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Abstract

In this thesis we address the problem of developing effective algorithms to

compute isomorphism classes of polarized abelian varieties over a finite field

and of fractional ideals of an order in a finite product of number fields.

There are well-known methods to efficiently compute the classes of invert-

ible ideals of an order in a number field, but not much has previously been

known about non-invertible ideals. In Paper I we produce algorithms to com-

pute representatives of all ideal classes of an order in a finite product of number

fields. We also extend a theorem of Latimer and MacDuffee about conjugacy

classes of integral matrices.

There are equivalences established by Deligne and Centeleghe-Stix be-

tween the category of abelian varieties over a finite field and the category of

finitely generated free abelian groups with an endomorphism satisfying some

easy-to-state axioms, which in certain cases can be described in terms of frac-

tional ideals of orders in finite products of number fields. In Paper II we use

this method to produce an algorithm that computes the isomorphism classes

of abelian varieties in an isogeny class determined by an ordinary square-free

q-Weil polynomial or by a square-free p-Weil polynomial with no real roots

(where p denotes a prime and q is a power of a prime). In the ordinary case we

also produce an algorithm that computes the polarizations up to isomorphism

and the automorphism groups of the polarized abelian varieties. If the polar-

ization is principal, we can compute a period matrix of the canonical lift of the

abelian variety.

In Paper III we extend the description of the second paper to the case when

the Weil polynomial is a power of a square-free polynomial which fulfills the

same requirements as in Paper II.

In Paper IV we use the results of the second and third papers to study ques-

tions related to base-field extension of the abelian varieties over finite fields.





Sammanfattning

I denna avhandling försöker vi utveckla en effektiv algoritm för att beräkna

isomorfiklasser av polariserade abelska varieteter över en ändlig kropp och av

fraktionsideal till en talring i en ändlig produkt av talkroppar.

Det finns väletablerade metoder för att effektivt beräkna klasserna av in-

verterbara ideal till en talring i en talkropp, men inte så mycket har tidigare

varit känt när det gäller fallet med icke-inverterbara ideal. I Artikel I skapar

vi algoritmer för att beräkna representanter till alla idealklasser till en talring i

en ändlig produkt av talkroppar. Vi generaliserar också en sats av Latimer och

MacDuffee om konjugatklasser av matriser med heltalskoefficienter.

Det finns ekvivalenser som skapats av Deligne och Centeleghe-Stix mellan

kategorin av abelska varieteter över ett ändlig kropp och kategorin av ändligt-

genererade fria abelska grupper med en endomorfi som uppfyller ett antal lätt-

formulerade axiom som i vissa fall kan beskrivas i termer av fraktionsideal till

talringar i ändliga produkter av talkroppar. I Artikel II använder vi denna metod

för att skapa en algoritm som beräknar isomorfiklasserna av abelska varieteter

i en isogeniklass bestämd av ett ordinärt kvadratfritt q-Weilpolynom eller be-

stämd av ett kvadratfritt p-Weilpolynom utan reella rötter (där p är ett primtal

och q är en primtalspotens). I det ordinära fallet så skapar vi också en algoritm

som beräknar polariseringar upp till isomorfi och även automorfigruppen till de

polariserade abelska varieteterna. Om det är fråga om en huvudpolarisering så

beräknar vi också en periodmatris till den kanoniska lyftningen av den abelska

varieteten.

I Artikel III utvidgar vi beskrivningen från Artikel II till fallet när Weil-

polynomet är en potens av ett kvadratfritt polynom (och där det kvadratfria

polynomet har samma restriktioner som i Artikel II).

I Artikel IV använder vi resultaten från Artikel II och III för att studera

frågor om baskroppsutvidningar av abelska varieteter över ändliga kroppar.
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Introduction

In this thesis we address the problem of developing an effective algorithm to

compute isomorphism classes of polarized abelian varieties over a finite field

Fq and their automorphisms, where q is a power of a prime number p. Our

results are presented in the form of four papers, a summary of which can be

found at the end of this introduction. These results are implemented in a series

of algorithms in Magma [BCP97] which are available on the webpage of the

author.

In general, abelian varieties have a very rich algebraic structure due to

the fact that their set of points forms a group. In dimension greater than one

it is difficult to find equations describing abelian varieties as subvarieties of

a projective space. Even if we don’t have equations to work with, it is often

possible to attach some “concrete” object to an abelian variety. For example, an

abelian variety over C of dimension g is isomorphic to Cg/L, where L is a full

lattice of rank 2g. The lattice L encodes the algebraic properties of A, which

then can be studied with multi-linear algebra techniques. When we move from

C to the wilder realm of positive characteristic, it is not possible to functorially

attach a lattice of rank 2g to the whole category of abelian varieties. This

is a consequence, as Serre pointed out, of the existence of objects such as

supersingular elliptic curves, whose endomorphism algebras are quaternion

algebras and hence do not admit a 2-dimensional representation.

Nevertheless, when our field of definition is a finite field we can restrict our

attention to a subcategory and obtain similar results to the ones over the com-

plex numbers. Deligne [Del69] proved that there is an equivalence between the

category of ordinary abelian varieties over Fq and the category of finitely gen-

erated free Z-modules satisfying certain easy-to-state axioms. Howe then de-

scribed, in the article [How95], the dual variety and polarizations in Deligne’s

category. Deligne’s equivalence has recently been extended in [CS15] by Cen-

teleghe and Stix to a larger subcategory, but Howe’s description of polariza-

tions does not apply.

