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In the settings of decision-making-under-uncertainty problems, an agent takes an

action on the environment and obtains a non-deterministic outcome. Such problem set-

tings arise in various applied research fields such as financial engineering, business analyt-

ics and speech recognition. The goal of the research is to design an automated algorithm

for an agent to follow in order to find an optimal action according to his/her preferences.

Typically, the criterion for selecting an optimal action/policy is a performance mea-

sure, determined jointly by the agent’s preference and the random mechanism of the

agent’s surrounding environment. The random mechanism is reflected through a ran-

dom variable of the outcomes attained by a given action, and the agent’s preference is

captured by a transformation on the potential outcomes from the set of possible actions.

Many decision-making-under-uncertainty problems formulate the performance mea-

sure objective function and develop optimization schemes on that objective function. Al-

though the idea on the high-level seems straightforward, there are many challenges, both

conceptually and computationally, that arise in the process of finding the optimal action.

The thesis studies a special class of performance measure, defined based on Cu-



mulative Prospect Theory (CPT), which has been used as an alternative to expected-

utility based performance measure for evaluating human-centric systems. The first part of

the thesis designs a simulation-based optimization framework on the CPT-based perfor-

mance measure. The framework includes a sample-based estimator for the CPT-value and

stochastic approximation algorithms for searching the optimal action/policy. We prove

that, under reasonable assumptions, the CPT-value estimator is asymptotically consis-

tent and our optimization algorithms are asymptotically converging to the optimal point.

The second part of the thesis introduces an abstract dynamic programming framework

whose transitional measure is defined through the CPT-value. We also provide sufficient

conditions under which the CPT-driven dynamic programming would attain a unique op-

timal solution. Empirical experiments presented in the last part of thesis illustrate that the

CPT-estimator is consistent and that the CPT-based performance measure may lead to an

optimal policy very different from those obtained using traditional expected utility.
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Chapter 1

Introduction

1.1 Decision making

In decision making problem settings, an agent is an individual acting based on the

observations of its surrounding environment. Agents can either be physical or nonphysical

entities. Physical entities include humans and robots, and a nonphysical entity is usually

a decision support system that is completely implemented in software. Figure 1.1 shows

that the interaction between the agent and the world follows an observe-act cycle.

At time t, the agent receives an observation ot resulting from the action at it carries

out. Observations are often incomplete or noisy. And the agent’s act may have a nonde-

terministic effect on the environment. We focus on the scenarios in which agents interact

intelligently with the environment over time. Given the historical trajectories of obser-

vations and knowledge about the environment, the agent will choose at that optimally

achieves its objectives.

1.2 Example Applications

There are many examples of problems in which accounting for uncertainty is nec-

essary. This section outlines few of them, and the first of which will be revisited in the

latter part of this thesis.
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Environment Agent

Observation (ot)

Action (at)

Figure 1.1: Interaction between the environment and the agent

1.2.1 Traffic light control system

An example of a decision support system that plays an important role in city plan-

ning is a traffic signal control system (TLCS). A TLCS coordinates individual traffic

signals to achieve the objectives of network-wide traffic operations objectives. These sys-

tems consist of intersection traffic signals, a communications network to tie them together,

and a central computer or network of computers to manage the whole system. Coordina-

tion can be implemented through several techniques including time-based and hardwired

interconnection methods.

The key purpose of a traffic-signal system is to deliver favorable signal timings to

motorists. Designing an efficient automated traffic-signal system appears to be an arduous

task, because of the scale of the problem but also the unpredictable nature patterns of

drivers’ behaviors. A vast amount of research has been devoted to designing a better

control system.
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1.2.2 Keyword auction

Keyword auction, also known as sponsored search auction, refers to the results

from a search engine that generate separate advertisements paid by third parties rather

than through the main search algorithm [47]. These advertisements are typically related

to the search terms and contain a link with some information, with the hope that the click

can convert a valuable action to the advertisers. In sponsored search auctions, there are

usually limited numbers of slots as compared to the number of advertisers, so an auction

is used to determine how the slots will be assigned.

Sponsored search auction constitutes a big part of search engine marketing. It pro-

vides a marketplace where advertisers can bid for advertising opportunities to enhance

customers’ impressions on their products and related websites, and therefore increase

the volume of their sales. From the perspective of an advertiser, designing an effective

bidding strategy is critical to their success.

The main challenge of a reward strategy is to choose effective keywords and phrases.

There is a myriad of keywords and phrases that can be chosen from [18]. And various

forms of uncertainty prevent advertisers from determining their optimal bidding strate-

gies.

Given the economic impact and intricate nature aforementioned, sponsored search

auctions have been drawing a lot of attention from both researchers and practitioners.
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1.3 Methods for Designing Decision Agents

There are many different methods for designing decision agents. The methods differ

in the responsibilities of the designer and the tasks left to automation. We briefly outline

a few of the methods in this section, and the thesis will primarily focus on one of them,

optimization.

1.3.1 Explicit Programming

In some simple settings, one can explicitly lay out a action for the agent to execute

by anticipating all the different scenarios the agent might find itself in the environment

[48]. Explicit Programming is the most direct method for designing a decision agent.

However, in most of the cases, it is generally impossible for a designer to provide a

complete strategy.

1.3.2 Optimization

Another approach is for the designer to specify the space of possible decision strate-

gies and a performance measure to be maximized. Evaluating the performance of a deci-

sion strategy generally involves running a batch of simulations with the decision strategy.

The optimization algorithm then performs a search in this space for the optimal strategy.

If the space of possible strategies is relatively low dimensional and the performance mea-

sure does not have many local optima, then various local or global search strategies may

be appropriate. Although knowledge of a dynamic model is generally assumed in order

to run the simulations, it is not otherwise used to guide the search for the optimal strategy,

4



which can be important in complex problems.

1.3.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerning how agents

should take actions in an environment so as to maximize some notion of cumulative re-

ward. Under the principles of reinforcement learning, the decision-making strategy is

learned while the agent interacts with the world. One of the interesting complexities that

arises in reinforcement learning is that the choice of action impacts not only the immediate

success of the agent in achieving its objectives but also the agent’s ability to learn about

the environment and identify the characteristics of the problem that it can exploit. Due to

its generality, reinforcement learning problem has been studied in many disciplines, such

as control theory, game theory and simulation optimization. A comprehensive introduc-

tion to reinforcement learning can be found in [77].

1.4 Representation of Uncertainty

Uncertainty can arise from incomplete observation about the state of the agent’s

surrounding environment, and given the incomplete information at hand, we are unable to

make an assessment with complete accuracy. Uncertainty can also arise from our inability

to fully predict future events. For example, a hedge fund manager cannot predict exactly

how a stock price would behave even a few hours after a buyout action, and a traffic

control system cannot fully predict the behavior of all the drivers on the road.

Uncertainty is reflected in the randomness of the outcome, and such randomness

5



is usually represented by a probability distribution. Probability distributions used to rep-

resent uncertainty take forms ranging from the simple and well-known Gaussian distri-

bution to complex graphical probabilistic models. Notice that in certain cases of decision-

making-under-uncertainty problems, the underlying probability distributions are unknown

to the agent. Under such circumstances, the agent usually needs to apply statistical learn-

ing methods, either parametric or nonparametric, to estimate the probability distributions

through the samples of the outcome of the action.

A detailed discussion of representing uncertainty can be found in [48].

1.5 Utility Theory

This section briefly introduces the foundation of utility theory and how it forms the

basis for decision making under uncertainty.

1.5.1 Utility measure/function

For any decision-making-under-uncertainty problem, the utility measure, usually

denoted in this dissertation as u, is a real-valued function applied on the space of all

the outcomes such that it represents the preference of the agent on the outcome. To

illustrate this point, suppose A1 and A2 are two observed outcomes and the agent prefers

A1 over A2, then u(A1) > u(A2). Moreover, the utility function is unique up to affine

transformation.
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1.5.2 Expected utility theory

Given the probability distribution of the outcomes and the utility function, defining

an appropriate performance measure is of paramount importance. An inappropriate per-

formance measure may lead to an inefficient policy. A widely used form of performance

measure is the expected value of the utilities.

Expected utility theory emerges from assumptions about agents’ behavior, and a

critical one of them is rationality. Vast amounts of literature have been written to explain

why a rational agent always chooses to maximize expected utility. One prominent ar-

gument depends on evidence that expected-utility maximization is a profitable policy in

the long term. A version of this argument can be found in the work of [30], and it relies

on a well-known limit theorem in statistics: the Strong Law of Large Numbers. There

are also arguments based on representation theorems, which suggest that certain rational

constraints on preference entail that all rational agents maximize expected utility. Among

the variations of the arguments based on representation theorems, one influential work is

[56], which claims that preferences can be defined over a domain of lotteries.

1.5.3 Irrationality assumption

Despite its popularity, expected utility theory does have some limitations, especially

when the agent in the decision-making process is human, since humans are subject to var-

ious emotional and cognitive biases when making decisions. As the psychology literature

points out, human preferences are inconsistent with expected utilities regardless of what

nonlinear forms of utility functions are used [1, 28, 46]. Such an argument is justified by

7



a celebrated experiment called the Allais Paradox [1], which is briefly outlined here:

Allais Paradox

Suppose we have the following two switching gambling policies:

[Policy 1] A gain (number of vehicles that reach destination per unit time) of 1000

w.p. 1. Let this be denoted by (1000, 1).

[Policy 2] (10000, 0.1; 1000, 0.89; 100, 0.01) i.e., gains 10000, 1000 and 100 with

respective probabilities 0.1, 0.89 and 0.01.

Humans usually choose Policy 1 over Policy 2. On the other hand, consider the

following two policies:

[Policy 3] (100, 0.89; 1000, 0.11)

[Policy 4] (100, 0.9; 10000, 0.1)

Humans usually choose Policy 4 over Policy 3.

We can now argue against using expected utility (EU) as an objective as follows:

Let u be the utility function in EU.

Policy 1 is preferred over Policy 2

⇒ u(1000) > 0.1u(10000) + 0.89u(1000) + 0.01u(100)

⇒ 0.11u(1000) > 0.1u(10000) + 0.01u(100) (1.1)

Policy 4 is preferred over Policy 3

⇒ 0.89u(100) + 0.11u(1000) < 0.9u(100) + 0.1u(10000)

⇒ 0.11u(1000) < 0.1u(10000) + 0.01u(100) (1.2)

8



And we have a contradiction from (1.1) and (1.2).

It has been argued that even human experts may have an inconsistent set of prefer-

ences, which can be problematic when designing a decision support system that attempts

to maximize expected utility[48] .

1.5.4 Cumulative prospect theory

In terms of modeling humans’ preferences, one of the approaches is [46]’s cele-

brated prospect theory (PT). The theory claims that people evaluate potential losses and

gains based on certain heuristics, and make choices based on that evaluation. The theory

tries to model real-life choices, rather than optimal decisions.

To formulate the model of prospect theory, denote X as the random variable of

the outcomes, and let pi, i = 1, . . . , K denote the probability of incurring a gain/loss

xi, i = 1, . . . , K. Given a utility function u and weighting function w, the prospect

theory (PT) value is defined as P(X) =
∑K

i=1 u(xi)w(pi).

The idea of modeling humans’ choice through prospect theory is to take an utility

function that is S-shaped, so that it satisfies the diminishing sensitivity property. If we

take the weighting function w to be the identity, then one recovers the classic expected

utility. A general weight function inflates low probabilities and deflates high probabilities,

and this has been shown to be close to the way humans make decisions (see [46], [31] for

a justification, in particular via empirical tests using human subjects).

However, Prospect Theory gave rise to violations of first-order stochastic domi-

nance. Consider the following example from [31]: Suppose there are 20 prospects (out-
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comes) ranging from −10 to 180, each with probability 0.05. If the weight function is

such that w(0.05) > 0.05, then it uniformly overweights all low-probability prospects

and the resulting PT value is higher than the expected value 85. This violates stochastic

dominance, since a shift in the probability mass from bad outcomes did not result in a

better prospect.

Our thesis is based on cumulative prospect theory (CPT), a later, refined variant of

prospect theory due to [78]. CPT generalizes expected utility theory in that in addition to

having a utility function transforming the outcome, it introduces another function which

distorts the cumulative distribution function. As compared to prospect theory, CPT is

monotone with respect to stochastic dominance, a property that is thought to be useful

and (mostly) consistent with human preferences.

Cumulative prospect theory (CPT) uses a similar measure as PT, except that the

weights are a function of cumulative probabilities. First, separate the gains and losses as

x1 ≤ . . . ≤ xl ≤ 0 ≤ xl+1 ≤ . . . ≤ xK . Then, the CPT-value is defined as

C(X) =u−(x1) · w−(p1) +
l∑

i=2

u−(xi)
(
w−(

i∑
j=1

pj)− w−(
i−1∑
j=1

pj)
)

+
K−1∑
i=l+1

u+(xi)
(
w+(

K∑
j=i

pj)− w+(
K∑

j=i+1

pj)
)

+ u+(xK) · w+(pK),

where u+, u− are utility functions and w+, w− are weight functions corresponding to

gains and losses, respectively. The utility functions u+ and u− are non-decreasing, while

the weight functions are continuous, non-decreasing and have the range [0, 1] withw+(0) =

w−(0) = 0 and w+(1) = w−(1) = 1 . Unlike PT, the CPT-value does not violate stochas-

tic dominance. In the aforementioned example, increasing w−(0.05) and w+(0.05) does

not impact outcomes other than those on the extreme, i.e., −10 and 180, respectively. For

10



instance, the weight for outcome 100 would be w+(0.45) − w+(0.40). Thus, CPT for-

malizes the intuitive notion that humans are sensitive to extreme outcomes and relatively

insensitive to intermediate ones.

The main assumption supporting CPT (and Prospect Theory) is that people tend to

evaluate possible outcomes usually relative to a certain reference point rather than to the

raw observation. Moreover, CPT assumes that people have different risk attitudes towards

gains and losses and are generally more concerned about potential losses than potential

gains (loss aversion). Finally, people tend to overweight extreme, but unlikely events, but

underweight “average" events.

1.6 Outline of Thesis

Chap. 2 is devoted to designing a CPT-value based stochastic optimization frame-

work. We lay out a sample-efficient estimation scheme of the CPT-value of a given policy,

and we also propose a few nonparametric policy-optimization algorithms concerning the

CPT-value based performance measure. Our CPT-value estimator is proved to converge

asymptotically under relatively mild conditions. We will also present sample complexity

properties of our estimation scheme. All of the policy-optimization algorithms designed

in this chapter are theoretically guaranteed to converge to a local optimal point of the

corresponding performance function.

Chap. 3 puts forward a dynamic programming structure driven by the CPT-based

transitional measure. We prove that the nested-structure of the CPT-dynamic program-

ming has a unique optimal solution under some reasonable assumptions. Moreover, the
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optimal solution can be found by value and policy iteration algorithms.

In Chap. 4, we conduct numerical experiments, which are designed for the follow-

ing purposes: to we test the asymptotic convergence properties and sample complexity

properties of our proposed CPT-estimator, and to investigate the difference between CPT-

based decision making and traditional expected-utility-based decision making.
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Chapter 2

Stochastic optimization in a cumulative prospect theory framework

2.1 Overview

In this chapter, we bring CPT to a stochastic optimization framework and propose

algorithms for both estimation and optimization of CPT-value objectives. We propose

an empirical distribution function-based scheme to estimate the CPT-value and then use

this scheme in the inner loop of a CPT-value optimization procedure. We propose both

gradient-based as well as gradient-free CPT-value optimization algorithms that are based

on two well-known simulation optimization ideas: simultaneous perturbation stochastic

approximation (SPSA) and model-based parameter search (MPS), respectively. We pro-

vide theoretical convergence guarantees for all the proposed algorithms and also illustrate

the potential of CPT-based criteria in a traffic signal control application with numerical

experiments in Chapter 4. The content of this chapter is based on joint work with L.A.

Prashanth et al. ([44], [62]).

2.2 Contribution of the chapter

In this chapter we consider stochastic optimization problems where a designer op-

timizes the system to produce outcomes that are maximally aligned with the preferences

of one or possibly multiple humans. As a running example, consider traffic optimization

13



where the goal is to maximize travelers’ satisfaction, a challenging problem many may

agree is still inadequately addressed today, at least in big cities. In this example, the out-

comes (“return”) are travel times, or delays. To capture human preferences, the outcomes

are mapped to a single numerical quantity.

To the best of our knowledge, we are the first to incorporate CPT into an online

stochastic optimization framework. Although on the surface the combination may seem

straightforward, in fact there are many challenges that arise from trying to optimize a

CPT objective in the stochastic optimization framework, as we will soon see. In this short

summary, we outline these challenges as well as our approach to addressing them.

The first challenge stems from the fact that the CPT-value assigned to a random vari-

able is defined through a nonlinear transformation of the cumulative distribution function

associated with the underlying random variable (see Section 2.4 for the definitions). In

the case of the classic value function, which is an expectation, a simple sample mean can

be used for estimation, facilitating the use of temporal difference type algorithms. On

the other hand, CPT-value involves a distribution that is distorted using nonlinear weight

functions and hence, requires that the entire distribution be estimated. Therefore, even

the problem of estimating the CPT-value given a random sample is challenging.

In this chapter, we consider a natural quantile-based estimator and analyze its be-

havior. Under certain technical assumptions, we prove consistency and give sample com-

plexity bounds, the latter based on the Dvoretzky-Kiefer-Wolfowitz (DKW) theorem [82,

Chapter 2]. As an example, we show that the sample complexity to estimate the CPT-

value for Lipschitz probability distortion weight functions is O
(

1
ε2

)
, for a given accu-

racy ε. This sample complexity coincides with the canonical rate for Monte Carlo-type
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schemes and is thus unimprovable. Since weight functions that fit well to human prefer-

ences are only Hölder continuous, we also consider this case and find that (unsurprisingly)

the sample complexity degrades to O
(

1
ε2/α

)
where α ∈ (0, 1] is the weight function’s

Hölder exponent.

Our results on estimating CPT-values form the basis of the algorithms that we pro-

pose to maximize CPT-values based on interacting either with a real environment or with

a simulator. We set up this problem as an instance of policy search, and we consider a

smooth parameterization of the CPT-value and propose four algorithms for updating the

CPT-value parameter. The first algorithm is a stochastic gradient scheme that uses two-

point randomized gradient estimators, borrowed from simultaneous perturbation stochas-

tic approximation (SPSA) [72]. The second algorithm is a modification of the first al-

gorithm in that it uses the two-point randomized perturbation idea to estimate both the

gradient and Hessian of the CPT-value at the given point, and it updates the parameter

through a Newton-Raphson strategy. The third algorithm provides an unbiased gradient

estimator built from infinitesimal perturbation analysis (IPA), which is been comprehen-

sively studied in [39]. And lastly, the chapter provides a non-parametric algorithm for

maximizing CPT-value based on Model Reference Adaptive Search (MRAS) [20]. Even

though incorporating CPT-based criteria incurs extra sample complexity in estimation as

compared to that of the classic sample mean estimator for expected value, the optimiza-

tion schemes based either on SPSA or model-based parameter search [20] that we propose

converge at the same rate as that of their expected value counterparts.
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2.3 Related Work

Various risk measures have been proposed in the literature, e.g., mean-variance

tradeoff [55], exponential utility [2], value at risk (VaR) and conditional value at risk

(CVaR) [65]. A large body of literature involves risk-sensitive optimization in the con-

text of Markov decision processes (MDPs). The stochastic optimization context of this

chapter translates to a risk-sensitive reinforcement learning (RL) problem, and it has been

observed in earlier works that risk-sensitive RL is generally hard to solve. For instance,

in [71], [32] and [54], the authors provide NP-hardness results for finding a globally

variance-optimal policy in discounted and average reward MDPs. Solving CVaR con-

strained MDPs is equally complicated (cf. [15, 59]).

In an abstract MDP setting, a CPT-based risk measure has been proposed in [52].

As compared to [52], (i) we do not assume a nested structure for the CPT-value, and this

implies the lack of a Bellman equation for our CPT measure; (ii) we do not assume model

information, i.e., we operate in a more general stochastic optimization setting; (iii) we

develop both estimation and optimization algorithms with convergence guarantees for the

CPT-value function. More recently, the authors in [36] incorporate CPT-based criteria into

a multi-armed bandit setting, while employing the estimation scheme that we proposed in

the shorter version of this [62].

The rest of the chapter is organized as follows: In Section 2.4, we define the notion

of CPT-value for a general random variable. In Section 2.5, we describe the empirical

distribution-based scheme for estimating the CPT-value of any random variable, and we

also prove the convergence of our estimation scheme. In Section 2.6, we present both

16



gradient-based and non-parametric algorithms for optimizing the CPT-value. We provide

proofs of convergence for all the proposed algorithms in Section 2.6 as well. Finally, in

Section 2.7 we provide concluding remarks.

Losses

u+

−u−

Gains

Utility

Figure 2.1: An example of a utility function. A reference point on the x axis serves as

the point of separating gains and losses. For losses, the disutility −u− is typically convex

and for gains, the utility u+ is typically concave; both functions are non-decreasing and

take the value of zero at the reference point.

2.4 CPT-functional

Without loss of generality, we choose 0 as the reference throughout this chap-

ter. Given random variable X , the functional, denoted by C, depends on function pairs

u = (u+, u−) and w = (w+, w−). As illustrated in Figure 2.1, u+, u− : R→ R+ are con-

tinuous, with u+(x) = 0 when x ≤ 0 and non-decreasing otherwise, and with u−(x) = 0

when x ≥ 0 and non-increasing otherwise. The functions w+, w− : [0, 1] → [0, 1], as

shown in Figure 2.2, are continuous, non-decreasing and satisfy w+(0) = w−(0) = 0 and
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Figure 2.2: An example of a weight function. A typical CPT weight function inflates

small, and deflates large probabilities, capturing the tendency of humans when facing

with decisions of uncertain outcomes.

w+(1) = w−(1) = 1.

