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ABSTRACT 

 Low profile printed antenna arrays with wide bandwidth, high gain, and low Side 

Lobe Level (SLL) are in great demand for current and future commercial and military 

communication systems and radar. Aperture coupled patch antennas have been proposed 

to obtain wide impedance bandwidths in the past. Aperture coupling is preferred 

particularly for phased arrays because of their advantage of integration to other active 

devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers 

etc. However, when designing such arrays, the interplay between array performance 

characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must 

be understood and optimized under multiple design constraints, e.g. substrate material 

properties and thicknesses, element to element spacing, and feed lines and their 

orientation and arrangements with respect to the antenna elements. The focus of this 

thesis is to investigate, design, and develop an aperture coupled patch array with wide 

operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and  high 

Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz 

given its wide application in WLAN, LTE (Long Term Evolution) and other 

communication systems. Notwithstanding that the design concept can very well be 

adapted at other frequencies.  

 Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using 

HFSS and experimentally developed and tested. Starting from mutual coupling 

minimization a corporate feeding scheme is designed to achieve the needed performance. 
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To reduce the SLL the corporate feeding network is redesigned to obtain a specific 

amplitude taper. Studies are conducted to determine the optimum location for a metallic 

reflector under the feed line to improve the F/B. An experimental prototype of the 

antenna was built and tested validating and demonstrating the performance levels 

expected from simulation predictions. Finally, simulated beam scanning in several angles 

of the array is shown considering specific phases for each antenna element in the array.
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Chapter 1: Introduction 

1.1 Motivation for Work 

 Broadband antennas have been an active area of research for some decades now. 

Applications for broadband antennas range from high speed WLAN systems, radars, 

remote sensing, cognitive radio, etc. Most of these applications require antennas that are 

compact and have a conformal design which can very easily be inserted or placed on to 

the surface of a vehicle or aircraft. In this regard, microstrip antennas [1-5] are preferred 

compared to other bulky broadband antennas like horn antennas and helical antennas. But 

these low-profile antennas have a major disadvantage due to their inherently narrow 

bandwidth. This problem can be overcome though by using techniques like creating 

stacks and changing the feeding technique. One simple way to achieve a wider bandwidth 

is feeding the antenna through an aperture, the merits and demerits of which have been 

discussed in the next chapter. But when designing an antenna for a high data rate 

communication system or radar or sensing applications bandwidth is not the only key 

parameter. A high level of directivity, narrow beamwidth and low levels of sidelobe 

radiation are also needed. A broadband high gain antenna with a narrow beamwidth and 

low sidelobes enables the user to transmit a large amount of data over greater distances 

with a high level of spatial selectivity.  One of the problem which come along with using 
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an aperture coupled feed is the high levels of backlobe radiation. A high level of backlobe 

radiation is almost always unacceptable for any kind of communication system. Not only 

does it decrease antenna efficiency, it also causes a great deal of power to be transmitted 

to regions which might be sensitive to electromagnetic radiations. This is caused due to 

the apertures radiating in both the forward and backward direction and must be 

addressed. 

 Considering all the above mentioned requirements and concerns, a broadband 

aperture coupled phased array antenna has been proposed in this thesis. Specifically a 4 

by 4 rectangular aperture coupled phased array antenna has been designed, simulated, 

fabricated and tested. The array was designed with a target operating frequency range of 

2.4 to 3 GHz given its wide application in WLAN, LTE and other communication 

systems. The array design is scalable so the same design concepts can be used to create 

an array that works at a different frequency range. A corporate feed with appropriate 

power taper profile is used to feed the array. The amplitude taper is designed to obtain a 

SLL of 25dB. An appropriately placed metal reflector plate blocks the backlobe radiation 

and helps boost the F/B ratio of the antenna array. A phased array antenna has been 

proposed in the end and simulation results for various different scan angles have been 

presented. 

