent cells can also be sorted into separate tubes, based on specific cell 

properties (such as cell size, autofluorescence intensity) by fluorescence-activated 

cell sorting (FACS) (Cooper et al., 2010). This provides further opportunities to 

separately analyse the phenotypic differences between subpopulations, such as 

differences in the proteome between populations and changes in protein abundances 

depending on environmental conditions (Han et al., 2008; Perrineau et al., 2014).  

 

5.3 Methods and Materials  

 

This chapter focuses on phenotypic changes in response to MEDs during the the 

initial response and evolved response to selection in, chapter 2 and 3 respectively. 

Details of experimental design and culture environments can be found in Chapter 2, 

section 2.4 Methods and Materials, pages 27 - 37. Details of the selection experiment 

and measure of population growth following 95 transfers in the selection 

environment (after evolution), can be found in Chapter 3, section 3.4.1, page 73. 

 

5.3.1 Flow cytometric analysis of physiological parameters  

 

A FACS CANTO was used to determine red autofluorescence (chlorophyll) and 

orange autofluorescence (putative chlorophyll breakdown products, PE channel, see 

Appendix 10.1.1), event number (cell density) and forward scatter (related to cell 

size) (Jamers et al., 2009; Herrero et al., 2012; Prado et al., 2012; Schaum & Collins, 

2014). Relative chlorophyll autofluorescence intensity was detected in the PerCP-

Cy5.5 channel (Ex-Max 488 nm/Em-Max long pass (LP) 670 – 725 nm). Samples 

were run on the CANTO from 200µl cultures in 96 well plates, and the average well 

was read for 30 seconds at average flow rates of 1µl/second.  
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5.3.2 Determination of cell size and chlorophyll autofluorescence  

 

Variations in cellular volume were determined by flow cytometry after 120h of 

acclimation in the treatment and control environments. Forward scatter was used 

since forward light scatter (FSC) signal is routinely correlated with an increase in cell 

size (Rioboo et al., 2002; Prado et al., 2011, 2012); larger cells take more time to 

pass through the laser and thus produce larger  FSC scatter signals.  The FSC was 

calibrated with size calibration beads (Bang Laboratories, Inc.; Schwartz et al. 1983) 

and FSC was converted to µm (Figure 10.1).   Relative chlorophyll autofluorescence 

per cell volume (1/µm3) was calculated assuming that each cell is  spherical  

(Machado & Soares, 2014). Cell volume was calculated using Equation 5-1. 

 

   ( = )
* +&

)       

Equation 5-1 

Cells classified as dead (not included in the analysis), were outside the range of 

normal cells size (arbitrary units before size calibration). This is associated with a 

decrease in the forward (FS) and side (SS) scatter (Darzynkiewicz et al., 1992; Prado 

et al., 2011). Chlorophyll autofluorescence was analysed downstream of this gate. 

 

5.3.3 Chlorophyll positive and chlorophyll negative cells  

 

Two distinct subpopulations were consistently identified using C. reinhardtii 

autofluorescence in some of the cultures: chlorophyll positive cells (CP) and 

chlorophyll negative (CN) cells. Using the FACS sorter (BDAria I), a small sub-

sample of four populations growing in different MED environments (pH/UV/ND/LI, 

CO2/pH/UV/ND/LI, UV/ND/P, and CO2/UV/ND), were sorted into CP and CN 

groups (2 sorted groups x 4 populations = 8 sorted populations). Sorted populations 

were re-suspended into six (three replicates for each sorted population) culturing 
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tubes containing 1 ml phosphate buffered saline (PBS) (Appendix Figure 10.2).  

Cells were gently centrifuged (settings: at 3220 g, for 5 mins at 21°C) until a pellet 

was formed.  The supernatant was removed and the pellets were immediately 

resuspended into fresh culture media from the appropriate selection environment and 

grown for 14 days (with a second transfer at day 7). Cell counts were performed 

using the flow cytometer and the rate of cell division (d-1) for sorted groups was 

measured at time 0 and 72 h, and again after transferring cells into fresh media at 

time 0 and 48 h. For each sorted population (CP and CN), the proportion of 

chlorophyll positive and chlorophyll negative cells was identified and using DIVA 

software, using the same gates of chlorophyll positive cells and chlorophyll negative 

cells that was used for sorting populations into CP and CN groups. In addition, the 

rate of cells division (d-1) of chlorophyll negative and chlorophyll positive 

subpopulations within sorted groups was calculated. A portion of the cell pellet was 

transferred to liquid nitrogen for further analysis using mass spectrometry (Appendix 

4, section, 10.1.2, page 234). 

 

5.3.1 Statistical Analysis  

 

For both time points, before evolution and after evolution, the effect of NED on 

changes in cells size (µm), the proportion of chlorophyll positive cells and 

chlorophyll autofluorescence per cell volume (1/µm3) was analysed using a mixed 

model in R (R Core Team, 2013), using the packages lme4 and lmerTest. NED (0-8) 

is a fixed factor, as is overlap between regimes within each level of NED (measured 

as the average number of shared drivers between different test environments for a 

given NED; see chapter 2, section 2.4.6). Regime, batch and evolved populations 

within each regime were taken as random factors. In order to investigate the effect of 

the number of transfers in each selection environment on changes in cells size (µm), 

the proportion of chlorophyll positive cells and chlorophyll autofluorescence per cell 

volume (1/µm3), the initial response and evolved response datasets were combined. 

The same mixed model, as described above, was used to analysis the combined 
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datasets and the effect of transfer number was included as a fixed factor in this 

analysis.  A linear regression model was used to measure the relationship between 

cell size and the rate of cell division (d-1), the relationship between the proportion of 

chlorophyll positive cells and the rate of cell division (d-1), and the relationship 

between chlorophyll autofluorescence per cell volume (1/µm3) and cell size (µm) 

(before and after evolution), using the lm function within R. 

 

In order to test the effect of chlorophyll content on the growth rate of sorted 

populations (CP and CN), a mixed model was performed using the lmer function in 

R. Growth rates of each subpopulation of chlorophyll negative and chlorophyll 

positive cells, within sorted groups (CP and CN) were measured using flow 

cytometry. In forming the fixed and random factors in this model, the chlorophyll 

content (chlorophyll positive or chlorophyll negative cells), and the identify of the 

sorted groups that each population was grown from (either CP or CN) were taken as 

fixed factors.  The effect of the identify of evolved populations and transfer number 

were taken as random factors.  

 

5.4 Results 

 

5.4.1 Variation in plastic response to MEDs explains variation in 

the evolutionary impact of MEDs 

 

In this chapter, I address how the plastic and evolved responses to MEDs differ. I 

found that there are significant differences between phenotypic data collected at the 

beginning (before evolution) and end (after evolution) of the selection experiment.  

The most notable change between the plastic and evolved response is the increase in 

the growth rates, where, in some cases, the growth rate doubles following 95 

transfers in the selection environment (Figure 5.1; the effect of the number of 

transfers in each selection environment on growth rate, F1,5 = 54.351, P = 0.033). 
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However, the trend of decreasing growth rate as NED increases, is remarkably 

similar between non-evolved and evolved populations (Figure 5.2; lower panels; the 

effect of NED on the growth rate relative to the respective control populations, F1,83 

= 10.599, P =  0.002), with transfer number (0 or 95), explaining none of the 

variation in relative fitness (Figure 5.2; the effect of transfer number on the growth 

rate relative to the respective control populations, F1,9 = 0.069, P =  0.798). The 

plastic and evolved growth rates in response to MEDs were presented in chapter 2 

and 3.  To avoid repetition these results will not be discussed at length here, however 

population growth rate can be a good indicator of fitness (Collins, 2011a), and will 

therefore be used to understand the relationships between physiological   

measurements, such as chlorophyll autofluorescence, and fitness.  
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Figure 5.1 Population growth rate of C. reinhardtii under 0 to 8 environmental drivers. Black 

data points and bars represent the mean and standard deviation between regimes for each 

NED. Coloured points indicate the average growth rate between replicate population within 

each regime (± SD) (96 regimes in total, see Figure 7.11 for identity of regimes). Panel 

labels indicate the plastic response (“Before Evolution”) and evolved response (“After 

Evolution”) to MEDs.  Dashed line shows the average growth rate of the control populations 

in the control environment.  Upper and lower panels show the same data, however the lower 

panels have a different y-axis so that the relationship between NED and growth rate is clear 

in both panels.   
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Figure 5.2 Population relative fitness when growing in environments with 0 to 8 

environmental drivers. Fitness is calculated relative to the average growth rate of the control 

populations in the control environment, before and after evolution. Black data points and 

bars represent the mean and standard deviation between regimes for each NED. Coloured 

points indicate the average growth rate between replicate population within each regime (± 

SD) (96 regimes in total, see Figure 7.11 for identity of regimes). Panel labels indicate the 

plastic response and evolved response to MEDs.  Dashed line shows the mean relative fitness 

of the control populations in the control environment. 
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5.4.2 Populations converge on the same cell size during evolution 

regardless of NED 

 

Before evolution, the cell size of C. reinhardtii declines as NED increases from 3 µm 

to 8 µm, with very little change between NED 0 and 2 (Figure 5.3a). The largest cells 

are 16 µm (NED = 1; elevated temperature), and the smallest cells are 7 µm (NED = 

7; CO2/ Temp/pH/LI/P/ND/UV). The cell size in the control environment is 12.5 µm 

(± 0.3 µm; average ± SD), which is typical for C. reinhardtii (Harris, 1989). Before 

evolution, cell size declines with increasing NED regardless of the identity of the 

environmental drivers (Figure 5.3a; F1,94 = 54.351, P < 0.0001). I suggest that this is 

because, as environmental quality decreases with NED, cell size also decreases. This 

is consistent with the positive correlation that exists between cell size and the rate of 

cell division before evolution (Figure 5.4a; R2 = 0.33, P <0.0001). This may indicate 

that healthier cells are larger and faster growing than unhealthy cells.  

 

Following evolution, NED explains less than two percent of the variation in cell size 

(Figure 5.3b; F1,60= 0.356, P = 0.553). Cell size fluctuates around 15.5 µm (± 2.33 

µm). The majority of variation in changes to cell size is explained by the evolved 

populations (replicated within each regime) (28%) and the identity of the 

environmental drivers (13%). Interestingly, there is no longer a relationship between 

cell size and the rate of cell division after evolution (Figure 5.4b; R2 = 0.02, P = 

0.006). There is a significant difference in the relationship between cell size and 

NED between the plastic and evolved populations (Figure 5.3; the effect of the 

number of transfers in each selection environment on growth rate, F1,5= 65.582, P = 

0.0001). This is because cell correlates with NED before evolution, but not after 

evolution.  
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Figure 5.3 Changes in cell size of C. reinhardtii under 0 to 8 environmental drivers. Black 

data points and bars represent means and standard deviation between regimes for each NED. 

Coloured points indicate the average growth rate between replicate population within each 

regime (± SD) (96 regimes in total, see Figure 7.11 for identity of regimes). Panel labels 

indicate the plastic response and evolved response to MEDs.  Dashed line shows the average 

cell size of the control populations in the control environment.  
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Figure 5.4 Correlation between cell size and the rate of cell division before (a) and 

after evolution (b). Colour of points is scaled from red (low NED) to blue (high 

NED). 
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5.4.3 NED drives changes in the proportion of chlorophyll 

positive and negative cells in populations before evolution, 

with no relationship between NED and proportion of 

chlorophyll positive and negative cells after evolution 

 

Before evolution, the proportion of chlorophyll positive cells per population of C. 

reinhardtii declines as NED increases (Figure 5.5a; F1,94 = 39.874, P < .001). The 

proportion of chlorophyll positive cells is 90% in the control environment, which 

steadily declines as NED increases to reach 5% chlorophyll positive cells in a NED = 

7 environment (CO2/Temp/pH/LI/P/ND/UV). As expected for photosynthetic cells, 

there is a positive correlation between the proportion of chlorophyll positive cells 

and the rate of population growth (Figure 5.6b; R2 = 0.47, P = <0.0001) and this 

remains following evolution (Figure 5.6a; R2 = 0.24, P = <0.0001). The proportion of 

chlorophyll negative cells increases with NED (Figure 5.7a; F1,94 = 10.332, P = 

0.002) and like a threshold response the proportion of chlorophyll negative cells 

increases from the lowest proportion of chlorophyll negative cells growing in the 

control environment (6 %), until NED = 4, where the proportion of chlorophyll 

negative cells levels off at 40 % (Figure 5.7a).  

 

The proportion of cells lacking chlorophyll changes substantially after evolution. 

Following evolution, the proportion of chlorophyll positive cells decreases with 

increasing NED until NED = 4, where there is little change until a drop at NED = 7. 

The average proportion of chlorophyll positive cells across all evolved populations 

(87 % ± 17.06 %) is not significantly different from the proportion of chlorophyll 

positive cells in the evolved control populations (98 % ± 1 %) (Figure 5.5), and there 

is no significant effect of NED on the proportion of chlorophyll positive cells after 

evolution (Figure 5.5b; F1,58 = 0.800, P = 0.375). Changes in the proportion of 

chlorophyll positive cells after evolution are explained by the selection environment 

(27%) and the overlap within each NED level (13%). There is general trend of 
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increasing proportion of chlorophyll negative cells with increasing NED, from the 

lowest proportion of chlorophyll negative cells within the evolved control population 

growing in the control environment (2 %), to the largest proportion found in evolved 

populations growing under NED = 7 (89 %). However, variation between regimes is 

large after evolution (average proportion of chlorophyll negative cells across all 

evolved populations is 12 % ± 16.72 %), and as result the relationship between NED 

and proportion of chlorophyll negative cell is not significant  (Figure 5.7b; F1,53 = 

0.805, P = 0.374).  

 

There is very little difference between the control populations before and after 

evolution (indicated by dashed lines), demonstrating that cells growing in the benign 

environment, with some of the highest growth rates, do not lose their chlorophyll, 

and changes in the proportion of chlorophyll positive cells is probably associated 

with evolutionary responses to the drivers in the selection environments.  Differences 

observed between the plastic and evolved response are significant for both the 

proportion of chlorophyll positive cells (Figure 5.5; the effect of the number of 

transfers in each selection environment on the proportion of chlorophyll positive 

cells, F1,6= 118.656, P < 0.0001) and the proportion of chlorophyll negative cells 

(Figure 5.7; the effect of the number of transfers in each selection environment on the 

proportion of chlorophyll positive cells, F1,6= 59.874, P = 0.0002).  
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Figure 5.5  Proportion of chlorophyll positive cells in populations of C. reinhardtii growing 

in environments with 0 to 8 environmental drivers. Black data points and bars represent the 

mean and standard deviation between regimes for each NED. Coloured points indicate the 

average growth rate between replicate population within each regime (± SD) (96 regimes in 

total, see Figure 7.11 for identity of regimes). Panel labels indicate the plastic response and 

evolved response to MEDs.  Dashed line shows the proportion of chlorophyll positive cells 

of the control populations growing in the control environment. 
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Figure 5.6 Correlation between proportion of chlorophyll positive cells and the rate 

of cell division before (a) and after evolution (b). Colour of points is scaled from red 

(low NED) to blue (high NED). 

