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Abstract 

Accurate regulation of gene transcription is essential for organismal survival, and is 

orchestrated by myriad transcription factors and cofactors (TFs). Little is known about how 

the intrinsic activity of TFs is controlled. Recent work has indicated that the selective 

proteolysis of TFs provided by the ubiquitin-proteasome system (UPS) plays an important 

role in stimulating gene expression through a ‘destruction-activation’ mechanism, whereby 

the degradation of a ‘used’ TF is thought to stimulate further ‘fresh’ TF binding and 

reinitiate gene transcription. TFs are targeted to the proteasome via E3 ligases that mediate 

the addition of ubiquitin molecules to form a chain on the substrate TF. These polyubiquitin 

chains may be extended by E4 ligases, which recognize substrates with four or more 

ubiquitin molecules, amplifying substrate targeting to the proteasome.  

In plants the immune response to many pathogens is regulated by the hormone 

salicylic acid (SA), which operates through the transcriptional coactivator NPR1 to induce 

large scale changes in gene expression. Proteasome-mediated degradation of NPR1 appears 

to be required for the activation of its target genes. Mutation of the E3 ligase prevents 

ubiquitination of NPR1, leading its to stabilisation and suppression of transcription. Chapter 

3 of this work identifies the first E4 ligase, UBE4, involved in NPR1 regulation. Mutation of 

UBE4 resulted in reduced capacity to polyubiquitinate substrates and stabilized NPR1. In 

contrast to E3 ligase mutants, however, mutant ube4 plants displayed increased NPR1 

target gene expression. These results suggest that initial ubiquitination of NPR1 may 

stimulate its ability to initiate transcription and that subsequent ubiquitin chain elongation 

limits NPR1 activity by targeting it to the proteasome.  

Chapter 4 describes a ubiquitin-protein-ligase (UPL) which is both novel and crucial 

to the SA-mediated defence response. Mutation of this UPL leads a large reduction in total 
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cellular polyubiquitinated proteins and was associated with strongly enhanced disease 

susceptibility. Gene expression profiling of upl mutants revealed an intimate connection 

between cellular polyubiquitination and appropriate activation of SA-responsive gene 

expression programmes.  

Destruction activation was first described in yeast and is required for the regulation 

of yeast amino acid synthesis TF GCN4. GCN4 requires proteasome-mediated degradation 

to induce genes involved in amino acid production. Chapter 5 investigates the role of two 

E4 ligases in GCN4 turnover. While one mutation had little effect of GCN4-mediated 

transcription a second increased basal transcriptional levels, suggesting that an E4 is 

required for the prevention of spurious GCN4-mediated transcription. 

In summary the work presented here describes cellular mechanisms by which 

global and substrate-specific polyubiqutination are vital to regulation of gene transcription. 
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Lay summary 

Living organisms must respond quickly and accurately to many developmental and 

environmental cues in order to survive. To produce the right response to a specific cue, the 

correct genes must be expressed at the appropriate time and level. Control over gene 

expression is provided by specific proteins, called transcription factors (TFs), but what 

regulates TF activity is poorly understood. One mechanism of controlling TFs is through 

their regulated destruction. In this process the TFs are repeatedly tagged with a molecule 

called ubiquitin by enzymes known as ubiquitin-ligases. Ubiquitin tagging acts as a signal for 

TF destruction by the proteasome, which functions as the cell’s trash-can that shreds 

unwanted proteins and recycles their building blocks. This work investigates how aspects of 

the tagging process of TFs by ubiquitin ligases alter the activity of TFs. Results indicate that 

the  ubiquitin-ligases which act on a single TF or on total cellular ubiquitination levels can 

influence specific gene expression programmes, thereby regulating an organism’s response 

to internal or external stresses.  

  



v 
 

Declaration 

I declare that the work presented here is my own work, unless explicitly stated and that it 

has not been submitted for a degree or a professional qualification at the University of 

Edinburgh or any other institution. 

 

 

 

James J. Furniss 

  



vi 
 

Acknowledgements 

First and foremost, I would like to thank my supervisor Dr. Steven Spoel for allowing me the 

privilege to undertake my project within his lab and for the superb help and guidance he 

has provided since its inception. 

I also like to thank Sophie, Michael, Heather, Ellie, Gerben and Louise for providing such 

great atmosphere to work in, as well as much needed assistance and advice over the course 

of this project. 

Thanks to the undergraduates, Lorna Jackson, Catriona McIntosh and Master’s student 

Aurora del Vitto, who helped me with lab work. 

I am grateful to the Biotechnology and Biological Sciences Research Council (BBSRC) for 

providing the funding for my project and my living costs. 

Last but not least, I would like to thank my family, especially my wife Emily and son Ewan 

for giving me so much love and support throughout my time at University. 

  



vii 
 

Table of contents  

Abstract ........................................................................................................................ ii 

Lay summary ............................................................................................................... iv 

Declaration ................................................................................................................... v 

Acknowledgements ..................................................................................................... vi 

List of figures ............................................................................................................... xii 

List of tables ............................................................................................................... xvi 

List of abbreviations .................................................................................................. xvii 

Chapter 1: Introduction................................................................................................ 1 

1.1. The ubiquitin-proteasome system ........................................................................ 1 

1.1.1. The ubiquitination cascade ................................................................................ 1 

1.1.2. The proteasome ................................................................................................. 4 

1.2. Salicylic acid and its role in systemic acquired resistance .................................... 7 

1.3. NPR1, the master regulator of SA-dependent gene expression ......................... 10 

1.4. Ubiquitin-mediated regulation of transcription ................................................. 13 

1.4.1. Ubiquitin-mediated suppression of SA-responsive gene transcription ........... 13 

1.4.2. Ubiquitin-mediated activation of SA-responsive gene transcription .............. 15 

1.5. Aims and Objectives ............................................................................................ 19 

Chapter 2: Methods ................................................................................................... 21 

2.1. Plant growth conditions ...................................................................................... 21 



viii 
 

2.2. Plant genotypes ................................................................................................... 22 

2.3. DNA extraction (Plants) ....................................................................................... 22 

2.4. RNA extraction (Plants) ....................................................................................... 23 

2.5. cDNA synthesis .................................................................................................... 23 

2.6. RT-PCR ................................................................................................................. 24 

2.7. qPCR .................................................................................................................... 25 

2.8. Enhanced Disease Resistance (EDR) test ............................................................ 26 

2.9. Enhanced Disease Susceptibility (EDS) test ........................................................ 26 

2.10. Crude protein extraction and Western blots .................................................... 27 

2.11. Ubiquitinated protein pull-down assays ........................................................... 27 

2.12. Recombinant genes ........................................................................................... 28 

2.13. UBE4 localisation ............................................................................................... 28 

2.14. Co-immunoprecipitation ................................................................................... 29 

2.15. RNA-seq ............................................................................................................. 29 

2.16. Cis-promoter analysis of UPL3 dependent genes ............................................. 30 

2.17. Yeast deletion mutants ..................................................................................... 30 

2.18. DNA extraction (Yeast) ...................................................................................... 31 

2.19 RNA extraction (Yeast) ....................................................................................... 31 

2.20. Protein extraction (Yeast) ................................................................................. 32 

2.21. Amino acid starvation assays (Yeast) ................................................................ 32 



ix 
 

2.22. GCN4 Myc-tagging ............................................................................................ 32 

2.23. Yeast transformation ........................................................................................ 33 

2.24. GCN4 turnover .................................................................................................. 34 

2.25. Amino acid induction with proteasome inhibitor ............................................. 34 

Chapter 3: Processive ubiquitination controls NPR1 coactivator activity in plant 

immunity .................................................................................................................... 35 

3.1. Introduction ........................................................................................................ 35 

3.2. Results ................................................................................................................. 39 

3.2.1. Arabidopsis UBE4 is homologous to the yeast E4 ligase UFD2 ........................ 39 

3.2.2. Isolation of ube4 knock-out mutant plants ...................................................... 42 

3.2.3. Mutant ube4-2 plants exhibit autoimmunity .................................................. 44 

3.2.4. Autoimmunity in ube4-2 mutants is dependent on SA and the transcription 

coactivator NPR1 ........................................................................................................ 47 

3.2.5. UBE4 localizes to both the nucleus and cytoplasm ......................................... 52 

3.2.6. UBE4 is a ubiquitin ligase ................................................................................. 54 

3.2.7. Mutation of UBE4 stabilises NPR1 coactivator ................................................ 56 

3.2.8. UBE4 functions as a ubiquitin ligase for NPR1 ................................................. 57 

3.2.9. UBE4 suppresses transcriptional activity of NPR1 ........................................... 60 

3.2.10. The ubiquitin ligases CUL3 and UBE4 have opposing activities in SA-

dependent gene expression ....................................................................................... 61 



x 
 

3.2.11. The ube4-2 mutant uncouples NPR1 coactivator activity from proteasome-

mediated turnover ..................................................................................................... 63 

3.3. Discussion ............................................................................................................ 65 

Chapter 4: Discovery and characterisation of a novel ubiquitin ligase crucial to SA-

dependent immunity ................................................................................................. 71 

4.1. Introduction ........................................................................................................ 71 

4.2. Results ................................................................................................................. 74 

4.2.1. Ubiquitin Protein Ligases are putative homologs of the yeast E4 ligase HUL5 74 

4.2.2. Phenotypes of upl mutants .............................................................................. 76 

4.2.3. UPL3 is a ubiquitin ligase required to maintain total cellular ubiquitination 

levels........................................................................................................................... 78 

4.2.4. Salicylic acid does not induce immune gene expression in upl3-1 mutants ... 83 

4.2.5. UPL mutants display wild type responses to proteasome inhibition .............. 85 

4.2.6. The upl3 upl4 double mutant has a similar transcriptional profile to upl3-1 .. 88 

4.2.7. Mutation of UPL3 or UPL4, but not UPL6 and UPL7 alters disease resistance 90 

4.2.8. Basal immune responses are compromised in upl3 and the upl3 upl4 double 

mutant ........................................................................................................................ 93 

4.2.9. UPL3 is required for correct regulation of the SA-dependent transcriptome . 96 

4.2.10. UPL3-dependent gene expression also requires NPR1................................ 102 

4.2.11. Promoter analysis reveals UPL3 may target WRKY genes ........................... 103 



xi 
 

4.3. Discussion .......................................................................................................... 109 

Chapter 5: Investigation into the role of two E4 ligases in transcription initiation in 

yeast ......................................................................................................................... 116 

5.1. Introduction ...................................................................................................... 116 

5.2. Results ............................................................................................................... 119 

5.2.1. Deletion of UFD2 results in increased basal levels of GCN4-13Myc .............. 119 

5.2.2. Deletion of UFD2 fails to prevent turnover of GCN4-13-Myc ....................... 120 

5.2.3. Deletion of HUL5 but not UFD2 increases basal levels of GCN4 target genes

 .................................................................................................................................. 122 

5.3. Discussion .......................................................................................................... 127 

Chapter 6: General Discussion ................................................................................. 130 

6.1. Conclusions ....................................................................................................... 137 

6.2. Impact ............................................................................................................... 138 

Appendix .................................................................................................................. 139 

A.3.1. Alignments of Arabidopsis U-box proteins .................................................... 139 

Bibliography ............................................................................................................. 141 

Supplemental (CD) ................................................................................................... 153 

 

  



xii 
 

List of figures 

Figure 1.1: The ubiquitination pathway. .................................................................................. 3 

Figure 1.2: Structure of the 26S proteasome. ......................................................................... 6 

Figure 1.3: Proteasome-mediated activator turnover activates transcription. ..................... 17 

 

Figure 3.1: Arabidopsis UBE4 is a structural homologue of S.c.UFD2. .................................. 41 

Figure 3.2: SAIL insertion knockout of UBE4 leads to altered growth morphology. ............. 43 

Figure 3.3: Knockout of UBE4 leads to increased basal levels of SA-dependent immune 

response genes. ..................................................................................................................... 44 

Figure 3.4: Mutant ube4-2 plants exhibit enhanced basal disease resistance. ..................... 46 

Figure 3.5: Mutant ube4-2 plants display increased basal immune gene transcription that is 

dependent on SA signalling. ................................................................................................... 47 

Figure 3.6: UBE4 requires SA to maintain basal immune defences. ...................................... 49 

Figure 3.7: Mutant ube4-2 plants exhibit increased basal immune gene transcription that is 

dependent on SA-responsive NPR1 coactivator. ................................................................... 50 

Figure 3.8: UBE4 requires the SA master regulator NPR1 to maintain basal immune 

defences. ................................................................................................................................ 51 

Figure 3.9: YFP-UBE4 is localised to the nucleus and cytoplasm. .......................................... 53 

Figure 3.10: UBE4 is a ubiquitin ligase that acts upon the ubiquitination model substrate 

RPN10. .................................................................................................................................... 55 

Figure 3.11: Knock-out of UBE4 leads to stabilisation of NPR1-GFP. .................................... 56 

Figure 3.12: Mutant ube4-2 plants have decreased levels of polyubiquitinated NPR1-GFP. 58 

Figure 3.13: Pull-down of ubiquitinated protein using TUBE and probing with α-GFP 

confirms in ube4-2 NPR1-GFP has lower poly-ubiquitination levels. .................................... 59 

Figure 3.14: Increased SA-induced defence gene expression is observed in ube4-2. ........... 60 



xiii 
 

Figure 3.15: Mutation of the E4 ligase UBE4 has the opposite effect on NPR1 target gene 

transcription as the E3 ligase mutant cul3. ............................................................................ 62 

Figure 3.16: The ube4-2 mutant uncouples NPR1-dependent gene transcription from 

proteasome activity. .............................................................................................................. 64 

 

Figure 4.1: Domain structure of UPL proteins ....................................................................... 75 

Figure 4.2: All T-DNA insertion alleles have the target gene knocked-out except upl6-2. .... 77 

Figure 4.3: Morphology of T-DNA insertion mutants ............................................................ 78 

Figure 4.4: UPL3 plays a role in global ubiquitination and the specific ubiquitination of 

proteasome subunit RPN10. .................................................................................................. 79 

Figure 4.5: The double knockout upl3 upl4 has reduced global and RPN10-specific 

polyubiquitination. ................................................................................................................. 80 

Figure 4.6: UPL6 plays a minor role in global cellular and RPN10-specific polyubiquitination.

 ............................................................................................................................................... 81 

Figure 4.7: UPL7 plays a minor role in global cellular and RPN10-specific polyubiquitination.

 ............................................................................................................................................... 82 

Figure 4.8: SA-induced immune gene expression is impaired in upl3-1 mutants. ................ 84 

Figure 4.9: SA-responsive gene expression in upl3 and upl4 mutants requires proteasome 

activity. ................................................................................................................................... 86 

Figure 4.10: SA-responsive gene expression in upl6 and upl7 mutants requires proteasome 

activity. ................................................................................................................................... 87 

Figure 4.11: Knockout of both UPL3 and UPL4 prevent correct expression of PR genes. ..... 89 

Figure 4.12: The SA-mediated defence response against a virulent pathogen is 

compromised in upl3-1. ......................................................................................................... 91 

Figure 4.13: The upl6 and upl7 mutants have wild type disease resistance responses. ....... 92 



xiv 
 

Figure 4.14: Disease susceptibility is increased in upl3-1 single and upl3 upl4 double 

mutants .................................................................................................................................. 94 

Figure 4.15: The upl6 and upl7 mutants do not have significantly altered disease resistance.

 ............................................................................................................................................... 95 

Figure 4.16: SA treatment activates fewer genes with significant fold change in upl3-1. .... 97 

Figure 4.17: SA treatment induces larger numbers of genes and changes in fold expression 

in wild type than upl3-1. ........................................................................................................ 98 

Figure 4.18: Distribution of significant differential gene expression changes in response to 

SA. ........................................................................................................................................ 100 

Figure 4.19: Mutation of UPL3 prevents correct level of gene expression following induction 

with SA. ................................................................................................................................ 101 

Figure 4.20: SA induced UPL3-dependent gene expression also requires NPR1. ................ 103 

Figure 4.21: The W-box is the most prevalent TF binding motif domain in SA-induced genes 

that are down-regulated in upl3 versus wild type. .............................................................. 105 

Figure 4.22: The WRKY binding site is over-represented in SA-induced genes that are down-

regulated in upl3 versus wild type. ...................................................................................... 106 

Figure 4.23: The E-box variant CACAGT and the related G-box are prevalent TF binding 

motifs in SA-repressed genes that are up-regulated in upl3 versus wild type. ................... 107 

Figure 4.24: The CACATG variant of the E-box (CANNTG) is over-represented in SA-

repressed genes that are up-regulated in upl3 versus wild type. ....................................... 108 

 

Figure 5.1: Deletion of UFD2 results in increased basal levels of GCN4-13Myc. ................. 120 

Figure 5.2: GCN4-13Myc protein is degraded during the GAAC response. ......................... 121 

Figure 5.3: The E4 ligase mutant ufd2Δ does not prevent turnover of GCN4-13Myc in 

starvation conditions. .......................................................................................................... 121 



xv 
 

Figure 5.4: Removal of leucine from the media leads to activation of genes in the amino 

acid synthesis pathway. ....................................................................................................... 122 

Figure 5.5: Deletion of HUL5 leads to increased basal transcription and reduced the GAAC 

response. .............................................................................................................................. 124 

Figure 5.6: E4 ligase mutants have a similar response to proteasome inhibition as the wild 

type. ..................................................................................................................................... 126 

 

  



xvi 
 

List of tables  

Table 2.1: T-DNA insertion mutant lines used in this study................................................... 22 

Table 2.2 Primers used for RT-PCR to confirm knockout of specific genes. .......................... 24 

Table 2.3: List of qPCR primers used in this study ................................................................. 25 

Table 2.4: Primers used to clone UBE4 from cDNA ............................................................... 28 

Table 2.5: Euroscarf yeast accessions used in this study ....................................................... 31 

Table 2.6: Primers used to clone the 13-Myc construct used to tag GCN4. .......................... 33 

Table 2.7: Primers used to confirm presence of GCN4 -13Myc in transformed yeast cells. . 33 

 

 

  



xvii 
 

List of abbreviations  

26S 26S proteasome 

AAA ATPases Associated with diverse cellular Activities 

ACIF1 Avr9/Cf-9 induced F-box 1 

ACT Aspartate kinase, Chorismate mutase, TyrA domain 

ACT1 Actin 1 

ADH5 Alcohol Dehydrogenase 5 

ANAC Arabidopsis NAC-containing protein  

ARG1 Arginine requiring 1 

Arm Armadillo domain 

as-1 Activation Sequence 1 

ASN1 Asparagine requiring 1 

At Arabidopsis thaliana 

ATP Adenosine Tri-Phosphate 

AZI1 Azelaic acid Induced 1 

BAH Benzoic Acid Hypersenstive 1 - dominant 

BAK1 BRI1-associated receptor kinase 1 

bHLH basic Helix-Loop-Helix 

BIK1 Botrytis Induced Kinase 1 

BRCA2A Breast Cancer 2-like 2A 

BTB Bric-à-brac, Tramtrack and Broad complex 

C- Carboxyl 

CBP CREB-binding protein 

CBP60 Calmodulin-Binding protein-like 60  

CDC4 Cell Division Cycle 4 

CDC48 Cell Division Cycle 48 

CHX Cycloheximide 

CP 20S Core Protease 

CPA2 Carbamyl phosphate synthetase A 2 

CPR1 Constitutive expresser of PR genes 1 

CRL Cullin Ring Ligase 

CUL3 Cullin 3 

DIR1 Defective in Induced Resistance 1 

DMSO Dimethyl Sulphoxide 

DNA Deoxyribo-Nucleic Acid 

DUB Deubiquitinase 

DTT Dithiothreitol 

EDS5 Enhanced Disease Susceptibility 5 

EDTA Ethylene-Diamine-Tetra-Acetic acid 

EGL3 Enhancer of GL3 

EIL1 Ethylene Insensitive 3-Like 

EIN3 Ethylene Insensitive 3 

ERα Estrogen Receptor α 



xviii 
 

Fbw7 F-box and WD40 domain containing protein 7 

FPKM Fragments Per Kilobase per million Mapped reads 

FLS2 Flagellin Sensitive 2 

G3P Glyercol-3-Phosphate  

GAAC General Amino Acid Control 

GAL4 Galactose metabolism 4 

GCN4 General Control Non-inducible 4 

GFP Green Fluorescent Protein 

GL3 Glabrous 3 

GST Glutathione-S-Transferase 

HECT Homologous to E6-AP Carboxyl Terminus 

HIS4 Histidine requiring 4 

HR Hypersensitive Response 

HUD Hormone Up at Dawn 

HUL5 HECT Ubiquitin Ligase 5 

IB Immuno-blot 

IC Initiation Complex 

ICS1 Isochorismate Synthase 1 

IP Immuno-precipitation 

IQ Isoleucine-glutamine motif 

JA Jasmonic Acid 

K48 Lysine 48 

Lys Lysine 

MATE Multi-drug And Toxin Extrusion 

MDM2 Mouse Double-Minute 2 

MeSA Methyl-Salicylic Acid 

MES 2-(N-morpholino)ethanesulfonic acid 

MET30 Methionine requiring 30 

MS Murashige and Skoog 

MG132 Z-Leu-Leu-Leu-al 

N- Amino 

NEM N-ethylmaleimide 

NIMIN NIM1-Interacting 1 

NLR Nucleotide-binding/Leucine-rich Repeat 

NPR1 Non-expressor of PR genes 1 

NPR3 Non-expressor of PR genes 3 

NPR4 Non-expressor of PR genes 4 

NTD N-terminal domain 

Os Oryza sativa (Rice) 

PAL Phenylalanine Lyase 

PCD Programmed Cell Death 

PCR Polymerase Chain Reaction 

PD Pull-Down 

PHO85 Phosphate metabolism 85 



xix 
 

PHYRE2 Protein Homology/analog Recoginition Engine 2 

PMSF Phenylmethanesulfonyl flouride 

PR Pathogeneisis Related   

Pru Pleckstrin-like receptor 

Psm Pseudomonas syringae pv. maculicola  

PUB Plant U-Box 

qPCR Quantitative real-time PCR 

RAD23 Radiation sensitive 23 

RAD51D Radiation sensitive 51 D 

RIN RPM-interacting protein  

RING Really Interesting New Gene 

RNA Ribo-Nucleic Acid 

RNAP RNA polymerase  

RNA-seq RNA-sequencing 

RP 19S Regulatory Particle 

RPM1 Resistance to P. Syringae pv. Maculicola 1 

RPN Regulatory Particle Non-ATPase 

RPS2 Resistant to P. Syringae2 

RPT Regulatory Particle AAA-ATPase 

R-SMAD Receptor-activated SMAD 

RT Room Temperature 

RT-PCR Reverse Transcriptase PCR 

SA Salicylic Acid 

SABP2 Salicylic Acid-Binding Protein 2 

SAG SA O-β-glucoside  

SAGT SA glucosyltransferses  

SAIL Syngenta Arabidopsis Insertion Library 

SALK The Salk institute 

SAR Systemic Acquired Resistance 

SARD1 SAR Deficient 1 

SCF Skp, Cullin, F-box 

SDS Sodium Dodecyl Sulphate 

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide gel Electrophoresis 

SE Standard Error 

SID2 SA induction deficient 2 (a.k.a. ICS1) 

SMAD Mothers Against Decapentaplegic homolog 

SMC Structural Maintenance of Chromosome 

SMM Synthetic Minimal Media 

SNC1 Suppressor of npr1-1, Constitutive 

SNI1 Suppressor of npr1-1, Inducible  

SRb10 Suppressor of SNf1 10  

SRC-3 Steroid Receptor Coactivator-3  

SSN2 Suppressor of sni-1, Inducible  

SUMO Small Ubiquitin-like Modifier 



xx 
 

TA Transcriptional Activator 

T-DNA Transfer-DNA 

TF  Transcription Factor 

TGA TGACG sequence specific binding protein 

TGA3 TGA1A-related gene 3  

TLCK N-p-Tosyl-L-Lysine Chloromethyl Ketone 

TMV Tobacco Mosaic Virus 

TPCK N-p-Tosyl-L-phenylalaninie Chloromethyl Ketone 

TUBE Tandem Ubiquitin Binding Entities 

UBE4 Ubiquitin ligase E4 

UBP6 Ubiquitin-specific Protease 6 

UBQ Ubiquitin 

UBR1 Ubiquitin protein ligase component n-Recognin 1 

UFD2 Ubiquitin Fusion Degradation 2 

UFD4 Ubiquitin Fusion Degradation 4 

UIM Ubiquitin Interaction Motif 

UPL Ubiquitin Protein Ligase 

USP14 Ubiquitin Specific Peptidase 

WRKY Tryptophan-Arginine-Lysine-Tyrosine domain containing protein 

WT Wild type 

YFP Yellow Fluorescent Protein 

 

 



1 
 

Chapter 1: Introduction 

1.1. The ubiquitin-proteasome system 

1.1.1. The ubiquitination cascade  

Accurate control of gene transcription is crucial to the viability of any organism: 

failure to regulate gene expression correctly can lead to disease and death. In eukaryotes 

the rate of gene transcription is highly dynamic and plays a key role in coordinating cellular 

development and responses to environmental signals and stresses. Cellular responsibility 

for precise gene regulation primarily falls upon an interlaced network of transcription 

factors (TFs) and cofactors. However, we know relatively little about the systems that 

regulate the activities of TFs and therefore the rate and dynamics of gene transcription. 

Recent research in this field indicates that the Ubiquitin-Proteasome System (UPS) plays an 

important role in controlling the activities of TFs (Lipford et al., 2005, Spoel et al., 2009, 

Geng et al., 2012, Vierstra, 2009, Muratani and Tansey, 2003). 

