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Abstract 

One of the main drivers influencing consumers in the purchasing of red meat is the level of 

visible fat, and this is particularly important in lamb, with lamb often being perceived as 

fatty. Consumer-driven preference for leaner meat, coupled with the meat processing 

industries preference for a reduction in carcass fat, increasing lean meat yield and reducing 

waste, have led to continued selection for lean growth and reduced fatness in several meat 

producing species The perception of lamb being fatty could be directly targeted in isolation 

by reducing overall fat levels, however there are related effects on meat (eating) quality, and 

the combined improvement and consistency of meat (eating) quality and the reduction of 

overall fatness is more complicated. 

It is apparent that fat content plays a significant role in meat (eating) quality. Generally four 

major fat depots are recognised in animal carcasses, these are: subcutaneous (under the skin); 

internal organ associated; intermuscular (between muscles and surrounding muscle groups); 

and intramuscular (marbling, between muscle fibres), the latter generally regarded as having 

the greatest association with meat (eating) quality. 

X-ray computed tomography (CT) can measure fat, muscle and bone in vivo in sheep and CT 

predictions of carcass composition have been used in commercial UK sheep breeding 

programmes over the last two decades. Together with ultrasound measures of fat and muscle 

depth in the loin region, CT measured carcass fat and muscle weights have contributed much 

to the success of breeding for leaner carcasses and increased lean meat yield. Recently it has 

also been considered that x-ray computed tomography provides the means to simultaneously 

estimate IMF and carcass fat in vivo.  

Thus the aim of this project is to investigate the use of two and three-dimensional x-ray 

computed tomography techniques in the estimation of meat (eating) quality traits in sheep, 

and to further investigate the genetic basis of these traits and the possibility of their inclusion 

into current breeding programmes. The primary approach was the use of two-dimensional x-
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ray computed tomography, determining the most accurate combination of variables to 

predict IMF and mechanical shear force in the loin. The prediction of mechanical shear force 

was poor with accuracies ranging from Adj R
2
 0.03 – 0.14, however the prediction of IMF in 

the loin was more promising. CT predicted carcass fat weight accounted for a moderate 

amount of variation in IMF (R
2
 =0.51). These accuracies were significantly improved upon 

by including other information from the CT scans (i.e. fat and muscle densities, Adj R
2
 

>0.65). Average muscle density in a single or multiple scans accounted for a moderate 

amount of the variation in IMF (Adj R
2
 = 0.51-0.60), and again accuracies R

2 
>0.65 were 

achieved, independent of CT-measured fat areas or predicted fat weights. Similar results 

were achieved with the use of three-dimensional CT scanning techniques (Adj R
2
 0.51 – 

0.71), however, there was a dramatically increased requirement for image analysis when 

compared to two-dimensional techniques, and the increase in accuracy was not significant. 

This suggests that the current method of two-dimensional image capture is sufficient in the 

estimation of IMF in vivo
 
in sheep. 

The prediction equations developed as part of this work were applied across divergent breed 

types (Texel, Scottish Blackface and Texel cross mule), to investigate the transferability of 

the prediction equations directly across to other breeds of sheep. As part of this study, the 

IMF levels across the breed types and sexes were also compared and found that IMF was 

significantly affected by breed type (P<0.001) with Scottish Blackface lambs having higher 

levels of IMF when compared to Texel cross mule lambs, and the lowest levels of IMF were 

in the purebred Texel lambs at the same liveweight or similar levels of carcass fatness. Sex 

also had a significant effect on IMF across breeds (P<0.001) with females having higher 

levels of IMF at similar levels of both carcass fat and liveweight, and within breed, females 

had significantly higher levels of IMF in both the purebred Texel and Scottish Blackface 

lambs, when compared at similar levels of carcass fat and liveweight (P<0.05). Using the 

models previously developed in purebred Texel to predict IMF in the Scottish Blackface and 
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Texel cross mule, accuracies were found to be R
2
 = 0.57 – 0.64 and R

2 
= 0.37 – 0.38 

respectively. Providing evidence that the equations are transferable across to some breeds 

more successfully than others, however, given that there is currently no method of accurately 

estimating IMF in vivo, accuracies across to both breeds are acceptable. 

The genetic parameter estimation was unsuccessful using the same research-derived dataset 

as previously employed in the study. However the ambition was always to investigate the 

genetic relationships between traits in a large industry dataset, exploiting the wealth of 

commercial CT information available. These investigations were considerably more 

successful, and among the first to present genetic parameters of novel CT-derived IMF 

estimates. The results found moderate heritability estimates of h
2
 0.31 and 0.36 for the final 

selected prediction equations, with clear indications that one model not including CT 

predicted carcass fat or any other fat measures, was more independent of these measures and 

the two separate prediction methods were highly genetically correlated with each other (rg = 

0.89). 

The results from this study show that not only is it possible to accurately estimate IMF levels 

in the loin of Texel sheep using CT scanning, but that, until breed specific predictions are 

developed, the methods developed in this study are transferable across some breed types. 

The results also show that CT predicted IMF is heritable, independent of overall fatness and 

has the potential to be included in current breeding programmes. These findings can now be 

used to develop breeding programmes which enable breeders to make the best use of CT 

scanning technology to improve carcass composition while maintaining or possibly 

improving aspects of meat (eating) quality.  
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Lay Abstract 

One of the main drivers influencing consumers in the purchasing of red meat is the level of 

visible fat, and this is particularly important in lamb, as lamb often perceived as fatty. 

Consumer-driven preference for leaner meat coupled with the meat processing industries 

preference for a reduction in carcass fat, increasing lean meat yield and reducing waste, have 

led to continued selection for lean reduced fatness in several meat producing species. The 

perception of lamb being fatty could be directly targeted in isolation by reducing overall fat 

levels, however there are related effects to meat (eating) quality, and the combined 

improvement and consistency of meat (eating) quality and the reduction of overall fatness is 

more complicated. 

It is apparent that fat content plays a significant role in meat (eating) quality. Generally four 

major fat depots are recognised in animal carcasses, these are: subcutaneous (under the skin); 

internal organ associated; intermuscular (between muscles and surrounding muscle groups); 

and intramuscular (marbling, between muscle fibres), the latter is generally regarded as 

having the greatest association with meat (eating) quality. 

X-ray computed tomography (CT) can measure fat, muscle and bone in live sheep and CT 

predictions of carcass composition have been used in commercial UK sheep breeding 

programmes over the last two decades. Together with ultrasound measures of fat and muscle 

depth in the loin region, CT measured carcass fat and muscle weights have contributed much 

to the success of breeding for leaner carcasses and increased lean meat yield. Recently it has 

also been considered that CT provides the means to simultaneously estimate marbling and 

carcass fat in vivo.  

Thus the aim of this project is to investigate the use of two and three-dimensional CT 

techniques in the estimation of meat (eating) quality traits in sheep, and to further investigate 

the genetic basis of these traits and the possibility of their inclusion into current breeding 
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programmes. The primary approach was the use of two-dimensional CT, determining the 

most accurate combination of variables to predict marbling and tenderness in the loin. The 

prediction of tenderness was poor with accuracies ranging from 3% to 14% (100% accuracy 

being the best), however the prediction of marbling in the loin was more promising. Simple 

CT variables predicted marbling with around 51% accuracy. These accuracies were 

significantly improved upon by including other information from the CT scans, which 

increased the accuracy to more than 65%. Similar results were achieved with the use of 

three-dimensional CT scanning techniques (51% – 71% accuracy), however, there was a 

dramatically increased requirement for image analysis when compared to two-dimensional 

techniques, and the increase in accuracy was not significant. This suggests that the current 

method of two-dimensional image capture is sufficient in the estimation of marbling
 
in live 

sheep. 

The prediction equations developed as part of this work were applied across very different 

breeds (Texel, Scottish Blackface and Texel cross mule), to investigate the transferability of 

the prediction equations directly across to other breeds of sheep. As part of this study, the 

marbling across the breed types and sexes were also compared and found that marbling was 

significantly different across breeds with Scottish Blackface lambs having higher levels of 

marbling when compared to Texel cross mule lambs, and the lowest levels of marbling were 

in the purebred Texel. Sex also had a significant effect on marbling in the different breeds 

with females having higher levels of marbling. Within the same breed, females had 

significantly higher levels of marbling in both the purebred Texel and Scottish Blackface 

lambs. Using the models previously developed in purebred Texel to predict marbling in the 

Scottish Blackface and Texel cross mule, accuracies were found to be 57% – 64% in Scottish 

Blackface and 37% – 38% in Texel cross mule. Providing evidence that the equations are 

transferable across to some breeds more successfully than others, however, given that there 
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is currently no method of accurately estimating marbling in live sheep, accuracies across to 

both breeds are acceptable. 

The genetic analyses found that marbling predicted by CT may be passed on through 

genetics, with clear indications that one model not including overall fat or any other fat 

measures, was more independent of these measures, and the two separate prediction methods 

were found to be genetically the same. 

The results from this study show that not only is it possible to accurately estimate marbling 

in the loin of Texel sheep using CT, but also that the methods developed in this study are 

transferable across some breed types. The results also show that marbling predicted by CT is 

heritable, independent of overall fatness and has the potential to be included in current 

breeding programmes. These findings can now be used to develop breeding programmes 

which enable breeders to make the best use of modern technology to improve carcass quality 

while maintaining or possibly improving aspects of meat (eating) quality.  

       

 

 

 

 

 

 

 

 

 

 

 



ix 

 

Publications 

Peer reviewed publications 

Clelland, N. Bunger, L. McLean, K.A. Conington, J. Maltin, C. Knott, S and Lambe, N.R.  

2014. Prediction of intramuscular fat levels in Texel lamb loins using X-ray computed 

tomography scanning. Meat Science 98, 263-271. (Based on Chapter 2) 

Conference proceedings and presentations 

Clelland, N. Lambe, N.R. Knott, S.A. Conington, J and Bunger, L. 2013. Investigating image 

analysis techniques for predicting intramuscular fat percentage from computed tomography 

reference scanning (two-dimensional information) in Texel lambs. Proceedings of the British 

Society of Animal Science, University of Nottingham April 2013, 142 

Clelland, N. Bunger, L. McLean, K.A. Knott, S. and Lambe, N.R. 2013. Prediction of 

intramuscular fat in Texel lamb loins using different x-ray computed tomography (CT) 

scanning techniques. Proceedings of the Farm Animal Imaging (FAIM) conference, 

Kaposvar, Hungary, 53-56 

Clelland, N. Price, E.M. Bunger, L. McLean, K.A. Knott, S. Haresign, W. Roden, J.A. 

Scollan, N.D. and Lambe, N.R. 2013. Use of computer tomography (CT) to predict chemical 

intramuscular fat (IMF) in dissected lamb loins, Proceedings of the Farm Animal Imaging 

(FAIM) conference, Kaposvar, Hungary, 57-60 

Clelland, N. Bunger, L. Knott, S. Menezes, A.M and Lambe, N.R. 2014. Predicting 

intramuscular fat content in the loins of divergent sheep breeds using x-ray computed 

tomography. Proceedings of the Farm Animal Imaging (FAIM) conference, Copenhagen, 

Denmark, 48-51 

Associated authorship 

Bunger, L. Clelland, N. Moore, K. McLean, K.A. Kongsro, J and Lambe, N.R. 2014. 

Integrating computed tomography (CT) into commercial sheep breeding in the UK: cost and 

value. Proceedings of the Farm Animal Imaging conference, Copenhagen, Denmark, 22-27 

 



x 

 

Table of Contents 

 

Declaration............................................................................................................................... i 

Acknowledgments .................................................................................................................. ii 

Abstract .................................................................................................................................. iii 

Lay Abstract .......................................................................................................................... vi 

Publications ........................................................................................................................... ix 

Peer reviewed publications ................................................................................................. ix 

Conference proceedings and presentations ......................................................................... ix 

Associated authorship ......................................................................................................... ix 

Table of Contents ................................................................................................................... x 

List of Figures ...................................................................................................................... xvi 

List of Tables ..................................................................................................................... xviii 

List of Abbreviations ......................................................................................................... xxii 

Chapter 1: General Introduction ........................................................................................ 24 

 Background .................................................................................................................. 25 1.1

 Structure of sheep farming in the UK .......................................................................... 28 1.2

 Improvement through genetic selection ....................................................................... 29 1.3

 Meat quality ................................................................................................................. 32 1.4

 Meat eating quality ...................................................................................................... 33 1.5

1.5.1 Appearance ........................................................................................................... 34 

1.5.2 Tenderness ............................................................................................................ 34 

1.5.3 Flavour .................................................................................................................. 37 

1.5.4 Juiciness ................................................................................................................ 38 

 X-Ray Computed Tomography .................................................................................... 39 1.6

1.6.1 Basic Principles of computed tomography ........................................................... 40 



xi 

 

 Automated in-vivo image segmentation and image analysis ....................................... 43 1.7

 The use of Computed tomography in sheep breeding programmes ............................. 45 1.8

 Aim and Hypotheses .................................................................................................... 47 1.9

Chapter 2: In vivo prediction of intramuscular fat content and shear force in Texel 

lamb loins using x-ray computed tomography .................................................................. 49 

 Summary ...................................................................................................................... 50 2.1

 Introduction .................................................................................................................. 50 2.2

 Materials and methods ................................................................................................. 52 2.3

2.3.1 Experimental animals ............................................................................................ 52 

2.3.2 X-ray computed tomography measurements ........................................................ 53 

2.3.3 Slaughter and meat quality measurements ............................................................ 54 

2.3.4 Statistical analyses ................................................................................................ 56 

 Results .......................................................................................................................... 65 2.4

2.4.1 Models inclusive of CT estimated carcass fat ....................................................... 65 

2.4.2 Estimating IMF and shear force using reference scan information ...................... 65 

2.4.3 Estimating IMF and shear force using LV5 scan information .............................. 66 

2.4.4 Estimating IMF using virtually dissected images from a single LV5 scan ........... 67 

2.4.5 Model validation and selection ............................................................................. 68 

2.4.6 Models independent of CT estimated carcass fat .................................................. 70 

2.4.7 Estimating IMF using reference scan information ................................................ 70 

2.4.8 Estimating IMF using LV5 scan information ....................................................... 71 

2.4.9 Model validation and selection ............................................................................. 72 

 Discussion .................................................................................................................... 74 2.5

 Conclusion ................................................................................................................... 79 2.6

Chapter 3: Prediction of intramuscular fat content and shear force in Texel lamb loins 

using combinations of different in vivo x-ray computed tomography (CT) scanning 

techniques ............................................................................................................................. 81 



xii 

 

 Summary ...................................................................................................................... 82 3.1

 Introduction .................................................................................................................. 83 3.2

 Materials and methods ................................................................................................. 84 3.3

3.3.1 Experimental animals ............................................................................................ 84 

3.3.2 Single-slice and spiral x-ray CT measurements and image analysis .................... 84 

3.3.3 Slaughter procedure and meat quality parameter measurements .......................... 87 

3.3.4 Statistical analysis ................................................................................................. 87 

 Results .......................................................................................................................... 93 3.4

3.4.1 Predicting shear force and IMF content using SCTS information ........................ 93 

3.4.2 Predicting shear force and IMF content using a combination of SCTS and single-

slice scan information .................................................................................................... 94 

3.4.3 Model cross-validation and selection .................................................................... 95 

 Discussion .................................................................................................................... 98 3.5

 Conclusion ................................................................................................................. 102 3.6

Chapter 4: Comparison of carcass and meat quality traits of divergent sheep genotypes 

and In vivo prediction of intramuscular fat content in the loins of divergent sheep 

genotypes using X-ray computed tomography ................................................................ 103 

 Summary .................................................................................................................... 104 4.1

 Introduction ................................................................................................................ 104 4.2

 Materials and methods ............................................................................................... 105 4.3

4.3.1 Experimental Animals......................................................................................... 105 

4.3.2 Computed Tomography (CT) measurements ...................................................... 109 

4.3.3 Slaughter and Meat quality measurements ......................................................... 109 

4.3.4 Statistical analyses .............................................................................................. 110 

 Results ........................................................................................................................ 112 4.4

4.4.1 Genotype comparison of Chem_IMF and Pr_Cfat ............................................. 112 

4.4.2 Accuracy of prediction equations in SBF and TexX........................................... 114 



xiii 

 

 Discussion .................................................................................................................. 120 4.5

 Conclusion ................................................................................................................. 123 4.6

Chapter 5: Preliminary genetic parameters of CT estimated traits and meat quality 

traits in Texel sheep ........................................................................................................... 125 

 Summary .................................................................................................................... 126 5.1

 Introduction ................................................................................................................ 127 5.2

 Materials and Methods ............................................................................................... 127 5.3

5.3.1 Experimental animals .......................................................................................... 128 

5.3.2 Live animal and slaughter measurements ........................................................... 128 

5.3.3 CT estimates of intramuscular fat ....................................................................... 129 

5.3.4 Fixed scanner ...................................................................................................... 129 

5.3.5 Mobile scanner .................................................................................................... 130 

5.3.6 Pedigree ............................................................................................................... 132 

5.3.7 Descriptive statistics ........................................................................................... 132 

5.3.8 Genetic analysis - Animal Model ........................................................................ 133 

5.3.9 Genetic analysis - Sire Model ............................................................................. 134 

 Results ........................................................................................................................ 135 5.4

5.4.1 Animal model results .......................................................................................... 135 

5.4.2 Sire Model Results .............................................................................................. 137 

 Discussion .................................................................................................................. 138 5.5

 Conclusion ................................................................................................................. 139 5.6

Chapter 6: Genetic parameters for growth, carcass composition and intramuscular fat 

in Texel sheep measured by x-ray computed tomography and ultrasound .................. 141 

 Summary .................................................................................................................... 142 6.1

 Introduction ................................................................................................................ 143 6.2

 Materials and Methods ............................................................................................... 144 6.3

6.3.1 Animals and BASCO Database .......................................................................... 145 



xiv 

 

6.3.2 Growth measurements......................................................................................... 147 

6.3.3 Ultrasound measurements ................................................................................... 148 

6.3.4 Computed tomography measurements ................................................................ 148 

6.3.5 CT predictions of intramuscular fat .................................................................... 149 

6.3.6 Statistical analysis ............................................................................................... 150 

 Results ........................................................................................................................ 153 6.4

6.4.1 Descriptive statistics ........................................................................................... 153 

6.4.2 Heritability estimates .......................................................................................... 154 

6.4.3 Correlation estimates........................................................................................... 154 

 Discussion .................................................................................................................. 158 6.5

6.5.1 Heritability estimates .......................................................................................... 159 

6.5.2 Genetic correlation estimates .............................................................................. 161 

6.5.3 Incorporating CT predicted IMF into selection programmes .............................. 163 

 Conclusion ................................................................................................................. 163 6.6

Chapter 7: General Discussion ......................................................................................... 165 

 Introduction ................................................................................................................ 166 7.1

 CT as a method for estimating MQ traits in Texel sheep .......................................... 167 7.2

7.2.1 Shear force .......................................................................................................... 167 

7.2.2 Intramuscular fat ................................................................................................. 168 

7.2.3 Breed and sex effects on IMF and the application of CT predicted IMF models in 

different breed types .................................................................................................... 170 

7.2.4 Genetic parameters of ultrasound, CT estimated and meat quality traits in Texel 

sheep ............................................................................................................................ 172 

 Future work ................................................................................................................ 176 7.3

 Conclusion ................................................................................................................. 176 7.4

Appendix i: Use of computer tomography (CT) to predict chemical intramuscular fat 

(IMF) in dissected lamb loins ............................................................................................ 178 



xv 

 

Value for Industry ............................................................................................................ 179 

Background ...................................................................................................................... 179 

Why work is needed ......................................................................................................... 180 

The methods used ............................................................................................................ 181 

The results obtained ......................................................................................................... 183 

The scientific conclusions ................................................................................................ 185 

The next steps .................................................................................................................. 185 

Reference List ..................................................................................................................... 186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

List of Figures 

Figure 1.1 Diagrammatic representation of the stratified UK sheep breeding structure (top) 

and non-stratified sheep breeding structure (bottom) with 2003 ewe numbers shown in 

brackets (million) from Pollot (2012) ......................................................................................... 29 

Figure 1.2 a) CT tomogram image through the upper hind legs of a lamb, detailing tissue 

grayscales representing corresponding density values b) Distribution of HU values of pixels 

from CT scans taken on a number of Texel sheep, the first peak identified as fat tissue (left) 

and the second peak identified as lean tissue (right) ................................................................... 42 

Figure 1.3 a) Spiral CT focus trajectory from Kalender (2006) b) in-vivo segmented 3D 

image of lamb loin ...................................................................................................................... 43 

Figure 1.4 Cross-sectional CT image through a lamb in-vivo at the 5
th
 lumbar vertebra (left) 

and the same image following segmentation of the internal organs and CT table and cradle .... 44 

Figure 1.5 Topogram and 2-dimensional cross-sectional CT scans taken in Texel sheep at 

the ischium (i), 5
th
 lumbar vertebra (ii) and 8

th
 thoracic vertebra (iii) ........................................ 45 

Figure 2.1 Virtual dissections of LV5 scan, LV5 only (i), Dissect1 (ii) and Dissect2 (iii)........ 54 

Figure 2.2 Distribution of (a) IMF, (b) shear force, and (c) log transformed (log10) shear 

force in the loin, from the full data set (n=370; left hand graphs), calibration (n=236) and 

validation (n=134) data sets (right hand graphs) ........................................................................ 57 

Figure 3.1 Detailed tomograms, single slice and spiral images produced during CT scanning . 86 

Figure 3.2 Histograms of chemically extracted intramuscular fat percentage (IMF %) and 

shear force (ShF, kgF) measured in the loin of the Texel lambs (n = 370)................................. 89 



xvii 

 

Figure 3.3 Histogram of chemically extracted intramuscular fat percentage (IMF %) and 

shear force (ShF, kgF) measured in the loin in the calibration and validation data sets ............. 92 

Figure 4.1 Topogram (Top) and single slice CT scan images (bottom) at the ischium (i), 5
th
 

lumbar vertebra (ii) and 8
th
 thoracic vertebra (iii) ..................................................................... 110 

Figure 4.2 Fitted values of predicted IMF using both models (A and B) against Chem_IMF 

for the Tex development data (i), SBF data (ii) and the TexX data (iii) ................................... 116 

Figure 4.3 Residual values of predicted IMF using both models (A and B) against 

Chem_IMF for the Tex development data (i), SBF data (ii) and the TexX data (iii) ............... 118 

Figure 6.1 (a) Diagrammatical representation of measurement points taken at ultrasound 

scanning (b) Ultrasound scan image of measurement points taken at scanning (Images 

courtesy of Sam Boon, Signet) ................................................................................................. 148 

Figure 6.2 Measurements taken on the scan image taken at the ischium to calculate CTmusc 

(a) and measurements taken on the image taken at the fifth lumbar vertebra to calculate 

CTema (b) (Reproduced from (Lambe et al., 2007) ................................................................. 149 

Figure 7.1: Plot of selection candidates from commercial CT data based on CT predicted 

carcass fat and CT predicted IMF using model PIMF2 (chapter 5) .......................................... 175 

Figure i: Dissected loins orientated and positioned in the multiplex frame (left), 3D rendered 

image of multiplex scanning (right) .......................................................................................... 182 

Figure ii: Selection of the scanned objects using ATAR software (left), adjusting the 

boundary of a selected object (right) ......................................................................................... 183 

 



xviii 

 

List of Tables 

Table 2.1 Trait descriptions, means and standard deviations (SD) (n=370) ......................... 58 

Table 2.2: Phenotypic correlations amongst CT predictor variables in the reference scans 

and measured meat quality traits (IMF and shear force). Only correlations significantly 

greater than zero (P<0.05) are shown .................................................................................... 62 

Table 2.3: CT and meat quality traits, means and standard deviations (SD) for lambs 

included in the virtual dissection data set (n=100) ................................................................ 63 

Table 2.4: CT and MQ traits, means and standard deviations for lambs included in the 

calibration data set (n=236) and validation data set (n=134) ................................................. 64 

Table 2.5: Linear regression models between IMF, shear force and CT tissue density 

parameters including Pr_Cfat, with adjusted coefficient of determination (Adj R2) and 

residual mean square error (RMSE), based on the whole data set (n=370) ........................... 67 

Table 2.6: Linear regression models between IMF and CT tissue density parameters during 

virtual dissection, with adjusted coefficient of determination (R2) and residual mean square 

error (RMSE), based on the subset of the data (n=100) ......................................................... 68 

Table 2.7: Linear regression models between IMF and CT tissue density parameters 

including Pr_Cfat, with adjusted coefficient of determination (R2) and residual mean square 

error (RMSE), based on the training data set (n=236) and validation data set (n=134) ........ 70 

Table 2.8: Linear regression models between IMF CT tissue density parameters in models 

excluding Pr_Cfat, with adjusted coefficient of determination (Adj R2) and residual mean 

square error (RMSE), based on the whole data set (n=370) .................................................. 72 



xix 

 

Table 2.9: Linear regression models between IMF and CT tissue density parameters 

excluding Pr_Cfat, with adjusted coefficient of determination (R2) and residual mean square 

error (RMSE), based on the training data set (n=236) and validation data set (n=134) ........ 74 

Table 3.1: Acronyms and summary statistics of  SCTS traits along with trait descriptions, 

means and standard deviations (SD) in the Texel data utilised in the prediction of intra-

muscular fat and shear force (n = 370) .................................................................................. 86 

Table 3.2: Terms included in the maximum linear regression models tested before stepwise 

regression using both spiral CT scan parameters only (sp) and spiral CT scan parameters 

combined with two dimensional single-slice scan parameters (com). ................................... 90 

Table 3.3: Summary statistics of SCTS traits along with trait descriptions, means and 

standard deviations (SD) in the calibration (n=236) and validation (n=134) data sets .......... 91 

Table 3.4: Regression results for the prediction of shear force and IMF, presented are the 

adjusted coefficient of determination (Adj R2) and residual mean square error (RMSE) using 

information from SCTS only (sp) or a combination of SCTS and two dimensional single-

slice scans (com) .................................................................................................................... 94 

Table 3.5: Cross-validation results: adjusted coefficient of determination (Adj R2), residual 

mean square error (RMSE) of calibration; and coefficient of determination (R2) and residual 

mean square error of prediction (RMSEP) of the validation data .......................................... 97 

Table 3.6: Final prediction models and equations derived from the whole data set, adjusted 

coefficient of determination (Adj R2) and residual mean square error of the prediction 

(RMSEP) ................................................................................................................................ 98 

Table 4.1: Trait descriptions, means and standard deviations (SD) in Purebred Texel (Tex), 

Scottish Blackface (SBF) and Texel cross mule (TexX) within sex   ............................... 107 



xx 

 

Table 4.2: Trait descriptions, means and standard deviations (SD) in Purebred Texel (Tex), 

Scottish Blackface (SBF) and Texel cross mule (TexX)   ................................................ 107 

Table 4.3: Adjusted least square means for the effects of genotype and genotype by sex 

interaction on Chem_IMF and Pr_Cfat. Standard error of the means (s.e) or standard errors 

of the difference between means (s.e.d) are shown. ............................................................ 113 

Table 4.4: Validation of selected models across SBF and TexX data sets ......................... 113 

Table 4.5: Average absolute error, as the absolute mean of the magnitude of the residuals 

expressed as IMF percentage of the Pr_IMF (%) in both models (A and B) from Chem_IMF 

(%) in all three genotypes .................................................................................................... 119 

Table 4.6: Correlation (r) between Chem_IMF and CT traits employed in the prediction 

models within each data set ................................................................................................. 120 

Table 5.1: Group of traits and definition of variables included in the study ....................... 129 

Table 5.2: Number of lambs for which CT was available alongside number of sires and 

dams within each year .......................................................................................................... 129 

Table 5.3: Trait descriptions, means and standard deviations of the dataset used in the 

development of mobile scanner prediction equations (SD) (n=135) ................................... 132 

Table 5.4: Descriptive statistics for computed tomography traits ....................................... 133 

Table 5.5: Significance of fixed effects and covariates for each trait analysed .................. 134 

Table 5.6: Significance of fixed effects and covariates for each trait analysed .................. 135 

Table 5.7: Estimated heritability’s (S.E.) for the live weight, meat quality and computed 

tomography traits ................................................................................................................. 136 



xxi 

 

Table 5.8: Estimated heritability’s (S.E.) for the live weight, meat quality and computed 

tomography traits ................................................................................................................. 137 

Table 6.1: Definition of variables included in the study ..................................................... 146 

Table 6.2: Number of lambs for which CT and US data were available, alongside number of 

sires, dams and flocks within each year ............................................................................... 147 

Table 6.3: Significance from the univariate analyses of fixed effects and covariates for each 

growth, US and CT trait analysed ........................................................................................ 153 

Table 6.4: Descriptive statistics for growth, ultrasound and computed tomography traits . 156 

Table 6.5: Variances, phenotypic correlations and genetic parameters (S.E) for the growth, 

ultrasound and computed tomography traits ........................................................................ 157 

Table i: Linear regression models between chem_IMF and CT tissue parameters, with 

adjusted coefficient of determination (Adj R2) and residual mean square error (RMSE) ... 184 

 

 

 

 

 

 

 

 

 

 



xxii 

 

List of Abbreviations 

Abbreviation  Explanation 

AHDB  Agriculture and horticulture development board 

ANOVA Analysis of variance 

AOAC  Association of analytical communities 

BioSS  Bio-informatics and statistics Scotland 

Chem_IMF Chemically extracted intramuscular fat 

CT  X-ray computed tomography 

CT_Age Age at X-ray computed tomography scanning 

CTLWT Live weight at CT scanning 

CTMD  Computed tomography muscle density 

EBLEX  English Beef and Lamb Executive 

EU  European Union 

FD   Fat density 

FSD  Standard deviation of fat density 

f_vol  Fat tissue volume 

HU  Hounsfield unit 

IMF  Intramuscular Fat 

ISC  Ischium  

ISCFA  Fat area in the ischium region 

ISCFD  Average fat density in the ischium region 

ISCFSD Standard deviation of fat density in the ischium region 

ISCMA  Muscle area in the ischium region 

ISCMD  Average muscle density in the ischium region 

ISCMSD Standard deviation of muscle density in the ischium region 

ISCSTD Average soft tissue density in the ischium region 

ISCSTSD Standard deviation of soft tissue density in the ischium region 

KgF  Kilogrammes of force 

LV5   5
th
 lumbar vertebra 

LV5FA  Fat area in the 5
th
 lumbar vertebra region 

LV5FD  Average fat density in the 5
th
 lumbar vertebra region 

LV5FSD Standard deviation of fat density in the 5
th
 lumbar vertebra region 

LV5MA Muscle area in the 5
th
 lumbar vertebra region 

LV5MD Average muscle density in the 5
th
 lumbar vertebra region 

LV5MSD Standard deviation of muscle density in the 5
th
 lumbar vertebra region 

LV5STD Average soft tissue density in the 5
th
 lumbar vertebra region 

LV5STSD Standard deviation of soft tissue density in the 5
th
 lumbar vertebra region 

LW  Live weight 

MD  Muscle density 

MEQ  Meat eating quality 

MSD  Standard deviation of muscle density 

MQ  Meat quality 

OLS  Ordinary least squares 

PLS  Partial least squares  



xxiii 

 

 

 

Abbreviation  Explanation 

Pr_Cfat  Computed tomography predicted carcass fat 

Pr_IMF  X-ray computed tomography predicted intramuscular fat 

RMSE   Residual mean square error 

RMSEP Residual mean square error of prediction 

ROI  Region of interest 

SBF  Scottish blackface sheep 

SCTS  Spiral computed tomography scanning 

SD  Standard deviation 

ShF  Mechanical shear force 

SL_Age Age at slaughter 

SRUC  Scotland’s rural college 

STAR  Sheep tomogram analysis routines 

STD  Soft tissue density 

STSD  Standard deviation of soft tissue density 

Tex  Texel sheep 

TexX   Texel crossed with Mule sheep 

TV8  8
th 

thoracic vertebra 

TV8FA  Fat area in the 8
th
 thoracic vertebra 

TV8FD  Average fat density in the 8
th
 thoracic vertebra region 

TV8FSD Standard deviation of fat density in the 8
th
 thoracic vertebra region 

TV8MA Muscle area in the 8
th
 thoracic vertebra 

TV8MD Average muscle density in the 8
th
 thoracic vertebra 

TV8MSD Standard deviation of muscle density in the 8tht thoracic vertebra region 

TV8STD  Average soft tissue density in the 8
th
 thoracic vertebra region 

TV8STSD Standard deviation of soft tissue density in the 8
th
 thoracic vertebra region 

UK  United Kingdom 

US  Ultrasound 

w_fd  Weighted average fat density 

w_fsd  Weighted standard deviation of fat density 

w_md  Weighted average muscle density 

w_msd  Weighted standard deviation of muscle density 

w_std  Weighted average soft tissue density 

w_stsd  Weighted standard deviation of soft tissue density 

m_vol  Muscle tissue volume 

 

 

 

 



24 

 

Chapter 1:  General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

 Background 1.1 

One of the main drivers influencing the decisions made by consumers at point of purchase 

with regard to red meat, as highlighted by the English beef and lamb executive (EBLEX) 

report (2010), is the level of visible fat associated with lamb. This report highlights that lamb 

is often perceived as fatty by the consumer. The perception of lamb being fatty could be 

directly targeted in isolation, however the combined improvement and consistency of meat 

quality (MQ) and associated meat eating quality (MEQ) characteristics alongside the 

reduction of overall fatness is more complicated and should be considered in future breeding 

programmes. 

The main quality attributes of meat can be determined in different ways. Measurements of 

MQ usually describe technological or mechanical factors, such as shear force (SF), colour, or 

chemical and toxicological information (e.g. fatty acid profiles, chemically extracted fat 

content, levels of bacteria, pH etc.), whilst MEQ describes quality attributes concerned with 

the consumption of fresh meat products relating to organoleptic traits, considering properties 

such as flavour, tenderness and juiciness. This can only be directly evaluated by a taste 

panel, but there are methods to predict it, which all need to be calibrated against taste panel 

results in the first place. 

In different livestock species, MEQ traits such as flavour, tenderness and juiciness are 

known to be linked to fat levels (Brewer et al., 2001; Fernandez et al., 1999; Fortin et al., 

2005; Killinger et al., 2004; Savell and Cross, 1988; Smith and Carpenter, 1976). 