 



 

 157 

 

 

Figure 5.7 Proportion of chlorophyll negative cells in populations of C. reinhardtii growing 

in environments with 0 to 8 environmental drivers. Black data points and bars represent the 

mean and standard deviation between regimes for each NED. Coloured points indicate the 

average growth rate between replicate population within each regime (± SD) (96 regimes in 

total, see Figure 7.11 for identity of regimes). Panel labels indicate the plastic response and 

evolved response to MEDs. Dashed line shows the Proportion of chlorophyll negative cells 

of the control populations growing in the control environment. 
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5.4.4 NED explains variation in chlorophyll autofluorescence per 

cell volume before evolution but cannot explain variation in 

chlorophyll autofluorescence per cell volume following 

evolution    

 

While having chlorophyll is necessary for photosynthesis, the amount of chlorophyll 

per cell also varies, and can affect photosynthesis. The intensity of chlorophyll 

autofluorescence indicates the total amount of chlorophyll (chlorophyll a and b) in a 

cell (Aguilera et al., 2008), and can vary between populations regardless of the 

proportion of chlorophyll positive cells. Unsurprisingly, there is a positive 

relationship between chlorophyll autofluorescence and cells size, both before 

evolution (Figure 10.3a; R2 = 0.19, P < 0.0001), and after evolution (Figure 10.3b; 

R2 = 0.37, P < 0.0001), indicating that larger cells can contain more chlorophyll than 

smaller cells. Assuming that each cell is a sphere I have calculated the chlorophyll 

autofluorescence per cell volume (1/µm3), thus removing the effect cell size from the 

analysis.   

 

Before evolution, chlorophyll autofluorescence per cell volume (1/µm3) increases 

with NED between NED = 3 and 8, with little change between NED 0 to 3. 

Surprisingly, the lowest chlorophyll autofluorescence per cell volume (1/µm3) is 

found in populations growing in NED =1 and NED = 2 environments, with the 

highest chlorophyll autofluorescence per cell volume (1/µm3) found in some of the 

smallest cells at NED = 8, and this effect is driven by NED (Figure 5.8a; F1,23 = 

32.393, P <0.0001). However, it was expected that populations growing in poor 

quality environments at high NED (with lower growth rates), would produce cells 

with lower chlorophyll autofluorescence intensity, since chlorophyll 

autofluorescence is related to chlorophyll content of the cell (Aguilera et al., 2008), 

and previous studies have found a negative relationship between cell viability and the 

loss of chlorophyll (Prado et al., 2011; Herrero et al., 2012).  

 



 

 159 

In contrast, after evolution, there is no trend between NED and chlorophyll 

autofluorescence per cell volume (1/µm3) (Figure 5.8b; F1,64 = 0.058, P = 0.811), and 

chlorophyll autofluorescence per cell volume (1/µm3) in populations evolved under 

MEDs are not significantly different from the evolved control populations in the 

control environment (12.15 chlorophyll autofluorescence per cell volume (1/µm3) (± 

3.07 chlorophyll autofluorescence per cell volume (1/µm3)), mean of all population 

is 9.24 chlorophyll autofluorescence per cell volume (1/µm3)  (± 3.84 chlorophyll 

autofluorescence per cell volume (1/µm3)).  This is consistent with populations 

having adapted to their environments, as they no longer show a standard sign of 

stress. For example, after evolution NED = 7 and NED = 8 populations have the 

lowest chlorophyll autofluorescence per cell volume (1/µm3), which is the opposite 

trend seen in the plastic response (Figure 5.8). Overall, the change in chlorophyll 

autofluorescence per cell volume (1/µm3) before and after evolution is significant 

(Figure 5.8; F1,6= 14.219, P = 0.01). 
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Figure 5.8 Chlorophyll autofluorescence per cell volume (1/µm3) in populations of C. 

reinhardtii growing in environments with 0 to 8 environmental drivers. Black data points 

and bars represent the mean and standard deviation between regimes for each NED. 

Coloured points indicate the average growth rate between replicate population within each 

regime (± SD) (96 regimes in total, see Figure 7.11 for identity of regimes). Panel labels 

indicate the plastic response and evolved response to MEDs.  Dashed line shows the 

proportion of chlorophyll autofluorescence per cell volume (1/µm3) of the control 

populations growing in the control environment. 
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5.4.5 Chlorophyll negative cells are capable of division 

 

The growth rates of chlorophyll positive and chlorophyll negative cells were 

measured in order to better understand the relationship between chlorophyll content 

and population growth rate. I found that growth rates, following sorting of CP and 

CN populations (sorted by FACS), are not significantly different (Figure 5.9; F1, 53 = 

0.47, P = 0.495). However, growth rates of chlorophyll positive and chlorophyll 

negative cells within each sorted group are significantly different (Figure 5.9; F1, 53 = 

3.53, P = 0.0008), which is consistent with a positive relationship between 

chlorophyll content and the rate of cell division (Figure 5.6). Interestingly, growth 

rates of chlorophyll negative cells are positive.  However, since there is no organic 

carbon source in the growth media, only cells capable of photosynthesising can go 

through several cell divisions. While stored nutrients may be sufficient for some 

growth, cells that do not eventually photosynthesis are not expected to survive in this 

experiment, and I do indeed find a negative relationship between the proportion of 

chlorophyll negative cells in a population and population growth rate before 

evolution (Figure 5.10a; R2 = 0.25, P = < 0.0001), and after evolution (Figure 5.10b; 

R2 = 0.24, P = < 0.0001). The results presented in Figure 5.9 demonstrate that 

lacking chlorophyll is not a heritable trait, since chlorophyll positive cells and 

chlorophyll negative cells reappear during population growth in both sorted groups.  

 

5.5 Discussion 

 

5.5.1 Cell size and proportion of chlorophyll positive cells are a 

good indication of adaptation to MEDs 

 

Changes in cell size and chlorophyll content are commonly measured in order to 

quantify the impact of environmental change on microalgae (Prado et al., 2011, 
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2012; Schaum & Collins, 2014), and the loss of chlorophyll autofluorescence has 

been related to irreversible damage to cells (Pouneva, 1997; Prado et al., 2011). I 

found a positive relationship between the portion of chlorophyll positive cells and 

growth rate (Figure 5.6), and cell size and growth rate, before evolution. In this 

experiment, as NED increases the quality of the environment decreases, which 

appears to result in damage to C. reinhardtii cells, indicated by a decline in both cell 

size and proportion of chlorophyll positive cells as NED increases during the plastic 

response. After evolution, populations converge on the same proportion of 

chlorophyll positive cells and cell size, which is consistent with adaptive evolution to 

increase fitness in poor-quality environments by avoiding or repairing cellular 

damage (Figure 5.3, Figure 5.5).  

 

Interestingly, although cell size decreases with increasing NED (Figure 5.3), 

chlorophyll autofluorescence per cell volume (1/µm3) increases with NED during the 

plastic response (Figure 5.8). As such, larger cells do not explain the increase in 

chlorophyll autofluorescence, as smaller cells in NED = 8 have more chlorophyll 

autofluorescence per cell volume (1/µm3) than the largest cells at NED levels 0 – 2. 

This may be due to larger cells avoiding self shading (Dubelaar & Jonker, 2000). 

Avoiding self-shading, known as the packaging effect, has been demonstrated by 

comparing different species of phytoplankton cells, where species with larger cells 

produce less chlorophyll per cell volume (Dubelaar & Jonker, 2000). It is not 

possible to infer from my data if cell size affects chlorophyll autofluorescence. 

However, no reports of self shading have been documented for C. reinhardtii 

(Rioboo et al. 2002, Prado et al. 2011). In addition, differences in cell size between 

phytoplankton species are greater than differences of cells size reported here. Sosik 

et al. (1989) consider the packaging effect to be a potential factor contributing to 

differences in the absorptive properties of pigments between the phytoplankton 

Amphidinium carteri and Thalassiosira weissflogii, which differ greatly in cell 

volume (350 – 1600 µm3, a 4.6 fold change). In addition, Collins & Bell (2004) 

describe a syndrome which evolved in some cells of C. reinhardtii after 1000 

generations of growth at high CO2, involving high rates of photosynthesis and 
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respiration, combined with higher chlorophyll content and reduced cell size.  

However, that was an evolutionary response to long-term growth in a high CO2 

environment, whereas I see this phenotype in the plastic response when NED is 

greater than 5 (Figure 5.8a). Following evolution, the relationship between 

chlorophyll autofluoresnce (µm3) and NED breaks down (Figure 5.8b). However, 

similar to the findings of Collins & Bell (2004), cells evolved at elevated CO2 show a 

decrease in chlorophyll autofluorescence per cell volume (1/µm3) following 

evolution (from 14.55 to 8.81 chlorophyll autofluorescence per cell volume (1/µm3)). 
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Figure 5.9 Boxplots show the growth rates subpopulations of C. reinhardtii, sorted using 

FACS flow cytometry (sorted groups labelled on the x axis). Growth rates of chlorophyll 

positive cells (grey filled boxplot) and chlorophyll negative cells (white filled boxplot) were 

calculated over two weeks (labelled at the top of each panel). At the end of week 1 the 

cultures were transferred to fresh media.  
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Figure 5.10 Correlation between proportion of chlorophyll negative cells and the rate 

of cell division before (a) and after evolution (b). Colour of points is scaled from red 

(low NED) to blue (high NED). 
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5.5.2 Uncoupling of growth rates and chlorophyll production 

following evolution  

 

One explanation for the differences before and after evolution in cells size, 

chlorophyll content and the proportion of chlorophyll positive cells, is that mutations 

that improve the ability to survive long-term growth in poor quality environments 

have been fixed in the populations. In addition, this may lead to previously correlated 

traits becoming uncoupled after evolution and changes to traits associated with 

reducing cellular damage (cell growth and chlorophyll content) may be at the 

expense of improved growth rates. For example, the positive correlation between cell 

size and growth rates (Figure 5.4), and the positive correlation between the 

proportion of chlorophyll positive cells and growth rates (Figure 5.6), become 

uncoupled during the evolutionary response. Whereas the evolved populations in 

poor quality environments did not recover growth rates back to the growth rates of 

the evolved control (Figure 5.1, see also chapter 3), the proportion of chlorophyll 

positive cells and cell size of evolved populations have returned to a similar size and 

proportion of chlorophyll positive cells of the evolved control populations (Figure 

5.3, Figure 5.5). This suggests that in poor quality environments populations evolve 

so as to make a larger investment in maintaining chlorophyll content and cell size, 

and these may improve the populations ability to survive long-term growth in poor 

quality environments. If C. reinhardtii must grow by photosynthesis in poor quality 

environments, then it is reasonable to suppose that evolving mechanisms to maintain 

functional chlorophyll would be under selection.  This is consistent with data from 

Rioboo et al. (2002), who found that growth rates of C. vulgaris cells were lowest, 

but cell volume, dry weight and pigment content were highest, under the highest 

concentrations of herbicides isoproturon and terbutryn. The authors suggest that 

reproductive processes and cell size are uncoupled at high concentrations of 

herbicide. Uncoupling was detected following 96 hours of growth however, in the 

present study uncoupling appears to occur only after evolution to MEDs, suggesting 
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that there is a benefit to the breaking down the relationship between growth rates and 

chlorophyll content and cell size after evolution.  

 

In addition, where adaptation is not obvious (due to small or negative direct 

responses to selection, Chapter 3; Figure 3.1), for example at NED = 7, this may be 

due to fixation of mutations that improve cell growth (size) and chlorophyll content 

in order to improve survival in a poor quality environment, whereas growth rates can 

not improve to the same extent (Figure 5.1). This may be due to trade-offs associated 

with improving these traits and simultaneously decreasing cell division times, which 

from an energy and resource allocation standpoint, seems likely (Bennett & Lenski, 

2007). These results suggest that growth rate measurements may be complemented 

or supported by additional physiological measurements that have a clear relationship 

with fitness because of known links with survival or key metabolic functions, such as 

photosynthesis. It is clear from the correlated responses to selection (Chapter 3; 

Figure 3.7), that populations evolving at high NED, including NED = 7, have 

evolved, however, this is not always apparent from the growth rates.  This is 

supported by Bell (2013b) who suggests that correlated responses might reflect 

precise adaptation to ways of life that are only slightly different. 

 

5.5.3 Chlorophyll negative cells are still viable  

 

It was assumed that because chlorophyll negative cells cannot photosynthesis in the 

carbon free media, that the presence of chlorophyll negative cells is a result of cells 

coming to the end of the cell cycle. If this assumption is accurate, it would be 

expected that when sorted populations are transferred into fresh culture media, 

chlorophyll negative populations would be unable to grow and the number of 

populations should decline. Chlorophyll positive cells, on the other hand, are 

expected to grow, divide, and increase cell numbers in fresh culture media, and cells 

at the end of the life cycle would once again lose chlorophyll and the chlorophyll 

negative population will over time recover. Instead, I found that all sorted 
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populations were able to grow, with little difference in growth rate between sorted 

populations (Figure 5.9). In the present study, culture conditions support only 

photoautotrophic growth. However, it is clear that organic carbon is being released 

into the media, perhaps product of cell death, or compromised cell walls of C. 

reinhardtii cells. Blifernez-Klassen et al. (2012) found that under certain 

environmental conditions, such as CO2-limiting conditions in the light, C. reinhardtii 

are able to digest exogenous cellulose.  This is possible through the secretion of 

endo-β-1,4-glucanases. Thus, if evolved populations of C. reinhardtii are growing 

heterotrophically under stressful conditions, there is no need maintain costly 

chlorophyll pigments, and so cells become bleached. Although bleached cells are 

commonly associated with dead or dying cells (Prado et al., 2011, 2012), bleached C. 

reinhardtii cells have also previously been described as an incidental response to 

selection (i.e. there is no relationship between chlorophyll bleaching and population 

fitness) in C. reinhardtii cultured as heterotrophs in the dark (Bell, 2013c), although I 

did not test the incidental response of phenotypes measured here.  

 

5.5.4 Bet-hedging for long term growth  

 

One possible explanting for a rise in viable, chlorophyll negative populations with 

increasing NED, is due to bet hedging. When growing in poor quality environments, 

dividing cells may produce higher quality cells by supplying a faction of the cells 

with old cellular components and other fraction of cells with healthy components 

needed to survive (see appendix Figure 10.2) (Watve et al., 2006). This way the 

healthy cells have a greater chance of surviving in the poor quality environment 

(Zhang & Rainey, 2010; Bonduriansky et al., 2012). Zhang & Rainey (2010) found 

that when grown in starvation conditions, the soil bacterium Sinorhizobium meliloti 

show bet-hedging strategies by dividing into two types of daughter cell, one suited to 

short-term and the other to long-term starvation. This is due to asymmetric allocation 

of the lipid-like poly-3-hydroxybutyrate (PHB), which is stored by S. meliloti and 

can be used to survive long-term starvation. Similarly, C. reinhardtii in the present 
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study are growing in carbon free media, in poor quality environments and so 

asymmetric allocation of chloroplast may allow a proportion of the cells to survive 

long-term growth with MEDs. This is supported by the plastic response before 

evolution (Figure 5.7), demonstrating that that the proportion of chlorophyll negative 

cells increases with increasing NED, which may be associated with a greater chance 

of having either reduced phosphate, general nutrients or both in the regime. 

Interestingly, when NED is greater than 4, the proportion of chlorophyll negative 

cells reaches a threshold with no additional effect of NED, and this may due to 

similarity between environments, i.e. more environments have reduced phosphate 

and nutrients as NED increases.  

