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Chapter 1: Summary of results

The work in this thesis comes from a large array of data science topics including

dimensionality reduction, wavelet decomposition, deoxyribonucleic acid (DNA) data

classification, and magnetization signal analysis from magnetic resonance imaging

(MRI). In Chapter 2, we developed a novel approach to non-linear dimensionality

reduction as a generalization of the Laplacian eigenmaps algorithm by fusing to-

gether the spectral information with a subset of the ground truth. In Section 2.5,

we provide a series of computational experiment to emphasize the differences and

similarities of our algorithm, i.e., transport by advection, to similar algorithm such

as Laplacian eigenmaps and Schroedinger eigenmaps. A controlled sample set ex-

periment is done in Section 2.6 to show the strength of the transport algorithm in

representing data set. In Section 2.7, we apply our algorithm to well-known hyper-

spectral images, and compare our results to other well-known dimension reduction

algorithms.

Chapter 3 describes a wavelet decomposition based on the Haar function in

the space Lp(Rd), where 0 < p < 1 and d = 1, 2. Given a function f in Lp(Rd) with

compact support, we were able to construct a Haar approximation of the function f

from within, meaning the Haar wavelet approximants have support contained in the
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support of f which was achieved in two steps. In Section 3.3, we consider functions

f with symmetric support around the origin such that the endpoints are integer

powers of 2, the formalism of this result is found in Theorems 3.3.3, and 3.3.15. In

Section 3.4, we consider functions f with arbitrary compact supports, the formalism

of this result is found in Theorems 3.4.4, and 3.4.10.

In Chapter 4, we were concerned with the design of an optimal binary clas-

sifier for deoxyribonucleic acid (DNA) data. The data set consists of two kind of

DNA enhancers, singletons and multitons. Sections 4.2, 4.3, 4.4, and 4.5 describe

the data set and provide insights leading the optimal classifier we chose. In Sec-

tion 4.6, we apply our classifier on a sample data set from cardiac tissues, we also

provide validation for the optimal characteristics of our classifier. Chapter 5 extents

the analysis of the T2-store-T2 magnetic resonance relaxometry experiment to N ex-

changing sites. A solution to the system of coupled differential equations governing

the relaxation of the magnetization at the sites is derived using ordinary differential

equation techniques described in Section 5.3. Further results and analysis obtained

from the aforementioned solution are given in Section 5.4.
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Chapter 2: Transport operator on graph

2.1 Introduction

The work in this chapter is in collaboration with Professor Wojciech Czaja

and Professor Pierre-Emmanuel Jabin.

Dimensionality reduction (DR) has been at the core of many data science

applications for more than a century. The goal of DR is to reduce the dimension of

a data set while preserving the most important information of that data set. One

of the most famous DR algorithms is PCA (Principal Components Analysis) which

can be traced back to the 1901 method performed by Pearson [78]. However, due to

the linear nature of PCA, the method falls short in capturing the intrinsic structure

of the data when a non-linear relationship governs the underlying structure within

the data. Since then, the complex, non-linear, and growing amount of data have led

scientists to come up with new techniques. A few well-known techniques are: kernel

PCA [87], Isomap [98], (LLE) locally linear embedding [84], and (LE) Laplacian

eigenmaps [5]. Today, the use of DR techniques vary based on applications from the

classification of hyperspectral images [12,14,26,93,94,102–104] to the prediction of

stock market prices [105] and more [34,41,44].

The aforementioned non-linear DR methods lead to applications of linear op-
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erators, e.g., the Laplacian. In this present study, we have developed a more general

approach that constructs non-linear DR algorithms based on non-linear operators,

such as appropriately chosen transport models. Recently, Gerber and Maggioni [38]

sought to find the optimal transport method between two point sets based on an

adaptive multiscale decomposition, which itself is derived from diffusion wavelets

and diffusion maps. A different approach to the question of combining transport

and efficient data representation is proposed by Benamou et al. [7,8], and by Nichols

et al. [72]. In our work, we focus on the transport by advection, the active trans-

portation of a distribution by a flow field [13, 48, 100], because of its well-studied

properties as well as its partial similarity to Schroedinger Eigenmaps method of

Czaja and Ehler [20]. The transport model has not been used in the literature

as a tool for building a DR algorithm. Nevertheless, some related work can be

found in the fields of water resource management and in bio-medical research [43],

where Hansen and Shadden use DR to construct simplified transport models for

cardiovascular flow.

The dynamic aspect of the transport by advection will additionally lead to

applications in the field of clustering since it draws some parallels to the well-known

diffusion maps algorithm [18]. Some recent work in this direction includes work

by Yuan Li et al. [61], and Murphy and Maggioni [71]. At its core, our work

will focus on exploring and exploiting the differences and similarities of this novel

approach to the state-of-the-art dimensionality reduction and clustering algorithms

found in the literature. The algorithm for our approach is given in Section 2.5. We

provide an application of our algorithm for clustering and subsequent classification
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of hyperspectral image data in Section 2.7.

2.2 Background

In many data science applications, it is known that high dimensional data

intrinsically lie on a low dimensional manifold within the high dimensional space.

Our method builds on the foundation of the Laplacian eigenmaps (LE) algorithm

of Belkin and Niyogi [5] which is based on that preface. In this section, we provide

a description of their algorithm for thorough explanation. Then, we review the

Schroedinger eigenmaps (SE) algorithm and its connection to our method.

2.2.1 Laplacian eigenmaps

2.2.1.1 The optimal solution

Given a set of n points X = {x1,x2, . . . ,xn} in R
d, the goal is to find an

optimal embedding for these points in a lower m-dimensional space where m � d,

while preserving local information. To achieve this goal, a weighted adjacency graph

G, with weight wij and edges connecting nearby points, xi and xj, is constructed. In

case of m = 1, the problem is reduced to finding a map from the weighted graph to a

line, so that points that are connected stay as close as possible in the mapped space.

Let y = (y1, y2, . . . , yn)T be such a map, whereas mathematically, this corresponds

to choosing yi to minimize the following objective

∑
i,j

(yi − yj)2wij,
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under the constraints

yTDy = 1.

In the aforementioned optimization problem, the constraints serve to remove any

arbitrary scaling factor in the embedding, and D is a diagonal matrix with entries

dii =
∑

iwij. With the appropriate choice of weights wij, the objective function

assigns a heavy penalty if the connected points xi and xj are mapped far apart.

Therefore, minimizing the objective ensures that adjacent points remain close to-

gether after the mapping.

Note that for any y, and given that the weight matrix W = [wij] is symmetric,

we have

1

2

∑
i,j

(yi − yj)2wij = yTLy,

where, L = D −W , denoted as the graph Laplacian. The minimization problem is

reduced to finding

arg min
y

yTLy such that, yTDy = 1.

Since L is positive semidefinite, the vector y that minimizes the objective function

is given by the minimum eigenvalue solution to the generalized eigenvalue problem

Ly = λDy.

Note that to eliminate the trivial solution 1, with corresponding eigenvalue 0, ad-

ditional constraints are added to the minimization, yTD1 = 0. Thus the optimal

solution is now given by the eigenvector corresponding to the smallest non-zero

eigenvalue. In general, if m > 1, the embedding is given by the n × m matrix
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Y = [y1,y2, . . . ,ym], where the ith row corresponds to the embedded coordinates of

the ith points xi. In this case the objective to the minimization problem is written

as

∑
i,j

‖y(i) − y(j)‖2wij = tr (YTLY), (2.1)

where y(i) = [y1(i), . . . ,ym(i)]T is the m-dimensional representation of the ith point

xi. This reduce to finding

arg min
Y

tr (YTLY) such that, YTDY = I.

Thus the optimal solution is given by the eigenvectors corresponding to the m small-

est non-zero eigenvalues to the generalized eigenvalue problem.

2.2.1.2 The adjacency graph

Given a set of n points X = {x1,x2, . . . ,xn} in R
d, the adjacency graph is

constructed by putting an edge between two points given that they are close enough

in proximity. Proximity is defined in two ways, both based on the Euclidian dis-

tance. The first option is to connect two points if the Euclidian distance between

them is less than a pre-defined fixed parameter ε. This method is known as the

ε-neighborhoods, it is geometrically motivated and has the advantage of a natu-

rally symmetric relationship. Nevertheless, this method often leads to disconnected

graphs. An alternative method known as the k-nearest neighbors, constructs the

graph by putting an edge between each point xi and its k nearest neighbors accord-

ing to the Euclidian distance. Despite the less geometrically intuitive aspect of the

7



k-nearest neighbors, it is a simpler method and allows us to have more control over

the degree of connectivity within our graph. Moreover, it tends to lead to connected

graphs, for these reasons, we will be adopting this method in our work.

2.2.1.3 The heat kernel and the weight matrix

After the construction of the adjacency graph, G, the weight matrix is con-

structed by adding weights on the connecting edges in G. A popular choice for the

weights is based on the heat kernel, if two points xi and xj are connected,

wij = exp

(
−‖xi − xj‖2

2σ2

)
;

otherwise, wij = 0. The parameter, σ, allows for control over the spread of infor-

mation in the graph. A simpler alternative to the heat kernel consists of setting

wij = 1 if the points xi and xj are connected, and setting wij = 0 if they are not.

We note, however, that this is an extreme case of the heat kernel when the param-

eter σ = ∞, this simpler choice essentially gives equal importance to the all the

connected neighbors. With the assumption that the points in X lie on a low dimen-

sional manifold within the high dimensional space, Belkin and Niyogi justify the use

of the heat kernel as a valid choice for assigning the weights by showing the relation

between the graph Laplacian and the Laplace Beltrami operator on manifold, and

later demonstrating that the Laplace Beltrami operator on differentiable functions

on a manifold is closely related to the heat flow. For a complete discussion on the

connection between the heat flow and the Laplace Beltrami operator on manifolds,

refer to the original paper [5].
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2.2.1.4 Algorithm

Given a set of n points X = {x1,x2, . . . ,xn} in Rd, under the assumption that

the points lie on a m-dimensional manifold where m � d, the goal is to find a set

of n points Y = {y1,y2, . . . ,yn} in R
m where yi represents xi for all i from 1 to n.

The LE algorithm we will be using in our work involves the following steps:

• Step 1: Construct the adjacency graph using the k-nearest neighbor (kNN)

algorithm. This is done by putting an edge connecting nodes i and j given

that xi is among the k nearest neighbors of xj according to the Euclidean

metric.

• Step 2: Define a graph Laplacian, L, using the weight matrix, W . The

weights in W are chosen using the heat kernel with parameter σ. If nodes i

and j are connected,

wij = exp

(
−‖xi − xj‖2

2σ2

)
;

otherwise, wij = 0. The graph Laplacian is given by

L = D −W,

where D is a diagonal matrix with entries dii =
∑

iwij.

• Step 3: Find the m-dimensional mapping by solving the generalized eigen-

vector problem,

Lf = λDf , (2.2)
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where f is a vector in R
n and λ is a real number. Let {f0, f1, . . . , fn−1} be the

solution set to (2.2) written in ascending order according to their eigenvalues.

The m-dimensional Euclidean space mapping is given by

xi → [f1(i), f2(i), . . . , fm(i)].

Due to the preservation of the local geometric structure of the manifold, this

algorithm is not only useful for dimensionality reduction, but for clustering as well.

One very popular example show casing the strength of the algorithm comes from the

embedding of a data set laying on the “swiss roll” from 3-dimension to 2-dimension

shown in Figure 2.1. The reason why this is such an important example is because

well-known classical linear dimensionality reduction algorithms such as PCA (princi-

pal component analysis) or MDS (multidimensional scaling) have failed to represent

the data accurately.

Figure 2.1: The leftmost plot represents a set of 2000 3-dimensional points sitting on a swiss

roll; the middle plot represents the embedding in 2-dimension using principal component analysis

(PCA); and the rightmost plot represents the same embedding using Laplacian eigenmaps (LE)

with k = 12 (number of neighbors per node) and σ = 1.
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2.2.2 Schroedinger eigenmaps

Czaja and Ehler [20] proposed the Schroedinger eigenmaps (SE) algorithm as

a generalization to the LE algorithm. The goal in SE is similar to LE when no

additional information is known about the ground truth of the data set. However,

if partial knowledge about the data set is available, SE describes an efficient way

to fuse this information into the LE algorithm to obtain better representation or

more desirable results, addition work related to data fusion can be found in the

following papers [11, 17, 27]. The extra information added into the LE algorithm

is where the generalities comes from, in this way SE can be thought of as a semi-

supervised DR algorithm. A physical motivation for SE is that partially labeled

data sets lead to the notion of barrier potential which affect the diffusion processes

on graph. By carefully choosing the location of the barrier potential, Czaja and

Ehler are able to direct the diffusion process in order to identify the correct cluster

containing the labels. There are various ways of encoding the extra information into

the SE algorithm; in this study we consider barrier potentials defined as nonnegative

diagonal matrix.

Similar to (2.1), the minimization problem for SE can be formulated as

min
Y

tr (YT (L+ αV )Y) such that, YTDY = I, (2.3)

where V is a potential matrix and the parameter α is added emphasize the trade-off

between the potential matrix and the Laplacian matrix. The minimization problem

11



(2.3) is equivalent to

min
YTDY=I

1

2

∑
i,j

‖y(i) − y(j)‖2wij + α
∑
i

V (i)‖y(i)‖2, (2.4)

where V is the diagonal matrix with entries V (1) through V (n). As before, the first

component of sum ensures that adjacent points remain close after the mapping. The

second component of the sum add an extra level of clustering on the representation

y(i) which are associated with large value of V (i). For instance, if V took the values

1 and 0 only, then the optimization problem (2.4) would yield a solution which forces

increased clustering of the representations y(i) of points associated with the value

V (i) = 1. Note that even with the absence of extra information, we could use this

potential to label points we which to represent together after the mapping.

Given a set of n points X = {x1,x2, . . . ,xn} in R
d and a function µ,

µ : X → R,

containing the extra information over the set of points X, the SE algorithm we will

be using in our work involves the following steps:

• Step 1: Construct the adjacency graph using the k-nearest neighbor (kNN)

algorithm. This is done by putting an edge connecting nodes i and j given

that xi is among the k nearest neighbors of xj according to the Euclidean

metric.

• Step 2: Define a graph Laplacian, L, using the weight matrix, W . The

weights in W are chosen using the heat kernel with parameter σ. If nodes i

12



and j are connected,

wij = exp

(
−‖xi − xj‖2

2σ2

)
;

otherwise, wij = 0. The graph Laplacian is given by

L = D −W,

where D is a diagonal matrix with entries dii =
∑

iwij.

• Step 3: Define the Schrodinger matrix, S, using the extra information, µ.

The Schrodinger matrix is given by

S = L+ αV,

where α is a real number, and V is the potential matrix, a diagonal matrix

given by

V =



µ1

µ2

. . .

µn


, (2.5)

where µi = µ(xi) for all i = 1, . . . , n.

• Step 4: Find the m-dimensional mapping by solving the generalized eigen-

vector problem,

Sf = λDf , (2.6)

where f is a vector in R
n and λ is a real number. Let {f0, f1, . . . , fn−1} be the

solution set to (2.6) written in ascending order according to their eigenvalues.
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The m-dimensional Euclidean space mapping is given by

xi → [f1(i), f2(i), . . . , fm(i)].

2.2.3 Transport eigenmaps

The algorithm we are developing in this chapter, viz., transport eigenmaps

(TE), has some similarities to SE in the sense that both algorithms use extra infor-

mation about the data set to define a generalization of the LE algorithm. While SE

uses potentials to encode to additional information, TE uses advection, the active

transportation of a distribution by a flow field. In contrast to SE, TE comes from

the non-linear operator which we describe in section 2.3.

2.3 The transport model

2.3.1 The continuous model

We consider a graph as a set of points X = {x1,x2, . . . ,xn} in R
d, or equiva-

lently as a set of indices i in I = {1, 2, . . . , n}. We denote by Ai the set of adjacent

indices to i (or equivalently the set of neighboring points to xi), we say j is adjacent

to i if j ∈ Ai. We denote by A = {(i, j) : j ∈ Ai} the set of edges of the graph. Let

P denote the set of probability distributions µ from I to R+, µ is such that

µ ∈ P ⇒
∑
i

µi = 1.
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Let E denote the set of functions from A to R, and Ea the set of functions v in E

that are antisymmetric, that is,

vij = −vji.

Definition 2.3.1. Let µ ∈ P , and v ∈ Ea a velocity field that is itself a function of

µ. We define the transport operator T acting on µ as follows:

Tµ = 4µ− div(vµ), (2.7)

where 4 denotes the Laplacian defined as the divergence of the gradient acting on

µ, and div denotes the divergence, a vector operator that produces a scalar field

quantifying a vector field’s source at each point.

The transport model we consider in equation (2.7) is also known as the trans-

port by advection; it refers to the active transportation of a distribution by a flow

field, v [8, 48]. Given an appropriately chosen flow field, we are able to direct the

diffusion process in order to form desirable clusters.

2.3.2 The discrete model

In order to further study the transport model using computer tools, we propose

the following discretization as well as matrix formulation.

Definition 2.3.2. Given a function µ on I, we define the gradient of µ as ∇µ by

(∇µ)ij = wij(µj − µi).

We also define the Laplacian of µ as 4µ = div(∇µ) by

(4µ)i =
∑
j∈Ai

wij(µj − µi),
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where wij is a weight function from A to R+.