It is apparent that the fat content of meat plays a significant role in the acceptability of major 

MEQ attributes concerning the consumer and for many decades the influence of fat content 

on the eating quality of meat has been debated. Generally four major fat depots are 

recognised in animal carcasses: subcutaneous (under the skin); internal organ associated 
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(visceral fat, also known as intra-abdominal or organ fat; composed of several adipose 

depots including mesenteric, epididymal white adipose tissue and perirenal fat); 

intermuscular (between muscles and surrounding muscle groups); and intramuscular fat 

(IMF, interspersed within skeletal muscle and between muscle fibres), the latter having the 

greatest association with MEQ (Brewer et al., 2001; Fernandez et al., 1999; Fortin et al., 

2005; Killinger et al., 2004; Savell and Cross, 1988; Smith and Carpenter, 1976). 

Consumer-driven preference for leaner meat, coupled with the meat processing industries 

preference for a reduction in carcass fat, increasing lean meat yield and reducing waste, have 

led to continued selection for lean growth and reduced fatness in several meat producing 

species (Simm and Dingwall, 1989; Sonesson et al., 1998). However, IMF and back fat 

thickness are genetically positively correlated in these meat producing species (pigs; rg 0.31), 

which has resulted in a decrease in IMF content in pigs through genetic selection for 

decreased back fat which has in turn had a negative effect on the palatability of fresh pork 

(Sonesson et al., 1998). The genetic correlations between meat quality traits and carcass 

composition traits have also been investigated in sheep, Lorentzen and Vangen (2012) 

reporting a moderately high genetic correlation between IMF and dissected fat (kg) (rg 0.62) 

and a similar situation about the impact of selection for leaner carcasses to that of the pork 

industry has been reported to be emerging in the Australian sheep industry (Pannier et al., 

2014a). 

Given the genetic relationship between IMF and carcass fat and the possible impact on MEQ 

previously mentioned, it has been recognised that there is a need to have independent 

estimates for carcass fat and IMF enabling selection against this positive correlation. Any 

such divergent selection would not be possible, or at the very least difficult, if the genetic 

correlation was as a result of pleiotropic genes or tight gene linkage. However, there is 
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evidence that different fat depots are at least partially controlled by different genes in both 

mice and pigs (Bunger and Hill, 2005; Gerbens et al., 1999). 

X-ray computed tomography (CT) can measure fat, muscle and bone in vivo in sheep and CT 

predictions of carcass composition have been used in commercial UK sheep breeding 

programmes over the last two decades (Bunger et al., 2011). Together with ultrasound 

measures of fat and muscle depth in the loin region, CT measured carcass fat and muscle 

weights have contributed much to the success of breeding for leaner carcasses and increased 

lean meat yield (Jopson et al., 2004; Lewis and Simm, 2002; Moore et al., 2011). However, 

previous research has not only demonstrated that CT can estimate carcass fat, but it also 

provides measurements of the average  CT muscle density (CT MD), which is a good 

predictor of IMF. Strong negative correlations were found between IMF and CT MD in 

different sheep breeds (Karamichou et al., 2006; Macfarlane et al., 2005; Navajas et al., 

2008; Young et al., 2001). Taste panel scores for MEQ traits such as flavour, juiciness and 

overall palatability were also shown to have strong negative genetic and phenotypic 

correlations with CT MD (Karamichou et al., 2006). Advances in CT technology have 

provided the availability to perform spiral CT scanning, improving the quality and amount of 

detailed images available through CT, in contrast with earlier ‘step and shoot’ techniques 

which involved taking a ‘slice’ of an area of interest and then moving on to the next area of 

interest. The use of spiral CT, which is able to capture detailed three-dimensional 

information, may allow further advances in predicting aspects of meat quality. CT provides 

the means to quantify simultaneously and independently both IMF and carcass fat in vivo 

enabling these estimates to be exploited in selection programmes simultaneously choosing 

breeding animals with low carcass fat alongside optimum levels of IMF. 
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 Structure of sheep farming in the UK 1.2 

In 2013 approximately one quarter of the sheep population in the European Union (EU) was 

to be found in the United Kingdom (UK) around 22.5 million sheep of approximately 88.5 

million sheep in the EU. Of this around 14.8 million were breeding ewes. The major ram 

breeds used in the UK are the terminal sire breeds, Texel, Suffolk and Charollais, accounting 

for around 50% of the rams used in the UK with around 20% of the breeding ewes are mated 

to Texel rams (Pollott, 2012). 

There is huge diversity in the topography and climate of sheep farming in the UK, this 

diversity in environment and landscape dictates different systems, with specific breed types. 

Although there is diversity in environment, landscape and as a result, farming systems within 

the UK, sheep production is integrated through a unique stratified system (see Figure 1.1). 

The stratification is made up of three tiers: hill; upland and lowland.  

Top down, the structure of this stratified system begins with the farming of hill specific 

breeds maintained as pure breeding flocks, suited to the harsh environment of hill and 

mountain landscapes. Breeding hill ewes are then drafted onto upland farms following three 

or four lamb crops, where they are then crossed with ‘Longwool’ breeds. Replacement ewes 

are then chosen from these Longwool crossbred lambs, drafted to lowland farms and crossed 

with the terminal sire breeds mentioned previously for the production of prime lamb for 

meat. This system focuses entirely on the production of prime lamb for meat as this is the 

major contributor to economic returns for UK sheep farmers. 

Given this emphasis on meat production, sheep producers have concentrated on the 

improvement of lean meat yield and quality (the definition of which differs across the 

production chain, and is discussed in detail later in this chapter) in the carcass, through the 

use of genetic selection.  
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Figure 1.1 Diagrammatic representation of the stratified UK sheep breeding 

structure (top) and non-stratified sheep breeding structure (bottom) with 2003 ewe 

numbers shown in brackets (million) from Pollott (2012) 

 Improvement through genetic selection 1.3 

Improvement through genetic selection relies on genetic variation between animals in the 

traits of interest. Modern domesticated sheep breeds are a direct result of selective breeding, 

and historically this was driven mainly by the visual appraisal of desirable traits. This 

historical selection was carried out in the absence of any real knowledge of genetics. 

However these principles of Mendelian inheritance underpin the selection practices. 

Classical genetics and the development of modern quantitative genetics simply extended 

Mendelian principles of inheritance to the wider ‘population’ and instead of visual appraisal, 
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included the ‘measurement’ of traits of interest (phenotypes), resulting in the development of 

population and quantitative genetics (Falconer and Mackay, 1996).  

The development of quantitative genetics has now made it possible to select for and improve 

traits of interest through breed improvement schemes, and as a result improve breeds through 

increased efficiency of production. These genetic improvements in efficiency of production 

are particularly valuable to the livestock industries involved as, when selection is continuous, 

genetic improvement is both permanent and cumulative (Simm, 1998). 

Generally, improved breeds of livestock produce protein, fibre or other products more 

efficiently, of relative higher quality and are ultimately better matched to modern market 

needs than their antecedents. For example, genetic improvement in pigs and poultry, broadly 

in the efficiency of the production of meat, has changed the products from these species from 

being luxury foods to the cheapest meats available. 

Quantitative genetics relies on the knowledge about the pedigree of individuals in a 

population alongside phenotypic performance data related to traits of interest. With this 

detailed information, we can make useful inferences about the inheritance of any traits of 

interest. We can infer that genes make an important contribution to the phenotypic variance 

in the trait of interest in individuals that share a similar pedigree and are phenotypically 

similar, and therefore share lots of alleles. 

The amount of phenotypic variance (VP) that is due to genetic differences (VG) among 

individuals can be estimated using the pedigree and performance related data, however, these 

genetic differences are made up of additive genetic (VA), dominance (VD) and epistatic (VI) 

sources of variance. In non-experimental settings VD and VI are difficult to estimate and as 

such, animal breeders tend to focus on estimating VA by partitioning VP in to two parts, VA + 
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VR where VR is the residual variance and is normally interpreted as an environment effect 

(Falconer and Mackay, 1996).  

The proportion of VP explained by VA   is then defined as the narrow sense heritability of a 

trait (h
2
). The heritability of a trait is the proportion of superiority of parents (i.e. the 

proportion of the selection differential) which is passed on to progeny. 

However, in livestock production systems, increased efficiency or improved production 

relies on several different traits. For example, in meat producing species, economic returns 

are based on multiple factors, such as, litter size, growth characteristics, and the weight of a 

carcass, fatness, lean meat yield (conformation) and feed efficiency. And as a result of this 

combination of factors, animals in breeding programmes are usually selected on a 

combination of traits.  

The common method of selection for multiple traits of interest is to use a selection index, in 

which an overall score reflecting genetic merit in the combination of traits of interest with an 

optimum economic balance is calculated. In order to calculate such an index it is necessary 

not only to know the heritability for the trait of interest but also the relationship, their genetic 

correlations, between the traits included in the index. These relationships may be estimated 

by calculating how much of the phenotypic covariance (COVP) is explained by additive 

genetic effects (COVA). This additive genetic covariance is used to derive genetic 

correlations (rg) and is expected, through either the tendency of alleles that are located close 

together on the chromosome to be inherited together during meiosis, termed ‘genetic 

linkage’, or when one gene influences multiple traits, termed ‘pleiotropy’. 

Breeding schemes have been adopted broadly across economically important livestock 

species and breeds, which involve the recording and sharing of pedigree and phenotypic 

performance related data, allowing breeders to select for important traits related to 
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economical, production and welfare gains, tailored to any specific species, breed or market 

demand. 

 Meat quality 1.4 

Meat is a major food item worldwide and has traditionally held high status as a source of 

protein in Western food culture. Most recipes and meals are named after the meat utilised in 

the recipe, and as such the type or form of the meat used in a recipe is often seen to be the 

central part of the meal (Aaslyng, 2009; Douglas and Nicod, 1974; Gvion-Rosenberg, 1990; 

Holm and Mohl, 2000). 

Such is the importance of meat in Western food culture and as part of a meal it has even 

translated to the Western vegetarian meal structure. In vegetarian dishes the main component 

of the dish is often used as if it were meat, or presented in such a way as to resemble meat 

(Gvion-Rosenberg, 1990; Holm and Mohl, 2000). 

The definition and understanding of meat quality is complex and considers many factors, 

both intrinsic factors such as, appearance, colour, flavour, juiciness etc., and extrinsic factors 

such as, price, brand name and quality assurance schemes, country of origin and production 

processes (Issanchou, 1996; Oude Ophuis and Van Trijp, 1995; Steenkamp, 1989). 

These attributes of meat quality also depend on the intended use of the meat and as such, and 

as mentioned in section 1.1, quality can be broadly defined as ‘technological quality’, 

describing meat for further processing, or as ‘fresh meat eating quality’, describing meat for 

consumption.  

In more detail, fresh meat eating quality includes organoleptic traits (traits registered with 

our senses) such as appearance, tenderness, juiciness and flavour. These meat eating quality 
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indicators overlap to some degree with technological quality indicators, but some differences 

also exist  (Aaslyng, 2002; Becker, 2009). 

Quality, in both terms, ultimately can mean different things to different people involved in 

the production cycle, varying between producer, processor, retailer and consumer, and also 

within different market groups. (Becker, 2009; Oude Ophuis and Van Trijp, 1995). 

 Meat eating quality 1.5 

Eating meat for pleasure is the simplest form of associating factors of MEQ. For products 

such as steaks, chops and roasts, three sensory attributes of major importance are; 

tenderness, juiciness and flavour (Aaslyng et al., 2007; Bryhni et al., 2003; Maltin et al., 

2003; Miller et al., 2001; Resurreccion, 2004). 

The ranking of importance of these factors varies geographically as reported  by Jeremiah et 

al (1994) and Aaslyng et al (2007). Also the relative ranking of importance varies depending 

on the associated satisfaction of the other organoleptic traits (Aaslyng et al., 2007; Huffman 

et al., 1996; Killinger et al., 2004). For example, when meat is tender and satisfies this factor 

fully, juiciness and flavour have a larger impact on consumer preference. But when the meat 

is tough, tenderness becomes the most important factor (Miller et al., 2001). 

However, these factors can only be assessed by the consumer on cooked meat. Therefore, 

when the consumer is buying meat, it is only possible to make any estimation of the eating 

quality of that meat from other quality attributes, such as the appearance of the raw meat. 

Therefore, the appearance of raw meat is very important in the consumer’s behaviour at 

point of purchase. 
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1.5.1  Appearance 

Leanness, intramuscular fat content (marbling) and colour rank highly in the consumers 

perception of fresh meat quality (beef, pork and chicken) in a study carried out by Glitsch 

(2000) across  6 European countries (Germany, Ireland, Italy, Spain, Sweden and the UK). In 

the purchase of lamb meat both colour and subcutaneous fat are the two main drivers of 

acceptability in appearance at the point of purchase. The consumer associates the colour of 

meat with freshness, while a visible layer of subcutaneous fat is associated with possible 

adverse health implications for the consumer and as a result low fat cover is preferred by 

most consumers in the UK (Aaslyng, 2002; Aaslyng, 2009; Allen, 2010) . However it is 

acknowledged that these preferred levels of fatness (and colour) vary depending on the 

production process (cured hams, milk fed lamb, veal etc.) and the country, or indeed 

continent, in which the meat is purchased. It should also be noted that there are differences 

between varying demographics and consumer groups within country (Font-i-Furnols and 

Guerrero, 2014). 

This preference for reduced visible fatness can also be interpreted by the consumer through 

visible IMF levels in some species. These visible levels of IMF in beef have influenced 

consumers at point of purchase, with consumers preferring lower levels of IMF at point of 

purchase. However, the same consumers preferred higher levels of IMF when consuming the 

products (Jeremiah et al., 1992; Risvik, 1994) similar findings of the preference for reduced 

visible fat levels were also presented in a broad range of meat producing species, including 

pork and lamb (Font-i-Furnols and Guerrero, 2014). 

1.5.2  Tenderness 

For the consumer tenderness is often described as the most important factor for high eating 

quality in meat, and it has been shown that the level of tenderness is crucial to consumer 
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acceptability, so much so that consumers are willing to pay more for increased levels of 

tenderness (Aaslyng, 2009; Boleman et al., 1997; Huffman et al., 1996; Kamruzzaman et al., 

2013; Maltin et al., 2003; Naganathan et al., 2008; Risvik, 1994). It is possible to measure 

tenderness through consumer or trained taste panels, and also using mechanical shear force 

tests performed in laboratory conditions. There are several methods of shear force tests 

which may be carried out, such as the Volodkevich (Volodkevich, 1938), Warner-Bratzler 

(Bratzler, 1949) and the meat industry research institute of New Zealand (MIRINZ) method 

(Macfarlane and Marer, 1966). All these methods are applied to samples of cooked meat 

across the muscle fibre axis, samples are cooked to a pre-determined temperature to reduce 

any effect of cooking temperature on tenderness, and sampled at standardised dimensions. 

Cooking temperatures and sample sizes vary across laboratories and methods. However the 

overall principle remains the same, the force required to shear or ‘bite’ the sample is 

measured, with higher peak force values indicating tougher samples. Several samples may be 

taken form certain cuts and averaged in order to be more representative of the perceived 

tenderness from that particular cut. These methods are applied in order to reduce the cost of 

trained sensory or consumer taste panels. This, of course, relies on the correlation between 

trained sensory panels and shear force results and several studies have investigated these 

relationships across several different methods and species with correlations ranging from r = 

-0.36 (Lambe et al., 2011) in lamb using the Volodkevich method to r = -0.71 (Safari et al., 

2001) also in lamb using the Warner-Bratzler method. Another study in beef carried out by 

Ross et al (2009) involving several methods and ageing times reported similar correlations (r 

= -0.47 to -0.60). These relationships are important to understand when using an objective 

measure (shear force) to quantify a subjective trait (tenderness in sensory panels). It is also 

important to understand that consumers are able to easily distinguish between very tender 

and very tough muscles. However, for the consumer, variation of tenderness within these 

two extremes is more difficult to determine (Maltin et al., 2003; Siversten et al., 2002). The 

method of objectively determining perceived tenderness may possibly be improved upon by 
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plotting and analysing the entire ‘tenderness curve’ of a sample during shear force testing, 

and relating this to the organoleptic trait.  

There are different ways to achieve or increase the tenderness of meat, both in vivo and post-

mortem. The two most important of these are the degree of intramuscular fat (in vivo) and 

conditioning or ageing of the meat (post-mortem) (Brewer et al., 2001; Fortin et al., 2005; 

Savell and Cross, 1988; Smith and Carpenter, 1976; Therkildsen, 1999). Smith and 

Carpenter (1976) summarised the effect of IMF on tenderness and juiciness, based on the 

collective or independent effects of the following theories: 

Bite theory: suggests that within a bite size portion of cooked meat, IMF content decreases 

the mass per unit volume, and as fat is less resistant to shear force than muscle fibres, this 

decrease in bulk density results in a real or apparent increase in tenderness. 

Lubrication theory: is that the presence of IMF in and around the muscle fibres, retain 

moisture and lubricate the fibres and fibrils increasing the perceived juiciness and 

tenderness, also highlighting the close association of tenderness and juiciness. 

Insurance/Insulating theory: considers that increased levels of IMF insure and insulate 

muscle fibres from the use of high temperature, dry heat cooking methods and increasing 

degrees of “doneness”, providing some insurance that cuts of meat that are cooked either too 

long or too rapidly will still be tender and juicy. 

The insurance/insulating theory also highlights the matching of certain cuts of red meat to 

levels of doneness, particularly in beef, hence cuts with lower levels of IMF are 

recommended to be eaten at lower levels of doneness and fattier cuts are more suitable for 

higher levels of doneness. 
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There are conflicting results about the influence of the levels of fat on tenderness, as it has 

been shown in some studies to increase tenderness in different species including pigs 

(Brewer et al., 2001; D'Souza and Mullan, 2002; Fernandez et al., 1999), beef (Gwartney et 

al., 1996) and lamb (Smith et al., 1976). However, it has also been shown to have little or no 

influence on tenderness in pork (Rincker et al., 2007). Although there are some conflicting 

results on the relationship between IMF and tenderness in meat producing species, it is 

widely regarded that IMF content has a positive effect on tenderness. The variation in IMF 

content seems to be the limiting factor in its relationship to tenderness, with extreme levels 

of IMF (high or low) having the most effect on tenderness. 

1.5.3  Flavour 

As mentioned previously, flavour is also a very important attribute in relation to the eating 

quality of meat. In the overall palatability of meat, flavour was regarded as being equally 

influential, alongside tenderness, in determining overall liking in several cuts during US 

customer satisfaction surveys involving beef (Calkins and Hodgen, 2007). Preferred flavours 

in meat are very important, but equally it is important to avoid off flavours. 

There are literally hundreds of compounds that may contribute to the flavour and aroma of 

meat, as complex interactions between these compounds influence flavour. The flavour of 

meat can be influenced by oxidation, lipid content, diet, and pH (Calkins and Hodgen, 2007). 

The fried flavour of meat is generated through the heat treatment during the cooking process 

as flavour and aroma compounds are formed by several pathways including lipid oxidation 

and non-enzymatic browning also known as the Maillard reaction (Maillard, 1912). The 

reactions from these two systems result in a large number of volatile compounds, and the 

thermal degradation of other compounds, such as thiamine, contribute to the flavour of meat 

(Calkins and Hodgen, 2007; Mottram, 1998). 
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It has been demonstrated that an increase in IMF corresponds with an increase in the 

acceptability of fried flavour of beef and pork (Brewer et al., 2001; Killinger et al., 2004).  

The effect that IMF has on flavour, could be due to improved flavour release during cooking, 

not only increased flavour development in the meat, as fat acts as a storage depot for flavour 

and odour compounds which are released on heating. It is also widely regarded that fat 

contributes more to species-specific flavours and odours in meat, with lean tissue containing 

the precursors for the meaty flavour characteristics of all meats (Mottram, 1998; Savell and 

Cross, 1988). 

Even though flavour is an important factor in MEQ and consumer preference, the 

consumer’s willingness to pay for improved flavour attributes has not been investigated as 

fully as that of tenderness attributes in meat. 

1.5.4  Juiciness 

Juiciness is seen as another important MEQ factor. The importance of juiciness for MEQ 

depends firstly on the composition of the meal, and the cooking processes involved. For 

example, a grilled steak, cooked at high temperature for a short period, will need to be juicier 

than smaller pieces of diced meat in a stew, cooked at a moderate temperature for a longer 

period. 

The main determining factor of the juiciness of meat is the final core temperature. Increases 

in the final core temperature will see an increase in cooking loss and therefore a decrease in 

juiciness (Aaslyng et al., 2007; Sheard et al., 1998). An increased amount of IMF has been 

shown to increase or maintain the juiciness of the meat when fried to a high final core 

temperature. At a lower final core temperature, IMF has no effect on juiciness (Aaslyng, 

2009). These results agree with Smith and Carpenters (1976) insurance/insulation and 
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lubrication theories, highlighting again the close association of perceived juiciness and 

tenderness of meat in relation to IMF content. 

In consideration of the effect of IMF levels in meat and the resulting perceived juiciness 

from the consumers’ point of view, an important factor must be the education of the 

consumers’ on cooking times and techniques, and to educate the consumer in optimum final 

core temperature while cooking the meat to obtain the best results for juiciness, however this 

would only be achievable if a consistent product is supplied in terms of IMF levels. 

 X-Ray Computed Tomography 1.6 

X-ray computed tomography (CT) was initially developed for use in human medicine and 

introduced into clinical practice in 1972. CT was the first of the modern slice-imaging 

modalities, reconstructing images mathematically from measured data allowing the display 

and archiving of images. CT has since developed with the introduction of spiral scanning 

(SCTS) providing advances from single-slice scanning allowing true volume imaging 

capabilities realised by SCTS. 

The theory on which CT is based can be traced back to the early 20
th
 Century, and some of 

the ideas on which it was based, mainly that the density and distribution of a material can be 

calculated if the attenuation value of any number of lines passing through the same material 

can be measured, was first explored by the Austrian mathematician, Johann Radon (1917). 

The first experiments on medical applications for reconstructive tomography were carried 

out by the physicist A.M. Cormack in the late fifties into the early sixties. Without any 

knowledge of previous studies, based on transmission measurements, Cormack was able to 

develop a method of calculating the absorption of x-ray radiation and distributions in the 

human body (Cormack, 1963). Although Cormack’s work is now regarded as essential to the 
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development of CT, there were many other researchers also investigating the development of 

transmission and reconstruction techniques in the sixties and seventies (Gordon et al., 1970; 

Kuhl and Edwards, 1963; Oldendorf, 1961; Shepp and Logan, 1974). 

The British engineer Godfrey Hounsfield, also unaware of earlier research, achieved the first 

successful practical implementation of the theory in 1972, and is now broadly recognised as 

the inventor of modern CT (Hounsfield, 1973). Hounsfield and Cormack’s contributions 

earned them the Nobel Prize in medicine in 1979. 

1.6.1  Basic Principles of computed tomography 

The basic principles of CT are based on X-ray attenuation through an object. An X-ray 

source and detector rotate 360
O
 around an object and from this X-ray images are generated as 

different tissues generate different degrees of X-ray attenuation, providing information on 

the density of these tissues (Harvey and Blomley, 2003; Kalender, 2005). This information 

can then be reconstructed to form a CT image (tomogram) of the subject internally and 

externally. 

Air is transparent to X-rays and as a result appears black on the reconstructed CT image, 

high density elements of the image will appear white and the gradients of grey between these 

values indicate density values related to soft tissues within the subject, such as fat and lean 

(Figure 1.2a). These values of attenuation are quantified in Hounsfield units (HU), calibrated 

using the baseline value of distilled water (HU = 0). Images can then be analysed according 

to the HU value of each pixel within that image, and histograms or profiles of the 

distribution can be visualised and analysed (Figure 1.2b). 

To enable more accurate estimation of the distribution of different tissues (e.g. fat, muscle, 

bone) within an image two approaches may be used; firstly a priori knowledge of CT values 
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and determined thresholds may be used to partition distributions within tissue densities 

(Kalender, 2005), this method assumes no differences in HU thresholds for the same tissue 

within populations or across genotypes, or between scanner types. Secondly and in particular 

in livestock species, the calibration of histograms against a known reference method such as 

manual dissection may be carried out to determine threshold levels (Jones et al., 2002; 

Lambe et al., 2003; Lambe et al., 2006; Navajas et al., 2007). This method ensures that HU 

values are calibrated against real data which has been extracted from the species or genotype 

being modelled and using the equipment which will be used in future estimations (scanner 

type). 

Each pixel can then be allocated to fat, lean or bone as the value determined will represent 

the average density within the area covered by the pixel. A pixel may border tissue types, for 

example, the density value of a pixel bordering fat and lean tissue will be determined by the 

average of these two tissues, these ‘mixed pixels’ contribute to the partial volume effect also 

known as partial volume averaging (Schwarz, 2011). The allocation of pixel number 

associated to each HU value will reduce the partial volume effect and the further allocation 

of density within the pixel may reduce this further (Font-i-Furnols et al., 2013)    
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a)      b) 

Figure 1.2 a) CT tomogram image through the upper hind legs of a lamb, detailing 

tissue grayscales representing corresponding density values b) Distribution of HU 

values of pixels from CT scans taken on a number of Texel sheep, the first peak 

identified as fat tissue (left) and the second peak identified as lean tissue (right) 

Further developments in CT technology saw the introduction of spiral CT scanning (SCTS) 

in 1989 (Kalender et al., 1990; Kalender, 1994; Kalender, 1999; Kalender and Polacin, 1991) 

and following this development, scanners can be used to generate three-dimensional images, 

enabling not only the measurement of density related to X-ray attenuation, but also as a 

result of the reconstructive three-dimensional ability, very precise measures of the volume of 

tissues.  

This is made possible by the continuous scanning along a subject’s longitudinal axis (z-axis) 

producing a contiguous scan image. To achieve this contiguous scan, the table on which the 

subject is positioned is moved at a precise speed of one slice thickness per rotation through 

the gantry (Figure 1.3a), from this, 3 dimensional reconstructions of the subject are possible 

(Figure 1.3b) 



43 

 

 

a)           b) 

Figure 1.3 a) Spiral CT focus trajectory from Kalender (2006) b) in-vivo segmented 

3D image of lamb loin 

It should be noted that currently CT is being considered by the EU as a reference method to 

replace manual dissection in pig carcasses, reducing the labour and cost of the reference 

method. The benefits of this technology in pig carcass classification across EU member 

countries is still being debated (Daumas et al., 2014). 

 Automated in-vivo image segmentation and image analysis 1.7 

Other than the traditional uses of CT for diagnostic veterinary medicine, currently, the use of 

CT in livestock species is primarily concerned with the determination of meat production 

characteristics in the carcass of live animals and as such, the separation and quantification of 

different tissues within the carcass are of particular interest.  

As part of the CT image analysis routines performed, segmentation of carcass from non-

carcass tissues is required to adequately estimate the tissues of interest. This normally 

requires manually identifying tissue boundaries and removing the internal organs from the 

image (Figure 1.4), allowing the measurement of tissue densities and areas within the 

segmented image. However this manual process is time consuming and challenging for the 

operator and accuracy can also vary between operators. To address these restrictions when 
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manually segmenting images from sheep, automatic procedures were developed at 

Scotland’s Rural College (SRUC) and Bioinformatics and Statistics Scotland (BioSS), 

applying mathematical algorithms to identify tissue boundaries. These sheep tomogram 

analysis routines (STAR) enabled the automatic segmentation and measurement of CT 

variables routinely and quickly (Glasbey and Young, 2002; Mann et al., 2013; Navajas et al., 

2006b).  

 

Figure 1.4 Cross-sectional CT image through a lamb in-vivo at the 5th lumbar 

vertebra (left) and the same image following segmentation of the internal organs and 

CT table and cradle 

Further research into the optimisation of scanning procedures for sheep at SRUC, saw the 

development of ‘reference scanning’. The aim of this approach was to reduce scan time, cost 

and welfare implications, while maximising the accuracy of estimated weights of tissues of 

interest (carcass lean, fat and bone). The development of this technique employed the use of 

manual dissection to calibrate the measurement of tissue weights (section 1.5.1), providing 

breed specific prediction equations for fat, muscle and bone with the highest accuracies 

ranging from R
2
 0.99. 0.98 and 0.89 respectively (Bunger et al., 2011; Macfarlane et al., 

2006b; Young et al., 2001). 
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The reference scanning approach involves collecting CT information for each tissue, such as 

area, average density, and standard deviation of density, from 3 or 4 cross-sectional 

tomograms, depending on sheep breed. These reference scan sites are identified from the 

traditional x-ray topogram (Figure 1.5), in Texel’s these are positioned at the ischium bone 

(i), the fifth lumbar vertebra (ii) and the eighth thoracic vertebra (iii). 

 

Figure 1.5 Topogram and 2-dimensional cross-sectional CT scans taken in Texel 

sheep at the ischium (i), 5th lumbar vertebra (ii) and 8th thoracic vertebra (iii) 

 The use of Computed tomography in sheep breeding programmes 1.8 

Computed tomography has been used in terminal sire sheep breeding programmes over the 

last few decades and in the UK, breeds such as Texel, Suffolk and Charollais (which account 

for the main terminal sire sheep breeds in the UK as mentioned in section 1.2), as well as 

breeds such as Hampshire Down, and composite breeds such as the MeatLinc are now 

routinely scanned. 

Very accurate predictions of carcass fat and lean weight are possible using CT, with 

accuracies of 98% and 99% for lean and fat respectively (Bunger et al., 2011; Macfarlane et 

al., 2006b; 2001).  
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Although CT scanning is becoming increasingly accessible, with the use of mobile scanners, 

and valuable in the routine capture of multiple traits of interest (e.g. lean meat yield, carcass 

fatness, muscularity) and with high accuracy, the costs of routine scanning are restrictive. 

The relative high cost associated with CT scanning limits the accessibility of such 

technology and also the application to large numbers of animals. Instead it is advised, as a 

cost-effective application of resources, that such technology is applied only as part of a two-

stage selection programme. In this scenario, a subset of animals from the wider population 

(recommended ~15-20%) are selected for CT scanning following initial assessment based on 

cheaper and more practical methods to estimate carcass composition such as ultrasound (US) 

scanning (Jopson et al., 1997; Jopson et al., 2004; Lewis and Simm, 2002). 

Performance records such as US measurements of both fat and muscle depths are routinely 

collected on farm and currently used, alongside growth data, as the first-stage selection 

criteria for terminal sire breeds, some of which then follow this selection with CT scanning 

for more accurate assessment of carcass composition, estimating fat and muscle weights and 

muscularity in the gigot.  

With these traits currently incorporated into routine scanning procedures within terminal sire 

breeding programmes, and as a result of this increased accuracy in vivo, substantially higher 

genetic response in weights of fat and muscle in the carcass can be achieved using CT 

technology (Jopson et al., 2004; Lewis and Simm, 2002; Moore et al., 2011). 

The most suitable way to use this technology in breeding programmes to include carcass 

quality alongside MQ traits has not been fully investigated. This requires genetic parameters, 

including estimates of heritability for any new CT-predicted traits of MQ and genetic 

correlations with other relevant traits, which are currently, included in selection indices e.g. 

ultrasound measures of fat and muscle, CT estimated overall carcass fat and lean, 
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muscularity, growth etc. These parameters can then be used to optimally design such 

breeding programmes. 

 Aim and Hypotheses  1.9 

The main aims of the project are to investigate the best image analysis methods, using both 

two-dimensional and three-dimensional CT information, employing the resulting CT 

variables to estimate different meat quality traits (intramuscular fat and mechanical shear 

force). These approaches will then be tested across different genotypes, investigating the 

potential for the use of CT estimations developed in one breed, applied to divergent breed 

types. 

Further, the project aims to estimate genetic parameters for the best CT predictors of MQ 

traits in order to develop the basis for the estimation of economically important EBV’s for 

the industry. This may allow EBVs for MQ traits to be included in selection indices 

alongside other economic traits, such as live weight, carcass fat and muscle weight, 

muscularity etc. to enable optimal selection strategies to simultaneously improve carcass and 

meat quality. 

The project will use historic data sets to test the following hypotheses and although the data 

sets did not include meat eating quality data at sufficient levels to robustly test the 

hypotheses directly with MEQ traits, as outlined in the general introduction, the relationship 

between MQ traits such as IMF and shear force is sufficient to employ these as proxy traits 

for MEQ traits.  

The project aims to test the hypotheses that: 

1. Two and three-Dimensional x-ray computed tomography can provide an 

accurate method for estimating MQ traits in Texel sheep. 
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2. Resulting MQ predictors can be incorporated into current sheep breeding 

programmes, allowing continued improvements in growth and carcass traits, 

whilst maintaining of improving aspects of MQ 
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Chapter 2:  In vivo prediction of intramuscular fat content and shear 

force in Texel lamb loins using x-ray computed tomography 
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 Summary 2.1 

For the consumer, tenderness, juiciness and flavour are often described as most important 

for meat eating quality, all of which have a close association with intramuscular fat (IMF). 

X-ray computed tomography (CT) can measure fat, muscle and bone volumes and weights, in 

vivo in sheep and CT predictions of carcass composition have been used in UK sheep 

breeding programmes over the last few decades. This study aimed to determine the most 

accurate combination of CT variables, either including or excluding CT-predicted total 

carcass fat weight, to predict IMF percentage and mechanically measured shear force of M. 

Longissimus lumborum in live Texel lambs. 

Including or excluding CT-predicted total carcass fat weight in the model, the prediction of 

shear force was poor with accuracies ranging from Adj R
2
 0.03 – 0.14, using combinations 

of routinely captured CT variables from multiple or single scans. 

 As expected, predicted carcass fat weight alone accounted for a moderate amount of the 

variation (Adj R
2
 = 0.51) in IMF. Prediction accuracies were significantly improved 

(P<0.05, Adj R
2
>0.65) using information on fat and muscle densities measured from three 

CT reference scans, showing that CT can provide an accurate prediction of IMF in the loin 

of purebred Texel sheep. 

Independent of CT-predicted carcass fat weight, average muscle density measured  in a 

single or multiple scans accounted for a moderate amount of the variation in IMF (Adj R
2
 = 

0.51-0.60), and accuracies of Adj R
2
 = 0.67 were achieved in models including other CT 

variables, but  independent of CT-measured fat areas or predicted fat weights. 

 Introduction 2.2 

It is widely accepted that the fat content of meat plays a significant role in the acceptability 

of major MQ attributes concerning the consumer as mentioned in chapter 1. Given the 
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genetic relationship between IMF and carcass fat, and the possible impact on MEQ traits 

such as tenderness, juiciness and flavour, it has been recognised that there is a need to 

investigate the possibility of the selection against this positive correlation, allowing breeders 

to continue to select for lean meat yield and reduced carcass fatness without compromising 

aspects of MQ and associated MEQ traits related to IMF levels. 

