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Abstract 

 

Vitamin C (ascorbate and dehydroascorbic acid) is vital for plants and found throughout the 

plant cell including in the apoplast. The structure of ascorbate was determined eighty years 

ago; however, many of its degradation pathways remain unclear. Numerous degradation 

products of ascorbate have been reported to occur in the apoplast but many still remained 

unidentified
1.2

.  

Ascorbate is well known as an antioxidant, and acts to quench reactive oxygen species 

(ROS), such as hydrogen peroxide and ozone in the plant apoplast. The immediate oxidation 

product of ascorbate is dehydroascorbic acid (DHA), which may be quickly hydrolysed to 

diketogulonic acid (DKG). The further reactions of radiolabelled and non-radiolabelled DHA 

and DKG with various ROS have been investigated. Differences were observed in the 

products formed from the various ROS, allowing a unique fingerprint of oxidation products 

to be described for each ROS. Equally, different compounds were produced depending on 

the starting substrate; for example cyclic oxalyl threonate was only observed in the reactions 

of DHA and not DKG.  

A major oxidation product of DHA is OxT. A novel enzyme activity involving the transfer 

of the oxalyl group from OxT to an acceptor substrate such as a sugar has been detected. 

This enzyme activity could have potential cell wall modification roles, in the formation of 

oxalate cross-linkages between cell wall components. This would provide a novel role for 

ascorbate derivatives in cell growth. 

Vitamin C is also a vital component of the human diet, and most dietary ascorbate comes 

from plants such as salads. The degradation of ascorbate during post-harvest processing and 

storage of salad leaves has been investigated. Spinach leaves were found to be particularly 

prone to losing ascorbate during the industrial washing process. The use of radiolabelled 

ascorbate has allowed the determination that the major degradation product formed from 

ascorbate during spinach washing was oxalate.  

 

 

 M.A. Green and S.C. Fry (2005) Nature, 433, 83-87 
2
 H.T. Parsons et al. (2011) Biochem. J., 440, 375-383 
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Lay summary 

 

Vitamin C (made up of ascorbate and dehydroascorbic acid) is a vital component of the 

human diet. The majority of dietary vitamin C comes from plants. Vitamin C is a fairly 

unstable compound, and understanding more about the degradation pathways of vitamin C 

may help to prevent the degradation of vitamin C in crop plants, such as salads. 

A major role of vitamin C, in both plants and people, is as an antioxidant, acting to quench 

reactive oxygen species that may otherwise cause damage within cells. The reaction of 

vitamin C derivatives with reactive oxygen species was studied, and it was found that 

different reactive oxygen species lead to the formation of different degradation products of 

vitamin C. 

One of the products of the oxidation of vitamin C is oxalyl threonate.  This compound was 

hypothesised to have a role in plant growth. Plant cells are surrounded by a cell wall which 

provides structural support and shape to the cell. Plant growth involves the loosening and re-

structuring of the cell wall. A novel enzyme which transfers the oxalyl group from oxalyl 

threonate to an acceptor substrate, such as a cell wall component, was discovered. This 

newly described enzyme activity could provide a role for vitamin C derivatives in plant 

growth. Further novel products (oxalyl sugars) of this enzyme were discovered, and found to 

be stable in plant cell cultures, suggesting they may have a biological role within plants, 

perhaps as compounds which protect the plant by deterring herbivores. 

Salads are an important source of dietary vitamin C. The vitamin C content of several 

species of salad leaves were monitored during the commercial washing and packaging 

process and during post-harvest storage. The vitamin C content varied widely between 

different salad species but all the species tested lost vitamin C during the 10-day storage 

time, with rocket leaves retaining the most vitamin C. Spinach leaves were found to lose a 

significant proportion of vitamin C during the commercial washing and packaging process, 

the major product formed from vitamin C during this washing process was oxalic acid. 

This project has added valuable knowledge about the many complex degradation pathways 

of vitamin C, including characterising novel compounds and novel enzyme activities 

involving vitamin C derivatives. Important information about the vitamin C turnover in 

salads throughout the washing process has also been obtained, and consequently 

improvements can now be made to the commercial washing process. 



vii 
 

 

Table of contents 

 

 

Declaration....................................................................................................................... i 

Acknowledgements ......................................................................................................... ii 

List of abbreviations ....................................................................................................... iii 

Abstract .......................................................................................................................... v 

Lay summary ................................................................................................................. vi 

Table of contents ........................................................................................................... vii 

List of figures ................................................................................................................ xii 

 

Introduction ............................................................................................................. 1 

1.1 Overview of ascorbate ........................................................................................... 1 

1.2 History of ascorbate ............................................................................................... 2 

1.3 Chemistry of ascorbate .......................................................................................... 3 

1.4 Biosynthesis of ascorbate ....................................................................................... 6 

1.5 Degradation of ascorbate......................................................................................10 

1.5.1 Oxidation of DHA .......................................................................................10 

1.5.2 Degradation of DKG ...................................................................................13 

1.6 Reactive oxygen species ........................................................................................15 

1.6.1 Hydrogen peroxide ......................................................................................15 

1.6.2 Superoxide anion ........................................................................................16 

1.6.3 Hydroxyl radical .........................................................................................17 

1.6.4 Singlet oxygen ............................................................................................18 

1.7 Ascorbate as an antioxidant .................................................................................19 

1.7.1 Apoplastic ascorbate ...................................................................................19 

1.7.2 Ascorbate–glutathione pathway ...................................................................21 

1.8 Ascorbate in plant growth ....................................................................................22 

1.9 Ascorbate as a biosynthetic precursor .................................................................24 



viii 
 

1.10 The primary plant cell wall ..................................................................................24 

1.10.1 Structure of the plant cell wall .....................................................................25 

1.10.2 Cross-linking within the cell wall ................................................................26 

1.11 Acyltransferases....................................................................................................27 

1.12 Ascorbate in salad plants ......................................................................................28 

1.13 Outline of project ..................................................................................................31 

Materials and methods.......................................................................................33 

2.1 Materials and chemicals .......................................................................................33 

2.2 Plant cell suspension culture ................................................................................33 

2.2.1 Arabidopsis cell culture media.....................................................................33 

2.2.2 Spinach cell culture media ...........................................................................33 

2.2.3 Rose cell culture media ...............................................................................33 

2.2.4 Maintenance of cell suspension cultures ......................................................33 

2.3 Salad leaves growth conditions.............................................................................34 

2.3.1 Salad leaves grown at Vitacress, Hampshire ................................................34 

2.3.2 Salad leaves grown in University of Edinburgh facilities .............................34 

2.4 High-voltage paper electrophoresis ......................................................................34 

2.4.1 One dimensional HVPE at pH 2.0 and pH 6.5..............................................34 

2.4.2 Two dimensional HVPE ..............................................................................36 

2.5 High-pressure liquid chromatography.................................................................36 

2.6 Thin-layer chromatography .................................................................................36 

2.7 Anion-exchange column chromatography ...........................................................37 

2.7.1 Purification of [
14

C]DHA by anion-exchange column chromatography ........37 

2.7.2 Purification of DKG-derivatives C and E by anion-exchange column 

chromatography..........................................................................................................37 

2.8 Detection of non-radiolabelled compounds ..........................................................38 

2.8.1 Staining of sugars on paper with silver nitrate ..............................................38 

2.8.2 Staining of phosphates on paper with molybdate .........................................38 



ix 
 

2.8.3 Staining of reducing sugars on paper with Wilson’s dip (aniline hydrogen-

phthalate)... ................................................................................................................38 

2.8.4 Staining of acidic compounds on paper with bromophenol blue ...................38 

2.8.5 Staining of amines on paper in ninhydrin .....................................................39 

2.8.6 Staining of sugars on TLC with thymol .......................................................39 

2.8.7 Staining of compounds on TLC with molybdate ..........................................39 

2.8.8 Staining of compounds on TLC with ninhydrin ...........................................39 

2.9 Detection of radiolabelled compounds .................................................................40 

2.9.1 Detection of radiolabelled compounds by autoradiography ..........................40 

2.9.2 Quantification of radiolabelled compounds by scintillation counting ............40 

2.10 Elution of ascorbate derivatives from paper........................................................40 

2.11 Preparation of diketogulonate ..............................................................................41 

2.11.1 Preparation of diketogulonate from dehydroascorbic acid: method 1 ............41 

2.11.2 Preparation of diketogulonate from dehydroascorbic acid: method 2 ............41 

2.11.3 Preparation of diketogulonate from ascorbic acid: method 3 ........................41 

2.12 Mass spectrometry of ascorbate derivatives ........................................................41 

2.13 Nuclear magnetic resonance spectroscopy of ascorbate derivatives ...................42 

2.14 In vitro oxidation of ascorbate derivatives by reactive oxygen species ................42 

2.14.1 Conditions used for the ROS reactions ........................................................42 

2.14.2 Generation of ROS ......................................................................................42 

2.15 Alkali treatment of ascorbate derivatives C and E ..............................................43 

2.16 The fate of radiolabelled ascorbate derivatives to plant cell suspension 

cultures…… .....................................................................................................................43 

2.16.1 The fate of [
14

C]AA derivatives in live plant cell suspension cultures ..........43 

2.16.2 The fate of [
14

C]AA derivatives in frozen/thawed or boiled cell cultures ......44 

2.16.3 Alkali hydrolysis of radiolabelled AIR ........................................................44 

2.16.4 Enzyme treatment of radiolabelled AIR .......................................................45 

2.17 Acyltransferase purification and assay ................................................................45 



x 
 

2.17.1 Eluting cell wall enzymes from plant cell-suspension cultures .....................45 

2.17.2 Acyltransferase assay with cell cultures .......................................................46 

2.17.3 Acyltransferase assay with enzyme extracts .................................................46 

2.17.4 Acyl transferase assay with polysaccharide-impregnated paper ....................47 

2.18 Determination of ascorbate content of salad leaves using the DCPIP assay .......47 

2.19 Determination of ascorbate content of salad leaves during the washing process48 

2.19.1 Monitoring the ascorbate content of salad leaves during washing and storage 

on site at the Vitacress premises .................................................................................48 

2.19.2 Simulating the washing process in the laboratory .........................................49 

2.19.3 The effect of chlorine on the retention of ascorbate during washing .............49 

2.19.4 Monitoring degradation product formation during the washing process with 

[
14

C]AA… ..................................................................................................................49 

Results .......................................................................................................................51 

3.1 Purification and identification of ascorbate degradation products C and E ......51 

3.1.1 Introduction to compounds C and E .............................................................51 

3.1.2 Purification of C and E ................................................................................51 

3.1.3 C and E interconvert ....................................................................................53 

3.1.4 Further characterisation of compounds C and E using HVPE .......................55 

3.1.5 Identification of novel DKG hydrolysis products .........................................57 

3.1.6 The structures of C and E are supported by MS and NMR data ....................62 

3.2 Purification of an ascorbate-derived peroxidase-inhibitor..................................70 

3.2.1 Introduction to an ascorbate-derived peroxidase-inhibitor ............................70 

3.2.2 Purification of peroxidase inhibitor using HPLC..........................................70 

3.2.3 The characterisation of the peroxidase inhibitor using HVPE was 

inconclusive… ...........................................................................................................74 

3.2.4 The peroxidase inhibitor is not compound C or E ........................................75 

3.2.5 Analysis of purified peroxidase inhibitor by NMR .......................................77 

3.3 The in-vitro reaction of DHA and DKG with reactive oxygen species ................80 

3.3.1 Introduction to the reaction of DHA and DKG with reactive oxygen species 80 



xi 
 

3.3.2 The in-vitro reaction of DHA with different reactive oxygen species ...........80 

3.3.3 The in-vitro reaction of DKG with different reactive oxygen species ...........90 

3.3.4 Purification of [
14

C]DHA ............................................................................97 

3.3.5 The reaction of radiolabelled DHA with reactive oxygen species .................99 

3.3.6 Summary of the oxidation of DHA and DKG by various ROS ................... 103 

3.4 The fate of radiolabelled ascorbate degradation products in plant cell 

suspension cultures ........................................................................................................ 107 

3.4.1 Introduction to ascorbate and plant cell suspension cultures ....................... 107 

3.4.2 Fate of [
14

C]DHA in spinach, rose and Arabidopsis cell cultures................ 109 

3.4.3 Fate of [
14

C]OxT in spinach and Arabidopsis cell cultures ......................... 110 

3.4.4 Radiolabeled oxalate is released from radiolabelled AIR produced from 

spinach cells incubated with [
14

C]OxT ...................................................................... 113 

3.4.5 The incorporation of radioactivity into the cell wall material of spinach cells 

requires an enzyme ................................................................................................... 115 

3.4.6 Treatment of the radiolabeled spinach AIR with cell wall degrading 

enzymes…. .............................................................................................................. 119 

3.5 A novel enzyme catalysing a reaction between ascorbate derivatives and cell wall 

components ..................................................................................................................... 123 

3.5.1 Introduction to the reaction of ascorbate derivatives with cell wall 

components… .......................................................................................................... 123 

3.5.2 Plant cell cultures incubated with radiolabeled OxT and non-radiolabeled 

sugars produce novel oxalyl sugars ........................................................................... 123 

3.5.3 The putative acyltransferase can be eluted from the cell walls of plant cell 

cultures… ................................................................................................................. 129 

3.5.4 The reaction of [
14

C]OxT with various acceptor substrates catalysed by an 

acyltransferase .......................................................................................................... 133 

3.5.5 The activity of acyltransferase with different donor substrates ................... 144 

3.5.6 Investigating the fate of oxalyl glucose in vivo. .......................................... 149 

3.6 Ascorbate degradation in harvested salad leaves .............................................. 154 

3.6.1 Introduction to ascorbate in salad leaves .................................................... 154 



xii 
 

3.6.2 Ascorbate content of a selection of salad leaves during cold storage .......... 154 

3.6.3 Effect of washing on ascorbate content of salad leaves .............................. 155 

3.6.4 Ascorbate retention in different ages of salad leaves .................................. 166 

3.6.5 Degradation of ascorbate in watercress ...................................................... 167 

3.6.6 Characterisation of WCx, a compound from watercress that indicates 

freshness…............................................................................................................... 173 

Discussion .............................................................................................................. 184 

4.1 Overview ............................................................................................................. 184 

4.2 The oxidation of DHA and DKG ........................................................................ 186 

4.3 Characterisation of non-oxidative derivatives of DKG ..................................... 189 

4.4 The fate of ascorbate oxidation products in vitro and in vivo ............................ 191 

4.5 The degradation of ascorbate in salad leaves..................................................... 194 

4.6 Compound from watercress that serves as an indicator of freshness ............... 196 

4.7 Summary ............................................................................................................. 199 

References .............................................................................................................. 200 

 

 

List of figures 

 

Figure 1: Chemical structures of ascorbic acid, ascorbate and DHA. .............................................. 1 

Figure 2: Chemical species associated with reducing properties of vitamin C. ................................. 4 

Figure 3: The biosynthetic pathways of ascorbic acid in plants. ..................................................... 7 

Figure 4: Oxidation pathway of DHA as proposed by Parsons and Fry.. ........................................11 

Figure 5: Formation of tartaric acid from DHA in Vitaceae. ..........................................................12 

Figure 6: Degradation of DKG.. ...............................................................................................14 

Figure 7: Ascorbate–glutathione cycle.. ....................................................................................21 

Figure 8: Diagram of HVPE apparatus. .....................................................................................35 

Figure 9: Sampling leaf discs from [14C]AA-fed spinach.. .............................................................50 

Figure 10: DKG, C and E are formed from NaOH treatment of DHA. .............................................52 

file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657915
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657916
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657917
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657918
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657919
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657920
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657921
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657922
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657923
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657924


xiii 
 

Figure 11: Purification of C and E by HVPE.. .............................................................................53 

Figure 12: C and E interconvert. ..............................................................................................54 

Figure 13: HVPE at pH 2.0 reveals that preparations of compound E contain numerous compounds..

 ..........................................................................................................................................55 

Figure 14: Purification of five C and E-related compounds. ..........................................................56 

Figure 15: 2D HVPE of C and E-related compounds.   ................................................................58 

Figure 16: Alkali and acid treatment of individual C and E-related compounds. ...............................59 

Figure 17: C* co-migrates with xylonic acid by HVPE at pH 6.5.. ..................................................60 

Figure 18: Purification and interconversion of [14C]E and C. .........................................................61 

Figure 19: H+ NMR analysis of compound C. .............................................................................63 

Figure 20: 13C NMR spectroscopy analysis of compound C.. .......................................................64 

Figure 21: Mass spectrometry analysis of compound C purified by anion-exchange column 

chromatography.. ..................................................................................................................65 

Figure 22: MS analysis of compounds E, C, Cʹ and C*.. ..............................................................67 

Figure 23: The hydrolysis pathway of DHA.. ..............................................................................69 

Figure 24: HPLC profile of DKG aged for 24 hours on ice. ...........................................................71 

Figure 25: HPLC profile of pooled and neutralised fractions containing PxI. ...................................72 

Figure 26: PxI eluted from HPLC column in TFA.   .....................................................................73 

Figure 27: Analysis of peroxidase inhibitor by HVPE. . ................................................................74 

Figure 28: PxI is not compound C or compound E. .....................................................................76 

Figure 29: Purification of PxI from 200 mM DKG for NMR.. ..........................................................77 

Figure 30: 1H NMR analysis of PxI.. .........................................................................................78 

Figure 31: Reaction of DHA with H2O2:   ....................................................................................81 

Figure 32: Reaction of DHA with superoxide radical. ..................................................................82 

Figure 33: Reaction of DHA with the hydroxyl radical analysed by HVPE at pH 6.5. ........................84 

Figure 34: Reaction of DHA with the hydroxyl radical analysed by HVPE at pH 2.0. ........................85 

Figure 35: Reaction of DHA with singlet oxygen. ........................................................................88 

Figure 36: Compounds formed during the degradation of riboflavin by singlet oxygen. .....................89 

Figure 37: Reaction of DKG with H2O2.. ....................................................................................90 

Figure 38: Reaction of DKG with superoxide. ............................................................................92 

Figure 39: Reaction of DKG with H2O2 and O2
•–.. .......................................................................93 

Figure 40: Reaction of DKG with hydroxyl radical. ......................................................................95 

Figure 41: Reaction of DKG with singlet oxygen.. .......................................................................96 

Figure 42: Purification of [14C]DHA by anion-exchange column chromatography.. ...........................98 

Figure 43: Reaction of [14C]DHA with H2O2 and O2
•–.. ..................................................................99 

file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657925
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657926
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657927
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657927
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657928
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657929
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657930
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657931
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657932
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657933
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657934
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657935
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657935
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657936
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657937
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657938
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657939
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657940
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657941
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657942
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657943
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657944
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657945
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657946
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657947
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657948
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657949
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657950
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657951
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657952
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657953
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657954
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657955
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657956
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657957


xiv 
 

Figure 44: Structures of OxT isomers.. ................................................................................... 100 

Figure 45: Quantification of products formed from the reaction of [14C]DHA with H2O2 and O2
•–.. ..... 101 

Figure 46: The reaction of [14C]DHA with various concentrations of hydroxyl radical. ..................... 102 

Figure 47: Oxidation pathways of ascorbate. ........................................................................... 104 

Figure 48: Summary of products formed from DKG and DHA by different ROS.. ........................... 106 

Figure 49: Schematic of potential oxalate cross-link formation in the cell wall. .............................. 108 

Figure 50: [14C]DHA enters the cells of Arabidopsis, rose and spinach cell cultures. ...................... 109 

Figure 51: Fate of [14C]OxT in Arabidopsis and spinach cell culture............................................. 111 

Figure 52: Radioactivity accumulates in AIR of spinach cell cultures incubated with [14C]OxT ......... 112 

Figure 53: NaOH hydrolysis of radiolabelled spinach AIR releases free oxalate. ........................... 114 

Figure 54: Incorporation of radioactivity from [14C]OxT into the AIR of spinach cells over time.. ....... 114 

Figure 55: Boiled, frozen/thawed and untreated spinach cells incubated with [14C]OxT.. ................ 115 

Figure 56: The fate of [14C]OxT in untreated and frozen/thawed spinach cell cultures. ................... 117 

Figure 57: AIR produced from spinach cells incubated with [14C]OxT after washing in EtOH and EDTA..

 ........................................................................................................................................ 118 

Figure 58: Oxalyl esterase activity of commercial cell wall-cleaving enzymes. .............................. 120 

Figure 59: The treatment of radiolabelled spinach AIR with cell wall-degrading enzymes................ 121 

Figure 60: Formation of oxalyl sugars in spinach cell cultures with [14C]OxT and sugars.. ............... 124 

Figure 61: Oxalyl sugars are not formed in the absence of cells.. ............................................... 125 

Figure 62: Oxalyl sugars were formed in the presence of Arabidopsis and spinach cells of increasing 

ages.................................................................................................................................. 126 

Figure 63: Oxalyl glucose production is greater in higher pH value buffers.. ................................. 127 

Figure 64: OxG formation over time at different pH values. ........................................................ 128 

Figure 65: Acyltransferase activity was present in Arabidopsis and spinach cell wall extracts. ......... 130 

Figure 66: Acyltransferase time course Arabidopsis and spinach.. .............................................. 132 

Figure 67: Oxalyl glucose production increases with glucose concentration.................................. 133 

Figure 68: The reaction of acyltransferase activity with [14C]OxT and oligosaccharides.. ................ 135 

Figure 69: The reaction of [14C]OxT and polyamines catalysed by acyltransferase. ....................... 136 

Figure 70: [14C]OxT reaction with acyltransferase and polysaccharides. ...................................... 138 

Figure 71: The formation of oxalyl esters with polysaccharide–cellulose complexes and [14C]OxT 

catalysed by an acyltransferase. ........................................................................................... 139 

Figure 72: [14C]OxA becomes trapped in the cellulose-polysaccharide complex.. .......................... 141 

Figure 73: Radioactivity bound to paper incubated with acyltransferase and [14C]OxT or [14C]OxA after 

prolonged washing. ............................................................................................................. 143 

Figure 74: OxG is formed from cOxT and OxT but not OxA. ...................................................... 145 

file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657958
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657959
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657960
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657961
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657962
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657963
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657964
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657965
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657966
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657967
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657968
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657969
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657970
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657971
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657971
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657972
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657973
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657974
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657975
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657976
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657976
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657977
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657978
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657979
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657980
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657981
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657982
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657983
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657984
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657985
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657985
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657986
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657987
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657987
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657988


xv 
 

Figure 75: Formation of reactive intermediates during the oxidation of AA.. .................................. 146 

Figure 76: The reaction of [14C]AA with acyltransferase extract and glucose and H2O2.. ................. 148 

Figure 77: Purification of OxG.. ............................................................................................. 149 

Figure 78: [14C]OxG is stable in spinach cell culture.................................................................. 150 

Figure 79: Washing of cells fed [14C]OxG, [14C]OxT or [14C]OxA.  . ............................................. 152 

Figure 80:  The ascorbic acid content of salad leaves during storage at 4°C. ............................... 155 

Figure 81: The ascorbic acid content of salad leaves before and after the washing process............ 156 

Figure 82: Ascorbic acid content of washed and unwashed salad leaves during storage.   ............. 157 

Figure 83: Effect of vacuum cooling on ascorbic acid content of spinach leaves.  . ........................ 158 

Figure 84: Ascorbic acid content of spinach leaves throughout washing. ..................................... 159 

Figure 85: HVPE analysis of washed spinach was inconclusive.................................................. 161 

Figure 86: Ascorbic acid content during washing of spinach leaf discs......................................... 162 

Figure 87: The degradation of [14C]AA fed to spinach leaves throughout washing. ........................ 164 

Figure 88: The effect of chlorine on the ascorbic acid content of spinach leaves. .......................... 165 

Figure 89: Ascorbic acid content in spinach at different growth stages.. ....................................... 166 

Figure 90: Ascorbic acid content of watercress at different growth stages. ................................... 168 

Figure 91: HVPE analysis of extracts from various growth stages of watercress. .......................... 169 

Figure 92: The compound co-migrating with Glc-6-P does not diminish upon phosphatase treatment..

 ........................................................................................................................................ 170 

Figure 93: Analysis of a watercress extract by HVPE at pH 6.5. ................................................. 171 

Figure 94: 2D HVPE of a watercress extract. ........................................................................... 172 

Figure 95: WCx is present in UK-grown watercress extracts but not Portuguese-grown watercress 

extracts.............................................................................................................................. 174 

Figure 96: HVPE of purified WCx........................................................................................... 175 

Figure 97: Wilson’s dip staining of WCx.. ................................................................................ 176 

Figure 98: WCx separates into two compounds after HVPE at pH 6.5. ........................................ 177 

Figure 99: Saponification of WCx.. ......................................................................................... 178 

Figure 100: TLC analysis of WCx stained in thymol, molybdate and ninhydrin. ............................. 179 

Figure 101: MS analysis of purified WCx.. ............................................................................... 180 

Figure 102: Structures of glucosinolates. ................................................................................ 181 

Figure 103: Proposed degradation pathways of ascorbate in vitro.. ............................................. 188 

Figure 104: Example of oxalyl sugar formation via acyltransferase activity. .................................. 191 

Figure 105: Structure of glucosinolates.   ................................................................................ 196 

 

file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657989
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657990
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657991
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657992
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657993
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657994
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657995
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657996
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657997
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657998
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429657999
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658000
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658001
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658002
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658003
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658004
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658005
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658006
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658006
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658007
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658008
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658009
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658009
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658010
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658011
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658012
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658013
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658014
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658015
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658016
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658017
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658018
file:///F:/THESIS/WHOLE%20THESIS%209.9.15%20ref%20updated%20evening.docx%23_Toc429658019


1 

 

Introduction 

1.1 Overview of ascorbate 

Vitamin C consists of L-ascorbic acid, commonly found in the ionised form L-ascorbate 

(referred to as ascorbate, or AA, throughout) as well as dehydro-L-ascorbic acid (DHA) 

(Figure 1). Vitamin C is chemically the simplest of the vitamins, essential nutrients in the 

human diet. Humans lack the ability to synthesise the compound owing to the absence of the 

final enzyme in the mammalian biosynthetic pathway (10). Plants, however, can synthesise 

vitamin C and it can accumulate to millimolar concentrations in plant cells and account for 

up to 10% of the total water-soluble carbohydrates (11). 

  

 

 

 

 

 

 

 

 

Although vitamin C can be synthesised commercially, and indeed is the most widely 

produced vitamin in industry (12,13), our primary dietary source of this compound remains 

plants. As plants are such important sources of ascorbate, in-depth knowledge of the 

metabolism of ascorbate in planta is vital. Though the major biosynthetic pathway has been 

elucidated (14), many questions surrounding ascorbate degradation remain, and this report 

will aim to answer some of them.  

The benefits of vitamin C are widely publicised, and as a result it is not uncommon for foods 

to be supplemented with ascorbate. Vitamin C has a vital role in collagen synthesis, and a 

deficiency of vitamin C leads to scurvy, the symptoms of which relate to the loss of collagen 

Figure 1: Chemical structures of ascorbic acid, ascorbate and DHA. Ascorbate is the ionised form 
of ascorbic acid, and the most common form in physiological conditions. DHA (dehydroascorbic 
acid) is the first oxidation product of ascorbate. DHA is not a true acid as it cannot be ionised at 
physiological pH values. 
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(15,16). As well as preventing scurvy, the vitamin has many other reported health benefits, 

such as in the treatment or prevention of diabetes, cardiovascular disorders, age-related 

diseases and even cancer (17). Ascorbate is well known as an antioxidant, but also has 

numerous other roles in planta including as an enzyme co-factor, and in the regulation of the 

cell cycle (18). 

1.2 History of ascorbate 

Scurvy has afflicted many sailors throughout history, and was described by the ancient 

Greeks, Egyptians and Romans (19). The importance of citrus fruits in the prevention of 

scurvy was reported by Edinburgh surgeon James Lind (20) in the mid-1700s in what is 

regarded as the first study which controlled for population, although the practice of eating 

fresh fruit and vegetables to stave off scurvy was already used among some populations (21). 

However, it was not until almost two centuries later that the compound responsible for this 

anti-scorbutic (scurvy-preventing) activity was isolated, the chemical structure determined 

and the name of ascorbic acid given (22,23). 

The compound was classified as a vitamin prior to the elucidation of its chemical structure. 

The concept of vitamins as essential micronutrients was established in 1912 by Casimir Funk 

(24). He proposed that diseases caused by the deficiencies of certain foods were in fact due 

to the deficiency of specific compounds within those foods. The word vitamin is a 

portmanteau word deriving from ‘vital’ and ‘amine’, as the first vitamin discovered (vitamin 

B3, niacin) contained an amine group (24). It was assumed that other compounds, a lack of 

which would manifest as a disease, would also necessarily contain amine groups. This is 

now understood not to be the case, as several of the 13 recognised vitamins, including 

vitamin C, do not contain an amine group. 

A reducing factor was isolated by Albert Szent-Györgyi from numerous sources (22,25) 

including the adrenal cortex of oxen, as well as plant samples such as turnip roots, tomato 

and citrus fruits. It was then several years until the structure of this reducing factor, 

determined as having the formula C6H8O6 (22), was identified as vitamin C. The identity of 

this compound as vitamin C was confirmed by its scurvy-preventing properties when fed to 

guinea pigs having an otherwise vitamin C-free diet (26). The use of guinea pigs in this study 

was fortuitous, as they are one of only a very small number of animals which do not 

synthesise vitamin C themselves. Other animals that have lost the ability to synthesise 

vitamin C include some species of primates (including humans), teleost fish, some passerine 

birds and most species of bats (27). 
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Further confirmation that the so-called hexuronic acid was in fact vitamin C was provided by 

the successful synthesis of the compound (28). With this confirmation vitamin C was then 

named ascorbic acid, in recognition of its anti-scorbutic properties.  

Since the discovery of the structure of vitamin C, a huge amount of research into ascorbate 

has been carried out, but there is still much more to learn about this small but very important 

molecule. 

1.3 Chemistry of ascorbate 

Ascorbic acid (AA) is the trivial name for the compound L-threo-hex-2-enono-1,4-lactone, 

and is a very effective reducing agent. AA is a sugar acid lactone containing an ene-diol 

group (8) and has a molecular weight of 176.1. AA is weakly acidic owing to the presence of 

two hydroxyl groups at C2 and C3 (Figure 2). 

The hydroxyl group at C3 is very readily ionisable at a physiological pH, having a pKa value 

of 4.25 (8) (Figure 2). This leads to the mono-anion of ascorbate (commonly defined as L-

ascorbate) being the predominant form of AA in most biological systems. The second 

hydroxyl group at C2 has a much higher pKa of 11.8, meaning it is only weakly acidic. 

The reducing properties of AA, and thus its vitamin activity, are due to this ene-diol group. 

As an antioxidant a major role of ascorbate is to detoxify reactive oxygen species (ROS). 

This can occur via the donation of one or two electrons from ascorbate to the ROS, thereby 

preventing further oxidative reactions (6). These reactions occur via numerous reactive 

intermediates (Figure 2). 

The donation of the first electron, from the mono-anion of ascorbate (AA
–
), results in the 

formation of the ascorbyl radical (AA
•
, also known as the ascorbate free radical or 

monodehydroascorbate), which is unusually long-lived for a free radical species. This 

ascorbyl radical is very acidic and under apoplastic physiological conditions (pH values 

between 2 and 5) is likely to convert to the semi-dehydroascorbate anion radical (8). A 

second electron can then be donated to form dehydroascorbic acid (DHA; Figure 2). DHA is 

commonly found in the bicyclic form and can also occur in the dihydrated form (HDHA), 

which has a pKa of approximately 8-9 (6,29). ‘Dehydroascorbic acid’ is perhaps a misnomer, 

as DHA does not contain any readily ionisable hydroxyl groups, and so cannot truly be 

classified as an acid. 



4 
 

The autoxidation of AA describes the reaction of AA with molecular oxygen (O2), forming 

DHA and H2O2. This reaction, while thermodynamically viable, is kinetically forbidden 

owing to the different electron spin states of AA
•
 (containing one unpaired electron so in 

singlet state) and O2 (containing two unpaired electrons so in triplet state) (8).  Autoxidation 

of ascorbate is relatively slow, as governed by the fact that this must occur (to avoid the 

conflicting electron spin states) via the di-anion of ascorbate (AA
2–

), which is not readily 

formed at physiological pH values as suggested by its high pKa of 11.8 (6). However, the 

oxidation of AA catalysed by transition metal ions (often present under physiological 

conditions) is very rapid (30), and can occur via AA
•
, avoiding the conflicting spin 

restrictions.  

Figure 2: Chemical species associated with reducing properties of vitamin C. The structures of 
AA compounds associated with its reducing properties are shown, along with the pKa values if known. 
The carbon atoms are numbered on AA, and should be assumed to be the same on the other 

chemical species. Adapted from Du et al 2012 (6) and Bradshaw et al 2011 (8) 
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Metal ions of Fe
3+

 and Cu
2+

 are known to be particularly efficient catalysts of the oxidation 

of AA (30). There are two proposed mechanisms by which these ions act to catalyse the 

oxidation of AA. One theory is that the initial electron transfer results in the metal ion being 

reduced and the AA being oxidised, as the metal ion interacts directly with AA. The metal 

ion is then re-oxidised to its original state by O2. Alternatively, electron transfer between AA 

and O2 could occur in one step with the metal ion acting as a bridge (8).  

The relative stability of AA
•
 as a free radical allows the possibility of this compound being 

reduced back to AA
–
 with the addition of an electron. This can be catalysed by 

monodehydroascorbate reductase (MDHAR) (31), which is an integral part of the ascorbate–

glutathione cycle (discussed further in section 1.7.2), allowing the quenching of H2O2 

without the loss of ascorbate. Non-enzymic disproportionation of AA
•
 leads to the formation 

of DHA, which can also be reduced back to AA in the ascorbate–glutathione cycle, by the 

action of DHA reductase (DHAR) (11). 

The most common reactions that AA undergoes are oxidation reactions, whereas DHA can 

undergo oxidation, reduction and hydrolysis. The oxidation of DHA produces oxalyl-L-

threonate (OxT), cyclic oxalyl-L-threonate (cOxT), oxalic acid (OxA) and L-threonate 

(ThrO) (2,32). These oxidation reactions will be discussed further in section 1.5.1. The 

hydrolysis of DHA involves breaking the lactone bond, thus opening the ring, resulting in 

the formation of 2,3-diketo-L-gulonic acid (DKG). This reaction occurs relatively slowly at 

low pH values (below pH 4), but happens much more quickly at higher pH values, which are 

more common in intraprotoplasmic biological systems. It is this hydrolysis reaction which 

causes DHA to be unstable in aqueous solutions, and this reaction is thought to be 

irreversible in vivo (33). 

The stereoisomer of AA, D-isoascorbic acid (known also as erythorbic acid) is not widely 

produced naturally although it has been reported to be formed by Penicillium cyaneo-fulvum 

(34), and has been synthesised (35). This compound shows reduced anti-scorbutic properties 

compared with L-AA (36), potentially because of the inability of cells to transport and absorb 

this isomer of ascorbate. Fungi and yeast cells contain a C5 analogue of ascorbate, D-

erythroascorbic acid (D-glycero-pent-2-enono-1,4-lactone) (37,38). This compound has very 

similar pKa values as AA (pKa of 4.0 and 11.6) and has been shown to have similar anti-

scorbutic properties in insect models, but not necessarily in humans (39). 
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1.4 Biosynthesis of ascorbate 

Initial studies on the biosynthesis of ascorbate in rats showed that ascorbate is produced from 

glucose (40). Further work involving the feeding of specifically labelled [6-
14

C]glucose or 

[1-
14

C]glucose demonstrated that this conversion of glucose to ascorbate involves an 

inversion of the carbon chain, i.e. [1-
14

C]glucose produced [6-
14

C]AA (41), owing to 

reduction at C-1 of glucose, and oxidation at C-6. This conversion was determined to occur 

via intermediates of D-glucuronic acid, L-gulonic acid and L-gulono-1,4-lactone (42). 

As mentioned previously, humans, along with a select group of other species, are unable to 

synthesise ascorbate and thus require vitamin C in their diet. The inability to synthesise 

ascorbate is due to a mutation in the final enzyme (L-gulono-lactone oxidase) in the 

mammalian biosynthetic pathway (10,43). This enzyme, catalysing the oxidation of L-

gulono-1,4-lactone to L-ascorbate, is present in the liver of ascorbate-synthesising mammals 

(43), and in the kidney of ascorbate-synthesising fish, amphibians and reptiles (44). 

The biosynthetic pathway of ascorbate in plants proved much more difficult to pin down 

than the mammalian biosynthetic pathway. In fact it was not until 1998 that the major 

pathway in plants was elucidated (14). It has since been reported that at least three other 

pathways, occurring via various intermediates, are also present in plants (9) (Figure 3). 

The pathway in plants was originally proposed to follow the same steps as in rats (42) from 

D-glucose to L-ascorbic acid, via the intermediates of D-glucuronic acid and L-gulonic acid. 

The feeding of the lactones of both D-glucuronic acid and L-gluconic acid (intermediate 

compounds in the mammalian biosynthetic pathway) to cress seedlings, as well as rats, also 

resulted in the formation of ascorbic acid (42). However, tracer studies carried out in plants 

with glucose labelled in the C-1 and C-6 positions showed that inversion of the carbon 

skeleton does not occur in plants, as it does in mammals (45,46), providing evidence for an 

alternative ascorbate biosynthetic pathway in plants. 

A breakthrough occurred in 1998 with the proposal of a pathway that did not require the 

inversion of the carbon backbone (14) occurring via intermediates of L-galactose and L-

galactono-1,4-lactone (Figure 3, L-galactose pathway). The most effective precursor of 

ascorbate in plants had been shown to be L-galactono-1,4-lactone (46),  the production of 

which is catalysed by l-galactose dehydrogenase (enzyme 8 in figure 3) (47), but the 

occurrence of this compound in planta was disputed (48). However, it was shown that L-

galactono-1,4-lactone can be produced by the oxidation of C-1 of L-galactose. L-Galactose 

supplied to various plant tissues (Arabidopsis thaliana leaves and germinating pea seedlings)  
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Figure 3: The biosynthetic pathways of ascorbic acid in plants. The four known pathways to ascorbate in plants 
are shown in different colours. The enzymes involved are: 1, glucose-6-phosphate isomerase; 2, mannose-6-
phosphate isomerase; 3, phosphomannomutase; 4, GDP-mannose pyrophosphorylase; 5, GDP-mannose-3ʹ,5ʹ 
epimerase; 6, phosphodiesterase; 7, sugar phosphatase; 8, L-galactose dehydrogenase; 9, L-galactono-1,4-lactone 
dehydrogenase; 10, phosphodiesterase; 11, sugar phosphatase; 12, L-gulose dehydrogenase; 13, aldono-
lactonase; 14, gulono-1,4-lactone dehydrogenase; 15, myo-inositol oxygenase; 16, glucoronate reductase; 17, 
methylesterase; 18, D-galacturonate reductase; 19, aldono-lactonase. Adapted from (3) and (9) 
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led to a rapid increase in ascorbate levels (14), demonstrating that L-galactose is an effective 

precursor of ascorbate. L-Galactose residues are found in the cell wall (49), demonstrating 

that plants are capable of synthesising the L-isomer of galactose (D-galactose is more 

abundant in plants), providing the opportunity for this compound to be an intermediate in 

ascorbate biosynthesis (18,50). The production of ascorbate from l-galactono-1,4-lactone is 

catalysed by the plant mitochondrial enzyme L-galactono lactone dehydrogenase (enzyme 9 

in figure 3) 

Mutants of Arabidopsis thaliana deficient in ascorbate metabolism have allowed the 

identification of key enzymes within this pathway. One of the most studied of these mutants 

is vitamin C-1 (vtc1) which was originally named soz1 owing to its sensitivity to ozone. The 

VTC1 locus encodes GDP-mannose pyrophosphorylase (51) (enzyme 4 in Figure 3), and the 

mutant plants show a 70% reduction in ascorbate (52). The vtc1 mutants did not completely 

lack GPD-mannose pyrophosphorylase, but rather the enzyme showed a deficiency in its 

activity of about 35%. It was predicted that a null mutant with a complete lack of GDP-

mannose pyrophosphorylase would be embryo-lethal, owing to the numerous functions of 

GDP-mannose in plants, and indeed a different (null) mutation (cyt1) in the same gene 

proved to be embryo-lethal (53).  The vtc1 mutant showed numerous phenotypes, in addition 

to sensitivity to ozone, related to ascorbate deficiency, including early senescence, late 

flowering and slower growth (52,54). A related mutant (vtc4) was also found to have 

reduced ascorbate levels; the VTC4 locus was found to encode L-galactose-1-P phosphatase 

(55) (enzyme 7 in Figure 3).   VTC2 was the final enzyme in this pathway to be characterised 

(all are named in Figure 3) and encodes GDP-L-galactose phosphorylase (56) (enzyme 6 in 

Figure 3). VTC5 also encodes a GDP-L-galactose phosphorylase (57). The vtc2 mutant had 

approximately 20% ascorbate, whereas vtc5 mutants had approximately 90% ascorbate 

levels, but a double mutant of vtc2 and vtc5 was not viable (57). The different expression 

patterns of VTC2 and VTC5 are thought to relate to varying diurnal rhythms (58). 

All these mutants of the Smirnoff–Wheeler pathway show marked reductions in ascorbate 

levels, but not a complete lack of ascorbate. The mutants in the pathway showed a reduction 

rather than a complete lack of the enzyme activities, which would explain the low levels of 

ascorbate that remain in these mutants. Alternatively, the presence of low levels of ascorbate 

in the mutants of the Smirnoff–Wheeler biosynthetic pathway could suggest that alternative 

biosynthetic pathways may also exist in plants. Although this pathway, via L-galactose, has 

been found to be the dominant pathway in numerous plants (59), it is now generally accepted 
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that there are at least three other distinct pathways of ascorbate biosynthesis in plants (Figure 

3). 

An alternative pathway was defined in ripening tomato fruits (60), in which it was found that 

the previously described genes involved in the Smirnoff–Wheeler pathway were down-

regulated, but ascorbate levels increased. This alternative pathway was found to proceed via 

D-galacturonate (D-galacturonic acid pathway in Figure 3), presumably from pectin in the 

cell wall.   

The third pathway utilises myo-inositol as the substrate (61) (myo-inositol pathway in figure 

3). Over-expression of a myo-inositol oxygenase gene (miox4) in Arabidopsis led to a 

significant increase in the ascorbic acid content (61). The spatial expression of the gene also 

correlates with tissues containing high levels of ascorbate, such as flowers and leaves. This 

pathway involves L-gulono-1,4-lactone as the immediate precursor to ascorbate, as in the 

mammalian pathway. Previous work using radiolabelled myo-inositol fed to parsley 

(Petroselinum) leaves and strawberry (Fragaria) fruits showed negligible radiolabelled 

ascorbate (44), suggesting that this substrate provides only a minor contribution for ascorbate 

biosynthesis.  