Note that the symbol ∇ for the gradient will be used at times to denote the

divergence given no ambiguity arises; the gradient acts on scaler functions while the

divergence acts on vector functions.

Definition 2.3.3. The centered discretization of vµ is given by:

(vµ)cij = vij
µi + µj

2
.

We consider a purely local type of flow by taking v = β∇µ, where β is a real

number. Using the central discretization, we obtain the following equation:

(Tµ)i =
∑
j∈Ai

wij(µj − µi)− β
∑
j∈Ai

wij(µ
2
j − µ2

i ), for each i ∈ I. (2.8)

Equation (2.8) can be written in using matrices as follows:

Tµ = (D −W )µ− β(EDvE
′+)µ, (2.9)

where W is the weight matrix with W (xi,xj) = wij, and D is a diagonal matrix

with entries dii =
∑

j∈Ai
wij. E is the incidence matrix of the corresponding graph,

each column in E represents an edge on the graph; for each column, a 1 indicates

that the edge is connected as outgoing edge, and a −1 indicates that the edge is

connected as incoming edge. E ′+ is the absolute value transpose of E, and Dv is

a diagonal matrix with diagonal elements corresponding to the values of the vector

vij for each edge (i, j) in A.

Our choice of discretization schemes in definition 2.3.2 and 2.3.3 is motivated

by their well-defined analytic properties, however, it is important to note that al-

though these discretization schemes are common in the literature, there are other
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explorable schemes. In the next section, we show the congruency extent of our

discrete and continuous formulations of the transport model.

2.3.3 Agreement between continuous and discrete model

We considered a couple of distribution functions, µ = f(x, y), defined on the

unit circle, and v = ∇µ, i.e., β = 1, in order to visually show the agreement

between the two models. The function µ is normalized so it integrates to 1, and is

parametrized by x = cos(θ) and y = sin(θ) where θ ∈ [0, 2π). In the continuous case

we have:

Tµ = 4µ− div(µ∇µ) ⇒ ∂θµ = ∂2θµ− ∂θ(µ∂θµ).

And in the discrete case we have:

(Tµ)i =
∑
j∈Ai

wij(µj − µi)−
∑
j∈Ai

wij(µ
2
j − µ2

i ), for each i ∈ I.

Example 2.3.4. In the two examples below we have three plots. From left to

right, they respectively correspond to the plot of the distribution µ, the plot of the

continuous model Tµ, and the plot of the discrete model (Tµ)i for i ∈ I, all as

functions of the parameter θ.

• f(x, y) = 64(x4y4)
3π
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Figure 2.2: From left to right: the distribution µ, the continuous model, and the discrete model.

n = 400 (number of data points), k = 2 (number of neighbors), wij = 4000 for (i, j) ∈ A.

• f(x, y) = (x3y+4y2)
2π

Figure 2.3: From left to right: the distribution µ, the continuous model, and the discrete model.

n = 400 (number of data points), k = 2 (number of neighbors), wij = 4000 for (i, j) ∈ A.

2.4 Linearization of the transport model

In this section, we will linearize the transport model using its first derivative.
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2.4.1 From the continuous model: Gateau Derivative

Consider two vector spaces U and V , where V is assumed to be a normed

space, and denote by [U, V ] the set of all operators from U into V . Consider also

an operator T ∈ [U, V ] with the domain Ω ⊆ U ; for vectors µ ∈ Ω and u ∈ U , we

assume that µ+ tu ∈ Ω for some t ∈ R. If the limit

DT (µ)(u) = lim
t→0

T (µ+ tu)− T (µ)

t
(2.10)

exists, then the vector DT (µ)(u) ∈ V is called the Gateaux derivative or differential

of the operator T at the vector µ in the direction of the vector u [92]. And we

say that T is Gateaux-differentiable at µ in the direction of u. If T is Gateaux-

differentiable at every direction at µ, then we say that T is Gateaux-differentiable

at the vector µ. If such is the case, then the operator DT (µ) : U → V that assigns

a vector DT (µ)(u) ∈ V to each vector u ∈ U is called the Gateaux derivative of

T at the vector µ. We sometimes call the operator DT (µ) ∈ [U, V ], the Gateaux

derivative of T . However, we shall usually not dwell too much upon the nuances

of all these definitions and we just use the term “Gateaux derivative” provided no

ambiguity arises. The limit in (2.10), in fact, means that for each number ε > 0,

there exists a number τ(ε;u) > 0 such that

∥∥∥∥T (µ+ tu)− T (µ)

t
−DT (µ)(u)

∥∥∥∥ < ε

whenever t < τ(ε;u). If τ = τ(ε), then the limit is uniform, i.e., it is independent of

the direction u.
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2.4.1.1 Laplacian derivative

The Gateaux derivative of the Laplacian operator produces the following re-

sult.

D4(µ)(u) = lim
t→0

4(µ+ tu)−4(µ)

t

= lim
t→0

4(µ) + t4(u)−4(µ)

t

D4(µ)(u) = 4(u).

2.4.1.2 Divergence derivative

The Gateaux derivative of the divergence operator produces the following re-

sult.

Ddiv(µ)(u) = lim
t→0

div((µ+ tu)∇(µ+ tu))− div(µ∇µ)

t

= lim
t→0

(µ+ tu)4(µ+ tu) + (∇(µ+ tu))2 − µ4µ− (∇µ)2

t

= lim
t→0

µ4u+ u4µ+ tu4u+ 2∇µ∇u+ t(4u)2

= µ4u+ u4µ+ 2∇µ∇u

= ∇u∇µ+ u4µ+∇µ∇u+ µ4u

= ∇(u∇µ) +∇(µ∇u)

Ddiv(µ)(u) = div(u∇µ) + div(µ∇u).
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2.4.1.3 Transport derivative

Given that the Gateaux derivative is linear, we obtain the following derivative

for the transport model:

DT (µ)(u) = 4(u)− β(div(u∇µ) + div(µ∇u)). (2.11)

2.4.2 From the discrete model

For verification purpose, we will compute the derivatives over the discrete

model as well. Recall,

(Tµ)i =
∑
j∈Ai

wij(µj − µi)− β
∑
j∈Ai

wij(µ
2
j − µ2

i ), for each i ∈ I

= (Fl(µ))i − β(Fd(µ))i, for each i ∈ I.

Where Fl and Fd are functions of the vector µ representing the Laplace and diver-

gence component respectively.

2.4.2.1 Laplace derivative

Let us represent by F ′l the derivative of Fl with respect to µ, we have:
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Fl(µ) =



∑
j∈A1

w1j(µj − µ1)∑
j∈A2

w2j(µj − µ2)

...∑
j∈An

wnj(µj − µn)


,

F ′l (µ) =



−
∑

j∈A1
w1j w12 . . . w1n

w21 −
∑

j∈A2
w2j . . . w2n

...
...

. . .
...

wn1 wn2 . . . −
∑

j∈An
wnj


≡ L,

where L is the Laplacian matrix. This first part agrees with the Gateaux

derivative since the derivative of the Laplacian component is again the Laplacian

matrix.

2.4.2.2 Divergence derivative

Let us represent by F ′d the derivative of Fd with respect to µ, we have:
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Fd(µ) =



∑
j∈A1

w1j(µ
2
j − µ2

1)∑
j∈A2

w2j(µ
2
j − µ2

2)

...∑
j∈An

wnj(µ
2
j − µ2

n)


,

F ′d(µ) =



−2
∑

j∈A1
w1jµ1 2w12µ2 . . . 2w1nµn

2w21µ1 −2
∑

j∈A2
w2jµ2 . . . 2w2nµn

...
...

. . .
...

2wn1µ1 2wn2µ2 . . . −2
∑

j∈An
wnjµn


= 2Cµ ◦ L,

where the operation ◦ is the Hadamard product and the matrix Cµ is given by

Cµ =


...

...
...

...

µ1 µ2 . . . µn

...
...

...
...

 .

Let us check whether this derivative agrees with the Gateaux derivative. Let

u ∈ U as describe in the definition of the Gateaux derivative, we have
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(2Cµ ◦ L)u =



−2
∑

j∈A1
w1jµ1 2w12µ2 . . . 2w1nµn

2w21µ1 −2
∑

j∈A2
w2jµ2 . . . 2w2nµn

...
...

. . .
...

2wn1µ1 2wn2µ2 . . . −2
∑

j∈An
wnjµn





u1

u2

...

un



=


−2
∑

j∈A1
w1jµ1u1 + 2w12µ2u2 + . . .+ 2w1nµnu3

...

2wn1µ1u1 + 2wn2µ2u2 + . . .+−2
∑

j∈An
wnjµnun



(2Cµ ◦ L)u =


2
∑

j∈A1
w1j(µjuj − µ1u1)

...

2
∑

j∈An
wnj(µjuj − µnun)

 .

Therefore we have,

((2Cµ ◦ L)u)i = 2
∑
j∈Ai

wij(µjuj − µiui).

Note that from the Gateaux derivative of the divergence, using central discretization,

we also have

[div(u∇µ) + div(µ∇u)]i =
∑
j∈Ai

(ui + uj)wij(µi − µj) +
∑
j∈Ai

(µi + µj)wij(ui − uj)

=
∑
j∈Ai

wij(uiµj − uiµi + ujµj − ujµi) +

wij(µiuj − µiui + µjuj − µjui)

= 2
∑
j∈Ai

wij(µjuj − µiui)

[div(u∇µ) + div(µ∇u)]i = ((2Cµ ◦ L)u)i.

We can see that both derivative agree.
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2.4.3 Transport linearization

We finally then write the linearization, T̃ , of the transport operator around

any given distribution µ as

T̃ (u) = [L− 2βCµ ◦ L](u) ∀u ∈ U. (2.12)

2.5 Transport eigenmaps algorithm

Given a set of n points X = {x1,x2, . . . ,xn} in R
d and a function µ

µ : X → R

over the set of points X, under the assumption that the points lie on a m-dimensional

manifold where m� d, the goal is to find a set of n points Y = {y1,y2, . . . ,yn} in

R
m where yi represents xi for all i from 1 to n. The transport eigenmaps algorithm

involves the following steps:

• Step 1: Construct the adjacency graph using the k-nearest neighbor (kNN)

algorithm. This is done by putting an edge connecting nodes i and j given

that xi is among the k nearest neighbors of xj according to the Euclidean

metric.

• Step 2: Define a graph Laplacian, L, using the weight matrix, W . The

weights in W are chosen using the heat kernel with parameter σ. If nodes i

and j are connected,

wij = exp

(
−‖xi − xj‖2

2σ2

)
;
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otherwise, wij = 0. The graph Laplacian is given by

L = D −W,

where D is a diagonal matrix with entries dii =
∑

iwij.

• Step 3: Define the linearized transport matrix, T̃ , using the extra information,

µ. The linearized transport matrix is given by

T̃ = L− 2βCµ ◦ L,

where β is a real number, the operation ◦ is the element-wise multiplication

and

Cµ =


...

...
...

...

µ1 µ2 . . . µn

...
...

...
...

 , (2.13)

where µi = µ(xi) for all i = 1, . . . , n.

• Step 4: Find the m-dimensional mapping by solving the generalized eigen-

vector problem,

T̃ f = λDf , (2.14)

where f is a vector in R
n and λ is a real number. Let {f0, f1, . . . , fn−1} be the

solution set to (2.14) written in ascending order according to their eigenvalues.

The m-dimensional Euclidean space mapping is given by

xi → [f1(i), f2(i), . . . , fm(i)].

26



2.5.1 Eigenvectors: Laplacian and transport mapping

In this section, we look at the eigenvectors of the transport operator and

see how they compare to Laplacian eigenmaps using an artificially generated set

of points. In Figure 2.4, we consider a data set of 300 points, organized in three

clusters each of size 100. The clusters are color coded to keep track of where each

cluster is being mapped; the first cluster appears in blue, the second in green and the

third in yellow. Note that since the action of the Laplacian operator on the graph

does not depend on the density distribution over the set of points, the mapping

using Laplacian eigenmaps is the same for each density function. However since the

transport operator naturally depends on the density distribution on the set over

points, the mapping using the transport operator varies accordingly. We observe

that the clusters on which the advection is placed, i.e., which are assigned the

greater density value, are more compactly represented in the mapped space than

those assigned a lower density value.
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Figure 2.4: From left to right: the first column represents the data set of 300 points grouped

in 3 clusters of 100 points each. The second column represents the density distribution βµ; first,

with β = 1, then the next three, with β = 10, on the later cases the advection is placed on the first

(blue), second (green), and third (yellow) cluster respectively. The third column represents the

mapping of the data set using the eigenvectors of the Laplacian operator on the graph. The fourth

column represents the mapping of the data set using the eigenvectors of the transport operator on

the graph.

2.5.2 Eigenvectors: Laplacian, transport, and Schroedinger mapping

For the purpose of explaining the results that follow, we use a metaphor in the

example below (see Figure 2.5). Let us assume that the clusters, C1 in blue, C2 in

green, and C3 in yellow, represent continents and the points represent cities within
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the continents.

In the case of the transport operator, the advection is placed on C1, i.e., with

β = 10, the function βµ takes the value β = 10 over the first cluster, C1, and

takes the value 1 over the other clusters, C2 and C3. In this case, the (inward)

edges connecting any point (or city) in X to any point (or city) in C1 are relatively

strengthened (by a factor of β = 10 precisely). This translates to that the population

over the continent C1 is more likely to travel to cities within the continent C1

than it is to travel to any other cities in X. This explains why in Figure 2.5 the

representation given by the transport operator have cluster C1 (in blue) completely

separated from the other two and compacted within itself.

In the case of Schroedinger operator, the potential is placed on C1, i.e., with

α = 10, the potential V is a diagonal matrix with entries α = 10 for cluster C1 (in

our example, Figure 2.5, this corresponds to the first 100 diagonal entries) and 0

everywhere else. This translates to the population of each city within continent C1

is more likely to stay (or travel) within their respective city than it is to travel to any

other cities in X (including those within their continent). Nevertheless, the relative

probability that the population of any given city within continent C1 will travel to a

different city (given that they are not staying in their current city at the next time

step) remains unchanged. This explains why in Figure 2.5 the representation given

by the Schroedinger operator have cluster C1 (in blue) compacted within itself, but

not completely separated from the other two clusters.
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Figure 2.5: The first plot represents a set of points, 300 points grouped in 3 clusters of 100 points

each, in the order blue, green, then yellow. The rests represents various mapping using the first

and second eigenvectors with corresponding non-zero eigenvalue.

2.6 Controlled sample set experiments

2.6.1 The adjusted Rand index

The adjusted Rand index (ARI) is one of the most commonly used cluster val-

idation indices and is recommended as the index of choice for measuring agreement

between partitions [86]. An advantage of ARI over its predecessor, the Rand index,

is its robustness against randomly generated clusters. Given a set X of n points

and two partitions, e.g., clusterings, of these points, viz., P = {P1, P2, . . . , Pr} and

Q = {Q1, Q2, . . . , Qs}, the adjusted Rand index is defined as

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) , (2.15)

where nij = |Pi ∩ Qj|, ai = |Pi|, and bj = |Qj|, for i = 1, . . . , r and j = 1, . . . , s.

The adjusted Rand index quantifies the similarities between two partitions while

taking into account random chance assignments. A 0 indicates that the clusterings

do not agree on any pair of points, and a 1 indicates that the clusterings are exactly
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the same. From a mathematical standpoint, ARI is related to accuracy, but is

applicable even when class labels are not used. In this light, ARI can be used as a

cluster validation index for supervised and unsupervised clustering.

2.6.2 Setup

In this section, we demonstrate the strength of our algorithm using a large

number of experiments. We will test the strength of our algorithm in its ability

to faithfully represent the data. Each experiment consists of multiple arrangement

of clusters increasing in difficulty in 2 or 3 dimension. In the 2-dimensional cases,

we experiment with 3, 4, 5, 8, and 9 clusters, while in the 3-dimensional cases we

experiment with 4, 7, 8, and 9 clusters, for a total of 9 cases. In each of the cases,

we increase the difficulty by changing the parameters (position, spread or standard

deviation, and added Gaussian noise) used to generate the data set, while maintain-

ing connectivity under construction of the adjacency graph. Each individual cluster

in the data set contains 100 samples. The number of neighbors used for the con-

struction of the adjacency graph to ensure connectivity in all cases is set at k = 50,

and we set the weight parameter to σ = 1 for simplicity. For TE, the parameter

β = 10, and for SE, we introduced the parameter α̂ such that α = α̂ · tr (L)/tr (V ),

the SE’s results are optimal for α̂ ≥ 103, we set α̂ = 103 in all cases. The choice of

our parameters is motivated by the set of experiments conducted in Section 2.7.2.

The following are examples of configurations used in the experiment; in each case,

the advection or potential is placed on the first cluster in blue:
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• The position: We decrease the distance between the center of each clusters in

the data set to zero, while keeping the standard deviation and added Gaussian

noise constant (no added noise), see Figure 2.6.

Figure 2.6: Example of data sets with various cluster’s center position.

• The spread: We increase the standard deviation of each clusters in the data

set, while keeping the position of the center of each cluster fixed and the added

Gaussian noise constant (no added noise), see Figure 2.7.

Figure 2.7: Example of data sets with various standard deviation.