To continue to select for improved carcass quality, whilst avoiding any detrimental effects 

on meat (eating) quality, robust and accurate predictions (preferentially in vivo) of IMF and 

objective in vivo measures of MQ such as shear force are needed to inform breeding 

decisions. CT scanning not only provides information on carcass tissue areas, volumes and 

weights, but resulting CT muscle density parameters have also been shown to be good 

predictors of IMF in previous studies (Karamichou et al., 2006; Lambe et al., 2010a; 

Macfarlane et al., 2005) and could potentially predict other aspects of meat quality. 

However, the use of CT variables related to carcass tissue densities for the prediction of meat 

quality has not been fully investigated. This chapter aims to investigate the use of a range of 

CT variables related to fat and muscle density values (HU) to optimise the prediction of IMF 

and shear force in the loins of Texel lambs in vivo. Firstly, the main aim was to maximise the 

prediction accuracy of the MQ traits of interest (IMF and shear force) using all available 

parameters including various CT methods of carcass fat measurement (subcutaneous and 

intermuscular) and secondly, given the strong relationship between these carcass fat 

measures and IMF, investigate prediction accuracies independent of CT carcass fat 

measurements enabling the consideration of various methods both including CT carcass fat 

measurements and independent of such CT carcass fat measurements.  
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 Materials and methods    2.3 

2.3.1  Experimental animals 

All procedures involving animals were approved by an animal ethics committee at 

Scotland’s Rural College (SRUC) and were performed under United Kingdom Home Office 

licence following the regulations of the Animals (Scientific Procedures) Act 1986. 

Data from Texel lambs were available from two previously published studies, these included 

CT measurements on live lambs pre-slaughter, as well as post-mortem laboratory 

measurements of IMF and shear force data. The first experiment (Exp 1) was conducted over 

two years (2003-2004) and examined the use of various in vivo measurements to predict 

carcass and meat quality in Texel (n=240) and Scottish Blackface lambs (n=233) (Lambe et 

al., 2008c). The second experiment (Exp 2) was conducted in 2009 and examined the 

genotypic effects of the Texel muscling quantitative trait locus (TM-QTL) on carcass and 

meat quality traits in Texel lambs (n=209), which included data from two research farms, in 

Scotland and Wales (Lambe et al., 2011). In the present study, only the data from the 

research farm in Scotland were used (n=370), to reduce possible CT-scanner effects resulting 

from differences in density value distributions across different scanners. Both Texel data sets 

were combined to produce one larger data set (Exp 1&2) consisting of the results from the 

two separate trials over three separate years. 

In brief, Exp 1&2 comprises data from pure-bred Texel lambs (n=377) of both sexes 

(females, entire males) produced over three separate years (2003, 2004 and 2009). Lambs 

were reared to weaning as either singles (n=184), twins (n=168) or artificially hand reared 

(n=25). Mean age at CT was 132 days (SD = 21.1, range = 91-202 days), mean live weight 

was 35.32kg (SD = 4.91, range = 20-49kg). 

All lambs were lightly sedated (Rompun
®
, Bayer animal health, Bayer plc., Newbury, UK) at 

a dose of 0.1-0.2mg xylazine hydrochloride/kg body weight, and were then secured on their 
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backs in a cradle before being CT-scanned pre-slaughter using a Siemens Somatom Esprit 

scanner at the SRUC and Bioinformatics and statistics Scotland (BioSS) CT unit in 

Edinburgh. 

2.3.2  X-ray computed tomography measurements 

Two-dimensional (2D) cross-sectional scans (Field of view = 450mm, Resolution = 512x512 

pixels) were taken at 3 defined anatomical positions, through the top of the leg at the ischium 

bone (ISC), the loin at the fifth lumbar vertebra (LV5), and through the chest at the 8
th
 

thoracic vertebra (TV8) (see Figure 1.5, chapter 1). 

This method of scanning has been defined as ‘reference’ scanning, optimising the number of 

images required while maximising accuracy of prediction for carcass tissue weights, with 

these specific anatomical sites derived from previous calibration trials involving CT, 

validated against manual dissection (Bunger et al., 2011). Image analyses were performed to 

separate carcass from non-carcass tissues (Glasbey and Young, 2002) and the density of each 

pixel (0.77mm
2
) in the carcass portion was allocated to fat, muscle or bone, according to 

density thresholds using sheep tomogram analysis routines (STAR) software developed by 

SRUC and BioSS (Mann et al., 2013). The thresholds defined were; Fat = -174 to -12HU, 

Muscle = -10 to 92HU and Bone = 94HU and above. Areas (mm
2
) and average densities 

(HU) of each tissue in each 2D image were calculated, as well as standard deviations for the 

density values of all pixels allocated to each tissue. A novel soft tissue density, and its 

standard deviation, were also calculated, combining the information from both fat and 

muscle tissue densities. 

Initial analyses included CT data from all three reference scans. Further analyses were then 

performed identifying a region of interest (ROI) relating to the anatomical position from 

where the chemically-extracted IMF and mechanical shear force was measured (M. 

Longissimus lumborum) from a subsample of animals in the dataset (n=100). This involved 
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three levels of image analysis: (i) identifying the LV5 scan as the ROI; (ii) performing 

‘virtual dissection’ of the LV5 image to isolate the ROI to the muscles surrounding the spine, 

including M. longissimus, M. psoas major and M. psoas minor; (iii) performing virtual 

dissection of the LV5 image with the ROI restricted to the right side M. longissimus muscle 

(left side of the image, Figure 2.1). 

Carcass fat, as a measure of subcutaneous and intermuscular fat, was also predicted using a 

breed-specific prediction equation (Texel) developed from previous research (Macfarlane et 

al., 2006b): 

                                                         

                     

Where Pr_Cfat is the CT predicted weight of subcutaneous and intermuscular fat (kg), LW is 

live weight at CT scanning, ISCFA is the area of pixels allocated as fat in the scan image 

taken at the ischium region (mm
2
), LV5FA is the area of pixels allocated as fat in the scan 

image taken at the 5
th
 lumbar vertebra region (mm

2
) and TV8FA is the area of pixels 

allocated as fat in the scan image taken at the 8
th
 thoracic vertebra. 

 

 
 

Figure 2.1 Virtual dissections of LV5 scan, LV5 only (i), Dissect1 (ii) and Dissect2 

(iii) 

2.3.3  Slaughter and meat quality measurements 

Mean age at slaughter was 149 days (SD =23.3, range =96-234 days), mean live weight at 

slaughter was 34.8kg (SD = 5.2, range =19.7-52.2kg). The majority of lambs finished were 
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slaughtered 4-8 days after CT scanning (n=217), the remaining lambs were slaughtered 32-

33 days after CT scanning (n=160), to allow for taste panel analysis after a 30 day 

withdrawal period from the CT sedative, which formed part of the wider study. Carcasses 

were chilled for 7 to 9 days and dissected removing the loin muscles (M. longissimus 

lumborum) from the right side of the carcass, which were vacuum-packed, aged for 7 days 

and frozen. Carcasses included in Exp 2 were subjected to high voltage electrical stimulation 

at 700 volts RMS for 45 seconds applied between the end of the processing line and the 

chiller. In both Exp 1 and 2 the muscle samples were transported to the University of Bristol 

for MQ analyses, chemical IMF was measured in a cross-sectional sample taken from the 

cranial end of the M. longissimus lumborum (at the first lumbar vertebra). Each sample was 

blended to a fine paste and chemical IMF percentage was measured using petroleum ether 

(B.P. 40-60
o
C) as the solvent in a modified Soxhlet extraction (AOAC, 1990).  

Shear force was measured using a TA-XT2 texture analyser (Stable Micro System, Surrey, 

UK) fitted with a Volodkevich-type jaw, a standard compression method to determine 

tenderness simulating the action of the incisor tooth (Volodkevich, 1938). Loins were 

cooked ‘sous-vide’ (in-vacuum-packs) in a water bath at 80
o
C to an internal core temperature 

of 78
o
C (Teye et al., 2006), monitoring individual loin temperature using a digital 

temperature probe (Hanna Instruments, UK). Samples were then immediately cooled in iced 

water and held at 4
o
C overnight for a minimum period of 12 hours. Ten 10 x 10 x 20mm 

samples were taken across the entire loin following the direction of the muscle fibres and 

sheared at a constant speed of 1mm/s perpendicular to the muscle fibre direction. Shear force 

was recorded as the force required (kgF) to shear the sample, with greater values for less 

tender samples. Results were averaged over the ten samples taken from each loin.  

The distribution of both IMF and shear force is shown in Figure 2.2 and a summary of the 

CT and measured MQ traits can be found in Table 2.1 
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2.3.4  Statistical analyses 

Prior to any statistical analysis, animals without full CT information were removed (n=2), 

animals with no IMF data were removed (n=2), and finally obvious outliers were identified 

and animals with chemically-extracted IMF percentages greater than 3 standard deviations 

from the mean were also removed from the data set (n=3). Initial regression analysis and 

subsequent model checking (distribution of residuals) suggested the need for transformation 

of the shear force data. As a result shear force was log-transformed prior to any regression 

analysis. 

Number of days from CT to slaughter (group 1: 4 to 8 days; group 2: 32 to 33 days, to 

account for those CT scanned early to allow for subsequent taste panel analyses) showed no 

significant effect on IMF levels or shear force and was therefore not included in the final 

statistical analyses. 

Statistical analyses used simple, multiple and generalized stepwise linear regression in 

Genstat 14
TM

 (Payne et al., 2012). An adjusted R
2
 value (Adj R

2
) was used to assess the 

accuracy of each model, where Adj R
2
 = 1-(residual MS / total MS), the total MS is the 

sample variance and the residual MS is an estimate of  2
, the variance of a value of Y given 

the set of X’s. The resulting statistic is less biased than unadjusted R
2
 (here simply referred 

to as R
2
), and a better measure to use when comparing models with different numbers of 

predictors. Two approaches were taken in the assessment of prediction models; firstly 

models inclusive of CT estimated total carcass fat weight (Pr_Cfat) were investigated, and 

subsequently models excluding Pr_Cfat were investigated. 

Furthermore, models were calibrated using a subset of the entire dataset and validated. 

Available data were split using a natural time series separation in the data (Snee, 1977). 

Experiment 1 (2003-2004, n=236) data were used as the calibration data set, and Exp 2 

(2009, n=134) data were used as the validation data set. 
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(a) 

 
(b) 

 
(c) 

 

Figure 2.2 Distribution of (a) IMF, (b) shear force, and (c) log transformed (log10) 

shear force in the loin, from the full data set (n=370; left hand graphs), calibration 

(n=236) and validation (n=134) data sets (right hand graphs) 
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Table 2.1 Trait descriptions, means and standard deviations (SD) (n=370) 

Trait Acronym Trait Description Mean SD 

CT Traits    

 ISCMD Average muscle density at ischium scan site (HU) 48.44 2.10 

 ISCMSD Standard deviation of muscle density at ischium scan site (HU) 16.81 0.81 

 ISCFD Average fat density at ischium scan site (HU) -62.37 5.32 

 ISCFSD Standard deviation of fat density at ischium scan site (HU) 36.51 2.50 

 ISCFA Carcass fat area measured at ischium scan site (mm
2
) 3651 1404 

 ISCMA Muscle area measured at ischium scan site (mm
2
) 27415 2898 

 LV5MD Average muscle density at 5
th

 lumbar vertebra scan site (HU) 48.30 2.65 

 LV5MSD Standard deviation of muscle density at 5
th

 lumbar vertebra scan site 

(HU) 

18.47 1.67 

 LV5FD Average fat density at 5
th

 lumbar vertebra scan site (HU) -66.41 7.20 

 LV5FSD Standard deviation of fat density at 5
th

 lumbar vertebra scan site 

(HU) 

42.68 4.35 

 LV5FA Carcass fat area measured at 5
th

 lumbar vertebra scan site (mm
2
) 1242 875 

 LV5MA Muscle area measured at 5
th

 lumbar vertebra scan site (mm
2
) 9684 1472 

 TV8MD Average muscle density at 8
th

 thoracic vertebra scan site (HU) 44.68 2.98 

 TV8MSD Standard deviation of muscle density at 8
th

 thoracic vertebra scan 

site (HU) 

21.94 1.73 

 TV8FD Average fat density at 8
th

 thoracic vertebra scan site (HU) -64.64 5.99 

 TV8FSD Standard deviation of fat density at 8
th

 thoracic vertebra scan site 

(HU) 

39.21 3.16 

 TV8FA Carcass fat area measured at 8
th

 thoracic vertebra scan site (mm
2
) 3451 1843 

 TV8MA Muscle area measured at 8
th

 thoracic vertebra scan site (mm
2
) 12380 1833 

 LV5STD Average soft tissue density at 5
th

 lumbar vertebra scan site (HU)  36.22 8.09 

 LV5STSD Standard deviation of soft tissue density at 5
th

 lumbar vertebra scan 

site (HU) 

40.33 6.19 

 ISCSTD Average soft tissue density at ischium scan site (HU) 35.55 5.07 

 ISCSTSD Standard deviation of soft tissue density at ischium scan site (HU) 40.34 5.66 

 TV8STD Average soft tissue density at 8
th

 thoracic vertebra scan site (HU) 21.84 11.35 

 TV8STSD Standard deviation of soft tissue density at 8
th

 thoracic vertebra scan 

site (HU) 

50.56 6.70 

 Pr_Cfat Predicted total carcass fat weight (kg) 2.34 1.11 

MQ Traits    

 Shear force Mechanically measured shear force in M. longissimus lumborum 

(kgF) 

3.40 1.56 

 IMF M. longissimus lumborum intra-muscular fat (%) 1.48 0.68 
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 Models inclusive of CT estimated carcass fat 2.3.4.1

CT variables tested in the models to explain variation in IMF and shear force included 

Pr_Cfat, as well as measurements from the segmented carcass portions of the three CT 

reference scan sites (ISC, LV5 and TV8; Figure 2.1): muscle area (MA); fat area (FA); 

average muscle density (MD); average fat density (FD); standard deviation of muscle density 

(MSD); standard deviation of fat density (FSD); average soft tissue density (STD); and the 

standard deviation of soft tissue density (STSD).  

Phenotypic correlations amongst CT variables and chemically extracted IMF and shear force 

in the loin were calculated to identify linear relationships between variables (Table 2.2). 

Given the strong phenotypic relationship between Pr_Cfat and IMF, Pr_Cfat was fitted as a 

prefix linear variable (indicative for a ‘base line’ predictor) in all IMF and shear force 

models. 

Subsequent models added CT measurement traits in a progressive manner. Firstly, CT 

variables from all three cross-sectional scan images, including the novel ‘soft tissue’ 

calculation (combining the density ranges between fat and muscle), were used to produce 

prediction equations for IMF and shear force. Following this, information from the LV5 scan 

only was used. 

To further investigate whether prediction accuracies of IMF could be improved by focusing 

on the areas of the CT images from which chemical IMF and shear force was actually 

measured, a virtual sampling method (segmenting regions of interest from the CT images; 

Figure 2.1) was then considered (IMF only). This involved a random selection of a subset of 

animals from Exp 1 (n=100 from year 2003). Mean IMF was 1.77% (SD = 0.72), ranging 

from 0.42 to 3.75%. A summary of measured MQ and CT traits for the subset data employed 

in the virtual sampling analysis can be found in Table 2.3. 
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A summary of measured MQ and CT variables for the calibration and validation data can be 

found in Table 2.4.   

Sixteen models were tested in the analysis (Table 2.5). Models using reference data with 

more than two variables were analysed using stepwise linear regression (Genstat 14
TM

) to 

optimize the combination of predictor variables from the maximum model. Models with one 

or two variables included were analysed using simple or multiple linear regressions, 

respectively. 

 Models independent of CT estimated carcass fat 2.3.4.2

CT variables were tested in the models to explain IMF only, these included all CT variables 

included in the analysis described in section 2.4.1, excluding the use of Pr_Cfat. Given the 

strong phenotypic relationship between muscle density at the 5
th
 lumbar vertebra (LV5MD) 

and chemically extracted IMF (r = -0.71), and MD in this CT region was closest to the region 

of interest with regard to both chemically extracted IMF and shear force, as well as based on 

previous studies which found MD alone to be a strong predictor of IMF (Karamichou et al., 

2006; Lambe et al., 2010a; Navajas et al., 2006a),  muscle density (MD) was considered 

indicative for a base line predictor. 

Subsequent models added CT variables in a progressive manner. Again, initially, CT 

variables from all reference images were used to produce prediction equations for IMF. 

Following on from this, information from the LV5 scan only was used and models applied in 

the same progressive manner.  

Fifteen models were tested in the analysis independent of Pr_Cfat (Table 2.8). Again models 

using reference data with more than two variables were analysed using stepwise linear 

regression (Genstat 14
TM

). Models with one or two variables included were analysed using 

simple or multiple linear regressions, respectively. 



61 

 

 Model validation and selection 2.3.4.3

Models were then tested for significant differences using their correlation coefficient (√Adj 

R
2
) and applying Fisher’s Z transformation (Rasch et al., 1978). To make final model 

selections between those that predicted IMF and shear force similarly across the whole data 

set, cross validation analyses were performed. Available data were split using a natural time 

series separation in the data (Snee, 1977). Experiment 1 (2003-2004, n=236) data was used 

as the calibration data set, and Exp 2 (2009, n=134) data was used as the validation data set. 

The fitted terms in the best models derived from the regression analyses of the entire data set 

were used to produce prediction equations using the calibration data set. These equations 

were then used to predict the IMF and shear force values of animals included in the 

validation data. The coefficient of determination (R
2
) and error of prediction (RMSEP) were 

calculated for the predicted IMF percentage and shear force (kgF) in the loin against 

measured values of both chemically extracted IMF and shear force, to identify the simplest 

and most reliable single model or group of models. 
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Table 2.2: Phenotypic correlations amongst CT predictor variables in the reference scans and measured meat quality traits (IMF and 

shear force). Only correlations significantly greater than zero (P<0.05) are shown 

 IMF_Loin Shear force Pr_Cfat ISCMD ISCMSD ISCFD ISCFSD ISCFA ISCMA ISCSTD 

IMF_Loin -          

Shear force -0.22 -         

PR_Cfat 0.71 -0.18 -        

ISCMD -0.28 0.14  -       

ISCMSD 0.54 -0.19 0.68  -      

ISCFD -0.38 0.11 -0.50 -0.18 -0.11 -     

ISCFSD -0.48  -0.64  -0.50  -    

ISCFA 0.72 -0.16 0.93  0.68 -0.60 -0.63 -   

ISCMA 0.20  0.63 0.33 0.46  -0.47 0.42 -  

ISCSTD -0.74 0.18 -0.72 0.47 -0.56 0.55 0.48 -0.86  - 

ISCSTSD 0.68 -0.14 0.81  0.58 -0.75 -0.48 0.93 0.22 -0.87 

 IMF_Loin Shear force Pr_Cfat LV5MD LV5MSD LV5FD LV5FSD LV5FA LV5MA LV5STD 

LV5MD -0.71 0.21 -0.59 -       

LV5MSD 0.66 -0.27 0.68 -0.71 -      

LV5FD 0.47 -0.16 0.45 -0.58 0.71 -     

LV5FSD -0.71 0.26 -0.83 0.64 -0.79 -0.66 -    

LV5FA 0.71 -0.21 0.90 -0.61 0.69 0.31 -0.85 -   

LV5MA 0.26  0.64 -0.20 0.23 0.35 -0.39 0.41 -  

LV5STD -0.76 0.22 -0.80 0.77 -0.76 -0.39 0.82 -0.92 -0.23 - 

LV5STSD 0.65 -0.22 0.75 -0.57 0.73 -0.27 -0.79 0.90 0.16 -0.94 

 IMF_Loin Shear force Pr_Cfat TV8MD TV8MSD TV8FD TV8FSD TV8FA TV8MA TV8STD 

TV8MD -0.72 0.25 -0.58 -       

TV8MSD 0.24 -0.18 0.17 -0.25 -      

TV8FD -0.37 0.15 -0.51 0.23  -     

TV8FSD -0.60 0.13 -0.70 0.61 -0.17  -    

TV8FA 0.75 -0.25 0.92 -0.70 0.30 -0.63 -0.66 -   

TV8MA 0.25  0.60 -0.17 -0.25  -0.48 0.42 -  

TV8STD -0.76 0.26 -0.80 0.80 -0.36 0.60 0.63 -0.93 -0.20 - 

TV8STSD 0.65 -0.27 0.73 -0.61 0.47 -0.68 0.53 0.88 0.12 -0.94 
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Table 2.3: CT and meat quality traits, means and standard deviations (SD) for 

lambs included in the virtual dissection data set (n=100) 

 LV5 Dissect
1 

Dissect
2 

 Mean SD Mean SD Mean SD 

MQ Trait       

IMF 1.77 0.72 1.77 0.72 1.77 0.72 

Shear force 3.31 1.52 3.31 1.52 3.31 1.52 

CT Trait       

LV5FD -63.86 5.81 -37.66 6.84 -28.12 12.18 

LV5FSD 41.23 4.36 22.81 5.16 12.04 8.26 

LV5MD 47.52 2.26 55.15 1.68 57.2 1.83 

LV5MSD 18.83 1.38 13.72 0.81 11.93 0.85 

LV5STD 34.13 8.61 54.19 1.92 56.76 2.04 

LV5STSD 41.34 6.84 16.72 1.76 13.42 2.08 

LV5; using information from LV5 only, Dissect1; using information from dissect1 CT 

variables, Dissect2; using information from dissect2 CT variables (see Fig 2.2) 
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Table 2.4: CT and MQ traits, means and standard deviations for lambs included in 

the calibration data set (n=236) and validation data set (n=134) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Calibration Data (n=236) Validation Data (n=134) 

Trait Acronym Mean SD Mean SD 

CT Traits     

 ISCMD 49.32 1.78 46.90 1.69 

 ISCMSD 16.87 0.76 16.71 0.89 

 ISCFD -63.48 5.61 -60.43 4.14 

 ISCFSD 35.91 1.96 37.57 2.97 

 ISCFA 3987 1421 3060 1164 

 ISCMA 28318 2492 25823 2887 

 LV5MD 48.41 2.62 48.12 2.70 

 LV5MSD 18.39 1.67 18.62 1.66 

 LV5FD -65.85 6.61 -67.40 8.07 

 LV5FSD 42.26 4.47 43.42 4.03 

 LV5FA 1350 982 1051 603 

 LV5MA 10160 1319 8846 1350 

 TV8MD 44.93 2.97 44.24 2.97 

 TV8MSD 21.51 1.68 22.69 1.56 

 TV8FD -64.66 6.57 -64.59 4.84 

 TV8FSD 38.50 2.92 40.45 3.18 

 TV8FA 3589 1985 3209 1541 

 TV8MA 12861 1652 11533 1834 

 LV5STD 35.95 8.91 36.71 6.41 

 LV5STSD 40.42 6.86 40.17 4.79 

 ISCSTD 35.43 5.45 35.77 4.33 

 ISCSTSD 41.74 5.89 37.88 4.23 

 TV8STD 21.97 12.22 21.62 9.66 

 TV8STSD 50.28 7.42 51.06 5.16 

 Pr_Cfat 2.60 1.08 1.74 1.01 

MQ Traits     

 Shear force     

 IMF 1.58 0.74 1.31 0.54 
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 Results 2.4 

2.4.1  Models inclusive of CT estimated carcass fat  

2.4.2  Estimating IMF and shear force using reference scan information 

Mean IMF was 1.48% (SD = 0.68) and ranged from 0.27 to 3.88%. Mean shear force was 

3.4kgF (SD = 1.56, ranging from 1.39-10.72kgF). Pr_Cfat alone accounted for no variation 

in shear force (Adj R
2
 = 0.03). Following stepwise linear regression analysis the accuracy 

was significantly increased (P<0.05, Adj R
2
 = 0.10) by also including fat area measured in 

the ischium (ISCFA) and 8
th
 thoracic vertebra (TV8FA) scans. The accuracy was further 

improved, but not significantly, to a maximum Adj R
2
 = 0.14, with the inclusion of standard 

deviation of fat density in the ischium and 5
th
 lumbar vertebra scans (ISCFSD, LV5FSD), 

standard deviation of muscle density in the ischium and 8
th
 thoracic vertebra scans 

(ISCMSD, TV8MSD), muscle density in the ischium scan (ISCMD) and fat area in the 

ischium, fifth lumbar vertebra and 8
th
 thoracic vertebra scans (ISCFA, LV5FA, TV8FA). As 

expected, Pr_Cfat alone accounted for a moderate amount of the variation in IMF (Adj R
2
 = 

0.51). 

For IMF, ten models out of the fifteen models tested (not including the ‘baseline’) included 

additional CT variables, with statistically significant improvement in accuracy of prediction 

when compared to Pr_Cfat as a single predictor (P<0.05). Models C
ref

, D
ref

, E
ref

, G
ref

 and I
ref

 

were shown not to be significantly different in prediction accuracy from Pr_Cfat (A
ref

) (Adj 

R
2
 = 0.54, 0.60, 0.57, 0.60 and 0.56 respectively). All other models were >Adj R

2
 = 0.63 

(Table 2.5). 

From these ten models, the model with the highest Adj R
2
 value was identified (Model L

ref
; 

Adj R
2
 = 0.68), which included areas, average densities and density standard deviations for 

both fat and muscle in the maximum model. The fitted terms included average muscle 

density from the LV5 and TV8 scans. This model was then used as a benchmark model in 
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order to compare the ten models identified as better predictors of IMF from reference scan 

information than Pr_Cfat alone. 

Models with statistically significantly lower accuracy (P<0.05) compared to the benchmark 

model (L
ref

) were discarded. All ten original models identified were retained, however the 

final fitted terms in models B
ref

 and H
ref

 were identical following the stepwise procedure, and 

as a result model H
ref

 was discarded. This left nine models (including the benchmark model 

L
ref

) with correlation coefficients that were not significantly different from one another, 

meaning that the prediction ability of these nine models is statistically similar. Therefore, a 

group of models was identified that would equally well predict IMF using different 

combinations of reference scan information. These models included M
ref

 (Adj R
2
 0.64), B

ref
 

(Adj R
2
 0.66), F

ref
, J

ref
, K

ref
 (Adj R

2
 0.67), L

ref
, N

ref
, O

ref
, P

ref
 (Adj R

2 
0.68). 

2.4.3  Estimating IMF and shear force using LV5 scan information 

The use of information from the LV5 scan image only to predict shear force was poor, 

producing a maximum accuracy of Adj R
2
 = 0.09 (Table 2.5). Given these low accuracies in 

the prediction of shear force, further cross validation and progressive image analysis was 

only carried out in the prediction of IMF. Models using only information from the LV5 scan 

image to predict IMF were again compared to the simple linear model using only Pr_Cfat 

and nine models were identified as being significantly more accurate in the prediction of 

IMF. These models were B
LV5

, F
LV5

 (Adj R
2
 0.63), H

LV5
, J

LV5
, N

LV5
, O

LV5 
(Adj R

2 
0.64), K

LV5
, 

P
LV5

 (R
2
 0.65) and L

LV5
 (Adj R

2 
0.66). 

Model B
LV5

 and F
LV5

 resulted in the same final fitted terms following the stepwise procedure, 

so F
LV5

 was discarded, leaving eight final models shown not to be significantly different 

(P<0.05) from the benchmark model (L
ref

). These eight models were then tested for 

significance against the model including the largest amount of explanatory variables from 

the group of models identified as most accurate in explaining the variation of IMF (Model 
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L
ref

) in the entire data set. All eight models were retained, as none were shown to be 

significantly different from model L
ref

 (P<0.05). 

 
Table 2.5: Linear regression models between IMF, shear force and CT tissue 

density parameters including Pr_Cfat, with adjusted coefficient of determination (Adj 

R2) and residual mean square error (RMSE), based on the whole data set (n=370) 

Ref1; using information from all three reference scans, LV52; using information from 

LV5 scan only 

a Adj R2 values are significantly greater than model A (P<0.05) 

b Adj R2 values do not differ significantly from model Lref (IMF benchmark)  

2.4.4  Estimating IMF using virtually dissected images from a single 

LV5 scan 

Image analysis then considered the use of regions of interest (ROI) taken from the LV5 scan, 

comparing the use of information from: (i) the full LV5 scan (LV5); (ii) Dissect
1
; or (iii) 

Dissect
2
 (Figure 2.2). Models were again compared using the correlation coefficient of each 

model and tested for significant differences using Fisher’s Z transformation. 

  Shear force (Log10) IMF 

  Ref1 LV52 Ref1 LV52 

 Maximum Model Adj 

R2 

RMSE Adj 

R2 
RMSE Adj 

R2 
RMSE Adj 

R2 
RMSE 

A Pr_Cfat 0.03 0.16 0.03 0.16 0.51 0.48 0.51 0.48 

B Pr_Cfat+MD  0.07 0.16 0.05 0.16 0.66ab 0.40 0.63ab 0.41 

C Pr_Cfat+FD 0.05 0.16 0.04 0.16 0.54 0.47 0.54 0.47 

D Pr_Cfat+MA 0.04 0.16 0.03 0.16 0.60b 0.43 0.56 0.45 

E Pr_Cfat+FA 0.10a 0.16 0.04 0.16 0.57 0.45 0.53 0.47 

F Pr_Cfat+MD+FD 0.07 0.16 0.05 0.16 0.67ab 0.40 0.63ab 0.41 

G Pr_Cfat+MA+FA 0.11a 0.16 0.05 0.16 0.60b 0.43 0.56 0.45 

H Pr_Cfat+MD+MSD 0.09 0.16 0.07 0.16 0.66ab 0.40 0.64ab 0.41 

I Pr_Cfat+FD+FSD 0.10a 0.16 0.07 0.16 0.56 0.46 0.55 0.46 

J Pr_Cfat+MD+MSD+FD+FSD 0.12a 0.16 0.09 0.16 0.67ab 0.39 0.64ab 0.41 

K Pr_Cfat+MD+MSD+FD+FSD+FA 0.14a 0.15 0.09 0.16 0.67ab 0.39 0.65ab 0.41 

L Pr_Cfat+MD+MSD+FD+FSD+MA+FA 0.14a 0.15 0.09 0.16 0.68ab 0.39 0.66ab 0.40 

M Pr_Cfat+STD 0.08 0.16 0.05 0.16 0.64ab 0.41 0.60b 0.43 

N Pr_Cfat+STD+STSD 0.09 0.16 0.05 0.16 0.68ab 0.39 0.64ab 0.41 

O Pr_Cfat+STD+STSD+FA 0.10a 0.16 0.05 0.16 0.68ab 0.39 0.64ab 0.41 

P Pr_Cfat+STD+STSD+FA+MA 0.11a 0.16 0.05 0.16 0.68ab 0.39 0.65ab 0.40 
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There was no significant improvement in accuracy at any stage during the virtual dissection 

of the LV5 image, and in many cases there was a decrease in accuracy, compared to using 

data from the full LV5 image, although again not a significant decrease (Table 2.6). 

Furthermore, there was no significant improvement in the accuracy of the models within 

ROI method from employing additional information from CT variables. 

Table 2.6: Linear regression models between IMF and CT tissue density 

parameters during virtual dissection, with adjusted coefficient of determination (R2) 

and residual mean square error (RMSE), based on the subset of the data (n=100) 

LV5; Using information from LV5 only, Dissect1; using information from dissect1 CT 

variables, Dissect 2; using information from dissect2 CT variables 

2.4.5  Model validation and selection  

These analyses identified seventeen models that were shown to be statistically similar in 

their prediction accuracies of IMF, including either information from the reference scans or 

LV5 scan only. 

The final seventeen models identified were then used to perform cross validation analysis. 

Seventeen prediction equations were derived using the validation data set, corresponding to 

the seventeen ‘best’ models identified from primary analysis (Table 2.7). The models were 

then used to predict the IMF values of animals included in the validation data. Coefficients 

  LV5 Dissect1 Dissect2 

 Model Adj 

R2 
RMSE Adj 

R2 
RMSE Adj R2 RMSE 

A Pr_Cfat 0.43 0.54 0.43 0.54 0.43 0.54 

B Pr_Cfat+MD 0.61 0.45 0.54 0.49 0.55 0.48 

C Pr_Cfat+FD 0.47 0.52 0.43 0.54 0.44 0.54 

D Pr_Cfat+MA 0.48 0.52 0.49 0.51 0.49 0.51 

E Pr_Cfat+FA 0.44 0.54 0.43 0.54 0.43 0.54 

F Pr_Cfat+MD+FD 0.61 0.45 0.54 0.49 0.58 0.47 

G Pr_Cfat+MA+FA 0.48 0.52 0.49 0.51 0.49 0.51 

H Pr_Cfat+MD+MSD 0.61 0.45 0.54 0.49 0.55 0.48 

I Pr_Cfat+FD+FSD 0.48 0.52 0.45 0.53 0.46 0.53 

J Pr_Cfat+MD+MSD+FD+FSD 0.61 0.44 0.55 0.48 0.59 0.46 

K Pr_Cfat+MD+MSD+FD+FSD+FA 0.61 0.44 0.55 0.48 0.59 0.46 

L Pr_Cfat+MD+MSD+FD+FSD+MA+FA 0.62 0.44 0.57 0.47 0.62 0.44 

M Pr_Cfat+STD 0.54 0.49 0.52 0.50 0.53 0.49 

N Pr_Cfat+STD+STSD 0.56 0.47 0.54 0.48 0.55 0.48 

O Pr_Cfat+STD+STSD+FA 0.60 0.45 0.55 0.48 0.55 0.48 

P Pr_Cfat+STD+STSD+FA+MA 0.61 0.45 0.58 0.47 0.58 0.47 



69 

 

of determination (R
2
) and error of prediction (RMSEP) for the predicted IMF percentage in 

the loin against chemically extracted IMF are also shown in Table 2.7. 

The models with the strongest cross validity were models M
ref

 (R
2
cal 0.64, R

2
val 0.67) and N

ref
 

(R
2

cal 0.67, R
2
val 0.67), using soft tissue density information from all three reference scans 

(M
ref

) and using soft tissue density information from the LV5 and TV8 scans alongside the 

standard deviation of soft tissue density from all three reference scans (N
ref

). Residual mean 

square error of prediction (RMSEP) in the validation data compared to the calibration data, 

decreased slightly across all models. The reduction of RMSEP is due to the characteristics of 

the validation data set (Figure 2.3). The reduction in variation of IMF across the validation 

data set reduces the error of the prediction. These models were then used as a benchmark and 

all other models were tested for significant differences in correlation coefficients using 

Fisher’s Z transformation (Rasch et al., 1978). All seventeen models were found to be 

statistically similar in prediction accuracy (P<0.05) and no significant reduction in prediction 

accuracy was seen across the calibration and validation models.  

From this, two models were chosen from the criteria of firstly, the simplest and best models 

(N
ref

) and the simplest model that was shown to be significantly more accurate in prediction 

than the baseline (B
ref

). Final models are shown below. 