  1.2 Overview of Thesis 

 The first chapter goes over the objectives and motivation behind the work 

presented and also gives an outline of the thesis and the scope of each chapter. A single 

element aperture coupled patch antenna and the design metrics affecting its performance 
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are described in the second chapter. It also goes over the various techniques for 

optimizing antenna performance factors like the bandwidth and radiation pattern 

characteristics. The array factor, a linear four element aperture coupled patch antenna 

array and a planar 4X4 aperture coupled antenna array are discussed in chapter three. The 

main goal while designing this array was to obtain a wideband response with high 

directivity which is consistent throughout the bandwidth. The fourth chapter looks at 

aperture coupled corporate feed networks which are a widely used feeding technique for 

linear and planar arrays. This chapter also deals with the affect the corporate feed has on 

the antenna performance and looks at measures to be taken so as to obtain reasonable 

radiation characteristics. Techniques to minimize the sidelobe radiation of the array have 

been discussed in the subsequent chapter. It goes over the various amplitude tapering 

techniques that are used and different means of implementing them as part of a corporate 

feed network. Chapter five also tackles the issue faced by all aperture coupled arrays, 

which is high backlobe radiation caused due to apertures radiating in the backward 

direction. A solution in the form of a strategically placed metal reflector below the array 

has been presented. Chapter six deals with the fabrication, test and measurement of the 

antenna array. The reflection coefficients and radiation patterns of the arrays are 

measured and compared with the simulation results. The phased array antenna is 

described in the seventh chapter, the required phasing, beam steering concepts and the 

various simulation results are presented in this section, which is then followed by the 

conclusion and future scope of this work. 
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Chapter 2: Aperture Coupled Patch 

2.1 Introduction 

 The rapid development of patch antenna technologies began in the 1970s [6]. By 

the early 1980s microstrip patch antenna technology was fairly well developed and 

researchers were looking at techniques to improve and optimize the performance features 

like gain and bandwidth and were looking to increase the applications of this technology. 

Microstrip patch antennas seemed to be the ideal candidate for integrated phased array 

systems as it was very easy to incorporate printed circuits with the Microwave Integrated 

Circuit (MIC) or Monolithic Microwave Integrated Circuit (MMIC) transmit/receive, 

phase shifting, biasing and other circuitries of the system.  

 The first aperture coupled microstrip antenna was fabricated and tested by a 

graduate student, Allen Buck, on August 1, 1984, in the University of Massachusetts 

Antenna Lab [7] and since then it has piqued the interest of researchers and engineers 

around the globe and has undergone a considerable amount of research and development 

to improve its performance features. Some of the advantages and recent developments in 

aperture coupled patch technologies are listed below [8]: 

 High impedance bandwidth, ranging from 5% to 50% 

 Freedom to choose different substrates for antenna and feed sections 

 Isolation of the feed network from the antennas via the ground plane 
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 Increased substrate space for antenna elements and feed lines 

 Minimal cross-polarization in the principal planes 

 Ease of integration for active arrays 

 Higher degree of freedom in terms of deciding patch shape, feed line lengths, 

aperture size and shape, radomes, etc.   

 Extension of these techniques to aperture coupled microstrip line couplers, 

waveguide transitions, dielectric resonators, etc. 

2.2 Slot Fed Patches 

 The figure below represents the basic structure of an aperture coupled patch 

antenna. It usually consists of two substrates, one being the antenna substrate and the 

other being the feedline substrate. The two substrates are separated by a ground plane 

with an aperture cut out. This aperture helps in coupling the electromagnetic waves from 

the feedlines to the patch antenna and the resonant frequency of the patch and the slot are 

chosen in close proximity if a wider bandwidth is desired. The figure below represents 

the simplest aperture coupled patch antenna design. Many modifications like extra layers, 

altered aperture shapes, antenna shapes, etc. are possible with the aperture coupling 

technique so as to achieve the desired radiation pattern characteristics.  

Some of the important parameters that effect the antenna performance are as follows: 

 Antenna Substrate: The substrate’s loss tangent affects the radiating efficiency of 

the antenna. To avoid efficiency losses one should try to use a substrate with the 

lowest loss tangent possible. The substrate permittivity affects the dimensions of 

the radiating patch at the resonant frequency. Lower permittivity also reduces 
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surface waves. The permittivity of the antenna substrate is usually lower than that 

of the feed substrate. The thickness of the antenna substrate affects the bandwidth 

and coupling of the antenna. Thicker substrate increases impedance bandwidth 

but reduce coupling between the feed line and the radiating patch. It also reduces 

the resonant frequency of the patch.  

