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In case of multi-attribute decisions, when a decision maker has a limited budget for 

data collection, then the decision maker has to decide on the number of samples to 

observe from each alternative and its attributes. This allocation decision is of 

importance when the observation process is uncertain, such as with physical 

measurements. This thesis presents a sequential allocation approach in which 

measurements are conducted one at a time. Prior to making a measurement the 

decision-maker’s current knowledge of the attribute values is used to identify the 

attribute and alternative pair to sample next using all these allocation procedures.  The 

thesis discusses a simulations study that was performed to compare the Sequential 

Allocation Approach, Proportional Allocation Approach and Uniform Allocation 

Approach. We evaluated the frequency of selecting the true best alternative when the 

attribute value observations contain discrete random measurement error.  The results 

indicate that the sequential approach is significantly better than the other approaches 

when the budget is small; as the budget increases, its advantage decreases. 
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Chapter 1: Introduction 

1.1 Background 

A multi-attribute decision problem is one in which a decision maker has to select an 

alternative from a finite set of alternatives with various attributes (common for each 

alternative) describing an alternative. In a selection process, the decision-maker (the 

person responsible for selecting the best alternative), must select an alternative from a 

large number of competing performances. When the true values of the attributes are 

unknown, measurements (or samples) of the attributes can provide valuable 

information, but, because the measurement process is inaccurate, the samples are 

imperfect information.  Thus, the samples can reduce uncertainty about attribute 

values, but some uncertainty about the relative desirability of the alternatives will 

remain.  When given a limited finite budget for sampling (sample is a measure of the 

value of an attribute of the alternative), the decision maker wants to determine which 

alternatives and attributes should be sampled in order to maximize the probability of 

selecting the correct alternative.  

1.2 Motivating Examples 

This section contains the two motivating examples behind this thesis research. The 

first example looks at substitution of materials in a manufacturing set up. This 

example considers replacing a material with a better substitute by analyzing various 

properties or attributes of the original and substituting materials.    
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1.2.1 Material Substitution in a manufacturing process 

Consider a mechanical design engineer working for an automotive gear 

manufacturing company who wants to substitute an aluminum alloy for gray cast 

iron.  When looking at material selection problem for design, substitution of a 

material requires knowledge of various attributes of the material to be substituted and 

the potential substitutes. As mentioned in the Dieter and Schmidt [14], while 

considering aluminum alloy as an alternative to gray cast iron, there are many 

variations of aluminum alloy available as shown in Table 1. There are various 

attributes of these different cast iron, like strength and corrosion resistance, that are 

paramount to the performance of these aluminum alloys.  According to Dieter and 

Schmidt, cast iron has Valid strength (18 ksi), ultimate tensile strength (22ksi), shear 

strength (20 ksi) and elongation (0.5 inch). The corresponding strength properties of 

aluminum alloys are better than that of cast iron.  

There is uncertainty in the performance of the alloys which comes from the 

uncertainty in the attributes of these alloys. The firm can take samples to reduce the 

uncertainty of the attributes considering a budget constraint.  

Table 1: Mechanical properties of cast iron and alloys [Source: Dieter and Schmidt [14] 

 

The relative desirability of the different alloys depends upon the attributes or 

mechanical properties of yield strength, ultimate tensile strength, shear strength and 

Material Yield 

Strength, 

ksi 

Ultimate 

Tensile 

Strength, ksi 

Shear Strength, 

ksi 

Elongation in 

2 in, present 

Gray Cast Iron 18 22 20 0.5 

Alloy 356 15 26 18 3.5 

Alloy 360 25 26 45 3.5 

Alloy 356 28 38 38 5 
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elongation. It also depends upon the weights that reflect the importance of these 

attributes to the decision maker. This would result in a ranking and selection problem 

which forms the basis of this research. These factors and several others need to be 

considered in order to choose the best aluminum alloy for a particular application.  

1.2.2 Product Design Selection accounting for Customer preference 

Product selection by a company for its production workers is a selection problem. A 

company for instance wants to buy cordless screwdrivers for its production workers 

use. This example is based on information from Li and Azarm [18]  

The selection of an alternative from various vendors would depend upon the 

following attributes of the product: 

1. Maximum number of operations achieved with one charge of the battery. 

2. Minimum time required for one operation. 

3. Weight of the tool. 

4. Cost (attribute with the least uncertainty due to quoted prices). 

The major uncertainty about which alternative is best comes from the uncertainty in 

the attributes considered for each of the alternatives. The buyer can do sampling to 

reduce the uncertainty in the attribute values but the sampling procedure is subject to 

budget constraints.  

1.3 Research Questions 

As mentioned by Leber and Herrmann [19] when the decision maker has a limited 

finite budget for collecting information about multiple alternatives and their attributes 

for selection decision, the decision maker has to make the decision of how much of 
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the budget present for information gathering to allot to each attribute of the 

alternative. There is a certain trade-off of gathering this information. If more samples 

are used to gather information about a certain attribute of an alternative, the value of 

that attribute becomes more certain but this leaves more uncertainty about the other 

attributes which could result in uncertainty in selecting the truly best attribute. 

This thesis compares three sample allocation approaches: the sequential approach, the 

proportional approach, and the uniform approach. 

The research described in this thesis seeks to answer the following research questions: 

1. How does the relative performance of these sample allocation approaches 

vary as the total budget varies? 

2. Which characteristics of decision instances significantly degrade the 

frequency of correct selection when using these sample allocation procedures? 

For this research we are looking at discrete distributions for the measurements. The 

reason for using discrete values is that measurement devices have certain precision 

related to measurements they take. The output of the measurement from a device has 

a fixed precision depending upon the accuracy to which the device works. Thus, the 

value of measurement is a value on the discrete scale.  

1.4 Thesis Overview 

This section gives an overview of the organization of this thesis. Chapter 1 of this 

report gives a brief background of this research. It also presents the motivation behind 

this research and the research question that this thesis aims at answering. Chapter 2 of 

this report speaks about the literature reviewed for this research and the previous 

work done in this domain which forms the basis of this research. Chapter 3 explains 
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the notations used in this report followed by explaining the uncertainty in decision 

making. This chapter also explains the assumptions behind this research and explains 

the sampling approach. Chapter 4 explains in detail the problem that is being 

addressed in this research and it also explains in detail each of the sampling approach 

in detail. Chapter 5 discusses in detail the simulations conducted to evaluate these 

allocation procedures, the design of experiments which defines how these simulations 

are designed, keeping in mind the factors that effect of design of these experiments of 

the simulation and the performance comparison of each of the allocation approaches. 

Chapter 6 discusses the conclusions drawn from the analysis done in the previous 

chapter and identifies the future scope of work that can be conducted based on this 

thesis. 
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Chapter 2: Literature Review 

 

2.1 Decision Analysis 

Decision theory (or the theory of choice) is the study of the reasoning underlying 

an agent's choices. Decision theory can be broken into three 

branches: normative decision theory, which gives advice on how to make the best 

decisions, given a set of uncertain beliefs and a set of values; descriptive decision 

theory, which analyzes how existing, possibly irrational agents actually make 

decisions; and prescriptive decision theory, which tries to guide or give procedures on 

how or what we should do in order to make best decisions in line with the normative 

theory. 

For the certainty-risk-uncertainty, classification in Luce and Raiffa [6], if we assume 

that the choices are made between two actions, it is assumed to be in the realm of 

decision under: 

• Certainty if each action is known to lead invariably to a specific outcome. 

• Risk if each action leads to one of a set of specific outcomes, each outcome 

occurring with a known probability. The probabilities are assumed to be 

known to the decision maker. 