Pr_IMF_Bref (%) = 6.920 + (Pr_Cfat*0.2425) - (LV5MD*0.0654) – (TV8MD*0.0637) 

Pr_IMF_Nref (%) = 7.320 + (Pr_Cfat*0.0565) – (LV5STD*0.0626) – (TV8STD*0.03585) + 

(ISCSTSD*0.02209) – (LV5STSD*0.0565) – (TV8STSD*0.0303) 
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Table 2.7: Linear regression models between IMF and CT tissue density 

parameters including Pr_Cfat, with adjusted coefficient of determination (R2) and 

residual mean square error (RMSE), based on the training data set (n=236) and 

validation data set (n=134) 

 

2.4.6  Models independent of CT estimated carcass fat 

Given the poor results obtained during the previous analyses to predict shear force from CT 

information using any of the methods, or to predict IMF using virtual dissection in the LV5 

image, it was decided to concentrate only on the prediction of IMF in the loin and investigate 

using reference information and LV5 only. 

2.4.7  Estimating IMF using reference scan information 

As expected, MD in the reference scans accounted for a moderate amount of variation in 

IMF (Adj R
2
 = 0.60). There was no model, from the 14 models tested not including the 

baseline model (MD), with statistically significant improvement in prediction accuracy, 

  Calibration 

(n=236) 

Validation  

(n=134) 

 Fitted Terms Adj R2 RMSE Adj R2 RMSEP 

Bref Pr_Cfat, LV5MD, TV8MD 0.69 0.41 0.63 0.33 

Fref Pr_Cfat,  LV5MD, TV8MD, ISCFD 0.69 0.41 0.63 0.33 

Jref Pr_Cfat, LV5MD,  TV8MD, ISCFD, LV5FSD 0.69 0.41 0.64 0.32 

 

Kref Pr_Cfat, LV5MD, TV8MD, ISCFA, LV5FA 0.70 0.41 0.63 0.32 

Lref Pr_Cfat, LV5MD, TV8MD,  LV5FD,  ISCMA, LV5FA, TV8FA 0.71 0.41 0.65 0.32 

Mref Pr_Cfat, ISCSTD, LV5STD, TV8STD 0.64 0.45 0.67 0.31 

Nref Pr_Cfat, LV5STD, TV8STD, ISCSTSD, LV5STSD, TV8STSD 0.67 0.42 0.67 0.30 

Oref Pr_Cfat, ISCSTD, ISCSTSD, LV5STD, LV5STSD, TV8STD, 

ISCFA, TV8FA, ISCFA 

0.68 0.42 0.66 0.31 

Pref Pr_Cfat,  LV5STD, LV5STSD, TV8STD, TV8STSD,  ISCMA,  

TV8FA 

0.69 0.41 0.66 0.31 

BLV5 Pr_Cfat, LV5MD 

 

0.67 0.43 0.57 0.35 

HLV5 Pr_Cfat, LV5MD, LV5MSD 0.67 0.43 0.59 0.35 

JLV5 Pr_Cfat, LV5MD, LV5FD, LV5FSD 0.68 0.42 0.57 0.35 

KLV5 Pr_Cfat, LV5MD, LV5FSD, LV5FA 0.68 0.42 0.59 0.35 

LLV5 Pr_Cfat, LV5MD,  LV5FD,  LV5MA, LV5FA 0.68 0.42 0.60 0.34 

NLV5 Pr_Cfat, LV5STD, LV5STSD 

 

0.64 0.44 0.61 0.34 

OLV5 Pr_Cfat, LV5STD, LV5STSD, LV5FA 0.64 0.44 0.61 0.34 

PLV5 Pr_Cfat, LV5STD, LV5STSD, LV5MA 0.66 0.43 0.62 0.33 



71 

 

however five models were significantly lower in in accuracy of prediction when compared to 

the baseline model (P<0.05). Models B
ref_ex

, C
ref_ex

, D
ref_ex

, F
ref_ex

 and H
ref_ex

 were therefore 

dropped from further analysis. 

From the remaining ten models, the model with the highest Adj R
2
 value was chosen as a 

benchmark model (Model K
ref_ex

; Adj R
2
 = 0.68), all remaining models were tested for 

significant differences in prediction accuracy to the benchmark (K
ref_ex

). All ten models were 

shown to have no significant difference in accuracy (P<0.05), however, following the 

stepwise procedure during the regression analysis, final parameters fitted to model M
ref_ex

, 

N
ref_ex

 and O
ref_ex

 were identical and as a result models N
ref_ex

 and O
ref_ex

 were discarded. 

The remaining eight models included A
ref_ex

 (Adj R
2
 = 0.60), E

ref_ex
, L

ref_ex
 (Adj R

2 
= 0.63), 

G
ref_ex

 (Adj R
2
 = 0.61), I

ref_ex
 (Adj R

2
 = 0.66), K

ref_ex
 (Adj R

2
 = 0.68) and M

ref_ex
 (Adj R

2
 = 

0.67) all not significantly different in their prediction ability (Table 2.8). 

2.4.8  Estimating IMF using LV5 scan information 

Models using the CT parameter information from the LV5 scan only were again compared to 

the baseline model including only LV5MD. A moderate amount of the variation in IMF 

could be explained by the use of LV5MD alone (Adj R
2
 = 0.51). Six models were found to 

be significantly more accurate in the prediction IMF. These models were M
LV5_ex

 (Adj R
2
 = 

0.61), I
LV5_ex

, N
LV5_ex

, O
LV5_ex

 (Adj R
2
 = 0.62), J

LV5_ex
 and K

LV5_ex
 (Adj R

2
 = 0.64).  

Model N
LV5_ex

 and O
LV5_ex

 included the same CT variables in the final fitted models 

following the stepwise procedure, therefore model O
LV5_ex

 was discarded. Models were then 

subsequently tested for significant differences against the benchmark model (K
LV5_ex

), 

chosen on Adj R
2
 value and number of parameters included in the model as previously 

explained. All models were retained, as none were shown to be significantly different from 

model K
LV5_ex

 (P<0.05) (Table 2.7). Model L
LV5_ex

 was not significantly greater in prediction 

accuracy than the baseline (A
LV5_ex

), however it was also not significantly different in 
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accuracy from the benchmark model (K
LV5_ex

) (Table 2.7). As a result of this, and because 

there were a number of models available, model L
LV5_ex

 was discarded.  

Table 2.8: Linear regression models between IMF CT tissue density parameters in 

models excluding Pr_Cfat, with adjusted coefficient of determination (Adj R2) and 

residual mean square error (RMSE), based on the whole data set (n=370) 

 

 

 

 

 

 

 

 

 

 

Ref1; using information from all three reference scans, LV52; using information from 

LV5 scan only 

a Adj R2 values are significantly greater than model A (P<0.05) 

b Adj R2 values do not differ significantly from model Kref (IMF benchmark)  

2.4.9  Model validation and selection 

The analysis of models using both entire reference scan information and LV5 scan only 

information identified thirteen potential models in the prediction of IMF. All thirteen models 

were statistically similar in accuracy. These final thirteen models were then cross validated 

using the same time series data split, and the same calibration and validation data sets as 

described above. Thirteen prediction equations were derived using the calibration data set 

(Table 2.8). The models were again used to predict the IMF values of animal included in the 

validation data. Coefficients of determination (R
2
) and error of prediction (RMSEP) are 

shown in Table 2.8. The model with the strongest cross validity was model M
ref_ex

 (R
2

cal 0.68, 

  IMF 

  Ref1 LV52 

 Maximum Model Adj R2 RMSE Adj R2 RMSE 

A MD 0.60b 0.44 0.51 0.48 

B FD  0.40 0.53 0.22 0.60 

C MA 0.07 0.66 0.07 0.66 

D FA 0.57 0.45 0.51 0.48 

E FD 0.63b 0.42 0.22 0.60 

F MA+FA 0.58 0.44 0.51 0.48 

G MD+MSD 0.61b 0.43 0.55 0.46 

H FD+FSD 0.53 0.47 0.50 0.48 

I MD+MSD+FD+FSD 0.66b 0.40 0.62ab 0.42 

J MD+MSD+FD+FSD+FA 0.67b 0.39 0.64ab 0.41 

K MD+MSD+FD+FSD+FA+MA 0.68b 0.39 0.64ab 0.41 

L STD 0.63b 0.42 0.58b 0.45 

M STD+STSD 0.67b 0.39 0.61ab 0.43 

N STD+STSD+FA 0.67b 0.39 0.62ab 0.42 

O STD+STSD+FA+MA 0.67b 0.39 0.62ab 0.42 
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R
2

val 0.67), using soft tissue density information from all three reference scans. However, no 

model’s validation accuracy fell significantly when compared to calibration accuracies 

(P<0.05). 

 It was also recognised that not all models were entirely independent of the amount of CT 

carcass fat in the lamb, as, although Pr_Cfat was not included in the models, some models in 

the analysis included CT-measured fat areas (FA) so were not independent of overall amount 

of carcass fat. Therefore, models J
ref_ex

, K
ref_ex

, J
LV5_ex

, K
LV5_ex

 and N
LV5_ex

 were not 

considered for selection. From the remaining models, one model was selected on the basis of 

the single best model employing CT parameter information which is routinely collected 

during current practices at SRUC (I
ref_ex

) using information from the reference scans, 

including MD, MSD, FD and FSD. The final selected model is shown below (Adj R
2
 = 0.67 

with the full data set): 

Pr_IMF_Iref_ex (%) = 7.26-(0.0720*LV5MD) - (0.0611*TV8MD) + (0.0748*ISCMSD) - 

(0.02090*ISCFD) - (0.00758*LV5FD) - (0.0344*ISCFSD) - (0.0324*LV5FSD) 
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Table 2.9: Linear regression models between IMF and CT tissue density 

parameters excluding Pr_Cfat, with adjusted coefficient of determination (R2) and 

residual mean square error (RMSE), based on the training data set (n=236) and 

validation data set (n=134) 

 

 Discussion 2.5 

The prediction of shear force using CT derived information could not be achieved at a 

satisfactory level of accuracy. Other post-mortem and conditioning factors, such as muscle 

fibre type and size, cooking loss, ultimate pH, and post-mortem glycolysis play an important 

role in the conversion of muscle to meat, and may have significant effects on shear force.  

The use of parameters measured by computed tomography in vivo, to produce prediction 

equations for shear force in a processed, aged and cooked piece of meat, may be too far 

removed for the successful estimation of mechanical shear force. 

A minimum level of 3% chemically extracted intramuscular fat in grilled cuts of lamb, 

ensuring consumer acceptability, was recommended following a review of the literature by 

  Calibration 

(n=236) 

Validation  

(n=134) 

 Fitted Terms Adj R2 RMSE Adj R2 RMSE 

Aref_ex ISCMD, LV5MD, TV8MD 0.65 0.44 0.56 0.36 

Eref_ex ISCMD, LV5MD, TV8MD, ISCFD, LV5FD, TV8FD 0.67 0.42 0.59 0.34 

Gref_ex ISCMD, LV5MD, TV8MD, ISCMSD, LV5MSD 0.67 0.42 0.63 0.33 

Iref_ex LV5MD, TV8MD, ISCMSD, ISCFD, LV5FD, ISCFSD, LV5FSD 0.70 0.41 0.63 0.33 

Jref_ex LV5MD, TV8MD, LV5FD, ISCFA, LV5FA 0.70 0.41 0.64 0.32 

Kref_ex LV5MD, TV8MD, LV5FD, ISCFA, LV5FA, ISCMA, TV8MA 0.70 0.40 0.65 0.32 

Lref_ex ISCSTD, LV5STD, TV8STD 0.64 0.45 0.66 0.31 

Mref_ex LV5STD, TV8STD, ISCSTSD, LV5STSD, TV8STSD 0.68 0.42 0.67 0.31 

ILV5_ex LV5MD, LV5MSD, LV5FD, LV5FSD 0.67 0.42 0.57 0.35 

JLV5_ex LV5MD, LV5FD, LV5FA 0.67 0.42 0.57 0.35 

KLV5_ex LV5MD, LV5FD, LV5FA, LV5MA 0.68 0.42 0.58 0.35 

MLV5_ex LV5STD, LV5STSD 0.63 0.45 0.59 0.34 

NLV5_ex LV5STD, LV5STSD, LV5FA 0.63 0.45 0.59 0.34 
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Savell and Cross (1988). During this current study the mean IMF level reported for purebred 

Texel was 1.48%, well below the level recommended by Savell and Cross. At a similar end 

point mean IMF in Scottish Blackface lambs was reported as 2.3% (Lambe et al., 2008c). In 

an Australian study involving crossbred lambs from several Terminal, Maternal and Merino 

sires, mean IMF was 4.1% in females and 4.2% in males, whilst mean IMF values of 4.3%, 

4.5% and 4.1% were recorded in lambs from the Maternal, Merino and Terminal sires, 

respectively (Pannier et al., 2014a), providing evidence of breed differences when 

considering IMF levels in sheep. 

It has been shown in previous studies that muscle density information from single or 

multiple CT scans taken along the body of sheep in vivo can provide moderately accurate 

predictions of IMF contained within M. longissimus of different sheep breeds at finishing. 

Published prediction accuracies include R
2
 = 0.33 using muscle density information from 

reference scan images in Scottish Blackface sheep (Karamichou et al., 2006), R
2
 = 0.36 

employing information from a cross-sectional scan in the 5
th
 lumbar vertebra of purebred 

Texel sheep (only using muscle density) and in the same study a reasonable improvement in 

accuracy was shown when fat density and standard deviations of both fat and muscle density 

were added to the model (R
2
 = 0.48) (Lambe et al., 2010a). Macfarlane et al. (2005) used 

similar lean tissue measurements, alongside fat area measurements, in a single cross-

sectional scan at the 2
nd

 lumbar vertebra, resulting in a moderate prediction accuracy of R
2
 = 

0.57. These previous studies have shown the possibilities of using CT scanning as a predictor 

of IMF in different sheep breeds. 

This current study did not fully investigate the effect that other fat deposits, such as intrafibre 

lipid within the muscle cell, may have on CT measured muscle density.  The chemical 

extraction method used to measure IMF was not sufficient to provide such information. 

The use of different statistical approaches, such as partial least squares (PLS) regression 

compared to ordinary least squares (OLS) regression, has also been investigated in the 
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prediction of IMF in pig loins (post-mortem and in vivo), alongside the use of combinations 

of different x-ray intensities and slice thicknesses. These methods, applied post-mortem, 

have achieved prediction accuracies ranging from R
2
 = 0.63-0.80 (Font-i-Furnols et al., 

2013). A similar approach in vivo achieved maximum prediction accuracies of R
2
 = 0.53, 

with poor results during validation of the models (maximum R
2
 = 0.18) (Kongsro and 

Gjerlaug-Enger, 2013). 

The CT settings and methods chosen for image analysis and statistics (e.g. Partial least 

squares regression (PLS)) can help to deal with the partial volume effect of mixed pixels 

(pixels consisting of a mixture of fat and muscle), when considering IMF. For example, 

different x-ray intensities can change the contrast observed between soft tissues. In terms of 

statistical treatment of the data, the PLS approach considers the proportion of pixels 

allocated to each HU value, whereas OLS employs information across a range of HU values 

within defined thresholds. Font-i-Furnols et al. (2013) found that the estimation of IMF in 

pork loins post-mortem is better predicted by OLR than PLS regression, and that a reduced 

x-ray intensity (increasing contrast) was more accurate, however combining information 

from high and low intensity improved the prediction accuracy further. 

There may be scope for very complex approaches to explain the variation in IMF using CT 

data. However, this study provides evidence that the use of relatively simple means and 

standard deviations of the CT variables routinely captured can be used to predict IMF in the 

loin of Texel sheep with moderately high accuracy and allows the retrospective calculation 

of such a novel trait within existing datasets.  

The results from this study also show that further improvements are possible in the 

prediction of intramuscular fat in vivo compared to results from similar previous studies 

(Karamichou et al., 2006; Lambe et al., 2010a; Macfarlane et al., 2005), with the use of 

additional information from multiple cross-sectional scans. These results show that muscle 

density is a good predictor of intramuscular fat, agreeing with previous literature sources, 
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and the strong phenotypic relationship between CT predicted carcass fat and intramuscular 

fat provides some improvement in the accuracy of prediction over that of CT muscle density 

parameters alone. In this study the addition of standard deviation of muscle density did not 

significantly improve the accuracy of prediction, as it did in previous studies (Lambe et al., 

2010a). The inclusion of the standard deviation of soft tissue density resulted in a slight 

increase in accuracy. The biological relationship between the standard deviation of soft 

tissue density and intramuscular fat is not fully understood and requires further analysis. It 

appears that the distribution of muscle and fat pixels changes and the proportion of ‘mixed’ 

pixels (pixels containing both fat and muscle density values according to thresholds) within 

the soft tissue distributions increases in animals with higher levels of IMF. This equates to an 

increase in mixed pixels with average density values closer to fat thresholds, indicating that 

they may contain an increased proportion of fat within the pixel area, reducing the average 

density value within the pixel, although the overall density remains within the muscle 

thresholds. There is a possibility that the standard deviation of muscle, fat or soft tissue may 

also produce some clarity in the models when dealing with the partial volume effect 

mentioned previously. 

The inclusion of CT-predicted carcass fat understandably increases the accuracy of 

prediction of IMF when included in the model and was specifically chosen as a prefix to 

models and initial benchmark as a single predictor variable due to the strong phenotypic 

relationship between CT predicted carcass fat and chemically extracted intramuscular fat (r = 

0.71). An increase in accuracy of prediction of IMF from additional parameters, above that 

provided by CT predicted carcass fat, is necessary to enable selection for IMF while 

maintaining or further reducing overall carcass fat. Including both carcass fat and IMF 

predictors as selection criteria in a multi-trait selection index would then allow simultaneous 

selection for each fat trait in opposite directions. However to better understand this 

relationship between carcass fat and IMF, models independent of carcass fat will be taken 
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forward into the genetic analysis of current ultrasound, CT traits and novel predictions of 

IMF. 

The virtual dissection, and use of information from a defined ROI of the loin, did not 

improve the accuracy of prediction. This intuitive approach to analyse closer to the area from 

which chemical IMF was measured proved unsuccessful and suggests that there is valuable 

muscle and fat density information within the carcass portion of the scan images from other 

muscles, muscle groups and fat depots that provides an increase in accuracy. This may be 

further acknowledged given the prediction ability of CT predicted carcass fat information. 

The results from this study show that there may be several possible models that have the 

potential to be used in the prediction of IMF in the loin, with similar levels of accuracy, 

indicating a possible ceiling in the prediction accuracy of models employing CT variables 

included in this study. Choosing between such groups of models proves difficult. However a 

choice may be made when considering the best model; employing information on soft tissue 

density and its standard deviation (Nref, Adj R2 = 0.68), and the simplest model that was not 

significantly different in accuracy; employing muscle density information from two of the 

three reference scan sites (Bref, Adj R2 = 0.66), with the inclusion of CT-predicted carcass fat 

in both cases. 

Successful accuracies were also achieved in models excluding CT-predicted carcass fat, and 

again these choices between models were difficult to make. However choices were made 

considering the single best model which employed CT information which is currently 

collected as part of routine measurements at the SRUC-BioSS CT unit in Edinburgh, this 

choice was made to both ensure a definitive choice and also to minimise the additional 

parameter estimation or image analysis involved. 

This enables us to predict IMF in sheep with the best accuracy using a vast amount of 

historic CT data, obtained at SRUC’s CT unit over the last 15 years, providing powerful data 
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sets to estimate heritabilities for CT-predicted IMF and genetic correlations to other 

production traits. Estimation of these genetic parameters is a required pre-requisite for the 

integration of this new trait into breeding programmes. Existing studies involving different 

sheep breeds (Lorentzen and Vangen, 2012) have reported moderate heritability’s of IMF in 

crossbred progeny of  Norwegian White ewes crossed with Texel terminal sires (h
2

 = 0.48, 

s.e. = 0.16), suggesting that selection for increased IMF should be successful.   

The result of this study implies that these further studies of the genetic parameters consider 

the genetic correlations between models including Pr_Cfat and models not including 

Pr_Cfat. 

Further investigations into the application of CT measurements in the prediction of IMF 

across other sheep breeds is also required to determine whether across-breed prediction 

equations would be applicable or breed-specific prediction equations would require 

development, given that the breed used in this study (Texel) is particularly lean and other 

breeds may be higher in average IMF levels with greater variation. 

 Conclusion 2.6 

The in vivo prediction of IMF in the loin of purebred Texel sheep is possible using CT-

derived information on muscle density from one single scan across the loin region of the 

animal, alongside CT-predicted total carcass fat. The accuracy of prediction can be further 

increased employing information from additional two-dimensional anatomical reference 

scans, and by also considering fat density and standard deviations of tissue density values, 

although these increases in accuracy are not always significant. Some of the more complex 

models including information related to the soft tissue parameters (combining muscle and 

fat) appear to be more robust at predicting IMF across different populations. This method 

may now be applied to a powerful dataset to estimate genetic parameters, allowing judgment 

of how to improve IMF genetically without compromising important production traits 
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including carcass quality. This chapter also only investigated the use of simple ‘step and 

shoot’ two-dimensional imaging, however in the following chapter the use of more advanced 

three-dimensional spiral computed tomography techniques, and any potential for further 

increases in accuracy are investigated. 
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Chapter 3:  Prediction of intramuscular fat content and shear force in 

Texel lamb loins using combinations of different in vivo x-ray 

computed tomography (CT) scanning techniques 
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 Summary 3.1 

Computed tomography (CT) parameters, including spiral computed tomography scanning 

(SCTS) parameters, were related to intramuscular fat (IMF) and mechanically measured 

shear force measurements using data from two previously published studies. Purebred 

Texels (n = 377) of both sexes, females (n = 206) and intact males (n = 171), were CT 

scanned pre-slaughter, at a mean age of 132 d (SD 21.1, range 91-202 d) and mean live 

weight of 35 kg (SD 4.9, range 20-49 kg). CT-derived tissue area and density information 

from two- and three-dimensional (SCTS) images were available. These data were related to 

mechanical shear force (mean 3.4 kg, SD 1.56, range 1.39-10.72 kg) and chemically 

extracted IMF (Mean 1.48%, SD 0.68, range 0.27-3.88%) data, to investigate the ability of 

in vivo CT to predict these meat quality traits. Accuracies in the prediction of shear force 

ranged from R
2
 = 0.02, RMSE 0.16 (P = 0.002) to R

2
 = 0.13, RMSE = 0.15 (P < 0.001) and 

for IMF from R
2
 = 0.51, RMSE = 0.48 (P < 0.001) to R

2
 = 0.71, RMSE = 0.37 (P < 0.001), 

using different combinations of SCTS information and two-dimensional CT scan information. 

The prediction of mechanical shear force could not be achieved at an acceptable level of 

accuracy employing information from CT, even when including SCTS information. However, 

the prediction of IMF in the loin was promising when employing information from CT, 

although models including SCTS parameters did not significantly improve previous 

prediction accuracies achieved using only two-dimensional CT data. The results provide 

further evidence that a good prediction of IMF for Texel lambs in vivo can be achieved using 

CT technology, but that the extra expense and image analyses required for three-

dimensional SCTS methods may not be justified in the prediction of this trait. This study 

indicates that there may be several available models of varying degrees of complexity using 

SCTS technology to predict IMF as a meat quality trait and a proxy for meat eating quality 

traits (e.g. tenderness, juiciness and flavour). Therefore  the application of CT predicted 

meat quality traits such as IMF can and should be included into current breeding 
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programmes to allow for the simultaneous selection of animals with desirable production, 

carcass and meat (eating) quality traits. 

 Introduction 3.2 

The prediction of aspects of meat quality have been investigated both in vivo and post 

mortem in meat producing species (Bunger et al., 2011; Font-i-Furnols et al., 2013; Kongsro 

and Gjerlaug-Enger, 2013; Macfarlane et al., 2005; Prieto et al., 2010). The first method of 

image capture most commonly used is ‘single-slice’ scanning. X-rays are used to generate 

cross-sectional, two-dimensional images of the selected region of a subject. Each image is 

produced by rotation of the x-ray tube 360
o
 around the subject. Attenuation of radiation 

through the tissues can then be measured, with differences indicating different tissue 

densities. Advances in scanning technology have resulted in the development of contiguous 

scanning procedures such as SCTS, capable of producing a series of images in a single 

contiguous scan at intervals of as little as 0.6mm apart.  

Muscle density information from single or multiple CT scans in sheep, can provide 

moderately accurate predictions of IMF content in vivo. The prediction of other meat quality 

traits, such as shear force, in vivo using CT technology has not been investigated fully, but 

available results to date are not promising (Chapter 2). Accuracies for IMF range from R
2
 = 

0.33 to 0.68 including the work carried out in chapter 2 and also including previous studies 

involving various CT variables (Karamichou et al., 2006; Lambe et al., 2010a; Lambe et al., 

2008c; Macfarlane et al., 2005). Accuracies for shear force range from R
2
 = 0.14 to 0.35 

using combinations of live animal measurements (Lambe et al., 2008c). The aim of this 

study was to test the hypothesis that SCTS techniques can provide improvements compared 

to published accuracies using two-dimensional CT information in the prediction of IMF 

content and shear force in the loins of Texel sheep. 
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 Materials and methods 3.3 

3.3.1  Experimental animals 

A full description of the datasets and detailed animal procedures can be found in chapter 2, 

section 2.3.1. In brief, CT variables, including SCTS parameters were measured on live 

lambs pre-slaughter, as well as post-mortem laboratory measurements of IMF and shear 

force in the loin. Lambs were CT scanned and slaughtered at finishing (ready for slaughter 

depending on condition score and live weight).  

 

3.3.2  Single-slice and spiral x-ray CT measurements and image 

analysis 

A series of spiral CT images were selected from the loin region of each lamb. The first 

image was taken where the transverse process of the 7
th
 lumbar vertebra appears and the last 

image in the series where the transverse process of the 1
st
 lumbar vertebra is no longer 

visible (Figure 3.1a). Two-dimensional cross-sectional single-slice scans were also used, 

taken at two defined anatomical positions, through the top of the leg at the ischium bone 

(ISC), and through the chest at the 8
th
 thoracic vertebra (TV8), details of the images used and 

the location are presented in Figure 3.1b. 

This two dimensional method of scanning at these particular anatomical sites (including an 

additional scan at the 5
th
 lumbar vertebra, which was not used in this study), is currently used 

in UK terminal sire breeding programmes to provide accurate predictions of fat and muscle 

weights in the carcass. This method,  defined as ‘reference’ scanning (Bunger et al., 2011), 

optimizes the number of images required to be taken across the body of the sheep while 

maximizing the accuracy of estimations for carcass traits. Images were produced with a 

resolution of 512 x 512 pixels and a 450mm field of view, producing images with a pixel 
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size of 0.77mm
2
 in two dimensions. Spiral images were produced at the same resolution and 

field of view at intervals of 8mm, producing images with a voxel size of 6.2mm
3
. 

Automated analyses were performed on the images produced, to separate carcass from non-

carcass tissues (Glasbey and Young, 2002), and to calculate the density of each pixel in 

Hounsfield units (HU), the standard quantitative scale for describing radio density. In the 

final segmented images each pixel was allocated to fat, muscle or bone using image 

thresholding techniques based on these density values (Mann et al., 2003). Areas (mm
2
) and 

average densities (HU) of pixels allocated as muscle and fat in each two dimensional image 

were calculated, as well as standard deviations of the density values allocated to each tissue. 

Combining all pixels allocated as either fat or muscle enabled the use of a novel average 

‘soft tissue density’ and its standard deviation. The SCTS images were used to calculate 

weighted average densities of muscle, fat and soft tissue (average tissue density, in each 

individual scan image, weighted for tissue area in that image and averaged across all images 

in the spiral scan series). Volumes of each tissue (mm
3
) were also calculated. The resulting 

SCTS parameters included: weighted average muscle and fat densities and the related 

standard deviations; weighted average soft tissue density and standard deviation; and 

calculated muscle and fat volumes (mm
3
). The CT variables measured from the two-

dimensional single-slice scans in the ISC and TV8 regions were average muscle density, 

average fat density and related standard deviations, as well as the average soft tissue density 

and standard deviation of soft tissue density. Muscle area and fat area tissue measurements 

(mm
2
) were also calculated for each of the single-slice scan images. Total CT predicted 

carcass fat (Pr_Cfat), as a measure of subcutaneous and intermuscular fat in the entire 

carcass, was also derived using a breed-specific prediction equation from Macfarlane et al 

(2006b) detailed in chapter 2, section 2.3.2. Details, acronyms and descriptions of each 

SCTS trait are presented in Table 3.1. CT traits and meat quality traits included in this study 

which were also in chapter 2 are not described but can be found in chapter 2, Table 2.1.   
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(a)      (b) 

Figure 3.1 Detailed tomograms, single slice and spiral images produced during CT 

scanning  

(a) First image where TPLV7 appears (i), last image where TPLV1 is no longer 

visible (ii) and 3D rendered stack of selected images (iii) 

(b) Scan image from ischium region (i) and scan image from 8th thoracic vertebra 

region (ii) 

Table 3.1: Acronyms and summary statistics of  SCTS traits along with trait 

descriptions, means and standard deviations (SD) in the Texel data utilised in the 

prediction of intra-muscular fat and shear force (n = 370) 

Trait Acronym Trait Description Mean SD 

CT Traits    

 w_md Average muscle density in the loin spiral scan (weighted by area in 

each component image) (HU)  

46.13 2.22 

 w_msd SD of muscle density in the loin spiral scan (weighted by area in 

each component image) (HU) 

19.91 1.25 

 w_fd Average fat density in the loin spiral scan (weighted by area in each 

component image) (HU) 

-63.97 4.65 

 w_fsd SD of fat density in the loin spiral scan (weighted by area in each 

component image) (HU) 

40.63 3.49 

 m_vol Muscle tissue volume in the loin spiral scan (mm3) 1,827,238 280,858 

 f_vol Fat tissue volume in the loin spiral scan (mm3) 298,327 180,327 

 w_std Soft tissue density in the loin spiral scan weighted by area (HU) 31.41 8.43 

 w_stsd SD of soft tissue in the loin spiral scan weighted by area (HU) 42.79 6.17 
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3.3.3  Slaughter procedure and meat quality parameter measurements 

Slaughter procedures and meat quality parameter measurements were entirely the same as 

described in Chapter 2, section 2.3.3. 

3.3.4  Statistical analysis 

Before any statistical analyses, lambs included in the combined data set with no IMF data 

were removed (n = 2), lambs without full CT information were removed (n = 2), and finally 

lambs with IMF content greater than three standard deviations from the mean were identified 

as outliers and also removed (n = 3). Initial regression analysis and subsequent model 

checking (distribution of residuals) suggested the need for transformation of shear force data. 

As a result, shear force was log-transformed before any regression analysis. The effect of the 

number of days from CT scanning to slaughter (group 1: 4-8 d; group 2: 32-33 d) on the 

traits was tested using a general ANOVA in Genstat14
TM

 adjusting for Pr_Cfat, and provided 

evidence of no significant effect on IMF content (P = 0.80) or shear force (P = 0.07). The 

term was also fitted as an independent variable in the regression models in order to test the 

relationship between days to slaughter and the CT variables, and was not significant when 

tested on IMF (P = 0.71) and shear force (P = 0.19) and therefore was not included in the 

subsequent analysis. A summary of the CT traits tested in the models are presented in Table 

3.1. Histograms of shear force before transformation and IMF are presented in Figure. 3.2.  

Sixteen models were tested in the analyses (Table 3.2), termed models A-P, using both 

information from SCTS only (
sp

) and a combination of SCTS and two-dimensional, single-

slice scan information (
com

). Models with one or two variables included in the maximum 

model were analysed using simple and multiple linear regression, respectively, whilst models 

employing CT data with more than two variables were analysed using stepwise linear 

regression (Genstat14
TM

; Payne et al., 2012) to optimize the number and combination of 

independent variables from the maximum fitted model. Models were then tested for 
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significant differences between correlation coefficients (√Adj R
2
) applying standard methods 

using Fisher’s Z transformation (Rasch et al., 1978).  Final models were identified as those 

with significantly greater prediction accuracies of IMF and shear force than the baseline 

model (Model A). These models were then cross-validated. During cross-validation, 

available data were split using a natural time series separation in the data, as described by 

Snee (1977). The Exp. 1 data (n = 236) was employed as a calibration data set, and Exp. 2 

data (n = 134) as a validation data set. Summary statistics for SCTS measured traits for both 

calibration and validation data sets are presented in Table 3.3. CT traits and meat quality 

traits included in this study which were also in chapter 2 are not described but can be found 

in chapter 2, Table 2.4.   

The fitted terms identified in the most accurate prediction models derived from the 

regression analyses using the entire data set were used to produce prediction equations using 

the calibration data set (Exp. 1). These equations were then used to predict IMF and shear 

force of the lambs included in the independent validation data set (Exp. 2). The coefficient of 

determination (R
2
) and residual mean square error of prediction (RMSEP) were calculated 

for the predicted IMF and shear force against chemically extracted IMF and mechanical 

shear force, to identify the simplest and most reliable single predictive model or group of 

predictive models. Histograms of IMF and shear force in the calibration and validation data 

can be found in Figure 3.3. 
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Figure 3.2 Histograms of chemically extracted intramuscular fat percentage (IMF %) 

and shear force (ShF, kgF) measured in the loin of the Texel lambs (n = 370) 
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Table 3.2: Terms included in the maximum linear regression models tested before 

stepwise regression using both spiral CT scan parameters only (sp) and spiral CT 

scan parameters combined with two dimensional single-slice scan parameters 

(com). 