According to [79], if X is a continuous random variable, its CPT-functional is de-

fined as

C(X) =

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz

−
∫ ∞

0

w−
(
P
(
u−(X) > z

))
dz . (2.1)

Consider the case whenw+ and w− are identity functions, u+(x) = x for x ≥ 0 and

0 otherwise, and u−(x) = −x for x ≤ 0 and 0 otherwise. Then, letting (a)+ = max(a, 0),

(a)− = max(−a, 0), we have C(X) =
∫∞

0
P (X > z) dz−

∫∞
0

P (−X > z) dz = E [(X)+]−

E [(X)−], showing the connection to expectations.

In the definition, u+ and u− are utility functions corresponding to gains (X ≥ 0)
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and losses (X ≤ 0), respectively, where zero is chosen the “reference point” to separate

gains and losses. Handling losses and gains separately is a salient feature of CPT, and

this addresses the tendency of humans to play safe with gains and take risks with losses.

To illustrate this tendency, consider a scenario where one can either earn $500 with prob-

ability (w.p.) 1 or earn $1000 w.p. 0.5 and nothing otherwise. The human tendency is to

choose the former option of a certain gain. If we flip the situation, i.e., a certain loss of

$500 or a loss of $1000 w.p. 0.5, then humans choose the latter option. This distinction of

playing safe with gains and taking risks with losses is captured by a concave gain-utility

u+ and a convex disutility −u−, as illustrated in Figure 2.1.

The functionsw+, w−, called the weight functions, capture the idea that humans de-

flate high-probabilities and inflate low-probabilities. For example, humans usually choose

a stock that gives a large reward, e.g., one million dollars w.p. 1/106 over one that gives

$1 w.p. 1 and the reverse when signs are flipped. Thus the value seen by a human subject

is non-linear in the underlying probabilities – an observation backed by strong empiri-

cal evidence [4]. As illustrated with w = w+ = w− in Fig 2.2, the weight functions

are continuous, non-decreasing and have the range [0, 1] with w+(0) = w−(0) = 0 and

w+(1) = w−(1) = 1. [78] recommends w(p) = pη

(pη+(1−p)η)1/η , while [63] recommends

w(p) = exp(−(− ln p)η), with 0 < η < 1. In both cases, the weight function has an

inverted-s shape.
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Illustrative application example: Stochastic Shortest Path

To present a running example where a CPT-functional can be applied, we consider

a stochastic shortest path (SSP) problem with states S = {0, . . . , }, where 0 is a special

reward-free absorbing state. Each state s ∈ S is associated with an action spaceA(s) that

an agent can choose from. Once an action a ∈ A(s) is taken, the pair (s, a) will result a

reward r(s, a) and a transitional probability distribution P(·|s, a) over the state space S.

The probability distribution P(·|s, a) thereby governs the move of the agent for the next

step. A randomized policy π is a function that maps any state s ∈ S onto a probability

distribution over the actions A(s) in state s. As is standard in policy gradient algorithms,

we parameterize π and assume it is continuously differentiable in its parameter θ ∈ Rd.

An episode is a simulated sample path of the shortest path problem based on policy θ

and transitional distributions P(·|s, a),∀s ∈ S,∀a ∈ A. It starts in state s0 ∈ S, visits

{s1, . . . , sτ−1} before ending in the absorbing state 0, where τ is the first passage time to

state 0. LetDθ(s0) be a random variable (r.v) that denote the total reward from an episode

start with s0, defined by

Dθ(s0) =
τ−1∑
m=0

r(sm, am),

where the actions am are chosen using policy θ and r(sm, am) is the single-stage reward

in state sm ∈ S when action am ∈ A(sm) is chosen.

Instead of the traditional RL objective for an SSP of maximizing the expected value

E(Dθ(s0)), we adopt the CPT approach and aim to solve the following problem:

max
θ∈Θ

C(Dθ(s0)),
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where Θ is the set of admissible policies that are proper1 and the CPT-value function

C(Dθ(s0)) is defined as

C(Dθ(s0)) =

∫ ∞
0

w+(P (u+(Dθ(s0))) > z)dz

−
∫ ∞

0

w−(P (u−(Dθ(s0))) > z)dz. (2.2)

Remark 1. (Generalization) As noted earlier, the CPT-value is a generalization of math-

ematical expectation. It is also possible to get (2.1) to coincide with risk measures (e.g.

VaR and CVaR) by appropriate choice of weight functions.

Remark 2. (Sensitivity) Traditional EU-based approaches are sensitive to modeling er-

rors as illustrated in the following example: Suppose stockA gains $10000 w.p 0.001 and

loses nothing w.p. 0.999, while stock B surely gains 11. With the classic value function

objective, it is optimal to invest in stock B as it returns 11, while A returns 10 in expec-

tation (assuming utility function to be the identity map). Now, if the gain probability for

stock A was 0.002, then it is no longer optimal to invest in stock B and investing in stock

A is optimal. Notice that a very slight change in the underlying probabilities resulted

in a big difference in the investment strategy and a similar observation carries over to

a multi-stage scenario (see the house buying example in Chapter 4). A randomized pol-

icy that 50% in stock A and the rest in a risk-free asset is less sensitive to the error in

under-estimating the loss probability.

Using CPT makes sense because it inflates low probabilities and thus can account

for modeling errors, especially considering that model information is unavailable in prac-

1A policy θ is proper if 0 is recurrent and all other states are transient for the Markov chain underlying

θ. It is standard to assume that policies are proper in an SSP setting - cf. [7].
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tice. Note also that in MDPs with expected utility objective, there exists a deterministic

policy that is optimal. However, with CPT-value objective, the optimal policy is not nec-

essarily deterministic - See also the organ transplant example on pp. 75-81 of [52].

2.5 CPT-value estimation

For a given random variable X , we devise a scheme for estimating the CPT-value

C(X) given only samples from the distribution of X . Meanwhile, we show that, under a

set of reasonable assumptions on the random variable X and probability weighting func-

tions, our estimator (presented next) converges almost surely. Before diving into the de-

tails of CPT-value estimation, let us discuss the conditions necessary for the CPT-value to

be well-defined. Observe that the first integral in (2.1), i.e.,
∫ +∞

0
w+ (P (u+(X) > z)) dz

may diverge even if the first moment of random variable u+(X) is finite. For example,

suppose U has the tail distribution function P (U > z) = 1
z2 , z ∈ [1,+∞), and w+(z)

takes the form w(z) = z
1
3 . Then, the first integral in (2.1), i.e.,

∫ +∞
1

z−
2
3 dz does not even

exist. A similar argument applies to the second integral in (2.1). To overcome the inte-

grability issues, we assume that the weight functions w+, w− satisfy one of the following

assumptions for continuous valued r.v.s:

Assumption 1. The weight functions w± are Hölder continuous with common order α

and constantH , i.e., supx 6=y
|w±(x)−w±(y)|
|x−y|α ≤ H , ∀x, y ∈ [0, 1]. Further, there exists γ ≤ α

such that (s.t.)
∫ +∞

0
Pγ(u+(X) > z)dz < +∞ and

∫ +∞
0

Pγ(u−(X) > z)dz < +∞,

where Pγ(·) = (P(·))γ .

Assumption 2. The weight functions w+, w− are Lipschitz with common constant L, and
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u+(X) and u−(X) both have bounded first moments.

The first property of the CPT-value is claimed and proved in the following theorem:

Theorem 1. Under assumption 1 or 2, the CPT-value C(X) as defined by (2.1) is finite.

Proof. Hölder continuity of w+ and w+(0) = 0 imply that

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz ≤ H

∫ ∞
0

Pα
(
u+(X) > z

)
dz

≤ H

∫ ∞
0

Pγ
(
u+(X) > z

)
dz <∞.

The second inequality is valid since P (u+(X) > z) ≤ 1. The claim follows for the first

integral in (2.1), and the finiteness of the second integral in (2.1) can be argued in an

analogous fashion.

Assumption 2, even though it implies assumption 1, is a useful special case because

it does away with additional assumptions required to establish asymptotic consistency

under assumption 1. For the theoretical results, we also require the following assumption

on the utility functions:

Assumption 3. The utility functions u+ and −u− are continuous and non-decreasing on

their support R+ and R−, respectively.

Finally, we also analyze the setting where X is a discrete valued r.v. Such a setting

is common in practice and carries the additional advantage that, under a local Lipschitz

assumption on the distribution of X , one gets better sample complexity as compared to

those under assumptions 1 and 2.
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2.5.1 CPT-value estimation using quantiles

Let ξ+
k and ξ−k denote the kth quantiles of the r.v.s u+(X) and u−(X), respectively.

Then, it can be seen that (see Theorem 1 in Section 2.5.2)

lim
n→∞

n∑
i=1

ξ+
i
n

(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))

=

∫ +∞

0

w+
(
P
(
u+(X) > z

))
dz. (2.3)

A similar claim holds with u−(X), ξ−k , w
− in place of u+(X), ξ+

α , w
+, respectively.

However, we do not know the distribution of u+(X) or u−(X) and hence, we next

present a procedure that uses order statistics for estimating quantiles and this in turn

assists estimation of the CPT-value along the lines of (2.3). The estimation scheme is

presented in Algorithm 1.

Algorithm 1 CPT-value estimation
1: Input: sample X1, . . . , Xn from the distribution of X .

2: Arrange the samples in ascending order and label them as follows:

X[1], X[2], . . . , X[n].

3: Let

C+

n :=
n∑
i=1

u+(X[i])

(
w+

(
n+ 1− i

n

)
−w+

(
n− i
n

))
,

C−n :=
n∑
i=1

u−(X[i])

(
w−
(
i

n

)
− w−

(
i− 1

n

))
.

4: Return Cn = C+

n − C−n .

Consider the special case when w+(p) = w−(p) = p and both u+ and (−u−),

when restricted to the positive (respectively, negative) half line, are the identity functions.
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In this case, the CPT-value estimator Cn coincides with the sample mean estimator for

regular expectation.

Notice that the CPT estimator Cn in Algorithm 1 can be written equivalently as

follows:

Cn =

∫ ∞
0

w+
(

1− F̂+
n (x)

)
dx−

∫ ∞
0

w−
(

1− F̂−n (x)
)
dx. (2.4)

The above relation holds because

n∑
i=1

u+
(
X[i]

)(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))

=
n−1∑
i=1

w+

(
n− i
n

)(
u+
(
X[i+1]

)
− u+

(
X[i]

))
+ u+(X[1])

=

∫ ∞
0

w+
(

1− F̂+
n (x)

)
dx, and

n∑
i=1

u−
(
X[i]

)(
w−
(
i

n

)
− w−

(
i− 1

n

))

=

∫ ∞
0

w−
(

1− F̂−n (x)
)
dx,

where F̂+
n (x) and F̂−n (x) are the empirical distributions of u+ (X) and u− (X), respec-

tively.

2.5.2 Results for Hölder and Lipschitz continuous weights

Theorem 2. (Asymptotic consistency) Letw± satisfy the Hölder continuous assumption 1

with α > 1
2

and let assumption 3 hold. If F+(·) and F−(·), the respective distribution

functions of u+(X) and u−(X), satisfy the property that there exist constants L+ and L−

such that

|F+(x)− F+(y)| ≥ L+|x− y|, ∀x, y ∈ U+ ⊂ R
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and

|F−(x)− F−(y)| ≥ L−|x− y|, ∀x, y ∈ U− ⊂ R,

with U+ and U− the connected and compact support of u+(X) and u−(X), and if the

random variables u+(X), u−(X) satisfy

lim
n→∞

u+(X[n])

nα
→ 0 and lim

n→∞

u−(X[n])

nα
→ 0 a.s.,

where α is the Hölder exponent for w± defined in assumption 1, then we have

Cn → C(X) a.s. as n→∞, (2.5)

where Cn is as defined in Algorithm 1 and C(X) as in (2.1).

We now state and prove a lemma that will be used in the proof of Theorem 2.

Lemma 1. Let ξ+
i
n

and ξ−i
n

denote the i
n

th quantile of u+(X) and u−(X), respectively. If

assumption 1 holds, then we have

lim
n→∞

n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

=

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz <∞, (2.6)

lim
n→∞

n−1∑
i=1

ξ−i
n

(
w−
(
i

n

)
− w−

(
i− 1

n

))

=

∫ ∞
0

w−
(
P
(
u−(X) > z

))
dz <∞. (2.7)

Proof. We will focus on proving equation (2.6). For all z ∈ (0,+∞), the following

convergence claim holds w.p.1:

n−1∑
i=1

w+

(
i

n

)
I[
ξ+
n−i−1
n

,ξ+
n−i
n

](z)
n→∞−−−→ w+

(
P
(
u+(X) > z

))
. (2.8)
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To infer the above claim, observe that since u+(X) ranges in (0,+∞),∀z, there exists i

such that z ∈ [ξ+
n−i−1
n

, ξ+
n−i
n

], which implies that

w+
(
P
(
u+ (X) ≥ z

))
∈
[
w+

(
i

n

)
, w+

(
i+ 1

n

)]
.

Hence, we have∣∣∣∣∣
n−1∑
j=1

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z)− w+
(
P
(
u+(X) > z

))∣∣∣∣∣
≤
∣∣∣∣w+

(
i

n

)
− w+

(
i+ 1

n

)∣∣∣∣
Since w+ is Hölder continuous, we have∣∣∣∣w+

(
i

n

)
− w+

(
i+ 1

n

)∣∣∣∣ n→∞−−−→ 0,

and the claim in (2.8) follows.

Further, for all z ∈ [0,∞),

n−1∑
j=1

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z) ≤ w+
(
P
(
u+(X) > z

))
. (2.9)

The integral of the LHS of (2.8) can be simplified as follows:

∫ ∞
0

n∑
j=0

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z)dz

=
n−1∑
j=0

w+

(
j

n

)(
ξ+
n−j
n

− ξ+
n−j−1
n

)
=

n−1∑
j=0

ξ+
j
n

(
w+

(
n− j
n

)
− w+

(
n− j − 1

n

))
. (2.10)

Now, the main claim in (2.6) can be inferred from (2.8), (2.9) and (2.10) in conjunction

with the dominated convergence theorem.

The second part of (2.6) follows in a similar fashion.
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Before proving Theorem 2, we need following result of Hoeffding ([40]).

Lemma 2. Hoeffding. LetU1, . . . , Un be independent random variables satisfying P (a ≤

Ui ≤ b) = 1,∀i. Then, for t > 0,

P

(
n∑
i=1

Ui −
n∑
i=1

E (Ui) ≥ nt

)
≤ e−2nt2/(b−a)2

.

Proof. (Theorem 2)

Without loss of generality, assume that w+ and w− are both Hölder continuous with com-

mon order α and common constant H = 1. We prove the claim for the first integral in the

CPT-value estimator Cn in Algorithm 1, i.e., we show that

lim
n→∞

n∑
i=1

u+
(
X[i]

)(
w+

(
n− i+ 1

n

)
− w+

(
n− i
n

))

=

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz a.s. (2.11)

The main part of the proof is focused on finding an upper bound for the probability

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)
.

Observe the fact that

n∑
i=1

u+
(
X[i]

)(
w+

(
n− i+ 1

n

)
− w+

(
n− i
n

))

−
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

=
n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
w+

(
n+ 1− i

n

)

−
n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
w+

(
n− i
n

)
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=
n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
×
(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))
≤ u+

(
X[n]

)
× 1

nα
,

by defining u+(X[0]) = 0. Notice that the term
u+(X[n])

nα
converges to 0 under the statement

of the theorem. Hence, for the asymptotic convergence of estimator, thanks to Lemma 1,

it suffices to show that

lim
n→∞

∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ = 0 a.s.

Observe that, for any given ε > 0, we have

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)

≤ P

(
n−1⋃
i=1

{∣∣∣∣u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣ > ε

n− 1

})
≤

n−1∑
i=1

P
(∣∣∣∣u+

(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−ξ+
i
n

(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))∣∣∣∣ > ε

n− 1

)
≤

n−1∑
i=1

P
(∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)
×
(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣ > ε

n− 1

)
≤

n−1∑
i=1

P
(∣∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)( 1

n

)α∣∣∣∣ > ε

n− 1

)
(2.12)
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≤
n−1∑
i=1

P
(∣∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)( 1

n

)α∣∣∣∣ > ε

n

)

≤
n−1∑
i=1

P
(∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)∣∣∣ > ε

n1−α

)
. (2.13)

In the above, (2.12) follows from the fact that w+ is Hölder with constant 1.

Now we find an upper bound for the probability of a single term in the sum above,

i.e.,

P
(∣∣∣u+

(
X[i]

)
−ξ+

i
n

∣∣∣> ε

n(1−α)

)
=P

(
u+
(
X[i]

)
−ξ+

i
n

>
ε

n(1−α)

)
+ P

(
u+
(
X[i]

)
− ξ+

i
n

< − ε

n(1−α)

)
.

We focus on the first term above, and

let Wj = I(
u+(Xj)>ξ

+
i
n

+ ε

n(1−α)

), j = 1, . . . , n.

Using the fact that a probability distribution function is non-decreasing, we obtain

P
(
u+(X[i])− ξ+

i
n

>
ε

n(1−α)

)
= P

(
n∑
j=1

Wj > n− i

)

= P

(
n∑
j=1

Wj > n

(
1− i

n

))

= P

(
n∑
j=1

Wj − n
[
1− F+

(
ξ+
i
n

+
ε

n(1−α)

)]
> n

[
F+
(
ξ+
i
n

+
ε

n(1−α)

)
− i

n

])
.

Using the fact that EWj = 1 − F+
(
ξ+
i
n

+ ε
n(1−α)

)
in conjunction with Hoeffding’s in-

equality, we obtain

P

(
n∑
i=1

Wj − n
[
1− F+

(
ξ+
i
n

+
ε

n(1−α)

)]
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> n

[
F+
(
ξ+
i
n

+
ε

n(1−α)

)
− i

n

])
≤ e−2n(δ

′
i)

2

,

where δ′i = F+
(
ξ+
i
n

+ ε
n(1−α)

)
− i

n
. According to the conditions imposed on F+, we have

that δ′i ≥ L+ε
n(1−α) . Hence, we obtain

P
(
u+(X[i])− ξ+

i
n

>
ε

n(1−α)

)
≤ e

−2n( L+ε

n(1−α)
)2

= e−2n2α−1(L+ε)2

. (2.14)

In a similar fashion, one can show that

P
(
u+(X[i])− ξ+

i
n

< − ε

n(1−α)

)
≤ e−2n2α−1(L+ε)2

. (2.15)

Combining (2.14) and (2.15), we obtain

P
(∣∣∣u+(X[i])− ξ+

i
n

∣∣∣ < − ε

n(1−α)

)
≤ 2e−2n2α−1(L+ε)2

.

Plugging the above in (2.13), we obtain

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)

≤ 2(n− 1)e−2n2α−1(L+ε)2 ≤ 2ne−2n2α−1(L+ε)2

. (2.16)

Notice that
∑∞

n=1 2ne−2n2α−1(L+ε)2
<∞with α > 1

2
since the sequence 2ne−2n2α−1(L+ε)2

will decrease faster than the sequence 1
nk

provided k > 1.

By applying the Borel-Cantelli lemma, ∀ε > 0, we have

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε, i.o.

)
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= 0,

which implies (2.11).

The proof of C−n → C−(X) follows in a similar manner as above by replacing

u+(X[i]) by u−(X[n−i]), after observing that u− is decreasing, which in turn implies that

u−(X[n−i]) is an estimate of the quantile ξ−i
n

.

Under an additional assumption on the utility functions, our next result shows that

O
(

1
ε2/α

)
number of samples are sufficient to get a high-probability estimate of the CPT-

value that is ε-accurate. Before the result is presented, we recall the class of sub-Gaussian

distributions:

Definition 1. (Sub-Gaussian distribution) Formally, the probability distribution of a ran-

dom variable X is called sub-Gaussian if there are positive constants C, v such that for

every t > 0,

P (|X| > t) ≤ Ce−vt
2

.

Theorem 3. (Sample complexity.) If assumptions 1 and 3 hold, and also that the utilities

u+(X) and u−(X) are bounded by a constant M . Then, ∀ε > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≥ ε
)
≤ 2e−2n( ε

HM )
2
α

. (2.17)

Instead, if the utilities functions u+ (X) and u− (X) are sub-Gaussian defined in Defini-

tion 1 with respective constant C = t = 1 , then ∀ε > 0 and n ≥
(

1
α

ln 4H − lnαε
)α+2

2 ,

we have

P
(∣∣Cn − C(X)

∣∣ ≥ ε
)
≤ 2ne−n

α
2+α

+ 2e−n
α

2+α ( ε
2H )

2
α

. (2.18)
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Corollary 1. If assumptions 1 and 3 hold, and if utilities u+(X) and u−(X) are bounded

by M , then

E
∣∣Cn − C(X)

∣∣ ≤ (8HM) Γ (α/2)

nα/2
.

Instead, if the utilities are sub-Gaussian with respective constant C = t = 1, then

E
∣∣Cn − C(X)

∣∣ ≤ 4Γ (2)

n
2α
α+2

+
Γ (α) 2α (2H)2

n
α2

2+α

.

For proving Theorem 3, we require the DKW inequality for empirical distributions,

which is reviewed in the appendix B.

Lemma 3. (DKW inequality)

Let F denote the cdf of r.v. U and F̂n(u) = 1
n

∑n
i=1 I[Ui≤u] denote the empirical distribu-

tion of U , with U1, . . . , Un sampled from F . Then, for any ε > 0, we have

P
(

sup
x∈R
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 .

The DKW-inequality provides a finite-sample bound on the distance between the

empirical distribution and the true distribution. With the DKW inequality, we layout the

proof of Theorem 3 below:

Proof. (Theorem 3)

To prove (2.18) where the r.v.s u+(X) and u−(X) are sub-Gaussian with constants t =

C = 1, we only need to address the w+ part, and the w− part follows in a similar fashion.