In order to count the isomorphism classes of abelian varieties over Fq, we

first fix an isogeny class, which by Honda-Tate theory corresponds to fixing

a conjugacy class of Frobenius and hence a q-Weil polynomial h, see [Tat66]
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and [Hon68]. Under some assumptions on h, we can reduce our computation

to determining the isomorphism classes of fractional ideals of an order R in

a product of number fields. The main issue is that the order R does not need

to be maximal and hence there might be non-invertible ideal classes. If there

are effective algorithms to compute the group of classes of invertible fractional

ideals, not much is known about the non-invertible ones and the monoid that

they form. In this thesis we will first study a computationally easier problem,

namely the computation of the weak equivalence class monoid, and then we

will describe how to effectively construct a complete set of representatives of

the isomorphism classes of fractional ideals of the order, which also returns the

isomorphism classes of the abelian varieties in the isogeny class. If the isogeny

class is ordinary we also describe, in this ideal theoretic setting, the dual of a

variety, the polarizations and the automorphisms of a polarized abelian variety.

Apart from giving concrete examples to test conjectures, counting isomor-

phism classes of principally polarized abelian varieties of dimension g over a

finite field with their automorphisms groups gives cohomological information

about the corresponding moduli space Ag. Using the close relation between

the moduli space Mg of curves of genus g and Ag for g = 1,2,3 it is possi-

ble to produce these data using the equations of the curves, see for example

[BFvdG14]. But, by using this approach, it is not possible to get complete

information for higher g, hence the need to develop a new method to directly

count the abelian varieties. Furthermore, our point counts on Ag over finite

fields shed light on the stratification of such moduli spaces with respect to in-

variants like the Newton polygons and the p-rank, which are far from being

understood in their totality.

The goal of this introduction is to give an overview of the basic theory of

abelian varieties. The reader should be advised that this does not intend to be

a comprehensive overview of the subject, but a summary of the prerequisites

necessary to understand the objects that are going to be studied in the papers.

The introduction is structured as follows. In Section 1 we recall the notion

of abelian variety over any field k and their basic properties. In Sections 2 and

3 we focus respectively on the cases k = C and k with positive characteristic,

in particular k = Fq. Finally in Section 4 we give a brief overview of the results

contained in the papers. The material in Sections 1, 2 and 3 is adapted from

the licentiate thesis [Mar16].

We made the choice of not discussing the theory of orders and fractional

ideals in this introduction since we give a complete and self-contained overview

in the beginning of Paper I.

12



1 Abelian Varieties

Notation

Let k′ be an extension of a field k. For an algebraic variety V over k we denote

by V (k′) the set of points of V defined over k′ and by Vk′ the base field extension

V ⊗k k′ of V to k′. We write k for the algebraic closure of k.

1.1 Basic definitions

In this section we recall the definitions and the basic properties of abelian

varieties which are the main object of interest of this thesis. Even if we perform

our computations over finite fields, the general theory is presented over an

arbitrary field k. Unless otherwise specified, we will follow [CS86, J.S. Milne,

Abelian Varieties, Chapter V] and we refer to it for the proofs.

Definition 1.1. A group variety over a field k is a variety V together with
morphisms

m : V ×V →V and i : V →V,

and a point ε ∈V (k) such that the structure on V (k) defined by m and i is that
of a group with multiplication induced by m, inverse by i and identity element
ε .

Equivalently, we can say that the quadruple (V,m, i,ε) is a group object in

the category of varieties over k.

For every geometric point a ∈ V (k), the projection Vk ×Vk → Vk induces

an isomorphism Vk ×{a} � Vk. We define the translation ta by a as the com-

position

Vk �Vk ×{a} ⊂Vk ×Vk
m→Vk.

On points ta acts as P �→ m(P,a). In particular if a ∈V (k) then ta maps V into

V .

For any variety the non-singular locus U is open and non-empty, see [Har77,

Theorem 5.3]. For a group variety V the translates of Uk cover Vk, hence every

group variety is non-singular.

Definition 1.2. A connected and complete group variety is called an abelian

variety.

In the next proposition we will sum up some interesting properties of

abelian varieties.

Proposition 1.3. Let A be any abelian variety. Then
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• every morphism f : A → B of abelian varieties is the composite of a
homomorphism h : A→B with a translation tb, where b=− f (0)∈B(k);

• the group law on A is commutative;

• for every group scheme G, every rational map g : G ��� A is the com-
posite of a homomorphism h′ : G → A with a translation ta, where a =
−g(0) ∈ A(k);

• A is projective.

Example 1.4. An abelian variety of dimension one is the same as an elliptic

curve E, that is, a smooth projective plane curve of degree 3 together with a
chosen point. It is easy to describe elliptic curves embedded in a projective
space in terms of equations. For example, if the characteristic of k is not 2 or
3 then E inside P2 = Projk[x,y] is given by an equation of the form

zy2 = x3 +axz2 +bz3,

for some a,b ∈ k such that 4a3 + 27b2 	= 0 with marked point (0 : 1 : 0). In
this case it is possible to give explicit formulas for the addition of two points.
The theory of elliptic curves is very rich and many results about them can be
generalized to the higher dimensional case, but they will have a much more ab-
stract flavor, since in general it is hard to find equations describing an abelian
variety.

1.2 Isogenies

Among all morphisms between abelian varieties, the so-called isogenies play

a special role since they allow us to split each abelian variety into a product

of simple objects, see Corollary 1.18. In particular, over a finite field, we can

classify and enumerate up to isogeny all abelian varieties of a given dimension,

as we explain in Section 3.

