
ABSTRACT

Title of dissertation: DETECTING OBJECTS AND ACTIONS WITH
DEEP LEARNING

Bharat Singh, Doctor of Philosophy, 2018

Dissertation directed by: Professor Larry S. Davis
University of Maryland, College Park

Deep learning based visual recognition and localization is one of the pillars of computer

vision and is the driving force behind applications like self-driving cars, visual search,

video surveillance, augmented reality, to name a few. This thesis identifies key bottlenecks

in state-of-the-art visual recognition pipelines which use convolutional neural networks

and proposes effective solutions to push their limits. A few shortcomings of convolutional

neural networks are, lack of scale invariance which poses a challenge for tasks like object

detection, fixed structure of the network which restricts their usage when presented with

new class labels, and difficulty in modeling long range spatial/temporal dependencies. We

provide evidence of these problems and then design effective solutions to overcome them.

In the first part, an analysis of different techniques for recognizing and detecting objects

under extreme scale variation is presented. Since small and large objects are difficult to rec-

ognize at smaller and larger scales of an image pyramid respectively, we present a novel

training scheme called Scale Normalization for Image Pyramids (SNIP) which selectively

back-propagates the gradients of object instances of different sizes as a function of the im-

age scale. As SNIP ignores gradients of objects at extreme resolutions, following up on

this idea, we developed SNIPER (Scale Normalization for Image Pyramids with Efficient

Re-sampling), an algorithm for performing efficient multi-scale training for instance level

visual recognition tasks. Instead of processing every pixel in an image pyramid, SNIPER

processes context regions (512x512 pixels) around ground-truth instances at the appropri-

ate scale. For background sampling, these context-regions are generated using proposals

extracted from a region proposal network trained with a short learning schedule. Hence,

the number of chips generated per image during training adaptively changes based on the

scene complexity. SNIPER brings training of instance level recognition tasks like object

detection closer to the protocol for image classification and suggests that the commonly

accepted guideline that it is important to train on high resolution images for instance level

visual recognition tasks might not be correct.

Next, we present a real-time large-scale object detector (R-FCN-3000) for detecting

thousands of classes where objectness detection and classification are decoupled. To ob-

tain the detection score for an RoI, we multiply the objectness score with the fine-grained

classification score. We show that the objectness learned by R-FCN-3000 generalizes to

novel classes and the performance increases with the number of training object classes -

supporting the hypothesis that it is possible to learn a universal objectness detector. Be-

cause of generalized objectness, we can train object detectors for new classes, just with

classification data, without even requiring bounding boxes.

Finally, we present a multi-stream bi-directional recurrent neural network for action

detection. This was the first deep learning based system which could perform action local-

ization in long videos and it could do it just with RGB data, without requiring any skeletal

models or performing intermediate tasks like pose-estimation. Our system uses a tracking

algorithm to locate a bounding box around the person, which provides a frame of refer-

ence for appearance and motion while suppressing background noise that is not within the

bounding box. We train two additional streams on motion and appearance cropped to the

tracked bounding box, along with full-frame streams. To model long-term temporal dy-

namics within and between actions, the multi-stream CNN is followed by a bi-directional

Long Short-Term Memory (LSTM) layer. We show that our bi-directional LSTM network

utilizes about 8 seconds of the video sequence to predict an action label and outperforms

state-of-the-art methods on multiple benchmarks.

DETECTING OBJECTS AND ACTIONS WITH DEEP LEARNING

by

Bharat Singh

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor David Jacobs
Professor Tom Goldstein
Professor Ramani Duraiswami

c© Copyright by
Bharat Singh

2018

Acknowledgments

I would like to thank my advisor Prof. Larry Davis for supporting me during my stay at

University of Maryland. It would have been impossible for me to collaborate with so many

bright people on diverse projects if the open research environment in his lab (and UMD in

general) did not exist. I also learned to write clear and to the point papers after going over

so many edits I received over the course of five years.

I would also like to thank Vlad, who advised me for a major period of my PhD and

patiently listened to my immature ideas. With the interactions I had with him, I gained

invaluable research experience and most importantly, understood how to reject bad ideas.

The students at University of Maryland were the most important resources during my stay.

Due credit goes to Abhishek Sharma who introduced me to deep learning and discussed

important papers in computer vision and machine learning. I will cherish the discussions

we had throughout my life. I also had lots of fun working on conference deadlines with

Xintong, Zhe, Mahyar, Navaneeth, Hengduo, Xiyang and Seyed. Having people like Varun

(both tall and small), Venkat and Zuxuan in the lab was nice as well.

My mentors during my internships at MERL (Mike Jones, Tim Marks, Oncel Tuzel)

and NEC (Samuel Schulter) have played a pivotal role in my research career. Samuel took

the pain of explaining every small detail in object detection to me and I would always be

grateful to him for that.

I am also grateful to all my committee members. Tom and David’s classes helped me

in establishing a strong foundation in computer vision and machine learning. It was also

fun to collaborate with Tom on research projects.

My PhD was partially supported by the Intelligence Advanced Research Projects Ac-

tivity (IARPA) grants D17PC00345, D11PC20071 and Office of Naval Research grant

N000141612713. I appreciate their support for my research work.

ii

My parents, brother and grandfather were always supportive of me to pursue higher

studies abroad. Any number of words are not sufficient to express my gratitude towards

them.

Finally, I would like to thank the clusters, Euclid, Deepthought2, Bluecrab, Vulcan and

AWS which worked day and night long, without complaining. These are remarkable people

and having access to them in a university was a delight.

iii

Table of Contents

Acknowledgements ii

List of Tables

List of Figures

1 Introduction 1

2 An Analysis of Scale Invariance in Object Detection - SNIP 4
2.1 Introduction . 4
2.2 Related Work . 8
2.3 Image Classification at Multiple Scales . 10
2.4 Background . 13
2.5 Data Variation or Correct Scale? . 14
2.6 Object Detection on an Image Pyramid . 16

2.6.1 Scale Normalization for Image Pyramids 16
2.6.2 Sampling Sub-Images . 18

2.7 Datasets and Evaluation . 19
2.7.1 Training Details . 19
2.7.2 Improving RPN . 20
2.7.3 Experiments . 21

2.8 Conclusion . 24

3 SNIPER: Efficient Multi-Scale Training 25
3.1 Introduction . 26
3.2 Background . 27
3.3 SNIPER . 29

3.3.1 Chip Generation . 29
3.3.2 Positive Chip Selection . 30
3.3.3 Negative Chip Selection . 31
3.3.4 Label Assignment . 32

iv

vii

ix

3.3.5 Benefits . 33
3.4 Experimental Details . 35

3.4.1 Recall Analysis . 37
3.4.2 Negative Chip Mining and Scale 37
3.4.3 Timing . 38
3.4.4 Inference . 39
3.4.5 Comparison with State-of-the-art 39

3.5 Related Work . 41
3.6 Conclusion and Future Work . 41

4 R-FCN-3000 at 30fps: Decoupling Detection and Classification 43
4.1 Introduction . 43
4.2 Related Work . 47
4.3 Background . 48
4.4 Large Scale Fully-Convolutional Detector 49

4.4.1 Weakly Supervised vs. Supervised? 49
4.4.2 Super-class Discovery . 51
4.4.3 Architecture . 52
4.4.4 Label Assignment . 53
4.4.5 Loss Function . 53

4.5 Experiments . 53
4.5.1 Training Data . 54
4.5.2 Implementation Details . 54
4.5.3 Comparison with Weakly Supervised Detectors 56
4.5.4 Speed and Performance . 57

4.6 Discussion . 58
4.6.1 Impact of Number of Classes and Clusters 58
4.6.2 Are Position-Sensitive Filters Per Class Necessary? 59
4.6.3 Generalization of Objectness on Unseen Classes 61

4.7 Conclusion . 63

5 A Multi-Stream Bi-Directional Recurrent Neural Network for Fine-Grained Ac-
tion Detection 64
5.1 Introduction . 65
5.2 Related Work . 68
5.3 Approach . 70

5.3.1 Tracking for Fine-Grained Action Detection 71
5.3.2 Training of Flow Networks . 73
5.3.3 Training on Long Sequences using Bi-Directional LSTM Network . 74

5.4 Results . 78
5.4.1 Datasets . 78
5.4.2 Implementation Details . 79

v

5.4.3 Experiments . 81
5.5 Conclusion . 85

6 Conclusion and Future Directions 87

Bibliography 88

vi

List of Tables

2.1 mAP on Small Objects (smaller than 32x32 pixels) under different training
protocols. MST denotes multi-scale training as shown in Fig. 2.5.3. R-FCN
detector with ResNet-50 (see Section 4). 16

2.2 MS denotes multi-scale. Single scale is (800,1200). R-FCN detector with
ResNet-50 (as described in Section 4). 19

2.3 For individual ranges (like 0-25 etc.) recall at 50% overlap is reported
because minor localization errors can be fixed in the second stage. First
three rows use ResNet-50 as the backbone. Recall is for 900 proposals, as
top 300 are taken from each scale. 21

2.4 Comparison with state-of-the-art detectors. (seg) denotes that segmentation
masks were also used. We train on train+val and evaluate on test-dev. Un-
less mentioned, we use 3 scales and DPN-92 proposals. Ablation for SNIP
in RPN and RCN is shown. 21

3.1 We plot the recall for SNIPER with and without negatives. Surprisingly,
recall is not effected by negative chip sampling 37

3.2 The effect training on 2 scales (1.667 and max size of 512). We also show
the impact in performance when no negative mining is performed. 38

3.3 Ablation analysis and comparison with full resolution training. Last two
rows show instance segmentation results when the mask head is trained
with N+1 way softmax loss and binary softmax loss for N classes. 40

4.1 The number of images and object instances in the ImageNet Detection and
different versions of our ImageNet classification (CLS) training set. 54

4.2 Comparison of our decoupled R-FCN trained on classification data with
bounding-box supervision vs. weakly-supervised methods that use a knowl-
edge transfer approach to exploit information from detectors pre-trained on
100 classes on the ImageNet detection set. 55

4.3 The mAP scores for different number of clusters for the 1000 class detector
and run-time(in milli-seconds)/image. 57

4.4 The mAP for different number of super-classes in NMS for the 1000 class
objectness based detector and the NMS run-time (in milli-seconds). 57

vii

4.5 Results for different versions of RPN scores used for objectness are re-
ported. C4 and C5 denote if RPN is applied on Conv4 or Conv5 feature-
map. Ov0.5, Ov0.7 denotes if the overlap for assigning positives in RPN is
0.5 or 0.7. BBR denotes if bounding box regression of deformable R-FCN
is used or not. 61

4.6 Results of D-R-FCN and our decoupled version where the R-FCN classifi-
cation branch only predicts objectness. 61

4.7 mAP of Objectness and Generalized Objectness on held out classes in the
ImageNet detection set. 62

5.1 Comparison of performance of our MSB-RNN system with previous action
detection methods on the MPII Cooking 2 dataset. Mean Average Precision
(mAP) is reported. 82

5.2 Results for each action class with different network configurations on the
Shopping Dataset. 82

5.3 Evaluating individual components of our MSB-RNN system. Mean aver-
age Precision (mAP) is reported. For both datasets, MPII Cooking 2 and
Shopping dataset, pixel trajectories outperform stacked flow (both with and
without a subsequent LSTM layer). For all three stream types and both
datasets, incorporating the LSTM layer greatly improves performance. . . . 83

5.4 Performance comparison of multi-stream vs. two-stream network. Per-
formance when Multi-stream network is followed by each uni-directional
LSTM or by their bi-directional combination (MSB-RNN). mAP is reported. 83

viii

List of Figures

2.1 Fraction of RoIs in the dataset vs scale of RoIs relative to the image. 5
2.2 The same layer convolutional features at different scales of the image are

different and map to different semantic regions in the image at different
scales. 9

2.3 Both CNN-B and CNN-B-FT are provided an upsampled low resolution
image as input. CNN-S is provided a low resolution image as input. CNN-
B is trained on high resolution images. CNN-S is trained on low resolution
images. CNN-B-FT is pre-trained on high resolution images and fine-tuned
on upsampled low-resolution images. ResNet-101 architecture is used. . . . 11

2.4 All figures report accuracy on the validation set of the ImageNet classifica-
tion dataset. We upsample images of resolution 48,64,80 etc. and plot the
Top-1 accuracy of the pre-trained ResNet-101 classifier in figure (a). Figure
(b,c) show results for different CNNs when the original image resolution is
48,96 pixels respectively. 11

2.5 Different approaches for providing input for training the classifier of a pro-
posal based detector. 13

2.6 SNIP training and inference is shown. Invalid RoIs which fall outside the
specified range at each scale are shown in purple. These are discarded
during training and inference. Each batch during training consists of images
sampled from a particular scale. Invalid GT boxes are used to invalidate
anchors in RPN. Detections from each scale are rescaled and combined
using NMS. 16

3.1 SNIPER Positive chip selection . SNIPER adaptively samples context re-
gions (aka chips) based on the presence of objects inside the image. Left
side: The image, ground-truth boxes (represented by solid green lines), and
the chips in the original image scale(represented by dotted lines). Right
side: Down/up-sampling is performed considering the size of the objects.
Covered objects are shown in green and invalid objects in the corresponding
scale are shown in red rectangles. 30

ix

3.2 SNIPER negative chip selection. First row: the image and the ground-truth
boxes. Bottom row: negative proposals not covered in positive chips (rep-
resented by red circles located at the center of each proposal for the clarity)
and the generated negative chips based on the proposals (represented by
orange rectangles). 33

4.1 We propose to decouple classification and localization by independently
predicting objectness and classification scores. These scores are multiplied
to obtain a detector. 45

4.2 R-FCN-3000 first generates region proposals which are provided as input
to a super-class detection branch (like R-FCN) which jointly predicts the
detection scores for each super-class (sc). A class-agnostic bounding-box
regression step refines the position of each RoI (not shown). To obtain the
semantic class, we do not use position-sensitive filters but predict per class
scores in a fully convolutional fashion. Finally, we average pool the per-
class scores inside the RoI to get the classification probability. The classi-
fication probability is multiplied with the super-class detection probability
for detecting 3000 classes. When K is 1, the super-class detector predicts
objectness. 51

4.3 The mAP on the 194 classes in the ImageNet detection set is shown as we
vary the number of clusters (super-classes). This is shown for 194 class and
1000 class detectors. We also plot the mAP for different number of classes
for an objectness based detector. 55

4.4 The objectness, classification and final detection scores against various
transformations such as combinations of scaling and translation are shown.
These scores are generated by forward propagating an ideal bounding-box
RoI (in green) and a transformed bounding-box RoI (in red) through the
R-FCN (objectness) and classification branch of the network. The selec-
tiveness of the detector in terms of objectness is clearly visible against the
various transformations that lead to poor detection. 58

4.5 Detections for classes in the ImageNet3K dataset which are typically not
found in common object detection datasets are shown. 60

4.6 Objectness scores on images containing unseen object-classes from the Im-
ageNet detection dataset. 60

4.7 The mAP scores on a held out set of 20 classes for Generalized Objectness
and Objectness baseline. 62

x

5.1 Framework for our approach. Short chunks of a video are given to a multi-
stream network (MSN) to create a representation for the clip. This repre-
sentation is then given to a bi-directional LSTM which is used to predict the
action label, Ai. Two streams of the multi-stream network compute CNN
features on pixel level trajectories and RGB channels respectively. Using a
tracker, we use two more streams which only look at a zoomed in region of
the video. 66

5.2 Figure depicting the multi-stream network. We use two different streams of
information (motion and appearance) for each of two different spatial crop-
pings (full-frame and person-centric) to analyze short segments of video.
One network (CNN-T) computes features on pixel level trajectories, while
the other one computes features on RGB channels. 72

5.3 The first row shows y-component of optical flow with respect to the center
frame in a small video chunk. Note that only the intensity of the images
changes, while the spatial layout of the image stays the same. Thus, only a
single convolution layer in time is sufficient for learning motion features for
a pixel. The second row shows stacked optical flow, where correspondence
between pixels is lost. For e.g. the boundary of the head is not at the same
grid line in the second row for all frames. 73

5.4 Structure of an LSTM cell [30] . 75
5.5 Connections depicting architecture of a bi-directional LSTM [30]. 75
5.6 Images for different actions in the Shopping Dataset. We show images cor-

responding to different actions like, ‘retract from shelf’, ‘inspect a product’,
‘hand in shelf’, ‘inspect shelf’ . 77

5.7 Average Precision (AP) for frame and trajectory network with restricted
memory is plotted at inference for the Shopping Dataset. We observe that
the LSTM network can remember as long as previous 10 sequences for
making a prediction. The left plot corresponds to the flow network and the
right one to the frame network . 84

xi

Chapter 1: Introduction

Visual recognition is a fundamental problem in computer vision and has wide rang-

ing applications like autonomous driving, visual search, surveillance, augmented reality, to

name a few. Modern recognition pipelines primarily rely on data driven model based ap-

proaches, which are instantiated in the form of convolutional neural networks [54]. These

networks distill information from high dimensional input spaces by applying multiple non-

linear operators in an iterative fashion to compress the input to a low dimensional semantic

space. For different problems like object detection, semantic segmentation, action detec-

tion, problem specific architectural changes are made to enable appropriate information

flow through the network cascade for generating meaningful semantic representations to-

wards the end.

A major bottleneck in convolutional neural networks is that they are not invariant to

scale. For example, if we change the input size of the image or video, the semantic features

which will be generated at the end of the network would be different. Another bottleneck

is that the models are not flexible. By flexible, it means that after training the network on

1,000 classes if we want to add another class, we need to re-train the network again. This

makes it impractical to use them in many applications where online learning is needed. An-

other failure mode arises while modeling long range spatial/temporal dependencies. This

is because these networks aggregate contextual information by applying successive con-

volution and pooling operations to increase their receptive field. Although in theory their

receptive field grows, in practice it does not happen [65]. This is similar to the visual cor-

1

tex and if we want to focus on two small objects which are far away simultaneously, it

gets very difficult. In our mind, we retain information about other parts of the image or

video in our memory cells which helps us in processing long term contextual information.

In this thesis, we provide evidence of these problems by designing controlled experiments

and then propose effective solutions to alleviate them.

In the first part of this thesis, we show that convolutional neural networks are brittle

and do not even generalize to minor changes, like upsampling artifacts. Therefore, it is

essential to ensure that the data distribution during training and inference is as close as

possible. By performing an empirical analysis on tasks like object detection, we also show

that convolutional neural networks have a limited receptive field, just like our visual cortex

or depth of field in a camera because of which they have difficulty in recognizing objects

of different sizes. Based on this observation, we propose a novel training algorithm called

scale normalization for image pyramids, which selectively back propagates gradients of

objects of different sizes as a function of the image scale. Since we can ignore gradients

at extreme resolutions of the image pyramid, we can also process the image pyramid much

more efficiently during training.

In the second part, to generalize convolutional neural network based object detectors to

novel classes, we propose to decouple detection and classification. The idea is to learn a

generalized objectness measure which is trained on thousands of classes and can be used to

localize objects agnostic of their class. To perform detection, we multiply the generalized

objectness measure with the boundary agnostic classification scores. As the classification

layer can be trained without bounding boxes and deep features learned from the large bank

of classes can be used as a feature representation for classification, we only need to learn a

linear classifier for novel classes which can be trained in seconds.