 

Figure 2.1: Aperture coupled array. 

 Microstrip Patch Length and Width: The length determines the resonant 

frequency of the patch. The width controls the resonant resistance of the patch. 

Wider patch gives a lower resistance. 

 Ground Plane Size: The size of the ground plane needs to insure that there will be 

no back radiation or unwanted currents on the edge of the ground plane which 

could also radiate.  
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 Feed Substrate: Low loss tangent is needed to avoid any loss in efficiency in the 

coupling between the microstrip transmission line and the aperture. Substrate 

permittivity and height determine the width of the microstrip transmission line for 

given impedance. Higher permittivity and thinner substrates result in a stronger 

coupling [7]. 

 Aperture Length and Width: For resonant slots the length is comparable to half 

the wavelength of the antenna. The length governs the coupling level and can be 

used to increase the impedance bandwidth of the antenna. Generally the ratio of 

the slot length to width is kept around 10:1 [7]. The input resistance at resonance 

increase as the ratio increases. 

 Position of the Slot with respect to Patch: The slot should be centered under the 

patch. The magnetic field of the patch is maximum at the center therefore that 

leads to maximum coupling. 

 Feed Line Width: Determines the characteristic impedance of the feed line. 

 Stub Length: Shorter stubs move the impedance circle clockwise toward 

capacitive part of the Smith chart. The stub can be used to tune the reactance of 

the aperture [7]. 

 Position of Feed Line with respect to Slot: The feed line should be perpendicular 

to the center of the slot. 

2.3 Design and Optimization of Single Element Aperture Coupled Patch Antenna 

 We initially looked into various antenna substrates that could be used as our 

antenna substrate and feedline substrate. Preliminary simulations were conducted with 

FR4, Duroid 5880, polyethylene and RO4003c. All simulations were carried out using 
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ANYSYS HFSS and we finally decided to use RO4003c (휀𝑟=3.55, tan𝛿=0.002) for both 

the antenna substrate and also the feedline substrate.  

 As it is known, the bandwidth of a resonant antenna is inversely proportional to 

its Quality-factor [9], so one of the techniques used to improve the impedance bandwidth 

of an aperture coupled patch antenna is to use thicker antenna substrates with very low 

permittivity, with air being the most ideal material. Doing this eliminates and/or reduces 

the generation of surface waves which minimizes dielectric losses. On the other hand the 

efficiency of the antenna is found to be inversely proportional to the relative permittivity 

of the antenna substrate. This relationship between the antenna bandwidth and the 

substrate thickness and also the relationship between the relative permittivity of the 

substrate with the radiation efficiency has been studied in detail in [10-11]. Since the 

patches cannot be placed in air, low permittivity foams are used. The design being used 

by us is very similar to the SSFIP (Strip-Slot-Foam-Inverted Patch) design used in [12-

13]. The only difference being that the antenna substrate layer is not inverted, but uses a 

very thin layer of non-inverted dielectric. The foam being used is a high performance, 

high frequency foam which was provided to us by ROHACELL and is called 

ROHACELL 71HF (휀𝑟=1.075, tan𝛿<0.0002). Further details can be found at [14].  

 Fig. 2.2 shows the cross-sectional view of the designed antenna and Fig. 2.3 

shows us the top view. The length and width of the patch were calculated theoretically [9] 

at an operating frequency of 2.45GHz and were backed up by simulation. The patch has a 

length of L=41.4mm and width of W=33.1mm. The antenna substrate thickness is 

denoted as 𝑡𝑎, the feedline substrate thickness is denoted as 𝑡𝑓 and the thickness of the 

foam spacer required is ℎ𝑎. We represent the length and width of the slot as 𝑙𝑠 and 𝑤𝑠 
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respectively. Another important parameter that must be determined is the length of the 

open circuit stub that is needed to tune the feedline so as to obtain the maximum possible 

coupling between the feedline and the patch. This length is represented as 𝑙𝑂𝐶 and the 

separation of the patch from the edge is S=62.5mm (𝜆 2⁄ ). 

 

Fig. 2.2: Cross-sectional view of antenna. 