• Uncertainty if either action or both has as its consequence a set of possible 

outcomes, but where the probabilities of these outcomes are completely 

unknown or are not even meaningful. 

 

https://en.wikipedia.org/wiki/Agent_(economics)
https://en.wikipedia.org/wiki/Norm_(philosophy)
https://en.wikipedia.org/wiki/Optimal_decision
https://en.wikipedia.org/wiki/Optimal_decision
https://en.wikipedia.org/wiki/Value_(personal_and_cultural)
https://en.wikipedia.org/wiki/Optimal_decision
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The idea of decision analysis with attribute value uncertainty is used by Leber and 

Herrmann [18] to present various approaches to several approaches to incorporate 

attribute value uncertainty into the decision analysis for choosing a roofing firm based 

on data. 

Powell and Ryzhov [15] discussed the challenge of collecting information as 

efficiently as possible as because information gathering is time consuming and 

expensive. They studied the problem of making observations (measurements) to 

determine which choice is the best. The work focusses on a knowledge gradient 

strategy and its use in with a wide range of belief models, including lookup table and 

parametric and for online and offline problems. Loch et al. [12] explained the process 

of parallel and sequential testing of design alternatives. Although parallel testing is 

faster, it does not take into account the potential for learning as in serial testing. The 

paper derives an optimal strategy as a function of testing cost, prior knowledge, and 

testing lead time. 

2.2 Ranking and Selection 

The idea of ranking and selection is used in this thesis to rank a set of alternatives 

based on certain criteria and then the selection decision is made based on this ranking 

criterion. The criteria for these ranking are statistical parameters which are either 

experimentally determined or simulated using computer software.  

A great and extensive review of the concept of ranking and selection is provided in 

Kim and Nelson [19]. Their work describes the principles of ranking and selection by 

defining an indifferent zone (IZ) allocation procedure for selection of the best 

alternative. The IZ talked about in this which does not have any limits on the number 
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of observations. This procedure measures how often each alternative is observed or 

sampled and providing a probability of correct selection. Kim and Nelson [19] 

described four classes of comparisons as they relate to ranking and selection 

problems: selecting the alternative with the largest or smallest expected performance 

measure (selection of the best), comparing all alternatives against a standard 

(comparison with a standard), selecting the alternative with the largest probability of 

actually being the best performer (multinomial selection), and selecting the system 

with the largest probability of success (Bernoulli selection).  

 

Although all the previous techniques consider the allocation of samples across 

multiple alternatives with a single performance measure, while our work is focused 

on the allocation of samples across both the multiple alternatives and the multiple 

attributes, the ranking and selection techniques used in this research is based on Leber 

[5] allocation of samples across both the multiple alternatives and the multiple 

attributes. Butler et al. [20] applies the IZ procedure to a multiple attribute decision 

problem using a multiple attribute value model and combined the multiple uncertain 

attribute values using a multiple attribute decision model to provide an alternative’s 

overall performance measure to develop a sequential allocation approach. The 

ranking and selection approach used in this thesis research is based on this idea 

presented by Leber [5] in his research.  

2.3 Experiment Design for Bayesian Estimation 

Bayesian updating is the estimation technique in which the posterior distribution is 

calculated by adjusting the prior distribution or a priori in a way that is consistent 
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with the new data obtained. In this thesis research we used a Bayesian estimation 

experiment design to estimate the value of attributes of alternatives from the beliefs 

the decision-maker.  

In Chaloner and Verdinelli [4], a decision theory approach to experiment design is 

explained. The decision η must be chosen from a set Ή, and data y from a sample 

space Υ will be observed. Based on y a decision d will be chosen from D. The 

decision is in two parts: first the selection, and then the choice of a terminal decision 

d. The unknown parameters are θ, and the parameter space is Θ. A utility function is 

of the form U (d, θ, η, y). For any decision η, let 𝑈(𝜂) be the expected utility.  This 

can be determined as: 

 

𝑈(𝜂) = ∫ max
𝑑∈𝐷

∫ 𝑈 (𝑑, 𝜃, 𝜂, 𝑦) 𝑝𝜃(𝜃|𝑦, 𝜂)𝑝𝑦(𝑦|𝜂)𝑑𝜃𝑑𝑦
Θ𝑦

           (2.1) 

 

where p(.) denotes the probability density function with respect to an appropriate 

measure. The Bayesian solution to the experimental design problem is provided by 

the experimental design 𝜂∗ with the greatest utility.  That is,  

 

𝑈(𝜂) = max
𝜂∈Ή

∫ 𝑚𝑎𝑥
𝑑∈𝐷

∫ 𝑈 (𝑑, 𝜃, 𝜂, 𝑦) 𝑝(𝜃|𝑦, 𝜂)𝑝(𝑦|𝜂)𝑑𝜃𝑑𝑦
𝛩𝑦

         (2.2) 

In the research by DasGupta [16], Bayesian formulation of a typical optimal design 

problem is explained in detail. According to the research, in a strictly Bayesian 

decision theoretic setup, one has a set of parameters with a prior distribution G, a 

specific likelihood function f(x|), and a loss function L(,). Given a design, there is an 

associated Bayes rule with respect to the trio(f,L,G); an optimal design should 
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minimize over all designs the Bayes risk, i.e. the average loss of the Bayes estimate 

over all samples and the parameters. 

In the design of this research, the probability of the sample attaining a certain value in 

the measurement that is taken is estimated using a prior distribution. This prior 

distribution is used to get a posterior distribution to estimate the value of the next 

sample, 𝑥𝑖𝑗 for alternative i and attribute j.    

Chaloner and Verdinelli [4] defined the mathematics of Bayesian estimation design as 

generally the same as that in classical optimal design.  

There are 3 main routes to obtaining an optimal design: 

i. Use an equivalence theorem. 

ii. In polynomial models use inherent symmetry (if there is such symmetry) in 

the problem and convexity of the criterion function in conjunction with 

Caratheodory type bounds on the cardinality of the support, and  

iii. Use of arguments, which usually go by the name of Elfving geometry. 

2.4 Review of Previous Work 

The work done in this thesis research is based on previous work by Dennis Leber [5] 

on multi attribute decision making in a Gaussian set up. This section gives a brief 

overview of the previous work done and the extension of the work that is carried out 

as part of this research. The section also gives a brief description of the how the work 

done in this thesis is based on the previous work done. 
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2.4.1 Background 

Leber and Herrmann [18] uses Bayesian updating to maximize the probability of 

selecting the true best alternative when the attribute value observations contain 

continuous Gaussian measurement error for three different allocation procedures. The 

Uniform allocation procedure is taken as the baseline for these measurements. The 

previous work considers a case in which the decision-maker has a finite budget for 

samples. This work covers a specific class of decisions tested which is limited to the 

Gaussian data for measurements and their corresponding errors. The research 

compares the performance of the three strategies: (i) sequential (ii) proportional and 

(ii) uniform allocation procedures and concludes that the sequential sampling 

approach performs better than the non-sequential approaches. 

2.4.2 Limitations 

The work done in the above-mentioned paper discusses a continuous Gaussian 

measurement error as part of the measurement process which is a very specific case. 

Leber [5] considers the decision-makers beliefs about the attribute’s true value. To 

describe the decision-makers beliefs, only normally distributed Bayesian posterior 

distributions were considered.  

The scope of this thesis is to explain sample allocation for a finite budget for a multi-

attribute decision making process by considering that the true values of the attributes 

are unknown but their discrete error distributions are known to the decision-maker. 