• The noise: We increase the added Gaussian noise from none, while keeping

the position of the center of each cluster fixed and the standard deviation

constant, see Figure 2.8.

Figure 2.8: Example of data sets with various added Gaussian noise.
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Given that each parameter is individually adjusted 6 times, that gives a total of 162

cases in both 2 and 3 dimensions. Since the data set for each of the 162 cases is

produced at random by the software, each case is run a total of 20 times to reduce

variance in the results, and the average is reported. For each individual run the

following operations are performed:

• Step 1: Generate the data set, X, and corresponding labels.

• Step 2: Cluster the data set X using the k-means algorithm, and compute the

agreement of the resulting clustering to the original labels using the adjusted

Rand index (ARI1).

• Step 3: Apply the dimension reduction algorithm on the data set X. While

keeping the dimension of the output data set, Y , the same as the dimension

of the data set X to ensure a fair comparison, cluster the data set Y using the

k-means algorithm, and compute the agreement of the resulting clustering to

the original labels using the adjusted Rand index ARI2.

• Step 4: Compute and store the change in adjusted Rand index (ARI2−ARI1).

2.6.3 Results

The following dimension reduction algorithms are used in the experiment:

principal components analysis [78] (PCA), Laplacian eigenmaps [6] (LE), diffusion

maps [18] (DIF), Isomap [98] (ISO), Schroedinger eigenmaps [14] (SE), transport

eigenmaps (TE). Figure 2.9 shows the box plots for the change in ARI for each of the
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methods used. We can see from these plots that the transport model outperforms the

other methods in representing the data. On the one hand, we note that the strength

of our algorithm is more evident on difficult cases, i.e.; when the number of clusters is

high, the clusters are close to each other, the spread is high, or the noise level is high;

see Figure 2.10. On the other hand, in simpler cases, the extra information provided

by the density function, µ, does not provide a significant increase in performance;

see Figure 2.11.

Figure 2.9: Box plot for the change of adjusted Rand index, all cases.

Figure 2.10: Box plot for the change of adjusted Rand index, complex cases.
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Figure 2.11: Box plot for the change of adjusted Rand index, simple cases.

2.7 Hyperspectral sample set experiments

2.7.1 Data

For our experiments, we take advantage of the hyperspectral data sets known

as Indian Pines and Salinas. The Indian Pines image shown in Figure 2.12 was

gathered by AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor over

the Indian Pines test site in North-western Indiana. The Indian Pines image consists

of 145 × 145 pixels image that contain 224 spectral bands in the wavelength range

0.4 10−6 to 2.5 10−6 meters. The ground truth available is designated into sixteen

classes, see Table 2.1. The number of bands has been reduced to 200 by removing

bands covering the region of water absorption: [104− 108], [150− 163], 220. Indian

Pines data are available through Purdue’s university MultiSpec site [1, 4].

The Salinas image shown in Figure 2.13 was gathered by AVIRIS sensor over

Salinas Valley, California. The Salinas image consists of 512×217 pixels image that

contain 224 spectral bands with approximately 3.7 meter high spatial resolution.

The ground truth available is designated into sixteen classes, see Table 2.2. The
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number of bands has been reduced to 204 by removing bands covering the region of

water absorption: [108− 112], [154− 167], 224. Salinas data are publicly available

online [1].

A small sub-scene of the Salinas image, denoted Salinas-A, is shown in Fig-

ure 2.14 and is usually used to speed up computational results. It comprises 86×83

pixels and includes six classes, see Table 2.3. We use a different cropped piece of the

Salinas image, we denote Salinas-B, shown in Figure 2.15, leaving a 150× 100× 204

data cube located within the same scene at [samples, lines] = [200-349, 40-139] and

includes eight classes, see Table 2.4. We chose to work with this data because of

the balanced spatial diversity found in the ground truth in contrast to Salinas-A, as

well as the computational speed gained in contrast to the Salinas image.

We also considered grouping similar classes within the Indian Pines and Salinas-

B data set to make new ground truths which we denoted Indian Pines-G and Salinas-

B-G; see Table 2.5 and Table 2.6. This grouping is done because classification algo-

rithms frequently misclassify samples of similar classes due to the similarities in their

spectra information, e.g., samples in class 2–corn-notill frequently getting classified

as belonging to class 3–corn-mintill and vice versa in the Indian Pines data set.
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# Class Sample

0 Empty-space 10776

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

Table 2.1: Indian Pines classes.
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Figure 2.12: Ground truth of Indian Pines data set (left) and sample band of Indian Pines data

set: 170 (right.)
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# Class Sample

0 Empty-space 10776

1 Broccoli-green-weeds-1 2009

2 Broccoli-green-weeds-2 3726

3 Fallow 1976

4 Fallow-rough-plow 1394

5 Fallow-smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes-untrained 11271

9 Soil-vineyard-develop 6203

10 Corn-senesced-green-weeds 3278

11 Lettuce-romaine-4wk 1068

12 Lettuce-romaine-5wk 1927

13 Lettuce-romaine-6wk 916

14 Lettuce-romaine-7wk 1070

15 Vineyard-untrained 7268

16 Vineyard-vertical-trellis 1807

Table 2.2: Salinas classes.
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Figure 2.13: Ground truth of Salinas data set (left) and sample band of Salinas data set: 170

(right.)
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# Class Sample

0 Empty-space 1790

1 Broccoli-green-weeds-1 391

10 Corn-senesced-green-weeds 1343

11 Lettuce-romaine-4wk 616

12 Lettuce-romaine-5wk 1525

13 Lettuce-romaine-6wk 674

14 Lettuce-romaine-7wk 799

Table 2.3: Salinas-A classes.

Figure 2.14: Ground truth of Salinas-A data set (left) and sample band of Salinas-A data set:

170 (right.)
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# Class Sample

0 Empty-space 5826

1 Broccoli-green-weeds-1 914

2 Broccoli-green-weeds-2 1854

8 Grapes-untrained 1240

10 Corn-senesced-green-weeds 1959

11 Lettuce-romaine-4wk 655

12 Lettuce-romaine-5wk 1229

13 Lettuce-romaine-6wk 616

14 Lettuce-romaine-7wk 707

Table 2.4: Salinas-B classes.

Figure 2.15: Ground truth of Salinas-B data set (left) and sample band of Salinas-B data set:

170 (right.)
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# Class Sample

0 Empty-space 10776

1 Alfalfa 46

2 Corn 2495

5 Grass 1241

8 Hay-windrowed 478

9 Oats 20

10 Soybean 4020

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

Table 2.5: Indian Pines-G classes, ground truth with corresponding grouped labels.
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# Class Sample

0 Empty-space 5826

1 Broccoli-green-weeds-1 914

2 Broccoli-green-weeds-2 1854

8 Grapes-untrained 1240

10 Corn-senesced-green-weeds 1959

11 Lettuce-romaine 3207

Table 2.6: Salinas-B-G classes, ground truth with corresponding grouped labels.

2.7.2 Classification and validation metric

After the embedding, we use Matlab’s 1-nearest neighbor algorithm to classify

the data sets. We use 10% of the data from each class to train the classifier and

the remaining number of data points, Nv, as the validation set. We took an average

of ten runs the produce the confusion matrices (C), each using a disjoint set of

data to train the classifier. We report the following validation metrics: the adjusted

Rand index (ARI) between the predicted labels and the ground truth, the overall

accuracy (OA), the average or weighted accuracy (AA), the average F-score (FS),

and Cohen’s kappa (κ) defined by

κ =
Nv

∑
i(Ci,i)

2 − ω
N2
v − ω

,
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where ω =
∑

iCi,·C·,i. Similar to ARI, the Cohen’s kappa coefficient, κ, measures

the degree of agreement between clusters, where a 0 indicates no agreement and a

1 indicates complete agreement between clusterings.

All the results presented in Section 2.7.3 were computed using k = 12 nearest

neighbors and σ = 1 for the weight parameter. Additionally we chose the intrinsic

dimension to be m = 50 and m = 25 for the Indian Pines and the Salinas-B data set

respectively. The choice of our parameter came from two separate optimizations.

The first was done by keeping the weight parameter fixed, σ = 1, while varying the

number of neighbor k, depicted in Figure 2.16 (middle row), the second was done

by keeping the number of neighbors fixed, k = 12, while varying the parameter

σ shown in Figure 2.16 (bottom row). The results from the optimizations show

that the choice of k and σ does not greatly affect the results; although, the higher

the value for k the more connections is introduced between different classes, this

leads to a higher number of misclassified samples and explains the slight decline in

performance observed in Figure 2.16 (bottom). Therefore, the value for the weight

parameter is fixed at σ = 1 for simplicity, while the value for the number of neighbors

is fixed at k = 12 to ensure that we have connected graphs. During the optimizations

described above, we also looked at the effect of the intrinsic dimension, m, on our

validation metrics. The intrinsic dimension for the Indian Pines data set was chosen

to reflect what was seen previously in literature and also based on our results in

Figure 2.16 (top row) . Since the Salinas-B data set has never been analyzed before

the intrinsic dimension was chosen solely based on our result in Figure 2.16 (top

row).
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Figure 2.16: Optimal analysis of the parameters m (top), k (middle), and σ (bottom): overall

accuracy (black circles), average accuracy (blue stars), F-score (red pluses), and Cohen’s kappa

coefficient (green x’s). The red dashed vertical lines represent the number of classes and the black

dashed vertical lines represent our choice for the parameter.

With k and σ fixed, the only free parameters remaining are α and β, introduced

in the Schroedinger eigenmaps (SE) and the transport eigenmaps (TE) algorithm.

For Schroedinger eigenmaps, we introduced the parameter α̂ defined by α = α̂ ·

tr (L)/tr (V ) to balance the impact of the Laplacian matrix and the potential in

the algorithm. We searched for the optimal value for α̂ for both Indian Pines and

Salinas-B; see Figure 2.17. For transport eigenmaps, we searched directly for the
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optimal value for β for both Indian Pines and Salinas-B, see Figure 2.18. All the

results presented in Section 2.7.3 were computed using α̂ = 104 for the Indian Pines

data set and α̂ = 102 for the Salinas-B data set for SE, and using β = 10 for both the

Indian Pines and the Salinas-B data set for TE. In SE and TE, the extra information

provided by the function µ comes from prior knowledge about the ground truth of

some of the sample points in the data set. For instance, given that we have prior

knowledge about class 11–soybean-mintill in the Indian Pines data set, we would

place a potential for SE or an advection for TE on class 11–soybean-mintill using

the function µ defined as follows:

µ(x) =


1, if x ∈ Class 11–soybean-mintill,

0, elsewhere.
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Figure 2.17: Optimal analysis of the parameter α̂. For the Indian Pines data set (left), the

potential is placed on class 11–soybean (top) then on class 2–corn (bottom). For the Salinas-B data

set (right), the potential is placed on class 11–lettuce (top) then on class 10–corn (bottom). The

following performance measures are reported: overall accuracy (black circles), average accuracy

(blue stars), F-score (red pluses), and Cohen’s kappa coefficient (green x’s). The black dashed

vertical lines represent our choice for the parameter α̂.
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Figure 2.18: Optimal analysis of the parameter β. For the Indian Pines data set (left), the

advection is placed on class 11–soybean (top) then on class 2–corn (bottom). For the Salinas-B data

set (right), the advection is placed on class 11–lettuce (top) then on class 10–corn (bottom). The

following performance measures are reported: overall accuracy (black circles), average accuracy

(blue stars), F-score (red pluses), and Cohen’s kappa coefficient (green x’s). The black dashed

vertical lines represent our choice for the parameter β.

2.7.3 Results

The following dimension reduction algorithms are used in the experiment:

principal components analysis [78] (PCA), Laplacian eigenmaps [6] (LE), diffusion

maps [18] (DIF), Isomap [98] (ISO), Schroedinger eigenmaps [14] (SE), transport

eigenmaps (TE). Table 2.7 and Table 2.8 show the results for the Indian Pines and

the Salinas-B images respectively. Table 2.9 and Table 2.10 show the results for

the Indian Pines-G and the Salinas-B-G images respectively, after similar classes

have been grouped together. The classification maps for each of the results are
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also reported below each tables. Figure 2.19 and Figure 2.20 show the classification

maps for the Indian Pines and the Salinas-B images respectively. Figure 2.21 and

Figure 2.22 show the classification maps for the Indian Pines-G and the Salinas-B-G

images respectively.

Similar to Section 2.6.3, we see that the transport model outperforms the other

algorithms in representing the data, see the adjusted Rand index and the Cohen’s

kappa coefficient (in bold) in the aforementioned tables. A strong cluster agreement

with the ground truth usually results in high overall accuracy, and that can be

seen in tables as well. This quantitative performance is reflected in the quality of

the aforementioned classification maps produced by the algorithm. The average

accuracy and the F-score are validation metrics that serve as test scores to ensure

that our results are not bias towards a few particular classes. A comparable average

accuracy and the F-score across methods is an indication that the algorithms do not

favor a few particular classes over the others.
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IP PCA LE DIF ISO SE-2 SE-11 TE-2 TE-11

ARI 0.4426 0.3694 0.4210 0.3929 0.5520 0.6955 0.5735 0.7085

OA 0.6761 0.6081 0.6556 0.6308 0.7138 0.7353 0.7281 0.7418

AA 0.6403 0.5719 0.6219 0.5979 0.6234 0.6249 0.6346 0.6257

FS 0.6471 0.5727 0.6211 0.5995 0.6245 0.6254 0.6347 0.6252

κ 0.6301 0.5532 0.6065 0.5785 0.6732 0.6981 0.6900 0.7055

Table 2.7: Classification results for Indian Pines (IP): the potential is placed on class 2–corn-

notill, then on class 11–soybean-mintill for SE; and the advection is placed on class 2–corn-notill,

then on class 11–soybean-mintill for TE

Figure 2.19: Classification map, the last column correspond to the ground truth (GT) data used

in TE and SE algorithm.
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SB PCA LE DIF ISO SE-10 SE-14 TE-10 TE-14

ARI 0.9429 0.9323 0.9164 0.9439 0.9678 0.9439 0.9708 0.9466

OA 0.9729 0.9675 0.9603 0.9733 0.9814 0.9761 0.9817 0.9781

AA 0.9689 0.9633 0.9564 0.9699 0.9742 0.9777 0.9742 0.9802

FS 0.9692 0.9629 0.9556 0.9696 0.9754 0.9765 0.9747 0.9795

κ 0.9681 0.9618 0.9534 0.9686 0.9781 0.9720 0.9785 0.9743

Table 2.8: Classification results for Salinas-B (SB): the potential is placed on class 10–corn-

senesced-green-weeds, then on class 14–lettuce-romaine-7wk for SE; and the advection is placed

on class 10–corn-senesced-green-weeds, then on class 14–lettuce-romaine-7wk for TE

Figure 2.20: Classification map, the last column correspond to the ground truth (GT) data used

in TE and SE algorithm.
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IPG PCA LE DIF ISO SE-2 SE-10 TE-2 TE-10

ARI 0.5329 0.4755 0.5102 0.4901 0.9148 0.8929 0.9173 0.9311

OA 0.7743 0.7285 0.7574 0.7418 0.9180 0.9088 0.9169 0.9192

AA 0.6986 0.6452 0.6883 0.6671 0.7128 0.7110 0.7101 0.7123

FS 0.7110 0.6472 0.6904 0.6738 0.7167 0.7156 0.7114 0.7148

κ 0.6995 0.6394 0.6769 0.6562 0.8911 0.8787 0.8896 0.8926

Table 2.9: Classification results for Indian Pines-G (IPG): the potential is placed on class 2–

corn, then on class 10–soybean for SE; and the advection is placed on class 2–corn, then on class

10–soybean for TE

Figure 2.21: Classification map, the last column correspond to the ground truth (GT) data used

in TE and SE algorithm.
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SBG PCA LE DIF ISO SE-10 SE-11 TE-10 TE-11

ARI 0.9459 0.9388 0.9153 0.9480 0.9779 0.9710 0.9800 0.9767

OA 0.9790 0.9755 0.9677 0.9795 0.9899 0.9858 0.9910 0.9879

AA 0.9769 0.9739 0.9668 0.9783 0.9876 0.9819 0.9884 0.9839

FS 0.9796 0.9754 0.9696 0.9797 0.9878 0.9828 0.9890 0.9849

κ 0.9725 0.9679 0.9576 0.9731 0.9868 0.9813 0.9882 0.9842

Table 2.10: Classification results for Salinas-B-G (SBG): the potential is placed on class 10–

corn-senesced-green-weeds, then on class 11–lettuce for SE; and the advection is placed on class

10–corn-senesced-green-weeds, then on class 14–lettuce for TE

Figure 2.22: Classification map, the last column correspond to the ground truth (GT) data used

in TE and SE algorithm.

We have done further experiments on Indian Pines-G and Salinas-G to see how

the amount of information available from one particular class affects the performance

measures for the transport and the Schroedinger algorithm. Figure 2.23 shows the
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change in performance of TE from using 0% to using 100% of the ground truth

with increments of 5% from a particular class. We observe that with no information

provided, the performance measures of TE are the same as those of the LE. This

result makes sense since without any extra information, TE and LE are exactly

the same algorithm. However, as the amount of information given to TE increases,

so do the performance measures. We repeat the latter experiment to include SE.