In eukaryotic cells, post-translational modification by a single or polymeric chain of 

ubiquitin modulates protein function and stability (Komander and Rape, 2012). Ubiquitin is 

a highly conserved, small protein (8.5 kDa) that is covalently attached to a target substrate 

in a multistep enzymatic pathway. First, a ubiquitin-activating E1 enzyme forms a high-

energy thioester linkage to a ubiquitin moiety, which is then passed onto an active-site 

cysteine residue of a ubiquitin-conjugating E2 enzyme. The E2 enzyme works in physical 

partnership with an E3 ligase to attach ubiquitin onto a specific lysine (Lys) ε-amino group 

within the target substrate (Smalle and Vierstra, 2004, Komander and Rape, 2012).  

E3s interact with target proteins due to the recognition of degradation motifs 

known as degrons. Within TFs a degron can overlap with the transcriptional activation 
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domain, which is the area that interacts with the general transcriptional machinery 

(Salghetti et al., 2000, Muratani and Tansey, 2003), creating a direct link between 

transcription and the UPS. Degrons can be revealed through post-translational 

modifications (e.g. phosphorylation) so substrates can signal for their degradation when the 

correct conditions are met (Ravid and Hochstrasser, 2008). 

Compared to many other eukaryotes, plant genomes encode for disproportionally 

large numbers of E3 ligases; for example, the Arabidopsis genome contains over 1400 

different predicted E3 ligase components (Vierstra, 2009), suggesting that protein 

ubiquitination plays critical roles in plant biology. E3 ligases selectively recruit substrates for 

ubiquitination and thus provide an important level of specificity to the ubiquitination 

machinery. Categorization into different classes of E3 is based on the presence of a really 

interesting new gene (RING), U-box, or homologous to E6-AP carboxyl terminus (HECT) 

domain, providing distinct ways of binding a partner E2 conjugating enzyme. In addition to 

single polypeptide E3 ligases, the modular multi-subunit family of Cullin-RING ligases (CRLs) 

plays prominent roles in protein ubiquitination. The Cullin subunit of CRLs acts as a scaffold 

to bring together the RING domain-containing protein and a variable adaptor that recruits 

the target protein (Sadanandom et al., 2012, Vierstra, 2009, Santner and Estelle, 2009). 

Conjugation of ubiquitin continues for several rounds as a chain containing the 

minimum of four ubiquitin molecules is required to signal destruction, however, the target 

protein may be passed off to an E4 ligase which continues polyubiquitination (Figure 1.1) 

(Crosas et al., 2006, Saeki et al., 2004, Koegl et al., 1999). Unlike E3 enzymes, E4 ligases do 

not recognise a specific substrate for ubiquitination; rather they target only the 

polyubiquitin chain and facilitate extension (Tu et al., 2007, Saeki et al., 2004).  Chain 

cleavage can be performed by the proteasome lid protein regulatory particle non-ATPase 
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11 (RPN11), which removes the ubiquitin before the target is degraded (Verma et al., 2002), 

allowing recycling of ubiquitin molecules.  

 

 

Figure 1.1: The ubiquitination pathway.  

A substrate protein (SUBS) destined for the UPS displays a degradation signal (Degron), which is 

recognised by an E3 ligase. Ubiquitination is achieved by ubiquitin (Ub) being activated by an E1 

before being passed to an E2 ubiquitin conjugating enzyme, the E3 mediates initial 

ubiquitination of the substrate. E4 ligases then extend the ubiquitin chain further. 

Ubiquitination can be reversed by deubiquitinases (DUbs). Modified from Geng et al. (2012). 

 

Ubiquitin contains seven lysine residues, but for “classical” proteasome-mediated 

destruction of a target substrate the ubiquitin chain is connected only through residue 

Lysine 48 (K48). Nonetheless, the remaining lysine residues can support polyubiquitination 

and chains can also be formed through the N-terminal methionine bonding to the C-

terminal glycine. These “non-classical” chains have been shown to have roles in DNA repair, 

cell cycle progression, innate immunity and inflammation (Ikeda et al., 2010). As E4 ligases 
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exhibit only limited preference for ubiquitin chain linkage type (Koegl et al., 1999, Saeki et 

al., 2004, Crosas et al., 2006, Hwang et al., 2010), it is possible that E4 ligases have as yet 

undescribed non-proteasomal associated roles.  

 

1.1.2. The proteasome 

The 26S proteasome is a barrel-shaped, ATP-dependent chambered protease 

complex containing over 30 distinct subunits with a total size of ≈ 2.5 MDa (Figure 1.2). It is 

composed of two functionally distinct and individually stable sub-complexes: the 20S core 

protease (CP) and the 19S regulatory particle (RP). Protein degradation occurs within the CP 

which comprises of two rings of seven distinct α subunits and two rings of seven distinct β 

subunits in a symmetrical arrangement (α1-7β1-7β1-7 α1-7) (Groll et al., 1997). The α rings form 

an antechamber and although their true role is unknown, they may control the passage of 

substrates into the anti-chambers created between the α and β rings. This is thought to 

hold substrates in a ‘ready-to-digest’ state, so they can rapidly enter the β chambers where 

they are destroyed by a very high concentration of peptidases (Pickart and Cohen, 2004).  

To prevent unwanted degradation of native proteins the CP pore leading to the 

proteases is gated by the N-termini of the α subunits; even when open the pore is no more 

than 2 nm across, preventing folded proteins from entering (Groll et al., 2000). In order for 

ubiquitinated substrates to be degraded they must be recognised and unfolded by the 19S 

regulatory particle, which can bind to the α rings at both ends of the CP. The RP can be 

broken down into two further segments of the lid and the base, which are connected to 

each other via a hinge mechanism provided by the RPN10 subunit (Pickart and Cohen, 

2004).  
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The lid provides target substrate recognition via the ubiquitin interaction motif 

(UIM) of RPN10 (Lander et al., 2012) and through the pleckstrin-like receptor for ubiquitin 

(Pru) domain of RPN13 (Schreiner et al., 2008, Husnjak et al., 2008). Deubiquitination of 

substrates can be performed by the lid subunit RPN11 (Verma et al., 2002). Other lid 

subunits such as RPN5 and RPN12 may provide additional substrate recognition and 

scaffold sites (Book et al., 2009, Smalle et al., 2002). Once a substrate has been detected, 

bound and deubiquitinated, it is passed from the lid to the 19S base sub-complex, of which 

the main function appears to be the unfolding of substrate proteins and feeding them 

through the pore in the α-rings. This process is driven by the ATP-dependent unfoldase 

activities of the Regulatory Particle AAA-ATPase 1-6 (RPT1-6) base subunits (Lander et al., 

2012). One of the base’s two non-ATPase proteins RPN1 may act as a docking site for the 

proteasome shuttle protein radiation sensitive 23 (RAD23) which can bind ubiquitinated 

substrates and hand them to the proteasome, facilitating orderly substrate degradation 

(Kim et al., 2004, Farmer et al., 2010). 
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Figure 1.2: Structure of the 26S proteasome.  

The proteasome consists of two main sub-complexes; the 20S core particle and the 19S 

regulatory particle. The 20S is a chambered protease formed from two rings each of α and β 

subunits and rapidly degrades polypeptides fed into it by the 19S. The 19S can be divided into 

the lid and base sections. The lid recognises, binds, and deubiquitinates target substrates. The 

base unfolds substrates and passes them to the 20S in an ATP dependent manner. The 26S and 

the 19S may also have non-proteolytic roles within the cell. RPN (Regulatory Particle Non-

ATPase), RPT (Regulatory Particle AAA-ATPase). Image reproduced from Pickart and Cohen, 

2004. 
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1.2. Salicylic acid and its role in systemic acquired resistance 

Successful plant immune responses depend on the rapid recognition of the 

invading pathogen and subsequent local and systemic transmission of signals that induce 

resistance throughout all plant tissues. Pattern recognition receptors that recognize 

conserved pathogen-associated molecular patterns represent the first line of defense, 

leading to pattern-triggered immunity (Macho and Zipfel, 2014). To subvert immune 

responses, adapted pathogens have evolved an arsenal of effector proteins that suppress 

pattern-triggered immunity. The presence of these effector proteins can be sensed by 

intracellular nucleotide-binding/leucine-rich repeat domain containing (NLR) immune 

receptors, resulting in effector-triggered immunity (van Ooijen et al., 2007, Jones and 

Dangl, 2006). Effector-triggered immunity is characterized by rapid onset of programmed 

cell death (PCD) at the site of infection, which is thought to isolate the invading pathogen. 

Following pathogen recognition, development of pattern- and effector-triggered immunity 

requires the immune signaling hormone salicylic acid (SA). Failure to accumulate SA upon 

pathogen attack results in severe disease susceptibility and inability to launch NLR receptor-

mediated PCD (Rairdan and Delaney, 2002, Delaney et al., 1994). Additionally, SA 

accumulates in tissues adjacent and distant to the site of infection where it induces 

systemic acquired resistance (SAR), a long-lasting immune response effective against a 

broad -spectrum of pathogens (Fu and Dong, 2013, Spoel and Dong, 2012).  

 SA is produced in Arabidopsis via two pathways: it is either produced from 

cinnamate by phenylalanine lyase (PAL) or through conversion of chorismate into 

isochorismate by isochorismate synthase (ICS1) after which a pyruvate lyase is responsible 

for the final SA generation step (Chen et al., 2009b). The pathway mediated by ICS1 is the 

principle pathway in plant immune responses, as ics1 mutants are only able to generate 
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approximately 10 % of wild type SA levels after pathogen infection and are highly 

susceptible to disease (Chen et al., 2009b). Generation of SA is dynamic in response to 

pathogen perception with transcriptional up-regulation of ICS1 mediated by the TFs SAR-

deficient 1 (SARD1) and its homolog calmodulin-binding protein 60 (CBP60) (Zhang et al., 

2010). Repression of ICS1 is achieved via genes involved in Jasmonic acid (JA) and ethylene 

signalling (Arabidopsis NAC-containing protein 19 (ANAC019), ANAC055, ANAC072, 

ethylene insensitive 3 (EIN3) and ethylene-insensitive 3-like 1 (EIL1)) (Bu et al., 2008, Chen 

et al., 2009a, Yoo et al., 2009, Zheng et al., 2012), indicating SA generation is a focal point 

for crosstalk between antagonistic signalling molecules. 

 SA synthesis is likely to be chloroplast localised as enhanced disease susceptibility 5 

(EDS5), a multi-drug and toxin extrusion (MATE) transporter, is also involved in SA synthesis 

and predicted to localize to the chloroplast. Moreover, ICS1 has a plastid transit peptide on 

its N-terminus suggesting that SA is made in the chloroplast and transported to the cytosol 

for modification for storage or signalling (Nawrath et al., 2002, Ishihara et al., 2008). At high 

concentration SA is toxic to plants. To prevent this, SA can be conjugated to other 

molecules to provide derivatives such as SA O-β-glucoside (SAG) and volatile methyl-SA 

(MeSA) (Park et al., 2007). SAGs are formed by the action of SA glucosyltransferses (SAGT) 

and likely provide a means of storing SA, as SA can be rapidly released via hydrolysation 

(Dean et al., 2005).  

 Salicylic acid was first implicated in disease resistance when it was shown to reduce 

the lesion size caused by tobacco mosaic virus (TMV) infection (White, 1979). SA is essential 

for SAR because plants carrying the NahG transgene, a bacterial salicylate hydroxylase, are 

unable to produce SAR (Gaffney et al., 1993, Delaney et al., 1994). Although required for 

SAR, SA is not the mobile signal within plants, as grafting experiments using rootstocks 
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unable to accumulate SA were still able to generate disease resistance in distal leaves 

(Vernooij et al., 1994). More recently MeSA was implicated as the bioactive signalling form 

of SA (Park et al., 2007). MeSA is generated via methyl-transferase activity on SA: in 

tobacco MeSA was shown to be required to activate SAR as silencing of the methyl-

transferase activity prevented full SAR induction. Furthermore, in infected leaves the SA-

binding protein 2 (SABP2), which has methyl-hydrolase activity, was shown to be inhibited 

by high levels of endogenous SA after pathogen infection, indicating a build-up of MeSA to 

promote defence activation. In systemic tissue SABP2 is then required to return MeSA into 

SA, in order to generate SAR (Park et al., 2007). In Arabidopsis knockout of methyl-

transferase did not prevent SAR, even though MeSA did not accumulate. Additionally most 

MeSA produced in SAR is lost to volatile emission, suggesting further signals are required 

within Arabidopsis (Attaran et al., 2009). Recently two further molecules have been 

implicated in the establishment of SAR; the lipid azelaic acid and glyercol-3-phosphate 

(G3P). Azelaic acid induces the expression of the lipid transfer protein, azelaic acid induced 

1 (AZI1), which has been suggested to be involved in the movement of an immune signal. 

Accordingly, application of azelaic acid leads to the production of immune response gene 

expression (Jung et al., 2009). G3P is an organo-phosphate produced by reduction of 

dihydroxoacetone phosphate by G3P-dehydrogenases and the phosphorylation of glycerol 

via a glycerol kinase. While mutation of these enzymes prevents SAR, it can be reinstated by 

exogenous application of G3P. It was subsequently discovered that G3P requires the lipid 

transfer protein, defective in induced resistance 1 (DIR1), in order to move into distal 

tissues via the symplast and promote SAR (Chanda et al., 2011). Therefore a complex of 

G3P and DIR1 could be the mobile signal for SAR in Arabidopsis (Chanda et al., 2011), but 

this does not exclude the possibility of other signal molecules being used for SAR activation 

on a plant and pathogen species-dependent basis. Regardless of the exact mechanism of 
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transduction the major function of SA is to initiate reprogramming of the transcriptome in 

challenged tissues to prioritize immune responses over other cellular functions. 

Accordingly, SA fine-tunes the activity of a network of SA-responsive transcriptional 

regulators, the concerted action of which establishes disease resistance (Moore et al., 

2011). 

 

1.3. NPR1, the master regulator of SA-dependent gene expression 

Genetic screens for SA-insensitive Arabidopsis mutants have repeatedly identified 

npr1 (non-expresser of PR genes) mutant alleles (Cao et al., 1994, Delaney et al., 1995, Shah 

et al., 1997, Glazebrook et al., 1996). NPR1 encodes a transcription coactivator that in 

resting cells forms a high molecular weight oligomer in the cytoplasm through 

intermolecular disulfide bonds between conserved cysteine residues, preventing it from 

entering the nucleus. Pathogen-induced SA accumulation triggers transient cellular redox 

changes, resulting in reduction of these disulfide bonds and release of NPR1 monomers 

(Mou et al., 2003, Tada et al., 2008). NPR1 monomer translocates to the nucleus where it 

controls the expression of over 2,200 genes in Arabidopsis (Kinkema et al., 2000, Wang et 

al., 2006). The transcriptional cascade orchestrated via NPR1 includes the involvement of 

several families of TFs. The WRKY family of TFs contains a variety of both positive and 

negative regulators of NPR1-mediated gene transcription (Pandey and Somssich, 2009, 

Eulgem and Somssich, 2007, Wang et al., 2005). WRKY transcription factors bind the W-box 

motif (T)(T)TGAC(C/T), which is over-represented in many NPR1 target genes (Maleck et al., 

2000). WRKY regulation is complicated by their overlapping functions and mutual influence 

on each other (Pandey and Somssich, 2009, Eulgem and Somssich, 2007). There are several 

WRKY genes playing key roles in the mediation of NPR1-dependent transcription: WRKY18 
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enhanced the amplitude of expression of 451 NPR1-dependent genes and its knockout 

increased disease susceptibility. Conversely, WRKY70 and its homolog WRKY54 act as 

repressors of SA biosynthesis. Because NPR1 directly stimulates expression of many WRKY 

genes a feedback loop has been proposed that shuts down SA biosynthesis after pathogen 

challenge has passed (Wang et al., 2006). WRKY70 has also been discovered to act as a 

direct repressor of NPR1. The application of SA leads to phosphorylation of Serine 55 / 

Serine 59 and sumoylation of NPR1, thereby dissociating it from WRKY70. Sumolyated NPR1 

is then phosphorylated at Serine 11 / Serine 15, which forms a signal amplification loop that 

triggers the formation of more activated NPR1. Activated NPR1 subsequently binds to the 

transcription factor TGA1A-related gene 3 (TGA3) to promote target gene expression (Saleh 

et al., 2015). WRKY58 may also act as an NPR1 repressor; wrky58 plants are resistant to 

disease at low levels of SA, suggesting it is required to prevent spurious gene activation at 

sub-optimal SA levels (Wang et al., 2006). 

 NPR1 has no intrinsic DNA binding ability and requires additional cofactors to 

promote transcription. In Arabidopsis there are ten TGA TFs, seven of which bind to NPR1. 

TGA2, TGA3, TGA5, TGA6, TGA7 bind constitutively to activation sequence 1 (as-1) regions 

in the promoters of pathogenesis related (PR) genes, however binding affinity in TGA2 and 

TGA3 is enhanced by the presence of NPR1 (Johnson et al., 2003, Zhou et al., 2000). TGA1 

and TGA4 only interact with NPR1 after SA addition. These TGA factors contain two unique 

cysteine residues that were shown to respond to changes in redox status that accompanies 

SA signalling. Consequently, SA-induced cellular reduction reduces NPR1 from an oligomeric 

to monomeric state, while also reducing TGA1 and TGA4, which allows these TGA factors to 

interact with NPR1 (Lindermayr et al., 2010, Després et al., 2000, Despres et al., 2003). 

However, TGA1 and TGA4 were shown to have little effect on SA- or pathogen-induced PR 

gene expression, but are mainly involved in basal defences (Kesarwani et al., 2007). In fact 
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many of the TGA factors have redundant or overlapping roles, making it difficult to tease 

apart exactly how TGAs and NPR1 interact (Kesarwani et al., 2007, Zhang et al., 2003b, 

Boyle et al., 2009). 

 Three NIM1-Interacting (NIMIN) cofactors were also shown to physically interact 

with NPR1. NIMIN proteins attenuate NPR1-mediated gene expression as over-expression 

and knockout of these genes repressed and enhanced SAR, respectively (Weigel et al., 

2005, Weigel et al., 2001). NIMIN1 probably achieves this by interrupting the TGA-NPR1 

transcription complex (Weigel et al., 2005). Presence of EAR repression motifs in NIMIN 

cofactors has led to the suggestion that SA can interrupt NIMIN binding to the TGA-NPR1 

complex (Maier et al., 2011). 

 To discover repressors of NPR1 a suppressor screen on npr1-1 mutants was 

performed and revealed suppressor of npr1-1, Inducible (SNI1) as being able to generate 

defence expression in absence of NPR1 (Li et al., 1999). In a bid to discover how SNI1 

functioned a screen for suppressors of SNI1 revealed radiation sensitive 51D (RAD51D), 

breast cancer 2-like 2A (BRCA2A) and suppressor of sni-1, 2 (SSN2) (Song et al., 2011, Wang 

et al., 2010, Durrant et al., 2007), which are all involved in DNA recombination and repair. 

SNI1 was subsequently revealed to be a factor in the structural maintenance of 

chromosome (SMC) 5/6, required for the resolution of DNA intermediates. Mutation of sni1 

produced high basal levels of PR genes, heightened sensitivity to SA, and apparently 

contradictory increased homologous recombination alongside heightened levels of DNA 

damage. Yan et al. (2013) hypothesize this is due to homologous recombination becoming 

“stuck” in the final stages in sni1 mutants. Compensation of the sni1  phenotype in 

Suppressors of SNI1 are thought to completely block homologous recombination and force 

DNA repair via the non-homologous end joining pathway instead (Yan et al., 2013).  
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Therefore SNI1 may play an important role in balancing short-term defence responses with 

long-term genome integrity (Yan et al., 2013, Durrant et al., 2007). 

 

1.4. Ubiquitin-mediated regulation of transcription 

1.4.1. Ubiquitin-mediated suppression of SA-responsive gene 

transcription 

NPR1 protein contains an N-terminal BTB (Bric-à-brac, Tramtrack and Broad 

complex) domain and a C-terminal ankyrin repeat domain (Cao et al., 1997, Ryals et al., 

1997, Aravind and Koonin, 1999). Interestingly, the presence of these domains in a single 

protein is a typical feature of a substrate adaptor for CRL3, in which the BTB domain 

mediates interaction with Cullin 3, while the ankyrin repeat recruits substrates for 

ubiquitination (Petroski and Deshaies, 2005). However, yeast two-hybrid studies were 

unable to find direct physical interaction between Cullin 3 and NPR1 (Dieterle et al., 2005). 

Co-immunoprecipitation experiments nevertheless showed that NPR1 associates with a 

CRL3 in planta (Spoel et al., 2009). These results suggested that NPR1 may not be in the 

substrate adaptor position of this E3 ligase. Indeed, in Arabidopsis cells, monomeric NPR1 is 

itself subject to ubiquitination by a CRL3 and is subsequently degraded in the nucleus. 

Blocking NPR1 degradation pharmacologically with proteasome inhibitors or genetically by 

mutation of Cullin 3 resulted in accumulation of NPR1 monomer, moderate induction of 

NPR1 target genes, and elevated resistance to pathogen infection (Spoel et al., 2009). This 

indicated that constitutive degradation of NPR1 monomer by CRL3 prevents autoimmunity 

in absence of a pathogen threat. This suppressive effect of CRL3 and the proteasome 
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probably impacts a large proportion of the immune transcriptome, as many genes are co-

regulated by SA and proteasome inhibitor (Spoel et al., 2010). 

 Ubiquitin-mediated protein degradation plays a similar role in SA-dependent 

immune responses in rice. Analogous to the function of Arabidopsis NPR1, Oryza sativa 

WRKY45 is an SA-induced transcription activator of several hundred immune-related genes 

and confers resistance to bacterial and fungal pathogens (Shimono et al., 2007, Shimono et 

al., 2012, Nakayama et al., 2013). Inhibition of the proteasome resulted in accumulation of 

polyubiquitinated OsWRKY45 in the nucleus and constitutive activation of its target genes 

in the absence of SA treatment (Matsushita et al., 2013). Although it remains unknown if 

OsWRKY45 is targeted for degradation by a CRL3, these findings indicate that constitutive 

turnover of this immune activator prevents autoimmune responses. SA also activates an 

NPR1-like protein, which functions in parallel with OsWRKY45 to regulate immune 

transcription in rice. By contrast to OsWRKY45, this OsNPR1 protein (also known as OsNH1) 

is thought to be predominantly involved in downregulation of gene expression, particularly 

those involved in photosynthetic activity (Sugano et al., 2010). Interestingly, OsNPR1 is not 

subject to constitutive proteasome-mediated degradation, intuitively suggesting that 

transcriptional repression does not require corepressor turnover. Hence, the presence of 

analogous proteasome-regulated modules consisting of unrelated transcription 

(co)activators in Arabidopsis and rice (i.e. NPR1 versus OsWRKY45) may reflect inherent 

constraints on how timely activation of SA-responsive immune genes can be achieved. 
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1.4.2. Ubiquitin-mediated activation of SA-responsive gene 

transcription 

Besides suppression of SA-responsive immune genes, the proteasome is also 

involved in gene activation. Pharmacological inhibition of the proteasome, genetic 

mutation of Cullin 3, and mutations in a phosphorylation motif produce an increase in the 

stabilization of the NPR1 protein, leading to a greatly reduced the expression of SA-induced, 

NPR1-dependent immune genes in Arabidopsis (Spoel et al., 2009). Similarly, SA-induced 

transcriptional activity of OsWRKY45 in rice was impaired in the presence of proteasome 

inhibitor (Matsushita et al., 2013). Turnover of OsWRKY45 was dependent on a small 26 

amino acid C-terminal region, which importantly was also required for its transactivation 

activity. Such overlap between transactivation domains and degradation motifs that signal 

ubiquitin-mediated proteasomal degradation has previously been discovered in 

transcription activators in both yeast and mammals (Salghetti et al., 2000). Fusion of well-

defined degron motifs from yeast cyclin proteins to a DNA-binding domain even auto-

activated gene transcription (Salghetti et al., 2000), suggesting that the intrinsic ability to 

activate transcription also makes activators a target for the ubiquitin-mediated 

proteasome. Subsequent work showed that like NPR1 and OsWRKY45, additional activators 

required turnover to unleash their full transcriptional potential (Geng et al., 2012, Spoel et 

al., 2010). This transcription process, sometimes dubbed ‘destruction-activation’, has been 

studied in more detail for general control non-inducible 4 (GCN4), a potent activator of 

genes involved in amino acid homeostasis. Upon amino acid starvation, the cell division 

cycle 4 (CDC4) F-box subunit of Skp, Cullin, F-Box (SCFCDC4) ligase targets GCN4 for ubiquitin-

mediated degradation, a process required for recruitment of RNA Polymerase II (RNAPII) to 

GCN4 target genes (Lipford et al., 2005). Crucially, GCN4 was marked for degradation by the 
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phosphorylative action of Suppressor of SNf1 10 (SRB10), a cyclin-dependent-kinase 

associated with the C-terminal domain of RNAPII (Chi et al., 2001, Liao et al., 1995). This 

indicates that when GCN4 initiates a round of transcription by recruiting RNAPII, it 

simultaneously triggers its own destruction. These results have led to the hypothesis that 

transcriptionally ‘spent’ activators may need to be cleared by the proteasome to reset 

target promoters and allow binding of ‘fresh’ activators (Figure 1.3) (Lipford et al., 2005, 

Kodadek et al., 2006, Geng et al., 2012). A similar mode of regulation may control 

transcriptional activity of NPR1 and OsWRKY45 in plant immunity, as site-specific 

phosphorylation of a degron motif in NPR1 was necessary for its ubiquitination and 

degradation, as well as for timely and sustained target gene expression (Spoel et al., 2009, 

Spoel et al., 2010). Intriguingly, transcription initiation by MYC2, a transcription activator 

responsive to the developmental and immune hormone jasmonic acid, is also regulated by 

phosphorylation-induced proteasomal degradation (Zhai et al., 2013). These findings imply 

that proteasome-mediated regulation of transcription activators may be a general 

mechanism to control gene expression programs in plant immunity. 
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Figure 1.3: Proteasome-mediated activator turnover activates transcription.  

