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Abstract

Infections with parasitic helminths are counted as neglected tropical
diseases; they infect millions of people worldwide, causing high morbidity
and economic loss. Many parasites establish long lasting infections in the host
by blocking immune recognition, activation and effector pathways. To allow
in depth research on their modes of immune evasion, several mouse models
for parasitic helminth infections have been established. Heligmosomoides
polygyrus for example is a gastrointestinal nematode of rodents exhibiting a
wide spectrum of immunomodulatory effects, mediated in part by soluble
molecules released by adult worms in vitro, the excretory/secretory products
(HES). HES is a potent inhibitor of dendritic cell (DC) activation by Toll-like
receptor (TLR) ligands, completely abolishing LPS induced IL-12 production
and reducing the upregulation of cell surface activation markers. As of now,
neither the modulatory molecule nor its mechanism of action are known.

Here, the effect of HES on TLR ligand induced DC maturation was
characterized in considerably more detail compared to previous publications.
It could be shown to inhibit DC maturation induced by various TLR ligands,
on both protein and mRNA levels. These effects were comparable in both
C57BL/6 and BALB/c derived cells; in contrast to this HES differentially
affected alternative activation of BMDC from these two mouse strains.

Although for most of the experiments GM-CSF differentiated BMDC were
used, HES also inhibited LPS induced activation of splenic CD11c+ cells as
well as the activation of all three populations described in Flt3-L differentiated
BMDC - pDCs, CD11b+ cDCs and CD24+ cDCs. Furthermore, it could
be shown here that HES also inhibits LPS induced maturation in human
monocyte derived DCs.

In the search for the component in HES responsible for its inhibition
of TLR ligand induced DC maturation, exosome depleted HES rather than
exosomes was inhibitory, and the effect was heat labile. This lead to the
conclusion that the modulatory molecule has a protein component which
is indispensable for its effect; following this reasoning HES was subjected

i



to fractionation, with subsequent analysis of the fraction protein contents
by mass spectrometry. The top nine candidate proteins were expressed
recombinantly; however, the recombinants were not able to inhibit LPS
induced DC activation.

In parallel, experiments to elucidate the mechanism by which HES
inhibits TLR ligand induced DC maturation were performed. This led to the
conclusion that HES induces changes in the cells that, while not affecting the
induction of signalling downstream of TLRs, do impair its maintenance.

As a complement to these experiments, the transcriptomes of LPS and
LPS+HES treated cells eight hours after LPS stimulation were compared.
This revealed that transcripts encoding a number of transcription factors
inducing the expression of activation markers after TLR ligation were reduced
upon treatment of cells with HES, as were the transcript levels of IRAK2,
a kinase necessary for persistent signalling. In addition, HES increased
the transcript levels for several factors known to negatively regulate DC
maturation, including ATF3.

Furthermore, this analysis revealed changes in transcript levels of factors
like HIF-1α , indicating an even greater reliance on aerobic glycolysis if cells
were treated with HES, in addition to hints at increased ER and oxidative
stress.

In conclusion, this work narrows down the list of potential DC modulators
in HES, gives a first insight into changes in DC metabolism induced by HES
and sheds light on the role of a number of signalling pathways with important
roles in DC activation as targets of DC inhibition by HES.
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Lay Summary

Parasitic helminths infect millions of people worldwide, and can cause
severe symptoms; infections of animals are equally problematic, as they cause
great economic loss. These worms have developed a number of ways to avoid
the immune response of their hosts, including inhibiting the activation of
the cells responsible for recognizing infectious agents and activating specific
immune reactions. This effect is mediated by factors the parasites produce
and secrete. Finding the specific component in these parasite products and
how it affects immune cells was the aim here, as it could be exploited for the
development of treatment strategies for a number of different conditions.

To find the component in question, methods to identify specific proteins
were used, and the most promising candidates produced in the laboratory.
These top candidates did not reproduce the effect, but a number of further
possibilities are yet to be tested.

In addition, by analysing changes within the cells that lead to their
activation, insights into how the parasite affects these cells could be gained
as well.

Finally, these effects could not only be seen in mouse, but also in human
cells, showing that this research could indeed be useful for drug development.
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Chapter 1. Introduction

CHAPTER1
Introduction

1.1 Helminths

Infections with helminths are a major health problem worldwide. They are counted

as neglected tropical diseases as they affect large numbers of people mostly in the

developing countries and living in extreme poverty. Fig. 1.1 is a map produced

by the World Health Organization for the year 2014, showing the proportion of

children in a given country needing to receive preventative chemotherapy for soil-

transmitted helminthiases (STH) alone, which indicates the disease burdens in these

countries. According to the WHO, more than 1.5 billion people worldwide are

infected with STH, which is over 20% of the world’s population (WHO fact sheet:

http://www.who.int/mediacentre/factsheets/fs366/en/, as of April 2016).

Helminths, rather than causing the death of their hosts, usually lead to long

lasting, chronic infections. The high morbidity is due to the effects of this long

term infection, especially if a person is infected by a large number of parasites.

STH for example can cause severe anaemia and malnutrition, as they feed on host

tissues or blood in the intestine, causing intestinal bleeding and malabsorption of

nutrients (Crompton and Nesheim, 2002). In pregnant women, helminth infections

decrease the birth weight of infants and increase neonatal mortality (Christian et

al., 2004). Chronic infections in children were shown to impair their physical and

intellectual development, leading to a reduced performance in school. In general,

helminth infections decrease worker productivity, leading to massive economic losses

(Crompton and Nesheim, 2002).

In addition to their effects on humans, helminths also infect livestock. This

leads to increased costs in treatment of infected animals or to prevent infections,

and decreased productivity in addition to increased mortality of livestock (Miller and

Horohov, 2006).

These direct effects are not the only problem caused by helminths, as these
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High (>2/3)
Moderate (1/3-2/3)
Low (<1/3)

No data available
No PC required
Not applicable

Figure 1.1: Proportion of children (1-14 years of age) in the country requiring
preventative chemotherapy (PC) for soil-transmitted helminthiases, worldwide,
2014. Indicated are countries where less than a third (low), between one and two
thirds (moderate) and more than two thirds of children (high) needed to receive PC in
the year 2014. Adapted from the WHO map gallery: http://gamapserver.who.int/
mapLibrary/Files/Maps/STH_2014.png (as of April 2016)

parasites also alter immune responses to other agents. The geographical distribution

of diseases like tuberculosis (TB), malaria and HIV for example overlaps significantly

with that of helminth infections (Salgame et al., 2013). In tuberculosis infected

individuals, co-infection with helminths impairs IFNγ production, probably in a Treg

dependent manner, and exacerbates disease (Resende Co et al., 2006; Wammes et al.,

2010). Additionally, infection with helminths might increase the risk of contracting

TB upon exposure and for it to progress to active disease, due to the impaired

TB specific immune responses (Babu et al., 2009; George et al., 2013; Salgame et

al., 2013; Verhagen et al., 2012). In co-infections with Plasmodium species, the

intensity of helminth infection seemed to generally positively correlate with increased

Plasmodium parasitemia (Degarege et al., 2009; Mulu et al., 2013a). Their effects on

malaria pathology however seem to vary, with some reports demonstrating a positive

correlation between helminth burden and severity of malaria (Le Hesran et al., 2004)
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but others showing helminths to alleviate malaria pathogenesis (Degarege et al., 2009;

Lyke et al., 2005). The effects of helminth infection on HIV seem to be two-sided as

well, as they can both impair HIV progression in the early stages of infection thanks

to their effects on innate immune cells (Salgame et al., 2013), but also contribute to

higher infection risks (Downs et al., 2011; Jourdan et al., 2011; Kjetland et al., 2006)

and increased viral load in the later stages of infection (Mulu et al., 2013b; Wolday

et al., 2002).

Furthermore, helminth infections hamper disease prevention efforts, as they

interfere with vaccination. This has been shown for example in children infected

with Ascaris lumbricoides who received an oral cholera vaccine (Cooper et al., 2000),

in study subjects infected with Schistosoma mansoni before vaccination using tetanus

toxoid (Sabin et al., 1996) or in people generally infected with intestinal helminths

that received the BCG vaccination against tuberculosis (Elias et al., 2001). In each

of these studies, the resulting vaccine specific immune reactions were impaired by

the helminth infection. This applies to livestock as well; a study on pigs infected

with Ascaris suum came to the same conclusion after vaccination against Mycoplasma
hyopneumoniae (Steenhard et al., 2009).

The range of extensive effects of nematode infections in humans exemplifies

how important it is to implement effective treatment and prevention strategies.

However, the rate of re-infection following anthelminthic treatment is high and the

funding going into research to develop better treatment regimes is comparatively low;

although work on the development of vaccines has been underway for many years,

efficient vaccines against helminth infections have yet to be realised (Hewitson and

Maizels, 2014; Hotez et al., 2008).

The eradication of helminth infections due to improved hygiene and medicine

especially in the developed world may have brought other, unexpected, health

consequences. In fact, helminth infection rates inversely correlate with the incidence

of autoimmune conditions and allergy, afflictions that are dramatically gaining

importance especially in the first-world countries. This is recognized by an updated

formulation of the "hygiene hypothesis", which first postulated that microbial

infections protect against allergy (Strachan, 1989). A more recent view suggests that

our immune system evolved in the presence of helminth infections and removing

these leads to a shift in the balance of immune inhibition and effector mechanisms

resulting in an increased incidence of conditions characterized by an overactive

immune response (Maizels et al., 2014; Wilson and Maizels, 2004; Yazdanbakhsh et

al., 2002). A number of studies support this theory. Children living in rural areas were

less prone to asthma than their urban counterparts (Yemaneberhan et al., 1997), and

an upbringing on a farm resulted in decreased risk to develop allergic reactions in
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adulthood (Leynaert et al., 2001; Mutius and Vercelli, 2010). Also getting in contact

with infectious agents via other children in early childhood, for example in case of

larger families or by an early entry into day nurseries was associated with protection

from allergy (Krämer et al., 1999).

The immunological response of children treated with anti-helminthics also shows

that these parasites may alleviate allergy. Worm clearance, while decreasing total

serum IgE and IL-4 levels, led to an increase in serum IgE against environmental

allergens and immediate-hypersensitivity skin-test reactivity to allergens, indicating

that there is a causal link between active infection with helminths and suppression of

allergy (Biggelaar et al., 2004; Lynch et al., 1993).

Remarkably, it was reported that adventitiously-acquired helminth infection

significantly inhibited progression of multiple sclerosis in a cohort of 12 patient in

Argentina (Correale and Farez, 2007). Infection and remission were associated with

an increase in Tregs as well as an increase in IL-10 and TGF-β secreting and a decrease

in IL-12 and IFNγ producing cells. After just over five years, some of these patients

had to be treated with anti-helminthics. Three months later the number of IL-10 and

TGF-β secreting cells as well as Tregs decreased, while the number of IL-12 and IFNγ

secreting cells increased; MS symptoms in these patients returned as well (Correale

and Farez, 2007; Correale and Farez, 2011).

Considering this, it is not surprising that a number of clinical trials are

currently underway, mostly using infection with Trichuris suis to treat various

autoimmune diseases as well as allergy and asthma (http://www.niaid.nih.gov/

topics/tropicaldiseases/Pages/helminthDatabase.aspx, as of 16. March 2016));

however, recent analyses have reported mixed, or even disappointing, outcomes to

these trials (Fleming and Weinstock, 2015).

Both the development of new treatments and vaccines for helminth infections

and the development of treatments based on helminth infection therefore still require

an immense amount of research. For this, the use of animal models is crucial. The

next section covers helminth species relevant as human pathogens and commonly

used animal models.

1.1.1 Helminths infecting humans and their animal models

Helminths are parasitic worms that belong to the two phyla Nematoda and

Platyhelminthes (see Fig. 1.2).

Platyhelminthes, which are also called flatworms, can be subdivided into two

classes, Trematoda (flukes) and Cestoda (tapeworms). Among the Trematoda, blood

and liver flukes are the main groups infecting humans and contain for example
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Platyhelminthes
(flatworms)

Trematoda
(flukes)

Cestoda
(tapeworms)

vector
borne

predator
prey

Schistosoma
Fasciola

Echinococcus
Taenia

Nematoda
(roundworms)

vector
borne

Brugia
Onchocerca
Wuchereria

Litomosoides

faecal-
oral

Ascaris
Toxocara
Trichuris

Heligmosomoides

Necator
Ancylostoma
Strongyloides
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Soil Transmitted Helminths

transdermal

Figure 1.2: Rough classification of major helminths according to phylogeny and
mode of infection. Top line: taxonomic grouping; Second line: mode of transmission;
Third line: species, human parasites in red and animal models in black. Adapted from
Hewitson and Maizels, 2014

Schistosoma and Fasciola species. Helminths of both of these genera are also used

as animal models, as Schistosoma mansoni and Fasciola hepatica infect mice as well as

humans. Flukes have complex life cycles involving snails as intermediate hosts, which

is why their mode of transmission is defined as vector-borne. Most notable among the

Cestoda are Echinococcus and Taenia species. Again, the life cycles of these species

involve intermediate hosts, here definitive hosts are infected by ingesting encysted

larvae within their food, the intermediate hosts. Hence, they fall under the predator-

prey category of transmission modes. While for Taenia species humans are definitive

hosts, this is not the case for Echinococcus, for which dogs act in this capacity and

humans count as aberrant intermediate hosts when infected by ingesting eggs from

the environment.

Nematodes contain a considerable number of different groups of parasites

beyond those listed in Fig. 1.2, including pin-worms (Oxyurida, e.g. Enterobius
vermicularis) and guinea worms (Camallanida, Dracunculus medinensis). Of the three

major sets of nematode parasites shown in Fig. 1.2, the filarial worms (Spirurida,

including Onchocerca, Wuchereria and Brugia) are vector-borne parasites, as they are
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transmitted by mosquitoes or flies feeding on the definitive host’s blood. Litomosoides
sigmodontis as well as Acanthocheilonema viteae are mouse models used to study

filariae. Parasites of the remaining two groups shown in Fig. 1.2 are soil-transmitted

helminths, as eggs are passed into the environment via faeces and develop there

into infectious third stage larvae. Some whip-worms (Trichocephalida) like Trichura
species have a faecal-oral mode of transmission just like round-worms (Ascaridida)

like Toxocara and Ascaris species, with the eggs or L3 larvae taken up orally

through contaminated drinking water or food. Hookworms (Strongylida, Necator and

Ancylostoma) and some threadworms (Rhabditida, Strongyloides) have a transdermal

mode of infection; free living infectious larvae borrow through the skin of a new host.

The adult stages of all these parasites live in the hosts intestine, although some life

cycles include a pulmonary migration step (for example the hookworms or Ascaris)

while others directly infect the gut, like Trichuris. Widely used model organisms for

STH are Nippostrongylus brasiliensis which is a skin penetrating parasite that migrates

to the intestinal tract via the lungs of its host, and Heligmosomoides polygyrus. As this

is the parasite used here, it will be described in more detail in the next section.

1.1.1.1 Heligmosomoides polygyrus

The threadworm H. polygyrus (first described as Nematospiroides dubius Baylis, 1926)

is a natural parasite of rodents; infections with this nematode are common amongst

wild mice. Its life cycle was first described in 1954 (Ehrenford, 1954), and it has

since been found to be relatively easy to maintain in the laboratory, making it an

invaluable model for intestinal helminth infections (Behnke et al., 2009). Fig. 1.3 gives

an overview over the life cycle of this parasite as it is being kept in the laboratory.

H. polygyrus eggs are contained in the faeces of infected mice; within about one

week they develop into infective L3 larvae. These are taken up orally by mice (in the

laboratory setting by gavaging), invade the duodenal mucosa after approximately 24

hours and encyst between the muscle layer and the serosa. There they moult twice

before they re-emerge into the lumen of the intestine as adults, about eight days

post infection. The adult worms coil around the villi in the small intestine, where

they were shown to feed on the epithelial cell layer (Bansemir and Sukhedo, 1994),

although recent intravital imaging microscopy analyses cast doubt on this finding, as

there was no evidence of H. polygyrus feeding on host tissue (J. Hewitson, personal

communication). About ten days post infection and after mating, adult worms start

producing eggs. The H. polygyrus parasites are used to induce chronic infections in

experimental studies. In primary infections, different mouse strains were found to

differ in their abilities to expel the worms, ranging from resistant strains that cleared
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Figure 1.3: Life cycle of H. polygyrus. Infectious L3 larvae can be obtained by culture
of the egg containing faeces of infected mice. As infection occurs orally, mice can
be infected by gavage; larvae then invade the mucosa of the duodenum, where they
encyst and mature into adult worms. Eight days post infections, adults emerge into
the gut lumen, where they coil around villi. In the lumen, adults mate and start
producing eggs around day ten post infection. Adult worms can be cultured in vitro
for at least three weeks in tissue culture medium; this way their excretory/secretory
products can easily be collected. From Maizels et al., 2012.

the infection within a week to susceptible strains that were not able to fight infection

(Behnke et al., 2009; Filbey et al., 2014). If mice were treated with anti-helminthics

before being infected a second time however, all strains were resistant to infection

indicating the development of a protective immune response (Behnke et al., 2009).

Adult H. polygyrus is known to strongly repress immune responses. As reviewed

in ibid., it was found early on that adult worms suppressed mouse immune responses

and that they did so via their excretory/secretory products. Since then, numerous

studies have been published demonstrating the protective effect of infection with this

parasite or treatment with its products (called HES) in a variety of diseases. It has

been shown for example that infected mice are protected from EAE as well as allergy

(Wilson et al., 2010) and colitis (Hang et al., 2010). HES has been demonstrated to

protect mice from allergic airway inflammation (McSorley et al., 2014; McSorley et al.,
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2015; McSorley et al., 2012).

HES can be obtained by culturing H. polygyrus in vitro, as the worms survive in

tissue culture medium for at least three weeks. The culture medium can be collected

and concentrated down to enrich the parasite products (Johnston et al., 2015). The

original proteomics analysis of HES identified 374 proteins (Hewitson et al., 2011b),

and as techniques become more sensitive and fractions are submitted for analysis,

many more components are being found (Buck et al., 2014). Within the total HES,

three dominant protein families have been identified, namely the venom allergen-like

(VAL) proteins, ShK-like proteins and the Sushi protein family. However, an extensive

number of proteases and protease inhibitors, as well as apyrases, chitinases and a

large number of proteins with unknown functions were found as well. This analysis

also showed that there are many similarities in the products contained in HES and

those in the ES of related helminths, including the hookworm Ancylostoma caninum,

demonstrating the value of H. polygyrus as a model for soil-transmitted helminth

infections (Hewitson et al., 2011b).

8



Chapter 1. Introduction

1.2 Immune responses to helminths

Infection with nematodes typically induces a type 2 immune response and involves a

large number of different cell types and mediators (Figure 1.4).

Epithelial cells (ECs) provide a barrier between host tissues and environmental

factors, including commensal bacteria and inhaled or ingested antigens. In steady

state, they produce TGF-β and promote a tolerogenic phenotype in DCs sampling

Epithelial cells
hyper-proliferation

Macrophages

Basophils

DC induction 
of Th2

Epithelial cells

IgG4

IgA

Mast cells 

Goblet cells

Arginase, 
YM-1

IgG1

Intestinal and 
Airway smooth 

muscle cell
hyper-contractility

First Responders

Amplifiers and Innate Effectors

IgE

Innate Mucosal Type 2 Response

Eosinophils

Innate Tissue Type 2 Response

Humoral Type 2 Response

Type 2 cytokines

Smooth Muscle
Type 2 Response

Alarm cytokines

TH2

IL-4

IL-13

IL-5

ILC2

TSLP

Figure 1.4: Helminths induce type 2 immunity. After infection with nematodes, the
immune system is activated and dendritic cells induce the differentiation of naive T
cells into TH2 cells. During the following type 2 immune response, several cell types
are activated. These include mast cells, eosinophils, basophils and macrophages,
which differentiate into alternatively activated macrophages. In B cells, the class
switch to IgG1, IgG4 or IgE is induced. Furthermore, the mucosa and the smooth
muscles of the intestines and the airways are activated to help expel the parasites. DC,
dendritic cell; Ig, immunoglobulin; IL, interleukin; ILC2, innate lymphoid cell type 2;
TH2, T helper 2; TSLP, thymic stromal lymphopoietin; YM-1, chitinase-like secreted
protein (adapted from Allen and Maizels, 2011).

9



1.2 Immune responses to helminths

antigens from lungs or gut (Iliev et al., 2009; Wang et al., 2009). They are however

also the first cell type that comes into contact with pathogens invading these organs,

including helminths. ECs can recognize these via a number of different mechanisms.

They express pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs)

(Abreu, 2010; Hammad et al., 2009), enabling them to respond directly to pathogen

associated molecular patterns (PAMPs). They can also respond to proteases produced

by helminths to gain entry into host tissues thanks to their expression of protease-

activated receptors (PARs) (Chiu et al., 2007; Park et al., 2011). Upon activation,

ECs start producing cytokines to alert the immune system to infection. Among these

are TSLP, IL-25 and IL-33 (Hammad et al., 2009; Hara et al., 2014) but also danger

associated molecular patterns (DAMPs) like ATP (O’Grady et al., 2013), HMGB1

(Ullah et al., 2014) or uric acid (Kool et al., 2011) and chemokines like CCL17 or

CCL22 (Chen and Chiang, 2016; Hammad and Lambrecht, 2015). All these factors are

involved in the activation and recruitment of immune cells contributing to the type 2

response (reviewed in Hammad and Lambrecht, 2015 and Perrigoue et al., 2008).

One of the affected cell types are DCs. In addition to recognizing PAMPs

themselves, which they can sample either directly by extending dendrites into the

gut lumen or which can be delivered to them by so called microfold (M) cells (Artis,

2008), they are also further activated by the factors secreted by ECs. These factors

help ensure that activated DCs drive TH2 rather than TH1 responses (Hammad and

Lambrecht, 2015). Upon activation, costimulatory molecules like CD80, CD86 and

CD40 on DCs are upregulated to provide the so called signal 2 in addition to antigen

processing and presentation as MHC:peptide complexes (signal 1) and secretion of

cytokines to direct T cell differentiation (Banchereau et al., 2000)

While the mechanisms behind TH1 or TH17 induction are well known, it is less

clear what leads to the differentiation of CD4+ T cells into TH2 cells. DCs generally

do not produce IL-4; while it is now known that deletion of IL-4 does not affect TH2

differentiation (Panhuys et al., 2008), earlier indications had been that this cytokine

induces TH2 responses (reviewed in Hammad and Lambrecht, 2015 and (Paul, 2010)).

For a while it was thought that the mere lack of TH1 inducing cytokines was

responsible for TH2 induction, with DCs inducing TH2 differentiation by default

unless they also secrete cytokines that lead to the differentiation of other helper cell

subsets (Pulendran et al., 2010; Sher et al., 2003). This default hypothesis has since then

been disproved; instead, cytokines produced by different cells in the environment,

expression of a different set of costimulatory molecules like OX40L on the DC and a

weak interaction between T cell and DC - for example by low expression of MHC II or

costimulatory molecules - have been shown to contribute (Haan et al., 2014; Paul and

Zhu, 2010).
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That DCs are critical for the induction of TH2 responses has been demonstrated

in experiments depleting CD11c+ cells from CD11c-diphteria toxin (DTx) receptor

transgenic mice. These mice were protected from the development of allergic asthma if

DTx was administered before antigen challenge, which was reversed by the transfer of

DCs (Rijt et al., 2005). Furthermore, in infections with both S. mansoni or H. polygyrus,

CD11c+ cell depletion by daily injection of DTx resulted in impaired TH2 responses

(Phythian-Adams et al., 2010; Smith et al., 2011), while basophil depletion had no

effect, confirming the pivotal role of DCs.

Another cell type activated by the factors secreted by ECs during helminth

infection are type 2 innate lymphoid cells (ILC2s). In the past also called nuocytes,

ILC2s are innate bone marrow-derived cells and are similar to their helper T cell

counterparts in their transcription factor usage and cytokine profile (Walker et al.,

2013). ILC2s have been discovered as cells expanding due to IL-25 and IL-33, and have

been shown to be crucial for the induction of type 2 immune responses, producing IL-

5 and IL-13 long before TH2 cells do so (Fallon et al., 2006). However, it has been

shown that ILC2 and TH2 cells have to work together for optimal induction of type 2

responses and helminth expulsion (Oliphant et al., 2014).

The production of IL-4, IL-5 and IL-13 by ILC2s and TH2 cells mediates

subsequent effects. IL-13 for example causes hypercontractility of the smooth

musculature; together with its effects on goblet cells, including their increased

production of mucins this results in the so called weep and sweep response that aids in

expulsion of parasites (Allen and Maizels, 2011). Goblet cells also produce mediators

like RELMβ , which has been shown to directly impair the function of a nematode’s

chemosensory apparatus (Artis et al., 2004).

TH2 cells and the type 2 cytokines produced by TH2 cells are integral to the

induction of the antibody class switch to IgE, IgG1 and, in humans, IgG4 in B cells

(Xu et al., 2012). After their activation, CD4+ T cells migrate to the B cell zones

of lymphoid tissues. There, B cells which recognize an antigen - expressing B cell

receptors that can bind to an epitope of the antigen - get activated and act like other

antigen presenting cells by upregulation of costimulatory molecules and processing

of the antigen to present its peptides as MHC II:peptide complexes. These activated B

cells can interact with the activated helper T cells if they present the peptide for which

the T cells are specific; this interaction and cytokines secreted by the T cells, here IL-

4 and IL-5, induce the proliferation and class switching of the B cells (Garside et al.,

1998; Xu et al., 2012).

Class switched antibodies are important in a number of effector mechanisms.

IgE for example is central to the activation of mast cells and basophils by antigens

or allergens which crosslink IgE bound to their cell surface FcεR1, the high affinity
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IgE receptors (Brunner et al., 1993; Urb and Sheppard, 2012; Weller et al., 2011).

In mast cells, this leads to degranulation and release of effectors such as histamine

and proteases. These molecules aid nematode expulsion in some models; amongst

other functions they enhance mucus production and act on smooth muscle cells to

contribute to the induction of the weep and sweep response (Allen and Maizels, 2011;

Urb and Sheppard, 2012). In helminth infections, mast cells have also been shown

to be activated by IgE independent mechanisms, which has been hypothesized to be

due to their expression of a range of PRRs (Urb and Sheppard, 2012; Weller et al.,

2011). Basophils on the other hand have been shown to additionally be activated

by the cytokines secreted by ECs upon parasite recognition, specifically IL-33 and

TSLP (Hammad and Lambrecht, 2015). Their role in type 2 responses is controversial.

They have been reported to promote worm expulsion in secondary but not primary

infection with N. brasiliensis and H. polygyrus (Herbst et al., 2012; Schwartz et al., 2014),

and their depletion did not impair TH2 responses to these two models (Phythian-

Adams et al., 2010; Smith et al., 2011). On the other hand, in primary infection with

T. muris they were necessary for TH2 induction, as they were major producers of IL-4

and could act as APCs (Perrigoue et al., 2009). As discussed in Finkelman, 2009, the

exact contribution of basophils to the development if TH2 responses might depend on

the model used, as they might be dispensable in models with strong TH2 induction

but play a necessary support role in infections or stimulation with weak TH2 inducers.

IgG1 is the prevalent isotype induced by infection with H. polygyrus and has been

demonstrated to be induced by vaccination with HES, which induced immunity in

normally susceptible mice (Hewitson et al., 2015; Hewitson et al., 2011a). Both IgG1

and IgG2a/c have been reported to be important for the immobilization and trapping

of tissue-migrating H. polygyrus larvae (Esser-von Bieren et al., 2015; Hewitson et

al., 2015). A cell type crucial for this effect are alternatively activated macrophages

(AAMs). These cells are induced by activation of macrophages in the presence of

IL-4 and IL-13 rather than IFNγ , which has been demonstrated to be provided by

memory TH2 cells in secondary infection (Anthony et al., 2006). They have been shown

to accumulate around the larvae and contribute to their immobilization (Esser-von

Bieren et al., 2013, 2015).

In contrast to classically activated macrophages, which express iNOS and

produce high levels of NO using L-Arginine as a substrate, AAMs need this amino

acid as a substrate for Arg1. Furthermore, AAMs highly express YM1 and RELMα .

While the degradation products of L-Arginine via Arg1 play roles in wound healing

(Witte and Barbul, 2003) and, with L-ornithine impairing larval motility, play a role

in the AAM mediated larvae trapping mentioned above (Esser-von Bieren et al.,

2013), the function of both YM-1 and RELMα is less clear. RELMα appears to be a
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mediator used to keep TH2 responses in check, as Retnla−/− mice showed exacerbated

lung inflammation after both challenge with S. mansoni eggs and in infection with N.
brasiliensis. In the latter case this was accompanied by improved parasite clearance,

but also increased mortality (Chen et al., 2016; Nair et al., 2009). The function of YM1

on the other hand is more elusive; it has been speculated to support wound healing,

as it is able to bind to the extracellular matrix (Sutherland et al., 2009). More recently

however, it has been shown to induce IL-17 production by γδ T cells in response to

infection with N. brasiliensis, recruiting neutrophils which on the one hand exacerbate

lung damage but on the other hand also limit parasite survival (Sutherland et al.,

2014). In addition to these effects, AAMs have been shown to be important in primary

responses to helminth infections, as their depletion impaired the weep and sweep

response and helminth expulsion (Filbey et al., 2014; Zhao et al., 2008).

Another cell type which has been implicated in binding to and acting against

tissue-migrating helminth larvae are eosinophils. Generation of these cells from bone-

marrow precursors is induced by IL-5, they are activated by IL-5 and degranulation

can be induced by binding of antibodies and complement (Coffman et al., 1989; Kita

et al., 1992; Klion and Nutman, 2004). This leads to release of molecules contributing

to the killing of larvae from at least some helminth species (amongst others cationic

proteins, ROS, leukotrienes, platelet-activating factor, lysosomal hydrolases and

peroxidase), but on the other hand also contributing to host tissue damage (Klion and

Nutman, 2004). In eosinophil-deficient mice that were infected with N. brasiliensis,

secondary immune responses, specifically those acting on larvae migrating to the

lung, were impaired (Knott et al., 2007). Another important role of eosinophils

however seems to be as producers of type 2 cytokines and chemokines like CCL17

or CCL7 to contribute to recruitment of immune cells to the site of infection, as shown

in allergic inflammation models (Jacobsen et al., 2008; Walsh et al., 2008).

Finally, the cell type investigated in this thesis are the dendritic cells. As such,

these will be described in more detail in the next section.
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1.3 Dendritic cells

Dendritic cells are the most important type of antigen presenting cells. They were

originally discovered as a previously unknown cell type in mouse spleen that was

clearly distinguishable by its unique morphology; these new cells were quite large

and featured a variable number of pseudopods, giving them their distinct shape and

resulting in them being named dendritic cells (Steinman and Cohn, 1973). They were

later shown to be the professional antigen presenting cells leading to activation of the

adaptive immune response. The first indication of this was the fact that they were

potent inducers of the mixed leukocyte reaction, and were in fact the main cell type

in mouse spleens inducing this reaction (Steinman and Witmer, 1978). In naive mice,

DCs were mainly localized between splenic red and white pulp, where they could

sample the blood filtered through the spleen for antigen. Indeed, they were found

to process soluble antigen effectively. Upon injection of mice with LPS however, DCs

became activated and expressed elevated levels of CD80. This was accompanied by an

increase in their ability to stimulate T cells and a decrease in their antigen processing

capability. They also were found mainly in the T cell areas of the spleen only six

hours after LPS injection, showing that maturation was accompanied by migration

(De Smedt et al., 1996). DCs were also found to be able to secrete IL-12 and therefore

induce TH1 differentiation in the T cells they activate (Macatonia et al., 1995).

A number of different DC subsets have been identified in mice. DCs arise from

bone marrow precursors. A subset called plasmacytoid DCs, thanks to their plasma

cell-like morphology, terminally differentiates in the bone marrow and migrates

through the blood stream to lymphoid organs and tissues in the body. These pDCs

are important for recognition of and defence against viruses, as they express TLR7,

TLR9 and cytosolic sensors to bind to RNA and DNA PAMPs. They are the most

important producers of type I IFNs and can also act as APCs. TLR ligation causes

their maturation, but not their migration to draining lymph nodes, unlike in steady

state conditions where they constantly migrate to the lymph nodes. They have in fact

been shown to play important roles in tolerance induction both in airway and oral

response settings (Lombardi and Khaiboullina, 2014; Schraml and Reis e Sousa, 2015).

The precursors giving rise to pDCs in the bone marrow, the common DC

precursors (CDP) also give rise to so called pre-DC or pre-cDC. These cells exit the

bone marrow and terminally differentiate in the tissues into the different subsets

belonging to the conventional DCs which express high levels of CD11c, in contrast

to pDCs (Schraml and Reis e Sousa, 2015). In the spleen, two types of cDCs have been

described, CD11b+ CD8−cDC and CD11c−CD8+ cDCs (Pulendran et al., 1997).
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In a number of reports, these two subsets have been shown to have different

properties when it comes to induction of T cell responses. While KLH loaded CD8+

cDCs can induce TH1 cells, the CD11b+ subset was shown to induce a TH2 response

instead (Maldonado-López et al., 1999). However, both cell types exhibited the same

gradient of TH2 to TH1 induction in experiments with rising concentrations of OVA

(Boonstra et al., 2003), demonstrating that the previously mentioned preference is by

no means fixed. Indeed, there seem to be a number of different stimuli that induce

DCs to support TH2 rather than the TH1 differentiation that is induced by most TLR

ligands for example, summarized in Fig. 1.5 from Na et al., 2016.

As can be seen in this figure, not only the dosage of the antigen or TLR ligands -

low doses of inhaled LPS have for example been shown to induce TH2 differentiation,

unlike high levels of LPS in the same model (Eisenbarth et al., 2002) - but also the

type of TLR ligand determines subsequent T cell polarization. LPS from P. gingivalis
induced TH2 responses while LPS from E. coli induced the expected TH1 response, both

of which were TLR4 dependent (Pulendran et al., 2001), and the TLR2 ligand Pam-3-

cys lead to TH2 development via activation of ERK which inhibited IL-12 production.

A number of the mechanisms mentioned in the previous section are also shown in

Fig. 1.5, with helminths for example stimulating ECs to secrete TSLP, IL-25 and IL-33

that act on DCs; DAMPs released by tissue damage like uric acid or ATP as well as

glycans contained in allergens like house dust mite particles, but also in helminth

products activating DCs; these DCs finally inducing TH2 responses by expression

of costimulatory molecules like OX40L or low expression of CD80 and CD86, and

by recruitment of basophils that produce high levels of IL-4 and can act as APCs

themselves, supporting the DCs. One additional mechanism of particular interest,

described below in more detail, is the effect of helminth secreted products such as ω-1

from S. mansoni on DCs (Na et al., 2016).

DC subsets in the gut differ from those in the spleen or lymph nodes. Here, four

different subsets are found. They can be distinguished by their expression of CD103

and CD11b, with CD103+ CD11b+ cells being related to the splenic or LN CD11b+

subset and CD103+ CD11b−DCs related to the CD8+ cells. In addition, there is a

third, less abundant subset expressing neither marker and finally, a subset expressing

CD11b but not CD103 (reviewed in Bekiaris et al., 2014). These subsets have been

shown to take up antigen from the gut lumen and migrate to the draining lymph

nodes in steady state conditions to induce tolerance, as do pDCs. Upon activation,

cDCs have been shown to mature and migrate to the draining lymph nodes where

they activate T cells (Cerovic et al., 2013; Schulz et al., 2009). CCR7−/− mice, which are

deficient in the chemokine receptor necessary for migration of DCs to draining lymph

nodes, do not develop CD8+ T cell responses to oral antigens (Johansson-Lindbom
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et al., 2005). Similarly, the induction of oral tolerance was abrogated in these mice

(Worbs, 2006).

To study DCs in vitro, methods to generate them from bone marrow have

been developed. Mice injected with GM-CSF showed an expansion of the CD11b+

CD8−cDC subset (Pulendran et al., 1999) and in vitro stimulation with GM-CSF

has been a widely adopted technique to generate DCs from bone marrow (Inaba et

al., 1992). However, this method also generates macrophages, which, like GM-CSF

BMDC, express CD11c and CD11b (Helft et al., 2015). Indeed, publications using these

Figure 1.5: Modulation of DC functions by Th2 cell-skewing stimuli. A number of
different factors can stimulate DCs to induce TH2 responses, amongst others PAMPs
including some TLR ligands like Pam-3-cys or LPS from P. gingivalis or glycans acting
via CLRs. ECs activated by helminths secrete alarmins like IL-33, IL-25 or TSLP, and
tissue damage releases DAMPs like ATP or uric acid which also activate DCs to induce
TH2 differentiation. Helminths can secrete further products affecting DC maturation,
like for example ω-1. All of these factors can activate DCs to express OX40L and low
levels of CD80 or CD86, and recruit basophils to support TH2 induction by secretion
of IL-4. Figure taken from Na et al., 2016.
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cells usually do not distinguish these two reported subpopulations. Injection of mice

with Flt3-L on the other hand leads to expansion of both CD11b+ and CD8+ cDC

subsets (Pulendran et al., 1997), and differentiation of bone marrow cells with Flt3-L

generates populations equivalent to these two subsets in addition to cells equivalent

to pDCs (Naik et al., 2005).

Using these models, a substantial amount of knowledge on mechanisms

underlying DC maturation has been gathered. In the following sections, signalling

pathways involved in DC activation and necessary changes to DC metabolism during

this process are described.

1.3.1 Signalling pathways in DC activation

Dendritic cells express a number of receptors that recognise a wide range of molecules

associated with infections, tissue damage or inflammation. Most of these are pattern

recognition receptors (van Vliet et al., 2007), but DCs also express cytokine receptors

(such as the receptor for TNF) and can be activated by reverse signalling, for example

via CD40 ligation (Kikuchi et al., 2003).

Among the PRRs are transmembrane receptors such as TLRs and CLRs, and

different types of cytosolic sensors such as NLRs (van Vliet et al., 2007). TLRs can

roughly be divided into extracellular receptors mostly recognizing bacterial molecules

and endosomal receptors mainly recognizing viral ones. Among the TLRs that are

localized on the cell surface are TLR1, 2, 4, 5 and 6 (Takeda et al., 2003). TLR2 forms

heterodimers with either TLR1 or TLR6, the former recognizing triacyl glycopeptides

like Pam3SCK4 (Takeuchi et al., 2002) while the latter binds diacyl glycopeptides

like MALP-2 (Takeuchi et al., 2001). TLR2 can also cooperate with non-TLRs as it

was shown to recognize zymosan in cooperation with dectin-1 (Gantner et al., 2003),

and it is able to bind peptidoglycans as well (Takeuchi et al., 1999). TLR4 is well

known to recognize LPS (Hoshino et al., 1999), but it has also been shown to bind to

viral envelope proteins, and TLR5 binds to bacterial flagellin (Hayashi et al., 2001).

The endosomal TLRs on the other hand mainly bind to nucleic acids; while TLR3

recognizes double stranded RNA (dsRNA) and signalling through it can be induced

using poly(I:C) (Alexopoulou et al., 2001), TLR7 and TLR8 recognize single stranded

RNAs; a synthetic compound, R848, induces signalling through both receptors in

human cells, although in mice this is restricted to TLR7 (Diebold et al., 2004; Heil

et al., 2004; Hemmi et al., 2002). Finally, TLR9 recognizes unmethylated CpG DNA

from bacteria as well as viruses (Hemmi et al., 2000).

While all TLRs lead to activation of nuclear factor κ-light-chain-enhancer

of activated B cells (NF-κB) and the mitogen-activated protein kinase (MAPK)
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cascade, the involvement of specific signalling molecules differs. Therefore signalling

pathways induced in LPS stimulated cells will be described first (also see Fig. 1.6),

followed by a short description of the differences in the other pathways.

Extracellular LPS is first bound by the LPS binding Protein (LBP), then by CD14

on the cell surface of DCs (Muta and Takeshige, 2001). CD14 forms a complex with

TLR4 and MD-2 (Shimazu et al., 1999). TLR4 signals via two intracellular adapter

proteins: Myeloid differentiation primary response gene 88 (MyD88) (Wesche et

al., 1997) and Toll/Interleukin-1 receptor (TIR)-domain-containing adapter-inducing

interferon-β (TRIF) (Yamamoto et al., 2003a). The MyD88 dependent signalling

pathway was first described for IL-1 receptor signalling, but then shown to be

involved in LPS induced TLR signalling as well (Zhang et al., 1999).

Once MyD88 is recruited, at least 7 steps occur in succession to transduce the

activation signal to the nucleus: (I) together with toll-interleukin 1 receptor domain

containing adaptor protein (TIRAP) (Yamamoto et al., 2002), MyD88 interacts with

Interleukin-1 receptor-associated kinases (IRAK) leading to autophosphorylation of

IRAK4; (II) IRAK4 subsequently phosphorylates and therefore activates IRAK1 and

IRAK2 (Fitzgerald et al., 2001; Li et al., 2002). (III) These kinases in turn activate a

protein complex containing tumour necrosis factor receptor associated factor (TRAF)

6 (Cao et al., 1996; Kawagoe et al., 2008). (IV) The poly-ubiquitinated active

TRAF6 then activates a complex containing mitogen-activated protein kinase kinase

kinase 7, also called TAK1 and mitogen-activated protein kinase kinase kinase 7-

interacting proteins 1, 2 and 3, also called TAB1-3. (V) This complex then activates the

canonical NF-κB inhibitor (IκB) kinases (IKK) (Wang et al., 2001), which have been

shown to induce the phosphorylation of IκBs (DiDonato et al., 1997; Mercurio et al.,

1997). (VI) The phosphorylation if IκBs leads to their ubiquitination and subsequent

proteasomal degradation (Chen et al., 1995; DiDonato et al., 1996), unmasking the

nuclear translocation signal of NF-κB; (VII) NF-κB is then free to translocate into the

nucleus and induce transcription of its target genes (Beg et al., 1992; Ganchi et al.,

1992; Zabel et al., 1993). The NF-κB subunits activated in this pathway are p50/p65,

as opposed to for example p52/RelB which are induced after ligation of CD40 (Kaisho

and Tanaka, 2008).

In addition to this central NF-κB mediated signalling pathway, TAK1-TAB1/2/3

also activate the MAPK cascade leading to activation of several MAP kinase kinases

(MKKs) and the MAP kinase families p38 mitogen-activated protein kinases, c-Jun

N-terminal kinases (JNK) and extracellular-signal-regulated kinases (ERK) (Wang

et al., 2001). Among the targets of these kinases are proteins like c-Jun, c-Fos,

phosphorylation of which leads to the formation of the transcription factor activator

protein 1 (AP-1). Another two transcription factors that are activated in the MyD88
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Figure 1.6: Signalling pathways in LPS induced DC activation. LPS is recognized
by CD14 and TLR4; TLR4 ligation induces MyD88 and TRIF dependent signalling
pathways leading to the activation of canonical and noncanonical NF-κB cascades
and the MAP kinase cascades. It further activates PI3K signalling, and leads to
the activation of further IRF transcription factors including IRF1 and IRF5. CD14
also induces a signalling cascade, leading to influx of calcium and activation of the
calcium dependent calcineurin and calmodulin, which activate NFATc. The activated
transcription factors translocate into the nucleus and induce the expression of their
target genes.
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dependent pathway are interferon regulatory factor (IRF) 1 (Negishi et al., 2006) and

IRF5 (Takaoka et al., 2005). This branch of the TLR4 mediated response has been

shown to be initiated at the plasma membrane, and activation can therefore be seen

very soon after stimulation (Plociennikowska et al., 2015).

A key role is also played by the TLR4 adaptor protein TRIF, which, together with

TRIF-related adaptor molecule (TRAM) acting as a bridge between TLR4 and TRIF

(Fitzgerald et al., 2003; Yamamoto et al., 2003a,b), activates the receptor-interacting

serine/threonine-protein kinase (RIP) 1 (Cusson-Hermance et al., 2005). TRIF also

directly binds both TRAF3 (Häcker et al., 2006) and TRAF6 (Jiang et al., 2004). RIP1

and TRAF6 cooperatively activate the TAK1-TAB1/2/3 complex and subsequent NF-

κB and MAPK signalling as described above (Jiang et al., 2004; Wang et al., 2001).

Furthermore, TRAF3 activates non-canonical NF-κB signalling; the IKKs activated

here are TANK-binding kinase 1 (TBK1) and IKKε , which in turn activate both

IRF3 and IRF7 (Oganesyan et al., 2006). This leads to the production of the type

I interferon IFNβ , which upregulates IRF7 in an autocrine fashion via JAK-STAT

signalling involving STAT1 and STAT2 (Hoshino et al., 2002; Lee and Kim, 2007), hence

creating a feed-forward amplification of the type I IFN response.

An important distinction is that activation of the TRIF dependent branch of TLR4

signalling is delayed compared to the MyD88 dependent pathway, due to the fact that

it is only induced after TLR4 is internalized (Kagan et al., 2008; Plociennikowska et

al., 2015). This internalization seems to be mediated by CD14 via Syk and PLCγ2

(Zanoni et al., 2011), and has been shown to also be important for both termination of

signals through the internalized receptors and processing of antigens associated with

the internalized LPS (Husebye et al., 2006).

Another mediator induced by LPS binding to TLR4 is phosphatidylinositide 3-

kinase (PI3K), which phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2)

to phosphatidylinositol (3,4,5)-triphosphate (PIP3) (Hazeki et al., 2007). PIP3 in turn

activates protein kinase B (PKB), also known as Akt, through 3-phosphoinositide

dependent protein kinase-1 (PDK1) (Alessi et al., 1997). This pathway plays an

important role in the regulation of DC metabolism, as discussed below. On the other

hand the PKB/Akt pathway is implicated in negative regulation of TLR signalling in

DCs (Fukao et al., 2002). In this setting, Akt may inhibit GSK3 and therefore stop its

inhibitory activity towards the transcription factor CREB. Once CREB is activated, it

interacts with CBP, inducing the transcription of factors like IL-10. Interestingly, CBP

is also needed as a co-activator for the NF-κB member p65, so the increased activity

of CREB competitively inhibits the formation of p65-CBP and transcription of genes

encoding pro-inflammatory factors like IL-12, TNF or IL-6 (Guha and Mackman, 2002;

Martin et al., 2003; Martin et al., 2005; Ohtani et al., 2008).
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In recent years it has also been reported that CD14 signals via the nuclear

factor of activated T-cells (NFAT) pathway (Zanoni et al., 2009). Upon LPS

binding, CD14 recruits Src family kinases that activate phospholipase C (PLC) γ2.

This enzyme cleaves PIP2 to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol

(DAG). IP3 then induces influx of extracellular Ca2+, which activates calcium-

modulated protein (calmodulin) and the protein phosphatase calcineurin. Calcineurin

then dephosphorylates the calcium dependent members of the NFAT transcription

factor family (NFATc), which subsequently translocate to the nucleus and induce

transcription of target genes in cooperation with other transcription factors like AP-

1 (reviewed in Zanoni and Granucci, 2012). One member of this transcription factor

family, NFAT5, is not calcium dependent; instead it has been shown that - at least

in macrophages - the expression of this transcription factor is increased by NF-κB

after stimulation and that it contributes to the expression of inflammatory mediators

dependent on antigen dose (Buxadé et al., 2012).

JAK-STAT signalling also plays a role in LPS induced DC maturation. JAK2−/−

DC are impaired in their production of pro-inflammatory cytokines, and it was

demonstrated that this was independent of NF-κB signalling. Instead, the JAK2

deficiency led to a decrease in the phosphorylation of STAT3, 4, 5 and 6, of which

STAT5 and STAT6 subsequently were shown to be the downstream mediators in this

context (Zhong et al., 2010). STAT1 and STAT2 are involved in the positive feedback

loop induced by type I IFNs that are produced after TLR4 ligation; STAT1−/− BMDC

stimulated with LPS were impaired in their upregulation of CD40 and production

of IFNβ as well as IFN inducible genes (Hoshino et al., 2002). In addition, STAT3 and

STAT4 have been shown to have regulatory function in TLR induced signalling, which

will be discussed further below.

While TLR4 represents the broad TLR family apart from TLR3 in activating the

MyD88 pathway in DCs, there are key differences in the downstream events following

ligation of each TLR family member. TLR3 uses TRIF as adaptor protein and signals

via TRAF3 and via RIP1 as described above for TLR4, it does however not require

TRAM (Fitzgerald et al., 2003; Yamamoto et al., 2003a,b). One difference between

MyD88 dependent signalling downstream of TLR4 and that downstream of TLR7 and

TLR9 is that the latter also signal through TRAF3 to induce the production of type

I IFNs, like TLR3. Furthermore, TLR7 and 9 are highly expressed in pDCs; these

cells also constitutively express IRF7, which therefore does not have to be induced

first via IRF3, contributing to their ability to quickly produce large amounts of type I

IFNs. TLR2 has been shown to differ from the other TLRs too, in that its ligation can

induce prolonged activation of ERK; the increased levels of activated c-FOS lead to

an increased production of IL-10 and therefore a shift towards TH2 induction (Dillon
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et al., 2004). TLR2 is also the only receptor other than TLR4 to be dependent on TIRAP

as has been demonstrated using TIRAP deficient mice (Horng et al., 2002; Yamamoto

et al., 2002) CD14 has been shown to interact with TLRs other than TLR4 as well, as it

has been demonstrated to enhance TLR3 mediated macrophage activation (Lee et al.,

2006) as well as that induced by TLR2/6 stimulation (Jiang et al., 2005).

A completely separate pattern recognition pathway that activates DCs ensues

following binding of glycosylated products to C-type lectin receptors (CLRs) like

dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-

SIGN), dectin-1 and dectin-2. Binding of Dectin-1 to its ligands leads to the

phosphorylation of its cytoplasmatic tail and recruitment of Syk. On the one hand this

leads to the recruitment of a number of proteins including Card9, Bcl10 and Malt1,

forming a complex that activates the canonical NF-κB signalling pathway described

above for MyD88 dependent signalling (i.e. the one involving IKKα , IKKβ and IKKγ)

through an unknown mechanism (Gross et al., 2006); on the other hand it activates

non-canonical NF-κB signalling (i.e. the pathway involving actication of IKKε and

TBK1) as well (Gringhuis et al., 2009). The signalling pathways triggered by dectin-2

ligation are thought to be similar to the ones downstream of dectin-1 (Geijtenbeek and

Gringhuis, 2009). Dectin-1 has also been shown to induce NFAT signaling via the same

pathway as CD14 (Xu et al., 2009; Zanoni and Granucci, 2012). Activation of both DC-

SIGN and dectin-1 also induces the activation of RAF1, which phosphorylates p65,

making it a target for acetylation by CBP and p300. The binding of acetylated p65 to

IκB is impaired, resulting in prolonged activity of this NF-κB member in a way that

increases IL-10 production (Gringhuis et al., 2007, 2009). This is therefore a mechanism

to limit inflammation. In addition to this a group of CLRs contain ITIMs and associate

with phosphatases; if they are triggered at the same time as activating receptors they

modulate cell activation (Geijtenbeek and Gringhuis, 2009).

Two further families of important PRRs are cytoplasmic PRRs: the NOD like

receptors (NLRs) and the RIG-I like receptors (RLRs). RLRs are receptors for double

stranded RNA and therefore play an important role in immune reactions against

viruses (Andrejeva et al., 2004; Yoneyama et al., 2004). They share their role as RNA

sensors with TLR7 and TLR9, with pDCs relying on the latter while all other cell types

utilize the RLRs (Kato et al., 2005). Two RLRs are known that are able to bind to

ligands, RIG-I and MDA5, both of which need IPS-1, a third RLR that is unable to bind

RNAs, for signalling. They signal through TBK1 and IKKε to activate IRF3 and induce

type I IFN production. In addition, they have been reported to activate a complex

containing TRAF6 and RIP1 which leads to NF-κB activation (Kawai et al., 2005; Lee

and Kim, 2007).

NLRs on the other hand recognise a variety of PAMPs and DAMPs and are
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subdivided into several families. Among the members of the NOD subfamily are

NOD1 and 2, which bind peptidoglycan fragments (Lee and Kim, 2007); they activate

RIP2 which leads to NF-κB activation, probably via IKKγ , TAK1 and TRAF6 amongst

others (Abbott et al., 2004). There also are reports of NOD1 leading to activation

of the MAPK JNK (Girardin et al., 2001), while NOD2 has been shown to activate

p38 and ERK instead (Kobayashi et al., 2005). The other subfamilies are important

components of the so called inflammasomes. These react to numerous different

molecules including PAMPs and DAMPs and mediate the proteolytic cleavage and

therefore activation of IL-1 and IL-18. Mutations in NLRs have been reported to

cause a number of autoimmune diseases, showing their important role in regulating

immune responses (Hammer and Ma, 2013).

All of these signalling pathways lead to the activation of numerous transcription

factors and the induction of expression of the proteins that mark DC maturation, in

particular cytokines and costimulatory molecules. One of the genes whose expression

is upregulated in LPS stimulated DCs is IL-12, the cytokine inducing the shift to TH1

cells in CD4+ T cells (Brunda, 1994; Schoenhaut et al., 1992; Trinchieri et al., 1992). The

two subunits IL-12p35 and IL-12p40 form the active heterodimer IL-12p70 and their

expression is regulated by a number of transcription factors. Involved are for example

NF-κB (Murphy et al., 1995) and AP-1 (Ma et al., 2004), as well as IRF3 (Goriely et al.,

2006), IRF1 (Negishi et al., 2006) and 8 (Zhu et al., 2003), STAT1 (Gautier et al., 2005)

and NFAT (Elloumi et al., 2012).

1.3.2 Metabolism

With this increase in the production of new proteins, the metabolism of DCs is under

pressure to provide both energy and metabolic intermediates. This results in a drastic

change in DC metabolism (see Fig. 1.7 and 1.8 for an overview over the cell’s energy

metabolism and its change in DC activation, taken from Pearce and Everts, 2015).

Resting DCs, while using glycolysis to some extent, rely mostly on β -oxidation

of fatty acids followed by oxidative phosphorylation (OXPHOS) to meet their energy

demands (Fig. 1.7). Upon stimulation, the activation of the non-canonical IKKs TBK1

and IKKε leads to phosphorylation and therefore activation of Akt, which in turn

increases the activity of the hexokinase 2 and more generally, glycolysis. This leads to

an increase in pyruvate and therefore more acetyl-CoA that can be fed into the TCA

cycle, which means the cells can spare intermediates of the TCA cycle, specifically

citrate, for other purposes. Indeed, citrate is exported from the mitochondria again

and converted back to acetyl-CoA, which is used to increase de novo fatty acid

synthesis. To provide the necessary NADPH for this process, the activity of the
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Figure 1.7: Cellular energy metabolism. Glucose is imported into the cell cytoplasm
and phosphorylated to glucose-6-phosphate (G6P) by the enzyme hexokinase (HK).
G6P can either be further used for glycolysis to generate pyruvate and ATP or used
to generate NADPH in the pentose phosphate pathway (PPP). Pyruvate can either
be converted to lactate by lactate dehydrogenase (LDHA) to regenerate NAD+, or
transported into the mitochondria to be converted into acetyl-CoA by the pyruvate
dehydrogenase (PDH) and used in the tricarboxylic acid (TCA) cycle. Acetyl-CoA
can also be provided by fatty acid β -oxidation. The TCA cycle on the one hand
provides NADH that can be used as substrate in the electron transport chain (ETC)
to ultimately produce ATP by oxidative phosphorylation (OXPHOS), which requires
oxygen and leads to the production of reactive oxygen species (ROS). On the other
hand, the produced citrate can be exported from the mitochondria into the cytoplasm,
converted back into acetyl-CoA and used for the de novo synthesis of fatty acids.
Figure taken from Pearce and Everts, 2015.
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Figure 1.8: Toll-like receptor signalling integrates endoplasmic reticulum stress
and changes in metabolism to support activation. Upon TLR ligation, DCs start to
produce a large amount of proteins destined for secretion or expression on the cell
surface. This leads to ER stress and an increased unfolded protein response (UPR),
which activates the transcription factor XBP1. XBP1 in turn induces transcription
of fatty acid synthesis enzymes. Signalling induced by TLR ligation also leads to
activation of the non-canonical IKKs TBK1 and IKKε and activation of Akt, which
increases the activity of the hexokinase 2 (HK2), thereby increasing glycolytic flux. On
the one hand that provides the pentose phosphate pathway (PPP) with more substrate
to generate NADPH, on the other hand more pyruvate can be fed into the TCA cycle;
an increased amount of citrate can therefore be exported from the mitochondria for
de novo fatty acid synthesis. This increased synthesis of fatty acids allows expansion
of ER and Golgi apparatus, which can now support the increased production and
secretion of DC effector molecules. Figure adapted from Pearce and Everts, 2015.
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pentose phosphate pathway is increased as well. Another factor driving the increase

in de novo fatty acid production is ER stress. When DCs get activated, their ER and

Golgi are overwhelmed by the increase in protein production, leading to an increase

in misfolded proteins and the induction of the unfolded protein response (UPR).

This in turn activates XBP1, a transcription factor inducing expression of fatty acid

synthesis proteins. The result of these changes in metabolism is an increase in the size

of the cell’s ER and Golgi apparatus, which can now support the increased protein

production. If any step in this process is interfered with, for example by providing

2-deoxy-D-glucose (2-DG) which can not be used for glycolysis, by impeding the

transport of pyruvate into the mitochondrion for use in the TCA cycle, or by inhibiting

fatty acid synthesis, production of costimulatory molecules and pro-inflammatory

cytokines is impaired even though their mRNA levels remain the same as in untreated

stimulated cells (Everts et al., 2014).

Later during stimulation, the NO produced by the cells inhibits the electron

transport chain, so that OXPHOS is no longer possible (Everts et al., 2012b). This forces

the cells to adopt a different means to generate ATP and leads to their commitment to

aerobic glycolysis. Expression of glycolytic enzymes is increased in these cells, as

is their glucose consumption and their production of lactate, as the conversion of

pyruvate to lactate is used to regenerate NAD+ for further ATP generation through

glycolysis; β -oxidation of fatty acids and O2 consumption are reduced. Again,

interference with this process, for example by adding 2-DG instead of glucose, inhibits

DC maturation, demonstrating the reliance of the cells on glycolysis. This switch to

aerobic glycolysis is dependent on PI3K signalling via Akt (Krawczyk et al., 2010). The

mammalian target of rapamycin (mTOR) is a downstream target of these signalling

molecules, and in turn induces hypoxia inducible factor-1 which increases expression

of glycolysis enzymes (Pearce and Everts, 2015).

In contrast to inflammatory DCs, tolerogenic DCs have been reported to express

higher levels of OXPHOS proteins; Everts and Pearce hypothesized that if any

parallels can be drawn between alternatively activated macrophages (AAMs) and DCs

then it is likely that tolerogenic DCs, just like AAMs rely on β -oxidation of fatty

acids and OXPHOS rather than the aerobic glycolysis of their classically activated

counterparts (Everts and Pearce, 2014).

