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Abstract 

 
Tobacco rattle virus (TRV) is a bipartite plant virus that infects potato tubers to 

produce the spraing or corky ring spot (CRS) disease of potato. TRV is primarily a 

soil-borne pathogen that is vectored by trichodorid nematodes. Spraing is 

characterized by the production of brown arcs and flecks in the tuber flesh or circular 

rings on its external surface. Spraing has been described as a hypersensitive response 

(HR). However, the genetic and biochemical nature of spraing had not been previously 

investigated experimentally. 

I have conducted studies to reveal the gene expression and the biochemical basis for 

spraing formation. Microarray analysis of RNA extracted from tuber-tissue showing 

spraing symptoms, revealed up-regulation of several defence related genes. 

Quantitative RT-PCR (qRT-PCR) of some of the differentially-expressed potato 

defence related genes was done for verification of the microarray data. Biochemical 

tests for cell death response reactions and staining for HR-related compounds or 

production of reactive oxygen species (ROS) also revealed the operation of HR-related 

processes in the spraing-affected tuber. Uneven distribution of the TRV RNA-1 in a 

spraing-symptomatic tuber also supports the notion that it’s a virus-induced HR-

response. 

RNA-2 of TRV besides coding for the CP also carries the non-structural genes, 2b and 

2c genes that are responsible for the nematode transmission of TRV.  Fifteen different 

TRV recombinant isolates were prepared and the influence of the RNA-2 specific 

genes, encoded by a range of TRV-isolates, in causing infection among different 

cultivars of potato was also evaluated. 

Investigations were conducted to identify TRV-susceptible genotypes in which virus 

could move systemically and accumulate to a sufficient level to be useful for TRV-

infection and VIGS-related studies for functional analysis of potato genes.  
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Chapter 1 

The cultivated potato (Solanum tuberosum L.) is a temperate climate crop that has 

been cultivated for more than twenty centuries. Initially potato was cultivated in the 

Andes mountains of Peru and Bolivia (South-America) and later, at around five 

centuries ago, the Spanish traders introduced it to Europe from where it began to be 

cultivated world-wide (Hawkes, 1991a; Askew, 2001). Across the world potato is 

grown in more than one hundred countries and consumed by more than a billion 

people. Among the top ten global crops it ranks fifth in production, following sugar 

cane, maize, rice and wheat, with an overall crop production of more than three-

hundred and sixty four million metric tonnes (FAO Stats, 2014). In terms of human 

consumption, potato is globally ranked third among the important food crops, 

following rice and wheat, and is an important source of dietary carbohydrates as well 

as providing more proteins from a comparable acreage than rice or wheat (Rowe, 

1993; Stevenson, et al., 2001; Askew, 2001). Potatoes contain practically no fats 

(Storey, 2007). Compared to maize, boiled potatoes provide a higher amount of 

protein and double the quantity of calcium (CIP, 2014). Besides being known as a 

rich source of carbohydrates, potato is also equipped with some nutritive and 

medicinal values, an aspect that has been overlooked in the past. Consumption of 

potato can help to supplement the dietary requirements of our body for essential 

vitamins (like vitamin C (ascorbate) and vitamin B1/ thiamine) and mineral nutrients 

(like iron and zinc). Inadequate-intake of these essential nutrients can result in 

diseases like beriberi (vitamin B1 deficiency), anaemia, dyspnoea and 

gastrointestinal bleeding (Fe deficiency), and mental illness (Zn deficiency). Potato 

also contains valuable protective compounds e.g, carotenoids such as zeaxanthin and 

xanthophyll (lutein) that help maintain the eyesight and protect the body against 

1. Introduction 

1.1. Potato and its viruses 
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heart diseases and cancer-related disorders. The antioxidative polyphenolic 

compounds e.g, chlorogenic acid and anthocyanin, shield the body against 

hypertension and malignant disorders such as diabetes and cardiovascular diseases. 

Whereas, the glycolalkaloids can have a role in anti-cancer defence in the human 

body (Camire et al., 2009; Stewart and McDougall, 2012; Lister, 2013). However, 

the glycoalkaloids (chiefly chaconine and solanine) are also poisonous, and found in 

almost all potato tissues. They are of uneven distribution within the tuber and are 

usually found in lower amounts in the tuber-flesh. Glycoalkaloids are more 

predominant in the tuber periderm (skin), greener portion of the tuber, and the tissue 

surrounding the tuber eyes (Storey, 2007; FAO, 2008). Potatoes possess the greatest 

satiety index (SI) among all the botanical-origin food products (Haase, 2008). 

Currently, more than fifty percent of the overall global production of potato is being 

contributed by the developing countries. Potato singly comprises nearly fifty percent 

of the universal tuber and root crop production which also includes yams, sweet 

potato, cassava and taro (Shewry, 2003; FAO Stats, 2014; CIP, 2014). 

The genus Solanum of the family Solanaceae (also known as the nightshade family) 

includes different herbaceous and shrub plants comprising about a thousand species, 

of which there are nearly two-hundred tuber producing wild potato species, including 

some of the cultivated potato species (Hawkes, 1991b). All these species vary in their 

genetical, morphological and ecological diversity (Jones, 1981).  

The genome of potato is composed of a set of 12 chromosomes with the ploidy in 

wild species ranging from diploid to hexaploid (2n to 6n) but for the cultivated 

species, developed through various genetical and evolutionary processes, it does not 

exceed pentaploidy (Hawkes, 1991b). Among cultivated potatoes, S. tuberosum is 

the most abundant with a range of germplasm diversity (Jones, 1981). Most of the 

cultivated species are grown in the Andes mountains of South America (Hijmans and 

Spooner, 2001).  
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The wild relatives of potato comprising the diploid potatoes are a good resource for 

exploring natural genetic diversity to identify useful traits for deployment in potato 

breeding programmes. Wild potatoes are narrowly distributed and are mostly 

restricted to their historic natural reservoirs. Peru, where at least ninety-three wild 

potato species have been domesticated, has the richest natural genetic collection of 

wild potatoes (Hijmans and Spooner, 2001). Exploiting wild species for desirable 

traits like yield and disease resistance is an important feature of potato breeding to 

improve modern commercial cultivars. 

Potato, being a vegetatively propagated crop has greater exposure to infections and 

the spread of plant pathogens and their resulting diseases. The harboured pathogens 

can easily be carried over from one season to the next. Among the various potato 

diseases, viral diseases, due to the non-availability of any effective direct chemical 

control method, pose a continuous threat to the crop, causing reduction in both 

quality and yield (Ruiz de Galerreta et al., 1998). The first available record of potato 

viral disease refers to the ‘‘degeneration’’ or ‘‘run out’’ disease of potato seed-stock 

that has been known since the 18
th

 century (Salaman, 1921; Rich, 1983; Rowe, 

1993). Potato stock that showed reduction in the quantity and quality of the produce 

were known as being ‘‘run out’’ among the potato growers (Goss, 1925). This 

degeneration syndrome of potato was chiefly associated with a complex of potato 

diseases such as potato leaf roll and potato mosaic that later with the advent of plant 

virology were discovered to be plant viral infections. 

Potato is naturally infected by nearly forty plant viruses that vary in their prevalence 

and distribution (Palukaitis, 2012). Potato viruses, based on their infectivity, can be 

categorized into two types; the specific potato viruses, which chiefly infect the potato 

plant, and the common potato viruses that infect a large number of both solanaceous 

and non-solanaceous plants and are globally prevalent. The various viruses adopt 

different strategies for their spread and survival, so that Potato virus Y (PVY), Potato 

mop top virus (PMTV) and Tobacco rattle virus (TRV) are transmitted by different 
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vector organisms, whereas, Potato virus X (PVX) is mechanically disseminated to 

other plants through physical contact. Of the vector-transmitted potato viruses, at 

least six are known to be spread by soil-dwelling vectors and include the 

economically important TRV and PMTV, both of which induce a tuber infection 

known as spraing. Transmission of potato viruses through true seed is not a 

significant cause of disease spread, although infected tubers are important for 

spreading virus diseases (Jones, 1981; Palukaitis, 2012).  

TRV infection can be diagnosed and differentiated from PMTV (a Pomovirus) 

infections either by molecular tests such as nucleic acid hybridization or reverse 

transcriptase polymerase chain reaction (RT-PCR) or by using a biological assay 

involving inoculation to indicator plants. For example, PMTV infection on the leaves 

of Nicotiana tabacum c.v Xanthi, produces a very distinct systemic line pattern and 

inoculation to Chenopodium amaranticolor results in a non-systemic infection 

producing concentric necrotic-lesions that sometimes may result in a single 

spreading lesion extending over half of the leaf lamina. TRV infection on C. 

amaranticolor plants is mostly non-systemic, depending upon the virus isolate, 

producing small, necrotic lesions. The soil-borne potato diseases have been reviewed 

by Fiers et al. (2012). The main potato viruses have been described by Brunt (2001) 

and those transmitted by soil-borne vectors have been discussed by Weingartner 

(2001). 

1.2. Tobraviruses 

The name Tobravirus was first suggested by Harrison et al., (1971) for a group of 

plant viruses causing a range of diseases. The Tobravirus genus of plant viruses 

includes three species namely TRV, Pea early-browning virus (PEBV) and Pepper 

ringspot virus (PepRSV). TRV is the type species of the Tobravirus genus. The 

tobraviruses have a genome consisting of two RNA molecules (bipartite genome), 

encapsidated separately in rod-shaped particles of characteristic length (Lister, 1966; 

1968; MacFarlane, 1999; 2010). These viruses are transmitted between plants by 
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root-feeding, ectoparasitic nematodes of the genera Trichodorus and 

Paratrichodorus, which are referred to as trichodorid or stubby-root nematodes 

(Harrison and Robinson, 1986; MacFarlane, 2010). The earliest record of diseases 

incited by tobraviruses refers to the soil-borne Mauche disease of tobacco, reported 

from Germany by Behrens in 1899 and later shown to be caused by TRV (Cadman 

and Harrison, 1959; Harrison and Robinson, 1978; Robinson and Harrison, 1989).  

Among the tobraviruses, PepRSV (formerly known as TRV CAM strain and 

belonging to TRV Serotype III; Robinson and Harrison, 1985a) differs from TRV in 

its antigenic properties and has been reported only from South-America (Brazil) 

where it, in addition to infecting the perennial thistle plant and globe artichoke, also 

infects the solanaceous plants pepper and tomato. Biologically, TRV infection can be 

differentiated from PEBV infection by inoculation to field pea (Pisum sativum subsp. 

arvense) and broad bean (Vicia faba) plants, as TRV produces pinpoint confined 

lesions and is incapable of producing systemic infection in both of these plants, 

whereas, PEBV produces systemic symptoms in these plants (Robinson et al., 1987; 

Robinson and Harrison, 1989; Ploeg  et al., 1992b).  

1.3. Tobacco rattle virus, economic, and pathological 
significance 

TRV, firstly characterized by Quanjer (1943), consists of two rod-shaped particles. 

The larger (L) particle (containing RNA-1) is of about 185 nm in length and the 

smaller (S) particle (containing RNA-2) is of about 50 to 115 nm length that varies 

depending on the particular TRV isolate (Harrison and Woods, 1966; Robinson and 

Harrison, 1989). Earlier studies identified two types of TRV infections that were 

described as the ‘‘multiplying type or particle producing type’’ (M-Type) and the 

‘‘non-multiplying type’’ (NM-Type) infection (Lister, 1966; Harrison and Robinson, 

1978). An isolate from an M-type infection has both viral RNAs, forms particles, is 

mechanically or nematode transmissible and antigenically detectable. Isolates from 

the NM-type infections, consisting only of the non-encapsidated RNA-1, are not 
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easily mechanically transmissible (Lister, 1966, 1968; Cadman, 1959; MacFarlane, 

1999). NM-type infections cannot be detected by methods based on antigenic 

properties (as the virus is incapable of producing nucleoprotein particles) due to the 

lack of RNA-2 and are non-transmissible by nematodes (Nicolaisen et al., 1999). 

Nevertheless, RNA-1 by itself can multiply and spread in infected plants producing a 

systemic infection (Hamilton et al., 1987; MacFarlane, 1999). NM-type infections or 

isolates are common in potato and they can be isolated from plants if extracted using 

phenol (Harrison and Robinson, 1982; MacFarlane, 2010). M-type isolates and 

infections are more stable than the NM-types whereas, the latter are said to be more 

severe in pathogenicity than M-type infections (Lister, 1966; Robinson and Harrison, 

1989).  

The TRV particle is stable at different pH concentrations and also in various 

inorganic and organic solutions. TRV is soil-borne and transmitted between 

cultivated and weed plants by trichodorid nematodes, in a very precise association 

(van Hoof, 1968; Hamilton et al., 1987; Hernandez et al., 1995; Sudarshana and 

Berger, 1998; MacFarlane et al., 1999). TRV is also seed-transmissible in some plant 

species (Gasper et al., 1984; Sudarshana and Berger, 1998; Visser et al., 1999). The 

trichodorid nematodes are most commonly found in sandy soils, being most 

abundant in the top-most soil layers, where after successful TRV acquisition they 

may remain viruliferous for several years (Taylor and Brown, 1997).  

TRV is global in its distribution and it infects numerous hosts including both 

cultivated and wild plant species (Brunt et al., 1996; Dale, 2009). Its infection 

produces economically important diseases that are known by different names, in 

plants of the Solanaceae family, especially potato and tobacco, and also in plants of 

the Chenopodiaceae family such as spinach and sugarbeet. Besides these crop plants, 

many ornamental plants including most notably gladiolus (sword-lily), hyacinth and 

aster are also infected by TRV (Harrison and Robinson, 1986; Robinson and 

Harrison, 1989; Heinze et al., 2000). Infection of potato by TRV is an economically 
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important disease worldwide and soil-borne vector-transmitted viruses can reduce 

crop yields by more than one quarter (Hide and Lapwood, 1992). These viruses 

(TRV and PMTV) can produce diseases (such as spraing) that can be a serious 

concern for the potato industry in the following years (Santala et al., 2010). 

1.4. TRV infection in potato  

TRV infection in potato is categorised into two main diseases based on the symptoms 

that are produced. If the disease symptoms appear on the foliage of the potato plant it 

is named ‘‘stem mottle disease’’ and if they are expressed in the tubers then it is 

termed ‘‘spraing disease’’ (Cadman, 1959; van Hoof, 1964a). Stem mottle disease is 

a result of secondary infection from TRV-infected tubers and its progression into the 

developing potato plant, whereas, spraing disease is a consequence of primary tuber-

infection arising from virus inoculation by TRV-bearing trichodorid nematodes. 

TRV infection of seed potatoes is of paramount concern for the seed-production 

industry as it results in progeny tubers that are reduced in size and number with a 

consequent ultimate reduction in the quantity of produce (Cadman, 1959; 

Weingartner, 2001). Moreover, often these infected tubers are not marketable due to 

their inferior quality and the stringent quality standards required for potatoes destined 

for use by the processing industry (Hooker, 1980; Mojtahedi et al., 2000; Brown et 

al., 2009).  Consignments containing as little as 2% of spraing-affected tubers are 

rejected by the supermarkets (Dale, 2009). Sometimes, the severity of infection 

and/or high incidence of TRV may result in rejection of the whole potato crop 

(Brown and Skyes, 1973). Stem mottle disease is of relatively greater significance to 

the seed-production industry and spraing disease is of more concern for the potato-

processing industry (Stevenson et al., 2001). 

In this era of the World Trade Organization (WTO) and the associated Sanitary and 

Phytosanitary (SPS) measures, consumers are more concerned about the disease- 

status and quality of the potatoes, demanding more stringent standards in 
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international merchandise and necessitating governments to be more alert to plant 

and public health issues.  

The stem mottle disease is characterized by the production of chevron-shaped 

chlorotic or necrotic spots on the foliage of a few, but not on all, undersized haulms 

that sprout from a virus-infected tuber. These diseased leaves may be smaller in size, 

mottled, rippled, distorted with the development of yellow lines and have interveinal 

chlorosis (Banttari et al., 1993). Occasionally the symptoms in more severely 

affected plants may advance to the stem causing its necrosis. Tubers produced from 

such affected plants are deformed with arcs of dead tissue and dark-coloured flecks 

in the tuber-flesh. Progression of the disease to the progeny tubers occurs in an 

inconsistent manner (Cadman, 1959; Cadman and Harrison, 1959). Stem mottle 

symptoms are more obvious at temperatures less than 20
◦
C and become masked at 

elevated temperatures (Stevenson et al., 2001).    

Cadman (1959) in his stem mottle disease-associated experiments conducted in the 

U.K, observed that the TRV isolated from the diseased potato haulms (above ground 

potato stems) was mostly of the NM- type and when he attempted to recover the 

TRV from spraing-affected tubers, it every time proved to be of the NM-type. He 

further suggested that TRV-infected tubers were better for virus isolation, when 

freshly harvested rather than after their storage. Moreover, surprisingly, he recovered 

NM-type infections from potato plants that had been leaf-inoculated with a M-type 

isolate.  Later, the tobravirus infectivity studies performed by Lister (1966, 1968) 

showed that lesion-formation and viral multiplication in the infected plants was 

associated with the NM-type viral preparations. Whereas, the coat-protein formation 

and production of virus-particles was associated with the M-type viral-inoculum (i.e., 

comprising both RNA1 and RNA2).  

1.4.1. Stem mottle disease 
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Potato plants affected with stem mottle disease in the U.K have been found to be 

associated with NM-type isolates (Weingartner, 2001).     

1.4.2. Spraing disease  

The potato tuber is a vital underground photosynthate storage organ that provides 

nutrients to young plants that emerge as sprouts which develop into new, tuber-

bearing plants. In some cultivars, TRV infection produces distinct symptoms in the 

tuber that are known as ‘‘corky ringspot (CRS)’’ or ‘‘spraing’’. The name CRS is 

commonly used in the North-American states whereas the term spraing is prevalent 

in the European countries. The disease is characterized by the production of distinct 

symptoms of brown arcs and spots of dark-coloured corky tissue in the tuber-flesh 

(Fig.1.1) that may also appear externally as annular, coarse flecks on the tuber skin 

(Fig.1.2). In case of primary infection, these symptoms are suggested to locate near 

the feeding sites of the trichodorid vector nematodes, in the outer layers of infected 

tissue and later to advance and spread into the deeper tuber-flesh. It is hypothesized 

that if the disease initiates at the maturing stage of the tubers then the symptoms are 

absent from the inner tuber-flesh or are restricted to the outer-most layers of the 

tubers (Weingartner, 2001). 

 Lihnell (1958) reported that freshly infected tubers obtained from nematode infested 

soil, developed localised diseased tissue near the outer layers of the infected tubers. 

Whereas, the progeny tubers harvested from the TRV-infected plants were lacking 

the infected tissue in the peripheral tuber layers. This suggested direct infection of 

the tubers by the trichodorid nematodes in the infested-soil (Cadman, 1959). Spraing 

had been mostly found associated with the sowing of potatoes in light textured soils. 

van Hoof (1964a) observed a link between spraing development following tuber 

feeding of TRV-carrying nematodes rather than their feeding on the potato roots, and 

thus suggested that spraing development was related to TRV infection at a particular 

age-linked growth stage of the tubers. 
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Figure 1.1. Internal symptoms of a spraing-affected tuber. Pronounced arcs and 
flecks of brownish, cork-like tissue in the tuber flesh are evident. 

 

 

 

Figure 1.2.  External symptoms of spraing-affected tubers. (a) Brownish and 
necrotic arcs of spraing are obvious on the tuber-periderm. (b) Misshapen-tubers 
with knobby-growth due to TRV-infection. 

 

 

(a) (b) 
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Further, the possibility of intercellular movement of TRV from infected roots to the 

developing tubers was rejected. Similar observations were recorded by Engsbro 

(1973), who proposed a relationship between higher trichodorid population build-up 

in the top soil layers during the rainy season, giving them greater opportunity for 

direct feeding on the tubers, and the subsequent greater occurrence of spraing. Direct 

feeding of trichodorid nematodes on potato roots rather than tubers, happening due to 

the prevalence of prolonged dry-spells during potato growing season, tends not to 

result in disease development. Sowing of seed potatoes at various soil depths has not 

proved to influence spraing induction and prevalence as production of progeny 

tubers, irrespective of the sowing depth, takes place at almost the same depth. The 

disease development remains constant during storage of infected tubers, suggesting 

no effect of storage period on spraing.     

Repeated vegetative propagation of spraing-affected potatoes results in the reduction 

of observable spraing symptoms in the progeny tubers. TRV translocation from 

spraing-affected tubers to the sprouts and the subsequent progeny tubers, inducing a 

secondary spraing is inconsistent, with most tubers being spraing-free but perhaps 

not virus-free. (Engsbro, 1973; Harrison and Robinson, 1981, 1982, 1986; 

Xenophontos et al., 1998).  

Depending upon the potato cultivar and the infecting TRV isolate, the intensity and 

spread of spraing is greater if TRV infection occurs at an initial tuber development 

stage, causing spreading of necrosis into the whole tuber (Fig.1.1) with the 

production of brownish and necrotic arcs of spraing on the tuber-periderm, 

occasional development of cracks, knobby-growths and deformation of the tubers 

(Fig.1.2. a, b).  

As with the usual association (in the U.K) of stem mottle-affected plants with NM-

type TRV isolates, spraing symptoms have also been mostly found allied to NM-type 

TRV isolates (Harrison et al., 1983; Weingartner, 2001). Robinson (2004) also found 

the induction of spraing in a potato cultivar Bintje was due to the involvement of an 
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NM-type variant of a TRV isolate (PpO85). Previously, Bintje was thought to be 

resistant to TRV-infection.  

With the introduction of modern molecular detection methods, Xenophontos et al., 

(1998) unexpectedly detected TRV in some asymptomatic potato tubers and 

proposed such tubers as a possible source of TRV spread to some sites not known to 

have TRV-bearing vector nematodes. Moreover, they also confirmed (using a 

serological detection test) the presence of M-type TRV in the foliage and roots of 

some potato plants. Likewise, Robinson and Dale (1994) also reported upward 

systemic movement of M-type TRV, from asymptomatic infected tubers of potato cv. 

Wilja, to the foliage and then later to the newly produced tubers. 

Tuber symptoms produced by PMTV have also been referred to as spraing and are 

similar in physical appearance to those induced by TRV. However, TRV-induced 

spraing is generally composed of corky-tissue whereas PMTV-induced spraing is 

lacking in this character. PMTV-produced spraing has symptoms mostly obvious on 

the external surface of affected-tubers, whereas, TRV generally produces internal 

symptoms of spraing and the appearance of external symptoms is rare with this virus. 

Moreover, the soil-texture and field history of spraing-affected tubers can also give 

clues to guess the causative agent, as the TRV-vector nematodes thrive in sandy soils 

but the PMTV vector proliferates in clay-type soils. Due to its sensitivity to PMTV 

and resistance to TRV, potato cv. Saturna can serve as a biological assay plant to 

differentiate the causative agent of spraing (Sokmen et al., 1998; Dale, 2009). 

Authentic diagnosis is through laboratory-based tests that include ELISA (for 

PMTV, as there is not much serological diversity among the few known strains) and 

RT-PCR (for TRV, due to the prevalence of many serologically diverse strains). 

Ryden et al. (1994) showed that asymptomatic TRV-infected tubers of known 

spraing-sensitive cultivars, stored for a month at ambient conditions, after inspection 

were found to remain symptomless. Whereas, such infected tubers developed spraing 

when they were diced and then stored at the same ambient conditions for a month. 
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The development of spraing was thus suggested to be associated with changed 

physico-chemical processes, such as sucrose content, and better aeration of the 

infected tubers. Spraing symptoms can be sometimes confused with the brownish 

discolouration of ‘‘internal rust spot’’ that is due to calcium deficiency in the 

affected soil (Collier et al., 1978). Potato viruses such as PVY-N and Alfalfa mosaic 

virus (AMV) can also produce tuber discolouration resembling spraing. Reliable 

diagnosis requires the use of molecular diagnostic tests like RT-PCR and ELISA.  

The genome of TRV is composed of two messenger (+ve) sense, single-stranded (ss) 

ribonucleic acids (RNAs), called RNA-1 and RNA-2. These are contained separately 

in two rigid rod-shaped L and S particles, respectively, with variable genomic sizes 

being found among different isolates. Both genomic RNAs (Fig. 1.3) have conserved 

sequences (of less than 100 nucleotides) at their 5′  and 3′ termini and the 5′ end of 

both RNA segments is capped with a 7-Methyl Guanosine structure, whereas, the 3′ 

end has a tRNA-like structure (Pelham, 1979; Harrison and Robinson, 1986; 

Hamilton et al., 1987).    

The larger RNA, called RNA-1, is about 6.8 kb in size. The RNA1 from different 

TRV isolates is highly conserved, being more than 90% identical in nucleotide 

sequence (Koenig et al., 2011; 2012). RNA-1 has four open reading frames (ORFs) 

of which the largest, the helicase gene, is at the 5′ proximal position with an opal 

translation termination codon at its distal end (Fig. 1.3.a). This first ORF encodes a 

134 kDa protein with predicted methyl transferase and nucleotide-binding and 

helicase activities. Immediately downstream of the helicase gene, in the same reading 

frame, is the polymerase gene that is expressed by read-through translation of the 

opal (UGA) termination codon of the helicase gene creating a 194 kDa protein with 

1.5. Genomic structure and organization of TRV 

1.5.1. TRV RNA-1 
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predicted RNA-dependent RNA Polymerase (RdRp) activity (Hamilton et al., 1987). 

These two ORFs, consisting of both helicase and polymerase genes comprise the 

replicase gene that embraces about 75% of the total RNA-1 genome and is involved 

in RNA replication (MacFarlane, 1999; Crosslin et al., 2003). The next ORF, 

downstream of the polymerase gene, is the ‘‘P1a’’ gene, translated as a 29 kDa 

protein (also known as the 1a protein). It is a 30K superfamily-like movement 

protein (MP) that is involved in the inter-cellular movement of TRV. At the 3′ 

proximal position in RNA-1 is the ORF for the ‘‘P1b’’ gene, translated as a 16 kDa 

cysteine-rich protein (also known as CRP or 1b protein), that functions in TRV 

pathogenicity as an antagonist of gene silencing and is possibly also, as was 

demonstrated for PEBV, involved in seed transmission (Wang et al., 1997; Liu et al., 

2002; Ghazala et al., 2008; Martin-Hernández and Baulcombe, 2008) of TRV.  An 

additional ORF is also found within the P1b gene that could, in theory, be translated 

as a 13kDa protein of unknown function (MacFarlane, 1999). The replicase gene 

acting as a mRNA is translated directly from the RNA-1 without the need of any 

subgenomic RNA (sgRNA) for its expression. In contrast, the 1a and 1b genes are 

not expressed directly from RNA-1 but are translated through two subgenomic RNAs 

designated ‘‘sgRNA1a’’ and ‘‘sgRNA1b’’ of 1.5 kb and 0.7kb size, respectively, of 

which the former is encapsidated and the latter non-encapsidated (Pelham, 1979; 

Robinson et al., 1983, 1987; Boccara et al., 1986; MacFarlane, 1999; Mandahar, 

2006). RNA-1 alone is infectious, as its replication and movement within plants is 

independent of the presence of RNA-2 but it does need RNA-2 to be encapsidated 

(particle formation) and for nematode transmission (Hamilton, et al., 1987; 

Hernandez et al., 1995; MacFarlane and Brown, 1995; MacFarlane et al., 1999; 

Visser and Bol, 1999; Vassillakos et al., 2001). 

At the amino acid level, the replicase protein is the most conserved (>95% identical), 

and is followed by the MP protein with >93% identity among all the TRV RNA-1 

isolates. Whereas, the CRP or 1b protein is the least conserved (Robinson, 2004; 

Crosslin et al., 2010, Yin et al., 2014b), with up to 15% difference. 
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The smaller genomic RNA, known as RNA-2, ranges in size (depending on virus 

isolate) from 1.9 to nearly 4.0 kb (Cornelissen et al., 1986; Vassillakos et al., 2001). 

This genome segment of TRV, in contrast to RNA-1, is highly variable among 

different isolates for its size, nucleotide sequence and organization of the encoded 

genes (Robinson et al., 1983; Bergh et al., 1985; Cornelissen et al., 1986; Angenent 

et al., 1986; Goulden et al., 1990; Sudarshana and Berger, 1998). This makes it 

difficult to completely describe the genomic structure of a typical TRV isolate. RNA-

2 often codes for three or four ORFs (Fig. 1.3.b). Both extremities of RNA-2 possess 

a non-coding region (NCR) with varying sequence length. The 3′ NCR is highly 

conserved among all the tobraviruses although the length of the conserved sequence 

may vary among TRV isolates. The 5′ NCR ranges from 381-709 nucleotides and 

differs noticeably in sequence identity among different isolates. The 5′ NCR plays a 

vital role in the multiplication of RNA-2 (Bergh et al., 1985; Angenent et al., 1989). 

Besides always coding for the coat protein (CP) gene, located usually near the 5′ end 

(Bergh et al., 1985; Goulden et al., 1990), RNA-2 may also carry one or more non-

structural protein-encoding genes (2b and 2c genes). These genes are located mostly 

downstream of the CP (also known as the 2a) gene. In some instances, as with the 

TRV-PSG strain and PepRSV, the RNA-2 encodes only one gene, namely the CP 

gene (Bergh et al., 1985; Cornelissen et al., 1986). Exceptionally, in the case of 

TRV-SYM, the CP gene is downstream of three novel ORFs and located in almost 

the centre of the RNA-2 genome (Ashfaq et al., 2011).  Likewise, the CP gene of the 

recently sequenced Mlo7 isolate is also located in the centre of the RNA-2 genome, 

alongwith an ORF for a hypothetical protein located upstream of the CP gene (Yin et 

al., 2014a). The C-terminus of the tobravirus CP possesses a peptide sequence, 

extending from the virus particle, which is thought to be involved in the virus-

nematode interaction (Mayo et al., 1994). The 2b gene encodes the 2b protein which 

is responsible for nematode transmission of TRV. So far, the function of the 2c gene 

1.5.2. TRV RNA-2 
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of any TRV isolate is not known, although, the 2c gene of PEBV (TpA56 isolate) has 

been shown to be involved in nematode transmission of that virus (Ploeg et al., 

1993a, b; MacFarlane et al., 1996; Hernandez et al., 1995; 1997; MacFarlane, 2003). 

During studies to determine the complete RNA-2 nucleotide sequence of a 

nematode-transmissible TRV isolate (PpK20) and to observe the influence of RNA-2 

encoded genes on the replication of TRV in N. tabacum plants, Hernandez et al. 

(1995) developed a full-length infectious-clone of this RNA.  Mutagenesis studies of 

the 2b and 2c genes carried on this infectious clone proved that the 2b gene was 

involved in nematode transmission (Hernandez, et al., 1997). MacFarlane et al. 

(1996) produced mutations in the four coding genes of the PEBV RNA-2 (TpA56 

isolate) and proved that deletion of the 15 amino acids from the C-terminus of the CP 

cistron resulted in the failure of nematode transmission of the virus. Besides, the CP, 

three other proteins (9K, 2b and 2c) were also found to affect the nematode 

transmission of PEBV. Although the presence of ORF 2b and 2c varies among 

different TRV isolates, MacFarlane (2010) has emphasised the essential role of the 

2b protein in nematode transmission and possibly its involvement in the vector 

specificity of TRV. Also, Valentine et al. (2004) reported a role for the 2b protein in 

the movement of TRV to non-inoculated leaves and roots of N. benthamiana and 

Arabidopsis thaliana plants, suggesting its possible involvement as an antagonist of 

the plant defence system. RNA-2 isolates lacking ORFs 2b and 2c such as TRV-

PSG, TRV-PLB, TRV-R and TRV-TCM (lacking the 2c gene only) may evolve 

naturally either following recurring mechanical inoculation of the virus or through 

repeated vegetative propagation of infected tubers (MacFarlane, 1999; Heinze  et al., 

2000). Contrary to RNA-1, RNA-2 lacks mRNA activity and produces all its proteins 

only through the expression of subgenomic (sg) RNAs. The CP gene is expressed 

from an encapsidated ‘‘sgRNA2a’’, whereas, the translational mechanism of the non-

structural proteins that differ in sequence homologies and sizes among different TRV 

isolates has not been demonstrated experimentally (MacFarlane, 1999). 
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 A salient character of TRV genomes is RNA recombination, where sequences from 

the 3′ end of RNA-2 are replaced by the 3′ sequences from RNA-1 (MacFarlane, 

1997). The TRV-TCM strain (isolated from Tulip in Netherlands and with antigenic 

resemblance to the Dutch serotype of PEBV, Cornelissen et al., 1986) possesses the 

2a gene, coding for the CP of 29.1 kDa, and also carries an additional RNA-1 

derived 16 kDa gene (Angenent et al., 1986) at its 3′end. Thus, in this instance the 

TCM strain has two copies of the 16K gene, at the 3′ termini of both RNA-1 and 

RNA-2 (Hamilton et al., 1987). Likewise, RNA-2 from TRV-PSG, TRV-PLB and 

TRV-R isolates also carries some sequences of the RNA-1 16K gene at their 3′ 

termini, due to a genetic recombination of the RNA-1 and RNA-2 genomic 

segments. This natural genetic recombination between the two TRV genomic RNAs 

is common. Yin et al. (2014b) have described two natural recombinant Polish 

isolates of TRV i.e.; Slu24 and Deb57, that carry a truncated part of the 16K gene 

acquired from  RNA1 of the related (Slu24) or unrelated (SYM or PpK20) isolates, 

respectively. Mechanistically it is proposed that the TRV RNA-2 genomes may base 

pair with an unrelated RNA-1 genome during replication, leading to deletion of a 

significant part of the RNA-2 (Koenig et al., 2012). Additionally, two TRV strains, 

TRV-PpK20 and TRV-R, possess an extra ORF located between the CP and 2b 

genes coding for putative 6.51 kDa and 8 kDa proteins, respectively. Any function of 

these extra ORFs is not known yet, however, MacFarlane et al. (1999) identified a 

9K ORF of PEBV-SP5 (RNA-2) located between the CP and 2b genes and suggested 

its participation in nematode transmission.  

Recently, Koenig et al. (2011) reported a new strain of TRV (AL-strain), comprising 

one TRV RNA-1 (AL TRV RNA-1) accompanied by seven dissimilar RNA-2 

genomes (AL TRV RNA-2, all differing in their sizes and RNA-1-related 3′ termini). 

These TRV genomes were isolated and identified by synthesizing cDNA directly 

from a naturally infected Peruvian-lily plant (Alstroemeria aurae). AL TRV RNA-1 

was more than 90% identical in its nucleotide sequence with the published complete 

RNA-1 sequences of five other TRV strains (PpK20, ORY, SYM, PpO85 and MI).   
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Figure 1.3. Genome arrangement and structure of TRV (PpK20). (*=7mG=7-
Methyl Guanosine structure; NCR=Non Coding Region, **=UGA= Opal stop codon) 
(a) The RNA-1 segment of TRV is responsible for the replication, movement and 
pathogenicity of the virus as it is composed of four important genes encoding 
helicase (134kDa), polymerase (194kDa), both jointly known as the replicase, 
movement protein (MP, 29kDa) and the cysteine rich protein (CRP,16kDa). (b) The 
RNA-2 segment of TRV (PpK20 isolate) is required for encapsidation and 
transmission of the virus as it encodes the coat protein (CP) and the 2b (nematode 
transmission protein) and 2c (unknown function) proteins.   

 

Genome organization of various TRV RNA-2 isolates 

                        

Figure 1.4. Genome organization of RNA-2 of isolates used to make 
recombinant viruses. Isolate name and RNA-2 size are shown at right of figure. 
Gene name appear under the genome diagrams. Boxes denote relative size and 
position of genes, and boxes with the same fill pattern denote conserved genes. 
Expression of SYM 5′ genes denoted by ? has not been demonstrated 
experimentally.   
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Whereas, for the seven identified AL TRV RNA-2 genomes (TC3′ AL-a, -b, -c, -d; 

TC3′ PE-a,-b and TC3′ PE-c), the nucleotide sequences of their 5′ NCR, CP gene and  

2b gene (in some molecules) were more than 99.7% identical with  the RNA-2 of the 

tulip isolate (TRV TCM strain). The CP sequence of all these seven RNA-2 genomes 

was found to be nearly 100% identical with the CP of TRV TCM strain. 

Interestingly, all seven AL RNA-2 molecules had a common 3′ termini, but of 

different lengths, which is derived from the 3′ terminus of TRV RNA-1. Three of 

these RNA-2 molecules (TC3′ PE-a-c) had a 3′ terminal part most similar to a British 

strain of PEBV (SP5), whereas, the other four (TC3′ AL-a-d) had a 3′ terminal part 

most similar to the AL RNA-1. 

The presence or absence of novel ORFs, the cistrons for the 2b and 2c proteins and 

the different sizes of the 3′ terminal RNA-2 sequences derived from RNA-1, account 

for the differences in the particle lengths and genome sizes of the various RNA-2s of 

different TRV isolates (Hernandez et al., 1995). TRV RNA-2 by itself, in contrast to 

RNA-1, is non-infectious, as it is devoid of the replication and movement functions 

which are supplied by RNA-1.  

Many isolates of TRV have been described and an ever increasing number have 

been sequenced (particularly RNA-2). Among all the known TRV isolates, the Potato 

Ring Necrosis (PRN) isolate, collected from a potato field in Scotland, is the oldest 

and is the type strain of TRV (Cadman and Harrison, 1959; Robinson and Harrison, 

1989).  

More than 28 complete or partial TRV RNA-1 nucleotide sequences have been 

deposited in the GenBank nucleotide sequence database. Most of these (>19) are 

potato isolates (e.g; ORY, PpK20, PpO85 and MI-1 etc.,), and a few of them are 

isolates from other crops such as the Spinach isolate (SYM), the Peruvian-Lily 

1.6. Specific examples of TRV isolates and strains 
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isolate (AL) and the Hosta isolate (Ho). The three RNA-1 isolates used in the current 

study are briefly discussed here:- 

1. TRV-SYM RNA-1 (Spinach Yellow Mottle strain; Hamilton et al., 1987; 

accession number D00155). SYM was isolated from infected spinach (Spinacia 

oleracea) plants collected from a field in South of England (Robinson and 

Harrison, 1985a). The RNA-1 genome of the SYM strain was the first to be fully 

sequenced and consists of 6,791 nucleotides (nts).  

2. TRV-PpK20 RNA-1 (Kinshaldy-20 strain transmitted by Paratrichodorus 

pachydermus; Ratcliff et al., 2001; accession number AF314165). PpK20 was 

initially isolated from the roots of a Petunia hybrida bait-plant, after transmission 

by a single viruliferous P. pachydermus nematode, collected in soil at a potato 

farm in Kinshaldy, Scotland (Ploeg et al., 1992b). The RNA-1 sequence is 

composed of 6,791 nts. 

3. TRV-PpO85 RNA-1 (Overloon-85 strain transmitted by P. pachydermus; 

Robinson, 2004; accession number AJ586803). The potato cultivar Bintje was 

earlier considered to be resistant to TRV infection but over a period of time it was 

reported to develop spraing at certain specific localities in the U.K, Belgium, 

Sweden and Netherlands, suggesting the possibility of some variation in TRV 

populations at these places. Robinson (2004), to investigate the possible reason of 

Bintje resistance-breaking, acquired TRV isolates from individual P. 

pachydermus nematodes, collected from a potato-field at Overloon, Netherlands. 

RNA-1 of TRV isolate PpO85 was shown to be responsible for TRV resistance-

breaking in potato cv. Bintje and differs from other TRV RNA-1 sequences by 

less than 5.5 %, with the most variation occurring in the 1b gene. The full-length 

RNA-1 sequence comprises 6,617 nts, and is smaller than the full-length RNA-1 

sequences of the other two TRV (i.e.; SYM and PpK20) isolates under study. 
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More than forty RNA-2 molecules from various TRV isolates have been fully 

sequenced, to date, and only those involved in the current studies are briefly 

discussed here. A schematic illustration for general comparison of their genome 

organizations is presented in Fig. 1.4.  

1. TRV-PpK20 RNA-2 (Kinshaldy-20 strain transmitted by P. pachydermus; 

Hernandez, et al., 1995; accession number Z36974). The PpK20 isolate was 

originally isolated from a P. pachydermus-infested soil sample, collected from a 

potato-field at Kinshaldy in Scotland. This RNA-2 has a sequence of 3,855 nts 

consisting of three ORFs along with 5′ and 3′  NCRs of 556 nts and 401 nts, 

respectively. The first ORF covering 615 nts, encodes the CP (of 22.3kDa), the 

second ORF of 1065 nts encodes the 2b protein (of 40kDa; Visser and Bol, 1999, 

previously reported to be 29.4kDa protein) and the last ORF consisting of 869 nts 

encodes the 2c protein (of 32.8kDa). An additional ORF of 212 nts for a putative 

c.6.5kDa protein had also been suggested to exist between the 2b and 2c genes, by 

Hernandez, et al., 1995, but not experimentally studied. Each of the RNA-2 genes 

is separated with non-coding sequences of variable lengths. TRV-PpK20 is 

transmissible by the trichodorid nematode P. pachydermus. 

2. TRV-I6 RNA-2 (Italian isolate transmitted by Trichodorus viruliferous; 

Robinson, 1994; accession number S72875.1). The I6 isolate alongwith six other 

TRV Italian isolates (I1-5, and I7) was originally isolated, by van Hoof et al 

(1966), from one of 29 tested soil samples. All these soil samples were collected 

from various locations in northern Italy. The soil sample of the I6 isolate was 

taken from a wheat field at Mesola (Po estuary), in northern Italy. Two of the 

tested isolates (I2 and I5), on direct mechanical inoculation to the developing 

tubers of potato variety ‘‘Eersteling’’, induced spraing. Whereas, I6 failed to 

produce any spraing symptoms. The I6 isolate of TRV had not been fully 

sequenced in the past and only the nucleotide sequences of its RNA-2 termini 

published by Robinson (1994) were available. Serologically, I6 was found to be 

more closely related to PEBV serotypes. Further characterization and assessment 
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of all these seven TRV isolates was not done. As part of this Ph.D study the 

genetic sequence of this isolate has been completely determined to be of 3,410 

nts. I6 RNA2 has four ORFs, the first ORF of 627nts for the CP, followed by the 

240nts of the 9K gene, the 768nts of the 2b (29kDa 2b protein) gene and the 

627nts of the 2c (23kDa 2c protein) gene. I6 RNA-2 is very similar in its genetic 

configuration to the RNA-2 of TRV TpO1 and the RNA-2 of PEBV TpA56. The 

5′ NCR and 3′ NCR are of 551nts and 487nts, respectively. The I6 RNA-2 is 

highly similar in nucleic acid sequence and serological properties to the RNA-2 of 

PEBV-SP5 and TpA56 strains (MacFarlane et al., 1999; van Hoof et al., 1966; 

Robinson et al., 1987). However, the replication of I6 RNA-2 is mediated by the 

TRV RNA-1 encoded replicase proteins. Whereas, the replication of PEBV RNA-

2 cannot be achieved by the TRV encoded replicase. 

3. TRV-PaY4 RNA-2 (PaY4 strain transmitted by P. anemones; Vassilakos et al., 

2001; accession number AJ250488). This English strain was isolated from a 

trichodorid nematode, P. anemones, collected from York (Ploeg  et al., 1992b). 

RNA-2 of this isolate, consisting of 3,926 nts, is the largest known TRV RNA-2 

segment that has been sequenced so far. It is composed of three ORFs, a CP ORF 

of 633nts, 2b ORF of 717 nts and a 2c ORF of 861 nts, yielding proteins of about 

22.5kDa, 27kDa and 32kDa, respectively. The CP of PaY4 is very closely similar 

in its peptide sequence to the CP of TRV-SP (spinach isolate, Germany), followed 

by TRV-ON (onion isolate, Germany) and TRV-TCM (tulip isolate, Netherlands). 

The 3′ terminal sequence of RNA-2, of about 266 nts, includes the RNA-1 

encoded 16K gene. Although PaY4 is a recombinant strain it retains the 

transmission genes and is nematode-transmissible. It is the first known tobravirus 

to be flexible in its nematode transmissibility and thus rather than being strictly 

transmitted by only one nematode species (P. anemones), it can also be 

transmitted by P. pachydermus. 
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4. TRV-TpO1 RNA-2 (TpO1 strain transmitted by T. primitivus; MacFarlane et al., 

1999; accession number AJ009833). The TpO1 isolate was acquired from a 

viruliferous T. primitivus nematode, extracted from a soil sample, collected from 

Oxfordshire in England (Ploeg et al., 1992b). TpO1 RNA-2 comprises 3,216 nts 

with four ORFs, and 5′ and 3′ NCRs of 474 nts and 413 nts, respectively. The first 

ORF covers 591 nts, encoding the CP (21.51kDa), and the second ORF extends to 

246 nts encoding a 9K (9 kDa) protein. The third ORF of 774 nts encodes the 2b 

protein (29kDa) and the last ORF consisting of 468 nts encodes the 2c (18kDa) 

protein. The RNA-2 of TRV TpO-1 and PEBV TpA56 RNA-2 are very similar in 

their genetic arrangement. Both these viruses have the same molecular size of the 

corresponding 9K and 2b proteins but they differ in the molecular size of the 2c 

proteins. The role of this 2c protein in TRV transmission is not proved. The 

tobravirus isolates TRV TpO-1 and PEBV TpA56, are both transmitted by T. 

primitivus nematodes.  

5. TRV-SYM RNA-2 (SYM strain; Ashfaq et al., 2011; accession number 

FR854197.1). The RNA-2 of SYM is an exceptional case due to the unusual 

structural arrangement of the TRV RNA-2 genes. It consist of 3,898 nts 

comprising five ORFs. The SYM CP (24kDa) is encoded by the fourth ORF (645 

nts) and is preceded by three other novel ORFs. This CP gene is therefore located 

in the centre of RNA-2 and is followed by an ORF of 408 nts encoding a C-

terminally- truncated 2b protein of about 16kDa. The SYM strain is unique from 

the other strains in causing systemic infection in C. amaranticolor plants (Ploeg et 

al., 1992b). 

All the five TRV RNA-2 isolates described above belong to different serological 

groups (serotypes). So that PpK20, TpO1 and SYM have PRN, RQ and SYM 

serotypes, respectively (Ploeg et al., 1992b). The antigenic property of the PaY4 

isolate is not known (Vassilakos, et al., 2001) as all the 9 isolates (PaY1-PaY9) from 
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the soil samples collected in York, poorly reacted with 8 diverse TRV-specific 

antisera when tested by Ploeg et al., 1992b.  

A phylogenetic analysis of partial or full-length nucleotide sequences of various 

TRV RNA-1 isolates, by using the MEGA6-package (default function. Tamura et al., 

2013), is presented in Fig. 1.5.a. The dendrogram shows that RNA-1 of PpK20 and 

SYM isolates clusters with ByKt (Bav), ORY, and SHM isolates. Whereas, the 

RNA-1 of PpO85 isolate is more closely related to the partially sequenced PSG 

isolate. The dendrogram of the helicase, replicase and movement proteins is 

presented in (b), (c) and (d), respectively. The replicases of SYM, PpK20 and PpO85 

cluster closely together, but the MP and 16K of PpO85 (Fig. 1.6.a.) are less related to 

those of PpK20 and SYM isolates. 

Phylogenetic analysis of partial or full-length nucleotide sequences of various TRV 

RNA-2 isolates, presented in Fig. 1.7.a., shows that the RNA-2 of I6 isolate is most 

closely related to the RNA-2 of PEBV strain (SP5); that was used as out-group in the 

analysis. Both these isolates formed a common clade with a bootstrap value of 99. 

Similarly, the phylogenetic analysis of the coat-proteins, 2b-proteins, 2c-proteins and 

the 9K-proteins of various TRV RNA-2 isolates is presented in Fig. 1.7.b., c, d and 

Fig. 1.6.b., respectively. In all these dendrograms the I6 RNA-2 encoded proteins 

formed a common group with those of PEBV-SP5 strain (bootstrap values of 96-

100%).  
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Figure 1.5. Phylogenetic analysis of the nucleic acid and protein sequences of 
various TRV RNA-1 isolates. Dendrogram of various TRV (a) RNA-1 nucleotide 
sequences. (b) Helicase proteins. (c) Replicase proteins (d) and Movement proteins. 
The dendrograms were constructed by the neighbour-joining method and the 
support of tree-nodes was assessed by using 1000 bootstrap-replications. The NCBI 
accession number and country of TRV isolation is given in parenthesis. United 
Kingdom, Germany, Netherlands, Poland, Brazil, Portugal, Italy, South Korea, 
North-America and United States of America are abbreviated as UK, D, NL, PL, BZ, 
PT, IT, SK, NA and USA, respectively. Host plant or isolation source of TRV from 
potato crop, other-crops and nematodes is specified by a filled-circle (•), an open-
circle (◦), and open-square (□), repectively. The scale-bar measures phylogenetic-
distance (nucleotide or amino-acid substitution / site) and the isolates in current 
study are in bold and red text. 

(a) (b) 

(c) (d) 
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Figure 1.6. Phylogenetic analysis of the 16K and 9K proteins of various TRV 
isolates. Dendrogram of various TRV (a) 16K and (b) 9K amino-sequences. The 
dendrograms were constructed by the neighbour-joining method and the support of 
tree-nodes was assessed by using 1000 bootstrap-replications. The NCBI accession 
number and country of TRV isolation is given in parenthesis. United Kingdom, 
Germany, Netherlands, Poland, Brazil, Portugal, Italy, South Korea, North-America, 
Canada and United States of America are abbreviated as UK, D, NL, PL, BZ, PT, IT, 
SK, NA, CAN and USA, respectively. Host plant or isolation source of TRV from 
potato crop, other-crops and nematodes is specified by a filled-circle (•), an open-
circle (◦), and open-square (□), respectively. The scale-bar measures phylogenetic-
distance (nucleotide or amino-acid substitution / site) and the isolates in current 
study are in bold and red text. 

(a) (b) 
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Figure 1.7. Phylogenetic analysis of the nucleic acid and protein sequences of 
various TRV RNA-2 isolates. Dendrogram of various TRV (a) RNA-2 nucleotide 
sequences. (b) CPs (c) 2b proteins (d) and 2c proteins. The dendrograms were 
constructed by the neighbour-joining method and the support of tree-nodes was 
assessed by using 1000 bootstrap-replications. The NCBI accession number and 
country of TRV isolation is given in parenthesis. United Kingdom, Germany, 
Netherlands, Poland, Brazil, Portugal, Italy, South Korea, North-America and United 
States of America are abbreviated as UK, D, NL, PL, BZ, PT, IT, SK, NA and USA, 
respectively. Host plant or isolation source of TRV from potato crop, other-crops and 
nematodes is specified by a filled-circle (•), an open circle (◦), and open-square (□), 
respectively. The scale-bar measures phylogenetic-distance (nucleotide or amino-
acid substitution / site) and the isolates in current study are in bold and red text.  

(a) (b) 

(c) (d) 
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A pseudorecombinant isolate is an experimentally derived virus that consists of 

RNA-1 from one isolate and RNA-2 of another, different isolate but of the same 

virus species (Sänger, 1968; Lister and Bracker, 1969). Pseudorecombinants formed 

by combining the RNA-1 and -2 from two different tobravirus species (e.g., TRV 

and PEBV) are not viable (Frost et al., 1967; Lister, 1968). However, some TRV 

isolates such as I6, N5 and TCM exist in which RNA-2 carries PEBV-derived genes 

but retains 5′ and 3′ sequences from TRV (Goulden, et al., 1991; Robinson, 1994). 

These naturally occurring recombinant isolates are infectious. The experimental 

reconstitution of TRV isolates and the making of pseudorecombinants has been 

employed as an effective strategy to reveal the mechanistic details of TRV infection 

in various host plants. 

Ploeg et al. (1993b) produced pseudorecombinant isolates, by mixing the genomes of 

TRV isolates PpK20 and PLB, which differ in their ability to be nematode- 

transmitted. The PpK20 isolate is nematode transmissible and PLB is non-

transmissible. This pseudorecombinant study proved the involvement of PpK20 

RNA-2 in the nematode transmission process and suggested the possible 

involvement of the CP in this virus-vector interaction. MacFarlane and Brown (1995) 

further supported this finding in the nematode transmission studies of PEBV-TPA56 

(transmissible) and SP5 (non-transmissible) isolates, suggesting the possibility of an 

active role of the 2b protein in the virus-vector transmission process. Hernandez et 

al. (1995, 1997) in mutagenesis studies of the RNA-2 infectious clone of TRV 

PpK20 further demonstrated the involvement of the 2b protein in vector 

transmission. They suggested its possible interaction with the CP for binding TRV 

particles inside the nematode vector and also showed that 2b and 2c proteins are not 

required for RNA-2 multiplication. 

1.7. TRV pseudorecombinant isolates 
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Potato c.v Bintje had been known for many years as a TRV-resistant and spraing-free 

variety. During the last few years reports emerged that Bintje crops were developing 

spraing symptoms at certain specific localities, especially at Overloon in the 

Netherlands. Robinson (2004) collected from field nematodes Bintje-resistance-

breaking TRV isolates for sequencing and  pseudorecombinant studies. He made five 

pseudorecombinant isolates, derived from the two TRV isolates PpK20, and PpO85 

(able to infect Bintje). Each pseudorecombinant isolate was inoculated using 

nematodes to one spraing-reactant (Pentland Dell, TRV susceptible) and five TRV 

resistant (including Bintje) potato varieties. All the pseudorecombinant isolates 

containing PpK20 RNA-1 failed to induce spraing in any of the five TRV-resistant 

potato varieties and produced spraing only in Pentland Dell. Exceptionally, a 

pseudorecombinant isolate carrying Pp085 RNA-1, succeeded in producing spraing 

in both the previously TRV-resistant and spraing-producing potato varieties. This 

work showed that RNA-1 of TRV isolate PpO85 gave resistance-breaking properties 

to the virus. 

Management of plant viruses by developing varieties resistant to viral infection is the 

most effective, economical, durable and environment-friendly approach. Resistance 

of plants to viruses has broadly been classified into non-host and host-resistance. 

Immunity (complete resistance, no infection) among all the genotypes of a specific 

host-virus combination has been described as non-host resistance (Palukaitis and 

Carr, 2008). It is the most stable and long-lasting type of resistance. The wild 

tobacco species, N. benthamiana, is used as a permissive host for many viruses but 

for Bean pod mottle Comovirus (BPMV) it exhibits non-host resistance (Lin, 2013). 