Another pathway that uses part of the mammalian biosynthetic pathway utilises 

phosphorylated derivatives of L-gulose (L-gulose pathway in Figure 3) generated by GDP-

mannose epimerase (62) (enzyme 5 in Figure 3). This enzyme is implicated in the dominant 

Smirnoff–Wheeler (L-galactose) pathway, converting GDP-mannose to GDP-galactose, but 

it was discovered that this enzyme could also catalyse the conversion of GDP-mannose to 

GDP-gulose. This GDP-gulose is hypothesised to go on to form ascorbate via intermediates 

of L-gulose-1-P and L-gulose, before feeding into the last stages of the myo-inositol and 

mammalian pathways via L-gulonic acid and L-gulono-1,4,-lactone. 

The major biosynthetic pathway of ascorbate in plants is the Smirnoff-Wheeler pathway, as 

demonstrated by the loss of the majority of ascorbate in plants with mutations in key 

enzymes in this pathway. The D-galacturonic acid pathway is thought to be organ specific, 

having been discovered in tomato fruits. The myo-inositol pathway makes only a very small 

contribution to the overall ascorbate pool within the plant, and the l-gulose pathway has not 

been verified in planta as yet, so would similarly only be expected to contribute as a very 

minor pathway. 
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1.5 Degradation of ascorbate 

Although several biosynthetic pathways of ascorbate are now well characterised, many of the 

degradation pathways have yet to be fully elucidated. The current study will report on 

various aspects of ascorbate degradation pathways.  

Ascorbate is unstable in aqueous solutions at a physiological pH. Under aerobic conditions, 

the first oxidation product of ascorbate is the ascorbate free radical (AA
•
; section 1.3) which 

can convert back to ascorbate, or oxidise further to produce dehydro-L-ascorbic acid (DHA) 

(63). DHA is important as it has been shown to have anti-scorbutic properties in guinea pigs 

(64); this could be due in part to the conversion of DHA back to AA, which is dependent on 

glutathione, and occurs in human blood cells (65). DHA and its hydrolysis product 2,3-

diketo-L-gulonic acid (DKG) have been shown to be more susceptible to degradation by 

H2O2 than AA itself, suggesting that DKG and DHA preferentially react with H2O2 above 

AA (32). DHA also provides greater protection than AA in the presence of transition metal 

ions against the oxidation of low density lipoproteins by inhibiting lipid peroxidation and 

Cu
2+

 uptake (66).  

The oxidation of ascorbate to DHA is reversible in plant cells, and partly enzymatically 

controlled (33). Dehydroascorbic acid reductase (DHAR) catalyses the reduction of DHA to 

ascorbate (67). This enzyme is integral to the ascorbate–glutathione pathway (discussed 

further in section 1.7.2), allowing the recycling of ascorbate and preventing it from being lost 

from the cell. The proportion of vitamin C present in the form of either ascorbate or DHA is 

important for the redox state of the cell (68,69), which in turn governs the vulnerability of 

cells to infection. DHA represents a branch point in ascorbate catabolism and can undergo 

further degradation, either oxidation or hydrolysis, which is irreversible and results in a loss 

of vitamin C from the cell. 

1.5.1 Oxidation of DHA 

DHA can be hydrolysed to 2,3-diketo-L-gulonate (DKG) (70,71), or alternatively oxidised to 

a range of products. Well-documented end products of the oxidation of DHA are L-threonic 

acid (ThrO) and oxalic acid (OxA) (32). These are known to be formed largely via 

intermediates of oxalyl-L-threonate (OxT) and cyclic oxalyl-L-threonate (cOxT) (1,2,72). 

This pathway was originally identified in rose cell-suspension culture supplied with [1-

14
C]AA. All the compounds were formed non-enzymically, but some steps were enhanced in 

the presence of enzymes (72). Further investigation into the fate of DHA under oxidising 
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conditions revealed the theoretical possibility of highly reactive intermediate compounds 

which then go on to form cOxT, OxT and OxA (necessarily with ThrO) simultaneously in a 

6:1:1 ratio (2) (Figure 4).  

Mass spectrometry analyses of oxidised AA and DHA showed that they both produced 

ThrO, via a 6-carbon intermediate, as determined by mass spectrometry (32). The 6-carbon 

intermediate was proposed to be 2,3-diketo-4,5,5,6-tetrahydroxyhexanoic acid and was 

found to be produced during hydrogen peroxide oxidation of AA, but not significantly with 

cupric ion oxidation, which instead produces threo-hexa-2,4-dienoic acid lactone (73). AA 

has been demonstrated to form hydroxyl radicals and H2O2 in solutions containing metal ions 

via the Fenton reaction (74). This difference in intermediate compounds demonstrate that 

Figure 4: Oxidation pathway of DHA as proposed by Parsons and Fry. Isomers of cOxT are shown in green, 

isomers of OxT are shown in blue and reactive intermediates are shown in orange. Adapted from (1) and (2). 
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different ROS can form different oxidation products from AA. 

Some compounds in the oxidation pathway of DHA, namely cOxT and OxT, have 

theoretical isomers. The two isomers of cOxT (Figure 4) are 2,3-cOxT and 3,4-cOxT. These 

compounds are proposed to originate from a highly reactive intermediate (cyclic-2,3-oxalyl-

L-threonolactone) formed during the oxidation of DHA with H2O2 (1). This intermediate 

compound would be very short-lived, rapidly undergoing hydrolysis of either the lactone 

ring (producing the relatively stable 2,3-cOxT, which itself can produce 3,4-cOxT by acyl 

migration) or one of the oxalyl ester bonds (producing the second highly reactive 

intermediate 3-oxalyl-L-threonolactone). In vivo the formation of 3-oxalyl-L-threonolactone 

appears to be favoured (1). This second highly reactive intermediate compound can undergo 

hydrolysis of the lactone ring, forming either 2-oxalyl-L-threonate or 3-oxalyl-L-threonate. 2-

OxT is proposed to be fairly unstable, forming 3-OxT by acyl migration. OxT is reported to 

be composed of three isomers, of which 4-OxT is thought to be the most stable, owing to this 

isomer having its two negative charges furthest apart (75). Interconversion between 3-OxT 

and 4-OxT is reported to occur in vivo (1). 

Alternatively, 3-oxalyl-threonolactone could undergo hydrolysis of the oxalyl ester bond, 

producing L-threonolactone and OxA. In turn, threonolactone itself would be likely to be 

hydrolysed, producing free ThrO. ThrO and OxA could also be produced from 4-OxT, by 

hydrolysis of the remaining oxalyl bond (Figure 4). 

Although these oxidation products can be formed in vitro, some of the steps are catalysed by 

enzymes in vivo (72,75). An oxalyl esterase is proposed to catalyse the reaction of OxT to 

ThrO and OxA. OxT appeared relatively stable in non-enzymatic conditions (in fresh culture 

medium and boiled spent culture medium) but depleted in conditions with plant enzymes 

present (both in rose cell-suspension culture and cell-free spent medium), resulting in an 

increase in OxA (72). Esterases have also been proposed to act during the conversion of 

Figure 5: Formation of tartaric acid from DHA in Vitaceae. The C-1 of the original ascorbate molecule is 
indicated with C. DHA is shown in the bicyclic form. Adapted from Hancock and Viola (2005) (3) 
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cOxT to OxT in rose cell-suspension cultures (1).  

Different plant families are known to exhibit different ascorbate oxidation pathways, with 

plants in the Vitaceae (such as grapes) forming tartrate via L-idonate derivatives (Figure 5). 

A gene encoding L-idonate dehydrogenase was identified in a grape species (Vitis vinifera). 

This enzyme catalyses the formation of 5-keto-L-idonic acid from L-idonic acid (figure 5); 

the subsequent formation of tartaric acid is thought to be non-enzymic. A species 

(Ampelopsis aconitifolia) known to accumulate ascorbate was found to have a deletion of the 

L-idonate dehydrogenase gene (76). Plants in the Geraniaceae, however, form OxA and 

ThrO via OxT-related compounds (77) (Figure 4). Tartrate can also be produced from the 

oxidation of ThrO (78).  

 

1.5.2 Degradation of DKG 

If oxidation is limited, DHA undergoes hydrolysis to form DKG (Figure 6). This hydrolysis 

is thought to be irreversible in vivo, in mammalian cells (33,79), as DKG has been shown to 

have no anti-scorbutic properties (80). However, there is some evidence that DHA can be 

formed from DKG in vitro using stronger agents than are present in vivo, such as aqueous 

hydrogen iodide (80) or mercaptoethanol (81).  

DKG itself can be further degraded into numerous, incompletely characterised, compounds 

(Figure 6). The oxidation of DKG ultimately produces ThrO and OxA (2). An alternative 

pathway for the production of ThrO from DKG has also been reported to occur via an 

unidentified intermediate product, known as compound H, hypothesised to be a C5 

compound (2). This reaction would presumably also produce CO2, rather than OxA (a C2 

compound), therefore OxA is most likely not formed via compound H. 

An alternative degradation pathway of DKG produces compounds C and E (72) (Figure 6). 

The nature of the reaction yielding these products remains unknown. These compounds are 

interconvertible, and C is proposed to be the lactone of E. The chemical structures of C and 

E remain uncertain, but C is hypothesised to be a mixture of two epimers: 2-carboxy-L-

xylonolactone (pictured in Figure 6) and 2-carboxy-L-lyxonolactone, whereas E is suggested 

to be 2-carboxy-L-xylonate, more correctly termed 2-carboxy-L-threo-pentonate (1). In vivo, 

C was found to be produced before E, with the yield of both increasing in moderately 

oxidising conditions favouring the production of DKG. Compound C is thought to be a 

stable end point of ascorbate catabolism. This could be due to C being formed before E, or 
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because the equilibrium favours the production of C (1). Further characterisation of these 

compounds will be reported on in the current study. 

In animal cells DKG has been shown to undergo non-oxidative decarboxylation to form 

xylonic acid and lyxonic acid (4,82). These compounds can then enter the pentose phosphate 

pathway, ultimately resulting in the formation of Glc-6-P and lactic acid (83). The 

production of xylonic acid and lyxonic acid has not been documented to occur in plants. 

Experiments carried out with [1-
14

C]AA, such as those described in the current study, would 

be unable to detect the formation of xylonic or lyxonic acid as the 
14

C would be lost as CO2. 

Figure 6: Degradation of DKG. The original C-1 of ascorbate is indicated with a C. The 
proposed identities of compound C and E are written in brackets (1). Adapted from (1) and 
(4). 
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Preparations of DKG, containing several unidentified compounds, caused an increase in 

H2O2 production in Picea abies (Norway spruce) cell-suspension culture and in fresh culture 

medium (84). This increase in H2O2 was thought to be due to a DKG-related compound 

producing H2O2 itself, or a DKG-related compound that acts to inhibit peroxidase activity 

(84). An increase in a peroxidase-inhibitory compound would lead to an increase in H2O2 as 

there would be a reduction in the peroxidase-catalysed scavenging of H2O2, allowing H2O2 to 

accumulate. Numerous currently unidentified catabolites of DKG were observed after 

separation of DKG preparations by both by high-voltage paper electrophoresis (HVPE) and 

high pressure liquid chromatography (HPLC) (84). Aged preparations of DKG were shown 

to contain a particular compound, isolated after fractionation by HPLC, which acts to inhibit 

peroxidase activity (A. Kärkönen and S.C Fry, unpublished). The nature of this compound 

will be discussed further in section 3.2. 

1.6 Reactive oxygen species 

Reactive oxygen species (ROS) are important signalling molecules within the plant (85). 

They have vital roles in plant immunity and in growth and development (86). However, an 

excess of ROS can lead to oxidative stress and cause damage within the plant, including 

oxidation of proteins, and the damaging of DNA and membranes. Ascorbate, in its role as an 

antioxidant, acts to quench reactive oxygen species, therefore protecting the plant cells from 

oxidative stress. Numerous different ROS are found within plant cells, and are often 

produced as part of normal metabolic processes; several of these species will be discussed 

individually.  

1.6.1 Hydrogen peroxide 

H2O2 (hydrogen peroxide) is the most well-known ROS generated in the plant, and different 

ROS often react with H2O to produce H2O2 (87). H2O2 is generated during various metabolic 

processes including photosynthesis, in photosystem I. It is also produced from the oxidation 

of glycollate in the peroxisome (88).  

The synthesis of lignin in secondary cell walls has been shown to require the action of 

peroxidases (89), in turn necessitating the formation of  H2O2 as a substrate for these 

enzymes. It was subsequently determined that H2O2 is formed by the action of NADH 

oxidase (a further peroxidase) in isolated horseradish cell walls (90), providing an important 

substrate for enzymes involved in lignin synthesis. Several peroxidases (91) and other 
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enzymes such as amine oxidases (92) also contribute to the formation of H2O2 in the cell 

wall. 

As well as being the most abundant, H2O2 is also the most long-lived of the ROS. This 

longevity also allows the possibility of H2O2 having a role as a cell signalling molecule 

(87,93,94). The relative stability of H2O2 would allow the molecule to participate in long-

range signalling events. 

H2O2 and O2
•–

 (superoxide) have roles as antimicrobial agents as a part of the oxidative burst 

(95). This is known to occur when plants are infected by a pathogen. O2
•–

 has been shown to 

be generated in response to infection in potato tubers (96), and in cell-suspension cultures 

(95,97). This O2
•–

 disproportionates to H2O2 and O2 in vivo. The role of the oxidative burst is 

thought to primarily be to damage the invading pathogen (98) both directly, and by inducing 

signalling pathways for cell death and protective responses in neighbouring cells (99). A 

further protective role of H2O2 from the oxidative burst has been reported (100), in which 

H2O2 is able to cross-link proteins into the cell wall, thus strengthening the cell wall and 

preventing the pathogen from gaining access into the cell. 

NADPH oxidases, also known as respiratory burst oxidase homologues are key enzymes 

involved in generating reactive oxygen species in the apoplast. NAPDH oxidases are 

localised to the extracellular membrane and produce the superoxide anion, which quickly 

goes on to form H2O2 in the apoplast, and so is a key source of ROS in the apoplast 

(101,102).  

NADPH oxidases have been implicated in plant immunity (103),  serving a role in response 

to pathogen attack, as well as in connection with various other biotic and abiotic stresses. 

NAPDH oxidases produce ROS immediately upon infection, the enzyme has then been 

shown to undergo S-nitrosylation, which diminishes the production of ROS, limiting the 

hypersensitive response, reducing excessive cell death (104). They have also been found to 

have a key role in cell expansion, producing ROS which go on to regulate the activation of 

calcium channels (105). This suggests a role for NADPH oxidases in plant growth. Barley 

germination was delayed by treatment with an NADPH oxidase inhibitor, which was 

demonstrated to reduce superoxide production (106). 

1.6.2 Superoxide anion 

The superoxide anion (O2
•–

) is produced by the one-electron reduction of molecular O2 (107). 

O2
•–

 is produced in the mitochondria, where up to 4% of O2 is reduced to O2
•–

  (107,108). It is 

also produced in the chloroplast, in PSI (109). O2
•–

 is very short-lived, having a half-life of 
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just 4 µs in the presence of enzymes, and up to 0.5 s at pH 6.5 without enzymes 

(107,110,111). 

Superoxide has also been reported to form at cell surfaces, by the action of plasma 

membrane-associated NADPH oxidases (112). These enzymes reduces O2 to O2
•–

, utilising 

NADPH as an electron donor. 

During pathogen infection an oxidative burst is known to occur, as mentioned in the previous 

section (96,113). This oxidative burst involves the production of large amount of O2
•–

, which 

quickly disproportionates to H2O2 and O2 (113). This disproportionation is catalysed in vivo 

by superoxide dismutase, which converts the very reactive O2
•–

 to the less damaging and 

more stable H2O2 and O2 (114). 

1.6.3 Hydroxyl radical 

The hydroxyl radical (
•
OH) has been reported to be the most potent but most short-lived of 

the ROS (115). 
•
OH is generated from the reaction of H2O2 with reduced metal ions, such as 

Fe
2+

 or Cu
+
. This occurs via the Haber–Weiss reactions shown below. O2

•–
 transfers an 

electron to Fe
3+

, resulting in the formation of O2 (reaction a). H2O2 on the other hand 

oxidises Fe
2+

 to Fe
3+

, producing
 
OH

–
 and 

•
OH (reaction b). The overall reaction (reaction c) 

shows the formation of 
•
OH from H2O2 and O2

•–
 (110). 

a) O2
•–

 + Fe
3+

 → O2 + Fe
2+

 

b) H2O2 + Fe
2+

 → Fe
3+

 + OH 
–
+ 

•
OH 

c) H2O2 + O2
•
 → OH 

–
+ 

•
OH + O2 

An alternative route of 
•
OH generation that does not require O2

•–
 occurs via the reaction of 

ascorbate with Cu
2+

 or Fe
3+

 and O2. Ascorbate can facilitate the reduction of O2 to H2O2, as 

well as the reduction of Cu
2+

 to Cu
+
 (or Fe

3+
 to Fe

2+
) non-enzymically. 

•
OH is then produced 

from the reaction of H2O2 and the metal ions in the classical Fenton reaction (116,117). 

As 
•
OH is the most reactive of the ROS, mechanisms to control this ROS may involve the 

elimination of the precursors of 
•
OH rather than 

•
OH itself, as it is too reactive to be 

controlled directly, and there are no known scavengers of 
•
OH (110,113). The precursor, O2

•–

, is removed by the action of superoxide dismutase (118), and H2O2 is removed by the action 

of catalases and peroxidases. The production of 
•
OH from H2O2 is also catalysed by 

horseradish peroxidase (119). 

A major site of 
•
OH generation within the plant cell is thought to be photosystem II in the 

chloroplast, due to the presence of H2O2 and O2
•–

, and metal ions such as Fe
3+

 and Mn
2+
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(120,121). 
•
OH is also generated in the mitochondria, formed from H2O2 and O2

•–
 in the 

presence of metal ions such as Mn
2+

 or Fe
3+

 present in the electron transfer chains (121,122). 

A further site of 
•
OH production is in the cell walls, where it is also formed from H2O2 and 

Cu
2+

 or Fe
3+

. Within the cell wall 
•
OH is thought to contribute to cell wall loosening and thus 

plant growth by oxidative scission of polysaccharides (123).  This ascorbate-dependent 

production of 
•
OH within the cell wall has been proposed to have a role in fruit softening 

(124). 

 

1.6.4 Singlet oxygen 

Singlet oxygen (
1
O2) is the excited state of molecular (triplet) oxygen. This ROS is the 

primary cause of lipid peroxidation in leaves (125). 
1
O2 is the predominant ROS generated in 

PSII, from molecular (triplet) oxygen in the presence of chlorophyll (109). Singlet oxygen is 

produced by photo-activation, which occurs in leaves owing to the presence of chlorophyll, 

which acts as a photosensitiser (126). In vitro, 
1
O2 can be produced from photosensitiser dyes 

such as eosin, rose Bengal and riboflavin (127).  

Singlet oxygen is known to have roles in various cell-signalling pathways, including in 

programmed cell death (128,129). It also plays a role in plant–pathogen interactions, with 

some plants producing 
1
O2 as a response to pathogen infection (130). Some plants produce 

secondary metabolites that are photosensitisers (also known as phototoxins), such as 

phytoalexins, rapidly in response to infection (131). These compounds accumulate at the 

point of infection and produce toxic 
1
O2 in light, thus defending the plant from pathogens 

(132,133). Phototoxins including furanocoumarins and furanoquinoline are found in prickly 

ash (Zanthoxylum americanum) and wild parsnip (Pastinaca sativa) (134). Leaves of these 

two species were shown to produce 
1
O2 at the adaxial leaf surface when incubated under 

light. This singlet oxygen, which is more stable in gas than in aqueous solutions was shown 

to be able to travel up to 2 mm, allowing it to act as a defence mechanism against pathogens 

and herbivores at the leaf surface, with minimal damage to the healthy plant cells (134). 
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1.7 Ascorbate as an antioxidant 

ROS, discussed in the previous section, are potentially damaging and may require 

detoxification within the plant cell. One of the most abundant antioxidants in plants is 

ascorbate (135). Ascorbate can react directly with 
•
OH, O2

•–
 and 

1
O2, and can reduce H2O2 

via the ascorbate–glutathione pathway (11) (discussed in section 1.7.2). 

1.7.1 Apoplastic ascorbate 

Ascorbate is found throughout the plant cell, and has been detected in all cell compartments 

(136). The majority of a plant’s ascorbate is found in the cytosol and the peroxisomes, as 

measured by immunocyotchemical labelling of Arabidopsis thaliana cells, along with 

smaller proportions accumulating in the other cell compartments including plastids and the 

apoplast (136). In Arabidopsis thaliana the apoplast was found to contain ~10% the total 

ascorbate (AA and DHA, at a concentration of 200-300 nmol g
-1

 fresh weight) and this 

decreased upon pathogen infection (137). The apoplastic ascorbate levels vary between 

species, with the spinach (Spinacia oleracea) apoplast containing ascorbate at a level of ~50 

nmol g
-1

 fresh weight (138) and the wheat (Triticum aestivum) apoplast having levels of 70-

140 nmol g
-1

 fresh weight (139). The ascorbate levels also vary between tissues; the apoplast 

of Kalanchoé daigremontiana stems were shown to contain ascorbate at levels of ~15 nmol 

g
-1

 fresh weight, compared to leaves which contained ~80 nmol g
-1
 fresh weight (140). The 

apoplastic ascorbate was shown to be increased in snap beans (Phaseolus vulagris) with 

increased tolerance to ozone (141).  

Ascorbate has been shown to be exported to the apoplast during oxidative stress and 

apoplastic ascorbate represents the first defence of a plant cell to exogenous oxidative 

stresses such as ozone (142-144). Indeed, the apoplastic ascorbate of Norway spruce (Picea 

abies) was found to decrease by 30% upon ozone treatment, suggesting that ascorbate was 

being consumed during the defence against oxidative stress (145). 

 The level of ascorbate present in a plant cell greatly influences its tolerance to oxidative 

stress. In fact a key enzyme in the ascorbate biosynthetic pathway was originally identified 

through a mutant found because of its sensitivity to ozone (146). A major cause of oxidative 

stress in plants is ozone. The apoplastic ascorbate levels of several populations of Plantago 

major were found to be correlated with their ozone tolerance (147). Equally, applying 

exogenous ascorbate to the plants’ leaves increased the ozone resistance of a less resistant 

population. 
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Ascorbate also quenches singlet oxygen in plant cells (148). Ascorbate and DHA levels were 

found to significantly decrease in the presence of singlet oxygen (149), whereas glutathione 

levels were found to markedly increase, potentially in order to maintain the redox potential 

within the cell; equally, further studies have demonstrated an increase in glutathione 

synthesis upon oxidative stress (150,151). The products formed from the reaction of 

ascorbate and DHA with 
1
O2 have not been defined, but will be reported on in the current 

study. 

The actions of these ROS are interconnected, with many ROS degrading to form H2O2. 

Ozone has also been reported to yield singlet oxygen during the reaction of ozone with 

biological molecules such as NADH, NADPH, methionine and ascorbate; these compounds 

incorporate one atom from ozone into the oxidised compound, and the two remaining atoms 

go on to form 
1
O2 (152). 

Ascorbate oxidase (AO) is an apoplastic enzyme that facilitates the oxidation of AA to 

MDHA using molecular oxygen. In turn, MDHA disproportionates to form DHA and AA. 

The expression of AO has been demonstrated to correlate with growth, with increased 

mRNA in rapidly dividing tissues of pumpkin seedlings (153) and the highest AO activity in 

zucchini squash was reported to occur in the exponential growth phase (154). AO expression 

is induced by growth hormones, such as auxin (153,155), which further supports the role of 

AO in plant growth and cell expansion. Equally, AO is suppressed by salicylic acid, 

corresponding with an inhibition of the growth of tobacco seedlings (155). Furthermore, AO 

has been demonstrated to catalyse the decarboxylation of auxin, potentially serving a role in 

the regulation of auxin in root meristems (156).  

AO is also key for maintaining the redox state of the apoplast. The AA pool in the apoplast is 

highly oxidised. An alteration in the redox state of the apoplast can be triggered by pathogen 

attack and ozone stress, among others, which cause an oxidative burst, which in turn acts as a 

signal to initiate a defence response. As there is no NADPH or glutathione in the apoplast, 

AA serves as the major apoplastic antioxidant and AO regulates the ratio of AA to DHA, 

which is vital for maintaining the redox state of the apoplast (157). Overexpression of AO 

was shown to reduce AA in the apoplast and to reduce auxin-mediated responses (158). 

Tobacco plants overexpressing AO were found to be more sensitive to oxidative stress and 

more susceptible to fungal infection (159), further demonstrating the importance of this 

enzyme. 

 



21 
 

1.7.2 Ascorbate–glutathione pathway 

The major H2O2 scavenging pathway in plant cells is the ascorbate–glutathione pathway 

(Halliwell–Foyer–Asada cycle) (11,160). This pathway occurs within the cytosol, 

chloroplasts and mitochondria (161). 

The scavenging of H2O2 in this pathway occurs via the action of four enzymes (11,162) 

(Figure 7): ascorbate peroxidase (163) (APX), monodehydroascorbate reductase (31) 

(MDHAR), DHA reductase (67) (DHAR) and glutathione reductase (164) (GR). These 

enzymes, along with ascorbate, glutathione and NADPH allow the conversion of H2O2 to 

H2O and regulate the redox state of the cell. 

Glutathione (GSH), a tripeptide containing a thiol group, is present in the plant cell at 

relatively high concentrations and is an important antioxidant (165,166). Reduced 

glutathione (GSH) can be oxidised to glutathione disulphide (GSSG) by the action of GR 

(Figure 7). 

APX reduces H2O2 with the use of AA as a reductant (163,167). Two molecules of AA are 

required to reduce one molecule of H2O2 to H2O (11). This reaction yields two molecules of 

unstable MDHA, which can either disproportionate to DHA and AA non-enzymically or 

alternatively can be reduced back to AA by MDHAR (31). The reduction of MDHA back to 

AA requires NADPH as a reductant. DHA can also be reduced back to AA and this occurs 

via the action of DHAR (67). The reduction of DHA by DHAR is coupled to the oxidation of 

GSH to GSSG. In turn, GSSG itself can be reduced back to GSH by GR, which requires 

NADPH as an electron donor (168). This complete pathway allows the scavenging of both 

AA, by MDHAR and DHAR, and GSH, by GR. This in principle results in the quenching of 

Figure 7: Ascorbate–glutathione cycle. Enzymes in the pathway are in green; APX (ascorbate peroxidase); 
MDHAR (MDHA reductase); DHAR (DHA reductase); GR (glutathione reductase). Adapted from (7).  
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H2O2 with no net loss of AA or GSH (Figure 7).  

In contrast, the current work will be reporting on experiments investigating the permanent 

loss of AA and DHA, and the subsequent formation of oxidation products arising from ROS, 

including H2O2, reactions with AA and DHA. 

An increase in the expression levels of DHAR, resulting in an increase in AA levels, in turn 

led to an increased tolerance to ozone (169). Similarly, decreasing the expression of DHAR 

resulted in tobacco (Nicotiana tabacum) with a decreased tolerance to ozone (169). The APX 

enzymes are especially important in conferring oxidative stress resistance. Genetic studies 

have demonstrated that overexpression of APX as well as superoxide dismutase (SOD), 

which removes the potentially toxic superoxide ion, led to an increased tolerance of a variety 

of oxidative stresses (170). 

 

1.8 Ascorbate in plant growth 

Ascorbate is known to have a role in plant growth, as illustrated by Arabidopsis mutants 

deficient in ascorbate biosynthesis (vtc1) which exhibit slow growth phenotypes (52). As 

well as slow growth, vtc1 mutants showed further growth and developmental phenotypes 

such as smaller cells, late flowering and early senescence (52,171).  

Levels of ascorbate measured in shoot segments of pea plants (Pisum sativum) showed that 

the highest levels are found in rapidly dividing meristematic cells. The ascorbate levels 

decreased with the rate of cell division (172). As rapidly dividing cells are found in young 

growing plant tissues this provides evidence for a role for ascorbate in plant growth. 

Although ascorbate is established as an antioxidant, under certain conditions it can also act 

as a pro-oxidant (123). Ascorbate can enhance the production of the reagents of the classical 

Fenton reaction, producing 
•
OH from H2O2 and reducing metal ions such Cu

2+
. H2O2 can be 

produced from the reduction of oxygen, and Cu
+
 can be produced from the reduction of Cu

2+
. 

Ascorbate facilitates both these reactions non-enzymically. The hydroxyl radicals produced 

can then react with cell wall polysaccharides, and potentially contribute to cell wall 

loosening, and thus plant growth (123). Ascorbate, by promoting the production of these 

hydroxyl radicals, has also been proposed to have a role in fruit softening (124). 
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Cell expansion was found to be induced by exogenous MDHA in onion root meristems 

(173). The addition of DHA to tobacco cell cultures was shown to introduce a delay in the 

cell cycle (174), particularly if the DHA was introduced during the G1 phase. This has been 

suggested to be linked to the increase in ascorbate oxidation in the apoplast resulting in 

increasing levels of DHA during oxidative stress. The increase in DHA is proposed to delay 

the cell cycle until conditions are more favourable for division. The redox state of the cells, 

as measured by the ratio of AA to DHA, appeared unaltered by the addition of either DHA 

or ascorbate, suggesting that either of these alone is not the factor influencing the cell cycle 

(174). 

Genetic studies into the apoplastic enzyme ascorbate oxidase (AO) have demonstrated a role 

for ascorbate in plant cell expansion. The oxidation of ascorbate produces MDHA and is 

catalysed by AO which requires oxygen. MDHA rapidly degrades to DHA, which is then 

transported into the cell via transporters. For cell expansion to occur the cell wall must be 

loosened. AO was over-expressed in tobacco cells derived from protoplasts. These cells were 

grown in elongation culture medium and the rate of elongation was increased in the cells 

over-expressing AO (175). This was suggested to occur via MDHA, formed by ascorbate 

oxidase, activating a proton pump. This increases the osmotic pressure, by increasing the 

uptake of cellular ions and nutrients, thus promoting elongation. This elongation could occur 

in vivo if the cell wall is loosened. AO activity was found to be highest in fastest growing 

regions of zucchini squash (Cucurbita pepo) leaves, and the activity was demonstrated to be 

localised to the fruit epidermis (154). This localisation to cells that are under increased 

tension suggests a role for AO in cell wall loosening. This was proposed to occur via the 

action of the end product of AO, DHA, and several mechanisms were suggested for this. 

These include the possibility that DHA could modify lysine or histidine side-chains within 

the cell wall, thus preventing protein cross-linking with cell wall polysaccharides (154). A 

further proposed mechanism for the action of DHA in cell wall loosening involves the 

removal of calcium from the cell wall, which would result in a less rigid structure, more 

amenable to cell growth (154). This would occur via the action of OxA, produced from DHA 

in several plant species (176), which in turn could sequester calcium from the pectin in the 

cell walls, promoting cell wall loosening. AO activity is induced by auxin, a hormone that 

triggers plant growth, providing further evidence for the role of ascorbate oxidase in plant 

growth (144).  
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1.9 Ascorbate as a biosynthetic precursor 

A further role of ascorbate in plants is as a biosynthetic precursor of compounds such as 

OxA and tartrate. OxA, as discussed in section 1.5, is formed during ascorbate catabolism. 

The cleavage of the carbon backbone of ascorbate between C2 and C3 ultimately results in 

the formation of OxA and ThrO. Several plants, such as spinach, are known to accumulate 

OxA, formed via this pathway (176). OxA has been proposed to have a protective role in the 

plant, protecting it from herbivores (177).  

Tracer labelling studies in cell cultures of Pistia stratiotes showed that L-[1-
14

C]ascorbate led 

to the formation of labelled OxA (178). Feeding the cell cultures with L[1-
14

C]galactose, a 

major intermediate in the biosynthesis of ascorbic acid, also resulted in labelled OxA (178). 

As well as demonstrating that ascorbate is a biosynthetic precursor of OxA this study also 

supported the then newly proposed Wheeler–Smirnoff–Jones biosynthetic pathway of 

ascorbate itself.  

Some plants are known to accumulate tartrate; for instance tartrate is the major organic acid 

present in grapes (78). It can be formed directly by the cleavage of ascorbate at the C4–C5 

bond (179) or from the oxidation of ThrO, originating from C3-C6 of ascorbate (38). The 

tartrate level in grapes is important for wine making, but the in planta role of tartrate is not 

clear. Plants, such as Ampelopsis aconitifolia, that do not accumulate tartrate were found to 

have up to four times as much ascorbate as tartrate-accumulating plants, suggesting some 

plants preferentially metabolise AA to form tartrate (76).  

 

1.10 The primary plant cell wall 

Ascorbate has been demonstrated to be present in the apoplast (136), and ascorbate oxidase, 

which produces DHA, is localised to the cell wall (154). It has previously been shown that 

oxalyl-containing ascorbate oxidation products are generated in the apoplast of rose cell-

suspension culture (72). Experiments investigating the hypothesis that these oxidation 

products (namely OxT and cOxT) could have a role in cell wall cross-linking, and thus plant 

growth, by formation of an oxalate-bridge between cell wall components will be reported 

(discussed further in section 3.4 and 3.5). 

Plant cell walls are of utmost importance in providing structural strength and shape to the 

cells. They also provide a barrier to environmental stresses and pathogens (180). Although 
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the plant cell wall must be a strong, sometimes inextensible, structure, it is also dynamic and 

has the capability to continually remodel during cell growth (181). 

1.10.1 Structure of the plant cell wall 

The primary plant cell wall is made up of cellulose microfibrils embedded in a matrix of 

hemicellulose and pectin. The cellulose microfibrils are tethered by hemicelluloses. 

Traditionally the pectins and the hemicelluloses were distinguished by their ability to be 

extracted from plant material. Pectins are soluble in hot mild acid or chelating agents, and 

contain many galacturonic acid residues, whereas hemicelluloses are soluble in alkali 

(182,183). 

Cellulose is the most defined of the three groups of polysaccharides comprising the cell wall. 

Cellulose consists of β-1-4 linked glucan chains, which are made by CESA (cellulose 

synthase) proteins (184). Several of these chains are then packed into bundles, forming 

crystallised microfibrils (183). 

Hemicelluloses are a class of polysaccharides that contain β-1-4 linked backbones (182). The 

major hemicellulose in primary plant cell walls is xyloglucan (apart from in the Poales, for 

instance mixed-linkage-glucan is the major hemicellulose in Equisetum (185)). Xyloglucan  

consists of a β-1-4 glucan backbone, with α-1-6-xylosyl sidechains (186). These xylosyl 

side-chains can also be substituted with other sugar residues such as galactose and fucose 

(187).  

Other hemicellulosic polysaccharides include xylans, comprising of β-1-4 linked xylose 

residues. Xylans can be modified to form glucuronoxylans (by substitution of xylose 

residues with α-linked glucuronosyl groups). The glucuronoxylans can in turn be modified to 

contain arabinose residues, forming arabinoxylans or glucuronoarabinoxylans (182). 

Pectins make up approximately 35% of the primary cell walls of dicots and non-poalean 

monocots and often consist of approximately 70% galacturonic acid (188). Pectins are 

comprised of acidic polysaccharides; homogalacturonan and rhamnogalacturonan I and II. 

Homogalacturonan is a linear polysaccharide that consists of α-1-4 linked galacturonic acid. 

Homogalacturonan can be partially methyl-esterified, and acetylated (189). It can also form 

cross-links with other pectic polysaccharides, e.g. rhamnogalacturonans, or potentially 

hemicelluloses such as xyloglucan (190). 
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The potentially enzyme-mediated interactions between cell wall polysaccharides and 

ascorbate oxidation products will be reported on. 

1.10.2 Cross-linking within the cell wall 

The primary plant cell wall is a dynamic structure which is continuously being modified, 

allowing the cell to expand and divide, which is vital for plant growth.  

The matrix of the cell wall consists of hemicelluloses, pectins and glycoproteins which are 

held in place by cross-links (191). Cross-linking between polymers of adjacent cell walls 

would lead to cell adherence, and cross-linking between components within the cell wall 

leads to an decrease in cell wall extensibility (192). Cellulose microfibrils have been 

proposed to be cross-linked by xyloglucan, as shown by the decrease in immunogold 

labelling of cross-links and epitopes of xyloglucan upon endoglucanase treatment (193). 

These cross-links were found to be dynamic during the elongation of epidermal cells (193). 

Pectins are often linked by borate or calcium. Cell–cell adhesion has been demonstrated to 

rely on both calcium and ester cross-linking of pectic polysaccharides (194). 

Rhamnogalacturonan II is found as a dimer in cell walls, covalently cross-linked by a borate 

bridge (195). This borate cross-link occurs via apiose residues of RG II. These borate bridges 

are thought to be vital for cell wall strength, and for decreasing the porosity of the cell wall 

(196,197). Rose cell cultures were able to be grown in the absence of boron, so the dimer of 

RG II is not necessary for these cells, but these cells did exhibit diminished biophysical 

properties (198,199). This dimerization of RG II by borate bridging was found to occur 

during synthesis and secretion, but not after the RG II had been secreted into the apoplast 

(199). 

Ferulic acid commonly occurs cross-linked to arabinoxylan polymers in the Poaceae family. 

Oxidative coupling of two feruloyl groups attached to adjacent arabinoxylan chains forms a 

covalent cross-link acting to tighten the cell wall (200,201). Feruloyl cross-links also occur 

within the secondary plant cell wall, cross-linking polysaccharides with lignin (202). These 

cross-links reduce the degradability of the cell walls (203). Feruloyl cross-links are also 

thought to increase resistance to pathogens and insect herbivores (204). 

The current study will report on experiments conducted to investigate the potential for a 

novel cell wall cross-linking mechanism via oxalate bridges, derived from ascorbate 

oxidation products. 
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1.11 Acyltransferases 

Derivatives of ascorbate, namely OxT and cOxT (section 1.5.1) contain oxalyl groups which 

have the potential to act as acyl donors for an acyltransferase reaction. These oxalyl groups 

could theoretically form oxalyl esters with cell wall components by transacylation. A cross-

linking oxalate bridge could be formed within the cell wall from cOxT, due to the presence 

of two oxalyl ester groups in this compound. This could provide a novel mechanism for 

cross-linking in the cell wall, and is potentially mediated by an acyltransferase. This 

hypothesis will be discussed further in sections 3.4 and 3.5. 

Many plant secondary metabolites undergo modifications, such as methylation, glycosylation 

and acylation, all of which are governed by various enzymes (205). The transfer of acyl 

groups from a donor molecule onto a hydroxyl, thiol or amino group of an acceptor molecule 

produces an acyl ester derivative. These reactions are catalysed by acyltransferases (206). 

A major superfamily of plant acyltransferases is the BAHD superfamily (206). This 

superfamily is named after the first four enzymes characterised in this family: BEAT 

(benzylalcohol-O-acetyltransferase (207)), AHCT (anthocyanin-O-hydroxycinnamoyl 

transferase (208)), HCBT (anthranilate N-hydroxycinnamoyl/benzoyltransferase (209)) and 

DAT (deacetylvindoline-4-O-acetyltransferase (210)). The members of this class of proteins 

share significant gene sequence similarity, suggesting an evolutionary link between the 

enzymes, thus constituting a superfamily.  

All the proteins in the BAHD superfamily are monomeric enzymes and use CoA thioesters 

as donor substrates (205). Not all acyltransferases use CoA thioesters as substrates, for 

instance cutin synthase (CD1) transfers the hydroxyacyl group from the substrate 2-

mono(10,16-dihydroxy hexadecanoyl)glycerol (2-MHG) either to another 2-MHG or to the 

cutin polymer (211). The acyltransferase reported in section 3.5 in the current study utilises 

OxT and cOxT as substrates, transferring the oxalyl group from these compounds onto 

acceptors such as sugar molecules. 

Acyltransferases have a wide range of functions within the plant, including in the 

modification of phenolic compounds (212). The modification of anthocyanins by the 

addition of aromatic acyl groups (usually coumaroyl or sinapoyl groups) stabilises the blue 

colour of flowers (213). The modification of anthocyanins by the addition of aliphatic acyl 

groups, often malonoyl groups, increases their water solubility and stability. The addition of 

another aliphatic acyl group, palmitate, to cysteine residues of proteins associated with the 

tonoplast is thought to contribute to increased resistance to salt stress (214).  
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Acyl sugars, produced from the esterification of sugars with fatty acids, are thought to 

protect plants from predation by insects (215,216). These acyl sugars are exuded from 

trichomes, and are especially common in the Solanaceae family (217). 

Acyltransferases also play a role in plant growth. Plants lacking in an S-acyltransferase 

(known as AtPAT10, which acts to transfer an acyl group such as palmitate to a cysteine 

residue of an acceptor protein) were found to show reduced cell expansion and cell division, 

resulting in a dwarf phenotype (218). The growth of root hairs was found to be regulated by 

an S-acyltransferase (called TIP GROWTH DEFECTIVE, TIP1), responsible for controlling 

cell shape and growth (219). 

Acyltransferases have also been reported to play a role in cell wall modifications, including 

in the incorporation of hydroxycinnamate into rice cell walls (220) and in the feruloylation 

of arabinoxylan of the cell walls of grasses, discussed in section 1.10.2 (221). Furthermore, 

cell wall components cutin and suberin, which act as barriers for pathogens and water, were 

found to require acyltransferases during their synthesis (211,222). A tomato mutant with a 

cutin deficiency was found to be lacking in the CD1 (cutin-deficient 1) gene, which was 

subsequently demonstrated to encode an extracellular acyltransferase, cutin synthase (211). 

 

1.12 Ascorbate in salad plants 

Vitamin C is the most widely synthesised vitamin, but the majority, up to 90%, of our dietary 

vitamin C is plant-derived (223). Fresh fruit and vegetables are an important source of 

vitamin C. As ascorbate is the least stable of the vitamins, cooking generally destroys much 

of the ascorbate in the food (223). For this reason salads are an invaluable source of 

ascorbate, as salad leaves are generally eaten raw. There is also evidence to suggest that it is 

much more beneficial to eat fruit and vegetables rather than rely on vitamin supplements 

(224). This is likely to be due to the complex synergistic effects of numerous other 

compounds in the fruit or vegetables, an example of which would be the ability of ascorbate 

to aid uptake of iron into cells (225).  

The ascorbate content of salad plants varies hugely, with some species having up to 110 mg 

ascorbate per 100 g fresh weight (curly kale (226)) and some as little as 3 mg per 100 g fresh 

weight (iceberg lettuce (226)). The ascorbate content can also vary between cultivars of the 

same species (227,228). 
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As well as this genetic variation, growth conditions can also lead to variation in the ascorbate 

content of salads. The growth stage at which spinach is harvested has been shown to affect 

the ascorbate levels, with younger leaves having greater levels of ascorbate (229). This could 

be due to the role of ascorbate in plant growth, so faster growing plants are more likely to 

have higher levels of ascorbate. Equally, younger leaves have higher rates of photosynthesis, 

and ascorbate has a role in the protection of photosynthesis, so the higher levels of ascorbate 

could be due to this. 