1.3.3 Mechanisms to control DC activation

Considering the dangers of an over-active immune response, as indeed seen in

many autoimmune conditions, in allergies or in a number of diseases where the

pathology stems from the body’s reaction to the pathogen rather than the pathogen
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itself, it comes as no surprise that there are numerous mechanisms in place to

regulate immune responses. For TLR signalling specifically, many regulators have

been identified which suppress activation or terminate the cell’s response or even to

fine tune it. These regulators act on components of each different stage of the DC

activation process described above, interfering with PRR ligand binding, modulating

signalling pathways or transcription initiation, and inhibiting the expression of

specific inflammatory mediators.

1.3.3.1 TLRs and ligand binding

First described in macrophages and for TLR4 (Iwami et al., 2000), splice variants of

TLRs exist that are secreted by cells and compete with cell surface TLRs for their

ligands. In that study, the production of soluble TLR4 was induced by LPS and

inhibited LPS induced production of TNF and NF-κB activation, indicating this is - at

least in macrophages - a physiological negative feedback regulator for LPS activated

cells. In human cells, a splice variant for the MD-2 protein which co-complexes with

CD14 and TLR4 has been described. This shorter form competes with the full length

MD-2 for binding to TLR4, and while it binds both the receptor and LPS, it does not

induce signalling (Gray et al., 2010).

In addition, levels of surface TLR4 are finely regulated. In macrophages, Rab7b

has been identified to promote lysosomal degradation of TLR4, thereby attenuating

LPS induced response pathways and production of pro-inflammatory cytokines

(Wang et al., 2007). Rab7b, which also promotes degradation of TLR9 (Yao et al., 2009),

is now known to be expressed and promote TLR4 degradation in DCs too (Klaver et

al., 2015a).

1.3.3.2 Interference with induction of signalling

A significant range of inhibitory factors act to interfere with the binding of

adaptor proteins to TLRs. The TLR4-binding protein TIRAP for example, once

phosphorylated, is targeted by suppressor of cytokine signalling (SOCS)-1 leading

to its ubiquitination and proteasomal degradation (Mansell et al., 2006). TRAM is

another protein with a splice variant, TAG; this variant competes with TRAM for

binding of TRIF which as a consequence is not recruited to TLR4 (Palsson-McDermott

et al., 2009). Another inhibitory protein interacting with TRIF and probably also

MyD88 is Sterile α and Armadillo-motif-containing protein (SARM), which inhibits

activation of signalling cascades downstream of TLR3 and TLR4 (Carty et al., 2006;

Peng et al., 2010). Calcineurin and calmodulin, components of the NFAT signalling

pathway described above, have been reported to inhibit TLR mediated signalling;
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calcineurin has been demonstrated to be associated with MyD88, TRIF, TLR2 and

TLR4, but the exact mechanism of this inhibition is not yet known (Kang et al., 2007). A

protein identified due to its interaction with TRIF is a disintegrin and metalloprotease

(ADAM)-15, which inhibits TRIF signalling by mediating its proteolytic cleavage

(Ahmed et al., 2013). TRIM38 has only recently been shown to induce proteasomal

degradation of TRIF (Hu et al., 2015).

Several factors are known that interfere with MyD88 binding of downstream

signalling components. MyD88 itself is another protein with a dominant negative

splice variant, MyD88s, which is inducible by LPS in monocytes (Janssens et al., 2002).

It lacks the domain necessary for recruitment of IRAK4 to the so called myddosome,

the MyD88-dependent signalling complex formed after TLR4 ligation, so while it still

recruits IRAK1, this kinase is not phosphorylated (Burns et al., 2003). This results in an

inhibition of NF-κB, but not MAPK signalling (Janssens et al., 2003). Another protein

interacting with MyD88 is IRF5; this binding is competitively inhibited by IRF4, which

is induced by TLR ligation (Negishi et al., 2005).

1.3.3.3 Inhibition of the downstream signalling cascade

Not only the initiation of activation is subject to strict regulation, but also the

progression of signalling through the complex pathways described above is carefully

controlled.

An additional IRAK family member, IRAK-M is for example induced by

TLR stimulation and inhibits both the phosphorylation and the dissociation of

the activating IRAKs from MyD88, thus impairing pro-inflammatory signalling

(Kobayashi et al., 2002). IRAK2 as well has been shown to have two inhibitory splice

variants, which lack domains important for their functions (Hardy and O’Neill, 2004).

Another protein inhibiting IRAK is Tollip, which associates with both TLR2 and TLR4

and is a substrate of IRAK itself (Zhang and Ghosh, 2002). The phosphatase SHP-1 on

the other hand directly binds to IRAK1 and inhibits its activation (An et al., 2008).

TRAF6, as an important signalling molecule shared by both MyD88 and TRIF

dependent pathways in TLR4 signalling, is the target of a number of inhibitors. One

of these is A20, which inhibits TRAF6 - as well as RIP1 and TRAF2 - by removing

their activating poly-ubiquitin chains (Heyninck and Beyaert, 1999; Turer et al., 2008;

Wertz et al., 2004). TAX1BP1 has been demonstrated to be necessary to recruit A20

to both TRAF6 and RIP1 (Iha et al., 2008), as well as to proteins interacting with and

activating TRAF6 like Ubc13 (Shembade et al., 2010). The transcription of this protein

is negatively regulated by STAT3, thus limiting TRAF6 activation (Zhang et al., 2014).

In addition, NLR3 limits the activating poly-ubiquitination of TRAF6 (Schneider et
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al., 2012), as do β -arrestin (Wang et al., 2006), TANK (Kawagoe et al., 2009) and the

nuclear receptor SHP (Yuk et al., 2011). Another protein demonstrated to be able to

remove poly-ubiquitin chains from TRAF6, as well as TRAF2, was USP4 (Xiao et al.,

2012; Zhou et al., 2012). TRAF3 too is regulated by deubiquitination, as DUBA has

been reported to bind ubiquitinated TRAF3, removing the poly-ubiquitin chain and

therefore inducing the dissociation from TBK1 and limiting type I IFN production

(Kayagaki et al., 2007). In TLR2 stimulated cells the expression of CYLD was

induced, which subsequently inhibited both TRAF6 and TRAF7 activation, probably

by deubiquitination as well (Yoshida et al., 2005a). SOCS-3 has been shown to inhibit

poly-ubiquitination of TRAF6 too, which specifically impairs the activation of TAK1

(Frobøse et al., 2006). SOCS-2 on the other hand induces poly-ubiquitination and

proteasomal degradation of TRAF6 (McBerry et al., 2012). This mechanism is also

used by the negative feedback regulator TRIM38 (Zhao et al., 2012).

As demonstrated in TNF or IL-1 treated cells, TRIM38 additionally mediates

ubiquitin independent lysosomal degradation of TAB2 and TAB3, thereby inhibiting

TAK1 activity (Hu et al., 2014; Hu et al., 2015); TRIM30α likewise induces lysosomal

TAB2/3 degradation (Shi et al., 2008).

The kinase PDK1 that is activated by the PI3K product PIP3 as described above,

has recently been shown to interact with TAK1, inhibiting the formation of the

TRAF6/TAK1/TAB complex and poly-ubiquitination and therefore activation of its

components (Moon et al., 2015).

Deubiquitination of proteins downstream of TRAF6 also plays an important

role in signalling regulation; USP4 has been shown to deubiquitinate and therefore

inactivate TAK1 in addition to TRAF6 and 2 (Fan et al., 2011).

The A20 interacting proteins ABIN1, 2 and 3, recognize poly-ubiquitin chains

in IKKγ ; ABIN-1 has been shown to be necessary for recruitment of A20 to IKKγ ,

which is followed by its deubiquitination and therefore inhibition of NF-κB activation

(Mauro et al., 2006). In addition, the ABIN proteins and A20 can also inhibit NF-κB

activation independently from any deubiquitinating activity, as they can compete with

activating proteins for their binding to IKKs (Heyninck et al., 2003; Skaug et al., 2011;

Verstrepen et al., 2009; Wagner et al., 2008; Wullaert et al., 2007). TBK1 is regulated as

well, as association of SHP-2 with this kinase blocks its activation and TRIF dependent

cytokine production (An et al., 2006).

Components of the MAPK cascade are subject to a number of specific regulatory

mechanisms. The PI3K pathway component Akt for example has been shown to

target the MAP kinase kinase kinase apoptosis signal-regulating kinase 1 (ASK1),

impairing its activation of the JNK and p38 cascades (Kim et al., 2001). Dual

specificity phosphatases are a family of proteins that are very important in the
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dephosphorylation of MAPKs. For example the MAPK phosphatase MKP-1 (also

known as DUSP1), is rapidly induced after LPS stimulation, and terminates activation

of p38 and JNK by dephosphorylating these kinases (Chi et al., 2006; Zhao et al., 2005,

2006). DUSP2 is also inducible by LPS, but targets ERK and p38 rather than JNK in

vitro (Jeffrey et al., 2006; Zhang et al., 2005). A number of additional DUSPs exist

that target one or more of the MAPKs, although most are not inducible by stimulation

(for a review see Patterson et al., 2009). The activation of ERK is regulated by Dok1

and Dok2 as well; these are activated by phosphorylation after LPS stimulation to

limit the activation of ERK and subsequent production of inflammatory mediators by

macrophages (Shinohara et al., 2005).

1.3.3.4 Inhibition of transcription factor activation or activity

No less important targets of cellular inhibition have been found to be the transcription

factors themselves.

The activation of the NF-κB member c-Rel for example is inhibited upon binding

of activated STAT3, which impairs its nuclear translocation (Nefedova et al., 2005).

Tristetraprolin (TTP) is another protein that impairs nuclear translocation of c-Rel,

in addition to p65 (Gu et al., 2013). Furthermore, the termination of NF-κB activity

is important as well. IκBNS for example has been described as an IκB protein

that is induced after LPS stimulation and binds to nuclear NF-κB, terminating NF-

κB activation (Kuwata et al., 2006) and the ubiquitin ligase PDLIM2 terminates p65

activity by inducing its proteasomal degradation (Tanaka et al., 2007). The latter

mechanism also requires HSP-70, as this protein surprisingly translocates to the

nucleus, binds to complexes containing p65 and PDLIM2 and promotes their transport

to the proteasome (Tanaka et al., 2014).

IRF proteins are subject to regulation as well. As mentioned before, the activation

of IRF5 is inhibited by IRF4. IRF4 has also been described to compete with IRF1 for

binding to promoter regions, but in contrast to the activating IRF1 it represses target

gene transcription of pro-inflammatory factors (Yoshida et al., 2005b); on the other

hand it induces transcription of IL-10 and IL-33, which promotes TH2 differentiation

(Williams et al., 2013). Activation of IRF3 and IRF7 is limited by their regulation

through the ubiquitin ligase RAUL, which initiates their proteasomal degradation and

therefore termination of the signal (Yu and Hayward, 2010). Phosphorylated IRF3 is

additionally recognized by another ubiquitin ligase, Pin1 (Saitoh et al., 2006).

Mechanisms involving epigenetic regulation of gene transcription are receiving

increasing attention. On the one hand, epigenetic mechanisms are involved in shaping

DC responses; DCs deficient in the methyl-CpG-binding domain protein Mbd2 for
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example have been shown to be impaired in their ability to induce TH2 responses,

while the induction of TH1 responses was unaffected. On the other hand, epigenetic

regulation of gene expression has been described to be a mechanism to limit DC

activation. The transcription factor ATF3 for example is induced by LPS stimulation;

its binding to target genes leads to the recruitment of HDACs, specifically HDAC1,

which mediates deacetylation of histones followed by condensation of chromatin.

ATF3 binding sites are often closely associated with p65 binding sites in gene

promoters, as for example in the promoters for IL-6 and IL-12p40. ATF3 was therefore

described as a negative feedback regulator, inhibiting transcription of NF-κB target

genes (Gilchrist et al., 2006; Whitmore et al., 2007).

1.3.3.5 Post-transcriptional regulation of target genes and signalling mediators

There are a number of mechanisms at work that regulate the expression of molecules

such as pro-inflammatory cytokines or costimulatory molecules after transcription

has been induced. Regnase for example has been demonstrated to destabilize a set

of mRNAs including the ones for IL-6 and IL-12p40 (Matsushita et al., 2009). The

accessibility of surface molecules can be regulated by their internalization. This

mechanism has been described for CD40, which is internalized following its ligation.

This was dependent on the scaffold protein JNK-associated leucine-zipper protein

(JLP), which is expressed upon CD40 ligation (Wang et al., 2013). In addition, protein

expression can be regulated by targeting them for degradation. This is for example

the case for CD86, which is ubiquitinated by MARCH1, followed by its proteasomal

degradation (Baravalle et al., 2011; Corcoran et al., 2011).

More recently it has become clear that microRNAs can very efficiently regulate

TLR signalling pathways. Specifically two molecules, miR-155 and miR-223, have

been found in DCs to target multiple signalling components (reviewed in O’Neill

et al., 2011). Among the targets of miR-223 are for example IKKα (Li et al., 2010)

and the transcription factor C/EBPβ (Zhou et al., 2015), while targets of miR-

155 include MyD88 (Tang et al., 2010), TAB2 (Ceppi et al., 2009) and IKKε (Tili

et al., 2007). O’Neill et al. propose that miRNAs may be just as important as

transcription factors in the regulation of gene expression, as they can co-ordinately

down-modulate several signalling pathways at the same time and shorten the half-life

of transcripts encoding signalling molecules, which therefore could not be replenished

once degraded (O’Neill et al., 2011). In addition, miRNAs can also target effector

mRNAs. miR-10a and miR-107 were found to be expressed in intestinal DCs; while

miR-10a targeted IL-12/IL-23p40 (Wu et al., 2015; Xue et al., 2011), miR-107 restricted

the expression of IL-23p19 (Xue et al., 2014).
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All these mechanisms are essential to regulate immune responses and avoid

damage to the host, but they also present numerous targets that can be exploited by

pathogens to evade immune responses. This is discussed further in the next section.

1.3.4 DC modulation by helminths

To evade the immune system of the host, helminths have evolved a spectrum of

sophisticated mechanisms to inhibit immune reactions (Maizels et al., 2004; Maizels

and Yazdanbakhsh, 2003). To date, most inhibitory pathways have been attributed to

secreted proteins, but detailed knowledge of individual immunomodulatory proteins

and their mechanisms of action is sparse. Nevertheless, there is now a substantial

body of literature describing the modulation of DC maturation not only in the course

of helminth infection, but also by treatment of animals or cells with helminth products.

These findings are described below for each of the major groups of helminth parasites.

1.3.4.1 Cestodes

A common thread among studies of helminth effects on DCs has been the inhibition

of pro-inflammatory responses to TLR ligation. For example, ES of the cestode Taenia
crassiceps impairs LPS induced DC maturation in susceptible BALB/c mice and in

human DCs, inhibiting the upregulation of the costimulatory molecules CD40, CD80

and CD86 and production of the inflammatory cytokines IL-12 and TNF (Reyes et

al., 2009; Terrazas et al., 2010; Terrazas et al., 2011). Priming of DO11.10 T cells with

ES treated OVA pulsed DCs also impaired production of IFNγ while increasing IL-

4 secretion, thereby shifting the response from TH1 to TH2 (Terrazas et al., 2010).

In human DCs, treatment with TcES induced the production of IL-10 and increased

expression of the CLR macrophage galactose/N-acetylgalactosamine-specific C-type

lectin (MGL), while it decreased the expression of DC-SIGN (Terrazas et al., 2011).

MGL was later shown to be one of the receptors through which TcES acts, in addition

to the mannose receptor (MR) and TLR2, to induce phosphorylation of c-RAF and

interfere with the LPS induced activation of p65 and p38 (Terrazas et al., 2013).

Members of another cestode genus, Echinococcus multilocularis and E. granulosus,

have been demonstrated to impair TLR ligand induced DC maturation as well.

The larvae of these worms form hydatid cyst in the intermediate host (including

humans), and cyst proteins have been investigated as potential immunomodulators.

Two proteins from cysts formed by E. granulosus, AgB and SHF, have been found

to alter human DC subsets, giving rise to cells that are less responsive to TLR

ligation. These cells, while initially expressing more CD86, show a reduced

upregulation of CD80, CD83 and CD86 and produce less IL-12, TNF and IL-6 after
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LPS stimulation. Treatment of normally differentiated DCs with these two proteins

leads to phosphorylation of IRAK1 and the activation of NF-κB, specifically p65 and

p50, and induces them to prime TH2 responses. This was even true for LPS stimulated

DCs, which again showed an impaired upregulation of costimulatory molecules and

inflammatory cytokines (Riganò et al., 2007). Later, another study demonstrated that

E. granulosus ES inhibits the maturation of CpG activated OVA pulsed DCs, which

subsequently induced the development of DO11.10 T cells into FoxP3+ Tregs (Wang

et al., 2015).

E. multilocularis has also been demonstrated to alter DCs, increasing the number

of DCs in the peritoneum of mice following larval infection; these DCs had elevated

levels of TGF-β mRNA and expressed lower levels of CD40, CD80 and CD86, although

the responsiveness to TLR ligands was not tested in this study. However, it was

found that infection decreased the mRNA levels of a number of proteins involved

in the expression of MHC II, indicating an impairment of the antigen presentation

pathway; in addition, DCs from infected mice were shown to inhibit the proliferation

of ConA stimulated T cells (Mejri et al., 2011). A second study investigated the

effects of ES from different life cycle stages, and found that ES from the early

and intermediate stages (primary cells and metacestodes) was able to suppress LPS

induced DC maturation, in addition to inducing apoptosis of BMDC (Nono et al.,

2012). So far, no underlying mechanism has been described for these effects.

1.3.4.2 Trematodes

The liver fluke Fasciola hepatica has been shown to contain molecules inhibiting DC

maturation whether evaluated as tegumental coat antigen (Teg), ES or worm extracts.

Teg was demonstrated to inhibit the production of cytokines like IL-12p70, IL-6 and

TNF and the upregulation of CD40, CD80 and CD86 after stimulation with various

TLR ligands and even post PMA treatment (Falcon et al., 2010; Hamilton et al., 2009).

Teg was even able to inhibit DC maturation if given 2.5 hours before or after LPS

stimulation. Teg treatment was shown to inhibit the activation of multiple signalling

pathways, including their components p65 (Hamilton et al., 2009), p38, ERK and JNK

(Vukman et al., 2013). Inhibitor studies mentioned - but not shown - in the earlier

study were thought to exclude the MAP kinases as mediators of Teg’s effects; more

specifically, Vukman et al. found the expression of SOCS-3 to be increased in Teg

treated DCs exposed to LPS stimulation. Teg treatment of DCs also alters their ability

to prime T cell responses. Hamilton et al. described that Teg suppresses phagocytosis

by DCs, and they could show that if Teg treated OVA pulsed DCs were transferred into

DO11.10 mice, the cells from the draining lymph nodes produced lower levels of IFNγ
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upon restimulation with OVA (Hamilton et al., 2009). Similar results were obtained in

another study, coculturing splenocytes with irradiated DCs that had been stimulated

with LPS and ES, as ES treatment of the DCs inhibited splenocyte proliferation and

IFNγ production. Interestingly, in this study DCs treated with ES were able to induce

IL-4, IL-5, IL-10 and TGF-β production on cocultured T cells, indicating the priming

of TH2 and regulatory T cells (Falcon et al., 2010).

In addition, the extracts of adult worms had DC inhibitory activity that was

shown to be contained in the fraction containing proteins of less than 10 kDa. A Kunitz

type protease inhibitor was then identified in this fraction, and the recombinantly

expressed protein shown to partially reproduce the inhibitory function (Falcon et al.,

2014). Another study demonstrated the importance of glycoproteins in worm extracts,

as oxidation of glycans partially inhibited LPS induced DC maturation (Rodriguez et

al., 2015). The requirement for specific glycosylation patterns could potentially explain

the less distinct inhibition of LPS induced DC activation by the recombinant Kunitz

type protease compared to total worm extracts that was found in the first study.

Worms of the genus Schistosoma, the blood flukes, have been well studied,

especially the soluble egg antigen from S. mansoni (SEA) that has proved to be an

archetypal Type 2-inducing stimulus which can drive the differentiation of T cells

into TH2 cells (MacDonald et al., 2002). In part, this may be due to its route of

uptake and subsequent compartmentalization within DCs, which differs from that

associated with Type 1 driving antigens such as the bacterial Proprionobacter acnes
(Pa); DCs copulsed with SEA and Pa could even induce distinct Pa specific TH1 and

SEA specific TH2 responses, provided the concentration of Pa was not too high (Cervi

and MacDonald, 2004). While Pa was taken up via clathrin mediated endocytosis

and localized in LAMP2+ lysosomes in this study, SEA was later demonstrated to be

bound by CLRs, specifically DC-SIGN, MGL and MR and trafficked through early

endosomal compartments to LAMP-1+ lysosomes, where it colocalized with MHC II

(van Liempt et al., 2007).

Three distinct DC2-inducing molecules within SEA have so far been described.

The first, glycan lacto-N-fucopentaose III (LNFPIII), has been shown to induce TH2

differentiation via DC2s, inducing ERK phosphorylation via TLR4. Its fucose group

has been shown to be crucial for this function (Thomas et al., 2003). Subsequently,

the signalling induced by LNFPIII was compared to that induced by LPS, and it

was found that while LPS induced persisting NF-κB activation, which was crucial

for the production of pro-inflammatory mediators, LNFPIII only induced a transient

activation of that transcription factor. This transient activation was not accompanied

by a degradation of IκB, but a rapid accumulation of p50 indicated the induction of

p105 cleavage (Thomas et al., 2005). A second molecule is the schistosome-specific
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phosphatidylserine found to act via TLR2 on DCs to induce TH2 skewing and IL-

10 producing regulatory T cells (Van der Kleij et al., 2002)), in contrast to the more

general dampening of TLR-mediated responses by SEA discussed below. Thirdly,

the glycoprotein ω-1 has been found to be another molecule acting on DCs to induce

TH2 responses (Everts et al., 2009; Steinfelder et al., 2009). The effects of ω-1 include

inhibition of LPS induced DC activation, which was not mediated via MyD88 or TRIF

(Steinfelder et al., 2009). This glycoprotein was internalized via MR, explaining the

necessity of its glycans for its activity on DCs, but then acted as a ribonuclease to

degrade RNAs. It was found to generally inhibit protein synthesis by degrading both

mRNAs and rRNAs (Everts et al., 2012b).

As mentioned above, SEA inhibits TLR ligand induced DC maturation (Kane et

al., 2004; van Liempt et al., 2007). Kane et al. showed that stimulation by various

TLR ligands as well as heat killed bacteria was affected, and that while IL-10 was

induced by SEA, the inhibition of DC maturation was independent of this cytokine.

They also demonstrated that, at least in IL-10 deficient cells, activation of all three

MAP kinases as well as NF-κB was inhibited early after stimulation (Kane et al., 2004).

Later, they further added that this effect was not mediated via TLR2 or TLR4 and was

independent of MyD88 as well (Kane et al., 2008).

A different picture emerged from studies of Correale et al. in peripheral blood

DCs and moDCs of human multiple sclerosis patients, in which the inhibition of LPS-

induced upregulation of costimulatory molecules by SEA was MyD88 independent,

but siRNA induced knockdown of MyD88 showed that suppression of cytokine

secretion by SEA was dependent on this signalling mediator. Both effects were

mediated by TLR2 signalling as demonstrated by knockdown of this receptor, and

SEA was found to induce ERK activation in this study, which induced the expression

of IL-10 (Correale and Farez, 2009). IL-10 was shown to be crucial for the induction of

regulatory T cells; in addition, SEA was found to induce retinoic acid production on

DCs. This metabolite was found to synergize with SEA - in a TLR2 dependent manner

- to induce the expression of SOCS-3 in DCs, which was necessary for the inhibition

of pro-inflammatory cytokine production (Correale and Farez, 2013). Only recently

a study found that glycans in SEA, internalized via MR, induce SOCS-1 and SHP-1

as well (Klaver et al., 2015b); hence several inhibitory proteins (SOCS-1, SOCS-3 and

SHP-1) are implicated in the inhibition of DC activation, and each appears to require

small molecule or glycan interactions for their activity.

Although less well studied, Schistosoma haematobium has also been shown to

inhibit DC activation, as myeloid DCs from infected patients secreted less IL-12,

IL-6 and TNF after stimulation with R848 and showed a reduced upregulation of

CD80 after stimulation with several TLR ligands. Compared to DCs from non-
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infected individuals, the ratio of phosphorylated ERK to p38 early after activation

was increased in infected patients; the ability of these cells to prime T cell responses

was reduced as well (Everts et al., 2010).

1.3.4.3 Filaria

Several reports describe the effects of Brugia malayi on DC function. These nematodes

infect their host by invading the skin during a vector’s blood meal; their infective

L3 larvae have been shown to induce migration of Langerhans cells, simultaneously

impairing their ability to process and present antigens (Semnani et al., 2004).

Microfilariae (Mf), the stage found in the host’s blood, were shown to induce apoptosis

of DCs, and although they induced the expression of cytokines like TNF and IL-1,

they suppressed IL-12 and IL-10 production by DC and inhibited priming of both

TH1 and TH2 responses. These effects were replicated by treatment of DCs with

ES, although this was slightly less potent (Semnani et al., 2003). The induction of

apoptosis in DCs was later shown to be mediated by the increased TNF as well

as an increase in expression of TRAIL; Mf induced the expression and cleavage of

BH3-interacting domain death agonist (Bid), leading to cytochrome c release from the

mitochondria followed by caspase 9 activation, resulting in apoptosis (Semnani et al.,

2008b). The relevance of this mechanism in vivo is unclear however, as it was found

that the number of circulating DCs is actually increased in Brugia infected patients

(Semnani et al., 2010). In addition, Mf have been shown to inhibit the activation of

DCs by both LPS and poly(I:C). Semnani et al. found that treatment of DCs with

live Mf reduced the mRNA levels of MyD88 and impaired the activation of NF-κB,

specifically p65. Furthermore, the expression of SOCS-3 was induced by Mf (Semnani

et al., 2008a). Moreover, DCs from filaria infected humans showed reduced expression

of IL-12 as well as several chemokines in response to malaria antigens, while again

demonstrating the increased expression of TNF, but also IL-1, IL-6 and IL-10. The

expression of the transcription factors IRF1, IRF2 and IRF3 was reduced by Mf as

well, and knockdown of IRF1 with siRNA could reduce the expression of IL-12p35

(Metenou et al., 2012).

The ES of another filarial nematode, Acanthocheilonema viteae, has been shown

to predominantly contain one phosphorylcholine (PC) containing protein, ES-62

(Harnett et al., 1989). This protein has, since its discovery, been demonstrated to

affect various immune cells, amongst others also DCs (reviewed in Al-Riyami and

Harnett, 2012). While DCs primed with ES-62 showed a low level of activation and

prime TH2 responses, subsequent stimulation with LPS failed to activate them further

(Goodridge et al., 2004; Whelan et al., 2000). The effect of ES-62 was shown to be
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dependent on TLR4 and MyD88 (Goodridge et al., 2005b), and could be replicated

by using a PC-Ova conjugate; the contribution of the protein component could not

be ascertained, as the lack of the PC moiety altered its conformation (Goodridge et

al., 2007). In this study, while ES-62 or PC-Ova alone did not induce the activation

of ERK or p38, they inhibited Akt phosphorylation. The effects of ES-62 in LPS

induced signalling have been investigated in more detail in macrophages, where

LPS+IFNγ induced activation of p38 and JNK was inhibited by ES-62, while ERK

phosphorylation was increased (Goodridge et al., 2005a; Goodridge et al., 2003).

1.3.4.4 Trichinella spiralis

The ES from muscle encysted Trichinella spiralis has been demonstrated to inhibit LPS

induced DC activation as well, although it has been shown that this is specific for TLR4

ligation and not all forms of LPS (Aranzamendi et al., 2012; Kuijk et al., 2012; Langelaar

et al., 2009). TspES has also been demonstrated to suppress the expression of a number

of components of the signalling pathways induced by TLR4, including transcription

factors like NF-κB and IRF1; this has been hypothesized to be responsible for the

inhibition but the specific mechanism has not been identified yet (Aranzamendi et

al., 2012).

1.3.4.5 Soil transmitted helminths

A number of soil transmitted nematodes that parasitise the gastrointestinal tract have

been investigated for their ability to modulate DC responses; these include two of the

most prevalent taxa of human parasite, Ascaris and Trichuris, as well as model rodent

species..

Both Ascaris lumbricoides (a parasite of humans) and Ascaris suum (of swine)

have been demonstrated to contain molecules affecting TLR induced DC activation.

Adult parasites are sufficiently large to make it possible to isolate pseudocoelomic

fluid (PCF) from the body of the worm. While A. lumbricoides PCF alone did induce

production of IL-6 and IL-12p40 in murine BMDC, the cells did not increase their

expression of costimulatory molecules; the production of IL-6 and IL-12p40 was

inhibited by treatment with the MEK1/2 inhibitor U0126, indicating an involvement

of ERK. In LPS stimulated cells, pre-treatment with PCF inhibited IL-12p70 production

but did not affect IL-6 or IL-12p40 levels (Dowling et al., 2011). Pretreatment with

PCF from A. suum similarly inhibited IL-12 production by LPS stimulated BMDC, in

addition to their upregulation of CD40 and CD86 (McConchie et al., 2006). The high-

molecular-weight components of these worms were shown to inhibit the activation

of CD11c+ LN cells in mice immunized with OVA, and inhibit T cell priming in an
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IL-10 dependent mechanism (Silva et al., 2006). They were later shown to inhibit

the activation of BMDC by LPS, poly(I:C) and Pam3CSK4, and actually reduced the

baseline expression of CD40, CD80 and CD86, while at the same time inducing the

expression of low levels of IL-6 and IL-10 (Favoretto et al., 2014).

Trichuris suis has been tested in a number of clinical trials of live helminth therapy

against diseases such as multiple sclerosis, but also asthma and allergy (Fleming

and Weinstock, 2015 and http://www.niaid.nih.gov/topics/tropicaldiseases/

Pages/helminthDatabase.aspx, as of 16. March 2016). T. suis ES has been shown

to protect mice from EAE, and to inhibit LPS induced TNF and IL-12 production in

human DCs (Kuijk et al., 2012). In addition, it inhibited the LPS induced production

of a number of chemokines. This inhibition was shown to be at least partially due

to glycans, probably mannose binding to MR and DC-SIGN (Klaver et al., 2013).

Analysing changes in DCs upon treatment with ES in addition to LPS, it was later

shown that ES inhibits both MyD88 and TRIF dependent pathways; the mRNA levels

of signalling components and transcription factors like MyD88, IRAK2, c-Jun, p65 and

IRF8 were lower in ES+LPS compared to LPS treated cells. In addition, ES inhibited

the LPS induced phosphorylation of IRAK1. In this study, expression of STAT4 and

Rab7b was discovered to be increased by ES. Consistent with the studies described

above on Rab7b, it was shown to reduce the surface levels of TLR4 at the later time

points after T. suis ES administration, thereby contributing to the inhibition of TLR4

signalling. Interestingly, in this study ES was able to inhibit LPS induced DC activation

even if it was added some time after the stimulation, with a trend towards inhibition

still being evident if it was added four hours later (Klaver et al., 2015a).

One of the more widely-used model nematode species in Nippostrongylus
brasiliensis, a rat parasite related to the human hookworms. N. brasiliensis ES too was

shown to induce DCs to prime TH2 responses, activating them to express elevated

levels of OX40L and CD86 as well as IL-6 and IL-12p40, but not CD80 or IL-12p70.

In addition, it inhibited LPS induced IL-12p70 production, but did not affect IL-6

secretion (Balic et al., 2004). In vivo, infection with this parasite reduced the number

of migratory, lamina-propria derived CD8intCD11b−DCs in the draining lymph nodes;

after LPS stimulation CD11c+ mLN cells from infected mice were slightly impaired in

their production of IL-12 and TNF, but again not IL-6 (Balic et al., 2009).

Heligmosomoides polygyrus
As mentioned above, H. polygyrus is a much used mouse model for intestinal

helminth infections. Its influence on the ability of DCs to activate immune responses

was first described in 2005, when it was found that co-infection of mice with

Plasmodium chabaudi AS and H. polygyrus severely exacerbated malaria, with lower
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serum levels of IFNγ and elevated TGFβ compared to mice infected with P. chabaudi
AS alone. Helminth infection was found to impair the ability of splenic DCs to induce

proliferation of T cells (Su et al., 2005). Subsequently, the same group showed that

ES but not worm extracts inhibited BMDC activation, both in response to LPS and

CpG, but not the TLR independent activation induced by PMA. The activation of OVA

pulsed BMDC was impaired as well, although uptake and processing of ovalbumin

protein was not affected, and upon transfer into DO11.10 mice these HES treated OVA

pulsed DCs did not induce OVA specific antibody responses. In in vitro co-cultures,

HES treatment of BMDC impaired the production of IFNγ and IL-4 by T cells, but

increased IL-10 secretion (Segura et al., 2007).

In addition, in a mouse model of colitis, infection with H. polygyrus was shown

to protect and reverse disease pathology, with lamina propria DCs of these mice

expressing lower levels of CD80 and CD86 as well as secreting less IL-12 (Hang et al.,

2010). Subsequently, these DCs were subsequently shown to inhibit the production

of IFNγ and IL-17 by T cells, as well as protecting from colitis upon adoptive transfer

into mice (Blum et al., 2012).

Furthermore, infection of mice has been shown to alter DC populations in vivo.

The loss of the CD8intCD11b−population of CD11c+ cells in the draining lymph nodes

was even more pronounced than in N. brasiliensis infected mice (Balic et al., 2009), and

a population of CD11clo DCs was shown to expand upon infection. This population

induced Tregs rather than effector T cells, in contrast to the CD11c+ DC population,

even though the latter expressed lower levels of CD40, CD80 and CD86 in H. polygyrus
infected mice (Li et al., 2011; Smith et al., 2011). In a follow up study, H. polygyrus
induced TH2 responses were abrogated in mice depleted of CD11c+ cells and could be

induced by adoptive transfer of DCs pulsed with HES (Smith et al., 2012).

The identification of molecular components from H. polygyrus that may interact

with DCs has led to analyses of the ES antigens (HES) from this parasite. So far, two

proteins have been identified that act on DCs. Calreticulin has been identified in HES,

and subsequently shown to induce a TH2 response upon immunization. It was also

shown to be bound by scavenger receptor A on DCs and be internalized by them,

although the exact effect calreticulin has on DCs was not investigated (Rzepecka et al.,

2009). Another protein contained in HES is cystatin; this protein too was expressed

recombinantly and tested on DCs. If DCs were exposed to this protein during their

differentiation, subsequent activation by CpG was impaired. This was also the case if

DCs were preincubated with cystatin before stimulation; LPS induced DC maturation

however was barely affected. Cystatin was shown to be an active protease inhibitor,

acting on the cathepsins involved in antigen processing and presentation on MHC II

(Sun et al., 2013).
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Further and so far unpublished data on the effects of HES on DC activation

were collected by John Grainger and Blaise Dayer during their time in the Maizels

laboratory.

John Grainger found that, while HES alone did not induce classical activation of

DCs, HES pulsed BMDC did induce a HES specific TH2 response upon transfer into

mice, even if the DCs were co-pulsed with Pa. While these cells still induced a Pa

specific TH1 response, demonstrating the intact separation between both pathways,

this response was impaired compared to the one induced by BMDC that were pulsed

with Pa alone. This induction of a TH2 response by HES was heat stable, in contrast

to the inhibition of LPS or Pa induced DC maturation which he could show was heat

labile. This inhibition only lasted for a short period, as if BMDCs were stimulated one

day after HES treatment, the inhibitory effect was lost, and even reversed if the cells

were stimulated three days post HES treatment. Furthermore, he could show that HES

did not impair antigen uptake by DCs (Grainger, 2009).

Blaise Dayer expanded on these findings, again showing a dose dependent

inhibition of LPS induced DC maturation that was lost upon heat treatment of HES,

but additionally demonstrating that HES could inhibit IL-12p70 production even

if it was added up to eight hours after LPS treatment. He also excluded both

calreticulin and TGFβ as the inhibitory factors, as recombinant calreticulin did not

show any inhibitory function, and inhibition of TGFβ signalling did not abrogate

DC modulation by HES. He also performed a size exclusion fractionation of HES,

showing that the inhibitory activity of HES could be pinpointed to only a few fractions.

Furthermore, he investigated the contribution of several signalling pathways. As

described above, signalling through CLRs has been reported to negatively regulate

TLR induced DC activation, and several helminths do indeed use this mechanism.

This was therefore one option considered, but treating cells with antibodies to block

dectin-1 or dectin-2 or using cells from dectin-1−/− mice did not abolish the inhibitory

effect of HES. Blocking the activity of Syk, a kinase downstream of a number of

CLRs, also had no effect on HES modulation of DC activation. Additionally, he

investigated the possibility that HES might utilize the PI3K signalling pathway; cells

were therefore treated with a PI3K inhibitor, which also did not impair DC modulation

by HES. To investigate if HES induces signalling through TLRs that might lead to the

observed effects, something that also has been described in other helminths, cells from

mice deficient in MyD88 and TRIF were used. Again, HES was able to inhibit DC

maturation, which in double knock out mice was induced by ligation of CD40 (Dayer,

2011).
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1.4 Objectives
As described in the previous section, HES has been demonstrated to modulate DC

activation, but neither the component responsible for this effect, nor the mechanism

through which modulation takes place, is known so far. The aim of this project was to

shed light on these questions.

First, a more detailed description of the phenotype of HES treated DCs was

established, to be able to better draw comparisons to effects described in different

models and to be able to draw conclusions as to the underlying mechanism.

Secondly, the fractionation strategy was refined with the aim to identify the

molecule responsible for the inhibition of DC maturation. Both size exclusion

fractionation and anion exchange fractionation were used in several combinations,

followed by mass spectrometry analysis of the fractions. Proteins contained in the

active fractions were identified, the most promising candidates expressed in HEK293

cells and tested on BMDCs.

Thirdly, the work on identifying the mechanism underlying the inhibition of DC

maturation by HES was extended. The effect of HES on the two main pathways

involved in TLR ligand induced DC activation, NF-κB and MAPK signalling, was

investigated, and a timeline of the inhibitory effect of HES established. With this

knowledge, a transcriptomics analysis comparing BMDC stimulated with LPS and

LPS+HES was performed and interpreted to identify possible causes for the observed

effects.
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CHAPTER2
Material and Methods

2.1 Material
Following are lists of buffers and media used (Table 2.1), and antibodies used for flow

cytometry, MACS and ELISA (Table 2.2). Reagents are from Sigma if not otherwise

specified.

Table 2.1: Buffers and Media in alphabetical order.

Anion exchange elution buffer 20mM Tris-HCl

1M NaCl (Fisher Chemical)

in dH2O

pH 8

Anion exchange starting buffer 20mM Tris-HCl

in dH2O

pH 8

Carbonate Buffer for ELISA 45.3ml sol. A (8.5g NaHCO3 in 100ml dH2O)

18.2ml sol. B (10.6g NaCO3 in 100ml dH2O)

936.5ml dH2O

pH 9.6

10µl 10% sodium azide

cRPMI 500ml RPMI (Gibco)

50ml FCS (Gibco)

5ml L-Glutamine (Gibco)

5ml Penicillin/Streptavidin (Gibco)
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Table 2.1: Buffers and Media (continued).

ELISA blocking buffer TBS

0.05% Tween® 20

10% FCS

ELISA Washing Buffer 5l TBS

2.5ml Tween® 20

FACS buffer PBS

0.5% BSA

HEK cell growth medium 500ml DMEM

50ml FCS

5ml L-Glutamine

5ml Penicillin/Streptomycin

HEK cell SFM medium 1l serum free medium (Gibco)

10ml L-Glutamine

10ml Penicillin/Streptomycin

HIS binding buffer (8x) 1168.8g NaCl

13.6g Imidazole

126g Tris-HCl

fill up to 5l with dH2O

pH 7.9

HIS elution buffer (8x) 58.4g NaCl

136.15g Imidazole

6.3g Tris-HCl

fill up to 500ml with dH2O

pH 7.9

HiTrap column charge buffer (8x) 15.52g NiSO4

fill up to 100ml with dH2O

HiTrap column strip buffer (4x) 14.61g EDTA

14.61g NaCl

1.58g Tris-HCl

fill up to 250ml with dH2O

pH 7.9
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Table 2.1: Buffers and Media (continued).

MACS-Buffer 500ml PBS

2.5ml BSA

2ml 2mM EDTA

Silver Stain Developing 6.25g Sodium carbonate

0.05ml Formaldehyde (37%)

fill up to 250ml with dH2O

Silver Stain Fixation 100ml Ethanol

25ml Acetic acid

fill up to 250ml with dH2O

Silver Stain Sensitizing 75ml Ethanol

0.5g Sodium thiosulfate

17g Sodium acetate

fill up to 250ml with dH2O

Silver Stain silver reaction reagent 0.1g Silver nitrate

40ml dH2O

Silver Stain Stop solution 3.65g EDTA Na2.2H2O

fill up to 250ml with dH2O

Western Blot blocking buffer TBS

0.1% Tween® 20

% BSA

Western Blot washing buffer TBS

0.1% Tween® 20
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2.2 Methods

2.2.1 Animals

For this work both male and female C57BL/6 mice and Balb/c mice aged 6-8 weeks

were used; these were bred in-house.

2.2.2 Cell isolation and culture

2.2.2.1 Bone marrow derived dendritic cells

Extraction and culture
Bone marrow was extracted from femurs and tibiae of the hind legs, homogenised

using PBS and a 23ga needle and filtered through a 100µm nylon cell strainer. For

generation of GM-CSF BMDCs, cells were then plated at 2x106 cells per bacteriological

petri dish in 10ml cRPMI plus 20ng/ml GM-CSF (PeproTech) and incubated at

37◦Cwith 5% CO2. A further 10ml medium was added on day 3 and replaced on days

6 and 8 of culture. Non-adherent cells were harvested gently on day 10 and directly

used for stimulation or depleted of CD115+ cells by MACS as described below. For

generation of FLDC, red blood cells were lysed (Sigma RBC lysis buffer, 5ml, 4min)

before resuspension of cells at 1.5x106 cells/ml in cRPMI and addition of 200ng/ml

Flt3L. They were then incubated in tissue culture flasks for eight days at 37◦C, 5%

CO2 and used for stimulation on day 8.

Stimulation
Cells were stimulated in 96, 48 or 24 well plates according to the experiment.

Stimulation reagents were used in cRPMI with 5ng/ml instead of 20ng/ml GM-

CSF or 50ng/ml instead of 200ng/ml Flt3L as shown in Table 2.3. HES was used

at concentrations between 1-20µg/ml as indicated and added before, with or after

the stimulation reagents as indicated. The MEK1/2 inhibitor U0126 (Cell Signaling

Technology) was used at 10µM, cells were pre-incubated with medium alone, DMSO

or U0126 for 60-90min before stimulation. For analysis by flow cytometry, GM-CSF

BMDC were used at 2x105 cells/well in 200µl/well in 96 well round bottom plates,

for RNA extraction at 2x106 cells/well in 1ml/well in 24 well plates. The FL-DC were

used at 2x106 cells/ml in 24 well plates (1ml/well) or 48 well plates (500ml/well).
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Table 2.3: Substances used for stimulation of dendritic cells

ligand amount used receptor triggered

CpG 10µg/ml TLR9

LPS 100ng/ml or 1µg/ml TLR4

Pam3CSK4 100ng/ml TLR1/2

Poly(I:C) 580µg/ml TLR3

R848 1µg/ml TLR7

2.2.2.2 Spleen cell isolation and culture

Extraction
Splenocytes were extracted by mashing spleens through 70 or 100µm nylon cell

strainers followed by red blood cell lysis (5ml red blood cell lysis buffer (Sigma), 5min,

on ice). To enrich the target population, cells were then MACS sorted for CD11c+ cells

as described below.

Stimulation
Splenic CD11c+ cells were stimulated in 24 well plates according to the same protocol

as BMDC, without the addition of GM-CSF or FLT3L to the stimulation medium. They

were harvested after 18h.

2.2.2.3 Human monocyte derived DCs

PBMC preparation and culture
Apheresis cones were collected from a blood bank, the blood contents extracted in a

sterile hood, diluted in PBS and layered over Percoll in 50ml falcon tubes. PBMCs

were separated by gradient centrifugation, 40min, 400g at room temperature, the

PBMC layer collected in new tubes, washed and cells counted. CD14+ cells were

then enriched by MACS as described below. After the MACS sort, 0.5x106/ml were

seeded per well in a 24 well plate with 25ng/ml IL-4 and GM-CSF in cRPMI. Cells

were incubated at 37◦C, 5% CO2 for six days, with a medium exchange at day three.
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Stimulation
On day six, cells were gently aspirated to only collect non-adherent cells and

resuspended at 0.5x106/ml with half old and half fresh medium (cRPMI); to this

mixture another 25ng/ml IL-4 and GM-CSF were added. 500µl of this cell suspension

were added per well on a 48 well plate and treated with 100ng/ml LPS and/or

10µg/ml HES. Cells were then incubated at 37◦C for 18 hours.

2.2.2.4 MACS

Magnetic activated cell sorting was used for either positive or negative selection

of cell populations. For both approaches, a maximum of 108 cells/ml in MACS

buffer were incubated with a biotinylated primary mAB as appropriate for 20min

on ice, before incubation with SA-beads diluted 1/10 in MACS buffer for 15min on

ice.MACS® Separation Columns (Miltenyi Biotec) were prepared and used according

to the manufacturers instructions, using LD columns and collecting the flow through

for negative and LS columns collecting the eluent for positive selection.

2.2.3 Analysis of cytokine production by ELISA

To measure levels of secreted cytokines in culture supernatants, enzyme-linked

immunosorbent assay (ELISA) was performed. Nunc plates were coated over night

at 4◦Cwith 50µl coating buffer and unlabelled mAB as appropriate (see Table 2.2 for

concentrations). On day 1, wells were blocked with 150µl ELISA blocking buffer per

well for 2 hours at 37◦C, followed by incubation with standards and samples over

night at 4◦C. For TNFα and IL-6 ELISAs of BMDC supernatants, samples were diluted

1/10 in medium. On day 2, ELISA plates were developed by sequential incubations

(1h, RT) with biotinylated detection antibodies (concentrations see Table 2.2) and

extravidin alkaline phosphatase (1/10000) in 50µl blocking buffer per well, followed

by incubation with 100µl SIGMAFAST™ p-Nitrophenyl phosphate Tablets (Sigma)

made up according to the manufacturers instructions, until colour development

allowed measurement to take place. Between each incubation step, plates were

washed 4-6 times using ELISA wash buffer, followed by two washes with distilled

water before addition of the pNPP. ELISA plates were then read using an Emax

precision microplate reader (Molecular Devices) and concentrations calculated using

the SoftMax®Pro software (Molecular Devices).
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2.2.4 Analysis of cytokine production by CBA

Concentrations of cytokines secreted by human monocyte derived DCs were

measured by CBA (BD Bioscience). In brief, 50µl sample supernatant diluted as

appropriate or a mixture of the appropriate standards were incubated for 2h, RT with

50µl each of capture beads and detection beads made up in bead or assay diluent.

After washing off unbound beads, cytokine concentrations were measured on a BD

FACS Verse.

2.2.5 Analysis of cells by flow cytometry

Flow cytometry was used for analysis of expression of cell surface markers,

intracellular proteins or phosphorylation status of cell signalling molecules. If only

surface markers were investigated, cells were used fresh; for intracellular stainings

cells were fixed as described.

Instruments used for acquisition were the FACS Canto II, LSR II or Fortessa (all

BD), and FlowJo (FlowJo, LLC) used for data analysis. The gating strategies used for

identification of DCs are shown in Fig. 2.1.

2.2.5.1 Basic staining protocol

Staining was performed in the 96 well plates the cells were stimulated in after

collection of supernatants for ELISA. For live/dead stain, cells were washed in PBS

prior to staining and then incubated with 200µl/well live/dead® Fixable Aqua Dead

Cell Stain (molecular probes, life technologies) diluted 1/1000 in PBS before the

blocking step. Otherwise, cells were washed in FACS buffer prior to staining and

directly blocked for 10min using rat IgG diluted 1/50 in FACS buffer. Staining was

performed using the appropriate antibodies diluted in 20µl/well FACS buffer (see

Table 2.2) for 20min at 4◦C. If a secondary staining step was necessary cells were

washed with FACS buffer and stained with the secondary antibodies or SA diluted

in 20µl/well FACS buffer.

2.2.5.2 Fixation

To preserve phosphorylation state, formaldehyde was added directly into the

stimulation wells at the appropriate time points for an end concentration of 2%

formaldehyde and incubated for 10min, RT. Cells were then pelleted (1500rpm, 5min),

formaldehyde removed and the cell pellet resuspended in prewarmed phosflow

fix/lyse buffer (BD Bioscience) followed by incubation for 10min at 37◦C. After a wash

in PBS, cells were washed and then incubated in BD phosflow perm buffer for 15min at
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room temperature. Following this fixation and permeabilization, cells were incubated

with the extra- and intracellular primary antibodies in perm buffer over night at 4◦C.

The next day, cells were washed in perm buffer and incubated for 1h, RT with the

appropriate secondary antibodies in perm buffer. Following another washing step in

perm buffer, cells were resuspended in FACS buffer and acquired.

Staining was performed in 96 well plates.

Live gate

singlets

cells
cDC pDC

CD24+ cDC

CD11b+ cDC

B

C

A
singlets

singlets

Live gate

cells

phagocytes

CD11c+ cells

CD11c+ cells exclusion of 

CD14+ cells

Figure 2.1: Gating strategies used to identify DCs. (A) For GM-CSF BMDC, singlets
were gated first, followed by gating the population of live cells. Lastly, CD11c+

cells were selected. (B) For FLDC, the first step was the identification of live cells,
followed by gating singlets and another step of specifically gating the cell population.
Then, cDC and pDC were distinguished by their expression of B220, followed by
separation of CD11b+ and CD24+ cells according to (Naik et al., 2005). (C) Human
PBMC similarly were first gated for live cells, followed by gating of singlets and the
phagocyte population. They then were gated for the CD11c+ population, followed by
exclusion of CD14+ cells.

52



Chapter 2. Material & Methods

2.2.6 Gene expression analysis

2.2.6.1 RNA extraction

RNA was extracted from BMDC stimulated in 24 well plates at various time points

after stimulation. After removal of supernatants, cells were resuspended in 1ml

Trizol. After transfer into an RNase free 2ml tube, 200µl chloroform was added and

samples were vortexed for 15s. Following centrifugation (13000rpm, 15min, 4◦C),

the aqueous phase was transferred into a new RNase free 1.5ml tube, mixed with

500µl isopropanol, incubated 10min at room temperature and spun down (10min,

13000rpm, 4◦C). After washing with 1ml ethanol, pellets were left to dry followed

by resuspension in 30µl RNase free water.

For analysis by microarray, RNA was cleaned further using the RNeasy® Mini

Kit (Qiagen) instead of resuspension in Water.

2.2.6.2 Reverse transcription of RNA

RNA concentrations were measured using a NanoDrop 2000 (Thermo Scientific) and

quality assessed by gel electrophoresis. For the reverse transcription, 1µl oligo-dT

Primer was added to 1µg RNA in 16µl RNase free water and incubated for 10min

at 70◦C, followed by addition of 8µl of master mix (all reagents from Promega). The

reaction was performed in a thermocycler with the following program.

MASTERMIX PROTOCOL

5x M-MLV reaction buffer 5µl 42◦C 60min

dNTPs 1.25µl 70◦C 10min

RNasin ribonuclease inhibitor (40U/µl) 0.75µl 4◦C hold

M-MLV reverse transcriptase (200U/µl) 1µl

2.2.6.3 Real time PCR

cDNA was diluted 1/5 and a few µl of each sample pooled for use as top standard.

Standards were serially diluted 1/5 to obtain six standard concentrations. 2µl of

sample or standard and 4µl of master mix (see below) were added to each well.

Samples and standards were used in duplicate for each primer; experiments were

performed using 384 well plates and the Lightcycler 480 II (Roche).
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MASTERMIX

AgilentSYBR 3µl

ddH2O 0.4µl

each Primer 0.3µl

2.2.6.4 Microarray

For analysis by microarray, RNA was extracted, its quality ensured, and then

transcribed into cDNA as described above. For the preliminary microarray, cDNA

was biotinylated using the Illumina® TotalPrep™ RNA Amplification Kit (life

technologies) according to the manufacturers instructions. The microarray was then

analysed at the Edinburgh Clinical Research Facility, using the MouseWG-6 v2.0

Expression BeadChip (Illumina). Statistical analysis was performed by Dr. Alasdair

Ivens.

2.2.7 HES production and fractionation

H. polygyrus and HES were obtained as described in Johnston et al., 2015. In brief, F1

mice were infected orally with 400 L3 larvae and 14 days later adult H. polygyrus were

harvested, washed and transferred into medium in tissue culture flasks. Twice weekly

the medium was exchanged, the old medium collected and subsequently concentrated

using an Amicon® system with Ultracel® 3kDa Ultrafiltration discs (Merck Millipore).

2.2.7.1 Fractionations

HES was fractionated using an ÄKTApurifier™ (GE Healthcare) and either the

Superdex 200 10/300 GL for size exclusion fractionation or the Mono Q™ 5/50 GL for

anion exchange fractionation. Between 500µl and 1ml of HES were directly injected

using a sample loop of the appropriate size and the partial filling method. 0.5ml or

1ml fractions were collected in 96 well Masterblock®(greiner bio-one).

For size exclusion fractionation, the buffer used was PBS and the flow rate was

0.5ml/min. For anion exchange fractionation, HES was first dialysed into anion

exchange starting buffer. For the first fractionation, the flow rate was 2ml/min and

the gradient used was as following:

GRADIENT LENGTH OF GRADIENT

0-40% anion elution buffer 40 column volumes

40-100% anion elution buffer 5 column volumes

100% anion elution buffer 5 column volumes
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For the sequential fractionation of active size exclusion fractions by anion

exchange fractionation, the fractions were collected in 0.5ml volumes again with a

flow rate of 2ml/min and the following gradient:

GRADIENT LENGTH OF GRADIENT

0-50% anion elution buffer 12.5 column volumes

50-100% anion elution buffer 5 column volumes

100% anion elution buffer 5 column volumes

For the second anion exchange fractionation of HES the protocol used was the

same as for the sequential fractionation anion exchange, but fractions were collected

in 1ml volumes.

2.2.7.2 SDS-PAGE and silver stain of HES fractions

To visualize protein content in the first size exclusion and anion exchange

fractionations, all fractions were subjected to SDS-PAGE using NuPAGE®4-12%

Bis-Tris Gels and NuPAGE®MES SDS Running Buffer (novex®, life technologies),

followed by silver staining of the gels. For this, gels were fixed for 1-2 hours, followed

by 30min of sensitization. After 3x5min washes with dH2O the gels were treated with

silver nitrate solution for 20min in the dark. After two 1min washes with dH2O, gels

were incubated for 2-5min in the developing solution until the protein bands were

clearly visible, at which point the reaction was stopped.

2.2.7.3 Mass spectrometric analysis of HES fractions

Size exclusion fractions 14 and 15 and anion exchange fractions 39 and 40 were first

analysed by Suzanne Eadie at the Sir Henry Wellcome Functional Genomics Facility,

Institute of Infection, Immunity and Inflammation of the University of Glasgow.

All other HES fractions were analysed by Lisa Imrie at Synthsys, University of

Edinburgh. 5µg of each fraction were submitted to a trypsin digest, analysed using

an Orbitrap mass spectrometer and then compared to an in house H. polygyrus
transciptomics database (Harcus, manuscript in preparation) using Mascot. The

significance threshold for consideration of proteins was p=0.05. In the facility in

Glasgow, no minimum cutoff score was set, while in the analysis in Edinburgh,

proteins with a score below 20 were not considered.

Scripts written in Python 2.7 were used to analyse the mass spectrometry results.
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2.2.8 Cloning and expression of recombinant proteins

2.2.8.1 Cloning of target genes

The coding sequences for the target proteins were extracted from the H. polygyrus
database, open reading frames identified using the ExPASy Translate tool (http:

//web.expasy.org/translate/) and signal peptides predicted using SignalP 4.1

software (http://www.cbs.dtu.dk/services/SignalP/). After removal of the

signal peptides, sequences were codon optimized for expression in HEK-293 cells,

outfitted with restriction sites using the GeneArt GeneOptimizer® tool (ThermoFisher

Scientific) and synthesized by GeneArt. Inserts were extracted by restriction digests

using AscI and XhoI according to the following protocol at 37◦Cover night.

ASCI + XHOI DIGEST

dH2O 14µl

DNA 10µl

CutSmart Buffer 3µl

restriction enzymes 1.5µl

The expression vector pSecTag2a was digested using the same protocol; digest

products were purified using gel electrophoresis and the QIAquick® Gel Extraction

Kit, and ligated over night at 4◦C. The ligation products were used to transform

JM109 cells, followed by selection of positive clones using ampicillin-containing LB

agar plates and colony screen PCR using T7 and BGH primers, DNA extraction and

sequence verification. Clones containing the verified insert were grown up in 100ml

LB medium containing ampicillin and DNA extracted using the QIAfilter™ Plasmid

Midi Kit (Qiagen); this DNA was used for transfection of HEK-293 cells.

2.2.8.2 Transfection into HEK-293 cells

One day before transfection, HEK-293 cells were plated out at 8x105 cells per 10ml

tissue culture dish. Three hours before the transfection, media in the plates was

replaced. For each construct, 5 plates of cells were transfected. Per plate, 20µg DNA

were mixed with 62µl 2M CaCl2 and brought to a final volume of 500µl with dH2O.

This mixture was added dropwise to 500µl 2x HEPES buffered saline (Sigma) per plate

while vortexing gently. After 30min incubation at room temperature, the mixture was

vortexed shortly and 1ml added dropwise to each plate. Cells were then incubated

at 37◦Cfor one day before washing them twice and replacing the medium with fresh

HEK cell medium. On day three after the transfection, cells were transferred into
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tissue culture flasks with selection medium (HEK cell medium containing 100µg/ml

Zeocin™ (invitrogen)). Selection for cells that were successfully transfected was

performed for three to four weeks, with biweekly medium exchange, after which cells

were used in serum free medium to produce recombinant proteins for purification.

2.2.8.3 Purification of recombinant proteins

Supernatants of stably transfected cells in serum free medium were collected, filtered

using Thermo Scientific™ Nalgene™ Rapid-Flow™ 75mm Filter Unit (0.2µm) and

dialysed into His binding buffer using SnakeSkin® Dialysis Tubing (10kDa MWCO,

Thermo Scientific). Dialysed product was loaded onto a 1ml HiTrap™ Chelating

HP column (GE Healthcare) using a Minipuls 2 peristaltic pump (Anachem) and

then eluted over a gradient from 0-100% His Elution Buffer in 20 column volumes

using the ÄKTApurifier™ (GE Healthcare) together with the UNICORN software.

1ml Fractions were collected. Protein content of the fractions was analysed by SDS-

PAGE using NuPAGE® 4-12% Bis-Tris Gels and NuPAGE® MES SDS Running Buffer

(novex®, life technologies), with one gel being directly stained using InstantBlue™

(expedeon). The other gel was used for western blot transfer onto a nitrocellulose

membrane (Bio-Rad), the membrane blocked with 2% BSA in TBSt and protein

detected using anti-Penta-His HRP Conjugate (Qiagen). Bands were visualized with

a FluorChem™ SP (Alpha Innotech).