 

5.5.5 Future work  

 

The presence of chlorophyll negative subpopulations may be more complicated than 

simple bet hedging. Preliminary data collected from the mass spectrometer of the 

sorted chlorophyll positive and chlorophyll negative samples demonstrates 

significant up-regulation of proteins in chlorophyll negative cells (Appendix 4, 

section 10.1.2, page 234). One example is the up regulation of ribosomal proteins in 

chlorophyll negative populations that allow organisms to respond rapidly changing 

environmental conditions (Condon et al., 1995; Elena & Lenski, 2003). This is just 

one example, and preliminary data suggest that mass spectrometry proteomics is a 

fruitful avenue to explore the expression of proteins of subpopulation growing in a 

given environment, at a given time point. In addition, mass spectrometry is widely 

used to describe protein interactions and pathways, and measure changes in protein 

abundances in different environmental conditions (Han et al. 2008). Future work 

should build on preliminary mass spectrometry analysis in order to determine the 

molecular underpinnings of the differences between chlorophyll negative 

populations.  This has been completed successfully to understand the evolution of 

salt tolerance in C. reinhardtii (Perrineau et al., 2014). Specifically, identification of 

the pigment responsible for PE autofluorescence would be valuable as all chlorophyll 
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negative populations are autofluorescent in the PE channel (Appendix 4; 10.1.1; 

Figure 10.4), and as such this pigment may be useful for understanding and 

predicting the outcome of evolution of photosynthetic algae (such as C. reinhardtii) 

under MEDs. 

 

5.6 Conclusions 

 

The similarities between the plastic and evolved response to MEDs suggests that 

although the molecular underpinnings in the response to MEDs may be complex, 

there remains a general order to how phenotype changes in C. reinhardtii before and 

after evolution. There is a general trend in how chlorophyll content and cell size 

change with NED, before and after evolution. However, understanding the 

physiological responses to MEDs is complicated, and the data presented here suggest 

that trade-offs between improving growth rates or repairing cellular damage such as 

the loss of chlorophyll are important. In this case, phenotypic changes under MEDs 

must be studied empirically. I suggest that future experiments should make use of 

proteomic methods in order to better characterise phenotypic changes in response to 

MEDs. The ability to predict the physiological changes of ecologically important 

organisms will allow ecologists to gain a better picture of how MEDs may indirectly 

effect the whole community. 
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6 Chapter 6 – General discussion and future directions 

 

6.1.1 Significance statement   

 

This is a novel contribution to the field of multiple driver experiments, in that it is the 

first experiment that, first, can disentangle the effects of the number of drivers and 

their identity, and second, that directly compares plastic and evolutionary responses 

to growth in MEDs. Quantifying the effects of MEDs is central to our understanding 

of the impact of future global change, as many aspects of the environment are 

predicted to change simultaneously. The importance of MEDs research is evident in 

the rise of MED investigations, yet few studies have been designed to disentangle the 

effects of MEDs (Ormerod et al., 2010), and at present no other study has 

investigated the short- or long-term effect of more than three environmental drivers.  

In the present study, a model microalga was used in order to explore the effects of 

NED on the short- and long-term growth response, and disentangle the effects 

between the number and identity of environmental drivers. Through the use of a 

simple model, I show that knowing the effect of individual environmental drivers, 

especially the dominant environmental driver with the largest effect, explains the 

plastic response in growth to multiple environmental drivers (chapter 2). I found that 

the plastic response to MEDs is able to predict the strength of selection, and thus the 

magnitude of the direct response to selection in the same environments (chapter 3). 

In addition, changes in chlorophyll content and cell size demonstrate that following 

evolution in MED environments, populations are able to restore the phenotypes 

measured here back to phenotypes of the control populations (chapter 5). Finally, 

taken together, the data show that the number of drivers present in an environment 

affects patterns of local adaptation (chapter 4). The data presented in this thesis 

provide unique insight into the long-term consequences of MEDs on microbial 

populations. 
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6.1.2 Are organismal responses to MEDs predictable? 

 

The data collected in chapter 2 demonstrate that single environmental drivers are 

informative for predicting the plastic effects on growth when in combination. In 

particular the dominant environmental driver with the single largest effect alone 

largely drives changes in growth rates between multiple driver environments and a 

control environment (Brennan & Collins 2015). NED is a good estimate of the 

expected growth rate when NED is high, and this is due to high NED environments 

having an increased chance of containing at least one dominant environmental driver. 

Thus, when the individual effect of environmental drivers is unknown, the outcome 

of growth is still predictable from the NED. In addition, an important contribution of 

this investigation is that it highlights the utility of studies investigating the outcome 

of single environmental drivers. Results from chapter 3 and chapter 5 confirm that 

short-term acclimation responses to MEDs can provide predictions on the magnitude 

of the direct response to selection, by allowing us to use the plastic response as an 

estimate of the strength of selection.  

 

Predicting how ecological systems will be impacted by MEDs under future global 

change is arguably one of the most important goals in ecological research (Clark et 

al., 2001; Evans et al., 2012; Harvey et al., 2013). Predictions on how MEDs effect 

communities or populations of interest are commonly based on ecological models 

(Boyd, 2002; Woodward et al., 2010; Evans, 2012). However, the best way to verify 

the assumptions that underlie models and theoretical discussions is to test them in the 

lab (Benton, 2012; Evans, 2012). Both marine and freshwater MEDs investigations 

typically use two or three environmental drivers in MEDs experiments, which is 

informative for understanding precise physiological mechanisms involved in the 

response to MEDs, and specific interactions between environmental drivers (Dupon 

& Pörtner, 2013), but lack predictive power for how organisms will respond when 

even more drivers co-occur. The case study presented in chapter 2 (Figure 2.7), 

demonstrates that interactions are idiosyncratic when NED is low, and the effects of 
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two and three environmental drivers must be empirically measured. This is consistent 

with meta-analyses which demonstrate that interactions between pairs are not simply 

additive; Jackson et al. (2015) found that in freshwater systems, the majority of 

paired driver interactions are antagonistic and many were reversible (a reversal 

occurs when the net impact of two stressors is in the opposite direction). Similarly, in 

marine systems, Crain et al. (2008) found that the majority of interactions were 

antagonistic or synergistic. Generally, the extent to which synergistic and 

antagonistic interactions deviate from additive effect cannot be predicted, making 

predictions about organismal responses to MEDs difficult. There is an urgent need 

for general tests of the assumptions underlying theories and models of organismal 

responses to MEDs (Benton et al., 2007).  

 

Measuring and understanding the outcome and the mechanisms in organismal 

responses to MEDs is demanding and even if complex experiments with many 

drivers are designed, the assumption that all interactions are unpredictable implies 

that unless we are able to know the drivers present in real environments with high 

certainty, we cannot design useful experiments. In addition, it is not practical to carry 

out MED experiments for the many species of phytoplankton or microbes that have 

the potential to respond to global change. These considerations highlight the need for 

a general framework to predict, at some level, the effects of MEDs on key groups of 

organisms.  

 

6.1.3 Are long-term MEDs investigations necessary to understand 

organismal responses to MEDs? 

 

Understanding the relationship between adaptation and the plastic response to poor 

quality environments is important for understanding how populations evolve in 

multiple driver environments (Ghalambor et al., 2007; Chevin et al., 2010a).  Several 

selection experiments have demonstrated that the short-term effect of environmental 
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changes on organisms cannot explain the evolutionary response to those same 

environmental changes (Collins & Bell 2004; Mueller et al. 2010; Crawfurd et al. 

2011; Lohbeck et al. 2012a). Yet, scaling up MEDs studies in time is rare (but see, 

Schlüter et al. (2014); Tatters et al. (2013)). However many argue that organismal 

responses to MEDs on timescales that are relevant for human activities cannot be 

predicted without considering the effect of evolution (Bell & Collins, 2008; Gienapp 

et al., 2008; Collins et al., 2013).  

 

The focal experiment involved 95 transfers (~350 generations). I found that there are 

striking similarities between the plastic and evolved growth responses and much of 

the variation in the evolved growth response to selection is explained by the short-

term response. This is important, as selection experiments are demanding, time 

consuming and sometimes impossible for many non-model organisms (Elena & 

Lenski, 2003). Given that the present experiment demonstrates that short-term MEDs 

experiments are a good indication of the trend in the long-term response, long-term 

experiments are not necessary for predicting the outcome of long-term growth under 

MEDs. However, they are informative for understanding evolutionary processes. In 

particular, further examination can be carried out to understand the molecular 

underpinnings of evolutionary processes involved in adapting to MEDs that may not 

be predictable from the plastic response.  

 

6.1.4 Can adaptation keep up with the MEDs organisms are 

experiencing under global change? 

 

In chapter 3, I demonstrated that as the strength of selection increases with NED, the 

response to selection increases, until NED = 7, where the response to selection drops. 

At NED = 8, all populations went extinct under the usual transfer conditions, and 

only persist when number of cells transferred (population size) is increased by the 

experimenter. This indicates that populations are unable to persist when NED is 
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greater than seven and population sizes are low.  In addition, I found that growth 

rates do not recover fully. Populations evolved in MED environments still grow more 

slowly in their selection environments than the evolved control populations in the 

control environment. However, is it clear that populations have evolved and this is 

evident from both the direct (in high NED environments) and correlated (in all 

environments) responses to selection. In chapter 4, I found that populations evolved 

in NED =1 and NED = 5 show differences in the degree of local adaptation is 

consistent with populations in NED = 5 environments being under stronger selection. 

Growth rates of evolved NED = 1 and evolved NED = 5 populations are significantly 

higher than the control environment in a novel stressful environment that is lethal to 

control populations, suggesting that future populations that evolve under MEDs will 

be better able to tolerate future environmental changes than populations that have 

evolved in an unchanging environment. 

 

The data collected here indicates that when population sizes are low, populations are 

more vulnerable (Willi et al., 2006) and these population may be more severely 

impacted when the NED is high and environmental quality is poor.  Further work on 

sensitive species, such as small populations, may aid in the identification of 

populations that cannot adapt and in understanding the reasons why this is the case 

(Lynch & Gabriel, 1987).  

 

6.1.5 The future of MEDs experiments  

 

The aim of my thesis is to uncover the effects of increasing NED on plastic and 

evolutionary changes to growth and other key traits for primary producers. Following 

evolution, I found that the short-term changes in chlorophyll content and cell size are 

largely reversed, so that the evolved populations from the MED environments 

phenotypically resemble the evolved control population in the control environment, 

at least for these traits. This may indicate that populations growing under MEDs may 

be able to maintain somewhat normal functioning, but with reduced growth rates. 
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Changes in growth rate, chlorophyll content and cell size are important to consider as 

phytoplankton are the base of the aquatic food web and phenotypic changes may 

have consequences to higher trophic levels in marine and freshwater systems 

(Karentz & Bosch, 2001; Davies et al., 2011). This investigation is a good first step 

in understanding the outcome of short and long term growth under MEDs. Like 

many models, this experiment is designed to be generalisable at some level, and 

although I wholly expect that different organisms and/or environmental drivers will 

have different specific responses (from the responses observed in this investigation), 

the general pattern of reduced overall fitness and an increase in the strength of 

selection as NED increases is expected. Predictive power could be further increased 

by integrating other studies aimed at gaining a mechanistic understanding of 

interactions between specific drivers.  

 

Figure 6.1 illustrates the current position of research that aims to predict biotic 

responses to future global change. There are many studies that investigate the effects 

of up to three environmental drivers over short timescales (Crain et al., 2008), and 

fewer long-term studies (Collins et al., 2013). There are also investigations that 

tackle the effects of single environmental drivers on whole communities over 

evolutionary time scales (Kim et al., 2012). The ultimate goal is to investigate the 

impact of a realistic number of simultaneous environmental drivers, on whole 

communities and over evolutionary timescales.  
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Figure 6.1 Illustration of current state of knowledge and future goals of global 

change research. Coloured circles show the current position of research investigating 

the impacts of single environmental drivers on single genotypes/species (green), 

single environmental drivers on multiple genotypes/species (purple) and MEDs on 

single genotypes (blue). Dashed arrow and faded filled circles indicates that there are 

some examples of long-term studies, on evolutionary relevant time-scales.  Red 

closed circle indicates the position of the present study investigating both the evolved 

and plastic response to up eight environmental drivers. Star indicates the future goals 

of global change research, which is to investigate the impact of a realistic number of 

simultaneous environmental drivers, on whole communities and over evolutionary 

timescales.  

 

  

The&present&study:&
MEDs+over+evolu/onary+/mescales,+
using+a+single+genotype+

The&present&study:&
MEDs+over+evolu/onary+/mescales,+
using+a+single+genotype+

•  Single+
genotypes,+

•  Single+
environmental+
drivers+

Future+Goals:+
•  Whole+

communi/es++
•  Evolu/onary+

/mescales+
•  MEDs+

Whole&
Communi,es&

Mul,ple&
environmental&
drivers&

Evolu,onary&
responses&

MEDs+experiments+currently+
inves/gate+up+to+3+(rarely+up+5)+
environmental+drivers+

Plas/c+
response+

Evolved+
response+



 

 178 

6.1.6 Scaling up to whole communities 

 

Predicting which aspects of the environment might change and what effect this will 

have on organisms is informative. However, it does nothing to tackle questions such 

as which organisms will make up these communities and how will they interact 

following alterations to the environment (Low-Décarie et al., 2011).  For instance 

Winder & Schindler (2004), found that elevated temperatures disrupt the trophic 

interactions between phytoplankton and zooplankton due to differences in thermal 

tolerance between species. Kim et al. (2012) found that peatland bacterial and 

methanogen communities release significantly more carbon when the temperature is 

increased by 3oC for three growing seasons (3 years). In addition, interactions 

between soil depth and temperature indicate that changes in temperature will likely 

alter community structure and function in peatlands. However, laboratory 

experiments with multiple genotypes or species are arduous and time-consuming, 

and are normally studied over short time-scales (but see Lawrence et al. 2012), and 

indeed long-term experiments are on-going (D. Lawrence and S. Collins, personal 

communication). Nevertheless, evolutionary responses are required to fully 

appreciate how community dynamics will change following evolution under MEDs.  

 

I propose that the next step in understanding the evolutionary responses to MEDs is 

to use microcosm experiments, where the short- and long-term effects of MEDs are 

investigated using multiple genotypes or species – and this can be conducted on 

small spatial scales in the laboratory using multi-well plates (Lawrence et al., 2012) 

or on larger spatial scales using artificial lakes (Moss et al., 2003; Hansson et al., 

2012). Microcosm experiments have been used to study general concepts in 

population biology, community ecology and evolutionary biology such as, predator–

prey interactions, behavioural responses, physiological responses, evolutionary 

responses, population dynamics, competition and succession (see review by 

Altermatt et al. 2015).  Short-term microcosm experiments are already being 

conducted in freshwater systems in order to examine the relationships between the 
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effect of MEDs (up to three simultaneous environmental drivers), and species 

invasion rates (Griffiths et al., 2015), and the effect on trophic interactions (Hansson 

et al., 2012). Although artificial, microcosm experiments can uncover how MEDs 

will effect single organisms, or a group of organisms, in a more realistic scenarios 

than the laboratory (Altermatt et al. 2015). MED microcosm experiments will enable 

investigators to increase the number of taxa in a community so that more 

ecologically realistic responses to MEDs can be studied. 

 

The next logical step in linking the results obtained in the lab and the natural world 

that includes competitors and grazers, is to study the effect of MEDs in situ. 

Mesocosm experiments offer a large degree of control over environmental drivers 

(such as elevated CO2), but also allow investigators to unravel the effects of 

environmental drivers on complex communities in more natural habitats than can be 

built in the lab (Engel et al., 2005; Ventura et al., 2008; Troedsson et al., 2012; 

Riebesell et al., 2013). Though, mesocosm experiments are essentially MED 

experiments, as organisms are exposed to natural environmental conditions (in a 

closed system), it must be possible to measure and disentangle the effects of MEDs 

in order for predictions to be made on the effects of increasing NED on focal 

organisms. Only in the past year have evolutionary responses been measured using a 

marine diatom in a mesocosm experiment (see Scheinin et al. 2015), and with the 

replication required, it might be some years until we are able to accurately measure 

the long-term effects of MEDs, with a practical number of environmental divers 

required to make predictions. However, it is easy to imagine, as techniques are 

improved that there will be more scope to investigate the outcome of MEDs in situ. 