Plants grown in higher light levels have been reported to have higher ascorbate content 

(230). The post-harvest storage of spinach in the light compared to the dark was also shown 

to increase the ascorbate levels (231). It has been suggested that light/dark cycles during 

postharvest storage of spinach leaves increased the nutritional quality (232). This increase in 

nutritional quality could include an improvement in the retention of ascorbate, as it has been 

demonstrated that intracellular ascorbate levels in spinach follow a circadian rhythm, with 

the peak level occurring around midday (233). This in turn would suggest that the time of 

harvest would be important for the ascorbate content, especially if the harvested leaves were 

then stored in the dark. 

Post-harvest treatments of salads are also known to affect ascorbate levels. Storage 

temperature is especially important (223), and most commercial salad processing plants aim 

to keep the temperature as low as possible to avoid the loss of ascorbate. Carrots (234) and a 

selection of vegetables including spinach and kale (235), as well as iceberg lettuce (236), all 

showed considerable increases in the loss of ascorbate with an increase in post-harvest 

storage temperate.  

In order to increase the shelf life, salads would ideally be cooled quickly after harvesting. 

This can be achieved with vacuum cooling, which allows rapid cooling of leaves by 

evaporating some of the moisture from them (237). Vacuum cooling has been shown to 

increase the retention of ascorbic acid in iceberg lettuce during postharvest storage (238). It 

has also been reported to improve the sensory and nutritional qualities of spinach, but the 

effect on ascorbate specifically was not tested (239). The effect of vacuum cooling on the 

ascorbate content of spinach leaves will be reported on in the current study. 

The washing process of pre-packaged salads is also a potential source of ascorbate loss. An 

important aspect of the washing process is to remove potentially pathogenic micro-

organisms e.g. fungi. This can be achieved using various sanitizers, including chlorine or 

ozone-based sanitizers. Ozone treatment was found to significantly decrease the ascorbate 
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content of rocket leaves during storage (240). This loss of ascorbate is likely to be due to the 

oxidising nature of ozone, acting to degrade the ascorbate. Equally, iceberg lettuce washed in 

chlorinated water showed a marked decrease in ascorbate content after just one day of 

storage compared with lettuce washed in non-chlorinated water  (241). Spinach leaves 

washed in chlorinated water also showed lower ascorbate content immediately after washing, 

when compared with washing in water alone (242). The ascorbate retention in spinach leaves 

during storage was considerably lower after washing with chlorine-based sanitizers 

compared with peroxyacetic acid-based sanitizers. (243). As with ozone, this loss of 

ascorbate could be due to the oxidising nature of chlorine. 

Other steps in the processing of pre-packaged salads could also to lead to a loss of ascorbate. 

The method of slicing used on iceberg lettuce influences the ascorbate content throughout 

shelf life, with hand-torn leaves showing a considerable increase in the retention of ascorbate 

compared with blade-cut leaves (236). This could be due to more severe wounds being 

incurred with hand-torn leaves, leading to an increase in ascorbate as a wound response. 

The packaging atmosphere also influences the nutritional quality of processed salads. 

Flushing bags of shredded iceberg lettuce with nitrogen was shown to increase the retention 

of ascorbate throughout shelf-life (236). This is presumably due to the lack of oxidation 

occurring in the nitrogen atmosphere. Other modified atmosphere packaging (MAP) 

techniques, such as increasing CO2 and decreasing O2 levels, led to an increase in ascorbate 

retention in spinach (244). However, this effect does not occur in all species, with several 

fruits (245) as well as Swiss chard (246) showing a decrease in ascorbate content when 

stored in MAP compared with air.  

There is much interest in increasing the ascorbate content of food (247). The benefit of this 

would potentially be two-fold, as this would create more nutritious crops, as well as making 

the crops themselves more tolerant of stress, such as oxidative stress (147,169,248,249). 

Although ascorbate can be easily synthesised chemically and then added to food there is a 

general trend away from adding additives to food, creating a market for ascorbate-enriched 

crops. The increase of ascorbate in crop plants could be achieved by either increasing the 

biosynthesis or decreasing the degradation. Either of these could be done genetically, or by 

altering growth conditions and postharvest treatment practices. This project has focussed on 

the postharvest processing of salad leaves as potential areas in which the loss of ascorbate 

could be avoided. 
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1.13 Outline of project 

This PhD project aims to expand on the knowledge of vitamin C degradation in vitro, in 

plant cell-suspension cultures and in harvested salad leaves. 

Ascorbate has a well-established role as an important antioxidant, but the fate of ascorbate 

itself during these reactions is little known. The fate of ascorbate derivatives in vitro  (both 

radiolabelled and non-radiolabelled) has been investigated in reactions with various ROS, 

including hydrogen peroxide, superoxide, hydroxyl radical and singlet oxygen. Studying the 

degradation products formed from these different ROS may provide a tool which would 

identify the oxidative stress that a plant was currently undergoing. As well as this, the 

oxidation products themselves may serve roles in the plant, and so information about their 

formation would be invaluable. 

The fate of oxidation products of AA, namely OxT and cOxT, has been studied in cell-

suspension cultures. In particular the potential of cOxT to form oxalyl cross-links between 

cell wall components has been investigated. These investigations led to the discovery of a 

novel acyltransferase enzyme activity, which produces novel products of oxalyl sugar esters, 

which remain stable in plant cell-suspension cultures. Evidence for the formation of oxalyl 

esters with cell wall components of cell-suspension cultures, as well as free sugars, has also 

been found. This could provide a novel function for ascorbate-oxidation products in cell 

growth. An acyltransferase could act to transfer an oxalyl group from cOxT to cell wall 

components, forming an oxalate bridge, which would potentially have a role in remodelling 

the cell wall.  

As well as oxidation, DHA can also be hydrolysed. Previous work has detected two further 

degradation products of the DHA hydrolysis product DKG, named compounds C and E. 

Further work has been undertaken to purify and characterise these compounds, using MS and 

NMR techniques. Another catabolite of DKG has been demonstrated to inhibit peroxidase 

activity (84). Further work has been carried out in an attempt to purify and characterise this 

ascorbate-derived peroxidase inhibitor (PxI). 

The ascorbate content of postharvest salad leaves has also been studied. The ascorbate 

content of numerous salad species throughout storage has been monitored, as well as the 

ascorbate content throughout the commercial washing process of spinach leaves, which 

proved to be the most susceptible of the species tested to the loss of ascorbate. There is 

commercial interest in increasing the ascorbate content of pre-packaged salads, particularly 

from a nutritional perspective, as ascorbate is known to have various health benefits. 
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Therefore, it would be valuable to ascertain whether the washing process is contributing to 

post-harvest losses of ascorbate, which could be avoided by altering the washing procedure, 

thus increasing the ascorbate content of the salads. 

These various different aspects of the degradation of vitamin C have allowed the degradation 

of ascorbate to be described in more detail, as well as suggesting some novel roles for 

ascorbate degradation products, especially in relation to plant growth and the production of 

acyl sugars. The studies on the degradation of ascorbate in salad plants may provide the 

opportunity for improvement in the washing process of spinach, enabling the production of 

pre-packaged spinach with an increased vitamin C content. 
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Materials and methods 

2.1  Materials and chemicals  

All chemicals used were purchased from Sigma-Aldrich (Poole, UK), Fischer Chemicals 

(Loughborough, UK) or Megazyme (Bray, Ireland). L-[1-
14

C]Ascorbate was purchased from 

Amersham Pharmacia Biotech UK Ltd. All water used was deionised. 

2.2 Plant cell suspension culture 

2.2.1 Arabidopsis cell culture media 

Arabidopsis thaliana cell culture was grown in Murashige and Skoog (250) basal salt with 

minimal organics (4.4 g/l Sigma number M-6889) along with a-naphthalenacetic acid (0.05 

mg/l), kinetin (0.05 mg/l) and glucose (20 g/l). The pH was adjusted to 5.8 with 1 M KOH 

and 180 ml aliquots of media were transferred to 500-ml conical flasks. 

2.2.2 Spinach cell culture media 

Spinach cell culture was grown in Murashige and Skoog basal salt (4.4 g/l, Sigma number 

M-5524). Glucose was added to 1% final concentration (10 g/l). The pH was adjusted to 4.4 

with 1 M NaOH and 180 ml aliquots of media were transferred to 500-ml conical flasks. 

2.2.3 Rose cell culture media 

Rose cell (Paul’s scarlet rose) suspension culture medium was prepared containing CaCl2 (74 

mg/l), KH2PO4 (140 mg/l), KCl (750 mg/l), NaNO3 (850 mg/l), MgSO4.7H2O (250 mg/l), 

MnSO4.4H2O (1 mg/l), H3BO3.4H2O (0.2 mg/l), ZnSO4.7H2O (0.5 mg/l), KI (0.1 mg/l), 

CuSO4.5H2O (0.02 mg/l), CoCl2.6H2O (0.01 mg/l), Na2MoO4.2H2O (0.02 mg/l), FeCl3.6H2O 

(5.4 mg/l), Na2EDTA.2H2O (7.4 mg/l), 2,4-D (1 mg/l), kinetin (0.5 mg/l) and glucose (20 

g/l). The pH was adjusted to 6.0 with 1 M NaOH and 50 ml aliquots of media were 

transferred to 250-ml conical flasks. 

2.2.4 Maintenance of cell suspension cultures 

Cell suspension cultures were maintained in moderate constant light and a temperature of 

25°C. The cultures were shaken constantly (100-115 rpm). Cultures were subcultured every 

two weeks. For Arabidopsis cell suspension cultures, approximately 20 ml of a two-week old 
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culture was transferred into 200 ml fresh medium. Rose cultures had approximately 15 ml of 

a two-week old culture transferred into 50 ml fresh medium. Spinach cells were subcultured 

by removing excess old medium, then dividing the cells into three flasks of 200 ml fresh 

medium.  

One-week old cultures were typically used in experiments, unless stated otherwise. 

2.3 Salad leaves growth conditions 

2.3.1 Salad leaves grown at Vitacress, Hampshire 

Most salad leaves used in experiments were grown commercially on farms in the Hampshire 

and Wiltshire area for Vitacress Salads Ltd, from June to August of 2013. The salads were 

processed on an industrial scale at Vitacress Salads premises. Salad leaves used in 

experiments outside of these dates were either grown at University of Edinburgh or 

purchased from a local supermarket. The purchased salads originated from Vitacress. 

2.3.2 Salad leaves grown in University of Edinburgh facilities 

A commercial variety (Toucan) of spinach seeds were provided by Vitacress Salads Ltd. The 

seeds were grown in soil at controlled temperatures of 21°C (day) and 16°C (night), 16 hour 

day length, in light levels of 150 µmol m
-2

 s
-1

 in University of Edinburgh facilities. Leaves 

were harvested for experiments 4 weeks after sowing. 

2.4 High-voltage paper electrophoresis 

2.4.1 One dimensional HVPE at pH 2.0 and pH 6.5 

Aqueous samples (generally between 5 and 20 µl) were loaded onto Whatman 3MM paper 

(57 cm in length, with variable width depending on the number of samples) at an origin 12 

cm from the bottom of the paper. After the samples had dried onto the paper, the paper was 

carefully wetted with electrophoresis buffer; pH 2.0 (formic acid/acetic acid/water, 1:35:355, 

v/v/v) or pH 6.5 (pyridine/acetic acid/ water, 33:1:300 v/v/v). Excess buffer was removed 

from the paper by blotting with tissue paper. The paper was then placed in a tank (Figure 8), 

suspended from a trough of electrophoresis buffer (pH 2.0 or pH 6.5). The other end of the 

paper was submerged in buffer in the bottom of the tank. The rest of the tank was filled with 

an immiscible coolant (white spirit for pH 2.0 electrophoresis and toluene for pH 6.5 

electrophoresis). The tank used for electrophoresis at pH 6.5 had pyridine (~2% final 
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concentration) added to the toluene coolant, to ensure the pH remained stable during the 

HVPE run. A voltage (2.5-3.5 kV) was run through the buffers, for 30- 70 minutes, to allow 

the separation of compounds based on their charge : mass ratio.  

Orange G (2 µl, 0.5% w/v) was added to all samples as an internal marker. Electrophoretic 

mobilities were calculated relative to orange G (mOG). Neutral compounds move a small 

distance away from the origin due to electro-endo-osmosis, so mobilities were calculated 

using a neutral marker (such as glucose) as the zero point. 

 

Preparative HVPE required the sample for preparation to be loaded onto the origin as a 

streak, rather than as discrete spots, as with analytical HVPE. The rest of the HVPE 

procedure is as described previously. 

Figure 8: Diagram of HVPE apparatus. The experimental 
set-up of high-voltage paper electrophoresis. S.C Fry, In The 
Plant Cell Wall: Methods and Protocols (Z.A Popper, ed.). 
New York: Springer (5) 
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2.4.2 Two dimensional HVPE 

A single sample, along with markers, was loaded onto Whatman 3MM paper and subjected to 

one dimensional paper electrophoresis as described above. After one dimensional HVPE the 

paper was allowed to dry completely before the lane containing the sample to undergo two 

dimensional HVPE was carefully cut out. This lane was then sewn onto the origin of a new 

sheet of Whatman 3 MM paper, so the compounds in the sample lane were lined up along the 

new origin. This new paper was then subjected to electrophoresis at either pH 2.0 or pH 6.5 

as described previously. 

2.5 High-pressure liquid chromatography 

Aqueous samples (25 µl injection volume) were separated on a Dionex BioLC system with a 

Phenomenex Rezex ROA column. The samples were eluted in 47 mM H2SO4 or 0.1% TFA 

at a flow rate of 0.5 ml min
-1

. The products were detected by UV absorbance at 210 nm and 

250 nm. The eluate was collected in fractions (every 15 seconds). 

Before further analysis, by MS or NMR, the eluate in 47 mM H2SO4 required neutralisation. 

This was done by the addition of Ba(OH)2. In order to avoid this neutralisation step, some 

later samples were eluted in 0.1% TFA instead of H2SO4. The samples then did not require 

neutralisation as TFA does not interfere with NMR spectroscopy. 

2.6 Thin-layer chromatography 

Aqueous samples (generally 2 µl) were loaded onto an origin 1 cm from the base of a 20 cm 

by 20 cm silica-gel thin-layer chromatography (TLC) plate. After loading, the plate was 

placed in a glass tank containing 80-100 ml solvent, and the tank sealed with a glass lid. The 

solvent was allowed to move through the plate by capillary action until the solvent front 

reached the top of the plate (4-8 hours). The TLC plate was thoroughly dried before staining. 

The solvent systems used were:  

i. BuOH: HOAc: H2O (4:1:1) 

ii. BuOH: HOAc: H2O (2:1:1) 

iii. BuOH: PrOH: HOAc: H2O (1:1:1:1) 
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2.7 Anion-exchange column chromatography 

2.7.1 Purification of [
14

C]DHA by anion-exchange column chromatography 

[
14

C]DHA was produced from commercial [
14

C]AA, either using ascorbate oxidase (from 

Cucurbita species, 1 U µl
-1

) or H2O2 (2 mol equivalent to [
14

C]AA). 

A Dowex 1 anion-exchange chromatography column (50 µl bed volume) was set up in a 

200-µl pipette tip. The column was washed sequentially in 500 µl of 0.5 M NaOH, 0.5 M 

formic acid, 2 M sodium formate and 10 mM formate pyridine buffer (pH 5). Some 

experiments required the column to be washed in H2O as a final step. 

The sample (20-50 µl) was loaded onto the column and the neutral compounds eluted 

initially in nine loadings of 50 µl of either formate buffer (10 mM, pH 5) or H2O. The eluate 

from the column was collected in 50 µl fractions.  

The acidic compounds were eluted in six loadings (50 µl each) of increasing concentrations 

(in 0.05 M increments between 0.1 M and 0.3 M) of formic acid. This was followed by six 

loadings (50 µl) of 4 M formic acid, then six loadings (50 µl) of 4 M TFA. 

All the fractions were stored at -80°C before further analysis. 

2.7.2 Purification of DKG-derivatives C and E by anion-exchange column 

chromatography 

A sample of DKG (0.5 ml) was prepared from NaOH-treatment of commercial DHA 

(section 2.11.1). 

A Dowex 1 anion-exchange chromatography column (2-ml bed volume) was set up in a 

polyprep column. The column was washed sequentially with 4 ml each of 0.5 M NaOH, 0.5 

M formic acid, 2 M sodium formate, 10 mM formate pyridine buffer (pH 5) and H2O (8 ml). 

The sample containing DKG and derivatives C and E (0.5 ml) was loaded onto the column 

and the neutral compounds eluted in nine loadings of 0.5 ml H2O, collected as 10 0.5 ml 

fractions. The acidic compounds were eluted in three loadings (1 ml each) of increasing 

concentrations (in 0.05 M increments between 0.1 M and 0.3 M) of formic acid. This was 

followed by three loadings (1 ml each) of 4 M formic acid, then 4 M TFA. 

All the fractions were dried under vacuum (Savant SPD1010 SpeedVac concentrator) and 

stored at -80°C before further analysis. 
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2.8 Detection of non-radiolabelled compounds 

2.8.1 Staining of sugars on paper with silver nitrate 

Dried paper electrophoretograms were dipped sequentially through three solutions (i-iii) with 

15 minutes drying in between each step. The papers were dipped through solution ii twice. 

Immediately after dipping through solution iii, the paper was placed in cold running water 

for at least 1 hour, before drying overnight. 

i. 5 mM AgNO3 in acetone, minimal H2O was added to redissolve precipitated 

AgNO3. 

ii. 0.125 mM NaOH in 96% ethanol 

iii. 10% Na2S2O3 in H2O  

 

2.8.2 Staining of phosphates on paper with molybdate 

Concentrated HCl (3 ml) was added dropwise to rapidly stirring ammonium molybdate 

solution (17 ml, 11.8% w/v). Perchloric acid (6 ml, 60% v/v) was added dropwise to the 

solution and stirred until the precipitate redissolved. Acetone (180 ml) was then added to the 

solution. Paper electrophoretograms were slowly dipped through the molybdate stain 

solution. The paper was dried and any spots that appeared were marked with a pencil. The 

paper was then exposed to direct sunlight or UV light (254 nm) for 10 minutes and any new 

spots that appeared were marked. 

2.8.3 Staining of reducing sugars on paper with Wilson’s dip (aniline hydrogen-

phthalate) 

Paper electrophoretograms were dipped slowly through a solution of Wilson’s dip (aniline 

hydrogen-phthalate). The paper was allowed to dry in the fume hood for 5 minutes before 

heating at 105°C for 15 minutes.  

The Wilson’s dip solution comprises 0.1 M phthalic acid in 49% acetone, 49% diethyl ether 

and 2% water. Immediately before using, 0.125ml aniline was added per 25 ml Wilsons dip 

solution. 

2.8.4 Staining of acidic compounds on paper with bromophenol blue 

Paper electrophoretograms to be stained with bromophenol blue were first dipped through a 

solution of methanol : acetone (1:2) several times to remove any traces of acid from the 
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electrophoresis buffers. The papers were then dried thoroughly in a drying oven overnight 

before staining. 

The paper was dipped slowly through a solution of 0.04% bromophenol blue in 96% ethanol. 

2.8.5 Staining of amines on paper in ninhydrin 

Amino acids and amines were detected on paper after HVPE using ninhydrin stain. The 

paper was dipped slowly through a solution of 0.5% ninhydrin in acetone. The paper was 

allowed to dry for 5 minutes in the fume hood before being heated at 105°C for five minutes. 

2.8.6 Staining of sugars on TLC with thymol 

Sugars were detected on TLC plates using thymol stain. The thymol stain solution was 

prepared by adding 0.5 g thymol to 95 ml 96% EtOH. H2SO4 (5 ml) was then added drop 

wise until the thymol had completely dissolved.  

The TLC plate was dipped slowly into a tank (containing 500 ml staining solution) and then 

partially allowed to dry in the fume hood for 5 minutes. Excess staining solution was 

removed with a paper towel to avoid spots caused by H2SO4. The TLC plate was then placed 

in a drying oven at 105°C for up to 10 minutes, until the spots were clearly visible. 

The TLC plate was scanned immediately, as the spots fade over time. 

2.8.7 Staining of compounds on TLC with molybdate 

The molybdate reagent was prepared by dissolving ammonium molybdate (10% w/v) in 10% 

v/v H2SO4. The staining reagent was then prepared by mixing the 10% ammonium 

molybdate in H2SO4 solution with acetone in a 1:3 (ammonium molybdate: acetone) ratio. 

The TLC plate was dipped into this staining solution, and excess solution was removed from 

the back of the plate with paper tissues, then the plate was allowed to partially air dry before 

incubating at 105°C for up to 30 minutes, or until there were clearly visible spots on the 

plate. 

2.8.8 Staining of compounds on TLC with ninhydrin 

Amino acids and amines were detected on TLC plates by staining in ninhydrin. The plate 

was dipped in a solution of ninhydrin (0.5%) in acetone. The plate was then heated at 105°C 

for 15 minutes. 
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2.9 Detection of radiolabelled compounds 

2.9.1 Detection of radiolabelled compounds by autoradiography 

Paper electrophoretograms containing [
14

C]-labelled compounds were exposed to 

photography film (Kodak BioMax MR-1 film) in the dark for a period of 5 days to 4 weeks. 

The films were then developed in an X-ray developer (Konica SRX-101A). Before 

autoradiography, the papers were marked with radiolabelled (
14

C) ink to allow the film to be 

accurately positioned after development. 

2.9.2 Quantification of radiolabelled compounds by scintillation counting 

Samples were assayed for radioactivity in a Beckman LS 6500 CE multi-purpose 

scintillation counter. Aqueous samples were mixed in a 1:10 ratio (sample : scintillant) with 

Optiphase Hisafe scintillation fluid before assaying for radioactivity.  Radiolabelled samples 

dried on paper were assayed with 2 ml Scintisafe scintillation fluid. 

Samples which were suspected to contain ester bonds within the radiolabelled substrate were 

assayed in homemade scintillant to avoid the hydrolysis of the ester bonds. The scintillant 

was made up of 2,5 diphenyloxazole (3.3 g/l), and 1,4-bis (5-phenyl-2-oxazolyl) benzene 

(0.33 g/l) in a solution of toluene and Triton X 100 (2:1). 

2.10 Elution of ascorbate derivatives from paper 

Derivatives of ascorbate were separated by HVPE. The individual compounds could then be 

eluted from the paper, providing a preparation of a purified ascorbate degradation product. 

The compounds were eluted using the syringe barrel method (251).  

The compounds to be purified were run by HVPE along with marker compounds. The 

marker strips were stained in AgNO3 and then the area corresponding to the compound of 

interest was marked on the unstained paper. If the compounds to be purified were 

radiolabelled then the paper was autoradiographed (section 2.9.1) and the position of the 

compounds marked on the paper using the film as a guide. 

The area of the paper electrophoretogram containing the compound of interest was cut out 

and rolled up as tightly as possible. The rolled up paper was then placed in a 5-ml syringe, 

which was itself placed in a 15-ml Greiner tube. Water, or in some cases 70% ethanol, (1 ml) 

was added to the paper in the syringe. The tube, with the syringe, was then centrifuged at 

2500 rpm for 5 minutes. Further centrifugation steps after the addition of 0.5 ml water or 
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ethanol were carried out. After the last 0.5 ml eluate was added, the tube was centrifuged for 

15 minutes at 3000 rpm.  

After the elution the compounds were dried in a SpeedVac concentrator (Savant SPD1010) 

and redissolved to an appropriate concentration and stored at -80ºC. 

 

2.11 Preparation of diketogulonate 

2.11.1 Preparation of diketogulonate from dehydroascorbic acid: method 1 

Diketo-L-gulonic acid (DKG) was prepared from commercial DHA by alkali hydrolysis. 

NaOH (60 mM) was added to a solution of DHA (50 mM). The reaction was stopped after 6 

minutes with H2SO4 (30 mM). The resulting solution of DKG was stored at -80°C. 

2.11.2 Preparation of diketogulonate from dehydroascorbic acid: method 2 

A solution of 3 M DHA in DMF (40 µl) was incubated with 200 µl of 0.75 M NaOH for 30 

seconds. HOAc (1.5 M, 100 µl) was added to stop the reaction. For use in experiments the 

DKG was diluted to 50 mM in H2O. The DKG was stored at -80°C. 

2.11.3 Preparation of diketogulonate from ascorbic acid: method 3 

A solution of ascorbic acid (0.12 M) was incubated with potassium iodate (0.36 M) for five 

minutes. After five minutes KOH (1 M) was added dropwise until the solution became 

colourless. Cold EtOH (8 volumes, -20°C) was added to precipitate the DKG. The 

precipitated DKG was vacuum filtered, rinsed in 70% EtOH and dried. The DKG was stored 

at -80°C. 

2.12 Mass spectrometry of ascorbate derivatives 

Samples were purified for mass spectrometry by preparative HVPE (section 2.4.1) followed 

by elution from the paper (section 2.10) or by anion-exchange column chromatography 

(section 2.7). The mass spectrometry analysis was carried out by Dr Logan McKay from the 

School of Chemistry at the University of Edinburgh. 

Negative-ion electrospray ionisation mass spectrometry was carried out on aqueous samples 

using a Fourier transform ion cyclotron mass spectrometer (Bruker 12 T SolariX). 
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2.13 Nuclear magnetic resonance spectroscopy of ascorbate derivatives 

Samples were purified for NMR spectroscopy analysis by separation by HPLC (section 2.5) 

or by preparative HVPE (section 2.4.1) followed by elution from the paper (section 2.10). 

The NMR spectroscopy analysis was carried out by Dr Lorna Murray and Prof Ian Sadler 

from the School of Chemistry at the University of Edinburgh. Proton NMR and 
13

C NMR 

analyses were carried out, on a Bruker Avance NMR spectrometer 500 MHz with DCH 

cryoprobe optimised for 
13

C/ 
1
H. 

2.14 In vitro oxidation of ascorbate derivatives by reactive oxygen species 

2.14.1 Conditions used for the ROS reactions 

All ROS reactions were carried out in pH 4.8 sodium acetate (0.1 M) buffer. The reactions 

were carried out over a time course of up to 30 minutes (unless otherwise stated). Singlet 

oxygen experiments were carried out over 24 hours to allow for the formation of the ROS. 

The reactions were stopped with the addition of an enzyme (catalase or superoxide 

dismutase) or EtOH (50% final concentration). The samples were stored at -80°C before 

further analysis. The samples were analysed by HVPE at pH 6.5 or pH 2.0, and stained in 

silver nitrate.  

Experiments involving [
14

C]DHA were conducted at lower concentrations, and the paper was 

subjected to autoradiography after HVPE. 

2.14.2 Generation of ROS 

i. Hydrogen peroxide (H2O2) was used at equimolar concentrations (unless 

otherwise stated) to the ascorbate derivative substrate, either DHA or DKG. The 

reactions were stopped with either the addition of EtOH (50% final 

concentration) or catalase (from bovine liver, 0.01% final concentration). 

ii. Superoxide (O2
•–

) was generated from KO2, which is known to produce the 

superoxide radical in solution. KO2 was added to the reaction mixture in an 

equimolar concentration to DHA or DKG, and this was assumed to equate to 

equate to an equimolar concentration of O2
•–

. The reaction was stopped with 

either the addition of EtOH (50%) or the addition of superoxide dismutase (from 

bovine erythrocytes, 0.01%). 

iii. Hydroxyl radical (
•
OH) was generated from the reaction of FeSO4 and H2O2 in 

the presence of EDTA. These three components were used in equimolar 
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concentrations to each other. H2O2 was the final component to be added to the 

reaction mixture. The reaction was stopped by the addition of EtOH (50%). This 

solution of H2O2, FeSO4 and EDTA is referred to as ‘
•
OH-producing mixture’ 

throughout the report. 

iv. Singlet oxygen (
1
O2) was produced from the photosensitiser dyes eosin, rose 

Bengal and riboflavin in the presence of light. The samples were incubated with 1 

mM or 10 mM photosensitiser dye, under a fluorescent light. Control samples 

containing the dye but incubated in the dark were also analysed. Riboflavin 

showed the highest singlet oxygen activity, so most singlet oxygen studies were 

carried out using riboflavin. 

 

2.15 Alkali treatment of ascorbate derivatives C and E 

Compounds C and E, purified by preparative HVPE (section 2.4.1) were treated with alkali 

to promote lactonisation (formation of compound C). Small aliquots (20 µl) of each 

compound were incubated in 0.1 M NaOH (final concentration) for up to 16 hours. The 

reaction was stopped by the addition of excess HOAc (0.2 M). Control samples were 

incubated in 0.2 M HOAc for up to 16 hours before being neutralised with 0.1 M NaOH. 

The samples were analysed by HVPE and detected by silver nitrate staining. 

2.16 The fate of radiolabelled ascorbate derivatives to plant cell suspension cultures 

2.16.1 The fate of [
14

C]AA derivatives in live plant cell suspension cultures  

Spinach, rose or Arabidopsis cell-suspension cultures (7 days after subculturing, unless 

otherwise stated) were inoculated with radiolabelled ascorbate derivatives ([
14

C]DHA, 

[
14

C]OxT or [
14

C]OxA), purified by previously discussed methods in sections 2.7, 2.4.1 and 

2.10. 

Cells from the cell culture to be used were filtered from the culture medium through four 

layers of Miracloth. Aliquots of cells (250 mg) were resuspended in 500 µl culture medium 

in small glass vials. The cell cultures were constantly shaken throughout the experiment to 

ensure the culture did not become anaerobic. The cultures were also in constant light. The 

cultures were incubated for at least 1 hour before the addition of the radiolabelled 

compounds (~ 200 Bq, in 1-5 µl) at time 0. 



44 
 

Samples of culture medium (50 µl) were taken in triplicate at specified time points and 

stored at -80°C until further analysis. 

Alcohol insoluble residue (AIR), comprising predominantly cell wall components, was 

prepared from the cell cultures through repeated washing of the cells. Initially the remaining 

culture medium was removed, and the cells were transferred to a 15-ml Greiner tube. Each 

washing step involved a 5 ml wash volume, with the samples being incubated on a rotary 

wheel for at least 20 minutes. After the incubation on the wheel the tubes were centrifuged 

for 10 minutes at 2500 rpm. After centrifugation the aqueous fraction of the sample was 

removed, leaving the insoluble pellet to be washed again in the subsequent steps. The cells 

were washed sequentially in H2O, 70% EtOH, acidified EtOH (75% EtOH with 5% formic 

acid), 50 mM EDTA and a repeated 70% EtOH or H2O step. 

After the final wash the AIR was either suspended in a solution (H2O or EtOH) and mixed 

with scintillation fluid for quantification by scintillation counting (section 2.9.2), or dried for 

further analysis. 

2.16.2 The fate of [
14

C]AA derivatives in frozen/thawed or boiled cell cultures 

The effect of boiling or freezing and thawing cell cultures on the metabolism of ascorbate 

derivatives was tested.  

For the boiled cells experiments, 7 day-old cell cultures (spinach, rose or Arabidopsis), 

including the culture medium, were portioned into 40 ml aliquots and boiled at 100°C for 1 

hour. The samples were then cooled before treating as described in section 2.16.1. 

For experiments involving frozen/thawed cells, 7 day-old cell cultures (spinach, rose or 

Arabidopsis) were portioned into 40 ml aliquots and frozen at -20°C, for at least 16 hours. 

The samples were thawed before treating as in section 2.16.1. The cells were frozen either in 

the culture medium, or filtered on Miracloth first and then frozen in minimal additional H2O.  

2.16.3 Alkali hydrolysis of radiolabelled AIR 

Radiolabelled AIR, prepared as described in section 2.16.1, was incubated in NaOH (0.1 M, 

100 µl for ~25 mg AIR) for one hour in order to cleave any ester bonds present. After one 

hour excess HOAc (0.2 M, 100 µl) was added to stop the reaction. 

The entire sample, including the insoluble fraction if possible, was loaded onto Whatman 3 

MM paper along with an internal marker of orange G. Markers of [
14

C]OxA and non-
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radiolabelled Glc were also loaded. The paper was run by HVPE at pH 6.5. After drying, the 

paper was cut into fractions and each fraction assayed for radioactivity by scintillation 

counting (section 2.9.2). 

2.16.4 Enzyme treatment of radiolabelled AIR 

Radiolabelled AIR, prepared as described in section 2.16.1, was incubated with various 

enzymes that act on the cell wall in order to determine the compounds that have formed an 

ester bond with [
14

C]OxT. The enzymes used were endopolygalacturonase, cellulase (known 

to also act on xyloglucan), and cellulase (does not act on xyloglucan). All the enzymes were 

prepared as 0.1% solutions in pyridine: acetic acid: 0.05% chlorobutanol (1:1:98).  

Before treating the AIR with the enzymes, the enzymes were analysed for esterase activity. 

This was done by incubating [
14

C]OxT with the enzyme solution for 16 hours, either at room 

temperature or 37°C. The solution was then run by HVPE at pH 6.5, and the paper exposed 

to film to create an autoradiogram to determine whether [
14

C]OxT was stable in the presence 

of the enzyme. 

2.17 Acyltransferase purification and assay 

2.17.1 Eluting cell wall enzymes from plant cell-suspension cultures 

Cell wall proteins (including enzymes) were eluted from spinach or Arabidopsis cell cultures 

7 days after sub-culturing, unless otherwise stated.  The spent culture medium of one flask of 

cell culture (200 ml) was filtered off through 4 layers of Miracloth. The culture medium was 

then stored at -80°C until required. The remaining cells were rinsed in 500 ml H2O before 

being resuspended in 1 M NaCl (100 ml, pH 5 with 5 mM succinate buffer). The 

resuspended cells were shaken in the salt solution for 1 hour at 4°C. After 1 hour the eluate 

was separated from the cells by filtering again through 4 layers of Miracloth. The eluate (100 

ml) was then placed into dialysis tubing (molecular cut-off 3.5 kDa). Dialysis was carried 

out against H2O for 24 hours at 4°C, with multiple changes of H2O to remove the NaCl from 

the eluate. After dialysis the enzyme extract was dried by freeze drying (Edwards freeze 

drier). The freeze dried enzyme extracts were stored at -80°C. 

The culture medium removed in the first step was also dialysed and freeze dried, to test the 

medium for enzyme activity. 
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2.17.2 Acyltransferase assay with cell cultures 

Aliquots of  7 day-old spinach or Arabidopsis cell culture (10 µl) were incubated with ~ 200 

Bq [
14

C]OxT and an acceptor substrate (5% final concentration) such as a sugar or 

oligosaccharide for a given incubation time (up to 16 hours). Aliquots of cell-free spent 

culture medium were also incubated with [
14

C]OxT and an acceptor substrate. 

After the incubation period formic acid (10% final concentration) was added to stop the 

reaction. The whole sample was loaded onto the origin of Whatman 3 MM paper, along with 

an internal marker of orange G. The paper was run by HVPE at pH 6.5 (section 2.4.1). The 

paper was exposed to film for up to 4 weeks to detect any radiolabelled compounds that had 

formed during the reaction (section 2.9.1). These compounds could then be quantified by 

scintillation counting (section 2.9.2). 

The acceptor substrates used were glucose (Glc), fructose (Fru), mannose (Man), galactose 

(Gal), xylose (Xyl), arabinose (Ara), maltose (Mal), cellobiose (CB) and sucrose (Suc). 

2.17.3 Acyltransferase assay with enzyme extracts 

Dialysed and freeze dried cell wall extracts from spinach and Arabidopsis were assayed for 

acyltransferase activity. The reaction mixture contained ~200 Bq of [
14

C]OxT, 5% final 

concentration of an acceptor substrate such as a sugar, and 1% enzyme extract in 10 mM 

PIPES buffer (piperazine-N, N’-bis(2-ethanesulfonic acid); pH 7). The reaction mixture was 

incubated for 4 hours (unless otherwise stated) and formic acid (10 % final concentration) 

was added at the end of the incubation period to stop the reaction. 

The entire reaction mixture was loaded onto Whatman 3 MM paper along with an internal 

marker of orange G, and run by HVPE at pH 6.5 (section 2.4.1). The paper was then exposed 

to film for up to 4 weeks to detect the radiolabelled compounds, which could be then 

quantified by scintillation counting (section 2.9). 

The acceptor substrates used were glucose (Glc), xyloglucan oligosaccharides (XGOs), 

raffinose (Raf), cellobiose (CB), glucosamine (GlcN), xyloglucan (XG, from tamarind), 

xylan (from birch wood), arabinogalactan (AG, from larch wood), arabinan (from sugar 

beet), homogalacturonan (HG, from orange), pectin (from citrus or apple) and RG I (from 

soy or potato). 
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2.17.4 Acyl transferase assay with polysaccharide-impregnated paper 

Polysaccharide-impregnated paper was prepared by dipping Whatman 3 MM paper slowly 

through a 1% solution of polysaccharide: esterified pectin (from citrus fruit), 

homogalacturonan (from orange), xyloglucan (from tamarind) or xylan (from birch wood). 

The paper was then allowed to dry before being cut into 1.5 cm by 2 cm rectangles. 

These small papers were rolled tightly and placed individually in 0.2-ml PCR tubes. The 

papers were then wetted with a solution (35 µl) containing 1% enzyme extract (section 

2.17.1) in pH 7 PIPES buffer (10 mM), along with a radiolabelled substrate (OxT, OxA or 

cOxT). The tubes were sealed tightly and incubated for up to 24 hours. After the incubation 

period the paper was removed from the tube and placed in 5 ml 70% EtOH or acidified 

EtOH (75% EtOH with 5% formic acid). The paper in the EtOH was rotated on a mechanical 

wheel for 30 minutes. The EtOH was then removed and a sample assayed for radioactivity 

on the scintillation counter (section 2.9.2). The paper was repeatedly washed in EtOH until 

no more radioactivity was released into the aqueous washings. The paper itself was then 

assayed for radioactivity by scintillation counting.  

Activity of an acyltransferase would result in radiolabelled paper, as the [
14

C]OxA group 

from the starting substrate (of OxT or cOxT) would have been substituted onto the cellulose-

polysaccharide matrix of the polysaccharide-impregnated paper, by the formation of an ester 

bond. 

2.18 Determination of ascorbate content of salad leaves using the DCPIP assay  

The ascorbic acid content of samples of salad leaves was determined using DCPIP 

(dichlorophenolindophenol).  Salad leaves (1 g) were ground in 5 ml of either meta-

phosphoric acid (2%), oxalic acid (252) (0.5%) or formic acid (0.5%) using a pestle and 

mortar. The thoroughly ground samples were then vacuum filtered and the filtrate collected, 

or the samples were centrifuged at 2500 rpm for 10 minutes and the supernatant collected. 

Aliquots (1 ml) of the filtrate or supernatant were taken in duplicate. DCPIP (0.1%) was 

added to each aliquot in 10-µl shots until a pink colour remained for 10 seconds. The volume 

of DCPIP added was recorded and compared to a standard curve of ascorbic acid 

concentrations to calculate the ascorbic acid content of the salad sample. 
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2.19 Determination of ascorbate content of salad leaves during the washing process 

2.19.1 Monitoring the ascorbate content of salad leaves during washing and storage 

on site at the Vitacress premises 

Salad leaves harvested from Vitacress farms were stored on-site at 4°C for up to 10 days, and 

the ascorbate content of these leaves were analysed by titration with DCPIP (section 2.18) at 

time intervals. Different variables were tested in relation to loss of ascorbate during storage, 

including: 

(i) The loss of ascorbate during storage of a range of salad species 

Salad leaves were collected immediately after the commercial washing process and 

stored in plastic bags at 4ºC for up to 10 days. The salad species used were: rocket 

(Eruca sativa), wasabi rocket, mizuna (Brassica juncea var. japonica), watercress 

(Nasturtium officinale), green Batavia (Lactuca sativa), iceberg lettuce (Lactuca 

sativa), spinach (Spinacia oleracea), red spinach (Amarnthus dubius), red chard 

(Beta vulgaris, subsp. Vulgaris), pea shoots (Pisum sativum) and fennel (Foeniculum 

vulgare). 

(ii) The effect of the washing process on ascorbate loss. 

Salad leaves (watercress, spinach and rocket) from the same harvest batch were 

sampled before and after the commercial washing process.  

(iii) The effect of growth stage on ascorbate loss 

Salad samples (spinach and watercress) at different growth stages were harvested 

and the ascorbate content measured throughout storage. 

(iv) The effect of vacuum cooling on ascorbate retention in spinach leaves 

Spinach leaves from the same harvest batch were taken and one crate was 

immediately stored at 7°C, whereas another batch was subjected to vacuum cooling 

(as is the protocol at Vitacress salads) for 1 hour before being stored at 7°C until 

both crates were transferred to the factory one day later. Vacuum cooling reduces the 

temperature of the leaves from ambient temperature (20ºC) to approximately 5ºC, at 

a pressure of 1 kPa. 
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2.19.2 Simulating the washing process in the laboratory 

The industrial washing process was simulated under laboratory conditions. Spinach leaves 

grown under controlled conditions (section 2.3.2) were harvested four weeks after sowing. 

Samples of spinach leaves (1 g, in triplicate) were incubated either in air, in still water or in 

shaken water (on a small orbital shaker) for 1 hour. After this incubation the leaves were 

ground in 5 ml 0.5% oxalic acid or 0.5% formic acid, and the sample was vacuum filtered. 

Samples (1 g in triplicate) were also prepared immediately after harvesting (time 0). 

DCPIP (0.1%) was added in 10-µl shots to aliquots (1 ml, in duplicate) of the filtrate until a 

pink colour persisted for 10 seconds. The volume of DCPIP added was compared to a 

standard curve, and the ascorbate content of the sample was calculated (section 2.18). 

2.19.3 The effect of chlorine on the retention of ascorbate during washing 

The effect of chlorine on the retention of ascorbate in spinach leaves during washing was 

investigated. Samples of spinach leaves purchased from a local supermarket (1 g in 

triplicate) were incubated in plastic vials either dry (with no H2O added), in H2O or in 

chlorinated H2O (100 ppm active chlorine from sodium hypochlorite), all with gentle 

shaking at 7°C for 1 hour. The ascorbate content was assayed by titration with DCPIP 

(section 2.18). 

2.19.4 Monitoring degradation product formation during the washing process with 

[
14

C]AA 

Spinach leaves grown in controlled conditions in the university glass house facilities were 

harvested 4 weeks after sowing (section 2.3.2). The petiole (cut flat with a razor blade) of a 

spinach leaf was placed in a round-bottomed tube containing [
14

C]AA (8 kBq) diluted to 50 

µl with H2O. The [
14

C]AA was taken up into the leaf by transpiration. After this initial 

solution has been taken up, three further aliquots (50 µl) of H2O were added into the tube, to 

ensure all the [
14

C]AA was taken up.  This feeding process was carried out for 1 hour, after 

which the presence of radioactivity in the leaf was confirmed with a Geiger counter. 

One hour after the initial [
14

C]AA feeding the leaf was removed from the tube and 1 cm 

diameter leaf discs were cut out from the leaf, avoiding the main veins. Sets of four 

equivalent discs were prepared (Figure 9), and each disc within a set was subject to a 

different treatment. These discs are presumed to be equivalent in terms of the level of 
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radiolabelled compounds due to their positions. The two halves of the leaf are assumed to be 

identical. This allows direct comparisons to be made between these four leaf discs. 