Finally, we propose to employ LSTM layers to model long term temporal dependencies

for tasks like actions detection. These layers have an explicit memory cell which helps in

2

retaining contextual information efficiently. To model long term spatial dependencies, we

propose a multi-stream network which captures object centric and contextual information.

We show that the memory cells and the multi-stream structure are indeed effective via

well designed ablation studies on action detection benchmarks. Finally, we quantitatively

evaluate the extent of temporal information retained by LSTM layers for performing action

detection.

3

Chapter 2: An Analysis of Scale Invariance in Object Detection - SNIP

An analysis of different techniques for recognizing and detecting objects under ex-

treme scale variation is presented. Scale specific and scale invariant design of detectors are

compared by training them with different configurations of input data. By evaluating the

performance of different network architectures for classifying small objects on ImageNet,

we show that CNNs are not robust to changes in scale. Based on this analysis, we pro-

pose to train and test detectors on the same scales of an image-pyramid. Since small and

large objects are difficult to recognize at smaller and larger scales respectively, we present

a novel training scheme called Scale Normalization for Image Pyramids (SNIP) which se-

lectively back-propagates the gradients of object instances of different sizes as a function

of the image scale. On the COCO dataset, our single model performance is 45.7% and an

ensemble of 3 networks obtains an mAP of 48.3%. We use off-the-shelf ImageNet-1000

pre-trained models and only train with bounding box supervision. Our submission won the

Best Student Entry in the COCO 2017 challenge.

2.1 Introduction

Deep learning has fundamentally changed how computers perform image classification

and object detection. In less than five years, since AlexNet [51] was proposed, the top-5

error on ImageNet classification [17] has dropped from 15% to 2% [41]. This is super-

human level performance for image classification with 1000 classes. On the other hand,

4

Figure 2.1: Fraction of RoIs in the dataset vs scale of RoIs relative to the image.

the mAP of the best performing detector [44] (which is only trained to detect 80 classes)

on COCO [60] is only 62% – even at 50% overlap. Why is object detection so much harder

than image classification?

Large scale variation across object instances, and especially, the challenge of detecting

very small objects stands out as one of the factors behind the difference in performance.

Interestingly, the median scale of object instances relative to the image in ImageNet (clas-

sification) vs COCO (detection) are 0.554 and 0.106 respectively. Therefore, most object

instances in COCO are smaller than 1% of image area! To make matters worse, the scale

of the smallest and largest 10% of object instances in COCO is 0.024 and 0.472 respec-

tively (resulting in scale variations of almost 20 times!); see Fig. 2.1. This variation in

scale which a detector needs to handle is enormous and presents an extreme challenge to

the scale invariance properties of convolutional neural networks. Moreover, differences in

the scale of object instances between classification and detection datasets also results in a

large domain-shift while fine-tuning from a pre-trained classification network. In this chap-

ter, we first provide evidence of these problems and then propose a training scheme called

5

Scale Normalization for Image Pyramids which leads to a state-of-the-art object detector

on COCO.

To alleviate the problems arising from scale variation and small object instances, mul-

tiple solutions have been proposed. For example, features from the layers near to the input,

referred to as shallow(er) layers, are combined with deeper layers for detecting small object

instances [4, 32, 57, 63, 93], dilated/deformable convolution is used to increase receptive

fields for detecting large objects [14, 15, 82, 114], independent predictions at layers of

different resolutions are used to capture object instances of different scales [6, 55, 113],

context is employed for disambiguation [24, 117, 118], training is performed over a range

of scales [14, 15, 34] or, inference is performed on multiple scales of an image pyramid

and predictions are combined using non-maximum suppression [5, 14, 15, 83].

While these architectural innovations have significantly helped to improve object de-

tection, many important issues related to training remain unaddressed:

• Is it critical to upsample images for obtaining good performance for object detection?

Even though the typical size of images in detection datasets is 480x640, why is it a

common practice to up-sample them to 800x1200? Can we pre-train CNNs with

smaller strides on low resolution images from ImageNet and then fine-tune them on

detection datasets for detecting small object instances?

• When fine-tuning an object detector from a pre-trained image classification model,

should the resolution of the training object instances be restricted to a tight range

(from 64x64 to 256x256) after appropriately re-scaling the input images, or should

all object resolutions (from 16x16 to 800x1000, in the case of COCO) participate in

training after up-sampling input images?

We design controlled experiments on ImageNet and COCO to seek answers to these

questions. In Section 2.3, we study the effect of scale variation by examining the perfor-

6

mance of existing networks for ImageNet classification when images of different scales are

provided as input. We also make minor modifications to the CNN architecture for classi-

fying images of different scales. These experiments reveal the importance of up-sampling

for small object detection. To analyze the effect of scale variation on object detection, we

train and compare the performance of scale-specific and scale invariant detector designs in

Section 2.5. For scale-specific detectors, variation in scale is handled by training separate

detectors - one for each scale range. Moreover, training the detector on similar scale ob-

ject instances as the pre-trained classification networks helps to reduce the domain shift for

the pre-trained classification network. But, scale-specific designs also reduce the number

of training samples per scale, which degrades performance. On the other hand, training a

single object detector with all training samples makes the learning task significantly harder

because the network needs to learn filters for detecting object instances over a wide range

of scales.

Based on these observations, in Section 2.6 we present a novel training paradigm, which

we refer to as Scale Normalization for Image Pyramids (SNIP), that benefits from reducing

scale-variation during training but without paying the penalty of reduced training samples.

Scale-invariance is achieved using an image-pyramid (instead of a scale-invariant detector),

which contains normalized input representations of object instances in one of the scales in

the image-pyramid. To minimize the domain shift for the classification network during

training, we only back-propagate gradients for RoIs/anchors that have a resolution close to

that of the pre-trained CNN. Since we train on each scale in the pyramid with the above

constraint, SNIP effectively utilizes all the object instances available during training. The

proposed approach is generic and can be plugged into the training pipeline of different

problems like instance-segmentation, pose-estimation, spatio-temporal action detection -

wherever the “objects” of interest manifest large scale variations.

Contrary to the popular belief that deep neural networks can learn to cope with large

7

variations in scale given enough training data, we show that SNIP offers significant im-

provements (3.5%) over traditional object detection training paradigms. Our ensemble

with a Deformable-RFCN backbone obtains an mAP of 69.7% at 50% overlap, which is an

improvement of 7.4% over the state-of-the-art on the COCO dataset.

2.2 Related Work

Scale space theory [61, 109] advocates learning representations that are invariant to

scale and the theory has been applied to many problems in the history of computer vision

[7, 9, 33, 53, 57, 64, 77]. For problems like object detection, pose-estimation, instance

segmentation etc., learning scale invariant representations is critical for recognizing and

localizing objects. To detect objects at multiple scales, many solutions have been proposed.

The deeper layers of modern CNNs have large strides (32 pixels) that lead to a very

coarse representation of the input image, which makes small object detection very chal-

lenging. To address this problem, modern object detectors [9, 14, 82] employ dilated/atrous

convolutions to increase the resolution of the feature map. Dilated/deformable convolu-

tions also preserve the weights and receptive fields of the pre-trained network and do not

suffer from degraded performance on large objects. Up-sampling the image by a factor

of 1.5 to 2 times during training and up to 4 times during inference is also a common

practice to increase the final feature map resolution [14, 15, 34]. Since feature maps of

layers closer to the input are of higher resolution and often contain complementary infor-

mation (wrt. conv5), these features are either combined with shallower layers (like conv4,

conv3) [4, 57, 78, 78] or independent predictions are made at layers of different resolutions

[6, 63, 113]. Methods like SDP [113], SSH [69] or MS-CNN [6], which make independent

predictions at different layers, also ensure that smaller objects are trained on higher reso-

lution layers (like conv3) while larger objects are trained on lower resolution layers (like

8

Figure 2.2: The same layer convolutional features at different scales of the image are different and
map to different semantic regions in the image at different scales.

conv5). This approach offers better resolution at the cost of high-level semantic features

which can hurt performance.

Methods like FPN, Mask-RCNN, RetinaNet [32, 57, 59], which use a pyramidal rep-

resentation and combine features of shallow layers with deeper layers at least have access

to higher level semantic information. However, if the size of an object was 25x25 pixels

then even an up-sampling factor of 2 during training,will scale the object to only 50x50

pixels. Note that typically the network is pre-trained on images of resolution 224x224.

Therefore, the high level semantic features (at conv5) generated even by feature pyramid

networks will not be useful for classifying small objects (a similar argument can be made

for large objects in high resolution images). Hence, combining them with features from

shallow layers would not be good for detecting small objects, see Fig. 2.2. Although fea-

ture pyramids efficiently exploit features from all the layers in the network, they are not an

attractive alternative to an image pyramid for detecting very small/large objects.

9

Recently, a pyramidal approach was proposed for detecting faces [42] where the gradi-

ents of all objects were back-propagated after max-pooling the responses from each scale.

Different filters were used in the classification layers for faces at different scales. This

approach has limitations for object detection because training data per class in object de-

tection is limited and the variations in appearance, pose etc. are much larger compared

to face detection. We observe that adding scale specific filters in R-FCN for each class

hurts performance for object detection. In [83], an image pyramid was generated and max-

out [29] was used to select features from a pair of scales closer to the resolution of the

pre-trained dataset during inference. A similar inference procedure was also proposed in

SPPNet and Fast-RCNN [26, 33]: however, standard multi-scale training (described in Sec-

tion 5) was used. We explore the design space for training scale invariant object detectors

and propose to selectively back-propagate gradients for samples close to the resolution of

the pre-trained network.

2.3 Image Classification at Multiple Scales

In this section we study the effect of domain shift, which is introduced when different

resolutions of images are provided as input during training and testing. We perform this

analysis because state-of-the-art detectors are typically trained at a resolution of 800x1200

pixels 1, but inference is performed on an image pyramid, including higher resolutions like

1400x2000 for detecting small objects [5, 14, 15].

Naı̈ve Multi-Scale Inference: Firstly, we obtain images at different resolutions, 48x48,

64x64, 80x80, 96x96 and 128x128, by down-sampling the original ImageNet database.

These are then up-sampled to 224x224 and provided as input to a CNN architecture trained

on 224x224 size images, referred to as CNN-B (see Fig. 2.3). Fig. 2.4 (a) shows the top-1

1original image resolution is typically 480x640

10

Figure 2.3: Both CNN-B and CNN-B-FT are provided an upsampled low resolution image as input.
CNN-S is provided a low resolution image as input. CNN-B is trained on high resolution images.
CNN-S is trained on low resolution images. CNN-B-FT is pre-trained on high resolution images
and fine-tuned on upsampled low-resolution images. ResNet-101 architecture is used.

Figure 2.4: All figures report accuracy on the validation set of the ImageNet classification dataset.
We upsample images of resolution 48,64,80 etc. and plot the Top-1 accuracy of the pre-trained
ResNet-101 classifier in figure (a). Figure (b,c) show results for different CNNs when the original
image resolution is 48,96 pixels respectively.

11

accuracy of CNN-B with a ResNet-101 backbone. We observe that as the difference in

resolution between training and testing images increases, so does the drop in performance.

Hence, testing on resolutions on which the network was not trained is clearly sub-optimal,

at least for image classification.

Resolution Specific Classifiers: Based on the above observation, a simple solution

for improving the performance of detectors on smaller objects is to pre-train classification

networks with a different stride on ImageNet. After-all, network architectures which ob-

tain best performance on CIFAR10 [50] (which contains small objects) are different from

ImageNet. The first convolution layer in ImageNet classification networks has a stride of

2 followed by a max pooling layer of stride 2x2, which can potentially wipe out most of

the image signal present in a small object. Therefore, we train ResNet-101 with a stride

of 1 and 3x3 convolutions in the first layer for 48x48 images (CNN-S, see Fig. 2.3), a

typical architecture used for CIFAR. Similarly, for 96x96 size images, we use a kernel of

size 5x5 and stride of 2. Standard data augmentation techniques such as random cropping,

color augmentation, disabling color augmentation after 70 epochs are used to train these

networks. As seen in Fig. 2.4, these networks (CNN-S) perform significantly better than

CNN-B. Therefore, it is tempting to pre-train classification networks with different archi-

tectures for low resolution images and use them for object detection for low resolution

objects.

Fine-tuning High-Resolution Classifiers: Yet another simple solution for small ob-

ject detection would be to fine-tune CNN-B on up-sampled low resolution images to yield

CNN-B-FT (Fig. 2.3). The performance of CNN-B-FT on up-sampled low-resolution im-

ages is better than CNN-S, Fig. 2.4. This result empirically demonstrates that the filters

learned on high-resolution images can be useful for recognizing low-resolution images as

well. Therefore, instead of reducing the stride by 2, it is better to up-sample images 2 times

and then fine-tune the network pre-trained on high-resolution images.

12

Figure 2.5: Different approaches for providing input for training the classifier of a proposal based
detector.

While training object detectors, we can either use different network architectures for

classifying objects of different resolutions or use the a single architecture for all resolu-

tions. Since pre-training on ImageNet (or other larger classification datasets) is beneficial

and filters learned on larger object instances help to classify smaller object instances, up-

sampling images and using the network pre-trained on high resolution images should be

better than a specialized network for classifying small objects. Fortunately, existing ob-

ject detectors up-sample images for detecting smaller objects instead of using a different

architecture. Our analysis supports this practice and compares it with other alternatives to

emphasize the difference.

2.4 Background

In the next section, we discuss a few baselines for detecting small objects. We briefly

describe the Deformable-RFCN [15] detector which will be used in the following analysis.

D-RFCN obtains the best single model results on COCO and is publicly available, so we

use this detector.

Deformable-RFCN is based on the R-FCN detector [14]. It adds deformable convolu-

tions in the conv5 layers to adaptively change the receptive field of the network for creating

scale invariant representations for objects of different scales. At each convolutional feature

13

map, a lightweight network predicts offsets on the 2D grid, which are spatial locations at

which spatial sub-filters of the convolution kernel are applied. The second change is in

Position Sensitive RoI Pooling. Instead of pooling from a fixed set of bins on the con-

volutional feature map (for an RoI), a network predicts offsets for each position sensitive

filter (depending on the feature map) on which Position Sensitive RoI (PSRoI)-Pooling is

performed.

For our experiments, proposals are extracted at a single resolution (after upsampling)

of 800x1200 using a publicly available Deformable-RFCN detector. It has a ResNet-101

backbone and is trained at a resolution of 800x1200. 5 anchor scales are used in RPN

for generating proposals [5]. For classifying these proposals, we use Deformable-RFCN

with a ResNet-50 backbone without the Deformable Position Sensitive RoIPooling. We

use Position Sensitive RoIPooling with bilinear interpolation as it reduces the number of

filters by a factor of 3 in the last layer. NMS with a threshold of 0.3 is used. Not performing

end-to-end training along with RPN, using ResNet-50 and eliminating deformable PSRoI

filters reduces training time by a factor of 3 and also saves GPU memory.

2.5 Data Variation or Correct Scale?

The study in section 2.3 confirms that differences in resolutions between the training

and testing phase leads to a significant drop in performance. Unfortunately, this difference

in resolution is part of the current object detection pipeline - due to GPU memory con-

straints, training is performed on a lower resolution (800x1200) than testing (1400x2000)

(note that original resolution is typically 640x480). This section analyses the effect of im-

age resolution, the scale of object instances and variation in data on the performance of an

object detector. We train detectors under different settings and evaluate them on 1400x2000

images for detecting small objects (less than 32x32 pixels in the COCO dataset) only to

14

tease apart the factors that affect the performance. The results are reported in Table 2.1.

Training at different resolutions: We start by training detectors that use all the ob-

ject instances on two different resolutions, 800x1400 and 1400x2000, referred to as 800all

and 1400all , respectively, Fig 2.5.1. As expected, 1400all outperformed 800all , because the

former is trained and tested on the same resolution i.e. 1400x2000. However, the improve-

ment is only marginal. Why? To answer this question we consider what happens to the

medium-to-large object instances while training at such a large resolution. They become

too big to be correctly classified! Therefore, training at higher resolutions scales up small

objects for better classification, but blows up the medium-to-large objects which degrades

performance.

Scale specific detectors: We trained another detector (1400<80px) at a resolution of

1400x2000 while ignoring all the medium-to-large objects (> 80 pixels, in the original

image) to eliminate the deleterious-effects of extremely large objects, Fig 2.5.2. Unfor-

tunately, it performed significantly worse than even 800all . What happened? We lost a

significant source of variation in appearance and pose by ignoring medium-to-large objects

(about 30% of the total object instances) that hurt performance more than it helped by

eliminating extreme scale objects.

Multi-Scale Training (MST): Lastly, we evaluated the common practice of obtaining

scale-invariant detectors by using randomly sampled images at multiple resolutions during

training, referred to as MST 2 , Fig 2.5.3. It ensures training instances are observed at

many different resolutions, but it also degraded by extremely small and large objects. It

performed similar to 800all . We conclude that it is important to train a detector with appro-

priately scaled objects while capturing as much variation across the objects as possible. In

the next section we describe our proposed solution that achieves exactly this and show that

it outperforms current training pipelines.

2MST also uses a resolution of 480x800

15

1400<80px 800all 1400all MST SNIP
16.4 19.6 19.9 19.5 21.4

Table 2.1: mAP on Small Objects (smaller than 32x32 pixels) under different training protocols.
MST denotes multi-scale training as shown in Fig. 2.5.3. R-FCN detector with ResNet-50 (see
Section 4).

Figure 2.6: SNIP training and inference is shown. Invalid RoIs which fall outside the specified
range at each scale are shown in purple. These are discarded during training and inference. Each
batch during training consists of images sampled from a particular scale. Invalid GT boxes are used
to invalidate anchors in RPN. Detections from each scale are rescaled and combined using NMS.

2.6 Object Detection on an Image Pyramid

Our goal is to combine the best of both approaches i.e. train with maximal variations

in appearance and pose while restricting scale to a reasonable range. We achieve this by

a novel construct that we refer to as Scale Normalization for Image Pyramids (SNIP). We

also discuss details of training object detectors on an image pyramid within the memory

limits of current GPUs.

2.6.1 Scale Normalization for Image Pyramids

SNIP is a modified version of MST where only the object instances that have a reso-

lution close to the pre-training dataset, which is typically 224x224, are used for training

16

the detector. In multi-scale training (MST), each image is observed at different resolutions

therefore, at a high resolution (like 1400x2000) large objects are hard to classify and at

a low resolution (like 480x800) small objects are hard to classify. Fortunately, each ob-

ject instance appears at several different scales and some of those appearances fall in the

desired scale range. In order to eliminate extreme scale objects, either too large or too

small, training is only performed on objects that fall in the desired scale range and the re-

mainder are simply ignored during back-propagation. Effectively, SNIP uses all the object

instances during training, which helps capture all the variations in appearance and pose,

while reducing the domain-shift in the scale-space for the pre-trained network. The result

of evaluating the detector trained using SNIP is reported in Table 2.1 - it outperforms all

the other approaches. This experiment demonstrates the effectiveness of SNIP for detecting

small objects. Below we discuss the implementation of SNIP in detail.