Fractions containing recombinant protein and little FCS contamination were

pooled and dialysed into PBS using Slide-A-Lyzer Dialysis Cassettes (Thermo

Scientific) and protein concentrations determined with a BCA assay (Thermo

Scientific) according to the manufacturers instructions. If concentrations were too low,

proteins were concentrated using Vivapin® columns (Sartorius).

2.2.9 Software and statistics

Software used for data acquisition and analysis of raw data is mentioned in the

respective sections above. Python scripts used for data parsing can be found in

Appendix A. Statistical analysis was performed using GraphPad Prism 6. Depending

on the data set, multiple t-tests, one or two-way ANOVAs were used, with significance

thresholds of: * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001.
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Chapter 3. DC modulation by HES.

CHAPTER3
Dendritic cell modulation by

Heligmosomoides polygyrus
excretory/secretory products.

ABSTRACT

Dendritic cells (DCs) are the professional antigen-presenting cells responsible for

recognition of pathogens and induction of appropriate adaptive immune responses.

There are several reports of modulation of DC activation by helminths, including

Heligmosomoides polygyrus. Here, the phenotype of DCs treated with this nematode’s

excretory/secretory products (HES) is described. HES is able to suppress secretion

of the pro-inflammatory cytokines IL-12p70, TNF and IL-6 and the upregulation of

costimulatory molecules in response to various Toll-like receptor (TLR) ligands. Its

effect in LPS induced DC activation is heat-labile, dose-dependent and could be

observed on both intracellular protein and mRNA levels. In addition, pre-treatment

of BMDCs with HES inhibited subsequent LPS-induced activation. Exosomes present

in HES were not able to inhibit DC activation, while HES depleted of exosomes

was as efficient as total HES. Modulation of alternative activation differed between

mouse strains. In BMDCs from BALB/c mice, which are fairly resistant to infection,

HES increased the expression of OX40L and arginase 1 independent of stimulation.

RELMα production after IL-4 treatment was not impaired in BMDC from these

mice, in contrast to BMDC from susceptible C57BL/6 mice. These findings indicate

profound changes in the maturation process of DCs upon HES treatment, likely

induced by a protein or protein complex, and provide necessary information for the

elucidation of both inhibitory molecule and mechanism of action.
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3.1 Introduction

Dendritic cells (DCs) are the professional antigen-presenting cells activating and

shaping adaptive immune responses. If they encounter pathogens, DCs are activated

by pathogen associated molecular patterns (PAMPs) binding to pattern recognition

receptors (PRRs) such as the Toll-like receptors (TLRs). This leads to uptake and

processing of the antigen, followed by presentation as MHC:peptide complexes to T

cells in the draining lymph nodes. This is accompanied by an upregulation of surface

molecules like CD40, CD80 and CD86, which are costimulatory molecules needed for

activation of T cells. Together with a cytokine response appropriate to the pathogen,

this shapes the subsequent T cell response. One example for such cytokines is IL-

12p70, which induces TH1 responses after stimuli such as LPS (reviewed in Pulendran,

2005). There are a number of reports describing the modulatory effects helminth

species have on DCs, impacting on this important step in the development of immune

reactions to the helminth itself, but also to bystander antigens or co-infections.

One prominent example is omega-1, the ribonuclease responsible for some of

the immune modulatory effect of the soluble egg antigens from Shistosoma mansoni
(SEA). This protein could be shown to induce a TH2 response upon injection into naive

mice, and to inhibit LPS induced upregulation of CD86 and production of IL-12p70 by

human monocyte derived DCs. This was dependent on both its glycosylation and

its activity as an RNase, as it is bound and internalized by the mannose receptor on

moDC and subsequently non-specifically degrades both rRNA and mRNA, effectively

inhibiting protein synthesis by DCs (Everts et al., 2012a; Steinfelder et al., 2009).

Glycoconjugates play important roles in the immunomodulation exhibited by other

parasites as well. Another trematode, Fasciola hepatica, contains glycoconjugates in

its ES that induce a "semi-mature" state in DCs, reducing their IL-12p40 and IL-6

production and leading to what the authors called a modified TH2 response, with

increased production of IL-4 and IL-10 but reduced secretion of IFNγ (Rodriguez et al.,

2015). Glycoproteins also play an important role in immunomodulation by the filarial

nematode Acanthocheilonema viteae. More specifically, the major component of this

parasite’s ES is a phosphorylcholine containing protein called ES-62. While inducing

low expression of IL-12p40 and TNF in BMDC, it then inhibits any further production

of those cytokines after stimulation with LPS. BMDC derived from bone marrow

extracted from mice that had received physiological amounts of ES-62 for two weeks

via an osmotic pump exhibited the same reduced responsiveness to LPS stimulation

and in addition an increased production of IL-10 (Goodridge et al., 2004). In another

nematode, Ascaris suum, the worm extracts proved to have a regulatory effect on DCs,
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as they inhibited TLR ligand induced upregulation of costimulatory molecules and

secretion of pro-inflammatory cytokines by BMDC and in vivo lead to low expression

of CD40, CD80 and CD86 on lymph node cells of OVA immunized mice (Favoretto

et al., 2014). A rodent parasite used as a model organism for hookworm infections,

Nippostrongylus brasiliensis, has also been shown to secrete products that modulate

DC activation. NES induced BMDCs to upregulate CD86 and OX40L and, upon

transfer into naive mice, induce a TH2 response. Furthermore, pre-treatment of BMDC

with NES for two hours inhibited subsequent LPS induced IL-12p70 but not IL-6

production (Balic et al., 2004).

It should come as no surprise that H. polygyrus has an effect on DC activation

as well. Segura et al., 2007 found that BMDCs treated with HES but not those

treated with worm extracts showed reduced expression of costimulatory molecules

and proinflammatory cytokines after stimulation with CpG and LPS, and that this

effect of HES was not detectable in PMA activated BMDC. Furthermore, they could

show that BMDC treated with HES inhibited both IL-4 and IFNγ production in co-

cultured OT-II cells in the presence of pOVA, but induced the secretion of IL-10. In

vivo, HES treated pOVA pulsed DCs lead to reduced antibody responses compared to

DCs that were stimulated without HES. That this effect is induced on DCs in vivo by

infection with H. polygyrus was indicated by findings that DCs in the lamina propria

of infected mice showed reduced expression of costimulatory molecules, were less

able to induce production of IFNγ and IL-17 upon co-culture with T cells, and had a

protective effect in the T cell transfer model of colitis (Blum et al., 2012; Hang et al.,

2013, 2010).

These findings of DC modulation by HES have also been corroborated in our

laboratory. In his PhD Thesis, John Grainger demonstrated that while HES alone

did not induce maturation of BMDCs, it did inhibit both LPS- and P. acnes extract

(Pa)-induced DC maturation. Upon transfer of BMDC pulsed with HES and Pa, HES

inhibited Pa-specific TH1 responses as measured by secretion of IFNγ by restimulated

splenocytes of the recipient mice. Furthermore, he could show in these experiments

that BMDC pulsed with HES alone induced HES specific TH2 responses and that these,

in contrast to the heat labile inhibition of DC activation and TH1 induction, could also

be found with heat inactivated HES (Grainger, 2009).

With these findings in mind, characterizing the effects of HES on DCs further

was a first step towards identifying both the modulatory molecule and its mechanism

of action. Therefore, the effect of HES on the maturation of GM-CSF BMDC from

two mouse strains with different levels of susceptibility to infection with H. polygyrus,

the susceptible C57BL/6 mice and the relatively resistant BALB/c mice induced with

various stimuli was investigated.
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3.2 Results

3.2.1 HES inhibits activation of BMDC by various TLR ligands.

As there are different reports on the ability of HES to inhibit activation of BMDCs

by various TLR ligands, this was the first aspect of DC modulation by HES to be

tested. Bone marrow cells from C57BL/6 or BALB/c mice were differentiated with

GM-CSF for ten days before stimulation with CpG (TLR9), LPS (TLR4), Pam3CSK4

(TLR1/2), Poly(I:C) (TLR3) and R848 (TLR7/8) for 18h. As can be seen in Fig. 3.1A,

IL-12p70 was induced by CpG, LPS, R848 and to a very small extent by Pam3CSK4.

In C57BL/6 cells, HES completely inhibited this induction. This was also true

for LPS- and Pam3CSK4-induced IL-12p70 in BALB/c DCs, although Pam3CSK4

barely induced measurable levels of this cytokine. IL-12p70 secretion by CpG- or

R848-stimulated BALB/c BMDC was, although not completely abolished, still very

significantly inhibited. TNF was induced by all TLR ligands in DCs of both mouse

strains, and in all cases HES was able to inhibit the secretion of this cytokine. IL-6 on

the other hand was barely induced by Poly(I:C), and its secretion by R848-stimulated

C57BL/6 BMDC did not seem to be inhibited by HES. In contrast, IL-6 production by

R848 stimulated BALB/c BMDC was very significantly inhibited. Secretion of this

cytokine after CpG, LPS and Pam3CSK4 stimulation was inhibited in both mouse

strains, although the latter did not reach significance in BALB/c cells.

To ensure that these effects are not due to HES interfering with the ELISA itself,

recombinant IL-12, TNF or IL-6 were diluted in cRPMI with or without 10µg of HES

and analysed by ELISA. HES did not interfere with any of the ELISA reactions, as

the ODs for the colour reaction were not significantly different for any of the three

cytokines between samples with and without HES (3.1B).

In addition to analysing cytokine secretion, the expression of costimulatory

molecules on BMDC of both mouse strains stimulated with the TLR ligands was

measured by flow cytometry (Fig 3.2). Both CD40 and CD80 were upregulated

on CD11c+ cells upon stimulation, albeit to varying degrees. HES inhibited this

upregulation of CD40 and CD80 in both mouse strains and with all of the tested

stimuli.
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Figure 3.1: HES inhibits secretion of pro-inflammatory cytokines in response to
various TLR ligands. BMDC of C57BL/6 and BALB/c mice were differentiated with
GM-CSF for ten days before incubation with TLR ligands and HES as indicated for
18h. (A) Secretion of IL-12p70, TNF and IL-6 by BMDC stimulated as indicated
was measured by ELISA. (B) To control for potential interference of HES with the
ELISA itself, concentrations of IL-12p70, TNF and IL-6 were determined in cRPMI
with recombinant cytokines with or without addition of HES as indicated. Data are
representative of at least 3 independent experiments with C57BL/6 BMDC, BALB/c
BMDC were tested once. Data represent mean ± SD, n = 3; Results from 1way ANOVA
and Sidak’s multiple comparison test are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p
≤ 0.001; **** : p ≤ 0.0001.
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Figure 3.2: HES inhibits DC activation by various TLR ligands. BMDC of C57BL/6
and BALB/c mice were differentiated with GM-CSF for ten days before incubation
with TLR ligands and HES as indicated for 18h. (A) CD40 and (B) CD80 on CD11c+

cells was determined by flow cytometry. Left: percentages of CD40+ or CD80+ cells;
Right: histograms of CD40 and CD80 expression on CD11c+ cells - # isotype control
not in all panels. Data are representative of at least 3 independent experiments with
C57BL/6 BMDC, BALB/c BMDC were tested once. Data represent mean ± SD, n = 3;
Results from 1way ANOVA and Sidak’s multiple comparison test are indicated as * : p
≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001; P3: Pam3CSK4; P(I:C): Poly(I:C).
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3.2.2 HES inhibition of LPS-induced DC activation.

Following this, the inhibitory effect of HES on LPS-stimulated BMDC was investigated

further. Before, HES was always used at 10µg/ml; to determine if it will be more

or less effective in different concentrations LPS stimulated BMDC were incubated

with 20, 10 or 1µg/ml of HES. As shown in Fig. 3.3A, HES does indeed inhibit LPS-

induced secretion of IL-12p70, TNF and IL-6 in a dose dependent manner, although

with different efficiency in C57BL/6 and BALB/c DCs. While 1µg/ml of HES on

C57BL/6 cells was still able to potently suppress secretion of all three cytokines, even

though not to the same extent as the previously used 10µg/ml, in BALB/c DCs, it

only slightly reduced the concentration of secreted IL-12p70 and TNF and was not

able to inhibit IL-6 production. Both the 10µg/ml and 20µg/ml treatments had the

same significant effects on cells from both mouse strains.

When comparing expression of costimulatory molecules, similar results could be

observed. Here shown is the expression of CD80 on BMDC of both mouse strains

(Fig. 3.3B). In contrast to the cytokines tested, CD80 expression on DCs of both mouse

strains followed similar dose response patterns, with a slight inhibition by 1µg/ml

and increasing suppression of CD80 upregulation with increasing concentration of

HES.

Interestingly, when HES was heat-treated for five minutes at 95◦C it lost its

ability to inhibit DC activation. BMDC of C57BL/6 mice treated with LPS and

heat-inactivated HES secreted comparable amounts of IL-12p70, TNF and IL-6,

while untreated HES of the same batch showed the expected ability to inhibit these

responses (Fig. 3.3C).

To further check at which level HES inhibits the activation of DCs, BMDC from

C57BL/6 and BALB/c mice were stimulated with LPS and HES and their expression

of IL-12 determined by intracellular flow cytometry. Upon stimulation with LPS,

the percentage of IL-12+ BMDCs of both mouse strains increased as expected. In

BMDC treated with both LPS and HES, the percentage of IL-12+ BMDC did increase

as well, but a marked reduction compared to LPS-treated BMDC was visible (Fig.

3.4A). Following this finding, levels of mRNAs for both subunits of IL-12, p35 and

p40, as well as TNF and IL-6 in BMDC of C57BL/6 mice treated with LPS and HES

were measured by real time PCR. As shown in Fig. 3.4B, HES did indeed significantly

reduce the LPS-induced increase in the mRNA levels of all three cytokines. This was,

however, not due to general RNA degradation, as, in addition to the fact that cytokine

mRNA levels were normalized with housekeeping transcript levels, both RNA quality

and concentrations were comparable in all samples (data not shown).
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Figure 3.3: HES inhibition of LPS induced DC activation is dose dependent and
heat labile. BMDC of C57BL/6 and BALB/c mice were differentiated with GM-CSF
for ten days before incubation with LPS and HES as indicated for 18h. (A) Secretion of
IL-12p70, TNF and IL-6 was measured by ELISA. (B) Expression of CD80 on CD11c+

cells was determined by flow cytometry. Left: percentages of CD80+ cells; Right:
histograms of CD80 expression on CD11c+ cells - # isotype control not in all panels. (C)
To assess the heat stability of the inhibitory effect, LPS stimulated BMDC of C57BL/6
mice were treated with 10µg/ml of HES and heat inactivated (h.i.) HES as indicated
and secretion of IL-12p70, TNF and IL-6 measured by ELISA. Data are representative
of at least two independent experiments with C57BL/6 BMDC, BALB/c BMDC were
tested once. Data represent mean ± SD, n = 3; Results from 1way ANOVA and
Dunnett’s multiple comparison test are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** :
p ≤ 0.001; **** : p ≤ 0.0001.
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Figure 3.4: HES inhibits LPS induced DC activation at both the mRNA and
intracellular protein level. BMDC of C57BL/6 and BALB/c mice were differentiated
with GM-CSF for ten days before incubation with LPS and HES as indicated.
(A) Intracellular IL-12p40/p70 protein in CD11c+ cells of both mouse strains was
determined by flow cytometry after 18h of stimulation. Left: percentages of IL-12+

cells; Right: histograms of IL-12 expression on CD11c+ cells. n = 3. (B) Levels of
IL-12, TNF and IL-6 mRNA in C57BL/6 BMDC were measured by real time PCR at
8h after stimulation and normalized to Rpl13a mRNA levels. n = 4. IL-12 data are
representative of 3 independent experiments with C57BL/6 BMDC, IL-6 and TNF
mRNA levels in C57BL/6 BMDC and intracellular IL-12 in BALB/c BMDC were
tested in two independent experiments. Data represent mean ± SD; Results from 1way
ANOVA and Dunnett’s multiple comparison test are indicated as * : p ≤ 0.05; ** : p ≤
0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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To confirm that HES is indeed acting on the cells themselves to alter their

response to TLR ligands, BMDCs of C57BL/6 mice were incubated for one hour

in cRPMI with or without 10µg/ml of HES. After a washing step, cells were then

stimulated as usual with LPS and HES (see Fig. 3.5A for a schematic of the workflow).

As can be seen in the top panel of Fig. 3.5B, pre-incubation of BMDC with HES

for only one hour completely abolished the subsequent production of IL-12p70 by

cells that were then incubated with LPS for 18h even without the addition of HES

after the washing step. As shown before, incubation of cells with LPS and HES for

18h did completely inhibit IL-12p70 production; pre-incubation with HES did not

change this outcome. In the bottom panels TNF and IL-6 secretion by BMDCs are

shown. Production of both of these cytokines is highly reduced when comparing LPS-

treated BMDC that were pre-incubated with HES-containing medium (striped bars

and marked with +©) with those that were pre-incubated with medium alone (black

bars). If BMDC that had been pre-incubated with HES for one hour were then treated

with LPS and HES for 18h after the washing step, secretion of TNF and IL-6 was

further reduced (striped bars marked with +©). The concentrations of these cytokines

in the supernatants of cells treated with LPS+HES were comparable in samples pre-

incubated with or without HES (light blue bars).

3.2.3 HES differentially affects alternative activation of BMDC from

C57BL/6 and BALB/c mice.

DCs have, like macrophages, been found to display an alternatively activated

phenotype, expressing for example RELMα (Cook et al., 2012). Hence, RELMα

expression in DCs was analysed to investigate whether HES does either induce or

modulate alternative activation of DCs. As before, BMDC from C57BL/6 and BALB/c

mice were differentiated for ten days with GM-CSF before stimulation for 18h. In

addition to LPS, IL-4 was added as a potent inducer of alternative activation.

Fig. 3.6A shows the expression profiles of RELMα . In cells treated with neither

LPS nor IL-4, HES did not induce RELMα secretion or its production in CD11c+ cells.

The same was true for cells stimulated with LPS and LPS + HES. IL-4 on the other hand

induced RELMα expression in CD11c+ cells and its secretion into the supernatant.

Interestingly, while the inhibition of LPS-induced IL-12 production in CD11c+ cells

from both mouse strains again was comparable, IL-4 stimulated cells from C57BL/6

mice show a different response to HES compared to cells from BALB/c mice. While

supernatants of the latter contained comparable concentrations of RELMα in IL-4-

and IL-4+HES-treated samples, HES inhibited both its secretion and reduced the

percentage of RELMα+ cells in the CD11c+ population of C57BL/6 mice. Following
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Figure 3.5: Pre-incubation of BMDC with HES impairs LPS induced activation.
BMDC of C57BL/6 mice were differentiated with GM-CSF for ten days before
treatment as indicated. (A) Schematic of the experimental setup. d10 BMDC were
incubated with medium alone of 10µg/ml HES in medium for 1h at 37◦C before
washing and treatment with LPS and HES as indicated. (B) Secretion of IL-12, TNF
and IL-6 was measured by ELISA. Samples pre-treated with HES are marked with a
+©, stimulation after the washing step is indicated below the lines. IL-12p70 and TNF

secretion were analysed in two independent experiments, IL-6 once. Data represent
mean ± SD, n = 3; Results from 1way ANOVA and Tukey’s multiple comparison test
are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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Figure 3.6: HES differentially affects alternative activation of BMDC from C57BL/6
and BALB/c mice. BMDC of C57BL/6 and BALB/c mice were differentiated with GM-
CSF for ten days before stimulation with LPS, IL-4 and HES as indicated. (A) RELMα

concentrations in supernatants of C57BL/6 and BALB/c BMDC as measured by
ELISA (top) and percentages of RELMα+ and IL-12+ cells in the CD11c+ population
(middle) as determined by intracellular flow cytometry. Histograms of RELMα and
IL-12 in CD11c+ cells in bottom panels. (B) Expression of OX40L and Arg1 by
BALB/c BMDC was determined by flow cytometry. Left: percentages of OX40L+

or Arg+ cells within the CD11c+ population; Right: histograms of OX40L and Arg1
expression on CD11c+ cells - # isotype control and HES alone not in all panels. Data
are representative of two independent experiments, except for RELMα ELISA data
and OX40L expression on BALB/c BMDC, which were tested once. Data represent
mean ± SD, n = 3; Results from 1way ANOVA and Sidak’s multiple comparison test
are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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this lack of modulation in BALB/c BMDCs, the expression of two more markers for

alternative activation, OX40L and Arg1 was investigated. Interestingly, while IL-4

alone did not induce an increase in the percentage of OX40L+ BMDC, HES did so

irrespective of the presence of other ligands. In contrast, in the case of Arg1 both HES

and IL-4 increased the percentage of CD11c+ cells producing Arg1 compared to either

the unstimulated or the LPS-treated BMDCs, and the effect appeared additive in the

presence of both HES and IL-4 (Fig 3.6B).

3.2.4 The soluble fraction of HES, not exosomes, inhibits LPS

induced DC activation.

In recent years it has become increasingly clear that parasites influence their hosts by

secretion of small vesicles containing proteins and miRNAs, called exosomes (Coakley

et al., 2015). Indeed, it has been shown that H. polygyrus does produce exosomes

and that those contain immunomodulatory molecules including miRNAs acting on

endothelial cells (Buck et al., 2014). These exosome vesicles can be separated from

the soluble portion of HES by ultracentrifugation, and were also shown to inhibit LPS

induced activation of bone marrow derived macrophages (Coakley et al., manuscript

in preparation). To test if the effect of HES on BMDCs stems from exosomes or from

products in the soluble fraction of HES, these were provided by Gillian Coakley and

tested on LPS-stimulated day ten BMDC from C57BL/6 mice. In contrast to the

effects on macrophages, exosomes did not inhibit LPS-induced DC activation. The

concentrations of IL-12p70, TNF or IL-6 in supernatants of LPS-stimulated BMDC

treated with exosomes were comparable to those treated with LPS alone, while HES

depleted of exosomes retained the inhibitory activity (Fig. 3.7A). This was true for

costimulatory molecules as well, as demonstrated in Fig. 3.7B for the expression of

CD80 by CD11c+ cells.
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Figure 3.7: The soluble fraction of HES, not exosomes, inhibits LPS induced DC
activation. GM-CSF BMDC of C57BL/6 mice were treated with LPS, HES, exosomes
and exosome-depleted HES for 18h as indicated. HES, exosomes and exosome
depleted HES were provided by Gillian Coakley. (A) Secretion of IL-12p70, TNF and
IL-6 was measured by ELISA. (B) Expression of CD80 on CD11c+ cells was determined
by flow cytometry. Left: percentages of CD80+ cells within the CD11c+ population;
Right: histograms of CD80 expression on CD11c+ cells. Data are representative of
at least two independent experiments. Data represent mean ± SD, n = 4 mice, in
duplicates; Results from 1way ANOVA and Dunnett’s multiple comparison test are
indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001; ExSN: exosome
depleted HES; Ex: exosomes.
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3.2.5 HES inhibits activation of multiple DC subsets.

It was recently described that BMDC differentiated with GM-CSF actually consist of

two different populations (Helft et al., 2015). One of these populations was classified

as macrophage like cells, while the other population showed more similarity to

classically-defined DCs. These authors suggested that to distinguish between the

two populations, CD115 could be used as a marker, as this is only expressed on the

macrophage like population. As the expression of CD115 on GM-CSF-differentiated

bone marrow cells decreases after stimulation (data not shown), it was not a feasible

marker to separate both populations after treatment. Instead, BMDC were depleted of

CD115+ cells by MACS before stimulation, to increase the ratio of DC to macrophage-

like cells in the cultures. Both total GM-CSF BMDC and CD115-depleted cells were

stimulated with LPS and HES for 18h (see Fig. 3.8A). Both total and CD115-depleted

BMDC cultures did secrete IL-12p70, IL-6 and TNF upon stimulation. As seen before,

IL-12p70 production by total BMDC was completely abolished by HES, and this effect

was also observed in CD115-depleted cultures. The inhibition of TNF secretion too

was inhibited to a similar extent in both total and CD115-depleted BMDC. IL-6 on

the other hand seemed to be induced to a slightly lesser extent in the CD115-depleted

BMDC than in total cells, and while it was still significantly suppressed by HES, the

difference was less marked (Fig. 3.8B). However, although depletion of CD115+ cells

by MACS resulted in a reduction of cell numbers by 50%, the percentage of CD115+

cells in the culture seemed to only be reduced from about 65% to around 50% (data

not shown). As such, it was not sufficient as proof that it is the DC population that is

affected by HES.

As a second approach to ascertain the inhibitory effect of HES on DCs,

splenocytes were enriched for CD11c+ cells by MACS and stimulated for 18h with

LPS and HES (Fig. 3.8C). While the expression of costimulatory molecules on the

CD11c+ cells was not inhibited by HES (data not shown), secretion of TNF and IL-6

was (Fig. 3.8D). IL-12p70 could not be detected in the culture supernatants.
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Figure 3.8: HES inhibits activation of CD115 depleted BMDC and ex vivo DCs.
(A) BMDC were differentiated with GM-CSF for ten days and either stimulated as
usual, or depleted of CD115+ cells by MACS before stimulation as indicated. This
experiment was done once. (B) Secretion of IL-12p70, TNF and IL-6 by total GM-
CSF BMDC or CD115-depleted BMDC was measured by ELISA. (C) Spleen cells were
enriched in CD11c+ cells by MACS and incubated with LPS and HES for 18h as
indicated. (D) The secretion of TNF and IL-6 by splenic CD11c-enriched cells was
measured by ELISA. TNF data is representative of 4 independent experiments, IL-6
of one. Data represent mean ± SD, n = 3; Results from 1way ANOVA and Sidak’s
multiple comparison test are indicated as *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****:
p ≤ 0.0001
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BMDC differentiated with Flt3-L instead of GM-CSF have been described as cells

that more closely reproduce DC subsets found in vivo. Namely, cultures of these

cells result in the production of B220+ CD11c+ cells that were considered pDCs,

and B220−CD11c+ cells that resembled cDCs. These latter cells could be further

subdivided into CD11b+ cells and CD24+ cells, the former corresponding to CD11b+

cDCs and the latter to CD8+ cDCs in vivo (Naik et al., 2005). As such, these FLDCs

constituted a more sophisticated system to investigate the effect HES has on different

subsets of DCs.

Bone marrow cells were differentiated with Flt3-L for eight days before

stimulation with LPS and HES for 18h; the experiment shown was performed in Prof.

Andrew MacDonald’s laboratory at the University of Manchester with help of Dr.

Alexander Phythian-Adams. Just as described for GM-CSF BMDC, LPS stimulation

induced secretion of IL-12p70, TNF and IL-6 by FLDCs. Again, IL-12p70 production

was completely inhibited by HES. TNF and IL-6 concentrations in supernatants were

dramatically reduced as well (Fig. 3.9A). In addition to that, the three subsets present

in these cultures were analysed for their expression of costimulatory molecules. CD40

was chosen as one that was highly induced in all subsets. As shown in Fig. 3.9B,

HES inhibited the upregulation of CD40 to varying degrees but significantly in all

three subsets. According to these data, pDCs seem to be affected the strongest, while

CD24+ cDCs only showed a slight inhibition by HES.

3.2.6 HES inhibits activation of human DCs

A broader question of key interest was whether HES is also able to suppress activation

of human dendritic cells, which would indicate that the parasite is targeting a

conserved pathway in the mammalian host. To examine this question, human

peripheral blood monocytes were differentiated into monocyte derived DCs (moDCs)

with GM-CSF and IL-4 for seven days before stimulation with LPS and HES for

18h; the experiment again was performed in Prof. Andrew MacDonald’s laboratory,

with help from Dr. James Crooks and Cecilia Forss. Concentrations of IL-12p40, IL-

6, IL-8 and TNF in the culture supernatants were determined by CBA. Cells from

different donors displayed a high variability in the strength of their cytokine response;

nevertheless, HES significantly inhibited the secretion of IL-12p40, IL-6 and IL-8 by

LPS-stimulated moDCs (Fig. 3.10B). The expression of costimulatory molecules on

CD14−CD11c+ cells however was not affected by HES, as is shown in Fig. 3.10B for

CD80. This was also found to be the case for CD40, CD83 and CD86 (data not shown).
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Figure 3.9: HES inhibits activation of FLDC. BMDC were differentiated with Flt3-
L for eight days before incubation with LPS and HES for 18h as indicated. (A)
Concentrations of IL-12p70, TNF and IL-6 in the supernatants of total FLDC were
measured by ELISA. (B) FLDC were analysed by flow cytometry to distinguish
between different subsets and determine their expression of activation markers. pDC
were defined as CD11c+ B220+ cells, while CD11c+ B220−cells were labelled cDC.
Those were further divided into CD11b+ and CD24+ populations (according to Naik
et al., 2005). Left: percentages of CD40+ cells within the subsets; Right: histograms
of CD80 expression on CD11c+ cells. Data are representative of 2 independent
experiments, shown are the results from the experiment performed in Prof. Andrew
MacDonald’s laboratory with help of Dr. Alexander Phythian-Adams. Data represent
mean ± SD, n = 3 mice, in duplicates; Results from 1way ANOVA and Sidak’s multiple
comparison test are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤
0.0001.
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Figure 3.10: HES inhibits activation of human monocyte derived DCs. Human
PBMC were differentiated to moDC with GM-CSF and IL-4 for six days before
incubation with LPS and HES for 18h as indicated. (A) Concentrations of IL-12p40,
IL-6, IL-8 and TNF in culture supernatants were analysed by CBA. (B) Expression of
CD80 on CD14−CD11c+ cells was measured by flow cytometry. The experiment was
performed once, in Prof. Andrew MacDonald’s laboratory with help from Dr. James
Crooks and Cecilia Forss. Data represent mean ± SD, n = 3 donors, in duplicates;
Results from 2way ANOVA and Dunnett’s multiple comparison test, comparing row
means, are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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3.3 Discussion

To better understand the effect of HES on the maturation process of DCs, it was

important to characterize it in considerably greater detail. To date, only a small

number of publications describe DC modulation by HES. It is known that GM-CSF

BMDC pre-treated with HES were impaired in their responses to CpG and LPS (Segura

et al., 2007) and DCs co-pulsed with Pa and HES were inhibited in their activation

and induced weaker TH1 responses compared to DCs pulsed with Pa alone (Grainger,

2009). In mice infected with H. polygyrus, lamina propria DCs show an inhibited

phenotype and are protective in a T cell transfer colitis model (Blum et al., 2012; Hang

et al., 2013, 2010). DCs extracted from mLNs of H. polygyrus-infected mice showed

reduced expression of IL-12 but interestingly increased TNF expression upon ex vivo

stimulation with LPS (Balic et al., 2009); in addition, a decrease in the numbers of

CD11c+ DCs inducing effector T cells and an expansion of CD11clo DCs that induce

regulatory T cells further skew immune responses (Balic et al., 2009; Smith et al., 2011).

Here, the first question addressed was if HES specifically inhibits DC activation

by certain stimuli but not others. To this end, BMDCs were stimulated with ligands

for TLR1/2, 3, 4, 7 and 9 and the effect of concomitant treatment with HES on the

expression of costimulatory molecules and secretion of pro-inflammatory cytokines

analysed. As expected after the above-mentioned reports, HES was found to inhibit

DC activation after LPS and CpG stimulation. In addition, it was also able to inhibit

activation induced with the three other TLR ligands. In most cases, the upregulation

of CD40, CD80 and CD86 and the secretion of IL-12p70, TNF and IL-6 were inhibited,

and that was true for C57BL/6 as well as BALB/c BMDC (Fig. 3.1, 3.2). This

widespread effect of HES did not come as a total surprise, as in previous experiments

in our group BMDCs from wild type C57BL/6 and MyD88−/−TRIF−/− mice were

stimulated by ligation of CD40, which was inhibited by HES as well (Dayer, 2011).

Another significant finding is that if BMDC are briefly pre-treated with

HES, subsequent LPS-induced maturation is impaired. This impairment is not

quite as strong as with concomitant treatment of DCs with LPS and HES; TNF

and IL-6 secretion were slightly elevated in LPS-stimulated DCs pre-treated with

HES compared to the LPS+HES-stimulated pre-treated group, and the effects on

costimulatory molecule expression were less pronounced as well (Fig. 3.5). While

it is possible that this effect is due to endotoxin tolerance induced by low levels of

LPS in HES, this is unlikely. For the experiments reported in this thesis, every batch of

HES was tested for its content of LPS, and only very clean batches (< 0.1U/µg protein)

were used for these experiments. Furthermore, the intact inhibition of DC activation
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upon simultaneous treatment of DCs with LPS and HES, especially the fact that this

inhibition was dose dependent (Fig. 3.3), and the inhibition of maturation induced by

other TLR ligands does argue against this. Therefore, the impairment of DC activation

by pre-treatment with HES gives another insight into the changes induced by HES in

those cells. Interestingly, these changes were only fairly shortlived, as an 18h pre-

treatment with HES reduced IL-12p70 secretion in BMDC that were stimulated with

LPS directly following the pre-treatment, but if these cells were stimulated one day

later the inhibitory effect was lost, and three days later cells pre-treated with HES

even produced elevated levels of IL-12p70 (Grainger, 2009).

These findings led us to believe that the mechanism by which HES acts probably

targets some component of the DC activation machinery far enough downstream to

be shared in the signalling cascades induced by all of those stimuli.

Furthermore, it is clear that HES can impact in the intracellular protein levels

of at least some of the regulated proteins, as the percentage of IL-12+ BMDCs was

decreased in LPS-stimulated samples upon addition of HES. Even more interesting,

this reduction could also be observed measuring the levels of the mRNAs for IL-12,

TNF and IL-6 at eight hours after stimulation (Fig. 3.4). This could either indicate

a reduction in gene transcription or indeed in RNA stability. One example for the

latter pathway for down-regulation of DC activation is the degradation of RNAs

by the ribonuclease omega-1 that was found in SEA (Everts et al., 2012a). General

degradation of RNAs is unlikely in this case, however, as RNA concentrations were

comparable between DCs treated with LPS and LPS+HES, and RNA quality did not

change with the addition of HES. Further experiments to determine the mechanism

behind the inhibition of DC maturation by HES can be found in Chapter 5.

Another interesting question is the identity of the component or molecule in

HES responsible for the modulatory effect. A new perspective was introduced by

the discovery of small extracellular vesicles from parasites, containing both proteins

and micro-RNAs and possibly influencing host cells, specifically in the context of

immune modulation (reviewed in Coakley et al., 2015). In the case of H. polygyrus
secreted exosomes were shown to alleviate allergic airway inflammation, and inhibit

the expression of Dusp1 and IL-33R in mouse epithelial cells. The identified miRNAs

were further demonstrated to be able to suppress the expression of Dusp1 in a reporter

gene assay (Buck et al., 2014). In addition to this, exosomes were also shown to

inhibit LPS induced activation of BM-macrophages (Coakley et al., manuscript in

preparation).

To see if exosomes played any role in the observed inhibition of DC activation,

HES, exosomes and HES depleted of exosomes were provided by Gillian Coakley

and tested for their ability to inhibit LPS-induced DC maturation. In contrast to their
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effects on epithelial cells and macrophages, exosomes did not appear to modulate DC

maturation (Fig. 3.7). While macrophages internalize exosomes through phagocytosis,

it might be that DCs do not, and therefore escape the immune modulation induced

by their contents. To shed light on this difference, uptake experiments with labelled

exosomes in both cell types could be performed. By analysing the cells with confocal

microscopy it could further be investigated if, in case DCs also internalize exosomes,

these might subsequently localize to different compartments in each cell type. Overall,

exosomes were found not to exert an effect on DCs, while exosome-depleted HES

retained the inhibitory activity. This together with the fact that the inhibitory activity

of HES is heat-labile (Fig. 3.3) indicates the presence of a soluble protein or protein

complex acting on DCs, which will be further investigated in Chapter 4.

The results so far indicate an impressive ability of HES to suppress DC activation

to bystander antigens. This does make sense, as H. polygyrus damages the intestinal

wall, which could lead to exposure of DCs to commensal bacteria. It could be argued

that the profound inhibition of DC activation to bystander antigens is a mechanism

developed by the parasite to protect the host from a potentially deadly response to

the intestinal microflora. In addition to this, it was important to see what influence

HES would have on DC activation in a type 2 setting. DCs play an important role

in the induction of TH2 responses during H. polygyrus infection; depletion of CD11c+

cells lead to a significant decrease in IL-4 producing CD4+ T cells in mLNs of infected

mice and in restimulation experiments both IL-5 and IL-13 secretion were impaired as

well (Smith et al., 2012). Furthermore, HES pulsed BMDC were able to induce HES

specific TH2 responses upon adoptive transfer into naive recipients, even if they were

co-pulsed with Pa (Grainger, 2009).

A molecule expressed on DCs that has been shown to be quite important in the

induction of TH2 responses is OX40L (Ekkens et al., 2003; Jenkins et al., 2007). After

adoptive transfer of SEA pulsed DCs, restimulated splenocytes secreted significantly

reduced levels of TH2 cytokines if the transferred DCs were from OX40L−/− mice

(Jenkins et al., 2007). During the primary response of H. polygyrus infected BALB/c

mice, OX40L deficiency resulted in a reduction in IL-4 and serum IgE levels and an

increased egg count at day 12 post infection. Interestingly, both egg counts and worm

burden were increased in the setting of secondary infection which is normally rapidly

cleared, indicating an impairment of the memory response as well (Ekkens et al., 2003).

As shown in Fig 3.6B, BMDCs from the more resistant BALB/c strain treated with

HES increase their expression of OX40L independent of other stimuli. It would be

interesting to test if this is a key step in their activation for induction of HES-specific

TH2 responses.

Two further molecules associated with type 2 immune responses that have been
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shown to play important roles in anti-helminth responses are arginase 1 (Esser-

von Bieren et al., 2013) and RELMα (Chen et al., 2016; Cook et al., 2012; Pesce

et al., 2009b). In a comparison of four mouse strains with different susceptibilities

to infection with H. polygyrus, the expression of both RELMα and Arg1 positively

correlated with resistance to infection (Filbey et al., 2014). While Arg1 has indeed

been found to be an important component of the protective immune response against

secondary infection with H. polygyrus (Esser-von Bieren et al., 2013), albeit reported

to be produced by macrophages in this study, RELMα seems to limit both IL-4

production in T cells and development of pathology. In infections with Nippostrongylus
brasiliensis, mice deficient in RELMα produced elevated levels of IL-4 and showed

a reduced egg burden and increased worm clearance, but that came at the cost of

increased lung inflammation and mortality (Chen et al., 2016; Pesce et al., 2009b). This

elevated production of IL-4 by T cells could be replicated in co-culture experiments

with BMDCs from mice deficient in RELMα , in addition to a complete loss of IL-

10 production (Cook et al., 2012).These authors also demonstrated that DCs express

Relmα after stimulation with IL-4; IL-4 was therefore chosen as the stimulus to analyse

the influence of HES on alternative activation of DCs.

In the experiments reported here, IL-4 did indeed increase the expression of both

RELMα and Arg1 in both C57BL/6 and BALB/c BMDC. Mirroring the findings by

Filbey et al., 2014, HES did not inhibit RELMα production and even increased the

expression of Arg1 in BMDCs from BALB/c mice, which is a fairly resistant strain,

but inhibited the expression of RELMα in BMDCs from the susceptible C57BL/6 mice

(Fig. 3.6). The relevance of this will have to be demonstrated in future experiments,

especially considering the counter-intuitive downregulation of RELMα by HES in

C57BL/6 BMDC. It would be interesting to see if mice deficient in this molecule show

a similar reaction to infection with H. polygyrus as with N. brasiliensis, and if so, if it is

indeed RELMα produced by DCs that is limiting TH2 responses.

The relevance of the induction of Arg1 also remains to be seen, especially in

the light of reports demonstrating that Arg1 production by macrophages actually

suppresses TH2 responses (Pesce et al., 2009a) and, produced by DCs, induces FoxP3+

Treg cells (Chang et al., 2013). This could easily be tested by employing Arg1 inhibitors,

either in direct co-culture experiments of HES pulsed DCs with T cells, or by injection

of Arg1 inhibitors at the same time as adoptive transfer of HES pulsed BMDC into

recipient mice and analysis of T cell cytokine production in experiments similar to

those described above.

All the work described above has been performed in GM-CSF differentiated

BMDCs. Alarmingly, a recent publication demonstrated the presence of a strong

macrophage like population in these cultures, responding to stimulation in a distinct
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way (Helft et al., 2015). Especially in the light of the differential effects of HES

components on GM-CSF BMDCs and M-CSF differentiated macrophages, it was

therefore important to ascertain that the described effects were indeed due to

regulation of DC responses. The authors describe CD115 as a marker that can

be used to distinguish between the populations they termed GM-Macs (expressing

CD115) and GM-DCs (CD115−). Unfortunately cells lose the expression of this marker

after stimulation, so it does not distinguish the two populations once activated.

Instead, CD115+ cells were depleted before stimulation; activation of the remaining

cells, enriched for the "GM-DCs", was still inhibited (Fig. 3.8A). Interestingly, IL-

6 production by the CD115-depleted cells was reduced compared to total GM-CSF

BMDC, and the inhibition by HES, while significant, was less distinct. IL-6 also

showed different patterns of modulation by HES on splenic cells stimulated with

LPS. While IL-6 production was inhibited in splenic cells enriched for CD11c+ cells

by positive selection (Fig. 3.8B), in spleen cell cultures depleted of B and T cells HES

was not able to influence the production of this cytokine (data not shown). TNF on

the other hand, was inhibited in both approaches. This does indicate different effects

of HES on cell populations still present after these rather crude methods of sorting,

and is a reminder that in mixed cell cultures interactions between different cell types

are often important in determining the overall response. An important new method

of generating DCs from mouse bone marrow uses Flt3-L as differentiation factor. With

this method three populations of cells are created, which have been characterized

and correspond to splenic DC populations. Distinguishable are CD11c+ B220+ cells

(pDCs) and two populations of CD11c+ B220−cDCs, the CD24+ cells corresponding

to CD8+ cDCs and the CD11b+ cells corresponding to the CD11b+ cDC population in

the spleen (Naik et al., 2005). Upon treatment with HES, LPS-induced maturation of

all three of these subsets was inhibited, confirming that HES is indeed modulating DC

responses, including the inhibition of IL-6 production (Fig. 3.9).

Considering the importance of DCs in the induction and shaping of immune

responses, the demonstrated ability of HES to modulate DC responses could

potentially be exploited in drug development. As such, it was important to see if

HES also had an effect on human DCs. While it did not modulate the expression

of costimulatory molecules on LPS activated human moDCs, their secretion of pro-

inflammatory cytokines was significantly inhibited (Fig. 3.10). This might either

indicate less efficient inhibition due to the differences in the targeted molecules or

pathways between mice and humans, or indeed that several different mechanisms

of DC modulation are being employed by HES and only some are effective on

human DCs. In future experiments it would be interesting to see which gel filtration

fraction(s) of HES inhibit human moDC activation and if the TGFβ mimic produced
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by HES, TGM, has an effect. This protein has been shown to be effective on human

cells as well as mouse cells, and as can be seen in the next chapter, it does partially

inhibit LPS induced mouse DC activation.

In conclusion, the work presented in this chapter expands on previous

knowledge about the modulation of DC maturation by HES. It forms an important

basis for both experiments to elucidate the mechanism - or indeed mechanisms

- employed by HES to inhibit TLR ligand induced DC maturation as well as

experiments to find the molecule (or molecules) in HES that is responsible for this

effect. The following Chapters will cover these questions in further detail.
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CHAPTER4
Identification of potential dendritic

cell modulators in HES

ABSTRACT

With several clinical trials of live helminth infections currently underway, the search

for specific immunomodulatory molecules produced by helminths is a logical step

in the development of new treatments for a number of diseases. Here, the aim

was finding the molecule in HES that modulates DC activation. As shown in the

previous chapter, this DC modulatory effect was heat-labile, indicating a protein

component. Therefore, HES was fractionated using size exclusion and anion exchange

fractionation approaches, with each fraction tested for inhibitory activity and analysed

by mass spectrometry. Comparison of the fraction protein contents and protein

abundance profiles resulted in the identification of nine candidate proteins. These

were expressed in HEK-293 cells. However, treatment of LPS-activated GM-CSF

BMDC with these recombinant proteins revealed that none of them had an effect

on DC activation. It remains possible that the protein in question has not yet been

identified, or that key post-translational modifications are required for one of the

existing candidates to replicate the function of the native molecule. Hence further

experiments and a refinement of the approach will be necessary to identify the

molecule responsible for the effect HES has on dendritic cells.
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4.1 Introduction

While researchers are currently attempting to exploit the immunomodulatory

effects of helminth infections for treatment of various diseases and conditions like

multiple sclerosis, IBD, allergies and asthma in clinical trials infecting patients

with live worms (http://www.niaid.nih.gov/topics/tropicaldiseases/Pages/

helminthDatabase.aspx, as of 16. March 2016), doing so is a rather crude approach

to treatment. Aside from the fact that patients might object to being infected with live

parasites, they would also be exposed to a mixture of parasite derived products with

various and mostly unknown functions, some of which could even exacerbate disease.

Taking H. polygyrus as an example, the ES of this nematode contains at least 374

proteins. Among these are a number of enzymes including proteases, apyrases and

chitinases, in addition to protease inhibitors, proteoglycans and lectins and numerous

proteins with unknown functions (Hewitson et al., 2011b).

This mixture of proteins has been shown to modulate multiple aspects of immune

responses in a number of different disease models. Amongst others, it has been

shown to suppress allergic airway inflammation (McSorley et al., 2014; McSorley et

al., 2015; McSorley et al., 2012) and produce a TGFβ mimic that induces regulatory

T cells which are active in suppressing pathology in asthma models (Grainger et

al., 2010). The proteins responsible for these two effects of HES, the alarmin release

inhibitor (ARI) suppressing allergic airway inflammation and the TGFβ mimic TGM

have recently been identified (Osbourne et al., manuscript in preparation; Johnston et

al., manuscript in preparation).

Especially of note for the importance of the dendritic cell modulation in disease

settings are the findings by Hang et al., 2010, as they could demonstrate that DCs

in the lamina propria of RAG−/− mice infected with H. polygyrus showed a reduced

expression of CD80 and CD86, produced less IL-12 and were less efficient at inducing

IFNγ and IL-17 production upon coculture with OT-II cells in the presence of OVA.

They expanded on that finding by demonstrating the role of these inhibited DCs in

protecting mice from colitis, as transferring lamina propria DCs from mice infected

with H. polygyrus protected Rag−/− mice in a T cell transfer model of colitis (Blum

et al., 2012).

With this in mind, it would be an important step for the development of more

targeted treatment regimes based on helminth products to identify the molecule

responsible for the modulation of dendritic cell responses by H. polygyrus. One such

protein in HES has previously been described. This protein, cystatin, was expressed

and tested on BMDCs. As expected it acted as a protease inhibitor, inhibiting a variety
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of cathepsins important in antigen processing by DCs. It also modulated CpG induced

DC activation, however LPS induced DC activation was barely affected. The authors

proposed that the inhibition of cathepsins resulted in an impairment of signalling

pathways activated by CpG, but not LPS (Sun et al., 2013). Considering the more

profound effects of total HES described in the previous chapter, it is likely that there

is indeed at least one other molecule contained in HES that modulates DC activation.

Finding this molecule was the aim of the work described in this chapter. To this

end, three rounds of analyses with increasing complexity were carried out:

• Separate fractionation by size exclusion and anion exchange fractionation,

mass spectrometry on active fractions only followed by comparison of protein

contents

• Sequential fractionation (size exclusion fractionation followed by anion

exchange fractionation of active fractions), mass spectrometry on all sequential

fractions followed by identification of proteins with abundance profiles peaking

in active fractions

• Size exclusion, sequential and anion exchange fractionation, mass spectrometry

on all fractions followed by identification of shared proteins with abundance

profiles peaking in active fractions

These are described in more detail in their specific sections.
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4.2 Results
As described earlier, the inhibitory effect of HES on DC maturation is heat-labile (Fig.

3.3), which indicates that a protein component present in HES is responsible for this

effect. With this in mind, one approach to identify this modulatory molecule was to

fractionate HES to create smaller pools of candidate molecules, and to identify the

proteins common to fractions that retain inhibitory activity.

4.2.1 Comparison of protein contents of active size exclusion

and anion exchange fractions fails to identify any candidate

proteins

In a first attempt to find potential candidate proteins for DC modulatory activity, HES

was fractionated by both size exclusion fractionation (otherwise called gel filtration)

and anion exchange fractionation. The fractions were analysed for their inhibitory

activity on GM-CSF BMDC and protein contents of active fractions determined by

mass spectrometry (see schematic in Fig 4.1).

Anion exchange
fractionation

Size exclusion
fractionation

active fractions: 
mass spectrometry

Identification of 
shared proteins

+ LPS

Figure 4.1: Schematic of workflow to identify the first round of candidate proteins.
HES was fractionated by either size exclusion or anion exchange fractionation and
fractions tested for DC inhibitory activity. Active fractions were analysed by mass
spectrometry and protein contents compared to identify proteins shared by active
fractions.
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4.2.1.1 Size exclusion fractionation of HES

Size exclusion fractionation of HES (0.476mg) was the first method of fractionation

chosen. Using this method, proteins of a higher molecular weight are eluted earlier

than smaller proteins, with protein and nucleic acid contents recorded over time

resulting in a distinctive fractionation profile (see Fig. 4.2A). As shown by Kara

Filbey (previous Maizels group PhD student), fractionation profiles obtained with this

method are highly reproducible. This also appeared to be the case for the protein

contents as visualized by SDS-PAGE and subsequent silver stain of the gels, as the

profile obtained from the gel filtration here (see Fig. 4.2B) reproduces those from

earlier fractionations (Filbey, 2013).

To determine the activity of the current fractions on DCs, day ten GM-CSF BMDC

were treated with LPS and fractions as indicated in Fig. 4.2C. Only two fractions,

number 14 and 15, were able to replicate the effect of total HES and completely abolish

IL-12p70 production.

Interestingly, there is also a notable effect on IL-12p70 secretion visible around

fraction 9, which has been shown to contain the TGF-β mimic (TGM) present in HES.

This protein has recently been identified and expressed in our laboratory (Johnston

et al., manuscript in preparation), and could replicate the effect of fraction 9 when

added to LPS stimulated GM-CSF BMDC. As shown in Fig. 4.3A, treatment of LPS-

stimulated BMDC with TGM resulted in an inhibition of IL-12p70, TNF and IL-6

secretion. However, compared to the effect HES has on these cells, TGM clearly

was less effective. This was also apparent when analysing costimulatory molecule

expression on LPS-stimulated BMDC treated with HES or TGM. LPS-induced CD80

upregulation was slightly impaired with TGM, but again the effect of HES on the

expression of this activation marker was a lot more profound. The expression of

the other costimulatory molecules tested, with CD40 expression shown here as an

example, was even comparable between LPS and LPS+TGM treated groups, unlike the

inhibition observed upon HES treatment of cells (Fig. 4.3B). Together with the distinct

separation of the TGM-containing size exclusion fractions and the active fractions 14

and 15, the conclusion was that although TGM modulates DC activation somewhat, it

is not the only DC inhibitor in HES.

89



4.2 Results

unst
im

H
ES

LP
S+H

ES
LPS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1000

1500

IL
-1

2
p

7
0

 [
p

g
/m

l]

A

B

2
3

2
1

1
9

1
7

1
5

1
3

1
1

97531

188
98

62
49
38
28

14

6
C

O
D

 2
5

4
an

d
 2

8
0

Figure 4.2: Size exclusion fractionation of HES resulted in two fractions completely
inhibiting IL-12p70 production by LPS-stimulated GM-CSF BMDC. (A) HES was
fractionated by size exclusion fractionation using a Superdex 200 10/300 GL column
on an ÄktaPurifier system. (B) Protein content in the fractions was visualized by SDS-
PAGE followed by silver stain of the gels. (C) Fractions were tested for their ability
to inhibit LPS-induced IL-12p70 production by BMDC differentiated with GM-CSF.
Arrows indicate active fractions.
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Figure 4.3: TGM inhibits LPS-induced DC activation, but not to the same extent as
HES. GM-CSF BMDC were incubated with LPS, HES and TGM as indicated for 18h.
(A) IL-12p70, TNF and IL-6 concentrations in the supernatants as measured by ELISA.
(B) Expression of CD40 and CD80 on BMDC with flow cytometry histograms on the
left. Data are representative of at least 3 independent experiments except IL-6, which
was measured twice. Data represent mean ± SD, n = 3; Results from 1way ANOVA
and Sidak’s (flow) or Dunnett’s (ELISA) multiple comparison test are indicated as * :
p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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4.2.1.2 Anion exchange fractionation of HES

As a second approach to fractionate HES, anion exchange fractionation was chosen to

separate proteins in HES according to their overall negative charge. In this approach,

positively charged and uncharged components are eluted first, with increasingly

negatively charged proteins being eluted with the increasing salt concentration in the

buffer. For this fractionation of 0.751mg HES, the salt concentration was increased

from zero to 0.4M NaCl over the course of 40 column volumes (CV), followed by an

increase to 1M NaCl within the next 5CV, finally washing any remaining proteins off

the column with 1M NaCl for another 5CV (see Fig. 4.4A). Protein contents of all 61

fractions were visualized by SDS-PAGE followed by silver stain of the gels (Fig. 4.4B);

as indicated by the fractionation profile the fractions five to 35 did not contain any

detectable protein. Most of the protein contents in HES were eluted between fractions

36 and 46. To test the activity of these fractions on DCs, LPS stimulated day ten GM-

CSF BMDC were treated with HES or fractions. As before, only two fractions, fractions

39 and 40, were able to completely inhibit IL-12p70 production (Fig. 4.4C).

4.2.1.3 Proteomics analysis of active fractions

Since the DC inhibitory effect in both fractionation approaches was very distinctively

localized in two fractions each, protein contents of these four active fractions were

determined by mass spectrometry. According to these analyses - which can be found

in Appendix A.5 and used a significance threshold for consideration of proteins of

p<0.05 and no minimum cutoff Mascot score - size fraction 14 contained only 26

proteins (Tab. B.1), size fraction 15 slightly more with 38 proteins (Tab. B.2), anion

exchange fraction 39 (Tab. B.3) 70 proteins and fraction 40 (Tab. B.4) 105 proteins.

Using a script written in Python 2.7 (see Appendix A.3), fraction contents were

compared and four proteins present in all four active fractions identified (see Fig. 4.5

for numbers of proteins shared between specific fractions). The four proteins found

in all active fractions were cross checked against our in house proteomics database of

adult HES, ES from the L4 larval stage of H. polygyrus (L4ES) and egg release material,

identifying one of the proteins as a myoglobin (Hp_I21133_IG13077_L683) and a

second as a sperm protein (Hp_I05325_IG00908_L1903), leading to their exclusion

as housekeeping proteins. The third protein, Hp_I05364_IG00921_L2082 had been

identified falsely; the peptides found by mass spectrometry and attributed to this
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Figure 4.4: Anion exchange fractionation of HES resulted in two fractions
completely inhibiting IL-12p70 production by LPS-stimulated GM-CSF BMDC. (A)
HES was fractionated by anion exchange fractionation using a MonoQ™ 5/50 GL
column on an ÄktaPurifier. (B) Protein content in the fractions was visualized by SDS-
PAGE followed by silver stain of the gels. Pictures of gels were stretched to increase
visibility of bands. (C) Fractions were tested for their ability to inhibit LPS-induced
IL-12p70 production by BMDC differentiated with GM-CSF. Arrows indicate active
fractions.
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protein when analysed using Mascot and the in-house transcriptomics database did

not match the protein sequence obtained by translating the nucleotide sequence,

possibly owing to faulty assembly of the entry in our database. The fourth protein,

Legumain (Hp_I02849_IG00289_L1962), appeared promising; however, when cross

referencing the proteins found here with those in fraction 9, which was subjected

to mass spectrometry by Kara Filbey to identify TGM (Filbey, 2013), and which

as explained above is distinct from the DC modulatory activity investigated here,

Legumain had to be excluded as well as it was one of the more common proteins

identified in fraction 9 (Tab. 4.1).
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Figure 4.5: Number of proteins found in the four active fractions. HES was
fractionated by size exclusion fractionation (Fig. 4.2) and anion exchange fractionation
(Fig. 4.4) and fractions tested for inhibitory activity on GM-CSF differentiated BMDC.
Active fractions were analysed by mass spectrometry in the facility in Glasgow,
using an Orbitrap mass spectrometer and analysed using Mascot and an in-house
H. polygyrus transcriptomics database. The significance threshold for consideration
of proteins was p<0.05; no minimum cutoff score was set. Proteins shared amongst
active fractions were identified; shown are the number of proteins shared between the
indicated fractions.
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4.2 Results

4.2.2 Proteomics analysis of HES sequential fractions identifies five

candidates that do not modulate DC activation

Since comparing fraction protein contents after subjecting HES to gel filtration and

anion exchange fractionation separately did not lead to identification of any plausible

candidate proteins for expression, the method had to be refined. Next, HES was first

fractionated by gel filtration as described above and fractions tested for activity; the

active ones then further underwent anion exchange fractionation and all sequential

fractions were analysed by mass spectrometry (see schematic in Fig. 4.6).

Anion exchange
fractionation of 
active fractions

Size exclusion
fractionation

Mass 
Spectrometry

Identification of  proteins with emPAI
values peaking in active fractions

+ LPS

+ LPS

Figure 4.6: Schematic of workflow to identify the second round of candidate
proteins. HES was fractionated by size exclusion fractionation and fractions tested
for DC inhibitory activity. Active fractions were pooled and further fractionated by
anion exchange fractionation. All sequential fractionation fractions were analysed by
mass spectrometry and protein contents and abundance distributions compared.
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Chapter 4. Identification of potential DC modulators.

4.2.2.1 Sequential fractionation of HES

Using the same protocol as before but with a higher input amount of HES (1.244mg)

due to the planned subsequent fractionation, HES was fractionated by gel filtration

and fractions tested for their ability to inhibit LPS induced activation of day ten GM-

CSF BMDC. As before, fractions 14 and 15 completely inhibited IL-12p70 production,

in addition to an almost complete inhibition by fraction 16 (Fig 4.7). Fractions 14

and 15 were pooled and further fractionated by anion exchange fractionation. To

improve the fractionation resolution, the gradient was adjusted. This time, the salt

gradient increased from 0-0.5M NaCl within 12.5CV, then to 1M NaCl within another

5CV, followed by 5CV with 1M NaCl; fractions were collected in volumes of 0.5ml

instead of 1ml. For activity testing and mass spectrometry, only fractions containing

detectable amounts of protein were used, which were fractions 19-35. Of those, three

showed the ability to completely inhibit IL-12p70 production by LPS-stimulated GM-

CSF BMDC (Fig. 4.8), sequential fractions 28, 29 and 30 (see tables B.5, B.6 and B.7 in

the appendix for lists of the proteins identified in those fractions).
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Figure 4.7: Size exclusion fractionation of HES resulted in two fractions completely
inhibiting IL-12p70 production by LPS-stimulated GM-CSF BMDC. HES was
fractionated by size exclusion fractionation and fractions tested for their ability to
inhibit LPS-induced IL-12p70 production by BMDC differentiated with GM-CSF.
(A) Äkta profile of size exclusion fractionation. (B) IL-12p70 concentrations in
supernatants of GM-CSF BMDC treated with LPS and HES or fractions as indicated.