Figure 2.24 shows the change in performance of TE and SE from using 0% to using

100% of the ground truth with increments of 5% from a particular class. Figure 2.25

shows the change in performance of TE and SE from using 80% to using 100% of

the ground truth with increments of 1% from a particular class, this is done to have

a closer look at the end behavior of the curves for TE and SE in Figure 2.24. We

observe that although SE is ahead of TE given less than 100%, TE pulls ahead of

SE when a more complete information is provided to both algorithms.

In lieu of these results, is it worth mentioning that in real-life applications, the

extra information provided to the algorithms (TE and SE) does not come directly

from the ground truth. Ideally, better and richer cluster information than the ground

truth are produced using laboratory measurements and provided to the algorithms

as the extra information. These laboratory measurements include various signals

representing different materials in a wide range of conditions, e.g., lighting and

weather. The use of the ground truth in our afformentioned results is simply due

to the unavailability of those better and richer cluster information. Perhaps with a

more complete set of laboratory measurements TE could surpass SE.
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Figure 2.23: Classification performance measures for TE as a function of the amount of informa-

tion provided. For Indian Pines-G (left) the advection is placed on class 2–corn (top), then on class

10–soybean (bottom). For Salinas-B-G (right) the advection is placed on class 10–corn-senesced-

green-weeds (top), then on class 11–lettuce (bottom). The following performance measures are

reported: overall accuracy (black circles), average accuracy (blue stars), F-score (red pluses), and

Cohen’s kappa coefficient (green x’s).
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Figure 2.24: Classification performance measures for TE (red diamonds) and SE (blue squares)

as a function of the amount of information provided, from 0% to 100% with increments of 5%.

The Indian Pines-G data set (top row) is used with the advection and potential placed on class

10–soybean. The Salinas-B-G (bottom row) is used with the advection and potential placed on

class 10–corn-senesced-green-weeds.
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Figure 2.25: Classification performance measures for TE (red diamonds) and SE (blue squares)

as a function of the amount of information provided, from 80% to 100% with increments of 1%.

The Indian Pines-G data set (top row) is used with the advection and potential placed on class

10–soybean. The Salinas-B-G (bottom row) is used with the advection and potential placed on

class 10–corn-senesced-green-weeds.

The last set of experiments compare the robustness of TE to other dimension

reduction algorithms, viz., PCA, LE, and SE. For this experiment, we have added

Gaussian noise to individual data points in the data set before it is processed by the

dimension reduction algorithms. The added Gaussian noise has a mean of 0 and we

selected 20 logarithmically spaced values for the standard deviation varying from
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100 to 105 which covers the range for values taken by the individual data points in

both set of data. In the case of TE and SE, the ground truths for class 10–soybean

(Indian Pines-G) and class 11–lettuce (Salinas-B-G) are added to the algorithms.

We gather from the experiments that SE and TE are more resilient to noise than

PCA and LE; see Figure 2.26. Furthermore, although in general the decrease in

performance happens almost at the same mark for all the algorithms, we notice

that the performance measures associated with TE decline the slowest which makes

TE the more most resilient algorithm.
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Figure 2.26: Classification performance measures for TE (red diamons), SE (blue boxes), PCA

(green x’s), and LE (black circles) as a function of noise. For Indian Pines-G (top row) the potential

and advection are placed on class 10–soybean. For Salinas-B-G (bottom row) the potential and

advection are placed on class 11–lettuce.

2.8 Conclusion

In this chapter, we proposed a novel approach to semi-supervised non-linear

dimensionality reduction based on Laplacian eigenmaps. Although our algorithm

is similar to Schroedinger eigenmaps, it is derived directly from a truly non-linear
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transport model. We provide a set of experiments based on artificially generated

data sets and on publicly available hyperspectral data sets to show that our al-

gorithm exhibits superior/competitive performance to a variety of algorithms for

reducing the dimension of the data provided to a standard classification algorithm.

In this work, we do not discuss the time complexity aspect of our method compared

to other methods. We also note that our algorithm can be improved by choosing al-

ternative flow fields and/or using different linearization techniques. We will consider

exploring these avenues in future further directions.
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Chapter 3: Haar approximation from within for Lp(Rd), 0 < p < 1

3.1 Introduction

The work in this chapter is in collaboration with Professor John Benedetto.

In 1909, Alfred Haar developed the Haar theory for L2(T) [39], i.e., the space

of square integrable functions on R/Z. Yves Meyer and Stéphane Mallat introduced

multiresolution analysis (MRA) on R
d, e.g., see [63] (1989). This is a multiscale

process inspired by Haar’s ideas as well as more current work and models from

speech [29, 57, 88] and image processing [65]. Mallat demonstrated that from any

multiscale approximation, one can associate a generating function ψ(t) known as the

wavelet function such that the system {ψm,n : (m,n) ∈ Z×Z} = {2m/2ψ(2mt− n) :

(m,n) ∈ Z × Z} is an orthonormal basis for L2(R). MRA wavelet theory is now a

highly developed area of mathematics [21, 64, 68], and with the relevance of the L0

norm, e.g., in compressed sensing, it is natural to develop wavelet theory for Lp, 0 <

p < 1. A notable feature of the L2 theory is the leakage of the approximants outside

of the support of the given function. Our fundamental observation developed in this

chapter is that if f is compactly supported, then the Haar wavelet approximants

have support contained in the support of f when 0 < p < 1. We quantify this

assertion in Theorems 3.3.3, 3.3.15, 3.4.4, and 3.4.10; and illustrate these results in
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our simulations in examples 3.4.5, 3.4.6, 3.4.11, and 3.4.12.

3.2 Haar function

The Haar function [39] named ψ : R→ C is defined as

ψ(t) =



1, if t ∈ [0, 1/2),

−1, if t ∈ [1/2, 1),

0, otherwise,

i.e., ψ = 1[0,1/2) − 1[1/2,1), where 1X is the characteristic function of the set X ⊆ R.

Our main results in this paper concern Haar representation or wavelet system in the

space Lp(Rd), where 0 < p < 1 and d = 1, 2.

Definition 3.2.1. Given f ∈ Lp(Rd), 0 < p < 1. We define the pseudo-norm of f

as ‖f‖Lp(Rd) where

‖f‖Lp(Rd) =

(∫
Rd

|f(t)|p dt
)1/p

.

Note that for p ≥ 1, the function ‖·‖Lp(Rd) : Lp(Rd)→ [0,∞) denotes the norm.

For the remainder of the chapter, we refer to the pseudo-norm as the “norm,” and

will sometimes write ‖ · ‖Lp(Rd) as ‖ · ‖p for simplicity. For p < 1, although we do

not have an actual norm on the Lp(Rd) space, it is well known that we can define a

metric if we omit the pth root [22], [19].

Definition 3.2.2. Given f, g ∈ Lp(Rd), 0 < p < 1. We define the metric function

ρ : Lp(Rd)× Lp(Rd)→ [0,∞) as

ρ(f, g) = ‖f − g‖p
Lp(Rd)

=

∫
Rd

|f(t)− g(t)|p dt.
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Definition 3.2.3. Given the generating Haar function ψ and p > 0. The Haar

dyadic wavelet system for ψ as an element of Lp(R) is the sequence {ψm,n : (m,n) ∈

Z× Z}, where each ψm,n is defined as

ψm,n(t) = 2m/pψ(2mt− n) on R.

We note that this system is fundamental in wavelet theory [15, 16, 21, 23, 52,

53,62,63,68]. We denote the support of ψm,n as Im,n, with Im,n =
[
n
2m
, n+1

2m

)
, where

X is the closure of the set X ⊆ R, and note that

‖ψm,n(t)‖Lp(R) =

(∫
|ψm,n(t)|p dt

)1/p

=
(
(2m/p)p|Im,n|

)1/p
=
(
2m2−m

)1/p
= 1.

In Lp(R2), there are three generating Haar functions making up the dyadic wavelet

system. They are formed by tensor products of univariate wavelet ψ and unit

function 1[0,1); viz., vertical (v), horizontal (h), and diagonal (d) Haar functions.

They are defined as

ψ(v) = (1[0,1/2) − 1[1/2,1))× 1[0,1),

ψ(h) = 1[0,1) × (1[0,1/2) − 1[1/2,1)),

ψ(d) = (1[0,1/2) − 1[1/2,1))× (1[0,1/2) − 1[1/2,1)).

Note that suppψ(v) = suppψ(h) = suppψ(d) = [0, 1]× [0, 1] = [0, 1]2. Definition 3.2.3

is extended Lp(R2) in Definition 3.2.4.

Definition 3.2.4. Given the generating Haar functions ψ(v), ψ(h), and ψ(d), and

p > 0. The Haar dyadic wavelet system for ψ(v), ψ(h), and ψ(d) as elements of

Lp(R2) is the sequence {ψ(v)
m,n, ψ

(h)
m,n, ψ

(d)
m,n : (m,n) ∈ Z× Z2}, where each ψ

(v)
m,n, ψ

(h)
m,n,
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and ψ
(d)
m,n is defined as

ψ(v)
m,n(t) = 22m/pψ(v)(2mt− n),

ψ(h)
m,n(t) = 22m/pψ(h)(2mt− n),

ψ(d)
m,n(t) = 22m/pψ(d)(2mt− n) on R

2.

The support of ψ
(v)
m,n, ψ

(h)
m,n, and ψ

(d)
m,n is Im,n, where Im,n =

[
n1

2m
, n1+1

2m

)
×[

n2

2m
, n2+1

2m

)
.

3.3 Haar approximation

3.3.1 1-dimensional

Theorem 3.3.1. Given N > 0. Let f ∈ Lp(R), where 0 < p < 1, and suppose

supp f ⊆ [−2N , 2N ]. Assume that there exists M such that for n ∈ {−2M+N , . . . , 2M+N−

1}, f is constant on IM,n. Then, for all ε > 0, there is a sequence of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

ai,jψi,j, ai,j ∈ C,

indexed by k ≥ 1, where SM,N,k ⊆ Z×Z and cardSM,N,k <∞; and these sums have

the following properties:

if (i, j) ∈ SM,N,k then suppψi,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,N,k‖p < ε/2.

Proof. Let us define f0 = f so that f0 is constant on IM,n. We define f−1 as the

pairwise average of the function f0. By that we mean for all t ∈ IM−1,n, where
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n ∈ {−2M+N−1, . . . , 2M+N−1 − 1},

f−1(t) =
1

2

(
f0

(
2n

2M

)
+ f0

(
2n+ 1

2M

))
,

i.e., f−1 is constant on IM−1,n. We define f−2 as the pairwise average of the function

f−1, i.e., f−2 is constant on IM−2,n, and so on. We also define the error function

e−1 = f0 − f−1, e−2 = f−1 − f−2, and so on. First, we notice that

e−1

(
2n

2M

)
= f0

(
2n

2M

)
− f−1

(
2n

2M

)
= f0

(
2n

2M

)
− 1

2

(
f0

(
2n

2M

)
+ f0

(
2n+ 1

2M

))
=

1

2

(
f0

(
2n

2M

)
− f0

(
2n+ 1

2M

))
= −f0

(
2n+ 1

2M

)
+

1

2

(
f0

(
2n

2M

)
+ f0

(
2n+ 1

2M

))
= −f0

(
2n+ 1

2M

)
+ f−1

(
2n+ 1

2M

)
e−1

(
2n

2M

)
= −e−1

(
2n+ 1

2M

)
.

Since

ψm,n(t) =


2m/p, if t ∈ Im+1,2n

−2m/p, if t ∈ Im+1,2n+1,

for t ∈ IM−1,n, where n ∈ {−2N+M−1, . . . , 2N+M−1 − 1}, we have

e−1(t)ψM−1,n(t) =


2(M−1)/p e−1(

2n
2M

), if t ∈ IM,2n

−2(M−1)/p e−1(
2n+1
2M

), if t ∈ IM,2n+1

=


2(M−1)/p e−1(

2n
2M

), if t ∈ IM,2n

2(M−1)/p e−1(
2n
2M

), if t ∈ IM,2n+1.
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Therefore, for t ∈ [−2N , 2N), we have

e−1(t) =
2N+M−1−1∑
n=−2N+M−1

2−(M−1)/pe−1(
2n

2M
)ψM−1,n(t).

We now construct the sum to approximate f0.

f0 = f−1 + e−1

= f−1 +
2N+M−1−1∑
n=−2N+M−1

aM−1,nψM−1,n

= f−2 + e−2 +
2N+M−1−1∑
n=−2N+M−1

aM−1,nψM−1,n

= f−2 +
2N+M−2−1∑
n=−2N+M−2

aM−2,nψM−2,n +
2N+M−1−1∑
n=−2N+M−1

aM−1,nψM−1,n

= f−2 +
2∑

m=1

2N+M−m−1∑
n=−2N+M−m

aM−m,nψM−m,n

...

= f+,− +
M+N∑
m=1

2N+M−m−1∑
n=−2N+M−m

aM−m,nψM−m,n

f0 = f+,− + sM,N .

With

aM−m,n = 2−(M−m)/p e−m

(
2n

2M−m+1

)
for all m and n,

and

f+,− = f+ + f−,

where

f+ = fα = α 1[0,2N ), and α =
1

2M+N

2M+N−1∑
n=0

f0

( n

2M

)
;

f− = fβ = β 1[−2N ,0), and β =
1

2M+N

−1∑
n=−2M+N

f0

( n

2M

)
.
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We construct sums sα, and sβ to approximate fα, and fβ, respectively. For

sα, we proceed as follows. Define

fα1 = sα1 = α2N/pψ−N,0 = αψ(2−N t),

fα2 = 2α2(N−1)/pψ−N+1,1 = 2αψ(2−N+1t− 1),

sα2 = sα1 + fα2 ,

fα − sα2 = 4α 1[2N−2N/22,2N ).

Next, define

fα3 = 4α2(N−2)/pψ−N+2,3 = 4αψ(2−N+2t− 3),

sα3 = sα2 + fα3 ,

fα − sα3 = 8α 1[2N−2N/23,2N ).

In general, we have

fαk = 2k−1α2(N−k+1)/pψ−N+k−1,2k−1−1 = 2k−1αψ(2−N+k−1t− (2k−1 − 1)),

sαk = sαk−1 + fαk ,

fα − sαk = 2kα 1[2N−2N/2k,2N ).

Consequently, for all p > 0,

‖fα − sαk‖Lp(R) = ((2kα)p2N−k)1/p = α2N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fα − sαk‖Lp(R) = 0.
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Thus for ε > 0 as in the statement, we take ε0 = (ε/2)(1/21/p). Then there exists

K > 0 such that

∀k > K, ‖fα − sαk‖Lp(R) < ε0,

therefore,

ρ(fα, sαk ) = (2kα)p2N−k <
1

2

( ε
2

)p
.

Similarly, for sβ, we have

fβ1 = sβ1 = −β2N/pψ−N,−1 = −βψ(2−N t+ 1),

fβk = −2k−1β2(N−k+1)/pψ−N+k−1,−2k−1 = −2k−1βψ(2−N+k−1t+ 2k−1),

sβk = sβk−1 + fβk ,

fβ − sβk = 2kβ 1[−2N ,−2N+2N/2k).

Consequently, for all p > 0,

‖fβ − sβk‖Lp(R) = ((2kβ)p2N−k)1/p = β2N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fβ − sβk‖Lp(R) = 0.

Thus for ε > 0 as in the statement, we take ε0 = (ε/2)(1/21/p). Then there exists

K > 0 such that

∀k > K, ‖fβ − sβk‖Lp(R) < ε0,

therefore,

ρ(fβ, sβk) = (2kβ)p2N−k <
1

2

( ε
2

)p
.
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Let cm = max {α, β}, we need

(2kα)p2N−k + (2kβ)p2N−k <
( ε

2

)p
,

this means

k >
log(ε)− log(21+1/pcm2N/p)

(1− 1/p) log(2)
.

Take

K =

⌈
log(ε)− log(21+1/pcm2N/p)

(1− 1/p) log(2)

⌉
,

and

fM,N,k = sαk + sβk + sM,N ;

therefore, for all k > K and for all 0 < p < 1 we have

‖f − fM,N,k‖pp = ρ(f, fM,N,k)

≤ ρ(fα, sαk ) + ρ(fβ, sβk)

<
1

2

( ε
2

)p
+

1

2

( ε
2

)p
<

( ε
2

)p
,

thus,

‖f − fM,N,k‖pp < ε/2.

Theorem 3.3.2. Given N > 0. Let f ∈ Lp(R), where 0 < p < 1, and suppose f is

a continuous function on R, with supp f ⊆ [−2N , 2N ]. Then,

∀ε > 0, ∃M = M(ε) > 0 and fM , such that
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∀n ∈ {−2M+N , . . . , 2M+N − 1}, fM is constant on IM,n,

and

‖f − fM‖p < ε/2.

Proof. Define fM as

fM(t) =
2M+N−1∑
n=−2M+N

f(tn) 1IM,n
, where tn ∈ IM,n.

The sequence {fM}, M = 0, 1, 2, . . . is uniformly convergent to f on [−2N , 2N).

Thus, for ε > 0 as in the statement, we take ε0 = (ε/2)/(2(N+1)/p). Then, there is

M0 > 0 such that,

∀M > M0 and ∀t ∈ [−2N , 2N), |f(t)− fM(t)| < ε0.