For training the classifier, all ground truth boxes are used to assign labels to proposals.

We do not select proposals and ground truth boxes which are outside a specified size range

at a particular resolution during training. At a particular resolution i, if the area of an RoI

ar(r) falls within a range [sc
i ,e

c
i], it is marked as valid, else it is invalid. Similarly, RPN

training also uses all ground truth boxes to assign labels to anchors. Finally, those anchors

which have an overlap greater than 0.3 with an invalid ground truth box are excluded during

training (i.e. their gradients are set to zero). During inference, we generate proposals using

RPN for each resolution and classify them independently at each resolution as shown in

Fig 2.6. Similar to training, we do not select detections (not proposals) which fall outside a

specified range at each resolution. After classification and bounding-box regression, we use

soft-NMS [5] to combine detections from multiple resolutions to obtain the final detection

boxes, refer to Fig. 2.6.

The resolution of the RoIs after pooling matches the pre-trained network, so it is easier

for the network to learn during fine-tuning. For methods like R-FCN which divide RoIs

17

into sub-parts and use position sensitive filters, this becomes even more important. For

example, if the size of an RoI is 48 pixels (3 pixels in the conv5 feature map) and there are

7 filters along each axis, the positional correspondence between features and filters would

be lost.

2.6.2 Sampling Sub-Images

Training on high resolution images with deep networks like ResNet-101 or DPN-92

[10] requires more GPU memory. Therefore, we crop images so that they fit in GPU mem-

ory. Our aim is to generate the minimum number of chips (sub-images) of size 1000x1000

which cover all the small objects in the image. This helps in accelerating training as no

computation is needed where there are no small objects. For this, we generate 50 randomly

positioned chips of size 1000x1000 per image. The chip which covers the maximum num-

ber of objects is selected and added to our set of training images. Until all objects in the

image are covered, we repeat the sampling and selection process on the remaining objects.

Since chips are randomly generated and proposal boxes often have a side on the image

boundary, for speeding up the sampling process we snap the chips to image boundaries.

We found that, on average, 1.7 chips of size 1000x1000 are generated for images of size

1400x2000. This sampling step is not needed when the image resolution is 800x1200 or

480x640 or when an image does not contain small objects. Random cropping is not the

reason why we observe an improvement in performance for our detector. To verify this, we

trained ResNet-50 (as it requires less memory) using un-cropped high-resolution images

(1400x2000) and did not observe any change in mAP.

18

Method AP APS APM APL

Single scale 34.5 16.3 37.2 47.6
MS Test 35.9 19.5 37.3 48.5

MS Train/Test 35.6 19.5 37.5 47.3
SNIP 37.8 21.4 40.4 50.1

Table 2.2: MS denotes multi-scale. Single scale is (800,1200). R-FCN detector with ResNet-50 (as
described in Section 4).

2.7 Datasets and Evaluation

We evaluate our method on the COCO dataset. COCO contains 123,000 images for

training and evaluation is performed on 20,288 images in test-dev. Since recall for pro-

posals is not provided by the evaluation server on COCO, we train on 118,000 images and

report recall on the remaining 5,000 images (commonly referred to as minival set). Unless

specifically mentioned, the area of small objects is less than 32x32, medium objects range

from 32x32 to 96x96 and large objects are greater than 96x96.

2.7.1 Training Details

We train Deformable-RFCN [15] as our detector with 3 resolutions, (480, 800), (800,

1200) and (1400,2000), where the first value is for the shorter side of the image and the

second one is the limit on the maximum size of a side. Training is performed for 7 epochs

for the classifier while RPN is trained for 6 epochs. Although it is possible to combine

RPN and RCN using alternating training which leads to slight improvement in accuracy

[57], we train separate models for RPN and RCN and evaluate their performance indepen-

dently. This is because it is faster to experiment with different classification architectures

after proposals are extracted. We use a warmup learning rate of 0.0005 for 1000 iterations

after which it is increased to 0.005. Step down is performed at 4.33 epochs for RPN and

19

5.33 epochs otherwise. For our baselines which did not involve SNIP, we also evaluated

their performance after 8 or 9 epochs but observed that results after 7 epochs were best. For

the classifier (RCN), on images of resolution (1400,2000), the valid range in the original

image (without up/down sampling) is [0, 80], at a resolution of (800,1200) it is [40, 160]

and at a resolution of (480,800) it is [120, ∞]. We have an overlap of 40 pixels over adjacent

ranges. These ranges were design decisions made during training, based on the considera-

tion that after re-scaling, the resolution of the valid RoIs does not significantly differ from

the resolution on which the backbone CNN was trained. Since in RPN even a one pixel

feature map can generate a proposal we use a validity range of [0,160] at (800,1200) for

valid ground truths for RPN. For inference, the validity range for each resolution in RCN

is obtained using the minival set. Training RPN is fast so we enable SNIP after the first

epoch. SNIP doubles the training time per epoch, so we enable it after 3 epochs for training

RCN.

2.7.2 Improving RPN

In detectors like Faster-RCNN/R-FCN, Deformable R-FCN, RPN is used for generating

region proposals. RPN assigns an anchor as positive only if overlap with a ground truth

bounding box is greater than 0.7 3. We found that when using RPN at conv4 with 15 anchors

(5 scales - 32, 64, 128, 256, 512, stride 16, 3 aspect ratios), only 30% of the ground truth

boxes match this criterion when the image resolution is 800x1200 in COCO. Even if this

threshold is changed to 0.5, only 58% of the ground truth boxes have an anchor which

matches this criterion. Therefore, for more than 40% of the ground truth boxes, an anchor

which has an overlap less than 0.5 is assigned as a positive (or ignored). Since we sample

the image at multiple resolutions and back-propagate gradients at the relevant resolution

3If there does not exist a matching anchor, RPN assigns the anchor with the maximum overlap with ground
truth bounding box as positive.

20

Method AR AR50 AR75 0-25 25-50 50-100
Baseline 57.6 88.7 67.9 67.5 90.1 95.6

+ Improved 61.3 89.2 69.8 68.1 91.0 96.7
+ SNIP 64.0 92.1 74.7 74.4 95.1 98.0
DPN-92 65.7 92.8 76.3 76.7 95.7 98.2

Table 2.3: For individual ranges (like 0-25 etc.) recall at 50% overlap is reported because minor
localization errors can be fixed in the second stage. First three rows use ResNet-50 as the backbone.
Recall is for 900 proposals, as top 300 are taken from each scale.

Method Backbone AP AP50

D-RFCN [5, 15] ResNet-101 38.4 60.1
Mask-RCNN [32] ResNext-101 (seg) 39.8 62.3
D-RFCN [5, 15] ResNet-101 (6 scales) 40.9 62.8

G-RMI [44] Ensemble 41.6 62.3
D-RFCN DPN-98 41.2 63.5

D-RFCN + SNIP (RCN) DPN-98 44.2 65.6
D-RFCN + SNIP (RCN+RPN) DPN-98 44.7 66.6
Faster-RCNN + SNIP (RPN) ResNet-101 43.1 65.3

Faster-RCNN + SNIP (RPN+RCN) ResNet-101 44.4 66.2
ResNet-101 (ResNet-101 proposals) 43.4 65.5

D-RFCN + SNIP DPN-98 (with flip) 45.7 67.3
Ensemble 48.3 69.7

Table 2.4: Comparison with state-of-the-art detectors. (seg) denotes that segmentation masks were
also used. We train on train+val and evaluate on test-dev. Unless mentioned, we use 3 scales and
DPN-92 proposals. Ablation for SNIP in RPN and RCN is shown.

only, this problem is alleviated to some extent. We also concatenate the output of conv4

and conv5 to capture diverse features and use 7 anchor scales. A more careful combination

of features with predictions at multiple layers like [32, 57] should provide a further boost

in performance.

2.7.3 Experiments

First, we evaluate the performance of SNIP on classification (RCN) under the same

settings as described in Section 4. In Table 2.2, performance of the single scale model,

21

multi-scale testing, and multi-scale training followed by multi-scale testing is shown. We

use the best possible validity ranges at each resolution for each of these methods when

multi-scale testing is performed. Multi-scale testing improves performance by 1.4%. Per-

formance of the detector deteriorates for large objects when we add multi-scale training.

This is because at extreme resolutions the receptive field of the network is not sufficient

to classify them. SNIP improves performance by 1.9% compared to standard multi-scale

testing. Note that we only use single scale proposals common across all three scales during

classification for this experiment.

For RPN, a baseline with the ResNet-50 network was trained on the conv4 feature map.

Top 300 proposals are selected from each scale and all these 900 proposals are used for

computing recall. Average recall (averaged over multiple overlap thresholds, just like mAP)

is better for our improved RPN, as seen in Table 3.1. This is because for large objects (>

100 pixels), average recall improves by 10% (not shown in table) for the improved baseline.

Although the improved version improves average recall, it does not have much effect at

50% overlap. Recall at 50% is most important for object proposals because bounding box

regression can correct minor localization errors, but if an object is not covered at all by

proposals, it will clearly lead to a miss. Recall for objects greater than 100 pixels at 50%

overlap is already close to 100%, so improving average recall for large objects is not that

valuable for a detector. Note that SNIP improves recall at 50% overlap by 2.9% compared

to our improved baseline. For objects smaller than 25 pixels, the improvement in recall is

6.3%. Using a stronger classification network like DPN-92 also improves recall. In last two

rows of Table 3.3, we perform an ablation study with our best model, which uses a DPN-98

classifier and DPN-92 proposals. If we train our improved RPN without SNIP, mAP drops

by 1.1% on small objects and 0.5% overall. Note that AP of large objects is not affected as

we still use the classification model trained with SNIP.

Finally, we compare with state-of-the-art detectors in Table 3.3. For these experiments,

22

we use the deformable position sensitive filters and Soft-NMS. Compared to the single

scale deformable R-FCN baseline shown in the first line of Table 3.3, multi-scale training

and inference improves overall results by 5% and for small objects by 8.7%! This shows the

importance of an image pyramid for object detection. Compared to the best single model

method (which uses 6 instead of 3 scales and is also trained end-to-end) based on ResNet-

101, we improve performance by 2.5% overall and 3.9% for small objects. We observe

that using better backbone architectures further improves the performance of the detector.

When SNIP is not used for both the proposals and the classifier, mAP drops by 3.5% for

the DPN-98 classifier, as shown in the last row. For the ensemble, DPN-92 proposals are

used for all the networks (including ResNet-101). Since proposals are shared across all

networks, we average the scores and box-predictions for each RoI. During flipping we

average the detection scores and bounding box predictions. Finally, Soft-NMS is used to

obtain the final detections. Iterative bounding-box regression is not used. All pre-trained

models are trained on ImageNet-1000 and COCO segmentation masks are not used. Faster-

RCNN was not used in the ensemble. On 100 images, it takes 90 seconds for to perform

detection on a Titan X GPU using a ResNet-101 backbone. Speed can be improved with

end-to-end training (we perform inference for RPN and RCN separately).

We also conducted experiments with the Faster-RCNN detector with deformable con-

volutions. Since the detector does not have position-sensitive filters, it is more robust to

scale and performs better for large objects. Training it with SNIP still improves perfor-

mance by 1.3%. Note that we can get an mAP of 44.4% with a single head faster-RCNN

without using any feature-pyramid!

23

2.8 Conclusion

We presented an analysis of different techniques for recognizing and detecting objects

under extreme scale variation, which exposed shortcomings of the current object detection

training pipeline. Based on the analysis, a training scheme (SNIP) was proposed to tackle

the wide scale spectrum of object instances which participate in training and to reduce

the domain-shift for the pre-trained classification network. Experimental results on the

COCO dataset demonstrated the importance of scale and image-pyramids in object detec-

tion. Since we do not need to back-propagate gradients for large objects in high-resolution

images, it is possible to reduce the computation performed in a significant portion of the

image. We would like to explore this direction in future work.

24

Chapter 3: SNIPER: Efficient Multi-Scale Training

We present SNIPER, an algorithm for performing efficient multi-scale training in in-

stance level visual recognition tasks. Instead of processing every pixel in an image pyramid,

SNIPER processes context regions around ground-truth instances (referred to as chips) at

the appropriate scale. For background sampling, these context-regions are generated using

proposals extracted from a region proposal network trained with a short learning schedule.

Hence, the number of chips generated per image during training adaptively changes based

on the scene complexity. SNIPER only processes 30% more pixels compared to the com-

monly used single scale training at 800x1333 pixels on the COCO dataset. But, it also ob-

serves samples from extreme resolutions of the image pyramid, like 1400x2000 pixels. As

SNIPER operates on resampled low resolution chips (512x512 pixels), it can have a batch

size as large as 20 on a single GPU even with a ResNet-101 backbone. Therefore it can

benefit from batch-normalization during training without the need for synchronizing batch-

normalization statistics across GPUs. SNIPER brings training of instance level recognition

tasks like object detection closer to the protocol for image classification and suggests that

the commonly accepted guideline that it is important to train on high resolution images for

instance level visual recognition tasks might not be correct. Our implementation based on

Faster-RCNN with a ResNet-101 backbone obtains an mAP of 47.6% on the COCO dataset

for bounding box detection and can process 5 images per second during inference with a

single GPU.

25

3.1 Introduction

Humans have a foveal visual system which attends to objects at a fixed distance and

size. For example, when we focus on nearby objects, far away objects get blurred [12].

Naturally, it is difficult for us to focus on objects of different scales simultaneously [84].

We only process a small field of view at any given point of time and adaptively ignore the

remaining visual content in the image. However, computer algorithms which are designed

for instance level visual recognition tasks like object detection depart from this natural way

of processing visual information. For obtaining a representation robust to scale, popular

detection algorithms like Faster-RCNN/Mask-RCNN [32, 82] are trained on a multi-scale

image pyramid [62, 96]. Since every pixel is processed at each scale, this approach to

processing visual information increases the training time significantly. For example, con-

structing a 3 scale image pyramid (e.g. scales=1x,2x,3x) requires processing 14 times the

number of pixels present in the original image. For this reason, it is impractical to use

multi-scale training in many scenarios.

Recently, it was proposed that while performing multi-scale training, it is beneficial

to ignore gradients of objects which are of extreme resolutions[96]. For example, when

constructing an image pyramid of 3 scales, we should ignore gradients of large objects

at large resolutions and small objects at small resolutions. If this is the case, an intuitive

question which arises is, do we need to process the entire image at a 3x resolution? Wouldnt

it suffice to sample a much smaller RoI (chip) around small objects at this resolution? On

the other hand, if the image is already high resolution, and objects in it are also large in

size, is there any benefit in upsampling that image?

While ignoring significant portions of the image would save computation, a smaller

chip would also lack context required for recognition. A significant portion of background

would also be ignored at a higher resolution. So, there is a trade-off between computa-

26

tion, context and negative mining while accelerating multi-scale training. To this end, we

present a novel training algorithm called Scale Normalization for Image Pyramids with Ef-

ficient Resampling (SNIPER), which adaptively samples chips from multiple scales of an

image pyramid, conditioned on the image content. We sample positive chips conditioned

on the ground-truth instances and negative chips based on proposals generated by a re-

gion proposal network. Under the same conditions (fixed batch normalization), we show

that SNIPER performs as well as the multi-scale training method proposed in [96] while

reducing the number of pixels processed by a factor of 3 during training on the COCO

dataset. Since SNIPER is trained on 512x512 size chips, it can reap the benefits of a large

batch size and training with batch-normalization on a single GPU node. In particular, we

can use a batch size of 20 per GPU (leading to a total batch size of 160), even with a

ResNet-101 based Faster-RCNN detector. While being efficient, SNIPER obtains compet-

itive performance on the COCO detection dataset even with simple detection architectures

like Faster-RCNN.

3.2 Background

Deep learning based object detection algorithms have primarily evolved from the R-

CNN detector [27], which started with object proposals generated with an unsupervised

algorithm [101], resized these proposals to a canonical 224x224 size image and classified

them using a convolutional neural network [54]. This model is scale invariant (with the

assumption that CNNs can classify images of a fixed resolution), but the computational

cost for training and inference for R-CNN scales linearly with the number of proposals. To

alleviate this computational bottleneck, Fast-RCNN [26] proposed to project region pro-

posals to a high level convolutional feature map and use the pooled features as a semantic

representation for region proposals. In this process, the computation is shared for the con-

27

volutional layers and only lightweight fully connected layers are applied on each proposal.

However, convolution for objects of different sizes is performed at a single scale, which

destroys the scale invariance properties of R-CNN. Hence, inference at multiple scales is

performed and detections from multiple scales are combined by selecting features from

a pair of adjacent scales closer to the resolution of the pre-trained network [26, 33]. The

Fast-RCNN model has since become the de-facto approach for classifying region proposals

as it is fast and also captures more context in its features, which is lacking in RCNN.

It is worth noting that in multi-scale training, Fast-RCNN upsamples and downsamples

every proposal (whether small or big) in the image. This is unlike R-CNN, where each

proposal is resized to a canonical size of 224x224 pixels. Large objects are not upsampled

and small objects are not downsampled in R-CNN. In this regard, R-CNN more appropri-

ately does not up/downsample every pixel in the image but only in those regions which are

likely to contain objects to an appropriate resolution. However, R-CNN does not share the

convolutional features for nearby proposals like Fast-RCNN, which makes it slow. To this

end, we propose SNIPER, which retains the benefits of both these approaches by gener-

ating scale specific context-regions (chips) that cover maximum proposals at a particular

scale. SNIPER classifies all the proposals inside a chip like Fast-RCNN which enables us

to perform efficient classification of multiple proposals within a chip. As SNIPER does

not upsample the image where there are large objects and also does not process easy back-

ground regions, it is significantly faster compared to a Fast-RCNN detector trained on an

image pyramid.

The recently proposed scale normalized training scheme in [96] is also trained on al-

most all the pixels of the image pyramid (like Fast-RCNN), although gradients arising from

objects of extreme resolutions are ignored. In particular, 2 resolutions of the image pyramid

(480 and 800 pixels) always engage in training and multiple 1000 pixel crops are sampled

out of the 1400 pixel resolution of the image in the finest scale. SNIPER takes this crop-

28

ping procedure to an extreme level by sampling 512 pixels crops from 3 scales of an image

pyramid. At extreme scales (like 3x), SNIPER observes less than one tenth of the orig-

inal content present in the image! Unfortunately, as SNIPER chips generated only using

ground-truth instances are very small compared to the resolution of the original image, a

significant portion of the background does not participate in training. This causes the false

positive rate to increase. Therefore, it is important to generate chips for background regions

as well. In SNIPER, this is achieved by randomly sampling a fixed number of chips (max-

imum of 2 in this chapter) from regions which are likely to cover false positives. To find

such regions, we train a lightweight RPN network with a very short schedule. The propos-

als of this network are used to generate chips for regions which are likely to contain false

positives (this could potentially be replaced with unsupervised proposals like EdgeBoxes

[121] as well). After adding negative chip sampling, the performance of SNIPER matches

the scale normalized training scheme in [96], but it is 3 times faster! Since we are able to

obtain similar performance by observing less than one tenth of the image, it implies that

very large context during training is not important for training high-performance detectors

but sampling regions containing hard negatives is.