 To determine the optimum thickness for each layer, multiple parametric 

simulations were run to optimize the design. The aperture size and the feedline length 

were also tuned to get the maximum possible coupling between the feedline and the patch 

antenna.  In the section below we look at the various parametric simulations used to 

optimize the 𝑠11 performance of the aperture coupled patch so as to obtain a wide 

bandwidth. To find the best possible configuration of all parameters and which of them 

work together best, all parameters discussed below were varied simultaneously in a very 

large simulation setup. Then from this large group the best performing configurations 
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were selected and then each parameter was individually tuned to obtain optimum results 

and this reduced set has been presented in the section below as it would be very laborious 

and unproductive to discuss all of it. 

2.3.1 Optimizing the Thickness of the Antenna Substrate 

 The antenna substrate thickness needs to be optimum so as to maximize the 

impedance bandwidth while at the same time it also needs to allow good coupling 

between the slot and the patch. Fig. 2.4 compares the 𝑆11 performance of the aperture 

coupled patch when the antenna substrate thicknesses is varied from 0.2mm to 1.4mm in 

steps of 0.4mm, while all other parameters were kept constant. Simulations were carried 

out for a larger range of thicknesses with smaller step sizes, but only a small number of 

them are presented in each of these cases for the sake of brevity. We see that the best 𝑆11 

performance at 2.45GHz, and also the best impedance bandwidth is obtained when the 

substrate thickness 𝑡𝑎=1mm.  

 

(a) 
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(b) 

Fig. 2.3: (a) Top view of antenna, (b) Top view of patch. 

 

Fig. 2.4: 𝑆11 response when thickness of antenna substrate is varied. 



 

12 

2.3.2 Optimizing the Thickness of the Foam 

 As mentioned earlier, a layer of foam is used to separate the antenna substrate 

from the ground plane. The main role of this foam is to help increase the thickness of the 

antenna substrate while keeping the relative permittivity low so that we can try to achieve 

a wide bandwidth while maintaining a high level of radiation efficiency. And the foam 

being used comes as close to air as possible with a relative permittivity of 1.075 and has 

virtually no loss. To obtain the best case scenario where we obtain a high bandwidth with 

a high gain, the thickness of the foam spacer is very crucial. The 𝑆11 response obtained 

when the thickness of the foam is varied from 9mm to 11mm can be seen in Fig. 2.5. No 

major variation is observed in the 𝑆11, but we see that we obtain a relatively wider band 

response when the foam spacer thickness is ℎ𝑎=10mm. 

2.3.3 Optimizing the Thickness of the Feedline Substrate 

 Thinner feedline substrates help in better coupling between the lines and the slot. 

The thickness and permittivity also play an important role in the size of the microstrip 

lines being used. The Fig. 2.6 shows how the 𝑆11 changes with the change in thickness of 

the feedline substrate. The optimum 𝑆11 plot is obtained when the thickness of the lower 

substrate is 1.52mm. This high difference is seen mainly due to the impedance of the line 

changing as we change the thickness of the substrate. It is possible for us to match the 

feedline at these various thicknesses and obtain a better 𝑆11 performance at each of these 

substrate sizes. We see that for the current configuration the best match is found when the 

feedline substrate is 𝑡𝑓=1.5mm thick and the feedline used is 3.5mm wide (50Ω 
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characteristic impedance). But the actual thickness of commercially available RO4003c is 

1.52mm and this value will be used henceforth.  

 

Fig. 2.5: 𝑆11 response when thickness of foam spacer is varied. 

2.3.4 Tuning the Feedline Stub Length 

 Fig. 2.7 below shows the 𝑆11 in dB as a function of the feedline stub length. The 

feedline is aligned such that it passes through the center of the aperture and the aperture is 

placed right in the middle of the patch so as to maximize the energy coupled. This input 

feedline is then followed by an open circuit stub. The function of this stub is to tune the 

feedline and the patch. The length of the stubs are measured from the center of the 
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aperture. The best coupling is obtained when the stub is of length 𝑙𝑜𝑐=3.75mm, measured 

from the center of the slot. 

 

Fig. 2.6: 𝑆11 response when thickness of feedline substrate is varied. 