 

6.1.7 How realistic do MED experiments have to be? 

 

There is some argument that laboratory investigations are too artificial to be 

compared with the natural world (see review by Jessup et al. 2004). Carpenter (1996) 

cites problems such as large differences in spatial scale of artificial experiments 
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relative to the ecological system that they aim to represent, and inconsistencies 

between results gathered in the lab and results collected in the field. However, I 

agree with researchers who argue that there is a need for model systems to unravel 

the complexities of the natural world (Fraser & Keddy, 1997; Elena & Lenski, 2003; 

Drake & Kramer, 2012). For example, they provide insights into hidden worlds such 

as soil food webs (Daehler & Strong, 1996), allow us to directly study key processes 

like adaptation (Buckling et al., 2009), and test ecological and evolutionary theory 

with replicate populations (Benton et al., 2007). Jessup et al. (2005) sums up the 

benefits of microbial experimental systems for providing a necessary link between 

theoretical models and the natural world: 

“These advantages allow ecologists to dissect the complexity of 

nature into its component parts, analyzing each part’s role in 

isolation and then in combination.”  

 

Arguably, the same qualities that make theoretical models so valuable in ecological 

and evolutionary research are also beneficial to experimental systems. It is suggested 

that the best models are general so that they can be applied to many populations and 

scenarios, realistic so that they can be applied to real biological systems (as opposed 

to mathematical objects), and accurate so that the evidence can be relied on to guide 

future investigations (Evans, 2012). For example, Fisher’s geometric model of 

adaptation captures the essence of the process of adaptation and by virtue of its 

simplicity it allows assumptions to be applied to a wide range of real-life biological 

systems or environmental conditions.  However, it forces concrete biological 

understanding of these systems in order for predictions to be precise and outcomes 

realistic. It is a testament to the model that so many researchers reference this piece 

of work in their research today. Manipulation experiments and experimental 

evolution are simple compared to the natural world however, experiments are 

powerful in that are able to produce generalisable results that disentangle the effects 

of environmental drivers, and link them directly to responses (Elena & Lenski, 2003; 

Scheinin et al., 2015).  
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There is hopeful evidence indicating that mesocosm experiments accurately capture 

the effects of large scale field investigations (Tran et al., 2015). To date there are no 

publications that compare the results of mesocosm experiments to the results 

gathered from lab experiments, but work is currently ongoing (Lawrence and Collins, 

personal communication). Investigations such as these are important to test how the 

results obtained from laboratory experiments compare with more realistic 

experiments. If the outcome is that we cannot extrapolate from laboratory 

experiments, investigators must change focus away from artificial laboratory 

experiments to more natural experiments such as natural microcosms (Srivastava et 

al., 2004) and mesocosm experiments. However, a trade-off must be made, as the 

closer to the natural world we get, the more confidence we have that our results 

apply to natural organisms, but the more difficult it becomes to interpret the results, 

and disentangle the effects of environmental variables (Srivastava et al., 2004; Evans 

et al., 2012). 

 

6.1.8 Communication between freshwater and marine biologists 

 

There is very little communication between freshwater and marine biology, yet both 

have set out similar goals for the future of multiple driver research in both marine 

(Andersson et al., 2015), and freshwater (Hering et al., 2014) ecosystems. Marine 

and freshwater manipulations often focus on phytoplankton as they are well-suited to 

manipulation experiments due to the small amount of space required, short 

generation times (Collins, 2012), manageable number of well-defined traits 

(Litchman & Klausmeier, 2008), and are ecologically important in aquatic 

ecosystems (Häder et al., 1998; Beardall & Raven, 2004). Environmental drivers 

predicted under future global change will effect both marine and freshwater 

ecosystems and there are urgent calls for investigators to not only measure the effect 

of MEDs, but to disentangle their effects (Benton et al., 2007; Ormerod et al., 2010). 

There is a need for a general framework that is applicable to both marine and 
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freshwater phytoplankton. These facts suggests that more dialogue between the two 

disciplines would be beneficial for a collaborative effort to fill in the knowledge gaps 

of multiple driver research (Hering et al., 2014; Andersson et al., 2015). 

 

There is a long history of MED research in freshwater biology (Carpenter et al., 

1987; Schindler et al., 1996; Yan et al., 1996) and as a result, most theory of the 

effects of multiple environmental drivers on aquatic systems was founded in 

freshwater biology (Boyd & Hutchins, 2012). Despite similarities in organismal 

function between freshwater and marine phytoplankton (and presumably other taxa), 

there are few links between freshwater and marine multiple driver studies. Boyd & 

Hutchins (2012) suggest that communication between freshwater and marine 

biologists would benefit marine investigations. For example, one of the most 

developed areas of multiple driver research in marine biology is the impact of ocean 

acidification on marine phytoplankton. This has been studied in the lab (Riebesell et 

al., 2007) and in situ (Engel et al., 2005), and is one of the first examples of 

investigating the evolutionary outcomes of environmental drivers predicted under 

future global changes (Lohbeck et al., 2012). However, these experiments do not 

have the power to disentangle the effects of reduced pH and elevated CO2. 

Predictions on the effects of combinations of environmental drivers can only be 

made by knowing their effect individually, and this is supported by traditional 

models used to predict the outcome of chemical mixtures (Bliss, 1939), scenario 

experiments (Boyd et al. 2015b), and here in the present study (Brennan & Collins 

2015).  

 

More recently, marine biologists and oceanographers have begun to respond to the 

need to study the impact of environmental drivers over evolutionary relevant 

timescales (see review by Reusch & Boyd (2013) and Collins et al. 2014)). Yet 

freshwater investigations of single and multiple environmental drivers are concerned 

with the short-term acclimation responses (apart from studies that use freshwater 

model organisms such as Chlamydomonas reinhardtii to better understand 
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evolutionary processes). However, understanding how evolution under MEDs will 

shape populations, will improve predictions on the impact of global change on 

natural populations, and result in better-informed theory and, hopefully, policy. 

There is clearly something to gain from better communication between both 

disciplines and there are methods and tools in place for aquatic ecology to move 

closer to the future goals outlined in Figure 6.1. 

 

6.1.9 Future directions 

 

Although much of this discussion is framed in the context of aquatic ecology, the 

effect of multiple environmental changes in the context of global change is a 

challenge faced by many biologists. Several experimental approaches could be 

considered depending on the question at hand.  If the aim of a study is to understand 

the effect of MEDs and attempt to disentangle the effects of the number of 

environmental changes and the identity of the environmental changes, then this 

requires a high a high level of replication using different combinations of 

environmental changes (as presented here). However, without the use of model 

organisms, the level of replication within each level of NED achieved here would not 

be possible. As a consequence, many experiments are often limited to a combination 

of a few different drivers and whilst these are useful for understanding the specific 

effects of multiple drivers tested, predictions cannot be made on the effect of these 

changes at higher levels of NED.   

 

My work suggests that studies aimed at predicating population responses to global 

change that are limited by space and time, should measure responses to many 

individual environmental drivers alone, sampling from a wide distribution of drivers 

and driver intensities in order to identify dominant drivers. Unlike other models 

(additive, multiplicative) where each environmental driver will contribute equally to 

the combined effect on the organism, the comparative model only requires that the 

dominant environmental drivers be identified in the investigation in order for 
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predictions to be made (Folt & Chen, 1999; Jackson et al., 2015). This provides 

encouraging evidence that continuing to build our understanding of how single 

drivers affect population growth is a useful way to proceed, especially in cases where 

large experiments are impossible. This point of view is supported by investigations 

using scenario based experimental designs (Boyd et al. 2015b).   

 

On the other hand, studies that are interested in particular environmental changes and 

their interactions should continue to measure these interactions empirically, as the 

combined effect of a few environmental drivers cannot be predicted (Byrne & 

Przeslawski, 2013; Hering et al., 2014; Jackson et al., 2015). In addition, proteomics 

will reveal the mode of action of different environmental drivers by measuring 

changes in gene expression in response to environmental drivers. Proteomics will 

enable the identification of pathways and target sites of environmental drivers and 

this will allow the investigator to distinguish between driver interactions that effect 

different target sites and pathways, and driver interactions that increase the intensity 

of the effect by acting on the same target site.  This is certainly a method that could 

be used to better understand the effects of MEDs on the ancestor and the evolved 

populations in the present study, and may help explain the remainder of the variation 

in the plastic growth responses that cannot be explained by comparative model (36% 

of the variation in growth is unexplained by the comparative, additive and 

multiplicative model). Using proteomic data, up or down regulated proteins are 

recorded in response to each regime, including biological pathways and protein 

interactions so that the mode of action in response to each driver can be explored in 

more detail (Aebersold & Mann, 2003; Hoffmann & Willi, 2008; Vaudel et al., 

2014). Using time-of-flight mass spectrometry a metabolic profile was produced for 

C. reinhardtii in response to different nutrient limited environments (iron, 

phosphorus), and numerous changes in metabolite levels were measured (Bölling & 

Fiehn, 2005).  This type of detailed analysis is very powerful for filling in gaps in the 

knowledge of an organism’s response to environmental drivers and combinations of 

environmental drivers. 
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7 Appendix 1  

Appendix for Chapter 2 

 

7.1.1 NED drives changes in the number of cells (d
-1

) 

In the present experiment the rate of cell division (d-1) was used to investigate the 

effect of NED on growth rate. However, we can draw the same conclusions from the 

data when the same analysis is performed on the change in the number of cells (d-1) 

(using Equation 2-2); NED has a significant effect of the change in the number of 

cells (d-1) (Figure 7.8; F1,94 = 41.034, P < 0.000). The fastest growing populations 

(including populations growing in the control environment) achieved a population 

cell density of 4x106 cells per millimetre following 120 h of growth. The average 

population cell density was 1.6x106. The rate of cell division (d-1) was used in the 

present study as this metric accounts for the differences in initial population size in 

each culture, and reports a biologically meaningful measure that can be compared 

across test environments, despite differences in the shape of growth curves. 
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Figure 7.1  The wavelength of the emissions from the UV lamp (UVM-57) used.  

  



 

 187 

 

 

 

Figure 7.2 The average rate of cell division of C. reinhardtii growing in the single 

environmental drivers. Solid circles show the average value (± standard deviation) over all 

regimes for each NED. 
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Figure 7.3  Population growth curves of C. reinhardtii under 0 to 8 environmental drivers. 

Cell counts were measured every 24 h for 120 h in each regime. Coloured points and lines 

indicate average of each technical replicate (± standard deviation) for each regime. Each 

panel is labelled with the number and identity of the environmental drivers for each regime 

respectively. Figure is split into four sections so that panels are large enough to read and 

continues in Figure 7.4, 7.5 and 7.6. 
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Figure 7.4 : Population growth curves of C. reinhardtii under 0 to 8 environmental drivers.  



 

 190 

 

Figure 7.5  : Population growth curves of C. reinhardtii under 0 to 8 environmental drivers.  
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Figure 7.6: Population growth curves of C. reinhardtii under 0 to 8 environmental drivers.  
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Figure 7.7 Cell density of C. reinhardtii after 120h of growth in regimes containing 0 to 8 

environmental drivers. Box plots show cell densities over three replicates for each regime. 

The solid bands denote the median value, the bottom and top of the each box represent the 1st 

and 3rd quartile of the data respectively. Whiskers indicate the positions of the lowest and 

highest value that is within 1.5 times the interquartile range. Dashed lines show the highest 

and lowest cell density between all 96 regimes. NED is shown here by the colour of each 

box plot and the identity of the environmental drivers within each regime is labelled on the x 

axis. Drivers are: CO2, CO2 enrichment; Temp, elevated temperature; LI, reduced light 

intensity; pH, reduced pH; P, phosphate starvation; Herb, herbicide; ND, general nutrient 

depletion; UV, UV radiation.
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Figure 7.8 Population growth of C. reinhardtii under 0 to 8 environmental drivers. 

Population growth is measured as the change in number of cells (d-1) (a) Black data points 

and bars represent the mean and standard deviation between regimes for each NED. See 

Table 2-3 for regimes. Coloured points indicate the average growth rates among replicate 

population grown in the same regimes (± SD) (96 regimes in total, see Figure 7.11 for 

identity of regimes). (b)-(d) Population growth rates (mean and standard deviation) predicted 

by a model (white triangles) alongside measured values (black circles), followed by 

goodness-of fit, for three models. (b) Comparative model (R2 = 0.61, P < .0001). (c) 

Multiplicative model (R2 = 0.60, P < .0001). (d) Additive model (R2 = 0.41, P < .0001); 

extinction is predicted in environments with >3 changes (red dashed line). 
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Figure 7.9 Effect of sampling from a finite number of environments. Blue circles show the 

results of simulating the expected population growth rate (± standard deviation) at each 

number of environmental drivers given a comparative model and the growth effects of single 

drivers measured in the experiment, where a finite number of possible drivers (8) exist to 

choose from. In these cases, each driver can only be chosen once per regime, such that each 

possible growth effect can only be sampled once per regime, and environments thus become 

more similar as the NED increases. Orange circles show the results of simulating the 

expected population growth rate (± standard deviation) for increasing numbers of 

environmental drivers given a comparative model and the growth effects of single drivers 

measured in the experiment, where an infinite number of possible drivers exist to choose 

from. In these cases, the same growth effect can be sampled multiple times at a given NED 

and environments are not constrained to become more similar as the NED increases. All 

points are the results of 10000 iterations of the simulation.   
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Figure 7.10 Cartoon of the effects of multiple drivers on organismal function using an 

environmental tolerance curve. Some aspect of organismal function, such as growth, is 

plotted as a function of the environment experienced by the organism, with the value of 

“Environment” being determined by multiple environmental drivers. Initially, organismal 

function is high (solid black circle). When single drivers change, organismal function 

changes (patterned filled circles). While the effect of each driver may be unknown, as more 

and more drivers occur, the likelihood of at least one driver or driver interaction having a 

large detrimental effect on organismal function increases. This thought experiment does not 

require that the population be in its optimal environment, just that among the environments 

sampled, the control environment be one where organismal function is high. Figure 2.1 

shows that this is the case here, since the control environment is among the “best” 

environments available in this experiment. Note that this cartoon is meant to illustrate the 

thought process, and not to indicate the quantitative effects of the specific environments used 

in this experiment. Please refer Figure 2.1 for quantitative data. 
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Figure 7.11 The identity of regimes within each NED level shown in figure 2.1, 

figure 2.2a, figure 5.1, figure 5.2, figure 5.3, figure 5.5, figure 5.7, figure 5.8, figure 

7.8a, figure 7.14 and figure 10.5. 
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Figure 7.12 The identity of regimes (without CO2) within each NED level shown in 

figure 2.9. 
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Figure 7.13 The growth rate of C. reinhardtii after 120h of growth in regimes containing 0 to 

5 environmental drivers, similar to those environmental drivers in Boyd et al. (2015b). The 

identity of the environmental drivers within each regime is indicted by each shape and 

identified within the label. Drivers are: CO2, CO2 enrichment; Temp, elevated temperature; 

LI, reduced light intensity; pH, reduced pH; UV, UV radiation.  
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Figure 7.14 Population extinction risks of C. reinhardtii at different numbers of 

environmental drivers. Ratio of extinction risks of populations relative to the risk of 

extinction in the control environment (NED = 0). Solid circles show the average value (± 

standard deviation) over all regimes for each NED. Coloured points represent mean (± 

standard deviation) ratio of extinction risks for 3 replicate populations for each regime for a 

given number of environmental drivers (96 regimes total, see Figure 7.11 for identity of 

regimes).  
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Table 7-1 A comparison of the percentage variation explained by each source within the 

mixed effects mode 

Source Variation (%) Mixed Effects Model Category 

Replicate  1.39 Random 

Regime  32.04 Random 

Within replicate  19.64 Random 

Overlap  10.34 Fixed 

NED  36.59 ** Fixed 

Number of observations: 576, groups:  replicate, 288; regime, 96; Overlap, 52; NED, 
9 
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8 Appendix 2  

Appendix for Chapter 3 

 

8.1.1 Specific responses of regimes within NED levels   

 

At low NED, environments with NED = 1 to 2 have a strong positive correlation 

between the average population growth rate of the MED-evolved populations and the 

strength of selection, explaining 32% of the variation (Figure 8.3; NED =1; R2 = 

0.32, P = <0.0001), and 36% of the variation respectively (Figure 8.4; NED =2;  R2 

= 0.36, P = <0.0001).  The trend of a higher strength of selection producing a larger 

direct response in the MED-evolved populations is more apparent as NED increases.  