3.3 SNIPER

We describe the major components of SNIPER in this section. One is positive/negative

chip mining and the other is label assignment after chips are generated. Finally, we will

discuss the benefits of training with SNIPER.

3.3.1 Chip Generation

SNIPER generates chips C i at multiple scales {s1,s2, ..,si, ..sn} in the image. For each

scale, the image is first resized to width (Wi) and height (Hi). On this canvas, K×K pixel

29

C
oa

rs
es

t S
ca

le
In

te
rm

ed
ia

te
 S

ca
le

Fi
ne

st
 S

ca
le

Fi
ne

st
 S

ca
le

Figure 3.1: SNIPER Positive chip selection . SNIPER adaptively samples context regions (aka
chips) based on the presence of objects inside the image. Left side: The image, ground-truth boxes
(represented by solid green lines), and the chips in the original image scale(represented by dotted
lines). Right side: Down/up-sampling is performed considering the size of the objects. Covered
objects are shown in green and invalid objects in the corresponding scale are shown in red rectangles.

chips are placed at equal intervals of d pixels (we set d to 32 in this chapter). This leads to

a two-dimensional array of chips at each scale.

3.3.2 Positive Chip Selection

For each scale, there is a desired area range Ri = [ri
min,r

i
max], i∈ [1,n] which determines

which ground-truth boxes/proposals are participate in training for each scale i. The valid

list of ground-truth bounding boxes which lie in Ri are referred to as G i. Then, chips are

greedily selected so that maximum number of valid ground-truth boxes (G i) are covered.

A ground-truth box is said to be covered if it is completely enclosed inside a chip. All the

positive chips from a scale are combined per image and are referred to as C i
pos. For each

ground-truth bounding box, there always exists a chip which covers it. Since consecutive

Ri contain overlapping intervals, a ground-truth bounding box may be assigned to multiple

chips at different scales. It is also possible that the same ground-truth bounding box may be

in multiple chips from the same scale. Ground-truth instances which have a partial overlap

30

with a chip are cropped. All the cropped ground-truth boxes (valid or invalid) are retained

in the chip and are used in label assignment.

In this way, every ground-truth box is covered at the appropriate scale. Since the crop-

size is much smaller than the resolution of the image (i.e. more than 10x smaller for high-

resolution images), SNIPER does not process most of the background at high-resolutions.

This leads to significant savings in computation and memory requirement while process-

ing high-resolution images. We illustrate this with an example shown in Figure 3.1. The

left side of the figure shows the image with the ground-truth boxes represented by green

bounding boxes. The colored dotted rectangles show the chips generated by SNIPER in

the original image resolution which cover all objects. These chips are illustrated on the

right side of the figure with the same border color. Green and red bounding boxes repre-

sent the valid and invalid ground-truth objects corresponding to the scale of the chip. As

can be seen, in this example, SNIPER efficiently processes all ground-truth objects in an

appropriate scale by forming 4 low-resolution chips.

3.3.3 Negative Chip Selection

Although positive chips cover all the positive instances, a significant portion of the

background is not covered by them. Incorrectly classifying background increases the false

positive rate. In current object detection algorithms, when multi-scale training is per-

formed, every pixel in the image is processed at all scales. Although training on all scales

reduces the false positive rate, it also increases computation. We posit that a significant

amount of the background is easy to classify and hence, we can avoid performing any com-

putation in those regions. So, how do we eliminate regions which are easy to classify? A

simple approach is to employ object proposals to identify regions where objects are likely

to be present. After all, our classifier operates on region proposals and if there are no region

31

proposals in a part of the image, it implies that it is very easy to classify as background.

Hence, we can ignore those parts of the image during training.

To this end, for negative chip mining, we first train RPN for a couple of epochs. No

negative chips are used for training this network. The task of this network is to roughly

guide us in selecting regions which are likely to contain false positives, so it is not necessary

for it to be very accurate. This RPN is used to generate proposals over the entire training set.

We assume that if no proposals are generated in a major portion of the image by RPN, then

it is unlikely to contain an object instance. For negative chip selection, for each scale i, we

first remove all the proposals which have been covered in C i
pos. Then, for each scale i, we

greedily select all the chips which cover at least M proposals in Ri. This generates a set of

negative chips for each scale per image, C i
neg. During training, we randomly sample a fixed

number of negative chips per epoch (per image) from this pool of negative chips which

are generated from all scales, i.e.
⋃n

i=1 C i
neg. Figure 3.2 shows examples of the generated

negative chips by SNIPER. The first row shows the image and the ground-truth boxes. In

the bottom row, we show the proposals not covered by C i
pos and the corresponding negative

chips generated (the orange boxes). However, for clarity, we represent each proposal by a

red circle in its center. As illustrated, SNIPER only processes regions which likely contain

false positives, leading to faster processing time.

3.3.4 Label Assignment

Our network is trained end to end on these chips like Faster-RCNN, i.e. it learns to

generate proposals as well as classify them with a single network. While training, proposals

generated by RPN are assigned labels and bounding box targets (for regression) based on

all the ground-truth boxes which are present inside the chip. We do not filter ground-truth

boxes based on Ri. Instead, proposals which do not fall in Ri are ignored during training.

32

Figure 3.2: SNIPER negative chip selection. First row: the image and the ground-truth boxes.
Bottom row: negative proposals not covered in positive chips (represented by red circles located at
the center of each proposal for the clarity) and the generated negative chips based on the proposals
(represented by orange rectangles).

So, a large ground-truth box which is cropped, could generate a valid proposal which is

small. Like Fast-RCNN, we mark any proposal which has an overlap greater than 0.5

with a ground-truth box as positive and assign bounding-box targets for the proposal. Our

network is trained end to end and we generate 300 proposals per chip. We do not apply

any constraint that a fraction of these proposals should be re-sampled as positives [82],

as in Fast-RCNN. We did not use OHEM [92] for classification and use a simple softmax

cross-entropy loss for classification. For assigning RPN labels, we use valid ground-truth

boxes to assign labels and invalid ground-truth boxes to invalidate anchors, as done in [96].

3.3.5 Benefits

For training, we randomly sample chips from the whole dataset for generating a batch.

On average, we generate ∼ 5 chips of size 512x512 per image on the COCO dataset (in-

cluding negative chips) when training on three scales (512/ms 1, 1.667, 3). This is only

30% more than the number of pixels processed per image when single scale training is per-

1max(widthim,heightim)

33

formed with an image resolution of 800x1333. Since all our images are of the same size,

data is much better packed leading to better GPU utilization which easily overcomes the

extra 30% overhead. But more importantly, we reap the benefits of multi-scale training on

3 scales, large batch size and training with batch-normalization without any slowdown in

performance on a single 8 GPU node!.

It is commonly believed that high resolution images (e.g. 800x1333) are necessary for

instance level recognition tasks. Therefore, for instance level recognition tasks, it was not

possible to train with batch-normalization statistics computed on a single GPU. Methods

like synchronized batch-normalization or training on 128 GPUs have been proposed to al-

leviate this problem. Synchronized batch-normalization slows down training significantly

and training on 128 GPUs is also impractical for most people. Therefore, group normaliza-

tion [110] has been recently proposed so that instance level recognition tasks can benefit

from another form of normalization in a low batch setting during training. With SNIPER,

we show that the image resolution bottleneck can be alleviated for instance level recog-

nition tasks. As long as we can cover negatives and use appropriate scale normalization

methods, we can train with a large batch size of resampled low resolution chips, even on

challenging datasets like COCO. Our results suggest that context beyond a certain field of

view may not be beneficial during training. It is also possible that the effective receptive

field of deep neural networks is not large enough to leverage far away pixels in the image,

as suggested in [65].

In very large datasets like OpenImagesV4 containing 1.7 million images, most objects

are large and images provided are high resolution (1024x768), so it is less important to

upsample images by 3x. In this case, with SNIPER, we generate 3.5 million chips of size

512x512 using scales of (512/ms, 1). Note that SNIPER also performs adaptive down-

sampling. Since the scales are smaller, chips would cover more background, due to which

the impact of negative sampling is diminished. In this case (of positive chip selection),

34

SNIPER processes only half the number of pixels compared to naı̈ve multi-scale training

on the above mentioned scales in OpenImagesV4. Due to this, we were able to train Faster-

RCNN with a ResNet-101 backbone on 1.7 million images in just 3 days on a single 8 GPU

node!

3.4 Experimental Details

We evaluate SNIPER on the COCO dataset for object detection. COCO contains

123,000 images in the training and validation set and 20,288 images in the test-dev set.

We train on the combined training and validation set and report results on the test-dev set.

Since recall for proposals is not provided by the evaluation server, we train on 118,000 im-

ages and report recall on the remaining 5,000 images (commonly referred to as the minival

set).

On COCO, we train SNIPER with a batch-size of 128 and with a learning rate of 0.015.

We use a chip size of 512× 512 pixels. Training scales are set to (512/ms, 1.667, 3)

where ms is the maximum value width and height of the image2. The desired area ranges

(i.e. Ri) are set to (0,802), (322, 1502), and (1202, inf) for each of the scales respectively.

Training is performed for a total of 6 epochs with step-down at the end of epoch 5. Image

flipping is used as a data-augmentation technique. Every epoch requires 11,000 iterations.

For training RPN without negatives, each epoch requires 7000 iterations. We use RPN

for generating negative chips and train it for 2 epochs with a fixed learning rate of 0.015

without any stepdowns. Therefore, training RPN for 2 epochs is less than 20% of the

total training time. RPN proposals are extracted from all scales. Note that inference takes

1/3 the time for a full forward-backward pass and we do not perform any flipping for

extracting proposals. Hence, this process is also efficient. We use mixed precision training

2For the first scale, zero-padding is used if the smaller side of the image becomes less than 512 pixels.

35

as described in [70]. To this end, we re-scale weight-decay by 100, drop the learning rate

by 100 and rescale gradients by 100. This ensures that we can train with activations of half

precision (and hence ∼ 2x larger batch size) without any loss in accuracy. We use fp32

weights for the first convolution layer, last convolution layer in RPN (classification and

regression) and the fully connected layers in Faster-RCNN.

We evaluate SNIPER using a popular detector, Faster-RCNN with ResNets [34, 35] and

MobileNetV2. Proposals are generated using RPN on top of conv4 features and classifica-

tion is performed after concatenating conv4 and conv5 features. In the conv5 branch, we

use deformable convolutions and a stride of 1. We use a 512 dimensional feature map in

RPN. For the classification branch, we first project the concatenated feature map to 256

dimensions and then add 2 fully connected layers with 1024 hidden units. For lightweight

networks like MobileNetv2 [89], to preserve the computational processing power of the

network, we did not make any architectural changes to the network like changing the stride

of the network or added deformable convolutions. We reduced the RPN dimension to 256

and size of fc layers to 512 from 1024. RPN and classification branch are both applied on

the layer with stride 32 for MobileNetv2.

SNIPER generates 1.2 million chips for the COCO dataset after the images are flipped.

This results in around 5 chips per image. In some images which contain many object

instances, SNIPER can generate as many as 10 chips and others where there is a single large

salient object, it would only generate a single chip. In a sense, it reduces the imbalance in

gradients propagated to an instance level which is present in detectors which are trained

on full resolution images. At least in theory, training on full resolution images is biased

towards large object instances.

36

Method AR AR50 AR75 0-25 25-50 50-100 100-200 200-300
ResNet-101 With Neg 65.4 93.2 76.9 41.3 65.8 74.5 76.9 78.7
ResNet-101 W/o Neg 65.4 93.2 77.6 40.8 65.7 74.7 77.4 79.3

Table 3.1: We plot the recall for SNIPER with and without negatives. Surprisingly, recall is not
effected by negative chip sampling

3.4.1 Recall Analysis

We observe that recall (averaged over multiple overlap thresholds 0.5:0.05:0.95) for

RPN does not decrease if we do not perform negative sampling. This is because recall does

not account for false positives. As shown in Section 3.4.2, this is in contrast to mAP for

detection in which negative sampling plays an important role. Moreover, in positive chip

sampling, we do cover every ground truth sample. Therefore, for generating proposals, it

is sufficient to train on just positive samples. This result further bolsters SNIPER’s strategy

of finding negatives based on an RPN in which the training is performed just on positive

samples.

3.4.2 Negative Chip Mining and Scale

SNIPER uses negative chip mining to reduce the false positive rate while speeding up

the training by skipping the easy regions inside the image. As proposed in Section 3.3.3, we

use a region proposal network trained with a short learning schedule to find such regions.

To evaluate the effectiveness of our negative mining approach, we compare SNIPER’s mean

average precision with a slight variant which only uses positive chips during training (de-

noted as SNIPER w/o neg). All other parameters remain the same. Table 3.2 compares the

performance of these models. The proposed negative chip mining approach noticeably im-

proves AP for all localization thresholds and object sizes. Noticeably, negative chip mining

improves the average precision from 43.4 to 46.1. This is in contrast to the last section

37

Method Backbone AP AP50 AP75 APS APM APL

SNIPER ResNet-101 46.1 67.0 51.6 29.6 48.9 58.1
SNIPER 2 scale ResNet-101 43.3 63.7 48.6 27.1 44.7 56.1

SNIPER w/o negatives ResNet-101 43.4 62.8 48.8 27.4 45.2 56.2

Table 3.2: The effect training on 2 scales (1.667 and max size of 512). We also show the impact in
performance when no negative mining is performed.

when were interested in generating proposals. This is because mAP is affected by false

positives. If we do not include regions in the image containing negatives which are similar

in appearance to positive instances, it would increase our false positive rate and adversely

affect detection performance.

SNIPER is an efficient multi-scale training algorithm. In all experiments in this chapter

we use the aforementioned three scales (See Section 3.4 for the details). To show that

SNIPER effectively benefits from multi-scale training, we reduce the number of scales

from 3 to 2 by dropping the high resolution scale. Table 3.2 shows the mean average

precision for SNIPER under these two settings. As can be seen, by reducing the number

of scales, the performance consistently drops by a large margin on all evaluation metrics.

This shows the effectiveness of SNIPER in multi-scale training.

3.4.3 Timing

It takes 14 hours to train SNIPER end to end on a 8 GPU V100 node with a Faster-

RCNN detector which has a ResNet-101 backbone. It is worth noting that we train on

3 scales of an image pyramid (max size of 512, 1.667 and 3). Training RPN is much

more efficient and it only takes 2 hours for pre-training. Not only is SNIPER efficient in

training, it can also process around 5 images per second on a single V100 GPU. For better

utilization of resources, we run multiple processes in parallel during inference and compute

the average time it takes to process a batch of 100 images.

38

3.4.4 Inference

We perform inference on an image pyramid and scale the original image to the follow-

ing resolutions (480, 512), (800, 1280) and (1400, 2000). The first element is the minimum

size with the condition that the maximum size does not exceed the second element. The

valid ranges for training and inference are similar to [96]. For combining the detections,

we use Soft-NMS [5]. We do not perform flipping [117], iterative bounding box regression

[25] or mask tightening [62].

3.4.5 Comparison with State-of-the-art

It is difficult to fairly compare different detectors as they differ in backbone architec-

tures (like ResNet [34], ResNext [111], Xception [11]), pre-training data (e.g. ImageNet-

5k, JFT [37], OpenImages [49]), different structures in the underlying network (e.g multi-

scale features [58, 69], deformable convolutions [15], heavier heads [75], anchor sizes, path

aggregation [62]), test time augmentations like flipping, mask tightening, iterative bound-

ing box regression etc.

Therefore, we compare our results with SNIP[96], which is a recent method for training

object detectors on an image pyramid. The results are presented in Table 3.3. Without us-

ing batch normalization [45], SNIPER achieves comparable results. While [96] processes

almost all the image pyramid, SNIPER on the other hand, reduces the computational cost

by skipping easy regions. Moreover, since SNIPER operates on a lower resolution input, it

reduces the memory footprint. This allows us to increase the batch size and unlike [96], we

can benefit from batch normalization during training. With batch normalization, SNIPER

significantly outperforms SNIP in all metrics. It should be noted that not only the proposed

method is more accurate, it is also 3x faster during training. To the best of our knowledge,

for a Faster-RCNN architecture with a ResNet-101 backbone (with deformable convolu-

39

Method Backbone AP AP50 AP75 APS APM APL

SSD MobileNet-v2 22.1 - - - - -
SNIP ResNet-50 (fixed BN) 43.6 65.2 48.8 26.4 46.5 55.8

ResNet-101 (fixed BN) 44.4 66.2 49.9 27.3 47.4 56.9
MobileNet-V2 34.1 54.4 37.7 18.2 36.9 46.2

ResNet-50 (fixed BN) 43.5 65.0 48.6 26.1 46.3 56.0
SNIPER ResNet-101 46.1 67.0 51.6 29.6 48.9 58.1

ResNet-101 + OpenImages 46.8 67.4 52.5 30.5 49.4 59.6
ResNet-101 + OpenImages + Seg Binary 47.1 67.8 52.8 30.2 49.9 60.2

ResNet-101 + OpenImages + Seg Softmax 47.6 68.5 53.4 30.9 50.6 60.7
SNIPER ResNet-101 + OpenImages + Seg Softmax 38.9 62.9 41.8 19.6 41.2 55.0
SNIPER ResNet-101 + OpenImages + Seg Binary 41.3 65.4 44.9 21.4 43.5 58.7

Table 3.3: Ablation analysis and comparison with full resolution training. Last two rows show
instance segmentation results when the mask head is trained with N+1 way softmax loss and binary
softmax loss for N classes.

tions), our reported result of 46.1% is state-of-the-art. This result improves to 46.8% if

we pre-train the detector on the OpenImagesV4 dataset. Adding an instance segmentation

head and training the detection network along with it improves the performance to 47.6%.

With our efficient batch inference pipeline, we can process 5 images per second on a

single V100 GPU and still obtain an mAP of 47.6%. This implies that on modern GPUs, it

is practical to perform inference on an image pyramid which includes high resolutions like

1400x2000. We also show results for Faster-RCNN trained with MobileNetV2. It obtains

an mAP of 34.1% compared to the SSDLite version which obtained 22.1%. This again

highlights the importance of image pyramids (and SNIPER training) as we can improve

the performance of the detector by 12%.

We also show results for instance segmentation. The network architecture is same as

Mask-RCNN [32], just that we not use FPN and use the same detection architecture which

was described for object detection. For multi-tasking, we tried two variants of loss func-

tions for training the mask branch. One was a foreground-background softmax function

for N classes and another was a N+1 way softmax function. For instance segmentation, the

40

network which is trained with 2-way Softmax loss for each class clearly performs better.

But, for object detection, the N+1 way Softmax loss leads to slightly better results. We

only use 3 scales during inference and do not perform flipping, mask tightening, iterative

bounding-box regression, padding masks before resizing etc. Our instance segmentation

results are preliminary and we have only trained 2 models so far.

3.5 Related Work

SNIPER benefits from multiple techniques which were developed over the last year.

Notably, it was shown that it is important to train with batch normalization statistics [62,

75, 120] for tasks like object detection and semantic segmentation. This is one important

reason for SNIPER’s better performance. SNIPER also benefits from a large batch size

which was shown to be effective for object detection [75]. Like [96], SNIPER ignores

gradients of objects at extreme scales in the image pyramid to improve multi-scale training.