Proposition 1.5. Let f : A → B be a homomorphism of abelian varieties. The
following are equivalent:

1. f is surjective and dim(A) = dim(B);

2. ker( f ) is a finite group scheme and dim(A) = dim(B);

3. f is finite, flat and surjective.

Definition 1.6. A homomorphism f : A → B satisfying the conditions of 1.5 is
called an isogeny. The degree of an isogeny is the degree of the function field
extension [k(A) : k(B)].

14



Equivalently we can define the degree of an isogeny as the rank of its kernel

as a group scheme. Observe that the composition of two isogenies is an isogeny

and the degree is multiplicative with respect to composition.

Let n be a non-zero integer and consider the homomorphism multiplication

by n, [n]A : A → A. Write A[n] := ker([n]A).

Proposition 1.7. The homomorphism [n]A is an isogeny. If g = dim(A) then
deg([n]A) = n2g.

Proposition 1.8. If f : A → B is an isogeny of degree d, then there exists an
isogeny g : B → A such that g◦ f = [d]A and f ◦g = [d]B.

1.3 Dual abelian varieties and polarizations

For an abelian variety A we denote with Pic(A) the group of isomorphism

classes of invertible sheaves on A with multiplication given by the tensor prod-

uct. We will denote with m : A×A → A (resp. p and q) the multiplication

(resp. the projection on the first and second factor). An invertible sheaf on

A×A can be considered as a family of invertible sheaves on the first factor A
parametrized by the second factor A.

Let L be an invertible sheaf on A. It is an important fact that the map

ϕL : A(k)→ Pic(A) a �→ t∗aL⊗L−1

is a homomorphism. Define

KL =
{

a ∈ A : the restriction of m∗L⊗q∗L−1 to {a}×A is trivial
}
.

Note that KL is a reduced sub-scheme of A. After some obvious identifica-

tions we find that

KL(k) = {a ∈ A(k) : t∗aL� L} .
Observe that the definition of KL commutes with change of base field.

Proposition 1.9. For an invertible sheaf L on A, the following conditions are
equivalent:

1. KL = A

2. t∗aL� L on Ak for every a ∈ A(k)

3. m∗L� p∗L⊗q∗L.

We define Pic0(A) as the subgroup of Pic(A) consisting of isomorphism

classes of invertible sheaves satisfying one of the equivalent conditions of 1.9.

15



Definition 1.10. Let A and A∨ be abelian varieties and P an invertible sheaf
on A×A∨. We call A∨ the dual abelian variety of A and P the Poincaré sheaf
if:

1. P|{0}×A∨ is trivial and P|A×{a} lies in Pic0(Ak(a)) for all a ∈ A∨;

2. for every (finite) k-scheme T and invertible sheaf L on A×T such that
L|{0}×T is trivial and L|A×{t} lies in Pic0(Ak(t)) for all t ∈ T , there is a
unique morphism f : T → A∨ such that (1× f )∗P� L.

It follows immediately from the definition that if the pair (A∨,P) exists,

then it is unique up to a unique isomorphism and that the formation of the

dual abelian variety commutes with change of base field. Moreover, one can

prove that A∨∨ = A. The proof of the existence of the dual abelian variety

together with P is rather involved and we refer to [Mum08]. For us, it will

suffice to think of it as an abelian variety of the same dimension as A such that

A∨(k) = Pic0(Ak).
Let f : A → B be a homomorphism of abelian varieties and let PB be the

Poincaré sheaf on B×B∨. The invertible sheaf ( f × 1)∗PB on A×B∨ gives

rise to a homomorphism f ∨ : B∨ → A∨ such that (1× f ∨)∗PA � ( f × 1)∗PB.

On points, f ∨ is simply the map Pic0(B) → Pic0(A) sending the class of an

invertible sheaf to its inverse image.

Theorem 1.11. Let f : A→ B be an isogeny with kernel N. The exact sequence

0 → N → A → B → 0

gives rise to a dual exact sequence

0 → N∨ → B∨ → A∨ → 0,

where N∨ is the Cartier dual of the group scheme N.

Definition 1.12. A polarization λ on an abelian variety A is an isogeny λ :

A → A∨ such that λk = ϕL for some ample invertible sheaf L on Ak, where
ϕL is the map A(k) → Pic(A) defined by a �→ t∗aL⊗L−1. The degree of a
polarization is its degree as an isogeny. A pair (A,λ ) is called a polarized

abelian variety and when we talk about morphisms between them we require
the obvious compatibility of the polarizations. If λ has degree 1, that is, λ is
an isomorphism, then λ is called principal.

Roughly speaking, a polarization of A encodes information about how A
embeds into a projective space. This data is more explicit in the case k = C,

see Section 2.

16



Let the Néron-Severi group NS(A) of A be the quotient Pic(A)/Pic0(A).
Observe that the map L �→ ϕL defines an injection NS(A) ↪→ Hom(A,A∨).
Assume that λ is a polarization, that k is perfect and put G = Gal(k/k). There

need not be an invertible sheaf L on A such that λ = ϕL, but we know that

there exists an L on Ak such that λk = ϕL. Observe that λk is fixed by the

action of G on Hom(Ak,A
∨
k
), but this does not mean that the class of L lifts to

Pic(A). Indeed we have a sequence of Galois cohomology groups

0 → A∨(k)→ Pic(A)→ NS(Ak)
G → H1(G,A∨(k))

and the obstruction in H1(G,A∨(k)) might be non-zero. However, if k is finite

then it is possible to prove that H1(G,A∨(k)) = 0 and therefore λ = ϕL.