Observe that for all c > 0, we have

P (|Cn − C(X)| > ε) ≤ P
(
u+
(
X[n]

)
≥ nc

)
+ P

(
{|Cn − C(X)| > ε}

⋂{
u+
(
X[n]

)
< nc

})
.
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On the event {u+
(
X[n]

)
< nc}, we have∣∣∣∣∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−

∫ ∞
0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
=

∣∣∣∣∫ ∞
0

w+
(
P
(
u+(X) > t

))
dt−

∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
=

∣∣∣∣∫ nc

0

w+
(
P
(
u+(X) > t

))
dt−

∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
+

∣∣∣∣∫ ∞
nc

w+
(
P
(
u+(X) > t

))
dt

∣∣∣∣ ,
since 1− F̂+

n (t) = 0, ∀t ≥ nc. Notice that

∫ ∞
nc

w+
(
P
(
u+(X) > t

))
dt

≤ H

∫ ∞
nc

t

nc
e−αt

2

dt

=
H

nc
2

α
e−α(nc)2

≤ ε

2
for n ≥

(
1

α
ln

4H

αε

) 1
2c

,

where the first inequality is obtained by Hölder continuous property from assumption 1

and sub-Gaussian property of the distribution u+(X). An easy observation indicates that

if
∣∣∫∞
nc
w+ (P (u+(X) > t)) dt

∣∣ ≤ ε
2
, then a necessary condition for∣∣∣∣∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−

∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣ > ε

is

∣∣∣∣∫ nc

0

w+
(
P
(
u+(X) > t

))
dt−
∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣ > ε

2
.

Thus, we obtain that, for n ≥
(

1
α

ln 4H
αε

) 1
2c ,

P
(
{|Cn − C(X)| > ε}

⋂{
u+
(
X[n]

)
< nc

})
≤
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P
(∣∣∣∣∫ nc

0

w+
(
P
(
u+(X) > t

))
dt−
∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣ > ε

2

)
.

Now, plugging in the DKW inequality, we have

P
(∣∣∣∣∫ nc

0

w+
(
P
(
u+(X) > t

))
dt−
∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣ > ε

2

)
≤ P

(
Hnc sup

t∈R

∣∣∣P (u+ (X) < t
)
− F̂+

n (t)
∣∣∣α > ε

2

)
≤ 2e−2n( ε

2Hnc )
2
α

= 2e−2n1− 2c
α ( ε

2H )
2
α

. (2.19)

Meanwhile, by sub-Gaussianity, we infer that

P
(
u+
(
X[n]

)
> nc

)
= 1− P

(
u+
(
X[n]

)
≤ nc

)
= 1− (P (Xi ≤ nc))n ≤ 1−

(
1− e−2nc

)n
≤1−

(
1− ne−2nc

)
= ne−2nc ,

where the last inequality is obtained by a Taylor series approximation. As a result,

P (|Cn − C(X)| > ε) ≤ ne−2nc + 2e−2n1− 2c
α ( ε

2H )
2
α

.

The right side of the above inequality will be optimized with c = 1− 2c
α

, i.e., for c = α
2+α

.

The claim in (2.18) follows.

To prove (2.17) under the condition that utilities functions are bounded byM , notice

that

∣∣∣∣∫ ∞
0

w+
(
P
(
u+(X) > t

))
dt−

∫ ∞
0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
=

∣∣∣∣∫ M

0

w+
(
P
(
u+(X) > t

))
dt−

∫ M

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
≤ HM sup

x∈R

∣∣∣P (u+(X) < t
)
− F̂+

n (t)
∣∣∣α .
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The bound in (2.17) can be inferred by replacing nc by M and ε
2

by ε in inequality (2.19).

Proof. (Corollary 1)

When the utilities are bounded by M , integrating the high-probability bound (2.17) in

Theorem 3, we obtain

E
∣∣Cn − C(X)

∣∣ ≤ ∫ ∞
0

P
(∣∣Cn − C(X)

∣∣ ≥ ε
)
dε

≤ 4

∫ ∞
0

exp
(
−2n (ε/HM)2/α

)
dε ≤ 8HMΓ (α/2)

nα/2
. (2.20)

For the sub-Gaussian case, notice that if we truncate u+
(
X[n]

)
by nc

√
ε instead of

nc and repeat the steps used in the proof of Theorem 3, we obtain

P
(∣∣Cn − C(X)

∣∣ ≥ ε
)
≤ ne−2ncε

1
2 + 2e

−2n1− 2c
α

(
ε

1
2

2H

) 2
α

.

Setting c = α
2+α

, we obtain the following:

E
∣∣Cn − C(X)

∣∣ ≤ 4Γ (2)

n
2α
α+2

+
Γ (α) 2α (2H)2

n
α2

2+α

.

Lipschitz continuous weights

Setting α = 1, one can obtain the asymptotic consistency claim in Theorem 2 for

Lipschitz weight functions. However, this result is under an assumption which requires a

lower bound on the difference quotient of the distribution functions of u+(X) and u−(X).

Using a different proof technique and assumption 2 in place of assumption 1, we can

obtain a result similar to Theorem 2 without additional assumption on the distribution

functions of u±. The following claim makes this precise.
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Theorem 4. (Asymptotic consistency) If assumptions 2 and 3 hold, then we have

Cn → C(X) a.s. as n→∞.

In addition, if we assume that the utilities u+(X) and u−(X) are bounded above by

M <∞ w.p. 1, then we have ∀ε > 0, δ > 0,

P
(∣∣Cn − C(X)

∣∣ ≤ ε
)
> 1− δ ,∀n ≥ ln

(
1

δ

)
· 4L2M2

ε2
.

Proof. (Theorem 4)

We first prove the asymptotic convergence claim for the first integral (2.4) in the CPT-

value estimator in Algorithm 1, i.e., we show

∫ ∞
0

w+
(

1− F̂+
n (x)

)
dx→

∫ ∞
0

w+
(
P
(
u+ (X) > x

))
dx. (2.21)

Since w+ is Lipschitz continuous with constant L, we have almost surely that

w+
(

1− F̂n (x)
)
≤ L

(
1− F̂n (x)

)
, for all n andw+ (P (u+ (X) > x)) ≤ L (P (u+ (X) > x)),

since w+ (0) = 0.

We have

∫ ∞
0

(
P
(
u+ (X) > x

))
dx = E

[
u+ (X)

]
, and∫ ∞

0

(
1− F̂+

n (x)
)
dx =

∫ ∞
0

∫ ∞
x

dF̂n (t) dx. (2.22)

Since F̂+
n (x) has bounded support on R ∀n, the integral in (2.22) is finite. Applying

Fubini’s theorem to the RHS of (2.22), we obtain

∫ ∞
0

∫ ∞
x

dF̂n (t) dx =

∫ ∞
0

tdF̂n (t) =
1

n

n∑
i=1

u+
(
X[i]

)
,

where u+
(
X[i]

)
, i = 1, . . . , n are the order statistics, i.e., u+

(
X[1]

)
≤ . . . ≤ u+

(
X[n]

)
.
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Notice that

1

n

n∑
i=1

u+
(
X[i]

)
=

1

n

n∑
i=1

u+ (Xi)
a.s−→ E

[
u+ (X)

]
.

From the foregoing,

lim
n→∞

∫ ∞
0

L
(

1−F̂n (x)
)
dx

a.s−→
∫ ∞

0

L
(
P
(
u+ (X)>x

))
dx.

The claim in (2.21) now follows by invoking the generalized dominated convergence

theorem by setting fn = w+(1 − F̂+
n (x)) and gn = L(1 − F̂n(x)), and noticing that

L(1− F̂n(x))
a.s.−−→ L(P (u+(X) > x)) uniformly over x. The latter fact is implied by the

Glivenko-Cantelli theorem (see appendix B).

Following similar arguments, it is easy to show that

∫ ∞
0

w−
(

1− F̂−n (x)
)
dx→

∫ ∞
0

w−
(
P
(
u−(X) > x

))
dx.

The final claim regarding the almost sure convergence of Cn to C(X) now follows.

2.5.3 Lower bound for estimation error

Setting α = 1 in Theorem 3, we observe that one can achieve the canonical Monte

Carlo rate for Lipschitz continuous weights. Choosing the weights to be the identity func-

tion, we observe that the sample complexity cannot be improved. On the other hand, for

Hölder continuous weights, we incur a sample complexity of order O
(

1
ε2/α

)
for accu-

racy ε > 0 and this is generally worse than the canonical Monte Carlo rate of O
(

1
ε2

)
,

for α < 1. An interesting question here is if the sample complexity from Theorem 3 be

improved upon, say to O(1/ε2) for achieving ε accuracy? The next result shows that the
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best achievable sample complexity, in the minimax sense, is O
(

1
ε2/α

)
over the class of

Hölder-continuous weight functions.

The asymptotic convergence property of CPT-value estimation presented above

works for any α Hölder continuous weighting function. In this section, however, we will

narrow down our concentration on a smaller class of weighting function which “only”

satisfies α Hölder continuous property, i.e., the weighting function w (·) such that

h · |x− y|α ≤ |w (x)− w (y)| ≤ H · |x− y|α ,∀x, y ∈ [0, 1], (2.23)

where h and H are two given constants s.t. H > h. An example of such a w (·) for

α = 1/2, as suggested in the proof of Theorem 6 in [36], is: w(p) = 1
2
− 1√

2

√
1
2
− p for

p ∈ [0, 1/2], and w(p) = 1
2

+ 1√
2

√
p− 1

2
for p ∈ (1/2, 1].

Before presenting the lower bound result of CPT-value estimator, we will give a

brief overview on Minimax Lower bound in the section below:

Minimax Lower Bound

In the field of statistical decision theory, a widespread measure of assessing the

quality of an estimator is its minimax risk over a set of different cases. It is believed that

the performance of an estimator should be evaluated through not only how well it will do

at just one fixed circumstance, but also at a series of cases sharing some common features.

Let us establish the minimax framework in our CPT-estimation scheme as follows:

Let P be a nonempty set of distributions. Let C(P ) denote the CPT-value of a r.v. with

distribution P ∈ P and Cn : Rn → R denote an estimator. The minimax error Rn(P) is
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defined by

Rn(P) := inf
Cn

sup
P∈P

EX1:n∼P⊗n
∣∣Cn(X1:n)− C(P )

∣∣ (2.24)

It is however typically impossible (especially in nonparametric problems) to deter-

mine the minimax risk exactly. Consequently, one attempts to obtain lower bounds on the

minimax risk ofRn(P).

The following Theorem 5 present the lower bound on the minimax error of 2.24:

Theorem 5. (Lower bound) Given a weighting function w (·) which satisfies (2.23), the

minimax error of the associated CPT-value satisfies

Rn(P) ≥ 1

Cα(n)
α
2

, for all n ≥ 1

for a set of distributions P supported within the interval [0, 1], where Cα only related to

α.

We use Le Cam’s method [85] to establish the lower bound, and before proving

theorem 5, we will recall a few types of distances of probability measures.

Definition 2. (Probability distances) Given two probability measures P and Q applied

on a set X , which we assume to have densities p and q with respect to a base measure µ,

the total variance distance is defined as

‖P −Q‖TV := sup
A⊂X
|P (A)−Q(A)| = 1

2

∫
X
|p(x)− q(x)| dx. (2.25)

Furthermore, we recall the Hellinger distance, which takes the form

dhel(P,Q)2 :=

∫
X

(√
p(x)−

√
q(x)

)2

dx. (2.26)
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The KL-divergence is denoted as Dkl(P ||Q) :=
∫
X p(x) log p(x)

q(x)
dx.

The following lemma relates the total variation distance to each of the other two

distances, the proof of which can be found in [24].

Lemma 4. The total variation distance satisfies the following relationships:

(a) For the Hellinger distance,

1

2
dhel(P,Q)2 ≤ ‖P −Q‖2

TV ≤ dhel(P,Q)
√

1− dhel(P,Q)2/4. (2.27)

(b) Pinsker’s inequality: for any distributions P,Q,

‖P −Q‖2
TV ≤

1

2
Dkl(P ||Q). (2.28)

Remark 3. Both KL-divergence and Hellinger distance are very easy to manipulate on

product distributions. Specifically, consider the product distributions P = P1 × . . .× Pn

and Q = Q1 × . . .×Qn. Then the KL-divergence satisfies the decoupling equality

Dkl (P ||Q) =
n∑
i=1

Dkl (Pi||Qi) ,

while the Hellinger distance satisfies

dhel (P,Q)2 = 2− 2
n∏
i=1

(
1− 1

2
dhel (Pi, Qi)

2

)
Proof. (Theorem 5) Without loss of generality, we assume the h from (2.23) equals 1.

Let Xv, v ∈ {−1,+1} denote a Bernoulli r.v. with underlying distribution Pv,

v ∈ {+1,−1} defined by

Pv(X = 1) =
1 + vδ

1
α

2
and Pv(X = 0) =

1− vδ 1
α

2
,

where δ ∈ [0, 2−α] is left to be chosen later. Apparently, {Pv}v∈{±1} ⊂ P .
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Setting u+(x) = x, x ≥ 0, w+ = w− = w, we have

C(Pv) = w(1 + vδ
1
α ), v ∈ {+1,−1}.

Since that w also satisfies the following condition: |w(p) − w(p̃)| ≥ |p − p̃|α for p, p̃ ∈

(0, 1), if we let p = 1 + δ
1
α and p̃ = 1− δ 1

α , we have

|C(P+1)− C(P−1)| = |w(p)− w(p̃)| ≥ |p− p̃|α = δ .

By Le Cam’s method [85], the minimax error then satisfies

Rn(P) ≥ δ

2

(
1−

∥∥P n
+1 − P n

−1

∥∥
TV

)
≥ δ

2

(
1−

(
1
2
Dkl

(
P n

+1||P n
−1

)) 1
2

)
, (2.29)

where P n
v := ⊗nPv is the joint distribution of n samples from Pv, ‖‖TV is the total varia-

tion distance and (2.29) follows from Pinsker’s inequality. We bound the KL-divergences

as follows:

Dkl

(
P n
−||P n

+

)
= nDkl (P+||P−)

=
n

2

(
(1− δ

1
α ) log

1− δ 1
α

1 + δ
1
α

+ (1 + δ
1
α ) log

1 + δ
1
α

1− δ 1
α

)

= nδ
1
α log

1 + δ
1
α

1− δ 1
α

≤ 3nδ
2
α ,

where the first equality uses chain rule of KL-divergences, the second follows by the

definition of KL-divergences between two Bernoulli distributions, and the final inequality

follows by using the fact that for x ∈ [0, 1/2], x log 1+x
1−x ≤ 3x2.

Plugging the bound on KL-divergences into (2.29), we obtain

Rn(P) ≥ δ

2

(
1−

√
3n

2
δ

1
α

)
=

1

4(6n)
α
2

, (2.30)
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for δ = 1

(6n)
α
2

. Noting that δ ∈ [0, 2−α] for any n ≥ 1 finishes the proof.

An alternative proof can be established by invoking the relationship between KL-

distance and Hellinger distance. To be more precise, notice that

‖P n
1 − P n

2 ‖TV ≤ dhel (P
n
1 , P

n
2 ) =

√
2− 2

(
1− dhel (P1, P2)2)n,

and based on the definition of P1 and P2, we will obtain

dhel (P1, P2)2 =

√1 + δ
1
α

2
−

√
1− δ 1

α

2

2

= 1−
√

1− δ 2
α =

1

2
δ

2
α + o

(
δ

2
α

)
.

Meanwhile, note that (1 − δ 2
α ) = e−δ

2
α + o(δ

2
α ), we have, up to lower order terms

in δ, that ‖P n
1 , P

n
2 ‖TV ≤

√
2− 2 exp

(
−δ 2

αn/2
)

. Choosing δ
2
α = 1/(4n), we have√

2− 2 exp
(
−δ 2

αn/2
)
≤ 1/2, thus giving the lower bound

Rn(P) ≥ 1

2
δ

2
α

(
1− 1

2

)
=

1

16n
α
2

. (2.31)

Both equations (2.30) and (2.31) indicate that the estimation error Rn(P) cannot

be improved beyond (n−1)
α
2 . Meanwhile, if we let Cα = min{4(6)

α
2 , 16}, we prove the

lower-bound property stated in Theorem 5.

2.5.4 Locally Lipschitz weights and discrete-valued X

Here we assume that X is a discrete valued r.v. with finite support. Let pi, i =

1, . . . , K, denote the probability of incurring a gain/loss xi, i = 1, . . . , K, where x1 ≤

. . . ≤ xl ≤ 0 ≤ xl+1 ≤ . . . ≤ xK and let

Fk =
k∑
i=1

pi if k ≤ l and
K∑
i=k

pi if k > l. (2.32)
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In this setting, the first integral, say C+(X), in the definition of CPT-value (2.1) can be

simplified as follows:

C+(X) =

∫ u+(xl+1)

0

w+
(
P
(
u+(X) > z

))
dz

+
K−1∑
k=l+1

∫ u+(xk+1)

u+(xk)

w+
(
P
(
u+(X) > z

))
dz

+

∫ ∞
u+(xK)

w+
(
P
(
u+(X) > z

))
dz

= w+(Fl+1)u+(xl+1) +
K∑

i=l+2

w+(Fi)(u
+(xi)− u+(xi−1))

=
K−1∑
i=l+1

u+(xi)
(
w+(Fi)− w+(Fi+1)

)
+ u+(xK)w+(pK).

The second integral in (2.1) can be simplified in a similar fashion, and we obtain the

following form for the overall CPT-value of a discrete-valued X:

C(X) =
( K−1∑
i=l+1

u+(xi)
(
w+(Fi)− w+(Fi+1)

)
+ u+(xK)w+(pK)

)

−
(
(u−(x1))w

−(p1)+
l∑

i=2

u−(xi)
(
w−(Fi)− w−(Fi−1)

))
.

Estimation scheme

LetX1, . . . , Xn be n samples from the distribution ofX . Define p̂k := 1
n

∑n
i=1 I{Xi=xk}

and

F̂k =
k∑
i=1

p̂k if k ≤ l and
K∑
i=k

p̂k if k > l. (2.33)

Then, we estimate C(X) as follows:

Cn=
( K−1∑
i=l+1

u+(xi)
(
w+(F̂i)− w+(F̂i+1)

)
+ u+(xK)w

+(p̂K)
)
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−
(
u−(x1)w

−(p̂1)+
l∑

i=2

u−(xi)
(
w−(F̂i)− w−(F̂i−1)

))
.

Assumption 4. The weight functions w+ and w− are locally Lipschitz continuous, i.e.,

for any k = 1, . . . , K, there exist Lk <∞ and ρk > 0, such that, for k = 1, . . . , l,

|w−(Fk)− w−(p)| ≤ Lk|Fk − p|, ∀p ∈ (Fk − ρk, Fk + ρk),

and for k = 1 + 1, . . . , K,

|w+(Fk)− w+(p)| ≤ Lk|Fk − p|, ∀p ∈ (Fk − ρk, Fk + ρk).

Theorem 6. Let L = maxk=1,...,K Lk and ρ = min{ρk}, where Lk and ρk are as defined

in assumption 4, and let M = max{u−(xk), k = 1, . . . , l}
⋃
{u+(xk), k = l+ 1, . . . , K}.

If assumption 4 holds, then, ∀ε > 0, δ > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≤ ε
)
>1−δ, ∀n ≥ 1

κ
ln

(
1

δ

)
ln

(
4K

M

)
,

where κ = min(ρ2, ε2/(KLM)2).

In comparison to Theorems 3 and 4, observe that the sample complexity for discrete

X scales with the local Lipschitz constant L even if the weight functions may not be

lipschitz globally. Further, the local Lipschitz constant L can be much smaller than the

global Lipschitz constant of the weight functions.

Before proving theorem 6, assume w+ = w− = w without loss of generality, and

let

F̂k =


∑k

i=1 p̂k if k ≤ l

∑K
i=k p̂k if k > l.

(2.34)
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The following theorem gives the rate at which F̂k converges to Fk.

Theorem 7. Let Fk and F̂k be as defined in (2.32) and (2.33) respectively. Then, for every

ε > 0,

P (|F̂k − Fk| > ε) ≤ 2e−2nε2 .

Proof. We focus on the case when k > l, while the case of k ≤ l is proved in a similar

fashion.

P
(∣∣∣F̂k − Fk∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

I{Xi≥xk} −
1

n

n∑
i=1

E(I{Xi≥xk})

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣
n∑
i=1

I{Xi≥xk} −
n∑
i=1

E(I{Xi≥xk})

∣∣∣∣∣ > nε

)
(2.35)

≤ 2e−2nε2 , (2.36)

where the last inequality above follows by an application of the Hoeffding inequality after

observing that Xi are independent of each other and for each i, the corresponding r.v. in

(2.35) is an indicator that is bounded above by 1.

Theorem 8. Under the conditions of Theorem 6, we have

P

(∣∣∣∣∣
K∑
i=1

ukw(F̂k)−
K∑
i=1

ukw(Fk)

∣∣∣∣∣ > ε

)

≤ K
(
e−2nρ2

+ e−2nε2/(KLM)2
)
, where

uk = u−(xk) if k ≤ l and u+(xk) if k > l. (2.37)

Proof. Observe that

P

(∣∣∣∣∣
K∑
k=1

ukw(F̂k)−
K∑
k=1

ukw(Fk)

∣∣∣∣∣ > ε

)
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≤ P

(
K⋃
k=1

∣∣∣ukw(F̂k)− ukw(Fk)
∣∣∣ > ε

K

)

≤
K∑
k=1

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
. (2.38)

For each k = 1, ....K, the function w is locally Lipschitz on [pk−ρ, pk+ρ) with common

constant L. Therefore, for each k, we can decompose the corresponding probability in

(2.38) as follows:

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
= P

({∣∣∣Fk − F̂k∣∣∣ > ρ
}⋂{∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

})
+ P

({∣∣∣Fk − F̂k∣∣∣ ≤ ρ
}⋂{∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

})
≤ P

(∣∣∣Fk − F̂k∣∣∣ > ρ
)

+ P
({∣∣∣Fk − F̂k∣∣∣ ≤ ρ

}⋂{∣∣∣ukw(F̂k)− ukw(Fk)
∣∣∣ > ε

K

})
. (2.39)

Using the fact that w is L-Lipschitz together with Theorem 7, we obtain

P
({∣∣∣Fk − F̂k∣∣∣ ≤ ρ

}⋂{∣∣∣ukw(F̂k)− ukw(Fk)
∣∣∣ > ε

K

})
≤ P

(
ukL

∣∣∣Fk − F̂k∣∣∣ > ε

K

)
≤ e−2nε/(KLuk)2 ≤ e−2nε/(KLM)2

,∀k. (2.40)

Using Theorem 7, we obtain

P
(∣∣∣Fk − F̂k∣∣∣ > ρ

)
≤ e−2nρ2

,∀k. (2.41)

Using (2.40) and (2.41) in (2.39), we obtain

P

(∣∣∣∣∣
K∑
k=1

ukw(F̂k)−
K∑
k=1

ukw(Fk)

∣∣∣∣∣ > ε

)

47



≤
K∑
k=1

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
≤ K

(
e−2nρ2

+ e−2nε2/(KLM)2
)
.