 

 

 

The treatments included ‘time 0’ (the leaf disc extract is taken immediately) and three 

different washing steps; ‘in air’ (the leaf disc was incubated in an empty vial in humid 

conditions), ‘in still water’ (the leaf disc was incubated in a vial containing 5 ml H2O), and 

‘in shaken water’ (the leaf disc was incubated in a vial containing 5 ml H2O and shaken on a 

mini bench-top shaker at ~200 rpm, Grant Bio PMS-1000). Leaf discs were incubated in the 

washing steps for 30, 60 or 120 minutes at 7°C. Five replicate sets (of the four treatments) of 

leaf discs were prepared for each of the three time points. After the appropriate incubation 

time the leaf disc was removed from the vial and the radiolabelled compounds extracted in 

0.5% formic acid (200 µl), by grinding with a mortar and pestle. This extract was stored at -

80°C until further analysis. 

The extracts were centrifuged at 4000 rpm for 5 minutes, and samples of the aqueous portion 

were run by HVPE at pH 6.5 and pH 2.0 (section 2.4.1). The presence of [
14

C]AA and any 

degradation products formed was detected by autoradiography or scintillation counting 

(section 2.9). 

 

 

Figure 9: Sampling leaf discs from [14C]AA-fed 
spinach. After a spinach leaf has been fed [14C]AA 
leaf disc samples were taken. Discs (1 cm diameter) 
were punched out of the leaf, and four equivalent 
discs (shown in different colours, grey, blue and 
orange) were subjected to four different treatments. 
The four discs are presumed to contain an equivalent 
level of radiolabel, due to their position, under the 
assumption that the two sides of the leaf are identical. 
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Results 

3.1  Purification and identification of ascorbate degradation products C and E  

 

3.1.1 Introduction to compounds C and E 

DHA is known to form DKG under hydrolysing conditions (82). It has also been shown that 

DKG can be further degraded to form ThrO, xylonic acid and lyxonic acid in vitro and in 

animal tissues via oxidation and decarboxylation (2,253), alternatively DKG can be degraded 

to form the unidentified compounds C and E, first detected in rose cell-suspension cultures 

(72). The aims of the work in this chapter were to further identify and characterise the DKG-

derivatives, compounds C and E. 

 

3.1.2 Purification of C and E 

Compounds C and E have previously been reported to be degradation products of DKG 

(1,72). The structures of these compounds have been hypothesised as 2-carboxy-

xylonolactone and 2-carboxy-xylonate respectively (1), but not fully elucidated. In order to 

further investigate the nature of these compounds they first required purification.  

DKG, the precursor of compounds C and E, was prepared by NaOH treatment of commercial 

DHA. It was observed that this method of producing DKG also yielded compounds C and E. 

Commercial DHA (50 mM), when incubated with 0.5 M NaOH, very quickly produced 

DKG, C and E (Figure 10). Most of the DHA had been hydrolysed to DKG and further 

degraded to compounds C and E almost immediately, as seen by the decrease in intensity of 

the silver nitrate-stained spots of DHA and DKG. 
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As compounds C and E separate well by HVPE this was the method chosen for purification. 

An aqueous sample of DHA was hydrolysed with NaOH to form DKG and compound E, and 

excess HOAc was added to stop the reaction. The sample was subjected to preparative 

HVPE at pH 2.0. Marker strips from either edge of the paper were stained in silver nitrate to 

provide a visual guide for the location of the compounds of interest. Compounds C and E, 

and DKG, were eluted from the unstained portion of the electrophoretogram in H2O (Figure 

11 A), dried and redissolved in H2O. Small samples of each of the compounds were re-run 

analytically by HVPE at pH 6.5 to verify their purity and identity (Figure 11 B). The 

compounds were identified from their mobility relative to orange G (mOG). 

Figure 10: DKG, C and E are formed from NaOH treatment of DHA. 50 mM DHA was 
incubated with 0.5 M NaOH. Samples (10 µl) were taken each minute and excess HOAc 
was added to stop the reaction. The samples were run by HVPE at pH 6.5. The paper was 
stained in silver nitrate. The 0 minute time point represents DHA which was treated with 

HOAc prior to the addition of NaOH, so was never in alkaline conditions. 
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3.1.3 C and E interconvert 

Compounds C and E are known to interconvert, as compound C is the lactone of compound 

E (1). This interconversion can be used to further confirm the identity of these compounds.  

Alkaline conditions favour the formation of compound E (de-lactonisation), whereas acidic 

conditions favour re-lactonisation; the formation of compound C. Despite this, compound C 

was formed upon the NaOH treatment of DHA (Figure 11 A). This is likely to be because 

excess HOAc was added to the sample after NaOH treatment, resulting in the final solution 

being slightly acidic, allowing some of compound E to re-lactonise to compound C. 

Purified aqueous samples of compound C and compound E were incubated in NaOH or 

HOAc for 16 hours. The samples were then neutralised, quickly loaded onto paper and 

analysed by HVPE at pH 6.5 and stained in silver nitrate (Figure 12).  

Figure 11: Purification of C and E by HVPE. An aqueous sample of 50 mM DHA (500 µl) was incubated 
with 0.1 M NaOH (final concentration) for 7 minutes. The reaction was stopped with the addition of excess 
HOAc, and the whole sample loaded as a streak, along with orange G as an internal marker. The paper 
was run by HVPE at pH 2.0 at 2.5 kV for 60 minutes (A). Strips at the edge of the paper were stained in 
silver nitrate. After elution from the paper by the syringe-barrel method, the compounds were dried, 
redissolved in H2O and small samples analysed by HVPE at pH 6.5 (B). The paper was then stained in 
silver nitrate. 
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After incubation in acidic conditions, compound C was more prevalent than compound E 

(Figure 12), whether the starting compound was C or E. Equally, alkaline conditions 

favoured the formation of compound E, independently of which compound was the starting 

substrate, C or E. This confirmed the identity of the purified compounds as C and E as 

defined by Green and Fry (72). 

 

 

Figure 12: C and E interconvert. Purified aqueous samples of C and E were incubated for 
16 hours in the presence of 0.1 M NaOH or 0.2 M HOAc. After incubation the samples were 
neutralised with either HOAc or NaOH. A small sample (20 µl) of each was run by HVPE at 
pH 6.5. After drying the paper was stained in silver nitrate. 
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3.1.4 Further characterisation of compounds C and E using HVPE 

It was observed that samples of compound E (originating from NaOH treatment of DHA and 

purified by preparative HVPE at pH 2.0) when re-run analytically by HVPE at pH 2.0 

contained at least five distinct compounds as stained by silver nitrate (Figure 13). All five 

compounds were present in the untreated sample of compound E and in the sample treated 

with acid, which favours the formation of compound C. Only two of the spots were present 

after alkali treatment of compound E, labelled as E and C* (Figure 13).  

Figure 13: HVPE at pH 2.0 reveals that preparations of compound E contain numerous 
compounds. A preparation of compound E was incubated with 0.1 M NaOH or 0.2 M HOAc for 
16 hours, before being neutralised, loaded onto paper and run by HVPE at pH 2.0. The paper 

was stained in silver nitrate. 
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As acidic conditions favour lactonisation, it was hypothesised that the compounds present in 

‘E + HOAc’ sample included compound C, an epimer of compound C and potentially a 

double lactone of E, which would be neutral and appear in the area marked ‘C neutral’ 

(Figure 13). The two epimers of C were named C and Cʹ. 

In order to further explore the nature of these numerous compounds that arise during the 

hydrolysis of DKG, they required purification. This was carried out by preparative HVPE of 

a preparation of compound E that was known to contain all five of the C and E-related 

compounds (Figure 14 A). After these compounds were eluted from the preparative 

electrophoretogram, they were dried and redissolved in H2O. Small samples of each of the 

compounds were then run by HVPE to determine their purity (Figure 14 B).  All the 

compounds contained a silver nitrate-stained spot in the neutral position. This neutral 

product could consist of compounds that originate from the paper itself and had been eluted 

along with the compounds of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Purification of five C and E-related compounds. A sample of E, known to contain numerous C and 
E-related compounds was run preparatively by HVPE at pH 2.0. Strips from either edge of the paper were cut off 
and stained in silver nitrate (A). The areas on the unstained electrophoretogram containing the compounds were 
cut out and the compounds eluted in H2O The eluted compounds were dried then redissolved in a smaller volume 
of H2O. Samples (10 µl) of each compound was run by HVPE at pH 2.0, and the paper was stained in silver nitrate 
(B). 
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3.1.5 Identification of novel DKG hydrolysis products 

In order to determine whether the five C and E-related compounds (named C, Cʹ, C*, C 

neutral and E) interconvert, the samples were subjected to 2D HVPE. Three 10-µl aliquots of 

a solution known to contain all the compounds were run by HVPE; two at pH 2.0 and one at 

pH 6.5, along with markers to be stained in silver nitrate. After running, the lanes were 

carefully cut out. These strips were sewn onto the origin of a fresh sheet of Whatman 3 MM 

paper. This paper was run by HVPE at pH 2.0 or pH 6.5 and then stained in silver nitrate 

(Figure 15).  

All five compounds were stable and did not interconvert throughout the duration of the 

HVPE run and the drying steps (Figure 15 A), as demonstrated by the diagonal line formed 

by the compounds after HVPE at pH 2.0 followed by HVPE at pH 2.0.  

Although all the compounds separated during HVPE at pH 2.0, the compounds did not 

completely resolve during HVPE at pH 6.5. Compounds C, Cʹ and C* had the same mobility 

at pH 6.5 (Figure 15 B and C).  

Compound C has been proposed to have two epimers (1). The spot corresponding to 

compound C after HVPE at pH 6.5 comprises three separate spots when run at pH 2.0 

(Figure 15 B). It is suggested that two of these spots correspond to the epimers of C (labelled 

C and Cʹ). In order to determine whether these compounds were epimers of C, all the C and 

E-related compounds were treated with alkali and acid, which will promote de-lactonisation 

(formation of E) and re-lactonisation (formation of C) respectively (Figure 16). 

Compound C was the most abundant of the five compounds, and clearly converted to 

compound E upon NaOH treatment (Figure 16). Compound Cʹ also diminished upon NaOH 

treatment, converting to compound E; however, there was less of this compound so the spots 

were much fainter. The mobility of compound C* (which has the same mobility as 

compound C on HVPE at pH 6.5) did not change with alkali treatment, suggesting this 

compound is not a lactone. This demonstrates that the compounds labelled C and Cʹ are 

epimers of the C lactone, and compound C* is a different compound.  
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Figure 15: 2D HVPE of C and E-
related compounds.  Two 10-µl 
samples of E (containing the five 
C and E-related compounds) 
were run by HVPE at pH 2.0, and 
one was run at pH 6.5, along with 
markers. The marker strips were 
stained in silver nitrate. The strips 
containing the now separated 
individual C and E-related 
compounds were then cut out and 
sewn onto the origin of a new 
sheet of Whatman 3 MM paper. 
These new papers were then run 
by HVPE at either pH 2.0 or pH 
6.5. After the second HVPE run 
the papers were stained in silver 
nitrate. Orange G was present in 
both dimensional runs. For the 2nd 
dimension, fresh applications of 
orange G (2 µl) were loaded 
along the new origin. The 
permeations of 2D HVPE include 
a run at pH 2.0 followed by pH 2.0 
(A), a run at pH 2.0 followed by 
pH 6.5 (B) and a run at pH 6.5 

followed by pH 2.0 (C). 
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The mobility of C* is similar to that of ThrO (a four-carbon monocarboxylic acid), although 

the mobility of C* is slightly slower than ThrO after HVPE at pH 6.5; the mOG of ThrO is 

1.26 and the mOG of C* is 1.10. This would suggest that the charge : mass ratio of C* is 

smaller than that of ThrO, so C* is either larger or more charged than ThrO.  Xylonic acid is 

Figure 16: Alkali and acid treatment of individual C and E-related compounds. C and 
E-related compounds (10 µl) that had been eluted from an electrophoretogram in H2O were 
incubated with 0.1 M NaOH or 0.2 M HOAc or with neither for four hours. After four hours 
the NaOH samples were neutralised with HOAc and the HOAc samples were neutralised 
with NaOH, before loading onto paper. The paper was then run by HVPE at pH 2.0 and 
stained in silver nitrate. 
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a five-carbon monocarboxylic acid, which has been reported to derive from ascorbic acid (4). 

It is hypothesised that the identity of C* could be xylonic acid.  

A sample of C* was run alongside markers of xylonic acid, and a further sample of C* was 

spiked with commercial xylonic acid. After HVPE at pH 6.5, C* and xylonic acid did not 

resolve from each other (Figure 17). The sample that contained both C* and xylonic acid 

produced a single spot stained by silver nitrate, showing that C* has the same charge : mass 

ratio as xylonic acid.  This suggests that the identity of C* could be xylonic acid, or a related 

five-carbon monocarboxylic acid such as lyxonic acid (also known to derive from ascorbic 

acid (4)) or ribonic acid, which would have the same electrophoretic mobilities at pH 6.5. 

Figure 17: C* co-migrates with xylonic acid by HVPE at pH 6.5. A sample of C* (eluted from 
a preparative electrophoretogram) was run alongside a dilution series of a marker of commercial 
(Sigma Aldrich) xylonic acid. A sample of C* and xylonic acid were mixed together and run in one 
lane. The paper was run by HVPE at pH 6.5 until the orange G internal marker had travelled 
three quarters of the length of the paper. The paper was then stained in silver nitrate. 
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The C-neutral spot appeared to diminish upon alkali treatment (Figure 16), possibly forming 

a faint spot of E. This would support the theory that the neutral spot contains a double 

lactone of E, as well as contaminating compounds originating from the paper. However, the 

spot of C* (xylonic acid) in the C-neutral sample seems to have increased upon NaOH 

treatment. This may hint at the neutral product being a lactone of xylonic acid, 

xylonolactone. It is possible that the neutral spot contained both xylonolactone and a double 

lactone of compound E.  

 

 

Figure 18: Purification and interconversion of [14C]E and C. Radiolabelled compound E was obtained 
through NaOH treatment of [14C]DHA (A). [14C]DHA was treated with 0.1 M NaOH for up to 8 minutes; the 
reaction was stopped by the addition of 0.2 M HOAc at the time points indicated. The samples were run by 
HVPE at pH 6.5, and then the paper was exposed to film to produce an autoradiogram. The predominant spot of 
compound E was eluted from the paper in H2O using the syringe barrel method, then concentrated by vacuum 
evaporation. The resulting [14C]E (B) was incubated in 0.1 M NaOH or 0.2 M HOAc for 16 hours. The samples 
were neutralised and run by HVPE at pH 2.0. The paper was exposed to film to produce an autoradiogram. 
Internal markers of orange G were run on both electrophoretograms, along with a marker containing various AA 
degradation products. 
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Further evidence for the existence of an E double lactone, or xylonolactone, comes from 

experiments using radiolabelled C and E (Figure 18). [
14

C]DHA, purified on an anion-

exchange chromatography column (as described in sections 2.7.1 and 3.3.4), was treated 

with NaOH for up to 8 minutes. The [
14

C]DHA was very quickly hydrolysed to [
14

C]DKG, 

which was then further converted to compounds [
14

C]C and [
14

C]E, with E being the 

predominant product (Figure 18 A). These samples of compound E were eluted from the 

paper, and treated with either NaOH or HOAc (Figure 18 B). A by-product of [
14

C]OxA was 

also produced (Figure 18 A), presumably from the oxidation of DKG, which would also 

yield ThrO, which would not be visible as it does not contain the radiolabelled carbon. 

Treatment of [
14

C]E with HOAc led to the formation of C compounds, including C, Cʹ, C* 

(putatively xylonic acid) and a neutral compound (Figure 18). All the compounds visible on 

the autoradiogram contain C-1 of the original [
14

C]AA, as this is the carbon that is 

radiolabelled. This is especially noteworthy for the neutral spot, as this shows that the neutral 

compound originated from [
14

C]E, and cannot be contaminating compounds eluted from the 

paper itself. The neutral spot is not present in the NaOH sample, suggesting that it was 

formed by the lactonisation of compound C or of compound C* (xylonic acid). This lends 

support to the hypothesis that the neutral compound could be a double lactone of compound 

E or xylonolactone. 

 

3.1.6 The structures of C and E are supported by MS and NMR data 

Purified C and E-related compounds were analysed by mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) spectroscopy, in collaboration with University of Edinburgh 

School of Chemistry. 

NMR studies were carried out on purified samples of compound C, obtained from NaOH 

hydrolysis of DKG, and separated by preparative HVPE, then eluted from paper in H2O. 

Proton NMR (Figure 19) detects hydrogen atoms covalently bound to carbon atoms. The 

hypothesised structure of compound C contains four such hydrogen atoms. These four C-H 

bonds were identified on the NMR spectrum, and correspond to the suggested structure 

(Figure 19 B). 
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The pattern of the peaks within the spectrum provides information on the neighbouring C-H 

bonds. For instance the area corresponding to the H bound to C-5 consists of 8 peaks, 

meaning that C-5 has three neighbouring C-H bonds (one on C-4 and two on C-6). The peaks 

labelled H-6a and H-6b were distorted, the peaks on the outside of this bundle were smaller 

than the peaks towards the centre. This was caused by the proximity of the two C-H bonds, 

and suggests they could be bound to the same C atom. This also agrees with the suggested 

structure of C, in which C-6 has two C-H bonds. 

 

13
C NMR spectroscopy detects naturally occurring 

13
C; approximately 1% of carbon is in the 

13
C form. Compound C was thought to contain six carbons, all of which can be seen on the 

13
C NMR spectrum (Figure 20). C-1 and C-2 are in the region known to correspond to acidic 

moieties. This is in agreement with the structure depicted (Figure 20), showing the 

Figure 19: H+ NMR analysis of compound C. A purified sample of compound C was analysed by H+ NMR 
spectroscopy. The expanded carbohydrate region of the spectrum is shown in (A). The peaks corresponding to 
the C-H bonds present in compound C are labelled. The structure shown in (B) shows the position of the H 

atoms identified within the compound. 
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carboxylic acid group at C-1. An epimer of compound C has also been proposed, in which 

the carboxylic acid group would be on C-2, thus explaining the appearance of a C-2 peak in 

the acidic region, as it is possible that this preparation is a mixture of C and Cʹ. 

A sample of compound C, purified by anion-exchange column chromatography to avoid the 

contamination arising during elution from paper, was subjected to MS analysis. Fraction 30 

from the anion-exchange column contained compounds C and Cʹ (Figure 21 A) which are 

hypothesised to be epimers of each other and so will have the same molecular mass, free 

from the other compounds. As previous samples of compound C appeared to contain neutral 

compounds, assumed to originate from the paper from which the compounds were eluted, it 

was hoped that eluting the compounds from an anion-exchange chromatography column 

would allow a purer sample to be obtained. However, as seen on the electrophoretogram 

there is a silver nitrate stained neutral spot in the column fraction containing the two epimers 

of compound C. It is also possible that this neutral spot is a double lactone of compound E. 

Figure 20: 13C NMR spectroscopy analysis of compound C. A sample of copmound C was analysed by 
13C NMR spectroscopy. The six carbon atoms within compound C were identified in the spectrum. 
Impurities, most likely resulting from the paper from which compound C was originally eluted, are also 

visible. 
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Figure 21: Mass spectrometry analysis of compound C purified by anion-exchange column 
chromatography. C and E compounds were separated by anion-exchange column chromatography.  The 
compounds were eluted in increasing concentrations of formic acid, and samples from the fractions 
containing the putative xylonic acid and compound C (fractions 27 and 30 respectively) were run by HVPE at 
pH 2.0, then the paper stained in silver nitrate (A). Several marker compounds were also run, as well as an 
internal marker of orange G. A further sample of fraction 30 was analysed by mass spectrometry. The full 
spectrum (B) is shown, along with the expanded region containing the hypothesised compound C (C). The 
actual measured spectra are shown above the simulated spectra for a compound with the formula (C6H8O7) - 
. 
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The spot of compound C on the electrophoretogram was stained fairly heavily, suggesting 

that this sample of C was fairly concentrated (Figure 21 A). For this reason, this sample from 

the anion-exchange chromatography column was used for negative ion electrospray MS 

analysis. The spectrum for this sample showed a peak of m/z of 191, (Figure 21 B and C) 

which corresponds to the hypothesised structure of C6H7O7
-
 (Figure 20), supporting that 

compound C is a structure of this molecular mass.  

That there was just one peak in the region of 191 on the spectrum (Figure 21 B and C) also 

supports the theory that C and Cʹ are epimers and so are of the same molecular mass. The 

peaks with larger m/z values were assumed to be contaminants (Figure 21 B). As the 

electrophoretogram shows both C and Cʹ were present in the sample, if they were not 

epimers then it would have been expected that two distinct peaks would be formed.  

Samples of the other C and E-related compounds, purified from preparative HVPE, were 

also analysed by MS (Figure 22). As these samples were eluted from paper the samples were 

not particularly pure because they also contained material that originated from the paper 

itself.  Compound C was the most abundant compound, with the others being present in 

much lower concentrations. However the MS analysis yielded more support for the identity 

of these compounds. 

Both compounds C and Cʹ contained peaks of 191 (as seen in Figure 22 B and C), as in the 

more concentrated samples discussed previously (Figure 21). This peak at 191 was absent in 

the C* sample (data not shown), further confirming that compounds C and Cʹ are the epimers 

of each other, and C* is a separate compound completely. 

The compound C* sample contained a peak at 165 (Figure 22 D), corresponding to the mass 

of xylonic acid, further supporting the hypothesis that the identity of C* is a C5 

monocarboxylic acid, potentially xylonic or lyxonic acid.  

Compound E, the de-lactonised form of compound C, showed a peak at 209 on the mass 

spectrum (Figure 22 A), which matches the proposed structure, with the formula (C6H9O7)
-
.  
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Figure 22: MS analysis of 
compounds E, C, Cʹ and C*. 
Samples of compounds E, Cʹ, Cʺ 
and C* were prepared by 
preparative HVPE followed by 
elution in H2O using the syringe 
barrel method. The individual 
samples were analysed using 
mass spectrometry. The actual 
measured spectra are shown 
above the simulated spectra for 
a compound with the formula 
(C6H9O8)- for compound E (A), 
(C6H7O7)- for compounds Cʹ and 
Cʺ (B and C), and (C5H9O6)- for 
compound C* (D). The 
corresponding names and 
chemical structures are shown 
for each compound’s proposed 
identity. 
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Taken together, the data support the hypothesis that there are two epimers of compound C, 

shown to have an m/z of 191. These epimers can be separated by HVPE at pH 2.0, but not 

HVPE at pH 6.5. The identities of the epimers of compound C are likely to be 2-carboxy-

xylonolactone and 2-carboxy-lyxonolactone, as suggested previously (1). The structural 

characterisation of compound C using NMR also agrees with the proposed structures of 2-

carboxy-xylonolactone and 2-carboxy-lyxonolactone. 

Compound E is the de-lactonised form of C, 2-carboxy-xylonate. This de-lactonisation has 

been demonstrated during the alkali treatment of the samples, which is known to favour de-

lactonisation. The structural identity of this compound is supported by the MS data, showing 

a peak at 209, which would be expected for this structure. Unlike compound C, compound E 

is unable to have epimers, as the functional carbon is symmetrical, with identical COOH 

groups on either side. Compound E is likely to have two negative charges, which would 

result in a compound with an m/z value of 104. This value is below the measured values 

during the MS analysis, so was unable to be detected. 

Compound C* was shown to have the same electrophoretic mobility as xylonic acid after 

HVPE at pH 6.5 and pH 2.0. The MS data also support the identity of this compound as a C5 

aldonic acid, most likely to be xylonic or lyxonic acid, as these compounds have been 

previously reported as ascorbate degradation products (4). 

The neutral spot present in samples of C, was assumed to contain, at least in part, 

contaminating material that originated from the paper the compounds were eluted from, 

rather than from the C and E-related compounds themselves. However, it is also possible that 

a neutral double lactone of compound E and/or xylonolactone was also present in the neutral 

sample. When the neutral sample was treated with NaOH there appeared to be a decrease in 

the intensity of the neutral spot, suggesting that the alkali had de-lactonised the compound, 

so it was no longer neutral. This is further supported by the presence of a radiolabelled 

neutral compound in an acid treated preparation of [
14

C]E after HVPE at pH 2.0. 

This work has confirmed the identity of previously unidentified degradation products of 

DKG, as well as providing new information about the degradation pathway of DHA. The 

structures of these novel compounds are shown in Figure 23, along with the xylonolactone 

and the hypothetical structure of the neutral double lactone of compound E. 
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Figure 23: The hydrolysis pathway of DHA. The names, structures and formulas of each compound in the 
hydrolysis pathway are shown. The pathway begins with the hydrolysis of DHA to DKG. DKG can then be 
undergo isomerisation into compounds C (including both epimers, C and Cʹ) and E, which interconvert. The 
hypothetical C neutral compounds of 2-carboxy-l-xylonodilactone and xylonolactone are shown. Compound C* 
(identified as xylonate or lyxonate), formed by the decarboxylation of compound E or delactonisation and 
decarboxylation of compound C, is also shown. 
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3.2 Purification of an ascorbate-derived peroxidase-inhibitor 

3.2.1 Introduction to an ascorbate-derived peroxidase-inhibitor 

Previous work (A. Kärkönen and S.C. Fry, unpublished) identified a product derived non-

enzymically from aged DKG which acted to inhibit peroxidase activity (84). The unknown 

DKG-degradation product was separated by HPLC and detected by UV absorbance at 250 

nm. The peroxidase inhibitory activity of this compound was determined by a peroxidase 

activity assay, using horseradish peroxidase type II and a substrate of either o-dianisidine or 

ABTS, 2,2’azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) with H2O2. (A. Kärkönen and 

S.C. Fry, unpublished). It was found that the HPLC fraction containing the majority of the 

250 nm-absorbing unknown compound showed the highest inhibitory effect on peroxidase. 

This was measured by the extent to which a time lag was induced before the oxidation of the 

peroxidase substrates, upon treatment of the peroxidase assay solution with the fractions 

from the HPLC column (A Kärkönen and S.C Fry, unpublished).  

This work aimed to further purify and characterise this unknown ascorbate degradation 

product which acted to inhibit peroxidase activity. 

 

3.2.2 Purification of peroxidase inhibitor using HPLC 

Samples of DKG were prepared from a solution of commercial DHA treated with NaOH. 

The preparations of DKG, in sodium acetate buffer, pH ~4, were aged on ice for up to 24 

hours. Samples of these DKG preparations were separated by HPLC, and the products 

detected by UV absorbance at 250 nm and 210 nm. DKG itself is known to show absorbance 

at 210 nm, with no absorbance shown at higher wavelengths (254). 

The peroxidase inhibitor (known as PxI) showed a peak of absorbance at 11 minutes at 250 

nm, eluting slightly behind the peak of DKG at 210 nm (Figure 24). 
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The eluted fractions containing PxI (10.5 minutes to 12 minutes) were collected and pooled. 

This pooled sample was re-run on the HPLC column to check for the presence of PxI (Figure 

25 A). A peak of PxI was present, as seen by the absorbance at 250 nm. The preparation also 

contained some DKG, as seen by the absorbance at 210 nm. The peak labelled ‘blank’ was 

an artefact from the column, as this peak was present even when a sample containing only 

H2O was run on the column 

 

Figure 24: HPLC profile of DKG aged for 24 hours on ice. A solution of DKG (50 mM, prepared from 
commercial DHA treated with NaOH) was aged on ice for 24 hours. A small sample (25 µl) was injected 
onto a Rezex HPLC column and eluted in 47 mM H2SO4. The separated compounds were detected by UV 
absorbance at 250 nm and 210 nm. The peaks of DKG and the peroxidase inhibitor (PxI) are labelled. 



72 
 

  

 

As the products were eluted in 47 mM H2SO4, they required neutralisation before further 

characterisation. The sample was neutralised with Ba(OH)2. After the re-running of the 

neutralised sample on HPLC, the peak of the peroxidase inhibitor had diminished (Figure 25 

B). This suggests that the neutralisation step has caused the degradation of the peroxidase 

inhibitor compound. The absorbance at 210 nm shows that DKG has also diminished upon 

neutralisation. 

The PxI preparation was eluted from the HPLC column in 0.1% TFA instead of H2SO4 

(Figure 26 A) to avoid the neutralisation step. TFA has the advantage that it is volatile, and 

so samples in TFA can be analysed by MS or NMR without the prior need to neutralise 

them.  

Preparations of DKG aged on ice were eluted from an HPLC column in 0.1% TFA (Figure 

26A) and the profile looked equivalent to that obtained when the compounds were eluted in 

H2SO4 (Figure 24), with DKG eluting before PxI. Fractions were collected between 9 

Figure 25: HPLC profile of pooled and neutralised fractions containing PxI. Fractions collected from HPLC 
column containing PxI were pooled and a small sample (25 µl) was re-run on HPLC (A). The products were 
detected by absorbance at 250 nm and 210 nm. As the sample was in 47 mM H2SO4 it required neutralisation 
before further characterisation. This was achieved by the addition of BaCO3. A small sample (25 µl, equivalent 
to the sample in A) of the neutralised PxI preparation was re-run on HPLC (B), and the products detected by 

absorbance at 250 nm and 210 nm. 
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minutes and 12.5 minutes and small samples of each were re-injected onto the column 

(Figure 26 C); and the area of the PxI peak in each fraction was calculated (Figure 26 B). 

The fractions containing the greatest amount of PxI were fractions between 10.5 and 11.25 

minutes. These fractions were pooled for further analysis.  

The recovery of PxI was approximately 25%, as calculated from the total PxI area in the 

original profile (Figure 26 A) and the total peak area in the re-run fractions (Figure 26 B). It 

is presumed that this loss of PxI was due to degradation of the compound. 

Figure 26: PxI eluted from HPLC column in TFA.  Samples of DKG aged on ice for 24 hours were eluted from a 
Rezex HPLC column in 0.1% TFA. The products were detected by UV absorbance at 250 nm and 210 nm (A). 
Fractions were collected from the column between 9 and 12.5 minutes, every 15 seconds. Small samples (25 µl) 
from each fraction were re-run on HPLC and the area of the PxI peak in each fraction, as measured by UV 
absorbance at 250 nm, was recorded (B). Representative profiles of re-run fractions (10.5-10.75 minutes and 11-
11.25 minutes), as measured by UV absorbance at 250 nm are shown (C). 
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3.2.3 The characterisation of the peroxidase inhibitor using HVPE was 

inconclusive 

Fractions containing PxI eluted from the HPLC column in 0.1% TFA were pooled and dried 

under vacuum. Small samples of this pooled PxI preparation were run on HVPE in pH 2.0 

and pH 6.5 (Figure 27) and stained in silver nitrate.  

The preparations of PxI contained DKG, which was expected as DKG elutes from the 

column very close to PxI. The solution also contained a compound that co-migrates with 

compound C (discussed in section 3.1). Compound C is known to form from DKG in 

aqueous conditions (1), so had possibly accumulated after being eluted from the column. 

 

 

Figure 27: Analysis of peroxidase inhibitor by HVPE. PxI was prepared from ageing a solution of DKG, 
running on an HPLC column and collecting the fractions. Fractions eluted from an HPLC column containing 
PxI (eluted in 0.1% TFA) were pooled and dried. Small samples (20 µl) of this preparation were run by 

HVPE at pH 2.0 (A) and pH 6.5 (B). The papers were stained in silver nitrate. 
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Interestingly there were unknown compounds present after HVPE at pH 2.0 (Figure 27 A) 

and pH 6.5 (Figure 27 B). A compound (mOG of 0.22) migrating very close to DKG (mOG of 

0.18) at pH 2.0 was observed, as well as a compound with mOG of 0.80 at pH 6.5. These 

compounds could potentially be PxI. Compound C was also present in the PxI sample, with 

mOG of 0.55 at pH 2.0 and 1.06 at pH 6.5. 

 

3.2.4 The peroxidase inhibitor is not compound C or E 

 

The peroxidase inhibitor is a degradation product of DKG, and known degradation products 

of DKG include the previously unidentified compounds C and E (1,72) (discussed further in 

section 3.1). It was suggested that the identity of the peroxidase inhibitor could be compound 

C. Compound C was favoured over compound E as the potential identity of PxI because the 

compound was eluted in acid and acidic conditions are known to favour the formation of 

lactones (e.g. compound C), rather than delactonisation (e.g. compound E). 

 HVPE analysis of the PxI preparation showed a compound assumed to be compound C 

based on its mobility (mOG) in pH 6.5 and pH 2.0 (Figure 27). However, this compound could 

be contaminating, rather than the active compound.  

In order to eliminate compound C from the possible identity of PxI, a sample containing 

compounds C and E (eluted from paper after preparative HVPE) was injected onto an HPLC 

column and eluted in TFA. A sample of PxI was run immediately after these samples so the 

profiles could be compared. Both compounds C and E showed greater absorbance at 210 nm 

(Figure 28 D); however, PxI showed greater absorbance at 250 nm (Figure 28 A). This 

suggests that the identity of PxI is not compound C or compound E. The major peaks of C 

and E also eluted earlier than the peak of PxI (Figure 28), further confirming that PxI is not 

compound C or E. 
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Figure 28: PxI is not compound C or compound E. A sample of PxI, purified by HPLC 
eluted in 0.1% TFA, was re-run by HPLC. The products were detected by UV absorbance 
at 250 nm (A), and 210 nm (B). A sample containing compounds C and E (prepared by 
alkali treatment of DHA and subsequent elution from preparative HVPE) was also injected 
onto the HPLC column and eluted in 0.1% TFA. The compounds were detected by 
absorbance at 250 nm (C) and 210 nm (D). The position of PxI is marked with a green 
dotted line and the positions of compounds C and E are marked with blue and orange 
lines respectively. 
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3.2.5 Analysis of purified peroxidase inhibitor by NMR 

To obtain enough material for MS or NMR analysis, repeated samples of aged DKG were 

injected onto the column and the relevant fractions collected and pooled.  The concentration 

of original DKG was increased from 50 mM to 200 mM to scale up the production of PxI 

(Figure 29). 

 

Fractions containing PxI were collected from an HPLC Rezex column (Figure 29 A and B). 

These fractions were then pooled (Figure 29 C) and dried (Figure 29 D). The peak of PxI 

was still present after drying and re-dissolving in D2O (Figure 29 D), in preparation for 

NMR analysis. After drying (Figure 29 D) the sample of PxI was redissolved in a smaller 

volume of D2O and so is more concentrated than the pooled samples (Figure 29 C). UV 

absorbance at 210 nm could not be analysed, as TFA shows strong absorbance at 210 nm. 

This means that any DKG, or other compound absorbing at 210 nm, such as compound C, 

Figure 29: Purification of PxI from 200 mM DKG for NMR. DKG (200 mM) was aged on ice for 4 hours 
before being injected onto an HPLC Rezex column in 25 µl aliquots. The products were eluted in 0.1% TFA 
and were detected by UV absorbance at 250 nm (A). Fractions (15 seconds each) were collected between 9 
and 12.5 minutes elution time (B). The fractions indicated in B, showing the PxI peak area, were pooled and a 
small aliquot was re-run on HPLC (C). The remainder of the pooled sample was dried under vacuum and re-
dissolved in a small volume of D2O. An aliquot was re-run by HPLC (D). 
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cannot be detected, so it is not known whether the sample contains other compounds. It is 

very likely that DKG was also present in the sample, as the peak of DKG overlaps with that 

of PxI. This potentially means that the sample also contains other DKG derivatives, such as 

C and E-related compounds (discussed in section 3.1), which would further complicate 

attempts to identify PxI. 

A small peak at 15 minutes (Figure 29 C and D) can be seen in the pooled and dried samples 

of PxI. This compound arises spontaneously in preparations of PxI and can be seen in Figure 

26 C and Figure 28 A also. All the fractions collected from the column throughout the 20 

minute retention time and immediately re-run also contained this peak at 15 minutes. 

This preparation of PxI was analysed by 
1
H NMR, however the resulting spectrum (Figure 

30 A) contained numerous peaks. An expansion of the carbohydrate region (Figure 30 B) 

also contained too many peaks to decipher.  

Figure 30: 1H NMR analysis of PxI. A sample of PxI (originating from aged 200 mM DKG) that has 
been eluted from an HPLC Rezex column and dried, before being redissolved in D2O was analysed by 
1H NMR spectroscopy. The whole spectrum is shown in (A) and the expansion of the carbohydrate 

region is shown in (B). 
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Unfortunately it seems to be the case that PxI is an unstable compound and breaks down to 

produce numerous compounds spontaneously. This means that it was not possible to identify 

the compound responsible for the inhibition of peroxidase, as first described by A. Kärkönen 

and S.C Fry.  
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3.3 The in-vitro reaction of DHA and DKG with reactive oxygen species 

3.3.1 Introduction to the reaction of DHA and DKG with reactive oxygen species 

One of the major roles of ascorbate within the plant is as an antioxidant (74). Ascorbate acts 

to quench harmful reactive oxygen species that may otherwise damage cell membranes or 

DNA. Although it is well documented that ascorbate and DHA can reduce the level of 

reactive oxygen species (50), the fate of DHA itself after these reactions is not well known. 

These experiments aim to identify the products arising from DHA and DKG during the 

reaction of these compounds with various reactive oxygen species. 

3.3.2 The in-vitro reaction of DHA with different reactive oxygen species 

Commercial DHA (stored at 3 M in DMF) was diluted to 50 mM final concentration in 

sodium acetate buffer (pH 4.8). Equimolar ROS were added to this solution, and samples 

were run by HVPE at pH 6.5 and pH 2.0. The products formed were detected by staining in 

silver nitrate. 

3.3.2.i. DHA + hydrogen peroxide 

Hydrogen peroxide is a by-product of many metabolic processes within the cell (255). It is 

the most long-lived ROS and in fact other ROS breakdown to form H2O2. 

DHA (50 mM) was incubated with 50 mM H2O2 in pH 4.8 buffer for up to 30 minutes. At 

each time point catalase was added to the solution to stop the reaction. The samples were 

then run by HVPE at pH 6.5 and pH 2.0 before being stained in silver nitrate. 

The major product formed during the reaction of equimolar DHA and H2O2 was OxT (Figure 

31). HVPE at pH 2.0 allowed the minor products of cOxT and ThrO to be distinguished, as 

these compounds have the same mobility at pH 6.5, and the minor product formed from this 

reaction of DHA with H2O2 was identified as cOxT (Figure 31 B). However it is evident 

from the samples run by HVPE at pH 2.0 that some ThrO is also produced, as a compound 

moving slightly further than the neutral DHA is present (Figure 31 B). 

OxT and cOxT were formed within 5 minutes after the addition of H2O2, (Figure 31 A and 

B). After 15 minutes the starting material (DHA) had predominantly been broken down into 

OxT and cOxT, so that very little DHA remained in the sample (Figure 31 A). A spot 

remained in the neutral zone, close to the origin, in the electrophoretogram run at pH 2.0 

(Figure 31 B); however, as most of the DHA had gone by 15 minutes, this compound was 
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likely to be ThrO. ThrO has a relatively low mobility at pH 2.0, moving only slightly faster 

than neutral compounds. ThrO and cOxT had the same electrophoretic mobility at pH 6.5, 

and so the ThrO present in the samples run at pH 6.5 may have been masked by cOxT.  

These results agree with previous published data (2) that the oxidation of DHA is a branched 

pathway, with cOxT, OxT and ThrO (necessarily with OxA) being formed simultaneously. 

 

 

 

 

Figure 31: Reaction of DHA with H2O2:  DHA (50 mM) was incubated with H2O2 (50 mM) in 0.2 M sodium 
acetate buffer (pH 4.8) for up to 30 minutes, with samples (20 µl) taken at various time points and stopped with 
catalase (0.01% final concentration). The samples (10 µl) were loaded onto Whatman 3 MM paper and run by 
HVPE at pH 6.5 (A) or pH 2.0 (B). The papers were then stained in silver nitrate to detect the products. The 0 
time point represents DHA without the addition of H2O2. 
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3.3.2.ii. DHA + superoxide 

The superoxide radical (O2
•–

) was supplied as KO2. The reaction with DHA was achieved by 

incubating a 50 mM solution of DHA, buffered at pH 4.8, with 50 mM KO2. In solution KO2 

dissociates, producing O2
•–

. The superoxide reaction was stopped with superoxide dismutase 

(SOD) at each time point. 

As with the reaction of DHA with H2O2, the major product of the reaction of DHA with O2
•–

was OxT. HVPE at pH 2.0 allows the separation of different isomers of OxT, as seen by the 

presence of two distinct spots in the OxT region of the electrophoretogram run at pH 2.0 

(Figure 32 B). OxT is thought to be a mixture of three isomers (4-OxT, 3-OxT and 2-OxT) 

of which 4-OxT and 3-OxT are expected to be the more stable (72). 

ThrO and cOxT were also produced during the reaction with O2
•–

. The production of cOxT 

Figure 32: Reaction of DHA with superoxide radical: DHA (50 mM) was incubated with KO2 (50 mM) in 0.2 
M sodium acetate buffer (pH 4.8) for up to 30 minutes, with samples (20 µl) taken at various time points and 
the reaction stopped by the addition of 0.01% SOD. The samples (10 µl) were loaded onto Whatman 3 MM 
paper and run by HVPE at pH 6.5 (A) or pH 2.0 (B). The papers were then stained in silver nitrate to detect the 
products. The 0 time point represents DHA without the addition of KO2. 
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was much reduced compared to the reaction of DHA with H2O2, (as determined by HVPE at 

pH 2.0; Figure 31 B compared to Figure 32 B) whilst the production of ThrO was increased 

in the O2
•–

 reaction compared with H2O2. The production of ThrO from DHA requires the 

carbon backbone of DHA to be cleaved between carbons 2 and 3, with carbons 3-6 forming 

ThrO and carbons 1-2 forming OxA. Therefore the presence of ThrO suggests that OxA is 

also present, but OxA is not able to be stained with silver nitrate so does not appear on these 

electrophoretograms. 

The reaction of O2
•–

 with DHA was not as complete as the reaction of H2O2, as there is still 

most of the neutral DHA remaining after 30 minutes (Figure 32). The remaining DHA has 

the opportunity to hydrolyse to DKG during the 30 minute incubation time, resulting in the 

increasing spot of DKG especially apparent on the electrophoretogram run at pH 2.0 (Figure 

32 B). The reaction with O2
•–

 must be very rapid as the half-life of this ROS is very short 

(microseconds (110)) and the reaction can only continue as long as any O2
•–

 remains. The 

reaction occurred instantly (by 0.1 minute) and then did not continue, suggesting all the O2
•–

 

was used up almost instantaneously. 

 

3.3.2.iii. DHA + hydroxyl radical 

The hydroxyl radical (
•
OH) was produced by incubating FeSO4, EDTA and H2O2 in 

equimolar quantities. The reaction of DHA (50 mM) with various concentrations of this 

mixture was investigated. These increasing concentrations of FeSO4, EDTA and H2O2 

indicate increasing amounts of 
•
OH, but the exact concentrations of the short-lived 

•
OH 

within the solutions was not known. 

Analysis of the products formed from the reaction with 
•
OH by HVPE at pH 6.5 (Figure 33) 

showed that OxT was the dominant product, similar to the reaction with H2O2. Unexpectedly 

there does not appear to be a marked difference in the products formed with 50 mM, 12.5 

mM and 1 mM of the 
•
OH-producing mixture. 