Example 1.13. Let E be an elliptic curve over k. We have that E � E∨ and
there exists a unique principal polarization up to isomorphism.

1.4 Endomorphisms

Let A and B be abelian variety over the field k. If f and g are homomorphisms

from A to B then we can define a morphism

f +g = mB ◦ ( f ,g) : A
( f ,g)−−−→ B×k B mB−→ B.

This shows that Homk(A,B) has the structure of an abelian group and that

Endk(A) has a ring structure with composition as multiplication.

If n ∈ Z and f ∈ Homk(A,B) then n ◦ f = [n]B ◦ f = f ◦ [n]A. If n 	= 0

then [n]A is an isogeny and it is in particular surjective. This implies that

Homk(A,B) is torsion-free. We define

Hom0
k(A,B) = Homk(A,B)⊗ZQ and End0

k(A) = Endk(A)⊗ZQ.

The Q-algebra End0
k(A) is called the endomorphism algebra of A. Observe

that every isogeny f : A → B becomes invertible in Hom0
k(A,B).

Theorem 1.14 (Poincaré Splitting Theorem). Let A be an abelian variety over
a field k. If B ⊂ A is an abelian sub-variety then there exists an abelian sub-
variety C ⊂ A such that the homomorphism f : B×C → A given by (x,y) �→
x+ y is an isogeny.

Definition 1.15. An abelian variety A over the field k is simple if it does not
have non-trivial sub-varieties, that is, if B ⊂ A is a sub-variety, then B = 0 or
B = A.

Remark 1.16. Let f : A → B be a homomorphism between abelian varieties.
If A and B are simple then f is either zero or an isogeny.

17



Let k′ be a field extension of k. An abelian variety defined over k and which

is simple over k need not be simple also over k′.

Example 1.17. Let q be a power of a prime number and let a be an integer
such that |a| < 2

√
q and coprime with q. Take an elliptic curve E over Fq2

in the isogeny class determined by the polynomial x2 + ax+ q2, see Section 3
for the definition. Let A be the Weil restriction Res(Fq2/Fq,E) of E to Fq. By
our assumptions on a, we see that the characteristic polynomial of Frobenius
x4 +ax2 +q of A is irreducible. Hence A is simple over Fq, but it is isogenous
to E ×E(q) over Fq2 , where E(q) is the Fq-conjugate of E.

Corollary 1.18. Every non-zero abelian variety A over k is isogenous to a
product of simple abelian varieties over k. More precisely, there exist k-simple
abelian varieties B1, . . . ,Br, pairwise non-isogenous, and positive integers mi,
such that

A ∼k Bm1

1 × . . .×Bmr
r .

This decomposition is unique up to permutation of the indices.

1.5 The Rosati involution

Fix a polarization λ on A. Since λ is an isogeny λ : A → A∨ it has an inverse

in Hom0(A∨,A).

Definition 1.19. The Rosati involution on End0(A) corresponding to λ is

α �→ α† := λ−1 ◦α∨ ◦λ .

Theorem 1.20. The bilinear form

End0(A)×End0(A)→Q (α,β ) �→ Tr(α ◦β †)

is positive definite.

This implies the following.

Proposition 1.21. If λ is a polarization of the abelian variety A, then the
automorphism group of (A,λ ) is finite.

2 Abelian varieties over C

In the present section we focus on the case k = C. In the complex setting

many concepts introduced in the precious section assume a less abstract flavor

and hence are easier to visualize. Nevertheless, we are not deviating from our

18



purpose of calculating the abelian varieties defined over finite fields. Indeed

most abelian varieties over a finite field Fq, namely the ordinary ones, can be

canonically lifted to the ring of Witt vectors W (Fq), which has characteristic

zero. After fixing an isomorphism Qp � C we can extend the scalars and end

up working with complex abelian varieties. This procedure is the core of the

equivalence of categories defined in [Del69] which will be our main tool to

study and compute the abelian varieties over Fq, as we explain in more detail

in Section 3.

Let A be an abelian variety over C. Then A(C) is a compact connected

complex manifold with a group structure. If A has dimension g and we de-

note by Te(A(C)) the tangent space at e of A(C), then there exists a unique

homomorphism

exp : Te(A(C))→ A(C),

of complex manifolds such that for each v ∈ Te(A(C)) the map z �→ exp(zv) is

a one-parameter subgroup ϕv : C → A(C) corresponding to v. Moreover, the

map exp is surjective and its kernel is a Z-module L of full rank in Te(A(C)),
that is, rank(L) = 2g. Hence, A(C) is isomorphic to the complex torus Cg/L.

But if g > 1 then the converse does not hold, that is, not every complex torus

arises from an abelian variety.

Definition 2.1. Let V be a complex vector space and let L be a full rank lattice
in V . Consider a skew-symmetric form L×L → Z and its extension ER : V ×
V → R. We call E a Riemann form on X =V/L if:

• ER(iv, iw) = ER(v,w) for every v and w in V , and

• the associated Hermitian form HE(v,w) := ER(iv,w)+ iER(v,w) is pos-
itive definite.

We say that X is a polarizable torus if it admits a Riemann form.

A homomorphism of complex tori V/L and V ′/L′ is a C-linear map V →V ′

that sends L into L′.

Theorem 2.2. The functor A �→ A(C) is an equivalence of categories from the
category of abelian varieties over C to the category of polarizable tori.

Let X = V/L be a complex torus. Define the dual torus as X∨ = V ∗/L∗

where

V ∗ := {antilinear functionals V → C}
and

L∗ := { f ∈V ∗ : Im( f (L))⊆ Z} .