97



4.2 Results

unst
im

H
ES

LPS+H
ES

LPS 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0.00

0.05

0.10

0.15

0.20

0.25

IL
-1

2
p

7
0

 [
n

g
/m

l]

O
D

 2
1

0
, 2

5
4

an
d

 2
8

0

O
D

 2
1

0
, 2

5
4

an
d

 2
8

0

0-0.5M NaCl
over 12.5 CV

0.5-1M 
NaCl over 

5 CV 1M NaClA

B

C

Figure 4.8: Sequential fractionation of HES resulted in three fractions completely
inhibiting IL-12p70 production by LPS-stimulated GM-CSF BMDC. The two active
size exclusion fractionation fractions 14 and 15 were pooled and further fractionated
by anion exchange fractionation. Fractions were tested for their ability to inhibit LPS-
induced IL-12p70 production by BMDC differentiated with GM-CSF. (A) Äkta profile
of the sequential fractionation. (B) Magnification of the area of the fractionation profile
with fractions containing protein. (C) IL-12p70 concentrations in supernatants of GM-
CSF BMDC treated with LPS and HES or fractions as indicated. Arrow indicates active
fractions.
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Chapter 4. Identification of potential DC modulators.

4.2.2.2 Proteomics analysis of sequential fractions

In contrast to the previous round, mass spectrometric analysis of the sequential

fractions was performed in the facility in Edinburgh, again using an Orbitrap

mass spectrometer and using Mascot and the in-house H. polygyrus transcriptomics

database. The significance threshold for consideration of proteins again was p<0.05,

but a minimum cutoff score of 20 was set in addition. Mass spectrometry of fractions

28, 29 and 30 produced no fewer than 311, 306 and 277 identities respectively. To

narrow the field of likely candidates, the 12 other fractions devoid of activity (21-

27 and 31-35) were also subjected to mass spectrometry on the same instrument.

The abundance profiles of each protein identified in the 15 analysed fractions were

then calculated. A measurement for protein abundance in mass spectrometry is the

exponentially modified protein abundance index, the emPAI (Ishihama et al., 2005).

This value is dependent on the properties of the peptides and therefore not strictly

comparable between different proteins, but is a valid measure when comparing emPAI

values of the same protein.

To enable compilation of emPAI profiles, these values were extracted from the

mass spectrometry results files using another script written in Python (Appendix A.4).

Then those proteins with emPAI values peaking in any of the active fractions were

identified (see Tab. B.8 in the appendix), from this list, proteins with emPAI profiles

fitting the activity profile of the fractions were selected by hand. Fig. 4.9 shows one

example of a protein that was considered as having a poor fit between activation and

abundancy profiles and therefore was discounted (Fig. 4.9A), and NSP-42, a protein

with a good fit (Fig. 4.9B).

The resulting list of potential candidate proteins is shown in Tab. 4.2. Of the

18 proteins thus identified, seven were excluded as they were either falsely identified

with the found peptides not actually matching the protein sequence, or identified by

only one peptide. Another protein was excluded as being a housekeeping protein, as it

belonged to the chaperonin family of proteins (Tab. 4.3). To further reduce the number

of potential candidate proteins, they were compared to our in house proteomics

database. According to this, another five proteins could be excluded as being specific

egg or larval stage proteins (Tab. 4.4). The abundance profiles of the proteins thus

rejected from the list of proteins with top priority for expression can be found in the

appendix (Fig. B.1). This selection resulted in a list of five remaining proteins with

good fits of their abundance profiles to the activity profile of the sequential fractions

(Fig. 4.10).

The five remaining candidate proteins have mostly unknown functions. One

of them was VAL-4 (Hpb-VAL-4), a protein belonging to one of the most abundant
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Figure 4.9: Examples for proteins peaking in the active sequential fractions and an
overall (A) poor or (B) good fit of abundance profile to activity profile. HES was
fractionated by size exclusion fractionation (Fig 4.7) followed by fractionation of the
DC inhibitory fractions by anion exchange (Fig 4.8). All sequential fractions were
analysed by mass spectrometry and results compared to identify proteins with emPAI
values peaking in the active fractions 28-30 (see Tab. B.8 for all 221 proteins). To further
narrow down the list of potential candidates, proteins with abundance profiles with
good fits to the fraction activities were selected, resulting in a list of 18 proteins (see
Tab. 4.2). Shown here are (A) one example of a protein with emPAI values peaking
in the active fractions but with an overall bad fit to the activity profile and (B) one
example of a protein with a good fit.

protein families in HES, the venom allergen-like protein family. Another protein,

Hp_I20539_IG12483_L707, was found to contain an ShK-like domain, and therefore

belongs to another abundant protein family. This specific protein was however not

identified before and has for this work been given the name ShK-707. Two of the

proteins were novel secreted proteins, NSP-4 (Hp_I24607_IG16551_L570) and NSP-

42 (Hp_I02051_IG00167_L1023). These proteins are defined by their lack of any

conserved domain or sequence similarity to proteins in other organisms and their

functions in H. polygyrus are unknown. The last protein, Hp_I26188_IG18132_L529,

had not been found before and did not show any conserved domains either and was

therefore named L529 according to its length.
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Chapter 4. Identification of potential DC modulators.
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Chapter 4. Identification of potential DC modulators.

Table 4.4: Final step of selection of shortlisted proteins considering designations
and ranks in egg release material (ERM), L4 larvae ES (L4ES) and HES according
to the in-house proteomics analysis. After sequential fractionation of HES by size
exclusion fractionation and anion exchange fractionation and mass spectrometry
analysis of all sequential fractions, proteins with the best fit of their emPAI values
in the fractions to their inhibitory activity were selected (see Fig 4.10 and Suppl Fig
B.1). These 18 proteins were further narrowed down to this shortlist of 10 proteins
by exclusion of housekeeping proteins and those with only one peptide identified
or inconsistent peptide identifications. In a final selection step, names and ranks in
egg release material, L4ES and HES for the shortlisted proteins were taken from an
in house database. ERP: egg release protein; LSP: larval specific protein; NSP: novel
secreted protein; VAL: venom allergen-like protein

Name ERM L4ES HES

Hp_I02051_IG00167_L1023 NSP-42 - 62 307
Hp_I20539_IG12483_L707 ShK-707 - - -
Hp_I20654_IG12598_L702 L702 149 - 304
Hp_I23863_IG15807_L590 LSP-11 - 169 -
Hp_I24607_IG16551_L570 NSP-4 - 128 39
Hp_I26188_IG18132_L529 L529 - - -
Hp_I29394_IG21338_L484 ERP-13 120 - -
Hp_I38698_IG30642_L388 LSP-04 - 65 -
Hp_I43851_IG35795_L337 ERP-18 102 - -
Hpb-VAL-4 VAL-4 - 133 17
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Figure 4.10: Top candidates from sequential fractionation. HES was fractionated
using size exclusion fractionation (Fig 4.7) followed by anion exchange fractionation
of the active fractions (Fig 4.8). All sequential fractions were analysed by mass
spectrometry. Proteins with emPAI values peaking in the active fractions were
subjected to further selection comparing their emPAI profiles to activity across the
fractions, excluding housekeeping, egg or larval stage proteins and those that have
been identified falsely or with only one peptide (see tables B.8, 4.3 and 4.4). This
resulted in the shown five proteins as final candidates for expression. Shown are their
names, the emPAI values across the fractions on the left y axis and the concentration of
IL-12p70 produced by GM-CSF BMDC treated with LPS (1µg/ml) and the respective
fraction on the right y axis.
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Chapter 4. Identification of potential DC modulators.

4.2.2.3 Expression and test of candidate proteins

To be able to test those candidate proteins for inhibitory activities, signal peptides

were identified and removed from their sequences (see Fig. 4.11), and sequences

codon optimized, restriction sites for ligation into pSecTag2a as expression vector

added and DNA synthesized by GeneArt. The sequence was inserted into pSeqTag2a

so that it would be expressed under the vector’s promoter with the vector’s signal

peptide, but with a stop codon immediately after the 6xHis-Tag as shown in Fig.

4.12A. HEK-293 cells were transfected with those plasmids and after four weeks

of selection with Zeocin containing medium, the supernatants of stable cell lines

secreting the recombinant proteins collected, dialysed into HIS-Binding buffer and

purified using nickel-charged 1ml HiTrap™ Chelating HP columns. The Äkta profiles

of those purifications can be seen in Fig. 4.12B, left hand panels. Protein contents

of the fractions were visualized by SDS-PAGE and Western Blot (right hand panels).

Comparing the sizes of the constructs according to the western blots with the

predicted sizes of the proteins (see Fig. 4.11), only the NSP-42 fractions contained

proteins that were of the predicted size of around 14 kDa, in addition to much larger

proteins of around 50 kDa. The size of ShK-707 was predicted to be almost 18 kDa, but

the recombinant protein produced a band between 40 to 45 kDa. Similarly, NSP-4 was

predicted to have a size of 16 kDa but ran at around 30 kDa. The recombinant L529

was around double the predicted size as well, with a predicted size of around ten and

an actual size of around 20 kDa. VAL-4 was predicted to be around 22 kDa but came

to an actual size of 30 to 35 kDa.

For further use, the fractions containing the recombinant proteins with as

little contamination as possible were pooled (per protein), dialysed into PBS and

concentrated using VivaSpin columns.

To see if any of the recombinant proteins had DC inhibitory activity, day ten GM-

CSF BMDC were incubated for 18h with LPS, HES or the proteins as indicated. None

of the proteins were able to inhibit LPS-induced IL-12p70 production (Fig. 4.13).
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NSP-42
14.17 kDa

MLSTYLTAVC ALLTSAGIGA NSVRSCSDVT DTVKDTIIRT VEAEVPTLEW 
NEVFFPYAQQ YGINGKKPHP EENYIYLKKK GEFVGNATLD EMATTVLDSV 
TEETKQALRS NPGNRIYACV AIHCDKTEHT PISLEVACIS TVATMQN

ShK-707
17.65 kDa

MLLVFLLLIV VVSGKPLSEG EPQICEDKST DCDTQMDVCH DPMWERAMRR 
YCAKTCGFCR AEVTTTTTTM TAPPTTSKPH QKPQQQQQQQ SLIILFFQPE 
RCHRLFEQVC RWIVTYGQFP NLIRIPYYNT AQLQRSEASD SDRESNSIPV 
LGPENDRIFT RPNDSSPTKE SD

NSP-4
15.78 kDa

MIRFVVSVLS MTHFVSLERI NCHGSGGDWQ LGMYESYHEN LSWYLTLDCD 
IVGEAIAANE FELKNPNEPQ RFLNSTKYCR YSNVLHKDTI GIGGGDVTTL 
LNGLPREQIK RTLWKLGETT FGCSAHNYRY PAFADHTHVK LICLYRKQHA 
EPTCI

L529
10.03 kDa

MLCKLFVLTA LICAVASDDE DKGCGPNEKY YEEECAPMET CWSMRVLTRC 
DKGRCGCKDG YLWGYDGCQL FGTPGCTKED RLHYSYHTHH RKRREAFRFG 
NH

VAL-4
21.83 kDa

MSTLPTVSFL VVLVALGKAE FGCDGTLEQN DTTREVFLRF HNDVRKFIAL 
GIYPNKVGVL GPAKNMYQLK WSCDLEEEAH ESIYSCSYNP LLLHPQSYSK 
LLSVDLPDTD VVGATLEMWT EFMRIYGVNT KTNSYNPSFS QFANMAYSKN 
TKVGCSYKKC GGDTLVTCVY ELGVKLPSHP QMWENGPTCV CVAYTDSICN 
DNNLCEYAPT SAR

SCP-like domain

ShK-like domain

Figure 4.11: Sequences, predicted molecular weights and conserved domains of the
first five candidate proteins. After mass spectrometry analysis of HES sequentially
fractionated by size exclusion fractionation and anion exchange fractionation and
several steps of selection of probable candidates for DC modulatory activity, the
shown five proteins were selected for expression. Red: Signal peptide (not cloned);
Green: peptides identified by mass spectrometry; Underlined with blue description:
conserved domains.
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NSP-4 L529

NSP-42 ShK-707

VAL-4

pSecTag2a signal peptide Insert His Tag
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Figure 4.12: Cloning and expression of the first five candidate proteins. Sequences
were codon optimized for expression in human cells, ordered from GeneArt, digested
with the appropriate restriction enzymes and inserts purified by gel electrophoresis
and gel extraction and ligated into the expression vector pSecTag2a. (A) Schematic
of the proteins produced, with vector sequences in red and restriction sites used
indicated (not drawn to scale). (B) After transfection into HEK293 cells, supernatants
were collected and purified (Akta profiles in the left panels). Candidate protein
content in the fractions was visualized with SDS-PAGE and Western Blot detecting
the His-tag (right panels).

109



4.2 Results

0.0

0.2

0.4

0.6

0.8

IL
-1

2p
7

0 
[n

g
/m

l]

L5
29

N
S

P
-4

N
S

P
-4

2

V
A

L-
4

S
hK

-7
07

H
E

S

LPS      -    - + + + + + +
0

10

20

30

T
N

F
 [

n
g

/m
l]

L5
29

N
S

P
-4

N
S

P
-4

2

V
A

L-
4

S
hK

-7
07

H
E

S

LPS - + +   +  + +   + +
0

50

100

150

200

250

IL
-6

 [
n

g
/m

l]

L5
29

N
S

P
-4

N
S

P
-4

2

V
A

L-
4

S
hK

-7
07

H
E

S

LPS - + +   +  + +   + +

Figure 4.13: None of the five candidates from the sequential fractionation inhibit
LPS-induced DC activation. BMDC were differentiated with GM-CSF for ten days
before stimulation with LPS and 10µg/ml of either HES or candidate proteins as
indicated. IL-12p70, TNF and IL-6 concentrations in supernatants were measured by
ELISA. This experiment was performed twice using the same batch of proteins.

4.2.3 Proteomics analysis of size exclusion, sequential and anion

exchange fractions leads to identification of four further

candidates, but not the DC modulator

To reduce the amount of subjective manual selection of proteins with abundance

profiles fitting the activity profiles of the fractions, more parameters were included. As

shown in the schematic in Fig. 4.14, fractions from size exclusion, anion exchange and

sequential fractionation of HES were obtained, analysed for DC modulatory activity

and subjected to mass spectrometry for comparison of their protein contents.

4.2.3.1 HES fractionations

In addition to the already performed mass spectrometric analysis of the sequential

fractions, the size exclusion fractions acquired in the first step of generating the

sequential fractions were analysed by mass spectrometry as well, again in the facility

in Edinburgh and with a minimum Mascot score of 20. For a list of proteins identified

in the active fractions 14 and 15, see tables B.9 and B.10 in the appendix. Interestingly,

while there are overlaps to the previous analysis of size fractions 14 and 15, which
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Chapter 4. Identification of potential DC modulators.

Anion exchange
fractionation of 
active fractions

Size exclusion
fractionation

Identification of  proteins with emPAI
values peaking in active fractions

+ LPS

+ LPS Identification of  proteins 
with emPAI values peaking 

in active fractions

+ LPS

Identification of  
proteins with emPAI

values peaking in 
active fractions

Anion exchange
fractionation

Figure 4.14: Schematic of workflow of third round to identify further candidate
proteins. HES was fractionated by either size exclusion fractionation or anion
exchange fractionation and fractions tested for DC inhibitory activity. Active size
fractions were further fractionated by anion exchange fractionation (as described
above). All fractions were analysed by mass spectrometry and protein contents and
abundance distributions compared.

was performed in the facility in Glasgow, there are also notable differences. Firstly,

the number of proteins identified by this later analysis greatly exceeded the number

identified in the first, with 206 compared to 26 proteins in fraction 14 and 105

compared to 38 proteins in fraction 15. The proteins identified in both of the respective

fractions are coloured in green in tables B.1, B.2, B.9 and B.10, with the ranks in the

other fractionation mentioned as well. More than half of the proteins identified in the

first fractionation have not been found in the second, and the ranks of the proteins
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4.2 Results

that have been found again were very different.

In addition to the analysis of the size exclusion fractions, HES (1mg) was also

subjected to anion exchange fractionation using the same gradient as for the pooled

size fractions 14 and 15 before, but collecting 1ml fractions this time. Here, fraction

25 completely inhibited IL-12p70 production by LPS-stimulated GM-CSF BMDC. The

difference to the neighbouring fractions was not quite as clear cut as before, with

fractions 24, 26 and 27 also showing partial inhibitory activity (Fig. 4.15). This was not

due to lower total protein concentrations in these fractions, as those were comparable

between fractions 24-26 (data not shown).
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Figure 4.15: Anion exchange fractionation of HES resulted in one fraction
completely inhibiting IL-12p70 production by LPS-stimulated GM-CSF BMDC.
1mg of HES was fractionated by anion exchange fractionation and fractions tested for
their ability to inhibit LPS-induced IL-12p70 production by BMDC differentiated with
GM-CSF. (A) Akta profile of anion exchange fractionation. (B) IL-12p70 concentrations
in supernatants of GM-CSF BMDC treated with LPS and HES or fractions as indicated.
Arrow indicates active fraction.
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Chapter 4. Identification of potential DC modulators.

Again, all fractions were analysed by mass spectrometry in the Edinburgh facility,

using the minimum cutoff Mascot score of 20; the list of proteins found in anion

exchange fraction 25 can be found in Tab. B.11. Again, this list was compared to the

lists of proteins found previously in the active fractions 39 (Tab. B.3) and 40 (Tab. B.4),

with shared proteins being coloured green and the ranks in the other fractionation

approach indicated. Overlap between the fractionations seemed slightly better here,

with many proteins found in fractions 39 and 40 also being identified in fraction 25.

However, the ranks of proteins found in both fractionations were very different, and

the number of proteins identified in fraction 25 again greatly exceeded the number

of proteins identified in the previous fractionation, with 256 proteins in fraction 25

compared to the 70 in fraction 39 and 105 in fraction 40.

4.2.3.2 Proteomics analysis of all fractions

As before, the first step for compiling a list of potentially interesting proteins was

to extract the proteins’ emPAI values and identify those proteins with emPAI values

peaking in the active fractions for each fractionation (see Tab. B.8, B.12 and B.13

for lists of these). Using another Python script (Appendix A.5), these lists were

compared to identify proteins shared between fractionations. The numbers of proteins

with emPAI values peaking in the active fractions of any combination of the three

fractionation approaches can be seen in Fig. 4.16.

The emPAI values of the four proteins with emPAI peaks in the active fractions

of all three fractionation approaches are given in Tab. 4.5, 4.6 and 4.7. Considering

only four proteins peaked in the active fractions of all fractionation approaches and

the lack of a clear cut activity profile of the anion exchange fractionation, proteins with

peaks in the active fractions of the size and sequential fractionations but not the anion

exchange fractionation were considered as well (Tab. 4.8 and 4.9).

This increased the number of initially shortlisted proteins to 29. Again, proteins

with abundance profiles too different from the activity profiles of the fractions were

excluded by hand, leaving only 8 proteins for further consideration (see Fig. 4.17 and

B.2). Of those, three had to be excluded as they were identified falsely or with only

one peptide. Another protein was excluded as a housekeeping protein after blastx

and conserved domain searches identified it as a phosphoenolpyruvate carboxykinase

(Tab. 4.10). With this, only four proteins were left and chosen for expression. Among

those were a previously identified ShK domain containing protein, SXCL4, and with

NSP-19 another novel secreted protein. The other two proteins identified were one
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4.2 Results

containing a transthyretin-like domain, TTR-10, and another completely novel protein

without any sequence similarities, named L452 according to the length of its sequence

in the in house transcriptomics database (Tab. 4.11). Their emPAI profiles against the

fraction activity profiles can be found in Fig. 4.17.

4

25

Size exclusion

Sequential Anion Exchange

6

22

134

171 89

Figure 4.16: Number of proteins with emPAI values peaking in active fractions of
size exclusion, sequential and anion exchange fractionations. HES was fractionated
by size exclusion fractionation (see Fig. 4.7), sequentially by anion exchange
fractionation of the two active size fractions (see Fig. 4.8) and anion exchange
fractionation of HES (Fig. 4.15) and fractions tested for inhibitory activity on GM-
CSF differentiated BMDC. All fractions were analysed by mass spectrometry in the
facility in Edinburgh, using an Orbitrap mass spectrometer and using Mascot and
the in-house H. polygyrus transcriptomic database. The significance threshold for
consideration of proteins was p<0.05; a minimum cutoff score of 20 was set. The
emPAI values across all fractions were compared to find proteins with abundance
profiles peaking in active DC inhibitory fractions of all fractionation approaches.
Shown are the number of proteins sharing emPAI peaks between the active fractions
of the indicated fractionations.
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Chapter 4. Identification of potential DC modulators.

Table 4.11: Candidates for expression including names and ranks in egg release
material (ERM), L4 larvae ES (L4ES) and HES according to the in house proteomics
analysis. After comparing emPAI profiles of proteins identified in size exclusion,
sequential and anion exchange fractionation of HES and identifying the 29 proteins
that peak in active fractions of all three fractionation approaches or size exclusion
and sequential fractionation, the eight proteins with the best fit of their emPAI values
in the fractions to their inhibitory activity were selected (see Fig. 4.17 and Suppl.
Fig. B.2). These were further narrowed down to this list of four top priority proteins
by exclusion of housekeeping proteins and those with only one peptide identified
or inconsistent peptide identifications. Names and ranks in egg release material,
L4ES and HES for the listed proteins were taken from an in-house database. TTR:
Transthyrethin; NSP: novel secreted protein

Name ERM L4ES HES

GNK0QLK03GQOZO_length=396 SXCL4 112 68 -
Hp_I19958_IG11902_L735 TTR-10 - 182 206
Hp_I21313_IG13257_L675 NSP-19 150 - 124
Hp_I32194_IG24138_L452 L452 - - -
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Figure 4.17: Comparison of protein composition of several fractionation approaches
resulted in the identification of four new candidate proteins. HES was fractionated
by size exclusion (Fig. 4.7), sequential (Fig. 4.8) and anion exchange fractionation (Fig.
4.15), all fractions were analysed by mass spectrometry and their inhibitory activity
tested on LPS-activated GM-CSF BMDC. Lists of proteins with emPAI values peaking
in the active fractions were compiled for each fractionation approach and compared
to identify shared proteins. These were subjected to further selection comparing their
abundance profiles (emPAI values over the fractions) to activity (inhibition of IL-12p70
production in LPS-activated BMDC) across the fractions and excluding housekeeping
proteins and those that have been identified falsely or with only one peptide (see tables
4.5-4.10) . This resulted in the shown four proteins as final candidates for expression.
Shown are their names, the emPAI values across the fractions on the left y axis and the
concentration of IL-12p70 produced by GM-CSF BMDC treated with LPS (1µg/ml)
and the respective fraction on the right y axis for all three fractionation approaches.
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Chapter 4. Identification of potential DC modulators.

4.2.3.3 Expression and test of candidate proteins

As with the previous set of proteins, the signal peptides were removed from the

sequences (Fig. 4.18) before codon optimization and addition of restriction sites. The

modified DNA sequences were again synthesized by GeneArt.

As before, pSecTag2a was chosen as expression vector. Fig. 4.19A shows a

schematic of the expressed proteins in pSecTag2a, again including the pSecTag2a

signal peptide, but this time only NSP-19 was designed with a stop codon after the

6xHIS-tag. The remaining three proteins, designed by Dr. Henry McSorley, now

SXCL-4
5.39 kDa

MLVYFLCVLL LVNAFTATAE ECKDRSKACQ KHLENGRCDS EDPDWQSLMK
MNCRKTCSYC TEGEN

TTR-10
12.63 kDa

MRSLLLLSFL AMCCLSVLGK MQNVTVKGIA VCNKKRLANV HVELYDKDTL 
DPNDLLAEMH TNSEGEFELF GQEDEVGSIE PFIRLTHNCQ VSKPGCQRIG 
DYVVPHDKIG GLYDMTYVTL DIIVQGEKEK C

NSP-19
18.06 kDa

MRLLAVILLA SSACIFGQTR ADEPEPKSLL RVKRHGGWGG GWYGGWDEPW 
MVDRAYNRHS EQWYKYDCRH VPFFEPCKER NGGTFYGYDC FKPADENVRD 
LHLDDGWHKK LTCKVTSSDD YVVLATSSQG KPVIAGRGSV SKIIRCNDRG 
KWVTRVDEHT EAEVNDAFCY VVPRTED

L452
7.11 kDa

MSIKLVLLAL LLCIAAATAK QHQRGLHKVR SLSDLTEEME QELKKHPEKQ 
IICFLDPKCR DPKSTPEPRR RRGATKSEP

DUF290 / Transthyretin-like domain

ShK-like domain

Figure 4.18: Sequences and conserved domains of the four candidate proteins
identified by comparing size exclusion fractionation, sequential fractionation and
anion exchange fractionation data. After mass spectrometry analysis of HES
fractionated by size exclusion, sequential and anion exchange fractionation and
several steps of selection of probable candidates for DC modulatory activity, the
shown four proteins were selected for expression. Red: Signal peptide (not cloned);
Green: peptides identified by mass spectrometry; Underlined with blue label:
conserved protein domains.
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4.2 Results

inserted into pSecTag2a in a way to also include a short stretch of vector sequence

and the vector’s myc and 6xHIS-tags. HEK-293 cells were transfected with the insert

containing vectors, stable cell lines produced and supernatants collected, dialysed into

His-Binding buffer and purified using the Äkta purifier (Fig. 4.19B, left hand panels).

Protein content across the fractions and their purity again was determined by SDS-

PAGE and Western Blot (Fig. 4.19B, right hand panels).

SXCL-4 TTR-10

L452

B

pSecTag2a signal peptide Insert His tag

A

pSecTag2a signal peptide NSP-19 His tag

myc tag

NSP-19

AscI XhoI

AscI XhoI

3
6
14
28
38
49
62
98

38
28

28

49

38
49
62

28
38
49
62

Figure 4.19: Cloning and expression of candidate proteins from the third round
of fractionations. Sequences were codon optimized for expression in human cells,
ordered from GeneArt, digested with the appropriate restriction enzymes and inserts
purified by gel electrophoresis and gel extraction and ligated into the expression
vector pSecTag2a. (A) Schematic of the proteins produced, with vector sequences in
red and restriction sites used indicated (not drawn to scale). (B) After transfection
into HEK293 cells, supernatants were collected and purified (Akta profiles in the left
panels). Candidate protein content in the fractions was visualized with SDS-PAGE
and Western Blot detecting the His-tag (right panels).
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Similar to the first proteins expressed, none of recombinant proteins were of the

predicted size, even allowing for the extra vector sequences. SXCL-4 was predicted to

be between 5-6 kDa; the western blot showed proteins at three different heights, the

ones eluting first only resulting in a faint band at around 60 kDa, followed by stronger

bands at around 40 kDa. The smallest eluted last, with an estimated size of about

15 kDa. The predicted size of TTR-10 was just below 13 kDa; again the recombinant

protein produced several bands, in this case between 20-40 kDa. NSP-19 was predicted

to have a size of 18 kDa, and a faint band can be found with this size. The majority of

this recombinant protein appeared to be around 25 kDa. The last of these candidates,

L452, was predicted to be only slightly larger than SXCL-4 with only 7 kDa. The

recombinant L452 produced bands at around 25, 40 and 60 kDa.

Again as before, protein containing fractions of reasonable purity were pooled,

dialysed into PBS and concentrated down using VivaSpin columns before test on

BMDC. For this, day ten GM-CSF BMDC were treated for 18h with LPS, HES and

proteins as indicated, and again none of the proteins were able to inhibit IL-12p70

production (Fig. 4.20).
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Figure 4.20: None of the four candidates identified in the third round inhibit LPS
induced DC activation. BMDC were differentiated with GM-CSF for ten days before
stimulation with LPS and 10µg/ml of HES or candidate proteins as indicated. IL-
12p70, TNF and IL-6 concentrations in supernatants were measured by ELISA. This
experiment was performed twice using the same batch of proteins.
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4.2.3.4 Abundance profiles of previously described candidates or modulators

With the abundance profiles in the three fractionation approaches available, the

distribution of the second-round candidates in the size exclusion and in the anion

exchange fractions could easily be checked as well (Fig. 4.21).

L529 was not found in the size exclusion fractions used in rounds two and three;

this protein was however identified in another size exclusion fractionation done at a

later date, where it peaked perfectly in the one active fraction, number 14. NSP-4,

while being found in fractions 24-29 of the anion exchange fractionation, peaked in

fraction 24 rather than the active fraction 25, and in the size exclusion fractionation

it was not even found in the active fractions 14 and 15. Rather, it was found in

fractions 7-12, peaking in fraction 9. Similarly, VAL-4, while peaking in the active

anion exchange fraction 25, was found only in fractions 11-13 of the size exclusion

fractionation. This does replicate the results obtained by Kara Filbey, who showed

that VAL-4 was found in gel filtration fractions 12 and 13 (Filbey, 2013). ShK-707

was, similar to L529, neither found in the gel filtration fractions used to generate

the sequential fractions, nor in the anion exchange fractionation. It was found in the

later size exclusion fractionation, but unlike L529 it peaked in fractions 5-6. NSP-42

was found in the fractions adjacent to the active fractions, being identified only in

fraction 13 of the size exclusion fractionation and fraction 24 of the anion exchange

fractionation.

In addition, the abundance profiles of previously described DC modulators could

be investigated as well. The protease inhibitor cystatin (which has the accession

number Hp_I02126_IG00179_L738 in our in-house database), shown by Sun et al. to

impair CpG induced DC maturation (Sun et al., 2013), was eluted in fraction 24 of

the anion exchange fractionation, a fraction that partially inhibited LPS induced DC

activation. However, it was not identified in fraction 25, the one completely abolishing

IL-12p70 production. In addition, it eluted in fraction 11 of the size exclusion

fractionation, a fraction that was not able to inhibit LPS induced DC activation. Finally,

it was not identified in the sequential fractionation of HES (Fig. 4.22).

TGM similarly eluted in fraction 24 of the anion exchange fractionation, but was

not found at all in the active fraction 25. As expected from previous experiments

(Filbey, 2013), it eluted in fraction 9 of the size exclusion fractionation and was not

found in any of the other fractions. Again, it was not identified in the sequential

fractionation (Fig. 4.23).
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Figure 4.21: Abundance profiles of second round candidates in all three
fractionation approaches. HES was fractionated using size exclusion fractionation
followed by fractionation of the active fractions by anion exchange fractionation. All
sequential fractions were analysed by mass spectrometry. Proteins with emPAI values
peaking in the active fractions were subjected to further selection comparing their
emPAI profiles to activity across the fractions, excluding housekeeping, egg or larval
stage proteins and those that have been identified falsely or with only one peptide.
This resulted in the shown five proteins as final candidates for expression. Shown here
are their emPAI values across the fractions on the left y axis and the concentration of
IL-12p70 produced by GM-CSF BMDC treated with LPS (1µg/ml) and the respective
fraction on the right y axis, for the sequential fractionation and subsequent analysis of
two different size exclusion fractionations (marked by distinct colours of the IL-12p70
profiles) and one anion exchange fractionation.

127



4.2 Results

5 10 15
0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

0.5

20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

0.8

Size exclusion Anion exchange
IL

-12p
70 [n

g
/m

l]

em
P

A
I

Fraction

Figure 4.22: Abundance profiles of cystatin. HES was fractionated using size
exclusion, sequential and anion exchange fractionation. All fractions were analysed
by mass spectrometry. Cystatin’s emPAI values across the fractions are shown on the
left y axis and the concentration of IL-12p70 produced by GM-CSF BMDC treated with
LPS (1µg/ml) and the respective fraction on the right y axis. Sequential fractionation
emPAI values are not shown, as cystatin was not identified in these fractions.
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Figure 4.23: Abundance profiles of TGM. HES was fractionated using size exclusion,
sequential and anion exchange fractionation. All fractions were analysed by mass
spectrometry. TGM’s emPAI values across the fractions are shown on the left y axis
and the concentration of IL-12p70 produced by GM-CSF BMDC treated with LPS
(1µg/ml) and the respective fraction on the right y axis. Sequential fractionation
emPAI values are not shown, as TGM was not identified in these fractions.
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4.3 Discussion

The fractionation experiments presented in this chapter resulted in some interesting

findings, including that the principal inhibitor of DC activation is a previously

undescribed molecule. Thus, the recently described TGM only partially inhibits LPS

induced DC activation, and cannot account for the full effects of HES on cytokine and

surface marker expression; in addition, its abundance profile does not fit the activity

profile of the fractions (Fig. 4.23). Furthermore, the cystatin in HES that was found to

also have some ability to modulate DC responses (Sun et al., 2013) did not segregate

into the active fractions identified here (Fig. 4.22). We can therefore conclude that there

is indeed another protein with the ability to inhibit DC activation that still remains to

be found.

A number of new candidates have been identified. In the first round of

fractionations, four proteins were shared between all active fractions, but none

presented a plausible case (Tab. 4.1). In the second round, HES was sequentially

fractionated by size exclusion and then anion exchange fractionation; in this round

five candidate proteins were identified, none of which were identified in the first

round, but which included a range of interesting gene family members (Tab. 4.4). Two

second-round candidates were novel secreted proteins (NSPs), which are part of a

group of proteins in HES that do not have any similarity to any other proteins; several

of these proteins are currently being investigated but so far nothing is known about

their possible functions. A third protein, L529, had never been found in HES before,

and similar to the NSPs it did not have any conserved domains. It did however show

some slight blastx similarities to trypsin inhibitor like cysteine rich domain containing

proteins and ubiquitin-conjugating enzymes, both of which could hint to a role in

regulating immune reactions. ShK-707 is another novel protein, the only conserved

domain identified in this protein is the ShK-like domain. With this domain, it belongs

to one of the three main protein families in HES, named according to the stichodactyla

toxin that was found to block specific voltage-gated potassium channels and thereby

inhibit proliferation of subsets of B and T cells (Wulff et al., 2003, 2004). Thanks to

this domain ShK-707 also shows some small blastx similarities to numerous other ShK

domain containing proteins, including many metalloproteinases. The last candidate

protein identified in this round was VAL-4. This protein is a member of the venom

allergen-like protein family which has been identified with 25 members in HES and

with this was both the largest and most abundant protein family (Hewitson et al.,

2011b). Several members of this family, including VAL-4, have been shown to elicit

dominant antibody responses in mice (Hewitson et al., 2011a). A common feature of
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these proteins and their many homologs in other species is their sperm coating protein

(SCP) domain; however, little is known about their functions so far. H. polygyrus VAL-

4 has previously been expressed in bacteria and insect cells and has been found to

colocalize with goblet cells in the intestine of infected mice (Murray et al., manuscript

in preparation). Its effect on DCs had not previously been investigated.

However, none of these candidates had an effect on LPS-induced DC activation

(Fig. 4.13). These five proteins were selected after mass spectrometric analysis of

the active sequential fractions. At a later date, all protein containing fractions of

the first gel filtration step of the sequential fractionation, and all fractions from the

anion exchange fractionation of HES were analysed as well, and the emPAI profiles

for the first five candidates in these fractionations were then obtained. This revealed

that four of these proteins had poor fits of emPAI profiles against activity profiles

in the new fraction analyses (Fig. 4.21). In hindsight, these results make it clear

that, apart from perhaps L529, the proteins were not convincing candidates for

the DC modulatory protein, and show just how important the inclusion of further

fractionations to compare abundance profiles was.

After this inclusion of further fractionations into the comparison, four more

candidates were identified that had good fits of their abundance profiles against the

activity profiles of all fractionations, with the exception of L452 which was not found

in the anion exchange fractionation (Tab. 4.11). Both this protein and NSP-19 had

no conserved domains, making it impossible to speculate on their functions. This

is similarly difficult for SXCL-4, although it being a previously identified member

of the ShK-like domain containing family containing barely more than a single of

these domains indicates that it might act in a similar manner to the ShK toxin itself.

The last candidate protein, TTR-10, belongs to the transthyretin-like family. While

transthyretin itself is a protein in vertebrates that is responsible for transport of thyroid

hormones through the blood stream from the thyroid gland to sites throughout the

body, it is thought to have evolved by gene duplication of a transthyretin-like protein

(TLP). TLPs have been found even in bacteria, and appear to have a variety of different

functions; it was described that it plays an important role in uric acid degradation but

only a few point mutations were needed to change this function to binding of thyroid

hormones (Richardson, 2015). A TLP from C. elegans, TTR-52, has been described to be

secreted and mediate binding between an apoptosis signal and phagocyte receptors,

thereby supporting the phagocytosis of apoptotic cells (Wang et al., 2010). However,

the function of the TTR-10 identified here remains to be determined.

In the end, none of the expressed proteins were able to influence LPS induced

DC maturation (Fig. 4.20). The failure to identify the molecule responsible for the DC

modulatory effect shown by HES could have a number of reasons. Firstly, it is possible
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that this was due to a technical problem with the mass spectrometric analysis in the

sense that the wanted protein might be, while very efficient at inhibiting DCs, very

dilute in HES and not easily picked up by mass spectrometry. In this way it might

be absent in especially the sequential fractionation, where the protein concentration

of the fractions was generally fairly low. It would then not have been identified as a

protein shared by the active fractions. There are very significant differences in protein

identification capabilities of mass spectrometers and it is evident that they can miss

numerous proteins when comparing the lists of proteins identified by analysis of the

size exclusion fractions in the two different facilities, assuming that different batches

of HES do not vary much in their protein composition, as has been tested by John

Grainger (Grainger, 2009). As mentioned above, in the first analysis 26 proteins were

identified in fraction 14 and 38 in fraction 15. The second analysis on the other hand

identified 206 proteins in fraction 14 and 105 in fraction 15, with the ranks being quite

different compared to analysis one. Furthermore, about half of the proteins identified

in the first analysis are not found in the second (tables B.1, B.2, B.9 and B.10).

Secondly, the selection criteria, especially the step of excluding proteins with an

ill fitting abundance profile by hand, were - though carefully implemented - still quite

subjective. The real DC inhibitor could easily have been missed. Furthermore, it

is possible that it could have been identified with only one peptide, which would

have meant it would have been excluded as the probability of it being an artefact

was deemed to be too high. One example where this already happened in the

analysis is L452, which had been on the shortlist for candidate proteins in the

sequential fractionation round (Tab. 4.3), but was excluded as it was identified by

one peptide only. When all fractionation approaches were compared, more peptides

of this protein were found and it was included in the list of candidates. Also the

exclusion of housekeeping proteins from the list of prioritised candidates should be

reconsidered, especially considering the findings presented in the next chapter, with

HES influencing DC metabolism.

Thirdly, it might well be that the protein of interest does not act as a single

protein, but indeed a protein complex is responsible. This is however quite unlikely,

considering the very distinct activity profiles of the fractions. Proteins in a putative

complex would have to be around the same size and have a very similar charge,

or the complex be very stable to always be eluted as a functional unit. Another

potential issue with the protein itself could be post-translational modifications. While

the heat-lability of the inhibitory molecule indicates a protein component, it might

well be heavily glycosylated to name just one possibility, and those post-translational

modifications could have an important role in the regulation of DC activation. One

example where this is the case is ω-1, the RNase found in SEA, which is bound and
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internalized by the mannose receptor and can only then act on the RNAs within the

cell (Everts et al., 2012a). The fact that all the recombinant proteins were larger than

predicted (Fig 4.12B and Fig. 4.19B) does indicate that they were indeed modified and

- especially considering the fact that there were several bands visible for a number of

them - might either form protein complexes or be not properly folded and aggregate.

By expression of the proteins in a mammalian cell line we tried to increase the

probability of proper folding and post-translational modifications, but it is possible

that this failed. Furthermore, protein production by the transfected cells was very

low, so that for all candidates the purified protein had to be pooled and concentrated

down. It is possible that this process was detrimental to the proteins; testing a new

batch of protein that is less dilute and does not require further concentrating might be

worthwhile. To address the issue of proper folding and modification, it is planned to

raise polyclonal antibodies against the expressed proteins and an active fraction as a

positive control. These will then be used to try and neutralize the inhibitory effect of

total HES, to see if the native proteins, unlike the recombinants, are able to modulate

DC activation.

In addition to this, it will however probably be necessary to address issues

raised with the selection criteria described above. In addition to careful evaluation

of previously excluded proteins, taking proteins with abundance profiles peaking in

only two of the three fractionation approaches into consideration might be useful.

Alternatively, it might be worthwhile to include a third fractionation approach, to be

able to objectively choose proteins with well fitting abundance profiles while keeping

the number of candidates small without having to subjectively select proteins with

promising looking profiles from a larger list. One possibility could be hydrophobic

interaction chromatography to separate proteins according to their polarity.

In summary, while the DC modulator in HES has not been identified yet, not

all of the tested proteins can be completely excluded, and several data sets of fraction

activities and protein contents have been produced that can be used in future selection

of candidates.
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CHAPTER5
Effects of HES on LPS induced

signalling pathways and DC
metabolism

ABSTRACT
In addition to finding the molecule in HES responsible for the inhibition of TLR ligand-

induced DC maturation, the identification of its mechanism of action is an important

step towards its use as a potential therapeutic. Analysis of the activation of the NF-

κB and MAPK signalling pathways and the production and inhibition time courses of

IL-12, TNF, IL-6 and CD40 showed that HES did not affect the immediate-early phase

of LPS-induced BMDC activation. Rather, it seemed to interfere with the ability of

the cells to sustain the activation, and could do so even if added several hours after

LPS treatment. Analysis of the transcriptome of LPS- and LPS+HES-treated BMDC

at eight hours post stimulation revealed numerous changes that may contribute to

the observed inhibition of maturation, the most promising being the downregulation

of IRAK2 and the upregulation of ATF3 by HES. Furthermore, the detected increase

in HIF-1α transcript levels and differences in transcript levels of glycolytic enzymes

indicate an even higher increase of aerobic glycolysis in LPS+HES-stimulated BMDC

compared to LPS-treated cells. In addition, HES treatment of LPS-stimulated cells

appears to induce or increase the cellular oxidative and ER stress responses. In

conclusion, the work presented here gives an insight into how HES might affect LPS-

induced DC activation and identifies several promising candidates for further study.
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5.1 Introduction

When DCs encounter PAMPs such as LPS, a number of signalling pathways are

activated to induce the maturation of these cells. A schematic of the most important

ones can be found in Fig. 5.1.

TLR4 in concert with CD14 binds LPS on the cell surface. Both MyD88 and

TRIF are adaptor proteins associated with TLR4 and induce several interconnected

signalling pathways upon activation. Their signalling pathways converge with the

activation of TRAF6; while TRIF can directly activate TRAF6, MyD88 does so via

IRAK1/2 and 4. Activation of TRAF6 is due to ubiquitination of K63, and can

be inhibited by the ubiquitin ligase A20 working in concert with ABIN molecules

(reviewed in Verstrepen et al., 2009). TRAF6 in turn, once activated, induces the

activation of NF-κB, the MAPK cascade and several IRFs (reviewed in Brown et al.,

2011).

For NF-κB induction, activation of IKKs leads to phosphorylation of IκBs,

targeting them for proteasomal degradation. This frees previously bound NF-κB to

translocate to the nucleus and induce transcription of target genes. NF-κB itself is

a dimer composed of combinations of the five subunits c-Rel, RelA (or p65), Rel-B,

p52 (after cleavage of the inhibitory p100) or p50 (after cleavage of p105) (reviewed in

Kawai and Akira, 2007).

The MAPK cascade involves sequential phosphorylation of target proteins by

several kinases, with the three branches named after the final kinases in the cascades,

p38, ERK and JNK. Activation of these leads to phosphorylation of components of

the AP-1 transcription factor and therefore its activation. AP-1 contains proteins like

Jun, Fos and members of the ATF family of transcription factors. In addition to

direct binding to elements in promoters of target genes, AP-1 can interact with other

transcription factors. One example are members of the ETS family of transcription

factors, which are regulated by MAPK signalling as well. Heterodimers of AP-1

consisting of a BATF member and a Jun protein are able to interact with both IRF4 or

IRF8, enabling them to bind to elements called AICEs (AP-1–IRF composite elements).

IRF4 and 8 can also interact with members of the ETS family, which enables them to

bind to EICEs (ETS-IRF composite elements). These factors and their interactions are

reviewed in Wasylyk et al., 1998 and Murphy et al., 2013.

Furthermore, CD14 is able to activate a signalling cascade as well. This signalling

pathway causes an increase in intracellular Ca2+, which activates calcineurin.

Calcineurin in turn dephosphorylates NFAT, leading to its nuclear translocation.
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Figure 5.1: Signalling pathways in LPS-induced DC activation. CD14 and TLR4
on DCs bind to LPS. TLR4 associated MyD88 and TRIF induce activation of NF-
κB, MAPKs and IRFs through various interconnected pathways. CD14 induces
activation of NFAT. For a more detailed description please see the main text. AP-
1: Activator protein 1; ERK: Extracellular-signal-regulated kinases; IκB: NF-κB
inhibitor; IKKs: IκB kinases; IRF: Interferon regulatory factor; JNK: c-Jun N-terminal
kinases; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; MyD88:
Myeloid differentiation primary response gene 88; NFAT: nuclear factor of activated
T-cells; NF-κB: Nuclear factor κ-light-chain-enhancer of activated B cells; TLR4:
toll like receptor 4; TRAF: tumour necrosis factor receptor associated factor; TRIF:
Toll/Interleukin-1 receptor-domain-containing adapter-inducing interferon-β

There, NFAT interacts with other transcription factors to form active complexes. In

addition, calcineurin has been reported to inhibit TLR signalling pathways. Another,

CD14 independent pathway for NFAT activation by LPS seems to exist as well

(reviewed in Zanoni and Granucci, 2012).

All of these transcription factor families have been shown to play roles in the

regulation of DC maturation. The TNF promoter alone contains binding sites for

transcription factors of the NF-κB, AP-1, ETS, NFAT and IRF families (Falvo et
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al., 2010). Regulation of IL-12 production is more complicated, thanks to it being

composed of two separately regulated subunits, but members of all the above-

mentioned families have been shown to be involved in its regulation as well.

STAT proteins are another set of transcription factors that have been found to be

involved in DC signalling upon activation. STAT1 for example can be activated by p38

and increase expression of TNF, IL-6 and IL-12p40 (Gautier et al., 2005; Schroder et al.,

2007), while STAT3 seems to inhibit NF-κB binding to some promoters (Nefedova et

al., 2005; Wagner et al., 2015).

Another factor that can influence DC activation is their metabolism (see Fig.

1.7 and Fig. 1.8 in the Introduction for schematics). Upon activation, DCs

increase glycolysis to produce more pyruvate to feed into the TCA cycle, where it

is converted into citrate. The increased amount of citrate in turn is used to feed

the increased fatty acid synthesis without impairing the TCA cycle and subsequent

oxidative phosphorylation to generate ATP; in parallel to that, the activity of the

pentose phosphate pathway is increased as well, to provide the NADPH required.

These changes in DC metabolism provide the phospholipids needed to expand both

endoplasmatic reticulum and Golgi apparatus. If any step of this process was

disrupted, DC maturation in response to LPS was inhibited, with decreased protein

levels of CD40, CD86, TNF, IL-12 and IL-6. Interestingly, mRNA levels remained

the same as in DCs normally activated with LPS. These findings demonstrated just

how crucial the early change in DC metabolism and expansion of ER and Golgi are to

support the increased protein synthesis during DC activation (Everts et al., 2014).

Changes in DC metabolism in later stages of activation have been investigated as

well. BMDC differentiated with GM-CSF express iNOS upon activation; the produced

NO was found to inhibit the electron transport chain and so prevent activated

BMDC to generate their ATP through oxidative phosphorylation (Everts et al., 2012b).

Instead, they have to rely on regenerating NAD+ for glycolysis by producing lactate

even though oxygen is available, which is called aerobic glycolysis or Warburg

metabolism, and can be found in activated macrophages as well (Krawczyk et al.,

2010). An important inducer for this increase in glycolysis is the transcription factor

HIF-1, and knockdown of its α subunit impaired LPS induced DC maturation (Jantsch

et al., 2008).

Considering the complex machinery that is at work to induce and regulate the

activation of DCs, there are plenty of points that HES could target. Previous work

in our group showed that the effect of HES is not dependent on either MyD88 or

TRIF, as activation of BMDC from MyD88−/−TRIF−/− mice by ligation of CD40 was

inhibited as well. Furthermore, HES does not act via PI3K, as inhibition was intact

upon treatment with an inhibitor of this kinase. Signalling through the C-type lectin
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receptors dectin-1 and dectin-2 is also not involved in HES mediated DC modulation,

as neither blocking these receptors with antibodies nor inhibiting signalling through

Syk, the kinase downstream of them, had an effect on DC inhibition (Dayer, 2011).

So far, neither NF-κB nor MAPK signalling have been investigated. Therefore, to shed

more light on a possible mechanism behind the DC modulation by HES, the activation

of these signalling pathways was analysed. Furthermore, the timing of the effects on

IL-12, TNF, IL-6 and CD40 was investigated. Finally, to create an overview of the

expression changes in LPS and LPS + HES treated BMDCs, mRNA levels of cells eight

hours post stimulation were analysed with a microarray; proteins involved in the

described metabolic pathways and transcription factors implicated in DC activation

were investigated.
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5.2 Results

5.2.1 HES increases ERK1/2 phosphorylation, but inhibition of

BMDC activation is independent of ERK.

The first signalling pathway investigated was one of the three branches of the MAPK

cascade. GM-CSF BMDC were stimulated with LPS and HES, following which

ERK1/2 phosphorylation levels during the early phase of activation were analysed

by flow cytometry.

While both treatments rapidly induced phosphorylation of ERK1/2, LPS+HES

treated BMDC seemed to react slightly faster leading to somewhat elevated percentage

of p-ERK1/2+ cells at ten minutes post stimulation. Following this, ERK1/2

phosphorylation levels rose sharply with percentages of p-ERK1/2+ cells again being

significantly elevated among LPS+HES treated CD11c+ cells at 20 and 30 minutes post

stimulation. After this early increase in activation, the percentage of p-ERK1/2+ cells

declined and was comparable between both groups one hour after their stimulation

(Fig. 5.2A).

To ascertain whether this increase in ERK activity was relevant for the inhibition

of LPS induced DC activation by HES, cells were treated with an inhibitor of the kinase

phosphorylating ERK1/2, the MEK1/2 inhibitor U0126. Fig. 5.2B demonstrates that

this inhibitor indeed completely abolished the phosphorylation of ERK1/2 induced by

LPS. IL-12p70 secretion by LPS-stimulated BMDC was only slightly attenuated by pre-

treatment with U0126, while HES inhibited secretion of this cytokine irrespective of

treatment (Fig. 5.2C). Expression of the costimulatory molecules CD40 and CD80 was

also inhibited by HES in the presence of U0126 (Fig. 5.2D). The increased activation

of the ERK pathway is therefore dispensable for the inhibition of LPS-induced DC

activation by HES.
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Figure 5.2: HES increases ERK1/2 phosphorylation, but inhibition of DC activation
is independent of ERK. BMDC were differentiated with GM-CSF for ten days before
stimulation with LPS and HES as indicated. For inhibitor experiments, BMDC were
pre-incubated for 60-90 minutes with cRPMI alone, DMSO in RPMI or 10µM U0126 in
cRPMI before stimulation. (A + B) At indicated time points after stimulation, cells
were fixed and the phosphorylation status of ERK1/2 determined by intracellular
flow cytometry. (C) Concentrations of IL-12p70 in the supernatants of cells after 18h
of stimulation were determined by ELISA. (D) At 18h post stimultion, expression
of costimulatory molecules on CD11c+ cells were determined by flow cytometry.
(A and D) Left: percentages of p-ERK1/2+, CD40+ or CD80+ cells in the CD11c+

population; Right: histograms showing p-ERK1/2 in or the expression of CD40 or
CD80 on CD11c+ cells - # HES alone histogram not in all panels. All results are
representative data of at least three independent experiments, except for (B), control of
phosphorylation status of ERK1/2 after treatment with U0126, which was performed
once. Data represent mean ± SD, n = 3; Results from multiple t-tests comparing LPS
and LPS+HES treated samples, analysing each row individually using the Holm-Sidak
method or one-way ANOVA and Tukey’s multiple comparison test are indicated as *
: p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001. M: Medium; D: DMSO; U:
U0126.
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5.2.2 HES inhibits p38 and JNK phosphorylation only after the

immediate-early phase of BMDC activation.

Next, the activity of the other two branches of the MAPK cascade was investigated.

Again, GM-CSF BMDC were stimulated with LPS and HES and then phosphorylation

levels of p38 and JNK were measured by flow cytometry.

The percentage of cells positive for phosphorylated p38 rapidly increased after

stimulation, with over 80% of cells staining positive after 30 minutes. This did not

change over the next half hour, as at one hour post-stimulation around 80% of CD11c+

cells remained p-p38+. There was no difference between LPS- and LPS+HES-treated

groups in this first hour (Fig. 5.3A). As time progressed however, the percentage

of CD11c+ cells with phosphorylated p38 decreased to a greater extent in the cells

treated with HES; at 2.5 hours post stimulation a trend towards a lower percentage

of p-p38+ cells was already visible, which became significant at the following time

points. While the percentage of p-p38+ LPS treated cells declined to pre-stimulation

levels only gradually over 15 hours, when HES was added cells returned to baseline

by five hours post stimulation (Fig. 5.3B).

Similar observations can be made about phosphorylation of JNK. While it was

activated slightly later than ERK1/2 or p38 with barely any cells p-JNK+ at 15 minutes

post stimulation, this rapidly changed over the following 30 minutes before the

percentage of p-JNK+ cells declined again at one hour post stimulation. During these

early time points, no difference was visible between LPS- and LPS+HES-treated cells

(Fig. 5.4A). Just as with p-p38 however, the percentage of p-JNK+ LPS+HES-treated

CD11c+ cells declined faster than in the LPS-treated group. In LPS-treated cells, JNK

phosphorylation decreased slowly over the next few hours until they dropped to pre-

stimulation levels around 12 hours post LPS. LPS+HES-treated cells on the other hand

showed a much steeper loss of JNK phosphorylation; at 5 hours post stimulation they

had already almost returned to pre-stimulation levels of p-JNK+ cells (Fig. 5.4B).

This timing is quite intriguing, as in both cases HES blocked the late phase

duration of phosphorylation, bringing the percentage of p-MAPK+ cells to near pre-

stimulation levels in the samples taken five hours post stimulation, while LPS-treated

cells were much slower in returning to the pre-stimulation status.
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Figure 5.3: HES does not alter p38 phosphorylation during the early phase of
LPS-induced BMDC maturation but reduces it at later time points. BMDC were
differentiated with GM-CSF for ten days before stimulation with LPS and HES as
indicated. At indicated time points after stimulation, (A) in minutes for the early
phase of activation and (B) in hours for the later time points, cells were fixed and
the phosphorylation status of p38 determined by intracellular flow cytometry. Left:
Percentages of p-p38+ cells in the CD11c+ population; Right: histograms of p-p38
within CD11c+ cells at the indicated time points after stimulation. Results for early
time points are representative data of five, later time points of two independent
experiments. Data represent mean ± SD, n = 3; Results from multiple t-tests comparing
LPS- and LPS+HES-treated samples, analysing each row individually using the Holm-
Sidak method are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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Figure 5.4: HES does not alter JNK phosphorylation during the early phase of
LPS-induced BMDC maturation but reduces it at later time points. BMDC were
differentiated with GM-CSF for ten days before stimulation with LPS and HES as
indicated. At indicated time points after stimulation, (A) in minutes for the early
phase of activation and (B) in hours for the later time points, cells were fixed and
the phosphorylation status of JNK determined by intracellular flow cytometry. Left:
Percentages of p-JNK+ cells in the CD11c+ population; Right: histograms of p-
JNK within CD11c+ cells at the indicated time points after stimulation. Shown are
representative data of two independent experiments. Data represent mean ± SD, n
= 3; Results from multiple t-tests comparing LPS- and LPS+HES-treated samples,
analysing each row individually using the Holm-Sidak method are indicated as * :
p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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5.2.3 HES inhibits phosphorylation of IκBα and reduces A20

expression in LPS-stimulated BMDC.

In addition to the MAPK pathway, NF-κB signalling is crucial for the activation of

DCs and was therefore the next to be investigated. As described above, NF-κB gets

activated when IKKs phosphorylate IκB, targeting it for degradation and thereby

releasing NF-κB to translocate to the nucleus. Phosphorylated IκB, specifically IκBα ,

is therefore a measure for NF-κB activation (Kawai and Akira, 2007). To analyse

this, GM-CSF BMDC were stimulated with LPS and HES as before followed by

determination of the phosphorylation status of IκBα by flow cytometry.

The earliest analysed time point post stimulation was at 2.5 hours, and analogous

to the results for p-p38 and p-JNK, the percentage of p-IκBα+ cells, even though

increased compared to pre-stimulation levels, was lower in LPS+HES-treated CD11c+

cells compared to the LPS-treated group. That remained the case during the whole

course of the stimulation, and while the percentage of cells that were positive for p-

IκBα returned to pre-stimulation levels in the LPS-treated group, it sank below that in

the HES-treated group (Fig 5.5).

One important inhibitor of NF-κB activation is A20, which acts as a feedback

regulator for NF-κB signalling. To check if HES inhibits the phosphorylation of IκBα

by changing the expression of A20, levels of this protein in LPS- and HES-treated GM-

CSF BMDC were measured by flow cytometry.

In both groups the expression of A20 increased 30 minutes after stimulation and

percentages of A20+ cells kept rising over the first hour of stimulation. During this

early phase of DC maturation, percentages of A20+ cells were comparable in both

groups (Fig. 5.6A). At 2.5 hours post stimulation, the percentage of A20+ cells was

even higher in LPS-stimulated BMDC; this was in contrast to the LPS+HES-treated

group, where it was slightly lower than at 60 minutes post stimulation. While the

percentage of A20+ LPS-stimulated BMDC did remain fairly constant over the next

few hours, it dropped to below pre-stimulation levels in LPS+HES-treated cells at 5

hours post stimulation and remained fairly constant for the rest of the stimulation

(Fig. 5.6B).

Of note, the percentage of cells positive for p-IκBα or A20 is low, especially

compared to the MAP kinase phosphorylation. This might be due to technical

issues, for example the sensitivity of the antibodies used, which might additionally

be influenced by the fixation protocol used.
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Figure 5.5: HES reduces phosphorylation of IκBα in the intermediate and late phase
of LPS-induced BMDC maturation. BMDC were differentiated with GM-CSF for ten
days before stimulation with LPS and HES as indicated. At indicated time points
after stimulation (in hours), cells were fixed and the phosphorylation status of IκBα

determined by intracellular flow cytometry. Left: Percentages of p-IκBα+ cells in the
CD11c+ population; Right: histograms of p-IκBα within CD11c+ cells at the indicated
time points after stimulation. This experiment was performed once. Data represent
mean ± SD, n = 3; Results from multiple t-tests comparing LPS and LPS+HES treated
samples, analysing each row individually using the Holm-Sidak method are indicated
as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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Figure 5.6: HES does not alter A20 expression during the early phase of LPS-
induced BMDC maturation but reduces it at later time points. BMDC were
differentiated with GM-CSF for ten days before stimulation with LPS and HES as
indicated. At indicated time points after stimulation, (A) in minutes for the early
phase of activation and (B) in hours for the later time points, cells were fixed and the
expression levels of A20 determined by intracellular flow cytometry. Left: Percentages
of A20+ cells in the CD11c+ population; Right: histograms of A20 within CD11c+ cells
at the indicated time points after stimulation. These experiments were performed
once. Data represent mean ± SD, n = 3; Results from multiple t-tests comparing
LPS- and LPS+HES-treated samples, analysing each row individually using the Holm-
Sidak method are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤ 0.0001.
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5.2.4 Differential dynamics of cytokine and activation marker

expression and their inhibition by HES.