The claim follows.

Proof. (Theorem 6)

With uk as defined in (2.37), we need to prove that, ∀n ≥ 1
κ

ln
(

1
δ

)
ln
(

4K
M

)
, the following

high-probability bound holds

P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

)
− w

(
F̂k+1

))
−

K∑
i=1

uk (w (Fk)− w (Fk+1))

∣∣∣∣∣ ≤ ε

)
> 1− δ. (2.42)

Recall thatw is locally Lipschitz continuous with constantsL1, ....LK at the pointsF1, ....FK .

From a parallel argument to that in the proof of Theorem 8, it is easy to infer that

P

(∣∣∣∣∣
K∑
i=1

ukw(F̂k+1)−
K∑
i=1

ukw(Fk+1)

∣∣∣∣∣ > ε

)

≤ K
(
e−2nρ2

+ e−2nε2/(KLM)2
)
.

Hence,

P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

)
− w

(
F̂k+1

))
−

K∑
i=1

uk (w (Fk)− w (Fk+1))

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

))
−

K∑
i=1

uk (w (Fk))

∣∣∣∣∣ > ε/2

)

+ P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k+1

))
−

K∑
i=1

uk (w (Fk+1))

∣∣∣∣∣ > ε/2

)

48



≤ 2K(e−2nρ2

+ e−2nε2/(KLM)2

) .

The claim in (2.42) now follows.

A variant of Corollary 1 can be obtained by integrating the high-probability bound

in Theorem 6; we omit the details here.

2.6 Gradient-based stochastic optimization on CPT-value

2.6.1 Optimization objective

Suppose the r.v. X in (2.1) is a function of a d-dimensional parameter θ. In this

section we consider the problem

Find θ∗ = arg max
θ∈Θ

C(Xθ), (2.43)

where Θ is a compact and convex subset of Rd. The above problem encompasses policy

optimization in an MDP that can be discounted or average or stochastic shortest path

and/or partially observed. The difference here is that we apply the CPT-functional to the

return of a policy, instead of using the expected return.

2.6.2 Gradient algorithm using SPSA (CPT-SPSA)

Gradient estimation through finite-difference

Given that we operate in a learning setting and only have asymptotically unbiased

estimates of the CPT-value from Algorithm 1, we require a simulation scheme to estimate

∇C(Xθ). Simultaneous perturbation methods are a general class of stochastic gradient

49



schemes that optimize a function given only noisy sample values - see [11] for a textbook

introduction. SPSA is a well-known scheme that estimates the gradient using two sample

values In our context, at any iteration n of CPT-SPSA, with parameter θn, the gradient

∇C(Xθn) is estimated as follows: For any i = 1, . . . , d,

∇̂iC(Xθ) =
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

, (2.44)

where δn is a positive scalar that satisfies assumption 5 below, ∆n =
(
∆1
n, . . . ,∆

d
n

)T,

where {∆i
n, i = 1, . . . , d}, n = 1, 2, . . . are i.i.d. symmetric, ±1-valued Bernoulli r.v.s,

independent of θ0, . . . , θn and Cθn+δn∆n

n (resp. Cθn−δn∆n

n ) denotes the CPT-value estimate

that uses mn samples of the r.v. Xθn+δn∆n (resp. X
θn−δn∆n). From the asymptotic mean

square analysis that we present later, it is optimal to set δn = δ0/n
0.16. The (asymptotic)

unbiasedness of the gradient estimate is proven in Lemma 5.

This idea of using two-point feedback for estimating the gradient has been em-

ployed in various settings. Machine learning applications include bandit/stochastic con-

vex optimization - cf. [37], [26]. However, the idea applies to non-convex functions as

well - cf. [74], [11].

Remark 4. A key feature of the gradient estimator in (2.44) is that the numerator is fixed

for all i. This feature conforms with the main principle of SPSA, which is perturbing all

directions simultaneously and estimating the gradient by only two samples, independent

of the dimension d of θ.
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f(θ) + ξ
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(b) CPT-value optimization

Figure 2.3: Illustration of difference between classic simulation optimization and CPT-

value optimization settings

θn

+

−

δn∆n

δn∆n

Cθn+δn∆n

n

Prediction

Cθn−δn∆n

n

Prediction

Update θn

(Gradient

ascent)

Control

θn+1

mn samples

mn samples

Figure 2.4: Overall flow of CPT-SPSA

Update rule

We incrementally update the parameter θ in the ascent direction as follows:

θn+1 = Π
(
θn + γn∇̂C(Xθn)

)
, (2.45)

where γn is a step-size chosen to satisfy assumption 5 below and Π = (Π1, . . . ,Πd) is a

projection operator that ensures that the update (2.45) stays bounded within the compact

and convex set Θ. To be more precise, ∀θ? ∈ Rd, Π(θ?) = argminθ∈Θ ||θ − θ?||2. The

detailed CPT-SPSA algorithm is illustrated in algorithm 2 and Figures 2.3 and 2.4.

On the number of samples mn per iteration

Recall that the CPT-value estimation scheme is asymptotically unbiased, i.e., pro-

viding samples with parameter θn at instant n, we obtain its CPT-value estimate as C(Xθn)+

ψθn, with ψθn denoting the error in estimation. The estimation error can be controlled by
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increasing the number of samples mn in each iteration of CPT-SPSA. This is unlike many

simulation optimization settings where one only sees function evaluations with zero mean

noise and there is no question of deciding onmn to control the estimation error as we have

in our setting.

Algorithm 2 Structure of CPT-SPSA algorithm.
Input: initial parameter θ0 ∈ Θ where Θ is a compact and convex subset of Rd,

perturbation constants δn > 0, sample sizes {mn}, step-sizes {γn}, operator Π : Rd →

Θ.

for n = 0, 1, 2, . . . do

Generate {∆i
n, i = 1, . . . , d} using symmetric, ±1-valued Bernoulli distribution,

independent of {∆m,m = 0, 1, . . . , n− 1}.

CPT-value Estimation (Trajectory 1)

Simulate mn samples using (θn + δn∆n).

Obtain CPT-value estimates Cθn+δn∆n

n and Cθn−δn∆n

n from Algorithm 1 using

mn samples.

CPT-value Estimation (Trajectory 2)

Simulate mn samples using (θn − δn∆n).

Obtain CPT-value estimate Cθn−δn∆n

n from Algorithm 1 using mn samples.

Gradient Ascent

Update θn using (2.45).

end for

52



To motivate the choice for mn, we first rewrite the update rule (2.45) as follows:

θin+1 =Πi

(
θin + γn

(C(Xθn+δn∆n)−C(Xθn−δn∆n)

2δn∆i
n

)
+κn

)
,

where κn = (ψθn+δn∆n
n −ψθn−δn∆n

n )
2δn∆i

n
. Let ζn =

∑n
l=0 γlκl. Then, a critical requirement that

allows us to ignore the estimation error term ζn is the following condition (see Lemma 1

in Chapter 2 of [14]):

sup
l≥0

(ζn+l − ζn)→ 0 as n→∞.

While Theorems 2–3 show that the estimation error ψθ is bounded above, to establish

convergence of the CPT-SPSA, we increase the number of samples mn so that the bias

vanishes asymptotically. The assumption below provides a condition on the increase rate

of mn.

Assumption 5. The step-sizes γn and the perturbation constants δn are positive ∀n and

satisfy

γn, δn → 0,
1

m
α/2
n δn

→ 0,

∑
n

γn =∞ and
∑
n

γ2
n

δ2
n

<∞.

While the conditions on γn and δn are standard for SPSA-based algorithms, the

condition on mn is motivated by the earlier discussion. A simple choice that satisfies the

above conditions is γn = a0/n, mn = m0n
ν and δn = δ0/n

γ , for some ν, γ > 0 with

γ > να/2.

Assumption 6. The CPT-value C(Xθ) is a continuously differentiable function of θ, with

bounded third derivative.
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In a typical RL setting involving finite state action spaces, a sufficient condition for

ensuring assumption 6 holds is to assume that the policy is continuously differentiable in

θ.

Convergence result for CPT-SPSA

We use the ordinary differential equation (ODE) method for establishing asymptotic

convergence of CPT-SPSA. Consider the ODE:

θ̇it = Π̌i

(
−∇iC(Xθit)

)
, for i = 1, . . . , d, (2.46)

where Π̌i(f(θ)) := lim
ϑ↓0

Πi(θ+ϑf(θ))−θ
ϑ

, for any continuous f(·). LetK ⊂ {θ∗ | Π̌i

(
∇iC(Xθ∗)

)
=

0,∀i = 1, . . . , d} denote the set of asymptotically stable equilibrium points of the ODE

(2.46). That K 6= φ can be inferred by using the fact that C(Xθ) itself serves as a Lya-

punov function for (2.46).

The main convergence result is stated below.

Theorem 9. If assumptions 1, 3, 5, and 6 hold, then, K 6= φ and for θn governed by

(2.45), we have

θn → K a.s. as n→∞.

To prove the main result in Theorem 9, we first show, in the following lemma, that

the gradient estimate using SPSA is only an orderO(δ2
n) term away from the true gradient.

The proof differs from the corresponding claim for regular SPSA (see Lemma 1 in [72]),

since we have a non-zero bias in the function evaluations, while regular SPSA doesn’t.

Following this lemma, we complete the proof of Theorem 9 by invoking the well-known

Kushner-Clark lemma [49].
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Lemma 5. Let Fn = σ(θm,m ≤ n), n ≥ 1. Then, for any i = 1, . . . , d, we have almost

surely, ∣∣∣∣∣E
[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

∣∣∣∣∣Fn
]
−∇iC(Xθn)

∣∣∣∣∣ n→∞−−−→ 0.

Proof. Notice that

E

[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

| Fn

]
(2.47)

= E
[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]

+ E [κn | Fn] , (2.48)

where κn =

(
ψθn+δn∆ − ψθn−δn∆

2δn∆i
n

)
is the estimation error arising out of the empiri-

cal distribution based CPT-value estimation scheme. From Corollary 1 and the fact that

1

m
α/2
n δn

→ 0 by assumption (5), we have that

Eκn → 0 a.s. as n→∞.

Thus,

E

[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

| Fn

]
n→∞−−−→ E

[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]
. (2.49)

We now analyze the RHS of (2.49). By using suitable Taylor’s series expansions,

C(Xθn±δn∆n) = C(Xθn)± δn∆T

n∇C(Xθn)

+
δ2

2
∆T

n∇2C(Xθn)∆n +
δ3
n

6
∇3C(X θ̃±n )(∆n ⊗∆n ⊗∆n),

where ⊗ denotes the Kronecker product and θ̃+
n (resp. θ̃−n ) lie on the line segment con-

necting θn and (θn + δn∆n) (resp. (θn − δn∆n)). Using assumption 5 and arguments
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similar to those used in the proof of Lemma 1 in [72], the fourth order term in each of the

Taylor’s series expansions above can be shown to be O(δ3
n).

From the above, it is easy to see that

C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

−∇iC(Xθn)

=
N∑

j=1,j 6=i

∆j
n

∆i
n

∇jC(Xθn)︸ ︷︷ ︸
(I)

+O(δ2
n).

Therefore, we simplify the RHS of (2.49) as follows:

E
[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]

= ∇iC(Xθn) + E

[
N∑

j=1,j 6=i

∆j
n

∆i
n

]
∇jC(Xθn) +O(δ2

n)

= ∇iC(Xθn) +O(δ2
n). (2.50)

The first equality above follows from the fact that ∆n is distributed according to a d-

dimensional vector of symmetric, ±1-valued Bernoulli r.v.s and is independent of Fn.

The second inequality follows by observing that ∆i
n is independent of ∆j

n, for any i, j =

1, . . . , d, j 6= i.

The claim follows by using the fact that δn → 0 as n→∞.

Proof. (Theorem 9)

Recall that Fn = σ(θm,m ≤ n; ∆m,m < n), n ≥ 1. We first rewrite the update rule

(2.45) as follows: For i = 1, . . . , d,

θin+1 = Πi

(
θin + γn(∇iC(Xθn) + βn + ξn)

)
, (2.51)
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where

βn =E

(
(Cθn+δn∆n

n − Cθn−δn∆n

n )

2δn∆i
n

| Fn

)
−∇iC(Xθn),

ξn =

(
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

)

− E

(
(Cθn+δn∆n

n − Cθn−δn∆n

n )

2δn∆i
n

| Fn

)
.

In the above, βn is the bias in the gradient estimate due to SPSA and {ξn} is a martingale

difference sequence.

To prove the main claim, we list and verify assumptions (B1)-(B5), which are nec-

essary to invoke Theorem 5.3.1 on pp. 191-196 of [49].

(B1): ∇C(·) is a continuous Rd-valued function: holds by assumption in our setting.

(B2): The sequence {βn, n ≥ 0} is a bounded random sequence with βn → 0 a.s. as

n→∞: follows from Lemma 5.

(B3): The step-sizes γn, n ≥ 0 satisfy γn → 0 as n → ∞ and
∑

n γn = ∞: holds by

assumption 5.

(B4): {ξn, n ≥ 0} is a sequence such that for any ε > 0,

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥
m∑
k=n

γkξk

∥∥∥∥∥ ≥ ε

)
= 0. (2.52)

We verify this assumption using arguments similar to those used in [72] for SPSA. We

first recall Doob’s martingale inequality (see (2.1.7) on pp. 27 of [49]):

P
(

sup
l≥0
‖Wl‖ ≥ ε

)
≤ 1

ε2
lim
l→∞

E ‖Wl‖2 . (2.53)

Notice that

E ‖ξn‖2 ≤ E

(
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

)2

(2.54)
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≤


E(Cθn+δn∆n

n

2δn∆i
n

)2
 1

2

+

E(Cθn−δn∆n

n

2δn∆i
n

)2
 1

2


2

(2.55)

≤ 1

4δ2
n

[
E
(

1

(∆i
n)2+2α1

)] 1
1+α1

([
E
[
(Cθn+δn∆n

n )
]2+2α2

] 1
1+α2

+

[
E
[
(Cθn−δn∆n

n )
]2+2α2

] 1
1+α2

)
(2.56)

≤

[
E
[
Cθn+δn∆n

n

]2+2α2
] 1

1+α2 +
[
E
[
Cθn−δn∆n

n

]2+2α2
] 1

1+α2

4δ2
n

(2.57)

≤C
δ2
n

, for some C <∞. (2.58)

The inequality in (2.54) uses the fact that, for any random variableX , E ‖X − E[X | Fn]‖2 ≤

EX2. The inequality in (2.55) follows by the fact that E(X+Y )2 ≤
(
(EX2)1/2 + (EY 2)1/2

)2.

The inequality in (2.57) uses Hölder’s inequality, with α1, α2 > 0 satisfying 1
1+α1

+

1
1+α2

= 1 and the fact that E
(

1
(∆i

n)2+2α1

)
= 1 as ∆i

n is a symmetric, ±1-valued Bernoulli

r.v. The inequality in (2.58) follows by using the fact that , for any θ, the CPT-value esti-

mate C̄(Xθ) = C(Xθ) + εθ is bounded a.s. It is because we consider only proper policies

(which implies that the total cost Xθ is bounded for any policy θ) and finally, by assump-

tion 1, the weight functions are Hölder - these together imply C(Xθ) is bounded a.s. for

any parameter θ and the estimation error is bounded by Corollary 1. Thus, E ‖ξn‖2 ≤ C
δ2
n

for some C <∞.

Applying Doob’s martingale inequality to the martingale differenceWl :=
∑l−1

n=0 γnξn,

l ≥ 1, we obtain

P

(
sup
l≥k

∥∥∥∥∥
l∑

n=k

γnξn

∥∥∥∥∥ ≥ ε

)
≤ 1

ε2
E

∥∥∥∥∥
∞∑
n=k

γnξn

∥∥∥∥∥
2

≤ 1

ε2

∞∑
n=k

γ2
nE ‖ξn‖

2 ≤ dC

ε2

∞∑
n=k

γ2
n

δ2
n

,

and (2.52) follows by taking limits above and using assumption 5.
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(B5): There exists a compact subset K which is the set of asymptotically stable equilib-

rium points for the ODE (2.46): To verify this assumption, observe that C(Xθ) serves as

a strict Lyapunov function for the ODE (2.46), since

dC(Xθ)

dt
= ∇C(Xθ)θ̇ = ∇C(Xθ)Π̌

(
−∇C(Xθ

)
≤ 0,

with strict inequality outside the set K′ = {θ | Π̌i

(
−∇C(Xθ)

)
= 0,∀i = 1, . . . , d}.

Hence, the set K′ serves as the asymptotically stable attractor for the ODE (2.46). The

claim follows from the Kushner-Clark lemma.

2.6.3 Newton algorithm using SPSA (CPT-SPSA-N)

Need for second-order methods

While stochastic gradient methods are useful in maximizing the CPT-value given

biased estimates, they are sensitive to the choice of the step-size sequence {γn}. In

particular, for a step-size choice γn = a0/n, if a0 is not chosen to be greater than

1/
(
3λmin(∇2C(Xθ∗))

)
, then the optimum rate of convergence is not achieved, where

λmin denotes the minimum eigenvalue, and θ∗ ∈ K (see Theorem 9). A standard ap-

proach to overcome this step-size dependency is to use iterate averaging, suggested inde-

pendently by Polyak [58] and Ruppert [66]. The idea is to use larger step-sizes γn = 1/nς ,

where ς ∈ (1/2, 1), for the update iteration (2.45) and average the iterates in the end, i.e.,

θ̄n+1 = 1
n

∑n
m=1 θm. However, it is well known that iterate averaging is optimal only in

an asymptotic sense, while finite-time bounds show that the initial condition is not for-

gotten sub-exponentially fast (see Theorem 2.2 in [29]). Thus, it is optimal to average

iterates only after a sufficient number of iterations have passed, which implies that the
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iterates are already close to the optimum and the updates can be stopped. An alternative

approach is to employ step-sizes of the form γn = (a0/n)Mn, where Mn converges to(
∇2C(Xθ∗)

)−1, i.e., the inverse of the Hessian of the CPT-value at the optimum θ∗. Such

a scheme gets rid of the step-size dependency (one can set a0 = 1) and still obtains opti-

mal convergence rates. This is the motivation behind having a second-order optimization

scheme.

Gradient and Hessian estimation

We estimate the Hessian of the CPT-value function using the scheme suggested by

[12]. As in the first-order method, we use ±1 Bernoulli random variables to simultane-

ously perturb all the coordinates. However, in this case, we require three system trajecto-

ries with corresponding parameters θn + δn(∆n + ∆̂n), θn − δn(∆n + ∆̂n) and θn, where

{∆i
n, ∆̂

i
n, i = 1, . . . , d} are i.i.d. ±1 Bernoulli and independent of θ0, . . . , θn−1. Using

the CPT-value estimates for the aforementioned parameters, we estimate the Hessian and

the gradient of the CPT-value function as follows: For i, j = 1, . . . , d, set

∇̂iC(Xθn
n ) =

Cθn+δn(∆n+∆̂n)

n − Cθn−δn(∆n+∆̂n)

n

2δn∆i
n

,

Ĥ i,j
n =

Cθn+δn(∆n+∆̂n)

n + Cθn−δn(∆n+∆̂n)

n − 2Cθn
n

δ2
n∆i

n∆̂j
n

.

Notice that the above estimates require three samples, while the second-order SPSA al-

gorithm proposed first in [73] required four. Both the gradient estimate ∇̂C(Xθn
n ) =

[∇̂iC(Xθn
n )], i = 1, . . . , d, and the Hessian estimate Ĥn = [Ĥ i,j

n ], i, j = 1, . . . , d, can be

shown to be an O(δ2
n) term away from the true gradient∇C(Xθ

n) and Hessian∇2C(Xθ
n),

respectively (see Lemmas 6–7 below).

60



Update rule

We update the parameter incrementally using a Newton decrement as follows: For

i = 1, . . . , d,

θin+1 =Γi

(
θin + γn

d∑
j=1

M i,j
n ∇̂jC(Xθ

n)

)
, (2.59)

Hn =(1− ξn)Hn−1 + ξnĤn, (2.60)

where ξn is a step-size sequence that satisfies
∑

n ξn = ∞,
∑

n ξ
2
n < ∞ and γn

ξn
→ 0 as

n → ∞. These conditions on ξn ensure that the updates to Hn proceed on a timescale

that is faster than that of θn in (2.59) - see Chapter 6 of [14]. Further, Γ is a projection

operator as in CPT-SPSA-G and Mn = [M i,j
n ] = Υ(Hn)−1. Notice that we invert Hn

in each iteration, and to ensure that this inversion is feasible (so that the θ-recursion

descends), we project Hn onto the set of positive definite matrices using the operator

Υ. The operator has to be such that asymptotically Υ(Hn) should be the same as Hn

(since the latter would converge to the true Hessian), while ensuring inversion is feasible

in the initial iterations. The assumption below makes these requirements precise.