Hence, for M > M0 we have

‖f − fM‖p =

(∫
|f(t)− fM(t)|p dt

)1/p

≤

(∫ 2N

−2N
( sup
t∈[−2N ,2N )

|f(t)− fM(t)|)p dt

)1/p

<

(∫ 2N

−2N
(ε0)

p dt

)1/p

= (2N+1εp0)
1/p

= 2(N+1)/p ε/2

2(N+1)/p

= ε/2.

Theorem 3.3.3. Given N > 0. Let f ∈ Lp(R), where 0 < p < 1 suppose f is a

continuous function on R, with supp f ⊆ [−2N , 2N ]. Then, for all ε > 0, there is an
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M = M(ε), and there is a sequence of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

ai,jψi,j, ai,j ∈ C,

indexed by k ≥ 1, where SM,N,k ⊆ Z×Z and cardSM,N,k <∞; and these sums have

the following properties:

if (i, j) ∈ SM,N,k then suppψi,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,N,k‖p < ε.

Proof. Given ε > 0. From Theorem 3.3.2 we know that there is an M and an fM

such that

∀n ∈ {−2M+N , . . . , 2M+N − 1}, fM is constant on IM,n,

and

‖f − fM‖p <
ε

21/p
.

Therefore,

ρ(f, fM) < εp/2. (3.1)

Additionally, from Theorem 3.3.1, we know that there is a K = K(ε) and a sequence

of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

ai,jψi,j, where each ai,j ∈ C

such that

∀k > K, ‖fM − fM,N,k‖p <
ε

21/p
.
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Therefore,

∀k > K, ρ(fM , fM,N,k) < εp/2. (3.2)

From (3.1) and (3.2) we have

ρ(f, fM,N,k) ≤ ρ(f, fM) + ρ(fM , fM,N,k) = εp,

therefore,

∀k > K, ‖f − fM,N,k‖p < ε.

Remark 3.3.4. Major work in wavelet theory for 0 < p < 1 is due to Oswald [74],

Filippov [30, 31, 33], and Laugesen [59]. They use the terminology, “representation

systems”, as well as wavelet systems, and they have provided a significant and deep

analysis of such systems, e.g., including modulus of continuity criteria. Although

Theorem 3.3.3 is a special case of one of their results, i.e., Theorem 1 [33], Filip-

pov and Oswald do not quantify the weights of the approximants nor study their

supports. In fact, Theorem 3.3.3, with its emphasis on support, was proved indepen-

dently by Benedetto about 1990 using standard wavelet techniques that had been

recently developed for L2 by Meyer [68], Daubechies [21], and Mallat [65].

Researchers have made important contributions to the study of representation

systems [24, 30, 31, 50, 75, 76, 99] since they were introduced in 1968 by Talaljan as

a generalization of the notion of basis [95]. These contributions range from approx-

imation by polynomials [25, 85, 90, 91] and by series of exponentials [56], to more

general integer translates [3]. Further work has been done to study approximation
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properties of representation systems for complete orthogonal systems [95, 96], and

to provide conditions under which subsystems or incomplete systems would satisfy

the properties of representation systems [30–33,97].

Remark 3.3.5. There are several mathematical motivations for having the support

of wavelet approximants being contained in the support of the given function. In

measure theory, if µ is a complex regular Borel measure on R, then µ is an element

of the dual space of C0(R), which is the space of continuous functions vanishing

at infinity, taken with the sup norm (by the Riesz representation theorem). Any

such µ can be approximated in the weak ∗-topology by a net of discrete measures,

where the supports of the discrete measures are contained in suppµ, see, e.g., [10,

42]. Another motivation is from the topic of spectral synthesis where synthesizable

pseudo-measures µ are defined by the property that they can be approximated in

the weak ∗-topology by discrete measures whose supports are contained in suppµ,

see, e.g., [9].

Example 3.3.6. Figure 3.1, shows a graphical representation of the averages’ and

errors’ constructions used in the proof of Theorem 3.3.1.

Figure 3.1: Construction of f−1 and e−1 from f0 with N = 1 and M = 0.
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Example 3.3.7. This numerical example leads to the constants α and β in the

proof of Theorem 3.3.1. For illustration purpose the function f0 = f is defined in

[−2, 2), with N = 1 and M = 1. The function f0 can be viewed as the following

vector:

f0 = [ 2 4 0 −2 −4 0 4 8 ]

f−1 = [ 3 3 −1 −1 −2 −2 6 6 ]

e−1 = f0 − f−1 = [ −1 1 1 −1 −2 2 −2 2 ]

f−2 = [ 1 1 1 1 2 2 2 2 ]

e−2 = f−1 − f−2 = [ 2 2 −2 −2 −4 −4 4 4 ]

Since m = 1 . . .M +N , this is as far as we go and obtain α = 2, and β = 1. In this

example, f+,− = f−2.

Example 3.3.8. Figure 3.2 shows a graphical representation of the construction of

sα used in the proof of Theorem 3.3.1.

Figure 3.2: Construction of sα2 using a sum of Haar functions. From left to right, the first plot

represents the function fα, the second plot represents the functions fα1 and fα2 in solid and dotted

lines respectively, the third plot represents the sum sα2 = fα1 + fα2 , and the fourth plot represents

the approximation error fα − sα2 .

Example 3.3.9. Figure 3.3 shows an example of the sum approximating the com-
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pactly supported normalized sinc function:

f(t) =
sin(πt)

πt
1[−2,2).

Figure 3.3: Approximation of the continuous compactly supported sinc function with N = 1 and

M = 3, represented in blue in all three plot. From left to right, in the second plot the red graph

(step function) corresponds to the double sum sM,N = f0 − f+,−, and in the third plot the red

graph (step function) corresponds to the final approximation f3,1,3 of f .

Example 3.3.10. Figure 3.4 shows an example of the sum approximating the com-

pactly supported Gaussian function:

f(t) = e−πt
2

1[−2,2).
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Figure 3.4: Approximation of the continuous compactly supported Gaussian function with N = 1

and M = 3, represented in blue in all three plot. From left to right, in the second plot the red

graph (step function) corresponds to the double sum sM,N = f0 − f+,−, and in the third plot the

red graph (step function) corresponds to the final approximation f3,1,3 of f .

Example 3.3.11. Figure 3.5 shows an example of the sum approximating the com-

pactly supported Poisson function:

f(t) = e−2π|t|1[−2,2).

Figure 3.5: Approximation of the continuous compactly supported Poisson function with N = 1

and M = 4, represented in blue in all three plot. From left to right, in the second plot the red

graph (step function) corresponds to the double sum sM,N = f0 − f+,−, and in the third plot the

red graph (step function) corresponds to the final approximation f4,1,4 of f .
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Example 3.3.12. Figure 3.6 shows an example of the sum approximating the com-

pactly supported Fejér function:

f(t) =

(
sin(πt)

πt

)2

1[−2,2).

Figure 3.6: Approximation of the continuous compactly supported Fejér function with N = 1

and M = 3, represented in blue in all three plot. From left to right, in the second plot the red

graph (step function) corresponds to the double sum sM,N = f0 − f+,−, and in the third plot the

red graph (step function) corresponds to the final approximation f3,1,3 of f .

3.3.2 2-dimensional

Theorem 3.3.13. Given N > 0. Let f ∈ Lp(R2), where 0 < p < 1, and suppose

supp f ⊆ [−2N , 2N ] × [−2N , 2N ]. Assume that there exists M such that for n =

(n1, n2) ∈ {−2M+N , . . . , 2M+N − 1} × {−2M+N , . . . , 2M+N − 1}, f is constant on

SM,n. Then for all ε > 0, there is a sequence of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

a
(v)
i,j ψ

(v)
i,j + a

(h)
i,j ψ

(h)
i,j + a

(d)
i,j ψ

(d)
i,j , a

(v)
i,j , a

(h)
i,j , a

(d)
i,j ∈ C,
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indexed by k ≥ 1, where SM,N,k ⊆ Z×Z2 and cardSM,N,k <∞; and these sums have

the following properties:

if (i, j) ∈ SM,N,k then suppψ
(v)
i,j , ψ

(h)
i,j , ψ

(d)
i,j ⊆ supp f,

and

∀k > K, ‖f − fM,N,k‖p < ε/2.

Proof. Let us define f0 = f so that f0 is constant on SM,n. We define f−1 as the

2× 2-block average of the function f0. By that we mean for all t = (t1, t2) ∈ SM−1,n,

where n = (n1, n2) ∈ {−2M+N−1, . . . , 2M+N−1 − 1} × {−2M+N−1, . . . , 2M+N−1 − 1},

f−1(t) =
1

4

(
f0

(
2n

2M

)
+ f0

(
2n1

2M
,
2n2 + 1

2M

)
+ f0

(
2n1 + 1

2M
,
2n2

2M

)
+ f0

(
2n+ 1

2M

))
,

i.e., f−1 is constant on SM−1,n. We define f−2 as the 2 × 2-block average of the

function f−1, i.e., f−2 is constant on SM−2,n, and so on. Let us also define the error

function e−1 = f0 − f−1, i.e., e−1 is constant on SM,n; and e−2 = f−1 − f−2, i.e., e−2

is constant on SM−1,n; and so on. With a method similar to the one used in the

proof of Theorem 3.3.1 we approximate f0 as

f0 = f+,− + sM,N ,

where

sM,N =
M+N∑
m=1

∑
n1

∑
n2

a
(v)
M−m,nψ

(v)
M−m,n + a

(h)
M−m,nψ

(h)
M−m,n + a

(d)
M−m,nψ

(d)
M−m,n,
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and

a
(v)
M−m,n = 2−2(M−m)/p e

(v)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

a
(h)
M−m,n = 2−2(M−m)/p e

(h)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

a
(d)
M−m,n = 2−2(M−m)/p e

(d)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

for all m and n = (n1, n2). The functions e
(v)
−m, e

(h)
−m and e

(d)
−m are respectively

the vertical, horizontal, and diagonal blockwise average of e−m. Note that the

function e−m is constant on SM−m+1,n and so would the functions e
(v)
−m, e

(h)
−m and

e
(d)
−m. The latter averages are defined as follow, for all t ∈ SM−m,n, where n ∈

{−2M+N−m, . . . , 2M+N−m−1}×{−2M+N−m, . . . , 2M+N−m−1}, and m ∈ {1, . . . ,M+

N},

e
(v)
−m

(
2n

2M

)
= e

(v)
−m

(
2n1

2M
,
2n2 + 1

2M

)
=

1

2

(
e−m

(
2n

2M

)
+ e−m

(
2n1

2M
,
2n2 + 1

2M

))
,

e
(v)
−m

(
2n1 + 1

2M
,
2n2

2M

)
= e

(v)
−m

(
2n+ 1

2M

)
=

1

2

(
e−m

(
2n1 + 1

2M
,
2n2

2M

)
+ e−m

(
2n+ 1

2M

))
;

e
(h)
−m

(
2n

2M

)
= e

(h)
−m

(
2n1 + 1

2M
,
2n2

2M

)
=

1

2

(
e−m

(
2n

2M

)
+ e−m

(
2n1 + 1

2M
,
2n2

2M

))
,

e
(h)
−m

(
2n1

2M
,
2n2 + 1

2M

)
= e

(h)
−m

(
2n+ 1

2M

)
=

1

2

(
e−m

(
2n1

2M
,
2n2 + 1

2M

)
+ e−m

(
2n+ 1

2M

))
; and
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e
(d)
−m

(
2n

2M

)
= e

(d)
−m

(
2n1 + 1

2M
,
2n2 + 1

2M

)
=

1

2

(
e−m

(
2n

2M

)
+ e−m

(
2n1 + 1

2M
,
2n2 + 1

2M

))
,

e
(d)
−m

(
2n1

2M
,
2n2 + 1

2M

)
= e

(d)
−m

(
2n1 + 1

2M
,
2n2

2M

)
=

1

2

(
e−m

(
2n1

2M
,
2n2 + 1

2M

)
+ e−m

(
2n1 + 1

2M
,
2n2

2M

))
.

The function f+,− is defined as

f+,− = f++ + f−+ + f−− + f+−,

where

f++ = fα = α 1[0,2N )×[0,2N ), α =
1

22(M+N)

2M+N−1∑
n1=0

2M+N−1∑
n2=0

f0

( n1

2M
,
n2

2M

)
;

f−+ = fβ = β 1[−2N ,0)×[0,2N ), β =
1

22(M+N)

−1∑
n1=−2M+N

2M+N−1∑
n2=0

f0

( n1

2M
,
n2

2M

)
;

f−− = fγ = γ 1[−2N ,0)×[−2N ,0), γ =
1

22(M+N)

−1∑
n1=−2M+N

−1∑
n2=−2M+N

f0

( n1

2M
,
n2

2M

)
;

and

f+− = f δ = δ 1[0,2N )×[−2N ,0), δ =
1

22(M+N)

2M+N−1∑
n1=0

−1∑
n2=−2M+N

f0

( n1

2M
,
n2

2M

)
.

We construct sums sα, sβ, sγ, and sδ to approximate fα, fβ, fγ, and f δ,

respectively. These sums can be constructed using either one of the functions ψ(v),

ψ(h), or ψ(d) alone, squeezing the error to the left and right, top and bottom, or first

and second diagonal of the support respectively. In this proof we use the vertical
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function ψ(v). For sα we proceed as follows. Define

fα1 = sα1 = α22N/pψ
(v)
−N,(0,0) = αψ(v)(2−N t),

fα2 = 2α22(N−1)/p(ψ
(v)
−N+1,(1,0) + ψ

(v)
−N+1,(1,1)),

sα2 = sα1 + fα2 ,

fα − sα2 = 4α 1[2N−2N/22,2N )×[0,2N ).

Next, define

fα3 = 4α22(N−2)/p
3∑
i=0

ψ
(v)
−N+2,(3,i),

sα3 = sα2 + fα3 ,

fα − sα3 = 8α 1[2N−2N/23,2N )×[0,2N ).

In general, we have

fαk = 2k−1α22(N−k+1)/p

2k−1−1∑
i=0

ψ
(v)

−N+k−1,(2k−1−1,i),

sαk = sαk−1 + fαk ,

fα − sαk = 2kα 1[2N−2N/2k,2N )×[0,2N ).

Consequently, for all p > 0,

‖fα − sαk‖Lp(R2) = ((2kα)p2N−k2N)1/p = α22N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fα − sαk‖Lp(R2) = 0.
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Similarly, for sβ, we have

fβ1 = sβ1 = −β22N/pψ
(v)
−N,(−1,0),

fβk = −2k−1β22(N−k+1)/p

2k−1−1∑
i=0

ψ
(v)

−N+k−1,(−2k−1,i)
,

sβk = sβk−1 + fβk ,

fβ − sβk = 2kβ 1[−2N ,−2N+2N/2k)×[0,2N ).

Consequently, for all p > 0,

‖fβ − sβk‖Lp(R2) = ((2kβ)p2N−k2N)1/p = β22N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fβ − sβk‖Lp(R2) = 0.

Similarly, for sγ, we have

fγ1 = sγ1 = −γ22N/pψ
(v)
−N,(−1,−1),

fγk = −2k−1γ22(N−k+1)/p

−1∑
i=−2k−1

ψ
(v)

−N+k−1,(−2k−1,i)
,

sγk = sγk−1 + fγk ,

fγ − sγk = 2kγ 1[−2N ,−2N+2N/2k)×[−2N ,0).

Consequently, for all p > 0,

‖fγ − sγk‖Lp(R2) = ((2kγ)p2N−k2N)1/p = γ22N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fγ − sγk‖Lp(R2) = 0.
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Finally, for sδ, we have

f δ1 = sδ1 = δ22N/pψ
(v)
−N,(0,−1),

f δk = 2k−1δ22(N−k+1)/p

−1∑
i=−2k−1

ψ
(v)

−N+k−1,(2k−1−1,i),

sδk = sδk−1 + f δk ,

f δ − sδk = 2kδ 1[2N−2N/2k,2N )×[−2N ,0).

Consequently, for all p > 0,

‖f δ − sδk‖Lp(R2) = ((2kδ)p2N−k2N)1/p = δ22N/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖f δ − sδk‖Lp(R2) = 0.

Let cm = max {α, β, γ, δ}, we need

(2kα)p2N−k2N + (2kβ)p2N−k2N + (2kγ)p2N−k2N + (2kδ)p2N−k2N <
( ε

2

)p
,

this means

k >
log(ε)− log(22+1/pcm22N/p)

(1− 1/p) log(2)
.

Take

K =

⌈
log(ε)− log(22+1/pcm22N/p)

(1− 1/p) log(2)

⌉
,

and

fM,N,k = sαk + sβk + sγk + sδk + sM,N ,

therefore, for all k > K and for all 0 < p < 1 we have

‖f − fM,N,k‖p < ε/2.
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Theorem 3.3.14. Given N > 0. Let f ∈ Lp(R2), where 0 < p < 1, and suppose f

is a continuous function on R
2, with supp f ⊆ [−2N , 2N ]× [−2N , 2N ]. Then,

∀ε > 0, ∃M = M(ε) > 0 and fM , such that

∀n ∈ {−2M+N , . . . , 2M+N − 1}× {−2M+N , . . . , 2M+N − 1}, fM is constant on SM,n,

and

‖f − fM‖p < ε/2.

Proof. Define fM as

fM(t) =
2M+N−1∑

n1=−2M+N

2M+N−1∑
n2=−2M+N

f(tn) 1SM,n
, where tn ∈ SM,n.