 

Fig. 2.7: 𝑆11 response as a function of the length of OC stub at the end of feedline. 
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2.4 Design of Single Element Patch Antenna 

 From the various parametric simulations a patch design was finalized, the 

parameters of which are listed in the table below. 

Table 2.1: Antenna parameters. 

Parameter Dimensions 

Length of Patch 41.4 mm 

Width of Patch 33.1 mm 

Antenna Substrate Thickness 1 mm 

Feedline Substrate Thickness 1.52 mm 

Thickness of Foam 10 mm 

Length of Stub 3.75 mm 

Aperture Size 31 mm X 2 mm 

 

 The 𝑆11 response of the selected antenna is as shown in Fig. 2.8 below. The 

impedance bandwidth ranges from 2.34GHz to 3.1GHz, which is a 27.9% bandwidth. 

And the value of 𝑆11 at 2.45GHz is -32.3dB. The radiation pattern for this aperture 

coupled patch antenna has been plotted out in Figure 2.9. The radiation pattern plots have 

been shown at 2.45GHz, 2.65GHz, 2.85GHz and 3.05GHz to show that the antenna 

works across the entire bandwidth. Each plot shows the radiation pattern in the Φ=0𝑜 

plane and also the radiation pattern in the Φ=90𝑜plane. The z-axis lies along the 

broadside of the antenna, the positive x lies along the width whereas the y-axis lies along 

the length of the patch antenna. 
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Fig. 2.8: 𝑆11. 

The maximum realized gain of this antenna at the four shown frequencies are 8.9, 

9.1, 9.7 and 9.5 dBi respectively. The main lobe is normal to the plane of the patch 

antenna, hence it is a broadside antenna. One of the unwanted side-effects of using 

aperture coupling based feeding techniques is a high level of back lobe radiation. This is 

caused by the aperture and patch resonating at frequencies which lie very close to each 

other [12] which causes the slot to radiate in both directions of the ground plane. The 

back lobe radiation for this single element antenna at the four frequencies are -1.2, -8.5, -

18 and -7.5 dBi respectively, which puts the Front to Back (F/B) ratios at 10.1, 17.5, 27.3 

and 17 dB. There is a significant increase in the back lobe radiation when using an array 

of aperture coupled antennas and this can sometimes be unacceptable in certain 

applications depending on the level of backlobe radiation. This problem of high levels of 

radiation in the backlobe is discussed and steps to mitigate this have also been developed 

in later chapters.  
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(a) 

(c) (d) 

(b) 
 

  

 

 

 

 

 

 

Fig. 2.9: Radiation pattern plots at (a) 2.45 GHz, (b) 2.65 GHz, (c) 2.85 GHz, (d) 3.05 

GHz. 
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Chapter 3: Linear and Planar Array Antennas 

3.1 Introduction 

 This chapter discusses one dimensional linear arrays and planar array antennas 

and introduces the array factor, which is one of the characteristic properties that is used to 

define an antenna. We can determine the radiation pattern of an array of antennas by 

knowing the radiation pattern of a signal element in the array and then multiplying it with 

the array factor. Chapter three also goes over the design procedure of a four element 

linear array and a 16 element, 4X4 planar array of aperture coupled patch antennas. We 

look at simulation results obtained for the S-parameters of these antennas, their radiation 

patterns (Realized gain) and their directivities. The main design goals currently in this 

section are to obtain the maximum possible impedance bandwidth around 2.45GHz, to 

obtain the maximum possible realized gain while keeping the back lobe radiation as low 

as possible.  

3.2 The Array Factor 

 Antennas with a known radiation pattern can be organized in various different 

configurations to yield different radiation patterns. The single most important advantage 

of creating an antenna array is that it boosts the directivity. We have several design 

variables at our disposal which can be altered to manipulate the radiation pattern as we 

desire. The array design variables are, 
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 Geometric arrangement of elements (linear, circular, planar, stacked, etc.) 