At NED = 3 the correlation between the growth rate of the MED-evolved populations 

and the evolved control populations is weaker (Figure 8.5; NED = 3; R2 = 0.15, P 

<0.0001).  

 

The correlation between the growth rates of the MED-evolved populations and the 

strength of selection remains strong at NED = 4 (Figure 8.6; NED = 4; R2 =0.61, P = 

<0.0001) and NED =5 (Figure 8.7; NED = 5; R2 =0. 43, P = <0.0001). This is due to 

two clusters of regimes - one cluster showing high growth rates that are the result of 

evolving in high-quality environments, and so have small direct responses to 

selection, and a second cluster with high growth rates as a result of a large positive 

direct responses due to stronger selection caused by evolving in low-quality 

environments. Although the correlation between the strength of selection and the 

growth rates of the MED-evolved populations is high at NED = 6, this is caused by a 

single regime with a low strength of selection and high growth rates 

(CO2/Temp/pH/LI/UV/ND). The strength of selection in all other regimes is high but 

the direct response varies between regimes (Figure 8.8; NED = 6; R2 =0. 45, P = 

<0.0001). The strength of selection is high in all regimes at NED = 7, but adaptation 

and growth rates are limited. Growth rates are not significantly higher than the 
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evolved control populations in the majority of regimes within NED =7 (Figure 8.9; 

NED = 7; R2 = 0.022, P = <0.0001). 

 

There are negative direct responses in some regimes, which is consistent with weak 

or no selection pressure at low NED (1-3).  However, negative direct responses also 

occur in some regimes where the strength of selection is high. In NED = 4, on 

average all regimes of the MED-evolved populations grow better, or just as well as 

the evolved control populations in the same environment, with two exceptions 

(CO2/pH/UV/ND) and (CO2/Temp/pH/LI). At NED = 5, two MED-evolved 

populations have lower growth rates than the evolved control populations in the 

selection environment (CO2/pH/UV/ND/LI) and (pH/UV/ND/LI/herb). Finally, at 

NED = 6 all regimes grow as well or better than the control in the selection 

environments with the exception of (CO2/P/LI/herb/ND/pH).  These environments 

have general nutrient depletion and reduced phosphate in common, which may limit 

maximum growth rate possible in this selection environment.  

 



 

 205 

 

Figure 8.1 The average rate of cell division (d-1) of the evolved control replicate populations 

(black fill circles) in the single environmental drivers (±�SD). 
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Figure 8.2 The proportion regimes (1 to 7 NED), where the MED-evolved populations have 

a significant direct response to selection. Significance is calculated as the proportion of 

regimes where the direct response of each evolved population, is greater than the third 

quartile of the direct response of the MED-evolved populations growing NED = 1 (see 

Figure 3.1).   
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Figure 8.3 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 1. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.4 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 2. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.5 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 3. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.6 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 4. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.7 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 5. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.8 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 6. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.9 There is a negative correlation between the strength of selection of the selection 

environments and the growth rate of evolved populations.  Coloured filled circles show the 

average growth rate between evolved replicate populations within each regime (± 1 standard 

deviation), within NED = 7. The 1:1 dashed line indicates the expected growth rate if the 

MED-evolved populations growth rates were equal to the growth rates of the evolved 

control.  The dotted line indicates the growth rate of the evolved control populations in the 

control environment. 
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Figure 8.10 Number of cells per millimetre of evolved control populations (red) and MED-

evolved populations (blue) after 72 h of growth in selection environments containing 

between 0 and 8 NED. Coloured point points show the average number of divisions between 

regimes from evolved control populations (red) and MED-evolved populations (blue).  The 

average of the evolved control populations, assayed in the control environment (NED = 0) is 

shown here by a dashed line.    
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Figure 8.11 The waiting time for a mutation to arise within the populations selected in 

environments with between 1 and 8 environmental drivers.  The black bands denote the 

median value, the bottom and top of each box represent the 1st and 3rd quartile of the data 

respectively. The ‘whiskers’ extending from the boxes indicate the positions of the lowest 

and highest values of populations within each NED and solid black circles show outliers 

within the data. Text gives the slope and intercept (calculated using a linear regression 

model) of the relationship between NED and waiting time, as shown by the solid line. 
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Figure 8.12 The fixation time for a mutation to arise within the populations selected in 

environments with between 1 and 8 environmental drivers.  The black bands denote the 

median value, the bottom and top of each box represent the 1st and 3rd quartile of the data 

respectively. The ‘whiskers’ extending from the boxes indicate the positions of the lowest 

and highest values of populations within each NED and solid black circles show outliers 

within the data. Text gives the slope and intercept (calculated using a linear regression 

model) of the relationship between NED and waiting time, as shown by the solid line. 
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Table 8-1 ANOVA of the effect NED selection of selection and overlap on the  average rate 

of cell division (d-1) of  C. reinhardtii. 

Source Mean 
Squares 

df Denominator 
df 

F P 

NED 3.4529 1 130.69 3.4239 0.067 
Overlap  0.0017 1 132.68 0.0121 0.913 

 

 

Table 8-2 A comparison of the percentage variation of the average rate of cell division (d-1) 

explained by each group within the mixed effects model. 

Groups Variance 

(%) 

Mixed Effects Model 

Category 

Replicate 42.43 Random 

Regime 15.35 Random 

Batch 15.10 Random 

Within replicate 22.12 Random 

NED 5.01 Fixed 

Overlap 0.00 Fixed 

Number of observations: 1158, groups:  ID, 343; regime, 92; Batch, 8 
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Table 8-3 ANOVA of the effect NED selection of selection and overlap on the  direct 

response of  C. reinhardtii. 

Source Mean 
Squares 

df Denominator 
df 

F P 

NED 0.67 1 72.20 0.63 0.429 

Overlap  0.75 1 72.21 2.25 0.138 
Strength of Selection  3.22 1 76.56 10.21 0.002 

NED x Strength of 
Selection 

0.01 1 70.53 0.07 0.799 

 

Table 8-4 A comparison of the percentage variation of the average direct response 

explained by each source within the mixed effects model. 

Source Variance (%) Mixed Effects Model Category 

 

Replicate 34.52 Random 

Regime 19.40 Random 

Batch 8.32 Random 

Within replicate 18.63 Random 

NED 0.93 Fixed 

Overlap 0 Fixed 

Strength of Selection  18.20 ** Fixed 

Number of observations: 1158, groups:  ID, 343; regime, 92; Batch, 8 
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Table 8-5 A comparison of the percentage variation of the average rate of cell division (d-1) 

explained by each source within the post hoc mixed effects model 

Source Variance (%) Mixed Effects Model Category 

Replicate 39.13 Random 

Batch 16.39 Random 

Light intensity 0.00 Random 

Nutrient depletion 0.00 Random 

UVB 0.00 Random 

Herbicide 10.15 Random 

Phosphate depletion 8.26 Random 

pH 0.40 Random 

Temperature 2.98 Random 

CO2 0.94 Random 

Within replicate 18.33 Random 

NED 1.56 Fixed 

Overlap 1.87 Fixed 

Number of observations: 1158, groups: ID, 343; Batch, 8; LI, 2; ND, 2; UV, 2; Herb, 2; P, 2; pH, 2; 

Temp, 2; CO2, 2 
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Table 8-6 A comparison of the percentage variation of the direct response explained by 

each source within the post hoc mixed effects model 

Source Variance 

(%) 

Mixed Effects Model 

Category 

Replicate 36.93 Random 

Batch 6.43 Random 

Light intensity 0.00 Random 

Nutrient depletion 0.00 Random 

UVB 0.00 Random 

Herbicide 4.51 Random 

Phosphate depletion 8.94 Random 

pH 0.00 Random 

Temperature 1.11 Random 

CO2 1.44 Random 

Within replicate 14.07 Random 

NED 0.00 Fixed 

Overlap 0.00 Fixed 

Strength of selection  26.56 Fixed 

Number of observations: 1158, groups:  ID, 343; Batch, 8; LI, 2; ND, 2; UV, 2; Herb, 2; P, 2; pH, 2; 

Temp, 2; CO2, 2 
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9 Appendix 3 

 

Appendix for Chapter 4 

 

9.1.1 PCA analysis  

 

PCA analysis was performed using the average growth rate of evolved populations in 

all assay environments.  This was performed in R and plotted using the package 

ggbiplot. Evolved plastic response of populations evolved in NED = 1 and NED = 5 

environments were analysed with respect to the first two principal components. This 

was explored by summarising variation in the ability of evolved populations ability 

to grow in the control environment (NED = 0), in environments with one 

environmental driver (NED =1), five environmental drivers (NED =5), eight 

environmental drivers (NED=8) and a novel environment copper sulphate (0.2 µM). 

In addition, variation in evolved population growth was summarised across all 18 

assay environments.  
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Figure 9.1 Pilot data showing the response of the evolved control populations to increasing 

copper sulphate concentration. Open circles show the average response of three replicate 

populations (± SD).  
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Figure 9.2 Rate of cell division (d-1) of evolved populations selected in 18 different assay 

environments. Coloured boxplots show growth rate of the evolved populations selected in 

the one of 15 environments (indicated by the legend), with 0, 1 or 5 environmental drivers. 

Each panel label indicates the assay environments that each evolved populations were grown 

in. Dashed lines show the growth rate of the evolved control. 
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Figure 9.3 Home vs. away (HA) local adaptation is calculated as the mean fitness of the 

population at home minus the average mean fitness of the population when transplanted in 

all other habitats. This measurement of local adaptation does not take into consideration the 

quality of the environment. Circles show the average response per evolved replicate within 

each regime with NED = 0 (red), NED =1 (green) and NED = 5 (blue). 
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Figure 9.4 Local vs. foreign (LF) local adaptation is calculated as the mean fitness of a local 

population at home minus the average mean fitness of all other populations when 

transplanted into each local habitat. Circles show the average response (± SD) per evolved 

replicate within each regime with NED =1 (red) and NED = 5 (blue). 
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Figure 9.5 Plastic response of populations evolved in environments with one environmental 

driver (solid green points) and with five environmental driver (solid blue points) with respect 

to the first two principal components summarizing variation in their ability to grow in 

environments with either no environmental drivers (control), one environmental drivers 

(NED =1), fiver environmental drivers (NED =5), eight environmental drivers (NED=8) and 

an novel environment copper sulphate (0.2 µM). The larger circles indicate how population’s 

selected in environments with either one environmental driver (solid green circle), or five 

environmental drivers (solid blue circle) cluster.   
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Figure 9.6 Plastic response of populations evolved in environments with one environmental 

driver (solid green points) and with five environmental driver (solid blue points) with respect 

to the first two principal components summarizing variation in their ability to grow in 

environments with either no environmental drivers (control), one environmental drivers 

(NED =1), fiver environmental drivers (NED =5), eight environmental drivers (NED=8) and 

an novel environment copper sulphate (0.2 µM). The circles indicate how population’s 

selected in environments with either one environmental driver (solid green circle), or five 

environmental drivers (solid blue circle) cluster. 
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Table 9-1 ANOVA of the effect selection NED (0, 1, and 5), Assay NED and similarity 

on the average rate of cell division (d-1) in 17 different environments. 

Source Mean Squares df Denominator df F P 

Selection NED 0.06 1 61.38 9.11 0.002 

Assay NED 0.21 1 18.60 10.30 0.001 
Similarity 0.18 1 228.48 0.003 0.064 

Selection NED x 
Assay NED 

0.51 1 209.64 12.57 0.002 

 

Table 9-2 Mixed effects model output showing the percentage variation of average rate 

of cell division (d-1) of evolved populations explained by each source of the model.  

Source Variance (%) Mixed Effects Model 
Category  

Evolved Population(Selection 
Environment(Selection NED)) x Assay 
Environment(Assay NED)   

30.89 Random 

Assay Environment(Assay NED) 28.04 Random 

Evolved Population(Selection Environment 
(Selection NED))   

9.92 Random 

Batch 1.94 Random 

Selection Environment(Selection NED)x 
Assay Environment(Assay NED) 

0.38 Random 

Selection Environment(Selection NED) 0.00 Random 

Assay NED    16.76 ** Fixed 

Selection NED x Assay NED 2.46 ** Fixed 

Selection NED  0.00 ** Fixed 

Similarity 0.55 Fixed 

Within Evolved populations 9.06  

   
Number of observations: 1448, groups:  Selection Environment x population Assay Environment, 

715; Selection Environment x Assay Environment, 254; Selection Environment x population, 44; 

Assay Environment, 17; Selection Environment, 15; Batch, 4. Significance codes: ***, P < 0.001; **, 

P < 0.01; *, P < 0.05. 
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Table 9-3 ANOVA of the effect selection NED (0, 1, and 5), Assay NED and similarity 

on the correlated response in 17 different environments. 

Source Mean 
Squares 

df Denominator 
df 

F P 

Selection NED 0.06 1 61 9.06 0.002 
Assay NED 0.00 1 17 0.27 0.718 

Similarity 0.18 1 226 0.00 0.075 
Selection NED x Assay 

NED 
0.53 1 209 12.86 0.001 

 

Table 9-4 Mixed effects model output showing the percentage variation of the 

correlated response of evolved populations explained by each source of the model.  

Source Variance (%) Mixed Effects 
Model Category  

Evolved Population(Selection 
Environment (Selection NED)) x Assay 
Environment(Assay NED)    

47.08 Random  

Evolved Population(Selection 
Environment (Selection NED)) 

15.29 Random  

Assay Environment(Assay NED) 15.23 Random  

Batch 3.16 Random  

Selection Environment(Selection NED) x 
Assay Environment(Assay NED) 

0.57 Random  

Selection Environment(Selection NED) 0.00 Random  

Selection NED x Assay NED 4.02 ** Fixed 

Similarity 0.86 Fixed 

Assay NED 0.00 Fixed 

Selection NED 0.00 ** Fixed 

Within evolved populations 13.80  
Number of observations: 1448, groups:  Selection Environment x population Assay Environment, 

715; Selection Environment x Assay Environment, 254; Selection Environment x population, 44; 

Assay Environment, 17; Selection Environment, 15; Batch, 4. Significance codes: ***, P < 0.001; **, 

P < 0.01; *, P < 0.05. 
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Table 9-5 Mixed effects model output showing the percentage variation from each source of 

the model, of the average rate of cell divisions (d-1) of evolved population in a novel 

environment, copper sulphate. 