Non-host resistance against viruses is a less-explored area, due to the complexity of 

the mechanism, although, in recent years some progress has been made to discover 

the underlying mechanism acting against pathogens such as fungi and bacteria. For 

example, the cellular structure and production of a variety of secondary metabolites 

1.8. Spraing and resistance to TRV 
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by the host cell, such as production of saponins by oats, can cause non-host 

resistance to Gaeumannomyces graminis var. tritici (Mysore and Ryu, 2004). Host 

resistance, involving a specific interaction between virus and plant and mediated by 

one of more than two hundred plant-encoded resistance (R) genes (Kang et al., 

2005), has further been categorized into extreme resistance (ER), hypersensitive 

response (HR) and systemic acquired resistance (SAR). The ER and HR are also 

known as ‘‘innate resistance’’. In the case of ER, very little or no virus infection 

takes place in the challenged plant. Virus in this situation is either non-detectable or 

can be detected only by very sensitive techniques. Potato plants exhibiting ER either 

mostly remain completely asymptomatic or produce extremely localised necrosis in 

the form of very tiny (pin point) lesions in a few potato genotypes (Valkonen et al., 

1996). Mostly, in the case of ER, virus does not replicate or in rare cases can 

replicate in only a restricted area thereby inciting induced resistance that halts further 

replication of the virus. The coat protein of PVX can incite broad-spectrum 

resistance when viral RNA is inoculated into protoplasts of the potato cultivar Cara 

(Kӧhm, 1993). The ER genes are dominant over the HR genes. Extreme resistance 

can be wide-ranging, and can give resistance to many strains or viruses and is thus 

preferred by breeders for introgression into potato breeding lines (Barker and Dale, 

2006). Plants have many different R genes, each protecting against a particular virus 

(Soosaar et al., 2005). The Rx1 gene (on chromosome twelve) and Rx2 gene (on 

chromosome five) give ER for PVX in S. tuberosum subsp. andigenum and S. 

acaule, respectively. Likewise, the Ryadg (S. andigenum) and Rysto (S. stoloniferum) 

genes, both mapped to a similar region on chromosome eleven, provide ER for the 

potyvirus PVY (Gebhardt and Valkonen, 2001). Recently, four new Rx genes (Rx3-

Rx6) have been documented from diverse potato species. These genes also mediate 

ER to PVX and have significant sequence similarity with the earlier known Rx1 and 

Rx2 genes of potato (Vleeshouwers et al., 2011).   

HR, also known as apoptosis or Programmed Cell Death (PCD), is mostly an 

outcome of incompatible host-pathogen interplay.  It commonly results in the 
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production of local, necrotic or chlorotic spots on the inoculated leaves, to restrict the 

further spread and movement of the pathogen. In the case of more severe infection in 

potato, spreading necrosis may be produced. The N-gene of Nicotiana glutinosa is a 

HR gene that provides resistance against Tobacco mosaic virus (TMV) infection. 

(Bawden, 1936, Valkonen, et al., 1996; Wright, et al., 2000).  The Nxphu gene (on 

chromosome nine) and Naadj gene (on chromosome eleven) mediate the HR in S. 

phureja and. tuberosum subsp. andigenum, against PVX and PVA, respectively 

(Gebhardt and Valkonen, 2001). HR is mostly linked with localised cell death that 

halts further spread of the invading virus. However, for the occurrence of HR, cell 

death of tissue is not an absolute requirement as it is an ancillary process connected 

to HR (Palukaitis and Carr, 2008). The movement protein of TRV (MP, 29K) PpK20 

isolate has been found to be as elicitor of ER and HR-like responses in tetraploid 

potato cvs. Saturna, and Bintje, respectively and of ‘‘spreading necrosis’’ or 

susceptibility responses in cv. Russet Burbank (Ghazala and Varrelmann, 2007). 

Likewise, grafting of PVA-infected implants onto Shepody (a tetraploid cultivar) 

produces a novel HR response that is characterized by development of very tiny 

lesions on the foliage of the inoculated plant. These lesions are later succeeded by the 

formation of yellowish symptoms, identical to mosaic, and production of necrosis in 

the tuber tissue. This HR response in Shepody seems to be mediated by two separate 

dominant genes (Singh, et al., 2000). The HR is associated with production of short-

lived reactive oxygen species (ROS), commonly known as the ‘‘oxidative burst’’, 

that produces the reactive oxygen intermediates (ROI) consisting of superoxide (O
-2

) 

and hydrogen peroxide (H2O2) that are involved in the host defence mechanism 

(Wojtaszek, 1997; Grant and Loake, 2000). ROS are produced integrally during 

routine plant metabolism to maintain cellular and physiological activities. However, 

their production increases significantly during stressful conditions such as during 

pathogen attack or other adverse environmental conditions. This abnormal ROS 

production has detrimental effects on the cellular and histological activities of an 

organism. These harmful events may include lipid degradation, protein denaturation, 
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nucleic acid disintegration, inactivation of enzymes, induction of PCD and death of 

affected cells. H2O2 is also utilized in the cell as a substrate for lignin and suberin 

biogenesis which are involved in the formation of cork-like tissues to block further 

spread of the pathogen. Abnormal H2O2 production, above a certain threshold level, 

can also cause death of the affected tissue (Tenhaken et al., 1995; May et al., 1996; 

Grant and Loake, 2000; Sharma et al., 2012). The oxidative burst has been reviewed 

elsewhere by Lamb and Dixon (1997) and by Gadjev et al., (2008). HR can also 

further activate other defence-related responses such as local and systemic acquired 

resistance (SAR), either close to or far from the site of infection (Graham and 

Graham, 1999). SAR is frequently associated with the activation of genes encoding a 

variety of proteins that are together called pathogenesis-related proteins (PRs) such 

as PR-1, PR-2 (1, 3-β-glucanases) and PR-3 chitinases (Kombrink and Schmelzer, 

2001). These PR proteins are commonly involved in the defence mechanism of the 

host plant and are universal in their occurrence (Kemp et al., 1999). PR-proteins 

have been broadly grouped into 15 different families, of which the most extensively 

investigated proteins are 1, 3-β-glucanases and chitinases, that are involved in 

degradation of the chitins found in fungi (Scherer et al., 2005; Wang et al., 2005). 

TMV-infected tobacco plants also produce glucanases as well as glycosyl hydrolase 

active chitinases that are involved in virus-induced resistance to guard the plant from 

subsequent fungal and bacterial infections (Bol and Linthorst, 1990). The 

developments in research into PR-proteins, over more than a decade, have been 

reviewed by Edreva (2005) and Sels et al. (2008). 

The failure of viruses to move to the non-inoculated leaves of the plant could also be 

due to resistance imposed by the host on virus movement (Palukaitis and Carr, 2008) 

affecting either intercellular movement or systemic transport via the phloem 

(Blackburn and Barker, 2001).   

Potato cultivars vary in their sources of resistance to TRV infection  and so far no 

single, dominant R-gene against TRV has been reported (Ghazala and Varrelmann, 
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2007; MacFarlane, 2010). Cadman (1959) observed variation in potato varietal 

responses to TRV infection, and spraing production was proposed as a resistance-

related hypersensitive response (Engsbro, 1973). At the National Institute of 

Agricultural Botany (NIAB), Cambridge, U.K, screening of potato cultivars for TRV 

resistance is done by scoring tubers for spraing symptoms. The field harvested tubers 

are subjected to visual inspection for recording the incidence and intensity of spraing 

symptoms. The disease assessment, to corroborate the level of resistance found in 

tested cultivars, is done based on a scale ranging in values from 1 to 9. The value of 

1 is assigned to potatoes that are severely affected with spraing and the value of 9 is 

assigned to tubers that are asymptomatic for spraing production (Xenophontos et al., 

1998). Similarly, Dale and Solomon (1988) at the Scottish Crop Research Institute, 

SCRI (currently the James Hutton Institute, JHI) used viruliferous nematode-infested 

soil to infect glass-house grown tubers with TRV. Based on susceptibility to TRV 

infection and spraing production, these infected tubers were assessed using the NIAB 

TRV disease rating scale and commercial potato cultivars were divided into three 

categories (Robinson and Dale, 1994; Dale and Neilson, 2006). The number given in 

parenthesis against the cultivar represents the NIAB TRV disease (resistance) rating. 

1. Fully resistant  (TRV-resistant ):- 

This group of potatoes, including the cultivars Bintje (7), Arran Pilot (9), Record 

(8), and Saturna (7), is completely resistant (immune) to TRV isolates, except for 

the PpO85 resistance-breaking isolate which is responsible for spraing induction 

in the cultivar Bintje. These cultivars do not exhibit any spraing symptoms and 

TRV is also not detectable in these cultivars even when using sensitive virus 

detection techniques such as ELISA or RT-PCR. Generally, these cultivars have a 

NIAB TRV-disease rating of 7-9. 

2. Spraing reactant (TRV-sensitive):- 

Potato cultivars Pentland Dell (1), Maris Bard (2) and Russet Burbank (2) that 

exhibit an intermediate response between complete resistance and complete 
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susceptibility, are included in this category and they react to TRV infection by 

producing spraing in their tubers. So these are TRV sensitive cultivars, and both 

spraing and virus are present in such cultivars. Generally, they have NIAB TRV-

disease rating of 1-3. 

3. Tolerant (TRV-susceptible) :- 

     These potatoes include the cultivars Rocket (5), Nadine (6), Shepody (6), Saxon 

(7), Wilja (5) and King Edward (6) that are susceptible to TRV infection without 

the production of any noticeable symptoms except for the reduction in number 

and size of the tubers. The infected tubers, sometimes, may exhibit brownish 

coloured spots (flecks) that are few in number but there is no characteristic 

spraing production. TRV in these tubers is detectable by ELISA and RT-PCR. 

Generally, they have a NIAB TRV-disease rating of 5-7. 

Plant diseases can incite huge crop losses. Conventional methods of combating these 

diseases and causative pathogens, involve the cross-protection (immunization) 

technique and harnessing of the natural resistance found in the plants through 

conventional breeding programmes. As discussed in the previous section, plants 

carry many R genes that recognize specific pathogens and trigger defensive reactions 

to limit or, in some cases, completely inhibit pathogen invasion. Sequencing of the 

potato genome has revealed more than 750 R genes, although which pathogen each 

of them targets is not yet known (Jupe et al., 2013). 

Recently, an additional host-encoded pathogen defence mechanism, known as RNA 

silencing, has been identified. RNA silencing is also known as quelling (fungi), RNA 

interference (RNAi, in animals) and co-suppression or post transcriptional gene 

silencing (PTGS, in plants). It operates through the sequence specific degradation of 

the target mRNA in eukaryotic organisms, with the known exceptions of 

1.9. RNA silencing and Virus Induced Gene Silencing (VIGS)  
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Saccahromyces cerevisiae (Baker’s yeast), and some species of Trypanosomes 

(eukaryotic protozoan parasites).  

RNA silencing is broadly categorized into two classes i)- transcriptional gene 

silencing (TGS) that impedes RNA production in the nucleus by methylation in the 

promoter region of the gene ii)- post-transcriptional gene silencing (PTGS) that 

causes sequence homology-based RNA degradation in the cytoplasm. PTGS is 

generally known as RNA silencing (Anandalakshmi et al., 1998; Mlotshwa et al., 

2002).  

The RNA silencing pathway responds to the presence of double-stranded (ds) RNA 

in the host cell. Subsequently, the dsRNA is cleaved by the Dicer enzyme 

(ribonuclease, RNase III) to form small RNAs of 21 to 24 nucleotides. These small 

RNAs are broadly classified as short interfering RNAs (siRNAs) and microRNAs 

(miRNAs). More types of these small RNAs are continually being discovered. The 

small dsRNAs, formed  by the Dicer activity, consist of two strands with a phosphate 

group at the 5′end and a hydroxyl group at the 3′end, leaving an overhang of 2 bases 

at the 3′ termini. One of these strands (anti-sense strand) that mediates the silencing 

is referred to as ‘‘the guide’’, whereas, the second strand (sense strand) known as 

‘‘the passenger’’ is eventually degraded. The guide strand finally integrates into the 

RNA induced silencing complex (RISC), containing the Argonaute protein (AGO) 

alongwith some other associated proteins. Here, the guide strand base pairs with the 

corresponding mRNA (the target) that is then cleaved by the ‘‘slicer’’ enzyme 

activity of the AGO (Ghildiyal and Zamore, 2009).  miRNAs (also referred to in the 

past as small temporal RNAs, stRNAs) are of 21-22 nucleotides in size. Unlike 

siRNAs, miRNas are imperfectly matched to their target mRNA and down-regulate 

the translation of their targeted mRNA either by cleavage or stalling of translation. 

Most sequenced miRNAs are without any known target. Some miRNas have more 

than one target mRNA. (Mlotshwa et al., 2002; Zhixin and Qi, 2008; Axtel, M.J., 

2008). Endogenous RNA silencing, besides safeguarding the genome from 
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transposon elements and controlling plant gene expression, also plays a defensive 

role against viral infection (Baulcombe, 2004).  

Current plant molecular biology research aims to seek global systematic insight to 

define the gene (s), biological function of the proteins encoded by the genes and their 

interactions in various biochemical pathways of an organism. Analysis of gene 

function could either be carried out by following a forward genetics (from phenotype 

to genotype) or a reverse genetics (from genotype to phenotype) approach. The 

various conventional approaches used for functional gene analysis in plants such as 

the creation of stable transgenic plants or transposon tagging require the development 

of genetically modified (GM) plants (Ramachandran and Sundaresan, 2001). The 

establishment of GM plants involves plant transformation protocols that are complex 

and not suitable for some plant species.  

An alternative and fast technique for functional genomics study involves the directed 

stimulation of the RNA silencing mechanism to reduce or completely prevent the 

expression of the host genes under study. This can be achieved either by the 

production of antisense RNA transcripts in the plant system (asRNA technology), by 

excessive transgene expression (overexpression, co-suppression), by the 

coexpression of both sense and antisense transcripts as transgenes (inverted repeat 

transgenes) or by the introduction of a viral vector engineered to target a particular 

host gene (virus induced gene silencing, VIGS) to cause degradation of the specific 

host mRNA (Benedito et al., 2004). 

VIGS is designed to stimulate the anti-viral response in a manner that results in 

sequence-specific degradation of a selected host plant mRNA. This is achieved by 

inclusion of a complementary plant gene (target) fragment engineered into the viral 

vector. VIGS is preferred among other RNA silencing techniques due to its 

procedural simplicity, rapidity, dispensation of the necessity for stable plant 

transformation and the ability to cause silencing of the members of a multi-gene 

family. Other advantages of VIGS are that it does not cause any structural change in 
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the targeted gene and is also suitable for plant species that are not amenable for plant 

transformation (Benedito et al., 2004). Lacomme et al., 2003 showed that co-

expression of both sense and anti-sense RNA transcripts in plants resulted in an 

efficient induction of VIGS when the virus-vector was engineered with 40-60nts 

inverted repeat sequences of the targeted gene. The mRNA pool of the targeted 

endogenous PDS gene in N.benthamiana and barley plants was reduced by 87% and 

90%, respectively, when these plants were challenged with the corresponding TMV-

based and BSMV-based vectors engineered with 60nts inverted repeats of the PDS 

gene. Likewise, a considerable suppression of GFP expression was achieved when 

transgenic GFP-expressing N. benthamiana plants were inoculated with a TMV-

based vector engineered with 40nts inverted repeats of the GFP gene. Also, RNA 

transcripts enriched in secondary structure are proficient inducers (Purkayastha and 

Dasgupta, 2009). The viral vector is an inducer of VIGS as well as at the same time 

being a target of the host defense response (Vaucheret, et al., 2001; Burgyan, 2006). 

For the VIGS to become operative, a productive infection of the host plant by the 

viral vector is required. Once the viral vector is successful in establishing itself in the 

host, then at the local site of infection it generates a silencing signal directed at the 

mRNA transcript (host endogenous gene) that is homologous to the gene sequence 

engineered into the viral vector. Once the local silencing signal is established it is 

disseminated systemically in the host plant. Viruses have evolved special proteins 

called ‘‘silencing suppressors’’ e.g., the Hc-Pro of the potyvirus TEV 

(Anandalakshmi et al., 1998; Kasschau and Carrington, 1998), p19 of the 

tombusvirus CymRSV (Lakatos, et al., 2004), 2b of the cucumovirus CMV (Brigneti 

et al., 1998; Zhang et al., 2006), P6 of CaMV (Love et al., 2007), and the 16K of 

TRV (Ghazala et al., 2008). These silencing suppressors are effective against the 

antiviral defence of the host plant and promote pathogenicity of the virus. If the virus 

vector encodes a vigorous silencing suppressor it will result in high virus 

accumulation (higher viral-titer) in the host. Whereas, if the encoded silencing 

suppressor is weaker in its activity, then the viral accumulation will be lower (Lu et 
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al., 2003). A systemic viral infection develops if the viral vector is quicker in its 

replication and movement then the mobile silencing supressor signal. But if, 

however, the latter rapidly invades distal host tissue, then the RNA silencing will 

prevail and the subsequent viral secondary infection and systemic spread will be 

restricted (Kasschau and Carrington, 1998; Vance and Vaucheret, 2001). Induction, 

viral-suppression, and the various routes of RNA-silencing have been reviewed by 

Zamore (2004), Roth et al. (2004), Voinnet (2005a and b), and Brodersen and 

Voinnet (2006). 

The success of VIGS is essentially dependent upon the persistence of the viral-

vector. Only stably integrated transgenes can sustain silencing without a replicating 

and moving VIGS-vector. The mobile gene silencing can reach, via the phloem, 

tissues that are at a far distance from the site of signal initiation. The silencing signal 

may consist of either siRNAs, abnormal RNA transcripts or dsRNA. These 

progenitors of RNA silencing act as primers in the amplification of the mobile 

silencing signal for its further spread (Ruiz  et al., 1998; Mlotshwa et al., 2002). 

VIGS does not cause complete eradication of the targeted mRNA from the host 

cytoplasm rather it has a partial effect and can be useful for studying genes that are 

involved in the embryonic development of the plant. A number of DNA and RNA 

viruses have been adapted to allow their utilization as protein expression or gene-

silencing vectors. e.g., the DNA viruses Tomato golden mosaic virus (TGMV) and 

Cabbage leaf curl virus (CaLCuV) are suitable vectors for VIGS in N. benthamiana 

and Arabidopsis plants, respectively. Among RNA viruses, TMV and TRV are 

suitable for gene silencing in both N. benthamiana and Arabidopsis plants. TRV can 

additionally be used for silencing genes in tomato plants. The hordeivirus BSMV is 

able to silence genes in barley. The introduction of modifications in the virus-vectors 

for improvement in VIGS efficiency must not weaken the multiplication and 

movement properties of the virus. Although the DNA virus-vectors are more simple 

and robust with respect to the inoculation process, they have limited application due 

to their intrinsic genome size limitations for movement within the host plant. 
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(Robertson, 2004). TMV was the first known viral vector effective for VIGS 

(Kumagai et al., 1995). PVX (Ruiz  et al., 1998) was the second viral-vector for 

VIGS but cannot invade the meristematic-tissue of the host plant (Benedito et al., 

2004). Later, modification of TRV to function as an efficient VIGS vector (Ratcliff 

et al., 2001; Purkayastha and Dasgupta, 2009), made it possible to systemically 

invade the meristematic tissue and cause silencing of target gene in the meristems of 

the plant. TRV as a VIGS vector has great utility due to its wide host range and 

production of usually mild symptoms in the infected plant. The original TRV-VIGS 

constructs derived from TRV isolate PpK20 (pTRV1, RNA1 and pTRV2, RNA2, 

Liu, et al. 2002a) have a duplicate copy of the 35S promoter region at their 5′ end. In 

the later modified version of these viral constructs (pBINTRA6 and pTV00, Ratcliff 

et al., 2001), pTRV1 was cloned into pBINTRA6 by introducing intronic sequence 

(from arabidopsis) in the RdRP gene that made the clone more stable in Escherichia 

coli. This version of TRV was more efficient in gene silencing than the previously 

used PVX and TMV vectors. Gene silencing in the meristematic regions such as 

floral differentiating cells of the N.benthamina was also shown by using this TRV 

construct. The pTRV2 (pYL156, Liu, et al. 2002a) construct was further modified (to 

pTRV2-attR2-attR1) by exploiting the GATEWAY cloning strategy. The multiple 

cloning site (MCS) of pYL276 (obtained by cloning pYL156 into pBin19) was 

replaced with the GATEWAY recombination cassette to allow directional, restriction 

digestion and ligation-free cloning. The pTRV2-attR2-attR1 construct was used for 

silencing the constitutive triple response-1,-2 and PDS genes in tomato. VIGS in 

tomato plants proved effective when TRV constructs (in Agrobacterium tumefaciens 

cultures) were inoculated by a spray technique. A further modification of TRV 

vectors was the TRV-2b-GFP vector, where the viral 2b gene was tagged with GFP 

gene and several root-specific genes were cloned into the vector, to induce VIGS in 

the roots of N.benthamiana, tomato and Arabidopsis (Valentine et al., 2004). In 

addition to the TRV-based VIGS work in tomato, Arabidopsis, and N. benthamiana, 

this virus has also been used for gene silencing in several genetically diverse potato 
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species. Brigneti et al., (2004) carried out TRV-VIGS of the PDS gene, in diploid (S. 

bulbocastanum and S. okadae) and hexaploid realtives (S. nigrum) of potato and also 

in the cultivated tetraploid potato (S. tuberosum c.v. Cara). They also silenced 

disease resistance genes (R-genes) in tetraploid S. tuberosum c.v. Cara (R1 and Rx 

genes) and wild potato S. bulbocastanum (RB gene). Their work serves as a guide for 

the utilization of VIGS in both cultivated and wild species of potato. VIGS can 

perpetuate until the final developmental stage or physiological maturity of the host. 

Faivre-Rampant et al. (2004) used PVX to achieve effective VIGS in both the foliar 

and tuber-tissue of potato. They obtained PDS silencing that ranged from 70% to 

84% in the leaves of S. tuberosum c.v Desiree and S. bulbocastanum, respectively. 

Also, the silencing of PDS mRNA was quantified in tissue-culture generated 

microtubers of S. tuberosum c.v Desiree. The PDS mRNA was reduced to 70% and 

63% in the subcultures 1 and 3 of the microtubers. Their parallel experiments of 

inducing VIGS in the cultivars of S. tuberosum, using the TRV constructs of Ratcliff 

et al (2001), were not successful as the accumulation of TRV in these cultivars was 

not sufficient to induce VIGS. The merits and demerits of VIGS, the bottlenecks of 

the technique along with suitable remedial measures, new improvements and the 

guiding rules for the VIGS application have been discussed by Robertson (2004),  

Benedito et al. (2004), Bernacki et al. (2010), Senthil-Kumar and Mysore (2011a), 

and Ramegowda et al. (2013, 2014) . 

Potato cultivars differ in their response to TRV infection and spraing development. It 

is not yet clear whether spraing is caused by NM- or M-type infection and whether it 

is an extreme resistance (ER) or a hypersensitive resistance (HR) response of potato 

(Harrison and Robinson, 1981; Robinson et al., 2004; Ghazala and Varrelmann, 

2007). Although, Harrison et al. (1983) have reported spraing being mostly due to 

NM-type infection of TRV. In some experiments RT-PCR, using RNA-1 sequence-

based primers, failed to detect TRV from spraing-affected tubers whereas, 

1.10. Rationale for the project 
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sometimes, this technique gave positive results from symptomless tubers 

(Xenophontos et al., 1998; Crosslin et al., 1999; Brown et al., 2000). These reports 

prompted us to explore the distribution of TRV within spraing-affected potato and to 

investigate the role of RNA-2 in spraing induction. Martin-Hernandez and 

Baulocombe (2008) tested the distribution of TRV in N.benthamiana by in-situ 

hybridisation studies using an RNA-1-based probe and found that it moves to the 

growing point within 6-7 days after inoculation. No similar studies of TRV in potato 

or following the infection pathway of TRV RNA-2 have been reported.  

The present studies have been planned to:- 

1. Assess whether RNA-2 specific genes encoded by a range of TRV isolates 

influence the infection of different potato cultivars. 

2. Examine the genetic and / or biochemical nature of spraing. 

3. Test the hypothesis that spraing is a hypersensitive response to TRV 

infection. 

4. Identify TRV-susceptible potato species suitable for developing a system to 

conduct functional analysis of potato genes. 

TRV infection studies in potato are challenging due to the lack of an easy system to 

develop infection. Researchers have to rely on viruliferous trichodorid-nematodes to 

deliver the infection. But the nematode-challenge is difficult due to inability to 

culture trichodorid nematodes and the lack of suitable in-vitro systems for carrying-

out studies dealing with virus-vector association (Brown and Boag, 1987, 1988; 

Brown et al., 1989) as TRV is transmitted in a precise species-specific association. 

We in the current studies will investigate whether it is possible to develop an easy-

system to initiate TRV infection by mechanically inoculating potato leaves with a 

range of recombinant (pseudorecombinant) TRV isolates. The systemic infection of 

these pseudorecombinant isolates, differing in their encoded-genes, will be evaluated 

by northern-blot analysis of the infected N. benthamiana plants and RT-PCR of the 

infected tetraploid potato species. A suitable susceptible species from the wild-
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relatives of potato will be identified and the possibility of inducing TRV-VIGS of the 

tuber genes in this species will be evaluated. The genetic and biochemical nature of 

the spraing disease of potato has not been studied experimentally. A microarray 

analysis of spraing-affected tissue will be performed to explore the genetic nature of 

the disease and the data will be validated by qRT-PCR of selected genes. The 

biochemical nature of spraing will be ascertained by various histological staining 

techniques. 
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 Chapter 2 

The materials used in the studies are given below and have been referenced in the 

text where required. 

Three different TRV RNA1 (NM-type) isolates (SYM, Pp-O85, and PpK-20) were 

kindly provided by Dr. Stuart MacFarlane. This preserved virus inoculum was 

created by the selection and isolation of well separated single lesions (as defined by 

Robinson and Harrison, 1985 b) from C. amaranticolor plants which were inoculated 

with a highly diluted M-type inoculum (containing both RNA-1 and-2) of TRV. 

The certified, in-vitro propagated, microplants of four tetraploid cultivars (i.e; 

Pentland Dell (PD30), Maris Bard (MB81), Shepody (SY9) and Saxon, SX9) were 

purchased from GenTech Propagation Ltd., Dundee. Mother-plants of each cultivar 

were produced by culturing the microplants in potting media. Two tetraploid 

cultivars i.e.; Bintje and Wilja were raised, respectively, from the new Pre Basic-3 

and Basic seed-potato stock (tuber-stock) at JHI, kindly provided by Mr. Ralph 

Wilson (Field -Trial Officer).  

General purpose and Intercept-mixed compost, commonly used in the glasshouse, 

was used as the culturing medium. Apical-stem cuttings (about 12 cm long, Fig. 2.1, 

a) from the mother-plants were used for further propagation and experimentation. 

Leaf-disc sampling was done as shown in Fig. 2.1, b. 

2. Materials and Methods 

2.1. Materials 

 Acquisition of TRV RNA-1 (NM-type) isolates  2.1.1.

 Acquisition and culturing of potato germplasm 2.1.2.
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The seedlings of diploid potatoes (see chapter No.4 for accession Nos.) were grown 

from true-seeds stored in the JHI Commonwealth Potato Collection (CPC), being 

curated by Dr. Gavin Ramsay. 

All the other plant material used in the experiments such as N. benthamiana, C.  

amaranticolor, and  C.  quinoa plants were grown and provided by the JHI glass-

house support staff as required. 

Pentland Dell (PD) is a known spraing-sensitive cultivar (produces spraing 

symptoms). For gene expression studies using microarray-analysis, the tubers of PD 

were kindly collected and provided by Dr. Finlay Dale from commercial fields 

known to be highly infested with viruliferous trichodorid nematodes. These tubers 

were collected as part of the end-of-season harvest and transported to the JHI for 

further examination. Tubers were rinsed thoroughly with tap water to remove any 

adhering dust or soil particles and dried overnight on paper towels. Visual inspection 

for any spraing symptoms was done by dicing the individual tubers into slices of 

about 0.5 cm thickness. Small pieces of about 5 mm
3
, exhibiting visible spraing 

symptoms, were excised from different slices of the same spraing-affected tuber (Fig. 

2.2, a), and collected together to make a single composite spraing sample. Similarly, 

to represent spraing-free samples, tissue was collected from separate individual 

tubers without visible spraing but which possibly could be TRV infected (Fig. 2.2, 

b), since the tuber was harvested from a disease plot of TRV. Likewise, to represent 

healthy samples, tissue was collected from individual tubers harvested from a field-

plot that was historically known to be free from TRV disease and processed as 

before. In total there were twelve different composite tuber-samples, four samples 

with TRV and spraing (i.e.; spraing samples, S1-S4), four samples with TRV but no 

spraing (i.e.; spraing-free samples, SF1-SF4) and four samples with neither TRV nor 

spraing (i.e.; healthy samples, H1-H4). Each composite sample was collected from a 

 Acquisition and sampling of tubers 2.1.3.



45 

 

different tuber and processed separately. The excised tissue was snap-frozen in liquid 

nitrogen to prevent any subsequent alteration in tuber gene expression and 

immediately freeze-dried in an Edwards Modulyo
®
 Freeze Dryer, at 10

-1 
mbar 

pressure and -30
◦
C temperature for 48 hours, until the samples were dried enough for 

pulverization. The freeze-dried samples were ground separately using sterile pestles 

and mortars to a fine powder and stored at -80
◦
C, in air-tight 50 ml conical falcon 

tubes, until further processed for RNA extraction.      

For verification of the up-regulation of the HR-related genes from an expanded range 

of potato tubers, two further sources of germplasm were acquired for PMTV testing 

and analysis. One of these was provided by Mrs. Louise Sullivan of the JHI, 

comprising 11 tubers (designated No. L1 to L11), that were collected from a PMTV 

field-trial showing spraing symptom. These tubers were sampled as before to collect 

two sets of spraing-affected and one set of spraing-free tissue samples. One of these 

sets, comprising the spraing-affected tissue (LS1-LS11), was assayed by Mr. Graham 

Cowan, of JHI, for PMTV detection by ELISA.  The other two sets of spraing and 

spraing-free samples were freeze-dried for total RNA extraction and assayed by 

qRT-PCR, at later time, to look for possible up-regulation of HR-related genes.  

The other source, comprising 12 tubers, was provided by Dr. Christophe Lacomme 

from the Science and Advice for Scottish Agriculture (SASA). All these 12 tubers, 

seven of the variety Electra and five of the variety Burren (Table No. 2.1), were 

initially examined and tested at SASA. Some of them had been sliced at SASA for 

assessment of spraing symptoms, while others had been cored for real-time RT-PCR 

testing. Based on the high severity of spraing symptoms, five tubers designated BT3, 

ET, EP1, EP2 and EP3, were selected at JHI and sampled for further RT-PCR and 

PMTV testing, as described above. 

 Collection of spraing-affected tubers with genetically diverse 2.1.4.
background 
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Table 2.1.  Health-status of the potato tubers received from the virus-testing 
service of SASA 

S. 

No. 

Variety    Labelling code of tuber Health-status Detected Virus 

(PMTV or TRV) 

1.  Electra EH3 Healthy  NIL 

2.   EH5 Healthy  NIL 

3.   EH14 Healthy  NIL 

4.   EP1  Diseased  PMTV 

5.   EP2  Diseased  PMTV 

6.   EP3  Diseased  PMTV 

7.   ET  Diseased  TRV 

8.  Burren BH29 Healthy  NIL 

9.   BH30 Healthy  NIL 

10.   BT1  Diseased TRV 

11.   BT2  Diseased TRV 

12.   BT3  Diseased TRV 

13.  Pooled Healthy PEBH Healthy  NIL 

Potato variety Electra (EH: Electra Healthy; EP: Electra PMTV infected; ET: Electra TRV infected); 

Potato variety Burren (BH: Burren Healthy; BP: Burren PMTV infected; BT: Burren TRV infected); 

PEBH: All the healthy tuber samples of Electra (E) and Burren (B) were pooled, at JHI, with a healthy 

tuber (H1) sample of Pentland Dell.  

The freeze-dried samples from tubers BH29, BH30, EH3, EH5 and EH14 were 

pooled with freeze-dried sample H1 (from a Pentland Dell healthy-tuber, which 

tested negative for spraing and virus-infection at JHI) to make a combined 

representative healthy-tuber sample (PEBH). 

The primers used for the studies on the different TRV isolates are detailed in 

Appendix 1. The primer sets for the VIGS-related studies and quantitative RT-PCR 

(qRT-PCR) validation of the spraing microarray data are detailed in Appendices 8 

and 22, respectively. Whereas, the primers for full-length sequencing of I6 RNA-2 

are given in Appendix 3.     

 

 Primers 2.1.5.
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Figure 2.1. Raising of potato cuttings and sampling of potato leaf tissue. (a) 
apical-stem cutting made from a mother-plant (b) collection of leaf-disc samples 
from the topmost non-inoculated leaves of potato. Scale bar = 1 cm 

 

             

Figure 2.2. Sections of TRV-infected tuber (c.v. Pentland Dell). (a) with spraing 
(b) spraing-free. Red-circle marks the area selected to excise the tuber tissue. 

 

 

(a) (b) 

(a) (b)  Scale bar = 1 

cm 
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All the methods followed throughout the course of studies are given in the following 

sections. 

RNA isolated from plants infected with the different TRV RNA-1 (NM-type) isolates 

was mechanically inoculated to carborundum-dusted leaves of two plants each of N. 

clevelandii and N. benthamiana. Additionally, two N. clevelandii plants, one 

inoculated only with 1X PBS buffer and the other inoculated with a TRV SYM M-

type RNA inoculum, were the mock and positive control plants, respectively. The 

plants were given 10 days for symptom expression to occur. Leaf-discs were 

harvested, using 1.5 ml eppendorf tubes, at 4 days post-inoculation (dpi) from the 

inoculated and top-most non-inoculated (systemically infected) leaves and at 8 dpi 

from the top-most systemic leaves only for virus testing. Additionally, the top-most 

infected whole leaves were harvested separately, at 8 dpi, from the inoculated plants 

and pooled separately for each virus isolate. The collected leaf tissue was weighed, 

snap-frozen in liquid nitrogen and stored in a -80
◦
C

 
freezer, until further processed 

for total RNA isolation to confirm virus infectivity and for further experimental 

usage.
   

TRV infection in the inoculated plants was confirmed by RT-PCR detection of the 

virus in the collected leaf-disc samples. For this purpose, the small-scale total RNA 

extraction involving phenol chloroform extraction and LiCl precipitation was done 

according to the protocol of Verwoerd et al. (1989).  

 

2.2. Methods 

2.2.1 Multiplication and extraction of TRV RNA-1 isolates  

1. Small-scale total RNA isolation  
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The whole leaf tissue samples from the TRV-positive N. benthamiana plants were 

processed for large-scale extraction of total RNA as detailed below:- 

1. Each snap frozen sample was pulverized to a fine powder, using liquid nitrogen, 

and immediately mixed with TLES Extraction Buffer (0.1M LiCl, 100mM Tris 

HCl (pH 8.0), 10mM EDTA, 1% SDS; 2 ml/g of leaf tissue) and buffer-saturated 

phenol, pH 4.5 (in a ratio of 1:1). The mixture was vigorously homogenized for 

20 minutes using a ‘‘HeidolphTM-Multi Reax machine’’.  

2. The sample was centrifuged for 10 minutes in a SANYO Mistral 2,500 at 2,500 

rpm and 4
◦
C, the supernatant transferred to a new 50 ml conical centrifuge tube, 

and mixed with an equal volume of phenol (pH 4.5) and chloroform (1:1), 

followed by vortexing  for 2 minutes. 

3. The mixture was again centrifuged and the water phase (supernatant) transferred 

into a new centrifuge tube. The phenol-chloroform extraction was repeated and 

the supernatant gently mixed with an equal volume of 4M LiCl, followed by 

overnight precipitation in a -20
◦
C freezer. The mixture was centrifuged for 45 

minutes and the supernatant discarded. 

4. The RNA pellet was washed with 2 ml of 70% ethanol by spinning for 5 

minutes, the supernatant was discarded and the RNA was air-dried for about 30 

minutes before being re-suspended in 100 µl of RNAse-free water and 

quantified using a spectrophotometer.  

5. 3M Na-Acetate (0.1 volume) and absolute-ethanol (2 volume) was added to each 

RNA sample and stored (100 µg RNA sample / tube) in a -80
◦
C freezer, until 

further use.  

 

 

 

2. Large-scale total RNA isolation and quantification 
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5 µg of total RNA (section 2.2.1) and 1 µl of each 20 µM primer (0.400 µM final 

concentration) was added in a 50 µl RT-PCR reaction containing a single Ready-To-

Go™ RT-PCR bead (GE Healthcare). Primers # 1760 and 1761 (Robinson, 1992; 

Appendix 1.) were used to amplify the 16K gene (463 bp amplimer) of TRV RNA1. 

The RT-PCR programme comprised one hour incubation at 42
◦
C, followed by one 

cycle of initial denaturation (95
◦
C, for 5 minutes) and 40 cycles of denaturation 

(95
◦
C, for 2 minutes), annealing (52

◦
C, for 1 minute) and extension (72

◦
C, for 1 

minute). A final extension cycle (72
◦
C) of 10 minutes was done. 5 µl of the PCR 

product was resolved on a 1.1% agarose gel and the DNA was visualised by ethidium 

bromide staining.  

cDNA synthesis was done according to the suppler protocol for ‘‘Superscript™ III 

Reverse Transcriptase Enzyme kit’’ (Invitrogen
© 

Corporation). Reactions contained 

1 µg of total plant RNA (except that RT-PCR testing of tetraploid potatoes used 5 µg 

RNA). Also, 1 µl each of 100 µM oligo dT17 (Primer # 967) and random-hexamer 

(Primer # 1458) primers were added to a 20 µl reaction, followed by incubation at 

55
◦
C for 1 hour. The cDNA was treated with RNase H, following the protocol of 

New England BioLabs
®
 Inc. (NEB), U.K. The cDNA aliquots (1/25 dilution) were 

stored in a -80
◦
C freezer, until required.   

100 µg total RNA of each RNA1 isolate (section 2.2.1, sub-section 2) was mixed 

with 15 µl of capped RNA-2 transcript (Cap94T, 1 µg/µl, kindly provided by Dr. 

Stuart MacFarlane) and mechanically inoculated to carborundum-dusted (4-5 leaf-

stage) leaves of N. benthamiana plants. The Cap94T construct was engineered for 

2.2.2 Detection of TRV using RT-PCR beads 

2.2.3 First strand cDNA synthesis 

2.2.4 Infectivity confirmation of TRV RNA-1 isolates by using a GFP 
engineered RNA-2 transcript  
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GFP expression. The GFP expression was visualized using a hand operated U.V 

transilluminator (BLAK-RAY
®
, Long-wave, 365 nm spot, Ultraviolet Lamp, Model 

B100 AP), and the GFP-signals were captured with a camera.  

100 µg RNA1 of each of the three isolates (section 2.2.1, sub-section 2) was serially 

diluted to 10
-1

-10
-4

 and mechanically inoculated onto the leaves (4-5 leaf stage) of 

the indicator plant (Chenopodium quinoa). Data of average number of necrotic 

lesions produced on three inoculated leaves of each plant were recorded at 4 dpi. 

5 µg of p0049 was linearized by digesting with 4 µl of Sma1 restriction enzyme 

(NEB) for 4 hours, as recommended. The protocol for Phenol-Chloroform extraction, 

precipitation of the linearized DNA template, transcription (49T) and capping of the 

transcript (Cap49T) was the same as detailed in section 2.2.7 and 8.  

Total RNA (5 µg) of each RNA-1 isolate (viz; SYM, PpO-85 and PpK-20) was 

mixed separately with 5 µg of the Cap49T transcript and mechanically inoculated 

onto carborundum-dusted leaves, at 4-5 leaf-stages, of N. benthamiana plants. The 

strength of GFP-signal in the inoculated and the systemically infected leaves was 

observed by exposure to U.V. light at 4 and 8 dpi, respectively and the images 

recorded using a Canon EOS 350D camera. Samples (about 1 g) of the top-most 

systemically infected leaves, collected from one set of plants at 4 dpi and from the 

other set of plants at 8 dpi were snap-frozen in liquid nitrogen and stored in a -80
◦
C 

freezer, until processed for protein extraction.  

The leaf proteins were isolated by following the protocol kindly provided by Dr. 

Hazel McLellan (CMS group, JHI) and is given below:- 

2.2.5 Infectivity confirmation of TRV RNA-1 isolates by using indicator-
plant 

2.2.6 Extraction and quantification of total proteins from TRV-GFP 
infected plants 
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1. Each frozen leaf sample (1 g for fluorometry and 0.5 g for western-blot assay) 

was separately pulverized using a pestle and mortar and mixed with chilled 

Extraction-buffer (1.5 ml, supplemented with Proteinase Inhibitor (PI) cocktail, 

Appendix 2.). Maceration was continued until the formation of dark-green pulp, 

which was transferred with a 1 ml pipette into two separate 1.5 ml Eppendorfs 

and allowed to rest on ice for 15 minutes. 

2. The samples were spun, at 13.2x10
3
 rpm and room temperature, for 2 minutes 

and the supernatant (total proteins) removed into a new Eppendorf tube for use 

in a fluorometric assay to be quantified by the Bradford protein assay and used 

in a western-blotting assay. 

For the fluorometric assay, 200 µl of each leaf protein extract was loaded into 

duplicate wells of black (opaque) assay plates. The data for GFP expression were 

collected by the SoftMax Pro 5 package of the ‘‘Spectramax M5 

spectrophotometer’’. The instrument was instructed for top read fluorescence mode 

(10 reads / well) with the excitation-wavelength of 395, emission-wavelength of 519 

and auto cut-off of the wavelength in an ON mode. The data were generated in the 

form of arbitrary fluorescence units (AFU). In order to subtract the effect of 

background fluorescence and get the normalized AFU data, the mean AFU of the 

mock-inoculated N. benthamiana samples was manually subtracted from the mean 

AFU of the test samples.  

The leaf-protein extract, before being analysed by the western-blot method, was 

quantified by the Bradford protein assay (also known as the Coomassie dye-binding 

method). The bovine serum albumin (BSA, 10 mg/ml, NEB) was used as a reference 

protein for preparation of the relative standards by adopting the protocol of ‘‘Bio-

Rad Protein Assay kit’’. The BSA stock (10 mg/ml) was diluted with protein 

1. Fluorometric assay  

2. Western-blot assay  
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extraction buffer to prepare five BSA standards (relative standards) containing 0.2, 

0.4, 0.6, 0.8, and 0.9 mg BSA per ml. The diluted Bradford-dye reagent (900 µl) was 

separately mixed, by vortexing, with 100 µl of each BSA standard and every leaf-

protein sample. Each protein mixture was pipetted (100 µl) into fresh and dry 

spectrophotometer cuvettes and incubated at ambient temperature for not less than 5 

minutes. Each sample was evaluated in duplicate and the absorbance (A
◦
) was 

measured at 595 nm wavelength (A
◦ 
595). 

The absorbance for the extraction buffer only (blank reading) was subtracted from 

the absorbance of the test samples to get a normalized absorbance for the samples. 

The protein concentration of the samples was determined by plotting a standard-

curve for absorbance (A
◦
595) vs. concentration (mg/ml) of the protein (BSA) 

standards. Some of the test samples were diluted to bring the A
◦
595 within the range 

of the BSA standard curve. 

2.5 µg of each leaf extract was mixed separately with the dissociation buffer (1 ml 

Tris (0.5M, pH 6.8), 1.6 ml SDS (10%),  400 µl 2-Mercaptoethanol, 0.1% 

Bromophenol blue, 0.8 ml Glycerol, and 4ml distilled H2O), to a volume of 20 µl. 

The denatured protein samples (placing in boiling water for five minutes) were 

resolved on a 10% Poly Acrylamide Gels (PAGE) and transferred to a nitrocellulose-

membrane. Before blocking the blot, the transferred proteins were visualized by 

staining with Ponceau S. The blot (s) was blocked with 5% non-fat dry milk and 

immuno-labelled with PpK-20 CP-specific primary antibody (PLB antiserum, 

1:5,000 dilution). The PLB antibody was kindly provided by Dr. Stuart MacFarlane 

(from the collection of Dr. David Robinson). It was cross-absorbed with leaf-sap 

from healthy N. benthamiana plants and incubated with Alkaline Phosphatase 

Conjugate (1:2,500 dilution). The details of the protocol for developing the blot are 

explained in section 2.2.13.   

5 µl PageRuler™ Pre-stained Protein Marker (ThermoFisher Scientific
© 

) was run in 

each PAGE gel. The detection of TRV-CP was done by staining of the blots with 10 

ml solution of the detection reagent (BCIP / NBT, 1 tablet per 10 ml H2O) and 
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allowed for sufficient colour development to occur. The stained blots were washed 

with H2O to stop the staining reaction and the images captured with a Panasonic 

DMC-FS18 digital camera. 

The five full-length TRV RNA-2 infectious clones (Table No. 2.2.) used in the 

studies were kindly provided by Dr. Stuart MacFarlane.  All these clones viz: p0214 

(PpK-20), p0215 (I-6), p0216 (PaY4), p0217 (TpO-1) and p0218 (SYM) allow the 

synthesis of infectious TRV RNA2 by in vitro transcription using T7 or SP6 

Polymerase. 

Table 2.2. Full-length TRV RNA-2 infectious clones of five different isolates 

Sr.No. Infectious 

Clone No.   

TRV isolate (size of  full-length 

RNA-2); genes present 

Cloning vector (size) Size  of 

infectious 

clone  

1.  p0214 PpK-20 (3,855 bp); CP, 2b, 2c. pUC18 ( 2,686 bp) 6,538 bp 

2.  p0215 I-6 (3,410 bp); CP, 9K, 2b, 2c. pT7 Blue (2,887 bp)       6,261 bp 

3.  p0216 PaY-4 (3,926 bp); CP, 2b, 2c. pT7 Blue (2,887 bp)      6,843 bp 

4.  p0217 TpO-1(3,216 bp); CP, 9K, 2b, 2c.  pT7 Blue (2,887 bp)      6,133 bp 

5.  p0218 SYM  (3,898 bp);CP not at 5′, ∆2b pGEM-T Easy(3,015 bp)  6,930 bp 

 

The clones were separately transformed, by the heat-shock method, into chemically 

competent E.coli (DH5-α strain) cells, following the standard protocol (Sambrooke et 

al., 1989). The transformants were selected on LB agar-plates supplemented with 

ampicillin. The picked colonies were re-cultured in 10 ml LB tubes, supplemented 

with 10 µl of ampicillin (100 mg/ml). Incubation was done at 37
◦
C for overnight. 

The plasmid DNA (s) were isolated and purified (Miniprep) by the spin-column 

purification method, following the protocol of New England Biolabs
® 

(NEB) kit. 5 

µg (200 ng/µl) of each of plasmid DNAs was digested (60 µl reaction) with 3.0 µl of 

Sma-1 restriction endonuclease (NEB), following 4 hours of incubation at room-

temperature (25
◦
C). The linearized plasmids were recovered by the phenol / 

chloroform extraction and precipitated with 0.1 volumes of 3M Na-Acetate and 2.5 

2.2.7 Preparation of DNA templates for transcription 



55 

 

volumes of absolute ethanol (Sambrooke et al., 1989). The precipitated linearized-

plasmid DNAs were resuspended in distilled H2O to a concentration of more than 

500 ng/µl. The linearization efficiency was confirmed by resolving plasmid DNAs (1 

µl) on a 1.1% agarose gel and staining with ethidium bromide. The samples were 

stored in a -20
◦
C freezer, until further use, or alternatively they could be transcribed 

immediately. 

All the five linearized plasmid DNA-templates (each ~1 µg / 2 µl) were transcribed 

(20 µl reaction), following the recommended protocol of the ‘‘MEGAscript
®
 T-7 

promoter Kit (Ambion
®

-Applied Biosystems)’’. The reagents were assembled at 

room temperature and incubated at 37
◦
C for 4 hours. The transcripts were 

precipitated with LiCl, re-suspended in 40 µl of RNase-free water, quantified and 

stored in a -20
◦
C freezer, for further processing.  The quality of the transcripts was 

validated on a 1.0% denaturing agarose-gel in 1X MOPS running-buffer and 

resolved under an electric field of 100 volts.  

The transcripts were capped by following the ‘‘Standard Cap 0 Capping Protocol’’ of 

the ‘‘Script Cap
TM 

m7G capping system, CELLSCRIPT
TM

 Kit’’ and stored in a -80
◦
C 

freezer, until mechanically inoculated onto N. benthamiana plants. 

A total of 15 TRV recombinants (henceforth referred to as ‘‘isolates’’) including two 

in-vitro recombinant isolates (KK20 and SS, that generated the parental isolates 

PpK-20 and SYM isolates, respectively) and thirteen pseudorecombinant isolates 

were assembled in the laboratory. These isolates were prepared by mixing separately 

5 µg of each of the three TRV RNA-1 isolates (viz:  SYM, PpK-20 and PpO-85) 

with 5 µg of the in-vitro transcribed and 5′ capped RNA-2s (section 2.2.8, T214, 

T215, T216, T217, and T218) of the five different TRV isolates (viz: PpK-20, I-6, 

2.2.8 Transcription and capping of the transcripts  

2.2.9 Reconstitution and making of TRV recombinant isolates 
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PaY4, TpO-1 and SYM RNA-2), respectively. Infectious sap of each TRV isolate 

was prepared by macerating the whole leaf tissue, collected at 8 dpi from 

systemically infected leaves, with 1X PBS buffer (1 g tissue / ml of buffer) and 

stored in a -80
◦
C freezer for further studies.  

RNA was isolated from plants infected with either of the fifteen TRV isolates. First-

strand cDNA was synthesized by following the protocol given in section 2.2.3 except 

the oligo (dT) (Primer # 967) and random hexamer (Primer # 1458) primers were 

replaced by 1 µl (100 µM) of the tobravirus 3′ end universal primer (Primer 

No.1759, Appendix 1). A 1/100 dilution of each cDNA sample was used as a 

template in a 30-cycle PCR reaction.   

Primer-sets (Appendix 1.) specific to each of the five different TRV RNA-2 species 

were designed to produce amplicons of less than 1,000 bp. Each amplicon (2.5 µl) 

was resolved on a 1.1% agarose-gel and visualized by Ethidium Bromide staining. 

The systemic movement and accumulation of all the 15 TRV recombinant and three 

RNA1 isolates was further documented by northern blot analysis.  

The p0040 (PpK-20-CP), p1494 (I6-CP), p225 (PaY4-CP), p1496 (TpO-1-CP), 

p0073 (SYM-MP), and p1497 (SYM-CP) plasmids were linearized (following NEB 

protocol) by digesting 1 µg of plasmid with 3 µl of Pst-1 (p0040), Nco-1 (p1494, 

p225, p1496 and p0073) and Spe-1 (p1497) in a 50 µl reaction, for 2 hours. The 

protocol for phenol-chloroform extraction, precipitation, storage and re-suspension 

of the linearized plasmid DNAs was the same as discussed before. The linearized 

2.2.10 RT-PCR to confirm the identity of TRV recombinant isolates 

2.2.11 Preparation of the ribo-probes and the dot-blot hybridization for 
northern blot analysis 

1. Preparation of ribo-probes 
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plasmid DNAs were transcribed following the recommended protocol of the 

‘‘MEGAscript SP 6 promoter Kit’’ (p0073, p1494, p225, p1496) and the 

‘‘MEGAscript T-7 promoter Kit’’ (p0040 and the p1497) of the Ambion
®
-Applied 

Biosystems. The quality of transcripts was assessed by resolving 1 µg of each 

transcript on a denaturing agarose gel, according to the protocol previously 

discussed. 

The anti-sense transcripts were labelled with alkaline phosphatase by physical cross-

linking using the ‘‘Amersham Gene Images AlkPhos Direct Labelling and Detection 

System Kit (Code RPN3680)’’. 

The detection efficiency of the ribo-probes was assayed by dot-blot hybridization. 

The linearized plasmid DNAs (p0072, p0040, p1494, p225, p1496 and p1497, each 

of 100 ng) were spotted at 2-2.5 cm separation onto positively charged nitrocellulose 

membrane and cross-linked with UV light (at 1200 µJoules x 100) using a ‘‘UV 

Statalinker 2400’’. The membrane was pre-hybridized at 55
◦
C for 30 minutes in 

AlkPhos hybridization buffer (0.25 ml/cm
2
). The labelled probes (20 ng/ml of 

hybridization buffer) were added to the buffer and the membranes were incubated 

overnight at 55
◦
C. The blot was washed sequentially with primary and secondary 

buffer before the addition of 1 ml of the chemiluminescent detection reagent (CDP-

star). Exposure of X-Ray film (Fujifilm
©

) to the blot was initially for one hour, 

followed by later 1-5 minutes exposures. The autoradiograph was developed in a 

dark-room using ‘‘Xograph Compact X4’’ film-developer of ‘‘Xograph Imaging 

Systems Ltd’’.    

The systemic accumulation of TRV isolates in the N. benthamiana plants was 

evaluated by northern blot analysis. The total RNA extracted (section 2.2.1, sub-

2. Dot-blot hybridization of the ribo-probes 

2.2.12  Northern blot analysis of N. benthamiana plants  
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section 1) from the leaf-discs of transcript inoculated plants (section 2.2.9) was 

loaded (5 µg/lane) on a denaturing 1.1% agarose gel, following the standard protocol 

(Sambrooke et al., 1989). RNAs were transferred, overnight, to pre-equilibrated 

positively-charged nitrocellulose membrane (Amersham Hybond-N
+
). After 

overnight-transfer, the samples were UV-cross linked (on both sides), and the fixed 

RNAs were hybridized with the labelled riboprobe (s) according to the method 

already explained. Following overnight hybridization, the blots (s) were washed and 

developed as already discussed in above section. 

The protocol of Más and Pallás (1996) was adopted for tissue-print immunoblotting. 

The TRV-infected leaves were manually pressed, for 1 minute, onto nitrocellulose 

membrane (Amersham Hybond-ECL). After printing, the membrane was washed for 

20 minutes in 3% Bovine Serum Albumin (BSA) and TBS (20 mM Tris-HCl, pH 

7.5, and 150 mM NaCl) solution, followed by another 20 minutes washing in 3% 

BSA and TBS solution containing 0.1% Nonidet P-40, and a final washing in 3% 

BSA and TBS solution without Nonidet P-40. 

Healthy leaf tissue (0.5 g) macerated in an Eppendorf, containing 0.5 ml of TBS 

solution, was spin-filtered to rescue the supernatant (leaf sap) in a separate 

Eppendorf. The virus-specific primary antibody (4 µl, PLB serotype of PpK20 RNA-

2) was added to the collected sap and cross-absorbed by incubating, in an ice-box, 

for half an hour. The cross-absorbed PLB antibody (3 µl) was diluted to 1:5,000 (3 µl 

in 15 ml of 3% BSA and TBS solution) and added to the press-blot, followed by 

incubation at room temperature for 2 hours. The blot was washed twice with TBS 

solution and incubated at room temperature with a 1:2,500 dilution (24 µl in 60 ml of 

3% BSA and TBS solution) of the secondary antibody i.e., Anti Rabbit IgG with 

Alkaline Phosphatase Conjugate (Sigma Anti-Rabbit IgG (whole molecule)-Alkaline 

Phosphatase Conjugate, developed in Goat). Following 2 hours of incubation, the 

2.2.13 Tissue-print immunoblotting of the TRV infected plants 
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blot was washed twice with TBS solution as before and lastly rinsed with tap-water. 

TRV-CP was detected by treating the tissue-blot with substrate solution (1 tablet of 

BCIP / NBT per 10 ml H2O) and the colorimetric reaction was stopped by rinsing the 

blot with tap-water. The greenish (Chlorophyll content) background on the blot was 

removed by treating the developed blot with 10% NaHClO (Chlorox, commercial 

bleach). The images were taken with a digital camera. 

The plasmids of the wild type PpK20 RNA-2 (i.e., p0214) was separately treated 

with restriction endonucleases  BsRG1, BstE11, and NgoMIV to cut the CP (P2a), 2b 

(P2b) and 2c (P2c) genes, respectively, at 422 nts, 297 nts and 459 nts downstream 

of the respective genes (Fig. 2.3).                        

The plasmid DNA (466 ng/µl) was digested (in a 10 µl reaction) for 2 hours with 

0.75 µl of the respective restriction enzyme, according to the NEB recommended 

protocol. 