 Inter-element spacing 

 Excitation amplitude of the individual elements 

 Excitation phase of the individual elements 

 Radiation pattern of elements 

The first design presented in this chapter is a linear array of four identical 

rectangular patches of dimensions 33.1mm by 41.4mm which are spaced uniformly and 

the second design discussed is a planar 16 element antenna array with uniform spacing 

and identical design parameters as before. When given an antenna array of identical 

elements, the radiation pattern of the array can be found using the principle of pattern 

multiplication [9]. Pattern multiplication theorem means that the radiation pattern of an 

array is the product of the radiation pattern of a single element in the array times the 

Array factor, i.e. 

Array Pattern = Pattern of array element x Array factor (AF) 

 Without going into the derivation, the Array factor for a linear array of ‘N’ 

identical elements with an inter-element spacing of “d” is given by [15], 

𝐴𝐹 =  ∑ 𝑤𝑖𝑒
𝑗𝑏𝑖𝑁

𝑖=1   … (3.1) 

And, 

 

𝑤𝑖 =  𝑒𝑗𝑘𝑖𝑑cos𝜃𝑑  … (3.2) 
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Here 𝑤𝑖 is the weight assigned to the 𝑖𝑡ℎ element, 𝑏𝑖 is the phase of the 𝑖𝑡ℎ 

element and 𝜃𝑑 is the angle at which we want our antenna to radiate. In this case we are 

assuming a uniform amplitude of excitation for each element. By changing the 

progressive phase shift between the elements of an array we can electronically steer the 

antenna main beam to any angle we desire. And by optimizing the excitation amplitude 

of each element we can manipulate the main lobe gain and the side lobe level of the 

antenna array. We get the maximum realized gain for an array when the elements have a 

uniform amplitude and phase excitation. For a non-uniform amplitude broadside array 

with even number of elements the array factor can be simplified and written as [16], 

 

𝐴𝐹 = ∑ 𝑤𝑖cos [
(2𝑖−1)

2
𝑘𝑑cosθ]𝑁

𝑖=1   … (3.3) 

 

Where 𝑘 =
2𝜋

𝜆
 and d is the inter-element spacing. We can extend the same 

argument to a two-dimensional planar array. Now, if we consider that M such linear 

arrays are placed together with a separation of d between them, we obtain an N X M 

planar array, whose array factor can be expressed as, 

 

𝐴𝐹 = ∑ ∑ 𝑤𝑖𝑗𝑒𝑗𝑏𝑖𝑀
𝑗=1 𝑒𝑗𝑏𝑗𝑁

𝑖=1   … (3.4) 

 

 A more simplified form of the normalized array factor for a planar array can be 

written as [9, 16], 

  



 

21 

𝐴𝐹(𝜃, 𝜑) = {
Sin((𝜓𝑥

𝑀

2
)

𝑀Sin((
𝜓𝑥

2
)
} {

Sin((𝜓𝑦
𝑁

2
)

𝑁Sin((
𝜓𝑦

2
)
}  … (3.5) 

 

Here, 𝜓
𝑥
 and 𝜓

𝑦
 are defined as follows, 

𝜓
𝑥

= 𝑘𝑑𝑥sinθcosϕ + 𝛽
𝑥
  … (3.6) 

𝜓
𝑦

= 𝑘𝑑𝑦sinθsinϕ + 𝛽
𝑦
  … (3.7) 

In the above expression, we are assuming M is the elements placed along the x-

axis whereas N is the number of elements that lie along the y-axis. Generally the inter-

element spacing between the elements along the x-axis and y-axis is kept as low as 

possible without causing significant mutual coupling of antenna elements. But the inter-

element spacing cannot be an integral multiple of the wavelength as this will give rise to 

grating lobes [9] which are generated due to constructive interference of the individual 

radiation patterns of each element causing a significant radiation pattern in a direction 

other than the main lobe. If we want our antenna to act as a phased array, we can steer the 

beam by determining the progressive phase shift required in the x- and y-directions by 

setting 𝜓
𝑥
 and 𝜓

𝑦
 equal to zero and then solving for 𝛽𝑥 and 𝛽𝑦 which represent the phase 

angle progression required in the x and y directions respectively, to move the main beam 

to our desired position. The inter-element separation plays a significant role when 

determining the maximum angle the antenna can be electronically steered while maintain 

acceptable levels of radiation pattern performance. We will discuss the effects of 

amplitude tapering, phase tapering and other nuances associated with it in detail in the 

chapters to come. 
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3.3 Four Element Linear Array 

 The four element linear array antenna uses the same patch lengths, widths, 

substrate thicknesses, and feedline and slot dimensions as the optimized single element 

aperture coupled patch antenna discussed in the previous chapter. The inter-element 

separation chosen initially is d=62.5 mm (which is 𝜆/2). Fig. 3.1 shows the cross-

sectional and top view of the antenna under study. 