Promoter binding of a transcription activator (TA) results in recruitment of the transcription 

initiation complex (I.C.) and RNAPII.  The TA is subsequently phosphorylated (orange star) by a 

kinase within the I.C., marking it for ubiquitination (red diamonds) and degradation by the 26S 

proteasome. This allows a new TA to bind the promoter and reinitiate a new round of gene 

transcription.  

 

Elegant studies on the estrogen receptor ERα in mammalian cells have shed more 

light on why activators are turned over in the process of activating gene transcription. Upon 

ligand binding, nuclear localized ERα forms a stable dimer and associates with cofactors on 

estrogen-responsive DNA elements to trigger gene transcription. Not only did inhibition of 

ERα proteolysis suppress its transcriptional activity, vice versa inhibition of RNAPII 

prevented degradation of ERα, indicating that activator turnover and transcriptional activity 

were interdependent (Reid et al., 2003). By following ERα transactivation over fine time 

scales by chromatin immunoprecipitation, it was proposed that ERα-mediated transcription 
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may have distinct cyclical phases in which the ubiquitin-mediated proteasome plays key 

roles (Metivier et al., 2003). In this model, the first cycle is transcriptionally non-productive 

but results in ERα-induced remodeling of the promoter to commit it to transcription. In 

subsequent cycles ERα orchestrates the ordered recruitment of cofactors, ultimately 

resulting in gene transcription via recruitment of RNAPII. Importantly, experimental data 

showed that the proteasome was recruited to an ERα target promoter towards the end of 

each cycle and preceded the clearance of ERα and general transcription cofactors. Thus, 

proteasome activity is thought to be vital to allow ERα-dependent promoters to move from 

the transcriptionally non-productive to productive phase and to permit productive cycles to 

continue until transcription is no longer required (Metivier et al., 2003, Zhou and 

Slingerland, 2014). If these findings indeed represent a general model for transcription 

regulation, then the proteasome could have additional roles in SA-responsive gene 

transcription in plants, including promoter remodeling and ordered cofactor degradation. 

 But why would cyclical activation of transcription by unstable activators be 

advantageous over continuous activation by stable activators? Although the answer to this 

question remains at large, a recent mathematical and in silico analysis of proteasome 

involvement in transcription may have provided some clues (Lee et al., 2014). The gene 

targets of many mammalian transcription activators often include components of E3 ligases 

that promote proteolysis of that activator, generating a negative feedback loop to maintain 

appropriate levels of activator. Mathematical modeling of this feedback loop showed that 

cellular perturbations resulting in destabilization of the E3 ligase led to over-accumulation 

of activators and subsequent hyper-activation of gene expression. However, if the E3 ligase 

was modeled as a necessary transcription cofactor working in conjunction with the 

activator, a much more measured gene expression output was achieved upon cellular 

perturbation. These models suggest that the paradoxical involvement of E3 ligases in gene 
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transcription activated by unstable activators may be necessary to provide a cellular safety 

mechanism. The authors of this work compared this to the principle of safety interlock 

devices in engineering, where a system will not function unless safety can be guaranteed 

(Lee et al., 2014). A similar system may be operational for NPR1- and OsWRKY45-

dependent gene expression. Notably, interrogation of a list of NPR1-dependent genes 

provided by Wang et al. (2006) indicates that NPR1 activates the expression of genes 

encoding for its paralogues, NPR3 and NPR4. These BTB-containing proteins function as 

substrate adaptors that recruit NPR1 to CRL3 for ubiquitination and subsequent 

degradation (Fu et al., 2012). This suggests that similar to the mathematical system 

described above, a negative feedback loop may exist between NPR1 and CRL3NPR3/NPR4. As 

CRL3 has a supportive role in NPR1-dependent gene transcription (Spoel et al., 2009), it 

may be part of a cellular safety mechanism to keep NPR1 activity in check when cellular 

perturbations are encountered. In support of this hypothesis, although genetic 

perturbations of CRL3NPR3/NPR4 activity resulted in autoimmune phenotypes due to over-

accumulation of NPR1 protein, this did not lead to over-activation of NPR1 target genes in 

the presence of SA (Spoel et al., 2009, Fu et al., 2012). 

 

1.5. Aims and Objectives 

Taken together, the above described literature clearly indicates that 

polyubiquitination is a highly important protein modification required to regulate protein 

function and degradation. It is crucial for the regulated destruction of transcription factors 

and a therefore essential for correct cellular gene expression. Although it may seem 

wasteful to constantly degrade functional proteins, direct coupling of the UPS to 

transcription may create a mechanism that combines tight regulation of TF activity while 

providing a safety net to prevent unwanted, spurious transcription. 
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 Past research has focused mainly on polyubiquitination as a means to TF 

destruction, however it remains largely unknown if the (poly)ubiquitinated substrate is 

transcriptionally active or if (poly)ubiquitination itself alters TF performance. As E4 ligases 

enhance polyubiquitination, we reasoned that they may be able to inform us how the 

process of ubiquitination could affect TF activity. Work described in this thesis aimed to 

identify E4 ligases in Arabidopsis and investigate how they affect gene transcription and 

immunity orchestrated by the immune signal SA and the NPR1 coactivator. To find putative 

Arabidopsis E4s we search for ubiquitin ligases similar in homology to the yeast E4 ligases, 

(ubiquitin fusion degradation 2) UFD2 and (HECT ubiquitin ligase 5) HUL5, and screened 

these genes for global cellular polyubiquitination activity and specific polyubiquitination 

activity on NPR1. Furthermore, we studied if a role of E4 ligases in gene transcription may 

be conserved amongst eukaryotes. Because E4 ligases were first described in yeast, we 

investigated the role of two canonical E4 ligases in the yeast amino acid synthesis pathway 

of which the central transcription activator, GCN4, requires proteasome-mediated turnover 

to regulate gene expression. The information gathered by these experiments allowed us to 

further unravel the intimate link between transcription initiation and ubiquitination. 

 

  



21 
 

Chapter 2: Methods 

2.1. Plant growth conditions 

Soil: All plants were subject to the same growth conditions. Seeds were sown directly on 

soil containing a mix of peat moss, vermiculite and sand at a ratio of 4 : 1 : 1  and stratified 

by placing in a cold room for two days at 4 °C. Seeds were then moved into growth 

chambers at 21 °C and 100 μmol.m-2.s-1 light on a 16-h-light/8-h-dark photoperiod at 65 % 

day humidity and 55 % night humidity. After ≈ 2 weeks of growth seedlngs were 

transplanted into new soil and kept in the same conditions. 

Sterile medium: Approximately 50 μl of seeds were immersed in 1 ml of ddH20 for 30 min 

before sterilization. To sterilize the seeds 1 ml of 100 % ethanol was added for 5 min, with 

regular vortexing. Then ethanol was then removed and 1 ml of 50 % bleach + 0.1 % triton 

added. Seeds were placed on a rotator for 30 min. and then washed 5 times in 1 ml sterile 

ddH2O and stored in 1 ml sterile 0.1 % agar for 2 days at 4 °C. For growth, 25 seeds were 

placed onto an MS agar plate (Murashige and Skoog, 1962) containing 1x Gamborg’s B5 

(Sigma-Aldrich) vitamin solution. Plates were placed upright and grown for 12-16 days in 

the same light conditions as described above. 
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2.2. Plant genotypes 

The Col-0 ecotype was used as wild type and all mutants and transgenics were prepared in 

this background. The npr1-1, cul3a cul3b, sid2-2, 35S::NPR1-GFP (npr1-1) plants have been 

described previously (Kinkema et al., 2000, Spoel et al., 2009, Wildermuth et al., 2001). T-

DNA insertion lines (Table 2.1) were obtained from the Nottingham Arabidopsis Stock 

Centre (NASC). The presence of the T-DNA was confirmed via genotyping using gene 

specific primers and a primer specific to the insertion. Knock-out of gene expression was 

confirmed via RT-PCR using gene specific primers (Supplemental table 2.1).  

 

Table 2.1: T-DNA insertion mutant lines used in this study. 

Locus Allele SALK/SAIL line 

At5g15400 
ube4-1 SALK-100087 

ube4-2 SAIL_713_A12 

At4g38600 upl3-1 SALK_035524 

At5g02880 
upl4-1 SALK_091246C 

upl4-2 SALK_040984 

At3g17205 
upl6-1 SALK_055609C 

upl6-2 SALK_147660C 

At3g53090 
upl7-1 SAIL_403_A11 

upl7-2 SALK_119373(BU) 

 

 

2.3. DNA extraction (Plants) 

Tissue was homogenised in CTAB extraction buffer (100 mM Tris-HCl pH8, 1.5 M NaCl, 20 

mM EDTA pH 8, 2 % CTAB [cetyl trimethylammonium bromide]) and heated at 65°C for 30 

min. An equal volume of 24 : 1 chloroform : iso-amyl alcohol was added and samples 

centrifuged (13,000 rpm) for 5 min. This step was repeated with the aqueous layer.  An 

equal volume of isopropyl alcohol was added to the aqueous solution and incubated for 1 h 
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at 4 °C. The precipitate was pelleted by centrifugation (15 min at 13,000 rpm), the 

supernatant was removed and the pellet washed in ice cold 70 % ethanol before being re-

suspended in 50 μl of water. 

 

2.4. RNA extraction (Plants) 

Tissue was homogenised in RNA extraction buffer (100 mM LiCl, 100mM Tris (pH 8.0), 10 

mM EDTA, 1 % SDS) to which an equal volume of phenol/chloroform/isoamylalcohol (25 : 

24 : 1) was added.  The homogenate was vortexed and then centrifuged (13,000 rpm) 5 

min. The aqueous phase was transferred onto 1 volume of 24:1 chloroform/isoamylalcohol, 

vortexed and then centrifuged (13,000 rpm) 5 min; this step was repeated once. The 

aqueous layer was added to 1/3 volume of 8 M LiCl and incubated overnight at 4°C. The 

extract was then centrifuged (13,000 rpm) 5 min at 4°C. The resulting pellet was washed in 

70 % ethanol (-20°C).  The pellet was rehydrated in 400 μl of ddH2O for 60 min on ice, re-

suspended, and then 40 μl of NaAc (pH 5.3) and 1 ml 96 % ethanol (-20°C) added before 

incubating for 1 h at -20°C. The precipitate was then centrifuged (13,000 rpm) 5 min at 4°C, 

the pellet was rinsed in 70 % ethanol (-20°C) and re-suspended in 25 μl of water. 

 

2.5. cDNA synthesis 

RNA concentration was determined using a Nanodrop spectrophotometer and appropriate 

dilutions were made for equal RNA concentrations. RNA was reverse transcribed into cDNA 

using SuperScript Reverse Transcriptase II (Life Technologies) following the manufacturer’s 

instructions.  
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2.6. RT-PCR 

To confirm if T-DNA insertion knocked out the gene of interest RT-PCR was carried out 

using gene specific primers (Table2.2) and the products separated and visualised on a 1 % 

agarose gel. 

 

Table 2.2 Primers used for RT-PCR to confirm knockout of specific genes. 

Target 
gene 

Target 
allele 

Primer name 
Primer 
Direction 

Primer sequence 5'-3' 

UBE4 

ube4-1 
UFD-F F CATGAGGCCCAAATATTGAGGGATG 

UFD-R R GGCAATGTTGTGGCGAATATTGAAC 

ube4-2 
UFD2 TDNA F F ACCGAAATGCATGGAGACGG 

UFD2 TDNA RP R GCAGTGATCTCCTCGGATGT 

UPL3 upl3-1 
upl3-1 F F GGAGTTATCTCTCTTCCTACTAGCAC 

upl3-1 R R GTTAAGCAATGCTGCAACCACACCAC 

UPL4 

upl4-1 
upl4-1 F F CAGGATTACCAGAGGCAGAGATC 

upl4-1 R R GACCACAGTAGAAATTGCGACTC 

upl4-2 
UPL4-2 LP F CAGGCTGATTGACGAGAAAAC 

UPL4-2 RP R AGTACTTGGACGTTGCTGAGC 

UPL6 

upl6-1 
upl6-1 F F GAACCGTTTAAGGGATCAGCTC 

upl6-1 R R AGCATTGGTTATCTGCTGCTCC 

upl6-2 
upl6-2 F F TCAGAGGATGATCTACGGAGC 

upl6-2 R A R CGCAAGTCGTCTATATCCAAAC 

UPL7 

upl7-1 
upl7-1A F F GGACCTGAATCGCAAACACAAG 

upl7-1A R R GTCGTAGAGCCAAAGTTACTGC 

upl7-2 
upl7-2 F F CAAAACTGTTGGCAGCTTCTGG 

upl7-2 RP R AGATCCATGAGATGCATCGTC 

UBQ10 N/A 
UBQ10 F F GATCTTTGCCGGAAAACAATTGGAGGATGGT 

UBQ10 R R CGACTTGTCATTAGAAAGAAAGAGATAACAGG 
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2.7. qPCR 

Quantitative-Real-Time-PCR (qPCR) was carried out using gene specific primer (Table2.3) on 

an Applied Biosciences Step-One-Plus RT-PCR machine (Life Technologies) as per the 

manufacturer’s instructions. 

 

Table 2.3: List of qPCR primers used in this study 

Target 
gene 

Primer 
Direction 

Primer sequence 5'-3' 

PR-1 
F CTAAGGGTTCACAACCAGGC 

R AAGGCCCACCAGAGTGTATG 

PR-2 
F CAGATTCCGGTACATCAACG 

R AGTGGTGGTGTCAGTGGCTA 

PR-5 
F ACTGTGGCGGTCTAAG 

R CGTGGGAGGACAAGTTT 

WRKY18 
F AGAAGGTACAACGCAGCGCAGA 

R TGCGTCCCTTCGTATGTCGCTACA 

WRKY38 
F CCGGTTTACCGAACCACTTA 

R GGCTTTCCTTCTCCTGATCC 

WRKY62 
F GCCTACACCAAGGACCAGAA 

R AGAGGTGGAGGAGGAGAAGC 

UBQ5 
F CCAAGCCGAAGAAGATCAAG 

R ACTCCTTCCTCAAACGCTGA 

ACT1 
F TTGGCCGGTAGAGATTTGAC 

R AGTCCAAGGCGACGTAACAT 

ADH5 
F TCGTTGGATCTTGTGTTGGA 

R TTCAGGAACATCCGATAGGC 

ARG1 
F CTCCGGACCAACCACAAGATT 

R TAAGTTGGATGCGGCCAAGA 

ASN1 
F ACTGCAAAGGCCACTAACGA 

R TTGTCCAACCAGCAGTGTGT 

CPA2 
F GTGCGGCAATGAGTGTTGTT 

R TATAAGCAACGGCGTCCACA 

HIS4 
F TCCAACCAATATGCACCAGA 

R CTTGAATAGTCACCGCACGA 

HUL5 
F GCCTACGGCATCTACCTGTG 

R CTGGCGCCTGAGTTTATTGC 

UFD2 
F TCCACGTCTGGGATCGTTTG 

R AGGCATAGCACCAACGCTTA 
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2.8. Enhanced Disease Resistance (EDR) test 

Twelve plants, aged 3-4 weeks, for each genotype were selected, half of which were 

sprayed with 0.5 mM SA and the other half mock sprayed with water. Plants were then left 

for 24 h before infiltration with the virulent bacterial pathogen Pseudomonas syringae pv. 

maculicola (Psm) ES4326. 

Bacteria were grown over night in liquid King’s B medium. Cells were collected by 

centrifugation and diluted to OD 0.005 in 10 mM MgCl2. The bacteria were pressure 

infiltrated via syringe into the abaxial surface of 2 leaves per plant; the plants were left for 

the time periods specified in figure legends before the infiltrated leaves were collected. The 

leaves were ground in 10 mM MgCl2 at RT, the resulting solution was then serially diluted 

and 10 μl of each dilution was streaked onto LB agar containing 10 mM MgCl2, 

Streptomycin 100 μg/ml, and 100 μM Cycloheximide. Plates were incubated at 30 °C for 2 

days before colonies were counted at an appropriate dilution. Results were analysed with 

95 % confidence intervals and via Tukey-Kramer ANOVA test (α = 0.05, n = 8)  

 

2.9. Enhanced Disease Susceptibility (EDS) test 

Carried out as per EDR tests except that plants were not pre-treated with SA and the 

concentration of Psm ES4326 infiltrated into leaves was OD 0.0005. 
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2.10. Crude protein extraction and Western blots 

Protein extractions and Western blots were performed as described previously (Spoel et al., 

2009). Antibodies used in Western blots are detailed in figures. 

 

2.11. Ubiquitinated protein pull-down assays 

Seedlings of 12-16 days old were placed in solutions containing vehicle (DMSO), 0.5 mM SA 

and vehicle, or 0.5 mM SA and 100 μM MG132 for 6 h. Samples were weighed then frozen 

in liquid nitrogen. For analysis samples were ground in 2 volumes of protein extraction 

buffer (1X PBS, 1 % Triton X-100, 10 mM N-ethylmaleimide (NEM), Phosphatase Inhibitor 

Cocktail 3 (Sigma-Aldrich), protease inhibitor cocktail (TPCK 50 μg/ml, TLCK 50 μg/ml, 0.5 

mM PMSF, 40 μM MG132) and 0.2 mg/ml recombinant GST-tagged Tandem Ubiquitin 

Binding Entities (TUBE) (Hjerpe et al., 2009). Homogenates were centrifuged for 20 min at 

13,000 rpm at 4°C, the supernatant placed in clean tubes and centrifuged again. The lysate 

was filtered through 0.22 μM syringe driven filters and 30 μl was removed to act as input 

sample. The input samples were then incubated at 80 °C for 10 min in the presence of 1x 

SDS-PAGE sample buffer supplemented with 50 mM DTT. A total of 50 μl/ml of packed 

Protino® Glutathione Agarose 4B (Machery Nagel) was added to each sample and incubated 

at 4 °C overnight with rotation. Beads were collected by centrifugation for 20 s at 5,000 rpm 

at 4 °C and washed 5 times in protein extraction buffer without NEM. Samples were eluted 

from beads by the addition of 1X SDS-PAGE sample buffer supplemented with 50 mM DTT 

buffer and incubation at 80 °C for 10 min.  

.  
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2.12. Recombinant genes 

UBE4 was cloned from cDNA (Primers in Table 2.4) and ligated into the Gateway pENTR/D-

TOPO entry vector (Life Technologies) and transformed into TOP-10 chemically competent 

cells (Life Technologies). To generate 35S::YFP-UBE4 the UBE4 containing entry vector was 

recombined with the Gateway compatible destination vector pEarleyGate 104 (Earley et al., 

2006) using LR Clonase (Life Technologies) following the manufacturers’ protocol and 

transformed into TOP10 cells. The Agrobacterium tumifaciens strain GV3101 (pMP90) was 

then transformed with the 35S::YFP-UBE4 construct using the freeze-thaw method (Weigel 

and Glazebrook, 2002). Transgenic plant lines were produced via the floral dipping method 

(Weigel and Glazebrook, 2002).  

 

Table 2.4: Primers used to clone UBE4 from cDNA 

Target 
gene 

Primer name 
Primer 
Direction 

Primer sequence 5'-3' 

UBE4 
UFD2 TOPO F F CACCATGGCGACGAGCAAACCTCAAAG 

UFD2 Blunt RP R TTAATCAATTAACATATCACTG 

 

 

2.13. UBE4 localisation 

Protoplasts were isolated from 3 – 4 week old plants using the tape-sandwich method (Wu 

et al., 2009), and were transformed with the pEarleyGate 104 plasmid carrying 35S::YFP-

UBE4. Protoplasts were then resuspended in W5 solution (154 mM NaCl, 125 mM CaCl2, 5 

mM KCl, 5 mM glucose, 2 mM MES, pH 5.7) and allowed to rest for 18 hours in the light. 

YFP fluorescence was then assessed on a Nikon Eclipse TC2000-U confocal microscope. 
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2.14. Co-immunoprecipitation 

Samples were ground in two volumes of protein extraction buffer (50 mM Tris-HCl [pH 7.5], 

150 mM NaCl, 5 mM EDTA, 0.1 % Triton X-100, 0.2 % Nonidet P-40, protease inhibitors  [50 

μg/ml TPCK, 50 μg/ml TLCK, 0.6 mM PMSF, 40 μM MG132], and 40 μM PR619 

deubiquitinase inhibitor (Abcam)). Homogenates were centrifuged twice (13,000g) at 4 °C 

for 20 min. The lysate was filtered through 0.22 μM syringe driven filters and pre-cleared 

for 1 hour with Protein A agarose beads (Millipore). An aliquot of 30 μl was removed as 

input samples, which were then incubated at 80 °C for 10 min in the presence of 1x SDS-

PAGE sample buffer supplemented with 50 mM DTT. The remaining samples amounts were 

incubated with α-GFP (Roche) or α-ab290 (Abcam) at a concentration of 1 : 500 for 2 hours 

at 4 °C with gentle rocking. Beads were collected by brief centrifugation (6,000 rpm) and 

washed 5 times with extraction buffer and eluted by the addition of 1x SDS-PAGE sample 

buffer supplemented with 50 mM DTT buffer and incubation at 80 °C for 10 min. 

 

2.15. RNA-seq 

Three-week old plants were sprayed with 0.5 mM SA or mock sprayed with water. Two 

leaves from 6 plants were collected per sample. RNA was extracted as a described above, 

then purified via RNeasy Mini Kit (Qiagen) using the RNA clean up protocol as described by 

the manufacturer, to remove residual phenol. qPCR analysis was carried out to confirm 

appropriate induction of SA responses. Samples were then quantified and submitted to 

GATC Biotech (Constance, Germany) for RNA sequencing and bio-informatic analysis. 
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2.16. Cis-promoter analysis of UPL3 dependent genes  

To generate the list of SA-mediated and UPL3- dependent genes, we compared those genes 

with twofold or greater change in expression after SA induction in wild type, against a list of 

genes with a 1.5-fold difference in expression between wild type and upl3 after SA 

induction. We then applied a p-value of < 0.05 and a q-value cut-off of < 0.01 to filter out 

false positives. All possible 8 bp (octamer) combinations were first calculated to obtain 

relative appearance ratio, comparing the promoter regions of selected gene set against all 

genes in Arabidopsis. The most enriched pentamers were subsequently calculated from the 

octamers. Weblogo analysis (Crooks et al., 2004) was performed using pentamers plus the 

adjacent sequences in the selected gene set. Cis-promoter and weblogo analysis was 

performed in collaboration with the laboratory of Prof. Yasuomi Tada Nagoya University. 

To investigate if the discovered motives were more or less prevalent in the UPL3-

dependent gene sets, the first 1000 bp upstream of the TAIR 10 loci of the top 55 genes 

with the greatest up- and down-regulated expression change were analysed with the POBO 

promoter analysis tool (Kankainen and Holm, 2004). 

 

2.17. Yeast deletion mutants  

Wild type yeast and E4 ligase mutants were ordered from the EUROSCARF stock centre 

(Table 2.5) (Euroscarf, 2015). Mutants were genotyped to confirm deletion using primers in 

supplemental table 2.2. 
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Table 2.5: Euroscarf yeast accessions used in this study 

 Accession Genotype 

Wild type Y00000 BY4741; mat a; his3Δ 1; leu2Δ 0; met15Δ 0, ura3Δ 0 

ufd2Δ Y03888 
BY4741; mat a; his3Δ 1; leu2Δ 0; met15Δ 0; ura3Δ 0; 
YDL190c::kanMX4  

hul5Δ Y04508 
BY4741; mat a; his3Δ 1; leu2Δ 0; met15Δ 0; ura3Δ 0; 
YGL141w::kanMX4 

 

 

2.18. DNA extraction (Yeast) 

Yeast DNA was extracted via the Bust n’ Grab protocol (Harju et al., 2004). 

 

2.19 RNA extraction (Yeast)  

Pelleted cells were re-suspended in 400 μl AE buffer (50 mM NaAc (pH 5.3), 10 mM EDTA) 

and 40 μl of 10 % SDS. Samples were vortexed before the addition of an equal volume of 

buffered phenol solution (pH < 8). The samples were incubated at 65 °C for 30 min with 

regular vortexing. Samples were then subjected to 2 freeze/thaw cycles before being 

centrifuged (13,000 rpm) for 10 min. The aqueous phase was removed and added to 400 μl 

phenol : chloroform (5 : 1, pH 4), vortexed, incubated at RT for 5 min, and then centrifuged 

(13,000 rpm) for 5 min. The aqueous phase was removed, added to 400 μl chloroform and 

centrifuged (13,000 rpm) for 5 min. The aqueous phase was added to an equal volume of 

isopropanol, placed on ice for 5 min and centrifuged (13,000 rpm) for 5 min. Supernatant 

was removed, the pellet washed in 80 % ethanol and re-suspended in 25 μl ddH20. RNA was 

subsequently treated with TurboDNA-free DNase (Life Technologies) as per manufacturer’s 

instructions. 
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2.20. Protein extraction (Yeast) 

For Western blotting protein was protein was extracted by mild alkali treatment and boiling 

in SDS sample buffer as described previously (Kushnirov, 2000).  

 

2.21. Amino acid starvation assays (Yeast) 

Yeast was cultured overnight at 28 °C in SMM (Supplemented Minimal Media: 0.67 % Yeast 

Nitrogen Base without amino acids, 2 % glucose and amino acids that the strains were 

auxotrophic for) and then diluted to OD 0.2 in 20 ml SMM and allowed to grow to mid-log 

phase (OD 0.5-1). 

Subsequently, 10 ml of culture was removed as the non-induced control, and cells were 

collected by centrifugation at 4500 rpm for 10 min. Media was removed and the cells were 

washed in water, collected by centrifugation, and the pelleted cells frozen in liquid nitrogen 

and stored at -80 °C. 

The cells in remaining 10 ml of culture were collected by centrifugation and re-suspended 

in SMM without leucine to induce amino acid synthesis. Cells were collected as described 

above at indicated time points. 

 

2.22. GCN4 Myc-tagging 

A 13-myc tag was applied to the C-terminal of GCN4 using the pFA6-13Myc-HisMX6 

construct (Longtine et al., 1998) with primer over-hangs homologous GCN4 (Table 2.5). This 

construct was directly transformed into yeast cells as described below, genotyped with 
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construct-specific primers (Table 2.6) to confirm construct presence, and then western 

blotted to confirm GCN4-13Myc expression. 