As well as OxT, a compound, or compounds, co-migrating with cOxT and/or ThrO was also 

produced. HVPE at pH 6.5 with 50 mM of the 
•
OH-producing solution potentially contains 

two spots in the cOxT/ThrO region, as the spot corresponding to cOxT/ ThrO seems 

distorted, as if it may be two separate compounds which overlap. This could indicate that 

both these compounds were present. This is not the case with the 1 mM 
•
OH-producing 

solution, in which it seems that only one compound was present. HVPE at pH 2.0 resolved 
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these compounds (Figure 34), and the use of [
14

C]DHA as a substrate (discussed in section 

3.3.5) will indicate whether [
14

C]cOxT has been formed. Any ThrO formed during this 

reaction will not be visible as ThrO does not contain the radiolabelled C-1 of [
14

C]AA. 

HVPE at pH 2.0 of the reactions containing 50 mM and 25 mM of the 
•
OH-producing 

solutions (Figure 34 A) shows a suspicious lack of products formed, apart from a potential 

spot of ThrO overlapping with the neutral DHA. However analysis of the same samples by 

HVPE at pH 6.5 (Figure 33) shows a relatively heavily-stained spot of OxT. It is possible 

that the fairly high concentrations of FeSO4 and EDTA present in these samples could be 

interfering during the 

Figure 33: Reaction of DHA with the hydroxyl radical analysed by HVPE at pH 6.5. DHA (50 mM) was 
incubated with EDTA, FeSO4 and H2O2 (50, 12.5 or 1 mM each) in 0.2 M sodium acetate buffer (pH 4.8) to 
produce •OH radical. The reaction mixtures were incubated for up to 30 minutes, with samples taken at 
various time points and the reaction stopped by the addition of EtOH (50% final concentration). The samples 
(10 µl) were loaded onto paper and run by HVPE at pH 6.5. The papers were then stained in silver nitrate to 

detect the products. 
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Figure 34: Reaction of DHA with the hydroxyl radical analysed by HVPE at pH 2.0. 
DHA (50 mM) was incubated with EDTA, FeSO4 and H2O2, 50, 25 or 12.5 mM (A) and 6.25 
or 1 mM (B) each in 0.2 M sodium acetate buffer (pH 4.8) to produce •OH. The reaction 
mixtures were incubated for up to 30 minutes, with samples taken at various time points. 
The reactions were stopped by the addition of EtOH (50% final concentration). The samples 
labelled ‘No •OH’ samples represent DHA incubated in buffer without FeSO4, H2O2 and 
EDTA for 30 minutes. The samples were loaded onto paper and run by HVPE at pH 2.0. 
The papers were then stained in silver nitrate. 
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running of the compounds at pH 2.0, especially as EDTA does not function as a chelating 

agent at such a low pH. A yellow spot (Figure 34 A) can be seen just below the position of 

OxT, which is assumed to be due to a complex of FeSO4 and EDTA.  

The samples containing 12.5 mM of 
•
OH-producing mixture show clear spots of cOxT, OxT 

and ThrO, as well as some neutral compounds, presumably unreacted DHA (Figure 34 A). 

The intensity of the cOxT spot is comparable to that formed with H2O2 (Figure 31 B), and 

more intense than that formed with O2
•-
 (Figure 32 B).  

In the samples containing lower amounts of 
•
OH, 6.25 mM and 1 mM of the 

•
OH-producing 

mixtures (Figure 34 B), cOxT was formed immediately, but then diminished over time. The 

isomer of OxT (discussed more in section 3.3.5) formed initially also seems to change to a 

different, potentially more stable, OxT-isomer over time. 

A further compound, labelled H (Figure 34 B), was also formed with 1 mM 
•
OH. Compound 

H is thought to be an intermediate compound in the oxidation of DKG to ThrO (2). It is 

possible that the low amount of 
•
OH allowed some hydrolysis of DHA, producing DKG, to 

occur, as seen in the 15 and 30 minute samples with 1 mM of the 
•
OH-producing mixture 

(Figure 34 B). This DKG could then have been oxidised, forming compound H, as well as 

ThrO. 

DHA incubated in buffer without 
•
OH (‘No 

•
OH’ samples in Figure 34) for 30 minutes 

showed more DKG than those samples containing FeSO4, H2O2 and EDTA. This suggests 

that the presence of these compounds prevented the hydrolysis of DHA to DKG. 
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3.3.2.iv. DHA + singlet oxygen 

Singlet oxygen (
1
O2) is the excited state of molecular oxygen (triplet oxygen, O2

2•
). Singlet 

oxygen is more oxidising than triplet oxygen because it has two unpaired electrons in the 

outer orbital, thus making it more reactive. Within the plant, singlet oxygen has been 

reported to be the major ROS responsible for damage within leaves (125). Singlet oxygen 

can be produced from photosensitiser dyes, including riboflavin and rose Bengal, in the 

presence of light (256). 

For the experiments discussed here riboflavin was used to produce singlet oxygen. The 

mechanism of producing this ROS required that the timescale of these experiments was 

longer, 24 hours compared to 30 minutes in previously discussed experiments, to allow the 

formation of singlet oxygen to occur. Singlet oxygen is only produced in the presence of 

light, so the samples incubated with riboflavin in the dark serve as a control in which no 

ROS is generated. This longer incubation time allowed DHA to hydrolyse to DKG during 

the experiment, (Figure 35). This leads to the possibility that the compounds produced from 

singlet oxygen could be derived from either DHA or DKG. 

As with H2O2, 
•
OH and O2

•–
, OxT was the predominant oxidation product, (Figure 35). 

However there was no evidence for the production of cOxT. Instead a slower-moving 

compound (labelled ?) was produced (Figure 35 A). This compound has a similar mOG to 

compound C at pH 6.5, but HVPE at pH 2.0 suggested that this compound was not 

compound C, as there was no spot visible in the appropriate region on the 

electrophoretogram (Figure 35 B). However there was a spot of similar intensity as the spot 

labelled ‘?’ (Figure 35 A) running slower than DKG at pH 2.0 (Figure 35 B). The mobility of 

this compound corresponds to a hypothesised 5-carbon intermediate of DKG oxidation to 

ThrO, named compound H (1). Interestingly there is no evidence of the formation of ThrO 

from this reaction. 
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Figure 35: Reaction of DHA with singlet oxygen. DHA (50 mM) in 0.1 M acetate buffer (pH 
4.5) was incubated with riboflavin (1 mM) in either light or dark conditions for up to 24 hours. 
Samples were taken at time points and stored at -80°C. Aliquots of each sample (20 µl) were 
loaded onto two separate Whatman 3 MM papers, along with the internal marker orange G 
(marked with pencil circles) and various markers. One paper (A) was run by HVPE at pH 6.5 and 
the other paper (B) was run by HVPE at pH 2.0. Both papers were stained in silver nitrate after 
drying. 
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It is possible that the compound marked with a ‘?’ could have originated from riboflavin 

itself rather than from DHA or DKG. To test this, control samples containing only riboflavin 

were incubated in the light, to allow the formation of singlet oxygen, for up to 24 hours. The 

samples were then analysed by HVPE followed by silver nitrate staining (Figure 36).  

Riboflavin is a yellow compound and can be seen as a small streak just above the origin on 

electrophoretograms run at both pH 6.5 and pH 2.0 (Figure 36 A and B).  A silver nitrate 

stainable compound is visible in the neutral position in samples incubated for 24 hours, 

presumably a product generated through the oxidation of riboflavin itself. There are no 

compounds visible in the regions that would contain compound ‘?’ at both pH 6.5 and pH 

2.0. This suggests that the unknown compound (possibly compound H) does in fact originate 

from an ascorbate derivative, and not riboflavin. 

 

 

 

 Figure 36: Compounds formed during the degradation of riboflavin by singlet oxygen. Aliquots 
of riboflavin (1 mM in 0.1 M pH 4.5 acetate buffer) were incubated for up to 24 hours in continuous light. 
Samples were taken at time points and stored at -80ºC before loading 20 µl aliquots on paper and 
running by HVPE at pH 6.5 (A) or pH 2.0 (B). The papers were stained in silver nitrate, and the position 
of the internal marker orange G is marked with pencil circles. 
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3.3.3 The in-vitro reaction of DKG with different reactive oxygen species 

DHA is fairly unstable in aqueous solutions and readily hydrolyses to DKG (82). DKG is 

present in the apoplast (72) and so has the potential to participate in reactions with apoplastic 

ROS. 

3.3.3.i. The reaction of DKG with H2O2 

DKG was prepared from the reaction of ascorbate with potassium iodate (82) (section 

2.11.3). The resulting DKG was precipitated in EtOH and dried under vacuum. A sample of 

this purified DKG (60 mM) was incubated with 60 mM H2O2 in pH 4.8 buffer for up to 8 

hours (Figure 37) and the products were run by HVPE at pH 6.5 and pH 2.0.  

As previously reported (1) the major product formed was ThrO, via an unknown 

intermediate, labelled as H. This intermediate is clearly seen on the electrophoretogram run 

at pH 2.0 (Figure 37 B). Compound H co-migrates with ThrO at pH 6.5 (2) (Figure 37 A). 

Compound H has previously been suggested to be a C-5 compound, speculatively a form of 

2-ketoxylonate (2).  A small amount of OxT can also be seen after 60 minutes. 

The duration of the reaction, which was not complete until 120 minutes, was surprising, 

Figure 37: Reaction of DKG with H2O2. Purified DKG (60 mM in pH 4.8 sodium acetate buffer), prepared from 
ascorbate treated with KI, was incubated with H2O2 (60 mM) for up to 8 hours. Samples were taken at time-points 
and the reaction stopped with 0.1% catalase. The samples were then stored at -80°C. Aliquots (20 µl) were 
loaded onto two separate Whatman 3 mm papers and one paper was run by HVPE at pH 6.5 (A) and the other by 
HVPE at pH 2.0 (B). The papers were stained in silver nitrate. The position of the internal marker orange G is 

marked with pencil circles. 
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especially considering the reaction of DHA with H2O2 occurred almost immediately. It is 

suggested that there was something present in the DKG preparation acting to stabilise, and so 

reduce the degradation of, the DKG. There is a white spot on the electrophoretogram run at 

pH 6.5 close to the position of OxT present in all the samples containing DKG. This spot is 

likely to be an iodate ion, which was presumably precipitated along with DKG during its 

preparation. It could be that the presence of this compound is slowing down the breakdown 

of DKG. DKG has been reported to produce compounds C and E (discussed in chapter 3.1) 

in solution (1,72), so it is suspicious that they are not produced during the 8-hour incubation 

of this experiment, lending further support for the presence of a compound acting to stabilise 

DKG. 

This experiment was repeated with DKG produced from the alkali treatment of DHA to 

avoid the potential interference of a stabilising iodate compound (section 3.3.3.iii). 

 

3.3.3.ii. The reaction of DKG with superoxide 

The products of the reaction of potassium iodate-generated DKG with superoxide were very 

similar to those produced with H2O2. However, the pattern of the formation with O2
•–

 was 

different. The initial reaction seems to have occurred more quickly with O2
•–

 than with H2O2, 

as an intense spot of compound H formed almost immediately with O2
•– 

(Figure 38 B), 

whereas an equivalently intense spot of compound H was only formed after 15 minutes with 

H2O2.  

The pH 6.5 run shows some DKG remaining up to 60 minutes (Figure 38 A), but the pH 2.0 

run does not (Figure 38 B). This was unexpected as the samples were identical. It could be 

possible that the samples loaded onto paper for HVPE at pH 2.0 were incubated on the paper 

before running for longer than the samples loaded for HVPE at pH 6.5. This may have 

allowed the degradation of DKG to continue for longer whilst the samples were on the paper. 

The control DKG samples run at pH 2.0 also show small amount of compound H, whereas 

no degradation products of the control samples were visible after HVPE at pH 6.5.  

Other than compound H, the most predominant product formed was ThrO, with a small 

amount of OxT also being produced (Figure 38). The white spot present on the 

electrophoretogram run at pH 6.5 (Figure 38 A) is thought to be an iodate compound present 

in the preparation of DKG. 
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Figure 38: Reaction of DKG with superoxide. Purified DKG (50 mM in 0.1 M, pH 4.8 sodium acetate 
buffer), prepared from potassium iodate treated ascorbate, was incubated with KO2 (50 mM) for up to 60 
minutes. Samples were taken at time-points and the reaction stopped with 0.1% superoxide dismutase. The 
samples were then stored at -80°C. Aliquots (20 µl) were loaded onto two separate Whatman 3 MM papers 
and one paper was run by HVPE at pH 6.5 (A) and the other by HVPE at pH 2.0 (B). The papers were 
stained in silver nitrate. The position of the internal marker orange G is marked with pencil circles. 
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3.3.3.iii.  The reaction of DKG with H2O2 and 
•
O2

•–
 free from iodate 

As this iodate compound was believed to be stabilising DKG, the reactions of DKG with 

H2O2 and O2
•–

 were repeated with DKG produced from alkali treatment of DHA, which will 

result in a preparation of DKG free from any contaminating iodate compounds. 

This preparation of DKG contained contaminating compounds C and E (which are discussed 

further in section 3.1; Figure 39). These compounds were present in the control mixture 

containing no ROS, and remained stable in the presence of both H2O2 and O2
•–

. This suggests 

that these compounds (C and E) are not formed by an oxidation reaction, and are not 

oxidised themselves. 

Differences are apparent in the products formed by the reaction of H2O2 and O2
•–

 (Figure 39). 

Compound H was formed with O2
•–

 but not with H2O2. However, the amount of compound H 

formed in this reaction was much less than in the previous experiment (Figure 38). The 

appearance of compound H with H2O2 in the previous experiment (Figure 37) could be 

Figure 39: Reaction of DKG with H2O2 and O2•–. DKG (50 mM in 0.1 M acetate buffer) produced via alkali 
treatment of DHA, was incubated with H2O2 or KO2 (both 50 mM) for up to 30 minutes. The reaction was stopped 
with either catalase (for H2O2) or superoxide dismutase (for KO2), both at 0.01% final concentration. Aliquots of 
each of the samples were run by HVPE at pH 6.5 (A) or pH 2.0 (B), and the papers were stained in silver nitrate. 
The position of the internal marker orange G was marked with pencil circles. 
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explained by the presence of the stabilising contaminant. This compound could have 

protected DKG from H2O2, causing the oxidation to ThrO to progress more slowly, so the 

formation of the intermediate compound H was visible. Without the stabilising presence of 

the iodate compound the oxidation of DKG to ThrO was able to occur much more quickly, 

so the formation of compound H was not seen, as it was immediately degraded to ThrO. 

Equally, the iodate compound could have acted to stabilise compound H, preventing the 

further degradation of compound H to ThrO, resulting in the greater quantities of compound 

H that were observed in the presence of the iodate compound.  

The reaction of DKG with O2
•–

 appears to progress more slowly, or less completely, than 

with H2O2, as seen by the presence of compound H (Figure 39 B). Compound H was thought 

to be a transient intermediate product (1), rather than an end product, so this suggests the 

reaction has not gone to completion. The reaction with O2
•–

 has correspondingly produced 

less ThrO than with H2O2. The level of OxT appears consistent between the two ROS. More 

OxT seemed to be produced without the iodate compound (Figure 39 compared to Figure 37 

and Figure 38) further supporting the stabilising action of a contaminating iodate compound. 

 

3.3.3.iv. The reaction of DKG with the hydroxyl radical 

The reaction of the hydroxyl radical with DKG was studied using 1 mM and 50 mM FeSO4, 

EDTA and H2O2 (
•
OH-producing mixture). HVPE at pH 2.0 revealed that ThrO and OxT 

were produced with the 1 mM 
•
OH-producing mixture (Figure 40). Compounds C and E 

(degradation products of DKG; discussed further in section 3.2) were also produced during 

the reaction.  

The reaction of DKG with the 50 mM 
•
OH-producing mixture yielded ThrO as the major 

product. There was less OxT produced with the 50 mM 
•
OH-producing mixture compared to 

the 1 mM 
•
OH-producing mixture. There was also a decrease in the amount of compound H 

formed with the 50 mM 
•
OH-producing mixture. This suggests that the reaction with the 50 

mM 
•
OH-producing mixture was more complete than with 1 mM 

•
OH-producing mixture, as 

compound H is assumed to be an intermediate compound between DKG and ThrO. The yield 

of ThrO appears much lower than the starting material of DKG, this may be due to the 

presence of EDTA and SO4
2-

 which may have interfered with the detection of compounds by 

silver nitrate. OxT can be hydrolysed to form OxA and ThrO, which could explain the 

increased amount of ThrO as well as the decreased amount of OxT in the samples containing 

50 mM 
•
OH-producing mixture. 
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3.3.3.v. The reaction of DKG with singlet oxygen 

Riboflavin (vitamin B2) was used to produce singlet oxygen in the presence of light in the 

experiments discussed here. The DKG used in these experiments was prepared by the alkali 

treatment of DHA, for the reasons discussed previously. 

DKG was incubated with riboflavin for up to 24 hours in the presence of light to produce 

singlet oxygen. Controls of DKG with riboflavin in the dark, and DKG incubated without 

riboflavin in the presence of light were also analysed (Figure 41).  

Figure 40: Reaction of DKG with hydroxyl radical. Purified DKG (50 mM in pH 4.8 sodium acetate buffer), 
prepared from potassium iodate treatment of ascorbate, was incubated with EDTA, FeSO4 and H2O2 in 
equimolar concentrations (•OH mixture, 0 mM, 1 mM or 50 mM) for up to 30 minutes. Samples were taken at 
time-points and the reaction stopped with EtOH (50% final concentration). The time 0 sample represents 
DKG with FeSO4, EDTA and H2O2 and the immediate addition of EtOH. The samples were then stored at -
80°C. Aliquots (20 µl) were loaded onto paper and run by HVPE at pH 2.0. The paper was stained in silver 
nitrate. The position of the internal marker orange G is marked with pencil circles. 
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ThrO was the major product of the reaction of DKG with 
1
O2, with OxT being produced in 

smaller quantities. There was a contaminating neutral spot in all the samples, but this spot 

seemed to be more intense in the 24 hours sample with 
1
O2, this is likely to be attributable to 

oxidation of riboflavin itself as seen in Figure 36. This preparation of DKG contained 

contaminating compounds including compounds C and E (discussed further in chapter 3.1). 

The majority of the DKG had gone after 24 hours incubation in the presence of 
1
O2 (Figure 

41). This is surprising, as the concentration of riboflavin used was much lower than the 

concentration of DKG, however the production of 
1
O2 from riboflavin may be more 

dependent on the O2 present in the solution, rather than the concentration of riboflavin itself 

(257).  

Figure 41: Reaction of DKG with singlet oxygen. DKG (50 mM in 0.1 M pH 4.8 sodium acetate buffer), prepared 
by alkali treatment of DHA, was incubated with riboflavin (1 mM) in the presence or absence of light for up to 24 
hours. A control of DKG incubated in the light without riboflavin was also included. The samples incubated with 
riboflavin in the light represent the samples exposed to singlet oxygen (1O2). Samples were taken at time points 
and stored at -80°C. Aliquots (20 µl) were loaded onto Whatman 3 MM paper, along with a series of markers and 
an internal marker of orange G (marked on the paper in pencil circles). The samples were run by HVPE at pH 6.5, 
then stained in silver nitrate. 
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3.3.4 Purification of [
14

C]DHA 

In order to further study the reactions of ROS with DHA, radiolabelled DHA was used. The 

use of [
14

C]DHA allows the formation of OxA to be observed, compared to silver nitrate 

staining which does not stain OxA. Autoradiography is also much more sensitive than silver 

nitrate staining, allowing the reactions to be observed at lower concentrations, which are 

more biologically realistic. The use of [
14

C]DHA allows the quantification of the reaction 

products, by the use of scintillation counting. 

[
14

C]DHA was purified from commercial [
14

C]AA. The [
14

C]AA was treated with ascorbate 

oxidase (AO), which catalyses the oxidation of AA to DHA (154). The sample of enzyme-

treated AA was then loaded onto an anion-exchange chromatography column. The 

radiolabelled products in the sample were separated on the basis of charge, with the neutral 

DHA being eluted first (Figure 42), followed by the more negatively charged compounds in 

subsequent eluents. 

The peak present in the formate buffer fractions (Figure 42 A) represents DHA, as seen on 

the autoradiogram (Figure 42 B) and accounts for the majority of the radioactivity. This 

demonstrates a successful method for the production and purification of [
14

C]DHA for use in 

further ROS experiments. 

Further compounds were also eluted from the chromatography column, including what 

presumably is DKG (Figure 42 B, 0.25 M formic acid fraction) and OxT and OxA (Figure 

42 B, 4 M TFA fraction).  
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Figure 42: Purification of [14C]DHA by anion-exchange column chromatography. Commercial [14C]AA 
(50 µl, ~1 mM) was treated with AO (10 µl, 1 U µl-1), then loaded onto an anion-exchange chromatography 
column (Dowex 1, 200 µl bed volume). The radiolabelled compounds were eluted in successive applications 
of sodium formate buffer (10 mM, pH 5), 0.1 to 0.3 M formic acid in 0.05 M increments, 4 M formic acid and 4 
M TFA. Fractions (50 µl) of each eluate were collected, and aliquots (10 µl) from the fractions were dried onto 
squares of Whatman 3 MM paper and assayed for radioactivity by scintillation counting (A). Further aliquots 
(10 µl) of various fractions were loaded onto Whatman 3 MM paper and run by HVPE at pH 6.5. The paper 
was exposed to film for 1 week (B). The position of the internal marker orange G was marked with dotted 
circles. 
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3.3.5 The reaction of radiolabelled DHA with reactive oxygen species 

3.3.5.i. The reaction of [14C]DHA with H2O2 and O2•– 

[
14

C]DHA (approximately 0.3 mM) purified from anion-exchange column chromatography 

was treated with H2O2 or O2
•–

 for up to 30 minutes. The products of these reactions were 

analysed by HVPE at pH 6.5 (Figure 43 A) and pH 2.0 (Figure 43 B). The autoradiograms 

show differences between the products formed with the two ROS. As with non-radiolabelled 

DHA, a greater proportion of cOxT was formed with H2O2 than with O2
•–

. The use of 

radiolabelled DHA allows OxA to be visualised, whereas silver nitrate does not stain OxA. It 

can be seen that more OxA was formed with O2
•–

 compared to H2O2 (Figure 43 A). The OxA 

is not visible after HVPE at pH 2.0. This could be due to a lack of chelating agent, resulting 

in OxA forming a streak (as in the marker lane in Figure 42 B) because it had bound to 

impurities such as calcium in the paper. OxA would run just above orange G at pH 2.0, with 

Figure 43: Reaction of [14C]DHA with H2O2 and O2•–. [14C]DHA (approximately 0.3 mM), purified on an anion 
exchange chromatography column, was incubated with 2.5 mM H2O2 or KO2 for up to 30 minutes. The reactions 
were stopped with catalase or superoxide dismutase (0.01% final concentration) respectively. Samples of each 
reaction were run by HVPE at pH 6.5 (A) or pH 2.0 (B), and the papers were exposed to film for 1 week. The 
position of the internal marker orange G is marked with dotted pencil circles. 
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a mOG of 1.05. 

HVPE at pH 2.0 resolves the three isomers of OxT (2) (Figure 43 B). Interestingly the 

abundance of the individual isomers varied between O2
•–

 and H2O2. The reaction with H2O2 

produced more of the fastest-moving isomer whereas O2
•–

 produced more of the slowest-

moving isomer (Figure 43 B). It has been suggested that 3-OxT and 4-OxT would be more 

stable than 2-OxT (2), owing to the proximity of the two COOH groups in the 2-OxT isomer 

(Figure 44). It had been previously reported that H2O2 produced more 4-O-OxT than 3-O-

OxT (2) so the faster-moving spot could be assumed to be 4-O-OxT. The slower-moving 

compound, formed predominantly with O2
•–

, would then be assumed to be 3-O-OxT. 

 

 

A further advantage of using radiolabelled substrates is that it allowed the quantification of 

the initial substrate and products formed. The individual products from the samples of 

[
14

C]DHA treated with H2O2 and O2
•–

, run by HVPE at pH 6.5 (Figure 43 A) and at pH 2.0 

(Figure 43 B), were quantified by scintillation counting (Figure 45). This allows the relative 

proportions of products formed to be ascertained.  

After the reaction of [
14

C]DHA with H2O2 (Figure 45 A) the ratio of OxT : cOxT was 

approximately 6:1, with very little OxA formed, compared to a ratio of approximately 6:1:1 

(OxT : cOxT : OxA) as has been previously reported (2). The reaction of DHA with O2
•–

 

yielded OxT, cOxT and OxA in a ratio of approximately 6:1:1, which is more similar to the 

reported ratio, with equal amounts of cOxT and OxA (Figure 45 B). 

Figure 44: Structures of OxT isomers. The structures of the three isomers (2-O-OxT, 3-O-
OxT and 4-O-OxT) are shown, along with the chemical formula. C-1 of the original [14C]AA is 
indicated with a blue C. 
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HVPE at pH 2.0 allowed the separation of different isomers of OxT. The reaction of DHA 

with H2O2 produced more of OxT isomer b (the fastest migrating isomer; Figure 43 B) with 

the ratio of isomer b : isomer a being approximately 1.75:1 (Figure 45 C). Conversely, the 

reaction of [
14

C]DHA with O2
•–

 yielded more of OxT isomer a, with a ratio of isomer b : 

isomer a of approximately 1:2 (Figure 45 D). 

There was a difference between the apparent amount of [
14

C]DHA remaining  after the 

reaction with H2O2 when analysed by HVPE at either pH 6.5 or pH 2.0, with more remaining 

in the samples run at pH 2.0 (figures 43 and 45). The reason for this is unclear, but 

potentially the acidity of the pH 2.0 buffer promoted the formation of a neutral product 

which was then assumed to be DHA, but any other neutral product would not be 

distinguishable. Alternatively, the pH 6.5 buffer could have acted to promote the further 

degradation of DHA while the sample was wetted with buffer before the HVPE run, meaning 

no DHA remained at the origin. 

 

Figure 45: Quantification of products formed from the reaction of [14C]DHA with H2O2 and O2•–. 
[14C]DHA (approximately 0.3 mM) was treated with H2O2 (A and C) or KO2 (B and D) for up to 30 minutes, 
and the reaction mixture was then run by HVPE at pH 6.5 (Figure 43 A) or at pH 2.0. (Figure 43 B). After 
autoradiography the radiolabelled compounds were carefully cut out from the paper and assayed for 
radioactivity by scintillation counting. The radioactivity is reported as a percentage of the total radioactivity 
(the sum of all the radiolabelled compounds in each sample). 
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3.3.5.ii. The reaction of [14C]DHA with the hydroxyl radical 

[
14

C]DHA, approximately 0.3 mM, purified from anion-exchange column chromatography, 

was treated with various concentrations of an 
•
OH-producing solution and the products were 

analysed by autoradiography following HVPE at pH 6.5 (Figure 46). The predominant 

product with all the concentrations was OxA. This product would not have been visible in 

the experiments using non-radiolabelled DHA. However ThrO, which would be formed 

along with OxA, was visible with silver nitrate staining (Figure 33 and Figure 34). 

Figure 46: The reaction of [14C]DHA with various concentrations of hydroxyl 
radical. [14C]DHA, purified from anion exchange column chromatography, was incubated 
with increasing amounts of •OH (generated from equimolar FeSO4, EDTA and H2O2) for 5 
minutes. The reaction was stopped by the addition of EtOH (50% final concentration). 
Small samples of each reaction were loaded onto paper and run by HVPE at pH 6.5. The 
paper was exposed to film for 1 week. The position of the internal marker orange G is 
marked in dotted pencil circles. 
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 Interestingly a greater proportion of OxT was formed in the reactions containing lower 

amounts of 
•
OH. It is possible that the higher amounts of 

•
OH have led to the further 

degradation of OxT, forming the [
14

C]OxA seen in Figure 46, and non-radiolabelled ThrO 

(not visible in Figure 46). High pH values could result in the hydrolysis of OxT to OxA and 

ThrO; however, the pH of the 
•
OH-producing solution was checked and found to be in the 

range of pH 4-5, so the increase in [
14

C]OxA is not likely to be because of an increase in the 

pH of the solution. 

Low levels of an unidentified compound, migrating just below OxA (labelled with ‘?’, 

Figure 46), have also been formed. The fast migration of this compound suggests that it has a 

strong negative charge, along with a small mass. 

With increasing 
•
OH amounts more radioactivity becomes trapped at the origin (Figure 46). 

It is likely that this radioactivity has become a part of an insoluble compound, such as an 

oxalate salt, which could have occurred due to the high levels of OxA present in these 

samples. 

 

3.3.6 Summary of the oxidation of DHA and DKG by various ROS 

The overall oxidation pathway is shown in Figure 47. This pathway shows that cOxT 

originates from DHA and not DKG (Figure 47), whereas OxT was produced from both 

starting compounds. Equally, compound H was produced only from DKG and not from 

DHA. 

As well as differences between the products formed from DHA and DKG, there were also 

differences in the products formed by different ROS. For example, OxT was the major 

product formed from DHA with H2O2 and O2
•–

, whereas the major product formed from 
•
OH 

was ThrO, along with OxA (Figure 48). Although OxT was the major product of the reaction 

of DHA with both H2O2 and O2
•–

, the isomer of OxT differed with the two ROS, as 

demonstrated in Figure 43 B, with more of the 4-O-OxT isomer being produced with H2O2 

and the 3-O-OxT isomer being produced more with O2
•–

 (Figure 48). 

The formation pattern of the minor products also varied with ROS. The first (referring to the 

most abundant of the minor products, rather than to the sequence in which the products were 

formed) minor product of the reaction between DHA and H2O2 was cOxT, whereas the first 

minor product with O2
•–

 was ThrO, along with OxA (Figure 48). 
1
O2 was notable for being 
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the only ROS that did not produce any cOxT or ThrO from DHA. However, the reaction did 

produce an unknown compound in addition to OxT, cautiously identified as compound H. 

Compound H has previously been reported to be an intermediate product between DKG and 

ThrO. It is possible that in the case of 
1
O2 the unknown compound originated from DKG 

rather than directly from DHA, as the incubation time was 24 hours, and some of the starting 

DHA had been hydrolysed to DKG over the course of the experiment, thus it is possible that 

the unknown compound produced from the reaction with 
1
O2 was compound H. 

Figure 47: Oxidation pathways of ascorbate. The degradation of ascorbic acid is shown, including the hydrolysis 
step between DHA and DKG. The structures of products formed from both DHA and DKG by various ROS are shown. 

Oxidation steps are shown with 2[H]. The reactions involving compound H are unknown, so the arrow is unlabelled. 
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The products formed from DKG did not vary with different ROS. The only difference was 

that compound H was not observed in the reaction with 
1
O2, whereas it was with the other 

ROS tested (Figure 48). The major product of the reaction of DKG with each of the ROS 

was OxT, with ThrO and OxA being produced in smaller quantities. In the case of DKG the 

formation of OxA was assumed, as only ThrO was observed with silver nitrate stain. 

However the formation of ThrO necessitates that OxA is also formed, as it involves splitting 

the DKG molecule between carbons 2 and 3, with C1 and C2 forming OxA and C3-6 

forming ThrO. 

This work has produced more in-depth detail of the oxidation pathways of ascorbate. It has 

been demonstrated that different ROS produce different oxidation products during the 

reaction with DHA. Equally, DHA and DKG produce different oxidation products. 

Interestingly, the production of compounds C and E was not observed during these 

experiments, providing further evidence that these compounds are not oxidation products.   

Potentially, the different products formed in vivo from different ROS, or a lack of ROS (in 

the case of compound C and E formation), could act as signatures for the specific oxidative 

stress that a plant has been subjected to. 
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Figure 48: Summary of products formed from DKG and DHA by different ROS. The oxidation 
products from the reaction of DHA (A) or DKG (B) with ROS (H2O2, O2, OH and 1O2) are shown.  OxT is 
shown in the 4-O isomer, and cOxT is shown in the 3-4 isomer, as these are assumed to be most stable 
and so the most probable forms of the compounds. The predominant (major product), second most 
predominant (1st minor product) and the third most predominant (2nd minor product) products of each 
reaction are shown. The labels of first and second minor products merely reflect the abundance of the 
products, and provide no implications of the sequence of formation. ThrO and OxA are shown in the 

same box, as the formation of one requires that the other is also formed. 
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3.4 The fate of radiolabelled ascorbate degradation products in plant cell 

suspension cultures 

 

3.4.1 Introduction to ascorbate and plant cell suspension cultures 

 

The oxidation products OxT and cOxT, formed from the oxidation of DHA (discussed in 

section 3.3), contain ‘activated’ oxalyl groups, which could potentially form an oxalyl ester 

bond with components of the cell wall by transacylation. This could provide a novel 

mechanism for cell wall cross-linking via the formation of an oxalyl bridge (Figure 49). The 

presence of two oxalyl ester linkages in cOxT means that this compound is more likely to be 

the substrate to form the hypothetical cross-linking oxalyl bridge than OxT, containing only 

oxalyl ester linkage. 

This hypothesis was tested by investigating the fate of radiolabelled OxT in spinach, 

Arabidopsis and rose cells. The use of radiolabelled substrates fed to cell cultures allowed 

the monitoring of the fate of these compounds in vivo. Specifically, the incorporation of 

radioactivity into the cell wall was monitored, as this would provide evidence for the 

formation of oxalyl esters with cell wall components. 
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Figure 49: Schematic of potential oxalate cross-link formation in the cell wall. The hypothetical 
formation of oxalyl esters with an acceptor (in this case a glucose residue from a polysaccharide) from 
OxT (A) and cOxT (B) is shown. The activated oxalyl groups are shown in blue, with the 14C (from C-1 of 
the original [14C]AA used to purify these compounds) shown with a bold C. The OH group most readily 
available for ester formation on the glucose residue is also shown in bold. 
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3.4.2 Fate of [
14

C]DHA in spinach, rose and Arabidopsis cell cultures 

[
14

C]DHA was purified by anion-exchange column chromatography (as described in section 

3.3.4). Aliquots of this [
14

C]DHA were fed to cell suspension cultures of spinach, 

Arabidopsis and rose.  

The majority of the radiolabel had gone from the medium of rose and spinach cell cultures 

within 3 hours (Figure 50). This radioactivity was then mostly released when the cells were 

washed with EtOH, which causes the cell membranes to be disrupted, thus releasing 

intracellular EtOH-soluble, low-molecular weight compounds. The presence of a large 

proportion of the radioactivity in the EtOH wash suggests that the [
14

C]DHA, or a derivative 

of [
14

C]DHA, had entered the protoplasts. Further washes with acidified EtOH, aiming to 

thoroughly wash out all alcohol-soluble compounds, released only small additional amounts 

of radioactivity. There was very little radioactivity remaining in the alcohol-insoluble residue 

(AIR). This AIR represents high-molecular weight compounds, predominantly comprising 

cell wall components. Thus any radioactivity present in the AIR could indicate a 

Figure 50: [14C]DHA enters the cells of Arabidopsis, rose and spinach cell cultures. Mini-cultures of rose, 
spinach and Arabidopsis cells (250 mg cells in 500 µl medium, 1 week after subculturing) were inoculated with 
[14C]DHA (purified on an anion-exchange chromatography column; approximately 0.5 µM final concentration ). 
Samples of medium (50 µl) were taken at intervals up to 6 hours, and assayed for radioactivity by scintillation 
counting. The radioactivity remaining in the culture medium at each time point is plotted (A). After 6 hours the 
medium was removed from the cells and the cells were washed sequentially in H2O, EtOH and three times in 
acidified EtOH. The resulting material left after the washes (AIR) comprises predominantly cell wall material. The 
radioactivity present in each of the washes and in the AIR was assayed by scintillation counting (B). The bars 
labelled ‘H2O’ represent the radioactivity present in the medium and the first wash in H2O combined. Each point is an 
average of three replicate cultures ±SE. 
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radiolabelled compound that had formed a covalent bond with cell wall material.  

Conversely, approximately half of the radioactivity fed to Arabidopsis cells remained in the 

culture medium for the 6-hour incubation time (Figure 50 A). There was a very rapid 

immediate decrease in the radioactivity in the culture medium (Figure 50 A). It is not clear 

what causes this, as the loss is too fast, within two minutes of inoculation, to be attributable 

to active uptake by the cells.  

A small proportion of the radioactivity incubated with Arabidopsis cells remained insoluble 

throughout the washing process, resulting in radiolabelled AIR. This potentially represents 

radioactivity that has become bound to cell wall material via an ester bond. Alternatively, 

this insoluble radioactivity could be in the form of calcium oxalate (177) (CaOxA), which is 

insoluble in EtOH and H2O. 

The majority of [
14

C]DHA incubated in spinach and rose cell-suspension cultures entered the 

cells themselves, as demonstrated by the release of radioactivity after washing the cells in 

EtOH. However, more radioactivity remained in the culture medium of Arabidopsis cell 

culture. Some of this radioactivity incubated with Arabidopsis cells remained insoluble after 

multiple EtOH and acidified EtOH washes, suggesting that it may be covalently bound to 

cell wall material, potentially via an oxalyl ester bond. 

There are numerous possible fates of DHA within the plant cell, including conversion back 

to AA via the action of DHAR (67), which occurs rapidly after DHA has been transported 

into the cell (33). As well as this, DHA can be hydrolysed to DKG, which can be further 

degraded to C and E (discussed in section 3.1), or DHA can be oxidised to OxT, cOxT and 

OxA (2,72). To gain more precise information about the potential cross-linking of cell walls, 

a starting substrate of OxT was used instead of DHA. 

 

3.4.3 Fate of [
14

C]OxT in spinach and Arabidopsis cell cultures 

[
14

C]OxT was incubated in plant cell-suspension cultures to further study the potential oxalyl 

ester formation within the plant cell wall. 

[
14

C]OxT was prepared by preparative HVPE of [
14

C]AA treated with H2O2. The bands of 

[
14

C]cOxT, OxT and OxA, as well as DHA were cut out of the paper and the compounds 

eluted in H2O. The compounds were then dried and re-dissolved in H2O. 
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Radiolabelled OxT was used rather than cOxT because the original reaction of AA with 

H2O2 produced more OxT than cOxT (in a 6:1 ratio, OxT: cOxT, as previously reported (2)), 

so there was more OxT available. The OxT preparation was also more pure than the cOxT 

preparation. It proved very difficult to produce a pure sample of cOxT, as some straight-

chain OxT was always produced. It seems that cOxT was not stable during the elution or 

drying step of purification. 

It was not known whether spinach and Arabidopsis cell cultures contained an oxalyl esterase 

(72) in the apoplast (represented by the culture medium). This enzyme would potentially 

degrade [
14

C]OxT into [
14

C]OxA and non-radiolabelled ThrO. Samples of [
14

C]OxT-fed 

Figure 51: Fate of [14C]OxT in Arabidopsis and spinach cell culture. Samples of culture medium (50 µl) 
collected from spinach or Arabidopsis cell cultures (250 mg cells with 500 µl medium) or pH 4.5 buffer (cell free) 
incubated with [14C]OxT (approximately 5 µM) for up 6 hours were run by HVPE at pH 6.5. After drying, the areas 
of the papers known to contain OxT and OxA (as deduced by the position of the internal marker orange G) were 
cut into 2-cm strips, which were assayed for radioactivity by scintillation counting. The exact positions of OxT and 
OxA were determined by the use of these compounds as markers alongside the samples on the paper. 
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Arabidopsis cell culture, spinach cell culture and cell free buffer from various time-points 

were run analytically by HVPE at pH 6.5 to determine whether an oxalyl esterase was 

present in Arabidopsis or spinach culture medium. 

After 1 hour in Arabidopsis cell culture the [
14

C]OxT had begun to be hydrolysed to 

[
14

C]OxA (Figure 51), showing that Arabidopsis cell cultures contain an extra-cellular oxalyl 

esterase. Conversely, spinach cell culture does not contain an extracellular oxalyl esterase, or 

spinach culture medium contains a compound that acts to prevent OxT hydrolysis. This can 

be seen as [
14

C]OxT appears stable, and does not produce [
14

C]OxA during the incubation 

time of this experiment (Figure 51). The [
14

C]OxT was fairly stable in the cell-free buffer 

control, though a small amount of [
14

C]OxA was produced over time. 

For the purpose of investigating the formation of oxalyl cross-links with cell wall 

components the stability of OxT in the culture medium was important so spinach cell 

cultures were used in further experiments. 

Figure 52: Radioactivity accumulates in AIR of spinach cell cultures incubated with [14C]OxT Mini-cultures 
of spinach cells (250 mg cells in 500 µl medium, 1 week after subculturing) were fed [14C]OxT (approximately 5 
µM final concentration; previously purified by preparative HVPE). Samples of medium (50 µl) were taken at 
intervals up to 6 hours, and assayed for radioactivity by scintillation counting. The radioactivity remaining in the 
culture medium at each time point is plotted (A). After 6 hours the medium was removed from the cells and the 
cells were washed sequentially in H2O, EtOH and acidified EtOH. The resulting material left after the washes 
(AIR) comprises predominantly cell wall material. The radioactivity present in each of the washes and in the AIR 
was assayed by scintillation counting (B). The bar labelled ‘H2O’ represents the radioactivity present in the 
medium and the first wash in H2O combined. Each point is an average of three replicate cultures ±SE. 
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Spinach cell cultures were incubated with aliquots of [
14

C]OxT (approximately 5 µM final 

concentration). The loss of radioactivity from the medium, either by uptake into the cells or 

adsorption to the cell walls, throughout the incubation period was monitored. A greater 

amount of radioactivity remained in the culture medium after inoculation with [
14

C]OxT 

compared to the radioactivity remaining in the medium after inoculation with [
14

C]DHA 

(Figure 50 and Figure 52). Equally, the radioactivity released in the EtOH wash 

(representing low molecular weight intracellular compounds) is much lower after inoculation 

with [
14

C]OxT compared to [
14

C]DHA, demonstrating that [
14

C]OxT is not taken up into the 

cells as readily as [
14

C]DHA. This suggests that there is not a membrane carrier for OxT in 

spinach cells, as there is for DHA (258). 

 

3.4.4 Radiolabeled oxalate is released from radiolabelled AIR produced from 

spinach cells incubated with [
14

C]OxT 

A proportion of radioactivity, from [
14

C]OxT, incubated in spinach cell cultures remained 

firmly bonded to cell wall material (AIR) after repeated washing in EtOH and acidified 

EtOH (Figure 52).  

If this radioactivity was bound to the AIR by an oxalyl ester bond then treatment of the AIR 

with NaOH would break the ester bond, causing the release of free radiolabelled OxA. This 

free [
14

C]OxA would be detectable by scintillation counting, after the sample has been run 

by HVPE. 

The radiolabelled AIR produced from incubating spinach cell cultures with [
14

C]OxT was 

treated with NaOH and the resulting soluble material was analysed by HVPE at pH 6.5. The 

sample contained [
14

C]OxA (Figure 53), which indicates that the radioactivity was bound to 

the cell wall via an oxalyl ester bond. Some radioactivity remained at the origin of the paper; 

suggesting that this radioactivity was in the form of insoluble material. This could be 

CaOxA, which is insoluble in both EtOH and NaOH. CaOxA could have formed if there was 

any free OxA and calcium present in the sample. 