In the past, many different methods have been proposed to understand the role of con-

text [4, 68, 114] and scale [6, 58, 69, 113]. Considerable importance has been given to

leveraging features of different layers of the network and designing architectures for ex-

plicitly encoding context/multi-scale information [63, 69, 117, 118] for classification. Our

results highlight that context may not be very important for training high performance ob-

ject detectors.

3.6 Conclusion and Future Work

We presented an algorithm for efficient multi-scale training which sampled low resolu-

tion chips from a multi-scale image pyramid to accelerate multi-scale training by a factor

of 3 times. In doing so, SNIPER did not compromise on the performance of the detector

due to effective sampling techniques for positive and negative chips. As SNIPER operates

41

on resampled low resolution chips, it can be trained with a large batch size on a single GPU

which brings it closer to the protocol for training image classification. This is in contrast

with the common practice of training on high resolution images for instance-level recogni-

tion tasks. In future, we would like to accelerate multi-scale inference, because a significant

portion of the background can be eliminated without performing expensive computation. It

would also be interesting to evaluate at what chip resolution does context start to hurt the

performance of object detectors.

42

Chapter 4: R-FCN-3000 at 30fps: Decoupling Detection and Classifica-

tion

We propose a modular approach towards large-scale real-time object detection by de-

coupling objectness detection and classification. We exploit the fact that many object

classes are visually similar and share parts. Thus, a universal objectness detector can be

learned for class-agnostic object detection followed by fine-grained classification using a

(non)linear classifier. Our approach is a modification of the R-FCN architecture to learn

shared filters for performing localization across different object classes. We trained a de-

tector for 3000 object classes, called R-FCN-3000, that obtains an mAP of 34.9% on the

ImageNet detection dataset. It outperforms YOLO-9000 by 18% while processing 30 im-

ages per second. We also show that the objectness learned by R-FCN-3000 generalizes to

novel classes and the performance increases with the number of training object classes -

supporting the hypothesis that it is possible to learn a universal objectness detector.

4.1 Introduction

With the advent of Deep CNNs [36, 51], object-detection has witnessed a quantum

leap in the performance on benchmark datasets. It is due to the powerful feature learning

capabilities of deep CNN architectures. Within the last five years, the mAP scores on

PASCAL [21] and COCO [60] have improved from 33% to 88% and 37% to 73% (at

50% overlap), respectively. While there have been massive improvements on standard

43

benchmarks with tens of classes [15, 26, 27, 32, 82], little progress has been made towards

real-life object detection that requires real-time detection of thousands of classes. Some

recent efforts [39, 81] in this direction have led to large-scale detection systems, but at

the cost of accuracy. We propose a solution to the large-scale object detection problem

that outperforms YOLO-9000 [81] by 18% and can process 30 images per second while

detecting 3000 classes, referred to as R-FCN-3000.

R-FCN-3000 is a result of systematic modifications to some of the recent object-detection

architectures [14, 15, 59, 63, 80] to afford real-time large-scale object detection. Recently

proposed fully convolutional class of detectors [14, 15, 59, 63, 80] compute per-class ob-

jectness score for a given image. They have shown impressive accuracy within limited

computational budgets. Although fully-convolutional representations provide an efficient

[44] solution for tasks like object detection [15], instance segmentation [56], tracking [22],

relationship detection [119] etc., they require class-specific sets of filters for each class

that prohibits their application for large number of classes. For example, R-FCN [14]/

Deformable-R-FCN [15] requires 49/197 position-specific filters for each class. Retina-

Net [59] requires 9 filters for each class for each convolutional feature map. Therefore,

such architectures would need hundreds of thousands of filters for detecting 3000 classes,

which will make them extremely slow for practical purposes.

The key insight behind the proposed R-FCN-3000 architecture is to decouple object-

ness detection and classification of the detected object so that the computational require-

ments for localization remain constant as the number of classes increases - see Fig. 4.1.

We leverage the fact that many object categories are visually similar and share parts. For

example - different breeds of dogs all have common body parts; therefore, learning a dif-

ferent set of filters for detecting each breed is overkill. So, R-FCN-3000 performs object

detection (with position-sensitive filters) for a fixed number of super-classes followed by

fine-grained classification (without position-sensitive filters) within each super-class. The

44

Figure 4.1: We propose to decouple classification and localization by independently predicting
objectness and classification scores. These scores are multiplied to obtain a detector.

45

super-classes are obtained by clustering the deep semantic features of images (2048 di-

mensional features of ResNet-101 in this case); therefore, we do not require a semantic

hierarchy. The fine-grained class probability at a given location is obtained by multiplying

the super-class probability with the classification probability of the fine-grained category

within the super-class.

In order to study the effect of using super-classes instead of individual object cate-

gories, we varied the number of super-classes from 1 to 100 and evaluated the performance

on the ImageNet detection dataset. Surprisingly, the detector performs well even with one

super-class! This observation indicates that position-sensitive filters can potentially learn

to detect universal objectness. It also reaffirms a well-researched concept from the past

[1, 2, 101] that objectness is a generic concept and a universal objectness detector can be

learned. Indeed, the very first application of deep-learning for object detection [27] used

Selective-Search [101] to obtain class-agnostic object proposals and classified them using

a deep CNN - fine-tuned AlexNet in this case. R-FCN-3000 exploits the powerful hierar-

chical representation capacity of deep CNNs to significantly improve universal objectness

prediction. Thus, for performing object detection, it suffices to multiply the objectness

score of an RoI with the classifiation probability for a given class. This results in a fast de-

tector for thousands of classes, as per-class position sensitive filters are no longer needed.

On the PASCAL-VOC dataset, with only our objectness based detector, we observe a 1.5%

drop in mAP compared to the deformable R-FCN [15] detector with class-specific filters

for all 20 object classes. R-FCN-3000, trained for 3000 classes, obtains an 18% improve-

ment in mAP over the current state-of-the-art large scale object detector (YOLO-9000) on

the ImageNet detection dataset. Finally, we also evaluate the generalizability of our ob-

jectness detector on unseen classes (a zero-shot setting for localization) and observe that

the generalization error decreases as we train the objectness detector on larger numbers of

classes.

46

4.2 Related Work

Large scale localization using deep convolutional networks was first performed in [91,

95] which used regression for predicting the location of bounding boxes. Later, RPN [82]

was used for localization in ImageNet classification [34]. However, no evaluations were

performed to determine if these networks generalize when applied on detection datasets

without specifically training on them. Weakly-supervised detection has been a major focus

over the past few years for solving large-scale object detection. In [39], knowledge of

detectors trained with bounding boxes was transferred to classes for which no bounding

boxes are available. The assumption is that it is possible to train object detectors on a fixed

number of classes. For a class for which supervision is not available, transformations are

learned to adapt the classifier to a detector. Multiple-instance learning based approaches

have also been proposed which can leverage weakly supervised data for adapting classifiers

to detectors [40]. Recently, YOLO-9000 [81] jointly trains on classification and detection

data. When it sees a classification image, classification loss is back-propagated on the

bounding box which has the highest probability. It assumes that the predicted box is the

ground truth box and uses the difference between other anchors and the predicted box as

the objectness loss. YOLO-9000 is fast, as it uses a lightweight network and uses 3 filters

per class for performing localization. For performing good localization, just 3 priors are

not sufficient.

For classifying and localizing a large number of classes, some methods leverage the fact

that parts can be shared across objects categories [73, 74, 88, 99]. Sharing filters for object

parts reduces model complexity and also reduces the amount of training data required for

learning part-based filters. Even in traditional methods, it has been shown that when filters

are shared, they are more generic [99]. However, current detectors like Deformable-R-FCN

[15], R-FCN [14], RetinaNet [59] do not share filters (in the final classification layer) across

47

object categories: because of this, inference is slow when they are applied on thousands of

categories. Taking motivation from prior work on sharing filters across object categories,

we propose an architecture where filters can be shared across some object categories for

large scale object detection.

The extreme version of sharing parts is objectness, where we assume that all objects

have something in common. Early in this decade (if not before), it was proposed that

objectness is a generic concept and it was demonstrated that only a very few category ag-

nostic proposals were sufficient to obtain high recall [1, 2, 8, 101]. With a bag-of-words

feature-representation [53] for these proposals, better performance was shown compared

to a sliding-window based part-based-model [23] for object detection. R-CNN [27] used

the same proposals for object detection but also applied per-class bounding-box regression

to refine the location of these proposals. Subsequently, it was observed that per-class re-

gression was not necessary and a class-agnostic regression step is sufficient to refine the

proposal position [14]. Therefore, if the regression step is class agnostic, and it is possible

to obtain a reasonable objectness score, a simple classification layer should be sufficient to

perform detection. We can simply multiply the objectness probability with the classifica-

tion probability to make a detector! Therefore, in the extreme case, we set the number of

super-classes to one and show that we can train a detector which obtains an mAP which is

very close to state-of-the-art object detection architectures [14].

4.3 Background

This section provides a brief introduction of Deformable R-FCN [15] which is used

in R-FCN-3000. In R-FCN [14], Atrous convolution [9] is used in the conv5 layer to in-

crease the resolution of the feature map while still utilizing the pre-trained weights from

the ImageNet classification network. In Deformable-R-FCN [15], the atrous convolution is

48

replaced by a deformable convolution structure in which a separate branch predicts offsets

for each pixel in the feature map, and the convolution kernel is applied after the offsets

have been applied to the feature-map. A region proposal network (RPN) is used for gener-

ating object proposals, which is a two layer CNN on top of the conv4 features. Efficiently

implemented local convolutions, referred to as position sensitive filters, are used to classify

these proposals.

4.4 Large Scale Fully-Convolutional Detector

This section describes the process of training a large-scale object detector. We first

explain the training data requirements followed by discussions of some of the challenges

involved in training such a system - design decisions for making training and inference

efficient, appropriate loss functions for a large number of classes, mitigating the domain-

shift which arises when training on classification data.

4.4.1 Weakly Supervised vs. Supervised?

Obtaining an annotated dataset of thousands of classes is a major challenge for large

scale detection. Ideally, a system that can learn to detect object instances using partial im-

age level tags (class labels) for the objects present in training images would be preferable

because large-scale training data is readily available on the internet in this format. Since

the setting with partial annotations is very challenging, it is commonly assumed that labels

are available for all the objects present in the image. This is referred to as the weakly super-

vised setting. Unfortunately, explicit boundaries of objects or atleast bounding-boxes are

required as supervision signal for training accurate object detectors. This is the supervised

setting. The performance gap between supervised and weakly supervised detectors is large

- even 2015 object detectors [34] were better by 40% on the PASCAL VOC 2007 dataset

49

compared to recent weakly supervised detectors [18]. This gap is a direct result of insuffi-

cient learning signal coming from weak supervision and can be further explained with the

help of an example. For classifying a dog among 1000 categories, only body texture or fa-

cial features of a dog may be sufficient and the network need not learn the visual properties

of its tail or legs for correct classification. Therefore, it may never learn that legs or tail are

parts of the dog category, which are essential to obtain accurate boundaries.

On one hand, the huge cost of annotating bounding boxes for thousands of classes

under settings similar to popular detection datasets such as PASCAL or COCO makes it

prohibitively expensive to collect and annotate a large-scale detection dataset. On the other

hand, the poor performance of weakly supervised detectors impedes their deployment in

real-life applications. Therefore, we ask - is there a middle ground that can alleviate the cost

of annotation while yielding accurate detectors? Fortunately, the ImageNet database con-

tains around 1-2 objects per image; therefore, the cost of annotating the bounding boxes

for the objects is only a few seconds compared to several minutes in COCO [60]. It is

because of this reason that the bounding boxes were also collected while annotating Ima-

geNet! A potential downside of using ImageNet for training object detectors is the loss of

variation in scale and context around objects available in detection datasets, but we do have

access to the bounding-boxes of the objects. Therefore, a natural question to ask is, how

would an object detector perform on “detection” datasets if it were trained on classification

datasets with bounding-box supervision? We show that careful design choices with respect

to the CNN architecture, loss function and training protocol can yield a large-scale detector

trained on the ImageNet classification set with significantly better accuracy compared to

weakly supervised detectors.

50

Figure 4.2: R-FCN-3000 first generates region proposals which are provided as input to a super-
class detection branch (like R-FCN) which jointly predicts the detection scores for each super-class
(sc). A class-agnostic bounding-box regression step refines the position of each RoI (not shown).
To obtain the semantic class, we do not use position-sensitive filters but predict per class scores in
a fully convolutional fashion. Finally, we average pool the per-class scores inside the RoI to get the
classification probability. The classification probability is multiplied with the super-class detection
probability for detecting 3000 classes. When K is 1, the super-class detector predicts objectness.

4.4.2 Super-class Discovery

Fully convolutional object detectors learn class-specific filters based on scale & aspect-

ratio [59] or in the form of position sensitive filters [14, 15] for each class. Therefore,

when the number of classes become large, it becomes computationally in-feasible to ap-

ply these detectors. Hence, we ask is it necessary to have sets of filters for each class or

can they be shared across visually similar classes? In the extreme case - can detection be

performed using just a foreground/background detector and a classification network? To

obtain visually similar sets of objects for which position-sensitive filters can be shared, ob-

jects should have similar visual appearances. We obtain the jth object-class representation,

x j, by taking the average of 2048-dimensional feature-vectors (xi
j), from the final layer of

ResNet-101, for the all the samples belonging to the jth object-class in the ImageNet clas-

sification dataset (validation set). Super-classes are then obtained by applying K-means

clustering on {x j : j ∈ {1,2, . . .C}}, where C is the number of object-classes, to obtain K

super-class clusters.

51

4.4.3 Architecture

First, RPN is used for generating proposals, as in [15]. Let the set of individual object-

classes the detector is being trained on be C , |C |= C, and the set of super-classes (SC)

be K , |K |= K. For each super-class k, suppose we have P×P position-sensitive filters,

as shown in Fig 4.2. On the conv5 feature, we first apply two independent convolution

layers as in R-FCN for obtaining detection scores and bounding-box regression offsets.

On each of these branches, after a non-linearity function, we apply position sensitive fil-

ters for classification and bounding-box regression. Since we have K super-classes and

P×P filters per super-class, there are (K +1)×P×P filters in the classification branch (1

more for background) and P×P× 4 filters in the bounding-box regression branch as this

branch is class-agnostic. After performing position-sensitive RoI pooling and averaging the

predictions in each bin, we obtain predictions of the network for classification and localiza-

tion. To get the super-class probability, softmax function over K super-classes is used and

predictions from the localization branch are directly added to get the final position of the

detection. These two branches help detect the super-classes which are represented by each

cluster k. For obtaining fine-grained class information, we employ a two layer CNN on the

conv5 feature map, as shown in Fig . 4.2. A softmax function is used on the output of this

layer for obtaining the final class probability. The detection and classification probabilities

are multiplied to obtain the final detection score for each object-class. This architecture

is shown in Fig. 4.2. Even though there are other challenges such as entailment, cover,

equivalence etc. [16, 66] which are not correctly modelled with the softmax function, the

Top-1 accuracy even on the ImageNet-5000 classification dataset is greater than 67% [10].

So, we believe these are not the bottlenecks for detecting a few thousand classes.

52

4.4.4 Label Assignment

Labels are assigned exactly the same way as fast-RCNN [26] for the K super-classes on

which detection is performed. Let C be the total number of object-classes and let ki and c j

denote the ith super-class and jth sub-class in ki, then ki = {c1,c2, ...,c j} and ∑
K
i=1|ki|=C.

For detecting super-class ki, an RoI is assigned as positive for super-class ki if it has an

intersection over union (IoU) greater than 0.5 with any of the ground truth boxes in ki,

otherwise it is marked as background (label for background class K +1 is set to one). For

the classification branch (to get the final 3000 classes), only positive RoIs are used for

training, i.e. only those which have an IoU greater than 0.5 with a ground truth bounding

box. The number of labels for classification is C instead of K +1 in detection.

4.4.5 Loss Function

For training the detector, we use online hard example mining (OHEM) [92] as done in

[15] and smooth L1 loss for bounding box localization [26]. For fine-grained classifica-

tion we only use a softmax loss function over C object-classes for classifying the positive

bounding boxes. Since the number of positive RoIs are typically small compared to the

number of proposals, the loss from this branch is weighted by a factor of 0.05, so that these

gradients do not dominate network training. This is important as we train RPN layers, R-

FCN classification and localization layers, and fine-grained layers together in a multi-task

fashion, so balancing the loss from each branch is important.

4.5 Experiments

In this section, we describe the implementation details of the proposed large-scale ob-

ject detector and compare against some of the weakly supervised large-scale object detec-

53

Dataset (ImageNet) Images Object Instances
Detection 400,000 764,910
CLS 194 87,577 100,724
CLS 500 121,450 141,801

CLS 1000 191,463 223,222
CLS 2000 403,398 462,795
CLS 3000 925,327 1,061,647

Table 4.1: The number of images and object instances in the ImageNet Detection and different
versions of our ImageNet classification (CLS) training set.

tors in terms of speed and accuracy.

4.5.1 Training Data

We train on the ImageNet classification dataset which contains bounding boxes for

3,130 classes. Each class contains at least 100 images in the training set. In the complete

dataset, there are 1.2 million images. The detection test set (ILSVRC 2014) of ImageNet

contains 194 classes out of the 3,130 classes present in the classification set. Therefore, we

present our results on the 194 classes in our experiments (6 classes did not have bounding

boxes in the ImageNet classification dataset which were present in the ImageNet detection

test set). We also perform experiments on the PASCAL VOC 2007+2012 object detection

dataset. We evaluate our models on the VOC 2007 test set.

4.5.2 Implementation Details

For fast training and inference, we train on images of resolution (375x500), where the

smaller side is at least 375 pixels and the larger side is a maximum of 500 pixels. Three

anchor scales of (64,128,256) pixels are used. At each anchor scale, there are 3 aspect ratios

of (1:2), (1:1) and (2:1) for the anchor boxes, hence there are a total of 9 anchors in RPN.

We train for 7 epochs. A warm-up learning rate of 0.00002 is used for first 1000 iterations

54

Method LSDA [39] SKT [97] KDT [101] Ours
mAP 18.1 20.0 34.3 43.3

Table 4.2: Comparison of our decoupled R-FCN trained on classification data with bounding-box
supervision vs. weakly-supervised methods that use a knowledge transfer approach to exploit infor-
mation from detectors pre-trained on 100 classes on the ImageNet detection set.

and then it is increased to 0.0002. The learning rate is dropped by a factor of 10 after 5.33

epochs. Training is performed on 2 Nvidia P6000 GPUs. When increasing the number of

classes beyond 194, we first select classes with the least number of samples (each class

still has at least 100 samples) from the classification set. This is done for accelerating

our ablation experiments on 500, 1000 and 2000 classes. Statistics of the detection set

and classification set with different numbers of classes are shown in Table 4.1. For our

analysis, we first train a region proposal network on 3,130 classes separately and extract

proposals on the training and test set. Then, deformable R-FCN is trained like fast-RCNN

with different numbers of clusters and classes. Multi-scale inference is performed at two

scales, (375,500) and (750,1000) and predictions of the two scales are combined using

NMS. In all our experiments, a ResNet-50 backbone network is used. On the PASCAL

VOC dataset we train under the same settings as [15].