Explanations of acronyms used in the models can be found in Table 3.1 

 

 

 

 

 

 

 

 

 

 

 Maximum Models 

 SCTS parameters only (sp) SCTS +  2D single-slice scan parameters (com) 

A Pr_Cfat Pr_Cfat 

B Pr_Cfat, w_md Pr_Cfat, w_md, ISCMD, TV8MD 

C Pr_Cfat, w_fd Pr_Cfat, w_fd, ISCFD, TV8FD 

D Pr_Cfat, m_vol Pr_Cfat, m_vol, ISCMA, TV8MA 

E Pr_Cfat, f_vol Pr_Cfat, f_vol, ISCFA, TV8FA 

F Pr_Cfat, w_md, w_fd Pr_Cfat, w_md, w_fd, ISCMD, TV8MD 

G Pr_Cfat, m_vol, f_vol Pr_Cfat, m_vol, f_vol, ISCMA, TV8MA, ISCFA, TV8FA 

H Pr_Cfat, w_md, w_msd Pr_Cfat, w_md, w_msd, ISCMD, ISCMSD, TV8MD, TV8MSD 

I Pr_Cfat, w_fd, w_fsd Pr_Cfat, w_fd, w_fsd, ISCFD, ISCFSD, TV8FD, TV8FSD 

J Pr_Cfat, w_md, w_msd, w_fd, w_fsd Pr_Cfat, w_md, w_msd, w_fd, w_fsd, ISCMD, ISCMSD, TV8MD, 

TV8MSD, ISCFD,  ISCFSD, TV8FD, TV8FSD 

K Pr_Cfat, w_md, w_msd, w_fd, w_fsd, f_vol Pr_Cfat, w_md, w_msd, w_fd, w_fsd, f_vol, ISCMD, ISCMSD, 

TV8MD, TV8MSD, ISCFD, ISCFSD, TV8FD, TV8FSD, ISCFA, 

TV8FA 

L Pr_Cfat, w_md, w_msd, w_fd, w_fsd, m_vol, 

f_vol 

Pr_Cfat, w_md, w_msd, w_fd, w_fsd, m_vol, f_vol, ISCMD, 

ISCMSD, TV8MD, TV8MSD, ISCFD, ISCFSD, TV8FD, TV8FSD, 

ISCMA, ISCFA, TV8MA, TV8FA 

M Pr_Cfat, w_std Pr_Cfat, w_std, ISCSTD, TV8STD 

N Pr_Cfat, w_std, w_stsd Pr_Cfat, w_std, w_stsd, ISCSTD, ISCSTSD, TV8STD, TV8STSD 

O Pr_Cfat, w_std, w_stsd, f_vol Pr_Cfat, w_std, w_stsd, f_vol, ISCSTD, ISCSTSD, TV8STD, 

TV8STSD, ISCFA, TV8FA 

P Pr_Cfat, w_std, w_stsd, f_vol, m_vol Pr_Cfat, w_std, w_stsd, f_vol, m_vol, ISCSTD, ISCSTSD, TV8STD, 

TV8STSD, ISCFA, ISCMA, TV8FA, TV8MA 
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Table 3.3: Summary statistics of SCTS traits along with trait descriptions, means 

and standard deviations (SD) in the calibration (n=236) and validation (n=134) data 

sets 

  Calibration Data (n=236) Validation Data (n=134) 

Trait Acronym Mean SD Mean SD 

 w_md 45.98 2.30 46.40 2.05 

 w_msd 20.11 1.25 19.55 1.19 

 w_fd -64.36 4.41 -63.29 5.01 

 w_fsd 40.37 3.46 41.08 3.52 

 m_vol 1,907,573 260,502 1,686,351 259,734 

 f_vol 329,122 195,934 244,321 133,477 

 w_std 30.35 9.18 33.27 6.55 

 w_stsd 43.65 6.57 41.27 5.09 

Explanations of acronyms used in the models can be found in Table 3.1 
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Figure 3.3 Histogram of chemically extracted intramuscular fat percentage (IMF %) 

and shear force (ShF, kgF) measured in the loin in the calibration and validation 

data sets 



93 

 

 

 Results 3.4 

3.4.1  Predicting shear force and IMF content using SCTS information 

Very little of the variation in shear force was accounted for by Pr_Cfat (Adj R
2
 = 0.03, 

RMSE = 0.16), however Pr_Cfat accounted for a moderate amount of the variation in IMF 

(Adj R
2
 = 0.50, RMSE = 0.47). Compared to the baseline (Model A; Table 3.2), which uses 

information only from CT derived predicted carcass fat, seven models that included 

additional spiral CT variables, from the fifteen models tested, were identified as being 

significantly more accurate in the prediction of IMF (P < 0.05). None of the models using 

only spiral CT information (
sp

) were significantly more accurate (P > 0.05) in prediction of 

shear force when compared to the baseline (Table 3.4).  

From the seven models using only SCTS information identified with significantly increased 

prediction ability of IMF when compared to Model A, the model with the greatest accuracy 

was identified as model L
sp

 (Adj R
2 
= 0.70). This model included CT predicted carcass fat 

(Pr_Cfat), weighted average muscle density (w_md), fat volume and muscle volume (f_vol, 

m_vol), resulting in the prediction equation:  

                                                                 

        

The six remaining models including only SCTS information identified as better predictors of 

IMF than Pr_Cfat alone were compared with model L
sp

. Only model P
sp

 (Table 3.4) gave 

significantly reduced accuracy (P > 0.05) compared to model L
sp

. This left six models with 

correlation coefficients that were not significantly different, essentially meaning that the 

prediction ability of these six models is statistically similar, thus identifying a group of 

models that would predict IMF equally using SCTS information. The variables for models 

K
sp

 and J
sp

 after the stepwise regression procedure were identical and, hence, model K
sp

 was 
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also dropped. The final selected models were model B
sp

 (Adj R
2
 = 0.67), model F

sp
 (Adj R

2 
= 

0.68), model H
sp

 (Adj R
2
 = 0.67), model J

sp
 (Adj R

2
 = 0.69) and model L

sp
 (Adj R

2
 = 0.70). 

Table 3.4: Regression results for the prediction of shear force and IMF, presented 

are the adjusted coefficient of determination (Adj R2) and residual mean square 

error (RMSE) using information from SCTS only (sp) or a combination of SCTS and 

two dimensional single-slice scans (com) 

 Shear Force IMF 

 sp com sp com 

Model Adj R2 RMS

E 

Adj R2 RMSE Adj R2 RMSE Adj R2 RMSE 

A 0.03 0.16 0.03 0.16 0.50 0.47 0.50 0.47 

B 0.03 0.16 0.07 0.16 0.67** 0.39 0.68** 0.39 

C 0.04 0.16 0.05 0.16 0.51 0.48 0.52 0.48 

D 0.04 0.16 0.04 0.16 0.56 0.46 0.60 0.43 

E 0.03 0.16 0.10* 0.16 0.55 0.46 0.58 0.45 

F 0.04 0.16 0.09 0.16 0.68** 0.39 0.70** 0.38 

G 0.04 0.16 0.10* 0.16 0.58 0.45 0.60 0.43 

H 0.04 0.16 0.09 0.16 0.67** 0.39 0.68** 0.39 

I 0.05 0.16 0.09 0.16 0.55 0.46 0.56 0.46 

J 0.05 0.16 0.12* 0.16 0.69** 0.38 0.70** 0.37 

K 0.05 0.16 0.13* 0.15 0.69** 0.38 0.70** 0.37 

L 0.06 0.16 0.13* 0.15 0.70** 0.38 0.71** 0.37 

M 0.02 0.16 0.08 0.16 0.54 0.47 0.63* 0.42 

N 0.02 0.16 0.09 0.16 0.57 0.45 0.66** 0.40 

O 0.03 0.16 0.10* 0.16 0.59 0.44 0.67** 0.40 

P 0.04 0.16 0.10* 0.16 0.62* 0.42 0.67** 0.39 

sp Using SCTS information 
com Using a combination of SCTS and single-slice CT information 
*Adj R2 differs significantly from the baseline model (A) (P > 0.05) 
**Adj R2 does not differ significantly from the most accurate model (L) (P < 0.05) 

 

3.4.2  Predicting shear force and IMF content using a combination of 

SCTS and single-slice scan information 

Models using a combination of SCTS information and single-slice scan information (
com

) 

were compared to the simple linear model using only Pr_Cfat for the predictions of both 

shear force and IMF. In the analysis for the prediction of shear force, prediction accuracies 
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were significantly improved with the inclusion of information from the single-slice scan 

images (ISC, TV8). Nonetheless, the overall results show that the maximum prediction 

accuracy achieved for shear force, from models developed was Adj R
2
 = 0.13 (Table 3.4).  

In the prediction of IMF, ten of the fifteen models tested were significantly greater in 

prediction accuracies than that of Pr_Cfat alone (P < 0.05). From these models the single 

‘best’ model was identified as model L
com

 (Adj R
2
 = 0.71):  

                                                                 

                                                              

                                  

Descriptions of acronyms used in the models are described in table 3.1.  

All models identified as significant previously were then tested against model L
com

 and any 

that were significantly different in prediction accuracy were discarded (P > 0.05), the only 

model identified was model M
com

 (Adj R
2
 = 0.63). These analyses therefore identified nine 

“best” models with similar prediction abilities: L
com  

(Adj R
2
 = 0.71); F

com
, J

com
 and K

com
 (Adj 

R
2
 = 0.70); B

com
 and H

com
 (Adj R

2
 = 0.68); O

com
 and P

com
 (Adj R

2
 = 0.67); and N

com
 (Adj R

2
 = 

0.66). Regression results for all models are presented in Table 3.4. 

3.4.3  Model cross-validation and selection    

Given the poor prediction abilities of CT for shear force using the parameters tested, cross-

validation analysis for the prediction of shear force was not carried out. Fourteen possible 

models in the prediction of IMF were identified.  None of these models had significantly less 

prediction accuracy (P > 0.05) than the single ‘best’ model from both SCTS information and 

a combination of SCTS information and single-slice scan information (Model L
com

),  so all 

were retained for cross-validation analyses. For cross-validation, fourteen prediction 

equations were derived using the calibration data set (n = 236), corresponding to the 

independent variables identified in the final selected models from the original stepwise 
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regression analyses. The models were then used to predict the chemical IMF values of lambs 

in the independent validation data set (n = 134). Final cross-validation results, coefficients of 

determination (R
2
) and residual mean square errors of prediction (RMSEP) are presented in 

Table 3.5.  

The model with the strongest cross-validity was model N
com

 (R
2 
= 0.67, RMSEP = 0.40) 

using both SCTS information and single-slice scan information, including CT predicted 

carcass fat (Pr_Cfat), weighted average density of soft tissue and its standard deviation 

(w_std and w_stsd) in the spiral scan of the loin, average soft tissue density and its standard 

deviation in the ischium scan (ISCSTD and ISCSTSD), average soft tissue density in the 8
th
 

thoracic vertebra scan and its standard deviation (TV8STD and TV8STSD). The R
2 
of this 

model (N
com

, R
2 
= 0.67) was compared with the thirteen remaining models in the cross-

validation analysis using Fisher’s z transformation (Rasch et al., 1978). All of the models 

performed as well as model N in the cross-validation analysis (P < 0.05; R
2 
= 0.59 to 0.66). 

This left fourteen models for consideration as predictors of IMF, five of which used only 

SCTS information alongside Pr_Cfat, and nine of which used a combination of SCTS 

information and single-slice information alongside Pr_Cfat. Details of the final selected 

prediction models developed from the entire data set are presented in Table 3.6. These 

included Models B
sp

, F
sp

, H
sp

, J
sp

 and L
sp

 using SCTS information and models B
com

, F
com

, 

H
com

, J
com

, K
com

, L
com

, N
com

 , O
com

 and P
com

 using a combination of information from both the 

single-slice scans and SCTS. 
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Table 3.5: Cross-validation results: adjusted coefficient of determination (Adj R2), 

residual mean square error (RMSE) of calibration; and coefficient of determination 

(R2) and residual mean square error of prediction (RMSEP) of the validation data 

Model Calibration (n=236) Validation (n=134) 

 Adj R2 RMSE R2 RMSEP 

Bsp 0.69 0.41 0.60 0.34 

Fsp 0.70 0.41 0.59 0.34 

Hsp 0.69 0.41 0.60 0.34 

Jsp 0.70 0.41 0.62 0.33 

Lsp 0.71 0.40 0.62 0.33 

Bcom 0.71 0.40 0.64 0.32 

Fcom 0.71 0.40 0.64 0.32 

Hcom 0.70 0.40 0.64 0.32 

Jcom 0.72 0.40 0.66 0.31 

Kcom 0.71 0.40 0.65 0.32 

Lcom 0.72 0.39 0.65 0.32 

Ncom 0.66 0.43 0.67 0.31 

Ocom 0.67 0.43 0.64 0.32 

Pcom 0.67 0.42 0.64 0.32 

sp Model uses information from spiral scans only 
com Model uses information from a combination of spiral and two dimensional scans 
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Table 3.6: Final prediction models and equations derived from the whole data set, 

adjusted coefficient of determination (Adj R2) and residual mean square error of the 

prediction (RMSEP) 

sp Model uses information from Pr_Cfat and spiral scans only 
com Model uses information from Pr_Cfat and a combination of spiral and single-slice 

scans 

Explanations of acronyms used in the models can be found in Table 3.1 

 Discussion 3.5 

It has been demonstrated in previous studies that information from single or multiple CT 

scans can provide moderately accurate predictions of IMF in different sheep breeds. 

Prediction accuracies range from R
2
 = 0.33 to 0.68. Karamichou et al. (2006) reported a 

Model Final prediction model equation Adj R2 RMSEP 

Bsp y=8.048+0.2508*Pr_Cfat-0.1551*w_md 0.67 0.39 

Fsp y=7.897+0.2347*Pr_Cfat-0.1720*w_md-0.01514*w_fd 0.68 0.39 

Hsp y=7.10+0.2326*Pr_Cfat-0.1474*w_md+0.0319*w_msd 0.67 0.39 

Jsp y=7.62+0.1134*Pr_Cfat-0.1566*w_md+0.0401*w_mSD-0.02682*w_fd-0.0417*w_fsd 0.69 0.38 

Lsp y=7.773+0.1808*Pr_Cfat-0.1379*w_md+0.000000881*f_vol-0.000000038*m_vol 0.70 0.38 

Bcom y=8.275+0.2248*Pr_Cfat-0.1113*w_md-0.0490*TV8MD 0.68 0.39 

Fcom y=7.794+0.1704*Pr_Cfat-0.1347*w_md-0.01553*w_fd+0.0183*ISCMD-0.0600*TV8MD-

0.00471*TV8FD 

0.70 0.38 

Hcom y=7.39+0.2079*Pr_Cfat-0.1043*w_md+0.0298*w_mSD-0.0488*TV8MD 0.68 0.39 

Jcom y=6.66+0.1054*Pr_Cfat-0.1138*w_md+0.0661*w_mSD-0.02761*w_fd-0.0250*w_fSD-

0.0502*TV8MD 

0.70 0.37 

Kcom y=5.78-0.1051*w_md+0.0549*w_mSD-0.01753*w_fd+0.000000769*f_vol+0.0437*ISCMSD-

0.00703*ISCFD-0.0189*ISCFSD-0.0533*TV8MD 

0.70 0.37 

Lcom y=7.675+0.3125*Pr_Cfat-0.0978*w_md-

0.000000299*m_vol+0.000001196*f_vol+0.0168*ISCMD+0.0371*ISCMSD-

0.0000393*ISCMA-0.0543*TV8MD+0.0000236*TV8MA-0.0001298*TV8FA 

0.71 0.37 

Ncom y=7.099+0.1101*Pr_Cfat-0.0305*w_std-0.0368*w_stSD-0.0205*ISCSTD-

0.04523*TV8STD+0.0103*ISCSTSD-0.0404*TV8STSD 

0.66 0.40 

Ocom y=7.382+0.2253*Pr_Cfat-0.0251*w_std-0.0332*w_stSD+0.000001035*f_vol-

0.0322*ISCSTD+0.0142*ISCSTSD-0.04967*TV8STD-0.0387*TV8STSD-0.0001178*ISCFA-

0.0001394*TV8FA 

0.67 0.40 

Pcom y=8.554+0.4879*Pr_Cfat-0.0330*w_std-0.0448*w_stSD+0.000001051*f_vol-

0.000000243*m_vol-0.0000566*ISCMA-0.05713*TV8STD-0.0357*TV8STSD-

0.0002859*TV8FA+0.0000371*TV8MA 

0.67 0.39 
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prediction accuracy for Scottish Blackface lambs of R
2
 = 0.33, using only information on 

muscle density provided by three single-slice scan images. Similar prediction accuracies (R
2
 

= 0.36) were reported for purebred Texel lambs by Lambe et al. (2010a), using muscle 

density measurements from one single scan at the 5
th
 lumbar vertebra. In the same study, 

these accuracies were improved by including fat density and the standard deviation of both 

fat and muscle density to the model, resulting in an increase in accuracy of 12% (R
2
 = 0.48). 

Similar lean tissue measurements, as well as a fat tissue area measurements (mm
2
) from a 

single cross-sectional scan at the 2
nd

 lumbar vertebra, were used to predict IMF in a study 

including three terminal sire breeds (Suffolk, Texel and Charollais), achieving a prediction 

accuracy of 57% (Macfarlane et al., 2005). These studies and the work carried out in chapter 

2 , reporting a maximum prediction accuracy of 68%, have provided evidence of the 

potential use of single-slice CT scanning as a predictor of IMF in different sheep breeds.  

The results from this study provide evidence that slight further improvements in the 

prediction of IMF are possible and the use of information from both spiral CT scans and a 

combination of SCTS and single-slice scans can adequately predict intramuscular fat content 

in the loin of purebred Texel sheep.  Prediction models using SCTS parameters for the 

assessment of IMF content, achieved a maximum accuracy of AdjR
2
 = 0.70 and 0.71, using 

either SCTS information only, or a combination of SCTS and single-slice scan information 

respectively.  

The results from this study indicate that there are several potential prediction models that 

may be developed, using different combinations of CT and SCTS parameters. A number of 

potential prediction models, with increasing degrees of complexity, had similar prediction 

accuracies for IMF, which again could be indicative of a possible ceiling in the achievable 

prediction accuracies we may expect using these types of CT variables, as discussed in 

chapter 2 (Max. R
2
 = 0.68). It is also apparent that the application of this relatively novel 



100 

 

SCTS technology does not result in significant gains in accuracy when compared to the 

accuracies reported in chapter 2 (P < 0.05).  

Models that included increasing numbers of independent variables appeared to be slightly 

less transferable when cross-validated against the independent time series data. Although not 

significant, the models including fewer independent variables and more direct measures of 

soft tissue density (average and standard deviation) were generally more robust during cross-

validation. This suggests that the complexity of the model may have an effect on the 

accuracy of prediction when applied to an independent data set, as discussed in chapter 2 

where, in previous studies, the complexity of models used to predict IMF in pork loins in 

vivo and post-mortem had an effect on the transferability of the models to independent data 

sets (Font-i-Furnols et al., 2013; Kongsro and Gjerlaug-Enger, 2013).  

As was reported in chapter 2, for single-slice CT, the use of SCTS parameters failed to 

adequately estimate shear force of the loin, producing an upper limit of R
2
 = 0.13. Similar 

studies carried out by Lambe et al. (2008c)  and Karamichou et al. (2006) reported low 

phenotypic correlations between two dimensional CT variables and shear force (r = 0.15 – 

0.22, r = 0.16 respectively).  

As previously discussed in chapter 2, IMF is regarded as an important factor in the eating 

quality of meat when related to mouth feel, tenderness, juiciness and species-specific 

flavour, the relationship between shear force and IMF is less clear. Other factors such as 

cooking loss, ultimate pH, post-mortem glycolysis and conditioning (ageing) play an 

important role in the conversion of muscle to meat, and these post-mortem changes, may 

have significant effects on shear force results and are therefore not picked up by CT 

technology prior to slaughter. There is evidence of a linear relationship between shear force 

values in cooked meat samples and solvent-extracted IMF content  in raw meat samples and 
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it is generally accepted that this relationship exists (Hopkins et al., 2006; Pannier et al., 

2014b; Safari et al., 2001), although the size of the effect is often debated.  

This study shows that there may be several models and combinations of parameters using 

SCTS technology to predict IMF as a proxy for meat eating quality traits. This being the 

case, it is clear that the application of CT predicted traits such as IMF could be included into 

current breeding programmes to allow for the simultaneous selection of animals with 

desirable production, carcass and meat quality traits. Although CT measurements are initially 

expensive to record, however, CT scanning is now routinely incorporated into Terminal sire 

breeding programmes in the UK. And as part of this scanning, 3-dimensional information is 

routinely captured, therefore such novel traits (including the use of SCTS) can be 

retrospectively estimated on a large numbers of animals and incorporated into current 

breeding programmes with no extra scanning costs associated. 

Current ‘two stage’ selection practices for carcass composition select in the first step  

animals using ultrasound scanning, which is more applicable to a larger number of animals, 

providing cost-effective, but less accurate, measures of carcass traits. This is then followed 

by further selection of the top ranked animals from the pre-selection stage, using more 

accurate measurements of carcass traits with CT (Bunger et al., 2011).  

This current research and the study in chapter 2 alongside further research into the inclusion 

of meat quality traits into breeding programmes, would allow further selection of the top 

ranked animals from the pre-selection stage based on more accurate measurements of carcass 

traits alongside IMF. The application of these methods across different terminal sire breeds, 

and the investigation of genetic relationships between CT predictors and other relevant 

carcass traits, could enable IMF predictors to be included in current breeding programmes, 

providing valuable information related to meat eating quality aspects of lamb.  
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 Conclusion 3.6 

In conclusion, the prediction of mechanical shear force could not be achieved at an 

acceptable level of accuracy employing information from SCTS. However, the prediction of 

IMF in the loin employing information from SCTS with or without additional information 

from single-slice scans was more promising. This study provides valuable evidence that the 

prediction of IMF, as a proxy measure of related meat eating quality traits, for Texel lambs 

in vivo can be achieved using spiral x-ray CT technology. However the increase in accuracy 

when employing SCTS technology was not significant when compared to previous studies 

using single slice scanning procedures (P < 0.05; Chapter 2). This suggests that the use of 

SCTS technology in the prediction of IMF does not adequately increase prediction 

accuracies to justify additional image analysis involved in the processing of the resulting 

data. Therefore we can conclude that, although the methods used in this study were 

successful in the prediction of IMF, the increased image analysis and processing currently 

required does not justify the increase in accuracy achieved when compared to CT predictors 

that could be measured using current single-slice scan procedures. 
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Chapter 4:  Comparison of carcass and meat quality traits of divergent 

sheep genotypes and In vivo prediction of intramuscular fat content 

in the loins of divergent sheep genotypes using X-ray computed 

tomography 
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 Summary 4.1 

The purpose of this chapter was firstly to compare different genotypes regarding carcass 

fatness and IMF content, and secondly to investigate the application and accuracy of CT-

derived IMF estimations detailed in chapter 2, developed in terminal sires, on divergent 

commercial lamb genotypes. Data were available from three different genotypes: Texel (n = 

370), Scottish Blackface (n = 230) and Texel cross Scotch Mule (n = 165). Lambs were CT 

scanned pre-slaughter and post-slaughter IMF was measured in the dissected loin muscle 

(M. Longissimus lumborum). After adjusting for pre-slaughter live weight, IMF was 

significantly affected by genotype (P<0.001) with Scottish Blackface lambs having higher 

levels of IMF when compared to Texel cross mule lambs, and the lowest levels of IMF were 

in the purebred Texels at the same liveweight or at similar levels of carcass fatness . Within 

genotype, females had significantly higher levels of IMF in both the purebred Texels and 

Scottish Blackface lambs, when compared at similar levels of carcass fat and liveweight  

(P<0.05) .  In the estimation of IMF content from CT data, using models previously 

developed from terminal sire data in chapter 2 (Purebred Texel), accuracies were within the 

range R
2
 = 0.57 – 0.64 in Scottish Blackface lambs and R

2
 = 0.37 – 0.38 in Texel cross 

Scotch Mule lambs. The results provide evidence that the models developed on terminal sire 

data to predict IMF using CT are transferable across divergent genotypes, producing 

acceptable accuracies given that there is currently no non-destructive method for predicting 

this important meat quality trait (IMF) in-vivo. 

 Introduction 4.2 

X-ray computed tomography (CT) not only provides information on carcass tissue areas, 

volumes and weights, but resulting CT muscle density parameters have also been shown to 
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be good predictors of IMF (Karamichou et al., 2006; Lambe et al., 2010a; Macfarlane et al., 

2005). 

Current studies have concentrated on the application of CT information in the prediction of 

IMF levels in the loin of terminal sire breeds, producing prediction accuracies ranging from 

63% - 71%  (Chapter 2 and 3), employing information from various CT variables collected 

during routine single-slice and spiral CT scanning procedures (Bunger et al., 2011). 

However, CT also has the potential to be of interest in the acceleration of genetic 

improvement of carcass traits in maternal and crossbreeding selection programmes 

(Conington et al., 2006), because of its higher accuracy compared to the sole use of 

ultrasound techniques. Crossbred lambs make up the majority of the UK slaughter 

population and about 75% of all ewe mating’s in 2012 were crosses (either purebred and 

mated to a sire from another breed type or a crossbred ewe type mated to a sire of another 

breed type). It was also estimated that 60% of the slaughter lamb crop in the UK was born to 

ewes of hill or hill cross breed types (Pollott, 2012). The purpose of this chapter was (i) to 

compare different genotypes regarding their IMF levels and (ii) to investigate the accuracy of 

prediction equations to estimate IMF in-vivo using CT data, that were developed using data 

from a terminal sire sheep breed (pure-bred Texel; Tex), when used in two divergent 

genotypes:  a typical UK commercial crossbred slaughter lamb (Texel x Scottish Mule; 

TexX) and a UK hill sheep breed (Scottish Blackface; SBF). 

 Materials and methods 4.3 

4.3.1  Experimental Animals 

The Texel lambs are described in Chapter 2, however to act as a brief reminder and also to 

compare alongside the other breeds used in this study, they are also presented here. Data 

from Tex lambs (n=377) were collected in two previous studies, for which full details can be 
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found in Lambe et al. (2008) and Lambe et al. (2011) and Chapter 2. The combined studies 

provided data comprising of information from Texel lambs of both sexes (female and entire 

males) produced over three separate years (2003, 2004 and 2009). Lambs were reared to 

weaning as either singles (n=184), or twins (n=168), or were artificially hand reared (n=25). 

Data from SBF (n=233) lambs of both sexes (females and entire males) were collected as 

part of the same trial as for the Texels in 2003 and 2004, full materials and methods can be 

found in Lambe et al. (2008). Lambs were reared to weaning as either singles (n=106), twins 

(n=124), or artificially hand reared (n=3), and comprised of entire males and females.  

Data from TexX lambs (n=168) of both sexes (females and castrates) were collected as part 

of a separate historical trial conducted in 2006, full materials and methods of which can be 

found in Lambe et al (2010c). Lambs were reared as either twins (n=137) or singles (n=29). 

Litter size during rearing was unknown for the remaining 2 lambs in the dataset. Details of 

animals used in the study, including within genotype statistics of sex, live weight, slaughter 

weight CT carcass fat weight and IMF% can be found in Table 4.1 

All lambs in each study were grazed on low-ground pastures, with the Tex and SBF lambs 

included in the 2003-2004 trial finished with condition score and live weight used as 

indicators of readiness for slaughter. The remaining Tex lambs (2009) and TexX lambs 

(2006) were reared to approximately 20 weeks of age, weaned from their mothers, and 

slaughtered. Measured CT traits, liveweight at CT, and slaughter traits (chemically-extracted 

IMF and age at slaughter) and their acronyms can be found in Table 4.2. 
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Table 4.1: Trait descriptions, means and standard deviations (SD) in Purebred Texel (Tex), Scottish Blackface (SBF) and Texel cross 

Mule (TexX) lambs, within sex  

  Tex 

Male(n=171)  

Female(n=199) 

SBF 

Male(n=127) 

Female(n=103) 

TexX 

Male(n=82)  

Female(n=83) 

Trait Description Mean Min-max SD Mean Min-max SD Mean Min-max SD 

CTLWT Live weight at time of CT scanning          

 Male (Castrates in TexX) 36.2 20.6-49 5.18 35.3 29.8-43.6 3.23 40.3 28.6-51.6 4.88 

 Female 34.6 22.3-45.1 4.45 33.2 28.1-38.5 2.62 38.9 23.8-49.8 4.33 

CT_Age Age at CT           

 Male (Castrates in TexX) 131 93-202 20.5 141 105-202 22.9 144 132-151 4.3 

 Female 133 95-196 21.43 149 109-202 24.3 143 133-152 4.9 

Pr_Cfat CT Predicted total carcass fat weight (kg)          

 Male (Castrates in TexX) 2.1 0-4.8 0.95 2.7 1.2-5.9 0.92 3.3 0.8-7.1 1.16 

 Female 2.6 0.3-6.9 1.20 3.3 1.6-5.8 1.01 3.8 0.4-7.3 1.2 

Pr_IMF_A M. longissimus lumborum CT predicted extracted intra-muscular fat 

(%) 

         

 Male (Castrates in TexX) 1.31 0.2-2.7 0.49 2.0 1.1-2.9 0.38 1.9 0.7-2.9 0.48 

 Female 1.63 0.04-3.3 0.57 2.4 1.4-3.5 0.43 2.2 0.4-3.5 0.47 

Pr_IMF_B M. longissimus lumborum CT predicted extracted intra-muscular fat 

(%) 

         

 Male (Castrates in TexX) 1.25 0.2-2.5 0.42 2.3 1.0-4.2 0.58 2.1 0.9-4.4 0.61 

 Female 1.68 0.1-4.1 0.59 3.1 1.7-4.9 0.75 2.5 0.7-4.8 0.69 

Chem_IMF M. longissimus lumborum chemically extracted intra-muscular fat (%)          

 Male (Castrates in TexX) 1.25 0.3-3.7 0.59 2.1 0.2-4.4 0.79 2.1 0.8-3.9 0.62 

 Female 1.68 0.4-3.9 0.70 2.5 0.4-4.6 0.79 2.2 0.7-3.8 0.59 

SL_Age Age at slaughter          

 Male (Castrates in TexX) 149 109-234 22.8 158 114-229 25.7 149 139-156 4.15 

 Female 150 99-228 23.8 168 113-230 27.9 149 139-157 4.9 
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Table 4.2: Trait descriptions, means and standard deviations (SD) in Purebred Texel (Tex), Scottish Blackface (SBF) and Texel cross 

Mule (TexX) lambs   

   Tex (n=370) SBF (n=230) TexX (n=165) 

  Trait Description Mean Min-max SD Mean Min-max SD Mean Min-max SD 

CT Traits           

 CTLWT Live weight at time of CT scanning 35.35 20.6-49 4.87 34.36 28.1-43.6 3.14 39.62 23.8-51.6 4.64 

 CT_Age Age at CT  133 93-202 21.01 145 105-202 23.86 144 132-152 4.62 

 LV5MD Average muscle density in 2D scan at the 5
th

 lumbar vertebra (HU) 48.30 41.8-55.9 2.65 44.68 38.7-50.3 2.11 46.45 41.2-53.2 2.06 

 TV8MD Average muscle density in 2D scan at the 8
th

 thoracic vertebra (HU) 44.68 36.5-54.7 2.98 39.90 32.2-51.1 2.53 41.99 37.3-51.4 2.37 

 LV5STD Average soft tissue density in 2D scan at the 5
th

 lumbar vertebra (HU) 

 

36.22 -1.6-49.5 8.09 18.91 -14.4-44.6 12.27 22.62 -15.6-46.5 11.14 

 TV8STD Average soft tissue density in 2D scan at the 8
th

 thoracic vertebra (HU) 21.84 -21.1-46.2 11.35 2.54 -26.6-33.9 12.07 5.41 -27.7-34.4 12.34 

 ISCSTSD SD of soft tissue density in 2D scan at the ischium (HU) 40.34 29.3-57.9 5.66 49.40 33.9-66.4 6.02 49.04 34.8-60.9 5.58 

 LV5STSD SD of soft tissue density in 2D scan at the 5
th

 lumbar vertebra (HU) 40.33 30.4-64.7 6.19 51.46 31.3-69.1 8.09 51.27 -15.6-46.5 8.44 

 TV8STSD SD of soft tissue density in 2D scan at the 8
th

 thoracic vertebra (HU) 50.56 34.1-68.1 6.70 58.01 41.6-68.8 5.49 59.34 42.5-71.9 6.40 

 Pr_Cfat CT Predicted total carcass fat weight (kg) 2.34 0-6.9 1.11 3.01 1.2-5.9 1.00 3.54 0.4-7.3 1.21 

 Pr_IMF_A M. longissimus lumborum CT predicted extracted intra-muscular fat (%) 1.48 0.04-3.3 0.56 2.19 1.1-3.5 0.44 2.07 0.4-3.5 0.48 

 Pr_IMF_B M. longissimus lumborum CT predicted extracted intra-muscular fat (%) 1.48 0.1-4.1 0.56 2.64 1-4.9 0.77 2.29 0.7-4.8 0.68 

Slaughter Traits           

 Chem_IMF M. longissimus lumborum chemically extracted intra-muscular fat (%) 1.48 0.3-3.9 0.68 2.28 0.2-4.6 0.82 2.14 0.7-3.9 0.61 

 SL_Age Age at slaughter 150 99-234 23.3 163 113-230 27.16 149 139-157 4.56 
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4.3.2  Computed Tomography (CT) measurements 

In each of the studies described above lambs were CT scanned prior to slaughter. The CT 

and image analysis procedures are explained in detail in chapter 2. In brief for the 3 different 

genotypes two dimensional (2D) cross-sectional scans (Field of view = 450mm, Resolution 

= 512x512 pixels) were taken at 3 defined anatomical positions, at the ischium bone (ISC), 

the fifth lumbar vertebra (LV5), and at the 8
th
 thoracic vertebra (TV8) (Figure 4.1). Image 

analyses were performed to separate carcass from non-carcass tissues (Glasbey and Young, 

2002) and the density of each pixel (0.77mm
2
) in the carcass portion was allocated to fat, 

muscle or bone, according to density thresholds using Sheep Tomogram Analysis Routines 

(STAR) software (Mann et al., 2013). Areas (mm
2
) and average densities (Hounsfield units; 

HU) of each tissue in each 2D image were calculated, as well as standard deviations for the 

density values of all pixels allocated to each tissue. A novel average soft tissue density (and 

its standard deviation) was also calculated, combining the information from all pixels 

allocated as fat or muscle. 

CT-predicted carcass fat (Pr_Cfat), as a measure of subcutaneous and intermuscular fat, was 

also calculated, by combining data from these 3 single-slice CT scans with live weight, using 

breed-specific prediction equations developed from previous research (Lambe et al., 2006; 

Macfarlane et al., 2006a; Macfarlane et al., 2006b).  

The statistical description for CT traits included in the prediction models as well as the age, 

live weight at CT scanning and age at slaughter for the breed/crossbred lambs is presented in 

Table 4.2. 

4.3.3  Slaughter and Meat quality measurements 

Chemically-extracted IMF (Chem_IMF) in all studies was measured at the University of 

Bristol post-slaughter in a cross-sectional slice taken from the cranial end of the M. 

longissimus lumborum. Each sample was blended to a fine paste and petroleum ether (B.P. 
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40-60
o
C) used as the solvent in a modified Soxhlet extraction (AOAC, 1990). Two tests 

were performed per sample and averaged.  