Table 2.6: Primers used to clone the 13-Myc construct used to tag GCN4. 

Target 
gene 

Primer 
name 

Primer 
Direction 

Primer sequence 5'-3' 

GCN4 

GCN-F2 
F 

TTGGAAAATGAGGTTGCCAGATTAAAGAAATTA- 
GTTGGCGAACGCCGGATCCCCGGGTTAATTAA 

GCN-F1 
R 

ATTTCGTTATACACGAGAATGAAATAAAAAATATAAA- 
ATAAAAGGTAAATGAAAGAATTCGAGCTCGTTTAAAC 

Note: Non-italics indicate primers which overlap GCN4. Italics indicate bases which 
overlap the pFA-13Myc construct. 

 

 Table 2.7: Primers used to confirm presence of GCN4 -13Myc in transformed yeast cells. 

Target 
gene 

Primer 
name 

Primer 
Direction 

Primer sequence 5'-3' 

GCN4-
13Myc 

GCN4 LP F CTTTCTCCAATTGTGCCCGAATCC 

RpTef R GGATGTATGGGCTAAATGTAC 

 

 

2.23. Yeast transformation 

Yeast culture was grown overnight in YPD, diluted in 50 ml YPD to OD 0.2, and grown to 

mid-log phase. Cells were collected by centrifugation (6,000 rpm) for 5 min. Cells were re-

suspended and washed in 10 ml ddH20, collected and washed in 1 ml 0.1 M LiAc, and then 

washed again in 250 μl 0.1 M LiAc. Subsequently, 50 μl of cells were re-suspended in 

transformation buffer (240 μl 50 % polyethylene-glycol, 20 μl Salmon sperm DNA, 36 μl 1 M 

LiAc, 20 μl DNA construct), rotated for 45 min at 30 °C, and then heat shocked at 42 °C for 

15 min. Cells were collected and re-suspended in 300 μl ddH20, then plated onto 

appropriate selective media. 
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2.24. GCN4 turnover 

Cultures were grown overnight in SMM +Leucine and diluted to OD 0.2. Cultures were then 

grown to mid-log phase before switching cells into SMM without Leucine to induce 

starvation. After 1 h 100 mM Cycloheximide was added and samples taken at indicated 

time-points.   

 

2.25. Amino acid induction with proteasome inhibitor  

Yeast was cultured overnight at 28 °C in a synthetic medium (0.17 % Yeast Nitrogen Base 

without amino acids and ammonium sulphate, 0.1 % L-proline, 2 % glucose  and amino 

acids that the strains were auxotrophic for), diluted to OD 0.2 in 30 ml of media containing 

0.003 % SDS, and allowed to grow to mid-log phase (OD 0.5-1). The culture was then 

divided into 10 ml cultures that were treated with 75 μM MG132 (dissolved in DMSO) or 

DMSO. Cultures were incubated for 30 min and cells collected by centrifugation. One DMSO 

treated culture was stored as an un-induced control, while the remaining cultures were re-

suspended in the same medium supplemented with 75 μM MG132 or DMSO but without 

leucine. Finally cells were collected after 2 h for further analysis. 
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Chapter 3: Processive ubiquitination controls NPR1 

coactivator activity in plant immunity 

3.1. Introduction 

As outlined in the introduction, plant defences against biotrophic pathogens are 

regulated by the hormone salicylic acid (SA). Pathogen-induced SA levels mediate immune 

gene expression via the transcription cofactor NPR1 (Fu and Dong, 2013). Upon activation 

of NPR1 by SA, NPR1 moves into the nucleus (Tada et al., 2008, Mou et al., 2003, Kinkema 

et al., 2000), where a recent advance in NPR1 regulation has shown that the Small 

Ubiquitin-like Modifier (SUMO) is crucial to activation of NPR1-mediated transcription 

(Saleh et al., 2015). As well as promoting nuclear transfer of NPR1, SA induces 

dephosphorylation at NPR1 Serine 55 / Serine 59, via an unknown mechanism, which 

promotes sumolyation of NPR1 by SUMO3. This allows NPR1 to dissociate from the 

repressor WRKY70 and also induces the phosphorylation of NPR1 residues Serine 11 / 

Serine 15 that activate NPR1, promoting binding to TGA transcription factors to generate 

gene expression (Saleh et al., 2015). Counter-intuitively, activated NPR1 requires regulated 

degradation via the proteasome to maintain target gene expression. Blocking of NPR1 

turnover via mutation of its phosphodegron, deletion of the Cullin 3 (CUL3) E3 ligase that 

ubiquitinates NPR1 to signal for its destruction, or chemical inhibition of the proteasome all 

reduce transcription of target genes (Spoel et al., 2009). This method of regulation may 

allow tight control of transcription by a combination of nuclear localisation, activation and 

degradation, with the destruction of NPR1 coactivator providing the ultimate control step. 

This model provides a direct link between the rate of transcription to the speed of NPR1 

turnover. However, the model assumes that once NPR1 has activated a round of 

transcription via RNAP II, the Serine 11 / Serine 15 phosphorylated NPR1 is ‘exhausted’; 
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therefore ‘fresh’ NPR1 is required to execute further transcriptional cycles. Crucially, the 

idea that NPR1 earmarked for degradation is exhausted, i.e. that it is unable to initiate 

further rounds of transcription, cannot be proven with the pharmacological and genetic 

approaches used to date, as they either prevent initial ubiquitination events or block 

degradation of highly polyubiquitinated substrates. Thus, these methods do not reveal if 

ubiquitination of NPR1 in absence of proteasome-mediated degradation has any effects on 

its intrinsic transcriptional activity.  

Within other eukaryotic systems the act of ubiquitination in itself without 

degradation has been shown to have an effect on the activity of TFs to initiate gene 

expression. Depending upon the TF and the position of the ubiquitin moiety, 

monoubiquitination can lead to enhancement or suppression of a TFs ability to activate 

gene expression. Suppression of TF activity can be achieved via several ways. The 

mammalian p53 tumour suppressor protein is monoubiquitinated by the E3 mouse double-

minute 2 (MDM2) which signals for nuclear to cytoplasmic relocalisation, thereby 

preventing transcription (Wu et al., 2011).  Monoubiquitination of mammalian Receptor-

activated SMADs (R-SMAD), involved in transforming growth factor-β (TGF-β)-mediated 

embryonic development and tissue homeostasis, attenuated its transcriptional activity by 

two possible mechanisms: (i) monoubiquitination prevented either R-SMAD transcription 

complex formation or DNA binding by steric hindrance; or (ii) monoubiquitinated R-SMADs 

are actively removed from the promoter (Ndoja et al., 2014, Inui et al., 2011, Tang et al., 

2011)  Enhancement of transcription factors can be achieved as monoubiquitination can 

also stabilise TFs and prevent their removal from the promoter by the RP subunit of the 

proteasome allowing transcription to continue (Ferdous et al., 2007, Archer et al., 2008a, 

Archer et al., 2008b, Kim et al., 2009). 
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Monoubiquitination does not normally signal for degradation, the canonical signal 

for which is K48 linked ubiquitin chains of at least four moieties long. It is possible for 

monoubiquitination signals to be extended into polyubiquitin chains in which the TF may 

remain active, therefore the time required for ubiquitination and degradation of a TF could 

be used as a timer to provide a window in which a TF could be active (Wu et al., 2007). As 

ubiquitin can directly alter the activity of TFs and the activity of NPR1 has been shown to be 

regulated by the ubiquitin related molecule SUMO (Saleh et al., 2015), it is feasible that the 

similar act of ubiquitination in itself could have an effect on the ability of NPR1 to promote 

transcription. Using a genetic approach to dissect enzymes of the ubiquitination pathway, 

in this chapter we investigated how ubiquitination of NPR1 before its subsequent 

degradation could alter its transcriptional activity.  

 Within the ubiquitination pathway, it is the E3 ligases that recognise substrates and 

provide the link between the E2 conjugating enzyme and the substrate to initiate ubiquitin 

chain formation (Geng et al., 2012). Ubiquitin chain elongation can be enhanced by the E4 

class of ubiquitin ligases, which, like E3 ligases, serve to act as the bridge between a 

substrate and the E2 (Tu et al., 2007). The first E4 ligase discovered was UFD2 in yeast. 

UFD2 was found to increase the efficacy of ubiquitination on substrates that had already 

been partially ubiquitinated, but UFD2 in itself could not perform the initial ubiquitination 

steps (Koegl et al., 1999, Saeki et al., 2004). UFD2 is not critical to yeast growth in normal 

unstressed conditions but deletion causes reduced ubiquitin chain length and compromised 

stress responses (Koegl et al., 1999). A second E4 HUL5 was subsequently discovered in 

yeast, acting as a proteasome-associated protein acting in opposition to the deubiquitinase 

ubiquitin-specific protease 6 (UBP6). Deletion of HUL5 led to an imbalance of ubiquitin 

ligase versus deubiquitinases activity, causing proteasome substrates to have decreased 

ubiquitin chain lengths which increased their stability (Crosas et al., 2006). The mammalian 
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homolog of UFD2, ubiquitin ligase E4 (UBE4), enhances the initial monoubiquitination mark 

on p53 performed by the E3 ligase MDM2, signalling p53 for degradation (Wu et al., 2011). 

As E4 ligase mutants have reduced levels of substrate ubiquitination and subsequent 

degradation (Koegl et al., 1999, Crosas et al., 2006) they therefore provide a platform in 

which to study the effect of the initial act of ubiquitination on a substrate. 

 In this chapter we used a homology search to the yeast E4 ligase, UFD2 (Koegl et 

al., 1999, Huang et al., 2014), and identified UBE4 as a potential E4 ligase in Arabidopsis. 

We found that like mutation of the E3 ligase CUL3, knockout of UBE4 produced a reduced 

level of polyubiquitination and turnover of NPR1. However, in marked contrast to cul3 

mutants, mutant ube4 plants exhibited enhanced activation of SA-dependent genes that 

was uncoupled from proteasome activity. Our data provide the first evidence that CUL3-

mediated ubiquitination of NPR1 renders it in a transcriptionally active form and that 

further UBE4-mediated polyubiquitination promotes proteasome-mediated turnover of 

NPR1, thereby establishing a limited window of opportunity for transcriptional activation. 
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3.2. Results  

3.2.1. Arabidopsis UBE4 is homologous to the yeast E4 ligase UFD2 

In order to discover Arabidopsis putative homologs of the yeast E4 ligase UFD2 

(Koegl et al., 1999), a BLASTP search using the S. cerevisiae UFD2 protein sequence was 

initiated. The result of the search produced only one likely candidate gene, AT5G15400, 

which we designated as Ubiquitination factor E4 (UBE4) analogous to terminology of 

human E4 ligases. A structural homology modelling search using PHYRE2 (Kelley et al., 

2015) confirmed that the protein structures of ScUFD2 and UBE4 are indeed homologous 

(e-value 1e-150) (Figure 3.1, Supplemental 3.1). These results agree with a previous analysis 

by Azevedo et al (2001) of plant U-box domain containing proteins, they found that AtUBE4 

(referred to as AtUFD2 by Azevedo et al) was the closest plant homolog to ScUFD2 and that 

AtUBE4 was the single member of the five plant U-box protein classes (Appendix 3.1), 

providing evidence that UBE4 is the closest ScUFD2 homolog in Arabidopsis.  ScUFD2 has a 

three domain structure, consisting of a C-terminal U-box domain, a UFD2 core domain, and 

an N-Terminal Domain (NTD). The U-box domain is required for recruitment and association 

with E2 ubiquitin conjugating enzymes (Tu et al., 2007). The UFD2 core domain contains 

sequences similar to Armadillo (Arm) repeats found in α-importin, which bind nuclear 

localisation sequences, suggesting UFD2 is involved in protein-protein interactions (Tu et 

al., 2007). Indeed, the ScUFD2 core can act as a docking site for cell division cycle 48 

(CDC48), which helps regulate ScUFD2 interaction with the proteasome shuttle protein 

RAD23 (Baek et al., 2011). RAD23 is bound by the unique NTD, which harbours a ubiquitin 

associated domain, providing the ability to recognize ubiquitin or ubiquitin-like domains 

(Hanzelmann et al., 2010, Tu et al., 2007). The recognition of ubiquitin or ubiquitin-like 

domains via the N-terminal domain of UFD2 and the binding of E2 ligases on the U-box is 
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thought to provide ScUFD2 with its E4 ligase function of extending pre-exisiting ubiquitin 

chains (Koegl et al., 1999, Saeki et al., 2004, Hanzelmann et al., 2010, Tu et al., 2007). As 

UBE4 is a structural homolog of ScUFD2, it is highly likely this protein serves the same 

function in Arabidopsis.  
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Figure 3.1: Arabidopsis UBE4 is a structural homologue of S.c.UFD2.  

A. (Top) ScUFD2 structure coloured by domain (Blue: N-Terminal Domain, Green: UFD2 core 

domain, Red: U-box. as derived from Tu et al (2007). (Middle) The ScUFD2 protein structure 

used by PHYRE2 as the template for modelling UBE4. (Bottom) Predicted protein structure of 

Arabidopsis UBE4 generated by PHYRE2 from the UBE4 amino-acid sequence provided by TAIR. 

B. ScUFD2 domain structure cartoon drawn from data from Tu et al (2007). AtUBE4 Domain 

structure cartoon drawn from results generated by InterPro supplied with the protein amino 

acid sequence from TAIR 10. Numbers indicate amino acid position. NTD: N-terminal Domain. 

Note: The NTD does not appear on AtUBE4 cartoon as the domain is not recognised by Interpro. 
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3.2.2. Isolation of ube4 knock-out mutant plants 

To study the molecular and biological function of UBE4 in Arabidopsis, relevant T-

DNA insertion mutants were ordered from the SALK mutant library (Alonso et al., 2003) and 

genotyped for gene expression of UBE4. Whereas the SALK T-DNA insertion mutant allele, 

ube4-1 was not a functional gene knockout, the ube4-2 allele contained a SAIL T-DNA at the 

3’ end of exon ten (Figure 3.2A), leading to knockout of UBE4 gene expression and no UBE4 

protein produced (Figures 3.2B & C). Compared to wild type plants, mutant ube4-2 plants 

displayed wavy leaves and had a buckled appearance (Figure 3.2D), suggesting UBE4 also 

plays a role in plant development.  
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Figure 3.2: SAIL insertion knockout of UBE4 leads to altered growth morphology.  

A. UBE4 (AT5G15400) gene structure. White triangle indicates the position of the SALK_100087 

T-DNA insertion within the 5’ UTR (ube4-1). Black triangle indicates the position of the 

SAIL_713_A12 T-DNA insertion at the 3’ of exon 10 in (ube4-2). Closed arrowheads indicate 

locations of primers used for RT-PCR of ube4-1. Open arrowheads indicate locations of primers 

used for RT-PCR of ube4-2. Dark blue rectangles: exons. Lines: introns. Light blue rectangles: 

UTR. Image modified from Arabidopsis.org. B. RT-PCR of UBE4 gene expression. A single leaf 

from six plants was collected and pooled for RT-PCR using UBE4 gene-specific primers.  C. 

Western blot of UBE4 protein in wild type and ube4-2. Arrowhead indicates UBE4. Asterisk 

indicates non-specific binding, used as a loading control. A single leaf from six plants was 

collected and pooled for protein extraction. Samples were probed with anti-UBE4. μl indicates 

amount of crude protein extract loaded.  D. Morphology of 4-week old wild type (WT) and ube4-

2 plants. Scale bar 1 cm.  
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3.2.3. Mutant ube4-2 plants exhibit autoimmunity 

Knockout of UBE4 produced an obvious phenotypic effect, indicating it plays a 

functional role in Arabidopsis. Therefore we investigated if ube4-2 mutants had differences 

in the basal regulation of SA-dependent genes compared to wild type. Seedlings were 

grown on MS-agar plates for 14 days before analysis of defence related marker genes via 

qPCR. All of the genes tested had elevated basal levels in the ube4-2 mutant, suggesting 

that UBE4 performs a regulatory role in the expression of SA-dependent defence genes 

(Figure 3.3). 

 

 

Figure 3.3: Knockout of UBE4 leads to increased basal levels of SA-dependent immune 

response genes.  

 14 day old seedlings grown on MS agar plates of each genotype were pooled and used for qPCR 

with gene specific primers against SA-responsive PR-1, PR-2, PR-5, WRKY18, WRKY38, and 

WRKY62. Expression was normalized against constitutively expressed ubiquitin 5 (UBQ5). n = 3. 

Error bars indicate standard error from 3 technical replicates. 
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 As ube4-2 plants showed elevated basal expression of SA-responsive immune 

genes, we assessed if this was associated with enhanced immunity. To that end we used 

the bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, which is 

resisted through the SA-dependent immune signalling pathway (Kloek et al., 2001). Twenty-

four hours prior to inoculation with Psm ES4326, plants were sprayed with either water or 

SA to activate SAR. Wild type plants that had been sprayed with SA showed a significant 

reduction in pathogen growth and leaf chl-orosis. By contrast, mutant npr1-1 plants were 

highly susceptible to Psm ES4326 and had no observable response to treatment with SA. 

Interestingly, water-treated ube4-2 mutants already showed enhanced resistance to Psm 

ES4326 and attained the same level of resistance as wild type after SA treatment. Wild type 

plants that were pre-treated with SA showed less chlorosis than mock-treated ones. 

However, ube4-2 mutants showed more chlorosis than wild type plants treated with or 

without SA (Figure 3.4). These data indicate that ube4-2 mutants have enhanced basal 

disease resistance but that disease symptoms are uncoupled from pathogen growth.  
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Figure 3.4: Mutant ube4-2 plants exhibit enhanced basal disease resistance.  

(Top) Quantification of pathogen levels within infected leaves. (Bottom) Disease symptoms of 

infected leaves. Three-week old wild type, mutant ube4-2 and mutant npr1-1 plants were 

sprayed with water (-) or 0.5 mM SA (+) and incubated for 24 hours, before syringe infiltration 

with 5 x 106 colony forming units/ml Psm ES4326 into the abaxial surface of a leaf. Leaf discs 

were collected 4-days post inoculation, bacteria were extracted and serial diluted before colony 

counting on selective agar plates. Error bars indicate 95 % confidence limits (n = 8). Letters 

indicate significantly different samples (Tukey-Kramer ANOVA test, α = 0.05, n = 8).  
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3.2.4. Autoimmunity in ube4-2 mutants is dependent on SA and the transcription 

coactivator NPR1 

To investigate if autoimmunity and enhanced basal resistance displayed by ube4 

(Figures 3.3 & 3.4) is dependent on the defence hormone SA, the ube4-2 mutant was 

crossed into the SA-deficient mutant SA induction deficient 2-2 ( sid2-2) (Wildermuth et al., 

2001). Compared to the wild type, mutant sid2-2 plants showed similar basal expression of 

SA-responsive WRKY18 and WRKY62, but a reduction in basal expression of SA-responsive 

PR1 and WRKY38 was observed (Figure 3.5). As expected, ube4-2 mutants had higher levels 

of expression for PR-1, WRKY18 and WRKY62, and similar levels of WRKY38 relative to wild 

type. By contrast, these elevated gene expression levels were completely eliminated in the 

ube4-2 sid2-2 double mutant (Figure 3.5), illustrating that enhanced gene expression in 

ube4-2 mutants is dependent on SA production.  

 

 

Figure 3.5: Mutant ube4-2 plants display increased basal immune gene transcription that 

is dependent on SA signalling.  

One leaf from six 3-week old adult plants was collected and used for qPCR with gene specific 

primers against SA-responsive PR-1, WRKY18, WRKY38, and WRKY62. Expression was 

normalized against constitutively expressed ubiquitin 5 (UBQ5). Bars indicate standard error 

from 3 technical replicates. 
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 To test if enhanced immunity in ube4-2 mutants was also dependent on SA, 3-week 

old plants were inoculated with a low dose (5 x 105 colony forming units/ml) of the virulent 

pathogen Psm ES4326 and incubated for 4 days. As expected, wild type and ube4-2 plants 

showed similar levels of resistance to this pathogen despite ube4-2 having generally higher 

defence gene expression. This is due to the low dosage of pathogen used, for which the 

basal level of defence gene expression in wild type in already enough to achieve maximal 

repression of pathogen growth and disease symptoms. Both the sid2-2 single and ube4-2 

sid2-2 double mutants were more susceptible to disease as indicated by significantly higher 

pathogen growth and chlorosis of the leaf (Figure 3.6). These data demonstrate that 

regulation of defence gene by UBE4 is dependent on SA production and signalling. 
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Figure 3.6: UBE4 requires SA to maintain basal immune defences.  

(Top) Quantification of pathogen levels within infected leaves. (Bottom) Morphology of 

infected leaves. Three-week old adult plants were inoculated via syringe infiltration with 5 x 105 

colony forming units (cfu)/ml Psm ES4326 into the abaxial surface of a leaf. Leaf discs were 

collected 4-days post inoculation, bacteria were extracted and serial diluted before colony 

counting on selective agar plates. Error bars indicate 95 % confidence limits (n = 8). Letters 

indicate significantly different samples (Tukey-Kramer ANOVA test, α = 0.05, n = 8). 
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As NPR1 is the master regulator of the SA-dependent immune response, ube4-2 was also 

crossed into the npr1-1 mutant. As expected, the npr1-1 mutant displayed reduced 

expression of several marker genes compared to wild type (Figure 3.7). Again the ube4-2 

single mutant showed increased expression of marker genes compared to wild type, except 

for WRK18, which was similar. The ube4-2 npr1-1 double mutant, however, exhibited 

expression levels that were comparable to the npr1-1 single mutant (Figure 3.7), indicating 

that the enhanced gene expression in ube4-2 is dependent on the SA-mediated 

transcription co-factor NPR1. 

 

 

Figure 3.7: Mutant ube4-2 plants exhibit increased basal immune gene transcription that 

is dependent on SA-responsive NPR1 coactivator.  

One leaf from six 3-week old adult plants was collected and used for qPCR with gene specific 

primers against SA-responsive PR-1, WRKY18, WRKY38, and WRKY62. Expression was 

normalized against constitutively expressed ubiquitin 5 (UBQ5). Bars indicate standard error 

from 3 technical replicates. 
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To further investigate if enhanced immunity of ube4-2 was also dependent on the 

SA-mediated co-factor NPR1, plants were inoculated with a low dose (5 x 105 colony 

forming units/ml) of the virulent pathogen Psm ES4326 and incubated for 4 days. Mutant 

ube4-2 plants had equivalent resistance as the wild type, but in the npr1-1 background had 

the same disease levels as the single mutant (Figure 3.8). 

 

 

Figure 3.8: UBE4 requires the SA master regulator NPR1 to maintain basal immune 

defences.  

Enhanced disease susceptibility test: Top: Quantification of pathogen levels within infected 

leaves. Bottom: Morphology of infected leaves. 3-week old adult plants were inoculated with 5 x 

105 colony forming units/ml Psm ES4326 into the abaxial surface of a leaf via syringe 

infiltration. Leaf discs were collected 5-days post inoculation, bacteria was extracted and serial 

diluted before colony counting on selective agar plates. Error bars indicate 95 % confidence 

limits (n = 8). Letters indicate significantly different samples (Tukey-Kramer ANOVA test, α = 

0.05, n = 8). 
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Taken together the results of the genetic crosses to sid2-2 and npr1-1 indicate that UBE4 

has a functionally relevant position within SA-mediated immune responses that are NPR1 

dependent. 

 

3.2.5. UBE4 localizes to both the nucleus and cytoplasm 

Because the effect of ube4 on plant defence expression was NPR1 dependent 

(Figures 3.7 & 3.8), we investigated if UBE4 protein localizes to the same cellular 

compartments as NPR1. NPR1 is present in both the nucleus and the cytoplasm. In the 

cytoplasm NPR1 is found mainly as a large, redox-sensitive oligomer with small amounts 

moving into the nucleus to maintain basal gene expression. Upon activation of SA signalling, 

a redox change leads to a greater amount of NPR1 becoming monomerized, which enter 

the nucleus and can activate gene transcription (Tada et al., 2008, Spoel et al., 2009, 

Kinkema et al., 2000, Mou et al., 2003). UBE4 was fused to Yellow Fluorescent Protein (YFP) 

and placed under control of the constitutive cauliflower mosaic virus 35S promoter to 

create the 35S::YFP-UBE4 construct, which was transformed and expressed in protoplasts. 

As can been seen in figure 3.9A, YFP-UBE4 localized to both the nucleus and the cytoplasm, 

suggesting it could interact with NPR1. Protoplasts transformed with YFP-UBE4 were also 

examined via Western blot (figure 3B), an observed band of YFP-UBE4 confirms the 

fluorescence seen in figure 3A was not due to cleaved YFP.  
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Figure 3.9: YFP-UBE4 is localised to the nucleus and cytoplasm.  

A. 35S::YFP-UBE4 was transformed into protoplasts and subcellular localization analysed by 

confocal microscopy. Left: Auto-fluorescence of protoplasts. Middle: 35S::YFP-UBE4. Right: 

Merged image. B. Western blot of protoplasts transformed with 35S::YFP-UBE4. Arrow indicates 

YFP-UBE4. 
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3.2.6. UBE4 is a ubiquitin ligase  

 As UBE4 is a putative homolog of the yeast E4 ligase UFD2 (Figure 3.1) (Huang et 

al., 2014), we set out to discover if the Arabidopsis UBE4 also functions as a ubiquitin ligase. 