        In this design, each element of the array is individually fed with a separate feedline. 

Each patch is excited with the same amplitude and phase. The S-parameters obtained 

from the simulation are plotted in Figs. 3.2. In this design, each element of the array is 

individually fed with a separate feedline. Each patch is excited with the same amplitude 

and phase. The S-parameters obtained from the simulation are plotted in Figs. 3.2. The 

four element linear array antenna has an operating frequency approximately from 2.36 

GHz to 3.18 GHz, which gives us a bandwidth of 0.82 GHz which is a 29.6% bandwidth 

if we consider 2.45GHz as the operating frequency. The mutual coupling observed in the 

four plots below are seen to be quite low. This can be seen by looking at the 𝑆12, 𝑆13 and 

 𝑆14 for the first antenna, whose values lie below -20dB almost all over the entire 

operating frequency. The reflection coefficient and mutual coupling coefficients seen at 

the other three ports follow a very similar trend due to the symmetry and simplicity of the 

circuit.  
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(a) 

 

(b) 

Figs 3.1: Linear array, (a) Cross-sectional view, (b) Top view. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figs. 3.2: (a) 𝑆11, 𝑆12, 𝑆13 and 𝑆14 (b) 𝑆21, 𝑆22, 𝑆23 and 𝑆24 (c) 𝑆31, 𝑆32, 𝑆33 and 𝑆34  

(d) 𝑆41, 𝑆42, 𝑆43 and 𝑆44. 
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        Figs. 3.3 show the radiation pattern plot of the linear array at 2.45, 2.65, 2.85 and 

3.05 GHz in the Φ=0𝑜 and Φ=90𝑜 planes. The coordinate axis has been defined in Fig. 

3.1 (b). The maximum realized gain of the antenna varies from 13.2 to 14.7 dB within 

this operating range. The average sidelobe radiation observed varied from -0.36 to 2.4 

dB. The sidelobe radiation along with the realized gain are seen to increase with 

frequency. The SLL is still around 13dB, which matches the expected theoretical value 

for the side lobe of a linear array of patch antennas which is 13.5dB [15]. The backlobe 

radiation is found to be significantly higher than the single element aperture coupled 

patch due to the presence of more slots. The F/B appear to be better at frequencies other 

than 2.45GHz, but this is due to the fact that backlobe radiation is defined as the lobe 

which is diametrically opposite to the mainlobe. But the radiation patterns seen for 

frequencies other than 2.45GHz have a higher level of back radiation at angles slightly 

displaced from 180𝑜. Another observation that can be made is that the radiation pattern is 

much more directive in the Φ=90𝑜 plane as compared to the Φ=0𝑜 plane. This is because 

the array is linear, hence the improvement in the radiation pattern can be seen only in one 

plane. By changing the orientation of the patches by 90𝑜 we can obtain a similar pattern 

in the Φ=0𝑜 plane too. So, if we desire highly directive radiation patterns in both the 

Φ=90𝑜 and Φ=0𝑜 plane we must construct a planar array antenna. The results for the 

maximum realized gain, Front to Back ratio (F/B), SLL and directivity have been 

summarized in Table 3.1. 
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(c) (d) 

  

  

 

Figure 3.3: Radiation pattern of linear array. 

Table 3.1: Summary of simulation results for linear array.  

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 13.2 13.5 10.6 13.1 

2.65 13.5 12.4 21.8 13.6 

2.85 14.1 12.2 23 14.1 

3.05 14.6 12.2 16.4 14.5 
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3.4 4X4 Planar Array Antenna 

 A 16-element, 4X4 rectangular array can be viewed as an array of 4, 4 element linear 

array antenna. The center to center inter-element separation between two elements in the 

antenna is still kept at d=62.5mm. The cross-sectional view and top view of this 4X4 

planar array has been shown in Figs. 3.4.   