Assumption 7. For any {An} and {Bn}, lim
n→∞

‖An −Bn‖ = 0⇒ lim
n→∞

‖ Υ(An)−Υ(Bn) ‖ =

0. Further, for any {Cn}with sup
n
‖ Cn ‖ <∞, sup

n

(
‖ Υ(Cn) ‖ + ‖ {Υ(Cn)}−1 ‖

)
<∞.

A simple way to define Υ(Hn) is to first perform an eigenvalue decomposition of

Hn, followed by projecting all the eigenvalues onto the positive side (see [35] for a similar

operator). A simple way to ensure the above is to have Υ(·) as a diagonal matrix and then

add a positive scalar δn to the diagonal elements so as to ensure invertibility - see [35],
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[73] for a similar operator. Such choice satisfies requirement (ii) in Theorem 10 presented

below. Algorithm 3 presents the pseudocode, and the main convergence result is stated

below.

Theorem 10. Let assumptions 1, 3, 5, 6 and 7 hold, and consider the ODE:

θ̇it = Π̌i

(
−Υ(∇2C(Xθt))−1∇C(Xθit)

)
, for i = 1, . . . , d,

where Π̄i is as defined in Theorem 9. LetK = {θ ∈ Θ | ∇C(Xθi)Π̌i

(
−Υ(∇2C(Xθ))−1∇C(Xθi)

)
=

0,∀i = 1, . . . , d}. Then, for θn governed by (2.59), we have

θn → K a.s. as n→∞.

Proofs for CPT-SPSA-N

To simplify notation, we will use X+ (resp. X−) to denote Xθn+δn(∆n+∆̂n) (resp.

Xθn−δn(∆n+∆̂n)) in the proofs below.

Before proving Theorem 10, we bound the bias in the SPSA-based estimate of the

Hessian in the following lemma.

Lemma 6. For any i, j = 1, . . . , d,∣∣∣∣∣∣E
Cθn+δn(∆n+∆̂n)

n + Cθn−δn(∆n+∆̂n)

n − 2Cθn
n

δ2
n∆i

n∆̂j
n

∣∣∣∣∣∣Fn


−∇2
i,jC(Xθn)

∣∣ n→∞−−−→ 0 a.s.
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Algorithm 3 Structure of CPT-SPSA-N algorithm.
Input: initial parameter θ0 ∈ Θ where Θ is a compact and convex subset of Rd,

perturbation constants δn > 0, sample sizes {mn}, step-sizes {γn, ξn}, operator Π :

Rd → Θ.

for n = 0, 1, 2, . . . do

Generate {∆i
n, ∆̂

i
n, i = 1, . . . , d} using ±1 Bernoulli distribution, independent of

{∆m, ∆̂m,m = 0, 1, . . . , n− 1}.

CPT-value Estimation (Trajectory 1)

Simulate mn samples using parameter (θn + δn(∆n + ∆̂n)).

Obtain CPT-value estimate Cθn+δn(∆n+∆̂n)

n .

CPT-value Estimation (Trajectory 2)

Simulate mn samples using parameter (θn − δn(∆n + ∆̂n)).

Obtain CPT-value estimate Cθn−δn(∆n+∆̂n)

n .

CPT-value Estimation (Trajectory 3)

Simulate mn samples using parameter θn.

Obtain CPT-value estimate Cθn
n using Algorithm 1.

Newton step

Gradient estimate ∇̂iC(Xθ
n) =

Cθn+δn(∆n+∆̂n)

n − Cθn−δn(∆n+∆̂n)

n

2δn∆i
n

Hessian estimate Ĥn =
Cθn+δn(∆n+∆̂n)

n + Cθn−δn(∆n+∆̂n)

n − 2∇̂iC(Xθ
n)

δ2
n∆i

n∆̂j
n

Update the parameter and Hessian according to (2.59)–(2.60).

end for

Proof. Lemma 6 As in the proof of Lemma 5, we can ignore the bias from the CPT-value
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estimation scheme and conclude that

E

Cθn+δn(∆n+∆̂n)

n + Cθn−δn(∆n+∆̂n)

n − 2Cθn
n

δ2
n∆i

n∆̂j
n

| Fn


n→∞−−−→ E

[
C(X+) + C(X−)− 2C(Xθn)

δ2
n∆i

n∆̂j
n

| Fn

]
. (2.61)

Now, the RHS of (2.61) approximates the true gradient with only an O(δ2
n) error; this can

be inferred using arguments similar to those used in the proof of Proposition 4.2 of [12].

We provide the proof here for the sake of completeness. Using a Taylor series expansion

as in Lemma 5, we obtain

C(X+) + C(X−)− 2C(Xθn)

δ2
n∆i

n∆̂j
n

=
(∆n + ∆̂n)T∇2C(Xθn)(∆n + ∆̂n)

4i(n)4̂j(n)
+O(δ2

n)

=
d∑
l=1

d∑
m=1

∆l
n∇2

l,mC(Xθn)∆m
n

∆i
n∆̂j

n

+ 2
d∑
l=1

d∑
m=1

∆l
n∇2

l,mC(Xθn)∆̂m
n

∆i
n∆̂j

n

+
d∑
l=1

d∑
m=1

∆̂l
n∇2

l,mC(Xθn)∆̂m
n

∆i
n∆̂j

n

+O(δ2
n).

Taking conditional expectation, we observe that the first and last term above become

zero, while the second term becomes ∇2
ijC(Xθn). The claim follows by using the fact

that δn → 0 as n→∞.

Lemma 7. For any i = 1, . . . , d,∣∣∣∣∣∣E
Cθn+δn(∆n+∆̂n)

n − Cθn−δn(∆n+∆̂n)

n

2δn∆i
n

∣∣∣∣∣∣Fn
−∇iC(Xθn)

∣∣∣∣∣∣→ 0 a.s. as n→∞.

Proof. As in the proof of Lemma 5, we can ignore the bias from the CPT-value estimation
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scheme and conclude that

E

Cθn+δn(∆n+∆̂n)

n − Cθn−δn(∆n+∆̂n)

n

2δn∆i
n

| Fn

 n→∞−−−→ E
[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]
.

The rest of the proof amounts to showing that the RHS of the above approximates the true

gradient with an O(δ2
n) correcting term; this can be done in a similar manner as the proof

of Lemma 5. Follows by using completely parallel arguments to that in Lemma 5.

The following lemma establishes that the Hessian recursion (2.59) converges to the

true Hessian, for any policy θ.

Lemma 8. For any i, j = 1, . . . , d,

∥∥H i,j
n −∇2

i,jC(Xθn)
∥∥→ 0 a.s. and∥∥Υ(Hn)−1 −Υ(∇2

i,jC(Xθn))−1
∥∥→ 0 a.s.

Proof. Follows in a similar manner as in the proofs of Lemmas 7.10 and 7.11 of [11].

Proof. (Theorem 10) The proof follows in a similar manner as the proof of Theorem 7.1

in [11]; we provide a sketch below for the sake of completeness.

We first rewrite the recursion (2.59) as follows: For i = 1, . . . , d

θin+1 = Πi

(
θin + γn

d∑
j=1

M̄ i,j(θn)∇jC(Xθ
n) + γnζn

+ χn+1 − χn
)
, (2.62)

where

M̄ i,j(θ) = Υ(∇2C(Xθ))−1,
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χn =
n−1∑
m=0

γm

d∑
k=1

M̄i,k(θm)

(
C(X−)− C(X+)

2δm∆k
m

− E
[
C(X−)− C(X+)

2δm∆k
m

| Fm
])

and

ζn=E

Cθn+δn(∆n+∆̂n)

n −Cθn−δn(∆n+∆̂n)

n

2δn∆i
n

∣∣∣∣∣∣Fn
−∇iC(Xθn).

In lieu of Lemmas 6–8, it is easy to conclude that ζn → 0 as n → ∞, χn is a martingale

difference sequence and that χn+1−χn → 0 as n→∞. Thus, it is easy to see that (2.62)

is a discretization of the ODE:

θ̇it = Π̌i

(
−∇C(Xθit)Υ(∇2C(Xθt))−1∇C(Xθit)

)
. (2.63)

Since C(Xθ) serves as a Lyapunov function for the ODE (2.63), it is easy to see that the

set K= {θ | ∇C(Xθi)Π̌i

(
−Υ(∇2C(Xθ))−1∇C(Xθi)

)
= 0,∀i = 1, . . . , d} is an asymp-

totically stable attractor set for the ODE (2.63). The claim now follows from the Kushner-

Clark lemma.

2.6.4 Gradient algorithm using infinitesimal perturbation analysis (CPT-

IPA)

In this section, we develop a gradient based optimization algorithm using perturba-

tion analysis. The spirit of perturbation analysis is to derive an estimator of the gradient

of E
(
F
(
Xθ
))

through the sample path-wise derivative ∂Xθ

∂θi
for each i = 1, ..., d; see [33]

for a detailed review. We design a gradient-based optimization algorithm which directly

estimates∇C
(
Xθ
)

without additional simulations. A parallel work to this section can be

found in [17].
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A running example of IPA derivative

Assume θ is a one-dimensional scalar, and letXθ ∼ exp(θ), an exponential random

variable with mean θ and p.d.f given by

f(x; θ) =
1

θ
e−x/θI{x > 0},

where I{·} denotes the indicator function. The random variable is usually constructed by

Xθ = −θ lnU , where U ∼ U(0, 1) , a uniform distribution on [0, 1]. Differentiating with

respect to θ, we get

dXθ

dθ
= − lnU =

Xθ

θ
.

Moreover, when a utility function u is applied in Xθ, the sample path derivative

du(Xθ)
dθ

is simply u′(Xθ)dX
θ

dθ
.

Another expression for the CPT measure

Without loss of generality, we assume that Xθ has support only on R+, and denote

u and w as u+ and w+ for simplicity. The CPT-measure on Xθ takes the form

C
(
Xθ
)

=

∫ +∞

0

w
(
P
(
u
(
Xθ
)
> z
))
dz. (2.64)

Throughout this section we assume that both the probability weighting function w

and utility function u are strictly increasing and continuously differentiable in the interior

of their domain, and also u (0) = 0. Let Gθ (z) = P
(
u
(
Xθ
)
> z
)

be the survival

function of u
(
Xθ
)
. And assume C

(
Xθ
)

exists and is finite. Through integration by part,

the CPT-measure in (2.64) can then be formulated as

C
(
Xθ
)

=w (Gθ (z)) z|∞0 −
∫ +∞

0

zd (w (Gθ (z)))
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=

∫ +∞

0

zd (−w (Gθ (z)))

=

∫ +∞

0

z
dw(z)

dz
|z=Gθ(z)fθ (z) dz

= E[u(Xθ)
dw(z)

dz
|z=Gθ(u(Xθ))], (2.65)

where fθ(·) is the density function of u(xθ), and limz→∞w (Gθ (z)) z = 0 is inferred

from the integrability condition of the CPT-value (2.64).

First-order derivative

Since the CPT-measure involves the probability weighting function w (·), the utility

function u and the distribution function Fθ (z) = P
(
u
(
Xθ
)
≤ z
)
, we need to impose

some conditions to ensure the exchangeability of differentiation and expectation. [51]

studied rigorously to address this issue in perturbation analysis for dynamic systems.

Generally, one can move the derivative inside the expectation if a certain Lipschitz con-

dition holds. To be more precise, we stated the two assumptions below:

Assumption 8. G (θ, x) is continuously differentiable w.r.t. θi with i = 1, ...d and x, and

E[∇i{u
(
Xθ
)
}|u(Xθ) = u] is continuous in u.

Assumption 9. For any θ, consider ∆i d-dimensional vector with the ith component being

∆ and the rests being 0, ∇iu
(
Xθ
)

= lim∆→0
u(Xθ+∆i)−u(Xθ)

∆
exists a.s. and there exists

a random variable G s.t.,

∣∣∣∣u (Xθ+∆i
) dw (z)

dz
|z=Gθ+∆i(X

θ+∆i) − u
(
Xθ
) dw (z)

dz
|z=Gθ(Xθ)

∣∣∣∣ ≤ G|∆|, a.s.

for |∆| small enough.
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The following theorem gives an explicit form of the estimator of∇iC(Xθ).

Theorem 11. Under assumptions 8 and 9, we have, ∀i,

∇iC
(
Xθ
)

= E[∇iu
(
Xθ
) dw(z)

dz
|z=Gθ(Xθ)].

Proof. From the reformulation of C
(
Xθ
)

in (2.65) and Assumption 9, we will have,

through the dominated convergence theorem,

∇iC
(
Xθ
)

= E[∇i{u
(
Xθ
) dw(z)

dz
|z=Gθ(Xθ)}]

= E[∇iu
(
Xθ
) dw(z)

dz
|z=Gθ(Xθ)] + E[u

(
Xθ
) d2w(z)

dz2
|z=Gθ(Xθ)∇iGθ

(
Xθ
)
].

Also, notice that

−∇iGθ

(
Xθ
)

= ∇iF
(
θ, u

(
Xθ
))

=
∂

∂θi
F
(
θ, u(Xθ)

)
+ fθ

(
u(Xθ)

)
∇iu

(
Xθ
)
,

where fθ(·) is the density function of u
(
Xθ
)
. Theorem 1 in Hong [41] exhibits the

relationship between the pathwise derivative of F (θ, u) and the density function fθ (u):

For any realization u? of u
(
Xθ
)
, we have

∇iF (θ, u?) = −fθ (u?)E[∇iu
(
Xθ
)
|u
(
Xθ
)

= u?]

Therefore, we have

∇i{Gθ

(
u
(
Xθ
))
|u(Xθ)=u?} = fθ (u?) {E[∇iu

(
Xθ
)
|u
(
Xθ
)

= u?]−∇iu
(
Xθ
)
|u(Xθ)=u?}.

Therefore, we have

E[∇iGθ

(
u
(
Xθ
))
|Xθ]
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= fθ
(
u
(
Xθ
))

[∇iu
(
Xθ
)
−∇iu

(
Xθ
)
] = 0.

As a result, we have

E[Xθ d
2w (z)

dz
|z=Gθ(Xθ)∇iGθ

(
Xθ
)
] = E[E[Xθ d

2w (z)

dz
|z=Gθ(Xθ)∇iGθ

(
Xθ
)
|Xθ]] = 0,

thus the statement of the theorem is proved.

Theorem 11 suggests an unbiased estimator of the gradient∇C
(
Xθ
)
. When avail-

able, direct (unbiased) estimators of the gradient will have several advantages over fi-

nite difference gradient estimators provided in Sections 2.6.2 and 2.6.3: Direct gradient

estimators eliminate the need to determine appropriate values for the finite difference

sequences, which influence the accuracy of the estimator. Moreover, direct gradient esti-

mators are computationally efficient in that they generally only require a single run sim-

ulation.

However, in many of the simulation optimization or machine learning settings, the

distribution of the underline random variables are unknown, and that keeps us from de-

riving a direct estimator of∇C(Xθ) through the statement of Theorem 11. One approach

to overcome this limit is to approximate Gθ(X
θ) by its empirical distribution counterpart.

The algorithm and proof of CPT-IPA

On the high-level, the CPT-IPA optimization algorithm would include the following

gradient estimation steps (at round n of updating θ):

Step 1 (Samples from r.v. Xθn): Generatemn samples {θ1
n, . . . , θ

Nn
n } from random vari-

ables Xθn .
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Step 2 (Obtain the ordered sample): Obtain the ordered sample Xθ
[1], X

θ
[2], . . . , X

θ
[mn].

Step 3 (Estimate the gradient) : Obtain the derivative estimate through

∇̂iC
(
Xθ
)

=
1

mn

mn∑
j=1

∇iu
(
Xθ

[j]

) dw (z)

dz
|z=mn−j−1

mn

. (2.66)

The pseudocode of the CPT-IPA optimization scheme is presented in algorithm 4,

whereby we choose the parameter updating step-size γn = a0

n
, the same as in assumption

5. And the following theorem shows that, under proper choice of mn, algorithm 4 will

converge to the point that∇C(Xθ) = 0, where θ ∈ Θ.

Algorithm 4 CPT optimization via IPA gradient estimation.
Input: Initial parameter θ0 ∈ Θ where Θ is a compact and convex subset of R.

for n = 0, 1, 2, . . . do

samples X1, . . . , Xmn from the distribution of Xθ.

Obtain the ordered sample Xθ
[1], X

θ
[2], . . . , X

θ
[mn].

for i = 0, 1, 2, . . . , d do

Acquire the sample path derivative of each ordered sample∇iu
(
Xθ

[j]

)
Obtain the derivative estimator through

∇̂iC
(
Xθ
)

=
1

mn

mn∑
j=1

∇i{u
(
Xθ

[j]

)
}dw (z)

dz
|z=mn−j−1

mn

end for

Update θn using θn+1 = Π
(
θn + γn∇̂C(Xθn)

)
, where the operator Π is defined in

(2.45).

end for
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Theorem 12. If assumptions 6-9 are satisfied, the sequence mn is choosed properly, and

the updating step-size γn is given by assumption 5, then K 6= ∅ and θn generated by

algorithm 4 will converge to K a.s., with K being the limit trajectory of the ODE defined

in (2.46).

Before proving theorem 12, we need the following well-known lemma about the

limit of two given sequences’ average, which can also be found in (A30) of [13]:

Lemma 9. Cesaro’s Lemma If x1, x2, . . . and y1, y2, . . . are two bounded sequences of

real numbers such that limxn = lim yn as n→∞, then

lim
n→∞

∑n
k=1 xk
n

=

∑n
k=1 yk
n

.

Proof. Theorem 12: Without loss of generality, we will prove the theorem under the case

where θ has dimension 1. We first rewrite the recursion of algorithm 4 as

θn+1 = Π (θn + γnYn) , (2.67)

where Π is the projection operator onto the compact support Θ, and Yn is defined as

1
mn

∑mn
j=1

du
(
Xθn

[j]

)
dθn

dw(z)
dz
|z=mn−j−1

mn

. If the following conditions are satisfied, then the main

claim will be proved by invoking Theorem 2.1 from [50]:

(C1): supn E|Yn|2 <∞.

(C2): ∇C(Xθ) is continuous w.r.t θ when θ ∈ Θ.

(C3):
∑n

i=1 γ
2
i <∞,∀n.

(C4):
∑n

i=1 γi|βi| <∞,∀n, with βi defined as βn = E[Yn|Fn−1]−∇C(Xθn).

Conditions (C1), (C2) and (C3) hold by the assumptions of our problem setting, and

the rest of the proof amounts to justifying (C4). Since the simulation at round n is inde-

pendent of the early iterations, βn of C4 can be simplified as E[Yn]−∇C(Xθn). In order to
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validate (C4), we first realize that, ∀θ ∈ Θ,
du(Xθ

[j])
dθ

dw(z)
dz
|z=mn−j−1

mn

=
du(Xθ

[j])
dθ

dw(z)
dz
|z=Ĝθ(Xθ

[j]
),

with Ĝθ denoting the empirical estimate of Gθ(·), and X[j] being the jth order statistic of

the samples X1, . . . , Xmn from the distribution Xθ. Moreover, we have

mn∑
j=1

du
(
Xθ

[j]

)
dθ

dw (z)

dz
|z=Ĝθ(Xθ

[j]
) =

mn∑
j=1

du
(
Xθ
j

)
dθ

dw (z)

dz
|z=Ĝθ(Xθ

j ), (2.68)

since the summation of the LHS of (2.68) is a reordered form of the RHS of (2.68).

The combination of Glivenko-Cantelli theorem and continuous mapping theorem

implies that for each j ∈ {1, 2, . . . ,mn},

lim
mn→∞

du
(
Xθ
j

)
dθ

dw (z)

dz
|z=Ĝθ(Xθ

j ) =
du
(
Xθ
j

)
dθ

dw (z)

dz
|z=Gθ(Xθ

j ). (2.69)

The law of large numbers implies that

lim
mn→∞

1

mn

du
(
Xθ
j

)
dθ

dw (z)

dz
|z=Gθ(Xθ

j ) = E[
du
(
Xθ
)

dθ

dw(z)

dz
|z=Gθ(Xθ)]. (2.70)

In lieu of the Cesaro’s Lemma 9, together with equations (2.69) and (2.70), we can con-

clude the following convergence property that

lim
mn→∞

1

mn

mn∑
j=1

du
(
Xθ

[j]

)
dθ

dw (z)

dz
|z=mn−j−1

mn

= lim
mn→∞

dC(Xθ)

dθ
a.s. (2.71)

The above convergence property of (2.71) implies that if we choose the sequence

mn properly, the sequence of approximation errors βn = E[Yn|Fn−1]−∇C(Xθn) can be

controlled such that the condition of (C4) hold.

Remark 5. The choice of mn depends on the condition of the specific problem setting.

Specifically, we need to look into the properties of the random variable
du(Xθ

[j])
dθ

. However,
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in the usual case where
du(Xθ

[j])
dθ

is bounded a.s., the convergence rate of the average in

(2.71) is O
(

1√
n

)
, which is indicated by the central limit theorem. Therefore, given that

we select γn as 1
n

, a safe choice of mn which will guarantee the convergence of algorithm

4 is nα with α > 1.

2.6.5 Model-based parameter search algorithm (CPT-MPS)

In this section, we provide a gradient-free algorithm (CPT-MPS) for maximizing the

CPT-value that is based on the MRAS2 algorithm proposed by Chang et al. [20]. While

CPT-SPSA is a local optimization scheme, CPT-MPS converges to the global optimum,

say θ∗, for the problem (2.43), assuming one exists.

The crucial difference between CPT-MPS and MRAS2 is that the latter has an ex-

pected function value objective, i.e., it aims to minimize a function by using sample ob-

servations that have zero-mean noise. On the other hand, the objective in our setting is the

CPT-value, which distorts the underlying transition probabilities. The implication here is

that MRAS2 can estimate the expected value using sample averages, while we have to

resort to integrating the empirical distribution, which results in biased estimates.

Basic algorithm

To illustrate the main idea in the algorithm, assume we know the form of C(Xθ).