Ubiquitinated proteins were purified from wild type and mutant ube4-2 plants using 

Tandem Ubiquitin Binding Entities (TUBE) (Hjerpe et al., 2009). TUBE proteins consist of 

four ubiquitin binding domains linked together by a flexible linker and attached to a His or 

GST tag. Although TUBE proteins can bind single ubiquitin moieties they have higher affinity 

for polyubiquitin chains, allowing easy purification of polyubiquitinated proteins (Hjerpe et 

al., 2009). Seedlings were immersed for six hours in either water, 0.5 mM SA, or a 

combination of 0.5 mM SA and 100 μM MG132, a proteasome inhibitor. Protein was 

extracted and analysed by SDS-PAGE and Western blotting. When probed with an anti-

ubiquitin antibody, water- and SA-treated wild type plants showed a smear of 

polyubiquitinated proteins of different molecular weights (Figure 3.10). When the 

proteasome was inhibited by inclusion of MG132, the level of polyubiquitinated proteins 

strongly increased. In ube4-2 plants the level of polyubiquitination was similar to that of 

wild type (Figure 3.10). We then probed the blot with an antibody against RPN10, which 

acts as a ubiquitin receptor for the proteasome, but RPN10 itself is heavily ubiquitinated by 

a large variety of different ubiquitin ligases (Uchiki et al., 2009, Kim and Goldberg, 2012) 

and thus it was used here as a model substrate for polyubiquitination. Indeed, 

polyubiquitination of RPN10 was readily detected as a wide variety of high molecular 

weight bands (Figure 3.10). In SA-treated wild type plants, the intensities of 

polyubiquitinated RPN10 bands increased after addition of SA and especially in presence of 

MG132. Strikingly, ube4-2 mutants accumulated less polyubiquitinated RPN10 than wild 

type and this level was largely unresponsive to the addition of SA. After MG132 addition 

the amounts of polyubiquitinated RPN10 were too high to make a reliable comparison to 
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wild type. These data demonstrate that UBE4 enhances levels of poly-ubiquitination on 

RPN10, suggesting it may indeed function as an E4 ubiquitin ligase in Arabidopsis.  

 

 

Figure 3.10: UBE4 is a ubiquitin ligase that acts upon the ubiquitination model substrate 

RPN10.  

Approximately 75 two-week old seedlings grown on MS-agar plates were immersed for 6 hours 

in solutions containing vehicle (DMSO), 0.5 mM SA or 100 μM MG132 as indicated before 

protein extraction in the presence of His-tagged TUBE protein to capture ubiquitinated proteins. 

His-TUBE and associated polyubiquitinated proteins were pulled down (PD) on His-Pure cobalt 

beads.  Eluate was analysed by SDS-PAGE and probed by immunoblotting (IB) with α-ubiquitin 

and α-RPN10 antibodies. A sample of crude extract before purification on His-Pure cobalt beads 

was used to provide total RPN10. 
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3.2.7. Mutation of UBE4 stabilises NPR1 coactivator 

As UBE4 can act as a ubiquitin ligase (Figure 3.10) and influences NPR1-dependent 

gene expression and immunity (Figures 3.3 – 3.8), it was hypothesized that UBE4 may alter 

the stability of NPR1 protein. To investigate this possibility NPR1 fused to green fluorescent 

protein (NPR1-GFP) was constitutively expressed in npr1-1 single and ube4-2 npr1-1 double 

mutants. The resulting 35S::NPR1-GFP (npr1-1) and 35S::NPR1-GFP (ube4-2 npr1-1) lines 

were subjected to a cycloheximide chase in which protein synthesis is blocked by the 

presence of the ribosomal inhibitor cycloheximide, allowing the rate of protein degradation 

to be measured.  Seedlings were placed in solutions containing 0.5 mM SA and 100 μM 

cycloheximide and samples were taken at various time-points. In wild type plants NPR1-GFP 

was almost completely degraded by 6 hours and undetectable by 8 hours (Figure 3.11). By 

contrast, in ube4-2 plants NPR1-GFP was more abundant than in the wild type at 6 hours 

and still detectable at 8 hours. This result suggests that in ube4-2 plants NPR1 is degraded 

at a slower rate than in the wild type. 

 

 

Figure 3.11: Knock-out of UBE4 leads to stabilisation of NPR1-GFP.  

Approximately 75 two-week old seedlings grown on MS-agar plates were immersed in a 0.5 mM 

SA and 100 μM cycloheximide solution and samples collected at indicated time-points. Protein 

extracts were analysed by SDS-PAGE and probed with antibodies against GFP and RPN10, the 

latter of which functioned as a loading control. 
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3.2.8. UBE4 functions as a ubiquitin ligase for NPR1 

Because UBE4 acts as a ubiquitin ligase on at least one substrate (RPN10) (Figure 

3.10) and can stabilise NPR1 (Figure 3.11), we explored the hypothesis that UBE4 could also 

act as a ubiquitin ligase of NPR1. Therefore, 35S::NPR1-GFP (npr1-1) and 35S::NPR1-GFP 

(ube4-2 npr1-1) seedlings were treated for 4 hours with water or 0.5 mM SA and 

subsequently 40 μM MG132 was added for an additional 2 hours. Samples were collected 

and immunoprecipitation performed using an antibody against GFP followed by SDS-PAGE 

and western blotting for both ubiquitin and GFP (Figure 3.12). This method readily detected 

high molecular weight, polyubiquitinated NPR1-GFP but also revealed a faster migrating, 

potentially monoubiquitinated form of NPR1-GFP (Figure 3.12). However, follow-on 

experiments indicated that the anti-ubiquitin antibody sporadically detected the large 

amounts of immunoprecipitated unmodified NPR1-GFP (data not shown) in this type of 

experiment. Regardless of this, SA stimulated polyubiquitination of NPR1-GFP in wild type 

plants, while polyubiquitinated NPR1-GFP levels in ube4-2 mutants were unresponsive to 

SA. These data indicate UBE4 may be required to elongate ubiquitin chains on NPR1-GFP in 

a SA-dependent manner.  
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Figure 3.12: Mutant ube4-2 plants have decreased levels of polyubiquitinated NPR1-GFP.  

Approximately 75 two-week old seedlings were immersed for 4 hours in water or 0.5 mM SA 

before addition of 40 μM MG132 for an additional 2 hours. Immunoprecipitation (IP) was 

performed on protein extract in presence or absence of the α-ab290 (anti-GFP) antibody. Eluate 

was analysed by SDS-PAGE and immunoblotting (IB) with ubiquitin and GFP antibodies. 

Asterisk indicates non-ubiquitinated NPR1-GFP. 

 

 To confirm the results seen in the IP using the GFP antibody, a reverse pulldown 

was performed using the GST-tagged Tandem Ubiquitin Binding Enitity (TUBE) (Hjerpe et 

al., 2009). TUBE proteins bind ubiquitinated substrates with high affinity allowing pulldowns 

to be performed and proteins of interest probed for with antibodies. The results using the 

TUBE method mirror those of the IP in figure 3.12. NPR1-GFP can be detected as a smear 

indicating ubiquitin chains of various lengths are present and their intensities increased 

after the addition of SA (Figure 3.13). Note that unmodified NPR1-GFP was also pulled 

down by the TUBE method, indicating NPR1 interacts with its own polyubiquitinated form 

or other polyubiquitinated proteins. Although mock-treated ube4-2 and wild type plants did 

not differ, SA treatment of ube4 mutants did not induce an increase in the amount of 
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polyubiquitinated NPR1-GFP. These data show that correct polyubiquitination of NPR1-GFP 

requires the E4 ligase UBE4. 

 

 

Figure 3.13: Pull-down of ubiquitinated protein using TUBE and probing with α-GFP 

confirms that in ube4-2 NPR1-GFP has lower poly-ubiquitination levels.  

Approximately 75 14-day old seedlings were immersed in 0.5 mM SA (+) for 4 hours or water (-) 

before addition of 40 μM MG132 for 2 hours. Pull down (PD) was performed on protein 

extraction in the presence of GST-tagged TUBE protein to capture ubiquitinated proteins. GST-

TUBE and associated polyubiquitinated proteins were pulled down (PD) on glutathione beads. 

Eluate was analysed by SDS-PAGE and immunoblotted (IB) with ubiquitin, GFP and RPN10 

antibodies. Asterisk indicates non-ubiquitinated NPR1-GFP. 
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3.2.9. UBE4 suppresses transcriptional activity of NPR1  

Mutation of the E3 ubiquitin ligase CUL3 results in untimely activation of plant 

immune responses (Spoel et al., 2009). To investigate if UBE4 plays a similar role in plant 

immunity, we examined the expression of SA-responsive immune genes in absence of 

pathogen challenge. Adult plants were each placed in a 5 ml well containing 0.5 mM SA or 

water (Mock) for 24 hours. Two leaves from each plant were collected and used for qPCR. 

Treatment with SA induced expression of the marker genes PR-1, WRKY18, WRKY38 and 

WRKY62 in both wild type and ube4-2 plants. However, compared to the wild type, mutant 

ube4-2 plants exhibited far higher levels of immune gene expression (Figure 3.14). This 

indicates that UBE4 may play a role in regulating defence gene expression. 

 

 

Figure 3.14: Increased SA-induced defence gene expression is observed in ube4-2. 

Adult wild type and ube4-2 plants were placed in 5 ml wells containing 0.5 mM SA or water 

(Mock) for 24 hours. Two leaves from 3 plants were collected, pooled and used for qPCR with 

gene specific primers against SA-responsive PR-1, WRKY18, WRKY38, and WRKY62. Expression 

was normalized against constitutively expressed ubiquitin 5 (UBQ5). n = 3. Error bars indicate 

standard error from 3 technical replicates.  
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3.2.10. The ubiquitin ligases CUL3 and UBE4 have opposing activities in SA-

dependent gene expression 

A previous report indicated that ubiquitination by a CUL3-based E3 ligase and 

subsequent proteasome-mediated turnover of NPR1 were required for full activation of its 

target genes (Spoel et al., 2009). Here we showed, however, stabilization of NPR1 in the 

ube4-2 background is associated with increased transcription of its target genes. To further 

investigate this discrepancy we compared SA-induced NPR1 target gene expression in cul3a 

cul3b and ube4-2 mutants side by side. Seedlings were placed into 0.5 mM SA or water for 

6 h and then analysed by qPCR. As seen in figure 3.15, addition of SA to wild type plants 

induced high levels of transcription of all NPR1 target genes tested, except PR-5. Mutant 

npr1 plants lacked the ability to respond to SA (Wang et al., 2006) and marker transcription 

levels were indeed very low. In cul3 mutants transcription levels increased but remained 

lower than that of wild type. In contrast, ube4-2 mutants displayed increased gene 

transcription compared to wild type for nearly all of the genes tested (Figure 3.15). These 

results suggest that while the E4 ligase UBE4 and the E3 ligase CUL3 both stabilize NPR1 

protein levels, they have opposing effects on NPR1 target gene transcription. 
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Figure 3.15: Mutation of the E4 ligase UBE4 has the opposite effect on NPR1 target gene 

transcription as the E3 ligase mutant cul3. 

Seedlings were placed into 0.5 mM SA or water for 6 hours and then analysed by qPCR for the 

expression of SA-responsive NPR1 target genes. All expression levels were normalised to UBQ5 

and converted to a heat map. 
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3.2.11. The ube4-2 mutant uncouples NPR1 coactivator activity from 

proteasome-mediated turnover 

Knockout of UBE4 leads to reduced polyubiquitination with increased SA-

dependent gene expression, hinting that in ube4-2 plants NPR1 activity has been uncoupled 

from proteasome-mediated degradation. To test this hypothesis, seedlings were immersed 

in 0.5 mM SA for 4 hours and subsequently supplemented with various concentrations of 

MG132 for another 2 hours. Addition of MG132 led to strong concentration-dependent 

decreases in SA-induced expression of PR1 and WRKY18 in wild type plants. By contrast, in 

ube4-2 mutants PR1 expression remained high in presence of 40 and 80 μM MG132 and 

suppression of transcription only became apparent with 100 μM MG132. Moreover, 

WRKY18 expression in ube4-2 mutants was not decreased by any of the applied MG132 

concentrations (Figure 3.16). Hence, knockout of UBE4 leads to a decoupling of NPR1-

dependent transcription from proteasome activity, suggesting that initial ubiquitination of 

NPR1 is necessary for it activity, but extended polyubiquitination and proteasome-

mediated degradation serve to limit that activity. 
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Figure 3.16: The ube4-2 mutant uncouples NPR1-dependent gene transcription from 

proteasome activity.  

Approximately 75 two-week old seedlings were immersed in 0.5 mM SA for 4 hours or water 

(Ctrl) before addition of MG132 at various concentrations (in µM) for an additional 2 hours. RNA 

was extracted and used for qPCR with gene specific primers against SA-responsive PR-1 and 

WRKY18. Expression was first normalized against constitutively expressed ubiquitin 5 (UBQ5) 

and then expressed relative to plants that were treated with SA alone (i.e. 0 µM MG132). Ctrl = 

expression level in water-treated plants. Bars indicate standard error from 3 technical 

replicates. 
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3.3. Discussion  

In Arabidopsis the immune response to biotrophic pathogens is regulated by the 

SA-activated transcription coactivator NPR1. Previous work has shown that in order to 

correctly orchestrate changes in gene expression induced by SA, NPR1 requires sumoylation 

by SUMO3 to allow it to switch from binding the WRKY70 repressor to the coactivator TGA3 

(Saleh et al., 2015). The transcriptionally competent NPR1 is subject to proteasome-

mediated turnover signalled by the ubiquitin ligase CUL3, after a round of transcription has 

been initiated (Spoel et al., 2009). However, it remains largely unknown if ubiquitination of 

NPR1 affects its intrinsic transcriptional activity. Here we investigated this by analysing the 

role of the E4 ubiquitin ligase, UBE4, in controlling NPR1 activity. We found that mutation 

of UBE4 decreased the levels of polyubiquitination, leading to stabilisation of NPR1. 

Contrary to mutation of CUL3, however, ube4 mutants displayed increased gene 

transcription that was independent of proteasome-mediated destruction of NPR1. We 

propose that lower order ubiquitin chains increase transcriptional activity of NPR1 and that 

proteasome-mediated degradation serves to limit that activity, providing rapid and 

accurate control over transcriptional responses to SA. 

 Using sequence alignment and homology modelling, we identified Arabidopsis 

UBE4 as a homologue of the yeast E4 ligase UFD2 (Figure 3.1)(Huang et al., 2014). Knockout 

of UBE4 led to increased basal immune gene expression and immunity (Figures 3.3, 3.5 & 

3.7), indicating that UBE4 is required for timely gene expression. Genetic dissection of the 

SA response pathway indicated that constitutive gene expression and immunity in ube4-2 

mutants required the presence of SA and specifically the coactivator NPR1 (Figures 3.5 - 

3.8). Previous reports indicate that NPR1 is continuously targeted to the proteasome by a 

CUL3-based E3 ligase that utilizes the adaptors NPR3 and NPR4 (i.e. CUL3NPR4 and CUL3NPR3) 
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(Spoel et al., 2009, Fu et al., 2012). In the resting state NPR1 exists as an oligomer within 

the cytoplasm, but small amounts of the NPR1 monomer are believed to escape and enter 

the nucleus where they are degraded via CUL3NPR4 to prevent spurious activation of defence 

responses (Fu et al., 2012). In mutant cul3 and npr3 npr4 plants an increase in basal 

immune defences similar to that in ube4-2 has been reported (Spoel et al., 2009, Fu et al., 

2012). The upregulated expression in both mutants of UBE4 and CUL3NPR3/4 was abolished 

by crossing to the npr1-1 background (Figure 3.15) (Spoel et al., 2009, Fu et al., 2012). 

These data suggest that and CUL3NPR4 and UBE4 may both act on NPR1, and perhaps in 

sequence, to prevent untimely autoimmune responses.  

 Mutation of CUL3 or NPR1’s degron motif led to a reduction of its 

polyubiquitination accompanied by NPR1 protein stabilisation (Spoel et al., 2009). Our 

results suggest that UBE4 also exhibits ubiquitin ligase activity on NPR1 (Figures 3.12 & 

3.13). Thus, the reduction in polyubiquitinated NPR1 in ube4-2 mutants is likely responsible 

for its stabilisation (Figure 3.11). In yeast, UFD2 acts as an E4 ligase, increasing the length of 

chains on substrates that have already been partially ubiquitinated by the action of E3 

ligases (Koegl et al., 1999, Saeki et al., 2004). Due to the high degree of homology between 

ScUFD2 and AtUBE4 (Figure 3.1 & Supplemental 3.1), the reduction of detectable NPR1-GFP 

polyubiquitination in ube4-2 is likely due to reduced chain length. In Arabidopsis, UBE4 has 

been proposed to act on the pathogen receptor proteins suppressor of npr1-1, constitutive 

(SNC1) and resistant to P.syringae 2 (RPS2). It was observed that UBE4 enhanced 

degradation of the receptor proteins in the presence of the E3 ligase CUL1CPR1, but UBE4 

had no effect on the degradation of SNC1 and RPS2 in absence of the Constitutive 

expressor of PR genes 1 (CPR1) F-box protein, indicating that UBE4 acts as an E4 ligase 

within this ubiquitination pathway. Mutation of UBE4 led to increased stabilisation of the 

receptor proteins, but a double mutant of ube4 and snc1 failed to completely suppress the 
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increased basal PR-1 and PR-2 expression seen in the ube4 single mutant (Huang et al., 

2014). The authors proposed that UBE4 may act on other receptor proteins that contribute 

alongside SNC1 to the ube4 mutant phenotype of enhanced immune gene expression. 

However, as we showed here that UBE4 acts on the master regulator NPR1, it is likely that 

the incomplete suppression is probably due to mis-regulation of NPR1. Furthermore, Huang 

et al. (2014) found that mutation of SNC1 did not prevent the disease resistance phenotype 

that ube4 mutant plants displayed against Psm ES4326. Data presented in this chapter now 

clearly indicate that resistance against Psm ES4326 infection in ube4 mutants is due to 

enhanced transcriptional activity of NPR1 coactivator. Hence, UBE4 has been shown to act 

in cooperation with two different members of the CUL ubiquitin ligase family; the CUL1CPR1 

ligase (Huang et al., 2014) and CUL3NPR3/4 ligase (this chapter). Therefore, it is possible that 

UBE4 acts as a general ubiquitination enhancement factor for CUL-based ubiquitin ligases. 

 Although UBE4 likely acts as a ubiquitin ligase for NPR1, we have not yet been able 

to co-immunoprecipitate NPR1 and UBE4 (data not shown). This may be due to the 

interaction being too transient to catch or the interaction requiring an unstably associated 

adaptor protein. UBE4 has been found to have a direct interaction with SNC1 but not RPS2, 

leading the authors to speculate that an adaptor was required to alter UBE4 specifity 

(Huang et al., 2014). Indeed if UBE4 acts in a generalist manner i.e. it enhances 

ubiquitination on many separate target substrates mediated by a variety of E3s ligases, an 

adaptor is likely required to increase the specificity of UBE4 interaction with a particular 

substrate.  

 UBE4 was found to localize to both the cytoplasm and the nucleus (Figure 3.9) 

(Huang et al., 2014), consistent with its reported interactions with SNC1 and RPS2 immune 

receptors (Huang et al., 2014) and with its predicted interaction with nuclear NPR1 as 
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reported in this Chapter (Figures. 3.12 & 3.13). A key point with regards to the interaction 

with NPR1 is where in the nucleus it occurs. To conclusively prove UBE4 alters gene 

transcription via ubiquitination of transcriptional active NPR1, interaction between UBE4 

and NPR1 on the chromatin via chromatin immunoprecipitation is required.  

 The key difference between NPR1 protein stabilisation caused by mutation of CUL3 

or UBE4 is that the cul3 mutant showed reduced NPR1-dependent transcription, whereas 

ube4-2 mutants exhibited increased levels of transcription after application of SA (Figure 

3.14 & 3.15). This discrepancy strongly implies a scenario in which initial CUL3-mediated 

ubiquitination of NPR1 is necessary for this coactivator to attain full transcriptional activity, 

while subsequent ubiquitin chain extension by UBE4 inactivates NPR1 by both 

stoichiometric inhibition and targeting to the proteasome.  

 Previous work within plants exploring ubiquitination of TFs has focused on 

polyubiquitination being used to regulate protein degradation (Furniss and Spoel, 2015, 

Trujillo and Shirasu, 2010, Stone, 2014, Vierstra, 2009). However, in other eukaryotic 

systems ubiquitination of TFs directly alters their behaviour. This notion was first explored 

in yeast. Transcription induced by an artificial activator consisting of the yeast VP16 

transactivation domain and the bacterial LexA DNA binding protein (LexA-VP16), was shown 

to require ubiquitination and degradation mediated by the F-box protein methionine 

requiring 30 (MET30). Strikingly, when ubiquitin was fused in-frame to LexA-VP16, the 

requirement for MET30 was completely bypassed (Salghetti et al., 2001), suggesting that 

ubiquitination has dual functions to both activate and destroy transcription activators. 

Subsequently, additional studies indicated roles for monoubiquitination in transcription 

activation (Bres et al., 2003, Greer et al., 2003, Burgdorf et al., 2004). Monoubiquitination 

does not usually signal for proteasome-mediated degradation, for which approximately 
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four or more K48-linked ubiquitins are required (Thrower et al., 2000). Instead it was 

reported that promoter occupancy of the yeast prototypical transcription activator, 

Galactose metabolism 4 (GAL4), was stabilized by monoubiquitination (Ferdous et al., 2007, 

Archer et al., 2008b). Interestingly, unmodified GAL4 was destabilized by ATPase activity of 

the proteasome 19S regulatory particle (RP), preventing transcription activation. 

Monoubiquitination limited the lifetime of physical interactions between the GAL4 

activation domain and RP subunits (Archer et al., 2008a). This type of regulatory system 

likely extends to many other eukaryotes, as interactions between tumor suppressor protein 

p53, a transcription activator in mammalian cells, and its target promoters were also 

destabilized by the RP ATPases (Kim et al., 2009). 

 While monoubiquitination may play a regulatory role, processive ubiquitin chain 

elongation subsequently leads to activator turnover (Kodadek et al., 2006). This processive 

mono-to-polyubiquitination switch was explored in particular detail for the human Steroid 

Receptor Coactivator-3 (SRC-3). SRC-3 is an important developmental transcription 

coactivator, whose uncontrolled expression can lead to oncogenesis. SRC-3 was found to be 

subject to phosphorylation-dependent polyubiquitination by the ligase Fbw7α, resulting in 

its transcription-coupled degradation. However, SRC-3 was also multi(mono)-ubiquitinated 

by Fbw7α, which enhanced its transcriptional activity. Hence, it was proposed that biphasic, 

processive ubiquitination (i.e. transitioning from mono- to polyubiquitination) generates a 

timer for the functional lifetime of SRC-3 (Wu et al., 2007). Here we have shown that 

processive ubiquitination of the transcription coactivator NPR1 is regulated by UBE4 acting 

in the capacity of an E4 ligase. We propose that mono- or lower order ubiquitination 

produces a highly transcriptionally active NPR1, which operates within a window of 

opportunity that is limited by UBE4-mediated polyubiquitination and subsequent 

degradation by the proteasome. Indeed, chemical inhibition of the proteasome through 
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application of MG132 leads to a reduction of SA-induced gene expression in wild type, 

while in ube4-2, addition of MG132 had little effect (Figure 3.16), confirming turnover of 

polyubiquitinated NPR1 is normally required for timely and accurate gene expression levels.  

We therefore conclude that the increased transcriptional activity of NPR1 by ubiquitination 

and its subsequent destruction provides a rapid and reliable way to keep tight regulation on 

both the level and length of SA-dependent gene expression. 
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Chapter 4: Discovery and characterisation of a novel ubiquitin 

ligase crucial to SA-dependent immunity 

4.1. Introduction 

UBE4 is the only E4 ligase identified within Arabidopsis so far and is homologous to 

the yeast E4 ligase, UFD2 (Chapter 3) (Huang et al., 2014). However, another well-defined 

E4 ligase in yeast is the HECT domain-containing HUL5 protein. HUL5 was discovered as a 

proteasome accessory protein through a salt labile interaction (Leggett et al., 2002) and 

acts to increase the ubiquitin chain length on ubiquitinated substrates (Crosas et al., 2006). 

Deletion of HUL5 leads to substrate stabilisation and is associated with a reduction in 

substrate polyubiquitination. HUL5 has been shown to act in direct opposition to the 

deubiquitinase UBP6, the deletion of which has the opposite effect of increasing turnover 

of polyubiquitinated substrates (Crosas et al., 2006, Leggett et al., 2002). HUL5 has also 

been shown to be responsible for the generation of free ubiquitin chains, a function that it 

shares with another HECT domain-containing E4 ligase, ubiquitin fusion degradation 4 

(UFD4) (Braten et al., 2012). HUL5 produces ubiquitin chains in response to stress 

conditions (Braten et al., 2012), such as heat-shock in which HUL5 is involved in the 

degradation of mis-folded proteins (Fang et al., 2011), whereas UFD4 regulates basal 

synthesis of free ubiquitin chains (Braten et al., 2012). In Arabidopsis there are seven HECT 

domain-containing proteins (El Refy et al., 2004), all of which are part of the ubiquitin 

protein ligase (UPL) family. UPL3 is similar in homology to the yeast protein UFD4; both 

proteins contain Armadillo (Arm) domains used for protein-protein interactions (El Refy et 

al., 2004, Downes et al., 2003). UPL3 has been implicated in the control of trichome 

formation, as knockout of UPL3 leads to increased trichome branching due to excessive 

endoreduplication (Downes et al., 2003, El Refy et al., 2004). It was subsequently 
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discovered that UPL3 is responsible for the degradation of two bHLH transcription 

cofactors, glabrous 3 (GL3) and enhancerof GL3 (EGL3), involved in the promotion of 

trichome development and flavonoid synthesis (Patra et al., 2013). UPL3 interacts with GL3 

and EGL3 by physically associating its armadillo domains to the C-terminal domains of these 

transcription cofactors. Knockout of UPL3 leads to stabilisation of both GL3 and EGL3, 

however, GL3 has been implicated in binding the UPL3 promoter and in a gl3 mutant UPL3 

transcription was reduced; these data indicate the presence of a regulatory feedback loop 

(Patra et al., 2013). Another UPL protein, UPL5, has been implicated in leaf senescence. 