This thesis also goes a step further and moves out of the domain of a Gaussian setup 

as presumed in the previous research. In this work, a general discrete distribution of 

the actual measurement and measurement error values. Although this thesis continues 
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to consider a Bayesian setting for the decision-makers knowledge of the true best 

attribute for the general case, it considers the distribution to be an unknown and 

discrete and hence is an extension of the earlier work done.  
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Chapter 3: Decision Uncertainty in Alternative Selection 

3.1 Notation 

This section describes in detail the notation and abbreviations used in this thesis. This 

notation generally follows the notation used by Leber [5].  Associated with the 

decision values and attribute values are their true values and random variables that 

describe the decision-makers beliefs about these unknown values. 

Table 2: Notation used in this research 

𝑎𝑖 An individual alternative, indexed by i, i = 1, …, m 

{𝑎1, … . , 𝑎𝑚} Set of m alternatives 

j An individual attribute j , j = 1, …, k 

𝜇𝑖𝑗 The true value of attribute j of alternative 𝑎𝑖 

𝑀𝑖𝑗 A random variable that represents the unknown value of 

attribute j of alternative 𝑎𝑖 

Ε𝑗 A random variable that represents the error of the measurement 

process for attribute j 

𝑋𝑖𝑗 A random variable that represents the outcome of measuring 

(sampling) attribute j of alternative 𝑎𝑖 

𝑥𝑖𝑗 A sample observation of the attribute j of alternative 𝑎𝑖 

𝑛𝑖𝑗 Number of samples of attribute j of alternative 𝑎𝑖 

𝜆𝑗 The decision weight associated with attribute j; 𝜆𝑗 > 0 

𝑊𝑖 Set of weights for all the attributes. 

𝜉𝑖 Decision value for alternative 𝑎𝑖 

𝑍𝑖 Random variable that represents the unknown value of the 

decision value for alternative 𝑎𝑖 

𝑧𝑖 A possible value of 𝑍𝑖 

𝑃𝑖𝑗
𝑟  Prior distribution that describes the decision-maker’s beliefs 

about 𝜇𝑖𝑗. 

𝑃𝑖𝑗
𝑠𝑡 Posterior Distribution for estimation of attribute values 
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𝑅𝑖𝑗 Set of all possible values of 𝜇𝑖𝑗 

𝑝𝑝
𝑖
 The probability that the alternative i has the maximum decision 

value 

𝑃𝐶𝑆𝑝 Probability of Correct Selection (PCS)  

 

3.2 Problem Formulation 

This section formulates the sample allocation problem.  A finite set of m distinct 

alternatives {𝑎1, … . , 𝑎𝑚} is provided. Each alternative is described by 𝑘 ≥ 2 

attributes. The true but unknown value of attribute j of alternative  𝑎𝑖 is 𝜇𝑖𝑗, i = 1, …, 

m, j = 1, …, k.  The decision-maker must select one alternative.  The decision-

maker’s preferences are modeled as a linear multi-attribute value function.  Let 𝜉𝑖 be 

the decision value of alternative i. 

𝜉𝑖 = ∑ 𝜆𝑗𝜇𝑖𝑗

𝑘

𝑗=1
 

The decision-maker would like to select the alternative with the greatest value of 𝜉𝑖. 

Because the attribute values are unknown, the decision-maker is not sure which 

alternative has the greatest value.  From the decision-maker’s perspective, the 

attribute values and the decision values are uncertain and are modeled as random 

variables (𝑀𝑖𝑗 and 𝑍𝑖).  The decision-maker will select the alternative that, given his 

beliefs about the attribute values, has the greatest probability of having the best 

(largest) decision value. 

 

The decision-maker begins with prior distributions about the attribute values 𝑃𝑖𝑗
𝑟 . 

𝑃𝑖𝑗
𝑟 (𝑣) = 𝑃{𝑀𝑖𝑗 = 𝑣} for all 𝑣 ∈ 𝑅𝑖𝑗 
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To reduce his uncertainty about the attribute values (and decision values), the 

decision-maker can obtain samples of the attributes by measuring them.  One sample 

is the result of one measurement of one attribute for one alternative.  The value of the 

sample is uncertain because the measurement process is imperfect; that is, the sample 

has an error.  Let Ε𝑗 be the random error of a measurement of attribute j (on any 

alternative), and let 𝑋𝑖𝑗 be the random variable that represents the sample of attribute j 

on alternative i: 

𝑋𝑖𝑗 = 𝜇
𝑖𝑗

+Ε𝑗 

The probability distributions of the measurement errors are known.  Due to time or 

cost constraints, the decision-maker can obtain at most B samples.  After obtaining 

these samples, the decision-maker will update his beliefs about the attribute values (to 

create 𝑃𝑖𝑗
𝑠𝑡, his subjective posterior probability distributions for the 𝑀𝑖𝑗, which also 

yield posterior probability distributions for the  𝑍𝑖) and select the alternative that, 

given these beliefs, has the greatest probability of having the best (largest) decision 

value.  In this thesis, the term “probability of correct selection” (PCS) is used to 

describe the probability that an alternative has the best (largest) decision value, and 

this is based on the decision-makers beliefs.  The equation for calculating this is given 

in Chapter 4. 

 

The decision-maker’s problem is to allocate the B samples to the different attributes 

and alternatives in a way that maximizes the likelihood that his selection is the actual 

best alternative (the one with the greatest value of 𝜉𝑖).  A sample allocation specifies 
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the values of 𝑛𝑖𝑗, the number of samples of attribute j of alternative 𝑎𝑖, such that the 

total equals B. 

 

Clearly, if B were large enough, then the decision-maker could obtain enough 

samples of every attribute of every alternative to reduce the attribute value and 

decision value uncertainty enough that the identity of the actual best alternative would 

be certain.  When B is not that large, however, the attribute value and decision value 

uncertainty create some risk that the selection is not the actual best alternative. 
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Chapter 4: Information Gathering 

This chapter describes the three sample allocation procedures tested in this thesis and 

the method for updating the decision-makers beliefs. Other procedures have been 

developed and should be studied in future research (see the discussion in Chapter 6). 

4.1 Uniform Sample Allocation Procedure 

The uniform allocation approach uses very little information to make a sample 

allocation.  Every attribute is sampled the same number of times, 𝑛𝑖𝑗 = 
𝐵

𝑘𝑚
 for i = 1, 

…, m, j = 1, …, k. 

 

If the value 
𝐵

𝑘𝑚
 is not an integer, then some values of 𝑛𝑖𝑗 will be 

𝐵

𝑘𝑚
 (the smallest 

integer greater than 
𝐵

𝑘𝑚
), and other values of 𝑛𝑖𝑗 will be 

𝐵

𝑘𝑚
 (the greatest integer less 

than 
𝐵

𝑘𝑚
).   

4.2 Proportional Sample Allocation Procedure 

This section presents the proportional allocation approach to sample allocation. This 

procedure allocates more samples to the attributes that have the greatest weights in 

the value function.  Let Λ = ∑ 𝜆𝑗
𝑘
𝑗=1 , then the number of samples allotted to each 

attribute of an alternative, 𝑛𝑖𝑗 =
𝐵𝜆𝑗

𝑚𝜆
 for i = 1, …, m, j = 1, …, k.  

Note that the total number of samples allocated to each alternative is 
𝐵

𝑚
. 
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If any calculated value is not an integer, then it should be rounded down to the next 

integer.  If the sum of the samples allocated this way is less than B, then the 

remaining samples are allocated using the uniform allocation approach. 

4.3 Sequential Sample Allocation Procedure 

This section describes the sequential allocation approach.  In this approach, the 

decision-maker updates his beliefs about the attribute and decision values after each 

sample and uses the updated beliefs to determine which attribute and alternative 

should be sampled next.  The approach includes B+1 stages.  The first B stages 

determine, for each attribute and alternative, the expected impact of obtaining one 

more sample for that attribute and alternative.  The impact is measured as the 

expected PCS.  The attribute and alternative that yield the greatest expected PCS will 

be sampled in the next stage. 