Figure 4.3: The mAP on the 194 classes in the ImageNet detection set is shown as we vary the
number of clusters (super-classes). This is shown for 194 class and 1000 class detectors. We also
plot the mAP for different number of classes for an objectness based detector.

55

4.5.3 Comparison with Weakly Supervised Detectors

First, to calibrate our results with existing methods and to highlight the improvement

by training on classification data with bounding-box supervision, we compare our method

with knowledge transfer based weakly supervised methods. Methods like LSDA [39] and

Semantic Knowledge Transfer (SKT) [97] assume that detectors for 100 classes (trained on

the ImageNet detection dataset) are available and use semantic similarity between weakly

supervised classes and strongly supervised classes to leverage information learned from

pre-trained detectors. They evaluate on the remaining 100 classes in the ImageNet de-

tection set. Contemporary work [100] (KDT) also employs a knowledge transfer based

approach, albeit with a modern Inception-ResNet-v2 based Faster-RCNN detector. Since

these methods leverage classification data and also detection data for other classes, these

can be considered as a very loose upper-bound on what a true weakly-supervised detec-

tor, which does not have any access to bounding boxes, would achieve. Our single scale

ResNet-50 based model trained on 194 classes obtains an mAP of 40.5% 1 and after multi-

scale testing (2 scales), we obtain an mAP of 43.3%.

We also provide some statistics on the number of images and object instances in the Im-

ageNet detection and ImageNet classification set in Table 4.1. Weakly supervised methods

like LSDA [39], SKT [97], KDT [101] use detectors trained on 400,000 instances present

in 200,000 images from the detection dataset. This acts as a prior which is used as a basis

for adapting the classification network.

12 classes did not have bounding box annotations in the ImageNet classification training set, so results are
on 98 out of 100 classes

56

Clusters 1 5 25 100 1000
mAP 36 36.7 37.1 37.3 -

Time(ms) 33 33 34 51 231

Table 4.3: The mAP scores for different number of clusters for the 1000 class detector and run-
time(in milli-seconds)/image.

Clusters 20 50 100 200 1000
mAP 35.6 35.6 35.6 35.7 36.0

Time(ms) 1 1.5 1.8 2.6 10.1

Table 4.4: The mAP for different number of super-classes in NMS for the 1000 class objectness
based detector and the NMS run-time (in milli-seconds).

4.5.4 Speed and Performance

In Table 4.3, we present the speed accuracy trade-off when increasing the number of

clusters for the 1000 class detector. The 100 class clustering based detector is 66% slower

than the objectness based detector. It was infeasible to train the original detector with 1000

classes, so we only present the run time for this detector. All the speed results are on a

P6000 GPU. We also present results when we use different numbers of clusters during

NMS. In this process, NMS is performed for a group of visually similar classes together,

instead of each class separately. We use the same clustering based grouping of classes.

The clusters used during NMS can be different from those which are used when grouping

classes for R-FCN as this is only done for accelerating the post-processing step. We present

the runtime for NMS (on GPU) for different numbers of clusters in Table 4.4. Note that

10 ms is 33% of the runtime of our detector, and this is only for 1000 classes. Therefore,

performing NMS on visually similar classes is a simple way to speed up inference without

taking a significant hit in average precision. As mentioned in the title, our 3000 class

detector can be applied to more than 30 images per second (on a resolution of 375x500

pixels, minimum side 375, maximum side 500) on an Nvidia P6000 GPU.

57

Figure 4.4: The objectness, classification and final detection scores against various transformations
such as combinations of scaling and translation are shown. These scores are generated by forward
propagating an ideal bounding-box RoI (in green) and a transformed bounding-box RoI (in red)
through the R-FCN (objectness) and classification branch of the network. The selectiveness of the
detector in terms of objectness is clearly visible against the various transformations that lead to poor
detection.

4.6 Discussion

In order to better understand the behaviour of the proposed object detection system, we

evaluate it while varying the number of clusters and classes under different training and

testing dataset conditions. Lastly, we also conduct experiments with unseen classes during

training to assess the generalizability capacity of the proposed detector beyond the training

classes.

4.6.1 Impact of Number of Classes and Clusters

We present results as we increase the number of classes on the ImageNet detection test

set which contains 194 classes in Fig. 4.3 (c). In this experiment, we only use one cluster,

hence the position sensitive RoI filters only predict objectness and perform bounding-box

regression. The drop in performance typically reduces as we increase the number of classes.

For example, there is a drop of 2% as the number of classes is increased from 200 to 500,

but from 1000 to 2000, the performance drop is only 0.3%. Even with 3,000 classes, we

obtain an mAP of 34.9% which is 15% better than YOLO-9000 which obtains an mAP of

19.9%. Performance of YOLO-9000 drops to 16% when it is evaluated on classes which are

not part of the detection set (these are majority of the classes which it detects). Therefore,

58

we perform better by 19% on classes which are not part of the detection set compared to

YOLO-9000. Although we detect 3,000 instead of 9,000 classes, our performance is more

than 2 times better than YOLO-9000. Qualitative results for the R-FCN-3000 detector are

also shown in Fig. 4.5 on some images from COCO.

To assess the effect of the number of super-classes on performance, we varied the num-

ber of super-classes and report the results. All results use a single-scale inference. Fig. 4.3

(a) reports mAP for training/testing on 194 classes from the ImageNet detection dataset

and Fig. 4.3 (b) reports mAP for the same 194 classes while training with 1,000 object

classes. The drop in performance is merely 1.7% for a detector with only one super-class

as compared to 100 super-classes for 194 class training. More interestingly, as the number

of training classes are increased to 1,000, the drop is only 1.3%, which is counter-intuitive

because one would expect that using more super-classes would be helpful as we increase

the number of object classes. In light of these observations, we can conclude that more

crucial to R-FCN is learning an objectness measure instead of class-specific objectness.

4.6.2 Are Position-Sensitive Filters Per Class Necessary?

To further verify our claim that detection can be modelled as a product of objectness

and classification probability, we conduct more experiments on the PASCAL VOC dataset.

We train a deformable R-FCN detector, as the baseline, with a ResNet-50 backbone that

uses deformable position sensitive filters and obtains an mAP of 79.5%. After training

a decoupled network which predicts objectness and performs classification on RoIs, we

observe a similar pattern even on this dataset. At a 0.5 overlap, the performance only drops

by 1.9% and at 0.7 by 1.5%, Table 4.6. This confirms that our proposed design changes to

R-FCN are effective and only marginally deteriorate the mAP of the detector. We show a

few visual examples of objectness and classification scores predicted by our class-agnostic

59

detector in Fig 4.4.

Based on these results, we explore some other alternatives of R-FCN for estimating ob-

jectness. First, we just use RPN scores as the objectness measure and classify the proposals

with our network (which is a linear classifier). Then, we add a bounding box regression step

on the proposals, as they are already class agnostic. These two baselines are significantly

worse than R-FCN. The mAP of only RPN is very poor at an overlap of 0.7. Although

bounding-box regression provides a boost of 35% at 0.7 overlap, the performance is still

15% worse than R-FCN. Since RPN uses an overlap of 0.7 for assigning positives and 0.3

for assigning negatives, we decided to change these two thresholds to 0.5 and 0.4 respec-

tively, like [59]. We train two versions of RPN, on conv4 and conv5 and present the results.

These results show that performance with RPN also improves after changing the overlap

criterion and with better features, so other objectness measures could also be an alternative

for R-FCN. Results for these experiments are presented in Table 4.5.

Figure 4.5: Detections for classes in the ImageNet3K dataset which are typically not found in
common object detection datasets are shown.

Figure 4.6: Objectness scores on images containing unseen object-classes from the ImageNet de-
tection dataset.

60

Ov0.5 Ov0.7 C4 C5 BBR mAP0.5 mAP0.7

× X X × × 47.3 12.7
× X X × X 65.1 47.8
X × X × × 52.0 16.0
X × X × X 66.8 49.7
X × × X × 70.6 44.1
X × × X X 74.1 56.9

Table 4.5: Results for different versions of RPN scores used for objectness are reported. C4 and C5
denote if RPN is applied on Conv4 or Conv5 feature-map. Ov0.5, Ov0.7 denotes if the overlap for
assigning positives in RPN is 0.5 or 0.7. BBR denotes if bounding box regression of deformable
R-FCN is used or not.

Method mAP0.5 mAP0.7

D-R-FCN (decoupled) 77.6 63.8
D-R-FCN 79.5 65.3

Table 4.6: Results of D-R-FCN and our decoupled version where the R-FCN classification branch
only predicts objectness.

4.6.3 Generalization of Objectness on Unseen Classes

We evaluate the generalization performance of our objectness detector on a held out set

of 20 classes. In this experimental setting, we train two objectness detectors - OB (object-

ness baseline), which includes the 20 object classes during training and GO (generalized

objectness), which does not. For both the settings, the same classifier is used with different

objectness detectors. OB and the classifier are trained on 194, 500, 1000, 2000 and 3130

classes and GO on 174, 480, 980, 1980 and 3110 classes. While going from 194 to 500

classes, the number of classes increase significantly but the number of samples do not (see

Table 4.1); therefore, the mAP of OB drops by 1.8%. Since more samples help in im-

proving the objectness measure for GO, the performance drop is only marginal (Fig 4.7).

Increasing the number of classes to 1000 and 2000 improves the mAP of GO, implying that

the improvement in objectness can overshadow the performance drop caused by increasing

the number of classes. Fig 4.7 clearly shows that the initial gap of 9.7% in the performance

61

Figure 4.7: The mAP scores on a held out set of 20 classes for Generalized Objectness and Object-
ness baseline.

Classes Objectness Generalized Objectness
20 31 30.7

194 34.9 32

Table 4.7: mAP of Objectness and Generalized Objectness on held out classes in the ImageNet
detection set.

drops to 0.3% as the number of classes increase. We also compared OB with GO when

we remove all the 194 classes in ImageNet detection set and present the results in Table

4.7. Note that the performance drop is 3% even after removing 10% of the instances in

the dataset (all of which belong to the classes in the test set). It strongly indicates that

objectness learned on thousands of classes generalizes to novel unseen classes as well. A

few qualitative results for such cases are shown in Fig. 4.6. Note that we did not train on

any of these images!

62

4.7 Conclusion

A modular framework for real-time large-scale object detection is proposed that ex-

ploits the visual similarities and part sharing across different object categories. The pro-

posed framework is trained on 3000 classes from the ImageNet classification dataset with

bounding-box supervision. R-FCN-3000 outperformed the previous state-of-the-art large-

scale detector (YOLO-9000) by 18%, while running at 30fps. We demonstrate that the

proposed framework can potentially predict a universal objectness score by using only one

set of filters for object vs. background detection. It resulted in a marginal drop of less

than 2% compared to the detector which performed detection for each class on the PAS-

CAL VOC dataset. Finally, we also show that the objectness learned generalizes to unseen

classes and the performance increases with the number of training object classes. It bolsters

the hypothesis of the universality of objectness.

This chapter presents significant improvements for large-scale object detection but many

questions still remain unanswered. Some promising research questions are - How can we

accelerate the classification stage of R-FCN-3000 for detecting 100,000 classes? A typical

image contains a limited number object categories - how to use this prior to accelerate in-

ference? What changes are needed in this architecture if we also need to detect objects and

their parts? Since it is expensive to label each object instance with all valid classes in every

image, can we learn robust object detectors if some objects are not labelled in the dataset?

63

Chapter 5: A Multi-Stream Bi-Directional Recurrent Neural Network for

Fine-Grained Action Detection

We present a multi-stream bi-directional recurrent neural network for fine-grained ac-

tion detection. Recently, two-stream convolutional neural networks (CNNs) trained on

stacked optical flow and image frames have been successful for action recognition in

videos. Our system uses a tracking algorithm to locate a bounding box around the per-

son at each frame of the video, which provides a frame of reference for appearance and

motion trajectories and also suppresses background noise that is not within the bounding

box. In addition to training two streams (flow and image appearance) on full-frame video,

we train two additional streams on flow and appearance cropped to the tracked bounding

box. Whereas recent methods use stacked optical flow as input to the flow stream of a net-

work, our flow streams takes as input pixel trajectories, in which the displacement values

corresponding to a moving scene point are input at the same pixel location across several

frames. To model long-term temporal dynamics within and between actions, the multi-

stream CNN is followed by a bi-directional Long Short-Term Memory (LSTM) layer. In

our experiments, we demonstrate that the LSTM layer improves performance of the multi-

stream network by a large margin. We also show that our bi-directional LSTM network

utilizes about 8 seconds of the video sequence to predict an action label. We test on two

action detection datasets: the MPII Cooking 2 Dataset, and a new Shopping Dataset that

we introduce with this chapter. The results demonstrate that our method significantly out-

64

performs state-of-the-art action detection methods on both datasets.

5.1 Introduction

In this chapter, we present a novel method for detecting actions in videos. Action detection

refers to the problem of localizing temporally and spatially every occurence of each ac-

tion from a known set of action classes in a long video sequence. This is in contrast to

most of the previous work in video activity analysis, which has focused on the problem

of action recognition (also called action classification). In action recognition, a temporally

segmented clip of a video is given as input, and the task is to classify it as one of N known

actions. For action recognition, temporal localization is not required, as each video clip is

trimmed to contain precisely the full duration (from start to finish) of one action. Further-

more, action recognition algorithms do not need to consider the case that a presented clip

might not contain any of the known actions. In general, the problem of action detection

is more difficult than action recognition. However, it is worth overcoming that difficulty,

because action detection is also much more relevant to real-world applications.

In this work, we will focus on fine-grained action detection. We use the term fine-grained

in the same sense as [86] to indicate that the differences among the set of actions to be de-

tected is low. For example, in a cooking scenario, detecting actions from a set that includes

similar actions such as chopping, grating, and peeling constitutes fine-grained action de-

tection.

We propose a novel method for fine-grained action detection in long video sequences,

based on a Multi-Stream Bi-Directional Recurrent Neural Network (MSB-RNN). We call

our neural network multi-stream because it begins with a convolutional neural network

(CNN) that has four streams: two different streams of information (motion and appear-

ance) for each of two different spatial frames (full-frame and person-centric). The video

65

Figure 5.1: Framework for our approach. Short chunks of a video are given to a multi-stream
network (MSN) to create a representation for the clip. This representation is then given to a bi-
directional LSTM which is used to predict the action label, Ai. Two streams of the multi-stream
network compute CNN features on pixel level trajectories and RGB channels respectively. Using a
tracker, we use two more streams which only look at a zoomed in region of the video.

66

that is input to the network is split into a sequence of brief (6-frame-long) chunks. The

multi-stream network output is a sequence of high-level representations of these chunks.

These are input to bi-directional long short-term memory (LSTM) [31, 38] units to ana-

lyze long-term temporal dynamics. Previous deep learning approaches use features that

are computed over the full spatial extent of the video frame. We show the importance of

using a tracked bounding box around the person to compute features relative to the loca-

tion of the person, in addition to full-frame features, to provide both location-independent

and location-dependent information. Unlike some previous work that represents motion

information using a sequence of flow fields [94], we instead use a sequence of correspond-

ing pixel displacements that we call pixel trajectories, as illustrated in Figure 5.3. The

advantage of pixel trajectories is that the displacements for a moving point in the scene

are represented at the same pixel location across several frames. We analyze the relative

importance of each of these components using two different datasets. The first is the MPII

Cooking 2 Dataset [87], and the second is a new dataset we introduce containing over-

head videos of people shopping from grocery-store shelves. We collected this new dataset

because there are very few existing datasets that consist of long videos that each contain

multiple temporally labeled actions. Our results on the MPII Cooking 2 Dataset represent

a significant improvement over the previous state of the art.

Our work contains four novel contributions:

• We demonstrate the effectiveness of a bi-directional LSTM for the action-detection

task. It should be noted that although LSTMs have been used before for action recog-

nition and sentence generation, we are the first to use LSTMs for action detection.

Furthermore, since our LSTM layer is trained on full-length videos containing mul-

tiple actions (not just trimmed clips of individual actions), it can learn interactions

among temporally neighboring actions.

67

• We train a multi-stream convolutional network that consists of two 2-stream net-

works, demonstrating the importance of using both full-frame and person-centric

cropped video.

• We use pixel trajectories rather than stacked optical flow as input to the motion

streams, leading to a significant improvement in results.

• We introduce a new action detection dataset.

5.2 Related Work

Early work that can be considered action detection includes methods that detect walking

people by analyzing simple appearance and motion patterns [13, 103]. Several algorithms

have been proposed since then for detecting simple actions using space time interest points

[116], multiple instance learning [43], or part-based models [46, 98]. By adding another

dimension (time) to object proposals, action proposals have also been used for detection

[47, 115].

Until recently, the standard pipeline for most video analysis tasks such as action recog-

nition, event detection, and video retrieval was to compute hand-crafted features such as

Histogram of Oriented Gradients (HOG), Motion Boundary Histogram (MBH), and His-

togram of Optical Flow (HOF) along improved dense trajectories [105], create a Fisher

vector for each video clip, then perform classification using support vector machines. In

fact, shallow architectures using Fisher vectors still give state-of-the-art results for ac-

tion/activity recognition [76, 87, 106]. Wang et al. [106] showed that results improved

when hand-crafted features were replaced by deep features that were computed by convo-

lutional neural networks from an input of images and stacked optical flow along trajectories.

In [94], a two-stream network was proposed in which video frames and stacked optical flow

68

fields (computed over a few frames) were fed to a deep neural network for action recogni-

tion. A similar architecture was used for spatial localization of actions [28] in short video

clips. However, these networks did not learn long-term sequence information from videos.

Since recurrent neural networks can learn long-term sequence information in a data-

driven fashion, they have recently gained traction in the action recognition community

[3, 19, 71]. In [3], a 3D convolutional neural network followed by an LSTM classifier

was successful at classifying simple actions. LSTMs have shown improved performance

over a two-stream network for action recognition [19, 71]. Recently, bi-directional LSTMs

were also successful in skeletal action recognition [20]. However, even after using LSTMs,

deep learning methods perform only slightly better than fisher vectors built on hand-crafted

features for many action recognition tasks [71].

Although substantial progress has been made in action recognition/classification) [76,

87, 94, 106], not as much work has been done in action detection (spatio-temporal lo-

calization of actions in longer videos). Recently, it was shown that improving tracking

helps action detection in sports videos [108]. In this method, track proposals are generated

and then hand-crafted features are computed over these tracks. Since spatial localization

is often not too difficult for fine-grained action detection in indoor videos, this approach

is closely related to computing dense trajectory features over tracked regions (similar to

hand-trajectories in [87]). Using annotations for the objects being interacted with [72, 87]

or enforcing the grammar of the high level activity being performed [52, 79] is generally

helpful, though these approaches may require learning extra detectors for objects and hav-

ing prior knowledge about high-level activities.