The incorporation of radioactivity into the cell wall of spinach cell-suspension cultures was 

monitored over time. Replicate mini cell cultures of spinach were incubated with [
14

C]OxT 

and AIR was prepared from the cultures at various time points up to 6 hours. The 

radioactivity bound to the AIR increased over time (Figure 54), as would be expected if this 

incorporation of radioactivity was due to an enzyme.  
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Figure 54: Incorporation of radioactivity from [14C]OxT into the AIR of spinach cells over 
time. Replicate spinach cell cultures (250 mg cell in 500 µl medium) were fed [14C]OxT. At time 
points (0, 1, 3 and 6 hours) the medium of the cell cultures was removed and the cells washed in 
H2O, EtOH and acidified EtOH to produce AIR. The radioactivity present in the AIR of each of the 
cultures was assayed by scintillation counting. Each point is an average of 3 individual cultures 
±SE. 

Figure 53: NaOH hydrolysis of radiolabelled spinach AIR releases free oxalate. 
Radiolabelled AIR, produced from spinach cells incubated with [14C]OxT for 6 hours then 
washed sequentially in H2O, EtOH and acidified EtOH, was incubated with 0.1 M NaOH for 1 
hour. After 1 hour, a slight excess of HOAc was added, and the whole sample run by HVPE at 
pH 6.5. After the paper had dried, it was cut into 2-cm strips. The strips were assayed for 
radioactivity by scintillation counting. The positions of the origin, the internal marker orange G 
and a marker of [14C]OxA are shown. 
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3.4.5 The incorporation of radioactivity into the cell wall material of spinach cells 

requires an enzyme 

It was hypothesised that the incorporation of radioactivity into the cell wall material is reliant 

on an enzyme. Boiled, frozen/thawed and untreated cells were incubated with [
14

C]OxT. Any 

enzymes present in the cell culture would have been denatured by boiling, so the boiled cell 

samples represent enzyme-free cultures. Freezing the cells would permeate the cell 

membranes, so any intracellular material, including enzymes, would then be in contact with 

the apoplastic material in the culture medium, including [
14

C]OxT. The disruption of the cell 

membranes could lead to enzymes not normally present in the apoplast acting on OxT and 

potentially cell wall components. 

The boiled cells showed very little incorporation of radioactivity into the AIR (Figure 55 B), 

suggesting that the incorporation of radioactivity into the AIR was dependent on an enzyme. 

Much of the radioactivity remained in the culture medium of the boiled cells after 6 hours 

(Figure 55 A).  

Figure 55: Boiled, frozen/thawed and untreated spinach cells incubated with [14C]OxT. Spinach cells (1 week 
after subculturing) were either boiled in the culture medium for 30 minutes then allowed to cool (boiled), frozen at -
20°C overnight and allowed to thaw (frozen/thawed) or not treated (untreated), then incubated with [14C]OxT 
(approximately 5 µM final concentration). The radioactivity present in the medium was assayed at intervals (A) and 
after 6 hours the cells were washed sequentially in H2O, EtOH and acidified EtOH to produce AIR. The 
radioactivity present in the washes and the AIR was assayed by scintillation counting (B). The H2O samples 
represent the radioactivity remaining in the culture medium and in the first H2O wash combined. Each point 

represents the average of 3 individual cell cultures ±SE. 
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The untreated (neither frozen/thawed nor boiled) cell cultures showed the greatest loss of 

radioactivity from the culture medium (Figure 55 A), and this was mainly released in the 

H2O, EtOH and acidified EtOH washes (Figure 55 B), suggesting that some [
14

C]OxT had 

been taken up into, or become bound to, the cells. A small amount of radioactivity was also 

incorporated into the AIR, potentially via an oxalyl ester. 

The frozen/thawed cells showed the greatest incorporation into the AIR, which could suggest 

that an enzyme responsible for this incorporation was originally intraprotoplasmic, but 

freezing and thawing the cells had permeabilised the membranes, allowing intracellular 

solutes to enter the apoplastic space.  

HVPE analysis was carried out to determine whether OxT was stable in the medium 

(representing the apoplast) of frozen/thawed spinach cell culture. This analysis (Figure 56) 

revealed that while OxT was stable in the untreated cell culture, as described previously in 

Figure 51, OxT in frozen/thawed cell culture was not stable. The radioactivity in the medium 

of frozen/thawed cell culture showed that the OxT was degraded, presumably by an oxalyl 

esterase, to OxA (Figure 56). This suggests that spinach cells contain an intraprotoplasmic 

oxalyl esterase, which became exposed to the apoplast after the disruption of the cell 

membranes by freezing and thawing. 

As the radioactivity present in the frozen/thawed sample was in the form of [
14

C]OxA, this 

suggests that the radioactivity in the AIR (Figure 55 B) could have been insoluble CaOxA, 

rather than radioactivity incorporated via an oxalyl ester bond. OxA cannot form an oxalyl 

ester with cell wall material as oxalyl esters cannot be formed de novo from OxA 
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To eliminate the possibility of AIR containing CaOxA, a washing step in EDTA was 

included. CaOxA is soluble in Na-EDTA so any radiolabelled CaOxA present would release 

soluble Na[
14

C]OxA in this step. Frozen/thawed spinach cells and untreated spinach cells 

were incubated with [
14

C]OxT and then washed in various solvents, including EtOH, 

acidified EtOH and Na-EDTA (Figure 57). 

 

Figure 56: The fate of [14C]OxT in untreated and frozen/thawed spinach cell 
cultures. Spinach cell culture (200 ml, 7-day old) was frozen overnight at -20ºC and then 
thawed. This frozen/thawed culture, along with an untreated 7-day old spinach cell culture 
was inoculated with [14C]OxT for up to 24 hours. Samples of culture medium (50 µl) were 
collected at time intervals from both the spinach cell cultures. The samples were run by 
HVPE at pH 6.5, and the paper was exposed to film for 3 weeks. 
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Figure 57: AIR produced from spinach cells incubated with [14C]OxT after washing in EtOH 
and EDTA. Replicate spinach cell cultures (250 mg cell in 500 µl medium) either untreated (A) or 
frozen/thawed (B), were incubated with [14C]OxT (approximately 5 µM final concentration). At time 
points (0, 4, 8 and 24 hours) the medium of the cell cultures was removed and the cells were 
washed in EtOH, acidified EtOH, Na2EDTA (pH 6) and H2O to produce AIR. The radioactivity 
present in the washes and the AIR of each of the cultures was assayed by scintillation counting. 
Each point is an average of 3 individual cultures ±SE. 
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Radioactivity was incorporated into the AIR of the untreated cells over time, but not the 

frozen/thawed cells (Figure 57). The EDTA wash of the frozen/thawed cells released some 

radioactivity, presumably from CaOxA. This was more likely to form in the frozen/thawed 

cells as the [
14

C]OxT was quickly degraded to [
14

C]OxA, which in turn could have reacted 

with trace amounts of calcium present in the culture medium to form CaOxA. In the 

untreated cells, the oxalyl esterase remains intracellular, away from the [
14

C]OxT in the 

culture medium (apoplast), meaning that very little [
14

C]OxA was produced, so very little 

radiolabelled CaOxA was produced. 

The radioactivity present in the AIR of untreated (i.e. not frozen/thawed) spinach cells was 

likely to be in the form of an ester-bonded oxalyl groups, providing evidence for oxalate 

side-chain formation on cell wall components. 

 

3.4.6 Treatment of the radiolabeled spinach AIR with cell wall degrading 

enzymes 

Radiolabelled AIR (from spinach cells incubated with [
14

C]OxT) was incubated with various 

cell wall enzymes to investigate which component of the cell wall material the oxalyl ester 

had bound to. If the radioactivity was bound to a specific moiety that is cleaved by a specific 

enzyme, this would provide a clue as to the acceptor substrate for the oxalyl ester link. To 

test whether the enzymes contained oxalyl esterase activity, they were incubated with 

[
14

C]OxT before testing the radiolabelled AIR samples. The enzymes tested included 

Driselase, EPG (endo-polygalacturonase), cellulase and cellulase that also digests xyloglucan 

(Cellulase + XG).  

Driselase is a commercially available mixture of cell wall enzymes that comes from fungi 

(Basidiomycetes sp.). This enzyme mixture would have proved very useful in determining 

the nature of the acceptor substrate of the oxalyl cross-link, but unfortunately Driselase 

contains oxalyl esterase activity. This was demonstrated by the production of [
14

C]OxA from 

[
14

C]OxT after treatment with Driselase (Figure 58). The negative control containing 

denatured Driselase shows a small amount of [
14

C]OxA along with [
14

C]OxT, this could be 

because the sample of OxT used in this experiment was not freshly prepared and so had 

degraded slightly upon storage, producing OxA (Figure 58). If the radiolabelled AIR was 

treated with Driselase then free [
14

C]OxA would be produced, and no meaningful 

information would be gained 
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Three of the enzymes tested (EPG, cellulase and cellulase that also digests xyloglucan) 

showed no oxalyl esterase activity, as seen by the lack of [
14

C]OxA produced from [
14

C]OxT 

during the incubation (Figure 58).  

Radiolabelled AIR, produced from spinach cell culture that had been incubated with 

[
14

C]OxT, was treated with these three cell wall degrading enzymes (Figure 59). Although 

radioactivity was released during the incubation of the AIR with each of the enzymes, it was 

also released in the enzyme-free control, which contained only buffer. This was unexpected, 

as the radioactivity had previously been insoluble in repeated washing with H2O, EtOH, and 

EDTA, but was now soluble in pH 4.5 buffer. This means that the radioactivity released in 

the presence of the enzymes may not be due to the enzymes themselves, but released non-

enzymically in the buffer solution. 

It is possible, in fact likely, that the formation of an oxalyl ester bond, from acyltransferase 

activity between [
14

C]OxT and cell wall components, is reversible. This leads to the 

Figure 58: Oxalyl esterase activity of commercial cell wall-cleaving enzymes. [14C]OxT (purified by 
preparative HVPE) was incubated with various enzymes including Driselase (1% final concentration), EPG (endo-
polygalacturonase), cellulase and cellulase that also acts on xyloglucan (all at 0.1 U / µl in P:A:W, 1:1:98 buffer) 
for 16 hours. The samples were then run by HVPE at pH 6.5, and the paper cut into 2-cm strips and assayed for 
radioactivity by scintillation counting. The positions of OxT and OxA were determined with radiolabelled markers of 
each. Samples containing the enzyme are shown with + and samples with a denatured enzyme (samples were 

incubated with 10% formic acid to denature the enzyme) are shown with -. 
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possibility that during the drying of the AIR, or subsequent storage before treatment with 

enzymes, the bond incorporating the radioactivity into the cell wall material may have 

broken, leading to [
14

C]OxA being released. This experiment was repeated, and the AIR 

treated with enzymes as soon as possible after drying, to reduce the possibility that [
14

C]OxA 

would be released during storage. However, the results (data not shown) were the same as in 

Figure 59, with even the enzyme-free control releasing radioactivity into the supernatant.  

As this experimental set-up was unsuccessful in determining the acceptor substrates to which 

[
14

C]oxalyl groups had become bound to, a different approach was taken, which will be 

discussed in detail in section 3.5. 

This work has shown that Arabidopsis cell cultures contain an oxalyl esterase in the apoplast, 

whereas spinach cell cultures do not, so [
14

C]OxT was stable in spinach cell cultures. The 

feeding of [
14

C]OxT to spinach cell-suspension cultures led to the incorporation of some of 

this radioactivity into the cell wall. This radioactivity was released as free [
14

C]OxA upon 

alkali treatment, suggesting that the radioactivity was bound by an ester bond. This oxalyl 

ester bond formation suggests a potential role for ascorbate derivatives in cell wall 

modifications, by the formation of oxalate side-chains within the cell wall.  

Figure 59: The treatment of radiolabelled spinach AIR with cell wall-degrading enzymes. 
Radiolabelled spinach AIR (obtained by incubating spinach cells with [14C]OxT then washing in H2O, 
EtOH and acidified EtOH) was incubated with various enzymes (endo-polygalacturonase, cellulase and 
cellulase that digests xyloglucan; all at 0.01U/ µl). A no enzyme control incubated in the enzyme buffer 
(pyridine/HOAc/water, 1:1:98) was also included. The samples were incubated (1 mg AIR in 1 ml enzyme 
solution) for 16 hours. The supernatant was then removed, and the remaining material washed in water 
twice. Samples of the supernatant, the water washes and the remaining pellet were assayed for 

radioactivity by scintillation counting. 
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Although the substrate used in this work (OxT) has only one oxalyl linkage, so is only able 

to form side-chains, this work hints at the possibility of oxalyl groups originating from 

ascorbate-derivatives forming cross-links within the cell wall. If cOxT (which contains two 

oxalyl ester linkages) were used as the starting substrate then a cross-link between cell wall 

polysaccharides would be theoretically possible. 

This hypothesis was tested further, and will be discussed in the following section. 
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3.5 A novel enzyme catalysing a reaction between ascorbate derivatives and cell 

wall components 

 

3.5.1 Introduction to the reaction of ascorbate derivatives with cell wall 

components 

As has been previously discussed (section 3.4), some radioactivity became bound to the cell 

wall material of spinach cell cultures when incubated with [
14

C]OxT. The experiments 

discussed in this chapter will elaborate on and provide further characterisation of this 

reaction. Previous attempts, using cell wall-degrading enzymes, to discover the nature of the 

acceptor substrate in vivo were unfortunately unsuccessful (section 3.4), so a different 

approach was used. Various potential acceptor substrates were added to very small volumes 

of cell culture or cell culture extracts along with a radiolabelled donor substrate, and the 

products formed were monitored by HVPE. The expected reactions (depicted in section 3.4, 

Figure 49) involve the transfer of the oxalyl group from OxT or cOxT to an acceptor 

substrate, such as a sugar residue from a polysaccharide. 

 

3.5.2 Plant cell cultures incubated with radiolabeled OxT and non-radiolabeled 

sugars produce novel oxalyl sugars 

A selection of potential acceptor substrates (in this case sugars) were added in abundance to 

very small volumes of spinach cell cultures, along with [
14

C]OxT. The whole sample was 

then run by HVPE at pH 6.5, and the radioactive products were detected by autoradiography. 

Spinach cell cultures were incubated with [
14

C]OxT and a range of sugars, including 

hexoses, pentoses and disaccharides (Figure 60). Radiolabelled compounds with a lower 

charge : mass ratio and so running slower than OxT were detected with each of the acceptor 

substrates. Oxalyl sugars would be predicted to have lower electrophoretic mobility 

compared to OxT because they would have only one negative charge (from the oxalyl group) 

compared to two negative charges on OxT, and a greater number of carbons, for instance 8 

in an oxalyl hexose compared to 6 in OxT (259). The radiolabelled compounds correspond to 

these predicted mobilities of oxalyl sugars, providing evidence that the radiolabelled oxalyl 

group from OxT has been transferred onto the acceptor sugar. As would be expected, the 

smallest sugars, xylose and arabinose, formed oxalyl sugars with a greater mobility (mOG of 
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0.94), and disaccharides, being the largest substrates tested, formed oxalyl sugars with the 

least mobility (mOG of 0.66). 

The hexoses produced the greatest yields of oxalyl sugars (mOG of 0.88); this could be due to 

the more readily accessible OH group on C-6. All the sugars tested were used at a 

concentration of 5% (Figure 60), so the molar concentration of disaccharides was half that of 

the hexoses, which would explain the relatively low yield of oxalyl disaccharides despite the 

accessibility of the OH groups on the two C-6s in maltose for example. 

 The marker lane containing OxT represents the time 0 sample. It can be seen that the level 

of OxA increased in all the samples incubated for 16 hours (Figure 60), suggesting that there 

was an enzyme responsible for the hydrolysis of OxT to OxA present in the spinach cell 

cultures. 

Figure 60: Formation of oxalyl sugars in spinach cell cultures with [14C]OxT and sugars. Small 
aliquots (20 µl) of spinach cell culture, including cells, were incubated with [14C]OxT (purified by 
preparative HVPE and eluted from the paper, approximately 50 µM) and 5% final concentration of various 
sugars for 16 hours. The sugars used were Glc (glucose), Fru (fructose, Man (mannose), Gal (galactose), 
Xyl (xylose), Ara (arabinose), Mal (maltose), CB (cellobiose) and Suc (sucrose). The whole sample of 
each was then run by HVPE at pH 6.5. The resulting paper was exposed to film for 3 weeks. 
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To determine whether the formation of these oxalyl sugars was reliant on an enzyme bound 

to the cell wall or a free extracellular enzyme present in the culture medium, the experiment 

was repeated with spent spinach culture medium, free of cells, instead of intact cell culture. 

The production of oxalyl sugars was markedly less when cell-free spinach culture medium 

was used (Figure 61). OxA was not produced during the incubation period either, with the 

levels of OxA present in the time 0 sample the same as the samples that had been incubated 

for 16 hours. This suggests that the enzyme responsible for the hydrolysis and transfer of the 

oxalyl group (an acyltransferase) of OxT to a sugar acceptor substrate is dependent on cells 

Figure 61: Oxalyl sugars are not formed in the absence of cells. Small aliquots (20 µl) of spinach cell 
culture medium, excluding cells, were incubated with [14C]OxT (purified by preparative HVPE and eluted 
from the paper, approximately 50 µM) and 5% final concentration of various sugars for 16 hours. The 
sugars used were Glc (glucose), Fru (fructose, Man (mannose), Gal (galactose), Xyl (xylose), Ara 
(arabinose), Mal (maltose), CB (cellobiose) and Suc (sucrose). The whole sample of each was then run by 
HVPE at pH 6.5. The resulting paper was exposed to film for 3 weeks. 



126 
 

being present. 

The acyltransferase activity was also detected with Arabidopsis cells in addition to the 

previously discussed spinach cells. Cells of different ages, up to two weeks after sub-

culturing, were incubated with [
14

C]OxT and either glucose or sucrose (Figure 62). The 

proportion of oxalyl glucose (OxG) formed increased with the age of the cell cultures, more 

clearly with spinach cells (Figure 62 A and C), though this may be because there are a 

greater number of cells present in the older cell cultures compared to the newly sub-cultured 

cell cultures. 

Figure 62: Oxalyl sugars were formed in the presence of Arabidopsis and spinach cells of increasing ages. 
Small aliquots of spinach (A and C) and Arabidopsis (B and D) cell cultures, including cells, of different ages, either 
0, 7 or 14 days after subculturing, were incubated with [14C]OxT (approximately 50 µM) and glucose or sucrose 
(5% final concentration) or no sugar for 16 hours. The whole samples were run by HVPE at pH 6.5 and the papers 
exposed to film for 3 weeks (spinach cells are shown in A and Arabidopsis cells are shown in B). The OxG (oxalyl 
glucose) or OxS (oxalyl sucrose) produced was quantified by scintillation counting. The quantification of products 
from spinach cells are shown in C and from Arabidopsis in D. For the samples containing no sugar (labelled 
‘none’), the areas corresponding to OxG and OxS were both cut out and assayed for radioactivity, and the sum of 
these two areas was included in the bar charts in C  and D. 
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The Arabidopsis cell cultures incubated with [
14

C]OxT but no additional sugar also formed 

radiolabelled OxG (samples labelled ‘none’, Figure 62 A). Arabidopsis cell culture medium 

contains 2% glucose as the carbon source, whereas spinach culture medium contains only 

1% glucose. This means that the Arabidopsis cells had more glucose available, even in the 

cell cultures that had not had glucose deliberately added, resulting in the formation of 

radiolabelled OxG. Small amounts of radiolabelled OxG can also be seen in the samples 

containing [
14

C]OxT and sucrose for the same reason, and because the cell cultures may 

partially hydrolyse sucrose to produce glucose and fructose, which then participate in the 

oxalyl transfer reaction themselves. 

Spinach cells were incubated in buffers of varying pH (3-7) to determine the optimum pH for 

acyltransferase activity. Buffers known to be tolerated by cell cultures were used. An 

increase in pH resulted in greater acyltransferase activity. The autoradiogram (Figure 63 A) 

shows that the cells incubated at pH 7 completely hydrolysed [
14

C]OxT to [
14

C]OxA. The 

Figure 63: Oxalyl glucose production is greater in higher pH buffers. Spinach cells (1 week after 
subculturing) were removed from culture medium and incubated in buffers of various pH values along with 
[14C]OxT (approximately 50 µM) and glucose (glc; 5% final concentration), or no glucose (None). The buffers 
used were; for pH 3 and pH 4 tartaric acid, for pH 5 and pH 6 phthalic acid and for pH 7 PIPES, all 10 mM) 
After 16 hours incubation the samples were run by HVPE at pH 6.5 and the paper exposed to film for 3 weeks 
(A). The bands of [14C]OxG and [14C]OxA were cut out of the paper and quantified by scintillation counting. B 
shows the production of OxG with and without glucose present in the sample, and C shows the relative 

production of OxG and OxA in the samples which contained glucose. 
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transfer of the oxalyl group onto the substrate (in this case glucose) was presumed to be 

reversible, and the new oxalyl–sugar bond formed during the incubation could be a target for 

further hydrolysis, producing free OxA. It is likely that this was the case in the pH 7 sample, 

Figure 64: OxG formation over time at different pH values. Spinach cells (1 week after 
subculturing) were removed from culture medium and incubated in buffers of various pH values along 
with [14C]OxT with (blue) or without (green) glucose (5% final concentration). The buffers for pH 6 and 
pH 6.5 were 10 mM phthalic acid, and the buffers for pH 7 and pH 7.5 were 10 mM PIPES. Samples 
were incubated for either ¼ hours (A), 1 hour (B), or 4 hours (C). The reaction was stopped with 10% 
formic acid at the specified time points, before running the products by HVPE at pH 6.5. The paper was 
cut into strips and the radioactivity quantified by scintillation counting. The area corresponding to OxG 
was identified and plotted for samples both with and without glucose. 
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and owing to the long incubation time (16 hours), very little oxalyl glucose can be seen 

(Figure 63 B and C). However, it is interesting that some OxG but no OxT remains in the pH 

7 sample. This suggests that OxG must be a poorer substrate than OxT for hydrolysis, 

A time-course of OxG production was set up to investigate whether OxG was produced more 

quickly in buffers with a higher pH (Figure 64). OxG was formed more quickly at pH 7 and 

pH 7.5, within 1 hour at pH 7.5 (Figure 64 B), than at pH 6 and pH 6.5. 

 

3.5.3 The putative acyltransferase can be eluted from the cell walls of plant cell 

cultures 

The nature of this novel putative acyltransferase activity was investigated and steps were 

taken towards the purification of the enzyme responsible. 

As the activity was found to be reliant on cells being present rather than on spent medium, 

which would include secreted free apoplastic enzymes, it was hypothesised that the enzyme 

may be bound to the cell wall. Ionically wall-bound compounds from cell cultures of spinach 

and Arabidopsis were extracted with concentrated salt solution (1 M NaCl). This 

concentration of NaCl is expected to release any compound ionically, but not covalently, 

bound to the cell wall. As the membranes of the cells were not disrupted, no 

intraprotoplasmic compounds would be released. 

After dialysis, to remove the salt, the cell wall eluate was freeze-dried and then used at a 

standard concentration (1%) in further acyltransferase assays. As a control, spent culture 

medium, filtered from the cells before eluting ionically cell wall-bound compounds, was also 

dialysed, freeze-dried and tested for acyltransferase activity. 

The enzyme mixture eluted from Arabidopsis (Figure 65 A) was much more active than that 

from spinach cells (Figure 65 B). The Arabidopsis enzyme extract produced OxG within 15 

minutes, whereas OxG was only visible after 4 hours with the spinach enzyme extract. OxA 

was also produced in large quantities from both enzyme extracts. It is not known whether the 

same enzyme is responsible for the transfer of the oxalyl group from OxT to OxG, and the 

release of free OxA from either OxG or OxT.  

The [
14

C]OxT in the presence of Arabidopsis extract was completely gone after 4 hours. The 

OxG also disappeared after 4 hours, suggesting the presence of an enzyme that acted to 

release free OxA from OxG. This provides evidence for the reversible nature of the ester 
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bond formation. Free OxA was also produced in the absence of glucose, from the hydrolysis 

of OxT. 

The initial extracts (Figure 65) were taken from 1-week old cell cultures, but it is possible 

that the activity of the acyltransferase enzyme varies through development (preliminary 

experiments investigating this are described in Figure 62). Extracts of ionically-bound cell 

wall enzymes were taken at 4-day intervals from immediately after sub-culturing up to 16 

days. As cell cultures were ordinarily sub-cultured every 14 days, the 16-day samples 

represent the oldest cell cultures used. 

 

 

 

Figure 65: Acyltransferase activity was present in Arabidopsis and spinach cell wall extracts. Cell wall 
extracts from Spinach and Arabidopsis cell cultures (1 week after subculturing) were obtained by removing 
the cells from the culture medium, rinsing in H2O then re-suspending in 1 M NaCl (pH 5 with 5 mM succinate 
buffer) and shaking for 1 hour. The eluate was then separated from the cells, and dialysed to remove the 
NaCl (culture medium was also dialysed to serve as a control). The dialysed eluate and medium were then 
freeze dried. The resulting material was redissolved in 10 mM pH 7 PIPES buffer (1% final concentration) and 
incubated with [14C]OxT (approximately 50 µM final concentration) and glucose (5% final concentration). 
Samples were incubated between 0 and 16 hours, including controls containing no glucose. The reaction was 
stopped with 10% formic acid. The samples were run by HVPE at pH 6.5 and the papers exposed to film for 3 
weeks. The Arabidopsis cell wall extract is shown in A and the spinach cell wall extract is shown in B.  
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The overall yield of OxG was higher from Arabidopsis cell wall extracts than from spinach 

cell wall extracts (Figure 66), which is consistent with previous experiments. The yield of 

OxG did not vary with the age of cell culture in spinach cells, and did not vary in 

Arabidopsis cells after 4 days old.  

Interestingly, the Arabidopsis eluate extracted immediately after sub-culturing contained 

almost no acyltransferase activity at all (Figure 66 A), despite the cells being equivalent to 

the 16 day-old culture (as this is the approximate age at which the cells were sub-cultured, by 

transferring a small volume of old cells into fresh culture medium). This result was repeated 

in a replicate experiment. A few proteins are known to react to stress by firmly binding to the 

cell wall (260), rendering them inextractable by the usual methods. It is possible that 

plunging the Arabidopsis cells suddenly into fresh medium could have elicited a stress 

response, and the acyltransferase became inextractable immediately after sub-culturing. This 

would not necessarily mean the acyltransferase activity was absent from these cells, merely 

not extractable with 1 M NaCl. The spinach cell wall extracts showed a similar trend (Figure 

66 B), though not as pronounced as the extracts from Arabidopsis. 
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Figure 66: Acyltransferase time course Arabidopsis and spinach. Cell wall extracts from spinach and 
Arabidopsis cell cultures (0, 4, 8, 12 and 16 days after subculturing) were obtained by removing the cells 
from the culture medium, rinsing in H2O then re-suspending in 1 M NaCl (pH 5 with 5 mM succinate buffer) 
and shaking for 1 hour. The eluate was then separated from the cells, and dialysed to remove the NaCl. The 
dialysed eluate was then freeze dried. The resulting material was redissolved in 10 mM pH 7 PIPES buffer 
(1% final concentration) and incubated with [14C]OxT and with (+) or without (-) glucose (5% final 
concentration) for 4 hours. The reaction was stopped with 10% formic acid. The samples were run by HVPE 
at pH 6.5 and the papers exposed to film for 3 weeks. Non-radiolabelled markers run alongside the samples 
were stained in silver nitrate. The Arabidopsis cell wall extracts are shown in A and the spinach cell wall 
extracts are shown in B.  
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3.5.4 The reaction of [
14

C]OxT with various acceptor substrates catalysed by an 

acyltransferase 

The effect of increasing glucose concentrations on OxG formation with spinach 

acyltransferase extract was tested (Figure 67).  The formation of OxG increased with glucose, 

until 25%, above which the formation of OxG plateaued (Figure 67 B). This concentration of 

glucose may be considered unnaturally high, but within the cell wall matrix the 

concentration of glucose residues within polysaccharides could easily reach this 

concentration. 

Although the formation of OxG increases with glucose concentration, the formation of OxA 

begins to decrease with the highest glucose concentrations (Figure 67 C). It could be that 

very high concentrations of glucose (above 10%) act as an inhibitor of hydrolysis but not of 

transesterification.  

The experiments discussed so far have only involved acceptor substrates disaccharide-sized 

or smaller. As the hypothesis being tested involves the formation of oxalate cross links 

Figure 67: Oxalyl glucose production increases with glucose concentration. Enzyme extract (from 
Arabidopsis) was incubated with [14C]OxT and increasing concentrations of glucose (0-50%) in a pH 7 buffer 
for 4 hours. Enzyme free controls containing 0% and 50% glucose were also incubated. The samples were 
run by HVPE at pH 6.5 and the paper was exposed to film for 3 weeks (A). The bands of OxG and OxA were 
carefully cut out of the paper and quantified by scintillation counting. The increasing OxG production with 

increasing glc concentration is shown in B, and the relative production of OxA and OxG is shown in C. 
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between cell wall components it was necessary to test larger acceptor substrates. The method 

of detecting acyltransferase activity discussed so far requires the substrates used to be 

soluble at relatively high concentrations. For this reason, a selection of soluble substrates 

was used (Figure 68), including a mixture of xyloglucan oligosaccharides (XGOs), raffinose 

(Raf, a trisaccharide consisting of galactose, glucose and fructose), cellobiose (CB; a 

disaccharide comprising β1,4 linked glucose residues) and glucosamine (GlcN). 

The reaction of OxT with XGOs in the presence of an acyl transferase did not yield any 

oxalyl ester compounds (Figure 68). If oxalyl-XGO compounds had been formed they would 

have had a mobility lower than that of OxG, as they would have a larger mass and one 

negative charge. The compounds would run in the area between the origin and orange G on 

the electrophoretogram, but this area appears empty, suggesting no such compounds had 

been formed (Figure 68). This area of the electrophoretogram was also assayed for 

radioactivity by scintillation counting, with only background levels detected. 

The reaction of OxT with Raf and CB in the presence of an acyltransferase produced two 

compounds corresponding to an oxalyl-hexose and an oxalyl-disaccharide. As raffinose is a 

trisaccharide, the production of these compounds suggests that there was an enzyme present 

in the cell wall extract that breaks down raffinose to a monosaccharide and a disaccharide. 

Equally, cellobiose is a disaccharide of β-linked glucose, but has produced a compound 

corresponding to an oxalyl-hexose (OxG), suggesting that cellobiose has been broken down 

at least partly, by an enzyme present in the extract, to free glucose. 

Interestingly, a neutral compound has been formed during the reaction of OxT with GlcN in 

the presence of an acyltransferase (Figure 68). GlcN itself is a positively charged compound, 

owing to the presence of an amine group on C-2. As the compound resulting from the 

acyltransferase activity was neutral, this suggests that the amine group is still present, so it is 

likely that the oxalyl group was positioned on C-6, which would be the OH group most 

readily available for esterification. The alternative would have been for the oxalyl group to 

be positioned directly on the N of the amine group, resulting in a compound with an overall 

negative charge, thus detected as a mobile compound after HVPE. 
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Acylation can occur using OH groups or NH2 groups. Amine groups are present in the cell 

wall, often in the form of structural proteins, e.g. extensin (261). It would be possible that the 

acceptor for the novel acyltransferase activity could be an amine group, forming an oxalyl 

amide. GlcN has been proven to act as an acceptor for acyltransferase (Figure 68), but the 

formation of an oxalyl amide bond was not observed. In order to test whether amines can act 

as acceptor substrates for acyl transfer, [
14

C]OxT was incubated in the presence of the 

Arabidopsis cell wall extract along with an acceptor substrate such as an amino acid (lysine 

or histidine) or a polyamine (spermine, spermidine, putrescine, poly-lysine and poly-

histidine) (Figure 69). Spermine, spermidine and putrescine are found in the plant cell (262), 

Figure 68: The reaction of acyltransferase activity with [14C]OxT and oligosaccharides. Enzyme 
extract (from Arabidopsis) was incubated with [14C]OxT (approximately 50 µM) and 5% acceptor substrate 
for 4 hours at pH 7 (10 mM PIPES buffer). The acceptor substrates included XGOs (xyloglucan 
oligosaccharides), Raf (raffinose), CB (cellobiose), GlcN (glucosamine) and Glc (glucose). Controls lacking 
either an acceptor substrate or the enzyme extract were also included. The samples were run by HVPE at 
pH 6.5, along with non-radiolabelled markers. The radiolabelled portion of the paper was exposed to film for 

3 weeks and the non-radiolabelled markers were stained in silver nitrate. 
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and poly-lysine and poly-histidine are a useful models for some basic proteins involved in 

cell growth, e.g. extensins (263).  

 

 

The reaction products from these amine samples were analysed by HVPE at pH 2.0 instead 

of pH 6.5 as amines and amino acids are likely to be fully ionised at pH 2.0, allowing 

improved separation of the compounds (259). The samples were loaded in the middle of the 

Figure 69: The reaction of [14C]OxT and polyamines catalysed by acyltransferase. Enzyme 
extract (from Arabidopsis; used at 1% final concentration) was incubated with [14C]OxT and 1% 
acceptor substrate for 4 hours at pH 7. The acceptor substrates included Lys (lysine), His (histidine), 
Spd (spermidine), Spn (spermine), Put (putrescine), P. Lys (poly-lysine), P. His (poly-histidine) and 
Glc (glucose). Controls lacking either an acceptor substrate or the enzyme extract were also 
included. The samples were run by HVPE at pH 2.0, along with non-radiolabelled markers. The 
markers containing amines were stained in ninhydrin and markers of glucose and lactobionic acid (Lb 
acid) were stained in silver nitrate. The radiolabelled portion of the paper was exposed to film for 3 
weeks. 
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paper to allow for the positively charged amines to migrate towards the cathode, and the 

negatively charged substrates (radiolabelled OxT, OxA and OxG) to migrate towards the 

anode. The hypothetical oxalyl amide compounds (produced via acyltransferase action) 

would be either neutral or positively charged, though less so than the original amine 

substrate, so would be expected to either be present close to the origin or have migrated 

towards the cathode. 

The autoradiogram showed no radiolabelled compounds present in the amine samples (in 

bold), other than the starting material of [
14

C]OxT and the hydrolysis product [
14

C]OxA 

(Figure 69). This suggests that the acyltransferase does not act upon amines. The positive 

control of [
14

C]OxT with glucose showed a clear spot of OxG, demonstrating that the 

enzyme extract was active. 

The samples containing poly-histidine showed a much greater production of OxA than the 

other samples, with a corresponding depletion of OxT (Figure 69). This would seem to 

suggest that the presence of poly-histidine was somehow increasing the rate of hydrolysis of 

OxT. 

Another likely substrate to test for potential oxalyl ester formation, and in turn oxalate cross-

links, within cell walls would be cell wall polysaccharides themselves. The experimental 

design of the experiments discussed so far requires a relatively concentrated solution of the 

acceptor substrate, and it proved difficult to produce solutions of polysaccharides of a 

sufficiently high concentration. Nonetheless, 1% (the highest concentration manageable) 

solutions of various polysaccharides, including hemicelluloses and pectins, were obtained 

and subsequently used in the experiment. 

If an oxalyl ester bond formed with a polysaccharide then a radiolabelled spot at the origin 

would be expected. Many polysaccharides bind to paper, so would not move from the origin 

during HVPE. No such radiolabelled product was visible after the incubation of 

polysaccharides with [
14

C]OxT in the presence of an acyltransferase (Figure 70), suggesting 

that polysaccharides are not the preferred acceptor substrate for this enzyme, although at 

only 1% this is lower than the concentration of Glc (5%) routinely used. The OxG 

production with 1% Glc was fairly low (Figure 67), so it is possible that the acceptor 

substrate concentration used was too low to detect any oxalyl-products formed. 

Interestingly the pectins, and to a lesser extent RG-I from soy, seemed to inhibit the 

production of OxA (Figure 70). Pectins are acidic polysaccharides and it is possible that this 

acidity may be inhibiting the hydrolysis of OxT to OxA, although this is unlikely as the 
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solutions were buffered at pH 7. Conversely, RG-I from potato appeared to have promoted 

the hydrolysis of OxT, as all the OxT had been converted to OxA (Figure 70). 

 

A limitation of this method is that some polysaccharides at this concentration (1% w/v) had a 

gel-like consistency, which may have prevented the enzyme from acting at full capacity, so 

limited any possible oxalyl ester products being formed. This may mean that in vivo this 

enzyme may indeed act upon cell wall polysaccharides, but we were unable to detect this 

using this method. Also, a 1% concentration of polysaccharides is not very realistic, as the 

Figure 70: [14C]OxT reaction with acyltransferase and polysaccharides. Enzyme extract (from 
Arabidopsis) was incubated with [14C]OxT and 1% acceptor substrate for 4 hours at pH 7. The acceptor 
substrates included XG (xyloglucan), xylan, AG (arabinogalacturonan), arabinan, HG (homogalacturonan) 
pectin (from citrus or apple), RG-I (rhamnogalacturonan I) from soy or potato and Glc (glucose). Controls 
lacking either an acceptor substrate or the enzyme extract were also included. The samples were run by 
HVPE at pH 6.5, along with non-radiolabelled markers. The radiolabelled portion of the paper was exposed 
to film for 3 weeks and the non-radiolabelled markers were stained in silver nitrate. 
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concentration of polysaccharide within a cell wall would be much higher. This demonstrates 

a need for an alternative method for testing the ability of polysaccharides to act as acceptor 

substrates for the acyltransferase catalysed reaction. 

Whatman 3 MM paper (almost pure cellulose) was dipped slowly through 1% solutions of 

various polysaccharides, then allowed to dry, forming polysaccharide–cellulose complexes 

which contained a high concentration of polysaccharides and serve as useful models for cell 

wall components. The polysaccharide-impregnated papers were cut into uniform sections. 

Figure 71: The formation of oxalyl esters with polysaccharide–cellulose complexes and [14C]OxT 
catalysed by an acyltransferase. Polysaccharide-cellulose complexes (polysaccharide-impregnated paper) 
were incubated with Arabidopsis enzyme extract and [14C]OxT in pH 7 PIPES buffer, for 0 hours, 4 hours or 
24 hours. Controls with no enzyme extract were also analysed. The polysaccharide-cellulose complexes were 
prepared by dipping Whatman 3 MM paper through 1% solutions of various polysaccharides: xylan (A), 
xyloglucan (B), homogalacturonan (C), esterified pectin (D), or untreated paper (cellulose, E). After the 
specified incubation times the papers were washed repeatedly in EtOH (70%) and then the radioactivity 
present in the washes and the radioactivity that remained bound to the paper throughout the washing was 
assayed by scintillation counting. Each sample containing enzyme was in triplicate, and the no-enzyme 
controls were single samples. 
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These papers were incubated with the enzyme extract containing the acyltransferase and 

[
14

C]OxT in pH 7 buffer. After the incubation period the papers were washed repeatedly in 

EtOH. If the acyltransferase had transferred the oxalyl group from [
14

C]OxT to the 

polysaccharide–cellulose complex, then the radioactivity would become covalently bound to 

the paper, and would not be removed in EtOH washes. Any free [
14

C]OxT, or [
14

C]OxA that 

had formed during the reaction, would be soluble in EtOH, and so removed during the 

washing of the papers in EtOH. Therefore, if radioactivity was detected on the paper after 

repeated washings, this would provide evidence for the formation of an oxalyl ester between 

[
14

C]OxT and the polysaccharide–cellulose complex, and therefore acyltransferase activity. 

The hemicellulose–cellulose complexes, with xylan (Figure 71 A) and xyloglucan (Figure 71 

B) showed significant incorporation of radioactivity into the paper, which increased over 

time up to 24 hours. The controls containing no enzyme extract showed very little 

radioactivity remaining in the paper after repeated washings. This would seem to suggest 

that esters had formed between the hemicellulose and the oxalyl group from OxT. 

Conversely, the pectic–cellulose complexes, with homogalacturonan (Figure 71 C) or 

methyl-esterified pectin (Figure 71 D) showed no incorporation of radioactivity into the 

paper. This would suggest that the pectic polysaccharides do not act as acceptor substrates 

for this acyltransferase. 

The untreated paper (cellulose only; Figure 71 E) showed slight incorporation of 

radioactivity into the paper, peaking after 4 hours incubation. The loss of radioactivity from 

into the paper between 4 and 24 hours could be because an enzyme was acting to hydrolyse 

the ester bond formed between cellulose and the oxalyl group from OxT, which would 

release free [
14

C]OxA. This would be soluble in EtOH ([
14

C]OxA was purified by 

preparative HVPE and successfully eluted from the paper in EtOH during the current study) 

and so removed during the washing of the paper. 

The hydrolase responsible for the release of free OxA from oxalyl esters (including OxT and 

OxG) would also be present in the hemicellulose–cellulose samples (Figure 71 A and B), as 

the enzyme extract was identical. However, these samples do not show a loss of radioactivity 

in the paper between 4 and 24 hours. This could be because the acyltransferase has a higher 

affinity for hemi-celluloses than cellulose, so oxalyl ester formation was favoured over 

hydrolysis, meaning less OxA was released, and more oxalyl esters were formed. 

An important control was missing from this experiment, so the experiment was repeated 

using [
14

C]OxA as a donor, which theoretically cannot form oxalyl esters so serves as a 
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negative control, as no radioactivity should become bound to the polysaccharide–cellulose 

complexes. The xylan–cellulose complex previously showed the greatest incorporation of 

radioactivity into the paper (Figure 71), so this was the complex used in further experiments, 

along with a cellulose-only sample. 

The samples incubated with [
14

C]OxT and the xylan–cellulose complex, in the presence of 

the enzyme extract, again showed some incorporation of radioactivity into the paper (Figure 

72 A), whereas the enzyme-free controls showed no incorporation of radioactivity. The 

cellulose-only samples incubated with [
14

C]OxT also showed no incorporation of 

radioactivity into the paper (Figure 72 C). The overall incorporation of radioactivity into 

paper when incubated with [
14

C]OxT was lower than in the previous experiment; this was 

Figure 72: [14C]OxA becomes trapped in the cellulose-polysaccharide complex. Samples of a xylan-
cellulose complex (xylan-impregnated paper, A and B) and untreated paper (cellulose, C and D) were 
incubated with Arabidopsis enzyme extract and [14C]OxT (A and C) or [14C]OxA (B and D) in pH 7 PIPES 
buffer, for 0 hours, 4 hours or 24 hours. Controls with no enzyme extract were also analysed. After the specified 
incubation times the papers were washed repeatedly in EtOH and then the radioactivity present in the washes 
and the radioactivity that remained bound to the paper throughout the washing was assayed by scintillation 
counting. 
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presumably because the activity of the enzyme had diminished slightly over time while being 

stored frozen. 