 

 

Figure 2.3.  Illustration of the restriction digestions to create frameshift 
mutants of PpK-20 RNA-2. The CP (P2a, 615 bp), 2b (P2b, 1065 bp), and the 2c 
(P2c, 869 bp) genes were restricted (site marked by an arrow) at 978 nts (BsRG1), 
1636 nts (BstEII) and 3045 nts (NgoMIV), respectively. 

2.2.14 Preparation of frameshift mutants of the CP, 2b and 2c genes of 
PpK-20 RNA-2 
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The enzyme was inactivated, the plasmid DNA phenol: chloroform extracted, and 

precipitated using Na-Acetate. The DNA pellet was washed with 70% ethanol. 

Complete digestion of the plasmid was confirmed by agarose-gel electrophoresis of 

the digestion-reaction.  The digested plasmid DNA (200 ng/µl) was made blunt-

ended in a 20 µl Klenow (Fill-In) reaction, using 0.5 µl Klenow DNA Polymerase, 

following the NEB recommended protocol. The reaction was terminated after 20 

minutes. 

The plasmid DNA (3 µl) was ligated, in a 10 µl reaction; using Promega T4 DNA 

Ligase (3U / 1.0 µl) and 10X T4 DNA Ligase Buffer (1.5 µl), following incubation 

at room temperature for 3 hours. DNA transformation of E.coli competent cells, 

selection of transformants and plasmid isolations were done as described before. 

Frame-shift mutations were confirmed by restriction digestion and DNA sequencing 

of the clones. 

Leaf-samples (0.5 g) were extracted with 5 ml of coating-buffer using a sap-press 

machine (Erich Pollähne GmBH). The extract was filtered through a double-layered 

muslin cloth to remove the tissue-debris and the filtrate of each test-sample, positive 

and negative control samples was loaded (100 µl) in duplicate into the wells of an 

ELISA-plate. The primary antibody (PLB serotype) diluted to 1:5,000 and the 

secondary antibody (Sigma Anti-Rabbit IgG (whole molecule)-Alkaline Phosphatase 

Conjugate developed in Goat) diluted to 1:2,500 were used for TRV-detection, by 

adopting the recommended protocol of ‘‘ADGEN Phytodiagnostics’’. 

The microtitre plate was scanned by a spectrophotometer (Multiskan Ascent, Thermo 

Labsystems) and the readings were recorded at 405 nm absorbance. Samples with an 

absorbance-value twice the absorbance-value of the negative control sample were 

considered to be infected with virus. 

2.2.15 Plate trapped antigen (PTA) ELISA 
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The infectious sap of each TRV recombinant isolate was mechanically applied (at 10 

days post-planting) to the fully-expanded leaves of the potato apical-stem cuttings 

(section 2.1.2, Fig. 2.1, a). Each TRV recombinant isolate was inoculated on three 

leaves of each plant and three plants per treatment.  

Leaf-discs (Fig. 2.1, b) were collected from the inoculated (at 5 dpi) and the top-most 

non-inoculated (at 15 dpi and 30 dpi) leaves. Leaf-samples from the positive control 

N. benthamiana plants were collected at 4 dpi (inoculated and non-inoculated leaves) 

and at 8 dpi (non-inoculated leaves only). The samples were snap-frozen in liquid 

nitrogen and stored in a -80
◦
C freezer. Total RNA isolations were done by following 

the recommended protocol of the TRIZOL reagent (Sigma™). The RNA 

preparations of all the three plants for each type of sample were pooled together. The 

cDNA synthesis, using 5 µg total RNA of each pooled RNA preparation, was done 

by following the protocol given in section 2.2.3.  

The RT-PCR reaction (25 µl) contained 5 µl of 5X Green Go-Taq Reaction Buffer, 1 

µl of the cDNA template of each sample, 0.3 µl of each 20 µM primer (forward and 

reverse) to give each primer a final concentration of 0.240 µM, 1.5 µl of 25 mM 

MgCl2 to make a final concentration of 1.5 mM MgCl2.  Also 2.5 µl of 2 mM dNTP 

mixture was added to make a final concentration of 0.2 mM in each reaction-mixture 

and the reaction-volume was made up to 25 µl with distilled, HPLC purified, sterile 

water. Finally, 0.125 µl of the Go-Taq Polymerase was added to a 25 µl reaction-

volume. The primer-set of each target-gene (TRV1 16K, MP, or replicase gene and 

the respective TRV2 gene) is given in Appendix 1.  

The PCR cycle comprised an initial denaturation at 95
◦
C for 5 minutes; followed by 

40 cycles of 2 minutes denaturation (95
◦
C), 1 minute annealing and 1 minute 

extension (72
◦
C). 

2.2.16 RT-PCR evaluation of the systemic infection of various TRV 
isolates in potato 
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Previous TRV VIGS studies focused on the use of N. benthamiana, Arabidopsis and 

tomato plants but the use of potato-plant in VIGS-related work is of limited 

occurrence. We have attempted to develop an efficient potato-based system for 

conducting VIGS-related studies. The potato genes Phytoene desaturase (PDS), 

Granule bound starch synthase (GBSS) and the Zeaxanthin epoxidase (ZEP) were 

selected for VIGS in potato. 

The PDS, GBSS, and ZEP genes were first cloned into pGEMT-Easy, then 

recombined into pDONR and finally into the Gateway-TRV vector for inoculation to 

potato plants.  

Potato cDNA from healthy S. jamesii was synthesized (section 2.2.3) and diluted 

with distilled water to make aliquots (of 1/25 dilution). The DNA fragments of ZEP 

(408 bp) and GBSS (441 bp) genes were amplified by ‘‘Finnzymes PhusionTM High-

Fidelity DNA Polymerase’’ (NEB), by adopting a PCR programme of 1 cycle of 

initial denaturation (at 98
◦
C for 30 seconds), followed by 40 cycles of denaturation 

(at 98
◦
C for 10 seconds), annealing of 30 seconds (at 62

◦
C for ZEP, or 61

◦
C for 

GBSS), and extension (at 72
◦
C for 20 seconds). The PCR reaction (50 µl) for each 

targeted gene comprised  5X Phusion HF-buffer (10 µl), 10 mM dNTPs (1µl), 20 µM 

forward and reverse primers of the targeted gene (1µl of each primer), template 

cDNA (1/50 dilution, 2 µl), and Phusion Polymerse (1 µl).  

The primer numbers (2296 and 2297) and (2298 and 2299, Appendix 8.) were used 

for the amplification of ZEP (408 bp) and GBSS (441 bp) fragments, respectively. 

The single-band amplicons were purified by agarose gel-electrophoresis and were A-

2.3. Methods related to VIGS studies 

2.3.1 Making of VIGS-constructs to silence potato-genes 

1. Cloning of ZEP and GBSS DNA fragments into pGEMT-Easy  
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tailed using Go-Taq Polymerase. The A-tailing reaction (10 µl) comprised 5X Go-

Taq colourless buffer (2 µl), 2 mM dNTP mixture (1 µl), 25 mM MgCl2 solution (0.5 

µl), Go-Taq Polymerase (0.2 µl) and the Gel-purified PCR product (6.3 µl), with 20 

minutes incubation at 72
◦
C in a PCR machine. 

The A-tailed amplicons were ligated (3:1 molar ratio) into the pGEMT-Easy vector. 

The ligation reaction (10 µl) comprised pGEMT-Easy vector (1 µl), 10X ligation 

buffer (1 µl), A-tailed gel-purified PCR product (1 µl), T4 DNA Ligase (1 µl), and 

distilled H2O (6 µl), followed by overnight incubation at 4
◦
C and transformation into 

E. coli DH5α. The transformants were selected by overnight culturing on LBAIX 

plates and the clones were multiplied overnight in LB medium containing Ampicilin; 

plasmid DNA isolation and quantification was the same as discussed before. 

Orientation of the cloned DNA fragments of ZEP and GBSS was confirmed by DNA 

sequencing. 

The ZEP and GBSS clones were re-amplified in a 2-step PCR procedure to add 

firstly ½ att sequences and secondly full att sequences to the gene fragments. The 

primers used for this cloning are listed in Appendix 8. These re-amplified clones 

were, thus, suitable for insertion into a TRV RNA2 vector (pTRV2 Gateway-vector) 

following the suggested protocol of the ‘‘Invitrogen™ Gateway-Technology’’ kit. 

The LR recombination-reactions (10 µl) were performed by adding the reagents in 

separate 1.5 ml microfuge tubes, following the suggested protocol of the kit. p0697, a 

pTRV2 Gateway-vector with att-sites in antisense-orientation, was the destination 

vector (Liu et al., 2002). The LR reactions were set-up at room temperature and 

incubated, at 25
◦
C, for overnight. The protocols for Proteinase-K treatment, 

transformation, selection and culturing of the transformants and plasmid isolation 

were as described in ‘‘Invitrogen™ Gateway cloning’’ manual.   

2. LR recombination (attL x attR) reaction 
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The TRV RNA2 binary vector clones (p1294, PDS; p1390, ZEP; p1391, GBSS; and 

p1402, virus-control) were transformed into Agrobacterium-GV3101 by heat-shock 

at 37
◦
C for 5 minutes, chilling on ice for 5 minutes, followed by addition of LB 

medium (400 µl) to each culture and 3 hours of shaking at 28
◦
C. The transformants 

were selected by plating onto LBKan50Rif50 culture-plates, and incubated at 28 
◦
C for 2 

days. 

All these TRV RNA2-VIGS clones along with the TRV1 infectious clone (p0695) 

were separately cultured at 28
◦
C in LB medium (5 ml) supplemented with 

Kanamycin (50 µg/ml)  and Rifampicin (50 µg/ml). Each overnight-grown culture 

was amended with 20 ml fresh LB medium, containing 150 µl of MES (1 M), 5 µl of 

Acetosyringone (0.1 M), 20 µl of Kanamycin (50 mg/ml), and 20 µl of Rifampicin 

(50 mg/ml) and grown at 28
◦
C in a shaking-incubator overnight. The cultures were 

pelleted, at 3,000 rpm, for 15 minutes and the supernatants discarded. The pellets 

were resuspended in 5 ml of infiltration-buffer [1 ml MES (1 M), 1 ml MgCl2 (1 M), 

150 µl Acetosyringone (100 mM) and 98 ml of distilled H2O]. The optical density 

(O.D600) of the cultures was adjusted to 0.5 and the cultures were allowed to sit at 

room temperature for 3 hours. Each TRV RNA2-VIGS culture was mixed with an 

equal volume of TRV1 culture and infiltrated into 3 fully-expanded leaves of N. 

benthamiana plants to initiate infection. 

 

 

 

 

2.3.2 Agrobacterium-transformation and agro-infiltration of N. 
benthamiana plants  
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Potato starch was extracted from the tubers of plants infected with the different 

VIGS-constructs, and was evaluated by staining of the isolated starch granules with 

Lugol’s iodine solution.  

Tuber-slices from washed, air-dried, and peeled tubers were cut and pooled to make 

a representative sample of all TRV-VIGS infected samples. Tuber-flesh (0.5 g) was 

crushed in a sterile 2 ml centrifuge-tube, using a sterile pestle, with 1 ml of starch 

extraction buffer [10 mM EDTA, 1 mM DTT, 50 mM Tris-base, pH 7.5, 0.1% 

Na2S2O5; Kuipers et al., 1994]. The macerate was passed through double-layered 

muslin cloth to remove the fibrous debris and the filtrate collected in a new 2 ml tube 

before being allowed to settle for 4 hours at 4
◦
C. The supernatant was removed and 

the starch deposits re-suspended in 1 ml of starch extraction buffer. The flow-through 

was again passed through double-layered muslin, the starch allowed to deposit under 

gravity and the supernatant removed as before. The starch-deposits were resuspended 

in 500 µl of deionized water and again allowed to settle for over-night. The 

supernatant was removed and the starch-deposits finally resuspended in 500 µl of 

deionized water.  

Lugol’s solution (20 µl, 2-3 drops; Fluka, Chemie GmbH, CH-Buchs) was added to 

100 µl of the starch-granule suspension. 50 µl of this stained suspension was placed 

on a microscope slide and observed at 20X magnification using a Leica DMLFS 

microscope. 

Staining of whole tuber slices was done in separate petri-dishes. Each dish was half-

filled with Lugol solution and the tuber slice submerged for 1minute.  

2.3.3 Extraction and staining of potato starch  

1. Extraction of potato-starch 

2. Staining of potato-starch 
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The mother plants (s) were placed for two weeks in a growth cabinet adjusted to 

18
◦
C temperature and short-day conditions (8 hours / 16 hours light / dark cycle) to 

induce tuberization. After two weeks, the mother-plants were shifted to the glass-

house with long-day conditions (16 hours / 8 hours light / dark cycle). Apical stem-

cuttings (section 2.1.2) were planted in Intercept treated compost with normal 

watering and allowed to grow for one week to promote better shoot and leaf-growth 

for improved virus infection. The plantlets were mechanically inoculated with viral 

inoculum within 7-10 days of planting.  

All the methods followed throughout the course of studies related to spraing are 

given in the following sections 

The air-tight falcon-tubes (section 2.1.3) containing the freeze-dried and finely 

pulverized tuber tissue were warmed to room temperature. The two protocols used 

for the isolation of large and small quantities of RNA, were adapted from the 

protocol suggested by Ducreaux et al., (2008), and are given below:- 

This protocol is suitable for isolation of small to medium amounts of total RNA 

(usually less than 1 µg).                                                                                                                                                                                                                                                                       
    

                                                                                                                                                                                                                    

1. Each sample was transferred to four sterile 2 ml microfuge-tubes (each tube 

containing 0.05 g tissue) and mixed with 650 µl of hot (80
◦
C) extraction buffer 

(1:1 with phenol, Appendix 11), by vortexing for 1 minute. Sterile-distilled 

water (460 µl) was added to each tube which was again vortexed for 1 minute, 

2.3.4 Tuberization from stem-cuttings     

2.4. Methods related to spraing studies  

2.4.1 Total RNA extraction from freeze-dried tuber tissue 

1. Small-scale extraction of total RNA from freeze-dried potato tuber 
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followed by the addition of 750 µl of chloroform: isoamyl alcohol solution 

(24:1) and another vortexing. 

2. The tubes were centrifuged at 14,000 rpm and 4
◦
C for 15 minutes and the upper 

aqueous layer was transfered to a new, sterile microfuge-tube containing an 

equal volume (ca. 750 µl) of 4 M LiCl. The contents of each tube were mixed-

well, by shaking, and incubated overnight in a -80 
◦
C freezer. 

3. Following centrifugation of the tubes as before, for 30 minutes, the supernatant 

was discarded and the RNA pellet was resuspended in 250 µl sterile, distilled 

water; reprecipitated by adding 0.1 volume (ca. 25 µl) of 3 M NaOAc, pH 5.2, 

and 3 volumes (ca. 750 µl) of 100% ethanol and incubated at -80
◦
C overnight.  

The RNA was pelleted by centrifugation (as before) and washed with ice-cold 

70% (v/v) ethanol. The RNA pellet was air-dried at room temperature for 10-20 

minutes, followed by resuspension in 50 µl sterile HPLC purified water.  

4. The RNA in each of the four tubes was combined to form a total volume of 200 

µl for each sample. Each RNA sample was quantified using the NanoDrop™ 

1000 and the quality of sample was tested by resolving it on a denaturing 

agarose-gel and by using a microfluidic chip (Agilent 2100 bioanalyzer). 

5. The RNA isolations were further cleaned of any impurities by passing 100µg of 

each sample through the spin-columns (pink) of the ‘‘Qiagen RNeasy® Mini 

kit’’ (section 2.4.3) as suggested in the RNA cleanup protocol. 

6. Each column-purified total RNA sample (10 µg) was further treated with DNase 

1 following the suggested protocol of the ‘‘Ambion TURBO DNA-free™ kit’’ 

(section 2.4.4). 

7. Aliquots of the RNA (20 µg/tube) were stored in a -80
◦
C freezer, until required 

for further use. 
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This protocol is suitable for experiments requiring higher amounts of tuber RNA 

(usually more than 1 µg). 

1. Each pulped tuber sample (1 g) was transferred to a 50 ml Sorvall
®

 tube, 

together with 14 ml of hot (80
◦
C) extraction buffer (1:1 with phenol) and mixed 

by shaking using a ‘‘Heidolph-Multi Reax’’ machine for 2 minutes, at full 

speed. Sterile distilled water (10 ml) was added to each tube and mixed as before 

for a further 1 minute, followed by addition of 16 ml of ice-cold chloroform: 

isoamyl alcohol (24: 1) and mixed as before for 2 minutes. 

2. The tubes were centrifuged at 14,000 g (10,900 rpm) and 4
◦
C, for 20 minutes 

and the upper aqueous layer was transfered to fresh, sterile 50ml tubes, 

containing an equal volume (ca. 16 ml) of 4 M LiCl. The tubes were vortexed to 

mix and stored in a -80
◦
C freezer, for overnight. 

3. The tubes were centrifuged as before for 40 minutes, the supernatant was 

discarded and the RNA pellet resuspended in 5 ml sterile HPLC-purified water 

and reprecipitated in 0.1 volumes (ca. 500 µl) of 3 M NaOAc, pH 5.2, and 3 

volumes (ca. 15 ml) of absolute ethanol followed by overnight incubation in a -

80
◦
C freezer. The RNA was pelleted by centrifugation as before for 40 minutes, 

washed with 10 ml of ice-cold 70% ethanol following by centrifugation for 20 

minutes. The ethanol was removed, the RNA pellet air-dried, and resuspended in 

300 µl sterile HPLC-purified water. 

4. The protocol for RNA quantification, quality confirmation, clean-up, DNase 

treatment and storage was the same, as described before. 

 

 

2.  Large-scale extraction of total RNA from freeze-dried potato tuber 
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Each snap-frozen tuber sample (~ 100 mg) was ground to a powder and transferred 

to a 2 ml, sterile, microfuge tube. RLT Buffer (supplemented with the β ME) was 

added to each tube, followed by 1 minute incubation (without heating) and constant 

vortexing. The recommendations of the column-purification protocol of the 

QIAGEN RNeasy
®

 Mini Kit (‘‘for the purification of total RNA from plant cells and 

tissues and filamentous fungi’’) were followed for rest of the procedure. The isolated 

RNA was concentrated by adding 0.1 volume of 3 M NaOAc, pH 5.2, and 3 volumes 

of absolute ethanol, followed by storage overnight in a -80
◦
C freezer. The RNA was 

pelleted by centrifuging for 30 minutes, washed with 70 % ethanol, air-dried for 10-

15 minutes at room temperature, and resuspended in 30 µl nuclease-free water. 

Each RNA sample (100 µg), adjusted to 100 µl with nuclease-free water, was 

purified from any contaminants such as cellular-debris or any residual contaminants 

of the extraction process, by passing it through the pink coloured spin-column of the 

‘‘QIAGEN RNeasy
®
 Mini kit’’ following the suggested protocol. 

None of the existing RNA isolation methods can extract RNA without any traces of 

contaminating DNA (Anonymous, 2009). Therefore, the RNA preparations were 

cleaned from any contaminating DNA by DNase-digestion in solution using the 

suggested protocol of the ‘‘Ambion
®
 TURBO DNA-free™ kit’’. The RNA (10 µg) 

in a 50 µl reaction-volume was mixed with 5 µl (0.1 volume) of 10X TURBO DNase 

Buffer and 1 µl (2 Units) of TURBO DNase enzyme, followed by gentle mixing and 

incubation at 37 
◦
C for 20 minutes. The DNase Inactivation-Reagent (5 µl, 0.1 

volume) was incubated for 5 minutes, at ambient-temperature, with repeated mixing 

2.4.2 Total RNA extraction from tuber using QIAGEN RNeasy® Mini kit 

2.4.3 RNA cleanup 

2.4.4 DNase digestion 
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of the tube contents. Finally, the DNA-free RNA was transfered to fresh tubes and 

quantified using a ‘‘NanoDrop™ 1000 spectrophotometer’’.  

For detection of PMTV in tuber samples, the PMTV primer-set (PTGB2 FOR, 

CGTCGACAAATGGTCCGGAATAACGAAATTG and PTGB2REV, 

CCTCGAGTTAACCTCCATATGACCTGCAGC) based on the triple gene block 

(TGB2) of PMTV RNA-3, was kindly provided by Mr. Graham Cowan (JHI). The 

virus sequence within this primer set, complementary to the TGB2 of PMTV 

(Swedish isolate), is in bold and underlined letters. The rest of the primer sequences 

comprised supplementary bases added for restriction digestion of the TGB2 gene. A 

plasmid clone of PMTV-TGB2 was used as a positive-control and water as negative-

control (NTC). The rest of the reagents and conditions of the PCR were the same as 

given in the TRV detection protocol (see section 2.2.2.).  

Experiments were performed using a custom designed Agilent gene expression 

microarray, referred to as the Potato Oligo Chip Initiative (POCI) array, which 

consists of 60-mer oligonucleotide probes representing 42,034 potato unigenes in 4x 

44K format (A-MEXP-1117; http://www.ebi.ac.uk/arrayexpress). Experimental 

design and data can be accessed at ArrayExpress (E-MTAB-4670; 

http://www.ebi.ac.uk/arrayexpress). Potato tuber RNA samples were converted to 

Cy3-labelled cRNA using the ‘‘Low Input Quick Amp Labeling kit’’ (Agilent), 

following the One-Color Microarray-Based Gene Expression Analysis v 6.5 

protocol.  

Labelled cRNAs were hybridised to the POCI arrays overnight and scanned as 

recommended using a G2505B scanner (Agilent). Four replicates of each of the 

twelve RNA samples (themselves representing four biological replicates of the three 

2.4.5 RT-PCR detection of PMTV in tuber samples 

2.4.6 One colour microarray-based gene expression analysis 

http://www.ebi.ac.uk/arrayexpress
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tuber types) were processed on the array. Data were extracted from each of the arrays 

using Feature Extraction v 10.7.3.1 software (Agilent) and default parameters, prior 

to importing into Genespring v 7.3 software (Agilent) for normalisation, QC and 

analysis. 

The cDNA aliquots (1/25 dilution) of all the twelve RNA samples viz; spraing (S1, 

S2, S3, and S4), spraing-free (SF1, SF2, SF3 and SF4) and healthy (H1, H2, H3 and 

H4) were pooled together to make a composite sample (300 µl).The pooled cDNA 

sample (300 µl) was of concentration 100 ng/µl and then serially diluted (1:4 with 

H2O) to make 300 µl of the diluent 1 (25 ng/µl), diluent 2 (6.25 ng/µl), diluent 3 

(1.56 ng/µl), and diluent 4 (0.39 ng/µl). 5 µl of the pooled and the serially diluted 

cDNAs (diluents, standards) were loaded into a qRT-PCR plate. The cDNA template 

in the NTC was replaced by nuclease-free water. The primer-sets for the target gene, 

alongwith the recommended concentrations of the primers are given in Table No. 

5.5. The rest of the qPCR reagents and the thermal cycling programme was the same 

as mentioned in section 2.4.8. Each sample was assayed in duplicate using the 

standard-curve function of the ‘‘StepOne Plus’’ package (Applied Biosystems) for 

data analysis. 

Quantitative RT-PCR reactions comprised 12.5 µl of the ‘‘Power SYBR
®
 Green 

PCR Master Mix’’ (Life Technologies Corporation) per 25 µl reaction. The forward 

and reverse primers (10 µM each) were added to the PCR-mixture to a final 

concentration as mentioned in Table No. 5.5. The Elongation factor-1 alpha (Ef-1 α) 

and Cyclophilin (CyP) genes were the internal-control (house-keeping) genes in 

these assays to comply with the ‘‘Minimum information for publication of 

quantitative real-time experiments’’ (MIQE) guidelines (Bustin et al., 2009). The 

2.4.7 Preparation of cDNA standards and validation of the quantitative 
RT-PCR (qRT-PCR) primer sets 

2.4.8 qRT-PCR validation of potato gene expression  
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1/25 diluted cDNA of each sample was thawed on ice, just prior to the loading of 5µl 

into the corresponding well of the qRT-PCR plate. Each cDNA sample was assayed 

in triplicate. The total reaction volume was made up with nuclease-free water. For 

the NTC the template was replaced with the water.  

The thermal cycling parameters were as follows: - Holding stage at initial 

denaturation of 95
◦
C for 15 minutes, followed by 40 cycles of denaturation at 95

◦
C 

(for 15 seconds), annealing at 59
◦
C (for 40 seconds) and extension at 72

◦
C (for 30 

seconds). The DNA amplification data were extracted by the software at the 

annealing stage of each cycle. Melt-curve analysis was done in continuous run mode 

with denaturation at 95
◦
C (for 15 seconds), followed by annealing at 59

◦
C (for 40 

seconds) and again denaturation at 95
◦
C (for 15 seconds). The qPCR was performed 

using an ‘‘Applied Biosystems’’ StepOne PlusTM 
 machine and the data were collated 

by the ‘‘StepOne Plus’’ package. 

Pentland Dell tubers were collected from a field affected with spraing disease.  The 

tubers ranging a diameter of 4.5 to 6 cm were checked to ensure they were free of 

any injury, bruising and morphological abnormalities. Tubers were washed with tap-

water to remove any adhering soil-particles, air-dried on paper towels and cut in 

cross-sections with a knife. Small tuber sections including spraing symptoms were 

collected, using a cork-borer, and the tuber sections lacking any disease symptoms 

were also collected from healthy tubers. The sections were trimmed to a 2 mm 

thickness with a vibroslicer and stained to confirm the histological occurrence of HR. 

Three sections from both healthy and spraing-affeccted tubers were stained 

simultaneously by dipping in a beaker containing the stain solution. Images before 

and after the staining were examined using a Leica MZFL III stereoscope and 

captured by ‘‘Moticam 3000’’ camera. 

2.4.9 Staining of tuber sections for histological confirmation of HR 
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The tuber-sections were washed for 2 minutes with deionized and distilled water, and 

then stained by boiling in a lactophenol trypan-blue solution (10 mg of trypan-blue, 

20 ml of absolute-ethanol, 10 ml of buffer-saturated phenol pH 4.5, 10 ml of lactic 

acid (Sigma L-1250), and 10 ml of deionized water) for 2 minutes (Keogh et al., 

1980; Koch and Slusarenko, 1990; Miles et al., 2010). The stained sections were 

washed with 70% ethanol, rinsed in distilled water, and finally destained over three 

weeks by submerging in 40 ml of chloral hydrate solution (500 g / 200 ml distilled 

water) with weekly changes of the solution until the background staining was 

removed. Chloral hydrate solution was prepared by dissolving chloral hydrate 

overnight in boiled, sterile, distilled water with continuous stirring for hours. Once 

the background stain was removed, the tuber-sections were rinsed with sterile and 

distilled water and examined using a stereoscope.  

Acidic phloroglucinol is used as a general stain for the detection of lignin (Wiesner 

reaction) that is stained temporarily pink to red. The freshly prepared tuber-sections 

were dipped simultaneously in 2% phloroglucinol / ethanol (70%) solution at room 

temperature and incubated for 30 minutes, followed by replacing the staining 

solution with the 25% HCl solution (Liljegren, 2010; Miles et al., 2010). The stained 

sections were rinsed with distilled water and immediately examined with a 

stereoscope. 

The generation of Reactive Oxygen Species (ROS) such as H2O2 can be visualized 

by staining with 3, 3′-Diaminobenzidine (DAB), as DAB produces dark-brown 

precipitates when it is oxidized by H2O2 in the presence of peroxidases (Thordal-

Christensen et al., 1997; Daudi et al., 2012). The DAB stain was prepared in HPLC-

purified water, following the suggested protocol of SIGMAFASTTM 3, 3′-

1. Trypan Blue staining 

2. Phloroglucinol staining 

3. DAB staining 
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Diaminobenzidine tablets (Sigma-AldrichTM, Inc.). The tuber slices were 

simultaneously submerged in the DAB-stain solution. As soon as the tuber-tissue 

started to develop a background of brown-coloured precipitates, the staining was 

stopped by washing with PBS. The samples were finally washed with sterile distilled 

water and the images captured with a Canon EOS Ultrasonic camera.  
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 Chapter 3 

3.1. Aim 

TRV can move systemically from the mechanically-inoculated foliage down to the 

roots of susceptible hosts (Chen et al., 1969). In the field, TRV is transmitted from 

an infected to a healthy plant by trichodorid nematodes which transmit it in a 

species-specific association (van Hoof, 1968; MacFarlane et al., 1999). RNA-1 of 

TRV is highly conserved in different isolates (Robinson and Harrison, 1989; 

Sudarshana and Berger, 1998; Visser and Bol, 1999; Crosslin et al., 2003; 

MacFarlane, 1999, 2010), whereas RNA-2 is extremely variable among different 

isolates in the size, nucleotide-sequence and organization of the encoded-genes 

(Robinson et al., 1983; Bergh et al., 1985; Cornelissen et al., 1986; Angenent et al., 

1986; Goulden et al., 1990; Sudarshana and Berger, 1998). The contribution of 

RNA-1 and RNA-2 to virus infection was examined in a series of experiments. 

Firstly, three different RNA-1 molecules (SYM, PpO-85 and PpK-20) were 

separately combined with a GFP-expressing PpK-20-derived RNA-2 and any 

differences caused in the expression of GFP and CP were quantified by fluorometric 

and western-blot assay, respectively. In another set of experiments, all three RNA-1 

isolates were separately mixed with full-length, wild-type, RNA-2 transcripts of five 

different TRV isolates to form 15 different TRV recombinant isolates. All 15 

laboratory isolates were mechanically inoculated to N. benthamiana plants. The 

replication and systemic movement of the RNA-1 and -2 of these TRV recombinants 

(hereafter refereed as TRV isolates) was evaluated by northern blotting. We have 

also investigated the infection and systemic movement of all 15 TRV isolates in six 

different cultivars of tetraploid potato. As part of this work the full-length sequence 

of the I6 RNA-2 was also determined.  

3. Systemic Infection of TRV isolates 
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Before proceeding to prepare the recombinant TRV isolates, the infectivity of the 

three TRV RNA-1 inocula was confirmed as follows:- 

Total plant leaf RNA containing each of the three TRV RNA1 species was 

mechanically inoculated to N. benthamiana and N. clevelandii plants (section 2.2.1). 

RNA1 multiplication was confirmed by RT-PCR amplification of the TRV 16K gene 

as described in section 2.2.2 (Fig. 3.1). RNA was then isolated from these plants to 

produce a stock of infectious RNA1 of each TRV isolate for use in genome 

reconstitution experiments. 

Infectivity of all these RNA-1 isolates was further tested by inoculation onto 

Chenopodium  quinoa (section 2.2.5). The RNA-1 isolates produced necrotic-flecks 

(Fig. 3.2) on C. quinoa and were found to be infectious up to a dilution of 1:100. 

However, no infectivity was noticed at dilutions of 1:1000 and 1:10,000 (Table No. 

3.1). The mock-inoculated plants remained asymptomatic.  

Table 3.1. Infectivity score of TRV RNA-1 (NM-type) isolates assessed by 
bioassay 

Sr. 

No. 

Dilution         

factor  

Average number of necrotic-lesions produced on three inoculated 

leaves of each plant 

SYM 

RNA-1 

Pp0-85 RNA-1 PpK-20 RNA-1 Mock 

01- Undiluted 23 11 64 00 

02- 1 :10 dil. 08 08 18 00 

03- 1 :100 dil. 04 03 07 00 

04- 1:1000 dil. 00 00 00 00 

05- 1:10,000 dil. 00 00 00 00 

The given values are average of two individual plants 

The undiluted inoculum of PpK-20 RNA-1 produced the highest average number of 

necrotic-lesions (64), followed by the SYM RNA-1 (23). Whereas, the PpO-85 

RNA-1 was least capable of producing infection (an average of 11 necrotic-spots). 

3.1.1. Infectivity confirmation of the TRV RNA-1 isolates  
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Figure 3.1. RT-PCR detection of TRV in plants inoculated with RNA-1 isolates. 
Lane M: 1Kb Promega DNA marker; Lane 1: Non-Template control; Plants 
inoculated with, Lane 2: 1X PBS only; Lane 3: SYM, M-type; Lane 4-7: SYM RNA-1; 
Lane 8-11: PpO-85 RNA-1; and Lane 12-15: PpK-20 RNA-1 isolates; Lane 16-19: 
Blank. The first two lanes of each RNA-1 isolate are from N. benthamiana and the 
latter two are from N. clevelandii plants.    

 

 

 

 

 

 

 

 

 

 

Figure 3.2. TRV RNA-1 infection on the indicator plant Chenopodium quinoa. 
Leaves of Ch. quinoa inoculated with (a) 1X PBS only, showing no symptoms. (b) 
undiluted inoculum of PpK-20 RNA-1 isolate, showing necrotic-lesions. (c)  Close-up 
of encircled-tissue elaborating TRV-induced necrotic lesions. Arrow-head (►) 

indicates the marks to differentiate the inoculated from the non-inoculated leaves. 
Images were captured at 4 dpi. 
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Figure 3.3. GFP expression in Nicotiana benthamiana plants infected by TRV 
RNA-1 isolates. Plants inoculated with Cap94T and (a) SYM RNA-1; (c) PpO-85 
RNA-1; and (e) PpK-20 RNA-1 isolates. Plants inoculated only with (b) PpK-20 
RNA-1; (d) Cap94T; and (f) 1X PBS (mock-inoculation). Images were captured at 4 
dpi. 
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The viability of the TRV RNA-1 preparations was further tested by mixing each 

separately with an RNA-2-GFP transcript (Cap94T) as given in section 2.2.4. This 

RNA mixture was mechanically inoculated to 4-5 leaf stage N. benthamiana plants 

and the effect of RNA-1 isolates on the systemic infection of RNA-2 was 

documented by recording the GFP expression at 4 dpi. GFP fluorescence was seen in 

all the plants inoculated with Cap94T and any of the TRV RNA-1 isolates. The 

results presented in Fig. 3.3 are representative of the experiment repeated three times. 

The GFP expression was stronger in the plants inoculated with PpK-20 RNA-1 (Fig. 

3.3, e) and weaker in the plants inoculated with SYM RNA-1 (Fig. 3.3, a) and PpO-

85 RNA1 (Fig. 3.3, c). The plants inoculated with only PpK-20 RNA-1 or Cap94T, 

or the1X PBS (mock-inoculation) did not show any GFP-expression (Fig. 3.3, b, d, 

and f), thus confirming the viability of these RNA-1 preparations (as the RNA-2 

transcript cannot replicate and express GFP by itself).  

The replication and gene expression of TRV RNA-2 is dependent on the TRV RNA-

1 and thus is indirectly indicative of the level of replication and infectivity of the 

supporting RNA-1 molecule. Therefore, a GFP-engineered TRV RNA-2 was 

exploited to assess the infectivity of the three different supporting RNA-1 molecules 

of the virus. The images of N. benthamiana plants (inoculated by the method given 

in section 2.2.6) were captured at 4 dpi and 8 dpi, and are presented in figure 3.4. and 

3.5., respectively. The presented images are representative of three plants for each 

treatment.  

 All the mock inoculated N. benthamiana plants, used as negative controls for the 

experiment, remained GFP-free (Fig. 3.4, e) and the GFP transgenic N. benthamiana 

(CB28) plants, served as positive control for the experiment, were documented with 

good strength of GFP signal (Fig. 3.4, a). At 4 dpi, much stronger GFP expression 

was recorded in the top systemic leaves of the plants co-inoculated with GFP 

engineered TRV RNA-2 (Cap49T) and the PpK-20 RNA-1 isolate (Fig. 3.4, d). The  

3.1.2. Quantitation of GFP expression in TRV-GFP infected plants 
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Figure 3.4.  GFP expression in Nicotiana benthamiana recorded at 4 dpi. (a) 
GFP transgenic N. benthamiana plant, CB28. Non-transgenic N. benthamiana 
plants inoculated with GFP-engineered Cap49T (TRV RNA-2) and (b) SYM RNA-1 
(c) PpO-85 RNA-1 (d) PpK-20 RNA-1 isolates and (e) 1X PBS only. 
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Figure 3.5. GFP expression in Nicotiana benthamiana recorded at 8 dpi. Non-
transgenic N. benthamiana plants inoculated with GFP-engineered Cap49T (TRV 
RNA-2) and (a) SYM RNA-1, (b) PpO-85 RNA-1, (c) PpK-20 RNA-1 isolates, and 
(d) 1X PBS only (mock-inoculation). 
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Figure 3.6.  GFP expression with relevance to the TRV RNA-1 isolates. CS28: 
GFP transgenic plants; M: Mock-inoculated plants; Plants inoculated with GFP 
engineered TRV RNA-2 (Cap49T) and SYM RNA-1 (S49) or PpO-85 RNA-1 (O49) 
or PpK-20 RNA-1 (K49). ‘‘ɪ’’ is the error-bar representing standard deviation of the 
mean; value above bar is normalized AFU of GFP expression from three plants. 

next strongest intensity of GFP expression was observed in the plants inoculated with 

Cap49T and SYM RNA-1 (Fig. 3.4, b). However, the least GFP expression was 

observed in the plants inoculated with Cap49T and PpO-85 RNA-1 (Fig. 3.4, c).  

GFP expression was reduced at 8dpi, with the greater reduction being observed in the 

plants inoculated with PpK-20 RNA-1 (Fig. 3.5, c), followed by the PpO-85 RNA-

1(Fig. 3.5, b) and the SYM RNA-1(Fig. 3.5, a), respectively. 

The total proteins from the leaf samples were extracted (section 2.2.6) and the 

differential GFP expression was quantified (Appendix 7), using a fluorimeter. The 

mean arbitrary fluorescence unit (AFU) for the four blank (empty) wells and six 

wells loaded with the extraction buffer only was 50.027 and 112.434, respectively 

(Appendix 7). Whereas, the mean AFU of the three mock-inoculated N. benthamiana 

plants (M-1,-2, and -3) was 276.12. The mean AFU of mock plants was subtracted 

from the mean AFU of the test samples to get the normalized (nor.) AFU. The nor. 
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AFUs were rounded to the nearest unit. For example, the mean AFU of the three 

GFP transgenic N. benthamiana plants (CB28-1,-2 and -3) was 928. Subtracting the 

mean AFU of mock plants (276.12) from the mean AFU of the CB28 (928) produced 

the nor. AFU (i.e., 652) of CB28.  

At 4dpi, the highest GFP expression was recorded in the plants infected with PpK-20 

RNA1 (K49, nor. AFU of 1465), followed by the plants infected with the SYM 

RNA1 (S49) and PpO85 RNA1 (O49) with nor. AFUs of 1086, and 521, respectively 

(Fig. 3.6).  However, at 8 dpi, the nor. AFU in all the plants was reduced by over 

50% of that recorded at 4dpi, resulting a nor. AFU of 226 in the K49 plants. 247 was 

in O49 and 690 was in S49 plants, respectively. So at 8 dpi, the GFP expression and 

therefore RNA-2 replication was maintained best in the S49 (SYM RNA-1) plants.  

The PpO-85 RNA-1 appeared less infectious than the other two RNA-1 isolates 

(SYM and PpK-20). 

Expression of virus CP in these experiments was examined by western blotting. For 

this purpose, two sets of N. benthamiana plants (Set I and II; three plants per 

treatment) were inoculated and treated as given in section 2.2.6. These were the same 

plants as above in section 3.1.2 and the relative GFP expression in these plants was 

the same, as described already. The plants inoculated with PpK-20 RNA-1, at 4 dpi, 

had the highest GFP expression in the top-systemic leaves, followed by the plants 

infected with SYM RNA-1 and O-85 RNA-1, respectively. The GFP after reaching 

its peak expression was found progressively to decline after 6 dpi.  

Both the inoculated and top systemic leaf samples were collected at 4 dpi from one 

set of plants (Set I). Whereas, from the other set of plants (Set II), only the top 

systemically infected leaves were collected at 6 and 10 dpi. The total proteins of 

these samples were extracted (section 2.2.6) and quantified by the Bradford protein 

assay. Equal amounts of total protein from each sample were separated by denaturing  

3.1.3. Western blot assay of the TRV-CP expression  
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Figure 3.7. Western blots of the GFP expressing N. benthamiana infected 
with TRV-GFP and various RNA-1 isolates, probed with CP antibody. Lane M: 
Precision Pre-stained Protein Marker;  

(Blot I) N. benth Set-1, sampled at 4 dpi. Lane 1: CB28, -ve control; Lane 2: N. 
benth Mock, -ve control; Lane 3-11: Inoculated (Ino.) leaf samples at 4 dpi; Lane 
3: K20 Ino, +ve; Lane 4-5: S49, Ino; Lane 6-8: O49, Ino; Lane 9-11: K49, Ino, 
respectively. Lane 12-19: systemically infected leaf samples at 4 dpi; Lane 12-13: 
S49, 4 dpi; Lane 14-16: O49, 4 dpi; Lane 17-19: K49, 4 dpi, respectively.  

(Blot II) N. benth Set-2, sampled at 6 dpi and 10 dpi. Lane 1: PpK20, 6 dpi, +ve 
control; Lane 2: CB28, -ve control;   Lane 1-11: systemically infected leaf samples 
at 6 dpi; Lane 3-5: S49, 6 dpi; Lane TRV-CP 6-8: O49, 6 dpi; Lane 9-11: K49, 6 
dpi, respectively. Lane 12-19: systemically infected leaf samples at 10 dpi; Lane 
12-13: S49, 10 dpi; Lane 14-16: O49, 10 dpi; Lane 17-19: K49,10 dpi, 
respectively; Ino., 4, 6, and 10 dpi: represents sample collected from inoculated 
leaf at 4 dpi and top-systemic leaves at 4, 6, and 10 dpi, respectively; -1, -2, and -
3: represents individual plant numbers. Panel a is the blot stained for CP detection 
and panel b is the Ponceau S staining of the respective blot.  
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PAGE and the TRV CP proteins were detected using CP-specific antibodies (Fig. 

3.7).  

The CP (22kDa) was detected in the positive control samples (plants inoculated with 

PpK-20 infectious sap), and all the test samples (S49, 1-3; O49, 1-3; and K49, 1-3). 

The CP was undetectable in the samples from the GFP transgenic (CB28) and the 

mock-inoculated N. benthamiana plants (negative controls of the experiment).  

The blot of the samples from Set I is presented in Fig. 3.7, Blot I. The CP (22kDa), 

besides being strongly detected in the positive control plant (K20, Lane 3), was also 

strongly detected in the plants inoculated with virus carrying SYM RNA-1 (S49,Ino.; 

Lane 4 and 5) and PpK20 RNA-1 (K49, Ino.; Lane 9 -11). Whereas, it was weakly 

detected in the plants inoculated with the PpO-85 RNA-1 virus (O49, Lane 6 -8). 

Similar to the detection in the inoculated leaves, CP was also relatively strongly 

detected (at 4dpi)  in the top systemically infected leaves (K49, Lane 17 -19) of all 

the plants infected with the PpK20 RNA-1 containg inoculum and was also strongly 

detected in the  plants (S49, Lane 12 -13) infected with the SYM RNA-1 containing 

virus.  However, the CP detection in all three plants infected with PpO-85 RNA-1 

(O49, Lane 14 -16) virus was weaker compared to the plants infected with the other 

two TRV RNA-1 isolates.  

The blot of samples from Set II is presented in Fig. 3.7, Blot II. The CP accumulation 

in all the three plants (K49, 6dpi, Lane 9 -11) inoculated with virus comprising PpK-

20 RNA-1 was still stronger at 6dpi, compared to the plants inoculated with the other 

two RNA1 isolates. However, at 10dpi the CP detection  decreased in the top-

systemically infected leaves of all three plants inoculated with PpK-20 RNA-1 virus 

(K49, 10,-1,-2, and -3 ; Lane 17 -19) and it was difficult to differentiate the level of 

CP accumulation in the plants inoculated with the SYM RNA-1(S49, 10,1,-2, and -3 

; Lane 12 -14) and PpO-85 RNA-1 (O49, 10,1,-2, and -3; Lane 15 -17) containing 

virus. The  TRV CP accumulation in association with PpK-20 RNA-1, at various 
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time intervals, is highlighted in square blocks (Fig. 3.7) for quick comparison with 

the other two RNA-1 isolates. 

In general, the results of the western-blot analysis, for the systemic accumulation of 

the virus at 4 and 6dpi, were in agreement with the fluorometric analysis. However, 

some dissimilarity in the relative systemic accumulation of the viruses at 8dpi and 

10dpi was recorded when comparing the GFP and the CP expression, respectively. 

The reasons for this are not known. 

3.2. Utilization of full-length TRV RNA-2 infectious clones  

The full-length RNA-2 infectious clones of five different isolates (viz, PpK-20, I6, 

PaY4, TpO1, and SYM; Table No. 2.2) were available in the laboratory (section 

2.2.7). Full-length RNA-2 transcripts of these clones were synthesized that were 

separately mixed with the three RNA-1 isolates to form TRV recombinant isolates. 

These isolates were then tested on various hosts including tetraploid potato varieties. 

Investigations for any influence of the RNA-2 encoded genes on the systemic 

movement and accumulation of TRV were conducted by northern-blot analysis. 

3.3. TRV recombinant isolates 

An overview of the constituents and the names (acronyms) of all the TRV 

recombinant isolates examined here is given in Table No. 3.2.  For each virus three 

individual N. benthamiana plants were inoculated and kept in the glass-house for 

more than a week to observe any symptomatological difference(s). In total 45 plants 

were inoculated with 15 different TRV isolates and three plants were inoculated with 

1X PBS buffer as controls. 

All nine plants inoculated with the three different isolates containing PpK-20 RNA-2 

(viz: SK20, OK20 and KK20), developed systemic necrosis that progressed from the 

inoculated leaves to the systemically-infected leaves (Fig. 3.8).  The inter- and intra-

veinal necrosis of the top leaves was more prominent and severe (Fig. 3.8, c and d) in 
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the plants inoculated with KK20 (KK20 is an in-vitro generated recombinant of the 

parental PpK-20 isolate). However, the plants inoculated with the other two TRV 

recombinant isolates, reconstituted using the SYM RNA-1 (SK20) and O-85 RNA-1 

(OK20), produced less severe symptoms (Fig. 3.8, a and b, respectively). The 

systemic necrosis induced by KK20 was lethal as it killed the plants within 8-10 days 

of inoculation (dpi).  

Table 3.2.  The constituents and acronyms of TRV recombinant isolates  

 

The plants inoculated with the isolates containing I6 RNA-2, produced vein-

yellowing and chlorosis in the systemically-infected leaves. These symptoms were 

more severe in the plants inoculated with the isolate reconstituted using SYM RNA-1 

(SI6, Fig. 3.8, e) and PpK-20 RNA-1 (KI6) as compared to the isolate derived from 

PpO-85 RNA-1 (OI6). 

The plants inoculated with the three recombinant isolates containing PaY4 RNA-2  

Sr.No. Constituents of TRV isolates Acronym of recombinant isolates  

TRV RNA-1 isolate   

(Total  RNA) 

TRV RNA-2 isolate      

(Transcript) 

1.  SYM PpK-20 (T214) pseudorecombinant isolate SK20 

2.  I6 (T215) pseudorecombinant isolate SI6 

3.  PaY4 (T216) pseudorecombinant isolate SY4 

4.  TpO1 (T217) pseudorecombinant isolate ST 

5.  SYM (T218) parental recombinant isolate SS 

6.  PpO-85 PpK-20 (T214)  pseudorecombinant isolate OK20 

7.  I6(T215)  pseudorecombinant isolate OI6 

8.  PaY4 (T216) pseudorecombinant isolate OY4 

9.  TpO1 (T217) pseudorecombinant isolate OT 

10.  SYM  (T218) pseudorecombinant isolate OS 

11.  PpK-20 PpK-20 (T214) parental recombinant isolate KK20 

12.  I6 (T215) pseudorecombinant isolate KI6 

13.  PaY4 (T216)  pseudorecombinant isolate KY4 

14.  TpO1 (T217)  pseudorecombinant isolate  KT 

15.  SYM (T218) pseudorecombinant isolate KS 
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Figure 3.8. Systemic symptoms induced by various TRV recombinant isolates. 
Top system-infected leaves of N. benthamiana plants inoculated with the isolate (a) 

SK20, (b) OK20, (c) KK20, (d) close-up image of the abaxial-surface of a top-leaf 

from c, elaborating the veinal-necrosis; (e) SI6, (f) KY4, (g) KT1, and (h) KS.  

Arrow-head (►) indicates the symptoms of vein-necrosis, the blue-arrow (     ) points 
to the spreading systemic-necrosis, and the red-arrow (   ) points to the vein-
yellowing symptoms. (i) abaxial-surface of a leaf from (j) mock-inoculated plant. 
Images were captured at 8 dpi.    
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(SY4, OY4 and KY4) produced light chlorosis and curling of the top, systemically- 

infected leaves (Fig. 3.8, f). These symptoms were rather milder than those produced 

by the isolates containing I6 RNA-2. However, the plants inoculated with the KY4 

inoculum displayed relatively more severe symptoms than the plants inoculated with 

the SY4 and OY4 inocula.   

Among all the three recombinant isolates containing TpO-1 RNA-2 (ST1, OT1, and 

KT1), the induced symptoms resembled in pattern and severity to the symptoms 

produced by the I-6 RNA-2-containing inoculum (Fig. 3.8, g).  

All the three recombinant isolates containing SYM RNA-2 (SS, OS, and KS), 

produced veinal-necrosis on the top, non-inoculated leaves, but these symptoms were 

much weaker in intensity and prevalence (Fig. 3.8, h) than the symptoms produced  

Table 3.3. Overview of the symptoms induced by various TRV recombinant 
isolates on Nicotiana benthamiana plants 

+, ++, and +++ denotes mild, milder and severe intensity of the symptoms. 

Sr.No. TRV recombinant 

isolate  (Acronym) 

Symptoms 

 Intensity 

1.  SK20 Systemic necrosis, veinal necrosis + 

2.  OK20 ----------Same as above--------- ++ 

3.  KK20 ----------Same as above--------- +++, Plant death 

4.  SI6 Systemic vein-yellowing and  chlorosis +++ 

5.  OI6 ----------Same as above--------- ++ 

6.  KI6 ----------Same as above--------- + 

7.  SY4 Light chlorosis and curling of the top leaves + 

8.  OY4 ----------Same as above--------- ++ 

9.  KY4 ----------Same as above--------- +++ 

10.  ST Systemic vein-yellowing and chlorosis + 

11.  OT ----------Same as above--------- ++ 

12.  KT ----------Same as above--------- +++ 

13.  SS Veinal necrosis of top leaves ++ 

14.  OS ----------Same as above--------- ++ 

15.  KS  ----------Same as above--------- + 
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by the inoculum containing PpK-20 RNA-2. All the three mock-inoculated plants 

remained asymptomatic (Fig. 3.8, i and j), confirming that the environmental 

conditions were not the cause of any visible symptoms. A brief summary of the 

various symptoms induced by these isolates is given in Table No. 3.3.  

Over-all, the symptomatological observations showed that among all the fifteen 

recombinant isolates, the TRV-inoculum representing the parental form of the PpK-

20 isolate was the most pathogenic as it caused the most severe symptoms and killed 

the infected plants when other isolates did not. 

The identity of all the 15 isolates was confirmed by RT-PCR detection (section 

2.2.10) of the respective TRV-RNA-2 in systemically infected N. benthamiana 

plants. After confirming the systemic movement and identity of all the 15 infecting 

isolates (Fig. 3.9), infectious-sap of the plants containing these viruses was prepared 

and stored as given in section 2.2.9. 

3.4. Preparation of the ribo-probes for dot-blot 
hybridization  

The systemic accumulation of all the 15 TRV isolates in the N. benthamiana plants 

was also evaluated by northern blot analysis (section 2.2.12). The RNA-1 and -2 of 

all 15 isolates were detected using MP-specific (TRV-1) and CP-specific (TRV-2) 

ribo-probes which were prepared by the following the protocol described in section 

2.2.11. As a quality check (QC), each of these probe transcripts (1 µg) was resolved 

on a denaturing agarose gel (Fig. 3.10). All the six transcripts (T1, T2, T3, T4, T5, 

and T6) produced a single, sharp RNA band on the gel without any smearing which 

confirmed their suitability for use in northern blot analysis.  

The template specificity and detection efficiency of the labelled transcripts (ribo-  

3.3.1. Confirmation of the identity of TRV recombinant isolates in the 
infected N. benthamiana plants  
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Figure 3.9.  RT-PCR detection of various TRV RNA-2 in the top systemic- 
leaves of N. benthamiana. Lane M: 1Kb Promega DNA marker. Samples from 
plants inoculated with TRV isolates Panel a: SYM RNA-1; Lane 1: SK20; Lane 2: 
SI6; Lane 3: SY4; Lane 4: ST1; and Lane 5:SS; Panel b:O-85 RNA-1; Lane 1: 
mock inoculation; Lane 2: OK20; Lane 3: OI6; Lane 4: OY4; Lane 5: OT1; and 
Lane 6: OS; Panel c: PpK-20 RNA-1; Lane 1: mock inoculation; Lane 2: KK20; 
Lane 3: KI6; Lane 4: KY4; Lane 5: KT1; and Lane 6: KS. The amplicons of SK20, 
OK20, KK20 (PpK-20 RNA-2); SI6, OI6, KI6 (I6 RNA-2); SY4, OY4, KY4 (PaY4 
RNA-2); ST1, OT1, KT1 (TpO-1 RNA-2); and SS, OS, KS (SYM RNA-2) were of 540 
bp, 450 bp, 503 bp, 708 bp, and 559 bp, respectively. 

  

 

Figure 3.10.  Quality of the transcripts for use in the northern blot analysis. 
Transcript Lane 1: T1 (SYM-MP); Lane 2: T2 (PpK-20 CP); Lane 3: T3 (I6 
CP+NCR); Lane 4: T4 (PaY4-CP); Lane 5:T5 (TpO-1 CP); and Lane 6:T6 (SYM-
CP).  
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Figure 3.11. Dot-blot hybridization of the SYM-MP and the CP-specific ribo-
probes. Lanes T1-6 were the labelled transcripts. Lane T1: T1 (SYM-MP); Lane T2: 
T2 (PpK-20 CP); Lane T3: T3 (I6 CP+NCR); Lane T4: T4 (PaY4-CP); Lane T5: T5 
(TpO-1 CP); Lane T6: T6 (SYM-CP). Rows p1-6 were the linearized plasmid-
templates. Row p1: p0073 (SYM-MP); Row p2: p0040 (PpK-20 CP); Row p3: p 1494 
(I6 CP+NCR); Row p4: p225 (PaY4-CP); Row p5: p1496 (TpO-1 CP); Row p6: 
p1497 (SYM-CP). 
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probes) was assessed by the dot-blot hybridization method described in section 

2.2.11, sub-section 2. The autoradiograph presented in Fig. 3.11 is the result of a 1 

minute exposure of the film to the blot.  

The results show that ribo-probe T6 (for the detection of SYM-CP) was relatively 

weaker in the detection of the target-gene as compared to the other five ribo-probes. 

However, all the ribo-probes were highly-specific in detecting the targeted genes 

cloned into the plasmids. In another dot-blot test, none of the ribo-probe reacted with 

total RNA isolated from healthy N. benthamiana plants. Therefore all these ribo-

probes were selected for utilization in the northern blotting. 

3.5. Systemic accumulation of TRV isolates in the N. 
benthamiana plants  

Northern blot analysis has been used previously for evaluation of TRV recombinant 

isolates (Robinson and Harrison, 1985b). Leaf discs were collected from infected N. 

benthamiana plants (three plants per isolate) and RNA isolation from these samples 

were done as given in section 2.2.1, sub-section 1.  

Robinson et al., (1987) showed by electron microscopy, that in TRV infected leaf-

sap the RNA-1 and 2 were found in a 1:10 ratio. This was apparent in the northern-

blots in the current studies where a stronger RNA-2 signal was seen as compared to 

the RNA-1 signal. 