For fine-grained action detection, extracting trajectories from spatio-temporal regions

of interest or using hand-trajectories has shown significantly improved performance [72,

87]. In recent work in generating sentences from images, LSTM networks with attention

models [67, 112] learn to focus on salient regions in an image to generate captions for

69

the image. Since motion and actor location are important clues for knowing where an

action is happening, we were inspired by these methods to add our network’s two person-

centric streams, which capture information from regions of video that are salient due to

actor motion.

5.3 Approach

Our framework is shown in Fig. 5.1. First, we train 4 independent convolutional neural

networks, each based on the VGG architecture [95], to perform the task of action classi-

fication when given as input a single small chunk (6 consecutive frames) of video. Two

networks (one each for images and motion trajectories) are trained on chunks of full-frame

video, so that the spatial context of the action being performed is preserved. The other two

networks (one each for images and motion trajectories) are trained on frames that have been

cropped to a tracked bounding box. These cropped frames provide an action with a refer-

ence frame, which helps in classifying them. After these four networks have been trained,

we learn a fully-connected projection layer on top of all all four fc7 layer outputs, to create

a joint representation for these independent streams. This multi-stream network is shown

in Figure 5.2. This multi-stream network is provided with full-length video (arranged as a

temporal sequence of 6-frame chunks), and the corresponding temporal sequence of out-

puts of the projection layer is then fed into an LSTM network running in two directions.

We use a fully-connected layer on top of the LSTM hidden state, followed by a softmax

layer, to obtain an intermediate score corresponding to each action. Finally, the scores for

each LSTM are averaged to get action-specific scores.

There are multiple components in an action detection pipeline that are critical for

achieving good performance. In this task, we need a model that captures both spatial and

long-term temporal information that are present in a video. Person tracks (bounding boxes)

70

provide a reference frame that make many actions easier to learn by removing location vari-

ation from the input representation. Some actions, however, are location dependent. For

scenes shot from a static camera such as the ones in our testing datasets; this means these

actions always happen at the same location in the image. For example, washing/rinsing

would be done near the sink, and opening a door would most likely be performed near a

refrigerator or a cupboard. For these reasons, we train two separate deep networks each

on pixel trajectories and image frames. The first network is trained on the entire frame to

preserve the global spatial context. The second network is trained on cropped boxes from

the tracker to reduce background noise and to provide a person-centric reference frame for

trajectories and image regions. To capture short-term temporal information, we use pixel

trajectories, in which each moving scene point is in positional correspondence with itself

across several frames. This alignment enables pixel trajectories to capture much richer

motion information than stacked optical flow fields. Since actions can be of any duration,

the method uses LSTMs to learn the duration and long-term temporal context of actions in

a data-driven fashion. Our results demonstrate that LSTMs are quite effective in learning

long-term temporal context for fine-grained action detection.

5.3.1 Tracking for Fine-Grained Action Detection

To provide a bounding box around the person for the location-independent image and

motion trajectory streams, any good person tracking algorithm could be used. In this pa-

per, we use a simple state-based tracker to spatially localize actions in a video. Keeping

the size of the tracked bounding box fixed, we update its position so that the magnitude

of flow inside the box is maximized. If the magnitude is below a threshold, the location

is not updated (when the person is not moving, the bounding box is stationary). Loca-

tion of the bounding box is updated only after a video chunk (6 frames) is processed and

71

Figure 5.2: Figure depicting the multi-stream network. We use two different streams of information
(motion and appearance) for each of two different spatial croppings (full-frame and person-centric)
to analyze short segments of video. One network (CNN-T) computes features on pixel level trajec-
tories, while the other one computes features on RGB channels.

72

Figure 5.3: The first row shows y-component of optical flow with respect to the center frame in a
small video chunk. Note that only the intensity of the images changes, while the spatial layout of the
image stays the same. Thus, only a single convolution layer in time is sufficient for learning motion
features for a pixel. The second row shows stacked optical flow, where correspondence between
pixels is lost. For e.g. the boundary of the head is not at the same grid line in the second row for all
frames.

flow/appearance features are computed relative to it. Such an approach can be effectively

applied whenever the camera is stationary and we have a reasonable estimate about the size

of the actor. This is a practical assumption for many videos taken at retail stores, individual

homes, or in a surveillance setting where fine grained action detection is likely to be used.

For more difficult tracking situations, a more sophisticated tracker would be needed.

5.3.2 Training of Flow Networks

Stacking optical flow as an input to the deep network has been a standard practice in the

literature to train motion based networks [94, 106, 107]. However, in stacked optical flow,

the motion vectors corresponding to a particular moving point in the scene (e.g., the tip of

a finger) change their pixel location from one frame to the next. Thus, the convolutional

neural network needs to learn the spatial movement of optical flow for classifying an action.

The complete motion information could be learned by this model at a higher layer, but that

73

would require more parameters and data to learn. An alternate representation for motion in

a sequence of frames is to compute flow from a central frame t to each of the K previous and

K subsequent frames. This representation, which we call pixel trajectories, is illustrated

and compared with stacked optical flow in Figure 5.3. In all 2K frames of a pixel trajectory,

the flow values from each point to the corresponding point in frame t are all located at the

point’s location in frame t. As shown in Figure 5.3, in pixel trajectories, only the intensity

of the optical flow image changes (its location is fixed). Thus, the network can learn a

temporal filter for each pixel more easily than from stacked flow fields.

Now, for each pixel in frame t, we have the complete motion information in a short

window of time. To learn motion patterns for each pixel, a 1×2K convolutional kernel can

produce a feature map for movement of each pixel. In contrast, a network layer that inputs

stacked optical flow (using, e.g., a 3×3×2K kernel on stacked optical flow) will not be

able to learn motion patterns for pixels that have a displacement of more than 3 pixels over

2K frames using the first convolutional layer. A similar method was mentioned in [94],

but there it yielded slightly worse performance than stacked optical flow, likely because it

was applied on unconstrained videos where trajectories are less reliable. For fine grained

action detection with a stationary camera, however, we demonstrate that pixel trajectories

perform better than stacked flow for both datasets (see Table 5.3).

5.3.3 Training on Long Sequences using Bi-Directional LSTM Network

We provide a brief background of Recurrent Neural Networks and Long Short-Term

Memory (LSTM) cells [38]. Given an input sequence, x = (x1, . . . ,xT) , a Recurrent Neural

Network (RNN) uses a hidden state representation h = (h1, . . . ,hT) so that it can map the

input x to the output sequence y = (y1, . . . ,yT). To compute this representation, it iterates

74

Figure 5.4: Structure of an LSTM cell [30]

Figure 5.5: Connections depicting architecture of a bi-directional LSTM [30].

75

through the following recurrence equations:

ht = g(Wxhxt +Whhht−1 +bh),yt = g(Whzht +bz)

where g is an activation function, Wxh is the weight matrix which maps the input to the

hidden state, Whh is the transition matrix between hidden states at two adjacent time steps,

Whz is a matrix which maps the hidden state h to the output y, and bh and bz are bias

terms. Unlike hidden Markov models (HMMs), which use discrete hidden state representa-

tions, recurrent neural networks use a continuous-space representation for the hidden states.

However, it is difficult to train RNNs to learn long-term sequence information, as training

is performed by unrolling the network using back-propagation through time. This leads to

either a vanishing or exploding gradients problem [38]. To avoid this problem, an LSTM

unit (illustrated in Figure 5.4) has a memory cell ct and a forget gate ft that helps it to learn

when to retain the previous state and when to forget it. This enables an LSTM network to

learn long-term temporal information. The weight update equations for an LSTM cell are

as follows:

it = σ(Wxixt +Whiht−1 +bi)

ft = σ(Wx f xt +Wh f ht−1 +b f)

ot = σ(Wxoxt +Whoht−1 +bo)

gt = tanh(Wxcxt +Whcht−1 +bc)

ct = ftct−1 + it gt

ht = ot tanh(ct)

where σ is a sigmoid function, tanh is the hyperbolic tangent function, and it , ft , ot , and

ct are the input gate, forget gate, output gate, and cell activation vectors respectively. The

76

Figure 5.6: Images for different actions in the Shopping Dataset. We show images corresponding
to different actions like, ‘retract from shelf’, ‘inspect a product’, ‘hand in shelf’, ‘inspect shelf’

forget gate ft decides when (and which) information should be cleared from the memory

cell ct . The input gate it decides when (and which) new information should be incorporated

into the memory. The tanh layer gt generates a candidate set of values which will be added

to the memory cell if the input gate allows it. Based on the output of the forget gate ft ,

input gate it , and the new candidate values gt , the memory cell ct is updated. The output

gate ot controls which information in the memory cell should be used as a representation

for the hidden state. Finally, the hidden state is represented as a product between a function

of the memory cell state and the output gate.

Recently, LSTM architectures for Recurrent Neural Networks have been successful for

tasks such as sentence generation from images [19], video to text [102], and in the speech

recognition community [30]. Bi-directional recurrent neural networks [90] can also capture

long temporal context from both past and future sequences. However, the performance of

LSTM networks is still close to fisher vector built over improved dense trajectories for tasks

like action recognition [19, 71]. In action recognition datatsets (e.g., UCF 101), video clips

are temporally trimmed to start and end precisely at the start and end times of each action,

and are generally short in length (e.g., from 2–20 seconds). Hence, in the action recognition

task, there is not enough long-term context to be learned in a data-driven fashion. This long-

term context could include properties such as the expected duration of an action, which

action follows or precedes an action, or even long-term motion patterns that extend beyond

77

action boundaries. In an action recognition setting, an LSTM network has little access to

the longer-term temporal context. However, in fine grained action detection, videos are

typically on the order of minutes or hours. Thus, LSTM networks are more suited towards

this task as they are designed to model long-term temporal dynamics in a sequence.

Bi-directional LSTM networks [31], illustrated in Figure 5.5, also integrate informa-

tion from the future as well as the past to make a prediction for each chunk in the video

sequence. Therefore, they are expected to be better at predicting the temporal boundaries

of an action as compared to a one-directional LSTM. In this work, the forward and back-

ward LSTM networks each give soft-max scores for each action class, and we average

these softmax predictions of the two LSTM networks to obtain the score for each action.

While training these networks on long sequences, back-propagation through time can only

be done up to a fixed number of steps, using a short sequence of chunks. To preserve long-

term context, we retain the hidden state of the last element in the previous sequence when

training on the subsequent sequence.

5.4 Results

5.4.1 Datasets

We evaluate our method on two datasets: the MPII Cooking 2 Dataset [87], and a

Shopping Dataset that we collected and are releasing to the community with the publication

of this paper. The MPII Cooking 2 Dataset consists of 273 video sequences that vary in

length from 40 seconds to 40 minutes, with a total of 2.8 million frames. The videos are

labeled with the start and end times of fine-grained actions from 67 action classes. Actions

such as “smell,” “screw open,” and “take out” may be as brief as one half of a second, while

other actions such as “grate,” “peel,” and “stir” can last as long as a few minutes. There is

also significant intra-class variation in the duration of an action.

78

Our new Shopping Dataset consists of 96 two-minute videos, shot by a static overhead

HD camera, of people shopping from grocery-store shelving units that we set up in a lab

space. There are 32 subjects, each of whom is in 3 videos collected on different days.

Videos are labeled with the start and end times of fine-grained actions from 5 different

action classes: “Reach to Shelf,” “Retract from Shelf,” “Hand in Shelf,” “Inspect Product,”

and “Inspect Shelf.” We divide this dataset into three partitions: 60 training videos, 9

validation videos, and 27 test videos. For each subject, all three videos of that subject are

in only one of the three partitions. Although the number of videos in this dataset is less

than in MPII Cooking 2, there are many action instances per video, so the number of frames

per action class is high (∼ 30,000). In this dataset also, the duration of an action ranges

from one-half of a second to on the order of a minute. We show examples of frames this

dataset in Figure 5.6. See the Supplementary Materials for sample video from the Shopping

Dataset.

5.4.2 Implementation Details

We sample each video at 15 frames per second. We then extract optical flow between

each frame (sampled every 6 frames) and its 6 neighboring frames (K = 3 each to the

left and right). This provides trajectories for each pixel. Epic flow is used to compute

optical flow [85], as it gives reliable flow even for large movements. We then use our

tracker to obtain bounding boxes for each video. Finally, all full size image frames and

cropped frames are re-sized to 256×256. Pixel trajectories are resized to 224×224. For

training of frame-based networks (the appearance stream), we fine-tune VGG net [95] using

Caffe [48]. For each 6-frame chunk of video, we use one image frame for the appearance

stream. We encode two sets of 6 optical flow fields (one stack each for x- and y-direction)

as pixel trajectories for the motion stream. While training flow networks, we change the

79

conv 1 filter to a 1×2K kernel, which only performs convolution in time. We project the

fc7 features of multi-stream networks using a fully connected layer to a 200 dimensional

vector. This 200 dimensional vector is given to two LSTM networks (one forward and one

backward in time) with 60 hidden units each. Finally, a softmax classifier is trained on each

LSTM’s hidden layer, and softmax predictions of both LSTM networks are averaged to get

the action scores for each class. While training LSTMs for detection, we use the entire

video sequence, so this also includes the background class. We use the same architecture

for both the datasets. Since the four networks that make up our multi-stream network

cannot all fit in GPU (Tesla K40) memory at once, we train each network independently.

To train the LSTM networks, we use the implementation provided in [19].

Since mean average precision (mAP) is the standard measure used to evaluate action

detection in past work, we need to produce a ranked list of action clips, along with a start

frame, an end frame, and a score associated with each clip. Mid-point hit criterion is used

to evaluate detection as done in [87]. This means that the mid-point of the detected interval

should lie within the ground-truth interval in the test video. If a second detection fires

within the same ground-truth interval, that second detection is considered a false positive.

To obtain segments for each action class, we start with an initial threshold. We apply this

threshold to the output score (average of the two LSTM softmax outputs) that was assigned

to each 6-frame chunk of video by our MSB-RNN network. We group the above-threshold

chunks into connected components, each of which represents one detection, which we refer

to as a clip (defined by its start and end time). This initial threshold will give us some

number of detections. If the number of detections is less than m for a class, we lower the

threshold until we get m unique clips. To get the next set of clips, we lower the threshold

until we get 2m unique clips. If a new action clip intersects with any clip in the previous set,

we discard the new clip. We keep on doubling the size of the next set until we obtain 2500

unique clips. In our experiments, m was set to 5. Each clip consists of some number of

80

consecutive 6-frame chunks of video, each of which is assigned an output score (average of

the two LSTM softmax outputs) by our MSB-RNN system. We assign a score to each clip

by max-pooling the output scores of all of the chunks in the clip. Since the validation set in

the MPII Cooking 2 Dataset does not contain every class in the validation set, we adopt this

method because it enables us to obtain a ranked list of detections without requiring us to

select detection thresholds for each action class. We use the same process on the Shopping

Dataset. Since labels are available at a per-frame level, we replicate the labels for a chunk

6 times, to get per-frame labels.

5.4.3 Experiments

In Table 5.1 we show that our MSB-RNN obtains an mAP of 41.2% on the MPII Cook-

ing 2 Dataset, outperforming the previous state-of-the-art’s mAP of 34.5%. Note that the

34.5% reported in [87] is a very strong baseline. Dense trajectories are still known to give

state-of-the-art performance in fine-grained action recognition and detection, and [87] uses

a combination of dense trajectories along with the additional hand-centric color-SIFT and

Hand-Trajectories features. Our implementation of the two-stream network [94] (just the

two full-frame streams, without our person-centric streams, and without the LSTMs) yields

an mAP of 30.18% on this dataset, which is only slightly better than the performance of

using improved dense trajectories alone.

Pixel Trajectories In Table 5.3, we compare the effectiveness of variations of the cropped-

frame (person-centric) appearance stream (“Frame”) and the motion stream (person-centric)

using pixel trajectories (“Trajectories”). We evaluate mAP for two versions of each net-

work: when the stream is followed by a unidirectional LSTM layer, and when the LSTM is

omitted and replaced by a softmax layer. Using pixel trajectories instead of stacked optical

flow improves performance both with and without LSTM, and on both the MPII Cooking

81

Method mAP
Hand-cSIFT [87] 10.5%

Hand-trajectories [87] 21.3%
Hand-cSIFT+Hand-trajectories [87] 26.0%

Dense Trajectories [87, 104] 29.5%
Two-Stream Network [94] 30.18%

DT+Hand-trajectories+cSIFT [87] 34.5%
MSB-RNN 41.2%

Table 5.1: Comparison of performance of our MSB-RNN system with previous action detection
methods on the MPII Cooking 2 dataset. Mean Average Precision (mAP) is reported.

2 (MPII 2) and Shopping (Shop) datasets, making pixel trajectories a clear winner over

stacked optical flow for this task. For all three types of streams on both datasets, the LSTM

layer produces a large improvement.

Action Two Stream MSN LSTM← LSTM→ BLSTM
Reach To Shelf 75.95% 80.8% 84.39% 84.86% 89.74%

Retract From Shelf 74.53% 77.71% 81.45% 84.61% 90.47%
Hand In Shelf 52.48% 54.13% 59.69% 68.73% 65.56%

Inspect Product 67.56% 75.68% 79.29% 78.6% 82.7%
Inspect Shelf 55.52% 57.09% 70.57% 70.31% 73.09%

Mean 65.21% 69.08% 75.08% 77.42% 80.31%

Table 5.2: Results for each action class with different network configurations on the Shopping
Dataset.

Multi-Stream Network

In table 5.4 we compare the performance of our Multi-Stream network (using both full-

frame and person-centric bounding boxes) with that of a two-stream network (full-frame

only). Including a person-centric reference frame yields improved performance on both

datasets. We report results for indivisual actions for the Shopping dataset in Table 5.2.

LSTM

Tables 5.4 and 5.2 also compare the perfomance of our Multi-Stream network fol-

lowed by a forward uni-directional LSTM, a backward uni-directional LSTM, and the bi-

directional LSTM (which is our complete MSB-RNN system). Each of the uni-directional

82

Method MPI MPIlstm Shop Shoplstm
Stacked OF 21.31% 27.36% 55.29% 71.70%
Trajectories 22.35% 29.51% 57.88% 73.06%

Frame 24.72% 28.77% 40.02% 63.26%

Table 5.3: Evaluating individual components of our MSB-RNN system. Mean average Precision
(mAP) is reported. For both datasets, MPII Cooking 2 and Shopping dataset, pixel trajectories
outperform stacked flow (both with and without a subsequent LSTM layer). For all three stream
types and both datasets, incorporating the LSTM layer greatly improves performance.

Method MPII 2 Shop
Two-Stream [94] 30.18% 65.29%

Multi-Stream 33.38% 69.27%
Multi-Stream LSTM→ 38.03% 77.24%
Multi-Stream LSTM← 37.43% 75.08%

MSB-RNN 41.22% 80.31%

Table 5.4: Performance comparison of multi-stream vs. two-stream network. Performance when
Multi-stream network is followed by each uni-directional LSTM or by their bi-directional combi-
nation (MSB-RNN). mAP is reported.

LSTMs provides a significant boost, and including bi-directional LSTMs (MSB-RNN)

yields a substantial improvement, because it provides more temporal context than a uni-

directional LSTM. The results in these tables and Table 5.3 clearly show that the LSTM

layer is the most important factor contributing to our system’s improved performance over

previous methods.