The samples that had been incubated with [
14

C]OxA and the xylan-cellulose complex, acting 

as the negative control, (Figure 72 B) showed even greater incorporation of radioactivity into 

the paper, with or without the enzyme extract present. This cannot be due to oxalyl ester 

formation, as OxA is unable to form ester bonds under the condition used; this suggests that 

the OxA is merely becoming trapped within the paper complex, and not becoming covalently 

bound. This has not occurred in the cellulose-only samples (Figure 72 D), so the xylan–

cellulose complex may contain something that is acting to sequester the [
14

C]OxA, rendering 

it unable to be removed during EtOH washing. One candidate for this phenomenon could be 

calcium, possibly present at trace levels in the xylan solution. OxA readily binds to calcium 

to form insoluble calcium oxalate (177), which would be likely to remain bound to the paper 

throughout the washing process. 

This leads to the likelihood that the previously observed binding of radioactivity to 

hemicellulose–paper complexes after being incubated with [
14

C]OxT (Figure 71) could be 

due to trapped [
14

C]OxA, rather than the formation of an oxalyl ester. An enzyme present in 

the cell wall extract, possibly the acyltransferase itself, acts to hydrolyse oxalyl ester bonds, 

forming free OxA, as seen in the previous experiments in this section; this means that 

[
14

C]OxA could be produced from [
14

C]OxT during the incubation with the enzyme extracts. 

It was hypothesised that prolonged washing of the papers, to fully ensure all the free OxA 

and OxT was removed, would improve the method. Therefore, in a repeat experiment (using 

xyloglucan–cellulose, homogalacturonan–cellulose and cellulose-only samples incubated 

with either [
14

C]OxT or [
14

C]OxA with and without the enzyme extract) the papers were 

washed in EtOH for a longer period. Replicate samples were assayed for radioactivity at 

intervals after washing in EtOH until no radioactivity remained on the paper of the negative 

controls (those incubated with [
14

C]OxA but without the enzyme extract). After it was 

determined that no radioactivity remained bound to the control papers, all the other samples, 

having been washed for the equivalent time, were assayed for radioactivity. 

After 24 hours’ incubation with both [
14

C]OxT and [
14

C]OxA all the polysaccharide 

complexes showed negligible incorporation of radioactivity into the paper (Figure 73). As 

incubation with [
14

C]OxT did not lead to radiolabelled paper substrate, it was concluded that 

the acyltransferase does not act upon polysaccharide acceptors. 
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Figure 73: Radioactivity bound to paper incubated with acyltransferase and [14C]OxT or 
[14C]OxA after prolonged washing. Samples of a xyloglucan–cellulose complex, HG–cellulose 
complex and untreated paper (cellulose were incubated with Arabidopsis enzyme extract and [14C]OxT 
(A) or [14C]OxA (B) in pH 7 PIPES buffer, for 0 hours, 4 hours or 24 hours. Controls with no enzyme 
extract were also analysed. After the specified incubation times the papers were washed repeatedly in 
EtOH until no radioactivity remained on control papers incubated with [14C]OxA and no enzyme extract 
(as determined by scintillation counting paper washed at intervals throughout washing). The 
radioactivity that remained bound to the paper throughout the washing was assayed by scintillation 
counting, after the control papers showed only background levels of radioactivity. 
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After 24 hours’ incubation with both [
14

C]OxT and [
14

C]OxA all the polysaccharide 

complexes showed negligible incorporation of radioactivity into the paper (Figure 73). As 

incubation with [
14

C]OxT did not lead to radiolabelled paper substrate, it was concluded that 

the acyltransferase does not act upon polysaccharide acceptors. 

The 4-hour samples incubated with the xyloglucan–cellulose complex or cellulose only 

showed slight incorporation of radioactivity into the paper, but this occurred in samples 

incubated with both OxT and OxA (Figure 73 A and B), so would not be indicative of oxalyl 

ester formation. The levels observed were also much lower than the levels previously 

observed (in Figure 71 and Figure 72). An alternative explanation for the apparently 

negligible acyltransferase activity observed in Figure 73 could be that the enzyme had 

denatured during storage between the experiments described in Figure 71 and Figure 73, thus 

losing its activity. 

In conclusion, these experiments do not provide any conclusive evidence to support the 

hypothesis that oxalyl esters were formed from the reaction of OxT with cell wall 

components via the action of an acyltransferase. However, the formation of OxG (as 

described earlier in this section) as well as the incorporation of radioactivity into cell wall 

preparations of spinach cells incubated with [
14

C]OxT (section 3.4.3) suggests that this 

avenue warrants further investigation. 

3.5.5 The activity of acyltransferase with different donor substrates 

As discussed previously (section 3.4.1), OxT would be able to form only one oxalyl ester 

bond, whereas cOxT, having two available oxalyl ester linkages, has the potential to form 

two oxalyl esters, creating an oxalate bridge (Figure 49). OxA, on the other hand, would not 

be able to form an oxalyl ester at all, as it does not contain an ‘activated’ carboxy group.  

A cell wall extract from Arabidopsis, shown to contain acyltransferase activity (Figure 65), 

was incubated with glucose and [
14

C]OxT, [
14

C]cOxT or [
14

C]OxA. [
14

C]OxA was included 

as a negative control, as this compound would not be able to form an oxalyl ester. [
14

C]OxG 

was formed from both [
14

C]cOxT and [
14

C]OxT, but, as was expected, not from [
14

C]OxA 

(Figure 74).  

The preparation of cOxT also contained some OxT. This was due to the instability of cOxT, 

which spontaneously breaks down to form OxT during the purification process (involving 

the elution of the compound from paper). As the sample of cOxT also contains OxT, it 

would be possible that the OxG had formed from OxT rather than cOxT. This is in fact the 
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likely scenario as the reaction of cOxT with glucose would yield a product with a greater 

mass than OxG, as it would still contain the ThrO moiety. This product (pictured in section 

3.4.1, Figure 49) would be negatively charged, but larger than OxG, so run below OxG 

during HVPE at pH 6.5. There was no spots visible beneath OxG in the cOxT sample, 

suggesting that this product was not formed. Equally, if an oxalate cross-link had formed 

between two glucose molecules, as would be theoretically possible if cOxT were the donor 

substrate, then a neutral radiolabelled compound would be formed. This would be positioned 

just above the origin after HVPE at pH 6.5, but this area was free of radioactivity, suggesting 

that this reaction had not occurred. 

The [
14

C]cOxT had diminished in the samples containing cOxT and the enzyme extract 

Figure 74: OxG is formed from cOxT and OxT but not OxA. Cell wall enzyme extract from 
Arabidopsis was incubated with [14C]OxT, [14C]cOxT or [14C]OxA (all of which had previously 
been eluted from a preparative electrophoretogram and used at a concentration of ~ 5 µM) 
and 5% glucose in pH 7 buffer. Controls containing wither no glucose or no enzyme extract 
were also incubated. The sample were incubated for 4 hours, and then run by HVPE at pH 
6.5. The samples labelled OxT, cOxT and OxA represent time 0 samples. The resulting 
electrophoretogram was exposed to film for 3 weeks. 
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(Figure 74), as had the OxT present in those samples. The end products of these reactions 

were OxA and OxG. There is the possibility that the enzyme extract contained hydrolases 

that converted cOxT to OxT, and subsequently to OxA. This means that it is possible that the 

cOxT was converted to OxT, then the acyltransferase acted on OxT and glucose to produce 

OxG. OxT and OxG could both undergo hydrolysis to form OxA, and non-radiolabelled 

ThrO or Glc. 

Figure 75: Formation of reactive intermediates during the oxidation of AA. The oxidation of AA via highly 
reactive intermediates (cyclic 2,3-oxalyl-threonoactone and 3-oxalyl-threonolactone) is shown. The radiolabelled 
carbon (C-1 of [14C]AA) is shown with a bold C.  For a more detailed ascorbate oxidation pathway, including 
other isomers of cOxT and OxT, see section 1.5.1, Figure 4. 
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As well as cOxT and OxT, further high-energy intermediate compounds have been 

hypothesised to form during the oxidation of AA (Figure 75) (2). These short-lived 

compounds (hypothesised to be cyclic-2, 3-oxalyl threonolactone and 3-oxalyl-

threonalactone; Figure 75) would not be able to be purified, owing to their unstable nature, 

but it would be very likely that they would occur in vivo. It was hypothesised that these 

compounds may have the potential to act as oxalyl donors for acyltransferase activity. To 

determine whether this was the case, [
14

C]AA was incubated with glucose, a cell wall extract 

from Arabidopsis, and varying concentrations of H2O2 in order to generate the hypothesised 

high-energy intermediate oxidation products in situ (Figure 76). Non-radiolabelled AA was 

also added to the reaction mixture with the aim of stabilising the low concentration of 

[
14

C]AA. The non-radiolabelled AA would act to protect the [
14

C]AA from degradation, by 

virtue of the non-radiolabelled AA being far in excess of [
14

C]AA, so it would be more likely 

for the non-radiolabeled AA to degrade than the [
14

C]AA. 

The samples that were incubated with [
14

C]AA, glucose and the enzyme extract produced a 

small amount of OxG, regardless of whether H2O2 was present (Figure 76). The increasing 

H2O2 concentrations did not correspond to an increase in AA oxidation products. In fact the 

controls containing [
14

C]AA and the enzyme extract, with and without H2O2 (but without 

glucose) showed very low levels of total oxidation products. The control samples without the 

enzyme extract present showed greater amounts of oxidation products formed than the 

samples containing the enzyme extract. This suggests that there was something present in the 

enzyme extract that was preventing the H2O2 from oxidising AA. It is possible that a 

peroxidase or catalase was eluted from the cell wall (264) of the Arabidopsis cell culture, 

which was acting to detoxify H2O2 before the AA could react with it. It is also possible that 

the 5 mM AA present in the samples swamped the hypothetical enzyme, preventing oxalyl 

sugars compounds being produced. 

During the 4-hour incubation, most of the AA was oxidised to DHA. This DHA was then 

partially further oxidised to OxT and OxA (Figure 76), but very little cOxT, which may have 

been expected according to the reaction of DHA and H2O2 described in section 3.3.2. The 

OxG that was formed was likely to have originated from OxT. There was also a 

radiolabelled product running between AA and OxT (labelled X, Figure 76) present in the 

samples that contained both enzyme extract and glucose, but not in the controls. This 

compound could be another glucose ester of an AA derivative. The mobility of this 

compound suggests that it would have a greater charge : mass ratio than OxG, so perhaps 
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two negative charges, rather than the one negative charge of OxG, or the compound would 

have a much smaller mass than OxG, and one negative charge. 

 

  

The neutral spot was assumed to contain DHA, as this is a likely product of the reaction of 

AA and H2O2 (265); however, it was not possible to distinguish DHA from any other neutral 

compound using this technique. This means that if the acyltransferase had produced a neutral 

Figure 76: The reaction of [14C]AA with acyltransferase extract and glucose and H2O2. [14C]AA 
(approximately 20 µM) was incubated with Arabidopsis enzyme extract (1% final concentration), glucose 
(5%) and increasing concentrations of H2O2 (up to 5 mM). Non-radiolabelled AA (5 mM) was also added to 
the samples to stabilise the [14C]AA. The samples were incubated in pH 7 buffer (10 mM PIPES) for 4 
hours, before running by HVPE at pH 6.5. Controls lacking combinations of enzyme extract (enz), glucose 
and H2O2 were also analysed. The controls contained either 0 mM (- H2O2) or 5 mM H2O2 (+ H2O2). A 
positive control of [14C]OxT with enzyme extract and glucose was included. Non-radiolabelled markers 
(subsequently stained in silver nitrate) were run alongside the radiolabelled samples. The radiolabelled 
portion of the paper was exposed to film for 3 weeks.  
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compound, such as the theoretical compound containing an oxalyl cross-link and two 

glucose residues, this would not be visible using this detection system. 

The most predominant product formed during the reaction of oxidised AA with 

acyltransferase was OxG. The repeated formation of OxG in these experiments suggests that 

this compound is a relatively stable end-product, and is perhaps being formed for a 

biological role unrelated to cell wall cross-linking. 

3.5.6 Investigating the fate of oxalyl glucose in vivo. 

[
14

C]OxG was purified to further investigate the possibility that OxG could serve a role in 

vivo. This was achieved by incubating [
14

C]OxT with excess glucose and the acyltransferase 

extract. The sample was run preparatively by HVPE at pH 6.5 and then the band of 

[
14

C]OxG was eluted in water (Figure 77).  

Figure 77: Purification of OxG. Enzyme extract (1%, from Arabidopsis) was incubated 
with glucose (5%) and [14C]OxT (50 µM) in pH 7 (10 mM PIPES) buffer for 4 hours. The 
sample was run preparatively by HVPE at pH 6.5, along with non-radiolabelled markers 
of glucose and lactobionic acid. The non-radiolabelled markers were stained in silver 
nitrate and the radiolabelled portion of the paper was exposed to film for 3 weeks.  
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The fate of [
14

C]OxG in cell culture was investigated. Spinach cell cultures were incubated 

with either [
14

C]OxT, [
14

C]OxA or [
14

C]OxG for up to 24 hours. The culture medium from 

each of the cultures was sampled at various time-points and run by HVPE at pH 6.5 to 

investigate the stability of each of the compounds (Figure 78). As had been previously 

observed (in section 3.4.3), OxT remained fairly stable in culture medium for 6 hours. 

However, OxT was gone from the culture medium after 24 hours. Very little OxA was 

present in the 24-hour sample incubated with OxT, suggesting that the OxT had not simply 

been hydrolysed to [
14

C]OxA and non-radiolabelled ThrO. It is possible that the OxT had 

been taken up into the cells via membrane transporters by 24 hours, or the radioactivity from 

Figure 78: [14C]OxG is stable in spinach cell culture. Spinach cell mini-cultures (250 mg 
cells with 500 µl medium) were incubated with [14C]OxG, [14C]OxT or [14C]OxA (~ 0.5 µM), all 
of which were eluted from paper after preparative HVPE. Samples (50 µl) or culture medium 
were taken at time-points up to 24 hours after feeding. The samples were run by HVPE at pH 

6.5, and the paper was exposed to film for 4 weeks. 
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the OxT had been incorporated into the cell wall, and so removed from the medium. 

The OxA incubated in the cell cultures appeared to have mostly gone from the culture 

medium after 1 hour (Figure 78). It is possible that the OxA had bound to calcium, present in 

the medium at trace levels, and thus become insoluble and so removed from the medium. 

Equally, the OxA could have been transported inside the cells, either in the form of free 

OxA, or in a complex with calcium. 

OxG, on the other hand, appeared to be stable for the whole of the 24 hour incubation period 

(Figure 78). The intensity of the band of OxG did not diminish significantly over time, 

though a very small amount of OxA can be seen in the 24 hour sample, suggesting partial 

hydrolysis, though this is unlikely to be due to an enzyme, as the amount of product is so 

low. 

After the 0, 6 and 24 hour time-points, the cells were washed repeatedly in acidified EtOH to 

create AIR comprising predominantly cell wall material (Figure 79). The cells were also 

washed in EDTA, with the aim of releasing any [
14

C]OxA that may have been in the form of 

insoluble CaOxA. 

The cells that had been incubated with [
14

C]OxA showed a significant proportion of the 

radioactivity in the AIR (Figure 79); however, this cannot be due to the formation of oxalyl 

esters, as OxA cannot form an ester bond, so it may be that the EDTA wash was not 

sufficient to release all the OxA from CaOxA. A large proportion of the radioactivity 

(around 60%) was present in the EtOH wash of the 6-hour samples. This suggests that the 

radioactivity had been taken up into the cells, then released when the membranes were 

permeated with EtOH. 

The cells that had been incubated with [
14

C]OxT also showed some incorporation into the 

AIR (Figure 79), but owing to the incorporation of [
14

C]OxA into the AIR, this cannot be 

taken as evidence of oxalyl ester formation. 

The cells that had been incubated with [
14

C]OxG show almost no radioactivity in the AIR 

(Figure 79), which would have been expected because OxG remained stable in the culture 

medium for the 24-hour duration (Figure 78). 
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. 

 

Figure 79: Washing of cells fed [14C]OxG, [14C]OxT or [14C]OxA.  Spinach cell cultures (1 week 
after subculturing, 250 mg with 500 µl culture medium) were fed with [14C]OxG, [14C]OxT or [14C]OxA 
(~0.5 µM). Replicate cultures were set up, and after either 0, 6 or 24 hours incubation the culture 
medium was removed from the cells. The cells were then washed sequentially in acidified EtOH 3 
times, followed by H2O, EDTA and a second wash in H2O. The resulting AIR was assumed to 
comprise mainly cell wall components. The radioactivity present in the washes and AIR was 

quantified by scintillation counting. 
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In conclusion, there is evidence for the formation of novel compounds, oxalyl sugars, formed 

from the reaction of OxT, an ascorbate derivative, and a variety of sugars, including hexoses, 

pentoses and disaccharides, among others. This reaction is catalysed by a novel 

acyltransferase activity, and the enzyme responsible for this activity can be eluted from the 

cell walls of plant cell-suspension cultures by NaCl treatment, suggesting it was ionically 

bound to the cell wall. 

There is no conclusive evidence to suggest that this novel acyltransferase activity could be 

involved in forming oxalate cross-links in the cell wall, as polysaccharides did not seem to 

serve as suitable acceptor substrates; however this merits further investigation. 
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3.6 Ascorbate degradation in harvested salad leaves 

3.6.1 Introduction to ascorbate in salad leaves 

Salad leaves are an important source of dietary vitamin C (244), and pre-packed salads are 

becoming more popular because of their convenience, with up to 50% of people preferring 

pre-packed salads to preparing them themselves (266-268). Vitacress is a leading company 

in the area of pre-packaged salads in the UK. The factory is based in Hampshire, UK, and 

they have numerous farms in the south of England, as well as suppliers in Portugal 

(www.vitacress.com).  

The aim of this work was to determine the level of ascorbate during the washing and 

postharvest storage of packaged salad leaves. The accumulation of ascorbate degradation 

products was also analysed. Much of this work took place on site in the Vitacress premises, 

and the salad leaves were sourced from the farms belonging to Vitacress. 

3.6.2 Ascorbate content of a selection of salad leaves during cold storage 

There is a great variety in ascorbate levels between different salad species and these species 

also vary in their ability to retain this level of ascorbate during post-harvest storage 

(269,270). The ability of various salad leaves, grown by Vitacress, to retain their ascorbate 

levels was investigated. Salad leaves were stored at 4°C after the standard commercial 

washing and packaging process. At time intervals, from 0 days’ storage to 10 days’ storage, 

samples of leaves were assayed for ascorbate content by the DCPIP titration method. 

All the salads showed a loss of ascorbate over the 10-day storage period at 4°C, although the 

difference in ascorbate content of rocket and mizuna (a type of rocket) was not significant 

suggesting these species showed the greatest retention of ascorbate (Figure 80). This 10-day 

storage period is slightly longer than the recommended storage time (the ‘best before end’ 

date is generally 5-7 days after packaging, rather than 10 days), but this time period is often 

used to study the effects of post-harvest storage time. 

The lettuces (Asteraceae) showed the lowest levels of ascorbate, as suggested in the 

literature (236). Conversely, fennel (Apiaceae) and pea shoots (Fabaceae) showed the 

highest levels of ascorbate, after both 0 and 10 days of storage. Watercress showed high 

levels of ascorbate initially but also showed a large decrease over the storage time tested 

(Figure 80). 
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3.6.3 Effect of washing on ascorbate content of salad leaves 

The salad washing process at Vitacress involves a counter-current conveyer belt system with 

leaves loaded at one end and spring water entering the other end. The leaves are submerged 

in the water, and undergo turbulence to remove particles of soil and grit. The leaves are then 

spun surface-dry, before being packaged in plastic packaging and distributed to 

supermarkets. This washing process could potentially be causing a loss of ascorbate before 

the salad leaves reach the supermarket shelves. 

Samples of spinach, watercress and rocket leaves were taken before and after washing to test 

this hypothesis. The before and after samples were taken from the same harvest batch.  

Figure 80:  The ascorbic acid content of salad leaves during storage at 4°C. Salad samples were 
processed at Vitacress Salads then immediately assayed (in the case of the 0 days storage samples) or 
stored at 4°C. Samples of the leaves were assayed using the DCPIP titration method at stages throughout 
the storage time. The results from day 0 and day 10 of storage are summarised here. Significant differences 
(Student’s t-test, * p<0.05, ** p<0.01, *** p<0.001, n=6) between the ascorbic acid levels at day 0 and day 10 
are indicated. Each bar is an average of 6 separate measurements ± SE. 
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There was a significant difference (Student’s t-test, p<0.05; Figure 81) between the ascorbate 

content of spinach before and after washing, but no difference with watercress or rocket. 

This loss of ascorbate could be due to mechanical damage of the leaves, as spinach leaves 

are more susceptible to damage such as bruising, resulting in leaves being torn or becoming 

discoloured, than rocket and watercress leaves. 

 

These same samples of washed and unwashed leaves were then stored under identical 

conditions in open plastic bags at 4°C for up to 10 days in the dark. The ascorbate content of 

the leaves was measured at various intervals (Figure 82). 

The unwashed spinach leaves showed consistently higher ascorbate levels than the washed 

spinach (Figure 82 A) throughout the time course, though ascorbate levels decreased 

significantly in both samples during the 10-day storage time. The difference between 

unwashed and washed samples of watercress and rocket (Figure 82 B and C) was less 

distinct. After 10 days of storage washed watercress leaves showed marginally lower levels 

of ascorbate than unwashed leaves. 

Figure 81: The ascorbic acid content of salad leaves before and after the washing process. Salad 
leaf (spinach, watercress and rocket) samples (1 g each) assayed for ascorbate by the DCPIP titration 
method before and after the washing process at Vitacress. The before and after samples originated from 
the same batch. The difference between the ascorbate content before and after washing was analysed 
by the Student’s t-test (p<0.05, n=6). Each bar represents an average of 6 separate measurements ±SE. 
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It is also interesting to note that the ascorbate levels in spinach begin to decline immediately, 

whereas in watercress and rocket, both of which have a greater amount of ascorbate to start 

Figure 82: Ascorbic acid content of washed and unwashed salad leaves during storage.  
Samples of spinach, watercress and rocket leaves were taken from the same batch before and 
after the washing process. The leaves were then stored in plastic bags at 4°C in the dark for up to 
10 days. Samples were taken at time points and the ascorbate content measured using the DCPIP 
titration method. The error bars represent the standard error of three individual samples. 
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with, the level of ascorbate remained fairly stable for the first 3 days (Figure 82).  

As standard procedure at Vitacress, spinach leaves are vacuum-cooled (to approximately 5ºC 

at 1 kPa) for 1 hour immediately after harvesting. This process cools the leaves quickly, by 

evaporating water and thus removing heat from the leaves under vacuum. This is done with 

the aim of increasing shelf life and to improve the quality of the product (237). Vacuum 

cooling has been reported to improve the sensory quality of spinach (239). Two crates of 

spinach harvested from the same farm at the same time were taken to investigate the effect of 

vacuum-cooling on spinach leaves. One crate was vacuum cooled, as standard. The other 

crate was stored immediately in the fridge, bypassing the vacuum-cooling step (as in Figure 

83 A). Both crates were then stored in the fridge for two days before being collected and the 

leaves assayed for ascorbate content (Figure 83 B). 

 

Figure 83: Effect of vacuum cooling on ascorbic acid content of spinach leaves.  Spinach leaves were 
harvested, then a proportion were vacuum cooled, whereas an equivalent proportion were transferred 
straight to storage in the fridge in the dark for two days. Both samples were then processed as normal (A) 
and the ascorbate content of both samples was measured using the DCPIP titration method (B). The error 
bars represent the standard error of 3 individual samples, each the average of duplicate measurements. 
The difference in ascorbate content between vacuum cooled and not vacuum cooled was not significant 
(Student’s t-test, p>0.05, n=3). 
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The vacuum cooled leaves showed slightly higher levels of ascorbate, but the difference was 

not statistically significant (Student’s t-test, p>0.05; Figure 83 B).  If a greater number of 

samples were assayed then it is possible that the result would be significant, as the beneficial 

effects of vacuum cooling on ascorbate content in iceberg lettuce have been previously 

reported (238), and so the effect in spinach leaves may well warrant further investigation. 

The washing process was mimicked in the lab with the aim of investigating the loss of 

ascorbate in spinach leaves during washing in more detail. 

Spinach leaves, either grown in University of Edinburgh facilities or purchased from 

Sainsbury’s supermarket (supplied by Vitacress), were incubated in different washing 

conditions of varying severity. The leaves were incubated either with no added H2O (in air), 

submerged in H2O (in still water) or submerged in water and shaken on a benchtop shaker to 

create turbulence (in shaken water), then the ascorbate levels of the leaves were assayed. The 

ascorbate levels at time 0 (immediately after harvesting or at the onset of the experiment) 

were also assayed. 

 

Figure 84: Ascorbic acid content of spinach leaves throughout washing. Spinach leaves 
(grown in University of Edinburgh glasshouses) were harvested, and incubated for 1 hour 
either in air, submerged in 20 ml H2O (still water), or submerged in 20 ml H2O and shaken 
(shaken water). Ascorbate was extracted from the samples in 0.5% formic acid and the 
ascorbate level was determined by the DCPIP titration method. Time 0 samples were assayed 
immediately after harvesting. The difference between time 0 and shaken samples was 
significant (Student’s t-test, ** p<0.01, n=3). 

** 
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The ascorbate content of leaves that had been submerged and shaken was significantly lower 

than the ascorbate level at time 0 (Student’s t-test, p<0.01, n=3, Figure 84). The level of 

ascorbate in the sample incubated in air was equivalent to the time 0, showing that ascorbate 

is not lost during the hour incubation time. Equally, the sample incubated in still water also 

showed no significant difference in the ascorbate content, suggesting that the shaking was 

causing the loss of ascorbate. 

Samples of these extracts (from Figure 84) were run by HVPE with the aim of determining 

the compounds that had been formed upon the degradation of ascorbate (Figure 85). 

Unfortunately the HVPE was inconclusive. This was due to the fact that the extract 

contained numerous compounds which were able to be stained with silver nitrate, not only 

compounds originating from ascorbate. Although the silver nitrate stain is very sensitive (for 

example ThrO is visible down to 0.5 µg (data not shown) and arabinose is detectable to 0.1 

µg (271)), in order to have enough ascorbate present to be visible with the stain, a relatively 

large sample (100 µl) was required. This led to the overloading of the sample, which can be 

seen by the distortion of the internal marker orange G (Figure 85). HVPE at pH 2.0 shows a 

particularly severe distortion of orange G. This is likely to be due to the presence of OxA in 

the samples, which is known to accumulate in spinach (272). OxA has an electrophoretic 

mobility (mOG) of 1.03, overlapping with orange G, so overloading of OxA would result in 

the distortion of orange G. 
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Figure 85: HVPE analysis of 
washed spinach was 
inconclusive. Extracts (100 
µl, in 0.5% formic acid) from 
spinach leaves after various 
washing treatments, as 
described in figure 5, were 
run by HVPE at pH 2.0 (A) 
and at pH 6.5 (B). After HVPE 
the papers were stained in 
silver nitrate. The position of 
the internal marker orange G 

is marked with pencil circles. 
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 [
14

C]AA was used to monitor the degradation products formed directly from ascorbate. Any 

radiolabelled compounds detected would necessarily originate from ascorbate. The detection 

of 
14

C compounds is also more sensitive than detection by silver nitrate, so the samples 

would not require overloading. However, a downside to this method is that it was not known 

whether the ascorbate monitored was intracellular or apoplastic, which may mean that the 

[
14

C]AA measured may not necessarily be representative of the majority of the endogenous 

ascorbate.  

The experimental set-up of washing radiolabelled spinach leaves required the use of leaf 

discs, rather than whole leaves. To ensure that spinach leaf discs were equivalent to whole 

spinach leaves in terms of ascorbate content, the experiment described in Figure 84 was 

repeated with leaf discs. 

Leaf discs were incubated either in air, in still water or in shaken water for 1 hour or 2 hours 

(Figure 86). The ascorbate content of the discs at time 0 was also assayed. After an 

incubation of 2 hours the shaken samples showed a considerable loss of ascorbate. The 

difference within 1 hour was not significant but may be indicative of a trend. The samples 

submerged in still H2O also showed a loss of ascorbate over the time course. This may be 

Figure 86: Ascorbic acid content during washing of spinach leaf discs. Leaf discs (1 cm in diameter) 
were cut out of spinach leaves purchased from a local supermarket. Samples of leaf discs (250 mg) were 
incubated in sterilin pots (60-ml volume)  at 7°C in the dark either in air, submerged in 5 ml H2O (still 
water) or submerged in 5 ml H2O and shaken on a small orbital shaker, (shaken water) for 1 hour or 2 
hours. A sample of leaf discs was taken immediately after cutting out (time 0). Extracts of the leaf discs 
were taken in 0.5% formic acid, and assayed for ascorbate content by the DCPIP titration method. Each 
bar represents the average of three individual samples ±SE. Samples that were significantly different 
(Student’s t-test, * p<0.05, ** p<0.01, n=3) to the time 0 sample are shown. 

* 
* 

** 
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because the edge of the leaf disc is effectively a wound, and some ascorbate may have leaked 

out of the sample via this cut and into the water, or the ascorbate may have been consumed 

in antioxidant processes in the wound healing process. 

The overall pattern of ascorbate content during the washing of spinach leaf discs showed a 

similar pattern to whole spinach leaves (Figure 84 and Figure 86). With this confirmed, the 

radiolabelling experiment could go ahead. 

Commercial [
14

C]AA was fed through the petiole of a freshly harvested spinach leaf. After 

the initial solution containing [
14

C]AA had been taken up into the leaf via transpiration, 

additional H2O was added to the tube, ensuring the continued transport of the ascorbate into 

the leaf. This was continued until the presence of radioactivity in the lamina was confirmed 

using a Geiger counter. Leaf discs were then cut out, avoiding main veins, in groups of four 

equivalent discs (as described in section 2.19.4). These leaf discs were then individually 

incubated either in air, in still water or in shaken water, before the ascorbate and its 

metabolites were extracted in formic acid. Aliquots of these extracts were run by HVPE at 

pH 6.5. The use of four equivalent discs (time 0, and the three incubation treatments) meant 

that although these four discs were directly comparable, comparisons between the different 

sets of discs would be more difficult to make. This was due to the fact that the [
14

C]AA was 

likely to be unevenly distributed across the lamina, and potentially the ascorbate had been 

degraded to varying degrees in different areas of the leaf.  

The samples incubated for 2 hours (Figure 87) show the clearest loss of [
14

C]AA (Figure 87 

A; quantified in Figure 87 B). The major product of this degradation of ascorbate was OxA, 

which increased with the severity of the washing. OxT was also present in all the samples, 

but did not increase with either time or washing. 
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The washing procedure employed by Vitacress differs from standard commercial salad 

washing. Vitacress wash the salads in spring-water only, whereas other companies wash the 

salads in chlorinated water, as an anti-microbial wash. As chlorine is an oxidising agent it is 

Figure 87: The degradation of [14C]AA fed to spinach leaves throughout washing. Spinach leaves (three 
individual leaves) were fed [14C]AA (approximatel 0.5 mM in 50 µl) through the petiole. Leaf discs were cut out 
and treated for 0.5, 1 or 2 hours at 7°C in the dark in plastic vials of 20-ml volume. The treatments were in air 
(A), in still water (St) and in shaken water (Sh). Time 0 is represented with 0. Extracts were taken of the leaf 
discs in 0.5% formic acid (200 µl per 1-cm leaf disc), and samples (50 µl) were run by HVPE at pH 6.5. The 
paper was exposed to film for 3 weeks (A). The radioactivity present in each sample was quantified by 
scintillation counting. Quantification of AA includes the streak (as shown in A), as the streak comprises AA that 
has oxidised to DHA during the run. The radioactivity present in the spots after incubation for 0.5 hours, 1 hour 
and 2 hours are shown (B, C and D respectively). The bars in B, C and D each represent the mean of 3 
individual leaf disc measurements ±SE. 
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plausible that washing salad leaves in the presence of chlorine could lead to a loss of 

ascorbate, via ascorbate oxidation. 

Spinach leaves (grown and packaged by Vitacress) were washed in deionised H2O or water 

containing 100 ppm active chlorine. The standard level of active chlorine used in industry is 

generally 20-150 ppm. 

Leaves incubated in still water, either chlorinated or non-chlorinated, did not differ in their 

ascorbate levels (Figure 88 A). Spinach leaves shaken in chlorinated water showed a slightly 

greater loss of ascorbate than those shaken in non-chlorinated water (Figure 88 B). The 

difference between time 0 and the leaves incubated in shaken non-chlorinated water was not 

Figure 88: The effect of chlorine on the ascorbic acid content of spinach leaves. Spinach leaves (1 g per 
sample, purchased from a local supermarket) were incubated for 1 hour either in air, submerged in 20 ml H2O 
(water), or submerged in 20 ml chlorinated H2O (100 ppm active chlorine). The samples incubated in water and 
chlorine were incubated either still (A) or shaken (B) on a mini orbital shaker for the duration of the incubation. 
Ascorbate was extracted from the samples (1 g leaves in 5 ml 0.5% formic acid) and the ascorbate level was 
determined by DCPIP titration method. Time 0 samples were assayed at the start of the experiment. Each bar 
represents the mean of three individual samples ±SE. Different letters above the bars in B represent statistically 
significant differences (Student’s t-test, p<0.05, n=3). There was no significant difference between any of the 
samples in A (Student’s t-test, p>0.05, n=3). 
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statistically significant in this experiment, but the difference between time 0 and the leaves 

shaken in chlorinated water was significant (Student’s t-test, p<0.05; Figure 88 B). The 

difference between leaves incubated in shaken non-chlorinated water versus shaken 

chlorinated water was not significant. This suggests that there is no difference in ascorbate 

levels in spinach washed in chlorinated or non-chlorinated water. 

3.6.4 Ascorbate retention in different ages of salad leaves 

Various different cultivars of spinach are used by Vitacress, and the harvest time of these 

cultivars differs. Two late-stage and two early-stage cultivars (pictured in Figure 89 B) 

harvested and the ascorbate content was monitored throughout storage. As would be 

expected, the leaves harvested during late stage were larger than those harvested during the 

early stage. 

The initial ascorbate concentration of late stage spinach cultivars was marginally greater than 

that of early stage spinach leaves (Figure 89 A). However, the loss of ascorbate occurred 

more quickly in late stage spinach, with early stage spinach retaining more ascorbate over 

the 10-day storage period. After 3 days of storage the late stage spinach had lost the majority 

of its ascorbate, whereas the early stage spinach still retained more than half of the initial 

level of ascorbate. 

Figure 89: Ascorbic acid content in spinach at different growth stages. Two varieties of late stage spinach 
and two of early stage spinach (harvested from a farm that supplies Vitacress) were stored in the dark at 4°C for 
up to 10 days. At time intervals ascorbate was extracted from samples in 2% MPA, and the ascorbate content 
determined by the DCPIP titration method (A). Each point represents the mean of three individual samples of 
each variety (n=3, ±SE). B shows the spinach leaves on day 0 of storage. 
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In conclusion, spinach leaves are more susceptible to ascorbate loss during the washing 

process than watercress or rocket leaves. The loss of ascorbate during the washing of spinach 

leaves seems to be due to the turbulent nature of the washing procedure, rather than merely 

submersion in spring water. Radiolabelled tracer experiments demonstrated that the major 

ascorbate degradation product formed during spinach washing was OxA, which is formed 

via oxidation reactions (section 3.3). Washing spinach leaves in spring water, as is the case 

at Vitacress, could reduce the ascorbate loss during washing when compared to washing in 

chlorinated water. 

 

3.6.5 Degradation of ascorbate in watercress 

Watercress has relatively high levels of ascorbic acid (Figure 80) but loses it substantially 

throughout storage (Figure 82 B). 

The effect of the growth stage on the ascorbate content of watercress was investigated. 

Vitacress grows watercress from seedlings. These seedlings are planted in water beds and the 

mature watercress is generally harvested three weeks after planting. Seedlings are planted 

every week throughout the summer, meaning there was a variety of ages of watercress at any 

one time. For this experiment samples of various ages of watercress were taken (pictured in 

Figure 90 B and C). All these samples were taken at the same time, so were planted weeks 

apart. All the plants were stored in plastic bags at 4°C for the duration of the experiment (10 

days). The ascorbate content of the watercress was assayed at various points throughout the 

storage time (Figure 90). After 10 days the watercress leaves showed signs of damage, 

including bruising and a loss of colour (Figure 90 C compared to B). 

The ascorbate content varied with growth stage, with the 3-week old watercress showing the 

highest ascorbate levels over the 10 days’ storage (Figure 90A). This suggests that the 

current practice of harvesting watercress at three weeks after planting is the optimum in 

terms of ascorbate content.  

In general terms, the younger watercress (seedlings and 1 week and 2 weeks old) had lower 

ascorbate than the older watercress, 3 and 4 weeks old (Figure 90 A). In all the ages the 

ascorbate content remained fairly stable for the first 3 days of storage, before declining over 

the following 7 days. 
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Figure 90: Ascorbic acid content of watercress at different growth stages. Various ages of watercress 
(seedling, 1 week, 2 weeks, 3 weeks and 4 weeks after planting) were stored in plastic bags in the dark at 4°C for 
up to 10 days. Examples of the watercress leaves are pictured on day 0 (B) and day 10 (C) of storage. At time 
intervals ascorbate was extracted from samples in 2% MPA, and the ascorbate content determined using the DCPIP 
titration method (A). Each point represents the average of three individual samples ±SE.  
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Extracts of each age of watercress after 0 or 10 days’ storage were run by HVPE at pH 2.0 

(Figure 91). A compound with the same mobility as DKG was seen in all the samples, and at 

higher levels (as seen by the larger, more intense spot) in the older plant extracts. 

Compounds with similar mobilities to compounds C and E (discussed in section 3.1) were 

also present. Glc-6-P has the same mobility as compound C in this system, so it is possible 

that the spot running with compound C in the samples could also include Glc-6-P. However, 

when the samples were treated with a phosphatase prior to running by HVPE, the spot was 

still present, suggesting that this compound was not Glc-6-P (Figure 92). 

 

 

Figure 91: HVPE analysis of extracts from various growth stages of watercress. Extracts (100 
µl, in 0.5% oxalic acid, 5 ml per g FW) of the samples of various growth stages of watercress after 0 
or 10 days of storage at 4°C, described in figure 11, were run by HVPE at pH 2.0. Compound C co-
migrates with Glc-6-P (Figure 92), so the spot containing compound C also represents the position 
of Glc-6-P. The paper was then stained in silver nitrate. The position of the internal marker of orange 
G was marked with pencil circles.  
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A selection of watercress samples (1 and 4 weeks old, after 0 and 10 days’ storage) were run 

by HVPE at pH 6.5, and stained in either silver nitrate, to detect sugar-like compounds, or 

molybdate, to detect phosphorylated compounds (Figure 93).  

The silver nitrate stained paper shows an unknown compound (referred to as WCx) running 

below orange G (labelled with WCx). The mobility of WCx shows that is has a lower charge 

: mass ratio than ascorbate. This could be achieved by being larger than ascorbate, maybe a 

di- or trisaccharide with a single negative charge.  

WCx appears diminished after 10 days of storage, seemingly almost completely in the 1 

week-old watercress, and partly in the 4 week-old samples (Figure 93). This suggests that 

this compound could potentially be used as an indicator of freshness of watercress 

Figure 92: The compound co-migrating with Glc-6-P does not diminish upon phosphatase treatment. 
Samples of watercress extracts in 0.5% oxalic acid (adjusted to pH 5 with Ca(OH)2) were treated with 
phosphatase for 16 hours (B). The ‘pre-enzyme’ sample consists of an extract of 4 week watercress after 0 days 
of storage, without the addition of phosphatase. Samples of compound C with and without the phosphatase were 
also included. A positive control of Glc-6-P was incubated with the phosphatase for up to 24 hours (A) was also 
run. Samples were taken at time intervals and the reaction stopped with the addition of formic acid. The samples 
were run by HVPE at pH 2.0 and the papers stained in silver nitrate. C and Cʹ are epimers of compound C (2-
carboxy-l-xylonolactone and 2-carboxy-l-lyxonolactone, discussed in section 3.1). The loading of the pre-enzyme 

samples was lower (half as much), so the spots are fainter, than the loadings of the phosphatase treated sample.  
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The silver nitrate stain (Figure 93) also shows a spot with the same mobility as L-Tar. This is 

known to be a degradation of ascorbate and to accumulate in certain plant species (76). The 

presence of L-Tar was less clear after HVPE at pH 2.0 (Figure 91) though there was a 

compound visible migrating just above the neutral compounds, which could potentially be 

identified as L-Tar. The large amount of neutral compounds present in the samples could 

have partially obscured the relatively low level of L-Tar present (as indicated by the fairly 

faint spot in Figure 93), as it migrates only slightly further than neutral compounds. 

Figure 93: Analysis of a watercress extract by HVPE at pH 6.5. Samples of watercress extract (in 0.5% 
oxalic acid), from 1 week (1w) or 4 weeks (4w) after planting, stored for either 0 days or 10 days, were run by 
HVPE at pH 6.5. Duplicates of each sample were run and the paper cut in half after HVPE. One half of the 
paper was stained in silver nitrate and the other in molybdate. The position of the internal marker orange G 
was marked with pencil circles. 
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The silver nitrate stained spot running with orange G (Figure 93) is likely to contain DKG, as 

this compound was visible after HVPE at pH 2.0 (Figure 91). The spot could also contain 

ascorbate, as these two compounds have an identical mobility at pH 6.5. Ascorbate would be 

indistinguishable from neutral compounds by HVPE at pH 2.0. 

There are no compounds visible in the region that compounds C and E would be expected to 

be migrating to, with mOG values of 1.05 (compound C) and 1.32 (compound E) at pH 6.5. 

This suggests that the compounds visible co-migrating with C and E after HVPE at pH 2.0 

(Figure 91) are not in fact compounds C and E. These unknown compounds co-migrating 

with compound C and E must have a very low pKa to migrate so quickly at pH 2.0.  

An extract of watercress known to contain WCx (4-week grown watercress, 0 days storage) 

Figure 94: 2D HVPE of a watercress extract. An extract (in 0.5% oxalic acid) from 4-week-old 
watercress, stored for 0 days was run by HVPE at pH 2.0. The lane containing the watercress sample 
was carefully cut out and sewn onto the origin of a fresh sheet of paper. A lane containing markers was 
stained in silver nitrate. The new paper, including a lane containing markers, was run by HVPE at pH 
6.5. The new paper was stained in silver nitrate. The position of the new origin and orange G after the 
first run at pH 2.0 are marked with ‘1’ and their positions after the second run at pH 6.5 are marked with 

‘2’. 
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was subjected to 2D HVPE at pH 2.0 followed by pH 6.5 (Figure 94). 

The 2D HVPE showed that the unknown compound (WCx) detected after HVPE at pH 6.5 is 

the compound that co-migrates with compound C and Glc-6-P in HVPE at pH 2.0 (Figure 

94). This serves as further evidence that this compound is not compound C. 