The stage-wise sequential sampling approach is graphically described in Figure 1.  

Stage 0 begins by evaluating the expected PCS for each possible new sample (the 

“Analyze PCS” step) and determining which one will yield the greatest expected PCS 

(the “Allocation decision” step).  Stages 1 to B-1 obtain the desired sample and 

update the decision-makers beliefs about that attribute (the “Sample” step), repeat the 

Analyze PCS step with the updated beliefs, and make a new allocation decision.  

Stage B obtains the last sample and updates the decision-maker’s beliefs; then it 

determines the PCS for each alternative and selects the alternative with the greatest 

PCS (the “Selection decision” step). 
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Figure 1: Sequential sample Allocation 

 

Bayesian estimation is used to define posterior distribution to describe the decision-

maker’s knowledge of the true attribute value, 𝜇𝑖𝑗, of attribute j of alternative 𝑎𝑖. 

Samples are allocated to attributes, the decision makers decision-maker’s prior beliefs 

about 𝜇𝑖𝑗 can be described by the prior distribution for the random variable 𝑀𝑖𝑗.  

These random variables are independent.  The random variable 𝑍𝑖 represents the 

uncertain value of 𝜉𝑖.  𝑍𝑖 = ∑ 𝜆𝑗𝑀𝑖𝑗
𝑘
𝑗=1 .  Let 𝑅𝑖𝑗 be the set of all possible values of 

𝑀𝑖𝑗.  The prior probability distribution is represented by Equation (4.1). 

𝑃𝑟
 𝑖𝑗(𝑤𝑖𝑗) = 𝑃{𝑀𝑖𝑗 = 𝑤𝑖𝑗} ∀ 𝑤𝑖𝑗 ∈ 𝑅𝑖𝑗             (4.1) 

Let 𝑆𝑖𝑗 be the set of all possible values for 𝑍𝑖, 𝑧 ∈ 𝑆𝑖 iff ∃ 𝑣𝑖1 ∈ 𝑅𝑖1, 𝑣𝑖2 ∈

𝑅𝑖2 … … 𝑣𝑖𝑘 ∈ 𝑅𝑖𝑘 such that 𝑧 = ∑ 𝜆𝑗
𝑘
𝑗=1 𝑣𝑖𝑗 . The decision-maker’s prior distribution 

for the decision value can be described by the distribution in Equation (4.2). 

𝑃𝑟
𝑖(𝑧) = 𝑃{𝑍𝑖 = 𝑧}              (4.2) 
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𝑃𝑟
𝑖𝑗(𝑍𝑖 = 𝑧) = ∑ ∑ … . . ∑ 𝐼(∑ 𝜆𝑗

𝑘

𝑗=1
𝑤𝑖𝑗 = 𝑧

𝑤𝑖𝑘∈𝑅𝑖𝑘𝑤𝑖2∈𝑅𝑖2𝑤𝑖1∈𝑅𝑖1

) ∏ 𝑃𝑟
𝑖𝑗(𝑤𝑖𝑗)

𝑘

𝑗=1

  

          (4.3) 

Where 𝐼() is the indicator function defined as 𝐼(𝐴) = 𝐼𝐴 = 𝐼(𝐴) = {
1   𝑖𝑓 𝐴 𝑖𝑠 𝑡𝑟𝑢𝑒

 0   𝑖𝑓 𝐴 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
 

.The distribution is used in later to derive a selection rule and an allocation rule to 

maximize the probability that the decision-maker makes a correct selection. 

The alternative with the largest decision value is the decision-maker’s preferred 

alternative. Given the decision-maker’s knowledge of each decision value (the prior 

equations described in Equation (4.4)), Equation (4.5) gives the probability, 𝑝�̂�, that 

alternative 𝑎𝑖 has the largest decision value: 

   𝑝𝑖
𝑝 = 𝑃(𝑍𝑖 > 𝑍𝑟∀𝑟 = 1, … , 𝑚; 𝑟 ≠ 𝑖)  (4.4)  

If the decision-maker selects alternative 𝑎𝑖, let the probability of correct selection 

(PCS) be the probability that 𝑎𝑖 has the largest decision value (Equation (4.5)). 

                𝑃𝐶𝑆𝑝 = 𝑝𝑝
𝑖

= 𝑃(𝜉𝑖 > 𝜉𝑟∀𝑟 = 1, … , 𝑚; 𝑟 ≠ 𝑖)           (4.5)                                                    

The decision maker who wants to maximize 𝑃𝐶𝑆𝑝 will select 𝑎𝑖 where 𝑠 =

 𝑎𝑟𝑔 max
𝑖

�̂�𝑖. We refer to this procedure as multinomial selection because it is 

consistent with existing multinomial selection procedures  Note that when developing 

OCBA, Chen and Lee [7] defined OCB in a manner similar to Equation (4.5) but 

suggested that alternative be selected according to their expected decision value 
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In stage 𝑡 =  0, … , 𝐵 − 1 , the approach analyzes the available information and 

identifies the alternative and attribute to sample in stage 𝑡 + 1 (that is, the next 

sample is allocated to that alternative and attribute).  

Let 𝒙𝑖𝑗(𝑡 ) = 𝑥𝑖𝑗1, … 𝑥𝑖𝑗(𝑡)  be the data collected in stages 1, … , 𝑡 for alternative 𝑎𝑖  

and attribute 𝑗. Let 𝒙𝒊(𝑡)  =  𝒙𝑖1(𝑡), … , 𝒙 𝑖𝑘(𝑡) and 𝑿(𝑡) =  𝒙1(𝑡), … , 𝒙𝑚(𝑡 ). We 

note that in any stage 𝑡 =  0, … , 𝐵 , the probability, 𝑝𝑝
𝑖
, that alternative 𝑎𝑖 has the 

largest decision value can be calculated (Equation (4.6)) and the alternative 𝑎𝑠 where 

𝑝𝑠  = arg max
𝑖

𝑝𝑖
𝑝
 and 𝑝𝑠  = arg max

𝑖
𝑝�̂� identified. Thus, the 𝑃𝐶𝑆𝑝 at stage 𝑡 is as 

described in Equation (4.7). 

𝑝𝑠
𝑝

= ∑ 𝑃{𝑍𝑠 = 𝑧𝑠}𝑃{𝑍𝑟 ≤ 𝑧𝑠, 𝑟 = 1, … , 𝑚; 𝑟 ≠ 𝑠}

𝑧𝑠∈𝑆𝑠

 

𝑝𝑠
𝑝

= ∑ 𝑃{𝑍𝑠 = 𝑧𝑠} ∏ 𝑃{𝑍𝑟 ≤ 𝑧𝑠}

𝑟≠𝑠𝑧𝑠∈𝑆𝑠

 

𝑝𝑠
𝑝

= ∑ 𝑃{𝑍𝑠 = 𝑧𝑠} ∏ ∑ 𝑃{𝑍𝑟 = 𝑧𝑟}𝑧𝑟∈𝑆𝑟𝑟≠𝑠𝑧𝑠∈𝑆𝑠
  (4.6) 

𝑃𝐶𝑆𝑝(𝑡) = max
𝑠

 𝑝𝑠
𝑝  (4.7) 

Because the probability distributions of the decision values are independent, the joint 

posterior probability distribution of 𝑍1, … , 𝑍𝑚 is the product of the individual 

marginal distributions. 
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To make the sample allocation decision at stage 𝑡, we note that the next 

sample, 𝑥𝑖𝑗(𝑡+1), observed from alternative and attribute pair (𝑎𝑖 , 𝑗), will lead to a new 