Examination at 4 dpi of the systemically-infected leaves of all three plants infected 

with  any of  the three TRV isolates containing PpK-20 RNA-2 (SK20, OK20, and 

KK20, Fig. 3.12) showed that the KK20 isolate had the highest level of viral RNA 

accumulation (Fig. 3.12, II).  

Thus, the KK20 isolate was faster in systemic movement and accumulated to higher 

levels than the isolates SK20 and OK20. At 8 dpi, the isolate OK20 accumulated to 

higher levels in 2 out of 3 plants (Lane 9 and 10, Fig. 3.12, III).  
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Figure 3.12. Northern blots of the plants inoculated with the TRV isolates 
comprising PpK-20 RNA-2. Mock-inoculated plants (Lane 1-3, Panel Ia; Lane 1, 
Panel IIa and Lane 1 and 4, Panel IIIa); Undigested plasmid 214 (Lane p214). 
Plants inoculated with, PpK-20 infectious sap (positive control, Lane 4, Panel Ia and 
IIa), PpK20 RNA-1 (Lane 2 and 3, Panel IIa and IIIa), recombinant isolate, SK20 
(Lane 5-7 , Panel Ia, IIa, and IIIa); OK20 (Lane 8-10, Panel Ia, IIa, and IIIa), and 
KK20 (Lane 11-13 Panel Ia, IIa, and IIIa). Samples from the inoculated leaves were 
collected at 4 dpi (Panel Ia) and the systemically infected leaves at 4 dpi (Panel IIa) 
and 8 dpi (Panel IIIa). Panel Ib, IIb, and IIIb are the gel-images of the ribosomal (r) 
RNAs of the samples in Panel Ia, IIa, and IIIa, respectively. Arrow-head (►) 

indicates the positions of individual TRV-RNA species.   
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Figure 3.13. Northern blots of the plants inoculated with the TRV isolates 
comprising I6 RNA-2. Mock-inoculated plants (Lane 2 and 4, Panel Ia and IIa; 
Lane 1,2 and 4, Panel IIIa); Linearized plasmid 0073 (Lane pI); Plants inoculated 
with, I6 infectious sap (positive control, Lane 3, Panel Ia, IIa and IIIa), PpK20 RNA-1 
(Lane1, Panel Ia and IIa), recombinant isolate, SI6 (Lane 5-7 , Panel Ia, IIa, and 
IIIa); OI6 (Lane 8-10, Panel Ia, IIa, and IIIa), and KI6 (Lane 11-13 Panel Ia, IIa, and 
IIIa). Samples from the inoculated leaves were collected at 4 dpi (Panel Ia) and the 
systemically infected leaves at 4 dpi (Panel IIa) and 8 dpi (Panel IIIa). Panel Ib, IIb, 
and IIIb are the gel-images of the ribosomal (r) RNAs of the samples in Panel Ia, IIa, 
and IIIa, respectively. Arrow-head (►) indicates the positions of individual TRV-RNA 
species.    
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Figure 3.14. Northern blots of the plants inoculated with the TRV isolates 
comprising PaY4 RNA-2. Mock-inoculated plants (Lane 3 and 7, Panel Ia; Lane 3, 
Panel IIa and IIIa); Plants inoculated with, PaY4 infectious sap (positive control, 
Lane 2, Panel Ia, IIa and IIIa), PpK20 RNA-1 (Lane1, Panel Ia, IIa and IIIa), 
recombinant isolate, SY4 (Lane 4-6 , Panel Ia, IIa, and IIIa); OY4 (Lane 8-9, Panel 
Ia, Lane 7-9, Panel IIa and IIIa), and KY4 (Lane 11-12Panel Ia, IIa, and IIIa). 
Samples from the inoculated leaves were collected at 4 dpi (Panel Ia) and the 
systemically infected leaves at 4 dpi (Panel IIa) and 8 dpi (Panel IIIa). Panel Ib, IIb, 
and IIIb are the gel-images of the ribosomal (r) RNAs of the samples in Panel Ia, IIa, 
and IIIa, respectively. Arrow-head (►) indicates the positions of individual TRV-RNA 

species.   
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Figure 3.15. Northern blots of the plants inoculated with the TRV isolates 
comprising TpO1 RNA-2.  Mock-inoculated plant (Lane 2 Panel Ia, IIa and IIIa); 
Linearized plasmid 0073 (Lane pI); Undigested plasmid 217 (Lane p217) and 215 
(Lane p215); Plants inoculated with, TpO1 infectious sap (positive control, Lane 1, 
Panel Ia, IIa and IIIa), recombinant isolate, ST1 (Lane 3-5 , Panel Ia, IIa, and IIIa); 
OT1 (Lane 6-8, Panel Ia, IIa and IIIa), and KT1 (Lane 9-11 Panel Ia, IIa, and IIIa). 
Samples from the inoculated leaves were collected at 4 dpi (Panel Ia) and the 
systemically infected leaves at 4 dpi (Panel IIa) and 8 dpi (Panel IIIa). Panel Ib, IIb, 
and IIIb are the gel-images of the ribosomal (r) RNAs of the samples in Panel Ia, IIa, 
and IIIa, respectively. Arrow-head (►) indicates the positions of individual TRV-RNA 
species.  

                                                                                                        

 

 

 

 

 

 

    p1      p217      p215    1       2         3       4       5        6       7       8       9       10     11  

    p1      p217      p215    1       2        3       4        5        6       7       8       9       10     11 

   p1      p217      p215    1        2        3       4       5        6       7       8       9       10     11  

 

 

 

+ve 

 

 

+ve 

 

 

+ve 

 

 

 Mock 

 

 

 Mock 

 

 

 Mock 

 

 

ST1 

 

 

ST1 

 

 

ST1 

 

 

OT1 

 

 

OT1 

 

 

OT1 

 

 

KT1 

 

 

KT1 

 

 

KT1 

 

 

 (I) 

 (II) 

(III) 

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 

1► 

1► 

1► 

2► 

2► 

2► 

2a► 

2a► 

1a► 

1a► 



98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Northern blots of the plants inoculated with the TRV isolates 
comprising SYM RNA-2. Mock-inoculated plants (Lane 2, 3 and 4, Panel Ia, Lane 
1, Panel IIa and IIIa); Undigested plasmid 218 (Lane p218, Panel Ia, IIa and IIIa); 
Plants inoculated with, SYM infectious sap (positive control, Lane 1, Panel Ia, Lane 
4,  Panel IIa and IIIa), PpK20-RNA-1 (Lane 2 and 3, Panel IIa and IIIa), recombinant 
isolate, SS (Lane 5-7 , Panel Ia, IIa, and IIIa); OS (Lane 8-10, Panel Ia, IIa and IIIa), 
and KS (Lane 11-13 Panel Ia, IIa, and IIIa). Samples from the inoculated leaves 
were collected at 4 dpi (Panel Ia) and the systemically infected leaves at 4 dpi 
(Panel IIa and 8 dpi (Panel IIIa). Panel Ib, IIb, and IIIb are the gel-images of the 
ribosomal (r) RNAs of the samples in Panel Ia, IIa, and IIIa, respectively. Arrow-
head (►) indicates the positions of individual TRV-RNA species.       
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Figure 3.17. Northern blots of the plants inoculated with the TRV RNA-1 
isolates. Mock-inoculated plant (Lane 4, Panel Ia, IIa and IIIa); Linearized plasmid 
0073 (Lane p1, Panel Ia, IIa and IIIa); Plants inoculated with, PpK-20 infectious sap 
(positive control, Lane 1, Panel Ia, IIa and IIIa), PpK-20 RNA-1 (KNM, Lane 2 and 3, 
Panel Ia,IIa and IIIa); RNA-1 isolate, SNM (Lane 5-7 , Panel Ia, IIa, and IIIa); ONM 
(Lane 8-10, Panel Ia, IIa and IIIa), and KNM (Lane 11-13 Panel Ia, IIa, and IIIa). 
Samples from the inoculated leaves were collected at 4 dpi (Panel Ia) and the 
systemically infected leaves at 4 dpi (Panel IIa) and 8 dpi (Panel IIIa). Panel Ib, IIb, 
and IIIb are the gel-images of the ribosomal (r) RNAs of the samples in Panel Ia, IIa, 
and IIIa, respectively. Arrow-head (►) indicates the positions of individual TRV-RNA 
species.  
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However, analysis of the three recombinant isolates containing I6 RNA-2 (SI6, OI6, 

and KI6, Fig. 3.13) showed that at 4 dpi the isolate KI6 accumulated to higher levels 

in the inoculated- and the systemically-infected leaves of all three plants (Lane 11 -

13, Fig. 3.13, I, and II, respectively) as compared to the isolates SI6 and OI6.  But at 

8 dpi the isolate SI6, accumulated to higher levels in the systemically-infected leaves 

(Lane 11 -13, Fig. 3.13, III). 

For the three recombinant isolates containing PaY4 RNA-2 (SY4, OY4, and KY4, 

Fig. 3.14) at 4 dpi KY4 accumulated to higher levels than the other two isolates 

(Lane 10 -12, Fig. 3.14, I and II). But at 8 dpi all these three isolates (SY4, OY4, and 

KY4, Fig. 3.14, III) accumulated to almost equal levels in the top, systemically-

infected leaves.  

Northern blot analysis of the plants infected with the recombinant isolates containing 

TpO1 RNA-2 (ST1, OT1, and KT1), SYM RNA-2 (SS, OS, and KS) and the RNA-1 

isolates (SNM, ONM, and KNM) is presented in figures 3.15-3.17. In general, the 

PpO-85 RNA-1 accumulated to lower levels than the PpK-20 or SYM RNA-1s, 

regardless of whether this was RNA-1 only (NM) infections or  RNA-1+RNA-2 (M) 

infections (Lane 10 -12, Fig. 3.17, I and II). 

3.6. Infection of TRV isolates in tetraploid potatoes  

Mostly the TRV infection studies in the past were conducted in N. benthamiana 

plants and other glasshouse plants. In the current studies, I have examined TRV 

infection in tetraploid potatoes. Two cultivars from the spraing reactant or TRV 

sensitive group (c.vs. Maris Bard and Pentland Dell), three cultivars from the tolerant 

or TRV susceptible group (c.vs. Shepody, Saxon and Wilja), and one cultivar from 

the TRV resistant group (i.e.; Bintje) were included in the studies (see details in 

section 1.8.). Apical-stem cuttings were mechanically inoculated at 10 days post 

planting and the RT-PCR evaluation of the infection was done as described in section 

2.2.16. 
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The potato leaves displayed genotype-specific symptoms. The symptomatological 

observations were recorded during the winter season (short day length period). In the 

summer season (longer day length period), the symptoms were either masked or 

erratic. The TRV recombinant isolates comprising I6 RNA-2 (i.e; SI6, OI6, and KI6) 

produced milder symptoms or remained asymptomatic and were also found to be the 

least pathogenic among all the fifteen recombinant isolates. Robinson et al. (1987) 

had also reported the I6 isolate to produce milder symptoms on N. clevelandii plants. 

Among all the 15 recombinant isolates, the PpK-20 RNA-2 containing isolates 

(SK20, OK20 and KK20) were more severe in symptom production and amongst 

these three, the KK20 isolate was found to be the most pathogenic (virulent). 

Representative foliar symptoms induced by the KK20 isolate on all the six potato 

cultivars are presented in figure 3.18. Observations were recorded at 5 dpi. 

Among the TRV-sensitive cultivars a mixture of the characteristic symptoms of 

annulus-like and disc-shaped necrotic lesions was produced on the inoculated leaves 

of Pentland Dell (Fig. 3.18, a). Cadman (1959) had described similar TRV-induced 

symptoms on the leaves of a tobacco (N. tabacum var. White Burley) plant. The non-

inoculated leaves were either asymptomatic or displayed mild leaf-distortion and the 

mock-inoculated leaves remained asymptomatic (Fig. 3.18, b). However, the 

inoculated leaves of Maris Bard displayed ‘‘spreading necrosis’’ and ‘‘yellowing’’; 

and the systemic necrosis progressively reached to the mid-vein of the leaf and the 

stem (Fig. 3.18, c). The inoculated leaves died within 7-10 dpi. Similar symptoms 

were reported on the leaves of the cultivar Russet Burbank when inoculated with the 

infectious leaf-sap of TRV-DsRed, an engineered PpK20 isolate (Ghazala and 

Varrelmann, 2007). The TRV-resistant cv. Bintje displayed small necrotic-lesions on 

the inoculated leaves (Fig. 3.18, k) that resembled the HR-like response, reported by 

Ghazala and Varrelmann (2007). The non-inoculated and mock-inoculated foliage 

was asymptomatic (Fig. 3.18, l). However, in some instances in virus infected plants,  

3.6.1. Local symptoms induced by the TRV isolates  
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Figure 3.18.  Foliar symptoms induced by KK20 isolate on various cultivars of 
tetraploid potato.  KK20 inoculated leaves of c.v. (a) Pentland Dell, exhibiting 
typical annulus-like (encircled red) and disc-shaped (encircled blue) necrotic lesions, 
(c) Maris Bard, displaying ‘‘spreading necrosis’’ (red-arrow) and ‘‘yellowing’’ (blue-
arrow), (e) Shepody, asymptomatic, (g) Saxon, asymptomatic, (i) Wilja and (k) 
Bintje, both exhibiting HR-like necrotic lesions, (encircled red). Mock-inoculated and 
asymptomatic leaves (b, d, f, h, j, and l) of a, c, e, g, i, and k, respectively. Leaves 
were rub-inoculated with the infectious sap of KK20 recombinant isolate. Pictures 
were taken at 5 dpi. 
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systemic necrosis progressing along the petiole to the stem was also observed.  

Among the TRV-susceptible cultivars, the inoculated, non-inoculated and mock-

inoculated leaves of both Shepody and Saxon, remained asymptomatic (Fig. 3.18, e-

h). However, one of the three plants of the cultivar Wilja produced small HR-like 

necrotic lesions on the inoculated leaves. Whereas, the non-inoculated and the mock-

inoculated leaves were asymptomatic (Fig. 3.18, i-j). 

The symptoms induced by the TRV recombinant isolates on some of the potato 

plants were not extensive or apparent. The systemic movement of the virus, from the 

inoculated to the top-most non-inoculated leaves of the plant, was investigated by 

RT-PCR (section 2.2.16). These studies were conducted during the summer season. 

The amplification of the potato reference gene, EF-1α, was also assessed to confirm 

the integrity of the RNA preparation from each test sample. An overview of this 

diagnostic test is given in Table No. 3.4. 

The TRV RNA-2 of all the 15 recombinant isolates was detected in the inoculated 

leaves of Maris Bard (Fig. 3.19, I, d) but the TRV RNA-1 from the same potato 

samples was not detectable (c) by using the 16K gene flanking primer-set (DJR16K 

primer-set). Rather a smeared pattern of TRV1 amplification was observed in all the 

potato samples collected at 5, 15 and 30 dpi (I, II, III, c). However, the same primer-

set successfully amplified the 16K gene from the N. benthamiana positive control 

samples. At 15 dpi, the RNA-2 of the I6 isolate was detected in the non-inoculated 

leaf-samples of the plants inoculated with the SI6, OI6 and KI6 isolates (I6 RNA-2 

containing recombinant isolates) and in one sample, each, of the plants inoculated 

with OT1 (TpO1 RNA-2) and OS (SYM RNA-2). The detection of RNA-2 in these 

non-inoculated leaves confirmed the systemic infection of Maris Bard potato by 

these viruses (Fig. 3.19, II, d). At 30dpi, besides the detection of I6 RNA-2, TpO1 

RNA-2 from all the three isolates (ST1, OT1 and KT1), and SYM RNA-2 from one 

3.6.2. Systemic infection of TRV isolates in potato 
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sample (SS) were also detected from the top non-inoculated leaves (Fig. 3.19, III, d). 

The SYM RNA-2 of the OS isolate, previously detected at 15 dpi, could not be 

detected at 30 dpi from the top, non-inoculated leaves of the same plants. The 

reference gene (Ef-1α) was amplified from all these samples, confirming the integrity 

of the RNA preparations. This detection of RNA-2 from the systemically-infected 

leaves, but not the RNA-1 encoded 16K gene, suggested that it was necessary to 

change the RNA-1-specific primer-set in further diagnostic tests. RNA-1 must be 

present in tissue where RNA-2 has accumulated. 

The RNA-2 was also detected (at 5 dpi) in Wilja plants inoculated with SK20, OK20, 

and KK20 (isolates containing PpK20 RNA-2), SS, OS, and KS (isolates containing 

SYM RNA-2) and the I6 RNA-2 isolates. However, the detection of SYM RNA-2s 

was weaker than that of the RNA-2 of the other isolates. No RNA-2 could be 

detected in any of the Wilja plants inoculated with isolates containing PaY4 and 

TpO1 RNA-2 (Fig. 3.20, I, d). At 15 dpi and 30 dpi in non-inoculated leaves (II, III), 

the RNA-2 was detected only from plants inoculated with I6 RNA-2 containing 

isolates (IId, IIId). In this case, the RNA1 also could not be amplified from any of 

these samples (IIc, IIIc).     

Both the RNA-1 and -2 of all fifteen recombinant isolates were amplified, at 5 dpi, 

from the inoculated leaves of Bintje (Fig. 3.21, I, c, d). At 15 dpi, the RNA-2 was 

detected in one sample of the non-inoculated leaves from plants inoculated with the 

SK-20 isolate (containing PPK-20 RNA-2), two samples of the plants inoculated 

with SS, and KS isolates (containing SYM RNA-2, II, d) and all three plants 

inoculated with the I6 RNA-2 isolates. The RNA-1 was detected (II, c) from almost 

all samples. At 30 dpi, the RNA-2 was detected from all three systemic leaf samples 

of plants inoculated with the I6 RNA-2 containing isolates and one of the plants 

(ST1) inoculated with the TpO1 RNA-2 comprising isolate. The RNA-1 was 

amplified from all of the plants that tested positive for the RNA-2.  
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Table 3.4. Overview of RT-PCR evaluation of tetraploid potatoes inoculated 
with various TRV isolates, at 30 dpi. 
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1.  

M
.B

 TRV1 × × × × × × × × × × × × × × × 

TRV2 × × × √ √ √ × × × √ √ √ √ × × 

Ef-1α √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

2.  

P
.D

 TRV1 -- -- × -- -- × -- -- ×  -- × -- -- × 

TRV2 -- -- × -- -- √ -- -- × -- -- × -- -- × 

Ef-1α -- -- √ -- -- √ -- -- √ -- -- √ -- -- √ 

3.  

B
in

tj
e
 TRV1 √ × × √ √ √ × × √ √ √ × √ × × 

TRV2 × × × √ √ √ × × × × × × × × × 

Ef-1α √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

4.  

W
il

ja
 

TRV1 × × × × × × × × × × × × × × × 

TRV2 × × × √ √ √ × × × × × × × × × 

Ef-1α √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

5.  

S
a

x
o

n
 

TRV1 -- -- √ -- -- √ -- -- √ -- -- √ -- -- √ 

TRV2 -- -- × -- -- √ -- -- × -- -- ×  -- × 

Ef-1α -- -- √ -- -- √ -- -- √ -- -- √ -- -- √ 

6.  

S
h

ep
o

d
y

 TRV1 -- -- √ -- -- √ -- -- √ -- -- √ -- -- √ 

TRV2 -- -- × -- -- √ -- -- × -- -- × -- -- × 

Ef-1α -- -- √ -- -- √ -- -- √ -- -- √ -- -- 
√ 

M.B: Maris Bard; P.D: Pentland Dell; TRV1: Tobacco rattle virus-replicase gene or Movement 

protein; Ef-1α: House-keeping Elongation-factor -1 α; √: Detection; ×: No detection; --: Not tested. 

The presented results are of RT-PCR detection at 30dpi from the top-most non-inoculated leaves. 

The TRV recombinant isolates containing PpK-20 RNA-1 (especially the KK20 

isolate), were found to be more aggressive, virulent in pathogenicity and symptom 

production. Therefore, the rest of the investigations were carried-out focusing on 

PpK-20 RNA-1 containing isolates. Thus, the cultivars Pentland Dell, Saxon and 

Shepody mechanically inoculated with the TRV isolates containing PpK20 RNA-1 

and each of the five different RNA-2s (KK20, KI6, KY4, KT1, and KS) were 

analysed. The RNA-2 of all five isolates was detected from the inoculated leaf  
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Figure 3.19. RT-PCR evaluation of the systemic infection of TRV isolates in 
Maris Bard. Lane M: 1Kb Promega DNA marker; Lane 1: NTC, Non template 
control; Lane 2: Mock inoculated Maris Bard. Plants inoculated with recombinant 
isolate containing Lane 3-6: PpK-20 RNA-2, Lane 3: KK20, Lane 4: SK20, Lane 5: 
OK20, Lane 6: KK20; Lane 7-10: I6 RNA-2, Lane 7: KI6, Lane 8: SI6, Lane 9: OI6, 
Lane 10:KI6; Lane 11-14: PaY4 RNA-2, Lane 11: KY4, Lane 12: SY4, Lane13: OY4, 
Lane 14:KY4; Lane 15-18: TpO1 RNA-2, Lane 15: KT1, Lane 16: ST1, Lane 17: 
OT1, Lane 18:KT1; Lane 19-22: SYM RNA-2, Lane 19: KS, Lane 20: SS, Lane 21: 
OS, Lane 22:KS. Samples were collected at 5 dpi from inoculated leaves (Panel I), 
and at 15 dpi (Panel II), and 30 dpi (Panel III) from systemically infected leaves. N. 
benthamiana samples (Lane 3, 7, 11, 15 and 19) were collected at 5 dpi from non-
inoculated leaves. House-keeping, Ef-1α, amplicon from (a) N. benthamiana (150 
bp) and (b) potato (255 bp). (c) TRV1 16K amplicon (463 bp) and (d) TRV2 
amplicons of PpK20 RNA-2 (540 bp), I6 RNA-2 (751 bp), PaY4 RNA-2 (503 bp), 
TpO-1 RNA-2 (591 bp), and SYM RNA-2 (650 bp), respectively. 
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Figure 3.20. RT-PCR evaluation of the systemic infection of TRV isolates in 
Wilja. Lane M: 1Kb Promega DNA marker; Lane 1: NTC, Non template control; 
Lane 2: Mock inoculated Wilja. Plants inoculated with recombinant isolate 
containing Lane 3-6: PpK-20 RNA-2, Lane 3: KK20, Lane 4: SK20, Lane 5: OK20, 
Lane 6: KK20; Lane 7-10: I6 RNA-2, Lane 7: KI6, Lane 8: SI6, Lane 9: OI6, Lane 
10:KI6; Lane 11-14: PaY4 RNA-2, Lane 11: KY4, Lane 12: SY4, Lane13: OY4, Lane 
14:KY4; Lane 15-18: TpO1 RNA-2, Lane 15: KT1, Lane 16: ST1, Lane 17: OT1, 
Lane 18:KT1; Lane 19-22: SYM RNA-2, Lane 19: KS, Lane 20: SS, Lane 21: OS, 
Lane 22:KS. Samples were collected at 5 dpi from inoculated leaves (Panel I), and 
at 15 dpi (Panel II), and 30 dpi (Panel III) from systemically infected leaves. N. 
benthamiana samples (Lane 3, 7, 11, 15 and 19) were collected at 5 dpi from non-
inoculated leaves. House-keeping, Ef-1α, amplicon from (a) N. benthamiana (150 
bp) and (b) potato (255 bp). (c) TRV1 MP amplicon (318 bp) and (d) TRV2 
amplicons of PpK20 RNA-2 (540 bp), I6 RNA-2 (751 bp), PaY4 RNA-2 (503 bp), 
TPO-1 RNA-2 (591 bp), and SYM RNA-2 (650 bp), respectively. 
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Figure 3.21. RT-PCR evaluation of the systemic infection of TRV isolates in 
Bintje. Lane M: 1Kb Promega DNA marker; Lane 1: NTC, Non template control; 
Lane 2: Mock inoculated Bintje. Plants inoculated with recombinant isolate 
containing Lane 3-6: PpK-20 RNA-2, Lane 3: KK20, Lane 4: SK20, Lane 5: OK20, 
Lane 6: KK20; Lane 7-10: I6 RNA-2, Lane 7: KI6, Lane 8: SI6, Lane 9: OI6, Lane 
10:KI6; Lane 11-14: PaY4 RNA-2, Lane 11: KY4, Lane 12: SY4, Lane13: OY4, Lane 
14:KY4; Lane 15-18: TpO1 RNA-2, Lane 15: KT1, Lane 16: ST1, Lane 17: OT1, 
Lane 18:KT1; Lane 19-22: SYM RNA-2, Lane 19: KS, Lane 20: SS, Lane 21: OS, 
Lane 22:KS. Samples were collected at 5 dpi from inoculated leaves (Panel I), and 
at 15 dpi (Panel II), and 30 dpi (Panel III) from systemically infected leaves. N. 
benthamiana samples (Lane 3, 7, 11, 15 and 19) were collected at 5 dpi from non-
inoculated leaves. House-keeping, Ef-1α, amplicon from (a) N. benthamiana (150 
bp) and (b) potato (255 bp). (c) TRV1 MP amplicon (318 bp) and (d) TRV2 
amplicons of PpK20 RNA-2 (540 bp), I6RNA-2 (751 bp), PaY4 RNA-2 (503 bp), 
TPO-1 RNA-2 (591 bp), and SYM RNA-2 (650 bp), respectively. 
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Figure 3.22. RT-PCR evaluation of the systemic infection of TRV isolates in 
Pentland Dell and Saxon. Lane M: 1Kb Promega DNA marker; Lane 1 and 12: 
Mock inoculated Pentland Dell (Panel I, II, and III) and Saxon (Panel IV, V, and VI). 
Plants inoculated with recombinant isolate containing Lane 2-3, 13-14: PpK-20 
RNA-2, KK20; Lane 4-5, 15-16: I6 RNA-2, KI6; Lane 6-7, 17-18: PaY4 RNA-2, KY4; 
Lane 8-9, 19-20: TpO1 RNA-2, KT1; Lane 10-11, 21-22: SYM RNA-2, KS. Samples 
were collected at 5 dpi from inoculated leaves (Panel I, and IV), and at 15 dpi 
(Panel II and V), and 30 dpi (Panel III and VI) from systemically infected leaves. N. 
benthamiana samples (Lane 2, 4, 6, 8, 10, 13, 15, 17, 19 and 21) were collected at 
5 dpi from non-inoculated leaves. House-keeping, Ef-1α, amplicon from (a) N. 
benthamiana (150 bp) and (b) potato (255 bp). (c) TRV1 MP amplicon (318 bp) and 
(d) TRV2 amplicons of PpK20 RNA-2 (540 bp), I6 RNA-2 (751 bp), PaY4 RNA-2 
(503 bp), TPO-1 RNA-2 (591 bp), and SYM RNA-2 (650 bp), respectively.  
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Figure 3.23.  RT-PCR evaluation of the systemic infection of TRV isolates in 
Shepody. Lane M: 1Kb Promega DNA marker; Lane 1, and 12: Mock inoculated 
Shepody. Plants inoculated with recombinant isolate containing Lane 2-3, 13-14: 
PpK-20 RNA-2, KK20; Lane 4-5, 15-16: I6 RNA-2, KI6; Lane 6-7, 17-18: PaY4 
RNA-2, KY4; Lane 8-9, 19-20: TpO1 RNA-2, KT1; Lane 10-11, 21-22: SYM RNA-2, 
KS. Samples were collected at 15 dpi (Panel I), and at 30 dpi (Panel II) from 
systemically infected leaves. N. benthamiana samples (Lane 2, 4, 6, 8 and 10, 
Panel) and (Lane 13, 15, 17, 19 and 21, PanelI) were collected at 5 dpi from 
systemically infected leaves. House-keeping, Ef-1α, amplicon from (a) N. 
benthamiana (150 bp) and (b) potato (255 bp). (c) TRV1 MP amplicon (318 bp) and 
(d) TRV2 amplicons of PpK20 RNA-2 (540 bp), I6 RNA-2 (751 bp), PaY4 RNA-2 
(503 bp), TPO-1 RNA-2 (591 bp), and SYM RNA-2 (650 bp), respectively. 
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samples (collected at 5 dpi) of Pentland Dell and Saxon (Fig. 3.22, Id, and IVd). The 

RNA-1 was not detected from the inoculated leaves of Pentland Dell. However, it 

was detected from most of the inoculated leaves of Saxon (Ic, and IVc). At 15 and 30 

dpi, the RNA-2 was only detected from the non-inoculated leaf samples of the plants 

inoculated with the isolates comprising I6 RNA-2 (IIc, IIIc, Vc  and VIc).  

Similarly, I6 RNA was detected, at 15 and 30 dpi, from the non-inoculated leaves of 

Shepody plants infected with the recombinant isolate KI6 (Fig. 3.23). The RNA-1 (c) 

was detected from all the samples infected with KI6, at 15 dpi (II) and 30 dpi (III).   

The plants in section 3.6.2 (foliage-inoculation) were allowed to grow and tuberize. 

Tubers were harvested, washed with tap-water, dried on paper-towels and diced in 

cross-section to observe for any noticeable symptom-production. The aim of this 

investigation was to examine whether TRV inoculated to the leaves moved to the 

tubers and could induce spraing disease. 

The RT-PCR detection of the KI6 isolate in the top, non-inoculated leaves indicated 

systemic movement of the virus in these plants. The tubers harvested from both KI6- 

infected and mock-inoculated plants were examined for the spraing symptoms (Fig. 

3.24). Not many tubers were produced during these experiments and the Shepody did 

not tuberize. Some variation was found for the tuber size and shape (a-e). However, 

it was not determined in the current studies that whether these abnormalities were 

solely due to the effect of virus or to the growth conditions of the inoculated plants. 

The symptoms were more obvious on the tubers harvested from Wilja plants. One of 

the three Pentland Dell tubers had an internal symptom similar to spraing (f). All the 

infected and mock-inoculated tubers of the other cultivars were spraing-free. 

 

3.6.3. Assessment of the tubers harvested from mechanically-
inoculated plants 
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Figure 3.24.  Tubers from various potato cultivars infected with the KI6 isolate. 
Tubers of cultivar (a) Maris Bard (b) Pentland Dell (c) Wilja (d) Saxon and (e) Bintje. 
(f) Tuber-section from b exhibiting spraing-induction. Tubers from mock-inoculated 
plants are denoted as ‘‘Healthy Tuber’’. 

 

 

 

 

 

Figure 3.25. RT-PCR confirmation of TRV in the tubers of KI6 infected plants. 
Lane M: 1Kb Promega DNA marker; Lane 1: NTC, Non template control; Lane 2 
and 4: positive control samples, KI6 infected N.benthamiana leaf sample (Nb.,Lane 
2) and Pentland Dell leaf-sample (P.D., Lane 4); Lane 3 and 5: negative controls, 
Tuber-samples from mock-inoculated Pentland Dell ( P.D.T, Mock, Lane 3) and 
Bintje (BT Mock, Lane 5); Lane 6-10: Tuber-samples from KI6 infected plants of  
Maris Bard (M.B.T, Lane 6), Bintje (BT, Lane7), Pentland Dell (P.D.T, Lane 8), Wilja 
(W.T, Lane 9) and Saxon (Sax.T, Lane 10); House-keeping gene, Ef-1α, amplicon 
from (a) N. benthamiana (150 bp) and (b) potato (255 bp). (c) TRV1 KU amplicons 
(655 bp) and (d) TRV2 amplicons (I6 RNA-2, 627 bp), Due to almost equal 
amplicon-size of TRV1 and -2, the TRV2 amplicons were loaded, after the TRV1 
amplicons had sufficiently resolved on the gel. 
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TRV-infection in these tubers was confirmed by RT-PCR. The tuber-tissue of all the 

three plants of each cultivar was freeze-dried, methodology discussed in section 

2.1.3, and pooled for each cultivar to represent a single biological sample. The cDNA 

synthesis and protocol for 40 cycles of PCR was the same as already described. 

TRV1 (RNA-1) was detected by using the primer-set (Primer No. 2371 and 1759) 

designed within the 16K gene and the 3ʹ UTR of TRV RNA-1. The TRV2 (I6 RNA-

2) was detected by using the CP-specific primers (Primer No. 2422 and 2423). Both 

the TRV1 (655 bp) and TRV2 (627 bp) were amplified from the tubers of all the five 

cultivars (Fig. 3.25), confirming the tuber-infection. 

In the initial studies described above the TRV recombinant isolate KI6 was found to 

move systemically in various tetraploid cultivars of potato. In a second experiment 

ten cuttings each of Pentland Dell and Bintje plants were rub-inoculated, at 10 days 

post planting, with infectious sap of KI6. The top, non-inoculated leaf samples were 

separately collected at 15 dpi from the individual plants and processed for cDNA 

synthesis and RT-PCR analysis (section 2.2.16). TRV1 detection was done by using 

the MP-based primer set (Primer No.2369 and 2370) and the TRV2 amplification 

was done by using an I6 CP-based primer-set (2422 and 2423). In addition to the 

amplification of EF-1α gene (255 bp), the RNA-1 (318 bp) was detected in all 10 

samples each of Pentland Dell (P.D. 1-10) and Bintje (B1-10). The systemic 

infection of I6 RNA-2 (627 bp) was detected in six of ten Pentland Dell (Fig. 3.26, I) 

and nine of ten Bintje samples (II).  

 

 

 

3.6.4. Evaluation of the systemic infection of KI6 isolate in individual 
potato plants 
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Figure 3.26.  Evaluation of the systemic infection of KI6 isolate in 10 individual 
potato plants. Lane M:  1Kb Plus Promega DNA marker; Lane 1: NTC, Non 
template control; Lane 2–4:  positive controls; KI6 infected leaf-samples of N. 
benthamiana ( Nb. I6, Lane 2, Panel 1 and II) , Solanum jamesii ( JI6, Lane 3, Panel 
1), and Pentland Dell (P.D. I6, Lane 4, Panel 1 and II); Lane 3 and 5:negative 
controls, mock inoculated leaf-samples of Pentland Dell ( P.D., Mock, Lane 5, Panel 
1 and II) and Bintje (Bintje, Mock, Lane 3, Panel 1); Lane 6-10: KI6 infected leaf-
samples from plants 1-10 of Pentland Dell (P1-10, Panel I) and Bintje (B1-10,Panel 
II); House-keeping gene, Ef-1α, amplicon from (a) N. benthamiana (150 bp) and (b) 
potato (255 bp). (c) TRV1 MP amplicon (318 bp) and (d) TRV2 amplicon (I6-CP, 
627 bp), Potato leaf-samples were collected at 15 dpi 
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3.7. Full-length sequencing of I6 RNA-2 (p0215)  

TRV I6 is a natural isolate originating by recombination between the RNA-2 

segments of unknown TRV and PEBV isolates. It is an Italian isolate transmitted by 

T. viruliferous and was originally isolated, by van Hoof et al (1966), from soil-

samples collected from Italy. A full-length clone of I6 RNA-2 had previously been 

prepared (S. MacFarlane, unpublished) but its sequence had not been determined. 

The nucleotide sequence of the 5′ and 3′ termini of I6 were published by Robinson 

(1994; accession number S72875.1). The 5′ (375 nts) region of I6 RNA-2 is most 

closely related to TRV-TCM strain and the 3′  (376 nts) region of  I6 RNA-2 is very 

similar to the RNA-2 of PEBV isolates SP5 and TpA56 (93% identical if a single 

nucleotide gap is inserted into the 5′ NCR and a 6 nts gap is inserted into the 3′  

NCR). Likewise, the 5′ NCR of a recently identified natural recombinant, AL TRV 

RNA-2, is also derived from TRV-TCM strain (Koenig et al., 2011). The 25nts at the 

3′ terminus of I6 and PEBV-SP5 (Swaffham P5 isolate) RNA-2 are identical and like 

the TRV TC3′ PE are thought to be derived from a British isolate of PEBV. The 

demonstration of long-lived systemic infection of I6 RNA-2 within tetraploid 

potatoes (in the earlier studies of this Ph.D) motivated us to sequence the full-length 

RNA-2 of this strain. 

The nucleotide sequence of I6 RNA-2 from clone p0215 was completely sequenced 

in the current studies by using the primers given in Appendix 3 and was determined 

to be of 3,410 nts. The GenBank database accession number is KT964816. I6 RNA-2 

encodes four ORFs; the first ORF (of 627 nts) encodes the CP, followed by 240 nts 

encoding a putative-9K protein, 768 nts encoding the 2b protein (29kDa) and 627 nts 

encoding the 2c protein (23kDa; Fig. 1.4). The 5′ and 3′ NCR are of 551 nts and 487 

nts, respectively.  Analysis of the complete sequence shows that I6 RNA-2 has a 

TRV-like 5′ untranslated region (UTR) but PEBV-like coding sequence and 3′ UTR. 

Although, it is very closely related in its particle properties to the particles of the 

PEBV, it is included in the TRV-group as the replication of I6 RNA-2 is dependent  



116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27.  Amino acid sequence of CP, 2b, and 2c proteins of I6 RNA-2 
compared with the PEBV (TpA56) proteins. (a) TpA56 CP, 212aa  vs. I6-CP, 
208aa (b) TpA56 9K, 79aa vs. I6 putative-9K, 79aa (c) TpA56 2b, 29K, 255aa vs. 
I6-2b, 29K, 255aa (d) TpA56 2c, 23K, 208aa vs. I6-2c, 23K, 208aa. 
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upon the TRV RNA-1 encoded replicase proteins and the PEBV isolates cannot be 

replicated by the replicase of TRV RNA-1. 

Comparison of the I6-CP, 2b, and 2c proteins with the corresponding proteins of the 

PEBV (TpA56 isolate) is given in the Fig. 3.27. The I6-CP (208 amino acid (aa) 

residues) differs in only 12 aa residues from the TpA56 CP (212 aa residues), most 

of these dissimilarities are in the carboxy terminus of the protein (a). The I6 putative-

9K protein (79 aa residues) differs in five aa residues from the TpA56 9K protein (79 

aa residues, b). The 29K, 2b protein of the I6 isolate (255 aa residues) differs in 11 aa 

residues from the 29K, 2b protein of TpA56 (255 aa residues, c). The I6-23K, 2c 

protein (208 aa residues) was found to differ in 14 aa residues from the TpA56 23K, 

2c protein (208 aa residues, d).  Thus, the TRV I6 genes and their encoded proteins 

are highly similar to those of PEBV SP5 (CP [gene / protein % identity] 92/94; 9K 

95/92; 2b 94/95; 2c 94/92). This analysis clarifies the previous serological and 

nucleic acid hybridization studies of TRV I6, and confirms that TRV I6 is a true 

natural recombinant between TRV and PEBV. 

Attempts to detect TRV from upper, non-inoculated and sometimes from the 

inoculated leaves of tetraploid potatoes, by using the primer-set flanking the 16 K 

gene were not successful in most of the cases. This necessitated designing different 

primer-sets around diverse genes, along the length of RNA-1, and evaluating their 

detection efficiency. 

TRV1 detection capability of the replicase and the 16K primer-sets was evaluated by 

using the template cDNA from the N. benthamiana plants infected with KK20 

isolate. Both these primer-sets were found to be almost equally capable of detecting 

TRV1 from the N. benthamiana plants (Fig. No. 3.28, I and II). In fact, the replicase  

3.8. Detection capability of replicase and 16K gene-based 
primer-sets  
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Figure 3.28.  Detection of TRV1 in N. benthamiana by replicase primer-set vs. 
16K primer-set. Lane M:  1Kb Plus Promega DNA marker; Lane 1: NTC, Non-
Template control; Plants inoculated with Lane 2-4: SK; Lane 5-7: OK; and Lane 8-
10: KK isolates. Panel I TRV1 (a) Replicase-amplicon (474 bp), and Panel II (b) 
16K flanking-amplicon (463 bp, not line-up with marker); (c) Ef-1α amplicon (Nb. Ef-
1α, 150 bp). Sample-labels represent the samples collected from the inoculated 
leaves (Ino.) at 4 dpi and systemically infected leaves at 4 and 8 dpi.  
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Figure 3.29.  Evaluation of detection capability of replicase primer-set vs. 16K 
primer-set in a range of TRV infected plants. Lane M:  1Kb Promega DNA 
marker; Lane 1: NTC, Non-Template control; Lane 2: M.B, Mock, Mock-inoculated 
Maris Bard. Plants inoculated with Lane 3-4, 9-13: KK20 isolate and Lane 5-8: KI6 
isolate.  Ef-1α amplicon of (a) N. benthamiana (Nb. Ef-1α, 150 bp) and (b) Potato 
(Pot. Ef-1α, 255 bp). TRV1 amplicon of (c) replicase gene (474 bp, Panel I), and (d) 
16K Flanking-gene (463 bp, Panel II). Sample labels M.B., Nb., Jamesii, Okadae, T, 
and DT, represent the leaf samples collected from Maris Bard, N. benthamiana, 
Solanum jamesii, S. okadae, and tuber samples from tetraploid and diploids tuber, 
respectively. Sample labels represent the samples collected from the inoculated 
leaves (Ino.) at 5 dpi and systemically infected leaves at 8, 15, 20 and 30 dpi, 
respectively.  
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gene based amplicons were slightly brighter in fluorescence than the 16K based 

amplicons. 

The utility of both the primer-sets to detect virus in a range of samples including the 

TRV-infected leaf samples of N. benthamiana, Maris Bard, S. jamesii, S. okadae, and 

the tuber samples from tetraploid and diploid potatoes was also investigated. The 

replicase gene based primer set detected TRV1 (474 bp) from all the test samples 

except the negative controls (Fig. No. 3.29, c and d).  However, the 16K primer-set 

either failed or weakly detected TRV1 (at 15 and 30 dpi) from the systemic leaves of 

KI6-infected Maris Bard (Lane 6 and 7) producing a smear rather than a discrete 

amplicon. This suggests that the replicase gene-based primer-set is most effective for 

detection of TRV in a range of plant hosts. 

In the current studies, although variation was seen between plants, the PpK-20 RNA-

1 isolate was found to be more infectious than the other two isolates (SYM RNA-1 

and PpO-85 RNA-1) and to promote greater expression of GFP and CP from co-

replicating GFP-RNA-2. Not only was its accumulation level higher but this isolate 

was also more pathogenic in symptom production, sometimes causing death of the 

infected plants. However, the production of severe symptoms is not always 

associated with a higher accumulation rate of an infecting virus. For example, a 

natural mutant of Tobacco streak virus (genus Ilarvirus) with only one nucleotide 

variation from the parental virus produced more severe and long-lasting symptoms 

than the parental virus, although its accumulation in the infected tobacco plants was 

lower than the parental isolate (Xin and Ding, 2003; Whitham and Wang, 2004). 

All the 15 TRV recombinant isolates (including two parental in-vitro recombinant 

isolates and thirteen pseudorecombinant isolates) examined in this work were able to 

cause systemic infection in N. benthamiana plants, however, some differences in 

3.9. Discussion 
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symptom production were noticed during the infection, with the PpK-20 RNA-2 

(KK20 isolate) producing more noticeable vein-necrosis than the other RNA-2 

species in systemically infected leaves. The KK20 isolate was more severe in 

symptom production and also its accumulation in the systemically infected leaves 

was higher, as revealed by northern-blot analysis of the infected plants, than all the 

other fourteen recombinant isolates and the three TRV RNA-1 only (SYM, PpO-85 

and PpK-20) isolates.  

Spraing disease is of economic significance in the potato industry but research 

studies using molecular techniques to investigate the infection of potato by TRV are 

very few (Harrison and Robinson, 1982; Crosslin et al., 1999; Ghazala and 

Varrelmann, 2007). Naturally, TRV infection in the potato fields is caused by two 

routes, either by feeding of the viruliferous ‘‘trichodorid’’ nematodes on the 

underground tissues of the plant or by planting of virus-infected seed-tubers in the 

field and the consequent spread of the virus into the emerging tissues or daughter 

tubers of the plant.  Studies focusing on mechanical inoculation of the aerial parts of 

potato and the subsequent successful movement of TRV into the underground parts 

are lacking in the literature. Systemic infection by TRV has been achieved by 

planting tubers of susceptible cultivars in fields infested with viruliferous nematodes. 

But the nematode transmission of TRV occurs in a species-specific association 

(Ploeg et al., 1992 a, b; Vassilakos et al., 2001) and for many of the TRV-isolates 

vector nematode species is not known. Therefore, it would be impossible to use 

nematode vectors to do comparative infection studies in potato with the 15 

recombinant isolates constructed in this Ph.D. study.  

The genetic details of spraing disease and TRV infection in potato are not known, 

although, quantitative trait loci (QTL) and a molecular marker associated with the 

development of spraing symptoms in tubers have been identified (Khu et al., 2008). 

These QTLs might be associated with virus symptom production rather than reflect 
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real resistance or susceptibility to TRV as the tubers in this study were not evaluated 

for the actual presence of TRV.    

Potato cultivars have broadly been categorised into resistant, spraing sensitive and 

tolerant. The resistant varieties (including Bintje) do not produce spraing symptoms 

and the virus is not recovered from these plants. Spraing sensitive varieties (Maris 

Bard, and Pentland Dell) produce visible spraing symptoms and virus is detectable.    

The third group of tolerant varieties (Wilja, Saxon, and Shepody) do not produce 

classic spraing symptoms, but the systemic infection of M-type virus (both RNA-1 

and -2) is known to occur in these plants (Robinson and Dale, 1994; Dale et al., 

2004) that with repeated propagation can cause reduction in the uniformity and size 

of infected tubers.  

The recombinant isolates in the current study produced different types of symptoms 

on the inoculated leaves of potatoes. Each variety exhibited different types of 

symptoms that included annulus-like or disc-shaped necrotic lesions, yellowing, 

spreading necrosis, HR-like necrotic lesions or no symptoms. Robinson and Harrison 

(1985b) in their experiments, conducted on pseudorecombinant isolates of PEBV 

(Broad Bean Yellow Band Virus isolate), proved that some of the symptoms induced 

in the test plants were determined by the RNA-2 segment of the pseudorecombinant 

isolate. In similar studies it was demonstrated that RNA-1 controlled lesion 

formation and systemic invasion of infected plants, whereas, RNA-2 could influence 

the symptom type (Lister and Bracker, 1969; Robinson, 1977).  In the current 

studies, the TRV recombinant isolates comprising PpK-20 RNA-2 were more severe 

in symptom production as compared to the I6 RNA-2-containing isolates. Robinson 

et al., (1987) also found the TRV I6 isolate to induce systemic symptoms in infected 

N. clevelandii plants; these symptoms were milder than the symptoms produced by 

another recombinant isolate (N5) that caused severe necrosis resulting in the death of 

infected plants. In the current studies, we also found that I6 RNA-2-containing 
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recombinant isolates produced milder symptoms than all the other fourteen 

recombinant isolates. 

Some TRV isolates can overcome tuber-resistance in potato. Robinson (2004) 

reported a TRV variant (PpO-85 RNA-1) isolate that was a resistance-breaker in 

Bintje. He produced pseudorecombinant isolates comprising PpO-85 RNA-1 and 

PpK-20 RNA-2 or PpK-20 RNA-1 and PpO-85 RNA-2 and using nematodes was 

able to challenge Bintje plants to these isolates. In his study, only the isolate 

comprising PpO-85 RNA-1 was able to infect and induce spraing symptoms in the 

tubers of Bintje. Ghazala and Varrelmann (2007) agro-infiltrated the leaves of Bintje 

with various mutants to advocate that the movement-protein (MP) of PpO-85 does 

not trigger the HR-response of Bintje, thus allowing the isolate to overcome the 

TRV-resistance mechanism in Bintje. RT-PCR was used in this work to detect RNA-

1 of TRV PpK-20 and PpO-85 isolates in the mechanically inoculated leaves of 

Bintje, Russet Burbank, and Saturna. However, RNA-1 of PpK-20 isolate was 

detected in the systemically infected leaves of Russet Burbank only.  

The current study provides more details of TRV infection in different potato 

varieties, following leaf inoculation. All the 15 recombinant isolates could infect the 

inoculated leaves of six different potato varieties, including Bintje, which is 

considered to be resistant to TRV. Moreover, RNA-2 of some isolates was 

sometimes found at low levels in the non-inoculated leaves of Bintje and Maris Bard, 

suggesting a sporadic and weak infection. It seems that the TRV-resistance 

mechanism in Bintje primarily targets some stage in the delivery of virus to the 

tubers by nematodes, or, it does not operate with the same efficiency in the leaves as 

it does in the tubers. Furthermore, in the current work, three of the varieties that 

belong to the tolerant group (Wilja, Saxon and Shepody) and where TRV infection 

starting in the tubers can spread throughout the aerial parts of the plant (Xenophontos 

et al., 1998) did not become systemically infected by most of the viruses, following 

leaf-inoculation. This again suggests that there might be difference in the resistance 
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or susceptibility mechanisms that are operating in the leaves as compared to the roots 

and tubers. We did not examine whether any of the isolates that did not move to the 

systemic leaves were, nevertheless, able to move directly to the tubers.      

 Interestingly, in contrast to most of the viruses examined here, the recombinant 

isolates comprising I6 RNA-2 were able to spread systemically and persist for at 

least 30 days in the leaves of all six potato varieties. The I6 isolates were then able to 

move into the tuber (s) that developed from the infected plants. This indicates that 

either the RNA-2 of I6 isolate encodes a sequence or expresses a protein that is 

helpful for the persistence of the virus or more likely RNA-2 escapes the host 

surveillance mechanism that recognises and targets an as yet identified component of 

the RNA-2 of other isolates. Analysis of the stem mottle affected plants revealed that 

such plants were largely infected by the RNA-1 isolates only (Cadman, 1959; 

Harrison and Robinson, 1982), suggesting that replication and movement of RNA-2 

in these plants was somehow prevented.  

Viral movement through the plasmodesmata (cytoplasmic channels) is controlled by 

virus-encoded proteins that are commonly known as movement proteins (MP). In 

addition to MP, some of virus-encoded proteins related to particle formation or viral 

replication are also found to be associated with short or long distance transport of 

viruses (Carrington et al., 1996; Cruz., 1999). However, it is primarily the MP that is 

associated with cell-to-cell transport of viruses, and long distance transport may or 

may not be dependent upon the structural protein (CP). The difference in the particle 

(CP) properties of the KI6 recombinant isolate from the other TRV-isolates may 

account for the enhanced systemic movement of the KI6 isolate. In the current 

studies Bintje was also susceptible to the KI6 isolate. This isolate is different in its 

serological properties (PEBV serotype) to the other TRV-isolates (van Hoof et al., 

1966; Robinson et al., 1987). I6 RNA-2 carries the coding sequences and the 3ʹ UTR 

from PEBV. Perhaps, these PEBV-specific RNA-2 components are not recognized 
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by the potato surveillance system that allows the virus to persist and spread in the 

field.  

The viral MPs attach non-specifically to nucleic acids and form viral ribonucleo-

protein complexes (vRNPC) that aid viral-transport (Hull, 1989; Lucas, 2006). Thus 

cellular trafficking of the viruses can be either in the form of vRNPC or as virus 

particles. In short-distance (cell-to-cell) movement of the viruses, the plasmodesmata 

are provisionally modified to allow the virus to transit in the form of nucleic acids or 

vRNPC (e.g.; TMV RNA) molecules. In some cases modification of the 

plasmodesmata allows the transit of virions (e.g.; CMV) through a tubule-like 

structure formed in the plasmodesmata (McLean et al., 1993). The MP also modifies 

the ‘‘size exclusion limit (SEL)’’ of the plasmodesmata and thus facilitates transport 

of the virus. It seems to be more likely that the TRV KI6 isolate remains non-

encapsidated in the tetraploid potatoes and its systemic trafficking in these potatoes 

is in the form of vRNPC. 

Larger-scale inoculations of Bintje and Pentland Dell plants, performed in long-day 

conditions, reveal that the systemic movement of KI6 varies from plant to plant. In 

order to make a more generalized understanding about systemic infection by KI6, 

large-scale replicated experiments including more number of plants need to be done 

under varied environmental conditions. Light and temperature could have profound 

effects on the symptom expression and viral-titre in the inoculated plants (Harrison 

and Jones, 1971a, b). The RNA-2s of all the isolates should be detected using CP-

specific primers as the non-structural genes could be lost during multiplication, 

preventing the viral RNA-2 from being detected if primers located in these areas are 

used for RT-PCR (Hernandez et al., 1996).  

It was apparent that the detection of RNA-1 became more difficult as the systemic 

infection proceeded. In a TRV infection, RNA-1 is known to accumulate to less than 

one tenth the level of RNA-2, which would make the detection of RNA-1 more 



126 

 

difficult to achieve. Improved TRV RNA-1 detection using a primer-set targeting the 

replicase gene is one outcome of this work, which will allow further experiments to 

be done with greater confidence. 
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Chapter 4 

4.1. Aim 

Our initial attempts to find tetraploid potato cultivars that were fully susceptible to 

systemic infection by TRV had faced difficulties (see chapter no. 3, section 3.6. pp. 

100-114). This led us to explore other genetic sources of potato including diploid 

species. Our purpose was to find genotypes that were highly susceptible to TRV and 

perhaps could be practically exploited for functional-genomics analysis using virus-

induced gene silencing (VIGS). Investigations were conducted to identify the 

genotypes in which TRV could move systemically and accumulate to a sufficient 

level to be useful for TRV infection and VIGS-related studies. For this purpose the 

98 accessions of the Commonwealth Potato Collection (CPC) were screened by 

mechanical leaf inoculation with TRV (PpK-20 isolate) and virus was detected by 

Plate Trapped Antigen (PTA) ELISA, leading to the identification of seven 

susceptible genotypes. The susceptible accessions were further evaluated for the 

systemic accumulation of TRV by the tissue-print method and the accessions with 

the highest accumulation of TRV were selected for further studies. 

The systemically-infected leaves of Solanum okadae were found to exhibit chevron-

like symptoms. The accumulation of TRV RNA-1 and -2 in these symptomatic 

leaves was quantified and its relevance to the induction of the symptoms was 

evaluated.  Frameshift mutants of the coat-protein (CP), 2b, and 2c genes of the PpK-

20 RNA-2 were made and assessed for any effects on virus infection.  

The effectiveness of TRV for the functional analysis of potato tuber genes was 

assessed by evaluating VIGS constructs of the Phytoene desaturase (PDS), 

Zeaxanthin epoxidase (ZEP), and Granule bound starch synthase (GBSS) genes. 

These studies led us to recommend Solanum jamesii as a model species for 

4. Utilizing Diploid Potatoes for VIGS                
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investigating gene function related to tuber development and virus infection of 

potato. 

4.2. Screening of Commonwealth Potato Collection (CPC) 

The seedlings (section 2.1.2.) of 98 accessions of the Commonwealth Potato 

Collection (CPC) were screened by Ms. Wendy McGavin (JHI). These seedlings 

were mechanically inoculated, at the 4-5 leaf stage (2 weeks post emergence), with 

infectious-sap of the KK20 isolate. The inoculated and top, non-inoculated leaves of 

each plant were collected and extracted separately at 7 dpi. The leaf extracts were 

screened by PTA ELISA (section 2.2.15.), using the TRV-PLB antiserum. Among 

these 98 accessions, seven were found to be susceptible to TRV systemic infection 

viz.; ACL 7098, BST 3822, GND 3534, JAM 7653, MGA 2482, OKA 7327, and 

TOR 3705 (Table No. 4.1). All of these are diploid (2n) potatoes with 100 %  

Table 4.1.  TRV susceptible diploid potatoes (CPC). 