To put the collected data of inhibition of MAPK and NF-κB signalling at the

intermediate and late phases of activation into context regarding the actual inhibition

of cytokine secretion and costimulatory molecule expression from LPS-stimulated

BMDC by HES, supernatants and cells were collected at different time points during

the stimulation. Concentrations of IL-12p70, TNF and IL-6 in the supernatants and

expression of costimulatory molecules were measured. In this way, a timeline could

be created for the production of these markers and the onset and extent of inhibition.

LPS-stimulated BMDC started secreting IL-12p70 quite late, between eight

and ten hours post stimulation. The concentration of this cytokine in the culture

supernatant increased over the next four to six hours, before reaching a plateau until

the end of the stimulation at 18 hours. No detectable IL-12p70 was produced by

LPS+HES-treated BMDC at any point during the stimulation (Fig 5.7A, top).

In contrast, the release of TNF was induced from quite early time points.

Unstimulated BMDC did not express any detectable amount of this cytokine

(measured at 18h post-stimulation), but at two hours post stimulation both LPS- and

LPS+HES-treated BMDC had started to secrete it. While the concentration of TNF

steadily increased in BMDCs treated with LPS, in the presence of HES little further

increase was observed and indeed levels trended downwards as the experiment

progressed (Fig 5.7A, middle).

In the case of IL-6, secretion started slightly later compared to TNF, with

only small amounts detectable at four hours post stimulation. At that point, both

LPS- and LPS+HES-treated BMDC secreted comparable amounts of IL-6. While

the concentrations of this cytokine increased in the supernatants of both groups in

the following hours, the LPS-treated cells soon surpassed their LPS+HES-treated

counterparts, which were only very slightly increasing the IL-6 concentration. In both

groups, IL-6 concentrations in the supernatants reached a plateau at around 12 hours

post stimulation (Fig 5.7A, bottom).

The expression of CD40 on CD11c+ cells followed a similar dynamic as IL-

6 secretion. While cells at three hours post stimulation had barely changed their

expression of this costimulatory molecule, the percentage of CD40+ cells had started

increasing at six hours post stimulation with a trend towards higher percentages of

CD40+ cells in the LPS-treated group already visible. In both groups the expression of

this marker increased over the next hours, but LPS+HES-treated cells started having

a significantly lower percentage of CD40+ cells at nine hours post stimulation. This

difference continued over the remainder of the stimulation period, and within the
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last two hours the LPS+HES-treated group even seemed to decrease the expression of

CD40 again.

Following the investigation of the activation time course at the protein level, the

expression of the two IL-12 subunits and IL-6 was examined at the mRNA level as

well. As before, GM-CSF BMDC were stimulated with LPS and HES, but now RNA

was extracted at various time points after stimulation and mRNA levels of p35, p40

and IL-6 analysed by real time PCR.

Notably, the mRNA for both IL-12 subunits was induced several hours before

the protein could be measured in the supernatants of the cells. Furthermore, HES

inhibition of IL-12 mRNA transcription was not as profound as its suppression of

protein secretion. While p35 mRNA could be measured at five hours post LPS-

stimulation in cells with of without added HES, it was significantly diminished in the

LPS+HES-treated cells. Following this, mRNA levels of p35 stayed constant until the

last measured time point at 12 hours post stimulation (Fig. 5.8, top). The p40 subunit

was induced slightly earlier and was just detectable in some of the LPS-stimulated

samples at three hours post stimulation. In the LPS+HES-treated group no p40 mRNA

was detectable at that point. At five hours post stimulation however, p40 mRNA could

be measured in both groups, albeit at a much lower level in LPS+HES-treated cells

compared to the LPS-treated group. As observed for p35, p40 mRNA levels remained

fairly stable after this point until 12 hours post stimulation (Fig. 5.8, middle).

IL-6 mRNA was detectable at three hours post stimulation in the LPS-treated

group as well, and at a slightly higher level compared to p40. Again, LPS+HES-treated

samples expressed no measurable IL-6 mRNA at this time point, and again it could

be found at five hours post stimulation in cells of both groups with levels in LPS-

treated BMDC surpassing those of LPS+HES-treated cells. For IL-6, this difference

was not as marked as for the IL-12 subunits and did not reach significance at most of

the measured time points (Fig. 5.8, bottom).
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Figure 5.7: Differential dynamics of cytokine and activation marker expression and
their inhibition by HES. BMDC were differentiated with GM-CSF for ten days before
stimulation with LPS and HES as indicated. At indicated time points after stimulation
(in hours) samples were harvested and (A) concentrations of IL-12p70, TNF and
IL-6 were determined by ELISA and (B) expression levels of CD40 determined by
flow cytometry. Left: Percentages of CD40+ cells and Right: histograms of CD40
expression on CD11c+ cells at the indicated time points after stimulation. Data for
IL-12p70 are representative of 3, IL-6 and CD40 of two independent experiments.
TNF was measured once. Data represent mean ± SD, n = 3; Results from multiple t-
tests comparing LPS- and LPS+HES-treated samples, analysing each row individually
using the Holm-Sidak method are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001;
**** : p ≤ 0.0001.

148



Chapter 5. Effects of HES on signalling and metabolism

1 2 3 4 5 6 7 8 9 10 11 12

-1

0

1

2

3

time after stimulation [h]

IL
-6

/R
pl

1
3a

LPS

★

LPS+HES

★

1 2 3 4 5 6 7 8 9 10 11 12
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

time after stimulation [h]

p4
0/

R
pl

1
3a

LPS

★ ★

LPS+HES

★ ★★★

1 2 3 4 5 6 7 8 9 10 11 12

-1

0

1

2

3

time after stimulation [h]

p3
5/

R
pl

1
3a

LPS
★★ ★★LPS+HES ★ ★★★★

Figure 5.8: Differential dynamics of cytokine expression and their inhibition by
HES. BMDC were differentiated with GM-CSF for ten days before stimulation with
LPS and HES as indicated. Cells were harvested and treated with Trizol at indicated
time points after stimulation. RNA was extracted, reverse transcribed and mRNA
levels of p35, p40 and IL-6 determined by qPCR and normalized to Rpl13a mRNA.
This experiment was performed once. Data represent mean ± SD, n = 3; Results from
multiple t-tests comparing LPS and LPS+HES treated samples, analysing each row
individually using the Holm-Sidak method are indicated as * : p ≤ 0.05; ** : p ≤ 0.01;
*** : p ≤ 0.001; **** : p ≤ 0.0001.
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5.2.5 HES inhibits cytokine secretion and activation marker

expression even if added hours after LPS.

In previous experiments, Blaise Dayer found that HES can inhibit LPS-induced IL-

12p70 production by BMDC even if added hours after the stimulation started (Dayer,

2011). To further investigate this phenomenon, GM-CSF BMDC were stimulated with

LPS and received HES at various time points after stimulation. Concentrations of IL-

12p70 and TNF in the cell supernatants were determined, as was the expression of

costimulatory molecules.

Just as before, IL-12p70 expression was induced by LPS alone but concentrations

in cell supernatants were below the detection threshold if HES was added even up to

eight hours post LPS. The inhibition of TNF secretion was not quite as efficient but

still very distinct, with cells that received HES up to three hours post LPS secreting

barely more TNF than those that received both at the same time. After this, TNF

concentrations further increased the later HES was added, and while there was still a

trend towards lower concentrations of this cytokine if HES was added seven to twelve

hours after LPS, it was not significant (Fig. 5.9A).

The expression of costimulatory molecules was similarly affected. The expression

of CD40 on cells that received HES up to 12 hours post LPS was still comparable to

that of cells that had received both at the same time. CD80 expression on the other

hand followed a similar pattern as TNF. If HES was added one or two hours post LPS,

CD80 levels on the cells were comparable to those on cells that received HES with

the LPS, but then the percentage of CD80+ cells increased, even though it was still

significantly lower compared to the LPS-stimulated cells if HES was added six hours

post LPS (Fig. 5.9B).
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Figure 5.9: HES inhibits cytokine secretion and activation marker expression even
if added hours after LPS. BMDC were differentiated with GM-CSF for ten days before
stimulation with LPS. 10µg of HES were added at indicated time points after the
start of the stimulation. (A) Concentrations of IL-12p70 and TNF in supernatants of
BMDC were determined by ELISA. (B) Expression levels of costimulatory molecules
on CD11c+ cells was determined by flow cytometry. Left: percentages of CD40+ and
CD80+ cells in the CD11c+ population; Right: histograms showing the expression of
CD40 or CD80 on CD11c+ cells that received HES at the indicated time points after
stimulation. Data are representative from at least three independent experiments.
Data represent mean ± SD, n = 3; Results from 1way ANOVA and Dunnett’s multiple
comparison test are indicated as * : p ≤ 0.05; ** : p ≤ 0.01; *** : p ≤ 0.001; **** : p ≤
0.0001.
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5.2.6 HES affects mRNA levels of signalling pathway components,

transcription factors and enzymes involved in cell metabolism

in BMDC eight hours post LPS stimulation.

As a complement to investigating cell signalling pathways involved in DC activation

directly, it was decided to compare the transcriptome of LPS- and HES-treated BMDC,

in order to identify potential upstream regulators of differentially expressed genes

or to even directly identify regulated genes that might play a role in DC activation

was a promising approach to shed light on the mechanism of DC inhibition by HES.

Eight hours post stimulation was chosen as a promising time point for this analysis,

as the inhibitory effect of HES on protein and, more importantly, mRNA levels was

already well measurable at this point (Fig. 5.7 and 5.8), while it was also still able to

change the outcome of stimulation when added at this time (Fig. 5.9). Two sets of

analyses were undertaken, a preliminary array comparing only LPS- and LPS+HES-

stimulated BMDC described below, and a more comprehensive dataset for which

results are still awaited. This latter analysis includes important additional groups

including unstimulated controls and samples treated with HES alone or active size

exclusion fractions of HES.

The preliminary array investigated the effects of HES on LPS-stimulated cells.

In this array, some 164 features were significantly up- or downregulated by HES (

(Fig. 5.10A and B.3). Only 20 in total, not distinguishing between significant and

non-significant values, were upregulated more than 1.5 fold, and only twelve were

downregulated by that much. Even if looking at all transcripts with fold changes of

at least 1.25 only 108 were upregulated, with only 84 downregulated by this amount.

The transcripts with a fold change of ± 1.25 or more are shown in more detail in Fig.

5.10B, features with a fold change of 1.4 or more were labelled in both graphs. Only 20

features corresponding to 16 different transcripts were downregulated more than 1.4

fold in LPS+HES treated BMDC compared to the LPS treated group, with two of those

features not reaching the significance threshold of 0.05. Slightly more features were

upregulated, with 32 features corresponding to 25 distinct transcripts, four of which

did not reach significance.

The transcript with the highest fold change was Tgfbi, a gene induced by TGF-

β which reduces cell adhesion (Skonier et al., 1994), demonstrating the importance

of the groups treated with the active fractions from gel filtration separation in the

main array analysis, as these do not contain the TGF-β mimic molecule. The

full list presented in tables C.1 and C.2 includes a wide range of transcripts for

proteins without any immediate link to immune responses, as well as a number of
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more obviously relevant ones. Among the downregulated transcripts were several

peptidase inhibitors like Serpin A3F and G and the protease inhibitor Cystatin F, or a

regulator of G-protein signalling (Rgs1); the list of upregulated transcripts contained

both a metalloprotease (Adam8) and metalloproteinase inhibitor with anti-apoptotic

function (Timp), a vascular endothelial growth factor (Vegfa) and the alarmin, IL-33.
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Figure 5.10: HES affects DC mRNA levels at 8h after stimulation. BMDC were
differentiated with GM-CSF for ten days before stimulation with LPS and HES as
indicated. At eight hours after stimulation, cells were treated with Trizol, RNA
extracted and labelled for analysis on an Illumina MouseWG-6 v2.0 Expression
BeadChip microarray. Statistical analysis of the data was performed by Dr. Alasdair
Ivens. Data are presented as log2 fold change from mRNA levels in LPS-stimulated
cells to levels in LPS+HES-stimulated cells for (A) all measured transcripts and
(B) transcripts with greater than log2 fold change of ± 0.25 (± 1.19 fold) from LPS-
to LPS+HES-stimulated cells. Red indicates decreased, green indicates increased
transcript levels in LPS+HES-treated cells. Dashed lines indicate log2 fold change
of ± 0.32 (± 1.25 fold). Labelled transcripts are those that reached a log2 fold change of
± 0.5 (± 1.4 fold). The transcripts below the dotted line did not reach the significance
threshold of p ≤ 0.05. This experiment was performed once with samples in triplicates.
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5.2 Results

Fold changes of transcript levels of markers that have been analysed in Chapter

3 are shown in Fig. 5.11.

Mostly, they correlate with the expression of these markers measured before.

Both Arg1 and TNF were among the transcripts most changed between the groups,

with Arg1 being upregulated and TNF downregulated in LPS+HES-treated cells as

shown before (see Fig. 3.6 for Arg1 and Fig. 3.1 for TNF protein, Fig. 3.4B and Fig. 5.8

for TNF mRNA levels). At least one feature corresponding to the transcripts for IL-

12p35 (Il12a), IL-6, CD40, CD80 and to a lesser extent CD86 were reduced in LPS+HES-

treated cells compared to LPS-treated cells as well (see Fig. 3.1 and 3.2 for protein

levels and Fig. 3.4B and 5.8 for mRNA levels of the cytokines). However, most of these

changes were not very extensive, in fact most of the markers were just barely more

than 1.25 fold downregulated despite mRNA levels measured by RT-PCR differing to

a much greater degree at this time point (see Fig. 3.4B). In addition, most did not reach
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Figure 5.11: Activation marker mRNA levels are regulated by HES at 8h after
stimulation. BMDC were differentiated with GM-CSF for ten days before stimulation
with LPS and HES as indicated. At eight hours after stimulation, cells were treated
with Trizol, RNA extracted and labelled for analysis on an Illumina MouseWG-6 v2.0
Expression BeadChip microarray. Statistical analysis of the data was performed by Dr.
Alasdair Ivens. Data are presented as log2 fold change from expression levels in LPS
stimulated cells to levels in LPS+HES stimulated cells for cytokines and costimulatory
molecules investigated in chapter 1. Dotted lines indicate log2 fold change of ± 0.25
(± 1.19 fold); Dashed lines indicate log2 fold change of ± 0.32 (± 1.25 fold). The grey
shaded area contains transcripts that did not reach the significance threshold of p ≤
0.05. This experiment was performed once with samples in triplicates.
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significance, as indicated by the values being located in the grey shaded area beneath

the dashed line, probably owing to the fact that this was only the preliminary array

comparing two groups of only three samples each. In addition, transcript levels for

RELMα (Retlna) were unchanged, supporting the previous results on its expression

in LPS-treated BMDC (see Fig. 3.6A).

CD83, a costimulatory molecule measured on the human moDC which was - just

like the other markers measured - not differentially expressed with HES treatment

on the human cells, was actually downregulated on mouse cells. Surprisingly, RNA

levels of OX40L (Tnfsf4) were lower in LPS+HES-treated cells compared to LPS-

treated cells as well, even though it was only a non-significant 1.18 fold change.

Using the fold changes of DC activation markers as a guide for the identification

of further proteins of interest and, at least for this preliminary array, not excluding the

values that did not reach significance, transcripts of proteins involved in DC activation

signalling pathways were inspected more closely. Several phosphatases responsible

for the dephosphorylation of all three MAPKs were in fact downregulated. DUSP2,

a phosphatase acting on ERK1/2 and p38, was among the most regulated transcripts

shown in Fig. 5.10B, with a fold change of -1.44 for one of its features. DUSP16,

responsible for the dephosphorylation of JNK, was greatly downregulated as well,

with one of its features showing a fold change of -1.33 from LPS- to LPS+HES-treated

cells. DUSP14, acting on all three MAPKs, was downregulated to a lesser degree, with

a fold change of -1.18. On the other hand, there were upregulated transcripts involved

with MAPK signalling as well. Another phosphatase of ERK2 for example, DUSP6,

had one feature with a fold change of 1.22, and a target of ERK1/2, the kinase MNK2

(Mknk2) was upregulated by 1.33 fold in LPS+HES-treated cells (Fig. 5.12A).

The fold changes for the regulatory proteins A20 (Tnfaip2) and ABIN1 to 3

(Tnip1-3) are shown in Fig 5.12B. As demonstrated in Fig. 5.6, the expression of A20

in LPS+HES-treated BMDC was actually decreased compared to the LPS-stimulated

group at eight hours. Only a barely detectable decrease of the transcript level of this

protein could be measured here, with a fold change of only -1.07. Two of the proteins

associated with its function, ABIN-1 and ABIN-3 showed a slightly larger decrease

in expression with fold changes of -1.11. ABIN-2, with a fold change of -1.04 did not

appear to be regulated by HES.

A variety of other factors involved in DC activation was regulated as well

and their fold changes are shown in Fig. 5.12C. With a fold change of -1.3, the

leucine rich repeat containing protein LRRC33, a negative regulator of TLR signalling,

was significantly downregulated in LPS+HES-treated cells compared to the LPS-

stimulated group. CISH, a negative regulator of STAT5, was downregulated as

well with a fold change of -1.21. Another downregulated protein involved in TLR
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signalling was IRAK2, with one of its features exhibiting a fold change of -1.2.

On the other side of the spectrum, MARCH1, an E3 ubiquitin ligase known

to reduce cell surface CD86 by targeting it for degradation (Baravalle et al., 2011;

Corcoran et al., 2011), was upregulated by 1.28 fold in LPS+HES-treated cells. In

addition, the Ras-related protein Rab-7b, another negative regulator of TLR signalling

which functions by trafficking TLR4 to the degradative lysosome (Wang et al., 2007),

displayed a fold change of 1.24.
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Figure 5.12: HES affects mRNA levels of some proteins relevant in DC activation
signalling pathways at 8h after stimulation. GM-CSF BMDC were stimulated with
LPS and HES as indicated. At eight hours after stimulation, cells were treated with
Trizol, RNA extracted and labelled for analysis on an Illumina MouseWG-6 v2.0
Expression BeadChip microarray. Statistical analysis of the data was performed by
Dr. Alasdair Ivens. Data are presented as log2 fold change from mRNA levels in LPS-
stimulated cells to levels in LPS+HES-stimulated cells for (A) proteins involved in the
MAPK signalling cascade, (B) A20 and ABINs and (C) other proteins involved in DC
signalling that showed altered mRNA levels. Dotted lines indicate log2 fold change of
± 0.25 (± 1.19 fold); Dashed lines indicate log2 fold change of ± 0.32 (± 1.25 fold). The
grey shaded area contains transcripts that did not reach the significance threshold of
p ≤ 0.05. This experiment was performed once with samples in triplicates.
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Next, the expression levels of various transcription factor families previously

known to be involved in the activation of DCs were investigated (Fig. 5.13). The

majority of the known DC-associated transcription factors studied were unchanged

between LPS- and LPS+HES-treated cells; there were however some notable members

of their families that were regulated to some degree. NF-κB was an exception, with

all of its subunits except RelB appearing slightly reduced in LPS+HES-treated BMDC

(small black dots).

Among the most changed transcripts were those encoding members of the ETS

family, and with a fold change of +1.53, ELK-3 was the transcript with the highest

fold change among these transcription factors. The second highest fold change was

measured for another ETS member, as expression of one of the Spi-C features was

the most reduced among these transcription factors in LPS+HES-treated cells, with a

fold change of -1.38. ETS-2 was the second most downregulated of these transcription

factors, with a fold change of -1.23. On the other hand, transcript levels of ETS-1 were

increased with a 1.27 fold change from LPS- to LPS+HES-treated BMDC.

Members of the ATF family were also among the most regulated of the

investigated transcription factors. The transcript for BATF for example exhibited a

fold change of -1.23 in LPS+HES-treated cells. The decrease in transcript levels of

BATF2 was less distinct, this transcription factor only showed a fold change of -1.11.

Conversely, among those upregulated were ATF3, with a fold change of +1.34 in

LPS+HES-treated BMDC and ATF4 as another less distinctly elevated transcription

factor with a fold change of +1.11. Transcript levels of the AP-1 subunit c-Jun were

significantly elevated in LPS+HES-treated cells as well, with a fold change of +1.31

compared to LPS-stimulated BMDC.

Of the other transcription factor families, one feature of IRF1 displayed a fold

change of -1.18 compared to LPS-stimulated cells, several more also had negative fold

changes. IRF2 and its co-repressor IRF2-BP2 on the other hand were upregulated in

HES-treated cells, with IRF2 only having a small fold change of +1.08, while IRF2-

BP2 was increased 1.14 fold. None of the calcium dependent NFAT transcription

factors were affected by HES; the transcript of the calcium independent NFAT5 on

the other hand was downregulated in LPS+HES-treated cells, with a fold change of

-1.16 compared to the LPS-stimulated cells. Similarly, of the STAT family only STAT5

was regulated, its transcripts reduced in LPS+HES-treated cells with fold changes of

-1.23 and -1.14 for the two features. Two more transcription factors of interest were

upregulated in LPS+HES treated BMDC. The transcript for C/EBPβ was somewhat

increased with a fold change of +1.12, as was one of the features of the transcriptional

repressor LRRFIP1, which was increased 1.2 fold in LPS+HES-treated cells.
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Figure 5.13: HES affects mRNA levels of some transcription factors relevant for
DC activation at 8h after stimulation. BMDC were differentiated with GM-CSF for
ten days before stimulation with LPS and HES as indicated. At eight hours after
stimulation, cells were treated with Trizol, RNA extracted and labelled for analysis on
an Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Statistical analysis of
the data was performed by Dr. Alasdair Ivens. Data are presented as log2 fold change
from mRNA levels in LPS stimulated cells to levels in LPS+HES stimulated cells.
Dotted lines indicate log2 fold change of ± 0.25 (± 1.19 fold); Dashed lines indicate
log2 fold change of ± 0.32 (± 1.25 fold). The grey shaded area contains transcripts that
did not reach the significance threshold of p ≤ 0.05. This experiment was performed
once with samples in triplicates.

Finally, considering the increasingly recognized importance of metabolism

regulation in the activation of immune cells, including DCs, transcript levels of

proteins involved in this process were analysed as well.

While the transcripts for most enzymes important for energy metabolism were

not particularly different between the two groups, those involved in the shift towards

aerobic glycolysis were noticeably altered. In fact, a general shift towards increased

expression of glycolytic enzymes seemed to occur. More specifically, the tightly

regulated α-subunit of the transcription factor regulating the increased usage of
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the glycolytic pathway, HIF-1 (Jantsch et al., 2008; Pearce and Everts, 2015), was

among the transcripts with the highest increase in LPS+HES-treated cells with an

increase by 1.47 fold in this group, even though another one of its features appeared

slightly reduced with a fold change of -1.06 in LPS+HES-treated cells. Several of

its targets were also highly upregulated, such as the glucose transporter GLUT1

(Slc2a1) with a 1.39 fold increase in its transcript levels, or the two glycolytic enzymes

glucose phosphate isomerase, which was increased by 1.19 fold, and an isoform of

the phosphofructokinase, increased by 1.16 fold (Krawczyk et al., 2010; Minchenko

et al., 2003). Another target of HIF-1 is lactate dehydrogenase A (LDHA1), which

is responsible for the conversion of pyruvate into lactate to regenerate NAD+ and

depriving the TCA cycle from its carbon source (Palsson-Mcdermott and O’Neill,

2013; Pearce and Everts, 2015; Semenza et al., 1996). The transcript for this enzyme was

somewhat upregulated as well, with a fold change of +1.1 in LPS+HES-treated cells.

A further factor inhibiting the TCA cycle, and also a target of HIF-1, is the pyruvate

dehydrogenase kinase 1, which inactivates the enzyme catalysing the conversion of

pyruvate to acetyl-CoA (Kim et al., 2006; Papandreou et al., 2006). Transcript levels

for PDK1 were increased by 1.08 fold (Fig. 5.14A).

In LPS activated BMDC, the main reason for the switch to aerobic glycolysis

is thought to be increased production of NO by iNOS, which inhibits the

electron transport chain and therefore prevents the generation of ATP by oxidative

phosphorylation (Everts et al., 2012b). In contrast to the other inflammatory mediators

induced by LPS described above, transcript levels of Nos2, encoding for iNOS, were

actually increased 1.38 fold upon treatment of the cells with HES.

Interestingly, numerous proteins involved in cellular stress responses were

upregulated by HES as well. Chief among those was heme oxidase 1 (HO-1 encoded

by Hmox1), another of the most highly regulated transcripts found in this analysis.

This enzyme, catalysing the degradation of heme to CO, biliverdin and iron (Hull et

al., 2014; Naito et al., 2014), was upregulated by 1.82 fold in LPS+HES-treated cells.

A transporter responsible for the regulation of intracellular heme availability, HRG1

(Slc48a1) (Delaby et al., 2012; White et al., 2013) was upregulated by 1.5 fold as well.

Iron is subsequently bound by ferritin (Hull et al., 2014), the light chain subunit of

which was slightly increased as well with transcript levels that were 1.12 fold higher

in cells treated with HES.

Another HIF-1 responsive gene encodes Ddit4, a protein involved in stress

responses after both oxidative and ER stress (Jin et al., 2009; Shoshani et al., 2002;

Whitney et al., 2009). Expression of this protein was increased by HES as well, as

its transcript levels were increased by 1.32 fold. Interestingly, the transcript levels

of CIC (Slc25a1), responsible for the transport of citrate from the mitochondria into
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the cytoplasm (Infantino et al., 2011) for generation of NADPH via the isocitrate

dehydrogenase 1 (IDH1) (Itsumi et al., 2015) or de novo fatty acid synthesis, needed

in DCs to alleviate ER stress during activation (Everts et al., 2014), were 1.12 fold

reduced in cells treated with HES. Transcript levels of IDH1 on the other hand were

upregulated in HES-treated cells, with a fold change of +1.26 compared to cells

stimulated with LPS alone. An enzyme involved in the NADPH producing pentose

phosphate pathway, transaldolase 1 (Taldo1) (Perl et al., 2011), was also increased 1.26

fold in LPS+HES-treated cells.

Several proteins involved in the production and regeneration of glutathione and

therefore important in the protection of cells from oxidative stress (Rahman, 2005),

were upregulated in LPS+HES-treated cells. Slc7a11, a transporter for cystine that

therefore provides the cysteine needed for the production of glutathione (D’Angelo

et al., 2010), was increased 1.23 fold. The first enzyme involved in the biosynthesis

of glutathione, glutamate-cysteine ligase (Gclm) was even increased by 1.4 fold.

Expression of glutaredoxin (Glrx) seemed increased as well, with its transcript levels

being 1.34 and 1.26 fold higher after HES treatment. The microsomal glutathione S-

transferase is also involved in the oxidative stress response, and showed increased

expression in LPS+HES-treated cells with 1.3 and 1.27 fold increases of transcript

levels compared to LPS-stimulated cells. On the other hand, also the expression of

TXNIP, a protein suppressing the activity of thioredoxin (Nishiyama et al., 1999), was

increased by 1.26 and 1.21 fold in cells treated with HES.
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Figure 5.14: HES affects mRNA levels of proteins relevant for DC metabolism at
8h after stimulation. BMDC were differentiated with GM-CSF for ten days before
stimulation with LPS and HES as indicated. At eight hours after stimulation, cells
were treated with Trizol, RNA extracted and labelled for analysis on an Illumina
MouseWG-6 v2.0 Expression BeadChip microarray. (A) Proteins involved in aerobic
glycolysis. (B) Proteins involved in cellular stress responses. Statistical analysis of
the data was performed by Dr. Alasdair Ivens. Data are presented as log2 fold
change from mRNA levels in LPS-stimulated cells to levels in LPS+HES-stimulated
cells. Dotted blue lines indicate log2 fold change of ± 0.25 (± 1.19 fold); Dashed blue
lines indicate log2 fold change of ± 0.32 (± 1.25 fold). The grey shaded area or area
underneath dotted black lines contains transcripts that did not reach the significance
threshold of p ≤ 0.05. This experiment was performed once with samples in triplicates.
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5.3 Discussion
In addition to the search for the modulatory molecule in HES, the identification of

the mechanism underlying the modulation of DC activation was the second major

task in this project. This is especially important considering potential therapeutic

applications of the DC modulator(s) in HES, or the exploit of the mechanism employed

by it via other means. The main findings and suggested targets for future study are

summarized in Fig.5.15.

In previous experiments, some signalling pathways or their components have

already been ruled out as the targets of HES (Dayer, 2011). These experiments

showed that HES does not act via pathways utilizing the kinase Syk, like many C-
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Figure 5.15: Schematic detailing changes in signalling and metabolism between
LPS- and LPS+HES-treated BMDC. Activation of MAPK and NF-κB cascades
in LPS- and LPS+HES-treated GM-CSF BMDC were analysed by flow cytometry;
transcriptome changes at eight hours post stimulation were analysied using an
Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Depicted here are the
most relevant changes in cell signalling and metabolism discussed in this chapter. Red:
Downregulated or inhibited components; Green: Upregulated components; Asterisks
denote suggested targets of future research.
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type lectin receptors including Dectin-1 and 2, or PI3K, and that it does not act on

or upstream of MyD88 and TRIF. Whether HES has an effect on the activity of two

of the main signalling pathways involved in DC activation, NF-κB signalling and

the MAPK cascade, has however not previously been investigated. The first MAP

kinase investigated here was ERK. Unexpectedly, HES increased the phosphorylation

of ERK1/2 during the first half hour after stimulation with LPS. This finding is less

surprising considering work by Agrawal et al., showing that in human moDC, the

induction of ERK1/2 phosphorylation by the TLR2 ligand Pam3cys actually results

in an inhibition of IL-12p70 production which is restored upon inhibition of ERK1/2

activation (Agrawal et al., 2003). It was therefore an interesting possibility that HES

inhibits DC activation via increased activation of ERK1/2. However, HES was still

able to inhibit DC activation when cells were treated with an inhibitor of MEK1/2,

the kinases that phosphorylate ERK1/2, demonstrating that this is not its mechanism

of action (Fig. 5.2). In contrast to ERK1/2, both p38 and JNK have been shown to

be important for the maturation of DCs. Inhibition of either MAP kinase resulted

in a reduced upregulation of costimulatory molecules and impaired expression of

IL-12p70 and TNF by human moDCs after LPS stimulation (Agrawal et al., 2003;

Nakahara et al., 2004). Here, these two branches of the MAPK cascade were not

affected in the first hour post stimulation, as phosphorylation of p38 and JNK was

comparable in cells stimulated with LPS and LPS+HES. When looking at later time

points however, it became clear that HES actually has an effect on these signalling

pathways, as in cells treated with HES the phosphorylation levels of both p38 and JNK

returned to pre-stimulation levels at five hours post stimulation, which was several

hours before the LPS-treated cells reached that point again (Fig. 5.3 and 5.4).

Investigation of the phosphorylation status of IκBα led to a similar result.

IκBα is one of the proteins bound to NF-κB, keeping it cytoplasmic by masking its

nuclear translocation signal. Phosphorylation marks IκBα for degradation, leading

to activation and nuclear translocation of NF-κB. Interfering with this process, for

example by inhibiting this degradation of IκBα , has been shown to inhibit DC

maturation (Rescigno et al., 1998). While no data is currently available on the early

time points after activation, HES does seem to induce an earlier and more profound

loss of IκBα phosphorylation (Fig. 5.5). Another possibility considered was that

HES might increase the expression of A20, as that has been shown to be involved in

the termination of TLR responses by deubiquitinating and thereby inhibiting central

players in the signalling cascades like TRAF6 (Boone et al., 2004) and RIP1 (Wertz et

al., 2004). While during the first hour of stimulation both LPS and LPS+HES treatment

induced comparable amounts of A20, this had changed at 2.5 hours post stimulation.

In contrast to the expected effect, HES actually inhibited the LPS-induced expression
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of this protein (Fig. 5.6).

These results were quite puzzling, and hinted to an effect of HES not on the

initial early phase of activation but on the ability of DCs to sustain the LPS-induced

activation. This was further supported by the data gathered from the expression

time course experiments with IL-12, TNF, IL-6 and CD40 (Fig. 5.7). Those of these

proteins that were induced early on, which were IL-6, CD40 and especially TNF, were

induced to the same extent in the first three to four hours of stimulation, at least

considering their protein levels. Then HES seemed to have slightly different effects

on the protein levels, as, while it completely stopped any further increase in secreted

TNF, the concentration of IL-6 and the expression of CD40 continued rising, albeit to

a lesser extent than in cells stimulated with LPS alone. IL-12p70 on the other hand,

which was detectable in the cell supernatants only at a much later time than the other

two cytokines, was immediately suppressed by HES. Looking at the mRNA levels

of IL-12 and IL-6 however, things look slightly different again (Fig. 5.8). The two

subunits of IL-12, p35 and p40 were induced hours before p70 could be detected in

the cell supernatants. While mRNA levels of this cytokine were reduced by HES

right away, probably owing to the fact that they were only induced at three to four

hours post stimulation, which coincided with the regulatory effects taking hold on the

protein expression of IL-6, TNF and CD40, they did also measurably increase in the

LPS+HES-treated group. For IL-6 the discrepancy between mRNA and protein levels

was quite distinct as well, as HES barely reduced the mRNA levels of this cytokine.

This hints that, while HES clearly affects either transcription or mRNA stability, it

might also control translation or influence protein expression at a post-translational

level, for example altering protein secretion or degradation.

The hypothesis that HES inhibits the maintenance rather than the induction of

DC activation is further supported by the results showing its ability to impact LPS-

induced secretion of IL-12p70 and TNF, and the upregulation of both CD40 and CD80

even if added hours after the start of the stimulation (Fig. 5.9). In fact, it seems as

if the effect of HES on TNF begins to wane if administration is delayed past three to

four hours of LPS stimulation, which is around the same time the protein levels in the

expression time course start showing the inhibitory effect of HES. Around eight hours

after stimulation, when protein levels barely increase any further in the expression

time course experiments, the addition of HES was almost completely unable to reduce

secretion of TNF.

To gain more insights into transcriptional changes induced by HES in BMDCs, a

microarray analysis of the BMDC transcriptome at eight hours post stimulation was

performed. At this point only the data from the preliminary array are available, which

compares only LPS- and LPS+HES-treated cells. Expression changes measured by
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this array were not very notable and often did not reach significance, as indicated by

the results for markers previously shown to be regulated (Fig. 5.11 compared to Fig

3.1, Fig. 3.2, Fig. 3.4 and Fig. 5.8). Furthermore, as total HES was used, effects of

TGM can not be distinguished from effects caused by the putative DC modulator, a

fact underscored by the finding that the highest regulated transcript is of a protein

induced by TGFβ (Fig. 5.10). However, this analysis should still be a valuable tool to

gain an insight into transcriptional changes induced by HES and determine potential

candidates for further experiments which can be further validated once the results of

the currently running array experiments comparing unstimulated BMDC and those

treated with HES, LPS+HES, the active size exclusion fraction 14 and LPS+fraction 14

are available.

Indeed, there were a number of interesting changes in transcription levels of

proteins between LPS- and LPS+HES-treated groups. Some were the opposite of what

would have been expected.

LRRC33 for example was downregulated in LPS+HES-treated cells; this factor

has been implicated as a negative regulator of TLR signalling, interacting with TLRs

and blocking their interaction with downstream mediators like MyD88. Its deletion

led to increased activation of MAPK and NF-κB signalling in the first hour after

stimulation and a subsequent increase in TNF and IL-6 production by various TLR

ligands in both macrophages and DCs (Su et al., 2014). However, as reported, HES

does not change the activation of these pathways in the early phase of DC activation.

Furthermore, Su et al. could show that LRRC33 expression is inhibited by TLR ligands

during the course of the stimulation, so it would be possible that an accelerated

downregulation of this protein is a side effect of the changes induced in DCs by HES

via a different mechanism and after the early phase of activation.

The impaired induction of A20 expression in LPS+HES-treated cells was another

puzzling result, as described above. Furthermore, even though at eight hours post

stimulation A20 protein expression was clearly impaired in LPS+HES-treated cells,

transcript levels at that point were barely reduced. This might either indicate an

underestimation of fold changes by the array, or be another indication of the potential

involvement of regulatory mechanisms on the translation or post-translation level.

What is interesting however, is that transcript levels of A20, ABIN1 and ABIN3 seem

reduced by HES treatment of cells, while ABIN2 does not seem affected. ABIN2 is,

unlike ABIN1 and 3, independent of stimulation as it does not have NF-κB sites in

its promoter (Verstrepen et al., 2009). Hence, the reduced transcript levels of these

activation dependent proteins could be caused by the impaired NF-κB activation in

HES-treated cells.

Even more surprising is the quite distinct increase in c-Jun transcript levels upon
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HES treatment. This transcription factor, activated by JNK, has been shown to increase

the expression of p40 in cooperation with C/EBPβ , which is also slightly increased by

HES (Zhu et al., 2001), and to increase expression of TNF and IL-6 in cooperation with

another slightly increased transcription factor, ATF4 (Zhang et al., 2013). However, the

activity of c-Jun is dependent upon phosphorylation by JNK. As HES also impairs the

activity of these kinases, it stands to reason that, while c-Jun expression is increased,

this might not have any functional consequences as it can not be activated.

An effect of HES on the transcript levels of several DUSPs, enzymes

dephosphorylating MAP kinases, is not at first glance surprising. However, of the

four members of this family that were affected to a noticeable degree, three were

downregulated in HES-treated cells, DUSP2, 14 and 16, none of which are specifically

responsible for the dephosphorylation of ERK. Indeed, DUSP2 acts on both ERK and

p38 (Chu et al., 1996; Zhang et al., 2005), DUSP14 on all three types of MAP kinases

(Marti et al., 2001), and DUSP16 is specific for JNK (Matsuguchi et al., 2001). DUSP6

on the other hand, which is upregulated in HES treated cells, has been shown to be

specific for ERK2 (Groom et al., 1996; Muda et al., 1996). In the case of DUSP2, this

could be explained by the fact that its expression has been shown to be inhibited by

HIF-1 (Lin et al., 2011; Wu et al., 2011), a transcription factor that seems to be expressed

to a higher degree in LPS+HES- compared to LPS-treated cells. Taken together, these

findings indicate that the change in expression of DUSPs is not responsible for the

effect of HES.

Other regulated proteins do not seem to have an immediately apparent role in

DC maturation, chief among them two of the transcription factors belonging to the

ETS family. Spi-C for example has so far only been implicated in the development of

splenic red pulp macrophages in response to heme (Haldar et al., 2014), or in B cells

for both differentiation and function, as it inhibited the expression of components of

the B cell receptor signalling pathway (Zhu et al., 2008). The increased expression of

heme oxygenase in HES treated BMDC might be an explanation for the decrease in

Spi-C transcript levels in these cells, considering that Haldar et al. showed that Spi-C

expression is induced by heme. The role of this transcription factor in DCs is unclear

however, especially as it previously has been reported to not be expressed in these cells

(Kohyama et al., 2009). The other ETS member with an unclear role in DC activation

is Elk-3, due to the fact that this transcription factor can apparently either suppress

or activate gene transcription, depending on the involvement of the Ras signalling

pathway (Giovane et al., 1994). It has however been shown to be downregulated

in macrophages within six hours after stimulation with LPS, a change that could be

reversed with TGFβ (Chen et al., 2003). It therefore stands to reason that TGM might

be responsible for the higher transcript level of Elk-3 in LPS+HES-treated cells.
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There are however also many other changes apparent that might contribute to

the inhibition of DC activation by HES, these are summarized in Fig. 5.15.

Two proteins with increased transcript levels have been reported to negatively

regulate DC activation by promoting protein degradation. MARCH1, an E3 ubiquitin-

protein ligase, has been reported to ubiquitinate CD86 and promote its lysosomal

degradation (Baravalle et al., 2011; Corcoran et al., 2011). The second protein,

Rab7b, has been shown to negatively regulate production of various LPS induced

inflammatory mediators including TNF and IL-6 in macrophages, probably by

inducing degradation of TLR4 (Wang et al., 2007). It has later been described to do

the same with TLR9 (Yao et al., 2009). In addition, it was shown to be increased in

DCs treated with Trichuris suis ES, which does, just like HES, inhibit LPS-induced DC

maturation (Klaver et al., 2015a).

CISH was another protein downregulated by HES that is involved in the

regulation of a signalling pathway. More specifically, CISH both blocks the activation

of STAT5 and is a target gene of this transcription factor, the transcript levels of which

were also reduced in LPS+HES-treated cells (Matsumoto et al., 1999). Knockdown

of CISH during the differentiation period of BMDC was shown to reduce their base

expression of CD40, CD80 and CD86 and lead to reduced secretion of IL-12, TNF

and IL-6 after stimulation with LPS (Miah et al., 2012). While the authors show that

STAT5 activity is regulated by CISH, they do not ascertain whether the inhibition of

DC maturation after CISH knockdown is mediated by STAT5. In fact, STAT5 itself

has been demonstrated to increase the expression of CD80, CD86 and MHC II on both

unstimulated and LPS-stimulated DCs (Zhong et al., 2010). Especially interesting in

this setting is the regulation of costimulatory molecules on unstimulated cells, as this

can be observed on HES-treated unstimulated DCs as well.

NFAT5 is another transcription factor that seems downregulated by HES. In

macrophages it played a role in inducing the expression of TNF and IL-6 after

stimulation with very low concentrations of LPS, but this effect was lost upon increase

of the LPS concentration. Furthermore, its transcription was shown to be increased

by NF-κB during the immediate early phase of activation after LPS stimulation; its

transcript levels rose at around four hours post stimulation (Buxadé et al., 2012). It

stands to reason that the inhibition of NF-κB activation by that time prevents the

increase of NFAT5 expression in HES-treated BMDC.

Two more transcription factors that are induced after LPS stimulation and exhibit

reduced transcript levels in HES-treated cells are BATF and BATF2. Both of these

proteins heterodimerize with Jun proteins to form AP-1; they can then cooperate with

ETS family members to bind to EICEs or with IRF4 or IRF8 to bind to AICEs to induce

transcription of target genes (Murphy et al., 2013). BATF2 has also been shown to
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cooperate with IRF1, to increase expression of TNF and iNOS (Roy et al., 2015). IRF1

was in fact another transcription factor with reduced transcript levels in LPS+HES-

treated cells compared to cells stimulated with LPS alone. IRF1 has also been reported

to induce transcription of both IL-12 subunits (Gabriele et al., 2006; Salkowski et

al., 1999). Transcript levels of IRF2 on the other hand were slightly increased upon

treatment with HES. IRF2 has been described as a competitive suppressor of IRF1-

dependent gene transcription (Harada et al., 1989), although there are also reports that

it suppresses TNF production but increases the expression of IL-12 and IL-6 (Cuesta

et al., 2003). The fact the transcript levels of its co-repressor IRF2-BP2 (Childs and

Goodbourn, 2003) are slightly increased in LPS+HES-treated DCs as well might be an

indication for the prevalence of its inhibitory functions in this case.

Another transcription factor shown to interact with IRF1 is the equally

downregulated ETS-2. In macrophages, ETS-2 expression is rapidly induced after LPS

stimulation (Boulukos et al., 1990); at eight hours post stimulation it was found to

form a complex with IRF1 and c-Rel, one of the NF-κB members, amongst others; this

complex was shown to bind the p40 promoter and induce transcription of this gene

(Ma et al., 1997).

Two of the most interesting regulated factors, considering the working

hypothesis that HES affects the maintenance rather than the induction of DC

activation, are IRAK2 and ATF3. IRAK2, which is reduced in HES-treated cells,

has been shown to be necessary for sustained activation of NF-κB. In macrophages,

the kinase activity of IRAK2 was induced only after two to four hours and peaked

at eight hours post stimulation. In IRAK2−/− cells, the initial activation of NF-

κB after MALP-2 stimulation (TLR2/6) was comparable to that of their wild-type

counterparts, but at four hours post stimulation active NF-κB was greatly reduced

in IRAK2 deficient cells and this remained the case for the rest of the stimulation

period. Furthermore, expression of TNF and IL-6 was similar in both wild-type

and IRAK2−/− macrophages at two hours post stimulation, but while mRNA levels

of these cytokines increased further in wild-type cells they declined in the knock

out cells at four hours post stimulation and had returned to undetectable quantities

at eight hours after stimulation with MALP-2. Finally, the authors demonstrated

that after a 24 hour stimulation, macrophages from IRAK2 deficient mice produced

significantly less IL-6 and TNF in response to not only MALP-2 but also LPS, R848

and CpG (Kawagoe et al., 2008). Using mice expressing a mutant version of IRAK2

that was not able to bind TRAF6, Pauls et al. showed that the disruption of this

signalling event decreased the phosphorylation of ERK, JNK and p38 at two hours

post stimulation, and furthermore also decreased the mRNA levels of A20 (Pauls

et al., 2013). Furthermore, IRAK2 deficient LPS stimulated macrophages have also
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been shown to have both reduced mRNA stability and a reduced translational activity

through phosphorylation of eIF4E, effectively inhibiting this translation elongation

factor (Wan et al., 2009).

ATF3 on the other hand is significantly upregulated in HES treated cells. The

expression of this transcription factor was induced by LPS in macrophages; after

stimulation c-Rel induced its expression, which lead to an increase of ATF3-binding to

promoter regions. At four hours post stimulation, ATF3-binding reached its maximum

and remained constant. Binding of ATF3 to promoter regions lead to a recruitment

of HDAC1, followed by deacetylation of histones which closed off the chromatin

structure and inhibited transcription. In ATF3 deficient cells mRNA levels of IL-12p40,

IL-6 and TNF were increased at four hours post stimulation, as were their protein

levels (Gilchrist et al., 2006). This mechanism has further been shown to be active

in DCs as well, and to regulate stimulation by CpG and poly(I:C) in addition to LPS

(Whitmore et al., 2007).

As described before, maturation of DCs is accompanied by profound changes

in their metabolism (for schematics, see Fig. 1.7 and 1.8). While they initially increase

their glycolytic rate and TCA cycle to provide material for de novo fatty acid synthesis

to expand their ER and Golgi apparatus and support the increased protein synthesis

(Everts et al., 2014), they later commit to glycolysis as the source of ATP (Krawczyk

et al., 2010). This has been shown to be due to the increased expression of iNOS; the

produced NO inhibits the electron transport chain and therefore prevents oxidative

phosphorylation, which is the ATP source in resting DCs (Everts et al., 2012b). The

transcription factor HIF-1, which is induced in DCs by LPS stimulation even in the

presence of oxygen (Spirig et al., 2010), is integral in this increase of the activity of

the glycolytic pathway. Under hypoxic conditions, which prevent cells from using

oxidative phosphorylation for ATP generation, knockdown of HIF-1 has been shown

to lead to a reduced consumption of glucose and inhibited DC maturation (Jantsch et

al., 2008). In addition to being induced by LPS its expression is also increased by NO,

as demonstrated by overexpression of iNOS in macrophages (Sandau et al., 2001). As

HES inhibits DC activation, it would be reasonable to assume that these metabolism

changes might not be induced. However, HIF-1α , the highly regulated subunit of

HIF-1, is among the most upregulated transcripts in LPS+HES-treated cells. Indeed,

transcripts of enzymes involved in glycolysis appear to tend towards being slightly

upregulated, including many of the reported targets of HIF-1. Furthermore, the

increase in transcript levels of the HIF-1 targets LDHA and PDK1 in HES-treated cells

indicate that pyruvate indeed does not continue into the TCA cycle, as the enzyme

needed to convert it to acetyl-CoA is inhibited by PDK1, but gets removed from the

system by LDHA which produces lactate and regenerates NAD+ for use in glycolysis.
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Considering the important role iNOS plays in inhibiting OXPHOS and forcing

DCs to adopt aerobic glycolysis as method of ATP generation, the fact that

its transcript levels are greatly increased in LPS+HES-treated compared to LPS-

stimulated cells should fit the picture well. However, many of the factors contributing

to iNOS induction, like IRF1 (Roy et al., 2015), NFAT5 (Buxadé et al., 2012) and ETS-2

(Chen et al., 2003) are downregulated by HES while transcript levels of factors that

should inhibit its production, like ATF3 (Gilchrist et al., 2006) and Elk-3 (Chen et

al., 2003) are increased; the increase in iNOS is therefore another puzzling finding.

The substrate used by iNOS for the production of NO is L-arginine, which is also

the substrate of the equally upregulated Arg1. This could indicate a mechanism to

regulate NO production; however, it appears the recycling of arginine from citrullin

might be boosted in HES treated cells as argininosuccinate synthetase 1 (Ass1), an

enzyme involved in this reaction, is among the most increased transcripts as well. In

addition, the surprising finding that both Arg1 and iNOS appear to be upregulated

by HES could also be due to differential expression of these two enzymes by the

too distinct populations of CD11c+ cells found in GM-CSF derived BMDC that were

described by Helft et al., 2015.

Another target of HIF-1 is very high on the list of the most regulated proteins.

Heme oxygenase 1 (HO-1), the enzyme responsible for the NADPH dependent

degradation of heme to Fe2+, CO and biliverdin has been shown to be induced by

both HIF-1 and NO (see Hull et al., 2014 and Naito et al., 2014). Transcript levels of the

protein transporting heme into the cell cytoplasm where it can be degraded by HO-1

(Delaby et al., 2012; White et al., 2013) and one of the subunits of the Fe2+ binding

protein ferritin are increased in HES treated cells as well. Whether this is due to an

increase in heme - many intracellular proteins contain heme, including cytochromes,

peroxidases and iNOS, so this could potentially indicate the increased degradation

of these proteins, perhaps even of misfolded versions, considering the increase in

ER stress response factors described below - or simply to increase the production

of the mediators CO, biliverdin and its degradation product bilirubin, which have

been shown to have antioxidant and anti-inflammatory effects, remains to be seen. Of

these mediators, especially the production of CO is of note, as this gas increases the

production of NO by iNOS; just like NO it also interferes with the electron transport

chain leading to inhibition of OXPHOS. It also induces the generation of reactive

oxygen species, ROS (see Bilban et al., 2008).

That HES treated cells might be under increased oxidative stress is further

supported by the fact that many transcripts encoding proteins involved in the cellular

oxidative stress response are increased in LPS+HES-treated BMDC. In addition to that,

transcript levels of the enzyme catalysing the reversible reaction balancing the two

170



Chapter 5. Effects of HES on signalling and metabolism

branches of the pentose phosphate pathway are increased in LPS+HES-treated cells.

The effect of this enzyme, transaldolase, seems to depend on the cell type, as in some

cell types overexpression of it limits the production of NADPH and subsequently the

regeneration of glutathione and therefore increases oxidative stress, while in other

cell types it has the opposite effect (reviewed in Perl et al., 2011). The authors of

this review propose that the effect might be dependent on whether the forward or

reverse reaction is dominant in a cell. Interestingly, the transcription factor ETS-1 that

increases the expression of components of the glutathione system in an ovarian cancer

cell line (Verschoor and Singh, 2013) is induced by ROS in alveolar macrophages (Song

et al., 2012) and is co-expressed with HIF-1α in hypoxic smooth muscle cells (Erdozain

et al., 2011) is increased by HES as well. This transcription factor has also been shown

to play a role in TGFβ/Smad induced transcription (Koinuma et al., 2009), and to

induce the transcription of Nos2 to a modest degree (Chen et al., 2003), in addition to

being an activator of TNF transcription during the early phase of activation. However,

the latter might be counterbalanced be the increased expression of LRRFIP1, which

binds to the same site on the TNF promoter as ETS-1; if this site has LRRFIP1 rather

than ETS-1 bound, TNF transcription is suppressed (Suriano et al., 2005).

A further cellular stress response seems to be activated in LPS+HES-treated

BMDC as well, as the transcript levels of two transcription factors involved in the

induction of ER stress response gene expression, ATF4 and C/EBPβ , are increased.

Both of these can, as mentioned earlier, interact with c-Jun to increase the expression

of pro-inflammatory cytokines. However, in the case of ATF4 this is dependent

on activation of c-Jun via JNK (Zhang et al., 2013). The accumulation of unfolded

proteins was shown to induce C/EBPβ expression; this lead to induction of ATF4

expression and subsequently induction of ATF4 target genes (Li et al., 2008). In a

DC-like cell line treatment with the skin sensitizer DNFB lead to ER stress induced

ATF4 induction, which on the one hand resulted in increased production of HO-1

and on the other hand in the inhibition of CD86 and IL-12p40 transcription (Luís et

al., 2014). Everts et al. showed that early after activation DCs go through a phase

of ER stress as their protein production increases and surpasses the capacity of both

ER and Golgi apparatus, which leads to the increase in glycolytic flux observed in

early DC activation. Unlike later in DC activation, in this early phase pyruvate gets

converted into acetyl-CoA and enters the TCA cycle, which it leaves again as citrate

to be transported back into the cytoplasm and used as substrate for de novo fatty acid

synthesis (Everts et al., 2014). Although at eight hours this should long have occurred,

the fact that the transcript levels of CIC, the transporter necessary for import of citrate

from the mitochondria, is slightly reduced might be a hint towards a potential cause

of ER stress. Both ATF4 and C/EBPβ , as well as HIF-1 have been shown to induce the

171



5.3 Discussion

expression of Ddit4 (also called REDD1) after hypoxia and oxidative or ER stress (Jin

et al., 2009; Shoshani et al., 2002; Whitney et al., 2009). Not surprisingly, the transcript

levels of this protein were elevated in HES-treated cells as well. Overexpression of

Ddit4 in mouse embryonic fibroblasts was sufficient for inhibition of mTOR which

lead to the activation of 4E-BP1, an inhibitor of the translation elongation factor eIF4e

and therefore a general inhibition of translation (Brugarolas et al., 2004).

The inhibition of eIF4e by its phosphorylation is also the result of the activation

of another protein upregulated in LPS+HES-treated cells, Mnk2 (Mknk2), which has

been shown to inhibit translation after its activation by ERK or p38 (Knauf et al., 2001;

Scheper et al., 2001). Together with the inactivation of this factor observed in IRAK2

deficient macrophages mentioned above, this indicates there might be at least three

different mechanisms at work that lead to inhibition of translation.

Taken together, the findings presented in this chapter show that HES induces a

variety of changes that may or may not contribute to the inhibition of DC activation

in response to LPS, but a few discoveries specifically stand out. The fact that the

early phase of activation seems unchanged by HES and only after this initial response

to stimulation the BMDC treated with HES start showing the inhibition, and that

treatment of the cells with HES at this point is still enough to inhibit activation is

a key finding. In light of this, the discovery of the reduction in transcript levels of

IRAK2 and the increase of ATF3 transcript levels seems very promising. In addition,

the potential inhibition of translation could be important, especially considering

the mentioned slight discrepancies between mRNA levels and protein production.

Finally, the described changes in transcript levels of proteins with important roles in

cell metabolism could give some valuable insight into the effects HES has on DCs.

However, as mentioned before, at the moment it is not possible to distinguish

between the effects of TGM and the putative DC modulator; the lack of unstimulated

cells or cells treated with HES without LPS stimulation to serve as a baseline for the

interpretation of the microarray results is another drawback. It will be important to

validate the findings discussed here with the array that is currently in progress, and

the inclusion of groups treated with the active size exclusion fraction 14, which should

not contain TGM, will help to further narrow down the potentially interesting results.

Provided these findings can be repeated and are not due to TGM, it would be

interesting to further investigate the DC metabolism changes. The production of

ROS could be visualized by using oxidation sensitive dyes and its involvement in DC

modulation could be investigated by treating cells with antioxidants and comparing

their response to LPS stimulation. Furthermore, the role NO plays in DC maturation

could be determined by measuring nitrate levels in the cell supernatants to ascertain

the increase in iNOS transcript levels actually translates to increased production of
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NO, followed by manipulation of the system by either adding NO donors or reducing

it by knockdown of iNOS or by using Nos2−/− cells. The cells’ energy metabolism

could be investigated by measuring the consumption of glucose and production of

lactate by BMDCs stimulated with LPS and LPS+HES, determining the concentrations

of these molecules in the supernatants before and after stimulation. Provided the

findings presented here do indeed translate into an increased glycolysis in HES treated

DCs it would be interesting to see if this is due to an increase in NO production, or

whether HES increases glycolytic flux even if cells can use OXPHOS to generate their

ATP, which could indicate a potentially interesting mechanism for DC modulation by

HES. The induction of ER stress was another potential effect of HES; Thioflavin T has

been described to efficiently stain protein aggregates and be a valuable tool to directly

visualize ER stress by confocal microscopy (Beriault and Werstuck, 2013).

Investigating the potential inhibition of translation by HES would also be another

set of follow up experiments. In their work describing the effect of Mnk2 activation

on translation, Knauf et al. used a luciferase reporter construct to measure both cap-

dependent and independent translation (Knauf et al., 2001). For a more detailed

analysis of translation rates of specific mRNAs the method used by Wan et al. could

be employed; they separated cytoplasmic extracts using a sucrose gradient followed

by fractionation of the gradient. As translation of mRNA results in the formation of a

polysome, mRNAs that are being translated can be distinguished from those that are

not with this method (Wan et al., 2009).

More important than these experiments however, will be to determine if the

reduction of IRAK2 expression and the increased induction of ATF3 could be the cause

of the inhibition of TLR ligand induced DC activation. The importance of ATF3 could

easily be determined by comparing the effect HES has on LPS induced DC maturation

on wild-type and ATF3−/− cells, or by knockdown of ATF3 by RNAi. The role IRAK2

plays would be more difficult to analyse. One possibility could be to test if HES is

still able to suppress DC activation if cells were transfected with a plasmid encoding

constitutively active IRAK2 so that the expression level of this kinase is constant

throughout the activation period.

In addition to this, it would be interesting to see what effect HES has on STAT5

signalling, which could be done by staining for phosphorylated STAT5. If it inhibits

this pathway as indicated by the array results, the comparison of inhibition profiles of

LPS- and LPS+HES-stimulated cells after inhibition of STAT5 signalling might provide

some useful information.