These observations led us to explore in more detail why using an LSTM layer improves

performance by such a large margin. We conducted two experiments to analyze the contri-

butions of LSTM layer to our system.

How much memory does an LSTM have?

In the first experiment, we keep the model fixed and analyze how long does an LSTM

remember. For this experiment, we clear the memory of the LSTM network at different

time steps using a continuation sequence indicator. A continuation sequence indicator is 0

at the beginning of a sequence and 1 otherwise. Thus, we can set every kth indicator to 0

83

0 5 10 15
55

60

65

70

75

LSTM Memory

m
A

P

0 2 4 6 8
40

45

50

55

60

65

LSTM Memory

m
A

P

Figure 5.7: Average Precision (AP) for frame and trajectory network with restricted memory is
plotted at inference for the Shopping Dataset. We observe that the LSTM network can remember
as long as previous 10 sequences for making a prediction. The left plot corresponds to the flow
network and the right one to the frame network

for clearing the memory, if we are interested in an LSTM which remembers history from

the past k elements in the sequence. However, this would abruptly reduce the memory of

the element at the beginning of the sequence to zero. To avoid this problem, we generate

k different continuation indicator sequences, shifted by one element, if we want to limit

the memory of the LSTM network to k time steps. Thus, when a prediction is made for an

element, we would chose the output from the sequence whose continuation indicator was

set to 0, k time steps before. In Fig. 5.7 we plot the mAP when LSTM is used on top of

frame or flow features on the Shopping Dataset. We observe that performance increases as

we reduce the artificially imposed memory limit for LSTM. It is quite encouraging that the

LSTM network can remember as far as 10 elements in a sequence. Thus, a bi-directional

LSTM would look at 20 elements in a sequence while making a prediction for an element

in the sequence. In the context of a video, where each chunk going into an LSTM com-

prises 6 frames of a video (sampled at 15 frames per second), this sequence length would

correspond to 8 seconds. Thus, the bi-directional LSTM improves action detection perfor-

mance by a large margin, by incorporating information from about 8 seconds of temporal

84

context. Many actions last less than 8 seconds, and actions that last longer than that are

likely to have a recurring pattern that can be captured in 8 seconds.

Learning Transitions between actions

The first experiment (above) demonstrated that an LSTM can remember long-term tem-

poral information. In the second experiment, we explore whether the LSTM can also learn

information in the transitions between different actions in a video sequence. Recent works

train an LSTM network on trimmed video sequences [19, 71]. Thus, they would not learn

long-term context that extends beyond the start or end of an action. Therefore, we con-

ducted our second experiment, in which the continuation indicators are set to 0 (while

training only) whenever an action starts or ends. This simulates training on trimmed video

sequences, instead of a continuous video sequence that includes many actions. We ob-

serve that training on trimmed clips drops the performance from 77.24% to 75.51% on the

Shopping Dataset and from 38.03% to 36.22% on the MPII Cooking 2 dataset (for single

direction LSTM). This confirms our hypothesis that training networks on long video se-

quences is beneficial as compared to training on temporally clipped videos of individual

actions.

5.5 Conclusion

In this chapter, we showed that using a multi-stream network which augments features

inside a bounding-box surrounding the actor is useful in fine-grained detection. When pixel

trajectories are reliable, they give better results compared to stacked-optical flow as they

have correspondence. To capture long term temporal dynamics within and between actions,

a bi-directional LSTM was found to be very effective. We also provided an analysis of how

long an LSTM network can remember information in the action detection scenario. Finally,

our results represent a significant step forward in accuracy on a difficult publicly available

85

dataset (MPII Cooking 2) as well as on a new dataset that we are releasing.

86

Chapter 6: Conclusion and Future Directions

This thesis highlighted important bottlenecks in convolutional neural network based

visual recognition algorithms and proposed effective solutions to alleviate them. This was

done by effective use of image pyramids, reformulating the object detection problem and

the use of alternate architectures to model long range spatial and temporal dependencies.

Going forward, I believe more fundamental and radically different approaches are needed

to obtain a quantum leap in performance. This could be achieved by rethinking the opti-

mization of deep neural networks, as back-propagation often leads us to a local minima. As

of today, pre-training is essential to obtain good performance on visual recognition tasks,

and training on less data leads us to a local minima. My belief is that a deep representation

is important but the amount of data required to learn that deep representation need not be

in the order of millions of images. The power of deep learning lies in its cascade and if we

can efficiently search through the weight space through alternate optimization techniques,

it could transform the shape of artificial intelligence in the coming decade.

87

Bibliography

[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the objectness of
image windows. IEEE transactions on pattern analysis and machine intelligence,
34(11):2189–2202, 2012.

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour de-
tection and hierarchical image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 33(5):898–916, 2011.

[3] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Sequential deep learning for human action recognition. In Human Behavior
Understanding, pages 29–39. Springer, 2011.

[4] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Girshick. Inside-outside net:
Detecting objects in context with skip pooling and recurrent neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2874–2883, 2016.

[5] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-nms –
improving object detection with one line of code. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017.

[6] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-
scale deep convolutional neural network for fast object detection. In European Con-
ference on Computer Vision, pages 354–370. Springer, 2016.

[7] John Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, (6):679–698, 1986.

[8] Joao Carreira and Cristian Sminchisescu. Constrained parametric min-cuts for au-
tomatic object segmentation. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3241–3248. IEEE, 2010.

88

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2018.

[10] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng.
Dual path networks. In Advances in Neural Information Processing Systems, pages
4470–4478, 2017.

[11] François Chollet. Xception: Deep learning with depthwise separable convolutions.
CVPR, 2017.

[12] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-
driven attention in the brain. Nature reviews neuroscience, 3(3):201, 2002.

[13] Ross Cutler and Larry S Davis. Robust real-time periodic motion detection, analysis,
and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
22(8):781–796, 2000.

[14] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-
based fully convolutional networks. In Advances in neural information processing
systems, pages 379–387, 2016.

[15] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. Deformable convolutional networks. ICCV, 2017.

[16] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio,
Yuan Li, Hartmut Neven, and Hartwig Adam. Large-scale object classification using
label relation graphs. In European Conference on Computer Vision, pages 48–64.
Springer, 2014.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[18] Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, and Luc Van Gool.
Weakly supervised cascaded convolutional networks. arXiv preprint
arXiv:1611.08258, 2016.

[19] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. arXiv preprint
arXiv:1411.4389, 2014.

[20] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network for
skeleton based action recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1110–1118, 2015.

89

[21] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal
of computer vision, 88(2):303–338, 2010.

[22] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and
track to detect. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3038–3046, 2017.

[23] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE transactions
on pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[24] Spyros Gidaris and Nikos Komodakis. Object detection via a multi-region and se-
mantic segmentation-aware cnn model. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

[25] Spyros Gidaris and Nikos Komodakis. Locnet: Improving localization accuracy for
object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 789–798, 2016.

[26] Ross Girshick. Fast r-cnn. ICCV, 2015.

[27] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 580–587,
2014.

[28] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 759–768,
2015.

[29] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. Maxout networks. ICML, 2013.

[30] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 6645–6649. IEEE, 2013.

[31] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional lstm net-
works for improved phoneme classification and recognition. In Artificial Neural
Networks: Formal Models and Their Applications–ICANN 2005, pages 799–804.
Springer, 2005.

[32] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. ICCV,
2017.

90

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In European Conference on
Computer Vision, pages 346–361. Springer, 2014.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European Conference on Computer Vision, pages 630–
645. Springer, 2016.

[36] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[37] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[39] Judy Hoffman, Sergio Guadarrama, Eric S Tzeng, Ronghang Hu, Jeff Donahue,
Ross Girshick, Trevor Darrell, and Kate Saenko. Lsda: Large scale detection through
adaptation. In Advances in Neural Information Processing Systems, pages 3536–
3544, 2014.

[40] Judy Hoffman, Deepak Pathak, Eric Tzeng, Jonathan Long, Sergio Guadarrama,
Trevor Darrell, and Kate Saenko. Large scale visual recognition through adaptation
using joint representation and multiple instance learning. The Journal of Machine
Learning Research, 17(1):4954–4984, 2016.

[41] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 2017.

[42] Peiyun Hu and Deva Ramanan. Finding tiny faces. CVPR, 2016.

[43] Yuxiao Hu, Liangliang Cao, Fengjun Lv, Shuicheng Yan, Yihong Gong, and
Thomas S Huang. Action detection in complex scenes with spatial and temporal
ambiguities. In Computer Vision, 2009 IEEE 12th International Conference on,
pages 128–135. IEEE, 2009.

[44] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
Speed/accuracy trade-offs for modern convolutional object detectors. CVPR, 2016.

91

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. ICML, 2015.

[46] Abhishek Jain, Arpan Gupta, Mikel Rodriguez, and Larry S Davis. Representing
videos using mid-level discriminative patches. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pages 2571–2578. IEEE, 2013.

[47] Manan Jain, Jan Van Gemert, Hervé Jégou, Patrick Bouthemy, and Cees GM Snoek.
Action localization with tubelets from motion. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages 740–747. IEEE, 2014.

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[49] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami Abu-El-Haija,
Alina Kuznetsova, Hassan Rom, Jasper Uijlings, Stefan Popov, Shahab Kamali,
Matteo Malloci, Jordi Pont-Tuset, Andreas Veit, Serge Belongie, Victor Gomes,
Abhinav Gupta, Chen Sun, Gal Chechik, David Cai, Zheyun Feng, Dhyanesh
Narayanan, and Kevin Murphy. Openimages: A public dataset for large-
scale multi-label and multi-class image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html, 2017.

[50] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[52] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering
the syntax and semantics of goal-directed human activities. In Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 780–787. IEEE,
2014.

[53] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In Computer vi-
sion and pattern recognition, 2006 IEEE computer society conference on, volume 2,
pages 2169–2178. IEEE, 2006.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

92

[55] Jianan Li, Xiaodan Liang, ShengMei Shen, Tingfa Xu, Jiashi Feng, and
Shuicheng Yan. Scale-aware fast r-cnn for pedestrian detection. arXiv preprint
arXiv:1510.08160, 2015.

[56] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional
instance-aware semantic segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[57] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. CVPR, 2016.

[58] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In CVPR, volume 1,
page 4, 2017.

[59] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

[60] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014.

[61] Tony Lindeberg. Scale-space theory in computer vision, 1993.

[62] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation. CVPR, 2018.

[63] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[64] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[65] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the ef-
fective receptive field in deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 4898–4906, 2016.

[66] Bill MacCartney and Christopher D Manning. An extended model of natural logic.
In Proceedings of the eighth international conference on computational semantics,
pages 140–156. Association for Computational Linguistics, 2009.

[67] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. In Advances in Neural Information Processing Systems, pages 2204–2212,
2014.

93

[68] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee,
Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detec-
tion and semantic segmentation in the wild. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 891–898, 2014.

[69] Mahyar Najibi, Pouya Samangouei, Rama Chellappa, and Larry Davis. SSH: Single
stage headless face detector. In Proceedings of the International Conference on
Computer Vision (ICCV), 2017.

[70] Sharan Narang, Gregory Diamos, Erich Elsen, Paulius Micikevicius, Jonah Al-
ben, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. Mixed precision training. ICLR, 2018.

[71] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep networks
for video classification. arXiv preprint arXiv:1503.08909, 2015.

[72] Bingbing Ni, Vignesh R Paramathayalan, and Philippe Moulin. Multiple granularity
analysis for fine-grained action detection. In Computer Vision and Pattern Recogni-
tion (CVPR), 2014 IEEE Conference on, pages 756–763. IEEE, 2014.

[73] David Novotny, Diane Larlus, and Andrea Vedaldi. I have seen enough: Transferring
parts across categories. 2016.

[74] Patrick Ott and Mark Everingham. Shared parts for deformable part-based models.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 1513–1520. IEEE, 2011.

[75] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu,
and Jian Sun. Megdet: A large mini-batch object detector. CVPR, 2018.

[76] Xiaojiang Peng, Limin Wang, Xingxing Wang, and Yu Qiao. Bag of visual words
and fusion methods for action recognition: Comprehensive study and good practice.
arXiv preprint arXiv:1405.4506, 2014.

[77] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on pattern analysis and machine intelligence,
12(7):629–639, 1990.

[78] Pedro O Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to
refine object segments. In European Conference on Computer Vision, pages 75–91.
Springer, 2016.

[79] Hamed Pirsiavash and Deva Ramanan. Parsing videos of actions with segmental
grammars. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-
ference on, pages 612–619. IEEE, 2014.

94

[80] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[81] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[82] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[83] Shaoqing Ren, Kaiming He, Ross Girshick, Xiangyu Zhang, and Jian Sun. Object
detection networks on convolutional feature maps. IEEE transactions on pattern
analysis and machine intelligence, 39(7):1476–1481, 2017.

[84] Ronald A Rensink. The dynamic representation of scenes. Visual cognition, 7(1-
3):17–42, 2000.

[85] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid.
Epicflow: Edge-preserving interpolation of correspondences for optical flow. arXiv
preprint arXiv:1501.02565, 2015.

[86] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele. A
database for fine grained activity detection of cooking activities. In Computer Vi-
sion and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1194–1201.
IEEE, 2012.

[87] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri, Sikandar Amin, Mykhaylo
Andriluka, Manfred Pinkal, and Bernt Schiele. Recognizing fine-grained and
composite activities using hand-centric features and script data. arXiv preprint
arXiv:1502.06648, 2015.

[88] Ruslan Salakhutdinov, Antonio Torralba, and Josh Tenenbaum. Learning to share
visual appearance for multiclass object detection. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 1481–1488. IEEE, 2011.

[89] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation. arXiv preprint arXiv:1801.04381, 2018.

[90] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

[91] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using con-
volutional networks. arXiv preprint arXiv:1312.6229, 2013.

95

[92] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based
object detectors with online hard example mining. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 761–769, 2016.

[93] Abhinav Shrivastava, Rahul Sukthankar, Jitendra Malik, and Abhinav Gupta. Be-
yond skip connections: Top-down modulation for object detection. arXiv preprint
arXiv:1612.06851, 2016.

[94] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in Neural Information Processing Systems,
pages 568–576, 2014.

[95] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[96] Bharat Singh and Larry S Davis. An analysis of scale invariance in object detection-
snip. CVPR, 2018.

[97] Yuxing Tang, Josiah Wang, Boyang Gao, Emmanuel Dellandréa, Robert Gaizauskas,
and Liming Chen. Large scale semi-supervised object detection using visual and
semantic knowledge transfer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2119–2128, 2016.

[98] Yicong Tian, Rahul Sukthankar, and Mubarak Shah. Spatiotemporal deformable part
models for action detection. In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 2642–2649. IEEE, 2013.

[99] Antonio Torralba, Kevin P Murphy, and William T Freeman. Sharing features: ef-
ficient boosting procedures for multiclass object detection. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, volume 2, pages II–II. IEEE, 2004.

[100] Jasper Uijlings, Stefan Popov, and Vittorio Ferrari. Revisiting knowledge transfer
for training object class detectors. arXiv preprint arXiv:1708.06128, 2017.

[101] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer
vision, 104(2):154–171, 2013.

[102] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond
Mooney, and Kate Saenko. Translating videos to natural language using deep recur-
rent neural networks. arXiv preprint arXiv:1412.4729, 2014.

[103] Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedestrians using patterns
of motion and appearance. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 734–741. IEEE, 2003.

96

[104] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajec-
tories and motion boundary descriptors for action recognition. International journal
of computer vision, 103(1):60–79, 2013.

[105] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories.
In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 3551–
3558. IEEE, 2013.

[106] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled
deep-convolutional descriptors. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4305–4314, 2015.

[107] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards good practices for
very deep two-stream convnets. arXiv preprint arXiv:1507.02159, 2015.

[108] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Learning to track for
spatio-temporal action localization. arXiv preprint arXiv:1506.01929, 2015.

[109] Andrew Witkin. Scale-space filtering: A new approach to multi-scale description.
In Acoustics, Speech, and Signal Processing, IEEE International Conference on
ICASSP’84., volume 9, pages 150–153. IEEE, 1984.

[110] Yuxin Wu and Kaiming He. Group normalization. arXiv:1803.08494, 2018.

[111] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE, 2017.

[112] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. arXiv preprint arXiv:1502.03044, 2015.

[113] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the layers: Fast and accurate
cnn object detector with scale dependent pooling and cascaded rejection classifiers.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2129–2137, 2016.

[114] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:1511.07122, 2015.

[115] Gang Yu and Junsong Yuan. Fast action proposals for human action detection and
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1302–1311, 2015.

[116] Junsong Yuan, Zicheng Liu, and Ying Wu. Discriminative subvolume search for
efficient action detection. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 2442–2449. IEEE, 2009.

97

[117] Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro O Pinheiro, Sam Gross,
Soumith Chintala, and Piotr Dollár. A multipath network for object detection. arXiv
preprint arXiv:1604.02135, 2016.

[118] Xingyu Zeng, Wanli Ouyang, Junjie Yan, Hongsheng Li, Tong Xiao, Kun Wang,
Yu Liu, Yucong Zhou, Bin Yang, Zhe Wang, et al. Crafting gbd-net for object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

[119] Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. Ppr-fcn: Weakly
supervised visual relation detection via parallel pairwise r-fcn. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4233–4241,
2017.

[120] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyra-
mid scene parsing network. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 2881–2890, 2017.

[121] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from
edges. In European Conference on Computer Vision, pages 391–405. Springer, 2014.

98

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	An Analysis of Scale Invariance in Object Detection - SNIP
	Introduction
	Related Work
	Image Classification at Multiple Scales
	Background
	Data Variation or Correct Scale?
	Object Detection on an Image Pyramid
	Scale Normalization for Image Pyramids
	Sampling Sub-Images

	Datasets and Evaluation
	Training Details
	Improving RPN
	Experiments

	Conclusion

	SNIPER: Efficient Multi-Scale Training
	Introduction
	Background
	SNIPER
	Chip Generation
	Positive Chip Selection
	Negative Chip Selection
	Label Assignment
	Benefits

	Experimental Details
	Recall Analysis
	Negative Chip Mining and Scale
	Timing
	Inference
	Comparison with State-of-the-art

	Related Work
	Conclusion and Future Work

	R-FCN-3000 at 30fps: Decoupling Detection and Classification
	Introduction
	Related Work
	Background
	Large Scale Fully-Convolutional Detector
	Weakly Supervised vs. Supervised?
	Super-class Discovery
	Architecture
	Label Assignment
	Loss Function

	Experiments
	Training Data
	Implementation Details
	Comparison with Weakly Supervised Detectors
	Speed and Performance

	Discussion
	Impact of Number of Classes and Clusters
	Are Position-Sensitive Filters Per Class Necessary?
	Generalization of Objectness on Unseen Classes

	Conclusion

	A Multi-Stream Bi-Directional Recurrent Neural Network for Fine-Grained Action Detection
	Introduction
	Related Work
	Approach
	Tracking for Fine-Grained Action Detection
	Training of Flow Networks
	Training on Long Sequences using Bi-Directional LSTM Network

	Results
	Datasets
	Implementation Details
	Experiments

	Conclusion

	Conclusion and Future Directions
	Bibliography