Sr.No. CPC 

Accession  

 Taxonomic Nomenclature   Symptoms produced on ELISA     

+ve     Inoculated  leaves Systemic leaves 

1.  ACL 7098 Solanum acaule Bitt. Few chlorotic and 

necrotic lesions 

Asymptomatic 4/4 plants 

2.  BST 3822 Solanum brachistotrichum 

(Bitt.) Rydb.   

Chlorotic lesions Asymptomatic 4/4 plants 

3.  GND 3534 Solanum  gandarillasii 

Cárd.   

Large chlorotic and 

necrotic lesions 

Asymptomatic 3/3 plants 

4.  JAM 7653 Solanum  jamesii Torr. Asymptomatic Asymptomatic 3/3 plants 

5.  MGA 2482 Solanum megistacrolobum 

Bitt. 

Asymptomatic Asymptomatic 4/4 plants 

6.  OKA 7327 Solanum  okadae Hawkes 

et Hjerting 

Asymptomatic Asymptomatic 3/3 plants 

7.  TOR 3705 Solanum  toralapanum 

Cárd. et Hawkes 

Asymptomatic Asymptomatic 3/3 plants 

 

infection incidence and none of them produced any symptoms on the systemically 

infected leaves (when infected with the KK20 isolate).  However, three of these CPC 

accessions (viz.; ACL 7098, BST 3822 and GND 3534) developed some chlorotic 

and/or necrotic symptoms, at 3-4 dpi, on the inoculated leaves. The symptoms were 

more evident on the inoculated leaves of GND 3534 as compared to the other two  
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Table 4.2.  Brief botanical description of the TRV susceptible diploid potatoes 
(CPC). 

Sr.No. Diploid potato 

species (Acronym)  

Natural Habitat &    

(Country of origin) 

Brief  botanical characteristics 

1.  Solanum   acaule 

Bitt. (ACL) 

Alpine-meadows, puña- 

grassland and roadsides 

3,500 to 4,600 m. 

(Argentina; Peru) 

Plant low; rosette forming; stoloniferous 

and tuber-bearing. Leaves odd pinnate; 

lateral leaves obtuse. Flower corolla rotate, 

purple to white. Fruit sub-globoid to ovoid. 

2.  Solanum      

brachistotrichum    

(Bitt.) Rydb. (BST) 

Dry piñon-scrub 

vegetation at 1,750- 

2,500 m.                     

(Mexico) 

Plant slender and erect; 0.25-0.8 m tall. 

Leaves pinnate, short and single leaflet at 

the apex. Stem downward pointing. 

Corolla stellate white or cream coloured, 

occasionally tinged purple. Berries 

globular green with white mottling; around 

1 cm diameter. 

3.  Solanum   

gandarillasii  Cárd.  

(GND)  

Under bushes and cacti 

in dry summer-green 

woodland at 1,800 - 

2,500 m                     

(Bolivia) 

Plant erect; 10-35 cm tall. Stems pale 

green, with narrow wing. Leaves odd-

pinnate; glabrous with enlarged terminal. 

Flowers white, pentagonal. Berries 

globular to ovoid 2 - 2.5 cm diameter. 

4.  Solanum    jamesii 

Torr. (JAM)                    

Rocky hillsides, ravines 

at 1,400-2,900 m.                   

(Mexico; USA) 

Plant, erect to bushy; 0.2-0.5 m tall. 

Leaves odd-pinnate, bluish-grey, generally 

pubescent with 3-4 pairs of leaflets. 

Flowers borne in 10 flowered 

inflorescence; white with petals often 

tinged lavender. Fruits 1 cm in diameter, 

globose, green throughout. 

5.  Solanum 

megistacrolobum 

Bitt. (MGA)                  

High mountain grassland 

and field margins at 

3,500-4,500 m.               

(Argentina; Peru) 

Plant low, rosette forming with straggling 

stems; stoloniferous and tuber bearing. 

Leaves odd-pinnate with coarse hairs on 

upper surface and terminal leaf often larger 

than laterals; often greyish-green. Flower 

corolla rotate to broadly stellate; generally 

pale blue-lilac. Berries green and globular. 

Foliage often has parsley-like leaf odour. 

6.  Solanum okadae  

Hawkes et Hjerting 

(OKA)                    

High mountain 

rainforest at 2,600-

3,200 m.               

(Argentina; Bolivia) 

Plant 20-80 cm tall, erect. Leaves odd-

pinnate with leaflets in pairs. Flower 

corolla white, rotate to pentagonal. Berries 

globular to 2 cm in diameter. 

7.  Solanum 

toralapanum Cárd. 

et Hawkes (TOR)      

Rocky and grassy 

slopes, field margins and 

puña-grassland at 3,000-

4,100 m.        

(Argentina; Bolivia) 

Plant low, rosette forming; stoloniferous 

and tuber bearing. Leaves odd-pinnate; 

rather coarse and thick; similar to S. 

megistacrolobum but with very long 

curved spathulate terminal lobe. Flower 

corolla generally dark violet rotate-

pentagonal to rotate-stellate. Berries 

globose to somewhat ovoid. 

(Source: - Mrs. Jane Robertson, CPC Research Assistant, JHI; Hawkes, 1990) 
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Figure 4.1. TRV-susceptible diploid potatoes (CPC) inoculated at the 4-5 leaf 
seedling stage. Inoculated (KK20) seedlings of (a) Solanum acaule (ACL 7098), (c) 
Solanum   gandarillasii (GND 3534), (e) necrotic lesion (encircled) on the inoculated 
leaf of c (g) Solanum jamesii (JAM 7653), (i)  Solanum okadae (OKA 7327), and (k)  
Solanum megistacrolobum  (MGA 2482) with the violet coloured lower surface of the 
leaf exposed to show its morpho-genetic trait. Mock-inoculations of (a), (c), (e), (g), 
(i), and (k) are shown in (b), (d), (f), (h), (j), and (l), respectively.                                                

 

 

 

ACL 7098, KK20 

 

 

 

                              

 

GND 3534, KK20 

   

 

GND 3534, KK20 

 

JAM 7653, KK20 

 

OKA 7327, KK20 

 

MGA 2482, KK20 

 

(e) (f) 

(d) (a) (b) (c) 

(g) (h) 

(i) (k) (j) (l) 

GND 3534, Mock Ino. 

   

 

GND 3534, Mock Ino. 

 

JAM 7653, Mock Ino. 

 

OKA 7327, Mock Ino. 

 

ACL 7098, Mock Ino. 

 

 

 

                              

 

MGA 2482, Mock Ino. 

 



131 

 

accessions. A brief botanical description of all of these seven TRV susceptible 

accessions (CPC) is given in Table No. 4.2. 

Further seeds of all the seven accessions (Table No. 4.1) were sown to obtain more 

plants for RT-PCR analysis. The seed germination of BST 3822, and TOR 3705 was 

very poor, giving insufficient numbers of plants for carrying-out more studies. 

Therefore, these accessions were excluded from further studies.  

Five seedlings of each of the remaining five accessions (ACL 7098, GND 3534, 

JAM 7653, MGA 2482 and OKA 7327) were mechanically inoculated, at the 4-5 leaf 

stage (Fig. 4.1.), with the infectious sap of the OK20 isolate which is less virulent 

than the KK20 isolate (section 2.2.9; Fig. 3.8, a-d).  

Leaf-discs collected from the inoculated leaves (at 4 dpi) and from the systemically- 

infected leaves (at 6, 12, and 24 dpi) of each of three individual plants of each 

accession were processed for total RNA extractions by the method given in section 

2.2.16. Virus was detected using TRV replicase (RNA-1, 474 bp) and CP (RNA-2, 

PpK-20, 360 bp)-specific primers given in appendix 1. 

The RT-PCR results (Fig. 4.2.) confirmed the systemic infection of TRV as RNA-1 

was detected in all of the positive control (N. benthamiana) and potato samples. 

Systemic infection of RNA-2 was confirmed in all the five diploid species with some 

variability in GND 3534, as only a weak amplicon of RNA-2 was detected at 12 dpi 

in the systemically infected leaves (Panel 1, Lane 12) and it remained undetected at 6 

dpi and 24 dpi. The disparity in the RT-PCR result and the earlier ELISA result 

(showing full susceptibility) for this species (Table No. 4.1) was possibly due to the 

use of different infecting TRV-isolates (i.e.; OK20 in RT-PCR vs. KK20 in ELISA). 

  

4.2.1. RT-PCR evaluation of the systemic infection of TRV in the diploid 
potatoes (CPC) 
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Figure 4.2.  RT-PCR evaluation of the systemic infection of TRV RNA-2 (KK20 
isolate) in the diploid potatoes. Lane M: 1Kb Promega DNA marker; Lane 1: 
NTC, Non template control; Lane 2–3: positive controls; OK20 infected N. 
benthamiana (Nb. Ino, Inoculated leaf, Lane 2; systemically-infected leaf, 8 dpi, 
Lane 3); Lane 4, 9, and 14: negative controls, mock-inoculated (M) seedlings of 
respective accession. OK20 infected diploid accession, Panel I: ACL 7098 (Lane 5-
8,), GND 3534 (Lane 10-13), MGA 2482 (Lane 15-18), and Panel II: JAM 7653 
(Lane 5-8), and OKA 7327 (Lane 10-13). Leaf-samples were collected at 4 dpi from 
the inoculated leaves (Lane 2, 5, 10 and 15) and from the systemically-infected 
leaves at 6 dpi (Lane 6, 11, and 16), 8 dpi (Lane 3), 12 dpi (Lane 7, 12, and 17), 
and 24 dpi (Lane 8, 13, and 18); House-keeping gene, Ef-1α, amplicon from (a) N. 
benthamiana (150 bp) and (b) potato (255 bp). (c) TRV1 replicase amplicon (474 
bp) and (d) TRV2 amplicon (K20-CP, 358 bp).  
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The systemic accumulation of TRV in these diploid potatoes was further examined 

by the detection of the virus CP, using the tissue-printing method.  Two seedlings of 

each of four diploid accessions (ACL7098, GND 3534, JAM 7653 and OKA 7327) 

were mechanically-inoculated (at 4-5 leaf stage) with the infectious-sap of the KK20 

isolate. The press-blots of the whole infected seedling were prepared at 6, 12 and 30 

dpi and developed by the method given in section 2.2.13. The tissue-print analysis of 

the seedlings at 6 dpi, given in Fig. 4.3. shows that TRV had accumulated to a 

detectable level in the positive control plant(s) of N. benthamiana (a) and the test 

seedlings of all the four diploid accessions (ACL7098 (c), GND 3534 (d), JAM 7653 

(e) and OKA 7327 (f). The CP was not detected in the mock-inoculated (1X PBS) 

plants of ACL7098 (b).  At 12 dpi (data not shown) and 30 dpi (Fig. 4.4.), the TRV-

CP was detected only in the press-blots of JAM 7653 (a) and OKA 7327 (b) 

suggesting these accessions could be suitable for use in VIGS-related studies. 

Interestingly, the roots and stolons of the infected S. jamesii plants were also found 

to be infected with TRV. 

4.3. TRV infection and production of chevron-like symptoms 
in Solanum okadae 

Five individual plants of Solanum okadae were mechanically-inoculated with the 

OK20 isolate (section 2.1.2 and 4.2.), as this isolate produced systemic symptoms in 

S. okadae, whereas, the KK20 isolate did not. All the five plants developed chevron-

like and mottling symptoms on the systemically infected leaves (Fig. 4.5.). The 

symptoms were more conspicuous at 21 dpi and started to diminish at 35 dpi. Leaf 

disc samples were collected from the asymptomatic (AS) and the symptomatic leaves 

of three individual plants (OK2, -3 and -5). Samples from the asymptomatic (green 

region, G) and the symptomatic area (region with chevron-like symptoms, CH) of the 

symptomatic leaves of infected plants and healthy samples from mock-inoculated 

(healthy, OH) plants were collected at 25 dpi. The total RNA extraction using  

4.2.2. Systemic accumulation of TRV in the diploid potatoes  
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Figure 4.3. Tissue-print analysis of the diploid potato seedlings at 6 dpi. Press-
blot of the positive control (a) N. benthamiana, and the negative control (b) ACL 
7098 plants. Test seedlings of diploid potato (c) ACL 7098 (d) GND 3534 (e) JAM 
7653 and (e) OKA 7327. Blue-colour is the TRV-CP detection. 

 

 

 

 

 

 

 

Figure 4.4. Tissue-print analysis of the diploid potatoes at 30 dpi. Press-blot of 
the test seedlings of diploid potato (a) JAM 7653 and (d) OKA 7327. Blue colour is 
the TRV-CP detection. 
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Figure 4.5. Symptomatic leaves of Solanum okadae. Systemically-infected (a) 
asymptomatic and (b) symptomatic leaf with Chevron-like symptoms. Red-circles 
mark the sampling-sites. Pictures were taken at 25 dpi.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Melt-curve and standard-curve analysis of the primer-set for the 
qRT-PCR of TRV-CP gene (PpK-20 isolate). (a) Melt-curve and (b) Standard-
curve analysis; Y-inter: Y-intercept; R2: correlation coefficient or regression line 
coefficient; EFF %: amplification efficiency. 
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Figure 4.7. Relative quantitation of TRV RNA-1 and RNA -2 in the symptomatic 
leaves of Solanum okadae. OH: Mock-inoculated, healthy plant; OK2, OK3, and 
OK5: TRV-infected S.okadae plant no. 2, 3 and 5, respectively. G: asymptomatic or 
green area and; CH: chevron-like area from symptomatic leaves; AS: asymptomatic 
leaves. ‘‘ɪ’’ is the error-bar representing standard error of ∆∆CT measurements. 

 

 

 

 

 

 

 

Figure 4.8. Symptomatic leaves of Solanum okadae stained with DAB and 
Trypan-blue. Leaves (a-b) before and (d-e) after staining with DAB; leaf (c) before 
and (f) after staining with Trypan-blue. Circles mark the chevron and mosaic-like 
regions of the symptomatic leaves.  
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TRIZOL, RNA purification, DNase treatment, cDNA synthesis and qRT-PCR 

protocols were the same as given in Chapter No.5 (sections 2.4.3-4; 2.2.3 and 2.4.8.) 

The relative amounts of TRV RNA-1 and -2 in all the three types of infected (AS, G, 

and CH) and virus-free (OH) samples were quantified by qRT-PCR and correlated 

according to the various symptoms. The concentration optimization and validation of 

the TRV2 (KK20-CP) primer-set (Primer no. 2357 and 2358, Appendix 1) was done 

by following the same protocol as given in Chapter No. 5 (section 2.4.7). The melt-

curve and standard curve analysis of this primer-set gave a single Tm peak (Fig. 4.6, 

a) with a regression co-efficient (R
2
) of 0.972, a regression line slope of -3.48 and an 

amplification efficiency (EFF %) of 93.772 (b). Details of the TRV1 primer-set 

(Primer no. 2353 and 2354) are given in Chapter No. 5. 

The qRT-PCR of these samples, using Cyclophilin (CyP) as the internal-control gene 

(Hunter, 2013), showed that TRV1 accumulated to higher levels in most of the 

asymptomatic (AS) leaves (Fig. 4.7.). However, the accumulation of both the RNA-1 

and RNA-2 was suppressed in the leaf regions producing the chevron-like symptoms 

(CH) as compared to the asymptomatic regions (G) of the same leaves.  

The ‘‘green islands’’ and mosaic or chevron-like symptoms induced in plants 

infected with non-seed-transmitted viruses are the result of localized-resistance  

(Sheerwood, 1988; Ratcliff et al., 1997) to defend against viruses.  The symptomatic 

leaves were stained with DAB and trypan-blue to look for the production of H2O2 

(ROS species) and the cell-death response, respectively. The staining results (Fig. 

4.8.) indicated that the induction of the chevron-like symptoms was an independent 

response as neither H2O2  production nor cell-death could be found in the vicinity of 

the symptomatic regions. 

4.4. Infection of the CP-frameshift mutant (KCPfs) 

TRV accumulation in the tetraploid potatoes was extremely low (see Chapter No. 3, 

section 3.6), therefore, this germplasm was not used for further systemic infection 
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studies. Identification of the TRV-susceptible diploid potato species provided us with 

a more preferable genetic source for investigating the systemic infection of the virus 

in potato. In order to observe any possible effect of the RNA-2 encoded proteins on 

the co-ordinated systemic infection of RNA2 together with RNA-1, I introduced 

separate mutations into the RNA-2-encoded genes. The mutants were created by the 

insertion or deletion of one or more nucleotides at unique restriction sites within the 

RNA-2 genes. These mutations create a translational frameshift in each of the RNA-

2-encoded proteins. The frameshift (fs) mutants of the CP, 2b and 2c genes of the 

PpK-20 RNA-2 were made by following the protocol given in section 2.2.14 and the 

frameshift-mutations were confirmed by DNA-sequencing of the mutant clones 

p1295 (KCPfs), p1296 (K2bfs), and p1299 (K2cfs), respectively. Full-length 

transcripts of these mutant clones were synthesized by following the protocol given 

in Chapter No.3 (sections 2.2.7-8.) and rub-inoculated together with RNA-1 on 

carborundum-dusted leaves of N. benthamiana (three plants per mutant clone). The 

infectious sap was collected at 6 dpi, stored at -20
◦
C, and later rub-inoculated to 

diploid potatoes for further experimentation. 

Besides the wild-type isolate of the virus (K20 wt., M-type isolate), the KCPfs 

mutant was also found to form a stable inoculum that caused infection in N. 

benthamiana plants (Fig. 4.9, c). The viability of this mutant was confirmed by the 

freeze-thawing test as described by Harrison et al. (1983). Thus after being subjected 

to two cycles of freeze-thawing the KCPfs mutant-containing leaf sap remained 

capable of causing infection in N. benthamiana plants (d). This treatment is expected 

to differentiate encapsidated viral RNAs from non-encapsidated viral RNAs, with the 

latter being destroyed during the repeated freeze-thawing. Western-blot analysis (e) 

of the total proteins extracted from the plants inoculated with RNA1 only (a), K20 

wt. isolate (b), KCPfs without freeze-thawing (c), and with freeze-thawing (d) 

showed that the K20-CP was only detected in the plants inoculated with the K20 wt. 

isolate (e, Lane 1, 4 and 5). The KCPfs mutant was made by shifting the frame 

(ORF) at 193 nts upstream of the carboxy-terminal of the CP and would be expected  
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Figure 4.9. N. benthamiana infected with TRV inoculum and the western-blot 
of infected plants. Plants inoculated with (a) PpK-20 RNA1 only (KNM), (b) PpK-20 
M-type (K20 wt.), (c) KCPfs without freeze-thaw, and (d) with freeze-thaw treatment 
(KCPfs, FT); (e) Western-blot for detection of TRV-CP in a-d, Lane M: Precision 
Pre-stained Protein Marker; Plants infected with Lane 1: K20 wt., positive control; 
Lane 2: loading-buffer (B) only; Lane 3: KNM only; Lane 4: K20 wt. inoculated (Ino.) 
and, Lane 5: systemically-infected leaves; Lane 6: KCPfs inoculated and, Lane 7: 
systemically-infected leaves; Lane 8: KCPfs, FT inoculated and, Lane 7: 
systemically-infected leaves (f)  is the Ponceau S staining of e.  Samples from 
inoculated and systemically infected leaves were collected at 4 and 8 dpi, 
respectively. Lane 2 and 3 are the negative controls of the experiment. Pictures of 
infected plants were taken at 10 dpi.                                                  

 

 

 

        

Figure 4.10. Symptoms induced by the TRV inoculum in Solanum jamesii. (a) 
Leaf of a mock-inoculated plant. Leaf inoculated with (b) PpK-20 RNA-1 (KNM) 
isolate, inducing characteristic TRV ring-shaped lesions, and (c) PpK-20 M-type (K20 
wt.) isolate producing no symptoms (d) Top, systemically-infected leaf infected with 
CP frameshift mutant (KCPfs), displaying leaf-malformation and shoe-string- like 
symptoms. Pictures were taken at (a-c) 7 dpi and (d) 30 dpi.      
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to delete most of the antigenic sites of the TRV CP. The region at the C-terminus of 

the CP does not affect the particle stability of the virus, but possesses the epitopes 

that are actively involved in determining the serological properties of the virus. The 

N-terminal portion and the central 110-121 amino acid residues are weaker in their 

antigenic properties as compared to the C-terminal region of the CP (Legorburu et 

al., 1995 and 1996). Inoculation of PpK20 RNA-1 only (KNM) on to the leaves of S.  

jamesii produced ring-shaped necrotic lesions on the inoculated leaves, at 4-5 dpi, 

but the systemically-infected leaves remained asymptomatic (Fig. 4.10, b). The 

inoculated and systemically-infected leaves of the plants inoculated with K20 wt. 

isolate were asymptomatic (c).  

However, the plants inoculated with the KCPfs mutant produced malformation and 

shoe-string-like symptoms (Fig. 4.10., d), at 21 dpi, on the top, systemically-infected 

leaves. The symptom expression was reduced in both severity and incidence at 45 

dpi. The mock-inoculated plants remained asymptomatic (a). Infection in these S. 

jamesii plants was confirmed by RT-PCR (section 2.2.16, Fig. 4.11.). The RNA-1 

inoculated plants were verified to be free from RNA-2, suggesting the production of 

characteristic ring-shaped necrotic lesions (b) was associated with RNA-1. Robinson 

and Harrison (1985b) had also associated the RNA1 of the virus with the production 

of necrotic lesions in C. amaranticolor plants. In the current study the M-type isolate 

(K20 wt.), containing both RNA-1 and-2, was found to be asymptomatic on S. 

jamesii plants. 

The RT-PCR analysis given in Fig. 4.11 showed that even after freeze-thawing of the 

inoculum, RNA2 of the KCPfs mutant had accumulated systemically within the N. 

benthamiana control plants. Although, very weak amplicons of TRV1 and TRV2 

were detectable.  
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Figure 4.11. RT-PCR assay of the KCPfs mutant infection in Solanum jamesii. 
Lane M: 1Kb Promega DNA marker; Lane 1-4: positive controls, N. benthamiana 
infected with wild-type PpK20 RNA-2, K20 wt. (Lane 1-2) and the CP frame-shift 
mutant, KCPfs (Lane 3-4); Lane 5: negative control, mock-inoculated Solanum 
jamesii (Mock); Lane 6-11: Solanum jamesii infected with KNM (Lane 6-7), K20 wt. 
(Lane 8-9), and KCPfs (Lane 10-11); Lane 12-13: N. benthamiana infected with 
freeze-thawed KCPfs inoculum; Leaf-samples were collected at 4 dpi from the 
inoculated leaves (Lane 1, 3, 6, 8, 10 and 11) and from the systemically-infected 
leaves at 10 dpi (Lane 2, 4, 7, 9, 11 and 13); House-keeping gene, Ef-1α, amplicon 
from (a) N. benthamiana (150 bp) and (b) potato (255 bp). (c) TRV1 Replicase 
amplicon (474 bp) and (d) TRV2 amplicon (K20-CP, 574 bp). 

 

Table 4.3.  Optimal concentration of the primer-pair(s) for the qRT-PCR of 
PDS, ZEP and GBSS genes of potato 

 S.No.  Targeted gene  Primer name  Primer number Opt.Conc. 

(nM) 

CT mean  CT S.D 

1.  PDS qPDSf 2459 300 22.367  0.102 

qPDSr 2460 300 

2.  ZEP qZEPf 2461 300 19.954  0.199 

qZEPr 2462 300 

3.  GBSS qGBSSf 2463 300 27.762  0.268 

qGBSSr 2464 300 

Opt.Conc. Optimal concentration; nM: Nano-Molar CT mean: Cyclic threshold; CT S.D: CT Standard 

Deviation; PDS: Phytoene desaturase; ZEP: Zeaxanthin epoxidase; GBSS: Granule bound starch 

synthase.  
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4.5. Functional analysis of potato genes using virus-induced 
gene silencing (VIGS) 

The effectiveness of VIGS needs the virus to infect the plant, preferably without any 

symptom production, and to also be capable of multiplying and spreading throughout 

the plant system. Screening of the 98 CPC accessions identified two diploid potato 

species viz., S. jamesii and S. okadae as being very susceptible to TRV and, 

therefore, as potentially useful for the functional analysis of potato genes using 

VIGS. Previous studies have demonstrated the utility of TRV for VIGS analyses in 

an extensive range of plant species. In this current study, the potato genes Phytoene 

desaturase (PDS), Granule bound starch synthase (GBSS) and the Zeaxanthin 

epoxidase (ZEP) were selected for VIGS in potato. The relative expression of these 

genes differs in potato leaves and tubers, and so separate analyses of VIGS in leaves 

(which can be completed in a few weeks) and VIGS in tubers (which requires several 

months to complete) were done. The results are presented in separate sections that 

follow:- 

Each pTRV2 carrying a silencing-inducing gene fragment (section 2.3.2) was 

separately mixed with the TRV1 binary-clone (p695) and infiltrated into three N. 

benthamiana plants. The plants that were agro-infiltrated with the PDS construct 

developed photo-bleaching symptoms at 10 dpi (Fig. 4.12, a and e) and the plants 

inoculated with the VIGS-clones of ZEP, GBSS, and a virus-control construct 

showed typical TRV-induced leaf-curling symptoms of the top-most, non-inoculated 

leaves (b, c, and d). At 6 dpi, infectious sap was prepared from the systemically- 

infected leaves and stored at -80
◦
C for later use as virus inoculum in the potato 

silencing experiments.  

 

4.5.1. Infection of the TRV VIGS constructs in N. benthamiana  
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The concentration optimization and validation of the primer-sets for PDS, ZEP, and 

GBSS genes was done by following the already explained method (section 2.4.7). 

The optimal concentrations (Opt. Conc.) of the tested primer-pairs with the lowest CT 

means and acceptable CT S.Ds (< 0.167) are given in Table No. 4.3. Since, the GBSS 

is lower in its expression in potato leaves as compared to the tubers (Visser et al., 

1991; Kuipers et al., 1994), therefore, cDNA was synthesized from total RNA 

isolated from tubers of S. jamesii and a 1/25 dilution of this cDNA was used as a 

template in the GBSS gene standardization experiments.  

The melt-curve analysis, gave a single Tm peak for each primer-set (Appendix 10, I, 

a-c) that ruled-out any possibility of non-specific amplification. The standard-curve 

analysis (II, a-c)  gave regression co-efficients (R
2
) of 0.962, 0.998, and 0.989; 

regression line slopes of -3.478, -3.073, and -3.26; and amplification efficiencies 

(EFF%) of 93.856, 111.566, and 102.673 for the primer-sets of PDS, ZEP, and 

GBSS, respectively. Thereafter, qRT-PCR analysis of PDS, ZEP, and GBSS 

expression was done in both leaves and tubers, following TRV-VIGS treatment 

(section 4.5.3 and 4.5.4). 

The S. jamesii and S. okadae (section 2.1.2) plants were mechanically inoculated at 

the 4-5 leaf stage with the infectious sap of the N. benthamiana plants infected with 

the VIGS-constructs of PDS, ZEP, GBSS, and the virus-control (section 4.5.1). Each 

construct was inoculated onto three plants of each potato species that were grown in 

two batches. One batch (Batch No.1) consisting of both S. jamesii and S. okadae 

seedlings. Whereas, the second batch (Batch No.2; grown the following year) was 

comprising only of S. jamesii plantlets that were raised through apical stem-culture 

of healthy S. jamesii plants (i.e.; JH1 and JH2, retained as mother plants for further 

4.5.2. Concentration-optimization and validation of the primer-sets(s), 
for qRT-PCR of the PDS, ZEP, and GBSS genes of potato 

4.5.3. Gene-silencing in potato leaves. 
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experimentation) from the Batch No. 1 experiment. The seedlings of S. jamesii 

exhibited photo-bleaching of the top, systemically-infected leaves 11 days after 

infection with the TRV-PDS construct (Fig. 4.13, a). These symptoms appeared at 

almost the same time as in the similarly treated N. benthamiana plants. However, the 

appearance of photo-bleaching in the systemically-infected leaves of S. okadae was 

delayed until 16-17 dpi and the symptoms were weaker in both their incidence and 

intensity. The plants inoculated with the other VIGS-constructs remained 

asymptomatic (b-d). The severity and incidence of the photo-bleaching in the PDS-

silenced plants of S. jamesii (at 12, 23, and 40 dpi) and S. okadae (at 18, 23, and 40 

dpi) are shown in Fig. 4.14. The photo-bleaching symptoms appeared 4-5 days later 

on the S. jamesii plants that were raised through apical-stem culture than from seed 

(c vs. g) and also the symptoms were weaker in severity. Leaf disc samples from the 

top, systemically-infected leaves were collected at 22 dpi (Batch No.1) and 40 dpi 

(Batch No. 1 and 2). Sampling of the leaf-tissue was done as shown in Fig. 4.14, i. 

The 22 dpi RNA samples from all the three plants inoculated with each treatment 

were combined in a composite sample prior to cDNA synthesis and  qRT-PCR. The 

optimal primer concentration and primer-details are given in Table No. 4.3. and 

Appendix 8, respectively. The qRT-PCR quantification was done by the comparative 

CT (ΔΔCT) quantitation method. The fluorescence signals of the targeted genes were 

normalized with the cyclophilin gene (Hunter, 2013). 

1. VIGS in seed-derived plants (Batch No.1) 

The qRT-PCR quantification of the seed-derived plants (Batch No.1) at 22 dpi (Table 

No. 4.4 and Fig. 4.15), showed that the expression of PDS mRNA relative to the 

calibrator was knocked down (KD) by 57% and 76% (a) in S. jamesii and S. okadae, 

respectively. The expression of ZEP was KD by 37% (b) but only in the S. jamesii 

plants. The silencing of ZEP was not successful in S. okadae. The expression of 

GBSS was reduced to 42% and 47% (c) in S. jamesii and S. okadae, respectively.  
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Figure 4.12.  N. benthamiana plants infected with various VIGS-constructs. 
Plants infected with TRV1 and VIGS-construct of (a) PDS (b) ZEP (c) GBSS and (d) 
Virus-Control, empty-TRV (e) same plant in a. Pictures were taken at 10 dpi (a-c) 
and 13 dpi (d and e).  

 

 

 

 

 

 

 

 

 

 

Figure 4.13. S. jamesii plants infected with various VIGS-constructs. Plants 
infected with TRV1 and VIGS-construct of (a) PDS (b) ZEP (c) GBSS and (d) Virus-
Control, empty-TRV (e) Mock-inoculation (1X PBS). Pictures were taken at 12 dpi 
(Batch No.1).  
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Figure 4.14. PDS-silenced S. jamesii and S. okadae plants. PDS-silenced plants 
of S. jamesii at (a) 12 dpi (b) 23 dpi and (c, g) 40 dpi; and S. okadae at (d) 18 dpi 
(e) 23 dpi and (f) 40 dpi. (h) Mock-inoculation (1X PBS), S. jamesii at 40 dpi (i) 
sampling of PDS-silenced leaf-tissue. Plants in a-f and h were raised from true-
seeds (Batch No.1) and in g, h from apical stem-cutting (Batch No.2).  
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Although greater reduction of PDS and GBSS gene expression was recorded in the S. 

okadae plants compared to the S. jamesii plants. S. okadae was not selected for 

further VIGS experiments. This was because of the failure of the ZEP-based 

construct to induce the silencing of ZEP in S. okadae and because of the delayed 

expression of photo- bleaching symptoms, with a 5-6 days delayed appearance, in S. 

okadae as compared to S. jamesii. Moreover, the incidence of photo-bleaching was 

less uniform in S. okadae (Fig. 4.14, b vs. e, and c vs. f). Therefore, S. jamesii was 

considered as the preferred host for carrying out further VIGS-related studies in 

potato. 

Following the promising results of potato gene-silencing, more leaf-disc samples 

were collected at 40 dpi from S. jamesii plants only. In order to observe the response 

of each individual potato plant to the VIGS-construct, the RNA samples from these 

plants were not bulked together and each qRT-PCR reaction was done with a 

different individual plant. 

The qRT-PCR quantification at 40 dpi (Fig. 4.15, d-f) showed a 50 to 68 % reduction 

in the PDS expression with a mean % KD of 56 (Table No. 4.4). The targeting of the 

ZEP mRNA revealed silencing of 67 to 90% (e) with a mean silencing of 52%. The 

ZEP mRNA in one (JZ2) of these plants was not silenced. The silencing of the GBSS 

mRNA ranged from 24-95%, (f) with a mean of 62% KD.  

2. VIGS in plants raised by stem-cutting (Batch No.2) 

The following season a new batch (Batch No.2) of S. jamesii plants was raised by 

planting of apical-stems from the healthy (mother) plants (section 2.3.4). This 

approach significantly reduces the period required for completion of VIGS-studies. 

This technique produced single tubers at the stem-nodes and was effective in 

overcoming plant to plant variation in tuber production that could affect functional 

analysis of the tuber genes. Inoculations and sample processing was done by the 

methods already described. The leaf-disc samples collected at 40 dpi from three 
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biological replicates of each treatment were analysed by the qRT-PCR (Fig. 4.16, a-

c) to reveal a % KD of PDS ranging from 42 to 88% (a) with a mean % KD of 66% 

(Table No. 4.4). The silencing of ZEP ranged from 57 to 60% (b) with a mean % KD 

of 58%.The VIGS of GBSS revealed a % KD of 20 to 50% (c), with a mean % KD 

of 40%. It appears from these results that infection by TRV itself (the empty-virus 

control (JC, C) sometimes increases expression of the targeted genes (Fig. 4.15-17).  

The tubers harvested from these S. jamesii plants (Batch No. 2) were also evaluated 

for the efficacy of VIGS. The qRT-PCR quantification (Fig. 4.17, a-c) revealed % 

KD of 81 to 92 %, (a) with mean % KD of 88% for the expression of PDS mRNA 

(Table No. 4.5). The silencing of ZEP showed % KD of 2 to 79% (b) with a mean % 

KD of 44%. The expression of GBSS gene was silenced 9 to 85% (c) with a mean % 

KD of 39%. The impact of this gene-silencing on the normal physiological functions 

of these tubers was assayed by evaluating the carotenoids (Phytoene) and sugar-

metabolism (staining for starch) of the tubers. 

Carotenoids are vital constituents of all organisms that use a photosynthetic system 

for their survival, as they shield the photosynthetic machinery from the photo-

bleaching (chlorophyll bleaching) effects of high intensity light. Carotenoids are also 

involved in the biosynthesis of Abscisic acid (ABA) and also provide different 

colours to the fruits and flowers that attract animals and insects (Hirschberg, 2001).  

Phytoene desaturase (PDS) is an important carotenoid that protects the 

photosynthetic apparatus of the plants. The gene-silencing of PDS results in 

increased expression of phytoene and the appearance of photo-bleaching. The major 

carotenoids from the gene-silenced tubers were chromatographically quantified by 

examining the peak heights of component carotenoids in the tubers. The carotenoid 

analysis revealed a noticeable increase (Table No. 4.6, Fig. 4.18) in the phytoene-

content of the PDS-silenced tubers. 

4.5.4. Gene-silencing in the potato tubers. 
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Figure 4.15. Knock-down of gene expression in the leaves of seed-derived 
plants (Batch No.1), at 22 dpi (a-c) and 40 dpi (d-f). (a, d) PDS-silencing (b, e) 
ZEP-silencing and (c, f) GBSS-silencing. Three plants of targeted gene combined in 
each sample (a-c) and analysed separately (d-f). J: S. jamesii, and O: S. okadae 
plants. C: empty TRV-vector, H: mock-inoculated, P: PDS-VIGS, Z: ZEP-VIGS and 
G: GBSS-VIGS.1, 2, and 3 denotes the individual plants or biological replicates. ‘‘ɪ’’ 
is the error-bar representing standard error of ∆∆CT measurements; value above 
bar is % KD of the gene. Sample H2 is the calibrator. 
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Figure 4.16. Knock-down of the gene expression in the leaves of apical-stem 
cultured  S. jamesii plants (Batch No.2), at 40 dpi. (a) PDS-silencing (b) ZEP-
silencing and (c) GBSS-silencing. C: empty TRV-vector, H: mock-inoculated, P: 
PDS-VIGS, Z: ZEP-VIGS and G: GBSS-VIGS. 1, 2, and 3 denotes the individual 
plants or biological replicates. ‘‘ɪ’’ is the error-bar representing standard error of 
∆∆CT measurements; value above bar is % KD of the gene. Sample H2 is the 
calibrator. 
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Table 4.4. VIGS in the potato leaves 

 S.No. 

  

T
a

rg
et

ed
  

  
  

g
en

e
 

 VIGS at 22dpi in seedling 

raised plants (Batch No.1) 

 VIGS at 40dpi in seedling 

raised plants (Batch No.1) 

VIGS at 40dpi in apical 

stem cultured plants 

(Batch No.2) 

 Sample  Relative 

mRNA 

% KD 

of gene 

Sample  Relative 

mRNA 

% KD 

of gene 

Sample  Relative 

mRNA 

% KD 

of gene 

1.   
 

 

 

PDS 

JP 0.43 57 JP1 0.49 51 P1 0.31 69 

OP 0.24 76 JP2 0.32 68 P2 0.12 88 

JC 1.7 N/A JP3 0.5 50 P3 0.58 42 

JH 1 N/A Mean 0.44 56.33 Mean 0.34 66.33 

   JC1 1.47 N/A C1 1.09 X 

   JC2 1.42 N/A C2 1.07 X  

   Mean 1.44 N/A Mean 1.15 X 

   JH2 1 N/A H2 1 N/A 

2.   

 

 

 

ZEP 

JZ 0.63 37 JZ1 0.33 67.44    

OZ 1.27 X JZ2 1.35 ----- Z2 0.43 57 

JC 1.05 X JZ3 0.1 90.02 Z3 0.4 60 

JH 1 N/A Mean 0.59 52.49 Mean 0.41 58 

   JC1 1.27 X C1 0.98 2 

   JC2 0.68 32 C2 0.53 47 

   Mean 0.97  Mean 0.75  

   JH2 1 N/A H2 1 N/A 

3.   

 

 

 

GBSS 

JG 0.58 42 JG1 0.32 67 G1 0.8 20 

OG 0.53 47 JG2 0.05 95 G2 0.5 50 

JC 4 X JG3 0.75 24 G3 0.5 50 

JH 1 N/A Mean 0.37 62 Mean 0.60 40 

   JC1 0.35 65 C1 0.53 47.16 

   JC2 0.28 72 C2 0.55 44.52 

   Mean 0.31  Mean 0.54 45.84 

   JH2 1 N/A H2 1 N/A 

PDS, Phytoene desaturase; ZEP, Zeaxanthin epoxidase; GBSS, Granule bound starch synthase. 

mRNA: messenger RNA; J: S. jamesii, and O: S. okadae plants. C: empty TRV-vector, H: mock-

inoculated, P: PDS-VIGS, Z: ZEP-VIGS and G: GBSS-VIGS. 1, 2, and 3 denotes the individual plants 

or biological replicates. X: not determined; N/A: not applicable; JH, JH2 and H2 are the calibrator or 

reference samples for relative quantitation. % KD: % Gene Knock down.  
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Most higher plants store their reserve carbohydrates in the form of starch. This 

storage carbohydrate mainly consists of amylose (a linear-glucan) and amylopectin 

(a branched-glucan). The configuration of the starch granules is formed by the 

amylopectins that are interspersed with the amylose molecules. The growth of these 

main constituents of the starch granules is promoted by a group of enzymes that are 

generally known as ‘‘Starch synthases’’.  These enzymes are further categorised into 

soluble starch synthases (SSS) and granule-bound starch synthases (GBSS). Amylose 

synthesis involves the enzymatic activity of GBSS. The potato starch contains nearly 

20% amylose and 80% amylopectin (Kuipers et al., 1994; Smith et al., 1997, 2001). 

Silencing of the GBSS always suppresses amylose production.  

Tubers from plants infected with the VIGS-constructs were harvested, sliced using a 

vibroslicer and stained with Lugol’s solution (section 2.3.3). The images of the 

stained tuber-slices presented in Fig. 4.19. are representative of three biological 

replicates for each silenced gene. The whole-tuber sections (a-e) were differentially 

stained with Lugol’s iodine solution, producing an intensely stained slice from the 

healthy tuber (a) with less intense staining in the PDS silenced tubers (c). The tuber 

slices from the GBSS-silenced tubers were faintly stained (e). More critical 

observation showed that the slices from the virus-control (b) and ZEP-silenced tubers 

(d) were also less strongly stained than tubers from untreated plants.  
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Table 4.5.  VIGS in the potato tubers (Batch No.2) 

S.No. 

  

Targeted gene VIGS in the potato-tubers 

Sample  Relative mRNA % KD of gene 

1.   

 

 

 

PDS 

PT1 0.1 90.07 

PT2 0.07 92.38 

PT3 0.18 81.57 

Mean 0.12 88.01 

CT1 0.11 89.13 

CT2 0.14 86.19 

CT3 0.93 6.93 

Mean 0.39 60.75 

HT2 1 N/A 

2.   

 

 

 

ZEP 

ZT1 0.49 50.47 

ZT2 0.98 2.14 

ZT3 0.21 78.79 

Mean 0.56 43.8 

CT1 0.51 49.39 

CT2 1.69 ----- 

CT3 1.3 ----- 

Mean 1.17 16.38 

HT2 1 N/A 

3.   

 

 

 

GBSS 

GT1 0.15 84.63 

GT2 0.76 23.81 

GT3 0.90 9.46 

Mean 0.60 39.3 

CT1 5.22 ----- 

CT2 3.52 ----- 

CT3 2.64 ----- 

Mean 3.79 ----- 

HT2 1 N/A 

PDS, Phytoene desaturase; ZEP, Zeaxanthin epoxidase; GBSS, Granule bound starch synthase. 

mRNA: messenger RNA; T: denotes cDNA of tuber-tissue; C: empty TRV-vector, H: mock-

inoculated, P: PDS-VIGS, Z: ZEP-VIGS and G: GBSS-VIGS. 1, 2, and 3 denotes the individual plants 

or biological replicates. -----: not determined; N/A: not applicable; H2 is the calibrator or reference 

samples for relative quantitation. % KD: % Gene Knock down.  
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Figure 4.17. Knock-down of gene expression in the tubers of apical-stem 
cultured S. jamesii plants (Batch No.2). (a) PDS-silencing (b) ZEP-silencing and 
(c) GBSS-silencing. C: empty TRV-vector, H: mock-inoculated, P: PDS-VIGS, Z: 
ZEP-VIGS and G: GBSS-VIGS. T1, T2, and T3 denote the tubers from individual 
plants or biological replicates. ‘‘ɪ’’ is the error-bar representing standard error of 
∆∆CT measurements; value above bar is % KD of the gene. Sample H2 is the 
calibrator. 
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Table 4.6. Phytoene in the PDS-silenced tubers 

 S.No.  Targeted gene Gene-silenced tuber 

collected from biological 

replicate no. 

Phytoene   

(mAU*min 285nm) 

Std. Dev. Std. Error 

1.  PDS JP1 12.01 11.588 6.690 

JP2 6.36 

JP3 28.65 

Mean 15.673 

2.  ZEP JZ1 1.45 0.442 

 

0.255 

JZ2 1.60 

JZ3 0.77 

Mean 1.273 

3.  Virus-control 

(JC) 

JC1 0.16 0.726 0.419 

JC2 0.00 

JC3 1.33 

Mean 0.497 

4.  Healthy 

control 

(JH) 

JH1 0.23 0.382 0.221 

JH2 0.94 

JH3 0.83 

Mean 0.667 

PDS: Phytoene desaturase; ZEP: Zeaxanthin epoxidase; Std. Dev.: Standard Deviation; Std. Error.: 

Standard Error. The total carotenoid analysis was done by Dr. Wayne Morris, JHI. 

 
 

 

 

 

 

 

Figure 4.18. Effect of PDS-silencing on tuber-carotenoids. Amount of Phytoene 
in the Solanum jamesii tubers harvested from PDS-silenced (JP), ZEP-silenced (JZ), 
TRV-control (JC) and mock-inoculated (JH) plants.  
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Figure 4.19. Staining of tuber starch. Lugol’s stained sections of the tubers 
infected with (a) JH, healthy, mock-inoculated, (b) JCT, virus-control (c) JPT, PDS-
silenced (d) JZT, ZEP-silenced and (e) JGT, GBSS-silenced tubers. Lugol’s stained 
starch-granules (f-i) from the tubers in a, b, d, and e, respectively. Arrow (→) points 
to the GBSS-silenced and arrow-head to the non-silenced starch granules. Scale 
bar = 50 µm  
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Starch granules from these tubers were extracted by following the protocol given in 

section 2.3.3 and the isolated granules were stained with Lugol’s solution. The 

amylose in the starch granule is stained dark blue by the Lugol’s solution. The 

GBSS-silenced starch granules of the transgenic potatoes are either opaque or 

reddish-brown due to the complete absence of amylose or are stained light to dark-

blue depending upon the efficacy of the GBSS–silencing (Anonymous, 2011). 

Amylose in the starch granules affected by the silencing of GBSS is intensely 

deposited in the co-central rings of the granules and is localised to the centre of the 

granule rather than the peripheral part of the granule.  The starch granules isolated 

from the healthy tubers were intensely stained (Fig. 4.19, f), followed with the 

granules from ZEP-silenced tubers being slightly less stained (h). However, the 

granules from the GBSS-silenced tubers were stained least intensely and comprised a 

mixture of granules that were lightly stained to varying degrees (i) as silencing is 

never 100% efficient (Velasquez et al., 2009) when using the VIGS. Silencing 

modifies the gene-expression to varying levels but it never eliminates the gene-

expression (Robertson, 2004). Similarly, some of the granules isolated from the 

tubers infected with the empty-virus construct (virus-control) were also lightly 

stained suggesting that some reduction in the GBSS expression could also be caused 

by the virus itself. 

4.6. Solanum jamesii as a model potato species for TRV 
infection studies 

Solanum jamesii is an erect to spreading-type diploid species (Fig. 4.20, a) that is 

amenable to both cabinet and glass-house culturing and can also be produced through 

apical-stem cuttings (f). It develops profuse stolons bearing abundant numbers of 

tubers (b, and c). An apical stem-cutting with developing tuber is shown in Fig. 4.20, 

g. The fully developed tubers are about 1-1.5 cm
2
 in diameter (d) and can be used for 

investigating the functional analysis of genes related to tuber development. In the 

current studies, S. jamesii proved to be a good host for investigating TRV infection  
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Figure 4.20. Solanum jamesii as a model potato species for TRV-infection. (a) 
Healthy three months old mother plant (b) tuberization in a (c) cleaned tubers (d) 
close-up of a tuber from c, Scale bar = 0.5 cm (e) Sprouts from healthy vs. PDS-
silenced tubers. Tuberization in the plants raised by apical stem-planting (f) Tuber 
developing at the stem-node (g) close-up of tuber in f 
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of potato. 

The tubers harvested from plants infected with the gene-silencing constructs (section 

4.5.4) were sown in compost and examined for the regeneration of VIGS symptoms 

in emerging sprouts. Thus, the tubers infected with the PDS-silencing construct 

produced photo-bleached sprouts (Fig. 4.20, f). A total of 50 tubers from TRV-PDS- 

infected plants were sown, 44 of these tubers produced photo-bleached sprouts and 

six of the tubers produced sprouts without any photo-bleaching.  Among the photo- 

bleached sprouts, some were completely albino and stunted in growth. However, 

sprouts from the healthy (mock-inoculated) tubers were normal in growth (Fig. 4.20, 

a). Sprouts emerging from GBSS-silenced tubers were with sparse foliage and some 

of the tubers produced sprouts with shoe-string-like and mottling symptoms. 

4.7. Discussion 

VIGS is one of the most widespread techniques used across the world for plant 

functional genomics analysis. The effectiveness of VIGS needs the virus to infect the 

plant, preferably without any symptom production, and to also be capable of 

multiplying and spreading throughout the plant system. TRV has a wide host-range 

(more than 400 plant species), systemically infect many plant species, produces few 

or mild symptoms and does not express a strong silencing suppressor protein 

(Ratcliff et al., 2001; Padmanabhan and Dinesh-Kumar, 2009; Senthil-Kumar and 

Mysore, 2011a). VIGS analysis using TRV has been successfully demonstrated in an 

extensive range of plant species, including members of the family Solanaceae 

notably the model-plant Nicotiana benthamiana (Ratcliff  et al., 2001; Liu et al., 

2002a; Lu et al., 2003), S. lycopersicum (Liu et al., 2002b; Ekengren et al., 2003; Fu 

et al., 2005), Capsicum annum (Chung et al., 2004), Papaver somniferum (Hileman 

et al., 2005), Petunia (Chen et al., 2004; Spitzer et al., 2007), Solanum nigrum (Hard 

et al., 2008) and some Solanum species of potato (Brigneti et al., 2004, Dobnik et al., 

2016). TRV has also been effectively employed in non-Solanaceous host systems as 

well such as Arabidopsis thaliana (Burch-Smith et al., 2006), Aquilegia species 
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(Gould and Kramer, 2007), Thalictrum species (Di Stilio et al., 2010) and Gladiolus 

grandifloras (Singh et al., 2013). Among the advantages of using TRV in VIGS are 

the capability of the virus to systemically infect the meristematic tissue of the host 

and its ability to infect different Solanaceous hosts (Burch-Smith et al., 2006, 

Mártin-Hernández and Baulcombe, 2008). However, there are only a few  

publications dealing with the use of TRV for VIGS in potato (Dobnik et al., 2016) 

showing that there are practical problems in using TRV as a VIGS vector in potato.                                                                                                                                                                                                                                                                                                                                                                                                                                                

Published studies of TRV VIGS have used constructs derived from the PpK20 

isolate. Brigneti et al. (2004), using this vector-system, had reported the highest 

efficiency of VIGS (PDS) in a hexaploid relative of potato (S. nigrum) and two 

diploid potato species viz., S. bulbocastanum (60-70% PDS silencing) and S. okadae. 

However, in tetraploid S. tuberosum c.v. Cara, TRV VIGS was less effective. The 

authors stated that, besides the type of virus-vector (construct), the efficiency of 

VIGS was also influenced by the inoculation technique, the plant growth-stage and 

the genetics of the potato plant. The discovery of additional susceptible diploid 

potato species, in which TRV can multiply and move systemically from the 

mechanically-inoculated leaves down into the roots and the developing tubers, led us 

to revisit the TRV-vector system for functional analysis of tuber genes. 

Most of the wild relatives of potato, naturally growing in the Andes, are a good 

resource against the biotic (insect pest and diseases) and biotic stresses (drought, 

frost and heat). These quality traits can be exploited by incorporating them in potato 

breeding programmes to develop improved varieties (Machida-Hirano, 2015). This 

work has shown that the diploid potato, S. jamesii, is a good genetic source for 

investigating the infection and systemic movement of TRV. The virus in the 

systemically-infected leaves of seed-derived plantlets was detectable at 6 dpi by the 

tissue-print technique, suggesting rapid accumulation in the tissue. The species is 

amenable to be grown under glass-house conditions for carrying-out further virus-

infection studies. With good husbandry practices a single plant can bear a sufficient 
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number of tubers to conduct tuber-related infection studies. The TRV RNA-1 was 

found to be associated with the production of ring-shaped necrotic lesions on the 

inoculated leaves of S. jamesii. But the plants inoculated with the M-type of TRV 

were generally asymptomatic. This response of S. jamesii to TRV-infection was of 

advantage because our purpose was to exploit this species for VIGS studies. Another 

diploid species, Solanum okadae, was used to investigate the production of Chevron-

like symptoms during TRV-infection. The qRT-PCR quantification of TRV RNA-1 

and -2 within the Chevron-like regions of the symptomatic leaves revealed that these 

symptoms correlated with reduced virus-infection, as mostly virus was present at a 

low titre in the symptomatic areas compared to adjacent asymptomatic areas. The 

association of an HR with the Chevron-like symptoms could not be verified by DAB 

and Trypan-blue staining techniques. Unlike S. jamesii, S. okadae was found to be 

poor in tuberization in the conditions used in the current studies. 

In potato leaves, the PDS gene, Phytoene desaturase, was silenced to 57% (at 22 

dpi), 56% (at 40 dpi, Batch No. 1), and 66% (at 40 dpi, Batch No. 2).  The ZEP gene, 

Zeaxanthin epoxidase, was silenced to 36% (at 22 dpi), 52% (at 40 dpi, Batch No. 1), 

and 59% (at 40 dpi, Batch No. 2). The GBSS gene, Granule bound starch synthase, 

was silenced to 42% (at 22 dpi), 5% (at 40 dpi, Batch No. 1), and 40% (at 40 dpi, 

Batch No. 2).  

The reduction in expression of these genes in the tubers was 88% (PDS), 44% (ZEP), 

and 39% (GBSS). The exploitation of S. jamesii for VIGS-related studies has given 

promising results, though, in some instances, the empty virus-control construct also 

affected the targeted genes. The use of empty control virus vectors in VIGS 

experiments (as in Tomato) has been shown to affect the growth and development of 

the host plant more strongly than virus-control constructs carrying  an insert of a 

non-silenced gene e.g.; GFP or GUS (Wu et al., 2011).  

It is thought that the empty-vectors can replicate more efficiently and put more stress 

on the host than the vectors containing a inserted non-targeted gene fragment and 
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thus could possibly influence the experimental out-comes (Hartl et al., 2008). TRV 

has also been reported to affect the cell metabolism in Arabidopsis that change the 

susceptibility of the infected plant to the virus. Besides affecting the protein content, 

the sugar and starch metabolism has also been influenced by TRV in these plants. 

The Starch Synthase 2 (SS2) and the Granule-bound Starch Synthase 1 (GBSS1), 

both genes involved in sugar-metabolism, were down-regulated in TRV infected 

plants (Fernández-Calvino et al., 2014). Thus, for VIGS-related experiments the use 

of healthy (mock-inoculated) and empty-virus controls is recommended as a 

minimum requirement for phenotypic analysis (Bernacki et al., 2010). Most of the 

past studies on VIGS have used empty-TRV (virus-control) as a calibrator or 

reference sample, but in the current studies we have used the healthy control for 

normalization of the gene-expression signal. This modification, in some of the 

current instances, revealed the effect of the virus-control construct on the expression 

of the genes under study. However, the results of phytoene quantification and 

staining of the potato-slices and the starch-granules were in general agreement with 

the qRT-PCR quantitation of the silenced genes.  

We conclude that the VIGS-studies conducted here on S. jamesii have revealed 

potential improvements in the capability of VIGS in potato. 
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  Chapter 5 

Spraing has been described in the literature as a hypersensitive response (HR), 

however, the genetic and biochemical nature of spraing has not been tested 

experimentally. Microarray and quantitative RT-PCR analyses of potato pathogen 

defence-related genes (which are known to be up-regulated during the HR) were 

done to see whether spraing is in fact a hypersensitive response. In addition to this, 

other biochemical tests such as staining for HR-related compounds or production of 

reactive oxygen species were done to detect any HR-related processes that might be 

active in spraing-affected potato tubers. 

Production of spraing disease under controlled environmental conditions such as in 

the glass-house is very difficult and time-consuming. Vector-specific transmission of 

the virus and the associated problems of maintaining a viruliferous-nematode 

population complicate these studies (Brown and Boag, 1987, 1988; Brown et al., 

1989; Dale and Barker, 2007). Spraing-resembling symptoms can also be produced 

by direct mechanical-inoculation of the virus to the tubers but is too inefficient 

(Eibner, 1959; Xenophontos et al., 1998) for exploitation in spraing-related studies. 