The sequence {fM}, M = 0, 1, 2, . . . is uniformly convergent to f on [−2N , 2N) ×

[−2N , 2N). Thus, for ε > 0 as in the statement, we take ε0 = (ε/2)/(22(N+1)/p).

Then, there is M0 > 0 such that,

∀M > M0 and ∀t ∈ [−2N , 2N)× [−2N , 2N), |f(t)− fM(t)| < ε0.

Hence, for M > M0 we have

‖f − fM‖p =

(∫
|f(t)− fM(t)|p dt

)1/p

≤

(∫ 2N

−2N

∫ 2N

−2N
( sup
t∈[−2N ,2N )×[−2N ,2N )

|f(t)− fM(t)|)p dt

)1/p

<

(∫ 2N

−2N

∫ 2N

−2N
(ε0)

p dt

)1/p

= (22(N+1)εp0)
1/p

= 22(N+1)/p ε/2

22(N+1)/p

= ε/2.
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Theorem 3.3.15. Given N > 0. Let f ∈ Lp(R2), where 0 < p < 1, and suppose f

is a continuous function on R
2, with supp f ⊆ [−2N , 2N ] × [−2N , 2N ]. Then for all

ε > 0, there is an M = M(ε), and there is a sequence of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

a
(v)
i,j ψ

(v)
i,j + a

(h)
i,j ψ

(h)
i,j + a

(d)
i,j ψ

(d)
i,j , a

(v)
i,j , a

(h)
i,j , a

(d)
i,j ∈ C,

indexed by k ≥ 1, where SM,N,k ⊆ Z×Z2 and cardSM,N,k <∞; and these sums have

the following properties:

if (i, j) ∈ SM,N,k then suppψ
(v)
i,j , ψ

(h)
i,j , ψ

(d)
i,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,N,K‖p < ε.

Proof. Given ε > 0. From Theorem 3.3.14 we know that there is an M and an fM

such that

∀n ∈ {−2M+N , . . . , 2M+N − 1}× {−2M+N , . . . , 2M+N − 1}, fM is constant on SM,n,

and

‖f − fM‖p <
ε

21/p
.

Therefore,

ρ(f, fM) < εp/2. (3.3)

Additionally, from Theorem 3.3.13, we know that there is aK = K(ε) and a sequence

of sums,

fM,N,k =
∑

(i,j)∈SM,N,k

a
(v)
i,j ψ

(v)
i,j + a

(h)
i,j ψ

(h)
i,j + a

(d)
i,j ψ

(d)
i,j , where each a

(v)
i,j , a

(h)
i,j , a

(d)
i,j ∈ C,
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such that

∀k > K, ‖f − fM,N,k‖p <
ε

21/p
.

Therefore,

∀k > K, ρ(fM , fM,N,k) < εp/2. (3.4)

From (3.3) and (3.4) we have

ρ(f, fM,N,k) ≤ ρ(f, fM) + ρ(fM , fM,N,k) = εp,

therefore,

∀k > K, ‖f − fM,N,k‖p < ε.

Example 3.3.16. This numerical example leads to the constants α, β, γ, and δ

as well as the functions e
(v)
−m, e

(h)
−m, and e

(d)
−m in the proof of Theorem 3.3.13. For

illustration purpose the function f0 = f is defined in [−2, 2)× [−2, 2), with N = 1

and M = 0. The function f0 can be viewed as the following matrix:

f0 =



0 −2 3 2

−2 8 5 2

−3 4 5 2

7 0 −1 2


, f−1 =



1 1 3 3

1 1 3 3

2 2 2 2

2 2 2 2


, e−1 =



−1 −3 0 −1

−3 7 2 −1

−5 2 3 0

5 −2 −3 0


.

Since m = 1 . . .M +N , this is as far as we go and obtain α = 3, β = 1, γ = 2, and
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δ = 2. Since in our example f+,− = f−1, for m = 1 we also have

e
(h)
−1 =



−2 −2 −1/2 −1/2

2 2 1/2 1/2

−3/2 −3/2 3/2 3/2

3/2 3/2 −3/2 −3/2


,

e
(v)
−1 =



−2 2 1 −1

−2 2 1 −1

0 0 0 0

0 0 0 0


, e

(d)
−1 =



3 −3 −1/2 1/2

−3 3 1/2 −1/2

−7/2 7/2 3/2 −3/2

7/2 −7/2 −3/2 3/2


.

Example 3.3.17. Figure 3.7 shows a graphical representation of the construction

of sα used in the proof of Theorem 3.3.13.

Figure 3.7: Construction of sα2 using a sum of Haar functions. These are projection of 3-d plot

onto 2-d planes, the numbers α, β, γ, δ, and their multiples represent the height of the function

on the third dimension. From left to right, the first plot represents the function f+,−, the second

plot represents the function fα1 , the third plot represents the function fα2 (made up of two Haar

functions added together), and the fourth plot represents the sum sα2 = fα1 + fα2 .

Example 3.3.18. Figure 3.8 shows an example of the sum approximating the com-
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pactly supported normalized sinc2 function:

f(t1, t2) =
sin(πt1)

πt1

sin(πt2)

πt2
1[−2,2)×[−2,2).

Figure 3.8: Approximation of the compactly supported sinc2 function with N = 1 and M = 3.

From left to right, the first plot corresponds to the sinc2 function, the second plot corresponds

to the triple sum representing sM,N = f0 − f+,−, and the third plot corresponds to the final

approximation f3,1,3 of f .

Example 3.3.19. Figure 3.9 shows an example of the sum approximating the com-

pactly supported Gaussian2 function:

f(t1, t2) = e−π(t
2
1+t

2
2)1[−2,2)×[−2,2).
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Figure 3.9: Approximation of the compactly supported Gaussian2 function with N = 1 and

M = 3. From left to right, the first plot corresponds to the Gaussian2 function, the second plot

corresponds to the triple sum representing sM,N = f0 − f+,−, and the third plot corresponds to

the final approximation f3,1,3 of f .

Example 3.3.20. Figure 3.10 give an example of the sum approximating the com-

pactly supported Poisson2 function:

f(t1, t2) = e−2π(|t1|+|t2|)1[−1,1)×[−1,1).

Figure 3.10: Approximation of the compactly supported Poisson2 function with N = 0 and

M = 5. From left to right, the first plot corresponds to the Poisson2 function, the second plot

corresponds to the triple sum representing sM,N = f0 − f+,−, and the third plot corresponds to

the final approximation f5,0,5 of f .
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Example 3.3.21. Figure 3.11 shows an example of the sum approximating the

compactly supported Fejér2 function:

f(t1, t2) =

(
sin(πt1)

πt1

sin(πt2)

πt2

)2

1[−2,2)×[−2,2).

Figure 3.11: Approximation of the compactly supported Fejér2 function with N = 1 and M = 3.

From left to right, the first plot corresponds to the Fejér2 function, the second plot corresponds

to the triple sum representing sM,N = f0 − f+,−, and the third plot corresponds to the final

approximation f3,1,3 of f .

3.4 Adaptive Haar approximation

Definition 3.4.1. Let f ∈ Lp(R, p > 0 such that supp f = [A,B] with A,B ∈ R.

Given the Haar function ψ, the Adaptive Haar dyadic wavelet system for ψ as an

element of Lp(R) is the sequence {ψ̃m,n : (m,n) ∈ Z×Z}, where each ψ̃m,n is defined

as

ψ̃m,n(t; s, c) = (2m/p)1/pψ(2m(t− s)/c− n) on R.

Where s = (A+B)/2 and c = (B − A)/2.
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The support of ψ̃m,n is Ĩm,n, with

Ĩm,n =

[
cn

2m
+ s,

c(n+ 1)

2m
+ s

)
,

and

‖ψ̃m,n(t; s, c)‖Lp(R) =

(∫
|ψ̃m,n(t; s, c)|p dt

)1/p

=
(

(2m/c)|Ĩm,n|
)1/p

= 1.

Theorem 3.4.2. Let f ∈ Lp(R), where 0 < p < 1, and suppose supp f ⊆ [A,B]

where A,B ∈ R. Assume that there exists M such that for n ∈ {−2M , . . . , 2M − 1},

f is constant on ĨM,n. Then, for all ε > 0, there is a sequence of sums,

fM,k =
∑

(i,j)∈SM,N,k

ãi,jψ̃i,j, ãi,j ∈ C,

indexed by k ≥ 1, where SM,N,k ⊆ Z × Z and cardSM,N,k < ∞ with the following

properties:

if (i, j) ∈ SM,N,k then supp ψ̃i,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,k‖p < ε/2.

Proof. The proof follows directly from the proof of Theorem 3.3.1. With N = 0, let

s = (A+B)/2 and c = (B − A)/2 as in Definition 3.4.1, we proceed as follows. As

in Proof 3.3.1 we have:

f0 = f+,− +
M∑
m=1

2M−m−1∑
n=−2M−m

ãM−m,nψ̃M−m,n,

f0 = f+,− + sM .

.
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With

ãM−m,n = c1/p2−(M−m)/p e−m

(
2n

2M−m+1

)
for all m and n,

and

f+,− = f+ + f−,

where

f+ = fα = α 1[s,B), and α =
1

2M

2M−1∑
n=0

f0

( n

2M

)
;

f− = fβ = β 1[A,s), and β =
1

2M

−1∑
n=−2M

f0

( n

2M

)
.

We construct sums sα, and sβ to approximate fα, and fβ, respectively. For

sα, we proceed as follows. Define

fα1 = sα1 = αc1/pψ̃0,0,

fαk = 2k−1αc1/p2(−k+1)/pψ̃k−1,2k−1−1,

sαk = sαk−1 + fαk ,

fα − sαk = 2kα 1[B−c/2k,B).

Consequently, for all p > 0,

‖fα − sαk‖Lp(R) = ((2kα)pc2−k)1/p = αc1/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fα − sαk‖Lp(R) = 0.
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Similarly, for sβ, we have

fβ1 = sβ1 = −βc1/pψ̃0,−1,

fβk = −2k−1βc1/p2(−k+1)/pψ̃k−1,−2k−1 ,

sβk = sβk−1 + fβk ,

fβ − sβk = 2kβ 1[A,A+c/2k).

Consequently, for all p > 0,

‖fβ − sβk‖Lp(R) = ((2kβ)pc2−k)1/p = βc1/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fβ − sβk‖Lp(R) = 0.

Let cm = max {α, β}, we need

(2kα)pc2−k + (2kβ)pc2−k <
( ε

2

)p
,

this means

k >
log(ε)− log(21+1/pcmc

1/p)

(1− 1/p) log(2)
.

Let us take

K =

⌈
log(ε)− log(21+1/pcmc

1/p)

(1− 1/p) log(2)

⌉
,

and

fM,k = sαk + sβk + sM ;

therefore, for all k > K and for all 0 < p < 1 we have

‖f − fM,k‖p < ε/2.
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Theorem 3.4.3. Let f ∈ Lp(R), where 0 < p < 1, and suppose f is a continuous

function on R, with supp f ⊆ [A,B]. Then,

∀ε > 0, ∃M = M(ε) > 0 and fM , such that

∀n ∈ {−2M , . . . , 2M − 1}, fM is constant on ĨM,n,

and

‖f − fM‖p < ε/2.

Proof. Directly from the proof of Theorem 3.3.2, with N = 0, we define fM as

fM(t) =
2M−1∑
n=−2M

f(tn) 1ĨM,n
, where tn ∈ ĨM,n.

Since f is defined on [A,B), as in Proof 3.3.2, we take ε0 = (ε/2)/(2c1/p), and for

M > M0 we have

‖f − fM‖p < ε/2.

Theorem 3.4.4. Let f ∈ Lp(R), where 0 < p < 1 suppose f is a continuous function

on R, with supp f ⊆ [A,B]. Then, for all ε > 0, there is an M = M(ε), and there

is a sequence of sums,

fM,k =
∑

(i,j)∈SM,k

ãi,jψ̃i,j, ãi,j ∈ C,

indexed by k ≥ 1, where SM,k ⊆ Z × Z and cardSM,k < ∞, with the following

properties:

if (i, j) ∈ SM,k then supp ψ̃i,j ⊆ supp f,
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and

∃K = K(ε) such that ∀k > K, ‖f − fM,k‖p < ε.

Proof. Directly following from the proof of Theorem 3.3.3, with N = 0, we use

Theorem 3.4.3 and Theorem 3.4.2, and follow the step as in Proof 3.3.3.

Example 3.4.5. Figure 3.12 shows an example of the sum approximating the com-

pactly supported normalized sinc function:

f(t) =
sin(πt)

πt
1[0.5,2).

Figure 3.12: Approximation of the continuous compactly supported sinc function with support

[.5, 2] and M = 5, represented in blue in all three plot. From left to right, in the second plot the

red graph (step function) corresponds to the double sum sM = f0 − f+,−, and in the third plot

the red graph (step function) corresponds to the final approximation of f .

Example 3.4.6. Figure 3.13 shows an example of the sum approximating the com-

pactly supported normalized sinc function added to a linear function:

f(t) = t+
sin(πt)

πt
1[−2,4).
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Figure 3.13: Approximation of the continuous compactly supported function f(t) with support

[−2, 4] and M = 5, represented in blue in all three plot. From left to right, in the second plot the

red graph (step function) corresponds to the double sum sM = f0 − f+,−, and in the third plot

the red graph (step function) corresponds to the final approximation of f .

Definition 3.4.7. Let f ∈ Lp(R2, p > 0 such that supp f = [A,B] × [C,D] and

A,B,C,D ∈ R. Given the Haar functions ψ(v), ψ(h), and ψ(d), the adaptive Haar

dyadic wavelet system for ψ(v), ψ(h), and ψ(d) as elements of Lp(R2) is the sequence

{ψ̃(v)
m,n, ψ̃

(h)
m,n, ψ̃

(d)
m,n : (m,n) ∈ Z×Z2}, where each ψ̃

(v)
m,n, ψ̃

(h)
m,n, and ψ̃

(d)
m,n are defined as

ψ̃(v)
m,n(t; s, c) =

(
22m

c1c2

)1/p

ψ(v)

(
2m(t− s1)

c1
− n1,

2m(t− s2)
c2

− n2

)
,

ψ̃(h)
m,n(t; s, c) =

(
22m

c1c2

)1/p

ψ(h)

(
2m(t− s1)

c1
− n1,

2m(t− s2)
c2

− n2

)
,

ψ̃(d)
m,n(t; s, c) =

(
22m

c1c2

)1/p

ψ(d)

(
2m(t− s1)

c1
− n1,

2m(t− s2)
c2

− n2

)
.

Where s = (s1, s2) = ((A + B)/2, (C + D)/2) and c = (c1, c2) = ((B − A)/2, (D −

C)/2).

The support of ψ̃
(v)
m,n, ψ̃

(h)
m,n, and ψ̃

(d)
m,n is Ĩm,n, with

Ĩm,n =

[
c1n1

2m
+ s1,

c1(n1 + 1)

2m
+ s1

)
×
[
c2n2

2m
+ s2,

c2(n2 + 1)

2m
+ s2

)
,
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and

‖ψ̃(v)
m,n(t; s, c)‖Lp(R2) = ‖ψ̃(h)

m,n(t; s, c)‖Lp(R2) = ‖ψ̃(d)
m,n(t; s, c)‖Lp(R2) = 1.

Theorem 3.4.8. Let f ∈ Lp(R2), where 0 < p < 1, and suppose supp f ⊆ [A,B]×

[C,D]. Assume that there exists M such that for n = (n1, n2) ∈ {−2M , . . . , 2M −

1} × {−2M , . . . , 2M − 1}, f is constant on ĨM,n. Then for all ε > 0, there is a

sequence of sums,

fM,k =
∑

(i,j)∈SM,k

ã
(v)
i,j ψ̃

(v)
i,j + ã

(h)
i,j ψ̃

(h)
i,j + ã

(d)
i,j ψ̃

(d)
i,j , ã

(v)
i,j , ã

(h)
i,j , ã

(d)
i,j ∈ C,

indexed by k ≥ 1, where SM,k ⊆ Z × Z
2 and cardSM,k < ∞; and these sums have

the following properties:

if (i, j) ∈ SM,k then supp ψ̃
(v)
i,j , ψ̃

(h)
i,j , ψ̃

(d)
i,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,k‖p < ε/2.

Proof. The proof follows directly from the proof of Theorem 3.3.13. With N = 0,

let s and c as in Definition 3.4.7, we proceed as follows. As in Proof 3.3.13 we have:

f0 = f+,− + sM ,

where

sM =
M∑
m=1

∑
n1

∑
n2

ã
(v)
M−m,nψ̃

(v)
M−m,n + ã

(h)
M−m,nψ̃

(h)
M−m,n + ã

(d)
M−m,nψ̃

(d)
M−m,n,
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with

ã
(v)
M−m,n = (c1c2)

1/p2−2(M−m)/p e
(v)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

ã
(h)
M−m,n = (c1c2)

1/p2−2(M−m)/p e
(h)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

ã
(d)
M−m,n = (c1c2)

1/p2−2(M−m)/p e
(d)
−m

(
2n1

2M−m+1
,

2n2

2M−m+1

)
,

for all m and n = (n1, n2); and the function f+,− is defined as

f+,− = f++ + f−+ + f−− + f+−,

where

f++ = fα = α 1[s,B)×[s,D),

f−+ = fβ = β 1[A,s)×[s,D),

f−− = fγ = γ 1[A,s)×[C,s),

f+− = f δ = δ 1[s,B)×[C,s).