𝑃𝐶𝑆 value. Although the value of the sample and the subsequent new 𝑃𝐶𝑆 cannot be 

known until the observation is made, the probability distribution of each can be 

described based upon the decision-maker’s current knowledge. The distribution of the 

new observation is described by its predictive distribution with density 

𝑃𝑜
𝑖𝑗(𝑣|𝑥(𝑡)) = ∑ 𝑃𝑗(𝑣|µ𝑖𝑗)𝑃𝑟 (µ𝑖𝑗|𝒙𝑖𝑗(𝑡 ))+∞

µ𝑖𝑗=−∞ . For each of the 𝑚𝑘 alternative 

and attribute pairs, assuming that the selection is to be made using the multinomial 

selection approach, the expected 𝑃𝐶𝑆𝑝 in stage 𝑡 + 1 if attribute 𝑗 of alternative 𝑎𝑖 is 

sampled can be calculated according to Equation (4.8) 

𝐸(𝑃𝐶𝑆𝑖𝑗
𝑝

(𝑡 + 1)) = ∑ 𝑃𝑖𝑗(𝑣|𝑥(𝑡))

𝑣𝑖𝑗∈𝑅𝑖𝑗

[max
𝑠

∑ 𝑃𝑜
𝑠
𝑝(𝑧𝑠|𝑋(𝑡), 𝑣𝑖𝑗) ∏ ∑ 𝑃𝑜

𝑟
𝑝(𝑧𝑟|𝑋(𝑡), 𝑣𝑖𝑗)

𝑧𝑟∈𝑆𝑟,𝑧𝑟≤𝑧𝑠𝑟≠𝑠𝑧𝑠∈𝑆𝑠

]  

      (4.8) 

The sequential allocation approach allocates the sample in stage t +1 to the alternative 

and attribute pair that yields the maximum 𝐸(𝑃𝐶𝑆𝑖𝑗
𝑝 (𝑡 + 1)). Upon collecting the 

final observation in stage 𝐵, the approach calculates the probability, 𝑝𝑖
𝑝
, that 

alternative 𝑎𝑖 has the largest decision value according to Equation (4.3) and identifies 

the selected alternative, 𝑎𝑠 , where 𝑠 =  𝑎𝑟𝑔 max
𝑖

𝑝𝑖
𝑝
. 

4.4 Summary 

This chapter presented the sample allocation approaches that were tested in this study.  

Although the uniform and proportional allocation approaches are conceptually simple 
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and are easy to implement, the sequential allocation approach requires extensive 

calculations at each stage because it must update the decision-maker’s beliefs with 

each sample and then determine the expected outcome of the next sample.  At each 

stage, this requires determining mk values of expected PCS. Each expected PCS 

calculation requires considering every possible value of that attribute and performing 

the updates and PCS calculations. Thus, the computational effort of the sequential 

allocation approach grows as the number of alternatives, number of attributes, and 

number of possible attribute values increase. 
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Chapter 5:  Simulation Results 
 

This chapter talks about the detailed simulations carried out for the purpose of this 

research. Section 5.1 explains the simulation approach including the Design of 

Experiments (DOE) carried for the purpose of this research. The results of the 

simulation study are explained in the Section 5.2 and results are summarized in 

Section 5.3. 

The Block Definition Diagram (BDD) in Figure 2 shows the main program and how 

it is decomposed into its constituent functions. The diagram also shows the output 

coming out of each function as written in the MATLAB code. The code structure is 

such that the main function calls the testpolicy function which the executes the 

sample allocation according to the type of procedure selected by the decision-maker. 

Figure 2: Simulation Block Definition Diagram 
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5.1 Simulation Approach 

In this section we explain the approach used for simulating the allocation procedures 

using MATLAB. This section explains the detailed Design of Experiments carried for 

the purpose of this thesis research. 

The experiment included four sets, each with 20 randomly-generated instances.  

Table 3 lists the factors that were varied across the sets.  The following parameters 

were the same for each set:  The set of possible values for every attribute was {1, …, 

8}.  The prior distributions for each attribute were uniform.  The set of possible errors 

was {-2, -1, 0, 1, 2}.  Within a set, the error distributions for different attributes were 

different, but the same error distributions were used in every set.  (These are shown in 

Section 5.2.3.)  The budget was set to B = 20, 50 and 100. 

Generating a random instance required drawing values for every attribute for every 

alternative.  For each one, a value was randomly chosen from the set {1, …, 8}.  

Every value was equally likely to be selected.  

Table 3:Values of attributes over various Sets 

Factors Sets 

𝑠1 𝑠2 𝑠3 𝑠4 

Number of Alternatives 

(𝑛𝑎𝑙𝑡) 

3 5 3 5 

Number of Attributes 

(𝑛𝑎𝑡𝑡) 

2 2 5 5 

Number of iterations 

(𝑛𝑖𝑡𝑟) (simulation runs) 

100 100 10 10 
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𝑊𝑖The weight distributions for all the sets, is shown in the Table 4 and Table 5 

respectively. 

 
Table 4: Weight sets for 2 attribute sets 

Weight set 𝜆1 𝜆2 

𝑊1 5 5 

𝑊2 9 1 

𝑊3 1 9 
 

Table 5: Weight sets for 5 attribute sets 

Weight set 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 

𝑊1 4 4 4 4 4 

𝑊2 12 2 2 2 2 

𝑊3 2 2 2 2 12 

𝑊4 2 2 12 2 2 

𝑊5 2 7 2 7 2 

5.2 Results of Simulation 

This chapter explains the results of simulations carried out for testing each of the 

allocation strategy. The simulations were carried out in a methodical way as shown in 

Figure 3.   
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Figure 3 ; Simulation study of frequency correct selection (fcs) 

 

As shown in Figure 3, the simulations were developed for multiple instances for each 

set of values. Each combination set, s (𝑠1, 𝑠2, 𝑠3 … 𝑠𝑛) is a combination value of 

values of the alternative-attribute pair. All these instances then were computed for a 

specific set of weights, W (𝜆1, 𝜆2, … . 𝜆𝑛) for the attributes shown in Table 4 and Table 

5. Each simulation is run over an instance of each 𝑠𝑖 and then eventually carried out 

for all the instances of the set. The Probability of Correct Selection (PCS) was 

calculated for each of the alternative 𝑎𝑖 for every stage from 0 to B. The PCS was 

plotted for each of the alternatives for every stage and for every instance for an 

instance of set 𝑠𝑖. For the first simulation study, the PCS was calculated for the range 

of input values as mentioned in Table 4. Through this study an evaluation of the 

variation of the PCS for each of the alternative for different true value combinations 
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was developed. Another simulation deduction was to calculate the frequency of 

correct selection (fcs) for every separate value of μ for different decision cases. The 

results of these studies are discussed in the sections 5.2.1 and section 5.2.2 of this 

thesis.     

5.2.1 Probability of Correct Selection (PCS) 

The probability of correct selection is the probability that the true best alternative was 

selected at each stage of the allocation procedure. The probability is computed for a 

finite experimental budget which was B=10 and 50. The sample allocation was done 

using a technique mentioned in each of the three allocation procedures. For the 

simulation, the PCS values are calculated over each step of the budget, B starting for 

the initial stage 0 till stage B and the results are represented graphically for various 𝜆𝑗 

(true values) for the attributes. The plots of the PCS demonstrated that the PCS over 

the stages goes up for the alternative which has the best decision value which is the 

sum over all the 𝜆𝑖𝑗 ∗ 𝜇𝑖𝑗 over the alternatives. The different weight distributions 𝑊𝑖 

considered for the purpose of the simulation for 2 attribute case and 5 attribute case 

are mentioned in Appendix A.   