Therefore, for gene expression studies by microarray analysis, field-grown tubers of 

potato c.v. Pentland Dell (known for sensitivity to spraing disease) were collected 

and examined for spraing by the method of Alonso and Preece (1970). Spraing-

affected (S1-4) and spraing-free (SF1-4) tuber-tissue was excised separately from 

different individual spraing-affected tubers to produce four samples of each tissue-

type. Likewise, healthy tuber-tissue (H1-4) from four TRV-free tubers of Pentland 

Dell was collected to produce four samples of healthy tuber tissue. Since these tubers 

were grown under field-conditions they could have significant variation in their 

individual transcriptome expression profiles.  

5. Molecular Studies of Spraing Disease of Potato 

5.1. Aim 
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Moreover, information about the infecting TRV isolate from the field was not 

available. The sampled tubers could have been infected by either a single TRV 

isolate or a mixture of isolates. All of these factors might introduce variability into 

the data from these experiments. In additional work, we have investigated the 

distribution of TRV across a spraing-affected tuber and examined the expression of 

some spraing-associated genes in relation to TRV infection levels. 

RNA of all the 12 tuber samples representing four different biological replicates of 

three tuber types (S1-S4, SF1-SF4, and H1-H4; sample preparation method 

explained in section 2.1.3) was extracted as described in section 2.4.1 sub-section 2. 

After successive precipitations with lithium chloride and then ethanol, the RNA 

preparations were further cleaned using QIAGEN RNeasy
®
 columns (section 2.4.3) 

and treatment with Ambion
®
 TURBO DNase (section 2.4.4), following the supplier’s 

instructions. The RNA was quantified using a ‘‘NanoDrop 1000 spectrophotometer’’ 

(Appendix 12 and 13). All the 12 RNA preparations were diluted with RNase-free 

water to a concentration of 250 ng / µl and the quality of the samples was confirmed 

by using an ‘‘Agilent 2100 Bioanalyzer’’ (RNA chip method), following the protocol 

of ‘‘Agilent RNA 6000 Nano kit’’.  

The Relative Integrity Number (RIN) values for each of these RNA preparations, 

were within the acceptable range (i.e.; RIN >7.0) specified for good quality RNA 

preparation. The RIN values are given in parenthesis  against each of these samples 

i.e.; S1(RIN:7.60), S2(RIN:7.60), S3(RIN:7.60), S4(RIN:5.40), SF1(RIN:7.80), 

SF2(RIN:7.90), SF3(RIN:7.30), SF4(RIN:7.00), H1(RIN:7.70), H2(RIN:7.70), 

H3(RIN:7.60), and H4(RIN:7.80). The sample S4 was repeated for RNA extraction 

as it had given poor RIN value of 5.40.  This fresh RNA isolation (S4 Rep.) had a 

5.2. Potato tuber samples and quality of RNA preparations 
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RIN value of 8.10. The analysis of all these RNA preparations, generated by the by 

the Bioanalyzer software, is given in figure 5.1. 

The symptoms of spraing disease (section 1.4.2 and 1.8) can be induced by either 

TRV or PMTV, or by a mixed infection of both viruses (Beuch et al., 2014). All of 

the twelve tuber samples for microarray analysis were screened for the presence or 

absence of TRV and PMTV by using Illustra Ready-To-Go™ (GE Healthcare) beads 

that carry out a combined RT-PCR reaction, and virus-specific primers. 

TRV was detected by following the RT-PCR protocol given in section 2.2.2. A 463 

bp amplicon of the TRV 16K gene was produced in the positive controls (Fig. 5.2, a, 

Lane 1 and 7), and also in all the four spraing (Lane 3 to 6) and spraing-free (Lane 9 

to 12) samples, demonstrating the presence of TRV in these samples {NB: the 

spraing-free samples were derived from non-symptomatic regions of tubers that did 

show some area of spraing, so that TRV was already suspected to be present in these 

tubers}. The RNA preparations from healthy tubers (Lane 13 to 16) and the non-

template controls (Lane 2 and 7) did not produce any RT-PCR product which 

confirmed the TRV-free status of these samples. 

PMTV encodes three movement proteins that are known as the Triple Gene Block 

(TGB) proteins viz; TGB-1,-2 and TGB-3 (Scott,  et al., 1994; Adams et al., 2012; 

Beuch, 2013). These TGB proteins are encoded by three overlapping genes and they 

act in a coordinated fashion to regulate the plasmodesmatal and long-distance 

systemic movement of the virus. Due to the highly conserved nature of TGB2  

5.3. Detection of TRV and PMTV in tuber samples 

5.3.1. RT-PCR testing of TRV in tuber samples 

 

5.3.2. RT-PCR testing of PMTV in tuber samples 

 

http://www.cabdirect.org/search.html?q=au%3A%22Scott%2C+K.+P.%22
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Figure 5.1. Analysis of all the RNA preparations used in microarray analysis. 
(a) Lane L: RNA Marker; Lane 1: Sample 1, S1; Lane 2: Sample 2, SF1; Lane 3: 
Sample 3, H1; Lane 4: Sample 4, S2; Lane 5: Sample 5, SF2; Lane 6: Sample 6, 
H2; Lane 7: Sample 7, S3; Lane 8: Sample 8, SF3; Lane 9: Sample 9, H3; Lane 10: 
Sample 10, S4; Lane 11: Sample 11, SF4; Lane 12: Sample 12, H4; (b) Gel image 
of re-extracted RNA of sample 10; Lane L: RNA Marker; Lane 1: Ghulam 10 Rep 
(repeat of extraction of sample S4). 

 

         

 
 

Figure 5.2.  RT-PCR detection of TRV and PMTV in the tuber samples selected 
for gene-expression analysis. Lane M: 1kb Promega DNA ladder; Lane 1 and 7: 
Positive controls, (a) 463 bp amplicon from TRV infected N. benthamiana (b) 356 bp 
amplicon from a plasmid clone of PMTV-TGB2. Lane 2 and 8: Non template control; 
Lane 3-6: Spraing samples, S1-S4; Lane 9-12: Spraing-Free samples, SF1- SF4; 
Lane 13-16: Healthy samples, H1-H4.     
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(Andrey et al., 2012) a primer set based on the TGB2 gene was used for the detection 

of PMTV as given in section 2.4.5. A 356 bp amplicon of TGB2 was amplified only 

from the positive-control sample (Fig. 5.2, b, Lane 1 and 7), revealing the PMTV-

free status of the tuber samples prepared here for subsequent microarray analysis.   

A microrray analysis of all the 12 tuber samples was done as given in section 2.4.6. 

Data extracted from the arrays was imported into the GeneSpring programme. 

Default normalisation (Agilent 1-colour) settings were applied and probes flagged as 

‘absent’ in ≥10 of the 12 RNA samples were removed from the analysis, leaving 

27,895 probes with reliable gene expression. Each probe on the array is not unique to 

one potato gene, as the potato genes are represented by multiple probes on the array. 

Significant differences in gene expression were observed as the samples were taken 

from tubers that were harvested from the field rather than from a controlled-

environment (cubicle or cabinet). However, condition cluster analysis revealed that 

most of the biological replicates for each condition grouped together (Fig. 5.3) 

therefore indicating that pattern of relative gene expression was comparatively stable 

within each tuber type (S v. SF. H). After 1-way ANOVA analysis, the resulting data 

were subject to a pairwise comparison (Volcano plot) to ascertain the comparative 

differential gene expression between two contrasting sets of samples; in one analysis 

spraing (S) and no-spraing (spraing-free, SF) samples, and in a second analysis 

healthy (H) and spraing-free samples were compared. The Volcano plot displays the 

–log (p-value) vs. the log (fold change) and thus illustrates the two important 

parameters of differential gene expression in a single plot. It provides the investigator 

with a foundation to quickly decide which genes are worthy to be focused on in 

further research. The pair-wise comparison, performed at a high stringency with a 

Student’s T-test (t-test) probability value (p-value) restriction of ≤0.01, identified 

5.4. Microarray and GeneSpring Analyses 
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844 differentially expressed probes for the first set of samples (S/SF) and 1,024 

probes for the second sample set (H/SF). These pair-wise comparisons were 

restricted to probes that showed at least a two-fold change in their expression. A gene 

expression profile for the spraing samples is given in figure 5.4, revealing 

significantly higher expression of many genes in the spraing samples as compared to 

the spraing-free and healthy tuber samples. Lastly, comparing healthy versus spraing 

symptomatic samples, 2,827 differentially expressed probes were identified. The raw 

data from these experiments has been deposited in the Array Express database 

(accession number E-MTAB-4670; http://www.ebi.ac.uk/array  express). Appraisal 

of all three pair-wise comparisons show that 630 probes (17.8 % of total number) 

were associated with spraing production (Fig. 5.5) and 439 probes (12.4 % of total 

number) were related to TRV-infection, regardless of whether there was or was not 

spraing formation in the tubers.  

The expression of the potato Elongation Factor-1 alpha (Ef-1 α) gene, a commonly 

selected ‘‘reference gene,’’ was also examined to confirm the integrity of the RNAs 

isolated from the three types of tuber samples (S, SF and H). The graph (Fig. 5.6) for 

Ef-1 α expression appeared as a flat-line for all the three sample types and thus 

suggested the uniform expression of this gene among all the three types of tubers.  

The ‘‘gene enrichment analysis’’ assigns a biological ‘‘function’’ to the highlighted 

genes in the array analysis, and is based on ‘‘gene ontologies’’, where, the organized 

method of grouping genes with related annotations creates a gene ontology (GO) and 

where annotation is the process of attaching a note or a comment (phrase or word) to 

a sequence giving a biological meaning to the annotated sequence. Gene ontology 

uses a well-ordered vocabulary including a set of accepted terms that can provide 

functional data either about a gene product (protein) of a single gene or as a ‘‘gene 

enrichment analysis’’ for the whole proteome and group of proteins (Hill et al., 2008; 

Huntley et al., 2014). Gene ontology and associated annotations is a useful tool for 

the extraction of ‘‘biologically relevant’’ information from extensive data sets, such  

http://www.ebi.ac.uk/array
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Figure 5.3.  Condition tree clustering of QC-filtered normalised expression 
data of each replicate microarray. Pearson correlation with average linkage was 
used in GeneSpring v 7.3 (Agilent). 

 

 

Figure 5.4.  Expression profile of potato genome (4x44K array) for spraing 
tubers. Each line represents a gene (probe). The red-lines denote the up-regulated 
probes and the green-lines show the down-regulated probes in the spraing-free and 
spraing volcano plot of the 42,034 potato unigenes present on the array. 
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Figure 5.5. Numbers and percentage of differentially (>2-fold) expressed 
genes in data sets. Comparisons are between healthy (H), virus-infected, spraing 
free (SF) and virus-infected, spraing symptomatic (S). Regions of overlap denote 
differentially expressed genes shared between dataset comparisons. 

 

Figure 5.6.  Genetic expression of potato Ef-1 α, among all the three types of 
tuber samples. The expression of potato Ef-1 α, was a flat-line for all the three 
sample types, suggesting a uniform expression pattern of this gene among all the 
three tissue types. 

Spraing Spraing-free Healthy 

Ef-1 α 
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as microarray data (Harris et al., 2006). From the total of 27,895 expressed probes 

detected from the data extracted by Feature Extraction (FE), only 53.84% (15,019) 

were annotated in the potato genome database, whereas, rest of the probes were 

without any annotation and therefore have no known function. 

 The GO presents organized information about the traits of genes and their coded 

proteins in three significant domains that are shared by all organisms viz., molecular 

function, biological process and cellular component. The differentially expressed 

potato genes in the current studies were allocated to these three overarching 

functional domains according to their GO annotation. This analysis created sub-sets 

of genes that were related by their expected GO terms, with the highest level 

domains being Molecular Function (GO: 3674), Biological Process (GO: 8150), and 

Cellular Component (GO: 5575). The molecular function relates to genes involved in 

a task or basic activity such as enzymatic or catalytic activity. The biological process 

defines a broad goal or objective encompassing a chain of events, completed either 

by a single or a multiple ordered assembly of molecular functions (gene pathways), 

such as a signal transduction process, or responses to biotic or abiotic stresses, or a 

cellular-physiological process, and includes many lower level GO term categories 

related to programmed cell-death (PCD) and associated HR reactions. The cellular 

component refers to a cellular entity, complex or location where the molecular 

function or a biological process is performed. Cellular component relates to sub-

cellular location where the gene is active. It relates to a bigger object or an organelle 

such as a mitochondrion, nucleolus or a chloroplast or is a group of proteins (gene-

products) such as ribosomes and liposomes.   

For the 844 probes differentially expressed in the spraing versus spraing-free 

samples, only 512 have a predicted function and only 495 have an ascribed GO term 

annotation. For the 1,024 probes differentially expressed in the healthy versus TRV-

infected but spraing-free samples, only 585 have a predicted function and only 422 

have an ascribed GO term annotation. 
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Because our aim was to discover whether spraing production is a defense reaction of 

the plant to virus infection we did ‘‘gene enrichment analysis’’ focusing on GOs that 

are related to defence responses. In this analysis, high-level GOs have lower level 

GOs that are located within them. The pie-chart of the high-level ‘‘biological process 

domain’’ (GO: 8150) given in figure 5.7, identified 839 genes associated with this 

GO term in the spraing-affected tubers. The majority of these genes (379 genes, 

45.17% of total) had a role in the physiological processes (GO: 7582) of the spraing-

tuber. The second largest group of genes (317 genes, 37.78%) in this domain was 

associated with cellular functions (GO: 9987) of the spraing-tuber, followed by a 

group of genes involved in the regulation of biological process (GO: 50789), 

response to the stimulus (GO: 50896) or no known biological role (GO: 4), with 59 

genes (7.03%), 56 genes (6.67%), 18 genes (2.14%), respectively. The second 

smallest group of genes (6 genes, 0.71%) located in this domain play roles in 

reproduction (GO: 3) and the smallest group of genes (4 genes, 0.48%) was linked to 

reproductive processes (GO: 7275) in the spraing-tuber.    

The total number of genes in each GO term group (genes in list in category) and the 

actual number of genes in that category that were differentially expressed in the 

samples, alongwith the GOs identified at a stringency with a student t distribution (t-

test) probability value (p-value) restriction of <0.01 are given in Table No. 5.1.   

Necessarily, ‘‘biological processes’’ are in train constantly in all tissues, in all 

organisms. The thorough search of this ontology at the lower hierarchical level 

revealed some GO terms with direct or indirect relevance to plant defence responses; 

such as ‘‘response to stimulus’’ GO: 50896, ‘‘cellular physiologic process’’ GO: 

50875, etc. The set of genes present in ‘‘response to stimulus’’ was twice the 

expected frequency (13.33% observed compared to 7.97% expected) in the  

5.4.1. Biological process domain (GO: 8150) 
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Figure 5.7.  Pie-chart of the GO group for biological process. The major class of 
genes associated with biological role in the spraing-tuber was linked to physiological 
(45.23%) and cellular activities (37.83%). 

 

Figure 5.8.  Pie-chart of the GO group for response to stimulus. The majority of 
the genes (29.21%) in this category of studied genes were associated with response 
to biotic stimulus.  
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Table 5.1.  Over-represented tuber-expressed genes* in the GO: 8150 
(biological process)  

S.No. Functional category 

and GO ID 

Genes in 

Category 

% of Genes 

in Category 

(expected) 

Genes in 

List in 

Category 

% of Genes in 

List in Category 

(observed) 

 p-Value 

1.  Regulation of 

biological process 

GO: 50789 

1715 11.42 58 16.57  0.00222 

2.  Response to 

stimulus 

GO: 50896 

1197 7.97 56 13.33  9.30E-05 

3.  Reproduction 

GO: 3 

81 0.539 6 1.429 0.0258 

* Percent genes filtered at p-value restriction of <0.01 

transcriptome of spraing-affected tubers compared to spraing-free and also healthy 

and also healthy tubers. 

The gene ontology associated with ‘‘response to stimulus’’ (GO: 50896, Fig. 5.8) 

comprised 89 genes that had association with responses to stimuli in the spraing-

tuber. The major group of genes (29.12% of total, 26 genes) in this ontology was 

attached to the response to biotic stimulus (GO: 9607), followed by 26.97% genes 

(24 genes) linked each with the response to stress (GO: 6950) and abiotic stimulus 

(GO: 9628), respectively. 8.99% (8 genes) were related to the response to 

endogenous stimulus (GO: 9719) and the smallest number of genes (7.86%, 7 genes) 

in this set of studied genes was associated with response to external stimulus (GO: 

9605). The percentage of the total number of genes in this set of studied genes (genes 

in list in category) and the actual number of genes in this category that were present 

on the microarray (genes in category) are given in table No. 5.2. These genes along 

with the GOs were filtered at a stringency with student t distribution (t-test) p-value 

<0.01.  

5.4.2. Response to stimulus (GO: 50896) 
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Table 5.2. Over-represented tuber-expressed genes* in the GO: 50896 
(response to stimulus)                       

S.No. Functional category 

and GO ID 

Genes in 

Category 

% of Genes 

in Category 

(expected) 

Genes in List 

in Category 

% of Genes in 

List in Category 

(observed) 

  p-Value 

1.  Response to biotic 

stimulus  

GO: 9607 

512 3.409 26 6.19 0.00255 

2.  Response to stress 

GO: 6950 

482 3.209 24 5.714 0.00469 

3.  Response to abiotic 

stimulus 

 GO: 9628 

507 3.376 24 5.714 0.00859 

* Percent genes filtered at p-value restriction of <0.01 

The gene ontology of the biological processes linked to ‘‘cellular physiological 

process’’ (GO: 50875, Fig. 5.9) of the spraing-tuber was investigated to search for 

genes related to cell-death of the tissue.  

The GO: 50875 comprised a total of 432 genes in the spraing-tuber. The largest 

group of annotated genes (246 genes, 56.94% of total) in this ontology was related 

with cellular metabolism (GO:44237), followed by genes associated with transport 

processes (GO: 6810, 93 genes, 21.53%), regulation of cellular physiological 

processes (GO: 51244, 55 genes, 12.73%), cell-death (GO: 8219, 13 genes, 3.01%), 

cell organization and biogenesis ( GO: 16043, 12 genes, 12.73 %), and hormone- 

mediated signalling     (GO: 9755, 7 genes, 1.62%), respectively. The group of genes 

linked to the cell cycle (GO: 7049) and cell homeostasis (GO: 19725) had 2 genes 

(0.46%) in each ontology. The smallest number of the genes (0.46%) were in the cell 

proliferation (GO: 8283) and cell division (GO: 51301) ontologies, each consisting 

of one gene in the ontology.  

 

5.4.3. Cellular physiological process (GO: 50875) 
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Figure 5.9. Pie-chart of the GO group for cellular physiological process. The 
largest number of genes (56.94%) in this group were associated with the cellular 
metabolism of the spraing-tuber.  

 

 

 

 

 



177 

 

Using GOs to identify genes that are significant players in any biological phenotypic 

process is a subjective exercise, and focussing on genes whose expression is up-or 

down-regulated by two-fold or more may lead to important changes in gene 

expression being overlooked. Nevertheless, we have used this process to try to 

identify some important genes for spraing production and reaction to virus infection 

in potato tubers. Some GOs, where differential expression occurs, from the spraing 

vs. spraing-free volcano plot and the spraing-free vs. healthy volcano plot are given 

in appendix 14 and 15, respectively. 

The gene ontologies comprising the HR-related annotations (Table No. 5.3) were 

selected from the gene enrichment analysis of both volcano plots given in appendix 

14 and 15. Some important HR-related GO’s in the spraing vs. spraing-free volcano 

plot include GO: 6952 (defense response); GO: 6979 (response to oxidative stress); 

GO: 6800 (oxygen and reactive oxygen species metabolism); GO: 302 (response to 

reactive oxygen species) and GO: 42542 (response to hydrogen peroxide). Some 

important HR-related GO’s in the spraing-free vs. healthy volcano plot include GO: 

45454 (cell redox homeostasis); GO: 6800 (oxygen and reactive oxygen species 

metabolism); and GO: 9615 (response to virus).  Closer examination of these various 

GOs reveals that particular individual genes are included in more than one GO gene 

list (see Table No. 5.3) and are thus over-represented. 

 
 

 

 

5.4.4. Selected gene ontologies 

  

5.5. HR-related gene ontologies 
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Table 5.3.  Selection of HR-related gene ontologies from the gene enrichment 
analysis 

S.No. GO  ID and term Genes in 

Category 

% of Genes 

in Category 

(expected) 

Genes in 

List in 

Category 

% of Genes in 

List in Category 

(observed) 

p-Value 

 Spraing vs. Spraing-free volcano 

1. GO:6952: defense 

response 

488 3.249 26 6.19 0.00131 

2. GO:6979: response to 

oxidative stress 

161 1.072 12 2.857 0.00191 

3. GO:6800: oxygen and 

reactive oxygen 

species metabolism 

189 1.258 12 2.857 0.00697 

4. GO:42542: response 

to hydrogen peroxide 

48 0.32 5 1.19 0.0107 

5. GO:302: response to 

reactive oxygen 

species 

50 0.333 5 1.19 0.0126 

6. GO:9627: systemic 

acquired resistance 

1 0.00666 1 0.238 0.028 

7. GO:42828: response 

to pathogen 

47 0.313 4 0.952 0.0418 

8. GO:42744: hydrogen 

peroxide catabolism 

37 0.246 5 1.19 0.00348 

9. GO:42743: hydrogen 

peroxide metabolism 

37 0.246 5 1.19 0.00348 

10. GO:9693: ethylene 

biosynthesis 

27 0.18 3 0.714 0.0387 

11. GO:9692: ethylene 

metabolism 

27 0.18 3 0.714 0.0387 

 Spraing-free vs. Healthy volcano 

12. GO:45454: cell redox 

homeostasis 

146 0.972 9 2.571 0.00724 

13. GO:19725: cell 

homeostasis 

160 1.065 9 2.571 0.0128 

14. GO:6979: response to 

oxidative stress 

161 1.072 12 2.857 0.00191 

15. GO:42592: 

homeostasis 

179 1.192 9 2.571 0.0246 

16. GO:6800: oxygen and 

reactive oxygen 

species metabolism 

189 1.258 9 2.571 0.0332 

17. GO:9615: response to 

virus 

2 0.0133 1 0.286 0.0461 
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The GO’s containing significantly up-regulated HR-related genes were further 

investigated, by the ‘‘gene list inspector’’ function of the ‘‘GeneSpring GX’’ 

software.   

The GO: 42828 annotated for ‘‘response to pathogen’’ included four genes 

(Appendix 16). Among these four pathogen-responding genes, the PGSC transcripts 

PGSC0003DMT400071827 and PGSC0003DMT400013860 had the highest fold-

change expression of 76.2 and 26.1, respectively, in the spraing vs. spraing-free 

volcano plot (Fig. 5.10). Both of these genes were annotated as unknown protein 

product [Arabidopsis thaliana]. The other two genes, PGSC0003DMT400039281 

and PGSC0003DMT400046161 were annotated as 4-coumarate-CoA ligase/ fatty-

acyl-CoA synthase [Arabidopsis thaliana] and SAR8.2 protein precursor [Capsicum 

annuum] with fold-change of expression in the spraing vs. spraing-free volcano plot 

of 17.1 and 12.2, respectively. None of these genes showed any differential 

expression in the spraing-free vs. healthy volcano plot, except for the SAR8.2 protein 

precursor that had a 2.7 fold-change.  

The GO: 302 annotated for ‘‘response to reactive oxygen species’’, comprised five 

probes representing four PGSC transcripts (Appendix 17). The microarray probes 

MICRO.3508.C3_976 and MICRO.3508.C1_978, in the spraing vs. spraing-free 

volcano plot, had the highest fold-change expression of 48.7 and 36.1, respectively 

(Fig. 5.11). Both these probes detected the same PGSC transcript 

(PGSC0003DMT400057521) and so had the same annotation of Suberization-

associated anionic peroxidase 2 precursor (TMP2). The gene 

PGSC0003DMT400057522, annotated as Suberization-associated anionic peroxidase 

precursor (POPA) had a 9.6 fold-change of expression. The probes 

5.5.1. Response to pathogen (GO: 42828) 

5.5.2. Response to reactive oxygen species (GO: 302) 
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MICRO.14166.C1_ 1246 and MICRO.14166.C2_1271, with a fold-change 

expression of 4.8 and 4.4, respectively, in the spraing vs. spraing-free volcano plot, 

were from the same PGSC transcript (PGSC0003DMT400001375) and had the same 

annotation of peroxidase [Arabidopsis thaliana]. None of these genes was 

differentially expressed in the spraing-free vs. healthy volcano plot. 

A total of twenty-six genes included in the ‘‘defence response’’ -related gene 

ontology (GO: 6952) are given in appendix 18. Among these genes the Pathogenesis-

related protein STH-21 (PGSC0003DMT400011604) was highly over-expressed 

with a 256.5 fold-change of expression in the spraing vs. spraing-free volcano plot 

(Fig. 5.12, a, and b), followed by the genes annotated as ‘‘unnamed protein product’’ 

and ‘‘similar to pathogenesis-related protein STH-2 [Solanum lycopersicum]’’ with 

76.2 and 69.3 fold-change of expression. The NBS-LRR protein [Solanum acaule] 

was up-regulated 2.7 and 2.0-fold in the spraing vs. spraing-free and spraing-free vs. 

healthy volcano plots, respectively. It should be remembered that TRV is present in 

all of the S and SF samples of the spraing vs. spraing-free volcano plot, whereas, in 

the spraing-free vs. healthy volcano plot TRV is present only in the SF samples. 

The ‘‘cell-death’’ related gene ontology (GO: 8219) includes 13 genes (Appendix 

19). Among these genes the most highly expressed was annotated as ‘‘unnamed 

protein product’’ with a 76.2 fold-change of expression in the spraing vs. spraing-

free volcano (Fig. 5.13). The next most highly expressed genes in this ontology 

encoded the ‘‘Putative disease resistance protein, identical [Solanum tuberosum]’’ 

and ‘‘RGC1 [Solanum tuberosum]’’ with 5.1 and 3.9 fold-change of expression, 

respectively. Except for the gene coding for ‘‘NBS-LRR protein [Solanum acaule]’’ 

with 2.7 and 2.0 fold-change of expressions in the spraing-free vs. healthy and  

5.5.3. Defence response (GO: 6952) 

5.5.4. Cell-death (GO: 8219) 
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Figure 5.10.  Pathogen-related gene expression in spraing tuber. (1) SAR8.2 
protein precursor [Capsicum annuum]. (2) 4-coumarate-CoA ligase/ fatty-acyl-CoA 
synthase [Arabidopsis thaliana]. (3) Unnamed protein product [Arabidopsis thaliana]. 
(4) Unknown protein [Arabidopsis thaliana]. The fold-change expression value of 
each gene is given in data labels, above each gene bar. 

 

 

Figure 5.11.  Up-regulation of Reactive Oxygen Species (ROS)-associated 
genes in the spraing-affected tuber. (1, 3) Peroxidase [Arabidopsis thaliana]. (2) 
Suberization-associated anionic peroxidase precursor (POPA). (4, 5) Suberization-
associated anionic peroxidase 2 precursor (TMP2)].  
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Figure 5.12.  Differential expression of plant defense response-inducing genes 
in spraing tuber. The microarray probe IDs and annotations of the genes 1-13 (a) 
and 14-26 (b) are sequentially enlisted in the appendix 18, respectively. The fold-
change expression value of each gene is given in data labels, above each gene bar. 
Genes 2, 7, 19, and 22 each have two data bars, with left one (indicated by *) 
relating to SF vs. H and the right one relating to S vs. SF.  
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Figure 5.13.  Differential expression of cell-death-related genes in spraing 
tuber. (1) Unnamed protein product [Arabidopsis thaliana]. (2) NB-ARC domain 
containing protein [Solanum demissum]. (3) Disease resistance protein BS2 
[Capsicum chacoense]. (4, 8) TMV resistance protein N, putative [Solanum 
demissum]. (5) Disease resistance protein N. (6) Hero resistance protein 2 
homologue [Solanum lycopersicum]. (7) Putative disease resistance protein, 
identical [Solanum tuberosum]. (9) RGC1 [Solanum tuberosum]. (10, 11, 13) 
Bacterial spot disease resistance protein 4 [Lycopersicon esculentum]. (12) NBS-
LRR protein [Solanum acaule]. The fold-change expression value of each gene is 
given in the data labels, above each gene annotation. Each lane has two data bars, 
with left one (indicated by *) relating to SF vs. H and the right one relating to S vs. 
SF. The microarray probe IDs are orderly enlisted in the appendix 19, respectively. 
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spraing vs. spraing-free volcanoes, respectively; none of the genes included in the 

GO for cell-death were differentially-expressed in the spraing-free vs. healthy 

volcano plots at the imposed 2 fold-change and p-value restrictions. 

Investigation of pathogenesis-related protein 1-c (PAR-1c), revealed three probes on 

the microarrays with a PAR1-c annotation (Appendix 20). Each of these PAR-1c 

probes represented a different PGSC transcript. The highest fold-change of 

expression (393.5, Fig. 5.14) was for PGSC0003DMT400037209 (MICRO. 

1833.C1_689), followed by the PGSC transcript PGSC0003DMT400037234 

(POAD763TV_514) with a 171.5 fold-change of expression in the spraing vs. 

spraing-free volcano plot. None of the three probes of the PAR-1c were found to be 

differentially expressed in the spraing-free vs. healthy volcano plot. 

Among the genes associated with systemic acquired resistance (SAR), four probes 

were with the SAR related annotations (Appendix 21). Among these probes the 

SDBN002J05u.scf_220 probe representing PGSC transcript 

PGSC0003DMT400046161 had the highest fold-change expression of 12.2 in the 

spraing vs. spraing-free volcano plot (Fig. 5.15). Two of these probes viz; STMJH65 

TV_362 and MICRO.9261.C1_716, representing the same PGSC transcript (PGSC0 

003DMT400032096) annotated commonly as 1-aminocyclopropane-1-carboxylate 

synthase [Lycopersicon esculentum], had 9.5 and 7.6 fold-change of expression, 

respectively. Probe BPLI16E1TH_626 (PGSC0003DMT400036081) annotated as 

‘‘1-aminocyclopropane-1-carboxylate oxidase 2 (ACC oxidase 2) (Ethylene-forming 

enzyme) (EFE) (Protein GTOMA)’’ had a 8.3 fold-change of expression. None of 

these genes was found to be differentially expressed in the spraing-free vs. spraing 

volcano, except probe SDBN002J05u.scf_220, with a 2.7 fold-change of expression.  

5.5.5. Pathogenesis-related protein 1-c (PAR-1c) gene expression 

 

5.5.6. SAR associated gene expression 
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Figure 5.14.  Up-regulation of PAR-1c genes in spraing tubers. (1-3) PAR-1c 
[Nicotiana tabacum]. The fold-change expression value of each gene is given in the 
data labels, above each data bar. 

 

Figure 5.15. Up-regulation of Systemic Acquired Resistance (SAR)-related 
genes in spraing tubers. (1, 3) 1-aminocyclopropane-1-carboxylate synthase 
[Lycopersicon esculentum]. (2) 1-aminocyclopropane-1-carboxylate oxidase 2 (ACC 
oxidase 2) (Ethylene-forming enzyme) (EFE) (Protein GTOMA). (4) SAR8.2 protein 
precursor [Capsicum annuum]. The fold-change expression value of each gene is 
given in the data labels, above each data bar. 
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The quantitative (q) RT-PCR assay is a robust and highly sensitive technique for 

gene expression studies. The authenticity of the microarray data was evaluated by the 

qRT-PCR testing of a sub-set of five genes (Table No. 5.4) selected from the HR-

related GOs described in section 5.5. The ‘‘PGSC transcript IDs’’ of these 

significantly up-regulated HR-related genes were acquired from the microarray data 

and the transcript sequence was extracted from the database curated at the website 

(http://potato.plantbiology.msu.edu/index.shtml) of ‘‘Potato Genomics Resource’’ 

maintained at Michigan State University. The potato genome was searched, using the 

‘‘PGSC transcript ID’’, in the S. tuberosum  group ‘‘Phureja DM1-3’’ data-base at 

this website. 

Table 5.4. HR-related genes selected for qRT-PCR validation of the microarray 
data  

S.No. 

 

Microarray

probe  ID 

PGSC 

transcript ID 

PGSC gene annotation and 

ID* 

 Gene 

Abbr. 

Fold-change of 

expression from 

microarray 

SF vs. H     S vs.SF 

1.  MICRO.149.

C1_1078 

PGSC0003DM

T400036487 

 Peroxidase 

(PGSC0003DMG400014055) 

PER ----- 649.5 

2.  MICRO.1833.

C1_689 

PGSC0003DM

T400037209 

 PAR-1c protein 

(PGSC0003DMG400014347)    

PAR ----- 393.5 

3.  MICRO.3508.

C3_976 

PGSC0003DM

T400057521 

Suberization associated 

anionic peroxidase 2 

(PGSC0003DMG400022341)  

SP -----         48.7 

4.  MICRO.592.

C19_586 

PGSC0003DM

T400005549 

 Glutathione-S-transferase 

(PGSC0003DMG400002170) 

GST ----- 45.8 

5.  MICRO.1707

5.C1_576 

PGSC0003DM

T400063688 

Respiratory burst oxidase 

homolog protein B 

(PGSC0003 

DMG400024754) 

RBO 2.8 ----- 

6.   PGSC0003DM

T400088259 

Elongation factor 1-alpha 

(PGSC0003DM 

G400037830) 

Ef-1 α Ref Ref 

* The gene annotations are as retrieved, on 17-06-14, from the website of ‘‘Potato Genomics 

Resource’’ (http://potato.plantbiology.msu.edu); **EnsemblP: EnsemblPlants search engine;  PGSC: 

Potato Gene Sequencing Consortium; TIGR: The Institute for Genomic Research; Gene Abbr.: Gene 

abbreviation; S: Spraing; SF: Spraing-free; H: Healthy; (----): no significant difference in expression; 

Ref: Reference gene 

5.6. Quantitative RT-PCR of tuber samples  

http://potato.plantbiology.msu.edu/index.shtml
http://plants.ensembl.org/Solanum_tuberosum/Gene/Summary?db=core;g=PGSC0003DMG400014055;r=6:31519292-31521502;t=PGSC0003DMT400036487
http://plants.ensembl.org/Solanum_tuberosum/Gene/Summary?db=core;g=PGSC0003DMG400014347;r=3:43046046-43047260;t=PGSC0003DMT400037209
http://plants.ensembl.org/Solanum_tuberosum/Gene/Summary?db=core;g=PGSC0003DMG400022341;r=2:35183497-35186539;t=PGSC0003DMT400057521
http://plants.ensembl.org/Solanum_tuberosum/Gene/Summary?g=PGSC0003DMG400037830;r=00:34788542-34788856;t=PGSC0003DMT400088259;db=core
http://plants.ensembl.org/Solanum_tuberosum/Gene/Summary?g=PGSC0003DMG400037830;r=00:34788542-34788856;t=PGSC0003DMT400088259;db=core
http://potato.plantbiology.msu.edu/
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Before proceeding to the qRT-PCR of the microarray samples, the specificity and 

accuracy of the qRT-PCR primer sets (Appendix. 22) was tested by conventional 

RT-PCR. The amplified fragments were cloned into the pGEMT-Easy vector and 

sequenced to confirm their identity. After confirming the specificity of these primer 

sets, the optimal concentration for their use in the quantitative assay was determined.  

The qRT-PCR reagents and thermal cycling protocol is given in section 2.4.8 cDNA 

aliquots (1/ 25 dilution) from all the twelve RNA samples used in the microarray 

experiment were pooled together to make a bulked sample representative of all the 

sample types. For amplification of the target genes, 5 µl of the pooled cDNA sample 

was used as a template in a 25 µl qRT-PCR reaction. Each primer-pair was combined 

in a range of concentrations (from 50 nM to 900 nM) and the combination that 

resulted in productive amplification at the lowest number of cycles (CT mean) and 

with an acceptably low variation in the CT number (CT standard deviation, CT S.D) 

was selected to be used for primer validation and further qRT-PCR assays. The 

optimal concentrations (Opt. Conc.) of the tested primer-pairs with the lowest CT 

means and acceptable CT S.Ds (< 0.167) are given in Table No. 5.5. 

 

 

 

 

 

 

5.6.1. Optimization of primer(s) concentrations, for qRT-PCR of the 
HR-related genes in tuber samples 
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Table 5.5.  Optimal concentration of the primer-pair(s) for the qRT-PCR of HR-
related genes in tuber samples 

S.No.  Targeted gene  Primer name  Primer number Opt.Conc. 

(nM) 

 CT mean  CT S.D 

1.  PER qPER_fwd  2329 300 24.119  0.047 

qPER_rev  2330 300 

2.  PAR qPAR_fwd  2331 300 20.851  0.018 

qPAR_rev  2332 900 

3.  SP qSP_fwd  2335 300 23.662  0.085 

qSP_rev  2336 900 

4.  GST qGST_fwd  2343 900 21.638  0.037 

qGST_rev  2344 300 

5.  RBO qRBO_fwd  2345 900 27.456  0.120 

qRBO_rev  2346 900 

6.  TRV1 qTRV1_fwd  2353 300 16.324  0.008 

qTRV1_rev  2354 300 

7.  Ef-1α qEf-1_fwd  2323 300 28.298  0.079 

qEf-1_rev  2324 900 

Opt. Conc. Optimal concentration; nM: Nano-Molar; CT mean: Cyclic threshold; CT S.D: CT Standard 

Deviation; PER: Peroxidase; PAR: Pathogenesis-related-protein1-c; SP: Suberization anionic 

peroxidase; GST: Glutathione-S-Transferase; RBO: Respiratory Burst Oxidase; TRV1: TRV1 

Replicase; Ef-1α: Elongation factor-1 alpha. 

 

A dilution series of cDNA standards was prepared as discussed in section 2.4.7. PCR 

amplification efficiency of the primer-set (s) was evaluated by standard-curve 

quantitation and analysis (Appendix 23).  

The melt-curve analysis (Appendix 23, a) of the different amplicons produced single 

Tm peaks that indicated no significant amplification of non-specific products by 

these primer-sets. The standard-curve analysis for the PER, PAR-1c, SP, GST, RBO, 

and the TRV1 genes provided regression-line slopes of -3.206, -3.224, -2.96, -3.296, 

-3.286, and -3.308 with an EFF % of 105.081, 104.251, 117.69,  101.081, 101.534, 

and 100.563, respectively. The regression co-efficient (R
2
) between the standard 

curve regression-line and CT data points of the amplification-plots were 0.994, 0.998, 

0.995, 0.997, 0.986, and 0.997, respectively, indicative of a very close match 

between the regression-line and the CT data points. The primers for the Ef-1 α gene, 

5.6.2. Validation of the primer-set(s) for qRT-PCR of the HR-related 
genes 
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used as the internal control for normalization of the amplification of the other genes, 

resulted in a regression-line slope of -2.979 with an EFF % of 116.595 and a R
2 
value 

of 0.982.  

The results of the primer validations for all the selected genes were within the 

acceptable range that confirmed the suitability of these primers for qRT-PCR 

validation of the microarray data.  

Initially, all the twelve tuber samples (S1-H4) including all four TRV-infected 

spraing-symptomatic (S1-S4), all four TRV-infected spraing-free (SF1-SF4), and all 

four healthy tuber (H1-H4) samples were investigated by qRT-PCR to determine the 

relative amount of TRV present in each sample. Two samples each of the spraing (S1 

and S4) and spraing-free (SF3 and SF4) samples, were found with the highest TRV-

levels. All the four samples from the healthy tubers (H1-H4) were confirmed to be 

TRV-free. 

The tuber samples with the highest levels of TRV infection (S1, S4, SF3 and SF4) 

and the healthy (TRV-free) tuber samples (H1 and H2) were selected for qRT-PCR 

validation of the microarray data that was done by the comparative CT (ΔΔCT) 

method of quantification. New RNA samples extracted from the original freeze-dried 

tuber samples were prepared, as discussed before, and aliquots were stored in a 

freezer at -80 
◦
C. All the RNA samples were assayed in triplicate. The cDNA of 

healthy tuber (H2) was used as a calibrator or reference sample for calculation of the 

relative quantitation of the other tuber cDNAs. The fluorescence signals of the target 

genes were normalized either with the endogenous control gene Ef-1 α (Nicot et al., 

2005; Campbell et al., 2010; Ross et al., 2011) or the cyclophilin gene (as described 

by Hunter, 2013) or both (multiple endogenous controls). Use of these three 

approaches for normalization of the gene expression data gave different actual  

5.7. Validation of the microarray data 
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Figure 5.16.  Gene expression of peroxidase and PAR1-c genes (normalized 
with Ef-1 α or cyclophilin gene). Relative expression of peroxidase (a and c) and 
PAR1-c (b and d) genes in the samples of healthy (H1 and H2), spraing-free (SF3 
and SF4), and spraing-affected tubers (S1and S4) was normalized with the 
expression of EF-1α (a and b) and cyclophilin (c and d) genes. H2 was the 
calibrator for relative quantitation; ‘‘ɪ’’ is the error-bar representing the standard error 
of ∆∆CT measurements; value above the bar is fold-change of expression. 
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Table 5.6. Relative gene expression levels of peroxidase and PAR-1c genes, 
using three approaches of normalizing the data 

  S.No.  HR-related gene     Tuber sample Gene expression normalized with 

Ef-1 α Cyclophilin MC 

1.  PER S1 651.82 411.05 517.62 

S4 139.39 245.3 184.92 

Mean 395.60 328.17 351.27 

St. Dev. 362.34 117.20 235.25 

SF3 1.33 4.47 2.44 

SF4 1.01 4.62 2.16 

Mean 1.17 4.54 2.3 

St. Dev. 0.23 0.11 0.2 

H1 2.53 1.17 1.72 

H2 1 1 1 

Mean 1.76 1.08 1.36 

St. Dev. 1.08 0.12 0.51 

2.  PAR-1c S1 7043.03 4441.47 5592.98 

S4 2213.77 3895.82 2936.74 

Mean 4628.4 4168.64 4264.86 

St. Dev. 3414.80 385.83 1878.24 

SF3 1.17 3.98 2.14 

SF4 1.54 7.01 3.28 

Mean 1.35 5.49 2.71 

St. Dev. 0.26 2.14 0.81 

H1 2.45 1.13 1.67 

H2 1 1 1 

Mean 1.72 1.06 1.33 

St. Dev. 1.02 0.09 0.47 

PER: Peroxidase; PAR1-c: Pathogenesis-related protein-1-c; H1 and H2: Healthy tubers; SF3 and SF4 

Spraing-free tubers; S1and S4: Spraing tubers; Endogenous internal controls (EF-1α: Elongation 

Factor-1 alpha, and Cyclophilin); MC: Multiple endogenous controls (both EF-1α and Cyclophilin) 

 

calculated relative quantities (RQs) for each gene. However, the general trend of 

significant up-regulation of all the genes assayed in the spraing samples was 

maintained (see Table No. 5.6), regardless of whether Ef-1 α or cyclophilin was used 

as the comparator, however, the cyclophilin gene was shown to be a more sensitive 

comparator and was used for most of the qRT-PCR experimentation in this study.  

The ΔΔCT quantitation of the peroxidase (PER) and pathogenesis-related protein1-c 

(PAR1-c) genes (Fig. 5.16), confirmed the significant up-regulation of their 

expression in the spraing-samples relative to the spraing-free samples. The highest 

RQ of peroxidase when normalized with Ef-1 α was found in the tuber sample S1, 
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followed by sample S4 with RQ expression of 651.82 and 139.39, respectively. For 

the samples SF3, SF4, and H1 the RQ expression was 1.33, 1.01 and 2.53, 

respectively (Fig. 5.16, a). Likewise, following Ef-1 α normalization and calibration, 

the expression of the PAR1-c gene was the highest in sample S1, followed by the S4 

sample, with RQs of 7,043.03 and 2,213.77, respectively. The RQ of the PAR-1c 

gene in the samples SF3, SF4, and H1 was 1.17, 1.54 and 2.45, respectively (Fig. 

5.16, b).  

Normalization of the peroxidase gene with expression of the cyclophilin gene also 

revealed higher expression in the spraing samples as compared to the spraing-free 

samples. The cyclophilin-normalized peroxidase gene was highly expressed in 

spraing sample S1, followed by the sample S4 with RQs of 411.05 and 245.3, 

respectively (Fig. 5.16, c). For the cyclophilin-normalized samples SF3, SF4, and H1 

the RQ of expression was 4.47, 4.62 and 1.17, respectively. The cyclophilin-

normalized PAR1-c gene was also found to be very highly expressed in the spraing 

sample S1, followed by sample S4 with an RQ of 4,441.47 and 3,895.82, 

respectively (Fig. 5.16, d). The RQ of PAR1-c gene expression for the cyclophilin-

normalized samples SF3, SF4, and H1 was 3.98, 7.01 and 1.13, respectively. 

Similarly, normalization with multiple endogenous controls (both Ef1-alpha and the 

cyclophilin genes combined) also resulted in significantly higher gene expression of 

the PER and PAR-1c genes in the spraing samples. The multiple-gene-normalized 

peroxidase gene had RQs of 517.62 and 184.92 for the spraing sample S1 and S4, 

respectively (Fig. 5.18, a) that was higher than the samples SF3, SF4, and H1 with a 

RQ of 2.44, 2.16, and 1.72, respectively. Likewise the multiple-gene-normalized 

PAR1-c also had a significantly higher RQ of 5,592.98 and 2,936.74 for the spraing 

samples S1 and S4, respectively. The RQ of multiple-gene-normalized PAR1-c gene 

in the samples SF3, SF4, and H1 was 2.14, 3.28 and 1.67, respectively (Fig. 5.18, b). 
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Following all three discussed schemes of expression normalization, the relative 

expression of the peroxidase and PAR1-c genes was found to be much higher in the 

spraing samples than the other samples. For the spraing samples the mean RQ of the 

cyclophilin-normalized PER and PAR1-c genes (328.17 and 4168.64) and the mean 

RQ of the multiple-gene-normalized PER and PAR1-c genes (351.27 and 4264.86) 

was lower than the mean RQ of the Ef-1 α-normalized PER and PAR1-c genes 

(395.60 and 4628.4) for the same samples (Table No. 5.6). Further, analysis of the 

gene expression results revealed that the cyclophilin derived CT means of 18.715 to 

21.310 (for the samples S1 to H4) were lower than the Ef1-alpha-derived CT means 

(30.911 to 31.135) from the same samples. Therefore, the cyclophilin gene was 

shown to be a more sensitive comparator and was used for all further qRT-PCR 

experimentation in this study.  

The ΔΔCT quantitation of the Suberization associated anionic peroxidase 2 (SP) and 

the Glutathione-S-transferase (GST) genes showed that the spraing samples (S1 and 

S4) had  significantly increased expression of both genes, compared to the spraing-

free (SF3 and SF4) and healthy tuber samples (H1 and H2). The SP gene was found 

to be highly expressed in the spraing samples S1 and S4, with RQs of 53.88 and 

31.23, respectively (Figure 5.17, a), compared to the spraing-free (SF3 and SF4) and 

healthy (H1) samples with RQs of 0.34, 0.61, and 0.68, respectively. The expression 

of the GST gene was also found to be highly up-regulated in the spraing samples (S1 

and S4) with RQs of 92.36 and 60.40, respectively compared to RQs of 3.65, 6.01, 

and 1.05, for  the SF3, SF4 and H1 samples, respectively  (Fig. 5.17, b). 

The ΔΔCT quantitation of the Respiratory burst oxidase homolog (RBO) revealed up-

regulation of the RBO gene in one of the spraing sample (S4) with an RQ of 28.14, 

figure 5.17, c. Whereas, in the second spraing sample (S1) the RBO gene was less 

expressed (RQ of 2.85) than one of the Spraing-free (SF3, RQ of 6. 7) sample.  

The SP, GST and RBO genes were expressed to higher levels (RQs 42.55, 76.38, and  
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Figure 5.17.  Gene expression of SP, GST, RBO, and TRV1 genes in tuber 
samples. Relative expression of (a) SP, (b) GST, (c) RBO, and (d)TRV-replicase 
genes in the samples of healthy (H1 and H2), spraing-free (SF3 and SF4), and 
spraing-affected tubers (S1and S4) was normalized with the expression of 
cyclophilin. H2 was the calibrator for relative quantitation; ‘‘ɪ’’ is the error-bar 
representing standard error of ∆∆CT measurements; value above bar is fold-change 
of expression. 
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Figure 5.18.  Gene expression of peroxidase and PAR1-c genes normalized 
with multiple endogenous control genes. Relative expression of peroxidase (a) 
and PAR1-c (b) genes was normalized with the expression of multiple control (both 
EF-1α and cyclophilin) genes. H2 was the calibrator for relative quantitation; ‘‘ɪ’’ is 
the error-bar representing standard error of ∆∆CT measurements; value above bar 
is fold-change of expression.  

 

Figure 5.19.  Expression of tuber genes compared to TRV-infection. RQ of 
PAR1-c and TRV1 is given in hundreds (x102) and thousands (x103) fold-change, 
respectively. 
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Table 5.7. Gene expression of SP, GST, RBO and TRV1 genes in tuber 
samples 

S.No. HR-related gene     Tuber sample Normalized Expression  Mean Expression St. Dev. 

1.  SP S1  53.88 42.55 16.02 

S4 31.23   

SF3 0.34 0.47 0.19 

SF4 0.61   

H1 0.68 0.84 0.23 

H2 1   

2.  GST S1 92.36 76.38 22.60 

S4 60.4   

SF3 3.65 4.83 1.67 

SF4 6.01   

H1 1.05 1.025 0.03 

H2 1   

3.  RBO S1 2.85 15.495 17.88 

S4 28.14   

SF3 6.7 3.385 4.69 

SF4 0.07   

H1 0.01 0.505 0.70 

H2 1   

4.  TRV1 S1 54.21 66.3 17.10 

S4 78.39   

SF3 283.9 379.815 135.64 

SF4 475.73   

H1 0.32 0.66 0.48 

H2 1   

The target gene expression was normalized with Cyclophilin used as the endogenous / internal 

control; Sample H2 was the calibrator for RQ of expression. RQ of TRV1 is given in thousands (x10
3
) 

fold-change of expression. 
 

15.49, respectively) in the spraing samples than the spraing-free and healthy samples 

(Table No. 5.7). Contrary to the up-regulation of all five HR-related genes (PER, 

PAR1-c, SP, GST and RBO genes) in the spraing samples, the TRV1 was found at 

lower levels in the spraing samples with a RQ of 54.21 x10
3
 and 78.39 x10

3
 for S1 

and S4 samples as compared to an RQ of 283.9 x10
3
 and 475.73 x10

3
 for the spraing-

free SF3 and SF4 samples, respectively (Fig. 5.17, d). The mean RQ of TRV1 in the 

spraing samples (66.3 x10
3
) was much less than the mean RQ of TRV1 in the 

spraing-free samples (379.815 x10
3
, Table No. 5.7) suggesting a suppressive role of 

spraing symptoms in virus accumulation. 
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The current studies revealed that the expression of four of the five selected tuber-

genes (except the RBO) was higher in the spraing sample with the lowest amount of 

TRV (S4) than in the sample with the relatively higher level of TRV (S1) infection 

(Fig. 5.19). This observation indicates that for four of HR-related genes (PER, 

PAR1-c, SP and GST), their up-regulation is associated with the suppression of TRV 

infection. TRV in the spraing sample S1 (RQ of 54.21 x 10
3
) and S4 (RQ of 78.39 x 

10
3
) had a mean RQ of 66.3 x 10

3
  that was less than a quarter of the mean RQ of 

TRV (379.81x10
3
) found in the spraing-free samples SF3 (RQ of 283.9x 10

3
) and 

SF4 (RQ of 475.37 x 10
3
, Table No. 5.7). Thus, the spraing sample with the lowest 

amount of TRV (S1) had the highest expression of HR-related genes and vice versa. 

In contrast, the RBO gene was less expressed (RQ of 2.85) in the spraing sample 

(S1) with comparatively lower TRV infection (RQ of 54.21 x 10
3
), and it was more 

highly expressed (RQ of 28.14) in the spraing sample (S4) with the higher infection 

of TRV (RQ of 78.39 x 10
3
). Thus, RBO expression appears to be stimulated either 

by TRV infection or by production of spraing symptoms. This mirrors the microarray 

results for this gene (Table No. 5.7) where only modest differential expression was 

found when comparing spraing-free versus healthy samples and no differential 

expression was found when comparing spraing versus spraing-free samples.         

To complement the gene expression studies, for confirming the involvement of HR 

processes in spraing production, some tissue staining approaches were used to further 

examine the biochemical basis of spraing. The results presented in Fig. 5.20 are 

representative of the results obtained from each experiment done in triplicate. 

5.8. Suppression of TRV infection by spraing associated 

gene-expression 

5.9.  Histochemical staining for HR reactions in tubers   
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Cell-death in spraing symptomatic tissue was assayed by the trypan-blue staining 

protocol given in section 2.4.9 (1). The images (Fig. 5.20, group T) of tuber-sections 

(a, b) and (c, d) are from a healthy and spraing-affected tuber, respectively. Images 

of the same tuber sections captured before and after staining with the trypan-blue 

lactophenol solution, are given in (a, c) and (b, d), respectively. Both types of tuber 

sections (a, c) were treated with an equal amount of stain solution for the same time 

and were then destained (b, d) for an equal time. Intense staining, due to trypan-blue 

uptake, of dead cells (blue-colour) in and around the spraing-affected tissue was 

evident. This proved the occurrence of cell-death, in and around the spraing tissue. 

Some background staining of the tissue-sections was also visible. This was due to 

trypan-blue uptake by the cells that had died during the preparation of the tuber 

cross-sections, due to the infliction of mechanical injury (d).  

The 3, 3′-Diaminobenzidine (DAB) stain is used for the visualization of hydrogen 

peroxide (H2O2) production and accumulation. The DAB stain is preferred for use in 

immunohistological preparations as it produces an intense brown-black precipitate in 

response to the peroxidase activity and is insoluble in alcohol. DAB staining (section 

2.4.9, 3) of the tuber slices from a healthy (a, b) and spraing-affected (c, d) tuber is 

presented in Fig. 5.20, group D. The images of the same tuber slices captured before 

and after the DAB staining are given in panels (a, c) and (b, d), respectively. The 

intense deposition of dark-brown coloured precipitates in and around the vicinity of 

the spraing-affected tissue (d) suggests an enriched production of peroxides, such as 

H2O2, in this diseased area of the tuber. Whereas, the background staining of DAB in 

the spraing tuber slice (d)  and the healthy tuber slice (b) is due to the endogenous 

generation of the peroxides as a by-product of normal metabolic process.  

5.9.1. Cell-death in spraing tissue 

5.9.2. ROS activity in spraing tissue  
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Figure 5.20. Histochemical staining of spraing tissue. Tuber group D, stained 
with DAB; group T, stained with trypan blue; group P, stained with phloroglucinol. 
Healthy tuber (a, b) and spraing-affected tuber (c, d) slices. Tuber slices before (a, 
c) and after staining (b, d) with histochemical-stains. 
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Spraing disease is also known in some countries as corky ring spot disease, with 

researchers suggesting that the dark inclusions have a corky nature. Cork is a 

complex tissue enriched in suberin that forms the structural part of the cell wall and 

is augmented by additional binding compounds such as lignin and non-lignin organic 

(aromatic) compounds (Pereira, 2007). Biochemical reaction of the coniferyl and 

sinapyl aldehyde chains of lignin with phloroglucinol, produces a reddish-pink 

coloured product. 

Lignin deposition in the spraing tissue was tested by the protocol given in section 

2.4.9 (2) and the results are presented in Fig. 5.20, group P. The images (a, b) and (c, 

d) were captured from a healthy and spraing-affected tuber, respectively. Whereas, 

the images of the same tuber sections before and after the phloroglucinol staining are 

given in (a, c) and (b, d), respectively. The spraing-affected tissue (d) was stained 

reddish-pink by the phloroglucinol that confirmed the deposition of lignin in the 

spraing tissue. 