UPL5 acts as a repressor of a key senescence promoter, WRKY53, by targeting it for 

ubiquitination and proteasome-mediated degradation. Accordingly, mutation of UPL5 led 

to stabilisation of WRKY53 and early senescence, in a manner similar to WRKY53 over-

expressers. In wild-type plants WRKY53 and UPL5 act antagonistically. UPL5 levels remain 

stable throughout development of the plant except during bolting when WRKY53 drives 

senescence and UPL5 levels decrease (Miao and Zentgraf, 2010). WRKY53 has also been 

shown to be a direct target of NPR1, and acts as a positive regulator of SA-dependent 

immunity alongside WRKY70 which is also involved in leaf senescence as a negative 

regulator (Wang et al., 2006, Miao and Zentgraf, 2010, Zentgraf et al., 2010) Thus, UPL3 and 

UPL5 both act as ubiquitin ligases of transcription (co)factors and mutants showed defects 

in gene regulation, making the UPL family excellent candidates for functioning as putative 

E4 ligases in the plant immune response.  

 In this chapter we investigated the role of several UPL genes and their ability to 

regulate total cellular ubiquitination levels and polyubiquitination of a model substrate. As 

we are ultimately interested in discovering ubiquitin ligases involved in the regulation of 

immune transcription we tested UPL mutants for SA-induced gene expression and disease 

resistance. We found that reduced levels of ubiquitination in mutants of the closely related 
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UPL3 and UPL4 proteins correlated with severe defects in SA-mediated gene expression and 

disease resistance, indicating these ubiquitin ligases play essential roles in orchestrating the 

plant immune response.  
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4.2. Results 

4.2.1. Ubiquitin Protein Ligases are putative homologs of the yeast E4 ligase HUL5 

Using the ScHUL5 protein sequence putative Arabidopsis homologues were 

identified via a BLASTP search, yielding the seven UPL proteins (Supplemental 4.2). All 

seven UPL genes contain the HECT domain (Figure 4B). Due to the availability of T-DNA 

insertion mutants we investigated the UPL3, UPL4, UPL6 and UPL7 genes, which fall into 

two pairs of paralogues (UPL3/UPL4 and UPL6/UPL7, Figure 4A). As well as a HECT domain, 

UPL3 and UPL4 both feature Armadillo repeats similar to those found on the nuclear pore 

protein importin-α (Figures 4A & 4C) (Downes et al., 2003),  whereas UPL6 and UPL7 

feature isoleucine-glutamine (IQ) calmodulin binding domains (Mitchell et al., 2015) and 

reported transmembrane domains (Figure 4.1A) (Downes et al., 2003).  

 



75 
 

 

Figure 4.1: Domain structure of UPL proteins 

A. Domain structure drawn from results generated by InterPro supplied with the protein amino 

acid sequence from TAIR 10. Numbers indicate amino acid position. ARM: Armadillo domains. 

HECT: Homologus to E6-AP Carboxyl Terminus Domain. IQ: Isoleucine-Glutamine motif. B. 

Alignment of UPL HECT domains to the E6-AP Carboxyl Terminus Domain. Arrow indicates 

active-site cysteine. Asterisk indicates the end of the sequence. E6-AP Carboxyl Terminus 

Domain C. Alignment of UPL3 and UPL4 Armadillo domains to importin-α. Asterisks indicates 

residues conserved in diverse eukaryotic organisms. Figures 4.1B & C taken from Downes et al 

(2003).  
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4.2.2. Phenotypes of upl mutants 

Two T-DNA insertion mutants were acquired from the SALK institute for each gene 

of interest (Alonso et al., 2003) and genotyped to confirm presence of the T-DNA in the 

correct genomic location. All alleles contained the correct T-DNA insertions except for upl3-

2 plants which were found to be wild type (data not shown). RT-PCR was performed to 

confirm if the T-DNA knocked out expression of the gene of interest. All alleles assayed 

were knockouts, except for upl6-2 which was a knock-down (Figure 4.2) Knockout of UPL4, 

UPL6, UPL7, including the upl6 upl7 double mutant, resulted in wild type growth and 

showed no obvious phenotypic effects (Figure 4.3). UPL3 has been previously described as 

KAKTUS and is involved in trichome development; upl3 trichomes usually have 5-6 branches 

instead of the normal 3 (Downes et al., 2003), which we also observed (data not shown). As 

upl3-1 was a knockout (Figure 4.2) and carried the same phenotype as previously reported, 

we carried on our investigation with the single mutant allele. Compared to parent single 

mutants, upl3 upl4 double mutant offspring showed reduced growth (Figure 4.3), senesced 

earlier and produce considerably less seed (data not shown), indicating UPL3 and UPL4 may 

function redundantly. 
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Figure 4.2: All T-DNA insertion alleles have the target gene knocked-out except upl6-2.  

A. Location of T-DNA insertions in UPL genes. White and black triangles indicate location of T-
DNA insertions in allele 1 and 2 of each gene, respectively. Closed and open arrowheads indicate 
location of primer for alleles 1 and 2 of each gene, respectively. Dark blue rectangles: exons. 
Lines: introns. Light blue rectangles: UTR. Image modified from Arabidopsis.org.  B.  Total RNA 
was extracted from indicted wild type and mutant plants and reverse transcriptase-PCR 
performed with indicated UPL gene specific primers. 
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Figure 4.3: Morphology of T-DNA insertion mutants 

Morphology of adult plants at three weeks old. Mutation of UPL3 led to relatively normal growth 

but misshaped trichomes (not visible in photo) (Downes et al., 2003). The upl3 upl4 double 

mutant has much reduced growth relative to the single mutant parents.  Scale bar is 1 cm. 

 

 

4.2.3. UPL3 is a ubiquitin ligase required to maintain total cellular ubiquitination 

levels 

To investigate if the UPLs have global cellular ubiquitin ligase activity, TUBE pull-

downs were carried out on seedlings that had been treated with only 0.5 mM SA, a 

combination of 0.5 mM SA and 100 μM MG132, or water (mock) for 6 hours.  In SA-treated 

wild type global cellular levels of polyubiquitinated proteins and polyubiquitination of the 

proteasome subunit RPN10 increased slightly, while larger increases were observed in the 

presence of SA and MG132. A wild type ubiquitination pattern was seen in upl4-1, while 

reduced RPN10 polyubiquitination was occasionally seen in upl4-2, but this could not be 

repeated consistently (Figures 4.4). The most striking differences were observed between 
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the wild type and upl3 single or upl3 upl4 double mutants, which showed reduced levels of 

cellular polyubiquitination and RPN10 polyubiquitination (Figures 4.4 & 4.5). These data 

indicate that upl3 may be a specific ubiquitin ligase of RPN10 and also plays an important 

role in global cellular ubiquitination.  

 The total cellular ubiquitination pattern in upl6 and upl7 mutants was similar to 

wild type, however there was a mild reduction in the amount of unmodified RPN10 pulled-

down, if not in polyubiquitination, suggesting UPL6 and UPL7 may play a small role in the 

regulation of RPN10 levels (Figure 4.6 & 4.7). 

 

Figure 4.4: UPL3 plays a role in global ubiquitination and the specific ubiquitination of 

proteasome subunit RPN10. 

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), 0.5 mM SA and DMSO (+-) or 0.5 mM SA and 100 μM MG132 dissolved in DMSO (++) 

for 6 hours before protein extraction in the presence of GST-tagged tandem ubiquitin binding 

entities (GST-TUBE) to capture ubiquitinated proteins. GST-TUBE was purified on glutathione 

beads. Eluates and inputs (i.e. Total RPN10) were analysed via SDS-PAGE and immunoblotted 

(IB) with α-polyubiquitin and α-RPN10 antibodies. Long (left panels) and short (right panels) 

exposures of blots are shown. 
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Figure 4.5: The double knockout upl3 upl4 has reduced global and RPN10-specific 

polyubiquitination.  

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), 0.5 mM SA and DMSO (+-) or 0.5 mM SA and 100 μM MG132 dissolved in DMSO (++) 

for 6 hours before protein extraction in the presence of GST-tagged tandem ubiquitin binding 

entities (GST-TUBE) to capture ubiquitinated proteins. GST-TUBE was purified on glutathione 

beads. Eluate was analysed via SDS-PAGE and probed with α-poly-ubiquitin and α-RPN10 

antibodies. Long (left panels) and short (right panels) exposures of blots are shown. 
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Figure 4.6: UPL6 plays a minor role in global cellular and RPN10-specific 

polyubiquitination.  

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), 0.5 mM SA and DMSO (+-) or 0.5 mM SA and 100 μM MG132 stored in DMSO (++) for 

6 hours before protein extraction in the presence of His-tagged tandem ubiquitin binding 

entities (His-TUBE) to capture ubiquitinated proteins. His-TUBE was purified on His-Pure cobalt 

beads. Eluates and inputs (i.e. Total RPN10) were analysed via SDS-PAGE and immunoblotted 

(IB) with α-poly-ubiquitin and α-RPN10 antibodies. 

 



82 
 

 

Figure 4.7: UPL7 plays a minor role in global cellular and RPN10-specific 

polyubiquitination.  

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), 0.5 mM SA and DMSO (+-) or 0.5 mM SA and 100 μM MG132 dissolved in DMSO (++) 

for 6 hours before protein extraction in the presence of His-tagged tandem ubiquitin binding 

entities (His-TUBE) to capture ubiquitinated proteins. His-TUBE was purified on His-Pure cobalt 

beads. Eluates and inputs (i.e. Total RPN10) were analysed via SDS-PAGE and immunoblotted 

(IB) with α-poly-ubiquitin and α-RPN10 antibodies. 
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4.2.4. Salicylic acid does not induce immune gene expression in upl3-1 mutants 

To test if the ubiquitination patterns seen in upl mutants correlates with changes in 

the transcriptional response to SA, 3-week old plants were sprayed with 0.5 mM SA or 

water (mock) and leaf samples were collected after 24 hours. After application of SA, 

expression of all marker genes increased in wild type plants, while in npr1-1 mutants gene 

expression did not markedly increase (Figure 4.8). Similar to npr1-1, knockout of UPL3 

completely abolished SA-induced expression of PR genes. Additionally, expression of most 

WRKY genes was also reduced in upl3 mutants. By contrast, the two upl4 mutant alleles 

responded with gene expression levels similar to or higher than wild type. Likewise, 

mutation of UPL6 or UPL7 did not result in insensitivity to SA as all mutant alleles showed 

SA-induced gene expression similar to or higher than wild type (Figure 4.8). These data 

indicate that of all the upl mutants tested, reduced substrate polyubiquitination in upl3-1 

has the most striking effect on SA-responsive immune gene expression. 
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Figure 4.8: SA-induced immune gene expression is impaired in upl3-1 mutants. 

Three-week old plants were sprayed with 0.5 mM SA (+) or water (-) and incubated for 24 h. 

Two leaves were collected from each plant per treatment and pooled before RNA extraction and 

qPCR. Expression was normalized against constitutively expressed ubiquitin 5 (UBQ5). n = 3. 

Error bars indicate standard error from 3 technical replicates. 
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4.2.5. UPL mutants display wild type responses to proteasome inhibition 

As UPL proteins are putative ubiquitin ligases, inhibition of the proteasome may 

reveal proteasome independent gene regulatory functions of the UPLs. Seedlings were 

immersed in solutions containing only 0.5 mM SA, a combination of SA and 100 μM MG132, 

or water (mock) for 6 hours. Upon SA treatment upl3-1 mutants again failed to induce PR-1 

gene expression and also exhibited reduced expression of WRKY38 (Figure 4.9). Contrary to 

the previous assay, however, expression of WRKY18 and WRKY62 was normal, suggesting 

that plant age or timing of harvest post application of SA introduced some variation 

between assays. Nonetheless, this allowed us to study the response of upl3-1 to 

proteasome inhibition. Like in the wild type, treatment with MG132 resulted in strong 

suppression of SA-induced gene expression in upl3-1 plants (Figure 4.9), indicating that SA-

responsive genes still required the proteasome for full expression in this mutant 

background.  

 Because UPL4 is closely related to UPL3, we also tested the response of upl4 

mutants to MG132. In upl4 mutants SA-induced WRKY expression was largely equivalent to 

wild type, except that PR1 levels were higher. The presence of MG132 also consistently 

reduced transcription of marker genes in upl4 mutants to a similar amount as the wild type 

(Figure 4.9).  
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Figure 4.9: SA-responsive gene expression in upl3 and upl4 mutants requires proteasome 

activity. 

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), SA and DMSO (+-) or SA and 100 μM MG132 dissolved in DMSO (++) for 6 hours, 

before RNA extraction and qPCR. Expression was normalized against constitutively expressed 

ubiquitin 5 (UBQ5). Error bars indicate standard error from 3 technical replicates. 

 

 The above experiment was also carried out using upl6 and upl7 mutants. Like other 

upl mutants, expression patterns after MG132 treatment were equivalent to that of wild 

type (Figure 4.10). Hence we conclude that mutation of the different UPL genes tested does 

not influence the dependency of SA-responsive genes on proteasome activity. 
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Figure 4.10: SA-responsive gene expression in upl6 and upl7 mutants requires 

proteasome activity. 

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in solutions of 

DMSO (--), 0.5 mM SA and DMSO (+-) or 0.5 mM SA and 100 μM MG132 dissolved in DMSO (++) 

for 6 hours, before RNA extraction and qPCR. Expression was normalized against constitutively 

expressed ubiquitin 5 (UBQ5). Error bars indicate standard error from 3 technical replicates. 
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4.2.6. The upl3 upl4 double mutant has a similar transcriptional profile to upl3-1 

As UPL3 and UPL4 are homologs, it is possible that they operate redundantly 

masking possible effects of the single gene knock-out; a upl3 upl4 double mutant was 

generated by crossing upl3-1 with upl4-2. Seedlings were immersed in 0.5 mM SA for 24 

hours and SA-responsive gene expression analysed. The upl3 upl4 double mutant showed a 

similar transcriptional profile to the upl3-1 single mutant, in that PR-1 gene expression was 

strongly reduced. However, expression of WRKY18 and WRKY38 was similar to wild type 

and that of WRKY62 was higher (Figure 4.11). As expression levels in the double mutant 

were comparable to the upl3-1 single mutant, this indicates that mutation of UPL4 does not 

further aggravate mutant phenotypes.  
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Figure 4.11: Knockout of both UPL3 and UPL4 prevent correct expression of PR genes. 

Approximately 75 14-day old seedlings grown on MS-agar plates were immersed in a 0.5 mM SA 

solution (+) or water (-) for 24 hours, before RNA extraction and qPCR. Expression was 

normalized against constitutively expressed ubiquitin 5 (UBQ5). Error bars indicate standard 

error from 3 technical replicates. 
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4.2.7. Mutation of UPL3 or UPL4, but not UPL6 and UPL7 alters disease resistance 

As upl3-1 has a reduced capacity to express PR genes in response to SA (Figures 4.8, 

4.9 & 4.11) an enhanced disease resistance test was performed to assess if it was 

biologically relevant. Wild type plants which had been pre-treated with SA before 

inoculation with the virulent pathogen Psm ES4326 had a significantly reduced amount of 

pathogen growth. Mutation of UPL3 led to greater pathogen growth than untreated wild 

type and application of SA could not reduce pathogen growth (Figure 4.12). Plants in which 

UPL4 was knocked out had the same level of basal defence as wild type, but were not as 

resilient to pathogen infection after SA treatment (Figure 4.12). Moreover, mutation of 

UPL6 or UPL7 had no effect on disease resistance with or without the presence of SA 

(Figure 4.13). These data indicate that of all UPL proteins, UPL3 plays the most important 

role in SA-dependent plant immune responses. 
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Figure 4.12: The SA-mediated defence response against a virulent pathogen is 

compromised in upl3-1. 

Enhanced disease resistance test: Top: Quantification of pathogen levels within infected leaves. 

Bottom: Disease symptoms of infected leaves. Three-week old wild type, upl3, upl4 and npr1-1 

plants were sprayed with water (-) or 0.5 mM SA (+) and incubated for 24 hours before syringe 

infiltration with 5 x 106 colony forming units/ml Psm ES4326 into the abaxial surface of a leaf. 

Leaf discs were collected 4-days post inoculation, bacteria extracted and serial diluted before 

colony counting on selective agar plates. Error bars indicate 95 % confidence limits (n = 8). 

Letters indicate significantly different samples (Tukey-Kramer ANOVA test, α = 0.05, n = 8).  
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Figure 4.13: The upl6 and upl7 mutants have wild type disease resistance responses. 

Enhanced disease resistance test: Top: Quantification of pathogen levels within infected leaves. 

Bottom: Disease symptoms of infected leaves. Three-week old wild type, upl6, upl7 and npr1-1 

plants were sprayed with water (-) or 0.5 mM SA (+) and incubated for 24 hours before syringe 

infiltration with 5 x 106 colony forming units/ml Psm ES4326 into the abaxial surface of a leaf. 

Leaf discs were collected 4-days post inoculation, bacteria extracted and serial diluted before 

colony counting on selective agar plates. Error bars indicate 95 % confidence limits (n= 8). 

Letters indicate significantly different samples (Tukey-Kramer ANOVA test, α = 0.05, n = 8).  
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4.2.8. Basal immune responses are compromised in upl3 and the upl3 upl4 double 

mutant  

Both upl3 and upl4 plants acted different from wild type when primed with SA and 

then challenged with a high inoculum dose (5 x 106 colony forming units/ml) of virulent Psm 

ES4326 pathogen (Figure 4.11). Instead of this induced immunity, we also tested basal 

immune defences by using a 10-fold lower inoculum concentration (5 x 105 colony forming 

units/ml) of virulent Psm ES4326. While wild type plants exhibit no symptoms and complete 

resistance against Psm ES4326 at this low inoculum, mutants such as npr1-1 are clearly 

susceptible, showing leaf yellowing and extensive pathogen growth (Figure 4.14). While 

upl4 mutants showed similar basal immunity as wild type, upl3-1 mutants were more 

susceptible to Psm ES4326. Surprisingly, double mutant upl3 upl4 plants allowed even 

higher pathogen growth and associated chlorosis than npr1-1, indicating that both NPR1-

dependent and NPR1-independent defences were abolished in this background (Figure 

4.14). By contrast, upl6 and upl7 single mutants as well as upl6 upl7 double mutants 

displayed wild type levels of disease growth, indicating the mutations did not affect disease 

resistance (Figure 4.15). 
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Figure 4.14: Disease susceptibility is increased in upl3-1 single and upl3 upl4 double 

mutants 

Enhanced disease susceptibility test: Top: Quantification of pathogen levels within infected 

leaves. Bottom: Disease symptoms of infected leaves. Three-week old adult plants were 

inoculated via syringe infiltration with 5 x 105 colony forming units/ml Psm ES4326 into the 

abaxial surface of a leaf. Leaf discs were collected 4-days post inoculation, bacteria extracted 

and serial diluted before colony counting on selective agar plates. Error bars indicate 95 % 

confidence limits (n = 8). Letters indicate significantly different samples (Tukey-Kramer ANOVA 

test, α = 0.05, n = 8). 
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Figure 4.15: The upl6 and upl7 mutants do not have significantly altered disease 

resistance. 

Enhanced disease susceptibility test: Top: Quantification of pathogen levels within infected 

leaves. Bottom: Disease symptoms of infected leaves. Three-week old adult plants were 

inoculated via syringe infiltration with 5 x 105 colony forming units/ml Psm ES4326 into the 

abaxial surface of a leaf. Leaf discs were collected 4-days post inoculation, bacteria extracted 

and serial diluted before colony counting on selective agar plates. Error bars indicate 95 % 

confidence limits (n = 8). Letters indicate significantly different samples (Tukey-Kramer ANOVA 

test, α = 0.05, n = 8). 
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4.2.9. UPL3 is required for correct regulation of the SA-dependent transcriptome 

Knockout of UPL3 produced plants that were compromised in both basal and SA-

induced disease resistance (Figures 4.11 & 4.13). Accordingly SA-induced PR gene 

expression was clearly abolished  in upl3-1 plants but the effect on other genes such as the 

WRKY markers was less clear (Figures 4.7 & 4.8). To compose a clearer picture of how 

mutation of UPL3 leads to partial insensitivity to SA and disease susceptibility, RNA-

sequencing (RNA-seq) was performed on adult WT and upl3-1 that had been sprayed with 

0.5 mM SA or water (mock) and incubated for 24 hours. We included 3 biological replicates 

for which total mRNA was purified and sent to GATC Biotech (Konstanz, Germany) for RNA-

seq and bioinformatics analyses. 

 Differences in gene expression between the wild type and upl3-1 genotypes were 

immediately apparent, as upl3 had a much smaller amount of genes with significantly 

altered expression after SA treatment (Figure 4.16). Scatter plots illustrated that SA-treated 

wild type plants had a greater number of genes that responded to SA and a larger spread in 

the fold change of gene expression compared to upl3-1 (Figure 4.17). Indeed, large scale 

changes in gene expression were initiated after induction with SA in wild type plants with 

6419 genes significantly altered in expression; this is 23.3 % of the 27,416 protein coding 

genes in Arabidopsis (Swarbreck et al., 2008). Knockout of UPL3 resulted in an inability to 

muster such a large scale response to SA with a significant change detected in only 2,443 

genes or 8.9 % of the genome (Figure 4.16).   
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Figure 4.16: SA treatment activates fewer genes with significant fold change in upl3-1. 

 Volcano plots of fold change in gene expression after SA induction in wild type (left) and upl3-1 

(right). Dots indicate a genes fold change in expression in response to SA induction versus P-

value. Significant if q-value < 0.05. 
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Figure 4.17: SA treatment induces larger numbers of genes and changes in fold 

expression in wild type than upl3-1. 

Scatter-plots of gene expression with (+) and without (-) SA induction in wild type (left) and 

upl3-1 (right). Dots indicate read count as measured by fragments per kilobase per million reads 

mapped (FPKM). Dotted line: X axis = Y axis. Solid line: Trend line of samples (X vs Y). 
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 As the amount of genes which had significant changes in gene expression after SA 

induction was of considerable size, we decided to make the data set more stringent and 

focus on those genes with a large change gene in expression level; therefore we applied a 

cut-off of a minimum of two-fold change in expression. Wild type had 1918 genes with a 

two-fold change in expression, whereas upl3 had only 658 genes. Changes in two-fold or 

greater gene expression were roughly evenly split between those genes that were 

upregulated and those that were down-regulated by SA in wild type, but upl3 had almost 

half as many genes down-regulated compared to upregulated (Figure 4.18). Although there 

were a greater number of genes expressed only in wild type, most genes expressed in upl3-

1 genes overlapped with those in wild type, indicating this mutant was able to activate a 

small sub-set of the correct genes needed for the SA response. In addition to those genes 

that upl3-1 did not express, 130 genes were expressed to a significant level exclusively in 

upl3-1 (Figure 4.18), indicating that as well as lacking the ability to adjust the transcription 

of genes required for the SA response, there was a considerable amount of off-target 

expression changes. 
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Figure 4.18: Distribution of significant differential gene expression changes in response 

to SA. 

A Four-way Venn diagram of genes with a greater than two-fold change in gene expression, after 

SA induction in wild type (WT) and upl3-1. Up: genes up-regulated after SA induction. Down: 

genes down-regulated after SA induction. Diagram drawn using Venny 2.0 (Oliveros, 2007-

2015). 

 

 

 Using the top 50 genes up- and down-regulated by SA in WT, we generated a heat 

map to observe differential expression between wild type and upl3-1. This clearly 

demonstrated that upl3-1 was compromised in the SA response, as generally it was not able 

to initiate the level of fold change as seen in the wild type (Figure 4.19).  
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Figure 4.19: Mutation of UPL3 prevents correct level of gene expression following 

induction with SA. 

Heat map of the log2 fold change of the top 50 up-regulated and down-regulated (yellow and 

blue, respectively) genes in wild type compared to upl3-1. Heat map was built using Heatmapper 

at BAR.utoronto.ca. 
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4.2.10. UPL3-dependent gene expression also requires NPR1 

As NPR1 is the regulator for over 98 % of SA-dependent gene induction (Wang et 

al., 2006)  we asked if any SA-induced genes were independent of NPR1 but required UPL3. 

To generate the list of SA-mediated and UPL3- dependent genes, we compared those genes 

with two-fold or greater change in expression after SA induction in wild type, against a list 

of genes with a 1.5-fold difference in expression between wild type and upl3 after SA 

induction. By comparing the UPL3-dependent genes discovered in our RNA-seq data to 

publically available microarray data, which used the SA analogue BTH to induce expression 

in wild type and npr1-1 (Wang et al., 2006), we found that the vast majority of genes which 

were found to be UPL3-dependent and BTH-dependent also required NPR1 (Figure 4.20) 

therefore UPL3 probably acts in an NPR1-dependent pathway. 
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Figure 4.20: SA induced UPL3-dependent gene expression also requires NPR1.  

UPL3-dependent genes were compared to genes found to have significant changes in expression 

levels after application of SA analog BTH from public microarray data (Wang et al., 2006). ATG 

numbers from experiments were compared using a Venn diagram builder at 

http://www.bioinformatics.lu/venn.php. 

 

4.2.11. Promoter analysis reveals UPL3 may target WRKY genes 

SA-dependent gene expression mediated by NPR1 is also positively and negatively 

regulated by the WRKY group of transcription factors (Wang et al., 2006) and UPL3 had 

been shown to interact with and degrade WRKY53 (Patra et al., 2013). Therefore, we 

decided to investigate if WRKYs are a general target of UPL3. To accomplish this we used 

the UPL3-dependent gene list described above and applied a p-value of 0.05 and a q-value 

cut-off of <0.01 to filter out false positives. A cis-promoter analysis was performed on the 

top 200 genes which were down-regulated in upl3 compared to wild type to discover the 

most common pentamers within the promoter regions. This analysis revealed that the most 

http://www.bioinformatics.lu/venn.php
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common motif was the core of the W-box WRKY binding sequence (T)(T)TGAC(C/T) (Figure 

4.21).  