Then, the idea is to generate a sequence of reference distributions gk(θ) on the parameter

space Θ, such that it eventually concentrates on the global optimum θ∗. One simple way,
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suggested in Chapter 4 of [20] is

gk(θ) =
H(C(Xθ))gk−1(θ)∫

Θ
H(C(Xθ′))gk−1(θ′)ν(dθ′)

, ∀ θ ∈ Θ, (2.72)

where ν is the Lebesgue/counting measure on Θ and H is a strictly decreasing function.

The above construction for gk’s assigns more weight to parameters having higher CPT-

values. Meanwhile, it is easy to show that gk converges to a point-mass concentrated at

θ∗.

Next, consider a setting where one can obtain the CPT-value C(Xθ) (without any

noise) for any parameter θ. In this case, we consider a family of parameterized distribu-

tions, say {f(·, η), η ∈ H} on Θ and incrementally update the distribution parameter η

such that it minimizes the following KL divergence: D(gk, f(·, η)) :=
∫

Θ
ln gk(θ)

f(θ,η)
gk(θ)ν(dθ).

As recommended in [20], we employ the natural exponential family (NEF) for the family

of distributions f(·, η), since it ensures that the KL divergence above can be computed

analytically. A parameterized family {f(·, η), η ∈ H ⊆ <m} on X is said to to NEF if

there exist h : <n → <, Υ : <n → <m, and K : <m → < such that

f(x, η) = exp
{
ηTΥ(x)−K(η)

}
h(x), ∀ η ∈ H, (2.73)

where K(η) = ln
∫
x∈X exp

{
ηTΥ(x)

}
h(x)ν(dx), H is the natural parameter space H =

{η ∈ <m : |K(η)| < ∞}, and the superscript “T ” denotes the vector transposition. An

algorithm to optimize CPT-value in this noiseless setting would perform the following

update:

ηn+1∈arg max
η∈H

Eηn
[

[H(C(Xθ)]n

f(θ, ηn)
ln f(θ, η)

]
, (2.74)

where for any given θ and transformationF onXθ, Eηn [F (Xθ)] =
∫

Θ
F (Xθ)f(θ, ηn)ν(dθ).
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Assuming this setup, the CPT-MPS algorithm would involve the following steps:

Step 1 (Candidate parameters): Generate Nn parameters {θ1
n, . . . , θ

Nn
n } using the dis-

tribution f(·, ηn).

Step 2 (CPT-value estimation): Obtain CPT-value estimates Cθin
n , corresponding to the

parameters θin, i = 1, . . . , Nn.

Step 3 (Parameter update):

ηn+1 ∈ arg max
η∈C

1

Nn

Nn∑
i=1

[H(Cθin
n )]n

f(θin, ηn)
ln f(θin, η). (2.75)

Algorithm 5 presents the pseudocode for the CPT-value optimization setting where

we obtain only asymptotically unbiased estimates of the CPT-value C(Xθ) for any param-

eter θ. As in [20], we use only an elite portion of the candidate parameters that have been

sampled, as this guides the parameter search procedure towards better regions more effi-

ciently in comparison to an alternative that uses all the candidate parameters for updating

η. This can be achieved by using a quantile estimate of the CPT-value function corre-

sponding to candidate policies that were estimated in a particular iteration. The intuition

here is that using policies that have performed well guides the parameter search proce-

dure towards better regions more efficiently in comparison to an alternative that uses all

the candidate parameters for updating η. Additionally, the CPT-MPS algorithm includes

a smoothing function Ĩ(·, χ) at the final step of updating η, in order to make itself robust

against the biasedness inherited from the CPT-estimator. Readers can refer to [20] for a

detailed discussion of the choice f(·, η), elite sampling and the effect of Ĩ(·, χ).

The main convergence result is stated below.
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Algorithm 5 Structure of CPT-MPS algorithm.
Input: family of distributions {f(·, η)}, initial parameter vector η0 s.t. f(θ, η0) >

0 ∀ θ ∈ Θ, trajectory lengths {mn}, ρ0 ∈ (0, 1], N0 > 1, ε > 0, ς > 1, λ ∈ (0, 1),

strictly increasing functionHand χ−1 = −∞.

for n = 0, 1, 2, . . . do

GenerateNn parameters Λn = {θ1
n, . . . , θ

Nn
n } using the mixture distribution f̃(·, ηn) =

(1− λ)f(·, η̃n) + λf(·, η0).

for i = 1, 2, . . . , Nn do

Obtain CPT-value estimate Cθin
n using mn samples.

end for

Elite Sampling:

Order the CPT-value estimates as {Cθ
(1)
n

n , . . . ,Cθ
(Nn)
n

n }.

Compute the (1− ρn)-quantile χ̃n(ρn, Nn)=Cθ
d(1−ρn)Nne
n

n .

find largest ρ̄ ∈ (0, ρn) such that χ̃n(ρ̄, Nn) ≥ χ̄n−1 + ε (thresholding step);

if ρ̄ exists then

Set χ̄n= χ̃n(ρ̄, Nn), ρn+1 = ρ̄, Nn+1 =Nn, θ∗n=θ1−ρ̄.

else

Set χ̄n=Cθ∗n−1

n , ρn+1 =ρn, Nn+1 =dςNne, θ∗n=θ∗n−1.

end if

Sampling distribution update:

ηn+1 ∈ arg max
η∈C

Nn∑
i=1

[H(Cθin)]n)

f̃(θ, ηn)
Ĩ
(
Cθin , χ̄n

)
ln f(θ, η),

where Ĩ(z, χ) := 0 if z ≤ χ− ε, (z − χ+ ε)/ε if χ− ε < z < χ and 1 if z ≥ χ.

end for
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Theorem 13. Let ϕ > 0 be a positive constant satisfying the condition that the set
{
θ :

H(C(Xθ) ≥ 1
ϕ

}
has a strictly positive Lebesgue/counting measure. Assume (A1), (A2)

and that mn → ∞ as n → ∞. Suppose that multivariate normal densities are used for

the sampling distribution, i.e., ηn = (µn,Σn), where µn and Σn denote the mean and

covariance of the normal densities. Then,

lim
n→∞

µn = θ∗ and lim
n→∞

Σn = 0d×d a.s. (2.76)

Proofs for CPT-MPS

Since we obtain samples of the objective (CPT) in a manner that differs from

MRAS2, we need to establish that the thresholding step in Algorithm 5 achieves the same

effect as it did in MRAS2. This is achieved by the following lemma, which is a variant of

Lemma 4.13 from [20], adapted to our setting.

Lemma 10. The sequence of random variables {θ∗n, n = 0, 1, . . .} in Algorithm 5 con-

verges w.p.1 as n→∞.

Proof. Let An be the event that the first if statement is true within the thresholding step

of Algorithm 5. Let Bn := {C(Xθ∗n) − C(Xθ∗n−1) ≤ ε
2
}. Whenever An holds, we have

Cθ∗n
n − Cθ∗n−1

n ≥ ε and hence, we obtain

P(An ∩ Bn)

≤ P
({

Cθ∗n
n − Cθ∗n−1

n−1 ≥ ε
}
∩
{
C(Xθ∗n)− C(Xθ∗n−1) ≤ ε

2

})
≤ P

( ⋃
θ∈Λn,θ′∈Λn−1

{{
Cθ

n − Cθ′

n−1 ≥ ε
}

∩
{
C(Xθ)− C(Xθ′) ≤ ε

2

}})
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≤
∑
θ∈Λn,
θ′∈Λk−1

P
({

Cθ

n − Cθ′

n−1 ≥ ε
}
∩
{
C(Xθ)− C(Xθ′) ≤ ε

2

})

≤ |Λn||Λn−1| sup
θ,θ′∈Θ

P
({

Cθ

n − Cθ′

n−1 ≥ ε
}

∩
{
C(Xθ)− C(Xθ′) ≤ ε

2

})
≤ |Λn||Λn−1| sup

θ,θ′∈Θ
P
(
Cθ

n − Cθ′

n−1 − C(Xθ) + C(Xθ′) ≥ ε

2

)
≤ |Λn||Λn−1| sup

θ,θ′∈Θ

(
P
(
Cθ

n − C(Xθ) ≥ ε

4

)
+P
(
Cθ′

n−1 − C(Xθ′) ≥ ε

4

))
≤ 4|Λn||Λn−1|e−

mnε
2

8L2M2 ,

where |Λn| denotes the cardinality of the set Λn. From the foregoing, we have
∑∞

n=1 P (An ∩ Bn) <

∞ sincemn →∞ as n→∞. Applying the Borel-Cantelli lemma, we obtain P (An ∩ Bn i.o.) =

0. Hence, if An happens infinitely often, then Bcn will also happen infinitely often and we

have

∞∑
n=1

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=

∑
n: Anoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
+

∑
n: Acnoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=

∑
n: Anoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=
∑
n:

An∩Bn
occurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
+
∑
n:

An∩Bcnoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]

=∞ w.p.1, since ε > 0.

In the above, the first equality follows from the fact that if the else clause in thresholding

step in Algorithm 5 is hit, then θ∗n = θ∗n−1. From the last equality above, we conclude
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that it is a contradiction because, C(Xθ) < C(Xθ∗) for any θ (since θ∗ is the global

maximum). The main claim now follows, since An can happen only a finite number of

times.

Proof. (Theorem 13)

Once we have established Lemma 10, the rest of the proof follows in an identical fashion

as the proof of Corollary 4.18 of [20], because our algorithm operates in a similar manner

as MRAS2 w.r.t. generating the candidate solution using a parameterized family f(·, η)

and updating the distribution parameter η. The difference, as mentioned earlier, is the

manner in which the samples are generated and the objective (CPT-value) function is es-

timated. The aforementioned lemma established that the elite sampling and thresholding

achieve the same effect as that in MRAS2, and hence the rest of the proof follows from

[20].

2.7 Conclusions

CPT has been a very popular paradigm for modeling human decisions among psy-

chologists/economists, but has escaped the radar of the Machine Learning and Control

community. The work of this chapter is the first step in incorporating CPT-based criteria

into an RL framework. However, both estimation and control of CPT-based value is chal-

lenging. Using temporal-difference learning type algorithms for estimation was ruled out

for CPT-value, since the underlying probabilities get (non-linearly) distorted by a weight

function. Using empirical distributions, we proposed an estimation scheme that converges

at the optimal rate. Next, for the problem of control, since CPT-value does not conform to
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any Bellman equation, we employed SPSA - a popular simulation optimization scheme

and designed both first and second-order algorithms for optimizing the CPT-value func-

tion. We provided theoretical convergence guarantees for all the proposed algorithms. We

will illustrate the usefulness of CPT-based criteria on numerical examples in Chapter 4.
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Chapter 3

Dynamic Programming in Cumulative Prospect Theory

3.1 Overview

Historically, the study of risk-sensitive criteria has focused on their normative appli-

cations – i.e., what should be done. The classic example is expected utility function which

produce deterministic policy. Recently, literature on dynamic coherent risk measures has

broadened the choices for risk-sensitive performance evaluation. In this chapter, we ap-

ply the CPT-functional introduced in Section 2.4 as the transitional measure in a nested

dynamic programming structure. As compared to the dynamic coherent risk measure pro-

posed in the previous literature, the CPT-driven measure is risk sensitive but non-convex.

We rigorously formulate a CPT-driven dynamic programming problem and analyze two

infinite horizon problems, namely, discounted and transient. In both cases, we investigate

the assumptions needed in order to yield the strongest results of dynamic programming:

value and policy iteration converge to a unique value function and an optimal policy. The

content of this chapter based on joint work with Lin et al. [53].

3.2 Related work

In many applications, risk-sensitive measures are more appropriate than risk-neutral

measures [42]. In standard MDPs, the performance measures are frequently expressed
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as expected utility functions that are risk-sensitive [23]. For example, many problems

evaluate their outcomes by using E [u(X)], where u is a risk-sensitive utility function

(e.g., exponential), and X is a random variable representing the total reward or cost. A

notable advantage of this approach is its robustness with respect to modeling errors [27].

Using this approach, if an optimal policy exists, then a deterministic optimal policy exists

[16].

Another important class of risk-sensitive criteria is the class of coherent risk mea-

sures, which are convex risk measures with the additional property of positive homogene-

ity (see [45], Def. 2.3). Prominent examples include mean-semideviation and conditional

value-at-risk [3, 25]. Recently, dynamic coherent risk measures have received much at-

tention in the literature [64, 21]. In particular, Ruszczyński in [67] concludes that time-

consistent coherent risk measures [68] are suitable for solving the dynamic optimization

problem.

In problems involving a human decision maker, it is desirable to use criteria that

are beyond expected utility and coherent risk measures. A well-known example of a non-

coherent performance measure is suggested by Tversky and Kahneman in their cumula-

tive prospect theory (CPT) [78]. A detailed description of cumulative prospect theory is

referred to Section 2.4. Although CPT is empirically proved to be able to capture human

decision dynamics under uncertainty (e.g., lotteries) [80], its incorporation into dynamic

systems is still nascent. Recently, He and Zhou [38] have studied a portfolio choice

problem using a CPT-based approach. The problem maximizes the terminal wealth of a

self-financing portfolio, a constraint on the action space of the MDP, driven by a financial

market that is uncontrollable from the perspective of the investor (see [38], Eq. 3). These
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results become more difficult, if not impossible, to obtain if these assumptions are elim-

inated. The motivation of this chapter is to widen the application of CPT-based criteria

to more general dynamic problems, paying attention to the structure of optimal policies

obtained.

3.3 Motivational Example

CPT is proved to produce optimal randomized policies, which are more robust

against modeling errors (see Section 2.4). In financial terms, CPT is used to balance

our need for optimal portfolio return, while acknowledging that our model/information is

not perfect (see [38]). While the advantage of producing a randomized policy is shared by

coherent risk measures, in some instances, CPT produces substantially more randomized

policies than those of coherent risk measures.

The following example applies a CPT criterion to an organ transplant problem:

3.3.1 The Organ Transplant Example: A Comparative Analysis

The organ transplant example is from [19]. The problem considers the discrete-

time absorbing Markov chain depicted in Figures 3.1 and 3.2.

The initial state S (i.e., sick) represents a patient demanding an organ transplant.

The state L (i.e., live) represents the state where the patient lives after a successful trans-

plant. The state D (an absorbing state) represents death. There are two possible actions

to take in state S: 1) W stands for wait, in which case the next state could either be D

or S probabilistically; 2) one can choose to transplant (T), which concentrates the tran-
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Figure 3.1: Organ transplant model: Transition rate graph on states L, S, and D

Figure 3.2: Transition graph within state L
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Method r(L) Optimum Value Optimal λW

Expected Value 610.46 846.611 1.000000

Semideviation 515.33 426.139 0.9866

CPT 702.32 104.438 0.868232

Table 3.1: Organ Transplant Optimal Value and Policy Comparison

sition probability on states L and D (i.e., states L and D are the only two possible next

states). The probability of death is lower for W than for T, but a successful transplant

may result in a longer life. In the other two states, only the action continue is allowed.

The reward collected at each time step is months of life. In state S, a reward equal to 1 is

collected if the control is W; otherwise, the immediate reward is 0. In state L, the reward

r(L) is collected representing the certainty equivalent of the random length of life after

the transplant. In state D the reward is 0.

The states where there is only one possible action allowed have a deterministic

reward function (i.e., L and D). In particular, the equivalent length of life at the state

L is r (L). The state L is an aggregation of n states in a survival model representing

months of life after the transplant. At the state i, i = 1, . . . , n, the patient dies with

probability pi and survives with probability 1 − pi. The patient will die for sure in the

state n (i.e., pn = 1). The reward collected at each state i is equal to 1. In Çavuş and

Ruszczyński [19], the problem is stated as a minimization problem. However, we desire

a maximization problem, thus we compare our results to that of Çavuş and Ruszczyński’s

[19] by negating the rewards.

The policy of the organ transplant problem setting entails a simple probability dis-
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tribution on choosing between two actions W and T on state S. Formally, for a given

policy, we denote λW and λT as the probability of taking action W and T respectively.

Under different criteria(expected-value, semideviation, CPT), we seek the optimal policy

regarding the performance measure on the reward of the organ transplant model. See [52]

for a detailed discussion of the process including defining the performance measure and

optimizing the corresponding objective function.

As is evident from Table 3.1, the CPT performance measure produces a more ran-

domized optimal policy than the other two approaches. The λW value of 0.987 for semide-

viation is close to the deterministic policy of W (i.e., to wait). The ease with which the

CPT performance measure is able to obtain an randomized optimal policy can be ex-

plained by the fact that the probability weighting function is applied to the control. Intu-

itively, the need for randomized policies stems from the nonlinear transformation of the

uncertainty in the system, which renders deterministic optimal policies insufficient. In

this problem, the CPT approach yields a vastly different randomized policy, while the

mean-semideviation yields a policy that is only marginally randomized. A further discus-

sion of the organ transplant example can be found in [52].

3.4 Contribution of the chapter

In this chapter, our main contribution is on proving the suitability of dynamic pro-

gramming for solving CPT-based risk-sensitive problems. In particular, we are interested

in the case of discounted and transient infinite-horizon problems. Our proof strategy and

conclusion have many parallels with that of Ruszczyński’s [19, 67].
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The greatest technical challenge induced by the probability distortion of CPT is that

of nonconvexity of the resulting risk measure; this is in stark contrast to both the expected

utility and coherent risk measures. The reason why previous work in this area has insisted

on the convexity of the risk measure is because of the diversification principle: the fact

a portfolio is less risky than its individual parts. While this constraint makes sense when

asking what a rational agent should do, it falls short when we are trying to model what

the decision would be in reality.

3.5 Dynamic Programming problems

Dynamic programming, introduced by Bellman [5], has been the subject of intense

research in the past five decades; see for example [6]. Dynamic optimization problems

modeled by controlled Markov processes and solved via dynamic programming are com-

monly referred to as Markov decision processes (MDPs). Researchers have developed

techniques to lift MDPs’ curse-of-dimensionality (e.g., approximate dynamic program-

ming [9]), which enables the widespread application of dynamic programming in many

fields.

3.5.1 Abstract Problem Formulation

We are interested in nonempty Borel spaces X and A of states and controls such

that for each x ∈ X there is a nonempty feasible control Borel set A (x) ⊂ A. We

denote the set of probability measures over A. We denote by S the set of all measurable

functions µ : X → A satisfying µ (x) ∈ A (x) , ∀x ∈ X , which we refer to as policies.
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The nonempty Borel space of disturbances is denoted by ∆, and given a state-action pair

(xk, ak) ∈ X × A, an element δk ∈ ∆ (xk, ak) ⊂ ∆ drives the system to its next state

through a measurable function f : X×A×∆→ X by xk+1 = f (xk, ak, δk). At each time

k, a per-step cost is accumulated and denoted by a measurable function g : X×A×∆→

R. The stochastic kernel P (·|x, a) is defined over ∆ (x, a). Furthermore, we denote both

the realization and the random variable disturbance at time k by δk. We denote by R (X)

the set of real-valued measurable functions J : X → R. Also, let H : X ×A×R(X) be

a given mapping. For each policy µ ∈ S , we consider the mapping Tµ : R(X) → R(X)

defined by

(TµJ) (x) = H (x, µ (x) , J) , ∀x ∈ X, J ∈ R (X) ,

and we also consider the mapping T defined by

(TJ) (x) = inf
a∈A(x)

H (x, a, J) , ∀x ∈ X, J ∈ R (X) .

The mappings Tµ and T serve to define a multistage optimization problem and a Dynamic

Programming like methodology for its solution. Particularly, for some function J ∈

R(X), and nonstationary Markov policy π ∈ Π where π = {µ0, µ1, µ2, . . . } and Π

denotes the set of all feasible non-stationary Markov policies, we define for each integer

N ≥ 1 the functions

Jπ,N (x) =
(
Tµ0Tµ1Tµ2 · · ·TµN−1

J
)

(x) , ∀x ∈ X,

where Tµ0Tµ1Tµ2 · · ·TµN−1
denotes the composition of mappings Tµ0 , Tµ1 , Tµ2 , · · ·TµN−1

,

i.e.,

Tµ0Tµ1Tµ2 · · ·TµN−1
J =

(
Tµ0

(
Tµ1

(
· · ·
(
TµN−2

(
TµN−1

J
)))
· · ·
))
.
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Consider also the function

Jπ (x) = lim sup
N→∞

(
Tµ0Tµ1Tµ2 · · ·TµN−1

J
)

(x) , (3.1)

which we view as the “infinite horizon cost function” of π. We want to minimize Jπ over

π ∈ Π, i.e., to find

J? (x) = inf
π
Jπ(x), ∀x ∈ X, (3.2)

and a policy π? that attains the infimum, if it exists. Notice that J? can usually be shown

to satisfy the “fixed point” property that

J?(x) = inf
a∈A(x)

H(x, a, J?). (3.3)

We refer to (3.3) as Bellman’s equation. Another fact is that if an optimal policy π? exists,

it “typically” can be selected to be stationary, π = µ?, µ?, · · ·, with µ? ∈ S satisfying an

optimality condition, such as

Tµ?J
? = TJ?.

3.5.2 Example: Markovian Decision Problems with expected cost func-

tion

Consider the stationary discrete-time dynamic system

xk+1 = f(xk, ak, δk), k = 0, 1, · · · ,

where for all k, the state xk is an element of a space X , the control ak is an element

of a space A, and δk is a random “disturbance”, and δk ∈ ∆(xk, ak). We assume that
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∆(xk, ak) is a countable set and we consider problems with infinite state and control

spaces. Follow the notation in Section 3.5.1, we constrain the control ak to take values

in a given nonempty set A(xk) of A, which depends on the current state xk. The random

disturbance δk is characterized by probability distributions P (·|xk, ak) that are identical

for all k, where P (δk|xk, ak) is the probability of occurrence of δk, when the current state

and control are xk and ak, respectively.

Given an initial state x0, we want to find a policy π = µ0, µ1, · · ·, where µk : X →

A, µk(xk) ∈ A(xk), for all xk ∈ X, k = 0, 1, ..., that minimizes the cost function

Jπ(x0) = lim sup
N→∞

E{
N−1∑
k=0

αkg(xk, µk(xk), δk)}, (3.4)

subject to the system equation constraint

xk+1 = f(xk, µk(xk), δk), k = 0, 1, ....