19



If A corresponds to X under the functor of Theorem 2.2, then the dual abelian

variety A∨ will correspond to the dual torus X∨. A Riemann form E on X
defines a homomorphism λE : X → X∨ by λE(v) = HE(v, ·) : V →V ∗. Then λE

is an isogeny and it is in fact a polarization with degree equal to the size of the

kernel. So the functor of Theorem 2.2 reduces the study of complex polarized

abelian varieties to the study of polarized complex tori, which can be studied

using linear algebra.

3 Abelian varieties in positive characteristic

In this section we focus on the case when k has characteristic equal to p > 0.

The picture that we will obtain is much wilder compared to the situation over

C. For example, the statement of Theorem 2.2 does not hold. More precisely,

it is not possible to functorially attach to an abelian variety of dimension g a

free abelian group of rank 2g on the whole category of abelian varieties over

k, as the next example indicates.

Example 3.1. (Serre) Let E be a supersingular elliptic curve over Fp, that is an
elliptic curve whose endomorphism algebra is a non-split quaternion algebra
(see [Sil09, Theorem 3.1] for other equivalent definitions). Such algebras do
not admit 2-dimensional Q-representations.

Nevertheless, over finite fields there are theorems analogous to Theorem

2.2, under some assumptions on the isogeny class in consideration, as we ex-

plain at the end of the section. See also Papers II and III of the thesis.

One of the peculiarities of working over a field of positive characteristic p
is that the map x �→ xp is a ring homomorphism and hence induces a map on

geometric objects defined over k. More precisely, if S is a scheme over Fp we

define the absolute Frobenius of S to be the morphism FS : S → S induced by

the ring homomorphism OS → OS : x → xp. Let A be a scheme over S. Define

A(p) to be the fibered product A×S S induced by the absolute Frobenius FS. We

define the relative Frobenius FA/S of A by

A

��

FA

��

FA/S
��
A(p)

��

�� A

��
S

FS �� S

where FA is the relative Frobenius induced by the Fp-scheme structure of A
and the vertical arrows are the projection A(p) → S and the S-scheme structure

map of A, respectively.
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Example 3.2. Let A be an affine scheme over S = Spec(Fq) defined by a poly-
nomial ∑I aIXI, where I is a multi-index. Then A(p) is defined by ∑I ap

I XI and
the relative Frobenius FA/S is the map Xi �→ X p

i .

If A is an abelian variety over a finite field Fpn then the relative Frobenius

sends zero to zero and so it is a homomorphism of group schemes. Moreover,

we can identify A(pn) � A and we can define the Frobenius of A over Fpn as

πA =

(
A

FA/S−−→ A(p)
F

A(p)/S−−−→ A(p2)
F

A(p2)/S−−−−→ . . .→ A(pn−1)
F

A(pn−1)/S−−−−−→ A(pn) � A.

)
.

Proposition 3.3. Let A be an abelian variety over k of dimension g, where k is
field of characteristic p > 0. Then the relative Frobenius FA/k is an isogeny of
degree pg.

By Proposition 1.8 there exists an isogeny VA/k : A(p) → A of degree pg

called the relative Verschiebung such that VA/k ◦FA/k = [p]A and FA/k ◦VA/k =
[p]A(p) . As for the Frobenius, we can also define the Verschiebung as the n-th

iterate of the relative Verschiebung.

3.1 Weil conjectures

Let V be a non-singular projective variety of dimension n over a finite field Fq

with q = pd , where p is any prime number. Observe that the number of points

V (Fqm) of V defined over Fqm , which we will denote by Nm, is finite. We define

the Hasse-Weil zeta function of V by

ζ (V,T ) = exp

(
∑

m≥1

Nm

m
T m

)
.

This function turns out to be a very important tool to study the variety V , since

it encodes a lot of its arithmetic and geometric properties. For example, we

can recover Nm by evaluating the following expression at T = 0:

1

(m−1)!

dm

dmT
log(ζ (V,T )).

Theorem 3.4. (Weil conjectures) Let V be a non-singular projective variety of
dimension n over a finite field Fq.

1. (Rationality)
ζ (V,T ) ∈Q(T );
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2. (Riemann hypothesis)
We can write

ζ (V,T ) =
P1(T )P3(T ) . . .P2n−1(T )
P0(T )P2(T ) . . .P2n(T )

,

where Pi(T ) ∈ Z[T ]. Moreover we have that P0(T ) = (1−T ) and P2n =
(1−qnT ) and for 1 ≤ i ≤ 2n−1 the polynomial Pi(T ) factors (over C)
as ∏ j(1−αi, jT ), for some algebraic integers αi, j, with

∣∣αi, j
∣∣= qi/2, that

is, all the zeros of Pi(T ) lie on a circle;

3. (Functional equation)
There is an integer χ called the Euler characteristic of V such that the
zeta function satisfies the following equation:

ζ (V,1/qnT ) =±q
nχ
2 T χζ (V,T ),

This implies that the numbers αi, j are symmetric in the sense that in an
appropriate ordering we have that the numbers α2n−i,1,α2n−i,2, . . . are
equal to qn/αi,1,qn/αi,2, . . ..

4. (Betti numbers)
If V is the reduction modulo p of a non-singular variety Y defined over
a number field, then the degree of each Pi is the i-th Betti number of the
topological space Y (C).

These conjectures were proposed by Weil in 1949 and proved by him for

curves and abelian varieties. The rationality part was first proved by Dwork

in 1960 with methods from p-adic functional analysis. A different proof was

later given by Grothendieck and his collaborators using the �-adic cohomology

which also established the functional equation and the connection with the

Betti numbers. Finally in 1974, Deligne proved the Riemann hypothesis.