However, there were certain cases which showed unexpected behavior. The 

alternative attribute pairs which had the equal decision values for the Sequential 

allocation are show in the Figure 4 and Figure 5. 
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Figure 4: PCS: Weight 1, Instance 6, Sequential Allocation 

 

Figure 5: PCS: Weight 4, Instance 5, Sequential Allocation 

 

 

Figure 4 shows the plot of the Probability of Correct Selection (PCS) for Sequential 

sampling for 𝑊1 = (𝜆1, 𝜆2) = (5,5). Figure 5 shows the results for the Sequential 

sampling for the 3 alternative-5 attribute case where 𝑊4 = (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5) = 

(2,2,12,2,2). The decision values as created in the simulation for Figure 5 were (50, 

50, 32) for the instance 5. Ideally the plots should converge to the same value for the 

alternatives having the same decision value as all of these alternatives will be the 

“true best” alternatives. But since we assume that the decision maker has to make a 

selection, the algorithm selects the earlies possible alternative as the true best 

alternatives for the sampling in the next stage. This explains the PCS of Alternative 1 
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(50) being a little higher in figure 6 as compared to the Alternative 2 (8), even though 

both the alternatives have the exact same true value.   

Figure 6: max PCS for all the 20 instances for W1 

 

Figure 7: max PCS for all the 20 instances for W2 
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Figure 8:  max PCS for all the 20 instances for W3 

 
 

The analysis of the performance (PCS) of the three different strategies was done for 

all the instances and the PCS was examined for all the different weights of a 3 

attribute 2 alternative set up. Although, we see that all the strategies perform in a very 

similar manner, the Sequential strategy has the best PCS values. The average PCS 

was calculated for four different sets of values: 

• 𝑠1 : 3 alternatives, 2 attributes 

• 𝑠2 : 5 alternatives, 2 attributes 

• 𝑠3 : 3 alternatives, 5 attributes 

• 𝑠4 : 5 alternatives, 5 attributes 

Table 6: Average of max PCS values for different Sets 

 Sets 

Policy 𝑠1 𝑠2 𝑠3 𝑠4 

Sequential 0.97 0.96 0.97 0.96 

Proportional 0.95 0.91 0.94 0.95 

Uniform 0.94 0.92 0.90 0.88 
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5.2.2 Frequency of Correct Selection (fcs) 

Frequency of correct selection (fcs) is the performance parameter of each of the 

allocation strategy for a finite allocation budget. The fcs, a fraction in the interval [0, 

1], is the number of replications that the sample allocation approach led the decision-

maker to select a true best alternative divided by the total number of replications.  The 

fcs was calculated for each sample allocation approach, set of instances, and set of 

weights.   

 

The fcs is calculated for each of the allocation procedures as mentioned in section 4. 

The results are plotted for these standard set of weights, W. The fcs give a view of the 

performance of each allocation procedure over the sets of instances, Si.       

 

Figure 9: Average fcs over 𝑊𝑖 (i = 1 to 3) 
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Figure 10: Average fcs over 𝑊𝑖 (i = 1 to 5) 

 
 

Figure 11: Average fcs over 𝑊𝑖 (i = 1 to 5) 
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Figure 12: Average fcs over 𝑊𝑖 (i = 1 to 5) 

 
 

The fcs values for all the simulation cases: 𝑆1, 𝑆2, 𝑆3and 𝑆4 was averaged over all the 

iterations. These fcs values were averaged for each policy to get a final fcs for every 

policy for every case. Finally, the fcs for every policy for every case to get a fraction 

which is the fcs for every policy taking into consideration all the simulation cases and 

iterations for every simulation case. Tables 11, 12 and 13 shows the final fcs denoting 

the performance of sequential allocation as compared to the other allocation strategies 

for a 95% confidence interval (using the equations in Appendix D) for all the sets for 

B=20, 50 and 100 respectively. Due to computation difference, there were 6000 trials 

done for sets 𝑠1and 𝑠2 which had 2 attributes and 1000 total trials for sets 𝑠3and 𝑠4 

which had 5 attributes which becomes evident on analyzing the confidence intervals 

for all the sets. Because the number of trials are greater for 𝑠1and 𝑠2, the confidence 

intervals have smaller values whereas the intervals are bigger for 𝑠3and 𝑠4. 
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Table 7: Average fcs for B=20 over all the simulation procedures 

Allocation  

Strategy 

95% Confidence Interval fcs 

𝑠1 𝑠2 𝑠3 𝑠4 

Sequential 0.991 ± 0.0023 0.989 ± 0.0025 0.988 ± 0.0067 0.987 ± 0.0072 

Proportional 0.944 ± 0.0058 0.951 ± 0.0054 0.954 ± 0.0128 0.953 ± 0.0131 

Uniform 0.897 ± 0.0076 0.902 ± 0.0075 0.886 ± 0.0196 0.895 ± 0.0185 

 

Table 8: Average fcs for B=50 over all the simulation procedures 

Allocation  

Strategy 

95% Confidence Interval fcs 

𝑠1 𝑠2 𝑠3 𝑠4 

Sequential 0.987 ± 0.0028 0.979 ± 0.0036 0.980 ± 0.0112 0.983 ± 0.0102 

Proportional 0.969 ± 0.0043 0.964 ± 0.0047 0.971 ± 0.0132 0.965 ± 0.0143 

Uniform 0.947 ± 0.0056 0.952 ± 0.0054 0.948 ± 0.0177 0.955 ± 0.0165 

 

 

Table 9: Average fcs for B=100 over all the simulation procedures 

Allocation  

Strategy 

95% Confidence Interval fcs 

𝑠1 𝑠2 𝑠3 𝑠4 

Sequential 0.986 ± 0.0029 0.989 ± 0.0026 0.980 ± 0.0112 0.986 ± 0.0091 

Proportional 0.982 ± 0.0033 0.983 ± 0.0032 0.978 ± 0.0116 0.982 ± 0.0102 

Uniform 0.979 ± 0.0036 0.980 ± 0.0035 0.976 ± 0.0120 0.982 ± 0.0102 
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The difference in the accuracy of the intervals is due to the number of trials taken for 

each of the set. It was concluded that the sequential allocation procedure better than 

proportional and uniform with uniform allocation being the strategy with least fcs for 

a 95% confidence interval.  

The variation in the fcs based performance is significantly reduced as the budget 

increases. Even the simpler sample allocation approaches are sufficient if the 

decision-maker has large enough Budget to allot significant number of samples for 

each attribute of all the alternatives. 

5.2.3 Discrete Error Distributions  

The error distributions are assumed to be discrete triangular distributions for the 

experiments carried out for this thesis research. The range of the error varies from -

𝐸𝑚𝑎𝑥 to +𝐸𝑚𝑎𝑥 with the discrete values. The error distributions for the sets with 2 

attributes and 5 attributes are shown in Figure 15 and Figure 16 respectively. 

 
Figure 13: Discrete Error Distributions for 2 attribute sets 
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Figure 14: Error Distribution for 5 attribute sets 

 

5.3 Discussion  
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the true best alternative).  The sequential allocation approach performed significantly 

better than the uniform and proportional allocation approaches when the budget was 

only 20 or 50 samples.  When the budget increased to 100 samples, all three 

allocation approaches had the same performance.  The performance of the sequential 

allocation approach remained the same as the budget increased, but the performance 

of the uniform and proportional allocation approaches improved as the budget 

increased. 
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budget is small. The other two approaches are not so reactive are the allocation 

procedure is decided in advance based on the attribute weights and the order of 

sampling. The proportional and the uniform allocation strategies are better 

computationally and perform well when the budget is large.  
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Chapter 6:  Conclusions, Contributions, and Future Work 

 
This thesis studied the problem of gathering information for a multi-attribute decision 

problem. The study considers instances of varying sizes. The research focused on 

how the allocation under finite budget is done for various allocation procedures for a 

general discrete distribution. The sequential allocation procedure uses Bayesian 

estimation to update the decision-maker’s beliefs, which are used to estimate the 

value of the next sample, which is used to determine which attribute to sample. The 

proportional allocation strategy allocates the samples based on the proportion of 

weight of each of the attribute of the alternative. The uniform allocation performs the 

allocation without any prior knowledge about the attributes and their value 

probabilities by evenly diving the total number of samples among the alternative-

attribute pairing. 