Results from the Texel study in chapter 2 identified two (A, B) optimum prediction 

equations based on available CT information with prediction accuracies of Adj R
2
 = 0.66 and 

0.68 respectively: 

A: CT Predicted IMF (Pr_IMF_A) (%) = 6.920 + (Pr_Cfat*0.2425) – (LV5MD*0.0654) – 

(TV8MD*0.0637) 

B: CT Predicted IMF (Pr_IMF_B) (%) = 7.320 + (Pr_Cfat*0.0565) – (LV5STD*0.0626) – 

(TV8STD*0.03585) + (ISCSTSD*0.02209) – (LV5STSD*0.0565) – (TV8STSD*0.0303) 

Where MD = average muscle density, STD = average soft tissue density, STSD = standard 

deviation of soft tissue density 

 

Figure 4.1 Topogram (Top) and single slice CT scan images (bottom) at the ischium 

(i), 5th lumbar vertebra (ii) and 8th thoracic vertebra (iii) 

 

4.3.4  Statistical analyses 

Prior to any statistical analyses, animals with missing values for CT or MQ information were 

excluded (Tex; n=4, SBF; n=3, TexX; n=2), animals with IMF values greater than three 
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standard deviations from the mean were considered outliers and also excluded (Tex; n=3, 

TexX; n=1).  

Equations used here for the prediction of IMF using CT variables (Pr_IMF) were derived 

and validated in chapter 2, using various CT variables from the 3 single-slice CT scans 

described above in pure-bred Texel lambs (n=370) and relating them to Chem_IMF. Full 

details of materials and methods can be found in chapter 2. 

Assuming that there is no significant effect of experiment or year of trial, a two way general 

linear model analysis of variance (ANOVA) for unbalanced design in Genstat14
TM

 (Payne et 

al., 2012) was carried out to estimate the effect of genotype and sex within genotype on 

Chem_IMF and Pr_Cfat. Analysis of sex across genotype was not carried out as a result of 

the TexX data including male castrates and the Tex and SBF data including entire males. 

The initial model for Chem_IMF included live weight at pre-slaughter CT (CTLWT) fitted 

as a covariate with fixed effects of genotype, and the interaction between genotype and sex. 

The secondary model for Chem_IMF included CT predicted carcass fat (Pr_Cfat) fitted as a 

covariate, and fixed effects of genotype, and the interaction between genotype and sex. The 

model for Pr_Cfat included CTLWT fitted as a covariate with fixed effects for genotype, and 

the interaction between genotype and sex. Both age at CT scanning (CT_Age) and age at 

slaughter (SL_Age) effects were tested as covariates in separate models and were shown not 

to be significant (P = 0.92 and 0.89 respectively). 

In the evaluation of prediction models (A and B) across genotypes, models were tested 

within genotype fitting each model’s predicted values as the explanatory variable in a linear 

regression of Chem_IMF using Genstat14
TM

. Accuracies for the predictions in SBF and 

TexX were then compared, using their correlation coefficient (r) applying Fisher’s Z 

transformation (Rasch et al., 1978), against that of the original correlation coefficient (r,  

with r =√R
2
) achieved in the terminal sire development data  with which these equations 

were derived. 
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 Results  4.4 

4.4.1  Genotype comparison of Chem_IMF and Pr_Cfat 

After adjusting for CTLWT, Chem_IMF in the loin was significantly affected by genotype 

(P <0.001), with the highest levels in SBF, followed by TexX, then Tex (Table 4.3). Sex 

within genotype was also shown to have a significant effect on Chem_IMF, after adjusting 

for CTLWT, with females showing higher values than males.  

Fitting the same model, but adjusting for Pr_Cfat rather than CTLWT, means for Chem_IMF 

still showed a significant genotype effect (P <0.001) and each genotype ranked similarly as 

with the previous model. Sex within genotype for both Tex and SBF was significant, 

however no significant effect of sex within genotype was shown in the TexX, where the 

males had been castrated (Genotype x Sex; Table 4.3). 

After adjusting for CTLWT, the predicted means for Pr_Cfat show that there was a 

significant genotype effect on Pr_Cfat (P <0.001), with SBF lambs ranking highest and Tex 

lambs ranking lowest. A significant sex effect was shown within genotype where females 

ranked significantly higher than males in all genotypes (P <0.05; Table 4.3)
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Table 4.3: Adjusted least square means for the effects of genotype and genotype by sex interaction on Chem_IMF and Pr_Cfat. Standard 

error of the means (s.e) or standard errors of the difference between means (s.e.d) are shown. 

Factor Genotype Genotype × Sex 

 Tex SBF TexX s.e.d p value Tex SBF TexX 

      Male 

(s.e) 

Female 

(s.e) 

Male 

(s.e) 

Female 

(s.e) 

Male 

(s.e) 

Female 

(s.e) 

Chem_IMF
* 

1.51
a 

2.42
b 

1.90
c 

0.06 <0.001 1.23
a
 

(0.05) 

1.77
b
 

(0.04) 

2.12
a
 

(0.06) 

2.72
b
 

(0.06) 

1.81
a 

(0.07) 

1.99
b
 

(0.07) 

Chem_IMF
**

 1.67
a 

2.20
b 

1.83
c 

0.05 <0.001 1.55
a
 

(0.04) 

1.78
b
 

(0.04) 

2.10
a
 

(0.05) 

2.30
b
 

(0.05) 

1.91
a
 

(0.06) 

1.76
a
 

(0.06) 

Pr_Cfat 2.44
a 

3.39
b 

2.81
c 

0.06 <0.001 2.04
a
 

(0.05) 

2.83
b
 

(0.05) 

2.87
a
 

(0.06) 

3.89
b
 

(0.06) 

2.39
a
 

(0.07) 

3.22
b
 

(0.07) 

*Model corrected for CTLW, **Model corrected for Pr_Cfat, Genotype means not sharing a common character in their superscript, within 

factor (same row), are significantly different (p<0.05), Genotype × Sex means not sharing a common character in their superscript, within 

genotype (same column) and within factor (same row), are significantly different (p<0.05) 

Table 4.4: Validation of selected models across SBF and TexX data sets 

 Texel SBF TexX 

Model Adj R
2
 (RMSEP) R

2
 (RMSEP) R

2 
(RMSEP)

 

A 0.66 (0.40) 0.64 (0.49) 0.37* (0.48) 

B 0.68 (0.39) 0.57* (0.54) 0.36* (0.49) 

* Coefficient of determination (R2) is significantly different from development data (Texel) (P<0.05) 
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4.4.2  Accuracy of prediction equations in SBF and TexX 

Model A, derived using Tex data (Chapter 2), which included information from CT predicted 

carcass fat (Pr_Cfat), average muscle density in the fifth lumbar vertebra scan (LV5MD) and 

average muscle density in the eighth thoracic vertebra scan (TV8MD), performed well when 

validated in the SBF data, resulting in R
2
 = 0.64, but resulted in a significant reduction in the 

coefficient of determination (R
2
) when validated using the TexX data (R

2
 = 0.37; Table 4.4). 

Model B, also derived on Tex data, which included information from CT predicted carcass 

fat (Pr_Cfat), average soft tissue density in the fifth lumbar vertebra and eighth thoracic 

vertebra scans (LV5STD, TV8STD) and the standard deviation of soft tissue density in the 

ischium, fifth lumbar vertebra and eighth thoracic vertebra scans (ISCSTSD, LV5STSD, 

TV8STSD), explained a high proportion of the variance (R
2
= 0.68) in the training data set 

(Tex), but explained significantly less variance when validated against both the SBF data and 

the TexX data (R
2
 = 0.57 and 0.36 respectively, Table 4.4). Plots of the fitted values from 

both models (A and B) for all three data sets can be seen in Figure 4.2. 

Because the Tex data were used to derive the prediction equations, the regression 

coefficients for both models are close to 1, as expected (Figure 4.2i). The slopes in Figure 

4.2ii (SBF data) diverge from unity, model A; b = 1.49, P < 0.0001 and model B; b = 0.81, P 

< 0.0001. Both models produce a bias, with model A overestimating lower values and 

underestimating larger values, whilst model B overestimates across the range of values, with 

that overestimation increasing as values increase. The slopes in Figure 4.2iii (TexX data) 

also diverge from unity, model A; b = 0.78, P = 0.004 and model B; b = 0.53, P < 0.0001. 

Both models produce a bias with both model A and B underestimating lower values and 

overestimating higher values, however the bias appears to be greater in model B.  

Plots of the residuals against Chem_IMF from both models (A and B) for all three data sets 

can be seen in Figure 4.3. The slopes for the residuals in the Tex data (Figure 4.3i) indicate 
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that both models are overestimating smaller values and underestimating larger values and 

indicate a bias in the slope in both model A and B (b = -0.34, P<0.001 and b = -0.32, 

P<0.001 respectively). The slopes in Figure 4.3ii (SBF) indicate that both models 

overestimate smaller values and underestimating larger values and again indicate a bias in 

both model A and B (b = -0.57, P<0.001 and b = -0.29, P <0.001 respectively).The slopes for 

the residuals in the TexX data (Figure 4.3iii) indicate that both models are overestimating 

smaller values and underestimating larger values and once again indicate a bias in the 

models (A; b = -0.52, P<0.001 and B; b = -0.33, P<0.001). 

 

 

 

(i)                                                                                                                         
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(ii)  

 
 

 

 

(iii)  

 

Figure 4.2 Fitted values of predicted IMF using both models (A and B) against 

Chem_IMF for the Tex development data (i), SBF data (ii) and the TexX data (iii) 
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(i)  
 

 

 (ii) 
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(iii) 

 

 
 
Figure 4.3 Residual values of predicted IMF using both models (A and B) against 

Chem_IMF for the Tex development data (i), SBF data (ii) and the TexX data (iii) 

 

Table 4.5 compares the average absolute error of CT-predicted IMF in all three genotypes, as 

estimated by the two prediction equations, with Chem_IMF. Average absolute error is 

expressed as the mean of the error of prediction (residuals) expressed as IMF percentage, of 

the fitted values over Chem_IMF. 

Model A performs better in both the SBF and TexX, with an average absolute error of 0.42 

and 0.37 percentage points in SBF and TexX respectively and an average absolute error of 

0.30 in the Tex data. Model B performs slightly better in the Tex data with an absolute error 

of 0.29, however in both the SBF and TexX data, model B has a slightly higher absolute 

error when compared to model A within the same genotype (SBF = 0.53, TexX = 0.45). 
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The phenotypic correlations between Chem_IMF and CT variables are presented in Table 

4.6. This shows weaker phenotypic relationships between CT variables and Chem_IMF in 

the TexX data, compared to the other genotypes. However, although the strength of 

relationship differs across genotypes, the ranking remains similar. The exceptions are the 

relationship between age at CT and Chem_IMF and age at slaughter and Chem_IMF, where 

in the TexX data this relationship is positive, rather than negative as in the Tex and SBF 

data, however the relationship is very weak across all genotypes.   

Table 4.5: Average absolute error, as the absolute mean of the magnitude of the 

residuals expressed as IMF percentage of the Pr_IMF (%) in both models (A and B) 

from Chem_IMF (%) in all three genotypes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotype Tex SBF TexX 

Model Average absolute error  Average absolute error Average absolute error 

A 0.30 0.42
 

0.37 

B 0.29 0.53 0.45 
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Table 4.6: Correlation (r) between Chem_IMF and CT traits employed in the 

prediction models within each data set 

 

 Discussion 4.5 

Acknowledging that the structure of the data available was not optimal for the analysis of the 

effect of genotype and sex on both Chem_IMF and Pr_Cfat given the inclusion of castrates 

in the TexX data set, it is still possible to draw conclusions that there is an effect of genotype 

on both Chem_IMF and Pr_Cfat. It has been previously reported that to ensure consumer 

acceptability, a minimum level of 3% chemical IMF should be achieved in grilled cuts of 

lamb (Savell and Cross, 1988). Although, it should be noted that an up to date and 

comprehensive study on the relationship between IMF in lamb and consumer taste panel 

results in the UK has yet to be carried out and previous papers have highlighted the 

difference in preference of lamb meat in different countries (Sanudo et al., 1998). All three 

genotypes within this study fell below that recommended level at the point at which they 

were slaughtered, and the purebred Texels were significantly lower in both Chem_IMF and 

Pr_Cfat when compared to SBF and TexX. During a separate study employing the same data 

 Texel (n=370) SBF (n=230) TexX (165) 

CTLWT 0.41 0.32 0.26 

CTAGE -0.14 -0.22 0.14 

LV5MD -0.71 -0.60 -0.46 

TV8MD -0.72 -0.56 -0.50 

LV5STD -0.76 -0.74 -0.58 

TV8STD -0.76 -0.73 -0.57 

ISCSTSD 0.68 0.59 0.47 

LV5STSD 0.65 0.68 0.52 

TV8STSD 0.65 0.64 0.50 

Pr_Cfat 0.71 0.74 0.54 

SL_AGE -0.11 -0.14 0.17 

Model A 0.81 0.80 0.61 

Model B 0.82 0.76 0.60 
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it was shown that meat from the SBF lambs had higher tenderness, stronger lamb flavour and 

higher overall liking than the Tex lamb meat (Navajas et al., 2008). In rank order, SBF lambs 

had the highest levels of Pr_Cfat and Chem_IMF, followed by the commercial cross TexX 

and finally Tex lambs. This follows previous research reporting that breeding strategies in 

terminal sire breeds have focussed on increasing lean meat production while maintaining or 

reducing overall carcass fatness and, given the positive genetic correlation between overall 

carcass fatness and IMF in sheep (e.g. (Lorentzen and Vangen, 2012), this selection has 

resulted in extreme low IMF levels in terminal breeds such as the Texel. 

In all genotypes (within genotype), males showed lower levels of Chem_IMF to that of 

females when adjusted for CTLWT.  This difference was also seen in both Tex and SBF but 

not seen in TexX lambs when adjusted for Pr_Cfat with castrates showing higher levels of 

IMF when compared to females at the same Pr_Cfat, although this difference was not 

statistically significant. This probably reflects the fact that the males were castrated in the 

crossbred lambs, whereas SBF and Tex males were entire. 

Females, within genotypes, also showed significantly greater levels of Pr_Cfat than males, 

when compared at the same live weight. These findings agree with previous literature 

reporting in several different breeds that female sheep are on average fatter than both 

castrated and entire males, with the latter being on average the leanest (Bass et al., 1990; 

Butler-Hogg et al., 1984; Dransfield et al., 1990; Kirton et al., 1982).  

In the prediction of IMF across the three genotypes using information from CT, the differing 

results in the transferability of the models from the Tex across the two other genotypes were 

investigated further. It had been expected that the prediction equations would transfer better 

to the TexX lambs than the SBF lambs, as the TexX would be genetically more similar to the 

purebred Tex. Firstly, any obvious difference in summary statistics across data sets, for 

either CT or slaughter traits, was considered, and it was apparent that the data sets for 
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different genotypes did not share the same structure when considering age at CT and age at 

slaughter. Compared to the Tex data set used to derive the prediction equations, the SBF data 

had a higher mean and wider range of age at CT (mean = 145 days, SD = 23.86 vs.133 days, 

SD = 21.01) and age at slaughter (mean = 163 days, SD = 27.16 vs. 150 days, SD = 23.3). 

TexX had a higher mean age at CT than the Tex, but with much lower variation in age (mean 

= 144, SD = 4.62 vs. 133 days, SD = 21.01), whilst age at slaughter was similar, but again 

with much lower variation in TexX (mean = 149, SD = 4.56 vs. 150 days, SD = 23.3). The 

Tex data set, from which the prediction equations were derived, consisted of lambs 

slaughtered at different end-points; fixed age (n = 134) or target live weight and condition 

score (n = 236). The TexX lambs were slaughtered at a defined time point (weaning), 

whereas the SBF lambs were slaughtered at finishing (according to target weight and body 

condition score). To investigate if there was any age effect related to the difference in 

prediction ability across the two data sets, age at slaughter was tested as a variable in the 

models, resulting in no change in the difference in prediction accuracy across the two data 

sets. The SBF data was also truncated to mirror the mean and range of age at slaughter in the 

TexX data. However the prediction accuracies remained at a similar level. 

It was also considered that there may be increases in accuracies of prediction using a breed 

specific approach in the formulation of prediction equations. To investigate any 

improvement this may make in the prediction of IMF in the TexX data (where the greatest 

reduction in accuracies were observed), breed specific coefficients were calculated using the 

same CT variables as in the development data. However, this also resulted in no 

improvement in accuracies. 

It would appear that there are genotype differences in the relationships between CT variables 

and IMF, as shown in Table 4.6. CT variables were, in general, less correlated with IMF in 

SBF than Tex and correlations in TexX were lowest. However, the correlations ranked 

similarly across genotypes, suggesting that the same CT variables had the greatest predictive 
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ability across genotypes. These differences in relationships between Chem_IMF and CT 

variables across genotypes would explain the reduction in prediction accuracy when 

applying equations with the same CT variables. 

A subsequent approach in future development of CT prediction equations for IMF may 

involve the inclusion of multiple genotypes within the data set with the aim of producing a 

multi-breed prediction equation, applicable across breeds. 

The results of this study in the prediction of IMF using CT are comparative to that of 

previous studies in varying genotypes. Prediction accuracies here range from R
2
 = 0.33 to 

0.57. Accuracies of 33% were reported by Karamichou et al (2006) in Scottish Blackface 

lambs, using muscle density information from three reference scans. Lambe et al (2010a) 

reported achievable accuracies of 36% to 48% using varying amounts of fat and muscle 

density information from one single scan in purebred Texel lambs. Also from one single 

cross sectional scan, Macfarlane et al (2005) reported an accuracy of 57% in a study 

including three terminal sire breeds (Suffolk, Texel and Charollais). When considering these 

previously-achieved accuracies in varying breeds, and also considering that there are very 

few, if any, in vivo predictors of meat quality traits, prediction accuracies achieved in the 

divergent genotypes in this study (SBF and TexX) provide promising evidence that the 

current prediction equations estimate IMF with acceptable levels of accuracy across breeds. 

 Conclusion 4.6 

Purebred Texels on average have lower levels of Chem_IMF and Pr_Cfat than TexX and 

SBF lambs. However, it should be noted that, within this study, all three breeds were below 

the recommended minimum levels of IMF found in the literature. 

Within genotype, Tex and SBF females achieve higher levels of IMF than entire males at the 

same carcass fat while, in the TexX, castrated males appear to achieve similar levels of 
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Chem_IMF to that of females. In addition the results of this study show that prediction 

equations derived from a terminal sire (Tex) data set are transferable in the prediction of IMF 

in divergent breeds (SBF and TexX). The transferability and resulting accuracy of prediction 

was better in SBF than in TexX, however levels of accuracy were still at an acceptable level 

in the TexX. Most current terminal sire breeding programmes are focussed almost entirely 

on carcass traits and ignore traits concerned with eating quality such as IMF,  largely due to 

the fact that there were few, if any, in vivo predictors of meat quality in sheep. These results 

provide evidence that prediction equations derived from purebred Texel lambs for 

successfully predicting IMF from CT variables can be transferred across divergent 

genotypes, providing potential for collection of meat quality data that could be incorporated 

into a wide range of breeding programmes. 
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Chapter 5:  Preliminary genetic parameters of CT estimated traits and 

meat quality traits in Texel sheep 
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 Summary 5.1 

The data used in the previous chapters (Chapter 2 and 3) were used to produce genetic 

parameters for the novel IMF CT trait (PIMF1 and PIMF2) and to estimate genetic 

relationships between laboratory based methods of measuring meat (eating) quality 

(chemical IMF, shear force) which would be unavailable in any larger industry based data 

set, alongside growth and CT carcass composition. To enable this, the dataset was extended 

slightly to include animals scanned on the SRUC mobile scanner. Data were used from pure-

bred Texel lambs (n=442) of both sexes (females and entire males), lambs were CT scanned 

at a mean age of 132 days (SD=19.5), Live weights at CT scanning and pre-slaughter were 

recorded and carcass fat weight as estimated by CT was calculated. Post-mortem laboratory 

measures of IMF and shear force were recorded in the loin, mean age at slaughter was 149 

days (SD=21.6). As two different CT scanners were used, scanner specific prediction 

equations were developed for predicted IMF. The equations used for the data from the SRUC 

mobile CT scanner were; 

PIMF1= 5.834 + (Pr_Cfat*0.3268) - (LV5MD*0.0321) - (TV8MD*0.0915) 

PIMF2 = 3.26 - (LV5MD*0.0561) - (TV8MD*0.0983) + (ISCMSD*0.1758) - 

(ISCFD*0.0437) - (LV5FD*0.0137) - (ISCFSD*0.0370) - (LV5FSD*0.0041). 

The equations used for the data from the SRUC fixed site scanner were; 

PIMF1 = 6.920 + (Pr_Cfat*0.2425) - (LV5MD*0.0654) - (TV8MD*0.0637) 

PIMF2 = 7.26 - (LV5MD*0.0720) - (TV8MD*0.0611) + (ISCMSD*0.0748) - 

(ISCFD*0.02090) - (LV5FD*0.00758) - (ISCFSD*0.0344) - (LV5FSD*0.0324) 

Genetic analyses were first attempted using an animal model and subsequently using a sire 

model, fixed effects and covariates were analysed using ASReml 3.0 software. The pedigree 

of the animals (8 generations) consisted of a total of 3868 records, 156 sires and 1239 dams, 

lambs were the progeny of 17 sires and 296 dams. 
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Genetic analyses were largely unsuccessful with both univariate models (animal and sire) 

producing seemingly unreasonable heritabilities or non-convergence of models. As a result 

bivariate analyses were very difficult also and again largely unsuccessful. The main aim of 

the chapter was to make good use of the post-mortem meat (eating) quality measurements 

that were available. Given the restrictions of the data, in particular the combination of small 

animal numbers and that, in recent research it was discovered that the design and research 

objective of one study which contributed a number of animals to the dataset resulted in a 

pedigree structure that limits the effectiveness of this dataset for genetic parameter 

estimation. The results of this chapter are not sufficient to satisfy the main aims.  

 Introduction 5.2 

In the previous chapters, it was shown that computed tomography information can provide 

very accurate in vivo estimates of IMF in the loin of Texel sheep. The aim of this chapter 

was to use the same data set to estimate heritabilities and genetic correlations between the 

available traits (i.e. chemical IMF, CT estimated IMF, mechanical shear force and growth 

and carcass composition traits). The primary objectives of this chapter were to estimate 

preliminary heritabilities of the novel CT-based predictions of IMF and laboratory based MQ 

measurements (chemical IMF and shear force) and estimate genetic correlations between 

these CT-based predictors and post-mortem laboratory based MQ measurements (chemical 

IMF and shear force), which would be unavailable in any larger industry based dataset.  

 Materials and Methods 5.3 

Definitions of trait groups and variables used within the study are shown in Table 5.1. 
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5.3.1  Experimental animals 

A full description of the data and detailed animal procedures can be found in Chapter 2, 

section 2.3.1. This study used the Texel data from both experimental farms described in 

Chapter 2, which includes data from the SRUC research farm in Scotland and the IBERS 

research farm in Wales. 

The data comprised of pure-bred Texel lambs (n=442) of both sexes (females and entire 

males), reared to weaning as singles (n=239), twins (n=176) or artificially hand-reared 

(n=27). The mean age at CT was 132 days (SD=19.5, ranging from 93 to 202 days), and the 

mean age at slaughter was 149 days (SD=21.6, ranging from 99 to 234 days). In total there 

were records from 442 lambs, offspring of 17 sires, and 296 dams (Table 5.2). 

5.3.2  Live animal and slaughter measurements 

Live weights at CT scanning and at slaughter were recorded, alongside chemical IMF levels 

and mechanical shear force. Full details of methods used in the chemical extraction of IMF 

and mechanical measurement of shear force are described in Chapter 2. Total carcass fat 

weight was estimated by CT as described in Chapter 2. 

Two different CT scanners have been used. Lambs reared within the SRUC experimental 

flock were scanned at the SRUC-BioSS CT unit in Edinburgh using a Siemens Somatom 

Esprit single slice CT scanner (n=370), whilst lambs reared at the IBERS experimental farm 

in Wales were scanned using a mobile GE LightSpeed 16 slice CT scanner (n=72). Full 

details of the animal procedures at scanning can be found in Chapter 2, section 2.3.2 and full 

details of slaughter and meat quality measurements can be found in Chapter 2, section 2.3.3. 
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Table 5.1: Group of traits and definition of variables included in the study 

Trait group Trait Definition 

Live weight CTLWT Live weight recorded at CT scanning 

 SLWT Live weight recorded pre-slaughter 

Meat Quality  ShF Mechanical shear force in the loin (kgF) 

 IMF Chemical intramuscular fat in the loin (%) 

Computed 

Tomography 

CTFW Carcass fat weight estimated by CT (kg) 

 PIMF1 CT predicted IMF (%) using equation 1, which included CTFW 

 PIMF2 CT predicted IMF (%) using equation 2, which did not include 

CTFW 

 
Table 5.2: Number of lambs for which CT was available alongside number of sires 

and dams within each year 

Year Lambs Sires Dams 

2003 121 10 86 

2004 115 10 80 

2009 206 7 176 

Total 442 17* 296* 

*Sire and dam counts are not cumulative as sires and dams will have been used 

across years 

5.3.3  CT estimates of intramuscular fat 

As different scanners were used between farms, and as we know that there is a scanner effect 

on density values within soft tissue ranges (Bunger et al., 2010), scanner-specific equations 

were developed for the scanners used (A: fixed, or B: mobile). 

5.3.4  Fixed scanner 

Intramuscular fat levels in the loin were estimated from CT data using two separate 

prediction equations from Chapter 2 (section 2.5.1.4 and section 2.5.2.3 respectively). Firstly 

an equation including a CT estimate of total carcass fat (see Chapter 2, section 2.3.2), and 
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secondly using an equation independent of any CT fat weight or area measurements (PIMF1 

and PIMF2 respectively).  

The equations used were; 

Scanner A: Siemens Somatom Esprit single slice CT scanner: 

PIMF1 = 6.920 + (Pr_Cfat*0.2425) - (LV5MD*0.0654) - (TV8MD*0.0637) 

PIMF2 = 7.26 - (LV5MD*0.0720) - (TV8MD*0.0611) + (ISCMSD*0.0748) - 

(ISCFD*0.02090) - (LV5FD*0.00758) - (ISCFSD*0.0344) - (LV5FSD*0.0324) 

5.3.5  Mobile scanner  

The mobile scanner equations were developed from the ones established for the fixed 

scanner. These were modified for the mobile scanner by fitting the optimal variables 

identified in Chapter 2 using a multiple linear model to an independent data set. The dataset 

consisted of 63 Texel lambs from the research farm in Wales (IBERS) and 72 purebred 

Texel lambs from the SRUC research farm in Scotland, all of which were CT scanned in 

2009 using a mobile GE LightSpeed 16 slice CT scanner. The total data set included both 

females and entire males (n= 71 and 64 respectively), live weight at scanning ranged from 

16.8kg to 47.6kg (SD = 5.65), chemical IMF ranged from 0.37% to 2.87% (SD = 0.62), 

Summary statistics of the CT traits and meat quality traits used in the determination of 

scanner specific prediction equations can be found in Table 5.3. 

The terms included in the models were the same terms derived in the single ‘best’ model 

inclusive of CT predicted carcass fat and the single ‘best’ model independent of CT 

predicted carcass fat discovered in Chapter 2. 

These were: Pr_Cfat, LV5MD, TV8MD, ISCMSD, ISCFD, LV5FD, ISCFSD and LV5FSD. 

The terms from Chapter 2 described above were fitted in a multiple linear regression model 

in Genstat14
TM

  (Payne et al., 2012) in order to produce scanner specific coefficients and 

assess accuracy (R
2
) within the same models. The prediction equations derived in this way 
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for the mobile CT scanner achieved R
2
 (RMSEP)

 
= 0.71(0.33) and 0.70 (0.34) for PIMF1 

and PIMF2 respectively. 

Scanner B: Mobile GE LightSpeed 16 slice CT scanner: 

PIMF1= 5.834 + (Pr_Cfat*0.3268) - (LV5MD*0.0321) - (TV8MD*0.0915) 

PIMF2 = 3.26 - (LV5MD*0.0561) - (TV8MD*0.0983) + (ISCMSD*0.1758) - 

(ISCFD*0.0437) - (LV5FD*0.0137) - (ISCFSD*0.0370) - (LV5FSD*0.0041) 
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Table 5.3: Trait descriptions, means and standard deviations of the dataset used in 

the development of mobile scanner prediction equations (SD) (n=135) 

 

5.3.6  Pedigree 

The pedigree of the animals included in this study (8 generations) consisted of a total of 

3868 records, 156 sires and 1239 dams. As described in Table 5.2, lambs were the progeny 

of 17 sires and 296 dams over three years.  

5.3.7  Descriptive statistics 

The means, standard deviations (SD) and coefficient of variation (CV) for the live weight, 

meat quality and CT traits in the study, across all 442 lambs from SRUC and IBERS, are 

shown in Table 5.4. 

Mean chemically extracted IMF percentage was 1.46% (SD 0.67), mean IMF percentage 

estimated by CT was 1.45% in both PIMF1 and PIMF2 (SD 0.55 and 0.56 respectively), 

with a minimum of 0.04% 0.19% and a maximum of 3.33% and 3.22% for PIMF1 and 

PIMF2 respectively. 

Trait Acronym Trait Description Mean SD 

CT Traits    

 ISCMSD Standard deviation of muscle density at ischium scan site (HU) 16.17 1.01 

 ISCFD Average fat density at ischium scan site (HU) -47.36 6.11 

 ISCFSD Standard deviation of fat density at ischium scan site (HU) 28.21 1.95 

 LV5MD Average muscle density at 5
th

 lumbar vertebra scan site (HU) 43.37 2.05 

 LV5FD Average fat density at 5
th

 lumbar vertebra scan site (HU) -45.38 4.09 

 LV5FSD Standard deviation of fat density at 5
th

 lumbar vertebra scan site (HU) 28.71 1.28 

 TV8MD Average muscle density at 8
th

 thoracic vertebra scan site (HU) 39.53 2.09 

 Pr_Cfat Predicted total carcass fat weight (kg) 1.49 1.07 

MQ Traits    

 Shear force Mechanically measured shear force in M. longissimus lumborum (kgF) 3.10 1.38 

 IMF_Loin M. longissimus lumborum intra-muscular fat (%) 1.32 0.62 



133 
 

Table 5.4: Descriptive statistics for computed tomography traits 

Trait group Trait n Mean SD Minimum Maximum CV 

Live weight CTLWT 442 34.27 5.59 16.8 49.0 16.3 

 SLWT 442 34.35 5.50 19.71 52.2 16.0 

Meat Quality ShF 442 3.43 1.57 1.39 10.72 45.84 

 IMF 439 1.46 0.67 0.27 3.88 45.99 

Computed Tomography       

 CTFW 431 2.25 1.12 0.03 6.86 50.03 

 IMF1 442 1.45 0.55 0.04 3.33 38.24 

 IMF2 442 1.45 0.56 0.19 3.22 38.48 

Definitions of trait abbreviations can be found in Table 5.1. 

5.3.8  Genetic analysis - Animal Model 

Genetic analyses were first attempted using an animal model. Fixed effects and covariates 

were analysed using ASReml 3.0 software (Gilmour et al., 2009). The model fitted to live 

weights at CT and slaughter included fixed effects of year born (3 levels: 2003, 2004 or 

2009), age of dam at lambing (6 levels: from 2 to 7 years), sex (2 levels: entire male or 

female), farm (2 levels: SRUC or IBERS), rearing rank (3 levels: single, twin or artificially 

hand reared) and a linear covariate of age at CT scanning or age at slaughter. Analysis of 

meat quality traits included the same fixed effects as the previous model, but a linear 

covariate of live weight at slaughter, rather than age, as they were considered to be slaughter 

traits (Kvame and Vangen, 2007). Significance of fixed effects and linear covariates fitted 

for each trait are shown in Table 5.5. 

A mixed animal model was fitted including all fixed effects and linear covariates as 

described above. 

                

Y is the vector of observations on the trait of interest, b is a vector of the fixed effects with 

associated matrix X. a is the vector of additive random animal (genetic) effects with 

associated matrix Z, and e is the vector of random residual effect. 
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Only significant fixed effects and linear covariates were fitted in the final models. 

 

Table 5.5: Significance of fixed effects and covariates for each trait analysed 

Cov1 = Age at slaughter, Cov2 = Age at CT scanning, Cov3 = Live weight at 

slaughter, *= p<0.05, ** = p<0.01, *** = p<0.001 

5.3.9  Genetic analysis - Sire Model 

Following difficulties with the animal models (section 5.4.1), genetic analyses were then 

performed using a sire model. As was previously carried out and explained for the animal 

model in section 5.4.2, fixed effects and covariates were analysed using ASReml 3.0 

software (Gilmour et al., 2009). Significance of fixed effects and linear covariates fitted for 

each trait are shown in Table 5.6. 

A mixed sire model with pedigree was fitted including all fixed effects and linear covariates 

as they were described above. 

                

Trait group Trait Yrborn DAMage Sex Farm Rearing Rank Cov
1 

Cov
2 

Cov
3
 

Live weight CTLWT *** ns *** ** ***  ***  

 SLWT *** ns *** * *** ***   

Meat Quality ShF *** ns *** *** ***   *** 

 IMF ns ns *** ns ns   *** 

Computed Tomography         

 CTFW *** ns *** ns ***  ***  

 PIMF1 *** ns *** ns ***  ***  

 PIMF2 *** ns *** ns ***  ***  
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Y is the vector of observations on the trait of interest, b is the vector of fixed effects with 

associated matrix X. s is the vector of additive random sire (genetic) effects with associated 

matrix Z, and e is the vector of random residual effect. 

Only significant fixed effects and linear covariates were fitted in the final models 

Table 5.6: Significance of fixed effects and covariates for each trait analysed 

Cov1 = Age at slaughter, Cov2 = Age at CT scanning, Cov3 = Live weight at 

slaughter 

*= p<0.05, ** = p<0.01, *** = p<0.001 

 Results  5.4 

5.4.1  Animal model results 

 Heritability estimates 5.4.1.1

Estimates of additive genetic variance (VA), residual variance (VR), phenotypic variance (VP) 

and heritability (h
2
) estimates for the live weight traits, post-mortem meat quality traits and 

in vivo CT traits from the univariate analyses are shown in Table 5.7. 

Trait group Trait Yrborn DAMage Sex Farm Rearing 

Rank 

Cov
1 

Cov
2 

Cov
3
 

Live weight CTLWT *** ns *** *** ***  ***  

 SLWT *** ns *** * *** ***   

Meat Quality ShF *** ns *** *** ***   *** 

 IMF ns * *** ns ns   *** 

Computed Tomography         

 CTFW *** ns *** ns ***  ***  

 PIMF1 *** ns *** ns ***  ***  

 PIMF2 *** ns *** ns ***  ***  



136 
 

Both models for CTLWT and chemical IMF failed to converge and were unable to produce 

estimates of the variance components or heritabilities. Very high heritabilities were 

estimated for SLWT, CTFW, PIMF1 and PIMF2 (0.88 to 0.98). The estimated heritability of 

ShF was very low (0.07) and not significantly different from zero with a S.E of 0.09.  