3.2 The Tate module and the Frobenius endomorphism

Let A be an abelian variety over a perfect field k and let � be a prime distinct

from the characteristic of k. Then the multiplication by �m is a group homo-

morphism whose kernel A[�m] is a finite group scheme of rank (�m)2g, where

g is the dimension of A. This implies that A[�m] is étale and hence it is com-

pletely described by its k-points and the action of the absolute Galois group

G= Gal(k/k).
The group schemes A[�m] form an inverse system under the multiplication

by � : A[�m+1]→ A[�m]. We define the �-Tate module of A by

T�A = lim←−A[�m](k).
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It is a free Z�-module of rank 2g and G acts on it by Z�-linear maps. Moreover,

we have an isomorphism of G-modules A[�m](k)� T�A/�mT�A.

Consider a homomorphism of abelian varieties ϕ : A → B. It sends A[�m]
to B[�m] and hence it induces a morphism ϕ� : T�A → T�B. In particular this

makes T� a functor from the category of abelian varieties over k to the category

of Z�[G]-modules.

Observe that HomZ�[G](T�A,T�B) has finite rank. An explicit formula for its

rank depending on the factorizations of the characteristic polynomials of the

maps induced by the Frobenius endomorphism of A and of B can be found in

[Tat66].

Theorem 3.5 (Weil). Let A and B be two abelian varieties over a perfect field
k and let � be prime number distinct from the characteristic of k. The natural
morphism

ϕ : Hom(A,B)⊗Z Z� → HomZ�[G](T�A,T�B)

is injective. In particular, Hom(A,B) is a free Z-module of finite rank.

Let A be an abelian variety over a finite field Fq, with zeta-function

ζ (A,T ) =
P1(T )P3(T ) . . .P2g−1(T )
P0(T )P2(T ) . . .P2g(T )

.

The Frobenius πA of A induces an endomorphism T�πA of T�A. Let hA be its

characteristic polynomial. It can be proven that hA = P1 and that Pr is the char-

acteristic polynomial of the action of πA on
∧r T�A. In particular, hA ∈Z[T ] and

it does not depend on the prime � 	= p. The polynomial hA will be called the

characteristic polynomial of Frobenius πA, or simply the characteristic poly-

nomial of A.

Since the action of πA on T�A is semisimple, we obtain by Theorem 3.5

that the Q-algebra End0(A) is a semisimple algebra of finite rank, which has

center Q(πA). If

A ∼ Bm1

1 × . . .×Bmr
r ,

as in Corollary 1.18, then

End0(A) = ∏End0(Bmi
i )

and for each i we have End0(Bmi
i ) = Mmi(End0(Bi)). In particular Q(πA) splits

into a finite product of number fields, namely Q(πA) = ∏Q(πBi).

Definition 3.6. Let q = pn be a prime power. A q-Weil number π is an alge-
braic integer such that for every embedding ψ : Q(π)→ C we have |ψ(π)|=√

q. We say that two q-Weil numbers π and π ′ are conjugate if there exists
a field isomorphism Q(π) � Q(π ′) (sending π to π ′). Observe that this is
equivalent to saying that the minimal polynomials of π and π ′ are the same.
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Theorem 3.7 (Weil). If A is a simple abelian variety over Fq then the Frobe-
nius endomorphism πA of A/Fq is a q-Weil number.

This is a consequence of 1.20 and the next proposition.

Proposition 3.8. For a simple abelian variety A over Fq we have:

πA ·π†
A = q.

3.3 Honda-Tate theory

The Frobenius endomorphism πA of an abelian variety A defined over a fi-

nite field Fq is an invariant of the variety up to isogeny and the fact that it

is an algebraic integer allows us to enumerate them, which leads to a com-

plete classification. This will be the starting point for the computation of the

isomorphism classes.

Theorem 3.9 (Tate). Let A and B be two abelian varieties over a finite field k,
the morphism ϕ in Theorem 3.5 is then an isomorphism.

Proof. See [Tat66, Main Theorem].

As important consequences, we have:

Theorem 3.10. Let A and B be two abelian varieties over the finite field Fq,
where q is a prime power, with characteristic polynomials hA and hB, respec-
tively. Then B is Fq-isogenous to a subvariety of A if and only if hB divides hA.
Moreover, the following are equivalent:

• A is Fq-isogenous to B

• hA = hB

• the zeta-functions of A and B are the same

• A and B have the same number of points over Fqm for every m > 0.

Proof. See [Tat66, Theorem 3].

Consider the map Φ that sends a simple abelian variety A defined over Fq

to its Frobenius πA, considered as an algebraic integer. Observe that the char-

acteristic polynomial hA of πA is a power of an irreducible polynomial, which

will be the minimal polynomial of πA over Q. In view of Tate’s Theorem 3.10,

Φ induces an injective map between the isogeny classes of simple abelian vari-

eties over Fq and the conjugacy classes of q-Weil numbers. Honda in [Hon68]

proved that this is also surjective.
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Theorem 3.11 (Honda-Tate). The map that sends a simple abelian variety
A defined over Fq to the algebraic integer πA defined by its Frobenius endo-
morphism induces a bijection between the isogeny classes of simple abelian
varieties over Fq and conjugacy classes of q-Weil numbers.