Source Variance 
(%) 

Group 

 

Evolved Population(Selection Environment (Selection 
NED))  

24.75 Random  

Batch 10.12 Random  
Selection Environment(Selection NED) 0 Random  

Selection NED 54.88 Fixed  

Within Evolved populations 9.25  
Number of observations: 82, ID, 40; Selection Environment, 15; Batch, 4. Significance codes: ***, P 

< 0.001; **, P < 0.01; *, P < 0.05. 
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Table.9-6 The observed distribution of rank order (out of 15) of the evolved NED = 1 and 

NED = 5 populations, assayed in 13 environments. Numbers inside bracket show the 

expected distribution calculated using Chi-squared goodness of fit test and the expected 

frequency that equal the frequency of rank order of the evolved control. 

Rank order NED=1 NED = 5 Expected frequencies 

 

1 10 4 7 

2 11 3 7 

3 9 2 5.5 

4 7 5 6 

5 6 4 5 

6 5 9 7 

7 6 6 6 

8 6 8 7 

9 10 4 7 

10 7 7 7 

11 5 9 7 

12 4 8 6 

13 4 9 6.5 

14 3 11 7 

15 5 9 7 
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10 Appendix 4 

 

Appendix for Chapter 4 

 

10.1.1 PE autofluorescence intensity per cell volume  

 

A consistent feature cells growing MEDs was the presence of autofluorescence 

within the PE-a channel of the flow cytometer (Figure 10.4, pp 242; Ex-Max 488 

nm/Em-Max 485/42 nm), which is commonly used to detect phycoerythrin 

autofluorescence found in red algae (Veldhuis & Kraay, 2000). C. reinhardtii does 

not contain phycoerythrin (Harris, 2001), and the source of PE autofluorescence has 

yet to be identified. I found that all chlorophyll negative populations are PE positive, 

and some chlorophyll positive cells are PE positive (cells positive for both 

chlorophyll and PE are referred to here as “dual expression”) (Figure 10.4).  One 

possibility is that the PE autofluorescence channel is detecting chlorophyll 

breakdown products and may indicate cells that are dying or bleaching, i.e. losing 

their chlorophyll. Figure 10.5 demonstrates that little PE autofluorescence is detected 

in the control plastic response and the control evolved response. Before evolution 

there is a trend that PE increases with NED and this is significant (Figure 10.5b; the 

effect of NED on the PE autofluorescence (µm3) before evolution, F1,93 = 9.885, P = 

0.002). However, the relationship between NED and PE autofluorescence breaks 

down during evolution (Figure 10.5b; the effect of NED on the PE autofluorescence 

(µm3) after evolution, F1,59 = 1.304, P = 0.258). In addition, the relationship between 

the proportion of PE autofluorescence per cell volume (µm3) and growth rate is 

stronger before evolution, however, following evolution PE autofluorescence is 

always absent in populations where growth rate is greater than 2.2 divisions (d-1) 

(Figure 10.6).   

 

 



 

 234 

10.1.2 Mass spectrometer analysis  

 

The pigment responsible for PE autofluorescence in C. reinhardtii is yet to be 

characterised and so in order to better understand the metabolic differences between 

PE positive (chlorophyll negative) and chlorophyll positive (PE negative) 

populations, mass spectrometry analysis was performed in order to identify any 

significant differences between the proteins upregulated or downregulated by each of 

the populations. 

 

Methods 

 

Cell harvesting 

Chlamydomonas reinhardtii evolved in NED = 5 (Temp/ pH/ LI/ UV/ ND), were 

grown for one transfer cycle and then sorted based on PE and chlorophyll 

autofluorescence properties, using FACs. See methods section 5.3.3 (page 144). Note 

that dual expression cells were excluded from this analysis (Figure 10.4). 

 

 Sample preparation 

Cell pellets were reconstituted and lysed into 250 µl of 8M urea and a protein assay 

performed (Bradford Biorad). One mg of protein extract was digested, 25 µl of 1M 

ammonium bicarbonate and 25 µl of 200 mM dithiothreitol (DTT) were then added 

to enable denaturation and reduction of the samples. Samples were kept at room 

temperature for 30 minutes before cysteine alkylation with 25 µl of 500 mM 

iodoacetamide for 1h. 10 µg of trypsin was added and the digestions were performed 

overnight at room temperature. Peptide extracts were then cleaned on SPE reverse 

phase Bond Elut LMS cartridge, 25mg (Agilent). The samples were dried under low 

pressure (Speedvac from Thermo Jouan) and stored at -20 ºC.  
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HPLC-MS analysis 

The dried peptide samples were re-suspended in resuspension buffer (0.5%v/v 

trifluoroacetic acid in water) to give final concentration of 1 µg/µl. These samples 

were filtered using Millex filter before subjecting to HPLC-MS analysis. Nano-

HPLC-MS/MS analysis was performed using an on-line system consisting of a nano-

pump (Dionex Ultimate 3000, Thermo-Fisher, UK) coupled to a QExactive 

instrument (Thermo-Fisher, UK) with a pre-column of 300 µm x 5 mm (Acclaim 

Pepmap, 5 µm particle size) connected to a column of 75 µm x 50 cm (Acclaim 

Pepmap, 3 µm particle size). Samples were analysed on a 90 min gradient in data 

dependent analysis (1 survey scan at 70k resolution followed by the top 10 MS/MS). 

 

Data analysis  

Data from MS/MS spectra was searched using MASCOT Versions 2.4 (Matrix 

Science Ltd, UK) against the Chlamydomonas reinhardtii subset of the NCBI protein 

database with maximum missed-cut value set to 2. Following features were used in 

all searches: i) variable methionine oxidation, ii) fixed cysteine 

carbamidomethylation, iii) precursor mass tolerance of 10 ppm, iv) MS/MS tolerance 

of 0.05 amu, v) significance threshold (p) below 0.05 (MudPIT scoring) and vi) final 

peptide score of 20. Progenesis (version 4 Nonlinear Dynamics, UK) was used for 

LC-MS label-free quantitation. Only MS/MS peaks with a charge of 2+, 3+ or 4+ 

were taken into account for the total number of ‘Feature’ (signal at one particular 

retention time and m/z) and only the five most intense spectra per ‘Feature’ were 

included. Normalization was first performed based on the median of the ion 

intensities of these sets of multi-charged ions (2+, 3+, and 4+). The associated unique 

peptide ion intensities for a specific protein were then summed to generate an 

abundance value, from which was then transformed using an ArcSinH function (a log 

transform is not ideal considering the significant amount of near zero measurements 

generated by the current method of detection). Based on the abundance values, 

within group means were calculated and from there the fold changes (in comparison 

to control) were evaluated. One-way ANOVA was used to calculate the p-value 
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based on the transformed values. Differentially expressed proteins were only 

considered significant in current study if the following conditions were fulfilled: i) p-

values (pair-wise) less than 0.05, ii) number of peptides detected and used in 

quantification per protein was equal to or more than 2, and iii) absolute fold change 

was at least 1.5 (i.e. ≥1.5 folds for up-regulated proteins while ≤ 0.667 fold for 

down-regulated proteins)  

 

Results  

 

Comparison of protein expression in chlorophyll positive and chlorophyll negative 

populations 

A total of 1,317 proteins were identified.  Using a volcano plot I was able to plot the 

fold change between the two populations and the significance of the difference 

between them (Figure 10.7; Anova P value). Using thresholds for the fold change in 

proteins and significance (p <0.05 and fold change; 0.667 ≥ ratio ≥ 1.5), 719 proteins 

were selected for pathway analysis.  Pathway analysis was used in order to 

understand the difference in proteins between the populations and any pathways that 

exist between them. Using the Uniprot database the EMBL accession number was 

converted into a Uniprot number.  The Uniprot number could then be converted into 

a STRING number (using Uniprot database) (Table 10-1). STRING was used to 

visualise the pathways in downregulated and upregulated proteins (Figure 10.8), in 

the chlorophyll negative/ PE positive populations. 

 

 

 

Table 10-1 list o the number of Uniprot accession numbers for each group of peptides and 

condition of these peptides, showing the number of STRING numbers and the percentage of 

successful conversion.   
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Group Condition  Number of 

Uniprot numbers 

Number of STRING 

conversion  

Percentage 

conversion from 

Uniprot to 

STRING (%)  

1 Proteins upregulated in 

PE populations (fold 

change >1.5) 

153 91 59 

2 Proteins downregulated 

in PE populations (fold 

change <0.667) 

108 72 67 

3 Proteins downregulated 

in PE populations (fold 

change <0.667) 

125 78 62 

4 Proteins upregulated in 

PE populations (fold 

change >1.5) 

144 78 54 

 

Discussion  

Chlorophyll positive and chlorophyll negative subpopulations from the same evolved 

population were exposed to the same environmental conditions, yet their proteomes 

differ.  The most notable difference between chlorophyll positive and chlorophyll 

negative subpopulations is the upregulation of ribosomal proteins in chlorophyll 

negative subpopulations (Figure 10.8). Chlorophyll negative/PE positive 

subpopulations lack a crucial element to carry out photosynthesis and since these 

cells are growing in a carbon free media without the capability to photosynthesise, 

differences in protein expression are expected.  This is consistent with data by 

Klappenbach et al. (2000), who found a positive relationship between the number of 

rRNA operons inactivated and the time required to increase growth in response to 

added resources in E. coli, and this has been interpreted as evidence that more rRNA 

transcription allows E. coli to respond quickly to changing environmental conditions 

(Condon et al., 1995). This may allow the chlorophyll negative subpopulations in my 

experiment to advantage of available resources such as leaked organic carbon.  
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Conversely in the yeast S. cerevisiae, Gasch (2002) found that rRNA and ribosomal 

protein genes are sharply reduced under stressful conditions and this is due energy 

costs of ribosome synthesis required. Using microarrays analysis the transcript levels 

of ribosomal proteins are downregulated (in some cases more than 80 fold) following 

environmental stresses (Gasch, 2002). A reduction in ribosomal proteins and histones 

in E. huxleyi  is also seen under low pH conditions (Tomanek, 2014). The author 

suggests that these results are attributable to low cells division rates observed in 

populations growing in low pH.  

 

It is difficult to infer from the data in the present study if there is a benefit to 

upregulation of ribosomal proteins in chlorophyll negative populations, or the down 

regulation of the same proteins in the chlorophyll positive populations. Perhaps, one 

way to determine the role of ribosomal proteins is to compare the abilities of the 

subpopulations to grow in several new environments. Positive responses in the 

chlorophyll negative populations would confirm that ribosomal proteins are 

beneficial in changing environments, and suggest that the benefits outweigh the costs 

of ribosome synthesis in this case. 
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Figure 10.1 Standard curve of mean forward scatter (a,u.) and bead size (µm) measured 

using A FACS Canto. 
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Figure 10.2 Fluorescence image of three C. reinhardtii cells taken using a confocal 

microscope.  Image shows fluorescence of rhodamine 123 dye that detects mitochondrial 

membrane potential (shown in red – top left panel), propidium iodide dye which passively 

diffuses across compromised cell walls (shown in blue - top right panel), chlorophyll 

autofluorescence (shown in green - bottom left panel), and the complete image with all 

fluorescence (bottom right panel).   

 



 

 241 

 

Figure 10.3 Correlation between relative chlorophyll autofluorescence and cell size (µm) and 

before (a) and after evolution (b). Colour of points is scaled from red (low NED) to blue 

(high NED). 
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Figure 10.4 Using flow cytometry subpopulations can be identified using autofluoresnce 

(labelled on plot). Each point indicates the autofluorescence of a cell in channels PE-A and 

PerCP-Cy5-5-A.  
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Figure 10.5 PE autofluorescence (µm3) in populations of C. reinhardtii under 0 to 8 

environmental drivers. Black data points and bars represent means and standard deviation 

between regimes for each NED. Coloured points indicate the average growth rates among 

replicates populations within each regime (± SD) (96 regimes total, see Figure 7.11 for 

identity of regimes). Panel labels indicate the plastic response and evolved response to 

MEDs.  Dashed line shows the PE autofluorescence (µm3) of the control populations in the 

control environment.  Upper and lower panels show the same data however, the lower panels 

have different y axis so that the differences growth rate as NED increase are clear.   
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Figure 10.6 Correlation between proportion of PE positive cells and the rate of cell division 

before (a) and after evolution (b). Colour of points is scaled from red (low NED) to blue 

(high NED). Horizontal dotted line indicates the growth rate where no or very little PE 

autofluorescence is detected (>2.2 divisions per day-1).  
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Figure 10.7 Differences in proteins in C. reinhardtii that were grown under MEDs (Temp/ 

pH/ LI/ UV/ ND) and sorted using FACs into two populations; chlorophyll positive, PE 

negative and chlorophyll negative, PE positive populations.  Red circles indicate proteins 

which are significantly different between the two conditions (p <0.05), with a fold change in 

proteins between the two conditions (0.667 ≥ ratio ≥ 1.5).  
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Figure 10.8 Pathways between proteins upregulated in PE populations, generated by 

STRING. Protein ID’s that begin with “RP” are ribosomal proteins, shown here in a 

highly connected cluster.  
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Figure 10.9 A comparison of the number of divisions of C. reinhardtii growing in regimes of 

the case study, before (a), and after evolution (b). 

 

a

b
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Growth responses of a green alga to multiple
environmental drivers
Georgina Brennan and Sinéad Collins*

One feature of global change is that biota must respond not to single, but to multiple environmental drivers. By growing a
model photosynthetic microbe in environments containing between one and eight di�erent drivers, including changes in CO2,
temperature, and pH, in di�erent combinations, we show that the number as well as the identities of drivers explain shifts
in population growth rates. This is because the biotic response to multiple environmental drivers depends on the response
to the single dominant driver, and the chance of a driver of large e�ect being present increases with the number of drivers.
Interactions between drivers slightly counteract the expected drop in growth. Our results demonstrate that population growth
declines in a predictable way with the number of environmental drivers, and provide an empirically supportedmodel for scaling
up from studies on organismal responses to single drivers to predict responses to large numbers of environmental drivers.

Amajor challenge facing freshwater and marine biologists is
to quantify how aquatic biota will respond to our changing
climate. One of the hallmarks of global change is that

it is complex; changes in temperature, pH, light levels, carbon
dioxide andoxygen concentrations, nutrient availability, salinity and
other environmental variables can occur together1,2. Predicting the
action of multiple environmental drivers (MEDs) on population
growth is required for understanding how aquatic biota, at all
levels from individual genotypes to communities, respond to
global change3. Studies in freshwater3,4 and marine systems5,6 have
historically focused on understanding organismal responses to key
environmental drivers alone, such as changing temperature, CO2
levels, or light levels, or investigated MEDs by using pairs or trios
of drivers1. This has shown that interactions between the e�ects of
environmental drivers varywith the drivers and the organisms being
tested6, but use a small number of environmental drivers relative to
the number of drivers in most natural environments2. This leaves
open the possibility that when the number of environmental drivers
is larger, the e�ects of interactions between individual drivers may
become less important in determining overall organismal responses.
The goal of our study is to determine if knowing the interactions
between specific environmental drivers at the organismal level
is necessary when the number of environmental drivers is large,
or whether patterns emerge that allow us to predict organismal
responses without knowing particular driver interactions.

Studies on MEDs until now are mainly concerned with
understanding interactions between the e�ects of individual drivers
(see ref. 3 for definitions).Driver e�ects can either be additive, where
the response to MEDs is equal to the sum of their individual e�ects,
or multiplicative, where the response exceeds the sum of their
individual e�ects. Interactions that are additive ormultiplicative can
be further synergistic (having a positive feedback) or antagonistic
(having a negative feedback). Antagonistic interactions can thus
lead to outcomes where responses to MEDs are less than the sum
or product of their individual e�ects. These definitions must be
contextualized in terms of the level of organization they a�ect, such
as cellular processes or community composition. Driver interactions
can be studied mechanistically, where the interactions are between

drivers themselves (for example, the chemistry that links pH and
CO2 levels), or be outcome-based and describe e�ects on organisms.
Here, we use an outcome-based definition of drivers and driver
interactions. We focus on the e�ects of drivers and interactions as
population-level organismal responses.