The microarray and subsequent qRT-PCR experiments found up-regulation of a 

number of HR-related genes in spraing-affected tubers of c.v. Pentland Dell. We 

decided to examine the genetic expression of these genes from potato tubers that 

were genetically different to Pentland Dell; to be sure that gene expression associated 

with the spraing disease of potato is independent of variety.  Since spraing symptoms 

in potato tubers are associated with infection by TRV or PMTV, we sourced more 

spraing-affected potato tubers that had been assessed in other laboratories as being 

infected with PMTV. We subsequently examined HR-related gene expression in a 

selection of these newly obtained tubers. For this purpose the potato tubers from two 

5.9.3. Lignin deposition in spraing tissue 

5.10. Examination of HR-related genes in spraing-affected 
tubers with different genetic make-up 
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different sources viz.; a JHI PMTV field-trial (varieties not known) and SASA 

(varieties Burren and Electra) examined germplasm were acquired (section 2.1.4). 

Before proceeding to the qRT-PCR verification for up-regulation of the selected HR-

related genes, we confirmed the status (presence or absence) of each of the spraing-

inducing viruses (TRV and PMTV) in the germplasm either by Enzyme Linked 

Immunosorbent Assay (ELISA, PMTV) or RT-PCR (both PMTV and TRV) testing.  

The ELISA-based screening against PMTV, showed 9 out of 11 tubers to be PMTV- 

positive from the PMTV field-trial of Louise Sullivan (Table No. 5.8). Leaf-sap from 

PMTV-infected N. benthamiana plants, extracted at 6 dpi, and a mock-inoculated 

(1X PBS) N. benthamiana plant were the positive and negative controls in the assay, 

respectively. The tuber samples that producd a ELISA value of twice the absorbance 

value of the negative control, measured at A
◦
 405 nm, were considered to be positive 

for PMTV.  ELISA readings recorded after one hour of incubation with the detection 

reagent, resulted in 8 out of 11 tubers identified as PMTV-positive. But with an 

Table 5.8. ELISA-based screening of potato tubers from a PMTV field-trial  

S.No. Spraing Sample  A
◦
405nm (1 hour) A

◦
405nm (Overnight) PMTV status     

(-ve or +ve) 

1.  Non-Infected N. benth 0.066 0.089  -ve 

2.  PMTV-infected N. benth 0.456 2.575  +ve 

3.  LS1 0.070 0.088  -ve 

4.  LS2 0.088 0.247  +ve 

5.  LS3 0.068 0.094  -ve 

6.  LS4 0.384 2.233  +ve 

7.  LS5 0.192 1.022  +ve 

8.  LS6 0.154 0.762  +ve 

9.  LS7 0.257 1.385  +ve 

10.  LS8 0.267 1.394  +ve 

11.  LS9 0.210 1.121  +ve 

12.  LS10 0.210 1.088  +ve 

13.  LS11 0.153 0.715  +ve 

-ve: PMTV-free; +ve: PMTV positive; LS: Spraing-affected sample from tubers of Louise Sullivan   

field-trial. 
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overnight incubation one more sample (LS2) was recorded as PMTV-positive. The 

potato tubers L1 and L3 proved to be PMTV-free in these ELISA tests.   

Although, the ELISA results suggested tuber L3 (sample LS3) to be PMTV-free, this 

tuber was found to be affected with spraing symptoms. Therefore, it was decided to 

re-confirm the results of ELISA by RT-PCR testing of selected samples. Five tuber 

samples (LS2, LS3, LS4, LS9 and LS11) were selected for detection of PMTV and 

TRV by RT-PCR.  

In addition to the five field-trial acquired tubers described above, I also examined a 

further five spraing-affected tubers supplied by Dr. Christophe Lacomme (SASA, 

Edinburgh). The total RNA isolation, RNA clean up, DNase digestion and cDNA 

synthesis from these tubers was done as already explained (section 2.4.1-5). The 

PCR reagents and the thermal cycling protocol were the same as used before (section 

2.4.5). The primer-set for PMTV detection and reference (Ef-1 α) gene amplification 

is given in section 2.4.5 and appendix 1, respectively. The detection of TRV was 

performed by using three TRV1-based primer-sets. One of these was the 16K-based 

primer-set (DJR Primer-set; for 463 bp amplicon), another primer-set was the MP 

gene-specific (MP, Primer No. 2467 and 2370; for 568 bp amplicon) and the third 

primer-set for a portion of the replicase gene (R, Primer No. 2367 and 2368; for 474 

bp amplicon). Five spraing-affected tuber samples each from the SASA (BTS, ETS, 

EPS1, EPS2 and EPS3) and PMTV field-trial (LS2, LS3, LS4, LS9 and LS11) 

sources were tested. So, in total, 10 tuber-samples and one sample each of a positive 

control (N. benthamiana plant, known to be infected with the test-virus) and a 

negative control (PEBH, potato tuber-sample known to be virus-free) were tested by 

RT-PCR.  

 

5.10.1. RT-PCR testing of potato tubers acquired from PMTV field-trial 
and SASA. 
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The 16K-based primer-set detected TRV1 (463 bp amplicon) in three (BTS, ETS and 

LS4) out of the ten tuber-samples. However, amplification from sample EPS2 gave a 

smeared band with these primers (Fig. 5.21, I, a). The MP-based primer-set detected 

TRV1 (568 bp amplicon) from two (BTS and EPS2) out of ten samples. But this 

primer-set failed to detect TRV1 from the samples ETS and LS4, which were found 

positive for TRV by using the 16K-based primer-set. However, the MP-based 

primer-set was able to detect TRV1 from the sample EPS2, for which the 16K-based 

primer-set had failed to detect the TRV (Fig. 5.21, II, a). The TRV-R, replicase gene-

based primer-set, detected TRV1 (474 bp amplicon) from seven of ten samples 

(BTS, ETS, EPS1, EPS2, LS2, LS3 and LS9). Whereas, three tuber (EPS3, LS4 and 

LS11) were found to be TRV-free when tested by the replicase-based primer-set 

(Fig. 5.21, III, a). Thus, as a result of using a series of different TRV-specific primer 

pairs, only two tubers (EPS3 and LS11) among all the ten tubers were found to be 

TRV-free. 

PMTV was detected in nine out of the eleven tubers. Two samples (BTS and PEBH) 

did not produce a PMTV-specific (356 bp) amplicon (Fig. 5.21, IV, a), confirming 

the PMTV-free status of these tubers. 

The amplification of the Ef-1α gene from all the tuber-samples (255 bp, Fig. 5.21, 

IV, b) and the positive control sample of N. benthamiana (150 bp; Fig. 5.30, IV, c) 

confirmed the integrity of the total RNA and cDNA of these samples. The non-

template control (NTC) and the mixed sample from uninfected potato tubers 

(PEBH), used as the negative control did not show amplification of TRV or PMTV 

confirming the virus- and contamination-free status of these samples. The TRV-

related PCR products from most of the samples except tuber-sample BTS were 

amplified to lower levels than the PMTV-related PCR products from the same  

A. Detection of TRV 

B. Detection of PMTV 
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Figure 5.21.  RT-PCR detection of TRV and PMTV in spraing-affected samples 
from genetically different tubers. Lane M: 1 Kb Plus DNA Marker. Lane 1: Non-
Template Control (NTC). Lane 2: Positive control (amplicon from virus-infected 
N.benthamiana). Lane 3: Negative control (PEBH, Pooled healthy tuber-sample). 
Lane 4: Burren spraing-affected sample (BTS). Lane 5, 6, 7 and 8: Electra spraing-
affected sample ETS, EPS1, EPS2 and EPS3, respectively. Lane 9,10,11,12 and 
13: Louise spraing-affected sample LS2, LS3, LS4, LS9 and LS11, respectively. (I, 
a) TRV-16K primer-set based amplicon (462bp). (II, a) TRV Movement Protein (MP) 
based amplicon (568 bp). (III, a) TRV-Replicase (R) based amplicon (474 bp). (IV, 
a) PMTV TGB2 based amplicon (356 bp). (IV, b and c) Amplicon of house-keeping 
(Ef-1 α) gene from potato-tuber (255 bp, Pot.Ef-1 α) and virus-infected N. 
benthamiana (150 bp, Nb. Ef-1 α), respectively.   
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samples. This might suggest a relatively lower amount of TRV than PMTV in these 

tubers. However, both PMTV and TRV were not quantified in these samples. 

The virus-status of all the ten tubers is summarised in Table No. 5.9. The tubers, 

based on the type of viral-infection, were categorized into four classes, viz: only 

TRV-infected tubers (BTS), only PMTV-infected tubers (EPS3, LS4, and LS11), 

tubers with mixed infection of both TRV and PMTV (ETS, EPS1, EPS2, LS2, LS3 

and LS9) and the tubers that were both TRV- and PMTV-free (apparently healthy 

tubers). 

Table 5.9.  Virus-status of the potato tubers chosen from the PMTV field-trial 
and the SASA examined potatoes 

S.No. Tuber Sample  TRV PMTV Mixed infection Virus status 

1.  BT BTS √ NIL NIL +ve 

2.  ET ETS √ √ √ +ve 

3.  EP1 EPS1 √ √ √ +ve 

4.  EP2 EPS2 √ √ √ +ve 

5.  EP3 EPS3 NIL √ NIL +ve 

6.  L2 LS2 √ √ √ +ve 

7.  L3 LS3 √ √ √ +ve 

8.  L4 LS4 NIL √ NIL +ve 

9.  L9 LS9 √ √ √ +ve 

10.  L11 LS11 NIL √ NIL +ve 

11.  Pooled EBPH NIL NIL NIL -ve 

NIL: Not detected; √: Virus-detected; -ve: Virus-free; +ve: Virus-positive; SASA examined potatoes 

(Burren and Electra); Burren spraing-affected tuber-sample, BTS; Electra spraing-affected tuber-

sample, ETS, EPS1-3; Spraing-affected tuber samples collected from Louise Sullivan / PMTV field-

trial : LS2, 3, 4, 9, and 11; PEBH: mixed sample from uninfected tuber. 

Seven of these tubers were selected for qRT-PCR analysis. In order to represent all 

viral infection-types under study, at least one tuber was chosen from each of the 4 

above given classes. The selected tubers were BT (TRV only); EP3, L11 (PMTV 

only); ETS, EPS1, EPS2 and LS2 (Mixed viral infection); and PEBH (PMTV and 

5.10.2. Quantitation of HR-related gene expression in the tubers with 
different genetic make-up and virus-infections 
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TRV-free, apparently healthy). The spraing-affected (S) and spraing-free (SF) tissue 

was excised from each tuber as discussed before (section 2.1.1). The total RNA 

extraction, DNase treatment, and cDNA synthesis protocols were the same as 

discussed before. 

Two of the HR-related genes (PAR-1c and the SP gene) were again examined for 

their differential expression in S vs. SF samples. The expression of both of the 

selected genes was quantitated and analysed by the ΔΔCT quantitation method. Each 

sample was assayed in triplicate and the expression of the cyclophilin gene was used 

for normalization of the target gene-expression. The qRT-PCR protocol was the 

same as explained before except that, in this analysis, a mixed sample from 

uninfected tubers (PEBH) served as a calibrator sample to determine the relative 

quantity of target gene expression. A summary of the RQ’s of both of the assayed 

genes and the types of viral-infections in the evaluated samples is given in Table 

No.5.10. 

The RQ plot for the PAR1-c gene showed (Fig. 5.22, a) significantly increased 

expression in the spraing tissue samples of all the seven tubers. The highest RQ of 

the PAR1-c gene (2533.31) was found in the spraing-affected sample LS11. The SF-

sample (LSF11) from the same tuber L11 had a RQ of 13.93. The PAR1-c had the 

second highest expression level (RQ of 1007.86) in the spraing-affected sample 

(EPS1) from the tuber EP1, while the SF-sample (EPSF1) from the same tuber had a 

RQ of 4.06. The lowest level of PAR1-c gene expression (RQ of 58.1) was in the 

spraing-affected sample (EPS2) from the tuber EP2 and was significantly higher in 

expression than the SF-sample (EPSF2) of the same tuber, with a RQ of 7.06. 

Similarly, the SP gene was also highly expressed in the spraing-samples as 

compared to the spraing-free samples from the same tubers (Fig. 5.22, b). The SP 

gene was most highly expressed (RQ of 46.68) in the spraing-affected sample 

(EPS2) of the tuber EP2 and the spraing-free sample (EPSF2) of the same tuber had 



207 

 

a RQ of 1.56. The next highest expression of the SP gene (RQ of 29.78) was in the 

spraing-affected sample (BTS3) of the tuber BT3 and the SF-sample of the same 

tuber (BTSF3) had a RQ of 1.98. Among all the spraing-affected samples, the 

lowest RQ of SP (7.32) was found in the sample LS11 of the tuber L11 and the 

spraing-free sample (LSF11) of the same tuber had a RQ of 0.1. 

Table 5.10.  RQs of expression of the PAR1-c and the SP genes in different 
tuber samples, with different types of viral-infections   

S.No. HR-related gene     Variety Tuber sample  Viral-infection Normalized RQ 

1.  PAR1-c Burren BTS TRV only 466.73 

BTSF // 6.15 

Electra EPS3  PMTV only 110.65 

EPSF3 // 4.44 

Unknown LS11 // 2533.31 

LSF11 // 13.93 

Electra ETS TRV+PMTV 110.92 

EPS1 // 1007.86 

EPS2  58.1 

ETSF // 42.69 

EPSF1 // 4.06 

EPSF2    // 7.06 

Unknown LS2 // 745.25 

LSF2 // 9.27 

Pooled PEBH NIL 1 

2.  SP Burren 

 

BTS TRV only 29.78 

BTSF // 1.98 

Electra 

 

EPS3  PMTV only 8.42 

EPSF3 // 1.48 

Unknown 

 

LS11 // 7.32 

LSF11 // 0.1 

Electra 

 

ETS TRV+PMTV 10.562 

EPS1 // 8.96 

EPS2 // 46.68 

ETSF // 4.38 

EPSF1 // 1.16 

EPSF2 // 1.56 

Unknown LS2 // 25.55 

 LSF2 // 0.28 

Pooled PEBH NIL 1 

BTS: Burren spraing-affected sample; ETS, EPS1, EPS2, EPS3: Electra spraing-affected samples; 

LS2, LS11: spraing-affected samples from tubers with unknown genetic background (PMTV–field 

trial); BTSF: Burren spraing free-sample; ETSF, EPSF1, EPSF2, EPSF3: Electra spraing free-

samples; LSF2, LSF11: spraing free-samples from tubers with unknown genetic background 

(PMTV–field trial); PEBH: Mixed sample from uninfected tubers, was the calibrator. 
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Figure 5.22.  Expression of the HR-related genes in the tubers with different 
genetic make-up and virus infections. Relative expression of SP (a) and PAR1-c 
(b) genes in the  tuber samples of Burren (BTS, BTSF), Electra (ETS, EPS1, EPS2, 
EPS3, ETSF, EPSF1, EPSF2, and EPSF3) and the tubers with unknown genetic 
make-up, PMTV–field trial (LS2, LS11, LSF2, LSF11). PEBH: Mixed sample from 
uninfected tubers, was the calibrator. ‘‘ɪ’’ is the error-bar representing standard error 
of ∆∆CT measurements; value above bar is fold-change of expression.  
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The mean RQs of both of the assayed genes for the investigated varieties and the 

types of viral infections are given in Table No.5.11. Since, in this assay, only a 

single sample of TRV-infected tuber (variety Burren) was included, the reported 

RQ for this sample is not a mean value. 

The mean RQ of PAR1-c (719.84) for all the seven spraing-affected samples (BTS3, 

LS11, EPS3, ETS, EPS1, EPS2, and LS2) was significantly higher than the 

respective spraing-free samples (BTSF3, LSF11, EPSF3, ETSF, EPSF1, EPSF2, and 

LSF2) with a mean RQ of 12.51. Similarly, the mean RQ of the SP gene (19.61) for 

all the seven spraing-affected samples was significantly higher than all the seven 

respective spraing-free samples (mean RQ of 1.56). Both of the HR-related genes 

were significantly up-regulated in the spraing-affected tissue of these different potato 

varieties, following the pattern previously found for Pentland Dell. The up-regulation 

and association of HR-related genes with spraing-affected tissue supports the notion 

of spraing as a HR-reaction. 

Table 5.11.  Mean RQs of the PAR1-c and the SP genes in the tuber samples 
with different genetic make-up and types of viral infections   

 S.No. HR-

related 

gene     

Mean 

RQ    
Mean RQ of samples infected with Mean RQ of variety 

TRV* PMTV Both 

Viruses 
 No virus     

(PEBH) 

Burren  Electra  Unknown 

(LS) 

Spraing-affected samples 

1.  PAR1-c 719.84 466.7 1321.98 482.05 1 466.73 323.4 1639.28 

2.  SP 19.61 29.78 7.87 22.94 1 29.78 18.65 16.43 

Spraing-free samples 

3.  PAR1-c 12.51 6.15 9.18 15.77 1 6.15 14.56 11.60 
4.  SP 1.56 1.98 0.79 1.84 1 1.98 2.14 0.19 

*The RQ for TRV-infected sample (Burren) is not a mean RQ 

Fig. 5.23 shows the up-regulation of PAR1-c and SP genes in relation to virus-status 

of the different spraing symptomatic tuber samples. The results show that these genes 

were up-regulated by both viruses and there does not appear to be any additive effect 

when the tuber is infected simultaneously by both viruses. Virus levels were not  



210 

 

 

 

 

Figure 5.23.  Effect of type of viral infection on the expression of the HR-
related genes in spraing-affected tubers. Relative expression of SP (a) and 
PAR1-c (b) genes in the  tubers infected by TRV (T), PMTV (P), and TRV plus 
PMTV (T+P).S denotes samples showing spraing symptoms, SF are samples 
without spraing symptoms. PEBH: Mixed sample from uninfected tubers, was the 
calibrator. ‘‘ɪ’’ is the error-bar representing standard error of ∆∆CT measurements; 
value above bar is fold-change of expression. 
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quantified in these samples and so no comment can be made about possible 

synergism between TRV and PMTV in potato tuber. 

TRV is unevenly distributed within a spraing-affected tuber. The spraing-affected 

tissue is always associated with the TRV infection whereas, the occurrence of TRV 

in spraing-free tissue is erratic (Crosslin and Thomas, 1995; Xenophontos et al., 

1998). A large-sized spraing-affected Pentland Dell tuber (>33.6 cm
2
 diameter) was 

washed with tap-water, dried on filter-paper, and sliced in cross-section with a sharp 

knife. 11 samples (20-35 mm
2 

of the tuber), comprising either of spraing-affected or 

spraing-free tissue, were excised from the tuber-slice (Fig. 5.24, a). Eight out of these 

11 samples were collected from visibly spraing-free areas (i.e.; SF1-SF8), two 

samples (S10, S11) from areas that had strong spraing symptoms and one sample 

(S9) was gathered from a small area of faint spraing. RT-PCR was done to detect 

TRV (section 2.2.16) in RNA extracted (section 2.4.2-3) from these 11 samples. The 

TRV RNA1 was detected in the positive control sample (S2, spraing sample known 

for TRV-infection in the microarray experiment), in all the three spraing-

symptomatic samples (S9, S10, and S11) and in five out of the eight spraing-free 

samples (SF3, SF5, SF6, SF7, and SF8, Table No. 5.12). Virus was not detected in 

the healthy (negative) control (H) sample and in three spraing-free samples (SF1, 

SF2, and SF4). The house keeping gene (Ef-1 α) was successfully amplified (255 bp; 

Fig. 5.24, b) from all of the tuber RNA samples confirming their integrity. 

Interestingly, TRV was strongly amplified from five of the eight spraing-free areas 

and weakly amplified from a sixth (SF1). All the three spraing-affected areas (S9, 

S10, and S11) amplified a TRV signal that was noticeably weaker than the majority 

of the spraing-free areas, suggesting a relatively-reduced load of TRV at these sites. 

Possibly, formation of the spraing had a suppressive effect on the accumulation of 

TRV so that the virus infection was reduced in the areas of tuber bearing spraing 

5.11. Distribution of TRV in a spraing-affected tuber  
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symptoms. These results were supportive of the previous TRV quantitation results 

derived from the microarray-analysed samples (Fig.5.17, d; Table No. 5.7), where, 

Table 5.12.  Prevalence-profile of TRV1 and GST in a spraing-affected tuber, 
determined in some selected-sites 

S.No. Sampling 

site / 

Sample No. 

Spraing status      

(SF / S) 

TRV-status 

(P /A) 

Nor. Mean RQ of 

TRV1 

Nor. Mean RQ of 

GST 

1.  SF1 SF P   1.156   1.376 

2.  SF2 SF A N / A N / A 

3.  SF3 SF P  N / A N / A 

4.  SF4 SF A  N / A N / A 

5.  SF5 SF P    N / A   N / A 

6.  SF6 SF P 1046240.619 1.188 

7.  SF7 SF P 113348.411 2.332 

8.  SF8 SF P N / A N / A 

9.  S9 S P N / A N / A 

10.  S10 S P 74470.342 8.921 

11.  S11 S  P   87773.433   20.738 

12.  H1 H H Calibrator for RQ Calibrator for RQ 

S: Spraing-affected; SF: Spraing-free; H1: Healthy, TRV-free; P: Present; A: Absent; Nor. Mean RQ: 

Gene-expression of the target, normalized with the gene expression of the reference gene (Ef-1α); 

TRV: Tobacco rattle virus-replicase; N / A: Not analysed. 

TRV was found in reduced amounts in the spraing samples as compared to the 

spraing-free samples. 

TRV quantification in a diseased tuber had not been reported by earlier researchers. 

To further study the association between the relative level of virus and appearance of 

spraing symptoms in tuber tissue, we quantified the amount of TRV in different areas 

of a single spraing-affected tuber. The accumulation of TRV and one of the HR-

related genes (GST) was determined by qRT-PCR quantification (ΔΔCT 

quantitation) in five of the samples (SF1, SF6, SF7, S10, and S11, section 5.11), 

selected as having different spraing or spraing-free appearances in the diseased tuber. 

5.12. Quantitation of TRV across a spraing-affected tuber 
slice  
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A TRV-free (healthy) tuber-sample (H1) from Pentland Dell was used as a calibrator 

for the relative gene-quantitation and the qRT-PCR protocol was the same as 

described before. Each sample was assayed in triplicate and the Ef-1 α reference 

gene was used for expression normalization.  

This analysis showed the highest amount of TRV in two of the three spraing-free 

samples, with one of them (SF6, RQ of 1046.24x10
3
) containing 9 times more TRV 

than the second highest sample (SF7, RQ of 113.35x10
3
), and nearly 12 times more 

TRV than either of the two spraing-samples (S11, RQ of 87.78x10
3
; S10, RQ of 

74.47x10
3
). Virus was found in the least amount at the site SF1 with a RQ of 1.16 

(Fig. 5.24, c; Table No. 5.12). These results revealed that TRV was more abundantly 

present in the vicinity of the spraing-affected tissue but its amount was reduced 

within the spraing-tissue itself and also at the far-distant spraing-free sites.  

Contrary to the TRV1 quantification, the results of GST quantification (Fig. 5.24, d) 

showed a higher expression of GST in the spraing-affected than the spraing-free 

tissue. The GST gene expression was nearly nine times higher in both of the spraing 

samples (S10, RQ of 8.92 and S11, RQ of 20.74) than either of the three spraing-free 

samples (SF1, SF6 and SF7) with a RQ of 1.38, 1.19 and 2.33, respectively. As 

before, the results revealed that production of spraing symptoms is associated with 

up-regulation of the GST gene. 
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Figure 5.24.  Distribution of TRV across a potato tuber section. (a) shows a 
potato tuber section with areas of visible spraing production in the tuber. Named 
sampled areas are indicated by white dotted circles. (b) RT-PCR of the different 
sampled areas. SF denotes visibly spraing-free, S denotes visible spraing formation. 
Samples were tested by amplification for TRV RNA1 and potato Ef-1α, + denotes a 
known TRV-infected potato sample, H is a known uninfected potato sample. DNA 
ladder appears at the left of the figure. (c) qRT-PCR of TRV1 and (d) GST in the 
selected spraing-symptomatic and spraing-free areas.  
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5.13. Discussion 

The sequencing of the potato genome has made it possible to gain further insight into 

the genetic details of potato. The potato genome comprises of twelve chromosomes. 

More than 85% of the 844 Mb (megabase) of the potato genome has been sequenced 

identifying more than 39,000 translatable genes of which there are more than 800 

disease-resistance genes (Xu, et al., 2011). Spraing disease of potato (see section 

1.4.2) has been described as a hypersensitive response to viral infection (Engsbro, 

1973). We in the current studies have investigated the molecular details of spraing 

disease and have used microarray analysis to explore the gene expression in spraing-

affected tissue. In this microarray analysis, expression of 27,895 probes was detected 

from the Potato genome 4x44K array that comprised a total of 42,034 potato 

unigenes. Only 15, 019 (53.84%) probes out of the total of 27,895 expressed probes 

were annotated in the potato genome database. The pair-wise comparison, performed 

at a high stringency level with imposed restriction of two-fold change in expression, 

identified 844 differentially expressed probes for the spraing vs. spraing-free 

comparison (S/SF) and 1,024 probes for the spraing-free vs. healthy comparison 

(SF/H). 

The gene enrichment analysis of this expression data identified several GOs that 

were associated to the defence responses. The gene ontologies comprising the HR-

related annotations were selected (see section 5.6.5) and qRT-PCR of HR-related 

genes (Peroxidase, Pathogenesis-related protein, Suberin peroxidase, Glutathione-S-

Transferase, and Respiratory burst oxidase) as well as TRV1-replicase and the 

endogenous Elongation-factor-1 alpha gene was done.  

The HR is associated with production of short-lived reactive oxygen species (ROS), 

commonly known as the ‘‘oxidative burst’’, that produces reactive oxygen 

intermediates (ROI) consisting of superoxide (O
-2

) and hydrogen peroxide (H2O2) 

that are involved in the host defence mechanism (Wojtaszek, 1997; Grant and Loake, 

2000). Constitutively production of ROS, in lower amounts, is involved in cell 
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signalling but when produced in higher amounts, such as under stress, is toxic to the 

cell. The cell producing ROS above the normal cellular level is said to be in a 

condition of ‘‘oxidative stress’’.  The increased production of ROS can cause 

degradation of lipids, denaturation of proteins, damage to nucleic acids, affects the 

enzymatic activities, stimulates programmed cell death (PCD) and finally leads to 

death of the affected cell.  Among the ROS, hydrogen peroxide (H2O2) is relatively 

more stable and is the only species that can diffuse through the plasma membrane. It 

affects the permeability and integrity of the cellular membranes. H2O2 is used as a 

substrate for lignin and suberin biosynthesis that are the constituents of the cork-

tissue. Excessive production of H2O2 is lethal for cellular homeostasis and can cause 

cell-death. However, for induction of cell-death excessive H2O2, above a certain 

threshold, is required (Sharma et al., 2012). The abnormal amounts of H2O2 are 

scavenged by cellular protectant enzymes such as catalases (Scandalios, 1997). 

Glutathione-S-transferase (GST) is involved in the degradation of products of lipid 

membranes (Tenhaken et al., 1995). However, the concept of ‘‘Oxidative Burst’’ is 

being replaced with the ‘‘ROS wave’’ in which ROS spreads through different 

tissues to distant areas of the plant (Mittler, et al., 2011).  

The differential up-regulation of HR-related genes in the spraing-affected tissue was 

revealed by the analysis of microarray data and was validated for five of the HR-

related genes (Peroxidase, Pathogenesis-related protein (PAR-1c), Suberin 

peroxidase, Glutathione-S transferase and Respiratory burst oxidase) by qRT-PCR. 

In the current studies, the differential up-regulation of the PAR-1c and the Suberin-

peroxidase gene was also verified in some additional spraing-affected tubers that 

were of different varieties and had different combinations of viral infections. 

The histological occurrence of the HR in the spraing-affected tubers was further 

confirmed by the trypan-blue staining of the spraing-affected tissue and the 

occurrence of cell-death was confirmed. The accumulation of H2O2 in the spraing-
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affected tubers was confirmed by DAB staining of the spraing-affected tuber-slice 

and the deposition of lignin was confirmed by Phloroglucinol staining. 

The distribution of TRV in a spraing-affected tuber was reported to be of non-

uniform occurrence (Xenophontos et al., 1998). I obtained similar results from the 

tuber slice sampled from a spraing-affected tuber. The qRT-PCR quantitation of 

TRV-1 and the GST gene showed that TRV-1 was suppressed in the spraing-affected 

samples but the expression of GST was found to be highly increased in the spraing-

affected samples as compared to the spraing-free samples. 

The results in the current studies are supportive of the notion that induction of 

spraing-symptoms in a diseased potato is a hypersensitive response which may 

inhibit further ingress and spread of the virus. 

Several studies have reported the analysis of host plant gene expression following 

virus infection, however, the majority of these have not involved TRV. Rodrigo et al. 

(2012) compared the results of different microarray experiments that examined 

infection of Arabidopsis thaliana by seven RNA plant viruses, including TRV, and 

one DNA plant virus. The individual studies used a variety of Arabidopsis genotypes 

which were sampled at different time points, nevertheless, statistically robust 

comparative data could be derived from these combined studies. The analysis 

showed that when all eight viruses were considered together, 5,296 of the >22, 000 

genes on the arrays were over-expressed and 2,650 genes were under-expressed. 

However, the number of these genes affected by more than one virus declined 

exponentially as the list of viruses increased, so that only seven plant genes were 

upregulated in common by six viruses. So, it appears that alteration of host gene 

expression is virus-specific at the individual gene level. From this work, alteration of 

some metabolic pathway components, including cellulose biosynthesis and nitrogen 

fixation were seen as a “common” response to infection by at least five of the eight 

viruses. Interestingly, the four viruses that were classified as a natural brassica-
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infecting group, and so were considered to be better adapted to Arabidopsis, induced 

a distinctive set of changes to host pathways affecting growth and development, 

carbohydrate metabolism and tolerance to biotic stress. TRV was not one of the 

brassica-infecting viruses. 

A second study of TRV infection in Arabidopsis (Fernandez-Calvino et al., 2014), 

highlighted changes in photosynthesis components, responses to abiotic stress (salt, 

drought and cold), redox regulation, sugar metabolism, protein synthesis and lipid 

metabolism. In contrast to our potato tuber study, only one Arabidopsis gene 

involved in lignin biosynthesis (a putative cinnamyl-alcohol dehydrogenase), four 

categorised as defense-related and two listed as hydrogen peroxide metabolism-

related were upregulated following TRV infection. Some microarray analysis of 

virus infection of potato has been done (Pompe-Novak et al., 2006; Baebler et al., 

2009; Kogovšek et al., 2010), however, these studies have involved PVY rather than 

TRV and gene expression was examined in potato leaves rather than tubers. 

The best understood virus diseases of potato (Potato virus X, Potato leaf roll virus) 

involve transmission of the virus by aphids into the leaves (Solomon-Blackburn and 

Barker, 2001). Here the virus passes directly into the phloem and uses the vascular 

system to then move into the potato tuber. In contrast, TRV, in most instances, is 

introduced into potato plants by transmission from feeding nematodes, although the 

actual plant growth stage at which this transmission most often occurs is not known. 

Potato tubers are formed from swellings that develop at the end of stolons, which are 

outgrowths of the stem that are located underground. It would seem possible that 

infection of the developing stolon tip by TRV might result in a widespread later 

infection of the tuber where the virus and associated spraing are located throughout 

the tuber. If the virus is introduced into the epidermal cells of a more mature tuber 

then it might be expected that the virus and spraing would be located at one side of 

the tuber, near to the site of introduction. Both of these patterns of spraing are seen in 

field-grown potatoes. 
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Interestingly, our results show that high levels of TRV can occur across a wide area 

of the tuber that does not show spraing symptoms. Whether the virus reaches these 

areas passively as the tuber expands and matures, or if it actively moves through the 

tuber is not known. In stem and leaf tissue the virus moves initially over long 

distances via the vascular system and then between adjacent cells in the leaf via 

plasmodesmata. In tubers, the vascular system is present as a ring located at a 

distance below the surface layer of the tuber. Limited observational studies in plants 

other than potato found that the trichodorid nematodes that transmit TRV feed on 

epidermal cells at the root tip and penetrate the cell to a depth of only 2-3 µm with 

their spear-shaped stylet (onchiostyle) (Taylor and Brown, 1997). Access of TRV to 

the tuber vasculature could occur only after initial cell-to-cell movement of the virus 

from the epidermal cells of the stolon or developing tuber. 

Previously, studies using RT-PCR to detect TRV in potato tubers found that the virus 

was unevenly distributed (Crosslin and Thomas (1995); Xenophontos et al, 1998; 

Crosslin et al., 1999). TRV was more reliably detected in areas containing spraing 

tissue or located just inside a necrotic arc rather than outside of or distant from such 

an arc. However, no attempt was made to quantify the virus in different parts of the 

tuber. Using qRT-PCR we have shown that higher levels of TRV can exist in 

symptom-free areas of the tuber that are located some distance away from the arc of 

spraing tissue. An important practical consequence from this work is that there can 

be high levels of TRV in tubers of spraing-reactive potato cultivars (e.g. Pentland 

Dell) that do not at the time of sampling show visible signs of spraing. This is 

particularly important if these tubers are selected as seed for subsequent potato 

cultivation, and indicate the need to apply molecular testing rather than simple 

phenotypic observations for seed potato production.  

Spraing development can be affected by environmental factors, so that in field trials 

of selected varieties the incidence and severity of TRV spraing symptoms has been 

shown to be different between locations (Robinson et al., 2004). This could be due to 
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differences in the numbers and activity of nematodes at the different sites. In 

addition, larger tubers displayed more spraing symptoms, and tubers harvested at 

later dates had more spraing than tubers harvested at earlier dates. Rydén et al. 

(1994) found that non-symptomatic tubers infected with TRV developed spraing 

when they had been cut and stored at cool temperature for several weeks. This 

phenomenon had been noted previously with PMTV-infected tubers (Harrison and 

Jones, 1971a). However, storage of uncut TRV-infected tubers did not lead to 

spraing development (Rydén et al., 1994; Robinson et al., 2004), whereas, similar 

storage of PMTV-infected tubers did lead to the development of spraing (Harrison 

and Jones, 1971b). 

Previous work described several potato cultivars (e.g. King Edward, Santé and 

Wilja) where systemic TRV infection was detected but which did not exhibit 

classical spraing symptoms, although a few scattered brown flecks were noticed in 

some Wilja and Santé tubers (Xenophontos et al., 1998; Dale and Neilson, 2006). 

Further work showed that repeated propagation of TRV-infected Wilja plants leads 

to the production of more tubers that are smaller, malformed, and have altered 

metabolic profiles compared to uninfected tubers (Dale et al., 2000). One of these 

cultivars, King Edward, was examined during a survey of potato tuber disease in 

Sweden (Beuch et al., 2014). This work found that thirty four of forty six tested King 

Edward tubers carried TRV and also exhibited spraing symptoms. By contrast, no 

spraing was seen in any of twelve tubers that were shown to contain PMTV. Thus, it 

seems that the reaction of specific cultivars to virus infection is highly dependent on 

field conditions. Nevertheless, a quantitative trait locus for “resistance” to spraing 

disease has been identified and mapped onto the potato genome (Khu et al., 2008). 

The quantitative analysis described in this chapter showed that TRV levels are 

highest in regions of the tuber that do not exhibit spraing symptoms. I interpret this 

to suggest that the formation of spraing is a host reaction to virus infection and 

multiplication that leads to a reduction in virus levels where spraing develops. It is 
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also apparent from this work that defence gene expression in Pentland Dell potato, 

exemplified by PAR1-c and SP in this study, responds similarly to TRV and PMTV. 

As these viruses are not related in their genome sequences or encoded proteins, these 

parts of the host defence pathway must be reacting to a generic signal such as 

metabolic stress or perhaps double-stranded RNA accumulation, which is formed as 

a replication intermediate of many RNA plant viruses. It will be interesting to do 

further quantitative studies to discover whether cultivars that react most strongly with 

spraing production initially maintain higher levels of virus than do cultivars in which 

spraing is either never or only sporadically formed. 
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Chapter 6 

In my studies the KK20 recombinant isolate of TRV was identified as a virulent 

isolate in N. benthamiana plants and accumulated at higher levels in the 

systemically-infected leaves than did the the two other K20 RNA-2-containing 

isolates (i.e.; the SK20 and OK20 isolates). However, K20 RNA-2 based isolates did 

not cause an enhanced systemic infection in the potato plants as compared to the 

other isolates used in this study. The severity of disease symptoms is not necessarily 

associated with higher virus-load in the infected plant but is rather the out-come of a 

precise interaction between a host and infecting pathogen (Whitham and Wang, 

2004). Among the 15 TRV recombinant isolates examined in this work the PaY4 

RNA-2- containing isolates accumulated to the highest levels (at 8 dpi) in infected N. 

benthamiana plants. The viral load itself is not a true indicator of host susceptibility 

as highly susceptible plants can have a lower viral load (Baebler et al., 2011; Dobnik 

et al., 2016).  

The pseudo recombinant isolate I6K2 (containing I6 RNA-2 and PpK-20 RNA-1) 

infected all the 6 tetraploid potato species. The commercially grown cultivar Bintje, 

known as a TRV resistant-cultivar, was revealed to be susceptible to the TRV (I6K2) 

and this finding was in general agreement with the results reported by Robinson 

(2004) and Beuch et al., (2014). More than one-fourth of the tobravirus isolations, 

from the bulb-crop growing coastal areas of the Netherlands, were natural 

recombinants between TRV and PEBV (Ploeg et al., 1991). Such interspecies 

recombination is a common characteristic within tobraviruses (MacFarlane, 1997; 

Batista et al., 2014) that enables them to face climatic challenges. I6 RNA-2 is a 

natural recombinant between TRV and PEBV with its coat protein being derived 

from the PEBV. It is that possible that capture of the PEBV CP gene helps it to evade 

6. General Discussion and Future Work 

6.1. General discussion 
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the surveillance of potato defence genes. Although, the presence of the CP encoded 

by RNA-2 is not an absolute requirement for the systemic infection of TRV that can 

take place with RNA-1 on its own (Swanson et al., 2002). Nevertheless, RNA-2 has 

a coordinated function that is supportive to the systemic infection of TRV. Deng et 

al. (2013) used the wild type TRV-1 (wt.RNA-1) and the mutant clones having either 

most of their 16K gene deleted or prevented from translation. They found that 

inoculation of these viruses alongwith RNA-2 on N. benthamiana  plants resulted in 

higher accumulation of TRV. 

Due to the possible deletion around the genomic-sequence of the TRV 16K-gene, the 

primer-set flanking this gene was found incapable of amplifying TRV in the 

systemically infected leaves of tetraploid potatoes. In the current studies, a replicase 

gene based primer-set was designed and shown to be much better for diagnosing 

TRV in various types of plant tissues, including different potato tissues. 

Among the various diploid potatoes that were screened in order to identify TRV-

susceptible potato genotypes, Solanum jamesii (CPC Accession No. JAM 7653) was 

discovered to be an ideal as a model species for conducting TRV infection studies in 

potato. The VIGS experiments using S. jamesii as a host plant, have given some 

promising results. VIGS is generally known as a short-lived phenomenon (Liu et al., 

2002b; Lu et al., 2003) that can mostly continue for three weeks and in some cases 

up to three months. Senthil-Kumar and Mysore (2011b) demonstrated that VIGS 

could continue for more than a couple of years and potentially persist up to the 

physiological senescence of the plant. However, the authors have suggested that in 

order to prove the persistence of VIGS for years and its transmission to several 

generations, further experiments using a range of viral-vectors in different plant 

species are required. VIGS is also transmissible to the seed-derived progeny of N. 

benthamiana and tomato plants. TRV transmission of less than 50% has been 

reported in the seed tubers of cultivar Saturna (Hoek et al., 2006). The current 

studies, include the first experimental demonstration of the transmission of TRV-
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induced silencing (PDS-VIGS) to the potato tubers and the subsequent emerging 

plantlets. Other researchers have shown that the prevalence and continuity of VIGS 

is affected by the age of plant, virus-load, and the environmental conditions such as 

humidity and temperature (Fu et al., 2006; Tuttle et al., 2008; Senthil-Kumar and 

Mysore, 2011a, b). With some further optimization in the cultural and virus 

inoculation practices, S. jamesii could be harnessed as a good potato resource for 

TRV-infection and VIGS studies. The current studies have revealed that if the 

plantlets (apical stem-cuttings) inoculated with the PDS-construct were raised from 

more succulent shoots, the produced photo-bleaching symptoms were more severe 

and widespread than those occurring in the cuttings raised from more woody tissue. 

The symptomless infection and uneven distribution of TRV in spraing-affected 

tubers (Xenophontous  et al., 1998; Crosslin et al., 1999; Brown et al., 2009) could 

lead to erroneous diagnosis that poses serious challenges to the seed-certification 

services and ultimately to potato production. The symptomless but infected tubers 

can be responsible for introducing TRV into the previous declared virus- and 

disease-free areas. In the current studies, the erratic distribution of TRV within a 

spraing-affected tuber, with the relatively lower amounts of TRV in spraing-tissue as 

compared to spraing-free tissue of the same TRV-infected tuber, reflected the 

activity of the HR to limit TRV-infection in the diseased tuber. Thus, the induction 

of spraing coincided with a suppressive effect on the TRV infection. 

The qRT-PCR validation of the HR-related genes that were found to be differentially 

up-regulated in the microarray analysis of the spraing-affected tissue provided 

experimental evidence to confirm the induction of spraing as an hypersensitive 

response to TRV infection. TRV infection alters the sugar-metabolism that is an 

active player of inducing the programed cell-death in HR (Dale et al., 2000; 

Fernández-Calvino et al., 2014). The trypan-blue uptake by the dead-cells in and 

around the vicinity of the spraing-affected tissue provided evidence of cell-death 

related to hypersensitive response.  
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When a plant-cell encounters an aggressive pathogen, it immediately produces 

reactive oxygen species (ROS) such as superoxide (.O2
-
) or hydrogen peroxide 

(H2O2) for fortification of the cell wall (Grant and Loake, 2000). Cellular protectants 

like glutathione S-transferase (GST) are also up-regulated (Tenhaken et al., 1995). 

The DAB staining of the spraing-affected tissue caused the differential staining of 

the tuber-tissue that confirmed the production of H2O2 in the spraing-affected tuber 

tissue. Thus taken together this suggests that spraing is a defence response incited in 

the potato tubers to halt the further ingress and spread of TRV-infection. 

6.2. Future work 

In the current studies, the replicase gene-based primer-set was demonstrated to work 

effectively for TRV detection. In future, it would be tested on some more genotypes 

and types of tissues. If the findings of TRV detection are the same as reported here, 

then recommendations would be made for use of this primer-set in place of the 

widely used 16K flanking primer-set. 

The suggested ability of the pseudorecombinant isolate KI6 to cause enhanced 

systemic infection should be evaluated on more genotypes of potato under varied 

environmental conditions. The pTRV-vector commonly used for the VIGS-related 

studies has a backbone from the PpK-20 isolate (RNA-2). This vector could be 

replaced with the I6 RNA-2 based vector and should be tested on some more 

tetraploid potato genotypes to assess whether it can initiate VIGS in these plants. 

Comparative studies would be carried out for the PpK-20 and I6 RNA-2 based VIGS 

vectors and the efficacy of VIGS would be evaluated to recommend the most 

efficient vector for future VIGS-related studies. 

An interesting observation in these studies was the production of characteristic 

necrotic-rings on the leaves of S. jamesii when mechanically-inoculated with the 

PpK-20 RNA-1 inoculum, whereas, these symptoms were masked when the plants 

were inoculated with the M-type virus. Ghazala and Varrelmann (2007) had reported 
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the involvement of the 29K (MP) in production of TRV-induced foliar (necrotic) 

symptoms in potato. Deng et al. (2013) have recently reported that there is a  

coordination of expression of MP and 16K proteins in the suppression of necrosis in 

the TRV RNA-1 inoculated N. benthamiana plants. In their studies the 16K gene was 

shown to influence the differential accumulation levels of various TRV-mutants and 

the M-type virus produced milder symptoms as compared to the RNA-1-only 

infections. The current findings on S. jamesii show that the foliar symptoms were 

masked by M-type virus. Previously, the 16K protein had been reported as a 

‘‘silencing suppressor’’ (Reavy et al., 2004; Martin-Hernández and Baulcombe, 

2008; Ghazala et al., 2008). Now, the 29K protein has also been shown to play an 

interactive role with the 194K protein for the suppression of RNA silencing and 

emphasis has been laid on the well-adjusted production of 29K and 16K proteins for 

the progression of TRV infection (Deng et al., 2013). The role of 13K open reading 

frame within the 16K gene (MacFarlane, 2010) would be investigated for effects on 

TRV pathogenicity. 

Mechanical inoculation of the CP-frameshift (KCPfs) mutant on S. jamesii plants 

produced shoestring-like (filiformic) leaves. Gene expression in plants is regulated 

by endogenous small RNAs called ‘‘microRNAs’’ (miRNAs) that can be affected by 

the viral infection resulting in the expression of various symptoms and sometimes 

leading to a change in plant shape and structure such as the shoestring-like leaves 

(Andrade et al., 1981; Bazzini et al., 2007; Cillo et al., 2002, 2009; Mach, 2012). 

The filiformic leaves are mostly produced by compromised regulation of the organ 

polarity genes (Husbands et al., 2009) that are regulated by small RNAs (Yifhar et 

al., 2012). Wang et al. (2015) using VIGS of tomato argonaute1 (SlAGO1) and the 

subsequent microarray analysis of the infected plants have reported that the 

suppression of SlAGO1 results in the abnormal development of tomato leaves. 

Microarray analysis and in-situ localization of the KCPfs mutant in the infected S. 

jamesii plants could be done at various time points of the infection to reveal the 
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differentially up-regulated genes and to get an insight into the molecular details of 

this shoestring phenomenon. 

Viral-suppressors of RNA silencing can also impede the regulation of miRNAs 

resulting in abnormal plant growth and development (Li and Ding, 2006; Ding and 

Voinnet, 2007; Ye et al., 2008). The 16K proteins from various TRV RNA-1 isolates 

vary in the carboxy part of the protein. Various frameshift and deletion mutant clones 

of the 16K protein of the three different RNA-1 isolates (viz.,SYM, PpO-85 and 

PpK-20) could be created and the differential RNA suppression activity of these 

mutants investigated by inoculation onto the N. benthamiana and S. jamesii plants. 

Structural motifs responsible for the suppression activity of 16K protein could also 

be investigated in future studies. 

The results of these future experiments could shed new light on understanding the 

molecular details of the TRV disease cycle and will provide more in depth details 

about the virulence pattern of TRV infection. 
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8.  Appendices                                                                                                                                                                                                                                                                                                                                       

Appendix 1.  Primers for studies on TRV-isolates  

S. 

No. 

Oligo name 

& number 

Gene annotation & 

Oligo Sequence         

(5' - 3') 

Position on 

transcript 

sequence (nts) 

Exon 

Boundary 

or target 

Primer 

length 

Tm 

(C
◦
) 

GC

% 

Amplicon 

size (bp) 

1.  DJR 16K+ 

(1761) or 

(2350) 

16K 

GACGTGTGTACTCA

AGGGTT                    

6113--6132  Flanking 

16 K gene 

21 56.0 50.0 463 bp 

 

 

2.  DJR 16K- 

(1760) or 

(2349 ) 

16K 

CAGTCTATACACAG

AAACAGA 

6555--6575 20 50.0 38.0 

3.  TRV1H_    

fwd (2365 ) 

ACTTGATGCTGACT

AAACCTG 

282—-302 Helicase 

gene 

21 54.0 43.0 351 bp 

4.  TRV1H_ 

rev (2366 ) 

GATTTGGACAACAG

GAATGAAT 

611—-632 22 53.0 36.0 

5.  TRV1R_ 

fwd (2367 ) 

AGTGGAGATGCTGA

TACTTA 

4742--4761 Replicase 

gene 

20 53.8 40.0 474 bp 

6.  TRV1R_ 

rev (2368 ) 

ACTCTTAATATGCTT

CCATAGCG 

5193--5215 23 54.0 39.0 

7.  TRV1MP_ 

fwd (2369 ) 

GACTATTCAGAGAT

TCAAAGC 

5669--5689 MP gene 21 50.0 38.0 318 bp 

8.  TRV1MP_ 

rev (2370 ) 

GCCTCAATCGTCTT

CATCTC 

5967--5986 20 54.0 50.0 

9.  TRV1K1_ 

fwd (2371 ) 

GAATGAAGTCACTG

TTCTTG 

6137--6156 Within 16K 20 52.1 40.0 190 bp 

10.  TRV1K1_ 

rev (2372 ) 

TTCAAGGTGACTAC

GGC 

6310--6326 17 53.5 52.9 

11.  TRV1MK_ 

fwd (2373 ) 

GAGATGAAGACGAT

TGAGGC 

5967--5986 MK 

spanning 

20 54.0 50.0 271bp 

12.  TRV1MK_ 

rev (2374 ) 

CACACCTACGTGTG

ACACC 

6219--6237 19 56.0 58.0 

13.  TRV 3′ end 

Primer(1759) 

CCCCGGGCGTAATA

ACGCTTACGTAGGC 

 Tobravirus 

3′  UTR 

Tobravirus  

3′ end 

28 68.0 61.0  

 Tobravirus 3′ end Universal; Primer No. 2371 and 1759 produce an amplicon (KU)  of 655 bp. 

14.  qTRV2f 

(2357) 

CAGTGCTCTTGGTG

TGAT 

249-----267 

CP gene 

PpK20  CP 

gene 

18 53.0 50.0 114 bp 

15.  qTRV2r             

(2358 ) 

GTCGTAACCGTTGT

GTTTG 

344-----362 

CP gene 

19 53.0 47.0 

16.  PpK-20 

(199-F) 

CCAACTTCGCCGAT

TGGTCG 

3014--3033   20 60.0 60.0 540 bp 

17.  PpK-20 

(300-R) 

CGAGAATGTCAATC

TCGTAGG 

3534--3554  21 54.0 48.0 

18.  PKCPFwd 

(2381) 

TCCTGCTGACTTGA

TGG 

42-------58  

598-----614 

PpK20     

CP gene 

17 52.8 52.9 574 bp 

19.  PKCPrev 

(2382) 

CTAGGGATTAGGAC

GTATCG 

596-----615 

1152---1171 

 20 57.3 50.0 

20.  PpK-CPF ACGATTCTTGGGTG 615----634  PpK20  CP 20 55.0 45.0 358 bp 
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(2432) GAATCA gene 

21.  PpK-CPR 

(2433) 

TCTTCCAAAGTCGA

GCCAGT 

953----972  20 57.0 50.0 

22.  PpK-CPF 

(2468) 

GTTACTAGCGGCAC

TGAATA 

156----175 PpK20  CP 

gene 

20 53.0 45.0 373 bp 

23.  PpK-CPR 

(2469) 

TTTCTCAAAGTTCCT

TCGGT 

509----528  20 53.0 40.0 

24.  K20 CP fwd 

(2486) 

ACTCACGGGCTAAC

AGTGCT 

nt 792  20 60.0 55.0  

25.    PEBV CP 

  (130) 

CTCGGTTTGCTGAC
CTA 

460----476  TpA56  

 CP + 112bp  

17 52.0 53.0 751 bp 

26.    PEBV CP 

  (1962) 

GCCACTCCACTCTC

CAT 

1194---1210  17 54..0 59.0 

27.  I-6 (130-F) CTCGGTTTGCTGAC

CTA 

460----476  17 52.0 53.0 450 bp 

 

28.  I-6 (105-R)   GACTCTCTGGGCGG

T 

896----910  15 53.0 67.0 

29.  I6CP_fwd   

(2422) 

ATGGTGAAAGGAAA

GTATGAAG 

552----573  I6 CP gene 22.0 52.0 36.0 627 bp 

30.  I6CP_rev 

(2423)   

GGGCCTAGTGTGAC

ATGA 

1161---1178  18 55.0 56.0 

31.  PaY-4 

(238-F) 

GGTTAGACCCGTTA

CCGGTA 

1084--1103  20 57.0 55.0 503 bp 

32.  PaY-4 

(240-R) 

AATGAGTGATGCGA

ACCAC 

1569--1587  19 54.0 47.0 

33.  PYCPfwd 

(2383) 

TTGGAGCGATGTCC

TTA 

78------94 PaY4 CP   

gene 

17 50. 4  47.1 509 bp 

34.  PYCPrev 

(2384) 

CTACCGCATTAACA

CCTG 

569----586  18 53.7  50.0 

35.  TpO-1 

(398-F) 

GGAATATGGACTGA

AGTGGG 

993---1012  20 53.0 50.0 708 bp 

36.  TpO-1 

(399-R) 

ACAAAGTGAGCGTC

CTGAGG 

1682--1701  20 58.0 55.0 

37.  TpO-1 CP  

(1958) 

ATGGGTTCGTACGG

TGATTC 

475---494 Tpo-1 CP 20 56 50 591 bp 

38.  TpO-1CP 

(1959) 

TCACACGACCGGTC

CCTTA 

1047--1065  19.0 59.0 58.0 

39.  SYM 

(1066-F) 

ACGGCTAGTGTTGC

TGCTCT 

1173-1192  20 60.0 55.0 559 bp 

40.  SYM 

(1065-R) 

CACGATATGTTCAG

CCACGA 

1713-1732  20 56.0 50.0 

41.  SYM CP 

(1960) 

ATGTCTGATGAAAT

GTACGACG 

2232--2253 SYM CP 22 54.0 41.0 650 bp 

42.  SYM CP 

(1961) 

AATTACTGTTTGTTA

GGCACTGG 

2859---2881  23 55.0 39.0 

43.  Sq_RT_Pot.E

f-1 alpha_fwd 

(2304) 

CCACTTCCCACATT

GCTGTA 

53---72 EF-1α 

1Exon 

20 56.0 50.0 255 bp 

 

 

 44.  Sq_RT_Pot.E

f-1 alpha _rev 

(2305 ) 

CTTGTTTATTGGCAC

CAGTTG 

287---307 PGSC0003

DMT40008

8259 

21 54.0 43.0 
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Appendix 2.  Protein extraction buffer for fluorometry and western blotting 

S.No. Buffer    Buffer Conc. 

1.   HEPES, pH 7.5 adjusted with KOH        20mM                  

2.   Sucrose  13%                  

3.   EDTA  1mM                  

                                               Filter sterilize the mixture 

4.   DTT   1mM                  

5.   SigmaFast™ Proteinase Inhibitor cocktail tablet   1 tablet per 10ml buffer 

Total volume  

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) is an organic buffer agent with neutral 

charge and is widely used in the biological studies for maintaining the physiological pH; EDTA: 

Ethylenediaminetetraacetate is a water-dissolvable colourless powder reagent that has the ability to 

withdraw the metal ions such as the Ca+2, Mg+2 and the Fe+3 ions from the solutions. Thus 

suppresses the catalytic activity of the metal ions in the solutions; DTT: Dithiothreitol also known as 

the Cleland’s reagent is a special powerful reducing agent that is mostly used for the reduction of 

disulphide bonds formed in the proteins.  

Appendix 3.  Primers for full-length sequencing of I6 RNA-2 (p215) 

S. 

No. 