In particular we obtain that the isogeny class of an abelian variety A over

Fq is completely determined by its Weil support {πB1
, . . . ,πBr} consisting of

the conjugacy classes of Frobenius morphisms of the simple abelian varieties

Bi’s and positive integers mi’s such that

A ∼Fq Bm1

1 × . . .×Bmr
r ,

see Corollary 1.18.

This implies that in order to enumerate the abelian varieties defined over

a finite field Fq up to isogeny of a given dimension g, it suffices to enumerate

the q-Weil polynomials polynomials h of degree 2g. Note that non all of such

polynomials give rise to an isogeny class of varieties of dimension g, see Paper

II for more details. Using Theorem 3.4 we can find bounds for the coefficients

of such h, which shows that this is a finite problem. Refined algorithms to

produce all such polynomials h can be found in [Hal10] and [HS12] for g = 3

and g = 4, respectively, and also [Ked08].

3.4 Categorical descriptions

Let q = pd , where p is a prime number. We have seen that the abelian varieties

over a finite field Fq can easily be enumerated up to isogeny, but in order to

compute them up to isomorphism we need a more refined classification. As

already mentioned at the beginning of the section, there is no hope to find a

categorical equivalence in terms of lattices of full rank on the whole category

of abelian varieties over Fq, as we have in Theorem 2.2. Nevertheless, we can

obtain similar functorial descriptions if we restrict ourselves to some subcate-

gories of the category of abelian varieties over Fq.

Definition 3.12. Let A be an abelian variety over Fq with characteristic poly-
nomial of Frobenius hA. We say that A is ordinary if exactly half of the roots of
hA over Qp are p-adic units.

For other equivalent definitions we refer to [Del69, Section 2]. Denote

by AVord(q) the category of ordinary abelian varieties over Fq. Consider the

category Mord(q) consisting of pairs (T,F) where T is a finitely generated free

Z-module, say of rank 2g, and F is a Z-linear endomorphism of T such that

(a) F ⊗Z Q acts semisimply on T ⊗Z Q with eigenvalues with complex abso-

lute value
√

q;
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(b) half of the roots of the characteristic polynomial h of F (over Qp) are p-

adic units;

(c) there exists V : T → T such that F ◦V = q.

A morphism in Mord(q) is given by a commutative diagram

T

F
��

ϕ �� T ′

F ′
��

T
ϕ �� T ′

Let W denote the ring of Witt vectors W (Fq) and fix an embedding ε :

W →C. Let A be in AVord(q) and let Ã be the Serre-Tate canonical lift of A to

W . Put

T (A) = H1(Ã⊗ε C,Z).

Observe that this construction is functorial in each step and hence the Z-

module T (A) comes equipped with a morphism F(A) which corresponds to

the Frobenius endomorphism of A and that RankT (A) = 2dim(A).
Consider the functor

Ford : AVord(q)→Mord(q)

A �→ (T (A),F(A))

for which we have the following theorem.

Theorem 3.13. The functor Ford induces an equivalence between AVord(q)
and Mord(q).

Proof. See [Del69, Théorème].

Howe in [How95] describes how to use Theorem 3.13 to describe the dual

of an abelian variety and polarizations in the category Mord(q). We refer also

to Papers II and III for more details.

Deligne’s result above has been extended to a much larger subcategory

of abelian varieties defined over the prime field Fp by Centeleghe and Stix

in [CS15]. More precisely consider the category Mcs(p) consisting of pairs

(T,F) as above. We set q = p and we replace condition (b) by

(b’) the characteristic polynomial h of F has no real roots.

Denote by AVcs(p) the category of abelian varieties over Fp whose charac-

teristic polynomial of Frobenius does not have real roots. Then the following

holds.
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Theorem 3.14. There is an anti-equivalence of categories

Fcs : AVcs(p)→Mcs(p)

Proof. See [CS15, Theorem 1].

The functor Fcs from Theorem 3.14 does not rely on lifting the abelian

varieties from Fp to characteristic zero, and it is not known what a polarization

in AVcs(p) will correspond to in Mcs(p).

Remark 3.15. There are other functors from subcategories of the category of
abelian varieties over a finite field to some category of finitely generated free
Z-modules, see for example the Appendix to [Lau02], [Kan11] and the recent
pre-print [JKP+17]. We will not discuss these functors since we are not using
them in our computations.

4 Summary of results

Theorems 3.13 and 3.14 are the key results that we are are going to use in the

papers that constitute the core of this thesis, where we describe algorithms to

effectively compute the isomorphism classes of abelian varieties over a finite

field Fq, where q is a power of a prime p, in a given isogeny class determined

by a q-Weil polynomial h which satisfies certain hypotheses. If the isogeny

class is ordinary then we are also able to describe the polarizations and the

group of automorphisms of the corresponding polarized abelian variety.

4.1 Paper I

In the first paper we give a survey of the theory of orders in finite étale Q-

algebras, that is, finite products of number fields, and of their fractional ide-

als. For such an order R in K we describe how to compute the ideal class
monoid ICM(R) of R, that is the set of isomorphism classes of fractional R-

ideals, which has the structure of a commutative monoid with the operation

induced by ideal multiplication. There are algorithms to compute the invert-

ible ideal classes (which form the Picard group Pic(R)) that are well known,

at least in the case when R is a integral domain. Not much is known about

the non-invertible ideals which appear as soon as R is not the maximal or-

der OK of K. We first address the problem locally, by studying the so-called

weak equivalence relation between fractional R-ideals and we produce an al-

gorithm to compute representatives of the corresponding equivalence classes,

denoted W(R). Then we reconstruct all the (global) isomorphism classes by

considering the action of the Picard groups of the over-orders of R on the weak

equivalence classes.
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As an application we generalize a Theorem of Latimer and MacDuffee

that allows us to describe the conjugacy classes of integral matrices with given

minimal polynomial m and characteristic polynomial c. Under certain assump-

tions on m and c we can explicitely compute representatives of these matrices

in terms of the ideal class monoid of the monogenic order Z[x]/(m).