Building an outcome-based prediction of biotic responses to
MEDs by understanding specific interactions between key drivers
requires that key drivers be identified and the interactions between
them be measured. This approach is fruitful when the number
of drivers is small. For example, high CO2 and low pH enhance
the detrimental e�ects of ultraviolet irradiation on a key pelagic
calcifier,Emiliania huxleyi7, and althoughmany diatom assemblages
do not respond to CO2 enrichment alone, CO2 and high light levels
interact synergistically to reduce their growth rates8. These experi-
ments can investigate the interactions between drivers, but are di�-
cult to scale up, because measuring interactions between all drivers
becomes impossible as the number of drivers increases. This is prob-
lematic, because these and similar studies on natural phytoplankton
assemblages4, E. huxleyi7,9–11, Phaeodactylum tricornutum12, and the
freshwater alga Chlamydomonas reinhardtii13, suggest that interac-
tions among drivers are not easily predicted even if they can be
explained once observed. If this is the case, then one cannot use
studies of pairs or trios of drivers to predict responses to those
same pairs when many other drivers are also present (for example,
if pH, CO2 and ultraviolet levels change alongside temperature,
oxygen levels, and micronutrient levels). One way to reduce the size
of experiments is to measure responses to groups of MEDs using
combinations of drivers that are likely to change in concert2. This
requires knowing how drivers group, and how these groups change
on relevant geographic and temporal scales.

Alternatively, it may be possible to make reasonable outcome-
based predictions of responses to MEDs based on the number of
environmental drivers. Our general reasoning can be explained
using environmental tolerance curves (Fig. 1), which usually show
the relationship between some aspect of organismal function (for
example, growth) and an environmental value (for example, tem-
perature). Here, we consider a tolerance curve showing the rela-
tionship between organismal function and the total environment

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King’s Buildings, West Mains Road,
Edinburgh EH9 3FL, UK. *e-mail: s.collins@ed.ac.uk

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1
© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2682
mailto:s.collins@ed.ac.uk
www.nature.com/natureclimatechange


ARTICLES NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2682

Environment

O
rg

an
is

m
al

 fu
nc

tio
n 

(e
x:

 c
el

l d
iv

is
io

n 
ra

te
)

Large negative
driver e�ect

Small negative
driver e�ect

Small positive
driver e�ect

Neutral
driver e�ect

Environmental
drivers and/or 
interaction e�ects

Standard environment

Figure 1 | Cartoon of the e�ects of multiple drivers on organismal function
using an environmental tolerance curve. Some aspect of organismal
function, such as growth, is plotted as a function of the environment
experienced by the organism, with the value of ‘Environment’ being
determined by multiple environmental drivers. Initially, organismal function
is high (solid black circle). When single drivers change, organismal function
changes (patterned filled circles). Although the e�ect of each driver may be
unknown, as an increasing number of drivers occur, the likelihood of at least
one driver or driver interaction having a large detrimental e�ect on
organismal function increases. This thought experiment does not require
that the population be in its optimal environment, just that, among the
environments sampled, the control environment be one where organismal
function is high. Figure 2a shows that this is the case here, as the control
environment is among the ‘best’ environments available in this experiment.
Note that this cartoon is meant to illustrate our thought process, and not to
indicate the quantitative e�ects of the specific environments used in this
experiment. Please refer to Fig. 2 for quantitative data.

experienced by the organism in a multidriver environment. We
assume that organismal function is initially somewhere on the
plateau. Changes to one ormore randomly chosen drivers will a�ect
organismal function in some unknown way, either as a direct result
of one driver, or as a result of interactions among drivers. If a
subset of drivers or their interactions have large enough e�ects to
push organismal function o� the plateau, but the e�ects of most
drivers are unlikely to be severe (as organisms are generally tolerant
of some environmental variability), the chances of at least one of
these large-e�ect drivers occurring grows as the number of drivers
and interactions increases. This is analogous to altering organismal
function through genetic mutations, where most mutations have
small e�ects on organismal function, but mutations of large e�ect
will eventually occur if enough mutations are sampled14. Here, we
instead approach the idea that organismal phenotype is a result of in-
teractions between genotype and environment using environmental
‘mutations’ rather than genetic ones.

We carried out a large experiment to disentangle the e�ects of
the number of environmental drivers from the identities of the
drivers in determining population growth responses to MEDs. We
show that for small numbers of drivers, interactions between drivers
determine growth responses, but as the number of drivers increases,
growth responses can be predicted from the number of drivers (if the
composition of the environment is unknown), or the single driver
with the largest e�ect alone (if the composition of the environment
is known). Populations of the model microalga C. reinhardtii
were grown in 96 di�erent test environments that di�ered from
a standard laboratory environment by between one and eight
of the following drivers: high CO2, low pH, high temperature,
low light, ultraviolet irradiation, phosphate starvation, general
nutrient depletion, and herbicide (Supplementary Table 1). These
drivers were chosen because they are generally studied as single
environmental changes15,16, occur inmany aquatic ecosystems17, and
are ‘drivers’ (sensu Boyd and Hutchins, 2012) in that they elicit a

response in C. reinhardtii and many other microbes13,18–39. Because
a laboratory strain of C. reinhardtii was used for this study, and our
hypothesis is based on how reactions to changes in the environment
a�ect organismal growth, drivers are environmental values that
di�er from the usual laboratory environment of the particular
population used to start this experiment. The control environment
is thus not arbitrary, even though it may di�er from the optimal
environment for other strains of C. reinhardtii that have been
maintained under di�erent conditions. Whenever possible, control
and test environments reflect anticipated changes in the natural
world. For example, the control environment uses 430 ppm CO2,
whereas the test environments containing high CO2 use 2,000 ppm
CO2, in line with IPCC predictions40. In other cases, the usual
laboratory environment for this strain required that we choose the
test environment value using pilot studies. This experiment requires
that the test environments be di�erent from the environment usually
experienced by this particular strain at the beginning of the study,
not that the control environment be the average or optimal one for
this species over many studies. See online methods for a detailed
discussion of each test environment. In each test environment, we
measured population growth, a trait commonly used to predict
how populations will fare under environmental change41, including
whether they are likely to persist42. SeeMethods and Supplementary
Information for test environments and experimental design.

The number of drivers can explain population growth
Population growth rate declines as the number of drivers in
test environments increases (Fig. 2). We see that the number of
drivers is the strongest predictor of population growth, explaining
approximately 37% of the decrease in growth rate independently
of the particular combination of environmental drivers involved,
which is in line with our hypothesis that knowing the number
of environmental drivers alone is informative (F1,93 =11.1766,
P=0.001, Fig. 2a; see Supplementary Methods). Regime (the
particular drivers in any unique test environment) explains
some (32%) of the decrease in population growth rate in test
environments, and the overlap in the environmental drivers between
regimes also explains some (about 10%) of the variation in growth
(F1,93 = 3.877, P = 0.052, Fig. 2a). As expected, extinction is more
likely in test environments with a greater number of drivers
(F1,93 =3.310, P=0.072, Supplementary Fig. 1).

Because regime explains some of the variation in population
growth, we further investigate whether this is due to interactions
between drivers, or to the actions of single drivers within regimes.
We find that the drop in population growth rate can be explained
by the single driver in a regime that has the largest e�ect on growth
when it is experienced alone (r 2 = 0.43; P < 0.0001, Fig. 2b). This
is consistent with population growth rates being largely determined
by one overriding driver, rather than by interactions between them,
at least with the drivers investigated here. The relationship is thus
best described by a simple comparative model (Supplementary
Table 4). Antagonistic interactions occur, where the e�ect of the
most detrimental driver is often mitigated if other drivers are
present. Because of this, the realized average population growth
rate is higher than predicted by the comparative model. Here, high
CO2 (Fig. 3), which increases population growth in C. reinhardtii
and many other chlorophytes27,43–46, counteracts the growth e�ects
of detrimental drivers and gives rise to antagonistic interactions.
When CO2-enriched test environments are removed from our data
set, populations in the remaining test environments have lower
average growth rates, and fit the predictions of the comparative
model without antagonistic interactions (r 2 = 0.58; P<0.0001,
Supplementary Fig. 2).

Our key finding is that the number of environmental drivers can
be used to predict growth in the test environments even without
knowing which drivers make up each test environment.We propose
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Figure 2 | Population growth rate of C. reinhardtii under zero to eight environmental drivers. a, Black data points and bars represent means and standard
deviation between regimes for each NED. See Supplementary Table 3 for regimes. Di�erent shapes within each NED indicate individual regimes. Dashed
line in a indicates growth in the control environment. b–d, Population growth rates (mean and standard deviation) predicted by a model (white triangles)
alongside measured values (black circles), followed by goodness-of-fit, for three models: comparative model (r2 =0.43, P<0.0001) (b), multiplicative
model (r2 =0.33, P<0.0001) (c) and additive model (r2 =0.25, P<0.0001) (d); extinction (indicated by dashed line in panels b–d) is predicted in
environments with >5 changes.

that this is because test environments with a greater number of
drivers are more likely to contain at least one severely detrimental
driver or driver interaction and that, once a severely detrimental
driver is present, the addition of other drivers is unlikely to depress
growth much more, barring extinction. This can be seen in Fig. 2a,
where the lowest fitness at NED= 2 is about 0.16 divisions/day
(regimes for the two lowest points are pH + phosphate starvation
and phosphate starvation + low light, both have the same average
growth rate), but at higher NED this minimum does not decrease,
indicating that once a very stressful driver or driver interaction is
present, further drivers or driver interactions do not, on average,
depress growthmore. However, interactions domatter for lowNED;
the populations with the lowest growth rates at NED 2 (lowest
average growth rate for a regime is 0.16 divisions/day) do far worse
than those with the lowest growth rates at NED 1 (lowest average
growth rate for a regime is 0.30 divisions/day). Interestingly, this
shows that if the goal of empirical studies is to predict population
responses to MEDs when many drivers are present, the most useful
course of action when only a limited number of populations can be
observed is to determine which single drivers a�ect growth most,
or even determining how many drivers are likely to co-occur. In
contrast, focusing on interactions between a few specific drivers
may produce results dominated by interactions that sum nearly

to zero when more realistic scenarios of environmental change
are considered.

The goal of this study was to disentangle the role of the number
of environmental drivers from the specific drivers present in test
environments. Each driver is used only at a single intensity in our
study (see Methods for explanations of the choice of intensities
of particular drivers), and the rank order of the driver e�ects are
probably due to both intensity and identity. In our data set, the
most detrimental drivers are herbicide presence and phosphate
starvation. Presumably, neither would be as detrimental if we had
used lower concentrations of herbicide and higher concentrations
of phosphate, respectively. However, it is reasonable to suppose
that in most natural environments, drivers will vary in intensity
as well as identity. Our interpretation of our data hinges on the
growth e�ects of drivers, not their identities per se, and we expect
that if this experiment were repeated with di�erent drivers, or a
di�erent organism, the qualitative results would be the same—the
drivers with the largest e�ect on growth would determine responses
even when populations experienced them together with numerous
other drivers. Although the size of our study precluded multiplying
it to measure the relative contributions of identity and intensity
of drivers to organismal responses, this indicates a direction for
future experiments.
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Figure 3 | Population growth rates of C. reinhardtii in test environments containing high CO2, low pH, and high temperature. Each point shows mean and
standard deviation for three replicate populations. The identity of regimes is indicated by the shape of each point. The shape of each line shows the unique
patterns of increasing the number of drivers in test environments. In general, population growth drops when environmental changes of larger e�ect than
previously present (herbicide, nutrient depletion (ND) and phosphate starvation) are added.

Environmental similarity
In our experiment, test environments become more similar as the
number of drivers increases, although this similarity explains less
than 11% of the variation in growth. If increases in environmental
similarity were driving our results, we would expect that variation
among regimes drop as the number of drivers within regimes
increases, but this is not the case (correlation between the number
of drivers and variance among regimes with the same number of
drivers; post hoc fit r 2 = 0.06, P = 0.53). Increasing environmental
similaritywith an increasing number of drivers per test environment
is a limit of performing an experiment with a finite number of
drivers. To understand how increasing environmental similarity
a�ects our data, we simulated the same experiment using infinite
environments with the same distribution of e�ects on growth for
single environmental changes as in our experiment. We found
that using a finite number of possible environmental changes in
our experiment slightly underestimates growth rates in regimes
with many drivers, but the e�ect is small (Supplementary Fig. 3),
confirming that the increase in similarity between regimes with an
increasing number of drivers does not explain the overall pattern of
our data.

Case study involving temperature, CO2 and pH
To understand how interactions between focal drivers change
when additional drivers are present, we measured the e�ects on
population growth of increased CO2, increased temperature and
decreased pH—either alone, in pairs, all together, or all together in
the presence of other drivers (Fig. 3).When these focal drivers occur
singly, populations grow fastest under CO2 enrichment, slower
under low pH, and slowest under high temperature. In pairs, the
e�ect of CO2 enrichment counteracts that of high temperature

so that these populations have higher growth rates than those
under high temperature alone, whereas the combined e�ects of CO2
enrichment and low pH reduces growth. Populations grown in low
pH and high temperature grow faster than those subjected to either
driver alone, and populations subjected to all three drivers together
grow faster than any of the paired or single cases. In these test
environments, containing between one and three drivers, specific
interactions between responses to drivers determine growth e�ects,
and the most informative way to explain changes in growth is by
investigating the physiological mechanisms involved47.

In contrast, when elevated CO2, low pH, or high temperature
co-occur with other drivers, changes in population growth are
predictable from the e�ects of single drivers. This prediction ismore
robust when a greater number of drivers are present in the test
environments. For example, if CO2, pH and temperature change,
decreasing light intensity does not a�ect growth further, as expected
from the small e�ect of light intensity on growth alone relative
to the e�ect of other drivers already present in the regime. In
contrast, the presence of herbicide, which has a drastic e�ect alone,
reduces growth when it is added to a test environment that already
contains several other drivers. The addition of nutrient depletion has
very little e�ect on growth and is masked by the dominant e�ects
of herbicide.

These interactions are all expected under the simple comparative
model. Interestingly, at high NED, phosphate limitation has
an antagonistic interaction when herbicide is present. This
is surprising, as both herbicide and phosphate are dominant
environmental drivers. The herbicide used here is atrazine, which
directly blocks the photosynthetic electron transport chain,
reducing photosynthetic e�ciency13. Phosphate is a limiting
factor in many natural environments, yet it is a necessary
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macronutrient that photosynthetic organisms such as C. reinhardtii
require in large amounts35. Previous work13 suggests protection
mechanisms such as nonphotochemical quenching of excess
light energy and adjustment of the photosystem stoichiometry to
explain the antagonistic interaction observed between atrazine
and very high light in C. reinhardtii and arrested growth with
no loss in viability in low light conditions. Similar protection
mechanisms may be in place here to protect populations from
the lethal e�ects of atrazine under limited resources at high NED.
Antagonistic interactions between phosphate depletion and other
environmental changes have also been found in a nitrogen-fixing
species (Trichodesmium48), where phosphate-limited populations
are also CO2-limited, so that high CO2 can increase population
growth rate when phosphate is limiting. Our case study broadly
supports the observation that elevated CO2 can partly mitigate
the drop in growth in test environments with MEDs, including
phosphate-limited environments. However, we also find some
exceptions where growth is not increased by high CO2, such as
when nutrients and phosphate are co-limiting.