In summary, the results presented here shed some light on how HES is able to

affect DC activation, but more work is needed to determine the exact mechanism

involved.
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CHAPTER6
Final Discussion

The murine intestinal nematode Heligmosomoides polygyrus is known to influence the

host’s immune system in various ways, establishing chronic infections in many mouse

strains (Behnke et al., 2009; Filbey et al., 2014) and alleviates symptoms or even

protects mice in a number of models for conditions like EAE (Wilson et al., 2010),

colitis (Blum et al., 2012; Hang et al., 2013, 2010) and allergic asthma (Wilson et al.,

2005). These effects are thought to mainly be mediated by the excretory/secretory

products of the parasite (HES), which have been shown to protect mice from allergic

airway inflammation through both TGF-β dependent and independent mechanisms

(Grainger et al., 2010; McSorley et al., 2014; McSorley et al., 2015; McSorley et al.,

2012), and to inhibit TLR ligand induced DC maturation (Segura et al., 2007). While

the molecules responsible for the former have recently been identified - the TGF-β

mimic TGM that induces protective regulatory T cells (Johnston et al., manuscript in

preparation), the alarmin release inhibitor ARI responsible for the TGF-β independent

effects (Osbourne et al., manuscript in preparation) and miRNA-containing exosomes

(Buck et al., 2014) - the molecule acting on DCs or its mechanism of action are still

unknown.

The aim of the work described here was to shed light on these two questions.

First, the phenotype of HES treated DCs was described in considerably more detail

than before. HES was able to inhibit DC maturation induced by a variety of

TLR ligands acting on TLR1/2, TLR3, TLR4, TLR7 and TLR9, by impairing the

upregulation of costimulatory molecules and the production of IL-12p70, TNF and

IL-6. This corroborated previous findings, as HES was for example able to inhibit

DC activation induced by bacterial extracts acting on several TLR ligands like Pa

(Grainger, 2009), and had already been shown to inhibit LPS, CpG or Poly(I:C)

induced DC maturation (Segura et al., 2007). Here, the inhibition of LPS induced DC

maturation was not only visible on protein level, but also on mRNA level as measured

by qPCR over the course of the stimulation and by analysis of the transcriptome of

LPS and LPS+HES treated BMDC eight hours after stimulation with LPS. However,
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the reduction in RNA levels was only found for specific transcripts; unlike described

for the RNase foung in SEA, ω-1, which was found to non-specifically degrade

intracellular RNAs (Everts et al., 2012a).

HES was also able to inhibit LPS induced production of TNF and IL-6 from

splenic cells enriched for CD11c, and the activation of all three populations described

in BMDCs differentiated with Flt3-L (FLDC). This was an important finding, as

it has recently been found that GM-CSF differentiated BMDC contain two distinct

populations, one of which the authors classified as being macrophage-like cells (Helft

et al., 2015); the fact that the effect of HES on FLDC is comparable to that on GM-CSF

BMDC confirms that HES indeed acts on DCs.

In addition, HES had different effects on the alternative activation of DCs of

two different mouse strains. In BMDC from C57BL/6 mice, which are susceptible

to infection with H. polygyrus, HES inhibited the production of RELMα induced by

IL-4 treatment, while in cells from the more restistant BALB/c strain the production

of RELMα was comparable between HES treated and untreated cells. This is in line

with findings in vivo, as H. polygyrus infected BALB/c mice expressed higher levels

of RELMα than infected C57BL/6 mice (Filbey et al., 2014). In BMDC from BABL/c

mice, HES also increased the expression of Arg1 and OX40L, two additional markers

of alternatively activated DCs (Ekkens et al., 2003; Esser-von Bieren et al., 2013; Jenkins

et al., 2007), which potentially gives an insight into how HES activates DCs to induce

TH2 responses (shown by Grainger, 2009). Interestingly, while Arg1 transcripts were

elevated at eight hours post-LPS stimulation in C57BL/6 BMDC, the OX40L transcript

levels seemed slightly reduced in these cells. It remains to be seen if this can be

validated by qPCR and, more importantly, by measuring the protein expression of

OX40L on BMDC from C57BL/6 mice.

The discovery of small vesicles secreted by helminths, including H. polygyrus,

which were shown to be able to modulate immune responses, for example in the

setting of allergic airway inflammation (Buck et al., 2014; Coakley et al., 2015),

introduced these exosomes as new ES components that might act on DCs. In fact,

exosomes are able to inhibit LPS induced activation of BM-macrophages (Coakley,

manuscript in preparation). Contrary to these findings however, exosomes (provided

by Gillian Coakley) were not able to impair LPS induced maturation of BMDCs,

unlike the exosome depleted HES. In addition to the fact that the inhibitory effect

was heat labile, this indicated a molecule with a protein component responsible for

the impairment of DC activation.

Based on this reasoning, the strategy chosen to identify the regulatory molecule

was fractionation of HES followed by mass spectrometric analysis of the fractions.

Blaise Dayer already found that size exclusion fractionation of HES produced two
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distinct fractions with the ability to inhibit LPS induced IL-12p70 production (Dayer,

2011), which was repeated here. In addition, the fractionation of HES by anion

exchange fractionation resulted in a similar outcome; however, the comparison of the

mass spectrometry results for these inhibitory fractions did not identify any plausible

candidates. The method was therefore refined, with a sequential fractionation of HES

by size exclusion fractionation followed by the fractionation of the active fractions

by anion exchange. As before, the inhibitory activity of HES was found in distinct

fractions; the analysis of all fractions by mass spectrometry enabled the creation of

abundance profiles for the proteins identified. These could be compared to the activity

profile of the fractions, and proteins that were found mainly in the active, inhibitory

fractions could be selected. Five proteins were chosen as candidates for expression,

but none of the recombinants were able to inhibit DC activation. Following this, all

of the gel filtration fractions, including the active fractions used for the sequential

fractionation, in addition to a new anion exchange fractionation of HES were analysed

by mass spectrometry as well. Now, the abundance profiles for proteins could be

established for three different fractionation approaches, which improved the selection

process. For example, four of the five previously found candidates would have

been excluded according to their abundance profiles in the size exclusion and anion

exchange fractionations. In this new comparison, another four candidates were chosen

for expression, but again none of the recombinants was able to inhibit LPS induced

DC maturation. This could be due to their expression in mammalian cells instead

of H. polygyrus, as they might be misfolded or lacking important post-translational

modifications. The expression of the recombinant proteins will however enable us

to raise antibodies to see if neutralizing the native proteins in HES might abolish

its DC modulatory effects, to test this possibility. In addition, only the top priority

proteins were expressed, with a number of candidates that seemed less likely due

to for example less clear cut abundance profiles, their resemblance to housekeeping

proteins or their categorization as dedicated egg or larval stage proteins still untested.

The availability of protein emPAI values across all fractions of the three

fractionation approaches furthermore enabled the comparison of already established

proteins modulating DC activity to the activity profiles of the fractions. This showed

that the abundance profile of the protease inhibitor cystatin, which was shown to

inhibit CpG induced DC activation (Sun et al., 2013), did not match the fractions’

activity profiles. TGM, in addition to only partially inhibiting DC activation by LPS,

did also not segregate into the active fractions. The inhibitory effects of HES on DC

maturation were also previously shown to not be mediated via the TGF-β receptor, as

blocking signalling through it did not impair the activity of HES (Dayer, 2011).

The further characterization of the effects HES has on LPS induced DC
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maturation also allowed the establishment of a timeline for its effects. Firstly,

treatment with HES for only one hour affected unstimulated DCs in such a way

that subsequent stimulation is inhibited, even if HES itself is removed. This effect

is transient; in experiments where unstimulated DCs were incubated with HES for

18 hours, no effect on IL-12p70 secretion could be seen if LPS was added one day

after removal of HES (Grainger, 2009). Secondly, HES did not have an effect on

expression of TNF, IL-6 or CD40 in the immediate-early phase of stimulation, only

starting to inhibit their expression around three to four hours post stimulation. IL-

12p70 only became detectable between 8-10 hours post-stimulation; accordingly,

it was not detectable in the supernatants of LPS+HES treated cells at any time

point. Thirdly, HES was able to inhibit LPS induced DC maturation even if added

hours after the stimulation; in fact, its ability to inhibit TNF expression for example

weakened around three hours post-stimulation, around the same time its effects on

the concentration of this cytokine in the expression time course started to be visible,

and was barely noticeable at eight hours post-stimulation, when the TNF expression

reached a plateau.

These findings shed some light on results obtained when analysing the activation

of signalling pathways involved in DC maturation. Previously, it was established

that HES does not signal through MyD88, TRIF, Syk or PI3K dependent pathways

(Dayer, 2011). Now, the MAPK and NF-κB pathways were investigated as well.

Their activation in the immediate-early phase of DC maturation was not impaired,

and while HES increased the phosphorylation of ERK, the activity of this kinase

was dispensable for the inhibition of DC maturation. However, at later time points

HES treated BMDC exhibited lower levels of p38, JNK and IκB phosphorylation, in

fact coinciding with the manifestation of the inhibitory effects on activation marker

expression. HES treatment reduced the levels of A20 protein at these time points as

well, possibly reflecting an impaired induction of its expression due to the inhibition

of NF-κB signalling.

Taken together, these results indicate that HES impairs the maintenance rather

than the induction of signalling after stimulation by TLR ligands, which distinguishes

it from most of the described DC modulators from other helminth species.

This also allows a better interpretation of the transcriptome comparison between

LPS and LPS+HES treated cells. HES induced some changes in the expression levels

of transcription factors involved in the production of pro-inflammatory molecules,

for example reducing the transcript levels of IRF1, ETS-2, BATF and BATF2 as well

as STAT5 and most NF-κB members. It also increased the expression of March1 and

Rab7b, both involved in targeting proteins for degradation. March1 has been shown

to induce the proteasomal degradation of CD86 (Baravalle et al., 2011; Corcoran et
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al., 2011), while Rab7b impairs signalling through TLR4 and TLR9 by promoting

their degradation (Wang et al., 2007; Yao et al., 2009), and has in fact been shown

to play a role in immune modulation by Trichuris suis (Klaver et al., 2015a). In

addition to this, HES also affected transcript levels of factors that became especially

relevant considering the established inhibition timeline. Foremost, it increased the

expression of ATF3 and decreased the level of IRAK2 transcript. ATF3 has been

shown to be induced by TLR ligation and alter the chromatin state of gene promoter

regions, especially those with NF-κB sites, thereby switching off transcription of target

genes (Gilchrist et al., 2006; Whitmore et al., 2007). IRAK2 on the other hand has

been described as necessary to maintain signalling after TLR ligation, without which

classical activation of macrophages was significantly impaired (Kawagoe et al., 2008;

Pauls et al., 2013).

Additionally, the results from the microarray experiment revealed unexpected

effects of HES on DC metabolism. As described previously, DCs commit to aerobic

glycolysis upon classical activation, which, at least in BMDC, is due to the fact that

they start expressing iNOS, and the produced NO inhibits the electron transport chain

and therefore oxidative phosphorylation (Everts et al., 2012b; Krawczyk et al., 2010).

It could be expected that, since HES inhibits DC activation, this might not be the

case in HES treated DCs. Contrary to this assumption, the transcript levels of iNOS

were actually increased in LPS+HES treated compared to LPS stimulated cells, as

were those for the tightly regulated subunit of the transcription factor responsible

for the increased expression of glycolysis enzymes, HIF-1α , and many of its target

genes. Furthermore, the increased transcript levels of factors involved in both ER and

oxidative stress responses is intriguing as well, although it is impossible to say if these

effects are a cause or an effect of the changes HES induces in DCs without further

experiments.

While all of these effects still have to be verified and, most importantly, their

importance for the HES induced DC modulation established, these findings do

provide valuable insights into potential mechanisms.

Finally, the results presented here demonstrate that HES is also able to impair

LPS induced maturation of human monocyte derived DCs. This shows that the

pathway targeted by HES is conserved between mice and humans, and indicates that

the modulatory molecule, once found, and its mechanism of action could well be

exploited in the development of new treatment strategies for conditions that would

benefit from the inhibition of DC activation.
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Appendix A. Scripts

A. Scripts written for data analysis

A.1 Sorting flow cytometry data

1 #! /usr/bin/ python

2

3 InFileName = raw_input ("Name of file: ")

4 NumberOfReplicates = input("How many replicates : ")

5 if NumberOfReplicates == 3:

6 NumberOfSingleStainings = input("How many single

stainings : ")

7 OutFileName = InFileName + ’_sorted .txt ’

8

9 InFilePath = "/home/drea/ Dropbox /PhD/ toGraphUp /

TablesForScripts /" + InFileName # add path to file

name

10 OutFilePath = "/home/drea/ Dropbox /PhD/ toGraphUp /

TablesForScripts / OutFolder /" + OutFileName

11

12 InFile = open(InFilePath , ’rU’)

13 OutFile = open( OutFilePath , ’w’)

14

15 ListOfLines = []

16 ListOfEntries = []

17 ListOfDataEntries = []

18

19

20 for Line in InFile :# add lines in the file to a list

and strip line endings

21 Line = Line.strip ()

22 ListOfLines . append (str(Line))

23

24 for Entry in ListOfLines :# separate the values in the
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lines using the tab as separator

25 ListOfEntries = Entry.split("\t")

26 ListOfDataEntries . append ( ListOfEntries )# save lines

as list of lists of values

27

28 ShortenedListOfDataEntries = ListOfDataEntries [

NumberOfSingleStainings + 1 : -2] # delete header ,

single stainings and mean , stddev

29

30 Run = 0

31 ListOfRow = []

32 ListOfLOR = []

33

34 while Run <= len( ListOfEntries ) - 1:# sort columns into

rows

35 for List in ShortenedListOfDataEntries :

36 Entry = List[Run]# take same entry from each

list (= corresponding columns )

37 ListOfRow . append (Entry)# write it in new list

38 ListOfLOR . append ( ListOfRow )

39 ListOfRow = []

40 Run += 1

41

42 ListNumber = 0

43 Headers = ListOfDataEntries [0]

44

45 for List in ListOfLOR :# sort the rows of data in triple

blocks - works only on Triplicates !

46 Run = 1

47 ListFirst = []

48 ListSecond = []

49 ListThird = []

50 while Run <= len( ShortenedListOfDataEntries ):

51 if Run % 3 == 0:

52 ListThird . append (List[Run -1])

53 elif (Run + 1) % 3 == 0:

54 ListSecond . append (List[Run -1])

55 else:
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56 ListFirst . append (List[Run -1])

57 Run += 1

58 ConvertThird = "\t".join( ListThird ) + "\n"#

converts sorted lists into strings with tabs

between single data points and line endings

59 ConvertSecond = "\t".join( ListSecond ) + "\n"

60 ConvertFirst = "\t".join( ListFirst ) + "\n"

61 ConvertHeader = str( Headers [ ListNumber ]) + "\n"#

add gate name to block of data

62 OutFile .write( ConvertHeader )

63 OutFile .write( ConvertFirst )# writes strings into

OutFile

64 OutFile .write( ConvertSecond )

65 OutFile .write( ConvertThird )

66 OutFile .write("\n")

67 ListNumber += 1

68

69 InFile .close ()

70 OutFile .close ()

71

72

73

74 elif NumberOfReplicates == 2:

75 NumberOfSingleStainings = input("How many single

stainings : ")

76 OutFileName = raw_input ("Name of the resulting file: ")

77

78 InFilePath = "/Users/ andreakemter /Data/ TablesForScripts

/" + InFileName # add path to file name

79 OutFilePath = "/Users/ andreakemter /Data/ Scripts /

OutFolder /" + OutFileName

80

81 InFile = open(InFilePath , ’rU’)

82 OutFile = open( OutFilePath , ’w’)

83

84 ListOfLines = []

85 ListOfEntries = []

86 ListOfDataEntries = []
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87

88

89 for Line in InFile :# add lines in the file to a list

and strip line endings

90 Line = Line.strip ()

91 ListOfLines . append (str(Line))

92

93 for Entry in ListOfLines :# separate the values in the

lines using the tab as separator

94 ListOfEntries = Entry.split("\t")

95 ListOfDataEntries . append ( ListOfEntries )# save lines

as list of lists of values

96

97 ShortenedListOfDataEntries = ListOfDataEntries [

NumberOfSingleStainings + 1 : -2] # delete header ,

single stainings and mean , stddev

98

99 Run = 0

100 ListOfRow = []

101 ListOfLOR = []

102

103 while Run <= len( ListOfEntries ) - 1:# sort columns into

rows

104 for List in ShortenedListOfDataEntries :

105 Entry = List[Run]# take same entry from each

list (= corresponding columns )

106 ListOfRow . append (Entry)# write it in new list

107 ListOfLOR . append ( ListOfRow )

108 ListOfRow = []

109 Run += 1

110

111 ListNumber = 0

112 Headers = ListOfDataEntries [0]

113

114 for List in ListOfLOR :# sort the rows of data in triple

blocks - works only on Duplicates !

115 Run = 1

116 ListFirst = []
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117 ListSecond = []

118 ListThird = []

119 while Run <= len( ShortenedListOfDataEntries ):

120 if Run % 2 == 0:

121 ListSecond . append (List[Run -1])

122 else:

123 ListFirst . append (List[Run -1])

124 Run += 1

125 ConvertSecond = "\t".join( ListSecond ) + "\n"#

converts sorted lists into strings with tabs

between single data points and line endings

126 ConvertFirst = "\t".join( ListFirst ) + "\n"

127 ConvertHeader = str( Headers [ ListNumber ]) + "\n"#

add gate name to block of data

128 OutFile .write( ConvertHeader )

129 OutFile .write( ConvertFirst )# writes strings into

OutFile

130 OutFile .write( ConvertSecond )

131 OutFile .write("\n")

132 ListNumber += 1

133

134 InFile .close ()

135 OutFile .close ()

136

137

138 else:

139 print "Error!"

140 print " Script needs duplicates or triplicates ; please

adjust script in sort -block."

227



Appendix A. Scripts

A.2 Sorting ELISA data

1 #! usr/bin/env python

2

3 print "File names must be ELISA_plateNumber .txt ( example :

IL12_3 .txt), with continuous plate numbers , and script

needs 3 replicates per group! \n \n"

4 ELISA = raw_input ("What ELISA do you want to sort? ")

5 NumberOfPlates = input("How many plates ? ")

6

7 for Plate in range (1, NumberOfPlates + 1):

8 InFileName = ELISA + "_" + str(Plate)

9 OutFileName = "/home/drea/ Dropbox /PhD/ toGraphUp /160305 -

ELISAs /read2/ sorted /" + InFileName + ".csv"

10 InFilePath = "/home/drea/ Dropbox /PhD/ toGraphUp /160305 -

ELISAs /read2/txt/" + InFileName + ".txt" # add path

to file name

11

12 InFile = open(InFilePath , ’rU’)

13 OutFile = open( OutFileName , ’w’)

14

15 ListOfLines = []

16 ListOfSamples = []

17 ListOfEntries = []

18 ListOfDataEntries = []

19 ListOfMeans = []

20 ListForPrism = []

21

22 for Line in InFile :# add lines in the file to a list

and strip line endings

23 Line = Line.strip ()

24 ListOfLines . append (str(Line))

25

26 for Entry in ListOfLines :

27 if Entry != "":# ignore all empty entrys

28 if Entry [0]=="U" and Entry [1]=="n" and Entry

[4]=="\t": # take only lines with sample
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readings in them , those start with Un\d\d\t

29 ListOfSamples . append (Entry)

30

31 for Entry in ListOfSamples :# separate the values in the

lines using the tab as separator

32 ListOfEntries = Entry.split("\t")

33 ListOfDataEntries . append ( ListOfEntries )# save lines

as list of lists of values

34

35 for Entry in ListOfDataEntries :

36 Mean = Entry [5]

37 if Mean == "Range?":# find the samples that were

below detection limit and set concentration to 0

( caution with values over !)

38 Mean = 0

39 ListForPrism . append (Mean)# creating a list with the

mean concentrations

40 Mean = str(Mean) + "\n"

41 ListOfMeans . append (Mean)

42

43 StringOfListOfMeans = ’’.join( ListOfMeans )

44

45 OutFile .write( StringOfListOfMeans )# writing all the

means into one column , just in case different

sorting is needed ...

46 OutFile .write("\n")

47

48 Run = 1# sorting values into blocks of three , for the

triplicates per group

49 ListOfThird = []

50 ListOfSecond = []

51 ListOfFirst = []

52

53 for Entry in ListForPrism :

54 if Run % 3 == 0:

55 ListOfThird . append (Entry)

56 elif (Run + 1) % 3 == 0:

57 ListOfSecond . append (Entry)
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58 else:

59 ListOfFirst . append (Entry)

60 Run += 1

61

62 StringFirst = str( ListOfFirst ) + "\n"

63 StringSecond = str( ListOfSecond ) + "\n"

64 StringThird = str( ListOfThird ) + "\n"

65 OutFile .write( StringFirst )

66 OutFile .write( StringSecond )

67 OutFile .write( StringThird )

68

69 InFile .close ()

70 OutFile .close ()

71

72

73 print "\n \n Done!"

A.3 Comparing fraction protein content

1 #! /usr/bin/ python

2

3 UserName = ’drea ’

4 ListOfFileNames = [’14. txt ’, ’15. txt ’, ’39. txt ’, ’40. txt ’]

#these files need to contain the accession

numbers as >...\n

5 OutFileName = ’SharedHits .txt ’

6 DatabaseFileName = ’Database .txt ’

7 InFilePath = ’/home/’ + UserName + ’/ Dropbox /PhD/CP/

HESproteomics /DCMod - S2AnEx1_Glasgow /’

8 OutFilePath = InFilePath + ’Results /’

9

10

11 #To load the database into a dictionary , so shared hits can

later be looked up in database and all info printed in

file automatically :

12 DicOfDatabase = {}
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13

14 DatabaseFile = open( InFilePath + DatabaseFileName , ’rU’)

15

16 for Line in DatabaseFile :

17 ListOfLine = Line.split(’ ’)

18 Description = ’ ’.join( ListOfLine [1: -1])

#to get accession number , blast info and

sequence in different entries

19 ListOfDescription = Description .split(’,’)

20 Description = ’;’.join( ListOfDescription )

# getting rid of , in description so file

can be saved as .csv

21 Sequence = ListOfLine [-1]

# getting rid of \n

22 DicOfDatabase [ ListOfLine [0]] = [ Description , Sequence

[: -1]] #store database in dictionary with

accession numbers as keys and blast info and

sequences stored as nested lists

23

24 DatabaseFile .close ()

25

26

27 #make a list of all the protein hits and store fraction

contents in dictionary

28 ListOfLines = []

29 DicOfFractions = {}

30

31 for File in ListOfFileNames :

32 InFile = open( InFilePath + File , ’rU’)

33 DicOfFractions [File] = []

# fraction number is key of dictionary

34 for Line in InFile :

35 ListOfLines . append (Line)

36 DicOfFractions [File ]. append (Line)

#with protein accession number as

value

37 InFile .close ()

38
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39

40 SetOfLines = set( ListOfLines )

41 ListOfHits = list( SetOfLines )

#make sure list contains each accession

number only once

42

43

44 #make a dictionary with protein accession number as key and

fractions as values

45 DicOfHits = {}

46

47 for Hit in ListOfHits :

48 DicOfHits [Hit] = []

49 for Fraction in ListOfFileNames :

50 if Hit in DicOfFractions [ Fraction ]:

51 DicOfHits [Hit ]. append ( Fraction )

52

53 #check how many fractions each protein was found in and

which , and store accession number in appropriate list

54 ListOfShared = []

55 ListOf141539 = []

56 ListOf141540 = []

57 ListOf143940 = []

58 ListOf153940 = []

59 ListOf2 = []

60 ListOf1 = []

61

62 for Hit in ListOfHits :

63 if Hit in DicOfHits :

64 if len( DicOfHits [Hit ]) == 4:

65 ListOfShared . append (Hit)

66 elif len( DicOfHits [Hit ]) == 3:

67 if ’14. txt ’ in DicOfHits [Hit ]:

68 if ’15. txt ’ in DicOfHits [Hit ]:

69 if ’39. txt ’ in DicOfHits [Hit ]:

70 ListOf141539 . append (Hit)

71 else:

72 ListOf141540 . append (Hit)
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73 elif ’39. txt ’ in DicOfHits [Hit ]:

74 ListOf143940 . append (Hit)

75 else:

76 ListOf153940 . append (Hit)

77 elif len( DicOfHits [Hit ]) == 2:

78 ListOf2 . append (Hit)

79 else:

80 ListOf1 . append (Hit)

81

82

83 #and write those lists into files

84 OutFileShared = open( OutFilePath + ’All4.csv ’, ’w’)

85 for Entry in ListOfShared :

86 OutFileShared .write(Entry [: -1] + ’,’ + str(

DicOfDatabase [Entry [: -1]]) + ’\n’)

87 OutFileShared .close ()

88

89 OutFile141539 = open( OutFilePath + ’14 -15 -39. csv ’, ’w’)

90 for Entry in ListOf141539 :

91 OutFile141539 .write(Entry [: -1] + ’,’ + str(

DicOfDatabase [Entry [: -1]]) + ’\n’)

92 OutFile141539 .close ()

93

94 OutFile141540 = open( OutFilePath + ’14 -15 -40. csv ’, ’w’)

95 for Entry in ListOf141540 :

96 OutFile141540 .write(Entry [: -1] + ’,’ + str(

DicOfDatabase [Entry [: -1]]) + ’\n’)

97 OutFile141540 .close ()

98

99 OutFile143940 = open( OutFilePath + ’14 -39 -40. csv ’, ’w’)

100 for Entry in ListOf143940 :

101 OutFile143940 .write(Entry [: -1] + ’,’ + str(

DicOfDatabase [Entry [: -1]]) + ’\n’)

102 OutFile143940 .close ()

103

104 OutFile153940 = open( OutFilePath + ’15 -39 -40. csv ’, ’w’)

105 for Entry in ListOf153940 :

106 OutFile153940 .write(Entry [: -1] + ’,’ + str(
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DicOfDatabase [Entry [: -1]]) + ’\n’)

107 OutFile153940 .close ()

108

109 OutFileTwo = open( OutFilePath + ’In2.csv ’, ’w’)

110 for Entry in ListOf2 :

111 if Entry [: -1] in DicOfDatabase :

112 OutFileTwo .write(Entry [: -1] + ’,’ + str( DicOfHits [

Entry ]) + ’,’ + str( DicOfDatabase [Entry [: -1]]) +

’\n’)

113 else:

114 OutFileTwo .write(Entry [: -1] + ’,’ + str( DicOfHits [

Entry ]) + ’\n’)

115 OutFileTwo .close ()

116

117 OutFileOne = open( OutFilePath + ’In1.csv ’, ’w’)

118 for Entry in ListOf1 :

119 if Entry [: -1] in DicOfDatabase :

120 OutFileOne .write(Entry [: -1] + ’,’ + str( DicOfHits [

Entry ]) + ’,’ + str( DicOfDatabase [Entry [: -1]]) +

’\n’)

121 else:

122 OutFileOne .write(Entry [: -1] + ’,’ + str( DicOfHits [

Entry ]) + ’\n’)

123 OutFileOne .close ()
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A.4 Extraction of emPAI values

1 #! /usr/bin/ python

2

3 class AutoVivification (dict):

4 """ Implementation of perl ’s autovivification feature .

"""

5 def __getitem__ (self , item):

6 try:

7 return dict. __getitem__ (self , item)

8 except KeyError :

9 value = self[item] = type(self)()

10 return value

11

12

13 UserName = ’XXX ’

14 FileNames = [’XXX ’, ’XXX ’, ’XXX ’, ’.... ’]

15 SetOfFileNames = set( FileNames )

16 SetOfActive = set( ListOfActive )

17 InFilePath = ’/Users/’ + UserName + ’/ Desktop / MS_Comparison

/’

18 OutFilePath = InFilePath + ’Results /’

19

20

21 """ To get all the lines with results in them (they start at

line 70) , then split them at the comma and grab columns

containing accession numbers , descriptions and emPAI

values :"""

22 DicOfemPAI = AutoVivification ()

23 ListOfAllHits = []

24

25 for File in FileNames : #

loop to open all the files specified before ,

get the names of protein hits and store a list of

single hits for each one

26 InFile = open( InFilePath + File + ’.csv ’, ’rU’)

27 SetFile = open( OutFilePath + File + ’.txt ’, ’w’) #
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to get a result file with the list of

single hits for one fraction

28

29 ListOfLines = []

30 Run = 1

31 for Line in InFile :

32 if Run > 69:

33 ListOfLines . append (Line) #

make a list of all lines with

results

34 Run += 1

35

36 ListOfEntries = []

37

38 for Line in ListOfLines :

39 ListOfEntries = Line.split(’,’)

40 ListOfAllHits . append ( ListOfEntries [2]) #

grab column with name of hit and put

it in List for later use

41 if "emPAI" in ListOfEntries : #

if Hit comes with an emPAI value ,

grab it

42 DicOfemPAI [File ][ ListOfEntries [2]] =

ListOfEntries [-1]# and write it into

dictionary

43 del ListOfEntries [ -27: -1]#

delete all entries in the list

between description and emPAI

44 del ListOfEntries [1]#

delete the second column as well

45 StringOfDescription = ’’.join( ListOfEntries

[2: -1])# in case there were some commas

in the description , put it back together

46 StremPAIHits = str( ListOfEntries [0]) + ’,’ +

str( ListOfEntries [1]) + ’,’ + str(

StringOfDescription ) + ’,’ + str(

ListOfEntries [ -1])

47 ListOfemPAIs . append ( StremPAIHits )#
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and put the line of group , hit ,

description , emPAI into a list to write in a

file

48

49 for Entry in ListOfemPAIs :

50 SetFile .write(Entry + ’\n’)#

write all the entries into a .txt

file called like the fraction in the result

folder

51

52

53 SetOfAllHits = set( ListOfAllHits )#

create a list with all hits in it to loop

through dictionaries

54 ListOfAllHits = list( SetOfAllHits )

55

56 ’’’Now sort through all the hits to get the emPAI profiles

per hit and write them into a file ’’’

57 DicOfHitemPAIList = {}

58

59 for Hit in ListOfAllHits :#

loop through all hits in every fraction

60 DicOfHitemPAIList [Hit] = []#

make list for the hit being processed

61 DicOfHitemPAIList [’Header ’] = []#

create entry in the list for the header

of the table , saying which fractions

62 for Fraction in FileNames :#

to loop through all the fractions in the

dictionary (by looping through list)

63 DicOfHitemPAIList [’Header ’]. append ( Fraction )#

write the name of the fraction into

the list for the table header

64 if Hit in DicOfemPAI [ Fraction ]:#

if the hit has an emPAI in this

fraction

65 DicOfHitemPAIList [Hit ]. append ( DicOfemPAI [

Fraction ][ Hit ][: -1])# append it to the list
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66 else:#

if not

67 DicOfHitemPAIList [Hit ]. append (’0’)#

put a 0 into the list as

placeholder

68

69 emPAIfile = open( OutFilePath + ’emPAIs .csv ’, ’w’)#

open the emPAI file and write the sorted

emPAIs in

70 emPAIfile .write(’All Hits with their emPAIs in the order in

which you gave the filenames : \n’)

71 emPAIfile .write(’\n’)

72 emPAIfile .write(’,’ + str( DicOfHitemPAIList [’Header ’]) + ’\

n’)

73

74 for Hit in ListOfAllHits :

75 emPAIfile .write(Hit + ’,’ + str( DicOfHitemPAIList [Hit ])

+ ’\n’)

76

77 emPAIfile .close ()

A.5 Comparing protein emPAI peaks

1 #! /usr/bin/ python

2

3 class AutoVivification (dict):

4 """ Implementation of perl ’s autovivification feature .

"""

5 def __getitem__ (self , item):

6 try:

7 return dict. __getitem__ (self , item)

8 except KeyError :

9 value = self[item] = type(self)()

10 return value

11

12 UserName = ’XXX ’
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13 FileNames = [’XXX ’, ’XXX ’, ’XXX ’]# fill in username of the

account on your computer and the file names of your

emPAI peaks .txt file

14 OutFileName = ’SharedHits .txt ’

15 DatabaseFileName = ’Database .txt ’

16 InFilePath = ’/Users/’ + UserName + ’/ Desktop / MS_Comparison

/’

17 OutFilePath = InFilePath + ’Results /’

18

19

20 ’’’To load the database into a dictionary , so shared hits

can later be looked up in database and all info printed

in file automatically : ’’’

21 DicOfDatabase = {}

22

23 DatabaseFile = open( InFilePath + DatabaseFileName , ’rU’)

24

25 for Line in DatabaseFile :

26 ListOfLine = Line.split(’ ’)

27 Description = ’ ’.join( ListOfLine [1: -1])

28 ListOfDescription = Description .split(’,’)

29 Description = ’;’.join( ListOfDescription )

30 Sequence = ListOfLine [-1]

31 DicOfDatabase [ ListOfLine [0]] = [ Description , Sequence

[: -1]]

32

33 DatabaseFile .close ()

34

35

36 ’’’Loading all the accession numbers found into one list

and make a set of it , plus make dictionary with [

Fractionation ][ Hit ][ Peak] ’’’

37 ListOfAccessionNumbers = []

38 DicOfPeaks = AutoVivification ()

39

40 for File in FileNames :

41 PeakFile = open( InFilePath + File , ’rU’)

42 for Line in PeakFile :
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43 ListOfLine = Line.split(’\t’)

44 ListOfAccessionNumbers . append ( ListOfLine [0])

45 DicOfPeaks [File ][ ListOfLine [0]] = ListOfLine [-1]

46 PeakFile .close ()

47

48 SetOfAccessionNumbers = set( ListOfAccessionNumbers )

49 ListOfAccessionNumbers = list( SetOfAccessionNumbers )

50

51 ’’’For every Hit , look up if peak is in active fractions

for each fractionation and write that into dictionary ’’’

52 DicOfHits = AutoVivification ()

53

54 for Hit in ListOfAccessionNumbers :

55 DicOfHits [Hit] = []

56 Fractionation = ’SizePeaks .txt ’

57 if DicOfPeaks [ Fractionation ][ Hit] == ’14\n’ or

DicOfPeaks [ Fractionation ][ Hit] == ’15\n’:

58 DicOfHits [Hit ]. append ( Fractionation [: -9])

59 Fractionation = ’AnEx3Peaks .txt ’

60 if DicOfPeaks [ Fractionation ][ Hit] == ’25\n’:

61 DicOfHits [Hit ]. append ( Fractionation [: -9])

62 Fractionation = ’SequentialPeaks .txt ’

63 if DicOfPeaks [ Fractionation ][ Hit] == ’28\n’ or

DicOfPeaks [ Fractionation ][ Hit] == ’29\n’ or

DicOfPeaks [ Fractionation ][ Hit] == ’30\n’:

64 DicOfHits [Hit ]. append ( Fractionation [: -9])

65

66

67

68 ’’’And then make Lists for Hits shared in the different

approaches and print them to files ’’’

69 ListSiSeAn = []

70 ListSiAn = []

71 ListSiSe = []

72 ListAnSe = []

73 ListSize = []

74 ListAnion = []

75 ListSequential = []
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76

77 for Hit in ListOfAccessionNumbers :

78 if Hit in DicOfHits :

79 if len( DicOfHits [Hit ]) == 3:

80 ListSiSeAn . append (Hit)

81 elif len( DicOfHits [Hit ]) == 2:

82 if ’Size ’ in DicOfHits [Hit ]:

83 if ’AnEx ’ in DicOfHits [Hit ]:

84 ListSiAn . append (Hit)

85 else:

86 ListSiSe . append (Hit)

87 else:

88 ListAnSe . append (Hit)

89 elif len( DicOfHits [Hit ]) == 1:

90 if ’Size ’ in DicOfHits [Hit ]:

91 ListSize . append (Hit)

92 elif ’AnEx ’ in DicOfHits [Hit ]:

93 ListAnion . append (Hit)

94 else:

95 ListSequential . append (Hit)

96

97

98

99 OutFile3SiSeAn = open( OutFilePath + ’SizeSequentialAnion .

csv ’, ’w’)

100 for Entry in ListSiSeAn :

101 OutFile3SiSeAn .write(Entry + ’,’ + str( DicOfDatabase [’>

’ + Entry ]) + ’\n’)

102 OutFile3SiSeAn .close ()

103

104 OutFile2SiAn = open( OutFilePath + ’SizeAnion .csv ’, ’w’)

105 for Entry in ListSiAn :

106 OutFile2SiAn .write(Entry + ’,’ + str( DicOfDatabase [’>’

+ Entry ]) + ’\n’)

107 OutFile2SiAn .close ()

108

109 OutFile2SiSe = open( OutFilePath + ’SizeSequential .csv ’, ’w’

)
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110 for Entry in ListSiSe :

111 OutFile2SiSe .write(Entry + ’,’ + str( DicOfDatabase [’>’

+ Entry ]) + ’\n’)

112 OutFile2SiSe .close ()

113

114 OutFile2AnSe = open( OutFilePath + ’SequentialAnion .csv ’, ’w

’)

115 for Entry in ListAnSe :

116 OutFile2AnSe .write(Entry + ’,’ + str( DicOfDatabase [’>’

+ Entry ]) + ’\n’)

117 OutFile2AnSe .close ()

118

119 OutFile1Si = open( OutFilePath + ’Size.csv ’, ’w’)

120 for Entry in ListSize :

121 OutFile1Si .write(Entry + ’,’ + str( DicOfDatabase [’>’ +

Entry ]) + ’\n’)

122 OutFile1Si .close ()

123

124 OutFile1Se = open( OutFilePath + ’Sequential .csv ’, ’w’)

125 for Entry in ListSequential :

126 OutFile1Se .write(Entry + ’,’ + str( DicOfDatabase [’>’ +

Entry ]) + ’\n’)

127 OutFile1Se .close ()

128

129 OutFile1An = open( OutFilePath + ’Anion.csv ’, ’w’)

130 for Entry in ListAnion :

131 OutFile1An .write(Entry + ’,’ + str( DicOfDatabase [’>’ +

Entry ]) + ’\n’)

132 OutFile1An .close ()
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B. Supplementary material for
the proteomics analysis of HES

B.1 Mass spectrometry results for active size

exclusion and anion exchange fractions

from the first round of fractionations

Table B.1: Proteins identified in fraction 14 of the first size exclusion fractionation
of HES. 0.476mg HES were fractionated by size exclusion fractionation and fractions
tested for their inhibitory activity on LPS-stimulated GM-CSF BMDC. Fraction 14
showed the ability to completely inhibit IL-12p70 production; it was analysed by mass
spectrometry in the facility in Glasgow, using an Orbitrap mass spectrometer and
using Mascot and the in-house H. polygyrus transcriptomic database. The significance
threshold for consideration of proteins was p<0.05; no minimum cutoff score was set.
Listed are ranks of the proteins in the mass spectrometric analysis, their accession
numbers, their Mascot scores, the number of peptide hits for the respective protein
and their emPAI values, in addition to their rank in the subsequent second analysis in
Edinburgh. Green: Proteins found in later re-analysis.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

1 Hp_I22388_IG14332_L637 108 4 0.34 198
2 Hp_I08959_IG02564_L1212 90 2 0.08 18
3 Hp_I22261_IG14205_L639 85 2 0.16 111
4 Hp_I21617_IG13561_L662 82 2 0.17 49
5 Hp_I05325_IG00908_L1903 82 3 0.11 31
6 Hp_I20768_IG12712_L696 67 2 0.14 91
7 Hp_I21133_IG13077_L683 63 2 0.15 77
8 FL8UM6J01A0LLF 51 1 1.01 64
9 Hp_I05364_IG00921_L2082 51 5 0.05
10 Hp_I05355_IG00918_L1570 50 1 0.06 180
11 Hp_I02849_IG00289_L1962 47 5 0.1 4
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Table B.1: Proteins identified in fraction 14 of the first size exclusion fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

12 Hp_I14513_IG06457_L1354 42 1 0.07
13 HICN8C105F5IW6 40 2 0.47
14 Hp_I09081_IG02625_L1173 37 1 0.08
15 Hp_I06193_IG01201_L3148 37 2 0.03
16 Hp_I23836_IG15780_L590 27 1 0.17 148
17 Hp_I01065_IG00070_L5127 27 3 0.04
18 HICN8C106G4WQS 26 2 0.28
19 Hp_I19157_IG11101_L778 24 1 0.13 10
20 Hp_I14783_IG06727_L1293 24 2 0.08
21 Hp_I13080_IG05024_L1939 22 2 0.05
22 HICN8C106HKUXG 22 2 0.21
23 Hp_I12524_IG04468_L2585 21 2 0.04
24 Hp_I06583_IG01353_L2360 19 1 0.04
25 Hp_I08941_IG02555_L1722 17 1 0.06
26 Hp_I05999_IG01134_L555 16 2 0.19 120

Table B.2: Proteins identified in fraction 15 of the first size exclusion fractionation
of HES. 0.476mg HES were fractionated by size exclusion fractionation and fractions
tested for their inhibitory activity on LPS-stimulated GM-CSF BMDC. Fraction 15
showed the ability to completely inhibit IL-12p70 production; it was analysed by mass
spectrometry in the facility in Glasgow, using an Orbitrap mass spectrometer and
using Mascot and the in-house H. polygyrus transcriptomic database. The significance
threshold for consideration of proteins was p<0.05; no minimum cutoff score was set.
Listed are ranks of the proteins in the mass spectrometric analysis, their accession
numbers, their Mascot scores, the number of peptide hits for the respective protein
and their emPAI values, in addition to their rank in the subsequent second analysis in
Edinburgh. Green: Proteins found in later re-analysis. Red: expressed proteins.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

1 Hp_I12336_IG04280_L5030 190 6 0.02 43
2 Hp_I20188_IG12132_L723 148 4 0.3
3 Hp_I21133_IG13077_L683 148 4 0.32 21
4 Hp_I03893_IG00508_L677 105 2 0.15 11
5 Hp_I21565_IG13509_L658 102 7 0.56 22
6 Hp_I01077_IG00070_L5125 85 9 0.04
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Table B.2: Proteins identified in fraction 15 of the first size exclusion fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

7 Hp_I32194_IG24138_L452 61 2 0.23
8 Hp_I13832_IG05776_L1555 59 4 0.13
9 Hp_I05565_IG00988_L1210 58 2 0.08 103
10 Hp_I05355_IG00918_L1570 54 2 0.06
11 Hp_I26601_IG18545_L528 53 2 0.21 4
12 Hp_I06193_IG01201_L3148 52 2 0.03
13 Hp_I22851_IG14795_L620 52 2 0.16 18
14 Hp_I02849_IG00289_L1962 51 2 0.05 1
15 Hp_I10419_IG03294_L714 47 4 0.31 10
16 HICN8C104EIKTM 44 2 0.49
17 FL8UM6J01A0LLF 43 1 1.01
18 Hp_I08791_IG02480_L1486 42 2 0.07 52
19 Hp_I13472_IG05416_L1706 41 3 0.06
20 Hp_I05364_IG00921_L2082 40 2 0.05
21 Hp_I40801_IG32745_L368 39 3 0.29 40
22 Hp_I05273_IG00890_L1799 39 5 0.05
23 Hp_I14053_IG05997_L1482 36 2 0.07
24 Hp_I01010_IG00065_L2171 25 2 0.05
25 Hp_C00098_IG00001_L1007 24 2 0.1
26 Hp_I05325_IG00908_L1903 23 1 0.05
27 Hp_I23836_IG15780_L590 23 1 0.17
28 HICN8C106G4WQS 22 2 0.28
29 GP9KNTD03GFT8V 22 2 1.01
30 Hp_I30299_IG22243_L471 21 1 0.23
31 Hp_I08941_IG02555_L1722 19 2 0.06
32 Hp_I18212_IG10156_L840 18 1 0.13
33 GP9KNTD03F2GRS 18 2 0.33
34 Hp_I41761_IG33705_L357 17 3 0.29
35 Hp_I20831_IG12775_L695 16 2 0.15
36 Hp_I35940_IG27884_L415 16 2 0.27
37 Hp_I23746_IG15690_L590 14 2 0.18
38 GNK0QLK03GAMLD 14 2 0.22
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Table B.3: Proteins identified in fraction 39 of the first anion exchange fractionation
of HES. 0.751mg HES were fractionated by anion exchange fractionation and fractions
tested for their inhibitory activity on LPS-stimulated GM-CSF BMDC. Fraction 39
showed the ability to completely inhibit IL-12p70 production; it was analysed by mass
spectrometry in the facility in Glasgow, using an Orbitrap mass spectrometer and
using Mascot and the in-house H. polygyrus transcriptomic database. The significance
threshold for consideration of proteins was p<0.05; no minimum cutoff score was set.
Listed are ranks of the proteins in the mass spectrometric analysis, their accession
numbers, their Mascot scores, the number of peptide hits for the respective protein
and their emPAI values, in addition to their rank in fraction 25 of the subsequent
second analysis in Edinburgh. Green: Proteins found in the active fraction 25 of a
more recent anion exchange fractionation. Red: expressed proteins.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

1 Hp_I03894_IG00508_L604 378 24 7.88 57
2 Hp_I20188_IG12132_L723 361 21 2.26 57
3 Hp_I21133_IG13077_L683 358 23 2.44 57
4 Hp_I08665_IG02417_L1321 321 12 0.54 27
5 Hp_I10155_IG03162_L783 277 15 1.28 80
6 Hp_I03895_IG00508_L600 226 22 5.56
7 Hp_I13201_IG05145_L1858 208 5 0.17 180
8 Hp_C00053_IG00001_L722 192 9 0.73 57
9 Hp_I15488_IG07432_L1169 186 10 0.49
10 Hp_I01065_IG00070_L5127 178 12 0.08 3
11 Hp_I19940_IG11884_L726 170 5 0.46
12 Hp_I05693_IG01031_L1691 168 15 0.34 17
13 Hp_I06559_IG01341_L2453 156 6 0.09
14 Hp_I10817_IG03493_L822 141 9 0.79
15 Hpb-VAL-3 140 2 0.07 2
16 Hpb-VAL2.2 133 6 0.24 1
17 Hp_I13874_IG05818_L1547 117 5 0.21 11
18 Hp_I22851_IG14795_L620 116 2 0.16 116
19 Hp_I24607_IG16551_L570 114 5 0.18 41
20 Hp_I25311_IG17255_L555 111 6 0.67 21
21 Hp_I15133_IG07077_L1218 105 2 0.08
22 Hp_I24705_IG16649_L569 104 2 0.19
23 Hp_I48980_IG40924_L272 97 1 0.42 2
24 Hp_I02849_IG00289_L1962 97 2 0.05 19
25 Hp_C00215_IG00001_L710 87 6 0.5 35
26 Hp_I13832_IG05776_L1555 80 6 0.2 40
27 Hp_I15536_IG07480_L1158 73 6 0.27 79
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Table B.3: Proteins identified in fraction 39 of the first anion exchange fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

28 Hp_I05325_IG00908_L1903 72 1 0.05 190
29 Hp_I13312_IG05256_L1794 71 6 0.11 69
30 Hp_I16083_IG08027_L1071 70 2 0.09
31 GP9KNTD03FMXAA 69 2 0.38
32 Hp_I24525_IG16469_L572 69 5 0.4
33 Hp_I20153_IG12097_L724 66 1 0.14
34 Hp_I15874_IG07818_L1106 65 2 0.09 103
35 Hp_I21073_IG13017_L680 61 3 0.15 26
36 Hp_I36714_IG28658_L408 54 4 0.65 134
37 Hp_I12754_IG04698_L2228 52 2 0.04 238
38 Hp_I22470_IG14414_L621 47 4 0.37 33
39 Hp_I14513_IG06457_L1354 46 1 0.07
40 Hp_I12932_IG04876_L2052 44 1 0.05
41 Hp_I05364_IG00921_L2082 43 2 0.05
42 Hp_I04525_IG00683_L718 43 4 0.15
43 Hp_I09124_IG02646_L958 40 3 0.1
44 Hp_I12336_IG04280_L5030 39 6 0.02 59
45 Hp_I25374_IG17318_L554 38 2 0.18
46 Hp_I05565_IG00988_L1210 37 2 0.08
47 HELDS7W07IPGTM 35 1 0.38
48 Hp_I10156_IG03162_L593 35 3 0.35 88
49 Hp_I14762_IG06706_L1297 32 1 0.08
50 Hp_I04570_IG00700_L4683 32 3 0.02 13
51 Hp_I03306_IG00378_L1606 30 2 0.06
52 Hp_I26703_IG18647_L521 30 1 0.06
53 Hp_I07426_IG01797_L2216 27 2 0.05
54 Hp_I14231_IG06175_L1432 26 1 0.07
55 Hp_I24175_IG16119_L582 26 4 0.4 33
56 Hp_I08811_IG02490_L1739 25 3 0.06
57 Hp_C00282_IG00001_L564 25 2 0.18
58 Hp_I07672_IG01920_L1701 24 3 0.06
59 Hp_I36005_IG27949_L411 22 2 0.25
60 Hp_I12350_IG04294_L3967 21 6 0.02
61 Hp_I23528_IG15472_L598 21 1 0.18
62 Hp_I45134_IG37078_L322 21 3 0.35
63 HICN8C104EAO7Z 17 2 0.22
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Table B.3: Proteins identified in fraction 39 of the first anion exchange fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

64 Hp_I14354_IG06298_L1401 16 1 0.07
65 Hp_I21313_IG13257_L675 16 1 0.15 31
66 GNK0QLK03GDDOW 16 1 0.3
67 Hp_I21920_IG13864_L651 15 1 0.15
68 Hp_I14352_IG06296_L1401 15 3 0.07
69 Hp_I07682_IG01925_L1479 15 2 0.07 12
70 Hp_I24000_IG15944_L579 13 1 0.18

Table B.4: Proteins identified in fraction 40 of the first anion exchange fractionation
of HES. 0.751mg HES were fractionated by anion exchange fractionation and fractions
tested for their inhibitory activity on LPS-stimulated GM-CSF BMDC. Fraction 40
showed the ability to completely inhibit IL-12p70 production; it was analysed by mass
spectrometry in the facility in Glasgow, using an Orbitrap mass spectrometer and
using Mascot and the in-house H. polygyrus transcriptomic database. The significance
threshold for consideration of proteins was p<0.05; no minimum cutoff score was set.
Listed are ranks of the proteins in the mass spectrometric analysis, their accession
numbers, their Mascot scores, the number of peptide hits for the respective protein
and their emPAI values, in addition to their rank in fraction 25 of the subsequent
second analysis in Edinburgh. Green: Proteins found in the active fraction 25 of a
more recent anion exchange fractionation. Red: expressed proteins.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

1 Hp_I01066_IG00070_L5129 677 42 0.45
2 Hp_I08665_IG02417_L1321 556 19 1.06 27
3 Hp_I03894_IG00508_L604 462 17 3.76 57
4 Hp_I05693_IG01031_L1691 434 26 0.79 17
5 Hp_I10155_IG03162_L783 419 14 1.28 80
6 Hp_I03893_IG00508_L677 382 16 2.45 57
7 FL8UM6J01DGLOO 248 10 24.11
8 Hp_I04629_IG00719_L1853 307 15 0.53 4
9 Hp_I22851_IG14795_L620 271 8 0.57 116
10 Hp_I20188_IG12132_L723 254 16 1.2 57
11 Hp_I23736_IG15680_L595 239 10 1.25 74
12 Hp_I15710_IG07654_L1132 231 10 0.52 14
13 Hp_I21073_IG13017_L680 230 13 2.04 26
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Table B.4: Proteins identified in fraction 40 of the first anion exchange fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

14 Hp_I12624_IG04568_L2400 208 11 0.23 94
15 Hp_I21133_IG13077_L683 195 16 1.28 57
16 Hp_I05355_IG00918_L1570 194 6 0.2 48
17 Hp_I19157_IG11101_L778 190 6 0.27
18 Hp_I07682_IG01925_L1479 176 7 0.31 12
19 Hp_I05746_IG01049_L1033 171 4 0.32
20 Hp_I25311_IG17255_L555 169 10 0.98 21
21 Hp_I24607_IG16551_L570 161 9 0.92 41
22 Hp_I15874_IG07818_L1106 159 7 0.3 103
23 FL8UM6J01BCVJW 157 4 1.03 34
24 Hp_I13874_IG05818_L1547 153 6 0.28 11
25 Hp_I04280_IG00603_L1135 152 3 0.19
26 Hp_I14314_IG06258_L1412 147 3 0.14 117
27 Hp_I06753_IG01438_L1571 147 8 0.2
28 Hp_C00215_IG00001_L710 140 6 0.72 35
29 Hp_I20153_IG12097_L724 133 4 0.29 29
30 Hp_I22261_IG14205_L639 129 12 1.12 97
31 Hp_I02849_IG00289_L1962 124 2 0.05 19
32 Hp_I32194_IG24138_L452 124 2 0.23
33 Hp_I22470_IG14414_L621 121 3 0.37 33
34 Hp_C00318_IG00001_L1664 120 5 0.12 65
35 Hp_I05758_IG01053_L926 118 3 0.23
36 Hp_I15488_IG07432_L1169 116 5 0.17
37 Hp_I24441_IG16385_L572 113 7 0.61
38 Hp_I12336_IG04280_L5030 112 5 0.04 59
39 Hp_I24525_IG16469_L572 111 6 0.4
40 Hp_I10817_IG03493_L822 110 6 0.26
41 Hp_I19958_IG11902_L735 108 13 0.46 152
42 Hp_I15089_IG07033_L1228 108 9 0.26 30
43 Hp_I05472_IG00957_L1361 105 3 0.16 45
44 Hp_I24175_IG16119_L582 101 3 0.4 33
45 Hp_I16213_IG08157_L1054 98 2 0.1 1
46 Hp_I07953_IG02060_L1482 94 4 0.15
47 Hpb-VAL-2.3 94 4 0.15
48 Hp_I15157_IG07101_L1223 89 2 0.08 28
49 Hp_I25440_IG17384_L551 80 8 0.39 56
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Table B.4: Proteins identified in fraction 40 of the first anion exchange fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

50 Hp_I23528_IG15472_L598 78 2 0.18
51 Hp_I08791_IG02480_L1486 77 6 0.15 8
52 Hp_I12337_IG04281_L4997 73 10 0.08 9
53 Hp_I09123_IG02646_L960 72 3 0.22 106
54 Hp_C02597_IG00028_L1734 72 2 0.06
55 Hp_I07274_IG01721_L3765 70 4 0.05
56 Hp_I01131_IG00073_L2163 66 3 0.05
57 Hp_I16239_IG08183_L1050 63 3 0.2 43
58 Hp_I07875_IG02021_L1389 60 3 0.07
59 Hp_C00053_IG00001_L722 59 4 0.3 57
60 GKYPR1L02BZ2HH 57 6 1.7
61 FL8UM6J01DGCZI 57 3 1.43
62 Hp_I13832_IG05776_L1555 56 4 0.06 40
63 Hp_I05326_IG00908_L1911 51 2 0.05
64 Hp_I05325_IG00908_L1903 51 4 0.05 190
65 Hp_I05364_IG00921_L2082 51 2 0.05
66 Hp_I24705_IG16649_L569 49 1 0.19
67 Hp_I02212_IG00191_L3366 47 2 0.03
68 Hp_I16723_IG08667_L984 46 2 0.1 68
69 Hp_I40812_IG32756_L369 42 1 0.28
70 HICN8C105F5IW6 41 2 0.47
71 Hp_I25889_IG17833_L540 39 1 0.19
72 Hp_I12819_IG04763_L2150 38 1 0.05 76
73 Hp_I12518_IG04462_L2600 38 3 0.04 163
74 Hp_I25825_IG17769_L543 38 5 0.69
75 Hp_I10156_IG03162_L593 37 3 0.16 88
76 GSXTT4C06GU61M 36 2 0.26
77 Hp_I14119_IG06063_L1461 35 3 0.07 154
78 Hp_I26703_IG18647_L521 34 2 0.06
79 Hp_I25374_IG17318_L554 34 2 0.18
80 GWDWRH002CDF07 34 4 0.3
81 Hp_I06750_IG01437_L1569 33 1 0.06
82 Hp_I15536_IG07480_L1158 33 4 0.08 79
83 Hp_I13897_IG05841_L1536 32 7 0.06 91
84 Hp_I04010_IG00535_L4397 31 1 0.02 109
85 Hp_I40131_IG32075_L375 31 1 0.28
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Table B.4: Proteins identified in fraction 40 of the first anion exchange fractionation of
HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 2. MS

86 Hp_C00282_IG00001_L564 30 2 0.18
87 Hp_I36714_IG28658_L408 29 1 0.29 134
88 Hp_I15169_IG07113_L1216 28 1 0.08
89 Hp_I20875_IG12819_L687 28 1 0.15
90 Hp_I04798_IG00762_L1055 26 3 0.1
91 Hp_I23863_IG15807_L590 25 3 0.17
92 Hp_I16609_IG08553_L1004 25 2 0.03
93 Hp_I04378_IG00631_L1589 24 5 0.06
94 Hp_I34696_IG26640_L421 23 1 0.25
95 Hp_I04874_IG00782_L1023 20 2 0.1 250
96 GP9KNTD03FQWQK 19 1 0.95
97 Hp_I03120_IG00339_L546 19 4 0.19
98 Hp_I04570_IG00700_L4683 19 5 0.02 13
99 Hp_I10589_IG03379_L596 19 1 0.17 174
100 Hp_I15617_IG07561_L1141 19 3 0.09
101 Hp_I19530_IG11474_L758 17 2 0.14
102 Hp_I12466_IG04410_L2780 17 2 0.04
103 Hp_I12856_IG04800_L2123 16 1 0.05 171
104 Hp_I50094_IG42038_L253 14 2 0.44
105 GNK0QLK03GBGV9 14 1 0.22
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B.2 Mass

spectrometry and content comparison of

sequential fractions

Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES.
HES was fractionated by size exclusion followed by anion exchange fractionation. All
fractions were analysed by mass spectrometry and tested for their inhibitory activity
on GM-CSF BMDC. Fraction 28 showed the ability to completely inhibit IL-12p70
production. Listed are ranks of the proteins in the mass spectrometric analysis, their
accession numbers, the number of peptide hits for the respective protein and their
emPAI values. Red: expressed proteins.