 
Table 5.7: Estimated heritability’s (S.E.) for the live weight, meat quality and 

computed tomography traits 

Trait CTLWT* SLWT ShF IMF* CTFW PIMF1 PIMF2 

VA 

VR 

VP 

21.18 

0.00005 

21.18 

23.50 

0.45 

23.94 

0.13 

1.78 

1.91 

0.33 

0.000001 

0.33 

1.01 

0.05 

1.06 

0.27 

0.01 

0.28 

0.23 

0.03 

0.26 

h
2
 1.00 (0.00) 0.98 

(0.18) 

0.07 (0.09) 1.00 (0.00) 0.95 (0.19) 0.95 (0.17) 0.88 (0.17) 

*Model not converged 

 Bivariate Analyses 5.4.1.2

Bivariate analyses were investigated using an animal model between the traits included in 

Table 5.1, with very little success (results not presented), producing unreasonable genetic 

parameters or non-convergence in all models. 

The primary aim in these analyses was to estimate the genetic correlations between 

chemically extracted IMF measured post-mortem, and the CT predicted traits (PIMF1 and 2, 

CTFW), however these analyses were unsuccessful due to lack of convergence initially in 

the univariate model for one of the main traits of interest (IMF), although some univariate 

models did converge, and S.E were small in the estimates. The results were considered not to 

be accurate, given the unrealistically high h
2 
estimates. 



137 
 

5.4.2  Sire Model Results 

 Heritability estimates 5.4.2.1

Estimates of variance components and heritability estimates for the live weight traits, post-

mortem meat quality traits and in vivo CT traits from the univariate analyses are shown in 

Table 5.8. 

High heritabilities were estimated for live weight traits (CTLWT and SLWT) as well as high 

heritabilities for chemically extracted IMF and CT estimated traits (CTFW, PIMF1 and 

PIMF2) ranging from 0.65 to 0.91. These heritabilities were all accompanied by large S.E, 

ranging from 0.26 to 0.32. 

 The heritability estimate for ShF was not significantly different from zero (h
2
 = 0.07, S.E = 

0.10).  

Table 5.8: Estimated heritability’s (S.E.) for the live weight, meat quality and 

computed tomography traits 

Trait CTLWT SLWT ShF IMF CTFW PIMF1 PIMF2 

Vsire 

VA 

VR 

VP 

4.10 

16.40 

15.04 

19.14 

3.69 

14.75 

17.20 

20.89 

0.035 

0.14 

1.87 

1.91 

0.048 

0.19 

0.25 

0.30 

0.21 

0.82 

0.76 

0.96 

0.059 

0.24 

0.20 

0.26 

0.053 

0.21 

0.20 

0.25 

h
2
 0.86 (0.31) 0.71 (0.28) 0.07 (0.10) 0.65 (0.26) 0.85 (0.31) 0.91 (0.32) 0.85 (0.31) 

        

 

 Bivariate Analyses 5.4.2.2

Again, bivariate analyses were investigated, this time using a sire model (results not 

presented). And as previously reported when applying an animal model, the sire model 

bivariate analysis produced seemingly unreasonable genetic parameters and non-

convergence of models. 
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 Discussion  5.5 

The aim of this chapter was to make use of the post-mortem meat quality measurements that 

were available in the data set and investigate the genetic relationship of these and the CT 

estimated traits which may be obtained from current CT analyses, alongside the novel IMF 

estimates obtained as a result of the work in Chapter 2. 

Given the restrictions of the data, in particular the combination of small animal numbers (n= 

442), and, in very recent research using the same data set, it was discovered that the design 

and research objective of the study used to produce this data, in particular for the lambs 

produced in 2009 (Macfarlane et al., 2014), resulted in a pedigree structure that limits the 

effectiveness of this data set for genetic parameter estimation, since both males and females 

were intensively selected in order to increase the genetic frequency of carriers of the genetic 

trait of interest (Donaldson, 2015). During this study, it was highlighted that closely related 

individuals were used as parents in the 2009 trial and that the common sires may be traced 

back to a single sire. It was also highlighted that, as a result of very different breeding 

strategies across the two research interests (2003/2004 and 2009), there was very low 

connectedness between the two separate trial groups (Donaldson, 2015). 

The closely related individuals included in the 2009 data (traced back to a single common 

sire) and the low connectedness between the datasets taken from each separate trial made the 

final aim of this chapter very difficult to achieve. Univariate heritabilities for the traits of 

interest were estimated, however, these were either seemingly unreasonable, in the case of 

both the animal model and sire model, and/or accompanied by very large S.E. Heritability 

results would have been expected to be close to the magnitude reported in previous studies 

across different genotypes, such as those, for example, reported by Karamichou et al (2006) 

for CT live weight in Scottish Blackface (h
2
 = 0.41), Karamichou et al (2006) and  Jones et 

al (2004) reported h
2
 = 0.30 and 0.38 for pre-slaughter weight in Scottish Blackface and 
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Texel respectively, these and similar studies also reported heritabilities for shearforce 

ranging from 0.27 to 0.39 (Karamichou et al., 2006; Mortimer et al., 2014), chemically 

extracted IMF heritabilities ranged from 0.32 to 0.48 (Karamichou et al., 2006; Lorentzen 

and Vangen, 2012; Mortimer et al., 2014) and for CT estimated fat weight heritabilities 

ranged from 0.18 to 0.60 (Jones et al., 2004; Karamichou et al., 2006; Kvame and Vangen, 

2007). 

The genetic relationship between chemically extracted IMF, CT estimated IMF and CT 

estimated fat weight was of particular interest in these data to better understand the genetic 

relationships between CT estimated traits and laboratory based methods. However, robust 

and accurate heritability estimates for CT estimated IMF, and genetic correlations between 

this and the traits already included in the breeding programme, are the main focus to enable 

the inclusion of novel CT traits into current breeding programmes. The results of this chapter 

are not sufficiently accurate to fulfil these requirements.  Therefore, a larger industry data set 

was made available. This made it possible to pursue this aim and successfully estimate 

genetic parameters for these variables in the next chapter.  

 Conclusion 5.6 

The ultimate aim of this chapter was to determine the genetic relationships between post-

mortem meat quality measurements that were available in the data set, the CT estimated 

traits obtained from current CT analyses and the novel CT estimated IMF calculated as a 

result of the work included in Chapter 2. 

The structure of the dataset and the genetic relationships between animals included in the 

data, as outlined in the discussion, made the ultimate aim of the chapter with regards to the 

genetic relationships between traits unattainable. These relationships remain of particular 

interest to us and although this was not possible to estimate in the current study, further 
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studies may provide data sets with the required objective meat quality measures included in 

this study (and possibly more e.g. NIR) and CT data. Given a large enough data set with 

sufficient genetic variation and diversity of pedigree, the genetic relationships between these 

traits may be estimated. 
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Chapter 6:  Genetic parameters for growth, carcass composition and 

intramuscular fat in Texel sheep measured by x-ray computed 

tomography and ultrasound 
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 Summary 6.1 

In previous chapters it has been reported that CT scanning provides very good in vivo 

estimates of IMF in the loin of Texel sheep. The next stage would be the inclusion of these 

estimates (IMF) into current commercial multi-trait selection indices. To enable this, genetic 

parameters including heritabilities and genetic relationships with other important traits 

included in the current indices are required. Industry based data were available for 1971 

entire male lambs with CT scanning records from 2002 to 2013, the progeny of 525 sires and 

1576 dams. Growth, CT and US measurements were available across the dataset. Growth 

measurements comprised of live weight at approximately eight weeks of age and twenty one 

weeks of age. Ultrasound data included muscle and fat depths at the third lumbar vertebra. 

And CT measurements included fat and lean weights, gigot muscularity, eye muscle area and 

the novel IMF estimates developed in Chapter 2. Mean intramuscular fat content as 

predicted by CT in PIMF1 and PIMF2 was 2.32% and 1.84% respectively (SD= 0.64 and 

0.46), ranging from 0.62% to 5.12% and 0.26% and 3.60% respectively. Fixed effects and 

covariates were chosen based on the univariate analyses, variance and covariance 

components were then estimated applying restricted maximum likelihood (REML) 

procedures to fit a mixed linear animal model. Heritabilities were produced from the 

univariate analyses and phenotypic and genetic correlations between all growth, US and CT 

traits were calculated using the phenotypic and genetic variances and the phenotypic and 

genetic covariances from the bivariate analyses. Moderate heritabilities were estimated for 

growth traits, with moderate to high heritabilities estimated for US and CT traits. 

Heritability estimates for PIMF1 and PIMF2 were moderate and similar (h
2
 = 0.36 and 0.31 

respectively). Strong genetic correlations were seen between PIMF1 and CT and US fat 

traits (rg = 0.83 and 0.64), whereas the same relationship was not seen in PIMF2 and CT 

and US fat traits (rg=0.59 and 0.60). PIMF1 generally had a stronger genetic relationship 
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with growth, US and CT traits than PIMF2, however both traits were highly genetically 

correlated themselves (rg=0.89). 

This study is among the first to present genetic parameters of novel CT derived IMF 

estimates, which may be used as a proxy trait for meat eating quality and shows that 

accurate estimations of IMF are heritable and have the potential to be included into current 

selection methods. The parameters reported in this study can now be used to develop future 

breeding programmes. 

 Introduction 6.2 

Chapters 2 and 3 have shown that CT scanning provides very good in vivo estimates of IMF 

in the loin of Texel sheep. These IMF estimates are of interest as an objective proxy trait in 

the determination of eating quality. Previously, accurate assessment of IMF in sheep was 

only possible with the slaughter, dissection and subsequent chemical analysis of the muscle 

of interest. The time and cost required complicate the inclusion of such a trait into breeding 

programmes. This non-destructive, in vivo method of estimation overcomes previous 

complications associated with destructive methods of measurement. 

To enable the inclusion of novel CT traits, such as the IMF estimations developed in chapter 

2 and 3, into selection indices, genetic parameters, such as heritabilities of the traits of 

interest and genetic relationships with traits included in the current indices, are required.  

Currently a two-stage selection method is employed for US and CT scanning, during which 

all lambs are scanned and screened using US scanning prior to CT scanning as a result of the 

high cost and limited availability associated with CT scanning. If novel CT traits are to be 

included into current two-stage selection breeding programmes, genetic parameters for the 

novel CT traits and their correlations with traits already used in the genetic evaluation 
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(growth traits, US measurements and current CT estimations of carcass composition) are 

required. 

Some of the previously reported genetic parameters including  CT-measured tissue densities, 

carcass composition, meat quality traits post-mortem and organoleptic traits in Scottish 

Blackface lambs have been reported by Karamichou et al (2006), genetic parameters for US 

muscle and fat depths in Norwegian white sheep have been reported by Kvame and Vangen 

(2007), as well as a review of genetic parameter estimates which included US fat and muscle 

depths was carried out by Safari et al (2005) and a review of genetic parameters in meat 

quality traits was carried out by Hopkins (2011). And genetic parameters for meat quality 

traits post-mortem in Norwegian white X Texel lambs were reported by Lorentzen and 

Vangen (2012) as well as CT measures of muscularity in Suffolk, Charollais and Texel 

reported by Jones et al (2004). However the inclusion of novel traits into breeding 

programmes requires the estimation of genetic parameters specific to the breed and including 

those novel traits. 

The aim of this chapter was to estimate the genetic parameters for CT-predicted IMF, 

including genetic correlations with current selection criteria (US tissue depths, CT carcass 

composition, muscularity and growth). Genetic parameters for the current selection criteria 

will also be confirmed. These parameters will enable future development of two-stage 

selection programmes in Texel sheep in order to improve or at least maintain meat eating 

quality (IMF) alongside the improvement of carcass composition traits such as lean meat 

yield, leanness and carcass quality. 

 Materials and Methods 6.3 

Definitions of trait groups and variables used within the study are shown in Table 6.1. 
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6.3.1  Animals and BASCO Database 

Data were extracted from the BASCO data Ltd. database, a national genetic evaluation 

database developed in 2004. Its purpose to store and manage very large amounts of pedigree 

and performance records in one single database. Originally including a co-operative of 

pedigree breeder associations, the Limousin cattle, and Texel and Suffolk sheep societies, 

pedigree and performance data is now stored on many more beef and sheep breeds. 

The data set used here was restricted to Texel animals with CT scanning records and 

comprised records from 1971 entire male lambs from 525 sires and 1576 dams from 265 

flocks over 12 years, of which 1957 animals also had records from ultrasound scanning and 

1971 animals had records from CT scanning.  

Full details of the number of lambs for which CT and US data were available, alongside the 

number of sires, dams and flocks within each year can be found in Table 6.2. 
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Table 6.1: Definition of variables included in the study 

Trait group Trait Definition 

Growth 8WWT Live weight recorded at eight weeks of age 

 21WWT Live weight recorded at twenty one weeks of age (at the time of 

ultrasound scanning) 

Ultrasound USFD Fat depth at the 3
rd

 lumbar vertebra measured by ultrasound 

scanning (mm) 

 USMD Muscle depth at the 3
rd

 lumbar vertebra measured by ultrasound 

scanning (mm) 

Computed Tomography CTFW Carcass fat tissue weight estimated by CT (kg) 

 CTMW Carcass lean (muscle) tissue weight estimated by CT (kg) 

 CTmusc Muscularity score in the Gigot/Hind leg measured in the CT 

image taken at the ischium 

 CTema Area of M. longissimus lumborum  (mm
2
) measured in the CT 

image taken at the 5
th
 lumbar vertebra 

 PIMF1 CT predicted intramuscular fat percentage using equation 1 (%) 

 PIMF2 CT predicted intramuscular fat percentage using equation 2 (%) 
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Table 6.2: Number of lambs for which CT and US data were available, alongside 

number of sires, dams and flocks within each year 

Year Lambs Sires Dams Flocks 

2002 87 34 76 26 

2003 143 58 122 44 

2004 204 70 178 61 

2005 134 64 130 35 

2006 89 40 82 23 

2007 31 15 29 17 

2008 88 33 85 21 

2009 99 40 97 21 

2010 166 55 155 40 

2011 367 125 350 81 

2012 318 97 280 71 

2013 245 88 218 43 

Total 1971 525* 1576* 265* 

* Sires, dams and flocks are not cumulative as sires and dams will have been used 

across years, Flocks will record over several years 

6.3.2  Growth measurements 

Live weights are measured on farm at approximately eight weeks of age (mean = 66.4 days, 

range = 13 to 151 days) and included records from 1919 lambs, with a mean 8WWT of 

31.28kg, ranging from 10.8kg to 68kg. As part of the commercial genetic evaluations in 

sheep, 8WWT is routinely adjusted for age (Moore, 2015) and 1867 records were available 

(mean = 27.26kg, range = 11.1 to 41.8kg). Live weight at twenty one week’s was recorded 

either at twenty one weeks or at US scanning (mean = 143.3 days, range = 83 to 202 days), 

records were available for 1960 lambs, and mean 21WWT was 56.5kg, ranging from 26kg to 

90kg.  
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6.3.3  Ultrasound measurements 

Ultrasound data were available for lambs recorded between 2002 and 2013. Lambs were 

weighed and US scanned at an average age of approximately 150 days or 21 weeks. Muscle 

and fat depth (mm) were measured by US at the third lumbar vertebra. A single measure of 

muscle depth was taken, at the deepest point, and three measures of fat depth , with the first 

taken above the muscle at the deepest point and the following two measurements taken at 

1cm lateral intervals from this point further from the backbone (Figure 6.1). All US scanning 

measurement, data capture and collation were carried out by Signet Breeding Services, part 

of EBLEX, the industry body for beef and lamb levy-payers in England. 

 
a)       b) 

Figure 6.1 (a) Diagrammatical representation of measurement points taken at 

ultrasound scanning (b) Ultrasound scan image of measurement points taken at 

scanning (Images courtesy of Sam Boon, Signet) 

6.3.4  Computed tomography measurements 

From 2002 to 2013 lambs that were US scanned were then CT scanned at the SRUC-BioSS 

CT unit in Edinburgh using a Siemens Somatom Esprit single slice CT scanner or at various 

sites across the UK using a mobile GE LightSpeed 16 slice scanner. Full details of the 

animal procedures during scanning can be found in chapter 2.  

All lambs were CT scanned within 2 weeks after US scanning. The CT image analysis for 

the measurement of fat and lean weights, percentages and ratios is described in detail in 
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chapter 2. Alongside these CT measurements, routine measurement of gigot muscularity and 

eye muscle area (cm
2
) were taken as described in Jones et al (2002). In brief, the ratio of 

depth to width was taken from linear measurements on the scan image at the ischium, minus 

popliteal fat width, and multiplied by 100, then averaged over both legs providing a two-

dimensional shape measurement in the gigot muscle (CTmusc, Fig. 6.2a). Area of the M. 

Longissimus lumborum (cm
2
) on both sides of the image taken at the fifth lumbar vertebra 

was measured and averaged to give an eye muscle area measure (CTema, Fig 6.2b). A 

similar muscularity measurement based on the ratio of width to depth in the M. Longissimus 

lumborum was also taken and represented in Fig 6.2b, however was not used in this study. 

 
         a)         b) 

Figure 6.2 Measurements taken on the scan image taken at the ischium to calculate 

CTmusc (a) and measurements taken on the image taken at the fifth lumbar 

vertebra to calculate CTema (b) (Reproduced from (Lambe et al., 2007) 

6.3.5  CT predictions of intramuscular fat 

Intramuscular fat content in the loin was predicted using two separate prediction equations, 

firstly an equation including a CT prediction of total carcass fat weight (PIMF1) and, 

secondly, using a prediction equation entirely independent of any CT fat area or weight 

measurements (PIMF2). Both equations are described in chapter 2. 
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As different scanners were employed through the period of  data collection from 2002-2013, 

and as we know that there is a scanner effect on density values within soft tissues (Bunger et 

al., 2010), scanner-specific equations were developed for scanner type used (A: fixed, or B: 

mobile, see Chapter 5, section 5.3.3.2).  

To serve as a brief reminder, and also to detail the scanner specific equations, the equations 

used were: 

For scanner A (Fixed scanner): 

PIMF1 = 6.920 + (Pr_Cfat*0.2425) - (LV5MD*0.0654) - (TV8MD*0.0637) 

PIMF2 = 7.26 - (LV5MD*0.0720) - (TV8MD*0.0611) + (ISCMSD*0.0748) - 

(ISCFD*0.02090) - (LV5FD*0.00758) - (ISCFSD*0.0344) - (LV5FSD*0.0324) 

And for scanner B (Mobile scanner): 

PIMF1= 5.834 + (Pr_Cfat*0.3268) - (LV5MD*0.0321) - (TV8MD*0.0915) 

PIMF2 = 3.26 - (LV5MD*0.0561) - (TV8MD*0.0983) + (ISCMSD*0.1758) - 

(ISCFD*0.0437) - (LV5FD*0.0137) - (ISCFSD*0.0370) - (LV5FSD*0.0041) 

Full details on how these equations were derived and the methods used to estimate 

intramuscular fat in the loin using available CT variables are presented in chapter 2. 

6.3.6  Statistical analysis 

Fixed effects and covariates affecting the traits of interest were identified using ASReml 

(Release 3.0) software (Gilmour et al., 2009). The model for growth traits (8WWT; 

21WWT) included fixed effects of birth type (5 levels, 0-4) coding ‘unknown’ as 0 and 

single to quads as 1 to 4 (0 = 283 records, 1 = 685, 2 = 829, 3 = 167, 4 = 7), age of dam at 

lambing (9 levels; 1year old = 18 records; 2 years old = 541; 3 years old = 583; 4 years old = 

414; 5 years old = 219; 6 years old = 118; 7 years old = 42; 8 years old = 26; 9 years old = 9 

and 1 unknown, which was treated as a missing value), flock (265 levels), and year of birth 

(12 levels, 2002-2013). A flock by year interaction was fitted to account for any interaction 

between year and management and/or geographical climatic effects. A linear covariate of age 
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at measurement was fitted to 21WWT. No linear covariate was fitted to 8WWT as the data 

used was previously adjusted for age. 

The model for US traits included the same fixed effects and the linear covariate fitted was 

age at ultrasound scanning. The model for CT-derived traits included fixed effects of birth 

type, age of dam at lambing, scanner type used (1 = Somatom Esprit single slice scanner, 2 = 

GE LightSpeed 16 slice scanner), flock, year of birth, flock by year interaction and a linear 

covariate of age at CT scanning. 

Variance and covariance components were estimated from the data using  ASReml (Release 

3.0) software (Gilmour et al., 2009) applying restricted maximum likelihood (REML) 

procedures to fit a mixed linear model. The average information was used to maximise the 

likelihood. Using the variance component estimates provided from the univariate analysis an 

estimate of heritability (h
2
) for each trait of interest was calculated as the ratio of the additive 

genetic variance (VA) and the phenotypic variance (VP = VA + VR), where: 

h
2
 = VA/VP 

In addition to the univariate analysis, bivariate analyses were also performed between all 

combinations of growth, US and CT traits included in the study. The mixed animal model 

included all fixed effects and covariates as they were described above, as described by the 

equation:  

                 

Where Y is the vector of observations on the trait of interest, b is the vector of fixed effects 

with associated matrix X, a is the vector of additive random animal (genetic) effects with 

associated matrix Z, and e is the vector of random residual effect.  

In order to maintain parity between models within trait groups, all fixed effects included in 

the univariate analyses were kept in the models for the bivariate analysis whether significant 
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or not, with exception of age of dam at lambing which was not included in the model for 

ultrasound traits (USMD and USFD) as it was not significant within that trait group. 

Phenotypic (rP) and genetic (rG) correlations between all growth, US and CT traits were 

calculated using the phenotypic and genetic variances (VP and VA) and the phenotypic and 

genetic covariances (COVP and COVA) from the bivariate analysis. Phenotypic correlations 

(rP), between traits were calculated as the ratio of the total phenotypic covariance (COVP) 

between traits and the square root of the product of the total phenotypic variance (VP) of both 

traits.   

    
                

√                         

 

Genetic correlations (rG) between traits were calculated as the ratio of the additive genetic 

animal covariance (COVA) between traits and the square root of the additive genetic animal 

variance (VA ) of both traits. 

    
                

√                         
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 Results 6.4 

6.4.1  Descriptive statistics 

Significance of fixed effects and linear covariates fitted in the univariate analysis are 

presented in Table 6.3. 

The means, standard deviations (SD) and coefficient of variation (CV) for the growth, US 

and CT traits used in the study are shown in Table 6.4. Mean intramuscular fat percentage as 

predicted by CT in PIMF1 and PIMF2 was 2.32% (SD 0.64) and 1.84% (SD 0.46) 

respectively, with a minimum of 0.62% and 0.26% respectively and a maximum of 5.12% 

and 3.60% respectively.  

Table 6.3: Significance from the univariate analyses of fixed effects and covariates 

for each growth, US and CT trait analysed 

Cov
1
 = Age at US scanning, Cov

2
 = Age at CT scanning 

ns = non-significant, * = p<0.05, ** = p<0.01, *** = p<0.001 

Trait group Trait Birth 

Type 

Dam  

Age 

Scanner Flock Year Flock x 

Year 

Cov
1 

Cov
2 

Live weight 8WWT *** ***  *** * ***   

 21WWT *** ***  *** * *** ***  

Ultrasound USMD *** ns  *** *** *** ***  

 USFD *** ns  *** *** *** ***  

Computed  

Tomography 

CTFW *** ** *** *** *** ***  *** 

 CTMW *** ** ** *** ns ***  *** 

 CTmusc ** ns *** *** ns ***  *** 

 CTema *** ns * *** ns ***  *** 

 PIMF1 *** ** *** *** ** ***  *** 

 PIMF2 *** ** ns *** ns ***  *** 
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6.4.2  Heritability estimates 

Estimates of variance components and heritability estimates for the growth and in vivo US 

and CT traits measured are shown in Table 6.5. Moderate heritabilities were estimated for 

growth traits tested in the study, with moderate to high heritabilities estimated for US and 

CT traits. Heritability estimates for the novel CT predicted IMF traits were moderate and 

similar: h
2
 0.36 ± 0.07 for PIMF1 and h

2
 0.31 ± 0.07 for PIMF2. 

6.4.3  Correlation estimates 

 Genetic correlations  6.4.3.1

Estimates of genetic correlations amongst growth, US and CT traits, including the novel 

intramuscular fat estimations from CT, are shown in Table 6.5. Correlations from 0.1 to 0.3 

were considered weak, from 0.4 to 0.6 moderate and correlations greater than 0.6 were 

considered as strong, correlations with a S.E. greater than the correlation coefficient were not 

significantly different from zero. 

Strong positive genetic correlations were found between 8WWT and 21WWT (rg 0.64 ± 

0.11), and between 8WWT and CTFW (rg 0.77 ±0.12). Genetic relationships between 

21WWT and CTMW were also strong and positive (rg 0.76 ± 0.06). Genetic relationships 

between US and CT carcass fat measurements (USFD, CTFW) were strong and positive (rg 

0.61 ± 0.09), and strong positive genetic correlations were estimated between USFD and 

PIMF1 and PIMF2 (rg 0.64 and 0.60).  

Genetic correlations between USMD and CTema were strong and positive (rg 0.78 ± 0.08), 

while the relationship between USMD and CTMW was positive and moderate (rg 0.59 ± 

0.11). 

A strong positive genetic correlation was found between CTFW and PIMF1 (rg 0.83 ± 0.04), 

and a moderate positive correlation was found between CTFW and PIMF2 (rg 0.59 ± 0.10). 
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The genetic correlations between PIMF1 and the remaining current index traits (8WWT, 

USMD, USFD, CTMW, CTmusc) are low to moderate ranging from rg 0.19 to 0.64 and 

stronger than the correlations seen between the same index traits and PIMF2 which were 

only significant in 8WWT (rg 0.24 ± 0.18) and USFD (rg 0.60 ± 0.11) (Table 6.5), with the 

muscularity traits (CTMW and CTmusc) not significantly correlated with PIMF2. The 

genetic correlation between PIMF1 and PIMF2 was strong and positive (rg 0.89 ± 0.03).    

 Phenotypic correlations 6.4.3.2

Phenotypic correlation estimates among the growth, US and CT traits were consistent with 

the direction and magnitude of the corresponding genetic correlations (Table 6.5). Strong 

phenotypic correlations were found for pairings of traits with strong genetic correlations and 

generally the phenotypic correlations were smaller than the corresponding genetic 

correlation estimates.
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Table 6.4: Descriptive statistics for growth, ultrasound and computed tomography traits 

Trait group Trait n Mean SD Minimum Maximum CV (%) 

Live weight 8WWT 1867 27.26 4.34 11.1 41.8 15.9 

 21WWT 1959 56.46 8.39 26 90 14.9 

Ultrasound USFD 1957 3.01 1.39 0.4 9.5 46.4 

 USMD 1957 32.7 3.38 20.3 43 10.4 

Computed Tomography CTFW 1971 5.19 1.67 1.26 11.57 32.2 

 CTMW 1971 17.52 2.54 9.36 25.32 14.5 

 CTmusc 1971 67.93 6.94 40 86 10.2 

 CTema 1971 27.45 4.29 14.35 44.4 15.6 

 PIMF1 1971 2.32 0.64 0.62 5.12 27.7 

 PIMF2 1971 1.84 0.46 0.26 3.60 25.2 

Definitions of trait abbreviations can be found in Table 6.1
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Table 6.5: Variances, phenotypic correlations and genetic parameters (S.E) for the growth, ultrasound and computed tomography traits 

Trait 8WWT 21WWT USFD USMD CTFW CTMW CTmusc CTema PIMF1 PIMF2 

VA 

VP 

2.96 

11.72 

10.53 

28.92 

0.47 

1.17 

2.50 

7.85 

0.48 

1.45 

0.93 

2.60 

14.18 

33.48 

4.31 

11.76 

0.08 

0.22 

0.05 

0.16 

8WWT 0.25 (0.07) 0.57 (0.02) 0.13 (0.03) 0.19 (0.03) 0.48 (0.02) 0.51 (0.02) 0.13 (0.03) 0.29 (0.03) 0.40 (0.02) 0.26 (0.03) 

21WWT 0.64 (0.11) 0.36 (0.06) 0.45 (0.02) 0.43 (0.02) 0.73 (0.01) 0.81 (0.01) 0.27 (0.03) 0.51 (0.02) 0.57 (0.02) 0.36 (0.02) 

USFD ns 0.42 (0.11) 0.40 (0.07) ns 0.65 (0.02) 0.32 (0.03) 0.12 (0.03) 0.25 (0.03) 0.57 (0.02) 0.51 (0.02) 

USMD 0.21 (0.18) 0.52 (0.12) ns 0.32 (0.07) 0.37 (0.02) 0.50 (0.02) 0.27 (0.03) 0.66 (0.02) 0.21 (0.03) 0.12 (0.03) 

CTFW 0.77 (0.12) 0.66 (0.08) 0.61 (0.09) 0.48 (0.13) 0.33 (0.07) 0.63 (0.02) 0.24 (0.03) 0.44 (0.02) 0.88 (0.01) 0.71 (0.01) 

CTMW 0.43 (0.13) 0.76 (0.06) 0.15 (0.13) 0.59 (0.11) 0.49 (0.10) 0.36 (0.06) 0.33 (0.02) 0.69 (0.01) 0.43 (0.02) 0.21 (0.03) 

CTmusc 0.20 (0.16) 0.44 (0.12) ns 0.39 (0.12) 0.41 (0.13) 0.51 (0.11) 0.42 (0.07) 0.36 (0.02) 0.15 (0.03) 0.09 (0.03) 

CTema 0.34 (0.16) 0.54 (0.10) 0.25 (0.14) 0.78 (0.08) 0.50 (0.12) 0.71 (0.07) 0.48 (0.11) 0.37 (0.06) 0.24 (0.03) 0.11 (0.03) 

PIMF1 0.49 (0.15) 0.44 (0.11) 0.64 (0.10) 0.24 (0.15) 0.83 (0.04) 0.20 (0.13) 0.19 (0.14) ns 0.36 (0.07) 0.90 (0.01) 

PIMF2 0.24 (0.18) ns 0.60 (0.11) ns 0.59 (0.10) ns ns ns 0.89 (0.03) 0.31 (0.07) 

Heritabilities are in bold on the diagonal, genetic correlations below the diagonal and phenotypic correlations are above. All abbreviations 

are defined in Table 6.1. Correlations with S.E. greater than the correlation coefficient were not significantly different from zero (ns) 
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 Discussion 6.5 

This study is among the first to present heritabilities, and genetic and phenotypic correlation 

estimates of novel CT derived estimates of intramuscular fat as a proxy trait for meat eating 

quality. And also to present genetic relationships with routine growth, US and CT 

measurements taken as part of sheep performance recording schemes run by various breed 

societies in the UK.  

Until recently there has been very little published literature on genetic variation for meat 

quality traits in sheep (Safari et al., 2005). In recent years several studies have presented 

genetic parameters for meat quality, US and CT traits in various sheep breeds (Jones et al., 

2004; Karamichou et al., 2006; Kvame and Vangen, 2007; Lorentzen and Vangen, 2012; 

Mortimer et al., 2010; Mortimer et al., 2014). 

The traits of particular interest during this study were the novel CT predicted intramuscular 

fat levels. The heritabilities of these novel traits, and their relationships with traits currently 

included in the selection index for terminal sires, are of particular interest. These results 

allow us to better understand whether these novel traits are, firstly, heritable and therefore 

selection based on these CT traits will result in genetic gain, and secondly, whether the 

relationship between these traits and current CT traits would result in any adverse effects due 

to selection for one or the other. 

The improvement of IMF levels in the Texel breed appears to be necessary, considering the 

mean level of predicted IMF in the study, using either prediction equation, was below the 

minimum recommended level (3%) reported by Savell and Cross (1988) for grilled cuts of 

lamb, and well below the recommended level for ‘good every day’ eating quality in lamb 

(5%) reported by Hopkins et al (2006). These IMF levels, in commercial Texel ram lambs, 

are consistent with mean IMF levels for Texels in the research projects reported in chapter 4. 
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6.5.1  Heritability estimates    

The CT and ultrasound traits included in this study were found to be of moderate to high 

heritabilities, implying that they can be improved through selection. Heritability estimates 

for USFD and USMD were moderate (0.40 and 0.32 respectively). For USFD,  these values 

were consistent with previously published estimates in several studies and breeds, ranging 

from h
2
 0.15 to 0.54 and heritability estimates for USMD were at the upper end of the range 

of published estimates (h
2
 0.23 to 0.40) (Jones et al., 2004; Kvame and Vangen, 2007; 

Mortimer et al., 2010; Simm et al., 2002). For many of the of the studies reported, the breeds 

used were different to the breed used in this study, other than in Jones et al (2004), in which 

age at measurement was also used in the model. In this context it is of note that  Kvame and 

Vangen (2007) reported, the design of an experiment, the environment, the breed and the 

apparatus used (including the variation in operator) have an effect on the results. In the 

present study, the use of records from animals selected based on US results, as part of the 

two stage selection will have an effect, as these animals will artificially have a related effect 

on the ‘population’ mean of the traits included in the selection.  

Kvame and Vangen (2007) also reported that including either live weight at weaning or age 

at weaning in two different models had an effect on the genetic parameters for the same 

traits. The selection of live weight or age as a covariate depends on the trait of interest. If the 

trait of interest is a slaughter trait, live weight may be a more suitable covariate, given that 

the breeding objective would be to achieve the desired gain in the trait of interest at a given 

live weight. Alternatively, if the trait of interest is a growth trait, the more suitable covariate 

seems to be age at measurement, as the breeding goal aims to target the trait at a certain 

period in the animal’s life. 

In this study, age was fitted as a covariate in growth (where applicable), US and CT traits, as 

the US traits in this study were age related (21 week recorded). The CT traits, in some cases, 
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also included CT live weight as part of the model to estimate the trait of interest (i.e. CTFW 

and CTMW include live weight at CT in the prediction equation; see chapter 2, section 

2.3.2).  

The heritability estimates for CT traits in this study were also moderate to high, and 

estimates produced during this study were consistent with reported heritabilities in previous 

studies. 