 To confirm this analysis and compare the prevalence of the W-box between  SA-

regulated genes that were significantly down- and up-regulated in upl3-1 versus wild type, 

we then ran the first 1000 bp upstream of the transcription start site of the top 55 genes 

with the greatest up- and down-regulated expression changes through the POBO promoter 

analysis tool (Kankainen and Holm, 2004). In genes down-regulated in upl3-1 versus wild 

type the WRKY motif was over-represented, while in the genes up-regulated in the upl3-1 

versus wild type the WRKY motif was under-represented (Figure 4.22).  

 The cis-promoter analysis was repeated for those genes up-regulated in upl3 versus 

wild type, revealing that the CACATG variant of the E-box (CANNTG) was a highly common 

motif along with the closely related G-box (CACGTG) (Figure 4.23). POBO analysis confirmed 

that the CACATG motif was over-represented in the upl3 up-regulated genes (Figure 4.24). 

Taken together, these data show that UPL3 is required to provide full activation of WRKY 

genes in response to SA induction and also plays an important role in SA-mediated 

suppression of genes via the CACATG variant of the E-box motif. 

 



105 
 

 

Figure 4.21: The W-box is the most prevalent TF binding motif domain in SA-induced 

genes that are down-regulated in upl3 versus wild type.  

The first (A) and second (B) most common representations of the W-box found in genes down-

regulated in response to SA in upl3 versus wild type. Cis-promoter analysis was performed on 

the top 200 genes down-regulated in upl3-1 compared to wild type (p = 0.05, q = 0.01). All 

possible 8 bp (octamer) combinations were first calculated to obtain relative appearance ratio, 

comparing the promoter regions of selected gene set against all genes in Arabidopsis. The most 

enriched pentamers were subsequently calculated from the octamers. Weblogo analysis was 

performed using pentamers plus the adjacent sequences in the selected gene set. Cis-promoter 

and weblogo analysis was performed in collaboration with the laboratory of Prof. Yasuomi Tada 

at Nagoya University. 
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Figure 4.22: The WRKY binding site is over-represented in SA-induced genes that are 

down-regulated in upl3 versus wild type.  

The 1000 bp upstream of the TAIR10 loci of the top 55 UPL3-dependent genes up- and down 

regulated in upl3-1 compared to wild type (q-value  < 0.001) were analysed via the promoter 

analysis tool POBO (Kankainen and Holm, 2004). T-value down-regulated vs background = 

67.73. T-value up-regulated vs background = -45.44. T-value between up-regulated vs down-

regulated = 125.88. 
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Figure 4.23: The E-box variant CACAGT and the related G-box are prevalent TF binding 

motifs in SA-repressed genes that are up-regulated in upl3 versus wild type.  

The first (A) and second (B) most common representations of the CACAGT motif and the most 

common representation of the G-box (C) in SA-repressed genes that were up-regulated in upl3 

versus wild type. Cis-promoter analysis was performed on the top 200 genes up-regulated in 

upl3-1 compared to wild type (p = 0.05, q = 0.01). All possible 8 bp (octamer) combinations 

were first calculated to obtain relative appearance ratio, comparing the promoter regions of 

selected gene set against all genes in Arabidopsis. The most enriched pentamers were 

subsequently calculated from the octamers. Weblogo analysis was performed using pentamers 

plus the adjacent sequences in the selected gene set. Cis-promoter and weblogo analysis was 

performed in collaboration with the laboratory of Prof. Yasuomi Tada at Nagoya University. 
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Figure 4.24: The CACATG variant of the E-box (CANNTG) is over-represented in SA-

repressed genes that are up-regulated in upl3 versus wild type.  

The 1000 bp upstream of the TAIR10 loci of the top 55 UPL3-dependent genes up- and down 

regulated in upl3-1 compared to wild type (q-value  < 0.001) were analysed via the promoter 

analysis tool POBO (Kankainen and Holm, 2004). T-value down-regulated vs background = -

21.85. T-value up-regulated vs background = 62.02. T-value between down-regulated vs up-

regulated = -89.38. 
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4.3. Discussion 

In this chapter, we used sequence alignment and homology modelling to the yeast 

E4 ligase, HUL5, to identify Arabidopsis UPL proteins as putative ubiquitin ligases. Several 

UPL proteins were investigated for ubiquitin ligase activity and defects in SA-mediated 

transcription. Using this approach we identified UPL3 as being required to maintain cellular 

regulation of ubiquitination and provide SA-dependent disease resistance. RNA-sequencing 

revealed that upl3 mutants were unable to induce large-scale transcriptomic changes in 

response to SA, demonstrating that UPL3 is a crucial and novel ubiquitin ligase within SA-

mediated gene transcription and immunity.  

 The UPL genes were selected because they showed homology to the yeast E4 ligase 

HUL5, which is a proteasome-bound E4 ligase that acts in opposition to the 

deubiquitinating enzyme UBP6 (Crosas et al., 2006). Deletion of HUL5 leads to decreased 

polyubiquitination and stabilisation of proteins, while the opposite effect is seen in ubp6Δ. 

Therefore the balance of ubiquitination is thought to be vital to the regulation of substrate 

turnover (Crosas et al., 2006). UPL3 is also a putative homolog of the yeast E3/E4 ligase 

UFD4 (Supplemental 4.2). Like HUL5, UFD4 is localized to the proteasome and contributes 

to polyubiquitnation and degradation of substrates (Xie and Varshavsky, 2002). Similar to 

UPL3, UFD4 also contains Arm repeats (Supp) (Ju et al., 2007). UFD4 uses the Arm repeats 

as binding sites to associate with ubiquitinated substrates and extend their ubiquitin chains 

(Ju et al., 2007). UPL3 has been associated with trichome development; with the Arm 

domains of UPL3 binding the bHLH and ACT domains of the transcription factors GL3 and 

EGL3 and mediating ubiquitination leading to proteasomal degradation of GL3 and EGL3 

(Downes et al., 2003, Patra et al., 2013).  UFD4 is also required for specific ubiquitination 

events, including the regulation of RAD25 involved in nuclear excision repair (Bao et al., 
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2015). UFD4 was also shown to cooperate with the RING E3 ligase, ubiquitin n-recognin 1 

(UBR1), in increasing the processivity of substrate turnover in the ubiquitin-fusion-

degradation pathway and proteins involved in the N-end rule pathway, unifying two 

systems of proteasome-mediated degradation (Hwang et al., 2010). These reports suggest 

UPL proteins in Arabidopsis may have the potential to fulfil the roles of E3 or E4 ligases 

depending upon the molecular context. 

UPL6 and UPL7 do not have a role within SA-mediated plant defences as mutation 

of these genes and the double mutant has no discernible effect on SA responses: displaying 

wild type gene expression (Figures 4.8 &  4.10), disease susceptibility (Figure 4.15) and 

resistance (Figure 4.13), as well as normal ubiquitination patterns (Figures 4.6 & 4.7). 

Instead, UPL3 is shown here to act as a ubiquitin ligase, as upl3 single and upl3 upl4 double 

mutants had reduced polyubiquitination at the total cellular level and of a specific 

substrate, RPN10 (Figures 4.4 & 4.5). Reduction of global cellular polyubiquitination is an 

unusual phenotype as most E3 ligases have very specific targets and therefore have no 

discernible effect on total polyubiquitination levels. However, E4 ligases are less specific as 

they act on substrates on which initial rounds of ubiquitination have already been 

undertaken. Deletion of the yeast E4 ligases, UFD2 and HUL5, did lead to a general 

reduction of polyubiquitinated substrates (Koegl et al., 1999, Crosas et al., 2006). Like E4 

ligases, DUBs also display reduced target specifity compared to E3s and can alter the 

balance of total polyubiquitination (Swaminathan et al., 1999, Amerik et al., 2000, Crosas et 

al., 2006). Deletion of HUL5’s opposing DUB UBP6 increased polyubiquitination (Crosas et 

al., 2006). UBP6 deletion also resulted in a reduction in sensitivity to cycloheximide, which 

was linked to a decrease in proteasome-mediated degradation of ubiquitin-conjugated 

substrates, indicating substrate polyubiquitination helps regulate global cellular ubiquitin 

levels crucial for accurate protein homeostasis (Hanna et al., 2003).  
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In humans upregulation of polyubiquitinated substrates compared to free ubiquitin 

is a marker of Huntington’s disease (Bennett et al., 2007). Conversely clearance of protein 

plaques associated with Huntington’s disease was facilitated by the DUB, ubiquitin-specific 

peptidase 14 (USP14) (Hyrskyluoto et al., 2014).  The TUBE assays performed in this 

Chapter, while supplying data on the level of polyubiquitinated substrates, do not provide 

information on the status of the free pool of ubiquitin, as they preferentially bind 

ubiquitinated chains (Hjerpe et al., 2009). Nonetheless, reduced polyubiquitination may 

lead to a greater concentration of free ubiquitin in upl3 mutants. As well as regulating 

ubiquitin chain length of substrates, the putative UPL3 homologues, UFD4 and HUL5, are 

responsible for generation of free ubiquitin chains, which can be attached wholesale to a 

substrate or possibly serve as storage for free monomeric ubiquitin under stress conditions 

(Li et al., 2007, Ravid and Hochstrasser, 2007, Kimura et al., 2009). UFD4 and HUL5 perform 

different roles within free chain generation: HUL5 increases release of free ubiquitin when 

cells are under stress, but UFD4 does not and is thought to simply maintain basal levels of 

free chains (Braten et al., 2012). These data indicate UPL3 could be acting in an E3 ligase 

capacity, possibly by the formation of free ubiquitin chains, or as an E4 ligase to extend pre-

existing substrate-fused ubiquitin chains, or both depending on the cellular need. 

 Lower polyubiquitination levels in upl3 and upl3 upl4 plants correlated with 

reduced expression of PR genes after SA induction. However WRKY genes that are also 

dependent on SA showed differing expression patterns between several assays, from lower 

than wild type induction in Figure 4.8 to wild type levels in Figures 4.9 and 4.11, indicating 

that there may be a difference in WRKY expression related to plant age or the time of 

harvesting tissue. This expression pattern is unusual as the vast majority of SA-dependent 

genes require NPR1 to induce expression changes, including PR and WRKY genes (Wang et 

al., 2006). Thus, reduced sensitivity to SA is expected to repress expression of both gene 
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classes. Unlike the previously discussed ube4-2 mutant, upl mutants did not show 

proteasome-independent transcription, indicating UPLs are not functioning as E4 ligases 

involved in the coordination of NPR1 transcriptional activity.  

 The restricted PR expression in upl3 translated into reduced resistance to disease 

both basally (Figure. 4.14) and after immune priming with SA (Figure. 4.12). Although upl4 

mutants had no obvious differences in SA-induced genes compared to the wild type, they 

were more susceptible to disease although not much as upl3 (Figure 4.12), hinting that 

UPL4 may play a role in disease resistance that is different from conventional SAR. Indeed 

the upl3 upl4 double mutant had a similar SA-induced transcriptional profile to upl3, but 

the upl3 upl4 double mutants were extremely susceptible to the virulent pathogen Psm 

ES4326, even more so than upl3 and the negative control npr1-1 (Figure. 4.14). Although 

the vast majority of SA-dependent genes are regulated by NPR1, there is also a parallel 

NPR1-independent pathway that can confer disease resistance (Zhang et al., 2003a, 

Bowling et al., 1997, Uquillas et al., 2004, Shah et al., 2001). The extremely high level of 

disease susceptibility in the upl3 upl4 double mutant suggests that both the NPR1-

dependent and NPR1-independent defences are abolished, which is highly unusual and 

suggests that UPL3 and/or UPL4 can act in concert with and parallel to NPR1. It could be 

possible that UPL3 is required for PR gene expression mediated by NPR1, but that UPL4 is 

involved in an NPR1-independent capacity, as upl4 mutants displayed wild type 

transcriptional marker responses to SA induction, but were more susceptible to virulent 

Psm ES4326 after SA induction than wild type. These data indicate that UPL4 acts on an as 

yet unknown subset of the SA-regulated transcriptome that mediates defence against Psm 

ES4326. Therefore UPL3 and UPL4 could target different pathways within plant defences. 
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 To further understand the role of UPL3 in transcription, RNA-seq was carried out on 

wild type and upl3-1 plants sprayed with SA or water. SA induction led to 1918 genes with a 

two-fold or greater change in expression within wild type (Figure 4.18). Differential 

expression was severely curtailed in upl3 with only 658 genes in the same range of fold 

change (≥2) (Figure 4.18). Heat mapping of genes that were found to be expressed in both 

genotypes revealed that for the majority of expression changes in upl3 were not as 

pronounced as in wild type (Figure 4.19), indicating upl3 is unable to correctly orchestrate 

large scale changes in expression levels rather than simply not activating a sub-set of SA-

dependent genes. Reminiscent of this auxiliary role of UPL3, the transcriptional regulator 

WRKY18 similarly enhanced SA-responsive gene expression, as knockout of WRKY18 

dampened the expression level of NPR1-dependent genes (Wang et al., 2006).  Comparison 

of UPL3-, BTH- and NPR1-dependent genes revealed nearly all UPL3 dependent genes that 

overlapped with BTH-regulated genes, were also dependent on NPR1 (Figure 4.20), 

suggesting UPL3 attenuates NPR1 target gene expression. Of the genes which showed the 

highest difference in fold change after SA treatment between wild type and upl3, SA-

induced genes that were down-regulated in upl3 exhibited a high overrepresentation of the 

WRKY-binding W-box in their promoters (Figure 4.21 & 4.22). These data imply that UPL3 

enhances NPR1-mediated transcription by the targeting and ubiquitination of immune-

related WRKYs. Indeed, UPL3 has already been shown to target the immune-related 

WRKY53 for degradation (Miao and Zentgraf, 2010). Moreover, the recent discovery of 

WRKY70 as a repressor of NPR1-dependent genes provides a clue to how UPL3 could 

amplify SA-dependent transcription. Sumolyation of NPR1 is required to relieve WRKY70 

repression and produce transcription competent NPR1 (Saleh et al., 2015). Degradation of 

WRKY70 mediated by UPL3 could be required to provide full defence induction via the 

destruction of this repressor. This could occur either by ubiquitinating WRKY70 after it has 
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dissociated from NPR1 or by sumolyation events that recruit UPL3 to the NPR1-WRKY70 

complex after which WRKY70 removal is directly mediated by the UPS. WRKY70 along with 

WRKY54 also act to suppress SA biosynthesis (Wang et al., 2006). UPL3-mediated 

ubiquitination of these proteins could be required in order to fully up-regulate SA synthesis 

in early signalling stages and may also explain why basal defences in upl3-1 mutants were 

compromised (Figure 4.14). UPL3 could also target WRKY58, which acts as a repressor of SA 

signalling (Wang et al., 2006). Additionally, UPL3 could target other repressors of SA 

signalling that are not WRKYs, such as NIMIN proteins. NIMINs bind to NPR1 and are able to 

form a complex containing TGA factors, over expression of NIMINs curtailed PR gene 

expression, knockout of NIMINs had the opposing effect, which is highly indicative of 

NIMINs acting as NPR1-mediated transcription repressors (Weigel et al., 2005, Weigel et al., 

2001).The NPR1 repressor SNI1 is involved in maintaining chromatin integrity (Fu and Dong, 

2013, Yan et al., 2013, Durrant et al., 2007), as excessive transcription can increase the 

likelihood of DNA damage. Removal of SNI1 by UPL3 could allow rapid remodelling of the 

chromatin to make it more suitable for transcription.  

UPL3 was also found to be involved in the regulation of SA-repressed genes 

containing an E-box (CANNTG) promoter motif. E-boxes are highly variable; alteration of the 

two core NN residues can provide greater specifity for the binding of particular TFs (Yutzey 

and Konieczny, 1992). Promoter analysis of the RNA-seq data revealed that the E-box 

variants CACATG, known as the Hormone Up at Dawn motif (HUD) (Michael et al., 2008), 

and the G-box (CACGTG) were enriched in genes up-regulated in upl3 (Figures 4.22 & 4.23), 

indicating that UPL3 is required to suppress these genes in SA-treated wild type. G-boxes 

are bound with high affinity by MYC2 which is involved in regulation of the JA signalling 

pathway (Dombrecht et al., 2007) and operates antagonistically with the SA pathway 

(Pieterse et al., 2009). Indeed, JA-responsive genes are present amongst the genes up-
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regulated in upl3 compared to wild type (Supplemental 4.1) hinting that UPL3 is required to 

suppress JA signalling in response to SA induction by targeting MYC transcription factors. 

The HUD motif is also over-represented in JA-dependent genes regulated by MYC2. 

However the role of the HUD motif in this context is unclear as it was found to have a lower 

binding affinity for MYC2 than the G-box (Dombrecht et al., 2007).  A further role in gene 

repression for UPL3 can be suggested as the HUD motif was discovered to be involved 

circadian responses regulating cell growth and elongation (Michael et al., 2008). In 

accordance, down-regulation of ‘house-keeping’ genes such as those responsible for 

growth is observed after SA treatment, as the plant prioritizes defence responses 

(Scheideler et al., 2002). The high incidence of the HUD motif in those genes up-regulated 

in the absence of UPL3 indicates the switch in gene expression priority appears incomplete 

in upl3 mutants.  

From the data provided here, we conclude UPL3 is a novel and essential regulator 

of SA-dependent defences, facilitating the large-scale gene expression changes mediated by 

NPR1. Future work on UPL3 should focus on the discovery of proteins directly interacting 

with UPL3, which would provide key information in how this ubiquitin ligase plays such an 

important role in the orchestration of plant immunity. 
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Chapter 5: Investigation into the role of two E4 ligases in 

transcription initiation in yeast 

5.1. Introduction 

As detailed in the General Introduction, yeast are readily able to produce all amino 

acids, the manufacturing of which is closely linked to the levels of amino acids in the growth 

media. Removal of an amino acid leads to increased synthesis of all amino acids by a 

process known as General Amino Acid Control (GAAC) (Hinnebusch, 2005), which is 

regulated by the transcription factor GCN4 that requires proteasome-mediated degradation 

in order to correctly activate GAAC-related transcription (Lipford et al., 2005). When GCN4 

activates a round of transcription it is marked for degradation by phosphorylation by the 

kinase SRB10 located on the C-terminal domain of RNA polymerase II. Phosphorylated 

GCN4 is then ubiquitinated by the E3 ligase CDC4 and degraded by the proteasome (Lipford 

et al., 2005). This mechanism could provide an excellent model in which to discern the role 

of E4 ligases in transcription initiation. 

The first E4 ligase, UFD2, was described in yeast, where it was shown to enhance 

ubiquitin chain elongation, including the K48-linked ubiquitin chain, which is the canonical 

linkage to signal for the degradation of a substrate by the 26S proteasome (Koegl et al., 

1999, Saeki et al., 2004).  UFD2 functions similar to E3 ligases by forming a bridge between 

the substrate and the E2 conjugating enzyme, UBC13,  that binds via its C-terminal U-box 

domain and allosterically activates transfer of ubiquitin to the substrate (Smalle and 

Vierstra, 2004, Tu et al., 2007). U-boxes are structurally similar to the RING (Really 

Interesting New Gene) domain found in many E3 ligases but use electrostatic interactions 

to stabilise a RING-like finger instead of zinc chelation used by actual RING domains (Ohi et 
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al., 2003).  Although UFD2 can directly bind an E2 enzyme, an E3 enzyme is required for the 

reaction to proceed, even if a polyubiquitinated substrate is provided (Tu et al., 2007, Koegl 

et al., 1999). The enhancement of ubiquitin chain formation by UFD2 could work 

sequentially to or in direct partnership with the E3 ligase, which could provide increased 

specificity to a particular substrate required for the reaction (Tu et al., 2007).  Indeed, UFD2 

can work in partnership with the E3/E4 enzyme UFD4 (Koegl et al., 1999, Tu et al., 2007), 

UFD4 has been shown to enhance the processivity of another E3 ligase, UBR1 (Hwang et al., 

2010). Substrates polyubiquitinated by UFD2 are passed to RAD23, a shuttle protein 

responsible for escorting substrates to the proteasome. The handover between UFD2 and 

RAD23 is made possible by interaction of the UFD2 N-terminal variable region that binds to 

the ubiquitin-like (UBL) domain on the N-terminus of RAD23. RAD23 is then thought to bind 

to the polyubiquitinated substrate via its ubiquitin-associated (UBA) domains. UFD2 also 

contains a core UFD2 domain, which contains domains similar to the Armadillo motifs 

found in importin-α, which is used by UFD2 during interaction with other proteins including 

the co-factor CDC48 (Tu et al., 2007, Hanzelmann et al., 2010, Azevedo et al., 2001). The 

UFD2-RAD23 complex is likely separated by CDC48 allowing the UBL domain of RAD23 to 

bind the proteasome subunit RPN1, which acts as a docking site for ubiquitin processing 

factors. The binding of CDC48 to UFD2 is critical to its function; as mutation of the C-

terminus of CDC48, which provides the UFD2 binding site, produces an effect that 

phenocopies the ufd2Δ mutant (Kim et al., 2004, Hanzelmann et al., 2010, Baek et al., 2011, 

Bohm et al., 2011) This data suggests a model in which UFD2 catalyses enhanced chain 

elongation on ubiquitinated substrates, the shuttle protein RAD23 then guides the complex 

to the proteasome where CDC48 is required to remove UFD2 from RAD23, allowing 

substrate degradation. This mechanism would provide an efficient and reliable system to 

orderly degrade unwanted proteins. 
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 Another yeast E4 ligase, HUL5, does not contain the U-box domain and instead uses 

a HECT (Homology to E6AP C Terminus) domain (Crosas et al., 2006), which, unlike the 

RING/U-box, contains a unique cysteine that allows the activated ubiquitin-E2 thioester to 

be transferred to the HECT domain before addition to the substrate (Ravid and 

Hochstrasser, 2008). HUL5 is a proteasome-associated protein via a salt labile interaction 

(Leggett et al., 2002), where it acts to increase polyubiquitination on a wide range of 

substrates (Crosas et al., 2006). HUL5 is required to correctly degrade proteins during the 

heat shock response (Fang et al., 2011) and is responsible for the generation of free chains 

during stress events, including heat shock (Braten et al., 2012). This indicates that during 

times of stress, which can produce large amounts of misfolded, damaged and unwanted 

proteins, enhancement of the ubiquitin chain by HUL5 helps to promote rapid degradation. 

Proteasome subunit RPN2 provides the docking site for HUL5, where it is brought into 

proximity with and works antagonistically to the deubiquitinase (DUB) UBP6, which binds 

the proteasome RPN1 subunit (Crosas et al., 2006, Leggett et al., 2002). The opposing 

actions of ubiquitin chain lengthening and reduction provided by HUL5 and UBP6, 

respectively, could provide the proteasome with flexible decision power to degrade or 

excuse ubiquitinated substrates.  

 This chapter aims to investigate if the E4 ligases, UFD2 and HUL5, play a role in 

regulating processive ubiquitination of GCN4 to modulate GAAC-related transcriptional 

responses.  
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5.2. Results 

5.2.1. Deletion of UFD2 results in increased basal levels of GCN4-13Myc 

Wild type yeast cell are able to synthesize all essential amino acids when there are 

insufficient amounts in the surrounding environment. Lab yeast strains have selected 

mutations within the synthesis pathways, so they are auxotrophic for specific amino acids. 

The yeast are grown in synthetic minimal media (SMM) containing all the amino acids the 

strains are auxotrophic for. Induction of the GAAC can be induced by switching of this 

media for SMM without leucine (Lipford et al., 2005). As yeast can only detect that an 

amino acid is missing, but not which one, the GAAC pathway is activated to produce all 

amino acids, leading to approximately 500 genes being upregulated (Hinnebusch, 2005). To 

investigate the role of E4 ligases within the GAAC response we obtained a deletion mutant 

of the E4 ligase UFD2 (Koegl et al., 1999) from the Euroscarf collection (Euroscarf, 2015). As 

deletion of an E4 ligase can alter the rate of degradation of target substrates (Koegl et al., 

1999, Crosas et al., 2006); we epitope-tagged GCN4 with 13Myc in both the wild type and 

ufd2Δ background. Thus, proteins levels of GCN4 could be monitored for differences 

between the genotypes with and without starvation induction via the removal of leucine 

from the media. Levels of GCN4-13Myc were undetectable in the wild type background 

before induction, while after induction levels of GCN4-13Myc increased (Figure 5.1). 

Although leucine starved ufd2Δ cells had similar levels of GCN4-13Myc as wild type, they 

displayed increased basal levels of GCN4-13Myc (Figure 5.1), indicating that UFD2 is 

involved in GCN4 regulation. 
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Figure 5.1: Deletion of UFD2 results in increased basal levels of GCN4-13Myc.  

Cells were grown in SMM with leucine to mid-log before refreshing the media with (+) or 

without (-) leucine for 2 hours. Protein extracts were analysed with SDS-PAGE and western 

blotting by probing for α-Myc and α-GAPDH as a loading control. 

 

5.2.2. Deletion of UFD2 fails to prevent turnover of GCN4-13-Myc 

As GCN4 requires degradation to facilitate transcription, we blocked protein 

synthesis with the translation inhibitor cycloheximide, which as expected led to the 

depletion of GCN4-13Myc protein (Figure 5.2). Because UFD2 extends ubiquitin chains to 

increase the potential for turnover of a protein by creating a higher affinity for proteasome 

binding, ufd2Δ mutants may exhibit an altered degradation rate of GCN4. Therefore we 

investigated the stability of GCN4-13-Myc in leucine-starved wild type and ufd2Δ cells in a 

cycloheximide chase assay. In wild type cells, GCN4-13Myc levels gradually decreased over 

the course of 120 minutes post application of cycloheximide (Figure 5.3). Unexpectedly, 

however, in ufd2Δ cells GCN4-13Myc levels also decreased steadily and even showed a 

slightly faster clearance of GCN4-13Myc protein at 60 minutes post cycloheximide 

treatment than wild type. These data suggest that UFD2 is not a major factor in the 

polyubiquitination and subsequent turnover of GCN4 in leucine-starved cells.  
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Figure 5.2: GCN4-13Myc protein is degraded during the GAAC response.  