Protein Protein
Rank Protein accession number

score matches
emPAI

1 Hp_I04570_IG00700_L4683 1796 72 2.68
2 HICN8C106HP9PI_length=274 997 37 3.46
3 Hp_I21313_IG13257_L675 679 24 4.47
4 Hp_I08665_IG02417_L1321 660 19 2.73
5 Hp_I10419_IG03294_L714 630 24 3.16
6 Hp_I18858_IG10802_L799 516 14 3.39
7 Hp_I22486_IG14430_L629 444 13 3.36
7 Hp_I08791_IG02480_L1486 395 16 1.66
7 GSXTT4C07IB13H_length=463 198 7 2.58
7 Hp_I13898_IG05842_L1539 162 4 0.29
7 Hp_I04202_IG00583_L1521 58 3 0.21
7 Hpb-VAL-1.1 139 3
7 Hp_I08792_IG02480_L662 95 5
7 Hp_I04671_IG00730_L1535 63 2
7 Hp_I19246_IG11190_L772 60 4
7 GNK0QLK03HBAHW_length=398 46 1
7 HICN8C104EUPYS_length=127 41 1
7 Hp_I20083_IG12027_L726 39 1
7 GS66ZV202BRKI2_length=193 31 2
7 GS66ZV202CFXAN_length=237 23 1
8 Hp_I28744_IG20688_L490 409 13 9.36
9 Hp_I07157_IG01645_L560 389 17 12.23
9 Hp_I07158_IG01645_L560 357 16 10.26
10 Hp_I13810_IG05754_L1566 379 14 1.02
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

11 Hp_C00269_IG00001_L1007 370 8 1.07
11 FL8UM6J01B6ULB_length=156 129 2
11 FL3BO7401ASYIS_length=170 123 2
12 Hp_I26188_IG18132_L529 370 8 2.74
13 Hp_I07312_IG01740_L4913 343 12 0.26
13 Hp_I07313_IG01740_L570 81 1
13 Hp_I30910_IG22854_L463 60 2
14 Hp_I13075_IG05019_L1949 328 10 0.57
14 Hp_I28606_IG20550_L493 66 1
15 Hp_I19378_IG11322_L765 297 6 1.07
16 Hp_I19157_IG11101_L778 294 11 2.14
17 Hp_I23293_IG15237_L606 293 6 1.4
18 Hp_I01063_IG00070_L5127 274 12 0.25
18 Hp_I01077_IG00070_L5125 273 11 0.22
18 FL8UM6J01CURPT_length=239 34 1
18 FL8UM6J01AP92T_length=187 30 1
19 Hp_I50492_IG42436_L247 274 11 15.24
19 Hp_I50368_IG42312_L251 212 6
20 Hp_I07496_IG01832_L2183 262 6 0.29
20 Hp_I07497_IG01832_L1722 235 6 0.37
21 Hp_I10590_IG03379_L588 261 10 3.54
22 Hp_I27122_IG19066_L517 256 6 1.43
23 Hp_I24512_IG16456_L570 236 7 2.04
23 GNK0QLK03F82AT_length=271 120 2
24 Hp_I21565_IG13509_L658 214 6 1.03
25 Hp_I05758_IG01053_L926 205 6 0.83
25 Hp_I05759_IG01053_L914 76 2
26 GNK0QLK03GQOZO_length=396 188 6 1.41
26 GS66ZV203C3717_length=247 119 3
26 GS66ZV203DJXOH_length=245 92 2
26 GWDWRH002CES3N_length=67 85 3
27 Hp_I21133_IG13077_L683 188 6 1.2
27 Hp_I08959_IG02564_L1212 76 2 0.17
27 Hp_C00053_IG00001_L722 64 3 0.3
27 Hp_I45702_IG37646_L317 72 1
27 Hp_I20188_IG12132_L723 71 3
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

27 Hp_I03894_IG00508_L604 61 1
27 Hp_I06559_IG01341_L2453 60 2
27 Hp_I02590_IG00245_L1152 32 1
28 Hp_I15528_IG07472_L1156 184 8 0.74
29 Hp_I23776_IG15720_L592 179 8 1.89
30 Hp_I02849_IG00289_L1962 176 7 0.27
31 Hp_I25974_IG17918_L541 172 6 1.67
32 Hp_I12336_IG04280_L5030 165 5 0.1
33 Hp_I15488_IG07432_L1169 160 4 0.36
34 Hp_I22470_IG14414_L621 159 8 2.32
34 Hp_I24175_IG16119_L582 114 7 2.08
35 Hp_I15133_IG07077_L1218 158 5 0.45
36 Hp_I05659_IG01019_L943 158 2 0.22
37 FL8UM6J01B7CV6_length=228 157 3 2.29
38 Hp_I04541_IG00689_L698 154 4 0.68
38 Hp_I04543_IG00689_L522 49 2
38 Hp_I09370_IG02769_L634 48 1
39 Hp_I00798_IG00050_L1759 154 4 0.23
39 Hp_I00796_IG00050_L1763 117 2
39 Hp_I00800_IG00050_L1766 25 1
40 Hp_I45709_IG37653_L316 149 3 1.29
41 Hp_I02051_IG00167_L1023 148 4 0.44
41 GS66ZV202BZOD1_length=219 104 2
41 HELDS7W07H029J_length=253 65 2
41 GSXTT4C08I82OC_length=200 49 1
41 GS66ZV202B0XRC_length=246 37 1
42 Hp_I12624_IG04568_L2400 145 5 0.22
42 FL8UM6J01C5SEG_length=170 72 2
43 Hp_I17933_IG09877_L867 143 4 0.55
44 Hp_I07995_IG02081_L699 143 4 0.69
45 Hpb-VAL-4 141 2 0.32
45 FL8UM6J01BH6HY_length=236 98 1
46 Hp_I18845_IG10789_L800 139 4 0.4
47 Hp_I40999_IG32943_L364 139 2 0.65
48 Hp_I01023_IG00066_L1337 132 3 0.23
48 FL8UM6J01B19RE_length=231 94 2
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

48 GSXTT4C07H11X2_length=416 62 1
49 Hp_I24965_IG16909_L566 132 5 0.89
50 Hp_I25311_IG17255_L555 130 4 0.93
51 Hp_I12337_IG04281_L4997 126 7 0.11
51 FL8UM6J01B4I85_length=259 43 1
51 FL8UM6J01BGCU6_length=234 43 1
51 FL3BO7403BPZG6_length=114 35 1
52 Hp_I06078_IG01161_L583 124 3 0.6
53 Hp_I27254_IG19198_L516 124 2 0.41
54 Hp_I23528_IG15472_L598 122 4 0.87
55 Hp_I20654_IG12598_L702 122 3 0.47
56 Hp_I22064_IG14008_L644 122 3 0.51
57 Hp_I10517_IG03343_L655 120 5 1
57 Hp_I10518_IG03343_L562 114 5
58 Hp_I07202_IG01671_L440 119 2 0.5
59 Hp_I13122_IG05066_L1913 119 5 0.28
60 Hp_I15168_IG07112_L1217 118 4 0.27
61 Hp_I22851_IG14795_L620 118 6 1.38
62 Hpb-VAL-14 109 5 0.43
63 Hp_I12776_IG04720_L2202 109 3 0.13
64 Hp_I32194_IG24138_L452 108 2 0.48
65 HELDS7W08JQN3O_length=274 108 1 0.39
66 Hp_I05325_IG00908_L1903 107 2 0.11
67 Hp_I08941_IG02555_L1722 107 3 0.17
68 Hp_I36714_IG28658_L408 105 2 0.62
69 Hp_I24607_IG16551_L570 105 7 1.56
69 Hp_I49814_IG41758_L259 87 5
70 Hp_I13832_IG05776_L1555 103 2 0.12
71 Hp_I07249_IG01697_L637 102 3 0.52
72 Hp_I03893_IG00508_L677 100 2 0.3
73 Hp_I16226_IG08170_L1053 99 5 0.56
74 Hp_I11144_IG03656_L469 96 4 1.16
75 Hp_I10155_IG03162_L783 96 3 0.25
75 Hp_I10156_IG03162_L593 37 2
76 Hp_I25374_IG17318_L554 96 2 0.38
77 Hp_I05827_IG01076_L1116 95 5 0.5
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

77 Hp_I40994_IG32938_L367 62 2
78 Hp_I03611_IG00436_L810 95 4 0.38
78 HELDS7W08JC1EG_length=251 67 1
79 Hp_I14314_IG06258_L1412 92 1 0.07
80 Hp_I15760_IG07704_L1122 91 1 0.09
81 Hp_I22173_IG14117_L645 90 2 0.32
82 Hp_I23836_IG15780_L590 88 1 0.16
83 Hp_I06589_IG01356_L2259 88 1 0.04
84 Hp_I08227_IG02198_L1357 87 1 0.07
85 Hp_I32832_IG24776_L445 86 1 0.22
86 Hp_I34129_IG26073_L426 85 1 0.23
87 Hp_I09863_IG03016_L798 84 1 0.13
88 Hp_I42666_IG34610_L339 83 1 0.29
89 Hp_I21725_IG13669_L658 82 1 0.15
90 Hp_I00695_IG00044_L591 82 1 0.16
91 Hp_I14119_IG06063_L1461 81 3 0.21
92 Hpb-VAL-3 80 3 0.22
93 Hp_I05407_IG00935_L1040 79 1 0.09
94 Hp_I14795_IG06739_L1291 79 1 0.07
95 Hp_I42038_IG33982_L358 78 4 1.76
95 Hp_I44775_IG36719_L318 43 2
96 Hp_I20539_IG12483_L707 78 4 0.47
97 FL8UM6J01BC1ZN_length=62 77 2 7.27
98 Hp_I40417_IG32361_L370 77 2 0.6
99 Hp_I12734_IG04678_L2250 76 1 0.04
100 Hp_I07155_IG01644_L585 76 1 0.17
101 GSXTT4C05GBC4L_length=430 76 1 0.24
102 Hp_I04083_IG00553_L1755 75 1 0.05
103 Hp_C00031_IG00001_L1071 74 1 0.09
104 Hp_I08175_IG02172_L1570 74 3 0.13
104 Hp_I19423_IG11367_L741 47 1
105 Hp_I38626_IG30570_L389 72 2 0.59
106 Hp_I06748_IG01436_L1580 71 1 0.06
107 Hp_I44112_IG36056_L331 71 2 0.7
108 Hp_I12350_IG04294_L3967 71 1 0.02
109 Hp_I05355_IG00918_L1570 70 3 0.19
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

110 Hp_I14116_IG06060_L1462 70 1 0.07
111 Hp_I30585_IG22529_L470 70 1 0.21
112 GS66ZV203DFM3U_length=95 70 1 1.31
113 Hp_I08946_IG02557_L754 68 3 0.42
113 Hp_I28711_IG20655_L493 44 1
114 Hp_I07378_IG01773_L2592 68 2 0.08
114 Hp_I07379_IG01773_L2104 59 1
115 Hp_I07172_IG01652_L523 67 3 0.68
115 Hp_I07171_IG01652_L539 55 2
115 Hp_I10719_IG03444_L597 28 1
116 Hpb-CRT 67 1 0.08
117 Hp_I02283_IG00202_L1498 67 2 0.14
117 Hp_I02285_IG00202_L1064 63 1
117 Hp_I02287_IG00202_L850 25 1
118 Hp_I29394_IG21338_L484 67 1 0.21
119 FL8UM6J01CI46H_length=220 66 1 0.45
120 Hp_I23615_IG15559_L596 66 2 0.36
120 GKYPR1L02BZNH0_length=404 48 1
121 Hp_I00841_IG00053_L616 65 2 0.37
122 Hp_I13416_IG05360_L1738 64 2 0.12
123 GSXTT4C06GQDI1_length=169 64 1 0.66
124 Hp_I21746_IG13690_L653 64 2 0.33
125 Hp_I54277_IG46221_L174 64 2 1.74
126 Hp_I24441_IG16385_L572 63 1 0.17
127 Hp_I38988_IG30932_L386 63 2 0.58
128 Hp_I16824_IG08768_L974 63 2 0.2
129 Hp_I22261_IG14205_L639 63 1 0.16
130 Hp_I44260_IG36204_L332 63 1 0.31
131 FL8UM6J01BH6V1_length=59 62 1 2.43
132 Hp_I22350_IG14294_L635 61 2 0.32
133 Hp_I08475_IG02322_L1881 61 1 0.05
134 Hp_I10751_IG03460_L637 61 1 0.15
135 Hp_I03369_IG00388_L681 58 1 0.14
136 Hp_I38698_IG30642_L388 58 2 0.59
137 Hp_I49935_IG41879_L259 57 2 0.99
138 Hp_I43851_IG35795_L337 57 1 0.29

257



Appendix B. Supplementary material for HES proteomics

Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

139 Hp_I05472_IG00957_L1361 56 1 0.07
140 Hp_I15237_IG07181_L1208 56 1 0.08
141 Hp_I01036_IG00067_L1461 56 1 0.07
142 Hp_I07334_IG01751_L2741 54 1 0.04
143 Hp_I03099_IG00335_L808 54 1 0.12
144 Hp_I07274_IG01721_L3765 54 1 0.03
145 Hp_I12608_IG04552_L2437 54 1 0.04
146 Hp_I02136_IG00181_L1019 54 2 0.2
146 Hp_I15620_IG07564_L1137 25 1
147 Hp_I14444_IG06388_L1373 53 1 0.07
148 Hp_I17541_IG09485_L897 51 1 0.1
149 FL8UM6J01DXUGS_length=253 50 2 1.07
150 Hp_I34113_IG26057_L428 49 2 0.25
151 Hp_I12568_IG04512_L2492 48 1 0.04
152 Hp_I00697_IG00045_L2819 47 1 0.03
153 GW6977U05FJ9VT_length=110 47 2 2.88
153 GS66ZV202CF40B_length=221 32 1
154 Hp_I06838_IG01481_L1319 46 1 0.08
155 Hp_I23280_IG15224_L606 46 1 0.15
156 GSXTT4C07H9V8V_length=405 46 2 0.24
157 GP9KNTD03FMXAA_length=261 46 1 0.36
158 Hp_I49433_IG41377_L267 45 1 0.37
159 Hp_I43570_IG35514_L336 45 1 0.29
160 HICN8C104EH4N8_length=157 45 1 0.68
161 Hp_I09769_IG02969_L1009 45 3 0.2
162 Hp_C00065_IG00001_L1348 44 1 0.07
163 Hp_I14135_IG06079_L1458 44 1 0.07
164 Hp_I05755_IG01052_L1113 43 1 0.09
165 Hp_I17380_IG09324_L905 42 2 0.22
166 Hp_I03228_IG00366_L2337 41 2 0.04
167 Hp_I12932_IG04876_L2052 41 1 0.05
168 Hp_I06271_IG01234_L1502 40 1 0.06
169 Hp_I09474_IG02821_L795 40 1 0.12
170 Hp_I26307_IG18251_L531 40 1 0.18
171 GSXTT4C07H1SRT_length=291 40 1 0.36
172 Hp_C00282_IG00001_L564 39 1 0.17
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

173 FL8UM6J01D4QX3_length=59 39 1 2.43
174 Hp_I13588_IG05532_L1650 38 1 0.06
175 Hp_I05809_IG01070_L1113 38 1 0.09
176 Hp_I18874_IG10818_L798 38 1 0.12
177 Hp_I44884_IG36828_L326 38 1 0.3
178 Hpb-VAL-8 38 3 0.24
178 Hp_I08945_IG02557_L1281 26 2
179 Hp_I45843_IG37787_L315 38 1 0.33
180 Hp_I14711_IG06655_L1305 38 1 0.08
181 Hp_I10507_IG03338_L686 37 1 0.14
182 HELDS7W07IETUG_length=224 37 1 0.47
183 Hp_I38562_IG30506_L390 36 1 0.27
184 Hp_I20989_IG12933_L687 36 2 0.3
185 Hp_I22770_IG14714_L618 35 1 0.16
186 Hp_I16462_IG08406_L1016 35 1 0.09
187 Hp_I00739_IG00047_L2586 35 2 0.07
188 Hp_I38111_IG30055_L394 35 1 0.25
189 Hp_I14044_IG05988_L1484 35 1 0.06
190 Hp_I27304_IG19248_L514 34 1 0.19
191 Hpb-APY-1.1 34 1 0.09
192 Hp_I01422_IG00100_L1076 33 1 0.09
193 Hp_I42165_IG34109_L355 33 1 0.3
194 Hp_I26227_IG18171_L535 33 2 0.19
195 GP9KNTD03GRXA0_length=393 32 1 0.24
196 Hp_I00806_IG00050_L1112 32 1 0.09
197 GKYPR1L02CFV8D_length=134 32 1 0.87
198 Hp_I12342_IG04286_L4223 32 1 0.02
199 Hp_I13426_IG05370_L1731 31 1 0.06
200 Hp_I07527_IG01847_L1908 30 2 0.05
201 HELDS7W07IJKS4_length=381 30 1 0.27
202 Hp_I48105_IG40049_L286 30 1 0.36
203 Hp_I39892_IG31836_L376 29 1 0.26
204 GSXTT4C05FNWZW_length=206 29 1 0.52
205 Hp_I34646_IG26590_L427 29 2 0.24
206 Hp_I38850_IG30794_L366 29 1 0.28
207 GP9KNTD03FLCRS_length=301 29 1 0.33
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Table B.5: Proteins identified in fraction 28 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

208 Hp_I45671_IG37615_L316 28 1 0.34
209 Hp_I47440_IG39384_L295 28 1 0.33
210 Hp_I16449_IG08393_L1019 27 1 0.09
211 Hp_I24623_IG16567_L570 27 2 0.17
212 Hp_I09575_IG02872_L1199 27 1 0.08
213 Hp_I05780_IG01060_L750 27 1 0.13
214 Hp_I15783_IG07727_L1116 27 1 0.09
215 Hp_I10670_IG03419_L511 27 1 0.19
216 Hp_I11951_IG04060_L390 27 1 0.24
217 Hp_I04874_IG00782_L1023 27 1 0.1
218 Hp_I16723_IG08667_L984 26 1 0.1
219 HICN8C104EF9L9_length=388 26 1 0.27
220 Hp_I49529_IG41473_L265 26 2 0.37
221 Hp_I14250_IG06194_L1431 26 1 0.07
222 Hp_I13952_IG05896_L1510 25 1 0.07
223 Hp_I16505_IG08449_L1014 25 1 0.09
224 Hp_I48880_IG40824_L273 25 1 0.38
225 Hp_I16562_IG08506_L1005 25 2 0.21
226 Hp_I43395_IG35339_L341 25 1 0.32
227 Hp_I13874_IG05818_L1547 25 1 0.06
228 Hp_I12527_IG04471_L2582 25 1 0.04
229 Hp_I01453_IG00104_L978 24 1 0.1
230 Hp_I05565_IG00988_L1210 24 1 0.08
231 GS66ZV208JGIBQ_length=382 24 1 0.27
232 Hp_I15587_IG07531_L1141 23 1 0.08
233 Hp_I03365_IG00388_L986 23 1 0.1
234 Hp_I15089_IG07033_L1228 23 1 0.08
235 Hp_I32435_IG24379_L441 22 1 0.22
236 Hp_I04266_IG00599_L823 22 1 0.12
237 Hp_I04581_IG00707_L1760 22 1 0.06
238 Hp_I29599_IG21543_L474 22 1 0.21
239 Hp_I22123_IG14067_L644 22 1 0.15
240 Hp_I08219_IG02194_L2089 21 1 0.05
241 GLSD98I04EIBBZ_length=463 20 1 0.23
242 Hp_I17525_IG09469_L900 20 1 0.1
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES.
HES was fractionated by size exclusion followed by anion exchange fractionation. All
fractions were analysed by mass spectrometry and tested for their inhibitory activity
on GM-CSF BMDC. Fraction 29 showed the ability to completely inhibit IL-12p70
production. Listed are ranks of the proteins in the mass spectrometric analysis, their
accession numbers, the number of peptide hits for the respective protein and their
emPAI values. Red: expressed proteins.

Protein Protein
Rank Protein accession number

score matches
emPAI

1 Hp_I04570_IG00700_L4683 1336 52 1.59
1 HICN8C105F2ANR_length=463 39 1
2 GNK0QLK03GQOZO_length=396 1062 29 2.74
2 GS66ZV203C3717_length=247 907 23
2 GS66ZV203DJXOH_length=245 863 20
2 GWDWRH002CES3N_length=67 171 6
3 Hp_I10419_IG03294_L714 813 25 5.14
4 Hp_I01079_IG00070_L5124 798 31 0.67
4 Hp_I01061_IG00070_L5128 767 31 0.67
4 FL8UM6J01BC1ZN_length=62 94 2 7.27
4 FL8UM6J01AP92T_length=187 71 2
5 HICN8C106HP9PI_length=274 779 30 12.66
5 Hp_I10288_IG03228_L610 752 29
6 Hp_I10590_IG03379_L588 707 17 8.68
6 Hp_I10589_IG03379_L596 181 7 1.46
7 Hp_I19157_IG11101_L778 622 19 6.86
8 Hp_I08791_IG02480_L1486 525 14 1.05
8 Hp_I22486_IG14430_L629 364 11 3.36
8 GSXTT4C07IB13H_length=463 172 5 1.34
8 Hpb-VAL-1.2 161 6 0.39
8 Hp_I13898_IG05842_L1539 158 5
8 Hpb-VAL-1.1 140 4
8 Hp_I08792_IG02480_L662 79 3
8 Hp_I04671_IG00730_L1535 52 3
8 HICN8C104EUPYS_length=127 33 1
8 Hp_I20083_IG12027_L726 31 1
8 Hp_I19246_IG11190_L772 25 2
9 Hp_I21313_IG13257_L675 518 17 2.24
10 Hp_I18858_IG10802_L799 468 12 2.49
11 Hp_I08665_IG02417_L1321 455 14 1.46
11 Hp_I08666_IG02417_L925 109 2
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

12 Hp_I07157_IG01645_L560 378 14 7.15
12 Hp_I07158_IG01645_L560 314 13 5.94
12 Hp_I10997_IG03583_L513 36 2
13 Hp_I13075_IG05019_L1949 378 11 0.64
13 Hp_I28606_IG20550_L493 56 1
14 Hp_I26188_IG18132_L529 363 7 2.17
15 Hp_I19378_IG11322_L765 329 6 1.07
16 Hp_I13810_IG05754_L1566 322 8 0.6
17 Hp_I43851_IG35795_L337 307 10 12.13
18 Hp_I40999_IG32943_L364 282 5 2.48
19 HELDS7W08JQN3O_length=274 281 4 0.39
20 Hp_I07312_IG01740_L4913 279 10 0.19
20 Hp_I07313_IG01740_L570 85 1
20 Hp_I30910_IG22854_L463 81 2
21 Hpb-VAL-4 270 7 1.66
21 FL8UM6J01BXB62_length=190 193 3
21 FL8UM6J01BH6HY_length=236 147 2
22 Hp_I02051_IG00167_L1023 257 8 1.07
22 GS66ZV203C3ECE_length=216 105 2
22 GS66ZV202BZOD1_length=219 105 2
22 HELDS7W07H029J_length=253 93 4
22 GSXTT4C08I82OC_length=200 74 3
22 Hp_I48914_IG40858_L269 46 1
22 GS66ZV202B0XRC_length=246 34 1
23 Hp_I24512_IG16456_L570 245 7 1.6
23 GNK0QLK03F82AT_length=271 177 4
24 Hp_I05758_IG01053_L926 226 6 0.83
24 Hp_I05759_IG01053_L914 98 2
25 Hp_I28744_IG20688_L490 223 9 4.04
26 Hp_I24607_IG16551_L570 220 8 1.99
26 Hp_I49814_IG41758_L259 74 4
27 Hp_I50492_IG42436_L247 208 11 15.24
27 Hp_I50368_IG42312_L251 166 7
27 Hp_I48105_IG40049_L286 31 1
28 Hp_I02849_IG00289_L1962 198 7 0.4
28 Hp_I02853_IG00289_L1028 128 3
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

28 Hp_I02850_IG00289_L1486 93 4
29 Hp_I29394_IG21338_L484 196 5 1.61
30 Hp_I04541_IG00689_L698 193 6 1.18
30 Hp_I04543_IG00689_L522 50 3
30 Hp_I09370_IG02769_L634 39 1
31 Hp_I25311_IG17255_L555 187 5 1.27
31 FL8UM6J01EH57D_length=239 53 1
32 Hp_I07497_IG01832_L1722 184 5 0.3
32 Hp_I07496_IG01832_L2183 183 5 0.23
33 Hp_I21565_IG13509_L658 182 7 1.34
34 Hp_I17933_IG09877_L867 174 6 0.92
35 Hp_I12624_IG04568_L2400 163 5 0.22
35 GP9KNTD03F5ENS_length=137 63 1
35 FL8UM6J01C5SEG_length=170 59 1
36 Hp_I24965_IG16909_L566 162 5 1.21
37 Hp_I00798_IG00050_L1759 155 5 0.23
37 Hp_I00806_IG00050_L1112 59 2 0.18
37 Hp_I00796_IG00050_L1763 118 3
37 Hp_I00809_IG00050_L1090 104 2
37 Hp_I00811_IG00050_L794 40 2
38 Hp_I23776_IG15720_L592 153 6 1.13
39 Hp_I26601_IG18545_L528 144 2 0.44
39 GSXTT4C05GBC4L_length=430 100 1
40 Hp_I16226_IG08170_L1053 142 6 0.7
41 Hp_I27254_IG19198_L516 134 2 0.41
42 Hp_I23863_IG15807_L590 132 4 0.83
43 Hp_I23528_IG15472_L598 129 3 0.6
44 Hp_I15133_IG07077_L1218 128 4 0.35
45 Hp_C00269_IG00001_L1007 127 4 0.44
45 FL8UM6J01B6ULB_length=156 67 1
45 FL3BO7401ASYIS_length=170 41 1
46 Hp_I08941_IG02555_L1722 126 3 0.17
47 Hp_I22851_IG14795_L620 124 5 0.78
48 Hp_I15488_IG07432_L1169 124 4 0.36
49 Hp_I26227_IG18171_L535 121 3 0.42
50 Hp_I14250_IG06194_L1431 116 2 0.14
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

51 Hp_I12336_IG04280_L5030 115 4 0.06
51 Hp_I05631_IG01010_L1108 40 1
52 Hp_I24441_IG16385_L572 113 4 0.85
53 Hp_I38698_IG30642_L388 111 3 0.59
54 FL8UM6J01B7CV6_length=228 109 3 2.29
55 Hp_I36714_IG28658_L408 109 2 0.62
56 Hp_I08175_IG02172_L1570 107 7 0.52
56 Hp_I32820_IG24764_L439 76 2
56 Hp_I19423_IG11367_L741 58 1
56 GKYPR1L02BXFPQ_length=335 22 1
57 Hp_I28140_IG20084_L502 104 2 0.43
58 Hp_I14513_IG06457_L1354 100 2 0.15
59 Hp_I23615_IG15559_L596 99 3 0.59
59 GKYPR1L02BZNH0_length=404 37 1
60 Hp_I18845_IG10789_L800 97 2 0.25
61 Hp_I25374_IG17318_L554 97 1 0.17
62 Hp_I38988_IG30932_L386 96 5 2.12
63 Hp_I12337_IG04281_L4997 96 5 0.09
63 FL3BO7403BPZG6_length=114 52 1
63 FL8UM6J01B4I85_length=259 47 1
64 Hp_I10517_IG03343_L655 95 4 0.74
64 Hp_I10518_IG03343_L562 84 4 0.91
65 Hp_I14314_IG06258_L1412 94 2 0.14
66 Hp_I03750_IG00471_L768 94 3 0.42
67 Hp_I11671_IG03920_L408 91 2 0.55
68 Hp_C00053_IG00001_L722 91 2 0.3
68 Hp_I21133_IG13077_L683 66 3 0.48
68 Hp_I06559_IG01341_L2453 88 1
68 Hp_I08959_IG02564_L1212 50 2
68 Hp_I45702_IG37646_L317 47 1
68 Hp_I20188_IG12132_L723 32 2
68 Hp_I02590_IG00245_L1152 30 1
69 Hp_I07314_IG01741_L2856 90 2 0.07
70 Hp_I08946_IG02557_L754 87 4 0.42
71 Hp_I27122_IG19066_L517 86 2 0.43
72 Hp_I22064_IG14008_L644 86 1 0.15
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

73 Hp_I32194_IG24138_L452 85 1 0.22
74 Hp_I15587_IG07531_L1141 85 4 0.37
75 Hp_I01036_IG00067_L1461 85 4 0.29
75 FL8UM6J01CLAA6_length=170 70 3
75 Hp_I13955_IG05899_L1513 65 3
75 Hp_I14843_IG06787_L1280 42 1
76 Hp_I22470_IG14414_L621 85 5 1.12
76 Hp_I01045_IG00068_L1382 50 3 0.22
76 Hp_I24175_IG16119_L582 60 3
77 Hp_I15760_IG07704_L1122 85 2 0.18
78 Hp_I07995_IG02081_L699 84 2 0.3
79 Hp_I05999_IG01134_L555 84 1 0.18
80 Hp_I21825_IG13769_L655 84 1 0.15
81 Hp_I07249_IG01697_L637 84 2 0.32
82 Hp_I05325_IG00908_L1903 83 2 0.11
82 Hp_I05327_IG00908_L1147 80 1
83 Hp_I03369_IG00388_L681 83 2 0.3
84 Hp_I38626_IG30570_L389 82 1 0.26
85 Hp_I21725_IG13669_L658 82 1 0.15
86 Hp_I00695_IG00044_L591 82 2 0.35
87 Hp_I38562_IG30506_L390 82 3 1.05
88 Hp_I05659_IG01019_L943 80 1 0.11
89 Hp_I03611_IG00436_L810 79 4 0.38
89 HELDS7W08JC1EG_length=251 49 1
90 Hp_I20654_IG12598_L702 77 2 0.29
91 Hp_I10522_IG03345_L588 76 2 0.15
92 GS66ZV203DFM3U_length=95 75 1 1.31
93 Hp_I23836_IG15780_L590 74 1 0.16
94 Hp_I15528_IG07472_L1156 73 3 0.17
95 Hp_I07334_IG01751_L2741 73 1 0.04
96 Hp_I06078_IG01161_L583 72 2 0.37
97 Hp_I13122_IG05066_L1913 71 2 0.1
98 Hp_I24705_IG16649_L569 71 1 0.18
99 Hp_I14119_IG06063_L1461 69 3 0.14
100 Hp_I05827_IG01076_L1116 68 4 0.4
100 Hp_I40994_IG32938_L367 67 3 1.07
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

101 Hpb-VAL-14 67 3 0.24
102 Hp_I15710_IG07654_L1132 67 1 0.08
103 Hp_I35779_IG27723_L416 67 2 0.53
104 Hp_C00031_IG00001_L1071 66 1 0.09
105 Hpb-TRP 64 1 0.11
106 Hp_I44260_IG36204_L332 64 1 0.31
107 Hp_I17476_IG09420_L907 62 2 0.22
108 Hp_I06750_IG01437_L1569 61 2 0.13
109 Hp_I07527_IG01847_L1908 60 1 0.05
110 Hp_I13066_IG05010_L1961 59 2 0.1
111 Hp_I06838_IG01481_L1319 59 2 0.08
112 Hp_I03893_IG00508_L677 57 1 0.14
113 Hp_I05472_IG00957_L1361 56 2 0.15
114 Hp_I09071_IG02620_L1210 56 1 0.08
115 Hp_I34129_IG26073_L426 56 2 0.51
116 Hp_I22350_IG14294_L635 55 1 0.15
117 Hp_I32832_IG24776_L445 53 1 0.22
118 Hp_C00282_IG00001_L564 53 1 0.17
119 Hp_I34646_IG26590_L427 53 3 0.53
120 Hp_I17450_IG09394_L904 53 1 0.1
121 Hp_I12608_IG04552_L2437 52 1 0.04
122 Hp_I07171_IG01652_L539 51 2 0.4
123 Hp_I22261_IG14205_L639 51 1 0.16
124 Hp_I25974_IG17918_L541 50 2 0.39
125 Hp_I16083_IG08027_L1071 49 1 0.09
126 Hp_I32811_IG24755_L446 49 1 0.22
127 Hp_I20539_IG12483_L707 48 2 0.29
128 Hp_I45281_IG37225_L323 47 2 0.73
128 GS66ZV208IXGIJ_length=214 46 1
129 Hp_I07274_IG01721_L3765 46 2 0.05
130 Hp_I17541_IG09485_L897 46 1 0.1
131 Hp_I14584_IG06528_L1336 45 2 0.15
132 Hp_I19958_IG11902_L735 44 2 0.28
133 Hp_I30926_IG22870_L465 44 1 0.21
134 Hp_I43395_IG35339_L341 44 1 0.32
135 Hp_I49433_IG41377_L267 44 1 0.37
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

136 Hp_I15237_IG07181_L1208 44 1 0.08
137 Hp_I54277_IG46221_L174 44 1 0.66
138 Hp_I42038_IG33982_L358 43 2 0.66
139 Hp_I28260_IG20204_L501 43 1 0.22
140 Hp_I05355_IG00918_L1570 43 1 0.06
141 Hp_I13874_IG05818_L1547 43 1 0.07
142 Hp_I19711_IG11655_L743 43 1 0.13
143 Hpb-VAL-8 42 3 0.24
144 Hp_I32108_IG24052_L453 42 2 0.22
145 Hp_I03099_IG00335_L808 42 1 0.12
146 Hp_I01422_IG00100_L1076 42 1 0.09
147 Hp_I14757_IG06701_L1297 41 1 0.07
148 HICN8C105FSWIS_length=222 41 1 0.48
149 HELDS7W07IETUG_length=224 41 1 0.47
150 Hp_I13588_IG05532_L1650 41 1 0.06
151 Hp_I32912_IG24856_L446 40 1 0.22
152 Hp_I05397_IG00932_L1799 40 1 0.05
153 Hp_I15168_IG07112_L1217 40 2 0.08
154 Hp_I27637_IG19581_L511 40 2 0.41
155 Hp_I12977_IG04921_L2010 38 1 0.05
156 Hp_I22248_IG14192_L638 38 1 0.15
157 Hp_I02801_IG00283_L2030 37 1 0.05
158 GSXTT4C06GQDI1_length=169 37 1 0.66
159 Hp_I16562_IG08506_L1005 37 3 0.21
160 Hp_I12444_IG04388_L2875 37 1 0.03
161 Hp_I31855_IG23799_L456 37 2 0.47
162 Hp_I05809_IG01070_L1113 36 1 0.09
163 Hp_I13666_IG05610_L1621 36 1 0.06
164 Hp_I05482_IG00960_L1223 36 1 0.08
165 Hp_I11144_IG03656_L469 36 2 0.21
166 Hp_I14323_IG06267_L1413 35 1 0.07
167 GSXTT4C06GZXXX_length=291 35 1 0.36
168 Hp_I43570_IG35514_L336 35 1 0.29
169 GP9KNTD03FPOC6_length=206 35 1 0.53
170 Hp_I13752_IG05696_L1585 35 1 0.06
171 Hp_I36380_IG28324_L410 35 1 0.24
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

172 Hp_I25825_IG17769_L543 35 1 0.18
173 Hp_I17216_IG09160_L933 34 1 0.1
174 GNK0QLK03FM4KR_length=324 34 1 0.32
175 Hp_I48638_IG40582_L276 34 1 0.36
176 Hp_I13426_IG05370_L1731 34 1 0.06
177 Hpb-VAL-3 34 3 0.22
177 Hp_I05548_IG00982_L1432 22 1
177 Hp_I19215_IG11159_L774 21 1
178 Hp_I26494_IG18438_L527 33 1 0.18
179 Hp_I05927_IG01110_L916 33 1 0.1
180 Hp_I47440_IG39384_L295 33 1 0.33
181 Hp_I24494_IG16438_L573 33 1 0.17
182 Hp_I27407_IG19351_L514 33 1 0.2
183 Hp_I22123_IG14067_L644 33 1 0.15
184 Hp_I29233_IG21177_L488 32 1 0.19
185 HICN8C106HC28H_length=166 32 1 0.64
186 Hp_I45671_IG37615_L316 31 1 0.34
187 GSXTT4C07H9V8V_length=405 31 3 0.24
188 Hp_I13843_IG05787_L1552 31 1 0.06
189 Hp_I12776_IG04720_L2202 30 1 0.04
190 Hp_I35665_IG27609_L418 30 1 0.24
191 HELDS7W07IJKS4_length=381 30 1 0.27
192 Hp_I12342_IG04286_L4223 29 1 0.02
193 HICN8C105F8RGF_length=429 29 1 0.24
194 Hp_I24623_IG16567_L570 28 2 0.17
195 Hp_I10916_IG03542_L519 28 1 0.19
196 Hp_I00739_IG00047_L2586 28 2 0.07
197 Hp_I06001_IG01134_L530 27 1 0.19
198 Hp_I01453_IG00104_L978 27 1 0.1
199 Hp_I22685_IG14629_L621 27 1 0.16
200 Hp_I18969_IG10913_L793 27 2 0.26
201 Hp_I17168_IG09112_L939 26 1 0.11
202 Hp_I38243_IG30187_L393 26 1 0.26
203 Hp_I14648_IG06592_L1319 26 1 0.07
204 Hp_I12442_IG04386_L2881 26 1 0.03
205 Hp_I09519_IG02844_L954 26 1 0.11
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Table B.6: Proteins identified in fraction 29 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

206 Hp_I09018_IG02593_L883 26 1 0.11
207 Hp_I30585_IG22529_L470 25 1 0.21
208 Hp_I40421_IG32365_L372 25 1 0.26
209 Hp_I13527_IG05471_L1682 25 1 0.06
210 Hp_I09575_IG02872_L1199 25 1 0.08
211 Hp_I08844_IG02506_L1048 25 1 0.09
212 Hp_I08219_IG02194_L2089 25 1 0.05
213 Hp_I45709_IG37653_L316 24 1 0.32
214 Hp_I26246_IG18190_L526 24 1 0.18
215 Hp_I18874_IG10818_L798 24 1 0.12
216 FL8UM6J01DWGTH_length=207 24 1 0.49
217 Hp_I04010_IG00535_L4397 24 1 0.02
218 GSXTT4C05FSGQ4_length=438 23 1 0.25
219 Hp_I17380_IG09324_L905 23 1 0.11
220 Hp_I16462_IG08406_L1016 23 1 0.09
221 Hp_I16505_IG08449_L1014 23 1 0.09
222 Hp_I40256_IG32200_L371 22 1 0.26
223 Hp_I12485_IG04429_L2697 22 1 0.04
224 Hp_I23359_IG15303_L605 22 1 0.16
225 Hp_I12350_IG04294_L3967 21 1 0.02
226 Hp_I51114_IG43058_L239 21 1 0.47
227 Hp_I07482_IG01825_L2043 21 1 0.05
228 Hp_I04378_IG00631_L1589 20 1 0.06
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES.
HES was fractionated by size exclusion followed by anion exchange fractionation. All
fractions were analysed by mass spectrometry and tested for their inhibitory activity
on GM-CSF BMDC. Fraction 30 showed the ability to completely inhibit IL-12p70
production. Listed are ranks of the proteins in the mass spectrometric analysis, their
accession numbers, the number of peptide hits for the respective protein and their
emPAI values. Red: expressed proteins.

Protein Protein
Rank Protein accession number

score matches
emPAI

1 HICN8C106HP9PI_length=274 911 32 8.85
1 Hp_I10288_IG03228_L610 851 29
2 GNK0QLK03GQOZO_length=396 836 24 2.74
2 GS66ZV203C3717_length=247 731 20
2 GS66ZV203DJXOH_length=245 692 18
2 GWDWRH002CES3N_length=67 122 4
3 Hp_I04570_IG00700_L4683 764 37 0.94
4 Hp_I10419_IG03294_L714 742 23 5.14
5 Hp_I19157_IG11101_L778 679 17 4.58
6 Hp_I02849_IG00289_L1962 664 18 0.2
6 Hp_I02850_IG00289_L1486 614 17
6 Hp_I02853_IG00289_L1028 77 1
7 Hp_I35779_IG27723_L416 633 18 28.95
8 Hp_I08665_IG02417_L1321 464 14 1.46
8 Hp_I08666_IG02417_L925 81 1
8 Hp_I32943_IG24887_L443 37 1
9 Hp_I10590_IG03379_L588 420 13 6.15
9 Hp_I10589_IG03379_L596 149 4
10 Hp_I21313_IG13257_L675 377 11 2.24
11 Hp_I01065_IG00070_L5127 376 25 0.42
11 FL8UM6J01BC1ZN_length=62 125 4 67.44
11 Hp_I01061_IG00070_L5128 370 24
11 Hp_I01081_IG00070_L5124 359 24
11 Hp_I01077_IG00070_L5125 352 23
11 FL8UM6J01AP92T_length=187 56 2
11 FL8UM6J01C588R_length=58 33 1
12 Hpb-VAL-4 370 8 2.06
12 FL8UM6J01BXB62_length=190 297 5
12 FL8UM6J01BH6HY_length=236 128 2
13 Hp_I40421_IG32365_L372 369 7 4.17
14 Hp_I07157_IG01645_L560 326 16 12.23
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

14 Hp_I07158_IG01645_L560 228 13 7.15
15 Hp_I22851_IG14795_L620 315 13 3.9
16 Hp_I05758_IG01053_L926 283 5 0.65
16 Hp_I05759_IG01053_L914 122 1
17 Hp_I22486_IG14430_L629 272 7 1.42
17 GSXTT4C07IB13H_length=463 197 6 1.89
17 Hp_I08791_IG02480_L1486 186 10 0.68
17 Hp_I13898_IG05842_L1539 54 3 0.21
17 Hp_I08792_IG02480_L662 59 4
17 Hp_I19246_IG11190_L772 43 3
17 Hpb-VAL-1.1 42 2
17 Hp_I04671_IG00730_L1535 39 2
17 Hp_I20083_IG12027_L726 30 1
17 HICN8C104EUPYS_length=127 26 1
18 Hp_I14119_IG06063_L1461 264 4 0.29
19 Hp_I24512_IG16456_L570 257 9 3.18
19 GNK0QLK03F82AT_length=271 150 3
20 Hpb-VAL-3 251 8 0.69
20 Hp_I05548_IG00982_L1432 147 3
20 Hp_I19215_IG11159_L774 57 1
20 Hp_I48980_IG40924_L272 50 1
21 HELDS7W08JQN3O_length=274 235 5 0.94
22 Hp_I28744_IG20688_L490 226 8 3.21
23 Hp_I19378_IG11322_L765 225 5 0.83
24 Hp_I13075_IG05019_L1949 225 10 0.43
24 Hp_I28606_IG20550_L493 52 1
25 Hp_I25889_IG17833_L540 223 5 1.31
26 Hp_I26601_IG18545_L528 208 6 1.96
26 GSXTT4C05GBC4L_length=430 72 1
27 Hp_I18858_IG10802_L799 203 6 0.98
28 Hp_I23776_IG15720_L592 203 7 1.48
29 Hp_I03750_IG00471_L768 198 4 0.59
30 Hp_I36380_IG28324_L410 189 7 3.52
31 Hp_I13810_IG05754_L1566 188 6 0.42
32 Hp_I40999_IG32943_L364 187 4 1.71
33 Hp_I07314_IG01741_L2856 184 4 0.14
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

34 Hp_I02051_IG00167_L1023 183 4 0.43
34 GS66ZV202BZOD1_length=219 104 2
34 GS66ZV203C3ECE_length=216 100 2
34 Hp_I48914_IG40858_L269 35 1
35 Hp_I25374_IG17318_L554 178 3 0.62
36 Hp_I05999_IG01134_L555 166 3 0.64
37 Hp_I10136_IG03152_L609 165 4 0.79
38 Hp_I43851_IG35795_L337 164 4 1.8
39 Hp_I50492_IG42436_L247 161 8 10.46
39 Hp_I50368_IG42312_L251 128 5
40 Hp_I07496_IG01832_L2183 161 4 0.18
40 Hp_I07497_IG01832_L1722 154 4 0.24
41 Hp_I28140_IG20084_L502 160 4 1.04
42 Hp_I24965_IG16909_L566 152 5 1.21
43 Hp_I15710_IG07654_L1132 148 3 0.27
43 Hp_I25323_IG17267_L551 90 1
44 Hp_I29394_IG21338_L484 147 4 1.15
45 Hp_I23528_IG15472_L598 143 3 0.6
46 Hp_I00798_IG00050_L1759 131 3 0.17
46 Hp_I00806_IG00050_L1112 40 2 0.18
46 Hp_I00796_IG00050_L1763 96 2
46 Hp_I00809_IG00050_L1090 90 1
46 Hp_I00811_IG00050_L794 28 1
47 Hp_I04541_IG00689_L698 131 5 0.68
47 Hp_I04543_IG00689_L522 67 3
47 Hp_I02360_IG00213_L980 64 1
48 Hp_I10518_IG03343_L562 129 5 0.91
48 Hp_I10517_IG03343_L655 107 5 0.74
49 Hp_I12337_IG04281_L4997 129 7 0.11
49 FL8UM6J01BGCU6_length=234 50 2
49 FL3BO7403BPZG6_length=114 49 1
50 Hp_I21565_IG13509_L658 128 4 0.73
51 Hp_I12705_IG04649_L2285 125 2 0.08
51 FL8UM6J01CI46H_length=220 86 1
52 Hp_I17933_IG09877_L867 123 3 0.39
53 Hp_C00031_IG00001_L1071 121 3 0.3
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

54 Hp_I07312_IG01740_L4913 119 5 0.1
54 Hp_I30910_IG22854_L463 31 2
55 Hp_I12336_IG04280_L5030 117 3 0.06
56 Hp_I12624_IG04568_L2400 115 5 0.22
56 FL8UM6J01C5SEG_length=170 79 2
57 Hp_I34581_IG26525_L426 113 3 0.93
58 Hp_I00801_IG00050_L1766 110 2 0.11
58 Hp_I00800_IG00050_L1766 82 1
59 Hp_I15587_IG07531_L1141 110 4 0.37
60 Hp_I08475_IG02322_L1881 108 1 0.05
61 Hp_I12776_IG04720_L2202 108 3 0.13
62 Hp_I15760_IG07704_L1122 106 2 0.18
63 Hp_I34129_IG26073_L426 106 2 0.51
64 Hp_I13527_IG05471_L1682 105 3 0.18
65 Hp_I26188_IG18132_L529 101 3 0.64
66 Hp_I14513_IG06457_L1354 100 2 0.15
67 Hp_I22064_IG14008_L644 95 3 0.51
67 Hp_I21699_IG13643_L657 36 1
68 Hp_I11671_IG03920_L408 95 3 0.93
69 Hp_I10155_IG03162_L783 92 2 0.25
69 Hp_I10156_IG03162_L593 37 1
70 Hp_I27122_IG19066_L517 90 3 0.7
71 Hp_I38626_IG30570_L389 89 1 0.26
72 Hp_I21725_IG13669_L658 87 1 0.15
73 Hp_C00053_IG00001_L722 86 1 0.14
74 Hp_I27254_IG19198_L516 84 2 0.41
75 Hp_I32194_IG24138_L452 82 2 0.48
76 Hp_I05827_IG01076_L1116 82 5 0.52
76 Hp_I40994_IG32938_L367 33 2
77 Hp_I07995_IG02081_L699 81 2 0.3
78 Hp_I19711_IG11655_L743 81 1 0.13
79 Hp_I30926_IG22870_L465 80 2 0.47
80 Hp_I36714_IG28658_L408 80 3 0.62
81 Hp_I30337_IG22281_L473 80 1 0.22
82 FL8UM6J01B7CV6_length=228 80 2 1.21
83 Hp_I05355_IG00918_L1570 79 2 0.12
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

84 Hp_I13494_IG05438_L1681 79 1 0.06
85 Hp_I20654_IG12598_L702 74 2 0.29
86 Hp_I05472_IG00957_L1361 74 1 0.07
87 Hp_I08175_IG02172_L1570 73 6 0.35
87 Hp_I32820_IG24764_L439 61 2
87 Hp_I19423_IG11367_L741 20 1
88 Hp_I38698_IG30642_L388 73 3 1
89 Hp_I24441_IG16385_L572 73 2 0.36
90 Hpb-VAL7.1 70 2 0.29
91 Hp_I19958_IG11902_L735 69 2 0.28
92 Hp_I14250_IG06194_L1431 69 1 0.07
93 Hp_I05407_IG00935_L1040 69 1 0.09
94 Hp_I52412_IG44356_L216 68 2 1.13
95 Hp_I03893_IG00508_L677 68 1 0.14
96 Hp_I30585_IG22529_L470 67 1 0.21
97 Hp_I05648_IG01016_L1943 65 1 0.05
98 Hp_I07249_IG01697_L637 65 1 0.15
99 Hp_I07334_IG01751_L2741 64 1 0.04
100 Hp_I14314_IG06258_L1412 64 2 0.14
101 Hp_I18845_IG10789_L800 64 1 0.12
102 Hp_I24607_IG16551_L570 63 1 0.17
103 Hp_I44260_IG36204_L332 63 1 0.31
104 Hp_I53318_IG45262_L197 62 2 1.66
104 Hp_I15769_IG07713_L1115 48 1
105 Hp_I21133_IG13077_L683 62 2 0.3
105 Hp_I20188_IG12132_L723 21 1
106 Hp_I15237_IG07181_L1208 61 1 0.08
107 GSXTT4C07H11X2_length=416 61 2 0.54
107 GSXTT4C08I6F9R_length=269 54 1
108 Hp_I15133_IG07077_L1218 59 1 0.08
109 Hp_I13832_IG05776_L1555 59 1 0.06
110 Hpb-VAL-7.3 56 1 0.14
111 Hp_I00747_IG00047_L1129 56 2 0.18
112 Hp_I42038_IG33982_L358 54 2 0.66
113 Hp_I17476_IG09420_L907 54 2 0.22
114 Hp_I06001_IG01134_L530 54 1 0.19
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

115 Hp_I06838_IG01481_L1319 51 1 0.08
116 HELDS7W07H0BVM_length=251 50 1 0.41
117 Hp_I15528_IG07472_L1156 50 2 0.17
118 Hp_I13752_IG05696_L1585 49 1 0.06
119 Hp_I05190_IG00863_L3474 49 1 0.03
120 Hpb-TRP 49 1 0.11
121 Hp_I27637_IG19581_L511 49 1 0.19
122 Hp_I01036_IG00067_L1461 48 2 0.14
122 Hp_I14843_IG06787_L1280 38 1
122 FL8UM6J01CLAA6_length=170 29 1
123 HICN8C105FSWIS_length=222 48 1 0.48
124 Hp_I45281_IG37225_L323 47 2 0.32
125 Hp_I49433_IG41377_L267 47 1 0.37
126 Hp_I03099_IG00335_L808 47 1 0.12
127 Hp_I35665_IG27609_L418 46 2 0.24
128 Hp_I12342_IG04286_L4223 46 1 0.02
129 Hp_I34646_IG26590_L427 46 3 0.89
130 Hp_I05927_IG01110_L916 46 1 0.1
131 Hp_I23863_IG15807_L590 46 1 0.16
132 Hp_I08946_IG02557_L754 44 2 0.27
132 Hp_I28711_IG20655_L493 31 1
133 Hp_I26937_IG18881_L522 44 1 0.19
134 Hp_I04148_IG00569_L936 43 1 0.1
135 Hp_I05565_IG00988_L1210 43 1 0.08
136 Hp_I16781_IG08725_L979 43 1 0.1
137 Hp_I19989_IG11933_L735 42 1 0.14
138 Hp_I14795_IG06739_L1291 42 1 0.07
139 Hp_I27407_IG19351_L514 42 1 0.2
140 Hp_I13122_IG05066_L1913 42 1 0.05
141 Hp_I02136_IG00181_L1019 41 2 0.2
142 Hp_I54277_IG46221_L174 41 1 0.66
143 Hp_I10087_IG03128_L706 40 1 0.13
144 Hp_I38111_IG30055_L394 40 1 0.25
145 Hp_I32912_IG24856_L446 39 1 0.22
146 Hp_I12356_IG04300_L3770 39 2 0.05
147 Hp_I20633_IG12577_L701 39 1 0.14
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

148 Hpb-VAL-14 39 1 0.07
149 GSXTT4C06G5C5J_length=208 39 1 0.5
150 Hp_I22470_IG14414_L621 39 1 0.16
151 Hp_I38988_IG30932_L386 38 2 0.58
152 Hp_I43570_IG35514_L336 38 1 0.29
153 GSXTT4C07H9V8V_length=405 38 3 0.53
153 GSXTT4C07H6OEY_length=167 35 1
153 HICN8C104EVBCL_length=374 25 2
154 Hp_I16462_IG08406_L1016 38 1 0.09
155 Hp_I17541_IG09485_L897 37 1 0.1
156 Hp_I45709_IG37653_L316 37 1 0.32
157 Hp_I07494_IG01831_L2349 36 2 0.08
158 Hp_I40417_IG32361_L370 35 1 0.27
159 Hp_I22261_IG14205_L639 35 1 0.16
160 Hpb-VAL-8 35 1 0.08
161 Hp_I29233_IG21177_L488 35 1 0.19
162 Hp_I07286_IG01727_L3181 34 1 0.03
163 Hp_I31855_IG23799_L456 34 2 0.47
164 Hp_I11951_IG04060_L390 33 1 0.24
165 HICN8C104ETD9I_length=322 33 1 0.32
166 Hp_I14909_IG06853_L1261 33 1 0.08
167 HELDS7W07IETUG_length=224 32 1 0.47
168 Hp_I13066_IG05010_L1961 32 1 0.05
169 Hp_C00282_IG00001_L564 32 1 0.17
170 Hp_I15168_IG07112_L1217 32 1 0.08
171 Hp_I07527_IG01847_L1908 31 2 0.05
172 Hp_I01453_IG00104_L978 31 1 0.1
173 HICN8C106G3J43_length=50 30 1 2.83
174 Hp_I45843_IG37787_L315 30 1 0.33
175 Hp_I11144_IG03656_L469 30 1 0.21
176 FL8UM6J01DWGTH_length=207 30 1 0.49
177 Hp_I05468_IG00955_L951 30 1 0.1
178 Hp_I13426_IG05370_L1731 29 1 0.06
179 HICN8C105F7BX8_length=227 29 1 0.47
180 Hp_I05315_IG00904_L1277 29 1 0.08
181 Hp_I13909_IG05853_L1521 29 1 0.06
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Table B.7: Proteins identified in fraction 30 of the sequential fractionation of HES
(continued).