The contributions of this thesis research can be summarized as follow: 

1. This research presented a sequential sampling approach for allocating samples 

to the alternative-attribute combinations based on the beliefs (prior 

distribution) of the decision-making. The attribute value and error 

measurement distributions were propagated as a set of discrete probabilities. It 

was also concluded by a set of statistical testing that on selecting the 

alternative that has the maximum probability, the sequential allocation 

strategy gives the best results for selecting the alternative with the best 

Probability of Correct Selection (PCS). The baseline for analyzing the 

Sequential Allocation Procedure and Proportional Allocation Procedure 

strategies was the Uniform allocation strategy. 
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2. A set of allocation procedures were analyzed for different instances having 

randomly generated true values as the measures of the true values of the 

attributes. There was evidence provided for the performance of the three 

allocation procedures by comparing the frequency of correct selection (fcs). 

The sequential allocation approach, which uses the samples obtained to 

determine the next allocation, performed better than the proportional and 

uniform allocation approaches.   

Although these results have answered the research questions that motivated this 

study, much additional work is needed to determine the best ways to gather 

information in this domain.   

As part of the future work, it would be interesting to streamline the computations 

required for the sequential allocation strategy in order to reduce its computational 

effort.  A hybrid allocation approach could use the proportional approach to allocate 

some of the samples and the sequential approach to allocate the remaining ones.  This 

would help the decision maker in having a smaller budget for making decisions and 

having a higher accuracy than spending the entire budget on either Uniform or 

Proportional Allocation Procedure.  

Approaches for guiding information gathering activities in other domains could be 

adapted for the multi-attribute decision problem.  Possible approaches include the 

knowledge gradient and expected improvement techniques used in optimization [15], 

the most-starving OCBA algorithm [8], and approaches from multiple-objective 

simulation optimization [22]. 
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Appendix A: Attribute True Values Instances  

Table 10: 20 instances for 3 alternatives 2 attribute case 

Instance Attribute values 

1 

7   6 

5   2 

1   2 

2 

4   7 

2   4 

7   8 

3 

7   5 

5   1 

2   8 

4 

7   3 

4   1 

5   7 

5 

7   6 

6   5 

7   1 

6 

7   6 

5   2 

1   2 

7 

7   3 

2   1 

4   6 

8 

4   7 

4   6 

2   1 

9 

7   4 

4   8 

1   5 

10 

5   3 

6   8 

4   8 

11 

1   8 

8   4 

6   4 

12 

8   3 

8   3 

4   4 

13 

2   1 

1   2 

8   6 

14 
3   1 

7   6 



 

 42 

 

6   6 

15 

8   4 

8   2 

3   1 

16 

5   3 

2   5 

3   6 

17 

1   2 

6   8 

6   1 

18 

2   2 

2   1 

8   3 

19 

7   1 

8   5 

7   2 

20 

5   8 

8   6 

4   1 

 
Table 11: 20 instances for 5 alternative 2 attribute case 

Instance Attribute values 

1 

5   4 

5   3 

4   4 

8   1 

3   7 

2 

8   4 

2   8 

4   7 

1   2 

7   3 

3 

1   6 

1   6 

7   4 

3   8 

2   8 

4 

2   8 

3   3 

5   3 

8    5 

1   3 

5 

5   7 

3   8 

2   4 
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4   2 

2   6 

6 

3   6 

3   7  

2   1 

8   1 

2   8 

7 

8   6 

8   2 

1   1 

8   4 

2   1 

8 

2   8 

2   6 

2   1 

7   1 

6   7 

9 

1   2 

7   7 

3   2 

7   6 

1   1 

10 

7   1 

4   1 

3   8 

7   5 

4   3 

11 

1   2 

4   3 

2   3 

4   1 

4   5 

12 

2   5 

2   1 

2   1 

1   7 

7   6 

13 

1   6 

2   7 

7   8 

7   2 

2   5 

14 

1   1 

5   5 

4   8 

4   7 
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1   8 

15 

2   6 

3   4 

7   6 

1   2 

5   2 

16 

7   5 

1   7 

2   6 

7   7 

4   6 

17 

4   6 

1   1 

3   7 

2   6 

6   8 

18 

2   4 

2   3 

5   6 

4   6 

5   3 

19 

1   2 

6   1 

4   5 

3   1 

1   2 

20 

3   5 

1   4 

8   6 

6   3 

6   1 

 
Table 12: 20 instances for 5 alternative 5 attribute case 

Instance Attribute values  

1 

7   1   2   2   6    

8   3   8   4   1 

2   5   8   8   7 

8   8   4   7   8 

6   8   7   8   6 

2 

7   6   7   4   4 

6   1   6   4   4 

4   3   3   7   6 

6   1   8   7   6 

2   1   1   8   7 

3 
3   4   7   8   7 

6   8   3   5   3 
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6   3   5   2   7 

2   5   6   2   2 

1   2   8   3   8 

4 

2   5   4   7   1 

7   3   1   5   8 

3   6   2   8   1 

5   6   8   1   7 

2   6   2   4   7 

5 

7   4   2   7    1 

1   8   7   5   2 

4   2   5   3   1 

3   3   5   5   2 

7   2   2   4   2 

6 

7   4   2   7   1 

1   8   7   5    2  

4   2   5   3   1 

3   3   5   5   2 

7   2   2   4   2 

7 

4   4   7   2   2 

1   3   4   8   3 

8   8   2   8   7 

8   3   4   5   1 

4   1   1   1   1 

8 

2   5   2   8   3 

6   3   3   7   5 

6   6   6   4   5 

6   2   7   4   7 

4   6   1   4   7 

9 

6   8   2   2   3 

4   8   3   2   8 

7   5   4   2   4 

5   5   2   2   2 

3   5   7   4   8 

10 

8   5   1   1   6 

4   3   3   3   4 

1   5   3   7   5 

3   6   4   1   2 

4   2   5   8   4 

11 

8   5   1   3   1 

5   6   8   3   6 

5   4   8   6   4 

2   3   7   2   7 

4   8   1   6   6 

12 

8   1   5   2   2 

8   6   5   2   8 

3   5   7   8   6 
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6   4   7   1   5 

2   8   5   4   4 

13 

1   1   6   4   2 

6   7   5   4   4 

1   7   8   7   7 

1   6   6   1   7 

5   2   7   2   1 

14 

4   3   1   8    4 

5   4   3   8   5 

4   1   2   1   8 

6   8   4   6   4 

6   2   3   3   8 

15 

3   6   1   3   6 

6   2   5   4   4 

6   2   8   8   2 

5   8   6   2   4 

6   2   2   7   4 

16 

1   3   8   8   1 

5   3   6   8   4 

2   5   3   7   1 

4   3   5   3   2 

5   7   1   5   2 

17 

4   6   5   8   7 

1   6   6   5   4 

5   1   4   3   1 

4   1   7   1   3 

6   3   6   5   2 

18 

3   5   6   3   7 

4   8   3   2   6 

5   6   6   6   1 

4   8   6   7   5 

8   2   1   3   4 

19 

8   7   2   5   3 

1   3   6   2   7 

4   7   4   6   2 

4   4   2   2   3 

4   1   3   8   1 

20 

5   6   6   4   4 

6   6   2   6   7 

5   6   1   7   7 

5   8   5   3   3 

6   2   4   6   5 
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Table 13: 20 instances for 5 alternative 2 attribute case 