To make connection with abstract Dynamic Programming, we define

H(x, a, J) = E{g(x, a, δ) + αJ (f(x, a, δ))}.

Therefore, for any given policy µ, we have

(TµJ) (x) = E{g(x, µ(x), δ) + αJ (f (x, µ(x), δ))},

and

(TJ) (x) = inf
a∈A(x)

E{g (x, a, δ) + αJ (f (x, a, δ))}.

The N -stage cost can be expressed in terms of Tµ :

(
Tµ0 · · ·TµN−1

J̄
)

(x0) = E{
N−1∑
k=0

αkg(xk, µk(xk), δk)}.
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The same is true for the infinite stages cost, i.e.:

Jπ(x0) = lim sup
N→

(
Tµ0 · · ·TµN−1

J̄
)

(x0) = lim sup
N→∞

E{
N−1∑
k=0

αkg(xk, µk(xk), δk)}, (3.5)

where J̄(·) is simply the zero-function, i.e., J̄(x) = 0, ∀x ∈ X .

3.5.3 Dynamic programming with CPT-transitional measure

Notice that the expected value in (3.5) can be rewritten as the nested expectation

E [g(x0, a0, δ0) + E [g (x1, a1, δ1) + · · · |x1] |x0] .

In this section, we generalize the dynamic programming structure introduced in Sec-

tion 3.5.2 by replacing expected cost with CPT-functional as the transitional measure.

We briefly recall the CPT-functional defined in Section 2.4 below: Given random

variable X , the functional, denoted by C, depends on function pairs u = (u+, u−) and

w = (w+, w−). Suppose X is a continuous random variable and the CPT-functional is

defined as

C(X) =

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz

−
∫ ∞

0

w−
(
P
(
u−(X) > z

))
dz . (3.6)

The pair u = (u+, u−) is the pair of utility functions and the pair w = (w+, w−) is the

pair of probability weighting functions. Appropriate integrability assumptions has been

discussed in Section 2.5, which is skipped in this chapter.

Following the abstract dynamic programming structure constructed in Section 3.5.1,

CPT-dynamic programming problem is formulated by introducing the corresponding H
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mapping as H (x, a, J) =∫ ∞
0

w+
(
P
(
u+ (g (x, a, δ) + αJ (f (x, a, δ))) > z

))
dz

-
∫ ∞

0

w−
(
P
(
u− (g (x, a, δ) + αJ (f (x, a, δ))) > z

))
dz, (3.7)

where the system evolves according to the equation xk+1 = f (xk, ak, δk) , and the dis-

count factor α ∈ (0, 1). Without loss of generality, the reference point is assumed to be

zero.

3.5.4 Assumptions for the existence of optimality

To justify whether infinite horizon CPT-driven dynamic programming will attain

optimal point which satisfy (3.2), we need to test whether such framework meets the

following three assumptions:

Assumption 10. (Monotonicity) If J, J ′ ∈ R (X) and J ≤ J ′, then H (x, a, J) ≤

H(x, a, J ′), ∀x ∈ X, a ∈ A (x) .

Since the contraction assumption requires a Banach space, we introduce the space

of real-valued functions J on X embedded with the essential sup-norm ‖J‖∞.

Assumption 11. (Contraction) For all J ∈ R (X) and µ ∈ S, the functions TµJ and

TJ belong to R (X). Furthermore, for some α ∈ (0, 1) , we have ‖TµJ − TµJ ′‖∞ ≤

α ‖J − J ′‖∞ , ∀J, J ′ ∈ R (X) , µ ∈ S.

We assume our per-step cost function g satisfies the following assumption.

Assumption 12. There exists a constant c > 0 such that supx∈X,a∈A(x),δ∈∆ |g (x, a, δ)| ≤

c.
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Note that assumptions 10 and 11 are conditions on the H mapping, which can

be obtained from the problem description. Assumption 12 is standard for the classical

discounted infinite horizon problem and can be easily verified for practical problems.

Additionally, we follow the same procedures in ( [8], page 201, Appendix C) to impose

appropriate restrictions on A(x) and transitional probability kernel P (·|x, a) to address

the measurability issue. In the next section, we seek conditions on either the functions

w+, w−, u+, u− or the underlying model that will satisfy assumptions 10 and 11 for the

discounted infinite horizon and transient cases.

3.6 Conditions for the existence of optimal policies

3.6.1 Discounted Infinite Horizon

With the transitional measure introduced in Section 3.5, we first try to explore the

properties for the pair of u = (u+, u−) and w = (w+, w−) in order to satisfy the mono-

tonicity assumption.

Theorem 14. If u+, u− : R+ → R+ are both monotonically non-decreasing functions,

and w+, w− are probability weighting functions, then Eq. (3.7) satisfies Assumption 10.

Proof. Let J ≤ J ′ ∈ R (X) ; since u+ is monotonically non-decreasing,

u+ (g (x, a, δ) + αJ (f (x, a, δ))) ≤ u+ (g (x, a, δ) + αJ ′ (f (x, a, δ))) ,

and along with the fact that w+ is also monotonically non-decreasing, we have

∫ ∞
0

w+
(
P
(
u+ (g (x, a, δ) + αJ (f (x, a, δ))) > z

))
dz (3.8)
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≤
∫ ∞

0

w+
(
P
(
u+ (g (x, a, δ) + αJ ′ (f (x, a, δ))) > z

))
dz. (3.9)

A similar argument can be made about the term on the right hand side of the minus sign

in (3.7).

The next theorem explores the conditions such that the Tµ defined by H is a con-

traction.

Theorem 15. Assume the following conditions hold: 1) the assumptions in Theorem 14

hold; 2) u+, u− are invertible (denoted by (u+)−1 and (u−)−1), differentiable (denoted

by (u+)′ and (u−)′) with u+ (0) = u− (0) = 0; 3) (u+)′, (u−)′ are monotonically non-

increasing; 4) there exists a β ∈ (0, 1) such that∫ αc

0

w+ (P (Z < z)) (u+)′ (αc− z) dz +

∫ αc

0

w− (P (Z > z)) (u−)′ (z) dz ≤ βc, c > 0

holds for any non-negative real-valued random variable Z. Then Assumption 11 is satis-

fied.

Proof. Letting µ be any policy and x be any state, we simplify our notation as follows: we

use g to denote g (x, µ (x) , δ), J to denote J (f (x, µ (x) , δ)), and assume J, J ′ ∈ R (X).

By the monotonicity property of the mapping H (cf. Theorem 14), we have

(TµJ) (x) ≤
∫ ∞

0

w+
(
P
(
u+ (g + αJ ′ + α ‖J − J ′‖∞) > z

))
dz

−
∫ ∞

0

w−
(
P
(
u− (g + αJ ′ + α ‖J − J ′‖∞) > z

))
dz. (3.10)

To simplify the presentation further, we let c = ‖J − J ′‖∞. By using the fact that the

utility functions are invertible (i.e., condition 2), the fact that for any a ∈ R and

b, ξ ∈ (0,∞) ,
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(a+ b)+ > ξ ⇐⇒ a > ξ − b,

and

(a+ b)− > ξ ⇐⇒ −a > ξ + b,

and

−a > ξ + b ⇐⇒ max (−a, 0) > ξ + b,

we have

TµJ ≤
∫ ∞

0

w+
(
P
(
(g + αJ ′) > (u+)−1 (z)− αc

))
dz

−
∫ ∞

0

w−
(
P
(
(g + αJ ′)− > (u−)−1 (z) + αc

))
dz,

where the functions (x)+ = max(x, 0) and (x)− = −min(x, 0).

By performing a change of variables using y+ = (u+)−1 (z) − αc and y− =

(u−)−1 (z) + αc, we obtain

TµJ ≤
∫ ∞
−αc

w+
(
P
(
(g + αJ ′) > y+

))
(u+)′

(
y+ + αc

)
dy+

−
∫ ∞
αc

w−
(
P
(
(g + αJ ′)− > y−

))
(u−)′

(
y− − αc

)
dy−.

Next, we rewrite the equation above by adding sum-to-zero terms:

TµJ ≤
∫ ∞

0

w+
(
P
(

(g + αJ ′)
+
> y
))

(u+)′ (y) dz

−
∫ ∞

0

w+
(
P
(

(g + αJ ′)
+
> y
))

(u+)′ (y) dy

−
∫ ∞

0

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y) dz

+

∫ ∞
0

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y) dy

96



+

∫ ∞
−αc

w+ (P ((g + αJ ′) > y)) (u+)′ (y + αc) dy

−
∫ ∞
αc

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y − αc) dy. (3.11)

Condition 3 implies that (u+)′ (y + αc)−(u+)′ (y) ≤ 0,∀y ≥ 0 and (u−)′ (y)−(u−)′ (y − αc) ≤

0,∀y ≥ αc; therefore we know the following inequalities hold:

∫ ∞
−αc

w+ (P ((g + αJ ′) > y)) (u+)′ (y + αc) dy

−
∫ ∞

0

w+
(
P
(

(g + αJ ′)
+
> y
))

(u+)′ (y) dy

≤
∫ 0

−αc
w+ (P ((g + αJ ′) > y)) (u+)′ (y + αc) dy, (3.12)

∫ ∞
0

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y) dy

−
∫ ∞
αc

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y − αc) dy

≤
∫ αc

0

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y) dy. (3.13)

By substituting the inequalities in (3.12) and (3.13) into (3.11), and applying the facts that

1)

∫ ∞
0

w+
(
P
(
u+ (g + αJ ′) > z

))
dz

=

∫ ∞
0

w+
(
P
(

(g + αJ ′)
+
> z
))

(u+)′ (z) dz,

2)

∫ ∞
0

w−
(
P
(
u− (g + αJ ′) > z

))
dz

=

∫ ∞
0

w−
(
P
(

(g + αJ ′)
−
> z
))

(u−)′ (z) dz,

3)

∫ 0

−αc
w+ (P ((g + αJ ′) > y)) (u+)′ (y + αc) dy

=

∫ αc

0

w+ (P ((g + αJ ′) > −y)) (u+)′ (αc− y) dy,
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and -a < z =⇒ (a)− < z, z ∈ (0,∞) , we have

TµJ ≤
∫ ∞

0

w+
(
P
(
u+ (g + αJ ′) > z

))
dz

−
∫ ∞

0

w−
(
P
(
u− (g + αJ ′) > z

))
dz

+

∫ αc

0

w+
(
P
(

(g + αJ ′)
−
< y
))

(u+)′ (αc− y) dy

+

∫ αc

0

w−
(
P
(

(g + αJ ′)
−
> y
))

(u−)′ (y) dy.

By using condition 4 of the theorem, we have (TµJ) (x) ≤ (TµJ
′) (x)+β ‖J − J ′‖∞ ,

which holds for all x ∈ X; the conclusion follows.

Remark 6. The conditions in the previous theorem might seem unnatural at first. How-

ever, let u+ be the identity function and u− be the identity function scaled by ε ∈ [0, 1],

and let w− = w+ = w. In this case, we have H (x, a, J) =

∫ ∞
0

w
(
P
(
(g (x, a, δ) + αJ (f (x, a, δ)))+ > z

))
dz

− ε
∫ ∞

0

w
(
P
(
(g (x, a, δ) + αJ (f (x, a, δ)))− > z

))
dz, (3.14)

which is often used in practice. One can easily check that (3.14) indeed satisfies all the

conditions in Theorems 14 and 15, given the fact that there exists a β ∈ (0, 1) such that

w (p) + εw (1− p) ≤ β

α
, ∀p ∈ [0, 1] .

A very special case is when w is the identity function (i.e., no distortion) in (3.14),

for which condition 4 in the previous theorem simplifies to

∫ αc

0

[P (Z < z) + P (Z > z)] dz ≤ αc ≤ βc.
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On the other hand, if we allow w+ and w− to be any weighting functions, a simple way to

check condition 4 is by using the fact that because w+ and w− are probability weighting

functions, they are bounded by 1. Applying this knowledge, we can rewrite condition 4 as

follows: β ∈ (0, 1) such that∫ αc

0

(u+)′ (αc− z) dz +

∫ αc

0

(u−)′ (z) dz ≤ βc.

This condition can be satisfied if we let (u+)′ and (u−)′ be bounded by b1 and b2 respec-

tively, and requiring

(b1 + b2)α < 1,

where α is the discount factor. This means that we can satisfy condition 4 for any w+, w−

if α < 1
(b1+b2)

.

3.6.2 Transient Markov Control Model

In this section, we prove the optimality of the dynamic programming equation for

transient Markov control models. A transient Markov model evolves according to the

equation xk+1 = f (xk, ak, δk) and has some absorbing state xA ∈ X , such that if xk =

xA, then f(xA, a, δ) = xA and g (xA, a, δ) = 0 for all a ∈ A (xA) , δ ∈ ∆. In other words,

once an absorbing state is reached, no action can be taken to leave the state and the cost

is zero in perpetuity. We denote the first hitting time of the absorbing state with a policy

π ∈ Π by τπA := inf {t ≥ 0|xπt = xA}. A transient Markov model reaches its absorbing

state in a finite amount of time starting from an initial state x0, i.e., supπ∈ΠE [τπA|x0] <

∞. The corresponding H mapping for the systems is: H (x, a, J) =∫ ∞
0

w+
(
P̃
(
u+ (g (x, a, δ) + J (f (x, a, δ))) > z

))
dz
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−
∫ ∞

0

w−
(
P̃
(
u− (g (x, a, δ) + J (f (x, a, δ))) > z

))
dz. (3.15)

where P̃ is defined as P̃ (·) = P (· ∩ f (x, a, δ) ∈ X \ xA) ≤ 1, ∀a ∈ A (x) , x ∈ X .

Definition 3. A policy π = {µ0, µ1, . . . } ∈ Π is transient with respect to a Markov control

model, if there exists a constant c such that
∑∞

k=0 P (f (xk, µk (xk) , δk) ∈ X \ xA) ≤ c.

If the inequality above holds for all π ∈ Π, then the model is called uniformly transient.

The inequality is also known as the Pliska condition [57].

The next two theorems give the conditions needed to satisfy the monotonicity and

contraction assumptions.

Theorem 16. If u+, u− : R+ → R+ are both monotonically non-decreasing functions,

and w+, w− are probability weighting functions, then (3.15) satisfies assumption 10.

Proof. Use the same argument as in Theorem 14.

Theorem 17. Assume the following conditions hold: 1) the Markov control model is

uniformly transient; 2) ∃C > 0 such that (u+)′ (0) ≤ C, (u−)′ (0) ≤ C; 3) conditions

1-3 in Theorem 15 hold; 4) ∃ξ > 0 such that w+ (x) ≤ ξx and w− (x) ≤ ξx. Then the

operator Tµ defined by using (3.15) is a K-step contraction.

Proof. Observe that ∀J ∈ R (X) , T kµJ = Tµ(T k−1
µ J) As in the proof for the discounted

case, fixing x ∈ X and using condition 3, we can arrive at the following conclusion for

the transient case:

Tµ
(
T k−1
µ J

)
≤
∫ ∞

0

w+
(
P̃k
(
u+
(
g + T k−1

µ J ′
))
> y
)
dz

−
∫ ∞

0

w−
(
P̃k
(
u−
(
g + T k−1

µ J ′
))
> y
)
dz
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+

∫ ck−1

0

w+
(
P̃k

((
g + T k−1

µ J ′
)−

< y
))

(u+)′ (ck−1 − y) dy

+

∫ ck−1

0

w−
(
P̃k

((
g + T k−1

µ J ′
)−

> y
))

(u−)′ (y) dy,

where ck−1 =
∥∥T k−1

µ J − T k−1
µ J ′

∥∥
∞, and P̃k is defined as P̃k (·) = P (· ∩ f (xk, ak, δk ∈ X \ xA)).

Using conditions 2 and 4, it is easy to see that

T kµJ − T kµJ ′ ≤
∫ ck−1

0

w+
(
P̃k

((
g + T k−1

µ J ′
)−

< y
))

Cdy

+

∫ ck−1

0

w−
(
P̃k

((
g + T k−1

µ J ′
)−

> y
))

Cdy

≤ 2ξCP (f (xk, µk (xk) , δk) ∈ X \ xA) ck−1.

The inequality holds because by the preceding definition of P̃k, i.e.,

P̃k (·) ≤ P (f (xk, µk (xk) , δk) ∈ X \ xA) .

As a result, ∀k, the sup-norm of
∥∥T kµJ − T kµJ ′∥∥∞ is bounded by

2ξCP (f (xk, µk (xk) , δk) ∈ X \ xA)
∥∥T k−1

µ J − T k−1
µ J ′

∥∥
∞ .

In other words, at each time step k + 1, P̃ has at most P (f (xk, µk (xk) , δk) ∈ X \ xA)

non-absorbed probability measure.

A similar relationship between
∥∥T k−1

µ J − T k−1
µ J ′

∥∥
∞ and

∥∥T k−2
µ J − T k−2

µ J ′
∥∥
∞ holds.

Therefore by applying the one-step bound relationship repeatedly for k times, one can find

a bound of
∥∥T kµJ − T kµJ ′∥∥∞ with ‖J − J ′‖∞:

∥∥T kµJ − T kµJ ′∥∥∞ ≤ (2ξC)k
k∏
i=1

P (f (xi, µi (xi) , δi) ∈ X \ xA) ‖J − J ′‖∞ . (3.16)

We denote Pk as P (f (xk, µk (xk) , δk) ∈ X \ xA). In the transient Markov model

setting, Pk will converge to 0 as k goes to infinity since
∑∞

k=0 Pk is bounded, and this fact

can actually enable us to find a constant K such that (2ξC)K
∏K

i=1 Pi < 1.
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To prove the preceding claim, first observe that since limk→∞ Pk = 0, we can find

a constant M such that ∀k > M , Pk < 1
2ξC

. Meanwhile, ∀k > M , (2ξC)k
∏k

i=1 Pi can

be written as the product of two terms:

(2ξC)k
k∏
i=1

Pi = (2ξC)M
M∏
i=1

Pi · (2ξC)k−M
k∏

i=M+1

Pi. (3.17)

In (3.17), Pi ≤ 1∀i, and as a matter of fact, (2ξC)M
∏M

i=1 Pi ≤ (2ξC)M . The property

that ∀k > M , Pk < 1
2ξC

implies

lim
k→∞

(2ξC)k−M
k∏

i=M+1

Pi = 0.

The above convergence property indicates that we can find a constant K which satisfies

(2ξC)K−M
K∏

i=M+1

Pi ≤ 1/

(
(2ξC)M

M∏
i=1

Pi

)
.

With such K being found which satisfies (2ξC)K
∏K

i=1 Pi < 1, we denote γ the constant

of (2ξC)K
∏K

i=1 Pi , and rewrite (3.16) as

∥∥TKµ J − TKµ J ′∥∥∞ ≤ γ ‖J − J ′‖∞ .

The operator Tµ is thus a K-step contraction, and the statement of the theorem is thus

proved.

A K-step contraction is comparable to a contraction, in that the mapping is a con-

traction in a finite number of steps. The results of dynamic programming are still applica-

ble by substituting the operators TKµ and TK , where the superscriptK represents applying

the operatorK times. The reader may refer to [43] for a more detailed discussion of k-step

contractions.
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3.7 Conclusion and future work

Non-convexity is the key feature when using CPT to model human decisions. CPT

can also be applied to many real-life problems where underestimating rare event proba-

bilities is a concern. In particular, CPT will provide a robust randomized policy, while

incorporating our confidence in the model. Based on our proof of the suitability of CPT

for dynamic problems, future work will involve the application of CPT to other dynamic

problems.
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Chapter 4

Experiments

4.1 Overview

In this chapter, we present simulation experiments regarding the CPT-measure in-

troduced in Section 2.4. The chapter is organized as follows: In Section 4.2, we apply

the CPT-measure to a few random variables and show that, the optimal parameter values

using CPT-value are different from the optimal parameter values using traditional expec-

tation. Section 4.2 tests the sample complexity properties of our proposed CPT-estimator.

In Sections 4.3 and 4.4, we incorporate the CPT-measure into real-life simulation ex-

amples to investigate the difference between CPT-based decision making problems and

traditional expected-utility-based decision making problems. The simulation examples

included in this chapter can also be found in the joint paper with Prashanth et al. [44].

4.2 Numerical Experiments

In this section, we show that the optimal CPT-value reacts differently to the change

of parameters of the underlying distribution as compared to the optimal expected value. In

other words, there are families of random variables {Xθ, θ ∈ Θ} where arg maxθ E (Xθ)

is radically different from arg maxθ C (Xθ). This finding would make a case for special-

ized algorithms that optimize CPT-based criteria, since expected value optimizing algo-
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rithms cannot be used as surrogates.

The CPT-value in this section is aligned with the form proposed in (2.1) and uses

the following choices for utility and weight functions:

u+(x) = |x|σ, u−(x) = λ|x|σ,

w+(p) =
pη1

(pη1 + (1− p)η1)
1
η1

, w−(p) =
pη2

(pη2 + (1− p)η2)
1
η2

,

where λ = 0.25, σ = 0.88, η1 = 0.61 and η2 = 0.69. The choices for σ and w+(·), w−(·)

are based on the recommendations given by [78].

4.2.1 Comparison between CPT and expectation

Since it is usually hard to obtain an analytical expression for the CPT-value, we

use numerical integration via the trapezoidal rule. Meanwhile, since we usually have

little knowledge about the property of CPT-functional, gradient descent algorithms usu-

ally won’t guarantee the convergence to the global optimal within the feasible region.

Therefore, we consider two settings where the feasible region is triangle shaped over two

distribution parameters. In each setting, the expected value optima is calculated analyt-

ically, while for the CPT-value, we perform a grid search, where the distance between

points in the grid is 0.05.