We construct sums sα, sβ, sγ, and sδ to approximate fα, fβ, fγ, and f δ, respectively,

using the vertical function ψ(v). For sα we proceed as follows. Define

fα1 = sα1 = α(c1c2)
1/pψ̃

(v)
0,(0,0),

fαk = 2k−1α(c1c2)
1/p22(−k+1)/p

2k−1−1∑
i=0

ψ̃
(v)

k−1,(2k−1−1,i),

sαk = sαk−1 + fαk ,

fα − sαk = 2kα 1[B−c1/2k,B)×[s2,D).

Consequently, for all p > 0,

‖fα − sαk‖Lp(R2) = ((2kα)pc12
−kc2)

1/p = α(c1c2)
1/p2k(1−1/p),
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and for all 0 < p < 1,

lim
k→∞
‖fα − sαk‖Lp(R2) = 0.

Similarly, for sβ, we have

fβ1 = sβ1 = −β(c1c2)
1/pψ̃

(v)
0,(−1,0),

fβk = −2k−1β(c1c2)
1/p22(−k+1)/p

2k−1−1∑
i=0

ψ̃
(v)

k−1,(−2k−1,i)
,

sβk = sβk−1 + fβk ,

fβ − sβk = 2kβ 1[A,A+c1/2k)×[s2,D).

Consequently, for all p > 0,

‖fβ − sβk‖Lp(R2) = ((2kβ)pc12
−kc2)

1/p = β(c1c2)
1/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖fβ − sβk‖Lp(R2) = 0.

Similarly, for sγ, we have

fγ1 = sγ1 = −γ(c1c2)
1/pψ̃

(v)
0,(−1,−1),

fγk = −2k−1γ(c1c2)
1/p22(−k+1)/p

−1∑
i=−2k−1

ψ̃
(v)

k−1,(−2k−1,i)
,

sγk = sγk−1 + fγk ,

fγ − sγk = 2kγ 1[A,A+c1/2k)×[C,s2).

Consequently, for all p > 0,

‖fγ − sγk‖Lp(R2) = ((2kγ)p(c1c2)
1/p2−k)1/p = γ(c1c2)

1/p2k(1−1/p),
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and for all 0 < p < 1,

lim
k→∞
‖fγ − sγk‖Lp(R2) = 0.

Finally, for sδ, we have

f δ1 = sδ1 = δ(c1c2)
1/pψ̃

(v)
0,(0,−1),

f δk = 2k−1δ(c1c2)
1/p22(−k+1)/p

−1∑
i=−2k−1

ψ̃
(v)

k−1,(2k−1−1,i),

sδk = sδk−1 + f δk ,

f δ − sδk = 2kδ 1[B−c1/2k,B)×[C,s2).

Consequently, for all p > 0,

‖f δ − sδk‖Lp(R2) = ((2kδ)p(c1c2)
1/p2−k)1/p = δ(c1c2)

1/p2k(1−1/p),

and for all 0 < p < 1,

lim
k→∞
‖f δ − sδk‖Lp(R2) = 0.

Let cm = max {α, β, γ, δ}, we need

(2kα)pc12
−kc2 + (2kβ)pc12

−kc2 + (2kγ)pc12
−kc2 + (2kδ)pc12

−kc2 <
( ε

2

)p
,

this means

k >
log(ε)− log(22+1/pcm(c1c2)

1/p)

(1− 1/p) log(2)
.

Let us take

K =

⌈
log(ε)− log(22+1/pcm(c1c2)

1/p)

(1− 1/p) log(2)

⌉
,

and

fM,k = sαk + sβk + sγk + sδk + sM ,
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therefore, for all k > K and for all 0 < p < 1 we have

‖f − fM,k‖p < ε/2.

Theorem 3.4.9. Let f ∈ Lp(R2), where 0 < p < 1, and suppose f is a continuous

function on R
2, with supp f ⊆ [A,B]× [C,D]. Then,

∀ε > 0, ∃M = M(ε) > 0 and fM , such that

∀n ∈ {−2M , . . . , 2M − 1} × {−2M , . . . , 2M − 1}, fM is constant on ĨM,n,

and

‖f − fM‖p < ε/2.

Proof. Directly following from the proof of Theorem 3.3.14, with N = 0, we define

fM as

fM(t) =
2M−1∑

n1=−2M

2M−1∑
n2=−2M

f(tn) 1ĨM,n
, where tn ∈ ĨM,n.

Since f is defined on [A,B)×[C,D), as in Proof 3.3.14, we take ε0 = (ε/2)/(4(c1c2)
1/p),

and for M > M0 we have

‖f − fM‖p < ε/2.

Theorem 3.4.10. Let f ∈ Lp(R2), where 0 < p < 1, and suppose f is a continuous

function on R
2, with supp f ⊆ [A,B] × [C,D]. Then for all ε > 0, there is an

M = M(ε), and there is a sequence of sums,

fM,k =
∑

(i,j)∈SM,k

ã
(v)
i,j ψ̃

(v)
i,j + ã

(h)
i,j ψ̃

(h)
i,j + ã

(d)
i,j ψ̃

(d)
i,j , ã

(v)
i,j , ã

(h)
i,j , ã

(d)
i,j ∈ C,
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indexed by k ≥ 1, where SM,k ⊆ Z × Z
2 and cardSM,k < ∞; and these sums have

the following properties:

if (i, j) ∈ SM,k then supp ψ̃
(v)
i,j , ψ̃

(h)
i,j , ψ̃

(d)
i,j ⊆ supp f,

and

∃K = K(ε) such that ∀k > K, ‖f − fM,K‖p < ε.

Proof. Directly following from the proof of Theorem 3.3.15, with N = 0, we use

Theorem 3.4.9 and Theorem 3.4.8, and follow the step as in Proof 3.3.15.

Example 3.4.11. Figure 3.14 shows an example of the sum approximating the

compactly supported normalized sinc2 function:

f(t1, t2) =
sin(πt1)

πt1

sin(πt2)

πt2
1[−2,0)×[−1,1).

Figure 3.14: Approximation of the compactly supported sinc2 function with support [−2, 0] ×

[−1, 1] and M = 5. From left to right, the first plot corresponds to the sinc2 function, the second

plot corresponds to the triple sum representing sM = f0− f+,−, and the third plot corresponds to

the final approximation of f .
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Example 3.4.12. Figure 3.15 shows an example of the sum approximating the

compactly supported mixture of Gaussian function:

f(t1, t2) = e−π(t
2
1+t

2
2) + e−π(t

2
1+(t2+2)2)

1[−2,2)×[−3,1).

Figure 3.15: Approximation of the compactly supported function f(t1, t2) with M = 5. From

left to right, the first plot corresponds to the mixture of Gaussian function, the second plot corre-

sponds to the triple sum representing sM = f0 − f+,−, and the third plot corresponds to the final

approximation.

3.5 Conclusion

In this chapter, we demonstrated the construction of a Haar approximation

from within for compactly supported function f ∈ Lp(Rd), 0 < p < 1 and d = 1, 2.

In particular, we were able to show that we can construct approximants with sup-

port contained in the support of f . This important feature has not been shown

to be possible in the space of L2 functions. Our main results are given in Theo-

rems 3.3.3, 3.3.15, 3.4.4, and 3.4.10.
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Chapter 4: On the classification of multiton enhancers

4.1 Introduction

The work in this chapter is in collaboration with Dr. Ivan Ovcharenko and

his research group at the National Center for Biotechnology Information (NCBI)

within the National Library of Medicine (NLM), which is a branch of the National

Institutes of Health (NIH).

The project goal is to identify the signature patterns of enhancers which are

particular deoxyribonucleic acid (DNA) segments containing multiple transcription

factor binding sites that increase or enhance the likelihood of gene expression. The

research group extracted the distinct DNA sequence encryption of singleton en-

hancers which are enhancers without any other tissue-specific enhancers in the same

locus; these are different from redundant enhancers and multiple enhancers of the

same locus. Redundant enhancers are a source of evolutionary novelty [45] and

have been celebrated among scientists for its breakthrough in preventing the loss

of genes’ function due to mutation [35, 73, 79]. The extracted encryptions allow for

the development of an accurate sequence classifier and can identify a subset of re-

dundant enhancers with similar sequence signatures to singleton enhancers called

singleton-like multiton enhancers. Enhancers from DNA sequences have been pre-
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dicted using methods such as support vector machine (SVM) and deep learning

algorithms demonstrated in experiments by D. Lee et al., B. Zhu et al., and B. Ali-

panahi et al. [2,60,106]. We ascertained that these singleton-like multiton enhancers

had properties similar to that of singleton enhancers and would act as primary ac-

tivators of gene transcription by establishing connections with distal enhancers. To

analyze the differences and similarities between singleton-like multiton enhancers

and singleton enhancers, we had to determine a way to distinguish the singleton-

like multiton enhancers given a set of redundant enhancers. The following sections

describe our methodology and results.

4.2 Dataset and strategy

The data available has several lists of enhancers (both singleton and redun-

dant) that were extracted for and organized by various tissues such as the heart,

liver, brain, etc. These lists of enhancers were extracted and described by Dr. Irina

Hashmi; these lists may be obtained with the permission of Dr. Ivan Ovcharenko

and his research group at NCBI. With access to the entire human reference genome

19 (hg19), made available from the public database Roadmap MNEMONICS bed

files [58], we were able to extract random DNA sequences to treat as a control.

Control sets were pulled from the entire hg19 due to the lack of prior examples of

singleton-like multiton enhancers to use as the training set for the classification.

For a given tissue, the plan was to build a classifier by training it over a

combination set of tissue-specific singleton enhancers (positive set) and a set of
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randomly selected aforementioned DNA sequences (negative set). The resulting

classifier was then applied to the corresponding set of redundant enhancers with

the expectation that the set will be split into two groups due to their significant

difference in genomic sequence. The two groups would be those that identify as

singleton enhancers (singleton-like multiton enhancers) and the rest (non-singleton-

like multiton enhancers).

To determine the classifiers performance in identifying singleton enhancers we

paid attention to two measures: the receiver operating characteristics area under

the curve (auROC) also known as the receiver operating characteristic (ROC) [67,

107] and the accuracy of the classification in both specificity (true negative rate)

and sensitivity (true positive rate). There are three important choices to make

when classifying data: control set, feature extraction method, classification method.

Moving forward, we will present our considerations and final choices.

4.3 Control

Given there are no prior results or examples of singleton-like enhancers, our

chosen control set used to build the singleton-vs-rest (SVR) classifier determined the

final results, interpretations, and conclusion. With an inaccurate control set, our

findings could lack objectivity; therefore, it was ideal that a good balance between

bias and variance within the selected DNA sequences.

107



4.3.1 Random sequences

From a mathematical standpoint, a control set would consist of randomly

selected DNA sequences from the entire hg19 with a few fair requirements. First,

the control set should have the same number of DNA sequences as the corresponding

set of singleton enhancers. Second, the randomly selected sequences should have the

same length as the sequences of singleton enhancers used as the positive set. The

issue with this type of control set is that the resulting SVR does not quite fit into

the purpose of this project. With the goal to use the SVR to partition a given

set of redundant enhancers between singleton-like multiton enhancers and the non-

singleton-like multiton enhancers, both the negative class and positive class should

have properties attributed to enhancers. These considerations helped determine our

second candidate for the control set.

4.3.2 Guanine/Cytosine (GC) content

The GC content is the ratio of the number of G and C over the total num-

ber of G, C, Adenine (A), and Thymine (T) in a DNA sequence. The GC content

of enhancers is usually lower than the average in the genome [40, 54] except for

transcribed enhancers. After considering this difference, the control set is selected

randomly with the same aforementioned requirements with the addition of the same

GC content of the sequences in both the positive class and negative class. A lim-

itation of this type of control is that it does not allow for much variation between

the two sets, and the results appeared nearly randomized. Also, it is important to
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note that keeping the GC content the same, keeps the AC content the same as well

as the repeat content (the number of missing nucleotides in a DNA sequence over

the length of the sequence).

4.3.3 Repeat content

For this choice of control set, we kept the length of the randomly selected

sequences the same as those in the positive class. Furthermore, we kept the repeat

content the same, while relaxing the condition on the GC content (or equivalently

the AC content) which reduces the bias while increasing variance within the control

set.

4.4 Feature extraction

Given a biological tissue, the positive class (the corresponding set of singletons)

and the negative class (the corresponding set of controls) was selected and the

next phase was to decide which set of features to extract which will allow for the

transformation of a given DNA sequence into a numerical vector that a computer

can understand and process for the best classification results.

The following four feature extraction techniques are thoroughly explained in

the KeBABS software manual [77]. As a brief summary of terms:

• Spectrum: The feature space consists of all sub-sequence of length k (con-

secutive k nucleotides known as k-mers). During the extraction we considered

reverse complements to be identical to their forward counterpart.
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• Mismatch: With parameters k and m the feature space still consists of all

the k-mers; with m representing the maximum number of mismatches allowed

for each k-mer.

• Gappy pair: With parameter k and m the feature space consists of a pair of

k-mers separated by a maximum of m arbitrary nucleotides in the sequence.

• Motif : The feature space consists of a pre-defined list of these features.

After experimenting with these four methods, the Spectrum and Motif list of

features performed better on average than the Mismatch and the Gappy pair list

of features on the data set. Mismatch and Gappy pair have an advantage over the

other two methods when the DNA sequences in the data set have been genetically

transformed. On one hand, with the Mismatch, some of the nucleotides were ge-

netically changed and on the other hand, with the Gappy pair some nucleotides

were introduced into the original sequences. The Motif feature space is suitable for

our purpose because it constitutes a pre-defined list of features, called transcrip-

tion factors, built within a biological framework. Therefore, the Motif feature space

provided the most meaningful conclusions based on the classification results. The

Spectrum feature space is a natural choice and gives the best classification results

over the other methods with k = 1, 2, 5, 6 or 7. With low values of k, the interpre-

tation of the classification results were close to meaningless as the list of features

was not yet significant. Fortunately, with a high value for k (i.e. k = 6) the list of

features is rich enough and can be used to deduce meaningful interpretations. Using

the Spectrum feature space, an algorithm exists to map a list of k-mers with the
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value of k high enough to corresponding lists of transcription factors. The latter

choice gave the ideal balance between classification accuracy and interpretability.

4.5 Classification and techniques

In machine learning, it is imperative to use an appropriate classification method.

This section provides insights on our method of choice.

4.5.1 Multi-layer vs single-layer model

For a given biological tissue, the average number of singleton enhancers (posi-

tive class) available is in the order of hundreds; and, using k-mers to extract the fea-

ture vector (with k = 6) results in numerical vectors of dimension equal to m = 2048.

In general, multi-layer methods such as neural networks and deep learning require

a very large amount of training data (in the order of ten thousands in this case)

to produce significant results [51, 80]. In this case, it was not advantageous to use

multi-layer methods; therefore, single-layer methods were chosen.

4.5.2 Classification algorithm

After experimenting with a few single-layer classification methods, e.g., clas-

sification trees, k-nearest neighbors, SVM, and regularized least square regression

(Lasso), we found that SVM and Lasso produced the best classification results which

became our methods of focus. After a series of tests, the classification algorithm of

choice became SVM, for two reasons: SVM performs better than Lasso on average
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and Lasso is a regularized method equipped with a parameter search algorithm thus

making it time consuming compared to SVM when constructing new models.

4.5.3 Regularization methods

After selecting a classification algorithm for our dataset in which there is an

average of hundreds of data samples in each dataset and dimension exceeding the

thousand, the next step is to improve the results by exploring some regularization

methods. Two regularization methods were examined: feature reduction (feature

selection) and feature scaling. There is a clear distinction between the two methods

as feature reduction assumes only a few features are significantly contributing to

the classification results and attempts to find those features. Examples of feature

reduction algorithm include: principal component analysis (PCA), sequential feature

selection, and enrichment (most expressed features). On the other hand, feature

scaling assumes that all the features are important, although some are more highly

expressed. The goal is to scale all the features accordingly so that no feature is at a

disadvantage thus given each feature a chance to influence the outcome. The best

improvement of the results used feature scaling combined with SVM which also sped

up convergence.

4.6 Cardiac tissue results

In this section we describe select results that were obtained using the data

corresponding to cardiac tissue (E105) in the heart. The positive class corresponds
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to the set of singleton enhancers and the negative class (control) consists of randomly

selected DNA sequences with controlled (or matching) repeat content. Since the

control set is selected at random, the results shown here are the average over 20

repetitions or various set of controls. Table 4.1 and Table 4.2 show the same type

of results using Motifs and Spectrum (6-mers) respectively for feature extraction.