Protein Protein
Rank Protein accession number

score matches
emPAI

182 Hp_I24096_IG16040_L584 29 1 0.18
183 GKYPR1L02BZNH0_length=404 28 1 0.24
184 Hp_I12361_IG04305_L3540 28 1 0.03
185 Hp_I40246_IG32190_L374 27 1 0.27
186 Hp_I07814_IG01991_L1596 27 1 0.06
187 Hp_I16226_IG08170_L1053 27 1 0.09
188 Hpb-VAL-12 27 1 0.07
189 Hp_I17216_IG09160_L933 26 1 0.1
190 GLSD98I05F0MGD_length=346 25 1 0.29
191 Hp_I01758_IG00132_L2863 25 1 0.03
192 Hp_I15461_IG07405_L1171 24 1 0.08
193 Hp_I30912_IG22856_L462 24 1 0.23
194 Hp_I51550_IG43494_L231 24 1 0.47
195 Hp_I45971_IG37915_L313 23 1 0.32
196 Hp_I07274_IG01721_L3765 23 1 0.03
197 Hp_I32832_IG24776_L445 23 1 0.22
198 Hp_I09016_IG02592_L604 23 1 0.16
199 Hp_I23359_IG15303_L605 23 1 0.16
200 Hp_I14323_IG06267_L1413 23 1 0.07
201 GS66ZV203DB0T9_length=193 23 1 0.55
202 Hp_I09018_IG02593_L883 22 1 0.11
203 Hp_I20539_IG12483_L707 22 1 0.14
204 Hp_I03369_IG00388_L681 21 1 0.14
205 Hp_I36389_IG28333_L409 21 1 0.23
206 Hp_I23736_IG15680_L595 21 1 0.17
207 Hp_I44251_IG36195_L332 21 1 0.31
208 Hp_I19755_IG11699_L745 21 1 0.13
209 Hp_I09809_IG02989_L788 21 1 0.13
210 Hp_I08063_IG02116_L1656 20 1 0.06
211 Hp_I09465_IG02817_L1098 20 1 0.09
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Figure B.1: Rejected candidates from the sequential fractionation. HES was
fractionated using size exclusion fractionation followed by fractionation of the active
fractions by anion exchange fractionation. All sequential fractions were analysed
by mass spectrometry. Proteins with emPAI values peaking in the active fractions
were subjected to further selection comparing their emPAI profiles to activity across
the fractions, excluding housekeeping, egg or larval stage proteins and those that
have been identified falsely or with only one peptide. These excluded proteins are
shown here with their emPAI values across the fractions on the left y axis and the
concentration of IL-12p70 produced by GM-CSF BMDC treated with LPS (1µg/ml)
and the respective fraction on the right y axis.
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B.3 Mass spectrometry and analysis of all

fractions

Table B.9: Proteins identified in fraction 14 of the second size exclusion
fractionation of HES. 1.244mg HES were fractionated by size exclusion fractionation
and all fractions were analysed by mass spectrometry in the facility in Edinburgh,
using an Orbitrap mass spectrometer and using Mascot and the in-house H. polygyrus
transcriptomic database. The significance threshold for consideration of proteins was
p<0.05; a minimum cutoff score of 20 was set. Fractions were tested for their inhibitory
activity on GM-CSF BMDC; fraction 14 showed the ability to completely inhibit IL-
12p70 production. Listed are ranks of the proteins, their accession numbers, the
number of peptide hits for the respective protein, their emPAI values and their ranks in
the earlier size exclusion fractionation analysed in Glasgow. Green: proteins identified
in the previous analysis of a size exclusion fraction 14; Red: expressed proteins.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

1 Hp_I07157_IG01645_L560 643 46 106.92
1 Hp_I07158_IG01645_L560 497 42 65.49
1 Hp_I10997_IG03583_L513 35 6
2 Hp_I06078_IG01161_L583 351 22 9.48
2 Hp_I06079_IG01161_L526 86 4
3 HICN8C106HP9PI_length=274 348 13 2.31
4 Hp_I02849_IG00289_L1962 339 11 0.45 11
5 Hp_I26601_IG18545_L528 324 11 6.31
5 GSXTT4C05GBC4L_length=430 53 1
6 Hp_I10419_IG03294_L714 307 14 3.74
7 Hp_I21313_IG13257_L675 290 10 2.69
8 Hp_I15588_IG07532_L1149 261 8 0.93
9 Hp_I13075_IG05019_L1949 256 9 0.5
10 Hp_I19157_IG11101_L778 253 7 1.23 19
11 Hp_I28744_IG20688_L490 237 10 5.04
12 Hp_I23776_IG15720_L592 227 11 2.91
13 Hp_I21565_IG13509_L658 217 11 2.11
14 Hp_I38325_IG30269_L391 177 6 3.09
15 Hp_I22851_IG14795_L620 174 11 2.67
16 Hp_I04570_IG00700_L4683 170 12 0.19
17 Hp_I15528_IG07472_L1156 168 6 0.61
18 Hp_C00053_IG00001_L722 168 5 0.69
18 Hp_I10817_IG03493_L822 154 6 0.74
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

18 Hp_I06559_IG01341_L2453 81 2
18 Hp_I08959_IG02564_L1212 69 4 2
19 Hp_I04266_IG00599_L823 166 5 0.76
19 GSXTT4C06HF8RX_length=190 62 1
20 Hp_I00798_IG00050_L1759 165 7 0.44
20 Hp_I00801_IG00050_L1766 117 4 0.17
20 Hp_I00803_IG00050_L1749 150 6
20 Hp_I00800_IG00050_L1766 113 4
20 Hp_I00796_IG00050_L1763 106 4
20 Hp_I00799_IG00050_L1753 92 3
20 Hp_I00811_IG00050_L794 85 4
20 Hp_I00809_IG00050_L1090 82 2
20 Hp_I00806_IG00050_L1112 44 2
20 Hp_I22699_IG14643_L627 38 1
20 Hp_I00808_IG00050_L1102 34 1
21 GNK0QLK03GQOZO_length=396 155 6 1.41
21 GS66ZV203C3717_length=247 150 5
21 GS66ZV203DJXOH_length=245 136 4
21 GWDWRH002CES3N_length=67 22 1
22 HICN8C105FSWIS_length=222 155 6 1.19
23 Hp_I10517_IG03343_L655 125 7 1.3
23 Hp_I10518_IG03343_L562 110 7 1.25
24 Hp_I00841_IG00053_L616 124 4 0.88
24 HICN8C105GB60T_length=201 33 1
25 Hp_I34892_IG26836_L422 122 3 0.91
26 Hp_I34646_IG26590_L427 120 8 4.47
27 Hp_I19989_IG11933_L735 118 8 1.46
28 Hp_I15778_IG07722_L1118 118 3 0.29
29 Hp_I00843_IG00054_L964 117 6 0.63
29 Hp_I24240_IG16184_L580 82 5 0.88
29 Hp_I00850_IG00054_L907 69 4 0.51
29 GS66ZV202BO7NU_length=145 108 5
29 GS66ZV203DM0PP_length=226 82 4
29 GS66ZV203CUYIB_length=146 71 3
29 GS66ZV203C4QVV_length=191 36 2
30 Hp_I23615_IG15559_L596 110 4 0.85
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

30 GKYPR1L02BZNH0_length=404 48 1
31 Hp_I05325_IG00908_L1903 108 1 0.05 5
32 Hp_I40444_IG32388_L371 106 3 1.19
33 Hp_I25374_IG17318_L554 99 3 0.62
34 Hp_I38933_IG30877_L384 98 2 0.59
35 Hp_I24512_IG16456_L570 98 4 0.89
35 GNK0QLK03F82AT_length=271 50 2
36 Hp_I22123_IG14067_L644 97 3 0.52
37 Hp_I38988_IG30932_L386 96 3 0.98
38 Hp_I05659_IG01019_L943 95 2 0.22
39 Hp_I16449_IG08393_L1019 91 5 0.42
39 HICN8C104D48FA_length=165 52 1
40 Hpb-Sequence-14 88 2 0.67
40 HICN8C104ELA3K_length=239 75 1
40 GNK0QLK03FSOQA_length=163 28 1
41 Hp_I27637_IG19581_L511 88 3 0.68
42 Hp_I18845_IG10789_L800 88 3 0.4
43 Hp_I07249_IG01697_L637 86 4 0.75
44 Hp_I26246_IG18190_L526 85 4 0.66
45 Hp_I50368_IG42312_L251 85 3 1.81
46 Hp_I41819_IG33763_L358 85 3 1.17
47 Hp_I12336_IG04280_L5030 84 7 0.12
48 Hp_I40999_IG32943_L364 84 1 0.28
49 Hp_I21617_IG13561_L662 83 1 0.16 4
50 Hp_I35779_IG27723_L416 83 4 1.34
51 GS66ZV203DFM3U_length=95 80 2 4.36
52 Hp_I40421_IG32365_L372 77 2 0.6
53 HELDS7W07H0BVM_length=251 76 3 1.78
53 GS66ZV203DAUV3_length=283 68 2
53 HELDS7W08JC1EG_length=251 47 1
53 GSXTT4C08JOHGR_length=153 24 1
54 Hp_I24881_IG16825_L563 76 2 0.41
55 Hp_I25622_IG17566_L549 75 2 0.39
56 Hp_I08946_IG02557_L754 75 4 0.6
56 Hp_I28711_IG20655_L493 38 1
57 Hp_I23324_IG15268_L606 75 4 0.79
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

58 Hp_I07490_IG01829_L2288 75 1 0.04
59 Hpb-VAL-2.2 74 2 0.15
59 Hp_I07952_IG02060_L1493 58 1
60 Hp_I19992_IG11936_L730 73 2 0.28
61 Hp_I07497_IG01832_L1722 72 4 0.24
61 Hp_I07496_IG01832_L2183 45 3
62 Hp_I39181_IG31125_L382 71 2 0.58
63 Hp_I14119_IG06063_L1461 70 1 0.07
64 Hp_I12776_IG04720_L2202 69 2 0.09
64 FL8UM6J01A0LLF_length=129 50 1 8
65 Hp_I12337_IG04281_L4997 69 6 0.09
65 FL3BO7403BPZG6_length=114 41 2
65 FL8UM6J01BGCU6_length=234 35 1
65 FL8UM6J01CKHCK_length=278 32 1
66 Hp_I28724_IG20668_L494 68 1 0.2
67 Hp_I13832_IG05776_L1555 67 2 0.12
68 Hp_I42607_IG34551_L347 66 1 0.29
69 Hp_I15783_IG07727_L1116 66 1 0.09
70 Hp_I44251_IG36195_L332 65 4 1.98
71 Hp_I32194_IG24138_L452 65 2 0.48
72 Hp_I01061_IG00070_L5128 65 5 0.08
72 FL8UM6J01AP92T_length=187 36 1
73 Hp_I05809_IG01070_L1113 63 2 0.18
74 Hp_I12624_IG04568_L2400 63 2 0.08
74 FL8UM6J01C5SEG_length=170 40 1
75 Hp_I06001_IG01134_L530 63 1 0.19
76 Hp_I49594_IG41538_L265 63 3 1.64
76 Hp_I49433_IG41377_L267 42 2 0.89
77 Hp_I21133_IG13077_L683 62 5 0.48 7
77 Hp_I20188_IG12132_L723 60 3
77 Hp_I03894_IG00508_L604 54 1
78 Hp_C02597_IG00028_L1734 61 4 0.24
79 Hp_I30337_IG22281_L473 60 1 0.22
80 Hp_I13743_IG05687_L1584 59 1 0.06
81 Hp_I26937_IG18881_L522 59 2 0.41
82 Hp_I02548_IG00238_L1779 58 2 0.11
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

83 Hp_I07527_IG01847_L1908 58 3 0.05
84 Hp_I15760_IG07704_L1122 58 1 0.09
85 Hp_I29394_IG21338_L484 56 2 0.47
86 Hp_I01036_IG00067_L1461 55 2 0.14
86 Hp_I13955_IG05899_L1513 53 1
86 FL8UM6J01CLAA6_length=170 27 1
87 Hp_I05758_IG01053_L926 55 1 0.11
88 Hp_I22064_IG14008_L644 54 2 0.32
88 Hp_I21699_IG13643_L657 24 1
89 Hp_I36714_IG28658_L408 54 1 0.27
90 Hp_I15194_IG07138_L1211 53 2 0.16
91 Hp_I20768_IG12712_L696 52 2 0.29 6
91 GSXTT4C05FZBSU_length=163 27 1
92 Hp_I07995_IG02081_L699 52 2 0.3
93 Hp_I05407_IG00935_L1040 51 1 0.09
94 Hp_I05827_IG01076_L1116 51 4 0.38
94 Hp_I40994_IG32938_L367 38 2 0.62
95 Hp_I14371_IG06315_L1386 51 1 0.07
96 Hp_I15587_IG07531_L1141 50 3 0.27
97 Hp_I08665_IG02417_L1321 49 2 0.15
97 Hp_I08666_IG02417_L925 45 1
98 Hp_I30585_IG22529_L470 48 1 0.21
99 Hp_C08742_IG00702_L613 48 2 0.35
100 Hp_C00179_IG00001_L1163 48 1 0.09
101 Hp_I03893_IG00508_L677 48 1 0.14
102 Hp_I03750_IG00471_L768 47 2 0.26
103 Hp_I22350_IG14294_L635 47 1 0.15
104 Hp_I14314_IG06258_L1412 47 1 0.07
105 Hp_I40801_IG32745_L368 47 2 0.62
106 Hp_C00031_IG00001_L1071 47 1 0.09
107 Hp_I18253_IG10197_L840 47 1 0.11
108 Hpb-VAL-7.3 46 1 0.14
109 Hp_I23528_IG15472_L598 46 2 0.37
110 Hp_I09383_IG02776_L925 46 1 0.11
111 Hp_I22261_IG14205_L639 45 1 0.16 3
112 Hp_I38111_IG30055_L394 45 2 0.56
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

113 Hp_I35752_IG27696_L420 45 3 0.57
114 Hp_I06096_IG01167_L557 45 1 0.18
115 Hpb-VAL-1.1 44 2 0.15
115 Hp_I04671_IG00730_L1535 38 1
115 Hp_I08791_IG02480_L1486 25 1
116 Hp_I25949_IG17893_L538 44 3 0.39
117 Hp_I06509_IG01316_L615 44 1 0.16
118 Hp_I22275_IG14219_L639 44 1 0.15
119 Hp_I02965_IG00308_L1259 43 1 0.08
120 Hp_I05999_IG01134_L555 43 1 0.18 26
121 GNK0QLK03FHM83_length=50 43 1 2.83
122 Hp_I40392_IG32336_L373 43 1 0.28
123 HICN8C105F7BX8_length=227 43 1 0.47
124 Hp_I19711_IG11655_L743 43 1 0.13
125 Hp_I21746_IG13690_L653 43 1 0.15
126 Hp_I56769_IG48713_L107 43 1 1.18
127 Hp_I13332_IG05276_L1776 43 1 0.05
128 Hp_I38850_IG30794_L366 42 2 0.65
129 Hpb-VAL7.1 42 1 0.14
130 Hp_I15488_IG07432_L1169 42 2 0.17
131 Hp_I19958_IG11902_L735 41 1 0.13
132 GQ6YEYD07H2LVG_length=277 40 2 0.38
133 Hp_I24623_IG16567_L570 40 2 0.36
134 Hp_I08415_IG02292_L1231 39 1 0.08
135 Hp_I24430_IG16374_L575 38 1 0.17
136 Hp_I00695_IG00044_L591 38 1 0.16
137 Hp_C00282_IG00001_L564 38 3 0.37
138 GLSD98I04D6NC8_length=454 37 1 0.21
139 Hp_I24705_IG16649_L569 37 1 0.18
140 HICN8C105F4XWC_length=461 37 2 0.47
140 GSXTT4C07H11X2_length=416 33 1
140 FL8UM6J01CZ23X_length=243 22 1
141 GSXTT4C06GXMIV_length=179 37 2 0.58
142 Hp_I12932_IG04876_L2052 36 1 0.05
143 Hp_I03228_IG00366_L2337 36 1 0.04
144 Hp_I18333_IG10277_L834 36 2 0.25
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

144 Hp_I23692_IG15636_L593 26 1
145 Hp_I03365_IG00388_L986 36 1 0.1
146 Hp_I24096_IG16040_L584 36 2 0.38
147 Hp_I05755_IG01052_L1113 35 1 0.09
148 Hp_I23836_IG15780_L590 35 2 0.35 16
149 Hp_I24997_IG16941_L561 35 1 0.17
150 Hp_I24494_IG16438_L573 35 1 0.17
151 Hp_I25184_IG17128_L557 35 1 0.18
152 Hp_I30636_IG22580_L471 34 1 0.21
153 Hp_I15168_IG07112_L1217 34 1 0.08
154 GSXTT4C07IOOUR_length=396 34 1 0.27
155 Hp_I21268_IG13212_L674 33 1 0.14
156 Hp_I14639_IG06583_L1320 33 1 0.07
157 Hp_I09863_IG03016_L798 33 1 0.13
158 Hp_I11144_IG03656_L469 33 1 0.21
159 Hp_I23863_IG15807_L590 33 1 0.16
160 Hp_I06838_IG01481_L1319 33 1 0.08
161 Hp_I31855_IG23799_L456 33 1 0.21
162 Hp_I05565_IG00988_L1210 33 2 0.16
163 Hp_I07274_IG01721_L3765 32 2 0.03
164 Hp_I13494_IG05438_L1681 32 1 0.06
165 Hp_I05058_IG00828_L787 32 1 0.13
166 Hp_I19378_IG11322_L765 32 1 0.13
167 Hp_I30926_IG22870_L465 32 1 0.21
168 Hp_I11447_IG03808_L449 32 1 0.22
169 Hp_I12456_IG04400_L2825 31 1 0.03
170 Hp_I44137_IG36081_L328 31 1 0.31
171 Hp_I25725_IG17669_L542 31 2 0.38
172 Hp_I43570_IG35514_L336 31 1 0.29
173 Hp_I02234_IG00194_L1318 31 1 0.07
174 Hp_I12705_IG04649_L2285 31 1 0.04
175 Hp_I23530_IG15474_L600 31 3 0.35
176 GS66ZV203DB0T9_length=193 30 1 0.55
177 Hp_I20989_IG12933_L687 30 1 0.14
178 GLSD98I05F6IT3_length=173 28 1 0.6
179 Hp_I07334_IG01751_L2741 28 1 0.04
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Table B.9: Proteins identified in fraction 14 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

180 Hp_I05355_IG00918_L1570 28 1 0.06 10
181 Hp_I43185_IG35129_L337 28 1 0.31
182 Hp_I26844_IG18788_L525 27 1 0.18
183 Hpb-TRP 27 1 0.11
184 Hp_I07526_IG01847_L1909 27 2 0.05
185 Hp_I14584_IG06528_L1336 26 1 0.07
186 Hp_I17383_IG09327_L916 25 1 0.11
187 Hp_I16638_IG08582_L998 25 1 0.1
188 Hp_I15353_IG07297_L1178 25 1 0.08
189 Hp_I25677_IG17621_L546 25 1 0.18
190 Hp_I16723_IG08667_L984 25 1 0.1
191 Hp_I40417_IG32361_L370 25 1 0.27
192 Hp_I45671_IG37615_L316 25 1 0.34
193 Hp_I22320_IG14264_L638 24 1 0.15
194 Hp_I08175_IG02172_L1570 24 1 0.06
195 Hp_I36017_IG27961_L415 24 1 0.23
196 Hp_I26504_IG18448_L528 23 1 0.19
197 GSXTT4C06GUNT5_length=342 23 1 0.3
198 Hp_I22388_IG14332_L637 23 1 0.15 1
199 Hp_I06335_IG01256_L998 23 1 0.1
200 Hp_I15133_IG07077_L1218 22 1 0.08
201 FL8UM6J01BC1ZN_length=62 21 1 1.88
202 Hp_I13122_IG05066_L1913 21 1 0.05
203 Hp_I18045_IG09989_L856 21 1 0.11
204 Hp_I44112_IG36056_L331 20 1 0.3
205 Hp_I27930_IG19874_L505 20 1 0.2
206 Hp_I38451_IG30395_L390 20 1 0.26
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Table B.10: Proteins identified in fraction 15 of the second size exclusion
fractionation of HES. 1.244mg HES were fractionated by size exclusion fractionation
and all fractions were analysed by mass spectrometry in the facility in Edinburgh,
using an Orbitrap mass spectrometer and using Mascot and the in-house H. polygyrus
transcriptomic database. The significance threshold for consideration of proteins was
p<0.05; a minimum cutoff score of 20 was set. Fractions were tested for their inhibitory
activity on GM-CSF BMDC; fraction 15 showed the ability to completely inhibit IL-
12p70 production. Listed are ranks of the proteins, their accession numbers, the
number of peptide hits for the respective protein, their emPAI values and their ranks in
the earlier size exclusion fractionation analysed in Glasgow Green: proteins identified
in the previous analysis of a size exclusion fraction 15; Red: expressed proteins.

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

1 Hp_I02849_IG00289_L1962 154 4 0.15 14
2 Hp_I13075_IG05019_L1949 151 5 0.25
2 Hp_I28606_IG20550_L493 57 1
3 Hp_I07157_IG01645_L560 134 14 2.64
3 Hp_I10997_IG03583_L513 34 3
4 Hp_I26601_IG18545_L528 111 2 0.44 11
4 GSXTT4C05GBC4L_length=430 79 1
5 Hp_I31855_IG23799_L456 104 6 0.21
6 Hp_I38325_IG30269_L391 95 3 1.02
6 Hp_I38451_IG30395_L390 72 3 1.05
7 Hp_C00053_IG00001_L722 91 3 0.3
8 Hp_I05057_IG00828_L820 89 3 0.4
9 GNK0QLK03GQOZO_length=396 78 2 0.55
10 Hp_I10419_IG03294_L714 76 4 0.68 15
11 Hp_I03893_IG00508_L677 74 2 0.3 4
11 Hp_I03895_IG00508_L600 54 1
12 Hp_I08946_IG02557_L754 73 3 0.42
12 Hp_I28711_IG20655_L493 43 1
13 Hp_I32811_IG24755_L446 68 1 0.22
14 Hp_I42607_IG34551_L347 66 2 0.67
15 Hp_I15194_IG07138_L1211 64 3 0.26
16 Hp_I12337_IG04281_L4997 63 8 0.07
16 FL8UM6J01BANI8_length=60 55 1
16 FL3BO7403BPZG6_length=114 33 1
16 FL8UM6J01BGCU6_length=234 22 1
17 Hp_I07527_IG01847_L1908 63 2 0.05
18 Hp_I22851_IG14795_L620 60 2 0.33 13
19 Hp_I10855_IG03512_L534 59 2 0.4
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Table B.10: Proteins identified in fraction 15 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

20 HICN8C106HP9PI_length=274 57 1 0.35
21 Hp_I21133_IG13077_L683 54 5 0.3 3
21 Hp_I03894_IG00508_L604 23 2
22 Hp_I21565_IG13509_L658 53 4 0.53 5
23 Hp_I16449_IG08393_L1019 52 1 0.09
24 HICN8C105FSWIS_length=222 52 3 1.19
25 Hp_I56769_IG48713_L107 52 1 1.18
26 GSXTT4C05FPGBC_length=392 52 1 0.25
27 Hp_I22064_IG14008_L644 52 2 0.15
28 Hp_I10518_IG03343_L562 51 2 0.38
28 Hp_I10517_IG03343_L655 44 1
29 Hp_I43395_IG35339_L341 51 1 0.32
30 Hp_I14584_IG06528_L1336 50 1 0.07
31 Hp_I06838_IG01481_L1319 50 1 0.08
32 GS66ZV202BO7NU_length=145 49 2 2.25
33 Hp_I01036_IG00067_L1461 48 3 0.21
33 Hp_I14843_IG06787_L1280 45 1
34 Hp_I19992_IG11936_L730 47 1 0.13
35 Hp_I25725_IG17669_L542 47 1 0.18
36 Hp_I07274_IG01721_L3765 46 1 0.03
37 FL8UM6J01B7CV6_length=228 46 1 0.49
38 Hp_I31577_IG23521_L459 45 1 0.22
39 Hp_I18845_IG10789_L800 45 1 0.12
40 Hp_I40801_IG32745_L368 43 1 0.27 21
41 Hp_I14371_IG06315_L1386 43 1 0.07
42 Hp_I00796_IG00050_L1763 42 2 0.11
42 Hp_I00806_IG00050_L1112 40 1
42 Hp_I00800_IG00050_L1766 28 1
43 Hp_I12336_IG04280_L5030 41 6 0.08 1
44 Hp_I23615_IG15559_L596 39 1 0.17
45 Hp_I16462_IG08406_L1016 38 2 0.19
46 Hp_I20768_IG12712_L696 37 1 0.14
47 Hp_I14119_IG06063_L1461 37 1 0.07
48 Hp_I05758_IG01053_L926 36 1 0.11
49 Hp_I15778_IG07722_L1118 36 1 0.09
50 Hp_I34892_IG26836_L422 36 1 0.24
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Table B.10: Proteins identified in fraction 15 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

51 Hp_I19378_IG11322_L765 36 1 0.13
52 Hp_I08791_IG02480_L1486 36 1 0.07 18
53 Hp_I27940_IG19884_L505 35 1 0.19
54 Hp_I22261_IG14205_L639 35 1 0.16
55 Hp_I10601_IG03385_L624 35 1 0.16
56 Hp_I18384_IG10328_L830 34 1 0.12
57 Hp_C00318_IG00001_L1664 34 1 0.06
58 Hp_I05827_IG01076_L1116 34 1 0.08
59 Hp_I35726_IG27670_L415 34 1 0.24
60 HICN8C104EH4N8_length=157 34 1 0.68
61 Hp_I21726_IG13670_L658 33 1 0.14
62 Hp_I23324_IG15268_L606 33 1 0.16
63 Hp_I01061_IG00070_L5128 33 3 0.04
63 FL8UM6J01AUO3H_length=165 30 1
63 FL8UM6J01DHE8P_length=68 24 1
64 Hp_I14639_IG06583_L1320 33 1 0.07
65 GLSD98I05F0MGD_length=346 32 1 0.29
66 Hp_I13810_IG05754_L1566 32 1 0.06
67 Hp_I12624_IG04568_L2400 32 3 0.08
67 FL8UM6J01C5SEG_length=170 28 1
67 FL8UM6J01BLY7J_length=177 22 2
68 Hp_I16083_IG08027_L1071 32 2 0.09
69 FL8UM6J01EFBYL_length=63 32 1 1.88
70 Hp_I29233_IG21177_L488 31 1 0.19
71 Hp_I21825_IG13769_L655 31 1 0.15
72 GNK0QLK03G3KHF_length=294 31 1 0.34
73 Hp_I07249_IG01697_L637 30 1 0.15
74 Hp_I00695_IG00044_L591 30 1 0.16
75 Hp_I45710_IG37654_L317 29 1 0.33
76 Hp_I03099_IG00335_L808 28 1 0.12
77 Hpb-APY-2 28 2 0.09
78 Hp_I23736_IG15680_L595 28 1 0.17
79 Hpb-VAL-1.1 28 1 0.07
80 Hp_I13874_IG05818_L1547 28 1 0.06
81 Hp_I15133_IG07077_L1218 28 1 0.08
82 Hp_C02597_IG00028_L1734 28 1 0.06
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Table B.10: Proteins identified in fraction 15 of the second size exclusion fractionation
of HES (continued).

Protein Protein emPAI Rank in
Rank Protein accession number

score matches 1. MS

83 Hp_I30075_IG22019_L477 28 2 0.21
84 GNK0QLK03F82AT_length=271 27 2 0.38
85 Hp_I43570_IG35514_L336 27 1 0.29
86 Hp_I12936_IG04880_L2046 26 1 0.05
87 Hp_I40558_IG32502_L371 26 1 0.27
88 Hp_I16860_IG08804_L972 26 1 0.11
89 Hp_I04332_IG00616_L354 26 1 0.28
90 Hp_I50368_IG42312_L251 26 1 0.41
91 Hp_I45709_IG37653_L316 26 1 0.32
92 Hp_I05268_IG00889_L2671 25 2 0.04
93 Hp_I13122_IG05066_L1913 25 1 0.05
94 Hp_I20875_IG12819_L687 25 1 0.14
95 Hp_I01383_IG00095_L656 24 1 0.16
96 Hp_I28625_IG20569_L494 24 1 0.2
97 GLSD98I04EBL7F_length=389 23 1 0.26
98 Hp_I04525_IG00683_L718 23 1 0.14
99 Hp_I32491_IG24435_L448 23 1 0.23
100 Hp_I28383_IG20327_L491 22 1 0.21
101 Hp_I27958_IG19902_L502 22 1 0.19
102 Hp_I16854_IG08798_L973 21 1 0.1
103 Hp_I05565_IG00988_L1210 21 1 0.08 9
104 Hp_I34113_IG26057_L428 20 1 0.25
105 Hp_I14323_IG06267_L1413 20 1 0.07
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES. 1mg HES was fractionated by anion exchange fractionation
and all fractions were analysed by mass spectrometry in the facility in Edinburgh,
using an Orbitrap mass spectrometer and using Mascot and the in-house H. polygyrus
transcriptomic database. The significance threshold for consideration of proteins was
p<0.05; a minimum cutoff score of 20 was set. Fractions were tested for their inhibitory
activity on GM-CSF BMDC; fraction 25 showed the ability to completely inhibit IL-
12p70 production. Listed are ranks of the proteins, their accession numbers, the
number of peptide hits for the respective protein, their emPAI values and their ranks in
the earlier size exclusion fractionation analysed in Glasgow. Green: proteins identified
in the two active fractions 39 and 40 of the previous anion exchange fractionation of
HES; Red: expressed proteins.

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

1 Hpb-VAL-2.2 1007 42 1.46 16
1 Hp_I07952_IG02060_L1493 884 38
1 Hp_I16213_IG08157_L1054 651 28 45
2 Hpb-VAL-3 752 23 2.04 15
2 Hp_I48980_IG40924_L272 262 7 9.6 23
2 Hp_I05548_IG00982_L1432 482 13
2 Hp_I19215_IG11159_L774 71 3
3 Hp_I01077_IG00070_L5125 689 35 0.78
3 Hp_I01065_IG00070_L5127 682 34 0.71 10
3 Hp_I01085_IG00070_L5126 698 35
3 Hp_I01061_IG00070_L5128 672 34
3 FL8UM6J01DHE8P_length=68 53 1
3 FL8UM6J01CURPT_length=239 50 2
3 FL8UM6J01B6EWE_length=223 44 2
3 FL8UM6J01C588R_length=58 42 1
3 FL8UM6J01AP92T_length=187 35 1
3 FL3BO7402A3GMD_length=78 33 1
3 FL8UM6J01D3AZE_length=56 32 1
3 FL8UM6J01AF8W5_length=111 30 1
3 FL8UM6J01BNPTC_length=64 25 1
4 Hp_I04627_IG00719_L1926 349 13 0.79
4 Hp_I04629_IG00719_L1853 294 12 0.75 8
5 Hpb-VAL-4 341 12 3.66
5 FL8UM6J01BXB62_length=190 246 7
5 HELDS7W07IOFZZ_length=285 158 3
5 FL8UM6J01BH6HY_length=236 88 2
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number
score matches

emPAI
fr. 39 fr. 40

6 Hpb-VAL-12 304 15 1.15
6 HICN8C105F8RGF_length=429 36 1
7 Hpb-VAL-5 298 14 0.91
7 Hp_I07899_IG02033_L1514 232 12
7 Hp_I50804_IG42748_L243 26 1
8 Hp_I22486_IG14430_L629 276 9 1.42
8 Hp_I08791_IG02480_L1486 187 8 0.48 51
8 Hp_I04202_IG00583_L1521 154 4 0.29
8 Hp_I13898_IG05842_L1539 140 4 0.29
8 GNK0QLK03HBAHW_length=398 70 2 0.59
8 Hpb-VAL-1.2 107 3
8 Hp_I08792_IG02480_L662 35 1
8 Hp_I04671_IG00730_L1535 22 1
9 Hp_I12337_IG04281_L4997 254 18 0.35 52
9 Hp_I17241_IG09185_L930 44 1
9 FL3BO7403BPZG6_length=114 38 1
9 FL8UM6J01C5UK3_length=170 27 1
9 FL8UM6J01BANI8_length=60 25 1
9 HICN8C106HRUG1_length=372 22 1
10 Hp_I12803_IG04747_L2174 249 10 0.41
10 Hp_I34273_IG26217_L428 22 1
11 Hp_I13874_IG05818_L1547 247 11 0.82 17 24
12 Hp_I07682_IG01925_L1479 227 10 0.58 69 18
13 Hp_I04570_IG00700_L4683 224 15 0.34 50 98
14 Hp_I15710_IG07654_L1132 194 8 0.9 12
14 Hp_I25323_IG17267_L551 90 4 0.95
14 Hp_I16723_IG08667_L984 36 2 0.2 68
15 Hp_I07836_IG02002_L1957 190 6 0.33
16 Hp_I13075_IG05019_L1949 189 11 0.64
17 Hp_I05693_IG01031_L1691 186 9 0.65 12 4
17 GSXTT4C06GWJRB_length=411 65 2
17 GSXTT4C06GPQYK_length=226 33 1
18 Hp_I13043_IG04987_L1979 185 7 0.39
18 Hp_I12998_IG04942_L2000 107 4
19 Hp_I02849_IG00289_L1962 181 5 0.21 24 31
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

19 Hp_I02853_IG00289_L1028 149 4
19 Hp_I02850_IG00289_L1486 49 1
20 Hp_I14221_IG06165_L1437 174 8 0.67
20 FL8UM6J01A9TLT_length=238 101 3
20 FL8UM6J01DWOYY_length=214 67 2
21 Hp_I25311_IG17255_L555 171 7 2.15 20 20
21 Hp_I06127_IG01177_L423 80 2
21 FL8UM6J01EH57D_length=239 68 2
21 Hp_I06126_IG01177_L442 64 1
21 Hp_I46145_IG38089_L308 35 1
22 Hp_I01207_IG00080_L1679 171 7 0.42
22 Hp_I01209_IG00080_L442 83 2
22 Hp_I45924_IG37868_L314 57 2
23 Hpb-VAL-8 165 11 1.22
23 Hp_I08945_IG02557_L1281 151 9
24 Hp_I07468_IG01818_L2128 163 7 0.29
24 Hp_I20319_IG12263_L706 82 1
25 GS66ZV203CYBIS_length=408 159 5 0.95
25 GS66ZV202B7UAH_length=375 94 2
25 GLSD98I04EAT7X_length=285 85 3
26 Hp_I21073_IG13017_L680 156 6 0.95 35 13
27 Hp_I08665_IG02417_L1321 155 4 0.32 4 2
28 Hp_I15157_IG07101_L1223 144 4 0.36 48
29 Hp_I20153_IG12097_L724 143 6 0.63 29
30 Hp_I15089_IG07033_L1228 129 4 0.35 42
31 Hp_I21313_IG13257_L675 127 5 0.92 65
32 Hp_I01451_IG00104_L976 117 8 0.94
32 Hp_I01449_IG00104_L991 116 6 0.58
32 Hp_I01453_IG00104_L978 112 6 0.59
32 Hp_I01454_IG00104_L794 127 7
32 GS66ZV202B64CW_length=211 65 4
32 GS66ZV202B0Y18_length=222 54 2
32 GNK0QLK03FJQ4Z_length=212 33 1
33 Hp_I24175_IG16119_L582 125 6 1.62 55 44
33 Hp_I01045_IG00068_L1382 73 2 0.14
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number
score matches

emPAI
fr. 39 fr. 40

33 Hp_I22470_IG14414_L621 94 5 38 33
33 Hp_I07148_IG01640_L579 50 1
34 FL8UM6J01BCVJW_length=245 125 5 2.91 23
35 Hp_C00215_IG00001_L710 122 7 0.92 25 28
35 GSXTT4C07HZK7K_length=132 100 5
36 Hp_I03085_IG00332_L1160 122 5 0.49
36 Hp_I03086_IG00332_L1160 106 5 0.49
37 Hp_I12673_IG04617_L2333 120 4 0.18
38 Hp_I13332_IG05276_L1776 119 4 0.23
39 Hp_I06752_IG01438_L1571 119 5 0.34
40 Hp_I13832_IG05776_L1555 112 4 0.26 26 62
41 Hp_I24607_IG16551_L570 112 4 0.6 19 21
42 Hp_I04148_IG00569_L936 110 3 0.21
43 Hp_I16239_IG08183_L1050 109 4 0.41 57
43 Hp_I17228_IG09172_L931 58 2 0.21
43 HICN8C106HGHGB_length=348 48 1
44 Hp_I15767_IG07711_L1120 107 2 0.19
45 Hp_I05472_IG00957_L1361 105 5 0.23 43
46 Hp_I00798_IG00050_L1759 103 4 0.24
46 Hp_I00806_IG00050_L1112 60 2 0.18
46 Hp_I00796_IG00050_L1763 80 3
46 Hp_I00803_IG00050_L1749 66 3
46 Hp_I00811_IG00050_L794 53 1
46 Hp_I00799_IG00050_L1753 44 2
46 Hp_I00808_IG00050_L1102 23 1
47 Hp_I13626_IG05570_L1638 102 4 0.18
48 Hp_I05355_IG00918_L1570 102 6 0.42 16
48 Hp_I05356_IG00918_L1571 92 6 0.42
49 Hp_I12444_IG04388_L2875 100 5 0.18
50 Hp_I28140_IG20084_L502 97 3 0.7
51 Hp_I12757_IG04701_L2227 95 4 0.19
52 Hp_I26227_IG18171_L535 94 3 0.69
53 Hp_I45281_IG37225_L323 94 3 1.29
53 GS66ZV208IXGIJ_length=214 56 1
54 Hp_I09305_IG02737_L997 91 1 0.09
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

55 Hp_I05659_IG01019_L943 91 6 0.66
55 Hp_I05657_IG01019_L1010 75 4 0.34
55 Hp_I13122_IG05066_L1913 49 2 0.1
55 HICN8C104EOX41_length=346 41 1
55 GS66ZV202BPLMJ_length=260 28 2
56 Hp_I25440_IG17384_L551 88 3 0.61 49
57 Hp_I21133_IG13077_L683 87 4 0.69 3 15
57 Hp_I08959_IG02564_L1212 54 2 0.17
57 Hp_I03894_IG00508_L604 50 3 0.57 1 3
57 Hp_I20188_IG12132_L723 63 4 2 10
57 Hp_I45702_IG37646_L317 41 1
57 Hp_C00053_IG00001_L722 31 1 8
57 Hp_I03893_IG00508_L677 31 2 6
57 HICN8C104EH4N8_length=157 25 1
58 Hp_I24965_IG16909_L566 85 4 0.89
59 Hp_I12336_IG04280_L5030 84 5 0.08 44 38
59 Hp_I22411_IG14355_L634 38 1
60 Hp_I07874_IG02021_L1689 83 2 0.12
61 Hp_I04746_IG00749_L1266 81 3 0.24
61 Hp_I04744_IG00749_L1308 48 2
62 Hp_I17476_IG09420_L907 81 2 0.22
63 Hp_I28347_IG20291_L499 81 3 0.73
64 Hp_I14662_IG06606_L1314 81 2 0.15
65 Hp_C00318_IG00001_L1664 79 3 0.18 34
66 Hp_I14323_IG06267_L1413 79 2 0.15
67 Hp_I14909_IG06853_L1261 78 5 0.44
68 Hp_I10136_IG03152_L609 76 2 0.34
69 Hp_I13312_IG05256_L1794 75 2 0.11 29
70 Hp_I12670_IG04614_L2338 72 2 0.08
71 Hp_I08289_IG02229_L1998 72 2 0.1
72 Hp_I14447_IG06391_L1373 72 1 0.07
73 Hp_I10517_IG03343_L655 71 3 0.52
73 Hp_I10518_IG03343_L562 57 2
74 Hp_I23736_IG15680_L595 71 4 0.37 11
75 Hp_I24007_IG15951_L583 71 3 0.36
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number
score matches

emPAI
fr. 39 fr. 40

76 Hp_I12819_IG04763_L2150 70 1 0.04 72
77 Hp_I05927_IG01110_L916 70 3 0.34
77 Hp_I40602_IG32546_L371 50 1
77 Hp_I05928_IG01110_L497 35 1
78 Hp_I37752_IG29696_L390 69 2 0.6
79 Hp_I15536_IG07480_L1158 69 6 0.47 27 82
80 Hp_I10155_IG03162_L783 67 2 0.25 5 5
81 GNK0QLK03GQOZO_length=396 67 2 0.55
82 Hp_I27254_IG19198_L516 67 3 0.68
83 Hp_I15902_IG07846_L1103 67 1 0.09
84 Hp_I17933_IG09877_L867 67 2 0.24
85 Hp_I15775_IG07719_L1120 66 1 0.09
86 Hp_I20989_IG12933_L687 66 2 0.3
86 Hp_I19992_IG11936_L730 56 1
87 Hpb-APY-1.1 65 2 0.2
88 Hp_I10156_IG03162_L593 65 2 0.34 48 75
89 Hp_I21746_IG13690_L653 65 1 0.15
90 Hp_I18845_IG10789_L800 65 2 0.25
91 Hp_I13897_IG05841_L1536 65 1 0.06 83
92 Hp_I04070_IG00550_L1810 65 2 0.11
93 Hp_I12485_IG04429_L2697 64 2 0.07
94 Hp_I12624_IG04568_L2400 63 2 0.08 14
94 GP9KNTD03F5ENS_length=137 32 1
95 GSXTT4C07IIS51_length=389 61 1 0.29
96 Hp_I21182_IG13126_L679 61 5 0.69
97 Hp_I22261_IG14205_L639 61 1 0.16 30
98 Hp_I03099_IG00335_L808 60 1 0.12
99 Hp_I08747_IG02458_L1084 59 3 0.19
100 Hp_I02742_IG00275_L749 59 1 0.13
101 Hp_I06715_IG01419_L1709 58 1 0.06
102 Hp_I31041_IG22985_L459 57 1 0.21
103 Hp_I15874_IG07818_L1106 57 2 0.18 34 22
104 Hp_I16107_IG08051_L1068 57 1 0.09
105 Hp_I11897_IG04033_L376 55 1 0.27
106 Hp_I09123_IG02646_L960 54 2 0.21 53
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

107 Hp_I07312_IG01740_L4913 54 4 0.08
107 Hp_I30910_IG22854_L463 28 2
108 Hp_I18045_IG09989_L856 54 1 0.11
109 Hp_I04010_IG00535_L4397 54 2 0.02 84
110 Hp_I07157_IG01645_L560 53 2 0.38
111 Hp_I24623_IG16567_L570 53 3 0.59
112 Hp_I03648_IG00446_L2680 53 1 0.03
113 HICN8C104EI0NY_length=231 52 1 0.43
114 Hp_I18857_IG10801_L798 52 4 0.4
115 Hp_I17367_IG09311_L916 52 2 0.21
116 Hp_I22851_IG14795_L620 52 4 0.78 18 9
117 Hp_I14314_IG06258_L1412 52 1 0.07 26
118 Hp_I13967_IG05911_L1505 52 1 0.06
119 HICN8C104D48FA_length=165 51 1 0.7
120 Hp_I10419_IG03294_L714 51 2 0.3
121 Hp_I50524_IG42468_L249 51 2 1.04
122 Hp_I44062_IG36006_L335 50 1 0.31
123 Hp_I03163_IG00349_L1163 50 1 0.08
124 Hp_I24997_IG16941_L561 49 1 0.17
125 Hp_I21919_IG13863_L649 49 1 0.15
126 Hp_I54342_IG46286_L172 49 1 0.67
127 Hp_I14477_IG06421_L1364 49 1 0.07
128 Hp_I15720_IG07664_L1128 48 1 0.09
129 Hp_I03703_IG00460_L2193 47 1 0.04
130 HELDS7W07HYSKQ_length=134 46 1 0.84
131 Hp_I34129_IG26073_L426 46 2 0.51
132 Hp_I06164_IG01191_L389 45 2 0.59
133 Hp_I14129_IG06073_L1461 45 2 0.14
134 Hp_I36714_IG28658_L408 44 1 0.27 36 87
135 Hp_I22937_IG14881_L616 44 1 0.16
136 Hp_I22552_IG14496_L630 44 1 0.16
137 Hp_I21076_IG13020_L685 44 1 0.14
138 FL8UM6J01B2BCH_length=241 43 1 0.45
139 GP9KNTD03FPOC6_length=206 43 1 0.53
140 Hp_I13644_IG05588_L1625 43 2 0.12
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number
score matches

emPAI
fr. 39 fr. 40

141 Hp_I09609_IG02889_L890 43 1 0.11
142 Hp_I05463_IG00954_L1399 43 1 0.07
143 Hp_I20654_IG12598_L702 42 1 0.14
144 Hpb-VAL-20 42 1 0.07
145 Hp_I08941_IG02555_L1722 42 2 0.11
145 Hp_I12877_IG04821_L2113 29 1
146 HICN8C106G240C_length=375 42 1 0.28
147 Hp_I17588_IG09532_L899 42 1 0.11
148 Hp_I38698_IG30642_L388 42 1 0.26
149 Hp_I17130_IG09074_L942 41 1 0.11
150 Hp_I18672_IG10616_L814 41 2 0.26
151 Hp_I30926_IG22870_L465 41 1 0.21
152 Hp_I19958_IG11902_L735 40 1 0.13 41
153 Hp_I08021_IG02095_L2057 40 3 0.14
154 Hp_I14119_IG06063_L1461 40 2 0.14 77
155 Hp_I07837_IG02002_L1154 40 1 0.09
156 Hp_I16083_IG08027_L1071 40 2 0.19
157 Hp_I09191_IG02680_L1307 40 1 0.07
158 Hp_I13437_IG05381_L1722 40 3 0.11
159 Hp_I24512_IG16456_L570 40 2 0.17
160 Hpb-APY-3 39 2 0.2
160 Hp_I34250_IG26194_L432 28 1
161 Hp_I12989_IG04933_L2009 39 2 0.05
162 Hp_I07528_IG01848_L2299 39 1 0.04
163 Hp_I12518_IG04462_L2600 39 1 0.04 73
164 Hp_I08161_IG02165_L1513 38 1 0.06
165 Hp_I06748_IG01436_L1580 38 1 0.06
166 Hp_I16357_IG08301_L1032 38 1 0.09
167 Hp_I47440_IG39384_L295 38 1 0.33
168 Hp_I18903_IG10847_L800 38 1 0.11
169 Hp_I11671_IG03920_L408 37 1 0.24
170 Hp_I20106_IG12050_L727 37 1 0.13
171 Hp_I12856_IG04800_L2123 37 1 0.05 103
172 GSXTT4C07H1KXM_length=433 36 1 0.24
173 GLSD98I05F6IT3_length=173 36 3 1.54
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

174 Hp_I10589_IG03379_L596 36 1 0.16 99
175 Hp_I14819_IG06763_L1285 35 1 0.08
176 Hp_I35779_IG27723_L416 35 1 0.24
177 GQ6YEYD07IH8NV_length=254 35 1 0.45
178 GNK0QLK03GEF2E_length=349 34 1 0.29
179 Hp_I15275_IG07219_L1202 33 1 0.08
180 Hp_I13201_IG05145_L1858 33 3 0.05 7
181 Hp_I45109_IG37053_L322 33 1 0.33
182 Hp_I22184_IG14128_L642 33 1 0.15
183 Hp_I06970_IG01547_L1058 33 1 0.09
184 Hp_I26349_IG18293_L526 33 1 0.19
185 Hp_I12307_IG04251_L678 32 1 0.15
186 Hp_I12356_IG04300_L3770 32 1 0.02
187 Hp_I15761_IG07705_L1121 32 1 0.09
188 Hp_I30640_IG22584_L466 32 1 0.21
189 Hp_I17533_IG09477_L904 32 1 0.11
190 Hp_I05325_IG00908_L1903 32 1 0.05 28 64
191 GP9KNTD03HEYKX_length=353 32 1 0.29
192 Hp_I08946_IG02557_L754 31 2 0.13
193 Hp_I02260_IG00198_L2283 31 1 0.04
194 Hp_I20186_IG12130_L717 31 1 0.14
195 Hp_I12594_IG04538_L2461 31 2 0.08
196 Hp_I20314_IG12258_L716 30 2 0.28
197 Hp_I16694_IG08638_L992 30 1 0.1
198 Hp_I21825_IG13769_L655 30 1 0.15
199 Hp_I13398_IG05342_L1737 30 1 0.06
200 Hp_I14921_IG06865_L1261 29 2 0.08
201 Hp_I20393_IG12337_L714 29 1 0.13
202 Hp_I11929_IG04049_L398 29 1 0.25
203 Hp_I23293_IG15237_L606 29 1 0.16
204 Hp_I03094_IG00334_L1829 29 1 0.05
205 Hp_I14648_IG06592_L1319 29 1 0.07
206 Hp_I38562_IG30506_L390 29 1 0.27
207 GLSD98I05F5ITC_length=415 29 1 0.22
208 Hp_I08139_IG02154_L1715 28 1 0.06
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number
score matches

emPAI
fr. 39 fr. 40

209 Hp_I15010_IG06954_L1245 28 1 0.08
210 Hp_I12776_IG04720_L2202 28 1 0.04
211 Hp_I20274_IG12218_L717 28 1 0.13
212 Hp_I02126_IG00179_L738 27 2 0.13
213 Hp_I13865_IG05809_L1545 27 1 0.06
214 Hp_I07286_IG01727_L3181 27 1 0.03
215 Hp_I23615_IG15559_L596 27 1 0.17
216 Hp_I12527_IG04471_L2582 27 1 0.04
217 Hp_I18858_IG10802_L799 27 1 0.12
218 GLSD98I05F0MGD_length=346 26 1 0.29
219 Hp_I20884_IG12828_L690 26 1 0.14
220 Hp_I03660_IG00449_L3044 26 1 0.03
221 Hp_I06986_IG01555_L958 26 1 0.1
222 Hp_I07318_IG01743_L3042 26 1 0.03
223 Hp_I03499_IG00413_L1865 26 1 0.05
224 Hp_I10841_IG03505_L619 26 1 0.16
225 HICN8C104EDEVR_length=54 26 1 2.43
226 Hp_I10521_IG03345_L626 25 1 0.15
227 Hp_I23374_IG15318_L597 25 1 0.17
228 Hp_I17728_IG09672_L887 25 1 0.1
229 Hp_I12275_IG04222_L261 25 1 0.38
230 Hp_I20231_IG12175_L721 24 1 0.14
231 Hp_I22655_IG14599_L627 24 1 0.16
232 Hp_I04103_IG00558_L1245 24 1 0.08
233 Hp_I21982_IG13926_L651 24 1 0.15
234 Hp_I18054_IG09998_L853 23 1 0.11
235 Hp_I13345_IG05289_L1772 23 1 0.06
236 Hp_I08349_IG02259_L1293 23 1 0.07
237 Hp_I20368_IG12312_L714 23 1 0.13
238 Hp_I12754_IG04698_L2228 23 1 0.04 37
239 Hp_C01552_IG00008_L1448 23 1 0.06
240 Hp_I15778_IG07722_L1118 23 1 0.09
241 GLSD98I05F32KD_length=465 23 1 0.22
242 Hp_I25677_IG17621_L546 23 1 0.18
243 Hpb-VAL-14 23 1 0.07
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Table B.11: Proteins identified in the active fraction 25 of the second anion exchange
fractionation of HES (continued).

Rank in Rank in
Protein Protein 1. MS 1. MSRank Protein accession number

score matches
emPAI

fr. 39 fr. 40

244 Hp_I49935_IG41879_L259 23 1 0.41
245 Hp_I11951_IG04060_L390 22 1 0.26
246 Hp_I28361_IG20305_L498 22 1 0.2
247 Hp_I22484_IG14428_L640 22 1 0.15
248 Hp_I07496_IG01832_L2183 22 1 0.04
249 Hp_I14665_IG06609_L1313 21 1 0.07
250 Hp_I04874_IG00782_L1023 21 1 0.1 95
251 Hp_I08483_IG02326_L1214 21 1 0.08
252 Hp_I10597_IG03383_L595 21 1 0.16
253 Hp_I07666_IG01917_L1781 21 1 0.05
254 Hp_C00910_IG00003_L2934 21 1 0.03
255 Hp_I29394_IG21338_L484 20 1 0.21
256 Hp_I14044_IG05988_L1484 20 1 0.06

Table B.12: Proteins with emPAI values peaking in size exclusion fractions 14 or
15. HES was fractionated by size fractionation an all fractions analysed by mass
spectrometry and tested for their inhibitory activity on GM-CSF BMDC. Proteins with
emPAI values peaking in the active fractions were shortlisted for further selection to
find candidate proteins for expression.

FL8UM6J01BC1ZN_length=62 GSXTT4C06GUNT5_length=342 Hp_I01383_IG00095_L656
FL8UM6J01EFBYL_length=63 GSXTT4C06GXMIV_length=179 Hp_I02234_IG00194_L1318
GLSD98I04D6NC8_length=454 GSXTT4C07IOOUR_length=396 Hp_I02548_IG00238_L1779
GLSD98I04EBL7F_length=389 HELDS7W07H0BVM_length=251 Hp_I03099_IG00335_L808
GLSD98I05F0MGD_length=346 HICN8C105F4XWC_length=461 Hp_I03228_IG00366_L2337
GLSD98I05F6IT3_length=173 HICN8C105F7BX8_length=227 Hp_I04266_IG00599_L823
GNK0QLK03F82AT_length=271 HICN8C106HP9PI_length=274 Hp_I04332_IG00616_L354
GNK0QLK03FHM83_length=50 Hp_C00179_IG00001_L1163 Hp_I05058_IG00828_L787
GNK0QLK03G3KHF_length=294 Hp_C00282_IG00001_L564 Hp_I05325_IG00908_L1903
GNK0QLK03GQOZO_length=396 Hp_C02597_IG00028_L1734 Hp_I05407_IG00935_L1040
GQ6YEYD07H2LVG_length=277 Hp_C08742_IG00702_L613 Hp_I05565_IG00988_L1210
GS66ZV202BO7NU_length=145 Hp_I00695_IG00044_L591 Hp_I05659_IG01019_L943
GS66ZV203DB0T9_length=193 Hp_I00798_IG00050_L1759 Hp_I05809_IG01070_L1113
GS66ZV203DFM3U_length=95 Hp_I00841_IG00053_L616 Hp_I05827_IG01076_L1116
GSXTT4C05FPGBC_length=392 Hp_I00850_IG00054_L907 Hp_I05999_IG01134_L555
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Table B.12: Proteins with emPAI values peaking in size exclusion fractions 14 or 15
(continued).

Hp_I06001_IG01134_L530 Hp_I18333_IG10277_L834 Hp_I26844_IG18788_L525
Hp_I06335_IG01256_L998 Hp_I18384_IG10328_L830 Hp_I26937_IG18881_L522
Hp_I06509_IG01316_L615 Hp_I18845_IG10789_L800 Hp_I27637_IG19581_L511
Hp_I06838_IG01481_L1319 Hp_I19378_IG11322_L765 Hp_I27930_IG19874_L505
Hp_I07157_IG01645_L560 Hp_I19711_IG11655_L743 Hp_I27958_IG19902_L502
Hp_I07158_IG01645_L560 Hp_I19958_IG11902_L735 Hp_I28625_IG20569_L494
Hp_I07249_IG01697_L637 Hp_I19989_IG11933_L735 Hp_I28724_IG20668_L494
Hp_I07274_IG01721_L3765 Hp_I19992_IG11936_L730 Hp_I28744_IG20688_L490
Hp_I07334_IG01751_L2741 Hp_I20768_IG12712_L696 Hp_I29394_IG21338_L484
Hp_I07490_IG01829_L2288 Hp_I20875_IG12819_L687 Hp_I30337_IG22281_L473
Hp_I07995_IG02081_L699 Hp_I21268_IG13212_L674 Hp_I30585_IG22529_L470
Hp_I08415_IG02292_L1231 Hp_I21313_IG13257_L675 Hp_I30636_IG22580_L471
Hp_I09863_IG03016_L798 Hp_I21565_IG13509_L658 Hp_I30926_IG22870_L465
Hp_I10517_IG03343_L655 Hp_I21617_IG13561_L662 Hp_I31577_IG23521_L459
Hp_I10518_IG03343_L562 Hp_I21726_IG13670_L658 Hp_I32194_IG24138_L452
Hp_I10601_IG03385_L624 Hp_I21746_IG13690_L653 Hp_I32491_IG24435_L448
Hp_I10855_IG03512_L534 Hp_I22064_IG14008_L644 Hp_I34113_IG26057_L428
Hp_I11144_IG03656_L469 Hp_I22123_IG14067_L644 Hp_I34646_IG26590_L427
Hp_I11447_IG03808_L449 Hp_I22275_IG14219_L639 Hp_I34892_IG26836_L422
Hp_I12456_IG04400_L2825 Hp_I22320_IG14264_L638 Hp_I35726_IG27670_L415
Hp_I12776_IG04720_L2202 Hp_I22350_IG14294_L635 Hp_I35752_IG27696_L420
Hp_I12936_IG04880_L2046 Hp_I22388_IG14332_L637 Hp_I36017_IG27961_L415
Hp_I13494_IG05438_L1681 Hp_I23528_IG15472_L598 Hp_I38111_IG30055_L394
Hp_I13743_IG05687_L1584 Hp_I23530_IG15474_L600 Hp_I38325_IG30269_L391
Hp_I14371_IG06315_L1386 Hp_I23776_IG15720_L592 Hp_I38451_IG30395_L390
Hp_I14584_IG06528_L1336 Hp_I23836_IG15780_L590 Hp_I38850_IG30794_L366
Hp_I15194_IG07138_L1211 Hp_I23863_IG15807_L590 Hp_I38933_IG30877_L384
Hp_I15353_IG07297_L1178 Hp_I24096_IG16040_L584 Hp_I38988_IG30932_L386
Hp_I15488_IG07432_L1169 Hp_I24430_IG16374_L575 Hp_I39181_IG31125_L382
Hp_I15528_IG07472_L1156 Hp_I24512_IG16456_L570 Hp_I40392_IG32336_L373
Hp_I15587_IG07531_L1141 Hp_I24623_IG16567_L570 Hp_I40417_IG32361_L370
Hp_I15588_IG07532_L1149 Hp_I24705_IG16649_L569 Hp_I40444_IG32388_L371
Hp_I15760_IG07704_L1122 Hp_I25184_IG17128_L557 Hp_I40801_IG32745_L368
Hp_I15778_IG07722_L1118 Hp_I25374_IG17318_L554 Hp_I40994_IG32938_L367
Hp_I15783_IG07727_L1116 Hp_I25622_IG17566_L549 Hp_I40999_IG32943_L364
Hp_I16638_IG08582_L998 Hp_I25725_IG17669_L542 Hp_I41819_IG33763_L358
Hp_I16854_IG08798_L973 Hp_I26246_IG18190_L526 Hp_I42607_IG34551_L347
Hp_I16860_IG08804_L972 Hp_I26504_IG18448_L528 Hp_I43185_IG35129_L337
Hp_I17383_IG09327_L916 Hp_I26601_IG18545_L528 Hp_I44251_IG36195_L332
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Table B.12: Proteins with emPAI values peaking in size exclusion fractions 14 or 15
(continued).

Hp_I45710_IG37654_L317 Hp_I50368_IG42312_L251 Hpb-VAL-1.1
Hp_I49433_IG41377_L267 Hpb-Sequence-14 Hpb-VAL-7.3
Hp_I49594_IG41538_L265

Table B.13: Proteins with emPAI values peaking in anion exchange fraction 25. HES
was fractionated by anion exchange fractionation and all fractions analysed by mass
spectrometry and tested for their inhibitory activity on GM-CSF BMDC. Proteins with
emPAI values peaking in the active fraction were shortlisted for further selection to
find candidate proteins for expression.

FL8UM6J01BCVJW_length=245 Hp_I05693_IG01031_L1691
GLSD98I05F6IT3_length=173 Hp_I06164_IG01191_L389
GNK0QLK03GEF2E_length=349 Hp_I06752_IG01438_L1571
GNK0QLK03GQOZO_length=396 Hp_I06986_IG01555_L958
GP9KNTD03FPOC6_length=206 Hp_I07312_IG01740_L4913
GP9KNTD03HEYKX_length=353 Hp_I07468_IG01818_L2128
GQ6YEYD07IH8NV_length=254 Hp_I07682_IG01925_L1479
HICN8C104D48FA_length=165 Hp_I07837_IG02002_L1154
HICN8C104EI0NY_length=231 Hp_I08289_IG02229_L1998
Hp_C00318_IG00001_L1664 Hp_I08349_IG02259_L1293
Hp_C00910_IG00003_L2934 Hp_I08483_IG02326_L1214
Hp_I00806_IG00050_L1112 Hp_I08747_IG02458_L1084
Hp_I02260_IG00198_L2283 Hp_I09191_IG02680_L1307
Hp_I03086_IG00332_L1160 Hp_I10136_IG03152_L609
Hp_I03648_IG00446_L2680 Hp_I10517_IG03343_L655
Hp_I03703_IG00460_L2193 Hp_I10521_IG03345_L626
Hp_I03894_IG00508_L604 Hp_I10589_IG03379_L596
Hp_I04010_IG00535_L4397 Hp_I10841_IG03505_L619
Hp_I04627_IG00719_L1926 Hp_I11671_IG03920_L408
Hp_I04629_IG00719_L1853 Hp_I11951_IG04060_L390
Hp_I04746_IG00749_L1266 Hp_I12275_IG04222_L261
Hp_I04874_IG00782_L1023 Hp_I12307_IG04251_L678
Hp_I05325_IG00908_L1903 Hp_I12356_IG04300_L3770
Hp_I05355_IG00918_L1570 Hp_I12485_IG04429_L2697
Hp_I05356_IG00918_L1571 Hp_I12594_IG04538_L2461
Hp_I05463_IG00954_L1399 Hp_I12670_IG04614_L2338
Hp_I05472_IG00957_L1361 Hp_I12673_IG04617_L2333
Hp_I05659_IG01019_L943 Hp_I12757_IG04701_L2227

314



Appendix B. Supplementary material for HES proteomics

Table B.13: Proteins with emPAI values peaking in anion exchange fraction 25
(continued).

Hp_I12776_IG04720_L2202 Hp_I20654_IG12598_L702
Hp_I12856_IG04800_L2123 Hp_I20884_IG12828_L690
Hp_I13043_IG04987_L1979 Hp_I21073_IG13017_L680
Hp_I13626_IG05570_L1638 Hp_I21182_IG13126_L679
Hp_I13644_IG05588_L1625 Hp_I21982_IG13926_L651
Hp_I14044_IG05988_L1484 Hp_I22184_IG14128_L642
Hp_I14129_IG06073_L1461 Hp_I22484_IG14428_L640
Hp_I14221_IG06165_L1437 Hp_I22552_IG14496_L630
Hp_I14314_IG06258_L1412 Hp_I23374_IG15318_L597
Hp_I14323_IG06267_L1413 Hp_I23615_IG15559_L596
Hp_I14662_IG06606_L1314 Hp_I23736_IG15680_L595
Hp_I14665_IG06609_L1313 Hp_I24623_IG16567_L570
Hp_I14819_IG06763_L1285 Hp_I24965_IG16909_L566
Hp_I14909_IG06853_L1261 Hp_I25311_IG17255_L555
Hp_I14921_IG06865_L1261 Hp_I26227_IG18171_L535
Hp_I15157_IG07101_L1223 Hp_I26349_IG18293_L526
Hp_I15775_IG07719_L1120 Hp_I28140_IG20084_L502
Hp_I15902_IG07846_L1103 Hp_I29394_IG21338_L484
Hp_I16239_IG08183_L1050 Hp_I30926_IG22870_L465
Hp_I16357_IG08301_L1032 Hp_I35779_IG27723_L416
Hp_I16694_IG08638_L992 Hp_I36714_IG28658_L408
Hp_I17476_IG09420_L907 Hp_I38698_IG30642_L388
Hp_I17533_IG09477_L904 Hp_I44062_IG36006_L335
Hp_I17588_IG09532_L899 Hp_I45109_IG37053_L322
Hp_I17728_IG09672_L887 Hp_I50524_IG42468_L249
Hp_I18054_IG09998_L853 Hp_I54342_IG46286_L172
Hp_I18672_IG10616_L814 Hpb-APY-1.1
Hp_I19958_IG11902_L735 Hpb-VAL-12
Hp_I20106_IG12050_L727 Hpb-VAL-2.2
Hp_I20186_IG12130_L717 Hpb-VAL-3
Hp_I20231_IG12175_L721 Hpb-VAL-4
Hp_I20274_IG12218_L717 Hpb-VAL-5
Hp_I20393_IG12337_L714
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Figure B.2: Rejected candidates from third round of candidate protein
identification. HES was fractionated by size exclusion, sequential and anion exchange
fractionation, all fractions were analysed by mass spectrometry and their inhibitory
activity tested on LPS-activated GM-CSF BMDC. Lists of proteins with emPAI values
peaking in the active fractions were compiled for each fractionation approach and
compared to identify shared proteins. These were subjected to further selection
comparing their abundance profiles (emPAI values over the fractions) to activity
(inhibition of IL-12p70 production in LPS-activated BMDC) across the fractions and
excluding housekeeping proteins and those that have been identified falsely or with
only one peptide. These excluded proteins are shown here with their emPAI values
across the fractions on the left y axis and the concentration of IL-12p70 produced by
GM-CSF BMDC treated with LPS (1µg/ml) and the respective fraction on the right y
axis.
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