Example 1. We consider normally distributed r.v.s with mean µ and variance σ. As shown

in Figure 4.1, the feasible region for (µ, σ) is the triangle with vertices (0.5, 2), (0.5, 6)

and (2.5, 2). The expected value takes its maximum analytically at (2.5, 2), while a numer-

ical optimization of the CPT-value returned a maximum at (0.5, 6), with corresponding
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Figure 4.1: CPT-value of normal distributed r.v.s with mean µ and variance σ parameters

CPT-value 2.65. The CPT value of the r.v. N(2.5, 2) was 2.37.

Example 2. We consider skew normal distributed r.v.s sn(ξ, ω, α) with location ξ, scale

ω and shape α. The mean of X(ξ,ω,α) ∼ sn(ξ, ω, α) is ξ + ωδ
√

2
π

, while the variance is

ω2(1 − 2δ2

π
), with δ = α

1+α2 . With α = 0.5, we set up the feasible region for (ξ, ω) to be

the triangle with vertices (−1, 1), (1, 1) and (−1, 5) as shown in Figure 4.3. It turns out

that the point (−1, 5) returns the largest CPT-value, with C(X−1,5,0.5,0.5) = 2.30, while

E(X−1,5,0.5) = 0.78. On the other hand, the point (1, 1) has the largest expected value

with E(X1,1,0.5) = 1.36, but the CPT value of the same r.v. is 1.25.

4.2.2 Consistency of CPT estimator

We illustrate the rapid convergence of the estimator in Algorithm 1 for a skew nor-

mal distributed r.v. with location, scale and shape parameters set to 2, 1 and 2, respec-

tively. For calculating the CPT-value, we use the trapezoidal rule. We conducted the
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Figure 4.2: Expected value of skew Normal distributed r.v.s with fixed shape α = 0.5 and

varying location ξ and scale ω

Figure 4.3: CPT value of skew Normal distributed r.v.s with fixed shape α = 0.5 and

varying location ξ and scale ω
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experiment in 100 simulation phases indexed from 1 to 100. In each phase i, we gener-

ate i.i.d. estimators Cj

ni
(X) with ni samples of skew normal distributed r.v. X , where

j = 1, . . . , 10 corresponds to an independent simulation. The number of samples ni in

each phase i ranges from 100 to 106. For each phase i, we calculate the estimation error,

which is the absolute difference between Cni = 1
10

∑10
j=1 Cj

ni
and the numerically inte-

grated CPT-value. Figure 4.4 the difference between CPT-estimate Cni using Algorithm

1 and numerically integrated approximation C̃(X) to CPT-value C(X) of a skew normal

distributed r.v. X with shape 2, location 2 and scale 1. The shaded bands denote the

standard error calculated from ten independent simulations.

Here, the margin of error denotes half the length of the t-confidence interval. It is

evident from Figure 4.4 that our CPT-value estimate gets very close to the true CPT-value

rapidly.

4.3 House buying at optimal price

We consider a SSP version of an example1 for buying a house at the optimal price.

Suppose the house is priced at xk any instant k and at the next instant, the price either

goes down to (xk × Cdown) w.p. pdown or goes up to (xk × Cup) w.p. 1 − pdown. The

actions are to either wait (denoted w), which results in a holding cost h or to buy (denoted

b) at the current price. The horizon is capped at T , with a terminal cost xT . The goal is to

minimize the total cost defined as Dπ(x0) =
∑τ

k=0

(
I{ak=b}xk + I{ak=w}h

)
+ I{τ=T}xT ,

where τ = {k|π(xk) = 1} ∧ T . We set T = 20, h = 0.1, Cup = 2, Cdown = 0.5, and

1A similar example has been considered in [22].
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Figure 4.4: Difference between CPT-estimate and numerically integrated approximation

of CPT-value

x0 = 1.

4.3.1 Implementation

On this example, we implement the first-order CPT-SPSA and the second-order

CPT-SPSA-N algorithms. For the sake of comparison, we also apply value iteration to

the SSP example described above. Note that value iteration requires knowledge of the

model, while our CPT-based algorithms estimate the CPT-value using simulated episodes.

For CPT-SPSA, we set δn = 1.9/n0.101 and γn = 1/n, while for CPT-SPSA-N, we set

δn = 3.8/n0.166 and γn = 1/n0.6. For all algorithms, we set each entry of the initial

policy π0 to 0.1. For CPT-value estimation, we simulate 1000 SSP episodes, with the SSP

horizon T set to 20. All algorithms are run with a budget of 1000 samples, which implies
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500 iterations of CPT-SPSA and 250 iterations of CPT-SPSA-N. The results presented are

averages over 500 independent simulations. For CPT-SPSA/CPT-SPSA-N, the weight

functions w+ and w− are set to p0.6/(p0.6 + (1 − p)0.6), while the utility functions are

identity maps.

4.3.2 Results

Figure 4.5 presents the value function computed using value iteration, while Figures

4.6–4.7 present the CPT-value Cπend(x0) for CPT-SPSA and CPT-SPSA-N, respectively.

The performance plots are for various values of pdown, the probability of house price going

down. From Figure 4.5, we notice that the variations in expected total cost is larger in

comparison to that in CPT-value. A similar observation holds true for an SPSA-based

algorithm from [10] that optimizes the regular value function. While it is difficult to plot

the entire policies, for the expected value minimizing algorithms it was observed that there

were drastic changes in the policies with a change of 0.01 in pdown, while CPT-SPSA/CPT-

SPSA-N resulted in randomized policies that smoothly transitioned with changes in pdown.

Figure 4.5, 4.6 and 4.7 together verify that CPT-aware SPSA algorithms are less sensitive

to the model changes as compared to the expected value minimizing algorithms. It is also

evident that the second-order CPT-SPSA-N gives marginally better results than its first-

order counterpart CPT-SPSA. Finally, what isn’t shown is that the CPT-value obtained for

CPT-SPSA/CPT-SPSA-N is much lower than that obtained for an SPSA based algorithm

from [10] that optimizes expected value, thus making apparent the need for specialized

algorithms that incorporate CPT-based criteria.
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Figure 4.5: Value iteration
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Figure 4.6: First-order SPSA for CPT-value
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Figure 4.7: Second-order SPSA for CPT-value
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4.4 Traffic Control Simulation

We consider a traffic signal control application where the aim is to improve the

road user experience by an adaptive traffic light control (TLC) algorithm. We optimize

the CPT-value of the delay experienced by road users, since CPT realistically captures

the attitude of the road users towards delays. We then optimize the CPT-value of the

delay and contrast this approach with traditional expected delay minimizing algorithms.

It is assumed that the CPT functional’s parameters (u,w) are given (usually, these are

obtained by observing human behavior). The experiments are performed using the GLD

traffic simulator [83], and the implementation is available at https://bitbucket.

org/prashla/rl-gld.

4.4.1 Simulation Setup

We consider a road network withN signalled lanes that are spread across junctions

andM paths, where each path connects (uniquely) two edge nodes, from which the traffic

is generated (see Figure 4.8).

At any instant n, let qin and tin denote the queue length and elapsed time since the

lane turned red, for any lane i = 1, . . . ,N . Let di,jn denote the delay experienced by jth

road user on ith path, for any i = 1, . . . ,M and j = 1, . . . , ni, where ni denotes the

number of road users on path i. We specify the various components of the traffic control

MDP below. The state sn = (q1
n, . . . , q

N
n , t

1
n, . . . , t

N
n , d

1,1
n , . . . , dM,nM

n )T is a vector of

lane-wise queue lengths, elapsed times and pathwise delays. The actions are the feasible

traffic signal configurations.
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Figure 4.8: Snapshot of the road network from the GLD simulator. The figure shows four

edge nodes that generate traffic, one traffic light and two-laned roads carrying automo-

biles.

We consider Boltzmann policies that have the form

πθ(s, a) =
eθ
>φs,a∑

a′∈A(s) e
θ>φs,a′

, ∀s ∈ S, ∀a ∈ A(s),

with features φs,a as described in Section V-B of [61].

We consider two different notions of return as follows:

CPT: For any policy θ, let Xθ
i be the delay r.v. and µθi the proportion of road users

along path i, for i = 1, . . . ,M. Any road user along path i will evaluate the delay (s)he

experiences in a manner that is captured well by CPT. An important component of CPT

is to employ a reference point to calculate gains and losses. Choosing a suitable reference

point is challenging, but [78] advocates using the status-quo as the reference point.

With the objective of maximizing the experience of road users across paths, the
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overall return to be optimized is given by

max
θ∈Θ

CPT(Xθ
1 , . . . , X

θ
M) =

M∑
i=1

µθiC(Bi −Xθ
i ), (4.1)

where Θ is the d-dimensional hypercube formed by intervals [0.1, 1.0] in each dimension.

The rationale behind the objective above is that CPT-value C(Bi−Xθ
i ) would capture the

road user experience/satisfaction for each path i and the goal is to maximize the average

satisfaction over all paths. In our setting, we use pathwise delays, say Bi for path i,

obtained from a pre-timed TLC (cf. the Fixed TLCs in [60]) as the reference point. If

the delay of any TLC algorithm is less than that of pre-timed TLC, then the (positive)

difference in delays is perceived as a gain and in the complementary case, the delay

difference is perceived as a loss. Thus, the CPT-value C(Bi − Xi) for any path i in

Figure 4.8 is to be understood as a differential delay gain w.r.t. Bi.

AVG: For the sake of comparison, we consider the traditional objective of minimiz-

ing the overall average delay, i.e.,

min
θ∈Θ

AVG(Xθ
1 , . . . , X

θ
M) =

M∑
i=1

µθiE(Xθ
i ). (4.2)

In comparison to CPT objective, the above does not incorporate baseline delays, makes no

distinction between gains and losses via utility functions and does not distort probabilities.

We implement the following TLC algorithms:

CPT-SPSA: This is a first-order algorithm that solves (4.1) using SPSA-based gradient es-

timates and Algorithm 1 for estimating CPT-value C(Bi−Xi) for each path i = 1, . . . ,M,

with di,jn , j = 1, . . . , ni as the samples.

AVG-SPSA: This is SPSA-based first-order algorithm that solves (4.2), while using sam-

ple averages of the delays to estimate the expected delay E(Xi) for each path i = 1, . . . ,M.
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Table 4.1: AVG and CPT-value estimates for AVG-SPSA and CPT-SPSA.

AVG-value CPT-value

AVG-SPSA 111.67 53.31

CPT-SPSA 116.21 59.91

The underlying CPT-value C(Xi) follows the exact form as in Section 4.2, except

here we set λ = 2.25. The choices for λ, σ, η1 and η2 are based on median estimates given

by [78] and have been used earlier in a traffic application (see [34]). For all the algorithms,

motivated by standard guidelines (see [74]), we set δn = 1.9/n0.101 and an = 1/(n+ 50).

The initial point θ0 is the d-dimensional vector of ones and ∀i, the operator Γi keeps the

iterate θi within [0.1, 1.0].

The experiments involve two phases: first, a training phase where we run each al-

gorithm for 500 iterations, with each iteration involving two perturbed simulations. Each

simulation involves running the traffic simulator with a fixed policy parameter for 5000

steps, and this corresponds to approximately 4000 delay samples. The training phase is

followed by a test phase where we fix the policy obtained at the end of training and then

run the traffic simulator with the aforementioned parameter for 5000 steps. The results

presented are averages over ten independent simulations.

4.4.2 Results

Table 4.1 presents the overall AVG and CPT-values for AVG-SPSA and CPT-SPSA,

while Figures 4.11 and 4.12 present the expected delay and CPT of differential delay for
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each of the 12 paths in Figure 4.8.

It is evident that each algorithm converges to a different policy and the difference, in

`1 norm, between policy parameters obtained at the end of training phase for AVG-SPSA

and CPT-SPSA was observed to be 6.51.

As shown in Table 4.1, AVG-SPSA results in a TLC policy with lower expected

delay, while CPT-SPSA’s policy has higher CPT-value. This is expected because AVG-

SPSA uses neither utilities nor probability distortions and minimizes overall delay, while

CPT-SPSA uses a pre-timed TLC baseline and treats delay gains and losses differently.

Further, Figures 4.9 and 4.10 present the histogram of the delays for the path from

0 to 1, we observe that CPT-SPSA results in a strategy that avoids high delays at the

cost of a slightly higher average delay, whereas AVG-SPSA occasionally incurs delays

significantly larger than the average delay.

From Figures 4.11 to 4.12, we observe that CPT-SPSA gives significantly better

CPT-value at the path 0− 1, 0− 3, 1− 3 , while on the remaining paths, the CPT-value of

CPT-SPSA and AVG-SPSA are comparable. From an expected delay viewpoint, AVG-

SPSA exhibits lower expected delay on paths 0 − 1, 0 − 2, 0 − 3, 3 − 0. while on the

remaining paths the expected delay of AVG-SPSA and CPT-SPSA are comparable.
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Figure 4.9: Histogram of the sample delays for the path from node 0 to 1 for AVG-SPSA

that minimizes overall expected delay
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Figure 4.11: Expected delay (path-wise). The cross indicate baseline delays
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Figure 4.12: CPT of differential delay (pathwise)

118



Chapter 5

Discussions and Future Work

5.1 How should we apply CPT measure?

Chapter 2 and Chapter 3 present two decision-making frameworks where CPT mea-

sure is applied differently. For a given MDP, we evaluate the CPT-measure of its accu-

mulated reward in Chapter 2, while we introduce CPT-measure on each time step of the

MDP in Chapter 3. A natural question is raised: How shall we choose between the two

frameworks in practice?

The choice between the two frameworks depends on specific decision-making prob-

lem settings one tries to solve in practice. For instance, in the problem setting of portfolio

choice, a financial institution tends to be interested in changes in the portfolio positions

at the end of each trading day and reassesses the portfolio prices once the changes occur

[64]. In this setting, CPT-driven dynamic programming framework may be well fitted to

model the choice of the financial institution. However, in the Traffic Light Control (TLC)

experiment illustrated in Section 4.4, the only metric a road user cares about is the delay

time accumulated in the entire path. Therefore, the CPT-value of the total delay experi-

enced by a road user may be an appropriate performance measure to model users’ choice

in the traffic system.

There is no principle which can guide one to make the right choice at every situ-

ation. However, it is usually helpful for one to determine whether his decision is only
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based on the final accumulated outcome or he needs to derive a performance measure on

the random observations at each time step.

5.2 Future Work

Future research can be developed in a few aspects. First, we can investigate the

asymptotic normality property of the CPT-value estimator derived in Section 2.5. To this

end, a potential approach is to make use of the properties of order statistics. Indeed,

the estimator Cn in algorithm 1 is essentially a weighted sum of order statistics, which

is termed as a“L-estimate” in statistical literature. The book by Serfling ([69]) as well

as the related papers (Stigler [75], Shorack [70], etc) presented asymptotic normality of

L-estimates under various restrictions on the weights and the related random variable.

Generally, one requires that the extremal order statistics (i.e., the minimum and the maxi-

mum of the samples) do not contribute much to the L-estimate. The asymptotic normality

of Cn could help us to obtain a better sample complexity result of the estimator as com-

pared to Theorem 3, and to study further on the sample complexity of our optimization

algorithms.

In Chapter 3, we propose a CPT-value driven dynamic programming framework

and examine its contraction and monotonicity properties. In the future, we would like

to develop function approximation schemes to find optimal policies of the CPT dynamic

programming problems within a reasonable amount of computational effort. Further, it is

interesting to look into the cases where we only have partial information of the dynamic

programming structure. Under such cases, some variations of reinforcement learning
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algorithms (TD-learning, Q-learning etc, [76]) may help us to solve the problems.
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Appendix A

Minimax lower bound and LeCam Method

A minimax lower bound is a widely used measure on the performance of classi-

cal estimation problems, and minimax bounds can also be used in studying optimization

problems. In this chapter we review a classical technique for deriving a minimax lower

bound that have proven useful in a variety of problems [85].

A.1 Basic framework of minimax risk

Let us begin by defining the standard minimax risk. We let P denote a class of

probability distributions on a sample space X , and let θ : P → Θ denote a function

defined on P .

For a distribution P ∈ P , we want to estimate the unknown parameter θ(P ) ∈ Θ

given i.i.d samples Xi from P . An estimator is denoted as θ̂ and is a function from

X → Θ. We evaluate the quality of the estimator in terms of the risk

E
[
Φ
(
ρ
(
θ̂ (X1, . . . , Xn) , θ (P )

))]
,

where Φ denotes the risk function and ρ is a predefined metric on Θ.

Since designing an estimator on each singleton P ∈ P is not practical, it is impor-

tant to consider the risk functional in a global sense over Θ. One approach, suggested by

Wald [81], is to choose the estimator θ̂ minimizing the maximum risk
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sup
P∈P

EP
[
Φ
(
ρ
(
θ̂ (X1, . . . , Xn) , θ (P )

))]
.

An optimal estimator for this metric then gives the minimax risk, which is defined as

M (θ (P) ,Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP
[
Φ
(
ρ
(
θ̂ (X1, . . . , Xn) , θ (P )

))]
. (A.1)

A.2 Statistical test and estimation lower bound

It can be shown that estimation risk can be lower bounded by the probability of

error in testing problems [84]. To see it, we formulate the statistical testing problem

as follows: Given an index set V of finite cardinality, consider a family of distributions

{Pv}v∈V ⊂ P . The family {Pv}v∈V is associated with a set of parameters {θ (Pv)}v∈V .

We define a ρ−semimetric such that

ρ (θ (Pv) , θ (Pv′)) ≥ 2δ ∀v 6= v′.

Given a vector of sample X = (X1, . . . , Xn) with Xi i.i.d. and drawn from one distri-

bution in {Pv}v∈V , we wish to find the value of the underlying index v. To this end, we

establish a measurable mapping Ψ : X n → V as a test function. The error probability

associated with Ψ is P (Ψ (Xn
1 ) 6= V ), where P is jointly determined by the probabil-

ity measure on the random index V and X . The following proposition, proved in [84],

presents a classical relationship between estimation and testing.

Proposition 1. The minimax error defined in Section A.1 has lower bound

Mn (θ (P) ,Φ ◦ ρ) ≥ Φ (δ) inf
Ψ

P (Ψ (X1, . . . , Xn) 6= V ) ,

123



where the infimum ranges over all testing functions.

A.3 Le Cam Method

The Le Cam method provides lower bounds on the error in simple binary hypothesis

testing problems. Suppose that we have a Bayesian hypothesis testing problem where V

is chosen with equal probability to be 1 or 2, and given V = v, the sample X is drawn

from the distribution Pv. We have for any test Ψ : X → {1, 2}, the probability of error is

P (Ψ (X 6= V )) =
1

2
P (Ψ (X) 6= 1) +

1

2
P (Ψ (X) 6= 2) . (A.2)

A standard result of Le Cam, which builds the relationship between total variation

and testing error, is the following lemma:

Lemma 11. For any distributions P1 and P2 on X ,

inf
Ψ
{P1 (Ψ (X) 6= 1) + P2 (Ψ (X) 6= 2)} = 1− ‖P1, P2‖TV , (A.3)

where the infimum is taken over all tests Ψ : X → {1, 2}, and the total variation operator

‖P1, P2‖TV is defined in definition 2 at Section 2.5.3.

Proof. Denote A as the set that Ψ (X) = 1, and Ac stands for the set that Ψ (X) = 2.

Naturally,

P1 (Ψ (X) 6= 1) + P2 (Ψ (X) 6= 2) = P1 (Ac) + P2 (A) = 1− P1 (A) + P2 (A) .

Taking the infimum over all possible tests Ψ, we have

inf
Ψ
{P1 (Ψ (X) 6= 1) + P2 (Ψ (X) 6= 2)} = 1− sup

A⊂X
(P1 (A)− P2 (A)) ,

which yields (A.3).
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Revisiting the setting where we have n i.i.d. samples Xi, and V has equal probabil-

ity to be 1 or 2, the probability of test error then satisfies

inf
Ψ

P (Ψ (X1, . . . , Xn) 6= V ) =
1

2
− 1

2
‖P n

1 , P
n
2 ‖TV . (A.4)

The expressions (A.4) and (A.3), together with Proposition 1, imply the following

proposition of the lower bound on minimax risk:

Proposition 2. For any family P of distributions for which there exists a pair P1, P2 ∈ P

satisfying ρ (θ (P1) , θ (P2)) ≥ 2δ, the minimax risk after n observations has lower bound

M (θ (P) ,Φ ◦ ρ) ≥ Φ (δ)

[
1

2
− 1

2
‖P n

1 , P
n
2 ‖TV

]
.
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Appendix B

Empirical distribution

The empirical distribution function can be used to approximate the underlying CDF

based on which the samples are generated. The function’s value at a specific point is the

fraction of observations less than or equal to the value of that point.

B.1 Definition and fundamental theorems

We begin with problem of estimating a CDF. Let (U1, . . . Un) ∼ F where F (u) =

P (U ≤ u) is a distribution function on the real line. The empirical function is defined as

follows:

Definition 4. The empirical distribution function F̂n is the CDF that puts mass 1/n at

each data point Ui. Formally,

F̂n(u) =
1

n

n∑
i=1

I (Ui ≤ u) (B.1)

where

I (Ui ≤ u) =


1 if Ui ≤ u

0 if Ui ≥ u.

Some classical theorems are summarized below:

Theorem 18. Let (U1, . . . Un) ∼ F and let F̂n denote the empirical CDF defined in (B.1).

Then we have:
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1. At any fixed value of u, E
(
F̂n(u)

)
= F (u) and V

(
F̂n(u)

)
= F (x)(1−F (x))

n
.

Therefore, the mean square error equals F (x)(1−F (x))
n

→ 0 and F̂n → F (x) w.p.1.

2. (Glivenko-Cantelli Theorem).

sup
x

∣∣∣F̂n (x)− F (x)
∣∣∣→ 0 a.s.

3. (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality).

P
(

sup
x∈R
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 ∀ε > 0.

Remark 7. From the DKW inequality, we can construct a confidence set. Let ε2n =

log (2/α) / (2n), L (x) = max{F̂n (x) − εn, 0} and U (x) = min{F̂n (x) + εn, 1}. It

follows that for any CDF F ,

P (L (x) ≤ F (x) ≤ U (x)∀x) ≥ 1− α.
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