The spot corresponding the DKG after HVPE at pH 2.0, shows the migration expected for 

DKG at pH 6.5 too, providing further evidence that this compound can be identified as 

DKG, the hydrolysis product of DHA. Compounds C and E can be seen in the lane 

containing DKG after HVPE at pH 6.5. As these compounds had not separated from DKG 

during HVPE at pH 2.0, it is assumed that they have been produced on the paper in the time 

between running at pH 2.0 and running at pH 6.5, and did not originate from the watercress 

sample itself. 

The presence of L-Tar after 2D HVPE was unclear. The region where L-Tar would be 

expected to be, the top left-hand side of the paper, does not clearly show a distinct spot. 

However, the level of L-Tar present was fairly low (as in Figure 93), and there is a pale 

streak visible in the lane where L-Tar would be expected (Figure 94) which could potentially 

have caused the distortion of any L-Tar present.  

 

3.6.6 Characterisation of WCx, a compound from watercress that indicates 

freshness 

Further characterisation of WCx required the scaling up and purification of the compound. 

Watercress purchased from the supermarket was used to achieve this. Interestingly, WCx 

was not present in watercress that was grown in Portugal (Figure 95 C and D). Vitacress 

imports salads from Portugal during the winter months. 

The watercress grown in Portugal is the same variety as that grown in UK, but the 

Portuguese-grown watercress is then transported to the UK by road, meaning that the leaves 

could have been harvested more than a week before arriving in the supermarket, compared to 

just a couple of days with the UK-grown watercress. This further supports the usefulness of 

this compound as an indicator of freshness, or time since harvesting. WCx was present in 

watercress obtained directly from farms in Hampshire that had not been through the washing 

process in the factory (as in Figure 91 and Figure 93) as well as in watercress purchased 

from the supermarket, that had been grown in UK and had undergone the washing process 
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(Figure 95 A and B). ). It was also present in wild watercress collected from a stream in the 

Pentland Hills, near Edinburgh (Figure 95 A and B). 

 

Figure 95: WCx is present in UK-grown watercress extracts but not Portuguese-grown watercress 
extracts. Extracts of watercress in 0.5% formic acid (1 g in 5 ml) were taken from unwashed watercress 
harvested from Vitacress, wild watercress harvested from a local stream, and watercress purchased from a 
local supermarket, that was grown in the UK (UK shop). Samples (100 µl) were run by HVPE at pH 6.5 (A) 
and pH 2.0 (B). Extracts of watercress purchased from a local supermarket that was grown in Portugal was 
also analysed by HVPE at pH 6.5 (C) and at pH 2.0 (D). All the papers were stained in silver nitrate and the 

position of the internal marker orange G was marked with pencil circles. 



175 
 

The compound of interest (WCx) was purified by preparative HVPE from both wild 

watercress and UK-grown shop-bought watercress. The compound was eluted from paper, 

and re-run analytically by HVPE to ensure the purity of WCx (Figure 96). Silver nitrate 

staining revealed the purified preparations of WCx to be relatively pure and free of other 

compounds. 

 

 

 

Figure 96: HVPE of purified WCx. Samples of watercress extract (in 0.5% formic acid) 
were run preparatively by HVPE at pH 6.5. The position of WCx was determined by the 
use of silver nitrate stained marker lanes, and the WCx was eluted from the paper in 
water. Samples of the crude extract and of the purified WCx from both wild watercress 
and shop-bought watercress, grown in UK were run by HVPE at pH 6.5. The paper was 
stained in silver nitrate and the position of orange G marked with pencil circles. 
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Samples of the purified WCx were run analytically by HVPE in pH 6.5 and pH 2.0 and 

stained in both silver nitrate and Wilson’s dip (Figure 97). Wilson’s dip stains reducing 

sugars, and a non-reducing, so non-staining, marker of Lb acid (lactobionic acid, a 

disaccharide of galactose and gluconic acid) was included (blank lanes labelled Lb acid in 

the markers sections, Figure 97). Wilson’s dip did not stain WCx (as seen by the blank lanes 

labelled WCx stained in Wilson’s dip in Figure 97). This shows that WCx is not a reducing 

sugar. 

 

HVPE at pH 2.0 revealed that the sample of WCx contained two distinct compounds, as seen 

by the two silver nitrate stained spots (Figure 97 A). The spot corresponding to WCx on the 

paper run by HVPE at pH 6.5 appears to show just one silver nitrate stained spot (Figure 97 

B). However, HVPE at pH 6.5 was run for a shorter time than HVPE at pH 2.0. A sample of 

WCx was run by HVPE at pH 6.5 for a longer time to allow the potential two compounds the 

greatest chance to separate. Two distinct compounds were seen after an extended run by 

HVPE at pH 6.5 (Figure 98). The mobility of these compounds remains the same when run 

at pH 2.0 and pH 6.5, with mOG values of 0.53 and 0.57. 

Figure 97: Wilson’s dip staining of WCx. Purified (as described in Figure 96) samples of WCx (from 
shop-bought watercress) were run by HVPE at pH 2.0 (A) and at pH 6.5 (B). Duplicate samples of WCx 
were loaded onto each paper. One section of each paper was stained in silver nitrate, and the other 
section in Wilson’s dip. The position of the internal marker orange G was marked with pencil circles. 

Mal=maltose and Lb acid=lactobionic acid. 
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The negative charge of WCx was due to the presence of an acidic group, such as an oxalyl or 

sulphate group, which could be bound to a sugar moiety via an ester bond. Ester bonds are 

unstable in alkali, so in order to test for the presence of an ester bond within the compound, 

WCx was treated with NaOH, and the products analysed by HVPE at pH 2.0 (Figure 99).  

Figure 98: WCx separates into two compounds after HVPE at pH 6.5. WCx 
was purified from an extract of wild watercress by preparative HVPE followed by 
elution from the paper in water. A sample of purified WCx was run by HVPE at 6.5 
for an extended length of time, until the internal marker of orange G (marked with 
pencil circles) had travelled ¾ the length of the paper. The paper was then 
stained in silver nitrate. 
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Staining in silver nitrate revealed that WCx was diminished upon NaOH treatment, but not in 

the control treated with HOAc. Intriguingly, there were no obvious silver nitrate stained 

spots present in the lane containing the sample treated with NaOH to indicate what WCx had 

broken down into. Interestingly, the faster moving WCx spot (mOG of 0.57) seemed to 

remain stable in the presence of HOAc, whereas the slower moving compound (mOG of 

0.53) had vanished upon HOAc treatment.  

 

Duplicate samples of WCx were stained in bromophenol blue, a pH indicator in which acidic 

compounds would be visible as yellow spots, as seen by the markers of OxA and Glc-6-P 

(Figure 99). No acidic compounds at all in any of the WCx samples (either the control or the 

NaOH and HOAc treated samples) were detected using this stain. It is possible that the 

Figure 99: Saponification of WCx. Purified WCx samples were incubated with NaOH (0.1 M), HOAc (0.2 
M) or neither (control) for 16 hours at 20ºC. The samples were neutralised before running by HVPE at pH 
2.0. Duplicate samples were loaded onto the paper. One half of the paper was stained in silver nitrate, and 
the other half in bromophenol blue. The position of orange G was marked with pencil circles. 
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bromophenol blue stain was not sensitive enough to detect any acidic moieties present in the 

WCx samples, although OxA was detectable down to 3.125 µg.  

Purified samples of WCx were run by TLC and stained in a selection of reagents (Figure 

100). Molybdate is a general stain, and sensitive to most functional groups, whereas thymol 

stains sugars. A band from WCx was visible on the TLC sections stained in molybdate and 

thymol (labelled WCx a; Figure 100). Interestingly, staining in ninhydrin revealed a band at 

a different position (labelled WCx b), suggesting that one of the compounds contains an 

amine group. A band at the corresponding place in the TLC sections stained in thymol and 

molybdate was not present. 

WCx (purified by preparative HVPE and subsequently eluted from the paper in EtOH) was 

analysed by negative ion electrospray mass spectroscopy. The spectrum obtained contained 

numerous peaks with m/z values ranging from 311.2 to 492.1 (Figure 101). The number of 

peaks in this spectrum could be due to contaminating compounds present in the sample, for 

Figure 100: TLC analysis of WCx stained in thymol, molybdate and ninhydrin. 
Purified samples of WCx (10 µl) were loaded onto a silica-gel TLC plate. The TLC plate 
was developed in a solvent containing BuOH:HOAc:H2O (in a ratio of 2:1:1). The plate 
was then sliced into three sections, each containing WCx and a selection of marker 
compounds. One section of the plate was stained in molybdate, one in thymol and one 
in ninhydrin. 
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instance compounds from the paper that were co-eluted with WCx. The numerous peaks 

could also represent fragments of WCx that have been broken down either during extraction 

from watercress itself, or during the analysis.  

In terms of the elemental make-up of WCx, previous experiments have demonstrated that the 

compound(s) contain a sugar-like moiety, as deduced by staining in silver nitrate and thymol, 

and perhaps the presence of an amine group in one WCx compound, as demonstrated by 

staining with ninhydrin. Although WCx is known to be an acidic compound (evidenced by 

its mobility during HVPE), staining with bromophenol blue did not reveal any acidic 

moieties. However, the loading could have been below the level of detection for this stain. 

 

 

 

Watercress, among other members of the Brassicaceae, is known to contain high levels of 

glucosinolates. These are a group of organic compounds containing a glucose moiety, linked 

to a sulphate group via sulphur and nitrogen (Figure 102) (273). One possible identity of 

WCx, from numerous other possibilities, could maybe be a glucosinolate; the sulphate group 

present in glucosinolates could account for the mobility of WCx when analysed by HVPE. 

Figure 101: MS analysis of purified WCx. A sample of WCx, purified by preparative HVPE at pH 6.5, 
followed by elution from paper in EtOH, was analysed by negative ion electrospray mass spectroscopy. 
The m/z value for each peak is displayed. 
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Glucosinolates are known to degrade into isothiocyanate compounds, catalysed by the 

enzyme myrosinase (274). There are hundreds of glucosinolates and related compounds 

already identified from plants (274,275). The most common glucosinolate in watercress 

seeds, though not necessarily leaves, is gluconasturtiin (276), so-called because of its initial 

discovery in watercress (Nasturtium officinale).  

The mass of gluconasturtiin (Figure 102 C) is 423, so the peak with an m/z value of 422 

(Figure 101) could potentially correspond to this compound (277). The peak at 438 (Figure 

101) could maybe be attributable to glucobarbarin (278) (Figure 102 B), another 

glucosinolate known to be present in samples of watercress (279), although this 

glucosinolate is less common than gluconasturtiin, so glucobarbarin is not very likely to be 

present at high levels in WCx, if at all.  Glucobarbarin differs from gluconasturtiin by a mass 

of 16, corresponding to the replacement of a hydrogen with a hydroxyl group (Figure 102).  

 

Figure 102: Structures of glucosinolates. The general structure of glucosinolates is shown 
(A) with R representing a variable side chain. The structures and chemical formula of three 
glucosinolates, glucobrassicin (B), glucobarbarin (C) and gluconasturtiin (D) are shown, with the 

side chains indicated in blue. 
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The rest of the peaks present on the spectrum (Figure 101) did not correspond to any 

reported m/z values for compounds isolated from watercress, including other glucosinolates 

such as glucobrassicin (Figure 102 B), which has a mass of 448, so an expected m/z value of 

447.  

TLC analysis of WCx revealed a compound containing an amine group, which resolved from 

a compound containing a sugar group (Figure 100). Glucobrassicin contains an amine group, 

which would be visible when stained with ninhydrin (Figure 102 B). There is a small 

possibility that WCx contained a compound derived from glucobrassicin. Derivatives of 

glucobrassicin are known from watercress, such as 4-methoxy-glucobrassicin and 4-

hydroxy-glucobrassicin, with predicted m/z values of 477 and 464 respectively (280). 

Although neither of these compounds correspond with the m/z values obtained during MS 

analysis (Figure 101), it is possible that WCx contains a compound related to glucobrassicin, 

which was able to be stained by ninhydrin. Equally, the ninhydrin stained spot after TLC 

could correspond to a completely different compound containing an amine group and not be 

a glucosinolate at all. 

Previous studies reported a glucosinolate compound from another member of the 

Brassicaceae (woad, Isatis tinctoria L.) that had the same mobility after HVPE at both pH 

7.0 and pH 2.0 (281), much like the compound(s) currently studied, albeit at pH 6.5 and pH 

2.0. Several glucosinolate compounds isolated from Redea media, also a member of the 

Brassicaceae, were found to migrate towards the anode during HVPE at pH 6.5, and were 

detected by silver nitrate staining (282), similarly to WCx. 

To summarise, watercress has high levels of ascorbate, but this diminishes relatively quickly 

upon post-harvest storage, including undergoing hydrolysis to DKG via DHA, as detected by 

silver nitrate staining after HVPE.  

An unknown compound(s) (WCx) of high abundance in fresh watercress samples, but which 

diminishes upon storage and was absent from imported watercress, could serve as an 

indicator of freshness. Further analysis of WCx hinted to the possibility that it could be a 

glucosinolate-related compound. This is supported by the electrophoretic mobility of WCx, 

as well as its ability to be stained in silver nitrate, thymol and ninhydrin. The m/z values 

obtained from MS analysis suggest that WCx may include gluconasturtiin and glucobarbarin 

(although this is fairly unlikely to be present at such high concentration), and potentially 

further as yet unidentified glucosinolate-related compounds. Alternatively, WCx may not be 

a glucosinolate compound at all, but it could belong to a completely different class of 
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compounds. Further experiments would be needed to before making any conclusive 

statements about the identity of WCx. NMR analysis of the compounds was attempted, but 

the preparation proved too impure, so no meaningful data could be obtained (data not 

shown). 
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Discussion 

4.1 Overview 

Ascorbate is a very well-known and much studied compound, but the degradation pathways 

of this important antioxidant have yet to be fully elucidated. In-depth knowledge of the 

degradation pathways of ascorbate is vital, as there is much interest in increasing vitamin C 

content of foods (283), and this could be achieved by preventing its degradation. 

Furthermore, several derivatives of AA have been detected but have yet to be identified, and 

some of these, such as PxI (discussed in the current study), which has been shown to inhibit 

peroxidase activity (84), have been shown to have important biological roles. It is plausible 

that other AA derivatives are also biologically relevant, for instance the potential role of OxT 

and cOxT in the modification of cell wall components and sugars has been reported in the 

current study.   

This project has added valuable knowledge on ascorbate degradation, including the 

characterisation and identification of previously uncharacterised compounds. More in-depth 

information about the oxidation pathways of DHA and DKG with a variety of different ROS 

has also been gained. A novel enzyme activity involving the transfer of oxalyl groups from 

OxT, a major oxidation product of both DHA and DKG, to sugar acceptor substrates has 

been identified, as well as the addition of oxalyl groups to cell wall material in vivo. 

In addition to this, the degradation of ascorbate has been monitored in salad leaves 

throughout the industrial washing process and subsequent post-harvest storage. Spinach 

leaves were more susceptible to the loss of ascorbate than other leaves tested, and certain 

stages of the washing process were found to cause significant ascorbate loss. This is of 

commercial interest, as ascorbate has been reported to have numerous health benefits 

(reviewed in (13) and (284)), and so increasing the vitamin C content of salads is desirable. 

Increasing the ascorbate content of salads could be achieved by increasing the biosynthesis 

or decreasing the catabolism of ascorbate. This could be achieved by genetic modification, 

but the commercial production of genetically modified crops is not currently permitted in the 

UK. Therefore, altering either growth conditions or post-harvest processes represent a more 

feasible means of increasing ascorbate content of salads. The current study focussed on the 

degradation of ascorbate during post-harvest processing and storage of salads, with the aim 

of identifying particular processes contributing to the degradation of ascorbate, which could 

be altered in future to reduce this loss within salads.  
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The plant apoplast is an oxidising environment, and the site of production of H2O2 from 

numerous sources, including NADPH oxidases. This H2O2 may require detoxification to 

protect the plant cell, and ascorbate as the predominant low-molecular weight antioxidant 

present in the apoplast acts to do this. The present study has added valuable knowledge of 

the oxidative pathways of AA degradation products DHA and DKG under apoplastic 

conditions in the presence of various different ROS, which could be present in the apoplast. 

A signature of AA oxidation products for each different ROS has been described, potentially 

allowing the deduction of the major ROS acting to oxidise DHA or DKG. The major product 

detected was OxT, which has previously only been demonstrated to occur in the apoplast of 

rose cell-suspension culture, whereas in this study it was detected in planta, in spinach 

leaves, for the first time. Oxidative pathways were found to predominate, compared to 

hydrolysis, during the commercial washing of salad leaves, with the oxidation product OxA 

being the major product from the loss of AA. Mechanical stress, leading to oxidation was 

found to be a major contributor to the loss of AA during the industrial washing process, 

therefore a more gentle approach to washing salad leaves, especially spinach, would be 

advised.  

The current study has also described a biological role for OxT; a novel acyltransferase 

activity localised to the cell wall was found to transfer the oxalyl group from OxT to sugar 

compounds such as glucose, and could potentially have a role in the modification of cell wall 

components by adding oxalyl side-groups. 

As well as oxidation, DHA can also undergo hydrolysis, initially forming DKG. DKG can 

then be further degraded, under non-oxidative conditions to form newly identified 

compounds carboxy-l-xylonate and carboxy-l-xylonolactone. Although these compounds 

have been demonstrated to be formed in vivo, they do not serve an obvious biological role, 

and remain in the apoplast.  

Overall this study has added valuable knowledge on the degradation of AA in the apoplast 

and whole salad leaves, and highlighted novel enzyme activities associated with AA 

degradation products. 
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4.2 The oxidation of DHA and DKG 

The initial degradation steps of AA, oxidation to DHA and subsequent hydrolysis to DKG, 

are well characterised (33,71,253). However, the further oxidation of both of these 

compounds (DHA and DKG) had not been fully elucidated, and the fate of these compounds 

in the presence of ROS other than H2O2 had not been previously studied. 

The DHA oxidation products, OxT, cOxT and OxA had previously been reported to be 

formed in a ratio of 6:1:1 (1). However that study used H2O2 as the oxidising reagent, and 

the current study showed that the ratio of the oxidation compounds alters with different ROS. 

The reaction of DHA with O2
•–

 produces very little cOxT, but much more OxA (necessarily 

with the production of ThrO). The amount of 
•
OH present in the reaction with DHA also 

affected the ratio of cOxT to ThrO. 

Interestingly, earlier studies had noted that there are at least two, if not three, interconverting 

isomers of OxT, with the 4-OxT epimer dominating at equilibrium (2); however, it has now 

been shown that different ROS seem to lead to a different predominant isomer of OxT. This 

was determined by HVPE at pH 2.0, which separates the isomers. Incubation of DHA with 

H2O2 produced more of the fastest-moving isomer of OxT (presumed to be 4-OxT), whereas 

incubation with O2
•–

 favoured the slowest-moving isomer (presumed to be 3-OxT). 4-OxT is 

presumed to be more mobile than 3-OxT during HVPE at pH 2.0 because the two potential 

negative charges are further apart in 4-OxT, and the closer the charges, the more one will 

suppress the ionisation of the other (Figure 103). The third isomer of OxT, 2-OxT, is 

presumed to be less stable than the other isomers, because of the proximity of the two 

negatively charged grouped, thus 2-OxT is expected to convert to the other isomers rapidly 

in solution (2).  The reason for the difference is unclear, but speculatively it could be due to 

different ROS forcing DHA down slightly differing oxidative pathways, resulting in varying 

oxidation products. 

Singlet oxygen, the only non-radical ROS tested in this study, showed the most divergent 

oxidation profile of products derived from DHA, including an unknown compound with a 

mobility slightly below that of ThrO when analysed by HVPE at pH 6.5. Analysis of these 

samples by HVPE at pH 2.0 showed the compound moving in the same region as a 

compound previously reported to be a derivative of DKG, known as compound H (2). 

Compound H has been suggested to originate from DKG, so it is likely that during the 

present study compound H also originated from DKG rather than DHA. This could have 

occurred because of the long incubation time of this particular experiment (up to 24 hours), 
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which allows time for the hydrolysis of DHA to occur, forming DKG, which may then 

potentially react with singlet oxygen generated from the photosensitiser dye in the presence 

of light. 

Some oxidation products were found to only occur when the starting substrate was DHA, 

such as cOxT, and some only from DKG, such as compound H, mentioned previously 

(Figure 103). DHA, an oxidation product of AA itself, is presumably more likely to occur in 

an oxidising environment than DKG, as DKG is produced by the hydrolysis of DHA and 

DHA is unlikely to undergo hydrolysis in an oxidising environment, as the DHA would be 

preferentially oxidised. This would suggest that the oxidation products arising from DHA are 

perhaps more likely to occur more frequently and in greater quantities in vivo than the 

products arising from DKG. However, as the plant cell is an aqueous environment, some 

hydrolysis of DHA to DKG would be expected, and DKG has been demonstrated to be 

formed in cauliflower (285) and in the apoplast of rose cell-suspension cultures (72). The 

presence of DKG within the apoplast, as well as other cellular compartments, would provide 

an opportunity for DKG oxidation, should ROS be generated in the vicinity of DKG. 

Further elucidation of the separate oxidation pathways of DHA and DKG has been achieved, 

including the novel observation that the degradation pathways of DHA and DKG vary 

depending on the type of ROS present. This could potentially have applications indicating 

the nature of oxidative stress that a plant is experiencing, based on the signature of the 

oxidation products formed from DHA. For example high levels of cOxT in vivo may indicate 

oxidation of DHA by H2O2; equally, high levels of compound H may indicate the oxidation 

of DKG by O2
•–

.  In vivo ROS generally occur together, and many ROS react to form other 

ROS, such as the production of 
1
O2 from ozone (152), and 

•
OH from H2O2 and O2

•–
 (110). 

This can create uncertainty in experimental settings as to which ROS is contributing to the 

oxidative stress in vivo, so analysis of AA oxidation products in this situation could help to 

shed light on this valuable information. 
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Figure 103: Proposed degradation pathways of ascorbate in vitro. The type of reaction is written above or 
beside each arrow. The reactions forming compound H and PxI are unknown, so these arrows are not labelled. 
The carbon corresponding to the C-1 of the original AA is labelled with a bold C.  
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4.3 Characterisation of non-oxidative derivatives of DKG 

Two derivatives of DKG (compounds C and E) were originally identified during the 

degradation of [
14

C]AA in rose cell-suspension culture (72). Further work determined that 

these compounds were interconverting, with compound C representing a stable end-product 

of DKG catabolism in vivo (1). Hypothetical structures for both compounds C and E were 

proposed (1) and these structures have been confirmed in the current study, by MS and NMR 

spectroscopy. Compound E was identified as 2-carboxy-L-xylonate, and compound C was 

determined to be a mixture of two epimers, 2-carboxy-L-xylonolactone and 2-carboxy-L-

lyxonolactone (Figure 103).  

HVPE at pH 2.0 revealed the existence of previously undetected compounds along with the 

original C and E among the products of DKG formed by alkali treatment of DHA in vitro, 

including the separation of the two epimers of compound C. Xylonic acid (or potentially 

lyxonic acid, as these compounds are presumably indistinguishable by HVPE owing to their 

identical charge : mass ratios) was found to be present in preparations of compounds C and 

E. Xylonic acid and lyxonic acid are known to be produced from DKG in rat kidneys (4), but 

are not known to be produced by plant cells. Further investigation would be required to 

determine whether xylonic or lyxonic acid are ascorbate derivatives in plant cells rather than 

in vitro as in the current study. Xylonolactone is a precursor of xylonic acid in bacteria 

(Pseudomonas fragi), and this conversion is catalysed by an enzyme, xylonolactonase (286). 

Delactonisation of compound C (carboxy-L-xylonolactone) to compound E (carboxy-L-

xylonate), followed by decarboxylation would produce xylonic acid along with CO2, thus 

suggesting that compounds C and E can act as precursors to xylonic acid.  

The compound formerly named C*, and since characterised as xylonic (or lyxonic) acid was 

originally detected by silver nitrate staining, but was also found to be present in preparations 

of radiolabelled C and E. The labelled carbon corresponds to C-1 of the ascorbate molecule 

from which these compounds originated. The presence of radiolabelled xylonic acid 

demonstrates that the C-1 of ascorbate is still present in this derivative. If compound E were 

the precursor of xylonic/lyxonic acid, then there would be an equal chance of either of the 

two COO
-
 groups being lost during decarboxylation and released as CO2. As only one of the 

groups was labelled, the yield of [
14

C]xylonic acid would be perhaps half of the true yield, as 

if the other COO
-
 group were removed, [

14
C]CO2 would be lost and the remaining xylonic 

acid not detectable. 
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A neutral compound was also detected among the products of DKG degradation formed by 

alkali treatment of DHA, both with silver nitrate staining, and in experiments with 

radiolabelled precursors. The presence of the radiolabelled neutral compound strongly 

suggests that this compound is in fact a derivative of DKG, and not merely an artefact of 

purification by elution from paper. A hypothetical identity for this neutral compound is 

proposed as being a dilactone of compound C. MS analysis did not detect a compound with 

the appropriate theoretical mass (of 174). The inability to detect this mass could be due to the 

very low amounts of this compound that were able to be purified. It is also likely that a 

preparation of this compound could contain contaminants of neutral compounds, such as 

sugars co-eluted from paper in a previous purification step. A further possible identity of a 

neutral compound arising from the degradation of DKG could be xylonolactone, a precursor 

of xylonic acid in bacteria (286), as mentioned previously. Xylonolactone could be formed 

from the decarboxylation of compound C (carboxy-L-xylonolactone), and in fact NaOH 

treatment (which favours delactonisation) of the neutral C and E-related compound produced 

a compound with the same mobility as xylonic acid, suggesting this could be the identity of 

this compound. 

Further degradation products of DKG, separated by HPLC, were previously shown to inhibit 

peroxidase activity, as well as produce H2O2 (84). One particular fraction as separated by 

HPLC was demonstrated to inhibit peroxidase activity (A. Kärkönen and S.C. Fry, 

unpublished). Steps were taken to purify and characterise this unknown DKG-derivative 

(named PxI). Unfortunately, the compound proved too unstable, and NMR spectroscopy was 

unsuccessful in identifying this compound. The possibility that the identity of PxI could be 

compound C or E was tested, but the HPLC profiles of compounds C and E differed greatly 

from the profile of PxI, suggesting PxI is not in fact compound C or E.  

If PxI could be stabilised e.g. by reducing the possibility for reactions that may be causing 

the degradation of this compound (such as oxidation) or by eluting the compound in a buffer 

found to provide optimum stability, then the characterisation may be more successful, and as 

this compound has been shown to have biological activity then this would warrant further 

investigation in the future. 
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4.4 The fate of ascorbate oxidation products in vitro and in vivo 

OxT, a major oxidation product of both DHA and DKG degradation in vitro, was shown to 

remain in the apoplastic space of spinach cell-suspension cultures rather than be transported 

into the cells as DHA has been demonstrated to do (258). OxT was also fairly stable in the 

medium of spinach cell culture, representing the apoplast, and not hydrolysed to OxA, 

suggesting that spinach cells do not secrete an oxalyl esterase into their apoplast. This was 

not the case in Arabidopsis, as OxT was quickly hydrolysed forming OxA, and ThrO in cell 

cultures. Rose cell-suspension cultures have also been demonstrated to contain an oxalyl 

esterase in the apoplast (72).  

Evidence was obtained for the transacylation of the oxalyl group from OxT to components of 

the cell wall (Figure 104). The incubation of spinach cell cultures with [
14

C]OxT resulted in 

the formation of radiolabelled cell wall material, in the form of AIR. The radiolabelled 

moiety was released in the form of free [
14

C]OxA upon saponification, suggesting it was 

originally bound to the cell wall material via an ester bond. Further investigations into the 

nature of the acceptor substrate for the oxalyl group within the cell wall material proved 

unsuccessful, as the oxalyl ester appeared to be unstable; a radiolabelled compound 

(presumably [
14

C]OxA) was released with or without the treatment of cell wall-degrading 

enzymes, so the in vivo acceptor substrate for the acyltransferase was unable to be identified. 

The addition of an oxalyl side-chain onto cell wall material represents a novel modification 

of cell wall components, adding to the already numerous modifications that cell wall 

polysaccharides, especially pectins, undergo, such as methylation and methylesterification 

(287,288).  

As the donor substrate for this transacylation was OxT, containing only one activated oxalyl 

ester group, then only one oxalyl ester linkage could be formed with cell wall components, 

resulting in the addition of an oxalyl side-chain. If the donor substrate was cOxT instead of 

Figure 104: Example of oxalyl sugar formation via acyltransferase activity. The radiolabelled carbon 
(C-1 from the original [14C]AA used to purify [14C]OxT) is shown by a bold C. 



192 
 

OxT this would theoretically allow the formation of oxalyl diester cross-links between two 

cell wall components, for example polysaccharides. However, difficulties were encountered 

when attempting to purify cOxT, as the compound was not stable during the elution process, 

and a considerable proportion of the original cOxT was converted to the non-cyclic OxT 

form. However, if an improved method of purifying cOxT could be developed then testing 

for the formation of oxalyl cross-links formed from this compound within cell walls would 

be very valuable. The preparation containing a mixture of cOxT and OxT used in the current 

study formed the same products (mainly OxG) as a preparation of pure OxT, therefore it is 

likely that OxT, rather than cOxT, is the preferred substrate for the acyltransferase, and this 

could be determined using a purified cOxT preparation. 

Spinach cell cultures incubated with [
14

C]OxT and an excess of sugar were found to form 

[
14

C]oxalyl sugars (Figure 104), identified by their specific electrophoretic mobilities. Oxalyl 

sugars were not formed in spent culture medium, suggesting that the enzyme (an 

acyltransferase) responsible for this activity was bound to the cell walls rather than free in 

the apoplast. An extract of ionically-bound cell wall material from spinach cell cultures 

showed high acyltransferase activity, determined by the formation of radiolabelled oxalyl 

sugars from [
14

C]OxT and non-radiolabelled sugars. This demonstrates that the enzyme was 

ionically rather than covalently bound to the cell wall. 

The preferred acceptor substrates for the acyltransferase reaction seemed to be small 

molecules such as monosaccharides and disaccharides. Amines and polyamines did not seem 

to be suitable acceptors, and the product formed from the reaction of [
14

C]OxT with GlcN 

suggested that the oxalyl group was transferred onto C-6 of GlcN, rather than the amine 

group itself. Acceptor substrates with readily accessible primary OH groups, e.g. on C-6 of 

Glc, proved to be the most favoured by the acyltransferase. 

It was originally thought that this acyltransferase could be responsible for the transfer of 

oxalyl groups onto cell wall components, as discussed previously. However, when the 

partially purified acyltransferase extract was tested with various polysaccharides, no 

acyltransferase activity was detected. This could be simply due to the methods used, rather 

than the enzyme not acting on these acceptor substrates. In fact, experiments that used 

hemicellulose–cellulose complexes as acceptor substrates for acyltransferase initially 

showed high activity, but this activity was negligible in further experiments with more 

rigorous controls. On the other hand, another reason the later experiments showed lower 

acyltransferase activity could be that the enzyme was slowly denatured during storage, losing 
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the acyltransferase activity. The tantalising results obtained in the initial polysaccharide–

cellulose complex experiments suggest that this would be interesting to follow up. 

Numerous acyltransferases have been identified from plants (206), but the transfer of an 

oxalyl group via the action of an acyltransferase (Figure 104) has not been reported, and thus 

represents a novel enzyme activity. Acyltransferases serve wide-ranging functions in plants, 

for example secondary modifications of phenolic compounds such as anthocyanins (213), 

modifications of lignin (220) and in the growth of root hairs, in which they modify the 

hydrophobicity of proteins, controlling their membrane associations (219). Acyl sugars, a 

product of an acyltransferase reaction, have been previously reported to be formed in plants, 

by the esterification of sugars and fatty acids, and act to protect the plant from herbivory 

(215,289). 

The products (oxalyl sugars) of this novel acyltransferase activity have also not been 

reported, and so are novel compounds themselves. Oxalyl glucose (Figure 104) was found to 

be fairly stable in spinach cell culture, remaining in the apoplast, but the role of such 

compounds in vivo is not yet certain and warrants further investigation.  
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4.5 The degradation of ascorbate in salad leaves  

The post-harvest storage of salad leaves, in terms of nutritional factors such as ascorbate, has 

been fairly extensively studied, but the loss of ascorbate during the washing process itself 

has been much less characterised.  

Spinach leaves were found to be more susceptible to the loss of ascorbate during post-

harvest processing than watercress or rocket leaves. Although cutting has been shown to 

negatively impact the ascorbate content of spinach (223,290), the rest of the washing and 

packing process had not been investigated in terms of ascorbate retention. Many studies into 

post-harvest processing of spinach have involved the effect of storage temperature and 

storage time. 

Experiments have shown that the mechanical stress experienced by spinach leaves during 

washing led to a significant loss of ascorbate, whereas mere submersion of the leaves did not 

significantly affect the ascorbate content. Further investigation demonstrated that ascorbate 

undergoes oxidation during spinach washing, producing OxA. Spinach leaves are known to 

accumulate OxA (176), and OxA can act as an anti-nutrient, as it binds to calcium, 

potentially leading to calcium deficiency and to the formation of kidney stones 

(177,291,292).  

The oxidative stress within leaves is known to be increased with mechanical stress and by 

processes such as cutting prior to the washing procedure (290). OxA is known to be 

produced from AA during the reaction with ROS, as demonstrated in section 3.3 (Figure 

103), although in vitro OxA was a fairly minor product, compared to being the major product 

as observed in spinach leaves. The specific ROS present in the spinach leaves during 

washing is not known, so it may be interesting to investigate the nature of the oxidative 

stress during the washing of salad leaves. 

Pre-harvest factors, such as the growth stage at harvest can also effect the ascorbate content 

of salad leaves (223). This was verified in the current study in which spinach leaves 

harvested at earlier growth stages showed an increased retention of ascorbate during a 10-

day post-harvest storage period. Younger leaves are known to have higher ascorbate levels, 

potentially reflecting the role of ascorbate in plant growth (229). Although the initial levels 

of ascorbate did not differ between the early and late-stage spinach cultivars, it is possible 

that the younger leaves were more efficient at recycling ascorbate, thereby less prone to 

losing it. 
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Late-stage watercress leaves did not show a greater loss of ascorbate than early-stage leaves; 

on the contrary, the 3-week old watercress leaves showed the highest levels of initial 

ascorbate, but all the growth stages tested lost ascorbate at the same rate throughout storage. 

This represents the stage at which watercress is routinely harvested, so suggests that this 

harvest time is optimum in terms of ascorbate content.  

The washing process used by Vitacress Ltd is unusual in the pre-packaged salad business as 

it does not use any chlorine, ozone or other anti-microbial agent; instead the leaves are 

washed only in spring water. Such antimicrobial agents (ozone and chlorine) have been 

previously shown to negatively affect the ascorbate content of salad leaves, including rocket, 

iceberg lettuce and spinach (240-242). The experiments described in section 3.6 on the effect 

of chlorinated water on ascorbate loss in spinach leaves during washing indicate that 

washing in chlorine does not lead to a greater loss of ascorbate.   

Attempts were made to detect degradation products of ascorbate in salad sample extracts. 

Silver nitrate staining was not particularly successful in this venture, as salad extracts 

contained numerous compounds that could be stained, and it was not possible to distinguish 

which of them originated from ascorbate. Also, the extracts contained relatively low amounts 

of AA, and presumably its derivatives, so heavy loadings were required, causing some 

distortion of the mobilities of the compounds present. However, the use of radiolabelled 

ascorbate fed to spinach leaves, which was then monitored throughout the washing process, 

allowed the detection of oxidation products OxT and OxA from ascorbate. It was well 

known that spinach accumulates OxA, and this study provides more evidence for this. 

Although the OxT levels did not alter with the different washing treatments, the presence of 

OxT is still noteworthy, as this is the first demonstration of the presence, or formation, of 

OxT in planta. OxT had previously been found to be produced from radiolabelled ascorbate 

in rose cell-suspension culture. 
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4.6 Compound from watercress that serves as an indicator of freshness 

Samples of watercress extracts run by HVPE showed an abundance of an unknown 

compound, which appeared to decrease during storage. The compound was also absent from 

extracts of watercress imported from Portugal, which would have had a much longer time 

between harvest and being available in the shop than its UK-grown counterparts, providing 

further evidence for the presence of this compound acting as an indicator of freshness. This 

compound was mobile during HVPE at pH 2.0, indicating it must have a very low pKa, 

which is fairly unusual among plant-derived compounds.  

Species within the Brassicaceae, including watercress, are known to contain high levels of 

glucosinolates (274). Glucosinolates are compounds containing a glucopyranose group 

linked via a sulphur atom to a central carbon atom, itself linked via a nitrogen atom to a 

Figure 105: Structure of glucosinolates.  The generalised structure for 
glucosinolates is shown (A). The R group represents a variable side chain usually 
derived from amino acids. Examples of the variable groups of some common 
glucosinolates are shown (B). GSL represents the generalised glucosinolate 
structure.  
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sulphate group, along with a variable side chain (Figure 105 A). The side chain can be 

aliphatic (glucoiberin, Figure 105 B) or aromatic (gluconasturtiin and sinalbin, Figure 105 B) 

including indolic side chains (glucobrassicin, Figure 105 B). The side chains can also be 

categorised according to the amino from which they derive. Aliphatic glucosinolates are 

generally methionine-derived, aromatic structures are mainly phenylalanine-derived and 

indolic side chains are tryptophan-derived (275). 

Over a hundred different glucosinolate compounds have been isolated from plant species 

(275). Within the plant glucosinolates (and their isothiocyanate derivatives) serve protective 

roles, deterring potential herbivores (293,294). However, isothiocyanates can also act as 

attractants for some insect species (295). The distinctive flavour of watercress is due to the 

presence of glucosinolates, such as gluconasturtiin (phenylethyl glucosinolate, Figure 105 B) 

(296,297). Glucosinolates are also known to show considerable health benefits in humans 

(298-300). For instance, glucosinolate-derivatives have been shown to have anti-cancer 

properties, and protect against neurological diseases (298,301).  

The compound(s) known as WCx in the current study has been very tentatively identified as 

a glucosinolate (Figure 105) or related compounds. Rocket (another Brassicaceae species) 

extracts also showed a compound co-migrating with WCx, so it is possible that other salad 

samples contain this same compound that may serve as an indicator of freshness.  

MS analysis showed several peaks with m/z values varying from 311 to 492. Two of these 

peaks correspond to the expected m/z values of glucosinolates known to occur in watercress, 

gluconasturtiin (Figure 105) and glucobarbarin (277-279), suggesting that WCx possibly 

includes, most likely among other compounds, these two glucosinolates. 

The mOG of WCx was identical at pH 6.5 and pH 2.0, showing that it has a strongly acidic 

component, which could be due to a sulphate group (Figure 105). This was also the case with 

a previously identified glucosinolate which was found to have identical mobilities when 

analysed by HVPE at pH 7.0 and pH 2.0 (281). This indole compound, identified as 1-

sulpho-3-indolyl-methyl glucosinolate, was also detected by staining in silver nitrate, as with 

WCx. 

The side chains of glucosinolates are derived from amino acids (302). TLC analysis of WCx 

showed a ninhydrin-stained band separated from the thymol-stained bands. It is plausible 

that an amino acid-derived side chain could have been cleaved from the main glucosinolate 

structure during the extraction process, thus resulting in a differently mobile compound 

appearing after TLC analysis. Alternatively, the side chain of glucobrassicin (Figure 105) for 
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example would stain with ninhydrin, whilst retaining the acidic sulphate group ensuring its 

mobility during HVPE, so it is possible, although by no means certain, that a component of 

WCx is a glucosinolate with a similar side chain to glucobrassicin. 

The extraction methods, in 0.5% formic acid or 0.5% oxalic acid, used in the current study 

were not optimal for the extraction of glucosinolates, rather they were optimised for the 

extraction of ascorbate, so it is not clear whether glucosinolate compounds would have been 

stable during the extraction process. It is known that glucosinolates are broken down into 

glucose, sulphate and isothiocyanates via myrosinase enzymes (303); however, enzymes are 

very unlikely to still be active in formic acid, so it is unlikely that any potential degradation 

of WCx, whether or not it is a glucosinolate, would have occurred via enzyme activity. 

Equally, extraction in dilute cold acid would be unlikely to contribute to the degradation of a 

glucosinolate. 

With this knowledge, further investigations could be conducted to discover if WCx is in fact 

a glucosinolate compound, such as treating WCx with myrosinase, which should produce a 

negatively charged isothiocyanate, which would be easy to determine by HVPE analysis, and 

glucose. It would be interesting to investigate this compound further, both because of its 

apparent indication of freshness, and because of the potential health benefits of 

glucosinolates. Equally it is likely that WCx comprises a compound unrelated to 

glucosinolates and further experiments would be required to make a more informed 

prediction of the identity of WCx. 
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4.7 Summary 

Overall, this project has illuminated the many-pronged degradation pathways of ascorbate. 

The oxidation pathways as affected by ROS and starting substrate (DHA or DKG) have been 

more thoroughly elucidated. Equally, the hydrolysis pathway of DHA, via DKG, has been 

further defined, including by the characterisation of compounds C and E, now known to be 

2-carboxy-L-xylonolactone (and its epimer 2-carboxy-L-lyxonolactone) and 2-carboxy-L-

xylonate respectively. Other C and E-related compounds are proposed to be xylonic (or 

lyxonic) acid, and potentially either xylonolactone or carboxy-xylonodilactone. 

The fate of the major oxidation product of DHA, OxT, was studied in vivo. This led to the 

discovery of a novel acyltransferase activity, which was able to be eluted from spinach cell 

walls. The addition of oxalyl groups onto sugar molecules produced novel metabolites, 

which may have important roles within the plant, potentially as signalling molecules or 

acting to protect the plant from herbivory, as is the role of already characterised acyl sugars. 

The role of the novel oxalyl sugars in the plant requires further study.  

Within salad plants, spinach leaves were found to be most susceptible to ascorbate loss 

during commercial washing practices. This loss of ascorbate was mainly due to mechanical 

damage, which potentially increases oxidative stress within the leaf, leading to an increase in 

the OxA produced from AA. Modifying the washing process to reduce the mechanical 

damage of spinach leaves would be advisable, and likely to lead to an increase in ascorbate 

content of the spinach leaves throughout post-harvest storage. 

A further interesting finding was that of a compound (WCx) whose levels within leaves 

corresponded to the ‘freshness’ of watercress. Attempts to identify this compound were not 

completely successful, but there is a small possibility that it belongs to the glucosinolate 

group of compounds, and WCx preparations are likely to include gluconasturtiin and 

glucobarbarin. These compounds themselves have considerable health benefits, so further 

investigation into these compounds would be very valuable.  

Overall the current study has added valuable insights into the degradation, both oxidative 

and non-oxidative, of ascorbate in vitro and in harvested salad plants, providing useful 

information for both basic research and industrial applications. Intriguing novel functions of 

ascorbate oxidation products have also been proposed, further highlighting the role of 

ascorbate in plant growth and metabolism. 
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