Previously published heritability estimates for CT measured muscle and fat weights  ranged 

from 0.21 to 0.57 and 0.29 to 0.60 respectively (Jones et al., 2004; Karamichou et al., 2006; 

Kvame and Vangen, 2007; Lambe et al., 2008a). The estimates found in this study for Texel 

sheep were very similar to estimates reported by Jones et al (2004) in the same breed 

however the CT muscle weight heritability estimate was slightly lower than those reported 

for Scottish Blackface sheep by Karamichou et al (2006) and a terminal sire line by Kvame 

and Vangen (2007),. Both of these studies used different breeds and also reported higher 

standard errors in the estimations. 

The only published heritability estimates that could be found for the CT muscularity traits 

used in this study were from the studies in which they were developed, Jones et al (2004) 

reported  h
2
 of 0.33 and 0.21 for CT eye muscle area and gigot muscularity respectively. 

Given the novelty of the trait, estimated heritabilities for CT predicted IMF can only be 

compared with published post-mortem, chemically extracted IMF heritabilities. The 

heritability estimates produced in this study were similar to those found in previous studies, 

Lorentzen and Vangen (2012) and Mortimer et al (2014) both reporting h
2
 of 0.48, and 

Karamichou et al (2006) reporting h
2
 of 0.32. The similarity between heritabilities for CT 

based IMF and chemical IMF is indicative of the measurement accuracy of CT predictions of 

IMF in Texel sheep. If these predictions were not accurate, we would expect lower 

heritabilities as the errors in the methods of measurement would inflate the environmental 

component of the phenotypic variance and as a result lower the heritabilities. 
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6.5.2  Genetic correlation estimates  

From the current results, selection for USFD would be expected to yield moderate changes in 

PIMF1 and PIMF2 (rg 0.64 ± 0.10 and 0.60 ± 0.11). Moderate changes when selecting for 

USFD would also be expected in CTFW (rg 0.61 ± 0.09). Some similar relationships of the 

same direction and magnitude were found in Jones et al (2004) reporting a moderate genetic 

correlation between USFD and CTFW (rg 0.58). Lambe et al (2008b) reported similar 

moderate genetic correlations in Scottish Blackface sheep, between USFD and CTFW (rg 

0.62) and also a weak negative genetic correlation between USFD and CTMW (rg -0.16). 

This study found strong positive genetic correlations of USFD with PIMF1 and PIMF2 (rg 

0.64 and 0.60), indicating that any selection to reduce USFD would see a relative reduction 

in IMF levels in the loin of Texel sheep, unless both traits are included in the multi-trait 

selection index.  

Selection for USMD would be expected to yield moderate changes in CTFW (rg 0.48 ± 0.13) 

and CTMW (rg 0.59 ± 0.11) and was highly genetically correlated with CTema (rg 0.78 ± 

0.08) and moderately correlated with CTmusc (rg 0.39 ± 0.12), indicating that any selection 

for increased USMD will see a corresponding increase in CT muscularity traits. The 

relationships between USMD and both PIMF1 and PIMF2 were close to zero or not 

significant, as expected, so no change in IMF would be predicted from selection to increase 

USMD. 

The consistent and moderate to strong relationships between USMD and CTMW, and USFD 

and CTFW are important in a two stage selection programme. These moderate to strong 

relationships also indicate that US scanning is a useful technology for selection of carcass 

muscle and fat in the absence of the availability of CT scanning. Of particular interest, is the 

genetic relationship between the CT predicted IMF traits and current fat traits measured by 

both US scanning and CT scanning. PIMF1 was also very highly genetically correlated to 
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CTFW (rg 0.83 ± 0.04), whilst PIMF2 had a less strong relationship (rg 0.59 ± 0.10) with 

CTFW. These genetic relationships reflect the inclusion of CT predicted total carcass fat 

weight in the model used to estimate PIMF1 but not PIMF2.  The relationship between 

PIMF1 and CTFW (rg = 0.83) is larger than the genetic correlations found between 

chemically-extracted IMF and carcass fat measures found in previous studies. Lorentzen and 

Vangen (2012), reported rg 0.62 ± 0.34 in Norwegian white cross Texel sheep (note the high 

standard error). Whereas the relationship between PIMF2 and CTFW was similar to those 

found between chemically-extracted IMF and carcass fat measures. The genetic correlations 

between PIMF1 or PIMF2 and CTFW indicate that PIMF2 is more independent of total 

carcass fat (rg 0.83 vs. rg 0.59). The results of this study indicate that selection to increase 

IMF based on either of the CT models would result in an associated increase in CTFW, 

which would be greater as a result of selection on PIMF1 than PIMF2. PIMF1 had moderate 

positive genetic correlations with growth (8wwt and 21wwt, rg 0.49 and 0.44, respectively) 

whereas PIMF2 seems to be lower or not correlated with the weight traits (rg 0.24 and ns 

from zero). 

Index selection provides the opportunity to select simultaneously for several traits using a 

multi-trait selection index, in which selection traits are weighted depending on the ultimate 

breeding goal, and the results of this study suggests the integration of PIMF2 would be more 

independent of the current selection criteria rather than PIMF1, and any selection against a 

positive correlation will diminish the selection response.  

Any larger increase in carcass fat weight is of course antagonistic with current selection 

practices, which attempt to reduce fat trimming in abattoirs. However these relationships 

also highlight that continued selection for leaner carcasses, without consideration of the 

correlated changes in IMF will further reduce the already extremely low levels of IMF in 

Terminal Sire breeds, in this case the Texel sheep.  
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6.5.3  Incorporating CT predicted IMF into selection programmes     

The results of this study suggest that CT predicted IMF should be immediately incorporated 

into current selection programmes for Terminal Sire breeds that include reducing total 

carcass fat weight amongst other selection objectives. The goal of including such a trait into 

current breeding objectives would be to maintain or marginally improve the levels of IMF in 

the muscle of Texel sheep. Given that there is a large amount of variation in both CTFW and 

PIMF in the population used in this study, and the genetic correlation is significantly 

different from unity, suggests the two fat depots are at least partially under different genetic 

control and are not pleiotropic. As a result, there may potentially be selection candidates 

within the population (currently selected for leanness), these ‘correlation breakers’ fit the 

criteria for leanness and optimal levels of IMF.  

 Conclusion    6.6 

This study shows that accurate estimations of IMF produced from CT technology are 

heritable and have the potential to be included in current two-stage selection programmes for 

Texel sheep in the UK. The incorporation of CT-measured fat and muscle weights as 

selection criteria has already increased the genetic gain in carcass composition traits over the 

last few years and will continue to do so. The inclusion of a proxy meat (eating) quality trait, 

such as CT predicted IMF, will add further value to the benefits of CT scanning and ensure 

the halt of further decreases, and would facilitate the quantification and possible 

improvement of IMF levels in the loins of Texel sheep. 

The integration of this novel trait would be relatively straight forward in a practical sense, 

and the clients of the current system are already opting to send elite rams for CT scanning. 

This novel and commercially important trait will only increase the opportunities presented to 

breeders as a result of CT scanning.  
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The parameters reported in this study can now be used to develop two-stage selection 

programmes for the Texel genotype and potentially others (see chapter 4). This will enable 

breeders to make the best use of CT scanning technology to improve carcass composition 

without compromising, or at the very least, maintaining eating quality.  
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Chapter 7:  General Discussion 
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 Introduction 7.1 

Given the moderate to high relationships found between CT measures and some MQ traits in 

sheep (Karamichou et al., 2006; Lambe et al., 2010a; Macfarlane et al., 2005; Navajas et al., 

2008; Young et al., 2001), the initial aims of this project were to investigate the best image 

analysis methods using two-dimensional and/or three-dimensional CT information. Firstly to 

optimise the accuracy of CT as a non-invasive, in-vivo method to predict aspects of meat 

quality traits (intramuscular fat and mechanical shear force) in Texel sheep and secondly, to 

use the most accurate and precise methods of predicting aspects of meat quality and apply 

these across different breed types for which data may be available. Finally, these selected 

and validated prediction methods were then used to estimate genetic parameters for these 

novel CT traits and current traits which are recently included in the selection of elite sires 

within the Texel breeding industry, to provide both a set of genetic parameters for already 

integrated breeding traits and describing the genetic basis of any new, novel CT traits 

developed as a result of this project. 

Each of the previous chapters including any experimental work also includes a 

comprehensive discussion as part of the chapter. Therefore the purpose of this general 

discussion is to summarise the findings and highlight the key points from each of the 

experimental chapters, furthermore, to evaluate the contribution made by these chapters and 

assess any limitations in the research. These findings will be discussed in the context of the 

UK sheep industry and the emphasis will be on the use of CT scanning as a tool for selection 

for MQ traits in Texel sheep. The general discussion will then be followed by consideration 

of the benefits to the sheep breeding industry of this work and finally highlighting areas of 

potential research in the future.  
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The project aimed to address the hypotheses that: 

1. Two and three-Dimensional x-ray computed tomography can provide an 

accurate method for estimating MQ traits in live Texel sheep. 

2. Resulting MQ predictors can be incorporated into current sheep breeding 

programmes, allowing continued improvements in growth and carcass traits, 

whilst maintaining or improving aspects of MQ 

 CT as a method for estimating MQ traits in Texel sheep 7.2 

Computed tomography has been used in terminal sire sheep breeding programmes for the 

last few decades, with elite rams from many terminal sire breeds (e.g. Texel, Suffolk and 

Charollais) now routinely scanned. Carcass fat and lean weight can be predicted with very 

high accuracy (98-99%) using CT (even just using the Reference scan method), and in order 

to increase the viability and value of CT scanning selection programmes, novel and 

economically important CT based phenotypes,  should be included in current two-stage 

selection programmes. Such novel phenotypes include MQ traits such as shear force and 

IMF. The current factors affecting lamb carcass value are carcass weight, conformation and 

carcass fatness, thus systems aiming to produce high quality carcasses have currently 

focussed on these economically important traits. The consideration of MQ factors (e.g. shear 

force and IMF) has until now been limited to the measurement of such traits post-mortem 

which is both expensive and destructive, and in turn limits the inclusion of these traits into 

current selection programmes.  It has been shown that CT provides an opportunity to 

overcome these previous limitations in some MQ traits.    

7.2.1  Shear force 

 Throughout the study in both Chapters two and three, CT predictors did not  explain much 

of the variance in shear force with a maximum Adj R
2 
of 0.14 (RMSEP = 0.15) using 
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information from routine reference scan images and no significant improvement was seen 

when spiral CT scan images were used. This objective MQ trait is understandably easily 

related to organoleptic traits such as tenderness by the consumer, and would be easily 

marketable as a ‘proxy’ trait for eating quality in live lambs. However the lack of accuracy 

achieved in this project does not provide sufficient confidence in the ability of CT to predict 

shear force.  

The inability of in vivo CT to predict the post-mortem trait shear force may be due to the 

chemical and compositional changes that occur during the processing, cooking and ageing of 

a sample of meat (in this case lamb loin), which are part of the experimental process during 

shear force studies and are also important prior to retail marketing of red meat and during 

cooking by the consumer. These chemical and compositional changes include cooking loss, 

ultimate pH, drip loss, and post mortem glycolysis. Factors that also have an effect on shear 

force can be muscle fibre type and size, and connective tissue content. All these factors 

contribute to the ultimate values of shear force and chemical and compositional changes 

mean that muscle post-mortem is far removed from the same skeletal muscle in-vivo. 

Mechanically measured shear force is also known to have low repeatability which may also 

partially explain the low predictability. CT was unable to predict such a ‘tangible’ trait in-

vivo, however with further work it may be possible to develop a method and increase the 

accuracy of predicting such post-mortem traits in primal cuts or retail cuts using CT of the 

meat cuts themselves (rather than live animal CT) and multi-object image analysis 

(Appendix i) which would reduce the cost of CT scanning individual cuts by allowing 

several objects to be scanned and analysed simultaneously. 

7.2.2  Intramuscular fat 

Following a review of the literature by Savell and Cross (1988) a minimum level of 3% IMF 

in grilled cuts of red meat such as beef and lamb was recommended to ensure consumer 
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acceptability in terms of eating quality, with some studies recommending as high as 5% 

(Hopkins et al., 2006) in lamb meat, which we may define as a minimum ‘window’ of 

acceptability ranging from 3-5% IMF in lamb. Although it should be noted that a current and 

comprehensive study on the relationship between IMF in lamb and consumer taste panel 

results in the UK has yet to be carried out and previous studies have highlighted country 

differences in preferences of lamb meat  (Sanudo et al., 1998).  

This study provides evidence that in both the experimental animals included in chapter two 

and the commercial animals included in chapter six, the average levels of IMF within both 

populations falls well below these recommended levels for optimal eating quality (Chapter 2: 

Mean IMF = 1.48%, Chapter 6: Mean CT predicted IMF% = 1.84 – 2.32% dependant on 

prediction model). These initial findings reinforce the requirement for increased attention to 

levels of IMF in the production of lamb meat in the UK. This is of course restricted by 

current methods of determining IMF levels post-mortem. However both chapters two and 

three have provided evidence of the ability of CT to predict with high accuracy IMF content 

in the loin of Texel sheep in-vivo. The methods used during the analyses were intended to be 

thorough in the process of including a large number of possible combinations of CT 

measures available, alternative image processing, and also using both two-dimensional, 

three-dimensional and a combination of these CT methods. This approach succeeded in 

identifying optimum prediction equations balanced for accuracy and practical application 

amongst all possible combinations of CT measures and methods, providing robust and 

accurate estimations of IMF content in Texel lamb loins. Throughout the study, it was 

considered that, the use of CT predicted IMF, where the prediction included total carcass fat, 

may complicate the divergent genetic selection for increased IMF against a reduction in 

carcass fatness. Therefore it has been attempted to build and use prediction models with a 

higher independence of CT predicted carcass fatness. To address this prediction models were 
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developed both including and excluding related measures of total carcass fatness and the 

method of virtual dissection has been used.  

The results from chapters two and three identified several possible prediction models for 

IMF producing prediction accuracies ranging from 63% - 71%, greatly improving on 

accuracies reported in previous studies ranging from R
2
 0.36 – 0.57 (Karamichou et al., 

2006; Lambe et al., 2010a; Macfarlane et al., 2005). No significant improvement was made 

on the accuracies achieved from virtual dissection, the use of three-dimensional CT measures 

or the combination of both two-dimensional and three-dimensional CT measures. The 

selection of optimal models was based on the use of CT information from current 

commercial CT methods using two-dimensional CT measures from three available reference 

scan images, three-dimensional spiral CT information and a combination of two-dimensional 

and three-dimensional. And for the reasons previously highlighted two optimal models were 

chosen; one including and another excluding CT predicted total carcass fat weight. As we 

know that there is a scanner effect on density values within soft tissue ranges between 

different scanners (Bunger et al., 2010), and two different scanner types were used between 

farms in both the experimental and commercial scanning procedures, scanner-specific 

equations were developed. Two models were ultimately selected from the work carried out 

in chapters two and three. 

7.2.3  Breed and sex effects on IMF and the application of CT predicted 

IMF models in different breed types 

The prediction equations developed in chapter two on Texel sheep were applied across 

divergent breed types for which CT and chemical IMF data were available (Texel, Scottish 

Blackface and Texel cross Scotch Mule), the purpose of which was to investigate the 

accuracy of transferring CT prediction models developed on one particular breed type to 

other breed types. The IMF levels across the breed types and sexes were also compared.  
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The Texel population included in the study were significantly lower in both IMF and CT 

predicted carcass fat than Scottish Blackface and Texel cross Mule sheep. And in the same 

animals this has translated to increased tenderness, stronger lamb flavour and higher overall 

liking in the Scottish Blackface when compared to the Texel lamb meat (Navajas et al., 

2008), further affirming the effect IMF levels play in the perception of organoleptic traits 

such as tenderness, flavour and overall liking. Scottish Blackface lambs were on average 

highest in both carcass fat and IMF, followed by Texel cross Mule and finally Texel. Again 

this highlights the effect of breeding strategies focussed on increasing lean meat production 

while maintaining or reducing overall carcass fatness in terminal sire breeds when compared 

to breeds which do not focus so much on the terminal traits e.g. Scottish Blackface. That is 

not to suggest that the inclusion of CT MQ and carcass traits in maternal and crossbreeding 

selection programmes would not be of interest (Conington et al., 2006) and chapter four 

provides evidence that CT predicted IMF may be applied directly to Scottish Blackface.   

Males on average were leaner across all breeds when compared at the same liveweight, 

which agrees with several studies reporting that entire males are on average the leanest, 

followed by castrates and females (Bass et al., 1990; Butler-Hogg et al., 1984; Dransfield et 

al., 1990; Kirton et al., 1982). In this study, males also showed lower levels of IMF at the 

same levels of carcass fatness, with the exception of the Texel cross Mule lambs which were 

shown to have similar mean levels of IMF to their female counterparts, which is no doubt a 

reflection that these were castrated males and the Texel and Scottish Blackface males were 

entire. 

It was expected, that given the breed relationship between Texel and Texel cross Mule, the 

prediction equations would transfer across better than to the Scottish Blackface. However, it 

was the opposite, prediction accuracies in the Scottish Blackface data ranged from R
2 
0.57 – 

0.64 (RMSEP 0.49 – 0.54) and in the Texel cross Mule data accuracies ranged from R
2
 0.36 

– 0.37 (RMSEP 0.48 – 0.49). To investigate the differences in transferability across the 
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breeds, obvious differences in the summary statistics were highlighted, with differences in 

age at CT and age at slaughter identified across the breed types. The further investigation of 

these age related differences and their effect on transferability, provided evidence that there 

was no effect of age either at CT or slaughter on the prediction accuracies. Furthermore, a 

breed specific approach was also taken to the Texel cross Mule dataset, producing breed 

specific coefficients for the same models developed in chapter two. This also resulted in no 

improvements of accuracies. It was shown in chapter four that there are differences in the 

relationship between IMF and CT variables across the breed types, which may explain the 

reduction in accuracies of prediction equations developed in Texel across to the Texel cross 

Mule. This suggests that breed specific equations may be required rather than simply breed 

specific coefficients. It should also be acknowledged that the structure, design and the 

experimental procedures of the experiments providing the data was not optimal for a 

definitive and comprehensive breed comparison for both IMF levels and the prediction 

equations. A structured study balancing fixed effects such as sex, breed type and random 

effects such as age at CT, age at slaughter, management regime etc. would be recommended 

to produce thorough, definitive and comprehensive results. These results are indicative of the 

transferability of the prediction equations developed in chapter two, however it would be 

recommended, that if these prediction equations were to be considered in other breed types, 

validation studies should be conducted to confirm the accuracies achieved.   

7.2.4  Genetic parameters of ultrasound, CT estimated and meat quality 

traits in Texel sheep  

There were ultimately two parts to the genetic analysis in the study from chapters five and 

six, firstly the estimation of genetic parameters using the same, size limited research data set 

as used in chapters two through to four, and secondly the use of a larger, more powerful 

dataset comprising historical commercial data held within the BASCO database. The initial 

genetic analyses using the research data had the aim to produce genetic relationships 
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between post-mortem meat quality measurements such as shearforce and IMF and CT 

estimated traits including the novel CT predicted IMF traits. It was discovered that a 

combination of small animal numbers, and the design and research objective of the study to 

produce some of the data, resulted in a pedigree structure that limits the effectiveness of the 

research data set for genetic parameter estimation, this was as a result of both males and 

females being intensively selected in order to increase the genetic frequency of a QTL that 

was of interest for that original study. Closely related individuals in part of the study were 

used as parents and the common sires could be traced back to a single sire. Therefore, the 

aims of the initial genetic analysis were very difficult to achieve and results reported were 

seemingly unreasonable with regards to magnitude and /or accompanied by very large 

standard errors. The primary interest in this chapter was the quantification of the genetic 

basis and relationships between post-mortem, laboratory measured traits, with in-vivo meat 

and carcass quality traits. This remains a valuable relationship to understand and would 

require large numbers of animals, including pedigree information, CT data and laboratory 

measured MQ traits to achieve this. The CT methods of IMF prediction developed in this 

study may serve to enable the robust genetic analysis of these traits in future research or 

commercial studies. 

Robust and accurate heritability estimates of the novel CT predicted IMF traits and genetic 

correlations with existing index traits are the main focus, alongside the confirmation of 

genetic parameters of current US, CT and growth traits in order to enable the inclusion of CT 

predicted IMF into current breeding programmes. A larger industry data set was made 

available from the BASCO database, making it possible to estimate genetic parameters of 

these economically important traits. Moderate heritabilities were estimated for growth traits, 

with moderate to high heritabilities estimated for US and CT traits. Heritability estimates for 

the novel CT predicted IMF traits were moderate (h
2
 0.31-0.36) and strong positive genetic 

correlations were estimated between US measured fat depth and CT predicted IMF (rg 0.60-
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0.64). Of particular interest was the genetic relationship between CT predicted fat weight and 

CT predicted IMF using each of the two models: which was found to be strong and positive 

for the model inclusive of CT predicted carcass fat weight (rg 0.83) and moderately positive 

for the model entirely independent of CT carcass fat measures (rg 0.59). The genetic 

relationship between the two CT predicted IMF traits were strong and positive (rg 0.89). 

The heritability estimates for CT predicted IMF produced were similar to those for 

chemically extracted IMF found in previous studies (h
2
 0.32-0.48; (Karamichou et al., 2006; 

Lorentzen and Vangen, 2012; Mortimer et al., 2014). The similarity between heritabilities 

for CT predicted IMF and IMF is an indication of the prediction accuracy of CT predicted 

IMF in-vivo in Texel sheep. It is also apparent that both models are partially under different 

genetic control from CT carcass fatness. However the model not inclusive of CT carcass fat 

measures was less genetically correlated to CT carcass fat than the model inclusive of these 

measures. This provides evidence that a model for prediction of IMF that is not using carcass 

fat as a predictor can provide a similar accuracy as a model that uses CT carcass fat 

measures. Any selection scheme using CT to improve or maintain IMF and to reduce further 

carcass fat, works against the positive genetic correlation between the two fat depots. An 

IMF prediction model that is not using the information on carcass fat as predictor should be 

very valuable in such an approach aiming to identify “correlation breakers” as selection 

candidates, given that there is a large amount of variation in both fat depots (carcass fat and 

CT predicted IMF) in the commercial population used here (Figure 7.1). 
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Figure 7.1: Plot of selection candidates from commercial CT data based on CT 
predicted carcass fat and CT predicted IMF using model PIMF2 (chapter 5) 

 

There may already be potential selection candidates within the commercial population which 

fit the criteria for lean carcasses at optimal levels of IMF, such as those within the top left 

quadrant in Figure 7.1. It can be concluded that CT provides a highly accurate tool to 

identify these selection candidates.  

Currently the Texel breeding programme’s multi-trait selection index focusses mainly on 

increased US muscle depth, CT muscle weight and a very slight reduction of CT carcass fat 

weight. Estimated breeding values for IMF should be immediately introduced into current 

breeding programmes for Texel sheep and in the future other breeds. Given that the Texel 

breed is already very lean in comparison to some other breeds as discussed previously, the 

inclusion of CT predicted IMF into the existing multi-trait selection index would enable 

breeders to maintain the lean and muscular attributes of the breed whilst selecting for 

increased IMF levels which are closer to the levels recommended for optimal eating quality, 

providing the industry with an improved balance of economically important carcass quality 

traits in the abattoir alongside optimal eating quality characteristics for the consumer.  
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It is of note in this context, that future value based payments systems in abattoirs will 

probably reward farmers for meat quality and the time unit of breeding is generations not 

weeks or months. In other words, such an approach would make the industry more future 

proof. 

 Future work 7.3 

Further steps to achieve the integration of these CT predicted IMF methods into current two-

stage selection practices and routine genetic evaluations would require the addition of CT 

predicted IMF into current commercial analyses of CT images alongside the integration of 

CT predicted IMF into current multi-trait selection indices and the existing two-stage 

selection programmes for Texel sheep. The investigation and further development of CT 

predicted IMF methods in other terminal and maternal breeds should be continued and will 

lead to additional benefits of CT to the entire UK sheep breeding industry. 

One area of potential further research related to the eating quality of lamb, is the prediction 

of eating quality in primal or retail cuts of meat. Very high accuracies have been achieved in 

beef primal cuts (Prieto et al., 2010) but not yet in lamb loins (Appendix i). However a more 

structured and thorough analyses of several types of cuts, including primal cuts such as the 

entire saddle, gigot and shoulder of lamb down to rib joints and fully dissected loins may be 

more successful in the quantification of meat eating quality traits in lamb from CT scanning 

meat cuts. These suggested subsequent studies should also further investigate the effect of in 

vivo CT scanning vs. post mortem with the latter possibly affected by chilling or even 

freezing and thawing.     

  Conclusion 7.4 

This thesis has provided robust evidence that CT can be used as a highly accurate method of 

predicting IMF as a proxy trait for meat eating quality in live Texel sheep and potentially 
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other breeds, and has the potential to be incorporated into the current two-stage selection 

approach and the routine genetic evaluation of Texel sheep in the UK. The inclusion of CT 

predicted IMF will undoubtedly add further value to the benefits of CT scanning and could 

assist in the production of optimal eating quality lamb meat, whilst maintaining or further 

improving important carcass attributes. 
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Appendix i: Use of computer tomography (CT) to predict chemical 

intramuscular fat (IMF) in dissected lamb loins 
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Value for Industry 

 The prediction of IMF during processing of retail cuts in a non-destructive manner, 

independent of any fixed effects.  

 The potential to provide a valuable commercial tool to maximise levels of eating 

quality and the foresight to target certain markets.  

 Provide information on meat quality to feed into breeding programmes 

 Non-destructive prediction of eating quality which could provide information as a 

basis to reward commercial farmers for meat quality 

Background 

In different livestock species, meat eating quality (MEQ) traits such as flavour, tenderness 

and juiciness are known to be linked to fat levels. This association of MEQ attributes and fat 

levels in meat are largely due to the positive association with intramuscular fat (IMF) (Savell 

and Cross, 1988). X-ray computed tomography (CT) can measure total fat, muscle and bone 

in vivo in sheep and CT predictions of carcass composition have been used in commercial 
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UK sheep breeding programmes over the last two decades (Bunger et al., 2011). Together 

with ultrasound measures of fat and muscle depth in the loin region, CT measured carcass fat 

and muscle weights have contributed much to the success of breeding for leaner carcasses 

and led to higher selection responses (Moore et al., 2011). 

Previous research has not only demonstrated that in vivo CT can predict or measure total 

carcass fat, but it can also provide measurements of the average muscle density, which has 

been shown to be a good predictor of IMF (Karamichou et al., 2006; Young et al., 2001). 

The application of CT technology in primal or retail cuts of lamb has not been investigated 

as thoroughly. The use of spiral CT scanning (SCTS) and the development of multi-object 

scanning may provide additional advances in the application of such technology at the time 

of processing. Multi-object spiral CT scanning provides high resolution CT images in a cost 

effective way, generating 3D images and precise measurements of tissue volumes and 

weights of several objects at the same time. Although there is continued investigation into 

the prediction of meat quality traits in lamb using in vivo CT, using both information from 

reference scanning and 3D spiral scanning, relatively few studies have focussed on primal or 

retail cuts.  

Why work is needed 

The provision of meat quality assurances from meat processors is certainly of interest to both 

the consumer and producer. For the consumer, an assurance of certain minimum levels of 

meat quality traits should increase confidence at point of purchase and omit requirement for 

visual evaluation by consumers. For the producer, knowledge of meat quality aspects may be 

fed into breeding programmes and future payment systems would have relevant information 

to draw from to reward producers on meat quality. All these aspects would enable the 

processor to target certain markets and better evaluate markets and consumer preferences. 
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The ability to measure lamb meat quality in a non-destructive and safe manner, maintaining 

the integrity of the product, is important for any such system to be applied in industry. The 

aim of this experiment was to investigate the ability of CT to predict intramuscular fat (IMF) 

in a retail processed cut of meat (M. longissimus) using only CT derived information. 

The methods used 

Two hundred and two rear right side lamb loins (Lumbar vertebra 1-7) were removed post-

slaughter, vacuum packed, chilled and aged for seven days on the bone. After this time the 

bone was removed, and the loin’s were re-packaged and frozen for transportation to the 

SRUC/BioSS CT unit, Edinburgh, UK for CT scanning. 

The front portion of these same 202 loins (thoracic vertebra region) were split into three 

separate pieces 3 days post-slaughter, immediately vacuum packed and frozen for further 

analytical testing, as part of the wider study, including IMF estimation using the direct bi-

methylation method described by Lee et al. (2012). The section of the loin that included the 

last rib (14
th
 thoracic vertebra) was thawed for 14 hours, visible fat and connective tissue 

were removed and 1cm
3
 samples were cut. Chemical IMF (chem_IMF) was calculated as the 

sum of the major fatty acids in a fatty acid profile (mg/100g fresh weight).  

The rear right loins (lumbar vertebra region), which were transported frozen to the 

SRUC/BioSS CT unit in Edinburgh, were thawed over a period of approximately 12 hours 

under refrigeration, over a 10–day period, in six batches of 30 samples and one batch of 22 

samples. Loins were uniformly orientated and positioned on a multiplex scanning frame and 

spiral CT scanned (contiguous scans at 8mm intervals) in batches of six (Figure xvii). Each 

batch was scanned at two separate x-ray intensities (80kV and 130kV). The purpose of this 

was to investigate whether images produced at 80kV would increase the contrast of voxels 

within the soft tissue, compared to the standard 130kV intensity, and therefore improve on 
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the accuracies of prediction in IMF following a similar approach by Stubjkjaer-Schubert et 

al. (2009). 

    

Figure i: Dissected loins orientated and positioned in the multiplex frame (left), 3D 

rendered image of multiplex scanning (right) 

CT images were segmented using a multi-object animal tomograph analysis routine (ATAR) 

developed at BioSS/SRUC (Figure xviii). Each pixel in each image was allocated as fat or 

muscle, using previously developed density thresholds, specific to the analysis of images 

obtained from carcasses, primal cuts and dissected muscles (fat = -244 to 24 HU, muscle = 

26 to 204 HU), which were different to the thresholds used for live animal scanning. The CT 

density results were then weighted by area in each image and averaged over the spiral series 

images (26-30 images per loin, average = 28 images). 
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Figure i: Selection of the scanned objects using ATAR software (left), adjusting the 

boundary of a selected object (right) 

To predict the chem_IMF from CT measured traits, the statistical analysis included the 

weighted CT density information from each spiral loin scan, this included: loin weight at CT 

scanning (Ct_wt) calculated from the CT derived volume and weight (g/cm
3
) of the soft 

tissue (muscle and fat); weighted muscle and fat densities (w_md, w_fd) and their standard 

deviations (w_msd and w_fsd); weighted soft tissue densities (combining the density ranges 

between fat and muscle) and their standard deviations (w_std, w_stsd); and the proportion of 

voxels allocated as fat (Pr_F_vox). Nine models were tested in the analysis, using different 

combinations of CT variables in each maximum model. Models containing three or more 

variables were analysed using generalized stepwise linear regression in Genstat14 (Payne et 

al., 2012) optimising the use of predictor variables within the more complicated models, 

while simpler models containing a maximum of two predictor variables were analysed using 

multiple linear regression. Models were then tested for significant differences using their 

correlation coefficient (√Adj R
2
) and applying standard methods. 

The results obtained 

Chem_IMF% ranged from 1.27% to 4.71% with a mean of 2.49% and a coefficient of 

variation of 22.94.  
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Table ii shows the regression parameters (Adj R
2
 and RMSE) of the predictive models 

obtained from multiple and generalised stepwise linear regression analysis from the 

maximum models tested. Using CT calculated loin weight and muscle density at an intensity 

of 80kv resulted in very poor prediction of IMF% (Adj R
2
 0.04; model A), with similar poor 

results using fat density and combining muscle and fat density (Adj R
2
 0.06; models B and 

C). The use of soft tissue density and its standard deviation resulted in similar prediction 

accuracies (Adj R
2 
0.04, 0.05; models G and H). However, the use of CT calculated loin 

weight, average muscle density across the loin and the standard deviation of muscle density 

resulted in a significant increase in accuracy (Adj R
2
 0.18; model D). A further slight 

increase in accuracy (Adj R
2
 0.20; model I) was achieved when the proportion of voxels 

allocated as fat was included in the model. No significant improvement was found using 

results obtained from the higher CT intensity (130kv). The maximum accuracy of prediction 

achieved was an Adj R
2
 of 0.14 at 130kv. 

Table i: Linear regression models between chem_IMF and CT tissue parameters, 

with adjusted coefficient of determination (Adj R2) and residual mean square error 

(RMSE) 

  80kV 130kV 

 Maximum Model Adj R
2 

RMSE Adj R
2 

RMSE 

A Ct_wt+w_md 0.04 0.56 0.04 0.56 

B Ct_wt+w_fd 0.06 0.56 0.07 0.55 

C Ct_wt+w_md+w_fd 0.06 0.56 0.07 0.55 

D Ct_wt+w_md+w_msd 0.18* 0.52 0.13* 0.53 

E Ct_wt+w_fd+w_fsd 0.06 0.55 0.07 0.55 

F Ct_wt+w_md+w_msd+w_fd+w_fsd 0.18* 0.52 0.14* 0.53 

G Ct_wt+w_std 0.04 0.56 0.04 0.56 

H Ct_wt+w_std+w_stsd 0.05 0.56 0.05 0.56 

I Ct_wt+w_md+w_msd+Pr_F_vox 0.20* 0.51 0.14* 0.53 

*√Adj R
2
 are not significantly different when tested using Fisher’s Z transformation 
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The scientific conclusions 

In this study, CT was unable to predict IMF content of dissected lamb loins with acceptable 

accuracy. However more promising prediction accuracies (R
2
 0.33 - 0.44) have been 

reported in previous studies using a small sample of 30 dissected loins (Lambe et al., 2010b). 

In the same study, prediction accuracies varied when using different scanners (R
2
 0.05 – 

0.12). Live animal assessments use entire carcass images (including other fat depots such as 

subcutaneous and intermuscular fat), and therefore the poorer results obtained during the 

current study may suggest that there is additional information within these other carcass 

portions and fat depots which provide increased accuracies in prediction of IMF. Another 

factor may be that the composition of the muscle in vivo and post processing changes, in 

terms of the density of soft tissue,  which results in the reduction of prediction ability when 

using density measures of processed retail cuts of meat. This may be further supported by 

substantially improved prediction accuracies during a separate study where virtually 

dissected loins from live animal scans resulted in accuracies of 62% (Clelland et 

al.Unpublished)   

The next steps 

Further research will be carried out investigating the prediction of IMF in primal cuts of 

lamb, including additional fat depots (subcutaneous and intermuscular) to determine the role 

that these fat depots may play in the accurate prediction of IMF in retail or primal cuts. 

Comparative data sets are available to investigate the difference in accuracy when using 

virtually-dissected images from live animal scanning to isolate tissue included in both retail 

and primal cuts, alongside CT scan data from butchered primal cuts and fully dissected loins. 
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