Oligo 

name & 

number 

Gene annotation 

             &             

oligo Sequence         

(5' to 3') 

Position on transcript 

sequence (nts) 

Exon 

Boundary     

or target 

Primer 

length 

Tm 

(C
◦
) 

GC

% 

1.  M13 F GTAAAACGACGG

CCAGTG 

N/A N/A 18 54.0 56.0 

2.  M13 R GGAAACAGCTAT

GACCATG 

N/A N/A 19 51.0 47.0 

3.  107 GGTTATATTGCA

ATT 

PEBV RNA2 , +ve 

sense.,   2384-2399  

To sequence 

23K 

15 27 36 

4.  109 GGTCTGCGATCC

ACG 

PEBV RNA2,  +ve 

sense,  2675-2690  

To sequence 

23K 

15 52 67 

5.  110 AAGATATTAGTA

TGA 

PEBV RNA2, +ve 

sense, 1593-1608.  

To sequence 

29K 

15 31 20 

6.  111 ATGATCAAGTTC

TAC 

PEBV RNA2, +ve 

sense, 1745-1760  

To sequence 

29K 

15 37 33 

7.  112 GAGAATGATTTG

TTA 

PEBV RNA2, +ve 

sense, 1895-1910.  

To sequence 

29K 

15 35 27 

8.  113 ACTTGTCGGTCA

AAG 

PEBV RNA2, +ve 

sense, 2043-2058.  

To sequence 

29K 

15 45 47 

9.  114 AGTAAGTTGGCA

CGTCCT 

PEBV RNA2, +ve 

sense, 2538-2556.  

To sequence 

23K (replaces 

oligo 108) 

18 54 50 

10.  122 GAGAGTGGAGTG

GCTACC 

PEBV RNA2, 1197-

1214. 5' oligo for PCR 

amplification of 

(3'RACE) 

9K gene from 

tissue derived 

RNA 

18 54 61 

11.  132 CGCAATTGCACA

AATTC 

SP5 CP,  +ve sense, 

758-774.  

To sequence 

SP5 CP gene 

17 48 41 

12.  134 AAGAGACTCCCC SP5 CP, +ve sense, To sequence 17 54 59 
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AGCAG 1060-1076.  SP5 CP gene 

13.  145 TAGGAGGTGCCC

TTTAT 

PEBV RNA2, 1393-

1409 , +ve sense 

sequencing primer 

To sequence 

TPA56 

17 50 47 

14.  150 CAGCGTTGGTAG

GTTGG 

PEBV RNA2,  2336-

2352,  +ve sense 

sequencing primer 

To sequence 

TPA56 

17 53 59 

15.  228 GCTACTGTGGTT

AGACCGCCC 

PEBV RNA2,  882-902,  

+ve sense primer 

To sequence 

TPA56 

21 62 61 

16.  427 ACATTGTGGCCT

AATGATCGGC 

PEBV RNA2,  1484-

1505,  +ve sense primer 

To sequence 

TPA56 

22 59 50 

17.  648 GAGCATAATTAT

ACTGATTT 

PEBV RNA2,   393-412 

+ve sense sequencing  

To sequence 

TPA56 

20 44 25 

 

Appendix 4.  Spectrophotometric quantification of total RNA-isolation by large-
scale extraction protocol 

 SYM: Spinach Yellow Mottle; PpO-85: Paratrichodorus pachydermus Overloon-85; PpK-20: 

Paratrichodorus pachydermus Kinshalday-20; O.D: Optical density. 

Appendix 5.  Fluorometric assay of the GFP expressing samples  

  Sr.No. Well  Sample    AFU Mean AFU St. Dev. Nor. Mean AFU 

1.    A1 CB28,1 929.945 928.434 52.771 652.314 

2.    B1 CB28,1 926.630    

3.    C1 CB28,2 1010.223    

4.    D1 CB28,2 952.326    

5.    E1 CB28,3 852.234    

6.    F1 CB28,3 899.249    

7.    G1 N.benth Mock,1 239.078 276.119 30.570 276.12 

8.    H1 N.benth Mock,1 253.324    

9.    A2 N.benth Mock,2 271.847    

10.    B2 N.benth Mock,2 327.876    

11.    C2 N.benth Mock,3 284.262    

12.    D2 N.benth Mock,3 280.326    

Sr.No. TRV NM –

type isolate 

O.D  

260nm 

O.D 

280nm 

R value (O.D 

260 nm / O.D 

280 nm) 

Concentration           

(µg / µl ) 

Storage  100 

µg / tube 

1.  SYM 0.105 0.043 2.442 0.105x40x1000= 

4.20 µg / µl 

23.80 µl / tube     

(04 tubes) 

2.  

 

PpO-85 0.733 0.712 1.029 0.733x40x1000= 

29.0 µg / µl 

03.44 µl / tube 

(13 tubes) 

3.  PpK-20 0.199 0.091 2.137 0.199x40x1000= 

7.96 µg / µl 

12.50 µl / tube 

(08 tubes) 
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13.    E2 Ext. Buffer,1 110.498 112.434 8.177 112.434 

14.    F2 Ext. Buffer,1 118.934    

15.    G2 Ext. Buffer,2 123.743    

16.    H2 Ext. Buffer,2 106.104    

17.    A3 Ext. Buffer,3 101.546    

18.    B3 Ext. Buffer,3 113.779    

19.    C3 S49, 4dpi, 1  1393.714 1362.473 37.942 1086.353 

20.    D3 S49, 4dpi, 1 1400.540    

21.    E3 S49, 4dpi, 2 1386.600    

22.    F3 S49, 4dpi, 2 1311.517    

23.    G3 S49, 4dpi, 3 1322.630    

24.    H3 S49, 4dpi, 3 1359.835    

25.    A4 O49, 4dpi, 1 820.127 797.598 21.216 521.478 

26.    B4 O49, 4dpi, 1 800.864    

27.    C4 O49, 4dpi, 2 806.160    

28.    D4 O49, 4dpi, 2 815.123    

29.    E4 O49, 4dpi, 3 773.414    

30.    F4 O49, 4dpi, 3 769.900    

31.    G4 K49, 4dpi, 1 1704.784 1741.098 20.029 1464.978 

32.    H4 K49, 4dpi, 1 1759.596    

33.    A5 K49, 4dpi, 2 1823.989    

34.    B5 K49, 4dpi, 2 1683.189    

35.    C5 K49, 4dpi, 3 1745.251    

36.    D5 K49, 4dpi, 3 1729.778    

37.    E5 BLANK 48.759 50.027 * 2.097 50.027 

38.    F5 BLANK 49.650    

39.    G5 BLANK 48.603    

40.    H5 BLANK 53.095    

41.    A6 S49, 8dpi, 1 966.372 966.124 10.693 690.001 

42.    B6 S49, 8dpi, 1 949.05    

43.    C6 S49, 8dpi, 2 969.289    

44.    D6 S49, 8dpi, 2 961.308    

45.    E6 S49, 8dpi, 3 969.185    

46.    F6 S49, 8dpi, 3 981.538    

47.    G6 O49, 8dpi, 1 537.348 523.638 13.104 247.518 

48.    H6 O49, 8dpi, 1 502.933    

49.    A7 O49, 8dpi, 2 532.021    

50.    B7 O49, 8dpi, 2 531.721    

51.    C7 O49, 8dpi, 3 524.449    

52.    D7 O49, 8dpi, 3 513.357    
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53.    E7 K49, 8dpi, 1 488.706 502.668 24.593 226.548 

54.    F7 K49, 8dpi, 1 547.715    

55.    G7 K49, 8dpi, 2 484.734    

56.    H7 K49, 8dpi, 2 482.371    

57.    A8 K49, 8dpi,3 510.762    

58.    B8 K49, 8dpi, 3 501.718    

CB28: Transgenic N. benthamiana expressing GFP; AFU: Arbitrary Fluorescence Unit; Nor. Mean 

AFU: Mean AFU of the test samples normalized with the mean AFU of the mock inoculated N. 

benthamiana; St. Dev.: Standard deviation of means; N.benth Mock: Mock inoculated N.benth; Ext. 

Buffer: Extraction Buffer; BLANK: empty well; S49: Inoculated with SYM RNA-1 and capped 

transcript of GFP engineered RNA-2 of TRV (Cap49T); O49: Inoculated with O-85 RNA-1 and 

Cap49T; K49: Inoculated with PpK-20 RNA-1 and Cap49T;  dpi: days post inoculation; 1, 2, 3: 

represents the no. of biological replicate from which sample was collected.  

Appendix 6.  Normalized mean absorbance of the BSA standards 

Conc.: Concentration; STD: Standard; Nor.: Normalized; Ext. Buffer: Extraction Buffer; Nor. Mean 

A
◦ 
595 of the BSA standards was calculated by subtracting the mean A

◦ 
595 of the extraction buffer 

(i.e.; 0.021) from the mean A
◦ 
595 of the BSA STD. 

Appendix 7.  Total proteins quantified in the GFP samples  

   Sr. No. Conc. Of 

BSA STD. 
(mg/ml) 

Absorbance  (A
◦
) measured 

at 595 nm wavelength 

Mean A
◦ 
595 Nor. Mean A

◦ 
595 (Mean 

A
◦ 
595 - Ext. Buffer A

◦ 

595) 
Reading-1 Reading-2 

1.  0.2 0.171 0.168 0.169 0.148 

2.  0.4 0.328 0.342 0.335 0.314 

3.  0.6 0.502 0.493 0.497 0.476 

4.  0.8 0.671 0.66 0.665 0.644 

5.  0.9 0.737 0.745 0.741 0.72 

  Sr. 

No. 

Sample Absorbance  

(A
◦
) measured 

at 595 nm 

wavelength 

Mean 

A
◦ 
595 

Nor. 

Mean 

A
◦ 
595 

    A
◦ 
595 

difference* 

     (D)   

Interpol. 

conc. of 

sample** 

Gel loading 

volume 

(µl)*** for 
2.5µg/ well 

Gel 

loading 

dye (µl) 

R-1 R-2 

   BLOT # I    

1.  CS28 0.628 0.632 0.63 0.609 -0.035 0.765 3.27 16.73 

2.  Nb.,Mock 0.747 0.735 0.741 0.72 0 0.9 2.78 17.22 

3.  PpK20, Ino. 0.713 0.693 0.703 0.682 0.038 0.838 2.98 17.02 

4.  S49,Ino,1 0.631 0.638 0.634 0.613 -0.031 0.769 3.25 16.75 

5.  S49,Ino,2 0.659 0.652 0.655 0.634 -0.01 0.79 3.16 16.84 

6.  S49,Ino,3 0.721 0.771 0.746 0.725 -0.005 0.895 2.79 17.21 

7.  O49,Ino,1 0.739 0.711 0.725 0.704 -0.016 0.884 2.83 17.17 
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CB28: Transgenic N. benthamiana expressing GFP; N.benth Mock: Mock inoculated N.benth; PpK20: 

PpK-20 infective sap inoculated plant; R: reading; dpi: days post inoculation; Ino.: represents sample 

collected from inoculated leaf at 4dpi; 4, 6, 10: represents sample collected from top-systemic leaf at 

4, 6, and 10 dpi, respectively; 1, 2, 3: represents the no. of biological replicate from which sample was 

collected; S49: Inoculated with SYM RNA-1 and capped transcript of GFP engineered RNA-2 of 

TRV (Cap49T); O49: Inoculated with O-85 RNA-1 and Cap49T; K20: Inoculated with PpK-20 RNA-

8.  O49,Ino,2 0.613 0.625 0.619 0.598 0.122 0.722 3.46 16.54 

9.  O49,Ino,3 0.729 0.705 0.717 0.696 0.052 0.852 2.93 17.07 

10.  K49,Ino,1 0.699 0.745 0.722 0.701 -0.019 0.881 2.84 17.16 

11.  K49,Ino,2 0.737 0.749 0.743 0.722 -0.002 0.898 2.78 17.22 

12.  K49,Ino,3 0.719 0.725 0.722 0.701 -0.019 0.881 2.84 17.16 

13.  S49,4,1 0.681 0.666 0.673 0.652 -0.008 0.792 3.16 16.84 

14.  S49,4,2 0.726 0.714 0.72 0.699 0.055 0.855 2.92 17.08 

15.  S49,4,3 0.644 0.698 0.671 0.65 -0.006 0.794 3.15 16.85 

16.  O49,4,1 0.532 0.418 0.475 0.454 -0.022 0.578 4.32 15.68 

17.  O49,4,2 0.618 0.652 0.635 0.614 -0.03 0.77 3.25 16.75 

18.  O49,4,3 0.691 0.717 0.704 0.683 0.039 0.839 2.98 17.02 

19.  K49,4,1 0.709 0.683 0.696 0.675 0.031 0.831 3.01 16.99 

20.  K49,4,2 0.722 0.714 0.718 0.697 0.053 0.853 2.93 17.07 

21.  K49,4,3 0.693 0.721 0.707 0.686 0.042 0.842 2.97 17.03 

   BLOT #II    

22.  PpK20,10 0.705 0.713 0.709 0.688 0.044 0.844 2.96 17.04 

23.  CS28,  0.695 0.697 0.696 0.675 0.031 0.831 3.01 16.99 

24.  S49,6,1 0.714 0.726 0.72 0.699 0.055 0.855 2.92 17.08 

25.  S49,6,2 0.589 0.651 0.62 0.599 -0.045 0.755 3.31 16.69 

26.  S49,6,3 0.633 0.721 0.677 0.656 0.012 0.812 3.08 16.92 

27.  O49,6,1 0.648 0.666 0.657 0.636 -0.008 0.792 3.16 16.84 

28.  O49,6,2 0.555 0.569 0.562 0.541 0.065 0.665 3.76 16.24 

29.  O49,6,3 0.681 0.743 0.712 0.691 0.047 0.847 2.95 17.05 

30.  K49,6,1 0.715 0.723 0.719 0.698 0.054 0.854 2.93 17.07 

31.  K49,6,2 0.695 0.637 0.666 0.645 -0.001 0.799 3.13 16.87 

32.  K49,6,3 0.489 0.513 0.501 0.48 -0.004 0.596 4.19 15.81 

33.  S49,10,1 0.584 0.572 0.578 0.557 0.081 0.681 3.67 16.33 

34.  S49,10,2 0.655 0.691 0.673 0.652 -0.008 0.792 3.16 16.84 

35.  S49,10,3 0.611 0.637 0.624 0.596 -0.02 0.78 3.2 16.8 

36.  O49,10,1 0.674 0.668 0.671 0.65 -0.006 0.794 3.15 16.85 

37.  O49,10,2 0.7 0.714 0.707 0.686 0.042 0.842 2.97 17.03 

38.  O49,10,3 0.706 0.698 0.702 0.681 0.037 0.837 2.99 17.01 

39.  K49,10,1 0.719 0.699 0.709 0.688 0.044 0.844 2.96 17.04 

40.  K49,10,2 0.689 0.697 0.693 0.672 0.028 0.828 3.02 16.98 

41.  K49,10,3 0.727 0.693 0.71 0.689 0.045 0.845 2.96 17.04 
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1 and Cap49T; * A
◦ 
595 Difference (D) between the Nor. Mean A

◦
 595 of test sample and the nearest  

Nor. Mean A
◦ 

595 of the BSA STD. ** Interpolated concentration was calculated by adding or 

subtracting D from the concentration of the nearest matching  A
◦
 595 of BSA standard. *** Gel 

loading volume (µl) was calculated by dividing standard loading quantity of protein (2.5 µg / ml) with 

the interpolated concentration of the test-sample. 

Appendix 8.  Primer(s) for VIGS-related studies 

S. 

No. 

Oligo name 

& number 

Gene annotation 

&                     

oligo sequence    

(5' to 3') 

Position on 

transcript 

sequence 

(nts) 

Exon 

boundary  

or target       

Primer 

length 

Tm 

(C
◦
) 

GC

% 

Optim. 

anneal. 

temp. 

(C
◦
) 

Amplicon 

size (bp) 

 Oligos for amplification of fragment(s) for VIGS 

1.  PDS (463) TACGCCATGGCG

CTTTGATTTCTCC

GAAGC                 

51—69 

1126--1155 

Tomato 

PDS gene 

Potato    

PDS gene 

30 68.0 53.0 65.0 651bp 

 

 

2.  PDS (464) CGAGGGTACCTG

TGTTCTTCAGTTT

TCTG 

682—701 

1747--1775         

29 63.0 48.0 

3.  potZeaEpox

VIGSF 

(2296) 

GGTGGGATTGG

AGGGTTAGT 

277—-297 ZEP gene 20 57.0 55.0 62.0 408bp 

4.  potZeaEpox

VIGSR 

(2297) 

CTTCTCCCCAT

CATCCTCAA 

664—-684 20 55.0 50.0 

5.  potGBSS 

VIGSL2   

(2298) 

CCAAGATGGCA

TCCAGAACT 

173----193 GBSS 

gene 

20 56.0 50.0 61.0 444bp 

6.  potGBSS 

VIGSR2 

(2299 ) 

CCTCTAGGGCT

GCTTGACAC 

596----616 20 58.0 60.0 

 Oligos for addition of  Gateway recombination sequence (½ att sites) into the insert 

7.  ZEP +att 

(2321 ) 
AAAAAGCAGG

CTGGTGGGATT

GGAGGGTTAGT 

1/2 att site  added to 

primer 2296 of Potato 

ZeaxanthinEpoxidase 

32 69.0 50.0 67.0  

8.  ZEP -att 

(2352 ) 
AGAAAGCTGG

GTCTTCTCCCC

ATCATCCTCAA 

1/2 att site  added to 

primer 2297 of Potato 

ZeaxanthinEpoxidase  

32 67.0 50.0 

9.  GBSS +att 

(2313 ) 
AAAAAGCAGG

CTCCAAGATGG

CATCCAGAACT 

1/2 att site  added to 

primer 2298 of Potato 

Granule bound starch 

synthase 

32 67.0 47.0 67.0  

10.  GBSS -att 

(2351 ) 
AGAAAGCTGG

GTCCTCTAGGG

CTGCTTGACAC 

1/2 att site  added to 

primer 2299 of Potato 

Granule bound starch 

synthase 

32 69.0 56.0 

 Add 1/2 att sites  (in bold letters) to the insert for cloning into the Gateway-vector 

 Oligos for addition of  Gateway recombination sequence (Full att sites) into the insert 

11.  + Full att 

(1992 ) 

GGGGACAAGTT

TGTACAAAAAA

 Gateway attB1 full 

adaptor for 2nd PCR to 

29 64.0 45.0 66.0  
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GCAGGCT add complete att site to 

new PCR clones 

12.  -Full att 
(1993 ) 

GGGGACCACTT

TGTACAAGAAA

GCTGGGT 

 Gateway attP1 full 

adaptor for 2nd PCR to 

add complete att site to 

new PCR clones 

29 66.0 52.0 

 Amplify inserts with ½ att sites for BP cloning into DONR-vectors 

 Oligos for sequencing of pDONR 207  (p0553) 

13.  (1564) TCGCGTTAACG

CTAGCATGGAT

CTC 

Plus strand (upstream   

of 5' attP1 site) 

25 62.0 52.0   

14.  (1565) TGTAACATCAG

AGATTTTGAGA

CAC 

Minus strand (down 

stream of 3' attP2 site) 

25 55.0 36.0   

 Used for PCR amplification or DNA-sequencing of insert in  pDONR207 (p0553)  

 Oligos for RT-PCR detection of  silenced gene 

15.  PDSf(2465) CAGAAGATTGG

TTAAGGACTTG 

695--716 Exon         

2  to 5 

22 52.0 41.0 52.0 313bp 

16.  PDSr(2466) GAATATATGCA

AACCAGTCTCG 

986---1007 22 53.0 41.0 

 Positioned on potato PDS, PGSC0003DMT400023666, 2,615bp. 

17.  ZEP (2294) CTTGGGAATGC

CTCTGATGT 

1855--1874 Exon         

9  to 12 

20 56.0 50.0 55.0 177bp 

18.  ZEP (2295) CCCGCAGGTAA

AAGTAACCA 

2012--2031 20 56.5 50.0 

 Positioned on potato ZEP, PGSC0003DMT400010287, 2,881bp. 

19.  GBSS 

(2302) 

GCCCAAGAACT

TGTCTCTGC 

1040--1059  20 57.0 55.0 55.0 344bp 

20.  GBSS 

(2303) 

TTTTTGCCAGTT

CCAAGGAC 

1364--1383 20 55.0 45.0 

 Positioned on potato GBSS, PGSC0003DMT400031568, 2,244bp 

21.  pTRV2  

(2432) 

ACGATTCTTGG

GTGGAATCA 

619----638 PpK20 

CP 

20 55.0 45.0 55.0 1180bp 

22.  pTRV2 

(300) 

CGAGAATGTCA

ATCTCGTAGG 

1778--1798 21 54.0 48.0 

 pTRV2 (Liu et al;2002);VIGS TRV-destination vector 

 Oligos for qPCR 

23.  qPDSf 

(2459) 

CAGAAGATTGG

TTAAGGACTTG 

695--716 Exon         

2  to 3 

22  52.0 41.0 59.0 80bp 

24.  qPDSr 

(2460) 

TAACTGTATTG

TCTAGCTCTGG 

753--774 22 53.0 41.0 59.0 

 Positioned on potato PDS, PGSC0003DMT400023666, 2,615bp. 

25.  qZEPf 

(2461) 

CTTCTGGTTGG

TGCTGAT 

1127--1145 4
th

 Exon          18 53.0 50.0 59.0 99bp 

26.  qZEPr 

(2462) 

CCAGTATAACA

AGTGTAGCCA 

1201--1222 21 53.0 43.0   

 Positioned on potato ZEP, PGSC0003DMT400010287, 2,881bp. 

27.  qGBSf CATTGATGGAT 940--961 Exon         21 52.0 43.0 59.0 88bp 
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(2463) ATGAGAAGCC 8  to 9 

28.  qGBSr 

(2464) 

CACTGTAACCA

CCCTATGT 

1009--1028 19 52.0 47.0 59.0  

 Positioned on Potato GBSS, PGSC0003DMT400031568, 2,244bp 

 

Appendix 9.  Agro-infiltration buffers 

S.No.     Reagents Quantity or Volume 

1.  1M MES-buffer, 50ml, pH5  

 2-(N-morpholino) ethanesulfonic acid 

(MES),C6H13NO4.S.XH2O 

9.76g 

The MES (9.76g) was dissolved in 40ml H2O. The pH was adjusted to 5 using the MES 

sodium salt or NaOH. The volume was made-up to 50ml with H2O and the solution was 

filter-sterilized through 0.2µM filters. 

2.  0.1M Acetosyringone, 10ml  

 3,5-Dimethoxy-4-hydroxyacetophenon, 97%, C10H12O4 196.20mg 

The Acetosyringone (196.20mg) was dissolved in 10ml H2O and filter-sterilized through 

through 0.2µM filters. 

3.  1M MgCl2 Solution, 50ml  

  The Magnesium chloride hexahydrate (MgCl2.6 H2O, Formula weight 203.3, 10.165 g) was 

dissolved at room temperature in distilled H2O to make 50ml of the solution. 

 

Appendix 10.  Melt-curve (I) and standard-curve (II) analysis of the primer-set 
for the (a) PDS, (b) ZEP, and (c) GBSS genes of potato. 

 

 

 

 

 

 

 

 

 

 
Y-inter: Y-intercept; R2: correlation coefficient or regression line coefficient; EFF %: amplification 

efficiency. 

                                                         

 

 

  

 

 

 

 

       PDS 

Tm: 73.12 C◦ 

 Target: PDS;         Slope:  -3.478 

  Y-inter: 29.62;      R
2 
: 0.962               

                  EFF % : 93.856       

 

 

      ZEP 

Tm: 76.56 C◦ 

       GBSS 

Tm: 73.51 C◦ 

 Target: GBSS;    Slope:  -3.26 

  Y-inter: 26.71;    R
2 
: 0.989               

         EFF % : 102.673       

 

 

 Target: ZEP;       Slope:  -3.073 

  Y-inter: 28.80;    R
2 
: 0.998               

             EFF % : 111.566      

 

 

I.  Melt-curve analysis 

II.  Standard-curve analysis (a) 

(b) (c) (a) 

(c) (b) 
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Appendix 11.  Extraction-buffer for the total RNA isolation from potato-tubers 

  S.No. Buffer    Stock Conc. Buffer Conc. Dilution For 50ml    For 100ml 

1.  Tris. HCL,  

pH 8.0      

 1M  0.05M                   1:20  2.5 ml  5.0 ml 

2.   LiCl  4M  0.05M                   1:80  0.625 ml  1.25 ml 

3.   EDTA  0.5M  0.005M                   1:100  0.5 ml  1.0 ml                                                                                                   

4.   SDS  20% (w/v)  0.5% (v/v)  1:40  1.25 ml  2.5 ml 

5.   SDW     20.125 ml       40.25 ml 

6.  Phenol,  

pH 4.5 

    25 ml  50 ml 

 Total volume     50 ml  100 ml 

 

 

Appendix 12.  NanoDrop quantification of column-purified total RNA 
extractions before DNase treatment 

S.No. RNA 

Sample 

230 nm                   

Absorbance 

260 nm 

Absorbance 

(10 nm path) 

280 nm           

Absorbance 

(10 nm path) 

260/280 

ratio 

260/230 

ratio 

Concentration  

(ng / µl) 

1. S1 10.779 20.589 10.310 2.00 1.91 823.6 

2. SF1 8.550 16.587 8.119 2.04 1.94 663.5 

3. H1 6.800 13.464 6.633 2.03 1.98 538.6 

4. S2 10.652 22.683 10.847 2.09 2.13 907.3 

5. SF1 6.652 13.907 6.702 2.07 2.09 556.3 

6. H2 4.681 11.217 5.406 2.07 2.40 448.7 

7. S3 11.238 24.335 11.431 2.13 2.17 973.4 

8. SF3 9.967 18.848 9.079 2.08 1.89 753.9 

9. H3 7.314 16.103 7.646 2.11 2.20 644.1 

10. S4 3.889 8.400 4.077 2.07 2.17 336.8 

11. SF4 4.901 11.240 5.606 2.00 2.29 449.6 

12. H4 7.979 17.328 8.187 2.12 2.17 693.1 

13. S4 Rep. 9.290 23.617 11.179 2.11 2.54 944.7 

S1-S4: Spraing affected tuber-tissue; SF1-SF4: Spraing-free tuber-tissue; H1-H4: Healthy tuber-

tissue; S4 Rep.:Re-extracted total RNA from S4 
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Appendix 13.  NanoDrop quantification of column-purified total RNA 
extractions after DNase treatment 

S.No. RNA 

Sample 

230 nm                   

Absorbance 

260 nm 

Absorbance 

(10 nm path) 

280 nm           

Absorbance 

 (10 nm path) 

260/280 

ratio 

260/230 

ratio 

Concentration  

(ng / µl) 

1. S1 6.915 15.454 6.990 2.21 2.23 165 

2. SF1 8.185 17.996 8.203 2.19 2.20 155 

3. H1 7.749 16.962 7.673 2.21 2.19 143 

4. S2 8.013 17.413 7.878 2.21 2.17 182 

5. SF1 6.652 13.907 6.70 2.07 2.09 150 

6. H2 8.07 18.021 8.162 2.21 2.23 187 

7. S3 9.290 23.617 11.179 2.11 2.54 174 

8. SF3 9.967 18.848 9.079 2.08 1.89 161 

9. H3 4.948 11.005 5.555 1.98 2.22 136 

10. S4 12.074 20.589 10.310 2.00 1.71 159 

11. SF4 4.901 11.240 5.606 2.00 2.29 173 

12. H4 4.681 11.217 5.406 2.07 2.40 184 

13. S4 Rep. 9.640 23.530 11.165 2.11 2.44 186 

S1-S4: Spraing-affected tuber-tissue; SF1-SF4: Spraing-free tuber-tissue; H1-H4: Healthy tuber-

tissue; S4 Rep.: Re-extracted total RNA from S 

Appendix 14.  Selected gene ontologies showing gene enrichment from 
spraing vs. spraing-free volcano plot. 

S.No. Category Genes in 

Category 

% of Genes 

in Category 

Genes in 

List in 

Category 

% of Genes 

in List in 

Category 

p-Value 

1. GO:6869: lipid 

transport 

83 0.553 14 3.333 6.57E-08 

2. GO:16998: cell wall 

catabolism 

44 0.293 8 1.905 2.56E-05 

3. GO:6575: amino acid 

derivative metabolism 

220 1.465 18 4.286 4.78E-05 

4. GO:50896: response 

to stimulus 

1197 7.97 56 13.33 9.30E-05 

5. GO:19439: aromatic 

compound catabolism 

28 0.186 6 1.429 0.000103 

6. GO:6118: electron 

transport 

995 6.625 48 11.43 0.00015 

7. GO:9698: phenyl 

propanoid metabolism 

143 0.952 13 3.095 0.000189 

8. GO:9808: lignin 

metabolism 

92 0.613 10 2.381 0.000245 
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9. GO:6040: amino sugar 

metabolism 

34 0.226 6 1.429 0.000319 

10. GO:6041: 

glucosamine 

metabolism 

34 0.226 6 1.429 0.000319 

11. GO:6043: 

glucosamine 

catabolism 

34 0.226 6 1.429 0.000319 

12. GO:6046: N-acetyl 

glucosamine 

catabolism 

34 0.226 6 1.429 0.000319 

13. GO:6032: chitin 

catabolism 

34 0.226 6 1.429 0.000319 

14. GO:6044: N-acetyl 

glucosamine 

metabolism 

34 0.226 6 1.429 0.000319 

15. GO:6030: chitin 

metabolism 

34 0.226 6 1.429 0.000319 

16. GO:46348: amino 

sugar catabolism 

34 0.226 6 1.429 0.000319 

17. GO:6725: aromatic 

compound metabolism 

312 2.077 20 4.762 0.000512 

18. GO:42398: amino acid 

derivative biosynthesis 

160 1.065 13 3.095 0.000564 

19. GO:46271: phenyl 

propanoid catabolism 

8 0.0533 3 0.714 0.00109 

20. GO:46274: lignin 

catabolism 

8 0.0533 3 0.714 0.00109 

21. GO:6952: defense 

response 

488 3.249 26 6.19 0.00131 

22. GO:6468: protein 

amino acid 

phosphorylation 

1192 7.937 51 12.14 0.0015 

23. GO:44247: cellular 

polysaccharide 

catabolism 

47 0.313 6 1.429 0.00188 

24. GO:6979: response to 

oxidative stress 

161 1.072 12 2.857 0.00191 

25. GO:9607: response to 

biotic stimulus 512 3.409 26 6.19 0.00255 

26. GO:42744: hydrogen 

peroxide catabolism 37 0.246 5 1.19 0.00348 

27. GO:42743: hydrogen 

peroxide metabolism 37 0.246 5 1.19 0.00348 

28. GO:9734: auxin 

mediated signalling 38 0.253 5 1.19 0.00392 



263 

 

pathway 

29. GO:19748: secondary 

metabolism 225 1.498 14 3.333 0.00445 

30. GO:42221: response 

to chemical stimulus 402 2.677 21 5 0.00465 

31. GO:6950: response to 

stress 482 3.209 24 5.714 0.00469 

32. GO:272: 

polysaccharide 

catabolism 58 0.386 6 1.429 0.00547 

33. GO:42219: amino acid 

derivative catabolism 14 0.0932 3 0.714 0.00628 

34. GO:6558: L-

phenylalanine 

metabolism 27 0.18 4 0.952 0.00635 

35. GO:9699: phenyl 

propanoid 

biosynthesis 99 0.659 8 1.905 0.00653 

36. GO:6800: oxygen and 

reactive oxygen 

species metabolism 189 1.258 12 2.857 0.00697 

37. GO:6730: one-carbon 

compound metabolism 29 0.193 4 0.952 0.00823 

38. GO:9809: lignin 

biosynthesis 83 0.553 7 1.667 0.00852 

39. GO:9628: response to 

abiotic stimulus 507 3.376 24 5.714 0.00859 

40. GO:19438: aromatic 

compound 

biosynthesis 171 1.139 11 2.619 0.00872 

41. GO:16310: 

phosphorylation 1342 8.935 52 12.38 0.00988 

42. GO:9755: hormone-

mediated signalling 86 0.573 7 1.667 0.0103 

43. GO:42542: response 

to hydrogen peroxide 48 0.32 5 1.19 0.0107 

44. GO:302: response to 

reactive oxygen 

species 50 0.333 5 1.19 0.0126 

45. GO:9733: response to 

auxin stimulus 50 0.333 5 1.19 0.0126 

46. GO:9074: aromatic 

amino acid family 

catabolism 19 0.127 3 0.714 0.0151 

47. GO:6559: L-

phenylalanine 19 0.127 3 0.714 0.0151 
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catabolism 

48. GO:42446: hormone 

biosynthesis 35 0.233 4 0.952 0.0159 

49. GO:45449: regulation 

of transcription 1423 9.475 53 12.62 0.0188 

50. GO:19219: regulation 

of nucleobase, 

nucleoside, nucleotide 

and nucleic acid 

metabolism 1426 9.495 53 12.62 0.0195 

51. GO:19953: sexual 

reproduction 8 0.0533 2 0.476 0.0195 

52. GO:19222: regulation 

of metabolism 1494 9.947 55 13.1 0.0206 

53. GO:42445: hormone 

metabolism 40 0.266 4 0.952 0.0249 

54. GO:9664: cell wall 

organization and 

biogenesis (sensu 

Magnoliophyta) 23 0.153 3 0.714 0.0254 

55. GO:50791: regulation 

of physiological 

process 1577 10.5 57 13.57 0.0256 

56. GO:3: reproduction 81 0.539 6 1.429 0.0258 

57. GO:9627: systemic 

acquired resistance 1 0.00666 1 0.238 0.028 

58. GO:44248: cellular 

catabolism 540 3.595 23 5.476 0.0302 

59. GO:31323: regulation 

of cellular metabolism 1465 9.754 53 12.62 0.0305 

60. GO:6793: phosphorus 

metabolism 1436 9.561 52 12.38 0.0315 

61. GO:6796: phosphate 

metabolism 1436 9.561 52 12.38 0.0315 

62. GO:9693: ethylene 

biosynthesis 27 0.18 3 0.714 0.0387 

63. GO:9692: ethylene 

metabolism 27 0.18 3 0.714 0.0387 

64. GO:51244: regulation 

of cellular 

physiological process 1552 10.33 55 13.1 0.0388 

65. GO:6091: generation 

of precursor 

metabolites and 

energy 1427 9.501 51 12.14 0.0403 

66. GO:50794: regulation 1556 10.36 55 13.1 0.0405 
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of cellular process 

67. GO:42828: response 

to pathogen 

47 0.313 4 0.952 0.0418 

68. GO:9072: aromatic 

amino acid family 

metabolism 

91 0.606 6 1.429 0.0421 

Biotic and abiotic stress-related categories are highlighted.                                                                      

Appendix 15.  Selected gene ontologies showing gene enrichment from 
spraing-free vs. healthy volcano plot. 

S.No. Category Genes in 

Category 

% of Genes 

in Category 

Genes in 

List in 

Category 

% of Genes 

in List in 

Category 

p-Value 

1. GO:19684: 

photosynthesis, light 

reaction 

83 0.553 11 3.143 3.39E-06 

2. GO:15979: 

photosynthesis 

217 1.445 17 4.857 1.35E-05 

3. GO:9765: 

photosynthesis light 

harvesting 

66 0.439 9 2.571 2.10E-05 

4. GO:7165: signal 

transduction 

502 3.342 24 6.857 0.000726 

5. GO:19222: regulation 

of metabolism 

1494 9.947 52 14.86 0.00211 

6. GO:50789: regulation 

of biological process 

1715 11.42 58 16.57 0.00222 

7. GO:31323: regulation 

of cellular metabolism 

1465 9.754 51 14.57 0.00232 

8. GO:6791: sulfur 

utilization 

12 0.0799 3 0.857 0.00236 

9. GO:50794: regulation 

of cellular process 

1556 10.36 53 15.14 0.00301 

10. GO:19419: sulfate 

reduction 

4 0.0266 2 0.571 0.00315 

11. GO:19421: sulfate 

reduction, APS 

pathway 

4 0.0266 2 0.571 0.00315 

12. GO:7154: cell 

communication 

567 3.775 24 6.857 0.00364 

13. GO:19219: regulation 

of nucleobase, 

nucleoside, nucleotide 

and nucleic acid 

metabolism 

1426 9.495 49 14 0.00367 
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14. GO:45449: regulation 

of transcription 

1423 9.475 48 13.71 0.00573 

15. GO:50791: regulation 

of physiological 

process 

1577 10.5 52 14.86 0.00631 

16. GO:45454: cell redox 

homeostasis 

146 0.972 9 2.571 0.00724 

17. GO:51244: regulation 

of cellular 

physiological process 

1552 10.33 51 14.57 0.00729 

18. GO:6350: transcription 1524 10.15 50 14.29 0.00811 

19. GO:4: biological 

process unknown 

1200 7.99 41 11.71 0.00855 

20. GO:42549: 

photosystem II 

stabilization 

7 0.0466 2 0.571 0.0105 

21. GO:18106: peptidyl-

histidine 

phosphorylation 

39 0.26 4 1.143 0.0125 

22. GO:19725: cell 

homeostasis 

160 1.065 9 2.571 0.0128 

23. GO:6979: response to 

oxidative stress 

161 1.072 9 2.571 0.0132 

24. GO:9966: regulation of 

signal transduction 

8 0.0533 2 0.571 0.0138 

25. GO:18202: peptidyl-

histidine modification 

41 0.273 4 1.143 0.0149 

26. GO:43467: regulation 

of generation of 

precursor metabolites 

and energy 

9 0.0599 2 0.571 0.0175 

27. GO:42548: regulation 

of photosynthesis, light 

reaction 

9 0.0599 2 0.571 0.0175 

28. GO:10109: regulation 

of photosynthesis 

9 0.0599 2 0.571 0.0175 

29. GO:6355: regulation of 

transcription, DNA-

dependent 

934 6.219 32 9.143 0.0186 

30. GO:51052: regulation 

of DNA metabolism 

1 0.00666 1 0.286 0.0233 

31. GO:6275: regulation of 

DNA replication 

1 0.00666 1 0.286 0.0233 

32. GO:9627: systemic 

acquired resistance 

1 0.00666 1 0.286 0.0233 

33. GO:42592: 179 1.192 9 2.571 0.0246 
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homeostasis 

34. GO:6351: 

transcription, DNA-

dependent 

958 6.379 32 9.143 0.0255 

35. GO:7200: G-protein 

signaling, coupled to 

IP3 second messenger 

(phospholipase C 

activating) 

29 0.193 3 0.857 0.0293 

36. GO:7205: protein 

kinase C activation 

29 0.193 3 0.857 0.0293 

37. GO:19932: second-

messenger-mediated 

signaling 

30 0.2 3 0.857 0.032 

38. GO:48015: 

phosphoinositide-

mediated signaling 

30 0.2 3 0.857 0.032 

39. GO:6800: oxygen and 

reactive oxygen 

species metabolism 

189 1.258 9 2.571 0.0332 

40. GO:6108: malate 

metabolism 

31 0.206 3 0.857 0.0348 

41. GO:30259: lipid 

glycosylation 

13 0.0866 2 0.571 0.0357 

42. GO:30258: lipid 

modification 

14 0.0932 2 0.571 0.041 

43. GO:6869: lipid 

transport 

83 0.553 5 1.429 0.0444 

44. GO:18193: peptidyl-

amino acid 

modification 

58 0.386 4 1.143 0.046 

45. GO:9245: lipid A 

biosynthesis 

2 0.0133 1 0.286 0.0461 

46. GO:46493: lipid A 

metabolism 

2 0.0133 1 0.286 0.0461 

47. GO:9615: response to 

virus 

2 0.0133 1 0.286 0.0461 

Biotic and abiotic stress-related categories are highlighted. 
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Appendix 16.  List of genes in GO: 42828 (Response to pathogen) 

S.No. 

 

Microarray 

probe  ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF vs.       

H 

S vs.    

SF 

1.  MICRO.3309.

C2_1096 

PGSC0003DMT

400071827 

Unnamed protein product [Arabidopsis 

thaliana] 

---- 76.2 

2.  MICRO.16756.

C1_515 

PGSC0003DMT

400013860 

Unknown protein [Arabidopsis thaliana] ---- 26.1 

3.  MICRO.10309.

C2_1776 

PGSC0003DMT

400039281 

4-coumarate-CoA ligase/ fatty-acyl-CoA 

synthase [Arabidopsis thaliana] 

---- 17.1 

4.  SDBN002J05u.

scf_220 

PGSC0003DMT

400046161 

SAR8.2 protein precursor [Capsicum 

annuum] 

2.7 12.2 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 

 

Appendix 17.  List of genes in GO: 302 (Response to reactive oxygen species) 

 S.No.     

 

Microarray 

probe  ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF vs.       

H 

S vs.    

SF 

1.  MICRO.14166.

C1_1246 

PGSC0003DMT

400001375 

peroxidase [Arabidopsis thaliana] ---- 4.8 

2.  MICRO.3508.

C7_686 

PGSC0003DMT

400057522 

Suberization-associated anionic 

peroxidase precursor (POPA) 

---- 9.6 

3.  MICRO.14166.

C2_1271 

PGSC0003DMT

400001375 

peroxidase [Arabidopsis thaliana] ---- 4.4 

4.  MICRO.3508.

C1_978 

PGSC0003DMT

400057521 

Suberization-associated anionic 

peroxidase 2 precursor (TMP2) 

---- 36.1 

5.  MICRO.3508.

C3_976 

PGSC0003DMT

400057521 

Suberization-associated anionic 

peroxidase 2 precursor (TMP2) 

---- 48.7 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 
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Appendix 18.  List of genes in GO: 6952 (Defense response) 

S.No. 

 

Microarray 

probe ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF Vs.       

H 

S Vs.    

SF 

1.  MICRO.13961.

C1_665 

PGSC0003DMT

400011604 

Pathogenesis-related protein STH-21 0 256.5 

2.  MICRO.3309.

C2_1096 

PGSC0003DMT

400071827 

Unnamed protein product [Arabidopsis 

thaliana] 

0 76.2 

3.  MICRO.1770.

C4_547 

PGSC0003DMT

400073771 

Similar to pathogenesis-related protein 

STH-2 [Solanum lycopersicum] 

0 69.3 

4.  MICRO.1770.

C3_645 

PGSC0003DMT

400093880 

TSI-1 protein [Solanum lycopersicum] 2.3 59.8 

5.  MICRO.8733.

C3_797 

PGSC0003DMT

400041449 

Major latex-like protein [Prunus 

persica] 

0 49.4 

6.  bf_acdcxxxx_0

042g01.t3m.scf

_532 

PGSC0003DMT

400003936 

TSI-1 protein [Solanum lycopersicum] 2.3 31.0 

7.  MICRO.16756.

C1_515 

PGSC0003DMT

400013860 

Unknown protein [Arabidopsis thaliana] 0 26.1 

8.  MICRO.665.C

1_374 

PGSC0003DMT

400004791 

Nonspecific lipid-transfer protein 1 

precursor (LTP 1) (Pathogenesis-related 

protein 14) (PR-14) 

0 17.1 

9.  MICRO.10309.

C2_1776 

PGSC0003DMT

400039281 

4-coumarate-CoA ligase/ fatty-acyl-CoA 

synthase [Arabidopsis thaliana] 

0 17.1 

10.  MICRO.4230.

C1_823 

PGSC0003DMT

400000011 

Acidic 27 kDa endochitinase precursor 0 16.4 

11.  SDBN002J05u.

scf_220 

PGSC0003DMT

400046161 

SAR8.2 protein precursor [Capsicum 

annuum] 

2.7 12.2 

12.  MICRO.592.C

9_743 

PGSC0003DMT

400005546 

Probable glutathione S-transferase 

(Pathogenesis-related protein 1) 

0 10.3 

13.  MICRO.11296.

C1_1048 

PGSC0003DMT

400050016 

Wound-induced protein WIN2 precursor 0 8.2 

14.  MICRO.2909.

C4_1666 

PGSC0003DMT

400076209 

Pleiotropic drug resistance protein 1 

(NpPDR1) 

0 7.1 

15.  MICRO.12677.

C1_586 

PGSC0003DMT

400075885 

Putative disease resistance protein, 

identical [Solanum tuberosum] 

0 5.1 

16.  MICRO.11103.

C1_970 

PGSC0003DMT

400007611 

RGC1 [Solanum tuberosum] 0 3.9 

17.  SSBN002P12u.

scf_502 

PGSC0003DMT

400083472 

bacterial spot disease resistance protein 

4 [Lycopersicon esculentum] 

0 3.5 

18.  SSBN003C03u

.scf_372 

PGSC0003DMT

400024927 

TMV resistance protein N, putative 

[Solanum demissum] 

0 3.3 

19.  STDB005N18uPGSC0003DMT NB-ARC domain containing protein 0 3.2 
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.scf_1 400092338 [Solanum demissum] 

20.  STMHX57TV_

614 

PGSC0003DMT

400083267 

late blight resistance protein-like 

[Solanum tuberosum] 

0 3.1 

21.  bf_arrayxxx_0

047d07.t7m.scf

_567 

PGSC0003DMT

400075747 

Hero resistance protein 2 homologue 

[Solanum lycopersicum] 

0 2.7 

22.  STMCK68TV_

327 

PGSC0003DMT

400078333 

disease resistance protein BS2 

[Capsicum chacoense] 

0 2.3 

23.  bf_ivrootxx_00

14f05.t3m.scf_

416 

PGSC0003DMT

400083276 

TMV resistance protein N, putative 

[Solanum demissum] 

0 2.2 

24.  MICRO.7950.

C1_1005 

PGSC0003DMT

400041041 

NBS-LRR protein [Solanum acaule] 2.7 2.2 

25.  bf_mxlfxxxx_0

010f06.t3m.scf

_257 

PGSC0003DMT

400080822 

bacterial spot disease resistance protein 

4 [Lycopersicon esculentum] 

0 2.0 

26.  bf_suspxxxx_0

008G12.t3m.sc

f_624 

PGSC0003DMT

400056338 

NL27 [Solanum tuberosum] 0 2.0 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 

Appendix 19.  List of genes in GO: 8219 (cell-death) 

S.No. 

 

Microarray 

probe ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF vs.       

H 

S vs.    

SF 

1.  MICRO.3309.

C2_1096 

PGSC0003DMT

400071827 

Unnamed protein product [Arabidopsis 

thaliana] 

0 76.2 

2.  STDB005N18u

.scf_1 

PGSC0003DMT

400092338 

NB-ARC domain containing protein 

[Solanum demissum] 

0 3.2 

3.  STMCK68TV_

327 

PGSC0003DMT

400078333 

Disease resistance protein BS2 

[Capsicum chacoense] 

0 2.3 

4.  bf_ivrootxx_00

14f05.t3m.scf_

416 

PGSC0003DMT

400083276 

TMV resistance protein N, putative 

[Solanum demissum] 

0 2.2 

5.  bf_suspxxxx_0

008G12.t3m.sc

f_624 

PGSC0003DMT

400056338 

Disease resistance protein N  

(NL27 [Solanum tuberosum]. 

 

0 2.0 

6.  bf_arrayxxx_0

047d07.t7m.scf

_567 

PGSC0003DMT

400075747 

Hero resistance protein 2 homologue 

[Solanum lycopersicum] 

0 2.7 

7.  MICRO.12677.

C1_586 

PGSC0003DMT

400075885 

Putative disease resistance protein, 

identical [Solanum tuberosum]. 

0 5.1 
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8.  SSBN003C03u

.scf_372 

PGSC0003DMT

400024927 

TMV resistance protein N, putative 

[Solanum demissum] 

0 3.3 

9.  MICRO.11103.

C1_970 

PGSC0003DMT

400007611 

RGC1 [Solanum tuberosum] 0 3.9 

10.  SSBN002P12u.

scf_502 

PGSC0003DMT

400083472 

Bacterial spot disease resistance protein 

4 [Lycopersicon esculentum] 

0 3.5 

11.  STMHX57TV_

614 

PGSC0003DMT

400083267 

Bacterial spot disease resistance protein 

4 [Lycopersicon esculentum] (Late 

blight resistance protein-like [Solanum 

tuberosum]) 

0 3.1 

12.  MICRO.7950.

C1_1005 

PGSC0003DMT

400041041 

NBS-LRR protein [Solanum acaule] 2.7 2.0 

13.  bf_mxlfxxxx_0

010f06.t3m.scf

_257 

PGSC0003DMT

400080822 

Bacterial spot disease resistance protein 

4 [Lycopersicon esculentum] 

0 2.0 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 

 

Appendix 20.  PAR-1c gene expression in spraing-tubers 

S.No. 

 

Microarray 

probe  ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF vs.       

H 

S vs.    

SF 

1.  POAD763TV_

514 

PGSC0003DMT

400037234 

PAR-1c [Nicotiana tabacum] ---- 171.5 

2.  MICRO.1833.

C1_689 

PGSC0003DMT

400037209 

PAR-1c [Nicotiana tabacum] ---- 393.5 

3.  POAD763TP_

860 

PGSC0003DMT

400037234 

PAR-1c [Nicotiana tabacum] ---- 18.5 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 
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Appendix 21.  SAR associated gene expression in spraing-tubers 

S.No. 

 

Microarray 

probe  ID 

PGSC 

transcript ID 

Gene annotation Fold-change of 

expression from 

microarray 

SF vs.       

H 

S vs.    

SF 

1.  STMJH65TV_

362 

PGSC0003DMT

400032096 

1-aminocyclopropane-1-carboxylate 

synthase [Lycopersicon esculentum] 

---- 9.5 

2.  BPLI16E1TH_

626 

PGSC0003DMT

400036081 

1-aminocyclopropane-1-carboxylate 

oxidase 2 (ACC oxidase 2) (Ethylene-

forming enzyme) (EFE) (Protein 

GTOMA) 

---- 8.3 

3.  MICRO.9261.

C1_716 

PGSC0003DMT

400032096 

1-aminocyclopropane-1-carboxylate 

synthase [Lycopersicon esculentum] 

---- 7.6 

4.  SDBN002J05u.

scf_220 

PGSC0003DMT

400046161 

SAR8.2 protein precursor [Capsicum 

annuum] 

2.7 12.2 

PGSC: Potato Gene Sequencing Consortium; S: Spraing; SF: Spraing-free; H: Healthy; (----): not 

determined. 

Appendix 22.  Primers for the qRT-PCR validation of the microarray data. 

S. 

No. 

Oligo name 

& number  

Gene annotation 

&                     

oligo sequence    

5' to 3' 

Position on 

transcript 

sequence 

(nts) 

Exon 

boundary

or target   

Primer 

length 

Tm 

(C
◦
) 

GC

% 

Optim. 

anneal. 

temp. 

(C
◦
) 

Amplicon 

size (bp) 

1.  qEf-1_fwd1 

(2323) 

 

Elongation factor 

1-alpha 

TTTGCTGTGAG

AGACATGAGGA 

232----253 1 exon 22  59.3 45.4 59.0 80bp 

2.  qEf-1_rev1 

(2324 ) 

 

Elongation factor 

1-alpha 

GTTGGCACCAG

TTGTATCTTGTT

TA 

311---287 25 58.9 40.0   

3.  qPER_fwd 

( 2329) 

 

Peroxidase 

TGTGGTGAACT

CTGCTATT 

178---196 1 to 2 19 59.0 42.1 59.0 96bp 

4.  qPER_rev 

( 2330) 

 

Peroxidase 

GATCCATCGCA

TCCATTAAC 

254---273 20 59.0 45.0   

5.  qPAR_fwd         

(2331 ) 

 

PAR-1c protein 

GCTTGAGTCTC

GCTTTACTA 

391---410 2 to 3 20  59.0 45.0 59.0 106bp 

6.  qPAR_rev       

( 2332) 

 

PAR-1c protein 

ATATACACCTT

CACCAGCAG 

477---496 20  59.0 45.0   

7.  qSP_fwd           

(2335) 

Suberization 

associated anionic 

1035---1054 3rd 

Exon 

20 59.0 55.0 59.0 95bp 
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 peroxidase 2 

GATGGGGAACT

TGCCTACCT 

8.  qSp_rev         

( 2336) 

 

Suberization 

associated anionic 

peroxidase 2 

CCTTTCACATA

GATGCCACAGA 

1129---1108 22 58.1 45.4   

9.  qGST_fwd           

( 2343) 

 

Glutathione-S-

transferase 

AGGAGAGGAA

CAAGAGAAAG

CA 

342------363 1 to 2 22 59.0 45.45 59.0 148bp 

10.  qGST_rev         

(2344) 

 

Glutathione-S-

transferase 

AACTCCAAGCC

AAATTGCCA 

470-----489 20 58.5 45.00   

11.  qRBO_fwd           

(2345) 

 

Respiratory burst 

oxidase homolog 

CTCTTAGTGCT

TCTGCAAATAA 

750-----772 4 to 5 22 59.0 36.4 57.0 116bp 

12.  qRBO_rev         

(2346) 

 

Respiratory burst 

oxidase homolog 

GTTGTACAGCT

CAATGTATCC 

845-----865 21 59.0 42.9   

13.  qTRV1_fwd 

(2353 ) 

 

Tobacco Rattle 

Virus, RNA-1 

TACCAAGGGAA

TGTGTTCTA 

919---938 Replicase 20 58.0 40.0 59.0 89bp 

14.  qTRV1_rev

( 2354) 

 

Tobacco Rattle 

Virus , RNA-1 

CTCGGAACTCC

AGCTATC 

990---1007 18 58.0 55.6   

15.  qTRV2_fwd 

(2357) 

Tobacco Rattle 

Virus, RNA-2 

CAGTGCTCTTG

GTGTGAT 

249------267 CP 18 59.0 50.0 59.0 114bp 

16.  qTRV2_rev 

(2358) 

Tobacco Rattle 

Virus, RNA-2 

GTCGTAACCGT

TGTGTTTG 

344--------362 19 59.0 47.4 
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Appendix 23.  Melt-curve (a) and standard-curve (b) analysis of the primer-set 
for the PER, PAR-1c, SP, GST, RBO, TRV1 and Ef-1 α genes of potato. 

(a) Melt-curve analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        PER 

Tm: 77.81C◦ 

        PAR-1c 

Tm: 77.06C◦ 

        SP 

Tm: 78.99C◦ 

      Ef-1 α 

Tm: 77. 2C◦ 

      RBO 

Tm: 76. 26C◦ 

        GST 

Tm: 75.31 C◦ 

      TRV1 

Tm: 77.58 C◦ 
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(b) Standard-curve analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y-inter: Y-intercept; R2: correlation coefficient or regression line coefficient; EFF %: amplification 

efficiency. 

 

                                

   

 

    

 

   

 

 

 Target: GST ;     Slope:  -3.296  

  Y-inter: 35.682;       R
2 
: 0.997               

           EFF % : 101.081        

 

 

Target: TRV1; Slope:  -3.308 

Y-inter: 27.797;      R
2 
: 0.997               

          EFF % : 100.563      

 

 

 Target: PER;     Slope:  -3.206 

 Y-inter: 30.133;       R
2 
: 0.994              

             EFF %: 105.081        

 

 

 Target: PAR-1c;  Slope:  -3.224 

  Y-inter: 30.485;        R
2 
: 0.998               

             EFF %: 104.251        

 

 

 Target: SP;         Slope:  -2.96 

  Y-inter: 27.479;      R
2 
: 

0.995              

                EFF %: 117.69        

 

 

 Target: Ef-1α;    Slope:  -2.979 

  Y-inter: 34.632;       R
2 
: 0.982             

                EFF%: 116.595        

 

 

 Target: RBO;    Slope:  -3.286 

  Y-inter: 35.045;      R
2 
: 0.986             

                  EFF %: 101.534        
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