Instance Attribute Values 

1 

5   7 

8   3 

8   8 

6   7 

7   3 

2 

2   5 

2   8 

3   2 

1   3 

5   3 

3 

2   3 

3   6 

5   4 

5   4 

5   5 

4 

6   2 

5   3 

4   8 

1   3 

1   2 

5 

8   1 

8   4 

7   1 

8   7 

5   6 

6 

8   8 

1   6 

5   1 

8   2 

6   8 

7 

4   1 

1   7 

3   1 

4   1 

5   7 

8 

2   1 

5   5 

6   5 

7   1 

8   7 

9 

8   5 

8   7 

7   3 

5   3 
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7   8 

10 

1   4 

8   4 

6   6 

7   6 

8   1 

11 

8   1 

8   3 

5   2 

2   4 

3   5 

12 

8   2 

1   1 

4   7 

1   2 

1   2 

13 

8   3 

2   5 

7   6 

1   3 

7   5 

14 

3   8 

2   1 

8   7 

1   4 

2   8 

15 

6   3 

8   3 

2   4 

6   5 

2   5 

16 

6   1 

2   2 

4   2 

6   1 

6   6 

17 

6   5 

3   1 

2   1 

2   7 

8   5 

18 

6   8 

8   7 

8   5 

2   6 

8   4 
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19 

2   1 

6   8 

4   4 

3   3 

6   7 

20 

3   5 

5   2 

6   4 

5   4 

3   4 

 

 

Note: The rows denote different attributes and the columns represent different 

alternatives. 
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Appendix B: Creating Z-distributions 

 

 

Z values are the values that belong to the set 𝑆𝑖𝑗 of all the decision values (𝜉𝑖) such 

that z 𝜖 𝑆𝑖. The values are used to calculate the probability of occurance of each of the 

decision values in the set as given in the Equation A.1. 

 

                                    𝑃𝑟
𝑖(𝑧) = 𝑃{𝜉𝑖 = 𝑧}                                                             (A.1) 

The code for this simulation which generated the P(z) was simulated in MATLAB 

using a function getzdsn2() is shown below: 

 

%function to get Z distribution 

function [Pz]= getzdsn2(n_att,n_alt,W,pa,Vmax,Zmax) 

 

% getzdsn2 created 3-23-3018 by Jeffrey W. Herrmann 

 

% this function calculates prob. dsn. for Z values for every alternative 

 

% Z_i = sum W_j * a_ij 

 

% INPUTS 

% n_att = number of attributes 

% n_alt = number of alternatives 

% W = weights to combine attributes 

% pa = prob. dsn. for attributes 

% Vmax = max value of attribute (1 to Vmax) 

% Zmax = max value of Z 

 

Pz = zeros(n_alt,Zmax); %initializing  z matrix  P{Z_i = z} 

npoints = Vmax^n_att;  % total number of combinations of attribute values 

attrv = ones(n_att,1);  % all attributes start at 1 

 

for np=1:npoints % loop over combinations of attribute values 

    z = W*attrv; % evaluate z = sum W_j * a_ij 

    if z <= Zmax % if z is feasible 

        for j=1:n_alt %iterating over alternatives 

            pa_temp=1; 

            for k=1:n_att %iterating over attributes 

                pa_temp = pa_temp*pa(j,attrv(k),k); %updating the pa matrix 

            end 

            Pz(j,z) = Pz(j,z)+pa_temp; %updating the z distribution matrix 

        end % end of iterating over all the values of z 

    end 

    % go to next combination of attribute values 

    for ai=n_att:-1:1  % loop over attributes from last to first 
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        if attrv(ai) < Vmax  % if this attribute < Vmax 

            attrv(ai) = attrv(ai) + 1;  % increase 

            break % exit loop over attributes 

        else 

            attrv(ai) = 1; % reset to 1 and go to next attribute 

        end 

    end 

end % loop over combinations of attribute values 

end 
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Appendix C: Calculation the Probability of Correct Selection (PCS)-

distributions 

 

For computing the PCS for the sequential allocation case, a MATLAB function was 

developed which the calculated the PCS equation written in Equation B.1: 

 

𝑃𝐶𝑆𝑝(𝑡) =  𝑃(𝜉𝑠 > 𝜉 𝑟 ,  ∀𝑟= 1, … , 𝑚; 𝑟 ≠ 𝑠 | 𝑿(𝑡)) =

[max
𝑠

∑ 𝑃𝑜
𝑠(𝑧𝑠|𝑋(𝑡)) ∏ ∑ 𝑃𝑜

𝑟(𝑧𝑟|𝑋(𝑡))𝑧𝑟∈𝑆𝑟,𝑧𝑟≤𝑧𝑠𝑟≠𝑠𝑧𝑠∈𝑆𝑠
]  

 

Where 𝑃𝐶𝑆𝑝 being the probability of Correct Selection (PCS) for the Sequential 

Allocation Strategy. The MATLAB function that does this is shown below:  

%function to get PCS values for alternatives 

function [PCSvalues,Pz] = calculatePCS(n_alt,n_att,Zmax,W,pa,Vmax) 

PCSvalues = zeros(n_alt,1); 

Pz = getzdsn2(n_att,n_alt,W,pa,Vmax,Zmax); 

Cdfz = zeros(n_alt,Zmax); %initializing the cdf matrix 

Cdfz = cumsum(Pz,2);  % CDF for all the alternatives 

 

% ASSUMPTION: in case of tie values, the smaller-numbered alternative is... 

...selected. 

 

% if all Z = 0, then alternative 1 is selected 

PCSvalues(1) = prod(Cdfz(:,1));  % multiply all P{Za <= 1} 

%Calculation of PCS for each alternative 

temp = zeros(n_alt,Zmax); 

for i=2:Zmax %iterating over the values of Z 

    for j = 1:n_alt %iterating over alternatives 

        Cdf_temp=1; 

        for k = 1:n_alt %iterating over alternatives 

            if k < j 

                Cdf_temp = Cdf_temp*Cdfz(k,i-1); %the cummulative 

distribution function for decision values for lower-numbered alternatives 

            elseif k > j 

                Cdf_temp = Cdf_temp*Cdfz(k,i); %the cummulative distribution 

function for decision values including i for higher alternatives 

            end %end of loop over alternatives 

        end %end of loop over alternatives 

        PCSvalues(j) = PCSvalues(j) + Pz(j,i)*Cdf_temp; %updating the 

PCSvalues matrix 

       (B.1) 
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        temp(j,i) = PCSvalues(j); %updating temp to plot 

    end 

end 

end 
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Appendix D: Approximate (100-α) Confidence Intervals 

For a large number of runs (n), and “significance level” (α), the approximate 

confidence interval is given by the equation: 

𝑦

𝑛
± 𝑍𝛼/2

√
(
𝑦
𝑛)x(1 −

𝑦
𝑛)

𝑛
 

Where, 

• 𝒁𝜶/𝟐 : z-statistic value for 𝛼/2 from the z-statistic table 

• y : Number of successes 

• n : Number of trials 

For the calculations done in Table 11, 𝛼=0.05 for a 95%confidence interval. The Z 

statistic value, 𝑍𝛼/2 = 1.96 and y is the number of times the fcs was 1; n is the total 

number of times the fcs was calculated.  

 

 

  

       (D.1) 
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