A preliminary version of the results contained in Paper I was already in the

licentiate thesis [Mar16]. More precisely, the algorithm to compute the isomor-

phism classes was described only in the case when K was an integral domain.

We point out that if the generalization of the theory was fairly straightforward,

then on the other hand the algorithmic part had to be done from scratch. Also,

Examples 6.1 and 6.2 were already contained in [Mar16]. The code for the

algorithms is available on the webpage of the author.

4.2 Paper II

The second paper is devoted to computing the isomorphism classes of abelian

varieties over a finite field. Let AV(q) be the category of abelian varieties

over a finite field Fq, where q is a power of a prime number p. Let h be a

q-Weil polynomial and let AV(h) be the full sub-category of AV(q) consisting

of the abelian varieties in the isogeny class determined by h. Assuming that

h is square-free and ordinary we prove that there exists an equivalence of cat-

egories between AV(h) and the category of fractional R-ideals (with R-linear

morphisms), where R is the order Z[x,y]/(h(x),xy− q). In particular we de-

duce that the isomorphism classes are in bijection with ICM(R). An analogous

result holds in the more general situation when h has no real roots but with the

restriction that q= p. In the ordinary case we are also able to give a description

of the polarizations of an abelian variety A in AV(h) and we produce an algo-

rithm to compute the polarizations of a given degree up to isomorphism (of the

polarized abelian variety). Given a principally polarized abelian variety (A,a)
in AV(h) (with h ordinary) we are able to produce a period matrix associated

to the complexification of the canonical lift of (A,a) to characteristic zero.

As for Paper I, a preliminary version of the results of Paper II was already

in the licentiate thesis [Mar16]. More precisely, the algorithm to compute the

isomorphism class was developed only for irreducible characteristic polyno-

mials h and we were only able to compute principal polarizations. The gener-

alization to the square-free case and to polarizations of higher degree is new.

Also the algorithm to compute the period matrices is novel. Examples 7.3 and

7.4 were already contained in [Mar16].

An implementation of the algorithms is available on the webpage of the

author.
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4.3 Paper III

In the third paper we extend the description given in the second paper to abelian

varieties isogenous to a power of an abelian variety. More precisely, let q be a

power of a prime p and let AV(q) be the category of abelian varieties over Fq.

Define AV(h) as the full-subcategory of AV(q) consisting of the varieties in

the isogeny class determined by h, where h = gr for a square-free ordinary q-

Weil polynomial g or a square-free p-Weil polynomial g with no real roots. Put

R = Z[x,y]/(g(x),xy−q) (with q = p in the second case). We prove that there

is an equivalence of categories between AV(q) and the category of torsion free

R-modules M of rank r, that is M⊗K = Kr, where K = R⊗ZQ.

Such modules are classified in terms of fractional R-ideals when the order

R is Bass, that is when each over-order is Gorenstein, or equivalently when

each fractional R-ideal is invertible in its multiplicator ring. In this situation

we are able to compute the isomorphism classes of the abelian varieties in

AV(h).
In the ordinary case we are also able to translate the notion of dual variety

and of polarization to the module theoretic setting.

4.4 Paper IV

In this short note, we use the descriptions of Paper 2 and 3 of AV(q) to answer

questions about base field extension. More precisely, if I is the fractional ideal

corresponding to a simple ordinary abelian variety A over Fq, we describe how

to identify the module M corresponding to the variety Ar = A⊗Fqr .

The results of this short note are presented separately since they are pre-

liminary and with further work they could lead to an algorithmic test for find-

ing absolutely indecomposable polarized abelian varieties, that is polarized

abelian varieties that cannot be written as a product of polarized abelian vari-

eties over any algebraic extension of the base field, and hence could be used to

test whether an isomorphism class contains a Jacobian of a curve.

4.5 Computational remarks

Some steps in the algorithms presented in the papers are not efficient even if

in practice they work well for most orders of rank up to 8 and hence isogeny

classes of abelian varieties of dimension 4. Here we describe some of the

computational issues that we have occasionally encountered. In order to com-

pute ICM(R) we first need to know the over-orders of R which we compute by

looking at the subgroup of the finite group OK/R, where OK is the maximal

order of K = R⊗Q. If the order R is “very singular” this group might be too
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big to be handled from a computational point of view. Similarly, for a non-

Gorenstein order R, in order to compute the weak equivalence classes of ideals

I with (I : I) = R we need to consider the subgroups of H = T/(R : T ), where

T is an over-order of R such that the extension RtT of the trace-dual ideal Rt of

R is invertible (in T ). Again, H might have a very big and complicated lattice

of subgroups.

In order to compute the polarizations of an abelian variety A corresponding

to a fractional R-ideal I in K, we need to compute a specific CM-type which

detects the complex structure coming from characteristic p on the canonical

lift of A to characteristic zero. Our method requires us to compute a Galois

closure of K and such computation occasionally does not terminate on Magma

[BCP97].

Finally, even if in Paper III we describe the polarizations of an abelian

variety A corresponding to a module M we are not able to compute them (up

to isomorphism) since this requires us to deal with a quotient of an infinite

non-abelian group by the action Aut(A) which also is infinite and non-abelian.
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