Cells were grown to mid-log phase in SMM with leucine. Media was switch to SMM –Leucine for 

1 hour, then 100 μM cycloheximide was added. Samples were then collected at indicated time 

points. Protein extracts were analysed with SDS-PAGE and western blotting by probing with α-

Myc and α-GAPDH as a loading control. 

 

 

Figure 5.3: The E4 ligase mutant ufd2Δ does not prevent turnover of GCN4-13Myc in 

starvation conditions. 

Cells were grown to mid-log phase in SMM with leucine. Media was switch to SMM –Leucine for 

1 hour, then 100 μM cycloheximide was added. Samples were then collected at indicated time 

points. Protein extracts were analysed with SDS-PAGE and western blotting by probing with α-

Myc and α-GAPDH as a loading control. 
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5.2.3. Deletion of HUL5 but not UFD2 increases basal levels of GCN4 target genes 

To assess transcriptional responses of the GAAC pathway in our experimental 

system we performed a time course to monitor the expression of several key marker genes 

post starvation.  Most marker genes peaked in expression within 30 minutes of leucine 

starvation and expression was maintained at levels higher than before induction thereafter 

(Figure 5.4). Thus, subsequent gene expression experiments in this chapter were performed 

at 60 minutes post starvation. 

 

 

Figure 5.4: Removal of leucine from the media leads to activation of genes in the amino 

acid synthesis pathway.  

Wild type yeast were grown in Synthetic Minimal Media (SMM) +Leucine until mid-log phase. 

Yeast was then switched to SMM –Leucine and samples taken at indicated times. Samples were 

analysed by qPCR and gene expression normalised to ACT1.  
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 Although ufd2Δ has little effect on GCN4 stability we investigated if the GAAC had a 

compromised response in the ufd2Δ background as this mutation may have an effect on the 

intrinsic transcriptional activity of GCN4 or on other regulators of the GAAC. We also 

included another E4 ligase deletion mutant, hul5Δ, which had been shown to stabilise GCN4 

turnover (Crosas et al., 2006). Wild type and mutants were grown in SMM to mid-log phase 

OD 0.5-1.0, before being switched to SMM lacking leucine. Wild type yeast had low 

expression of marker genes in the presence of leucine, while after GAAC induction gene 

expression dramatically increased (Figure 5.5). Whereas deletion of UFD2 resulted in a 

largely wild type response, hul5Δ mutants displayed increased basal expression across all 

genes and reduced expression of most genes upon leucine starvation. These results indicate 

that HUL5 is required to prevent unwanted activation of GAAC-induced genes and may also 

be involved in their activation. 
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Figure 5.5: Deletion of HUL5 leads to increased basal transcription and reduced the GAAC 

response.  

Cells were grown to mid-log phase in synthetic minimal media (SMM) with leucine before being 

switched to a media with (+, control) or without (-, induced) leucine for 2 hours. Samples were 

analysed by qPCR and gene expression normalised to ACT1.  

 

 As hul5Δ showed compromised transcription regulation, we next decided to 

investigate if control of transcription initiation within the E4 ligase mutants was dependent 

on GCN4 degradation by the proteasome. In this experiment the proteasome was inhibited 

by the addition of MG132, however yeast cells are generally resistant to this chemical as 

they are able to remove it from the cell via the efflux pump pleiotropic drug resistance 5 

(PDR5). Mutation of this gene may have unknown effects on cell growth and metabolism 
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(Liu et al., 2007). Thus, to allow the use of MG132 in this experiment we followed a 

protocol in which the SMM had the nitrogen source changed from ammonium sulphate to 1 

% proline and 0.003 % SDS was added to cause mild permeability of the cell membrane, 

which allows MG132 to be taken up more efficiently by the cell (Liu et al., 2007). Cells were 

grown to mid-log phase then pre-incubated with 100 μM MG132 or vehicle (DMSO), before 

switching the media to SMM –Leucine with MG132 or vehicle for one hour. The results of 

the experiment was analysed via qPCR and the difference in gene expression between 

samples with and without MG132 was calculated as percentage of gene expression 

suppressed by MG132 treatment. In wild type, target genes had a reduction in expression 

of 85 % or more for all genes except ASN1. The E4 ligase mutants displayed comparable 

reductions in target gene expression except for ASN1 for which the mutants had increased 

suppression. These results illustrate that ufd2Δ and hul5Δ are unlikely to be involved in the 

regulation of GCN4-degradation during amino acid starvation as they do not show any 

proteasome-independent GAAC responses.  
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Figure 5.6: E4 ligase mutants have a similar response to proteasome inhibition as the 

wild type.  

Cells were grown in SMM with 1 % proline as the nitrogen source, leucine and 0.003 % SDS, to 

mid-log phase, pre-incubated with MG132 or vehicle (DMSO) for  30 minutes before refreshing 

the media supplemented with (+) or without (-) leucine for 2 hours. Samples were analysed via 

qPCR and gene expression normalised to ACT1. Data was expressed as percentage reduction in 

gene expression observed in MG132-treated cells compared to vehicle-treated cells.  
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5.3. Discussion  

When yeast is grown in a media that lacks an amino acid, it responds by 

upregulating the production of all amino acids (Hinnebusch, 2005). This leads to an increase 

in transcription of over 500 genes orchestrated by the master transcription activator GCN4 

(Natarajan et al., 2001). In order to maintain the expression of genes induced by amino acid 

starvation GCN4 requires ubiquitination and proteasome-mediated degradation (Lipford et 

al., 2005). Using this inducible system we investigated the role of two E4 ligases, UFD2 and 

HUL5 on transcription induced by unstable GCN4. We discovered that deletion of UFD2 had 

minor effects on GCN4 stability and did not alter GAAC transcriptional regulation. However, 

mutation of HUL5, which has been reported to prevent GCN4 turnover (Crosas et al., 2006), 

resulted in increased basal transcription, indicating this E4 is required for correct regulation 

of GCN4 and warrants further study. 

Depending on cellular amino acid homeostasis, the GAAC master regulator GCN4 is 

targeted for degradation by different methods. In basal conditions GCN4 is rapidly 

phosphorylated by the kinase phosphate metabolism 85 (PHO85) which signals for 

ubiquitination via the F-box protein CDC4 (Irniger and Braus, 2003). Upon starvation 

induction PHO85 is down-regulated and GCN4 is able to accumulate and activate 

transcription, at which point it is phosphorylated by SRB10 and then ubiquitinated, again by 

CDC4 (Lipford et al., 2005). Deletion of UFD2 led to greater stability of basal GCN4 but a 

minor increase in turnover after leucine starvation (Figures 5.1 & 5.2) and did not have any 

effect on the transcription of target genes (Figure 5.5). A hypothesis that arises from this is 

that UFD2 is required for the correct regulation of GCN4 degradation in basal conditions. 

However, as an increase in associated transcription was not seen under basal conditions, it 

possible that despite its elevated levels, GCN4 was not transcriptionally active. The minor 
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starvation-induced increase in GCN4 turnover in ufd2Δ cells could be too subtle to have an 

effect on transcription. By contrast, basal increases in transcription were seen in hul5Δ 

(Figure 5.5), which corresponds to HUL5’s recently reported role in the degradation of 

GCN4 in uninduced conditions (Crosas et al., 2006). Moreover, deletion of HUL5 reduced 

starvation-induced transcriptional responses (Figure 5.5), suggesting that HUL5 plays a 

cotranscriptional role in GAAC responses.  

In chapter 3 we saw that the deletion of an E4 ligase can lead to a disconnection of 

TF activity and proteasome-mediated degradation, indicating initial ubiquitination 

produced a highly active TF and that its subsequent destruction was required to limit that 

activity. In this chapter neither ufd2Δ nor hul5Δ presented a proteasome-independent 

transcription phenotype. These data indicate that neither of these E4 ligases are required 

for starvation-induced GCN4 turnover. Both UFD2 and HUL5 are non-essential for survival 

under normal conditions, but are required for appropriate responses to cellular stress 

(Koegl et al., 1999, Fang et al., 2011, Braten et al., 2012). Because HUL5 is also responsible 

for generating free ubiquitin chains during cellular stress (Braten et al., 2012), HUL5 could 

cotranscriptionally regulate GAAC marker genes in an GCN4-independent manner.  

Alternatively, HUL5 could indirectly regulate the turnover of GCN4 through ubiquitination 

of other factors or by proteasome-independent non-Lys48 ubiquitination of GCN4. 

Unfortunately hul5Δ cells grew very poorly in the SMM media used making comparisons to 

wild type and ufd2Δ in protein experiments difficult. This technical difficulty needs to be 

overcome to investigate how hul5Δ alters GCN4 stability and GAAC gene transcription. A 

key experiment that could not be performed due to time constraints on this project, would 

be visualisation of the ubiquitination status of GCN4 in the wild type and mutants, which 

could be performed using the TUBE protocol (Hjerpe et al., 2009). This would allow a link to 

be drawn between gene expression and polyubiquitination status, as seen in chapters three 
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and four. As ufd2Δ has no effect on GCN4-mediated transcription, further investigation 

should be directed towards HUL5 in the GAAC response.  

As mentioned above HUL5 acts in opposition to UBP6, it would beneficial to also 

include ubp6Δ into experiments for further investigation as monitoring the antagonistic 

actions of both an E4 ligase and a DUB on a model substrate such as GCN4 could elucidate 

how the dynamics of ubiquitination alters the activity of a transcription factor. 
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Chapter 6: General Discussion 

This PhD project set out to investigate if E4 ligases play a role in the regulation of 

transcription initiation by controlling TF activity. To achieve this, the project looked at two 

canonical E4 ubiquitin ligases in yeast and how they altered the GAAC response via 

modulation of the TF GCN4. Using sequence alignments to the E4 ligases found within yeast 

we identified putative homologues in Arabidopsis and tested their function in activation of 

SA-responsive immune gene expression.  

In chapter 3 we found that UBE4, a homolog of the yeast UFD2, acted as a 

repressor of SA-dependent transcription. Knockout of UBE4 led to stabilisation of the SA-

responsive master immune coactivator NPR1. Stabilisation of NPR1 in ube4-2 knockout 

mutants was due to reduced levels of polyubiquitination of NPR1 and was associated with 

increased transcription of NPR1 target genes. The phenotype produced by mutation of 

UBE4 differed from previous experiments that stabilized NPR1. Contrary to mutation of 

NPR1’s phospho-degron, mutation of the E3 ligase CUL3, and inhibition of proteasome 

activity, all of which stabilized NPR1 and significantly reduced NPR1 target gene 

transcription (Spoel et al., 2009), mutation of UBE4 resulted in a highly transcriptionally 

competent NPR1. These findings have important implications for how E3 and E4 ligases 

potentially control transcription through processive ubiquitination of NPR1. Our data 

suggest that CUL3-mediated ubiquitination initially activates NPR1 and that subsequent 

processive polyubiquitination by UBE4 limits this activity by targeting NPR1 for proteasome-

mediated degradation. This hypothesis is supported by the observation that ube4-2 plants 

were able to maintain high levels of SA-induced NPR1 target gene expression in presence of 

proteasome inhibitor. 
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In mammalian cell systems E4 ligases have been studied in the regulation of the 

tumour suppressor p53. Like NPR1, p53 is constantly transcribed and translated in 

unstressed cells but basal levels are kept low through constant ubiquitination and 

degradation. In times of genotoxic stress, however, ubiquitination of p53 is suppressed, 

leading to stabilisation of the protein and rapid upregulation of p53 target genes (Hock and 

Vousden, 2014). Ubiquitination of p53 is regulated by over a dozen E3 ligases and five 

potential E4 ligases (Love and Grossman, 2012, Pant and Lozano, 2014). Interestingly, one 

of the key E3 ligases involved in p53 regulation, MDM2, is only able to monoubiquitinate its 

substrates and relies on E4 ligases to promote further polyubiquitination either by 

increasing the efficacy of p53 ubiquitination in co-operation with an E3, or through direct 

intrinsic E4 ubiquitin ligase activity (Pant and Lozano, 2014, Love and Grossman, 2012). The 

mammalian UBE4 is likely a member of the former group and extends ubiquitin chains on 

p53 in the presence of MDM2. UBE4 activity on p53 is only found in the presence of MDM2 

and is unable to alter p53 ubiquitination status in absence of MDM2 (Wu et al., 2011). UBE4 

shares the responsibility to polyubiquitinate p53 with two other E4 ligases: Gankyrin, which 

increases MDM2 ligase activity towards p53 and the proteasome (Higashitsuji et al., 2005), 

and Yin Yang1, which promotes ubiquitination through enhancing MDM2/p53 interaction 

(Sui et al., 2004). It is currently unknown why p53 has so many E4 ligases supporting 

polyubiquitination, or if they serve distinct functions in different circumstances: For 

example, monoubiquitination of p53 by MDM2 can lead to transfer of p53 from the nucleus 

to the cytoplasm, where P300 and its paralog, CREB-binding protein (CBP) act as E4 ligases, 

extending the p53 monoubiquitination mark into a polyubiquitin chain. Cellular localisation 

is important for the function performed by P300 and CBP as within the nucleus they 

function as histone acetyltransferases, however within the cytoplasm they function through 
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an, as yet ill-defined, intrinsic ubiquitin ligase domain (Grossman et al., 2003, Grossman et 

al., 1998, Shi et al., 2009). 

In yeast the RING-type E3 ligase UBR1 acts to ubiquitinate substrates of the N-end 

rule pathway. Its function is enhanced in the presence of the HECT-type ubiquitin ligase 

UFD4, which normally functions in the UFD pathway (Hwang et al., 2010). Conversely the 

opposite is true with UFD4 function aided by UBR1 (Hwang et al., 2010). Not only does this 

unite what were considered two independent ubiquitination pathways, it also illustrates 

that the function of a ubiquitin ligase is interchangeable between E3 and E4 enzymes 

depending on the context. In case of the Arabidopsis UBE4 ligase, it would be interesting to 

know if its polyubiquitination function is also dependent only on the presence of a 

(mono)ubiquitin mark on the substrate or if the presence of an adaptor or cofactor is 

required to provide specificity to UBE4 activity. As shown with the mammalian p53/MDM2 

system and yeast UBR1/UFD4, it is possible that the presence of an E3 ligase at the target 

substrate is able to recruit UBE4 to perform polyubiquitination. In Arabidopsis NPR1/UBE4 

interaction may be mediated by the presence of the CUL3 ligase. The fact that p53 protein 

levels are regulated by a multitude of E3 and E4 ligases hints that UBE4 may not be the only 

E4 to influence NPR1 degradation. However, to date NPR1 has only been show to interact 

with the CUL3 ligase mediated by the two F-box adaptor proteins NPR3 and NPR4 (Fu et al., 

2012), and as UBE4 seems to influence both basal and SA-induced gene expression via 

NPR1, the action of further E4 ligases may be unnecessary. This does not mean that UBE4 

does not exert influence over other pathways within Arabidopsis. Indeed, the growth 

defects seen in ube4-2 hint that it may be involved in pathways influencing development 

and morphology. If indeed the action of UBE4 is mediated by the presence of an E3, 

coimmunoprecipitation of UBE4 and cognate E3s combined with mass spectrometry may 

reveal new potential UBE4 targets.  
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In chapter five we investigated the role of two canonical E4 ligases in yeast: the 

RING-like U-box protein UFD2, the first described E4 ligase (Koegl et al., 1999), and the 

HECT-domain containing HUL5, which is bound to the proteasome and acts in opposition to 

the deubiquitinase UBP6 (Leggett et al., 2002, Crosas et al., 2006). Deletion of UFD2 led to 

the stabilisation of the general amino acid control master regulator GCN4 at basal levels of 

transcription but mildly increased degradation after induction following removal of leucine 

from the system. Similar to NPR1, GCN4 requires proteasome mediated turnover (Lipford et 

al., 2005). However, previous methods have either blocked initial GCN4 ubiquitination or 

chemically inhibited the proteasome to prevent highly ubiquitinated GCN4 from being 

degraded (Lipford et al., 2005). By knocking out the E4 ligases UFD2 and HUL5 we hoped to 

investigate if processive ubiquitination altered GCN4 activity in yeast similar to our findings 

for NPR1 in plants.  However, ufd2Δ cells did not dramatically differ from wild type in GCN4 

turnover rate and transcriptional output of GCN4 target genes, suggesting UFD2 does not 

play a major role in the polyubiquitination of GCN4. Deletion of HUL5, however, produced 

increased levels of basal GCN4 target gene transcription and also decreased starvation-

induced gene expression. Unfortunately, it was not possible to investigate GCN4 protein 

levels further as slow growth of hul5Δ cells made experimental comparison to wild type 

difficult. Nonetheless, we speculate that HUL5 may play an important role in controlling 

GCN4 activity through processive ubiquitination in a similar manner as Arabidopsis UBE4 

controlled NPR1 activity. As yeast HUL5 is bound to the proteasome, its opposition to the 

deubiquitinase UBP6 could act as a timer for GCN4 activity and functionality (Leggett et al., 

2002, Crosas et al., 2006). On the other hand, Arabidopsis UBE4 is expected to act in 

complex with the shuttle protein Rad23 to supply polyubiquitinated NPR1 to the 

proteasome (Tu et al., 2007, Hanzelmann et al., 2010). The differing localisations between 

HUL5 and UBE4 may suit different purposes in transcription (co)factor regulation or both E4 
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ligases may act cooperatively to promote transcription factor ubiquitination as seen in 

p53/MDM2/UBE4. Hence, an aspect of our investigation that was not possible due to time 

constraints, would be to investigate if a yeast ufd2Δ hul5Δ double mutant displays 

increased effects on GCN4 protein degradation and corresponding transcriptional output. 

Chapter four was dedicated to using the homology to yeast HUL5 to find further 

putative E4 ligases in Arabidopsis. This approach yielded the UPL protein family, of which 

we investigated four members that fall into two classes: UPL3 and UPL4 on the one hand, 

and UPL6 and UPL7 on the other. Interestingly, this revealed UPL3 to be a major regulator 

of both total cellular as well as substrate-specific ubiquitination events. More importantly, 

reduced cellular polyubiquitination in upl3 knockout mutants correlated with compromised 

SA-dependent gene expression, leading to enhanced disease susceptibility that was further 

increased in upl3 upl4 double mutants, suggesting some functional redundancy between 

these proteins.  

The discovery of UPL3 as a novel ubiquitin ligase in the regulation of SA-responsive 

gene expression is significant as most ubiquitin ligases known to date function upstream of 

SA and NPR1. An early screen for mutations leading to SA-mediated autoimmune 

phenotypes identified the cpr1 mutant (Bowling et al., 1994). Importantly, protein levels of 

the NLR receptors SNC1 and RPS2 were inversely correlated with CPR1 activity, and loss-of-

function mutations in SNC1 largely suppressed the autoimmune phenotype of mutant cpr1 

plants. Cloning of CPR1 revealed it encodes an F-box protein, suggesting it controls the 

abundance of NLR receptors by targeting them for proteasome-mediated degradation. 

Indeed, CPR1 directly interacted with SNC1 and RPS2, and in case of SNC1 this appeared to 

lead to its polyubiquitination and degradation by the proteasome (Cheng et al., 2011, Gou 

et al., 2012). NLR receptor signaling probably involves other CRL1 ubiquitin ligases as well 
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but with distinct functions. Rather than eliciting autoimmunity, silencing of the F-box 

protein (Avr9/Cf-9 induced F-box 1) ACIF1 in tobacco and tomato compromised NLR 

receptor-mediated PCD and immunity (van den Burg et al., 2008). ACIF1 interacted with 

other CRL1 subunits, suggesting it can form a functional ubiquitin ligase but its direct 

targets remain unknown. The proteins plant U-box 12 (PUB12) and PUB13 are involved in 

the regulation of the flagellin receptor FLS2. PUB12 and PUB13 recruitment to FLS2 is 

dependent on phosphorylation by Botrytis induced kinase 1 (BIK1), a process that is 

enhanced in the presence of flagellin and BRI1-associated kinase 1 (BAK1). Deletion of  the 

PUB12/13 led to increased responses to flagellin and disease resistance, suggesting 

ubiquitination of flagellin sensitive 2 (FLS2) is used to negatively regulate defence responses 

(Lu et al., 2011) . The RING domain containing RPM-interacting proteins RIN2/RIN3 proteins 

interact with the NLR receptor Resistance to P. Syringae pv. Maculicola 1 (RPM1), which 

confirms resistance to P. syringae carrying the AvrRPM1 effector. Upon onset of HR, RPM1 

levels reduce in a proteasome-dependent manner. However RIN2/RIN3 do not directly 

ubiquitinate RPM1 but are functional ligases, suggesting they target an RPM1-associated 

protein while another E3 is responsible for directly targeting RPM1 to the proteasome 

(Boyes et al., 1998, Kawasaki et al., 2005). Other RING proteins have also been implicated in 

regulation of pathogen defense. Increased SA accumulation can be realized through 

mutation of the RING E3 ligase benzoic acid hypersensitive 1-Dominant (BAH1). Increased 

SA levels were both dependent on ICS1, a key biosynthetic enzyme in SA production, and 

independent from ICS1, potentially operating through alternative SA pathways or via the 

redundant ICS2, however the mechanism leading to mis-regulation of gene expression is 

not understood (Yaeno and Iba, 2008). In the pepper Capiscum annuum silencing of the E3 

ligase RING1 reduced levels of SA, HR cell death and PR1 gene expression, leading to 

associated disease susceptibility. Conversely, over-expression of CaRING1 in Arabidopsis 
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increased resistance to biotrophic pathogens. These experiments suggest that CaRING1 is 

involved in defence responses through ubiquitination and regulation of cell death (Lee et 

al., 2011). 

Although these experiments indicate that ubiquitin ligases are important in the 

control of pathogen responses, they do not directly help to elucidate the role of 

ubiquitination at the level of transcription regulation for which the only example is the 

previously discussed NPR1/CUL3/UBE4 relationship (Chapter 3) (Spoel et al., 2009, Fu et al., 

2012). Previously published studies described the RING, CUL1/F-box and U-box E3 ligase 

classes, while experiments performed in this thesis show the first HECT domain E3 ligase 

involved in SA-dependent disease responses. Direct application of SA in our experiments 

bypassed upstream signalling events such as pathogen receptor abundance, suggesting the 

phenotype shown by upl3 is not due to mis-regulation of early signalling events. Because SA 

is directly perceived by transcription cofactor-receptor complexes, UPL3 likely acts 

cotranscriptionally. As upl3 mutants displayed a vast reduction in SA- and NPR1-dependent 

gene expression, UPL3 may be acting as an auxiliary factor to promote transcription. 

Consistent with this hypothesis, we identified the W-box as an overrepresented element in 

SA-induced genes that were regulated by UPL3. The W-box binds WRKY transcription 

factors, many of which play critical roles in stimulating or repressing SA-responsive genes. 

Of particular interest in this respect is recent work that shows WRKY70 acted as a repressor 

of SA- and NPR1-dependent gene transcription (Saleh et al., 2015). Thus, WRKY70 is a good 

candidate for UPL3 action as targeted degradation of this repressor could enhance NPR1-

mediated gene expression in response to SA. To test this hypothesis in future a cross 

between upl3-1 and epitope-tagged WRKY70 would be required in order to experimentally 

test WRKY70 degradation. 
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6.1. Conclusions 

As outlined and discussed above, the work presented in this thesis provides novel 

insights into the role of ubiquitin ligases in regulating transcription initiation of immune 

responses through the controlled proteasome-mediated degradation of key SA-responsive 

transcription (co)factors. A summary of the key findings is detailed below: 

(1) Short ubiquitin chains activate NPR1 coactivator, leading to high levels of SA-responsive 

gene transcription. Subsequent polyubiquitination by the E4 ligase, UBE4, and proteasome-

mediated degradation serve to limit or prevent excessive transcriptional activity of NPR1 

(Chapter 3). 

(2) UPL3 is a novel ubiquitin ligase essential for global cellular polyubiquitination and acts as 

an auxiliary factor in activating SA-responsive genes potentially by targeting WRKY 

repressors for proteasome-mediated degradation (Chapter 4). 

(3) In S. cerevisiae the E4 ligase HUL5, but not UFD2, regulates amino acid starvation-

induced gene expression, which requires turnover of the GCN4 transcription activator. 

Further research should determine if HUL5 acts cotranscriptionally by targeting GCN4 for 

degradation (Chapter 5). 
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6.2. Impact 

The conclusions reached from the evidence provided in this thesis and associated 

literature indicate far reaching impact. In case of Chapter 3, studies on the E4 ligase activity 

of UBE4 illustrate TFs not only remain active after ubiquitination but the act of 

ubiquitination can enhance the intrinsic activity of TFs. Related to this, findings from 

Chapter 5 suggest that E4 ligase activity may regulate unstable transcription activator 

activities across the eukaryota, though with differing mechanisms of substrate targeting to 

the proteasome. This information could be transferred to biomedical science as several 

oncoproteins and developmental transcription (co)activators are unstable and their 

turnover is required for the activation of their target genes.  Like the mammalian 

oncoprotein p53, these (co)activators may be polyubiquitinated by the mammalian 

homolog of UBE4/UFD2. In Arabidopsis UBE4 could have other targets than NPR1 and their 

isolation could provide clues to which further TFs are regulated, at least in part, by 

processive ubiquitination. This could reveal if involvement of E4 ligase is a general feature 

of gene expression that requires rapid responses to internal or external signals. In Chapter 4 

the discovery of a new ubiquitin ligase in SA signalling that likely regulates WRKY 

transcription regulators, opens up new avenues in research on SA-dependent gene 

expression and could reveal potential new targets to improve disease resistance of crops. 
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Appendix 

A.3.1. Alignments of Arabidopsis U-box proteins  

Alignments of Arabidopsis U-box proteins indicating AtUBE4  is homologous to ScUFD2 

(Figure1 and Figure2) and it is the only member of its class in Arabidopsis (Figure 2). Taken 

from Azevedo et al (2001). 
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