E105 (Heart) AUC tr AUC ts Acc Spe Sen

SVM (Motifs) 1 0.8103 72.78 % 72.24 % 73.33 %

PCA(20) + SVM (Motifs) 0.8647 0.8634 65.22 % 70.61 % 59.83 %

Scale + SVM (Motifs) 0.8785 0.8729 60.05 % 84.86 % 35.23 %

Table 4.1: Classification results with Motifs as the feature extraction method. The first row

shows results using SVM without regularization. The second row shows results using SVM with

feature reduction, PCA is used to reduce the dimension from m = 2048 to 20. The third row

shows results using SVM with feature scaling. The following abbreviations are used in the table:

tr (training), ts (testing), Acc (accuracy), Spe (specificity), Sen (sensitivity).
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E105 (Heart) AUC tr AUC ts Acc Spe Sen

SVM (6-mers) 1 0.8438 76.97 % 78.10 % 75.85 %

PCA(20) + SVM (6-mers) 0.8981 0.8786 80.51 % 85.58 % 75.44 %

Scale + SVM (6-mers) 0.9025 0.8934 80.41 % 79.12 % 81.70 %

Table 4.2: Classification results with 6-mers as the feature extraction method. The first row

shows results using SVM without regularization. The second row shows results using SVM with

feature reduction, PCA is used to reduce the dimension from m = 2048 to 20. The third row

shows results using SVM with feature scaling. The following abbreviations are used in the table:

tr (training), ts (testing), Acc (accuracy), Spe (specificity), Sen (sensitivity).

Within both tables of data, the first rows show the results obtained when

applying SVM directly, the second rows pre- process the data using PCA with 20

principal components before pushing the data through SVM, and the third rows

pre-process the data using scaling before pushing the data through SVM.

The need to pre-process the data comes from our first row of results (the

first rows in Table 4.1 and Table 4.2). When looking at the ROCs area under the

curve for the training and the testing data, it is clear that the SVM algorithm

is overfitting the data as there is a big gap between the two numbers. In terms

of feature extraction methods, two observations can be made: first, although the

overfitting issue is resolved, accuracy suffers when using Motifs (shown in Table 4.1)

to extract features compare to Spectrum (shown in Table 4.2). Second, the difference

between specificity and sensitivity when using Motifs indicate that one of the classes
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is highly favored over the other. Therefore, Spectrum was used as the feature

extraction method of choice.

Figure 4.1: ROC for training and testing for the heart tissue, using scaling then SVM (6-mers).

4.7 Conclusion

In this chapter, we constructed an optimal classifier to identify the signature

patterns of enhancers in order to analyze the differences and similarities between

singleton-like multiton enhancer and singleton enhancers. After applying all the

following factors: extracting the features using 6-mers, pre-processing the data us-

ing scaling, and using SVM as the classification algorithm of choice, Figure 4.1

shows how close the ROC for the testing data (in blue) compared to the ROC for

the training data (in red). These results are an indication of a reached optimal

classification.

115



Chapter 5: Analysis of the T2-store-T2 magnetic resonance relaxom-

etry experiment with N exchanging sites

5.1 Introduction

The work in this chapter is in collaboration with Dr. Richard G. Spencer and

his research group, the Magnetic Resonance Imaging and Spectroscopy Section at

the National Institute on Aging (NIA), a branch of the National Institutes of Health

(NIH).

Magnetic resonance imaging (MRI) is a tool that has been increasingly used

as a sensitive, noninvasive imaging method for diagnosing anatomy and pathology,

including osteoarthritis. In nuclear magnetic resonance (NMR) relaxation experi-

ments, the relaxation time, T1, is often referred to as spin-lattice relaxation time,

and it describes the regrowth of net sample magnetization along the axis defined by

the main magnetic field; this regrowth occurs between radio-frequency pulses and

moves towards the thermal equilibrium value given by Curies law. The relaxation

time, T2, is often referred to as spin-spin relaxation time or transverse relaxation

time, and it defines the rate of magnetization loss perpendicular to the main mag-

netic field as a function of time following an excitation radio-frequency pulse [28,36].
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This decay occurs due to spin dephasing, which results from both random motion

and small susceptibility differences within the material under investigation. T2 is

often used in biomedical magnetic resonance as a marker of anatomical pathology,

such as early degeneration in articular cartilage [70,82].

Methods have been developed to improve the analysis of relaxation times

including multi-exponential transverse relaxation analysis [49, 81, 83], multivariate

analysis [81], and support vector regression [49]. Methods for measuring relaxation

time have also been derived using the effect of exchange on saturation factors [46,47]

and magnetizations using the one pulse sequence [89]. These methods have been

further optimized through prior knowledge of the parameter range [55]. Addition-

ally, Galban and Spencer [37] used progressive saturation to measure relaxation time

and chemical exchange rates in multiple sites.

Two-dimensional relaxometry experiments define correlations between relax-

ation times. A T2-store-T2 experiment consists of a period of T2 sensitization,

followed by a period of longitudinal magnetization storage, and a final period of

T2-sensitive signal acquisition. The first detailed 2-compartment analysis of a T2-

store-T2 experiment was used to analyze exchange of water between two compart-

ments [69]. This experiment can be used to demonstrate the existence of exchange

between water compartments, as well as the rate of exchange. Note that in this

context, compartments and sites refer to different water environments that may

spatially coincide, but exhibit distinct T1 or T2 relaxation behavior. This may be

due to loose binding with macromolecules. Washburn and Callaghan [101] consid-

ered up to four sites when observing the movement of water over time between pores
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or sites, differing in sizes in Castlegate sandstone.

The goal of our study was to numerically implement equations (3)-(14) de-

veloped by Monteilhet et al. [69] by developing the system of coupled differential

equations driving the relaxation and exchange of the magnetization in the sites.

After verifying our implementation, we developed an extension of the results to N

sites, where N ≥ 2. All simulations were performed in MATLAB.

5.2 2 sites experiment and notation

The T2-store-T2 experiment consists of three time-intervals. The first interval

is a pulse train consisting of a 90-degree excitation pulse followed by a train of

echo-producing 180-degree pulses. At the end of the sequence, a 90-degree flip-up

pulse is applied to store the magnetization along the z-axis for the duration of the

second interval. During this storage interval, magnetization is exchanged between

water sites; the effects of exchange are greater for longer storage times. Thereafter,

the longitudinal magnetization is re-converted to transverse magnetization with an

additional 90-degree pulse. During the third period, a second pulse train consisting

of n echo pulses following this excitation pulse is applied, with the series of echo

intensities recorded. The following notation is used in our analysis:

• M (i) represents the magnetization at site i.

• M (i)
eq represents the equilibrium magnetization at site i.

• kij represents the exchange rate from site i to site j.
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• T (i)
1 and T

(i)
2 represent the relaxation times at site i.

• R(i) = 1/T (i) represents the relaxation rate at site i.

• t1, t2, and t3 represent the duration of the first T2 period, storage period, and

second T2 period respectively.

• N represents the number of sites.

Given two sites, “1” and “2”, the system of coupled differential equations governing

the relaxation of the magnetization at the sites are well known [66], viz.,
dM(1)

dt
= −k12M (1) + k21M

(2) +R(1)(M
(1)
eq −M (1)),

dM(2)

dt
= −k21M (2) + k12M

(1) +R(2)(M
(2)
eq −M (2)),

(5.1)

and the detailed balance equation for this system is given by:

k12M
(1)
eq = k21M

(2)
eq . (5.2)

An implementation of the detailed solution to system (5.1) provided in Monteilhet’s

paper [69], viz., equations (3)-(14), was done using the following parameters:

• M (1)
eq = M

(2)
eq = 0.5.

• T (1)
2 = 0.25 ms, T

(2)
2 = 2.5 ms, and T

(1)
1 = T

(2)
1 = 1 s.

• t1 = t3 = logspace(−1, 1, 128) ms, i.e., 128 logarithmically spaced values from

10−1 to 101, and t2 = 0.2, 1.0 and 5.0 ms.

• k = k12 = k21 with k = 0.2, 1.0 and 5.0 ms−1.
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The implementation of the solution to system (5.1) provided by Monteilhet yields

the results shown here in Figure 5.1.

Figure 5.1: Calculated two sites T2-store-T2 spectra with increasing exchange rate k = 0.2, 1.0

and 5.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

The plots in Figure 5.1 represent the observed two-dimensional magnetization

signal at the end of the experiment, and the axes correspond to relaxation times.

The peaks are artificially broadened using a blurring technique to make them visi-

ble. A contour plot of the signal is shown in each plot for various storing times t2
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and exchange rates k. The diagonal peaks represent the T2 relaxation time of the

underlying components at the sites. The off-diagonal peaks arise due to ongoing

exchange between these components; therefore, their positions are defined by the

two diagonal peaks corresponding to the sites involved in the exchange. Note that

as the storage time increases so does the amplitude of the off-diagonal peaks, which

implies a greater exchange between the sites. The rate at which the exchange hap-

pens depends on the parameter k; therefore, we ascertain that for slower exchange

rate, k, molecules are not entirely transferred from one site to the other, however,

for faster exchange rate we observe a complete transfer of molecules from one site

to the other. In either case, the observed T2 value resolve at an intermediate value

between the two sites, this is more noticeable the faster the exchange happens, i.e.,

for larger values of k. This happens because the relaxation time T2 characterizes

of the molecules found in each site; therefore, at the end of the exchange the sites

are occupied by a mixture of molecules given rise to the observed hybrid relaxation

time. It is worth mentioning that in practical applications, the observed magnetiza-

tion signal is processed using the inverse Laplace transform to produce the results

we have here, which are then used to determine the value of unknown parameters

such as k. In the absence of storage time (t2 = 0) or with small enough storage time

(t2 ≈ 0) there would not be any visible off-diagonal peaks. A storage time allowing

for the transfer from one site to another to take place is essential to the experiment,

since useful information is derived from the exchange. In section 5.3, we provided a

general solution to system (5.1), i.e., for N ≥ 2 sites, using techniques of ordinary

differential equation.
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5.3 Extension to N sites

This section details our steps to extend system (5.1) to a system with an

arbitrary number of sites, N . In this case, the system of equations can be given as:

dM (i)

dt
= −

N∑
j 6=i

kijM
(i) +

N∑
j 6=i

kjiM
(j) +R(i)(M (i)

eq −M (i)), ∀i = 1 . . . N, (5.3)

and the detailed balance equations are given by:

N∑
j 6=i

kijM
(i)
eq −

N∑
j 6=i

kjiM
(j)
eq = 0, ∀i = 1 · · ·N. (5.4)

Next, we used the detailed balance equations (5.4) to turn the system of equations

(5.3) from a non-homogeneous system to a homogeneous system,

d(M (i) −M (i)
eq )

dt
= (−R(i) −

N∑
j 6=i

kij)(M
(i) −M (i)

eq ) +
N∑
j 6=i

(kji(M
(j) −M (j)

eq )), (5.5)

which were rewritten using matrices and vectors:

dX

t
= AX, (5.6)

where X = M−Meq is an N × 1 column vector with

M =



M (1)

M (2)

...

M (N)


and Meq =



M
(1)
eq

M
(2)
eq

...

M
(N)
eq


;
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and where A is an N ×N matrix such that,

A =



−R(1) −
∑N

j 6=1 k1j k21 k31 · · · kN1

k12 −R(2) −
∑N

j 6=2 k2j k32 · · · kN2

k13 k23
. . .

... kN3

...
...

...
. . .

...

k1N k2N k3N · · · −R(N) −
∑N−1

j=1 kNj


.

The solution to the differential equation (5.6) is given as:

X = exp (At)X(t = 0)

M = exp (At)(M(t = 0)−Meq) + Meq,

with M(t = 0) as the initial condition to the system.

This solution is used to derive the overall solution to the T2-store-T2 exper-

iment. We start from the beginning, the first period (first T2 period) right af-

ter the magnetization has been flipped to the transverse plane. Meq = 0 and

M(t = 0) = M0 to yield the solution:

M1(t) = exp (A2t)M0,

where A2 is the matrix A evaluated using the T2 relaxation time. Let t1 be the

duration of the first period so that at the end the magnitude of the magnetization

recorded can be used as the initial state for the storing period. Therefore, at the

beginning of the second period (storing period), Meq = M0 and M(t = 0) = M1(t1)

to yield the solution:

M2(t) = exp (A1t)(M1(t1)−M0) + M0,
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where A1 is the matrix A evaluated using the T1 relaxation time. Let t2 be the

duration of the second period so that at the end the magnitude of the magnetization

recorded can be used as an initial state for the third period (second T2 period). At

the beginning of the third period, Meq = 0 and M(t = 0) = M2(t2) to yield the

solution:

M3(t) = exp (A2t)M2(t2).

With t3 as the duration of the third period the observation at the end of the T2-

store-T2 is then found to be M3(t3) = M(t1, t2, t3) and was written as:

M(t1, t2, t3) = exp (A2t3)(exp (A1t2)((exp (A2t1)M0)−M0) + M0). (5.7)

A numerical implementation of our solution, i.e., equation (5.7), was done

using the same set of parameters as in section 5.2 for validation. The implemen-

tation of our solution to system (5.1) yields the results shown in Figure 5.2, these

results are congruent with the results shown previously in Figure 5.1, using the so-

lution provided by Monteilhet, which validates our solution. We use our solution in

section 5.4 to provide additional results for N ≥ 2.
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Figure 5.2: Calculated two sites T2-store-T2 spectra with increasing exchange rate k = 0.2, 1.0

and 5.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

5.4 Additional results with N ≥ 2

Additional results were obtained using the following parameters:

• N = 2, 3, 4, and 5, the number of sites is explicitly stated for each experiment.

• M (i)
eq = 1/N , for i = 1 · · ·N .

• The values of t1, t3, t2, T
(i)
1 , and T

(i)
2 are explicitly stated for each experiment.
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• k = kij, for i 6= j between 1 and N , the values of k are explicitly stated for

each experiment.

The observations made in this section are similar to those made in Section 5.2, i.e.,

the longer the storage time allowed in the experiment the more exchange between

sites is observed. This is evident in all the figures below; see Figure 5.3 and Fig-

ure 5.4. Notice the observed relaxation times T2 progressively adjust with faster

exchange rates to account for the presence of new molecules in the sites. Figure 5.5

and Figure 5.6 provide an example experiment with four sites, for the various storing

time, t2 = 0.2, 1.0, and 5.0 ms, and various exchange rates, k = 0.01, 0.05, 0.1, 0.5,

and 1.0 ms−1. Following the increasing exchange rates from left to right we can see

how the exchange progresses, starting with the four sites. Then, we progressively

observe exchanges taking place among sites until all the molecules have transfer

to the few remaining sites (notice the shift in T2 value here as well). A similar

experiment is provided for five sites; see Figure 5.7 and Figure 5.8.
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Figure 5.3: Calculated two sites T2-store-T2 spectra with increasing exchange rate k = 0.1, 0.5

and 1.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to

top.) For this experiment, T
(1)
2 = 0.25 ms, T

(2)
2 = 2.5 ms, and T

(i)
1 = 1 s, for i = 1, 2, and

t1 = t3 = logspace(−1, 1, 128) ms.
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Figure 5.4: Calculated three sites T2-store-T2 spectra with increasing exchange rate k = 0.1, 0.5

and 1.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

For this experiment, T
(1)
2 = 0.25 ms, T

(2)
2 = 1.0 ms, T

(3)
2 = 2.5 ms, and T

(i)
1 = 1 s, for i = 1, 2, 3,

and t1 = t3 = logspace(−1, 1, 128) ms.
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Figure 5.5: Calculated four sites T2-store-T2 spectra with increasing exchange rate k = 0.01, 0.05

and 0.1 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

For this experiment, T
(1)
2 = 0.1 ms, T

(2)
2 = 0.25 ms, T

(3)
2 = 1 ms, T

(4)
2 = 2.5 ms, T

(i)
1 = 1 s, for

i = 1, 2, 3, 4, and t1 = t3 = logspace(−2, 1, 128) ms.
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Figure 5.6: Calculated four sites T2-store-T2 spectra with increasing exchange rate k = 0.1, 0.5

and 1.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

For this experiment, T
(1)
2 = 0.1 ms, T

(2)
2 = 0.25 ms, T

(3)
2 = 1 ms, T

(4)
2 = 2.5 ms, T

(i)
1 = 1 s, for

i = 1, 2, 3, 4, and t1 = t3 = logspace(−2, 1, 128) ms.
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Figure 5.7: Calculated five sites T2-store-T2 spectra with increasing exchange rate k = 0.01, 0.05

and 0.1 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

For this experiment, T
(1)
2 = 0.025 ms, T

(2)
2 = 0.1 ms, T

(3)
2 = 0.25 ms, T

(4)
2 = 1 ms, T

(5)
2 = 2.5 ms,

T
(i)
1 = 1 s, for i = 1, 2, 3, 4, 5, and t1 = t3 = logspace(−2, 1, 128) ms.
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Figure 5.8: Calculated five sites T2-store-T2 spectra with increasing exchange rate k = 0.1, 0.5

and 1.0 ms−1 (left to right) and increasing storing time t2 = 0.2, 1.0 and 5.0 ms (bottom to top.)

For this experiment, T
(1)
2 = 0.025 ms, T

(2)
2 = 0.1 ms, T

(3)
2 = 0.25 ms, T

(4)
2 = 1 ms, T

(5)
2 = 2.5 ms,

T
(i)
1 = 1 s, for i = 1, 2, 3, 4, 5, and t1 = t3 = logspace(−2, 1, 128) ms.

5.5 Conclution

In this chapter, we provided a theoretical expansion of the analysis of the

T2-store-T2 magnetic resonance relaxometry experiment with N exchanging sites.

We have shown that our developed the solution using ordinary differential equation
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matches the previous solution provided by Monteilhet et al. [69] for N = 2 exchang-

ing sites. Furthermore, we provided additional results for N ≥ 2, and showed that

our mathematical results agree with physical and experimental observations, i.e.,

longer storage times allow for more exchange to take place between the sites.
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