Although interactions between drivers increase variation in
the reduced data set that excludes high-CO2 test environments
(Supplementary Fig. 2) relative to the full data set shown in Fig. 2,
the overall relationship between population growth and the number
of drivers is the same. When many drivers co-occur, the e�ects of
individual drivers, in particular of the driver with the single largest
e�ect alone, are reasonable predictors of population growth. Our
data also show that even if the individual e�ects of drivers on growth
are unknown, the number of drivers o�ers a good estimate of the
expected growth rate when large numbers of drivers co-occur. As
with the full data set, this is due to test environments with a greater
number of drivers having a higher chance of containing at least one
severely detrimental driver so that, generally, growth decreases as
the number of drivers increases.

Conclusions
Global change involves many environmental drivers, but biotic
responses are often studied using few environmental drivers,
so it is vital that we explore if and how studies using few
environmental changes inform predictions of biotic responses
to higher numbers of drivers. Mechanistically understanding all
interactions between the relevant drivers in aquatic systems47 cannot
be tackled experimentally—with current methods, full factorial
experiments are simply too large to carry out. That being said,
we can make a tradeo� between a mechanistic understanding of
interactions between specific drivers and predicting overall biotic
reactions to MEDs. One well-established way to do this is by using
scenarios2 where suites of environmental variables are changed
in concert and organismal responses measured. Here, we propose
a complementary method suitable for situations where a larger
number of drivers is considered, based on data showing that average
changes in population growth in a model microalga are largely
predictable from either the number of environmental drivers, or the
e�ect of the single most detrimental driver, in cases where a large
number of environmental drivers occur together. As with scenarios,
our approach trades mechanistic understanding for predictive
power. Although the ideal solution to understanding organismal
responses toMEDsmay be to replace ‘black box’ approaches such as
ours with amechanism-based understanding that allows prediction,
this may not be realistic given current knowledge. Our approach is
appropriate when constructing scenarios of environmental change
carries significant uncertainty, because of uncertainty in predicting
the intensities of individual drivers, of correlations between changes
in drivers, or even in the identity of the particular drivers involved
at the relevant geographical and temporal scales for focal organisms.
It is also useful when data on responses to drivers or scenarios
cannot be gathered for all organisms where it is needed. Another use

of our method is in making between-species or between-genotype
comparisons by uncovering di�erences in sensitivities to particular
drivers. If the e�ect of many individual drivers is measured on
di�erent species or genotypes, then studies can be used to both
understand di�erences in responses between species or genotypes,
and to predict the likely range of responses to MEDs within
communities containing many species or genotypes.

We show that specific interactions between drivers determine
growth responses when only a few drivers change, but these
interactions do not need to be taken into account to predict
average growth responses whenmany drivers change. This provides
hopeful evidence that continuing to build our understanding of how
single drivers a�ect population growth is indeed informative for
understanding population-level responses to MEDs.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experimental design. All populations were founded from a single cell of
C. reinhardtii (CC-2931, mt-; Chlamydomonas Resource Center, University of
Minnesota), grown in sterile Sueoka’s high salt medium, bu�ered with Tris-HCl
(HSMT; ref. 39), under continuous rotation (50 r.p.m.) at 25 �C and constant light
at 32 µmolm�2 s�1 photon flux density (Fisher Scientific Traceable Dual-range
Light Meter), at 420 ppm CO2 (Supplementary Tables 1 and 2). These variables
were controlled using incubators (Infors AG CH-4103). This strain of C. reinhardtii
is from a culture collection, and has been grown in our lab for over seven
years—this medium, temperature and light levels represent the usual benign
growth conditions for this strain.

Experimental environments. Experimental populations were grown for
approximately three generations in replicate test environments that di�ered from
the benign control environment (430 ppm CO2, pH 7.2, temperature 25 �C, full
light and nutrients, no herbicide and no ultraviolet), by between one to eight of the
following parameters: increased CO2 to 2,000 ppm, temperature to 26 �C, decreased
pH to 6.5, light levels to 18 µmolm�2 s�1, reduced phosphate to 1.69mM, general
nutrient depletion by 75%, and added 0.5 µM of the herbicide atrazine. In addition,
test environments with ultraviolet were exposed to a dose 8.1 kJm�2 ultraviolet
radiation once a week as part of the batch culture protocol (Supplementary Tables 1
and 2). There are 96 test environments in total in this study and 288 populations
(3 independent replicate populations per test environment ⇥96 test environments,
Supplementary Table 3). The large size of this experiment motivates using
C. reinhardtii as the model alga, as it grows easily in small volumes in media that it
is already adapted to that have su�cient bu�ering capacity to control pH when
CO2 is varied, has a wealth of information available on responses to the individual
drivers used in our study, and is a common model system in algal physiology and
evolution. Cultures were grown in 48-well plates containing 1.6ml of culture
media. Each population was acclimated to its test environment for seven days
(three generations), and then transferred to fresh test environment medium for
each regime.

Details of how individual drivers were manipulated and our reasoning behind
specific manipulations are below. In general, driver intensities were kept in line
with future climate change scenarios where possible17,49,50, but modified to
accommodate logistics, the starting point of the benign lab environment, the need
that each driver a�ect growth, and avoiding rapid extinction in environments that
contained only one driver. Although extinction is one possible outcome of
populations being exposed to changes in environments, the goal of our study was to
learn how responses to one environmental driver predicted responses to multiple
environmental drivers; this requires meaningful measures of growth in the
single-driver environments. With the exception of CO2/pH, we did not attempt to
control chemical interactions between drivers; these interactions may contribute to
organismal responses and to subsequent patterns of how response scales with the
number of drivers. Because this study aimed to understand average biotic
responses with increasing numbers of drivers, we had more power to detect a
pattern by including a greater number of drivers rather than focusing on specific
chemical interactions among drivers.

Temperature. A conductive heat mat (Exo Terra Heat Wave substrate heat mat)
was placed under experimental plates to increase the temperature of the culture
media to 26 �C. This did not a�ect the control temperature set within the incubator
and was controlled using a thermostat (Rootit Heat Mat Thermostat). Our
reasoning is that a 1 �C rise in temperature could be produced without a�ecting the
overall temperature of the incubator or causing condensation on the culture vessel
lid, falls within the range of predicted temperature rises for aquatic ecosystems49
and produces a change in growth rate in C. reinhardtii—and can thus act as a
driver—but does not cause mortality (we wanted to avoid large numbers of
extinctions during the experiment).

CO2. Sterile breathable films (AeraSeal breathable sealing film) were used instead
of the of the 48-well plate lids that came with the plates. This allows increased CO2

di�usion into the media. Although we did not quantify the precise level of CO2 in
the media, growth in the high-CO2 conditions was stimulated, indicating that it
was acting as a driver, which is all that was needed for the purpose of this study.
CO2 levels in the test environments were chosen based on projected CO2 levels,
and are in line with other experiments investigating microalgal responses to
CO2 enrichment.

pH. The pH of the culture media was altered by adding 2% HCl. This required one
to two drops per litre of HSMT, so the concentration of nutrients was not altered by
changes in volume. The pH was measure with a pH meter (Thermo Orion Star
A121 pH Portable Meter) and bu�ered by adding Tris-HCl. Even though this drop
in pH (0.7 units) is large relative to changes expected in marine ecosystems49 it is
well within those experienced in freshwater systems39. On the basis of pilot work,
this drop reliably a�ects growth in the C. reinhardtii in our laboratory cultures.

Ultraviolet. A ultraviolet lamp (UVM-57) was used to provide a dose of
ultraviolet radiation at acclimation and at T0 (Supplementary Fig. 5). The
breathable films were removed from the culture plates under sterile conditions
during ultraviolet irradiation. The lamp was mounted 5.1 cm from the surface of
the culture plates, providing an irradiative exposure of 33.75Wcm�2. Populations
were irradiated for 4min, which corresponds to a ultraviolet dose of 8.1 kJm�2.

Light intensity. Overall light intensity was reduced by approximately 40% using a
neutral density light filter (0.15 optical density), designed to reduce the light
intensity across all wavelengths equally and attenuate light by absorption with
minimal reflection. The filter was secured to the top of the experimental plates,
allowing su�cient room for CO2 to circulate. Our rationale for decreasing light was
pragmatic; it is possible to put a filter on some of the culture vessels, but di�cult to
selectively increase light levels reliably for only a few populations during an
experiment of this size. Furthermore, increasing light levels for C. reinhardtii often
lead to bleaching and mortality51,52. We found that with this strain the light
intensity used was high enough for growth, but limited the amount of bleaching
in populations.

The strain we used (CC-2391) has been used by other experiments where light
levels were 60 µEm�2 s�1, equivalent to 60 µmolm�2 s�1 (ref. 53), and
50 µmolm�2 s�1 (ref. 54). These light intensities are lower than the ‘low light’
intensity reported in ref. 13, although a di�erent strain of C. reinhardtii (CC-125)
was used. However, previous experiments used cultures that di�ered from ours in
terms of volume, as well as other details, and so should not be directly compared.
We have been growing this strain in the laboratory for several years under the light
levels used in this experiment (32 µmolm�2 s�1), and as the experiment depends on
using environmental change (that is, change relative to a control environment that
the organism usually experiences), deviation from the light levels usually
experienced is needed. We verified that the light levels in the control environment
allow faster growth than the light levels in the test environments (see
Supplementary Fig. 9). Neutral density filters were used to decrease light levels, and
we show that the filter used in our test environments (0.15 optical intensity)
significantly reduced growth relative to the control light levels, and that the control
light levels are not low down on the growth curve.

Herbicide. Atrazine was used at a concentration of 0.5 µM in HSMT. Atrazine was
then added to the culture media used for this treatment freshly whenever
populations were transferred into fresh media. On the basis of pilot work, this
concentration of atrazine reliably a�ects growth in the C. reinhardtii genotype used.

Nutrients. All nutrients within Hutner’s trace elements (HTE) were reduced
equally to a concentration factor of 0.25 relative to the control concentration (see
Supplementary Table 2 for concentration of each nutrient within HTE). As
laboratory strains are used to growing in rich media such as HSMT, increasing trace
nutrients has no measurable e�ect on growth. The reduction in nutrients needed to
act as a driver in this experiment was determined empirically during pilot studies.

Phosphate. Phosphate was reduced to a concentration factor of 0.125, relative to
the control concentration39. Salts lost by the removal of dipotassium phosphate
(K2HPO4) and monopotassium phosphate (KH2PO4) were replaced with
potassium chloride (KCl). The level of phosphate needed to act as a driver was
based on pilot work and previous studies55.

Population growth. Cells were counted by flow cytometry every 24 h for a total of
120 h using a BD FACSCanto II (BD Biosciences) flow cytometer calibrated with
Cytometer Setup and Tracking (CS&T) beads. The data were acquired with the BD
FACSDiva v6 software. Each culture was counted twice. The cell counts were
transformed into cells per millimetre and the number of divisions per day per
starting cell was calculated using equation (1):

Rate of division
�
day�1�= (log2(Nt/No))

(tf � t0)
(1)

where Nt is the cell density (cellsml�1) at time tf (hours) and No is the cell density
at time t0 (hours). This calculation was used because di�erent environments
produced di�erent shaped growth curves (Supplementary Fig. 6), and the usual
metric of maximum growth rate was not useful, whereas this measures the average
number of divisions per day per founder cell in a transfer cycle, and allows
comparison of populations with di�erent growth strategies41. In particular, this
measure gives the average number of divisions per day that have taken place per
founder cell in the population, where cells divide by binary fission, as is the case
here. It is also a metric that is not a�ected by N0, which is required because the
population size reached during the acclimation period di�ers between
environments—this is to be expected given that the environments were chosen to
have a range of e�ects on growth. Here, even though many of the curves seen in
Supplementary Fig. 6 do not appear exponential, an exponential process (binary
fission) underlies them, and thus justifies the use of equation (1). There are several
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reasons why an exponential process may fail to produce a full exponential growth
curve, such as the rate of cell division not being constant over the entire time period
measured, or a low number of division events occurring within the time window of
interest. In di�erent environments, maximum cell division rates, the tempo of cell
division events over the transfer cycle, the presence and length of lag phases, and
carrying capacities, in any combination, may di�er. The metric of the average
number of reproductive events per unit time over the time window of interest is a
general one, although a di�erent equation would have to be used in the case where
the organism being studied did not reproduce by binary fission. In our experiment,
populations in the control environment were never nutrient-limited (cultures never
reached carrying capacity). For comparison, we also used a more conventional
measure of population growth (see Supplementary Methods) that simply measures
the slope of the growth curve, which is the average number of cell divisions per day
in the entire culture, rather than per cell in the starting population. In this case, it is
possible to have a larger number of cell divisions simply by having a higher
population density at the end of the acclimation period, leading to a larger value of
No, so the measure of slope is sensitive to small di�erences in the initial population
size. The two methods reach the same conclusions, probably because starting
population sizes were similar over di�erent populations in our experiment.

Statistical analysis. The e�ect of the identity and NED on growth was analysed
using a mixed model in R (ref. 56), using the packages lme4 and lmerTest. Number
of environmental drivers (0–8; referred to as NED) is a fixed factor, as is overlap
between regimes within each level of NED (measured as the average number of
shared drivers between di�erent test environments for a given NED—see below).
Regime and replicates within each regime are random factors. To directly compare
the contributions of fixed and random factors to variance, the percentage
contribution of fixed factors (Supplementary Table 5) was estimated by using
equation (2).

Percentage of fixed e�ect variance=
✓

� 2
F ⇥(b2 � se2)

� 2
X

◆
⇥100 (2)

where � 2
F is the variance of the fixed e�ect, b is the slope of the fixed e�ect estimated

by the mixed e�ects model, se is the standard error of the fixed e�ect as estimated
by the mixed e�ects model and � 2

X is the variance of the response variable.

Post hoc analysis. A post hoc mixed model was used to detect e�ects of particular
drivers (for example, of CO2 or pH) where the identities of each driver were nested
within NED were added to the random part of the model in place of regime and
overlap, as described above.

Overlap of NED between regimes. Each regime is unique—however, because
regimes become more similar as the number of environmental drivers increases,
overlap between regimes for a given NED was calculated as an average pairwise
di�erence between regimes, where each environmental driver is coded as a binary

variable (present or absent). Average overlap for each NED is calculated as
1�(average pairwise distance). The overlap for test environments with 0, 8 and
1 environmental drivers is zero as there is only one control regime, one regime with
all eight environmental drivers and in test environments with 1 driver, all eight
changes were assayed alone. The analysis was performed the same way for each
subset of the presented data (including the case study and full data set less CO2).
The e�ect of sampling from a finite number of possible environmental drivers was
explored using a simulation written in R (Supplementary Information).

Models. Expected numbers of division (Nexp) for each regime were calculated
for each of three models (simple comparative, multiplicative and additive),
using the observed number of divisions (Nobs) measured for NED= 1, where each
driver is experienced alone. For the simple comparative model, Nexp is equal to the
most dominant individual environmental driver relative to the control (1�Nobs).
For example, if herbicide is found to elicit the largest change in population growth,
any other driver present within that regime would have no additional e�ect. For the
additive model, Nexp is calculated as the sum e�ects of all individual drivers present
in the regime when experienced alone (at NED= 1). For the multiplicative model,
Nexp is the product ofNobs for each of the drivers present in the regime when they are
experienced alone (at NED= 1). Model fits were compared using the r 2 values. The
expected number of divisions for each model (simple comparative, multiplicative
and additive) was fitted against the observed fitness using a linear model.
This was completed in R using the lm function within the R basic stats package.

Data. All data and R scripts are available from Datadryad
(http://dx.doi.org/10.5061/dryad.jt1fb).
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