 

(a) 

 

(b) 

Figs 3.4: 4X4 array, (a) Cross-sectional view, (b) Top view. 
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 The total dimensions of the antenna array is 353.9mm X 345.6mm X 12.52mm. Each 

element of the antenna is individually fed using separate feedlines. All 16 ports, P1 

through P16 are labelled in Fig. 3.4 (b). The reflection coefficients at each port, i.e. the 

𝑆𝑛𝑛 and the mutual coupling between the various ports, i.e. the 𝑆𝑚𝑛 are plotted below. 

Figs. 3.5 show the 𝑆𝑛𝑛 response observed in the simulation. The 16 reflection coefficients 

have been divided in two plots. Fig. 3.5(a) contains 𝑆1,1 to 𝑆8,8 while Fig. 3.5(b) depicts 

𝑆9,9 to 𝑆16,16. All the 𝑆𝑛𝑛 plots show a very similar trend and put the operating frequency 

somewhere between 2.3 to 3.1 GHz, which is a minor reduction in bandwidth when 

compared to the 4 element linear array and can be attributed to the presence of more 

number of radiators packed closely together.  

 The mutual coupling between the various elements were evaluated and some of the 

poorly performing cases are plotted and presented in Figs. 3.6. Due to the array having 16 

elements, there will be a total of 240 mutual coupling data sets that can be observed but 

the highest degree of coupling will occur between elements that are closer to each other. 

So Fig. 3.6 (a), (b), (c) and (d) present the 𝑆𝑚𝑛 plots observed between the elements lying 

on the diagonal of the array and its 4 closest neighbors. In this current configuration with 

an inter-element separation of d=62.5mm it is observed that the mutual coupling between 

antenna elements is lower than -15dB across the bandwidth. 
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(a) 

 

(b) 

Fig. 3.5: (a) 𝑆1,1 to 𝑆8,8, (b) 𝑆9,9 to 𝑆16,16. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig 3.6: Mutual coupling (a) at Port 1,(b) at Port 6, (c) at Port 11, (d) at Port 16. 
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(a) 

(c) (d) 

(b) 

 The radiation patterns for this planar array at the four frequency points are plotted in 

Fig. 3.7. 

  

  

      

Fig. 3.7: Radiation patterns at (a) 2.45 GHz, (b) 2.65 GHz. (c) 2.85 GHz, (d) 3.05 GHz 

The results observed from the radiation pattern plots have been summarized in Table 3.2. 
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Table 3.2: Summary of simulation results for individually fed planar array antenna. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 17 16.3 8.6 17.4 

2.65 18.7 14.3 11.2 18.4 

2.85 19.3 14 12 19.1 

3.05 19.2 12.6 11 19.4 

 

 From Table 3.2 and the radiation pattern plots above we can see that the planar array 

antenna has a realized gain which is 5dBi higher when compared to the linear array. The 

radiation pattern is also very symmetric in both the Φ=90𝑜 and Φ=0𝑜 plane, unlike the 

linear array which has a more directional pattern in the Φ=90𝑜 plane. The SLL of this 

antenna array is slightly better than the linear array antenna even though the sidelobe 

radiation is still almost at the same level and this is because of the increase in the realized 

gain. But one big negative that is observed is the reduction of the F/B ratio which is due 

to the increased level of backlobe radiation caused due to the increase in the number of 

apertures. There are numerous techniques to deal with this backlobe radiation and will be 

discussed in later chapters.  
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Chapter 4: Antenna Array Feed Networks 

4.1 Introduction 

 In the previous chapters the design and optimization of a wide band aperture 

coupled patch antenna array was presented. The reflection coefficient and mutual 

coupling between elements of the linear and a planar array was studied. The radiation 

pattern for all the above mentioned antennas were presented for four frequency points 

within the operating frequency range and their various characteristics like the maximum 

realized gain, F/B ratio, SLL and directivity were investigated. All the antennas discussed 

up until now were excited using separate feeds for each element and this is not a feasible 

approach to meet the needs of most practical applications. For example, a transmitting 

antenna would then require multiple sources and the amplitudes and phases of each 

source has to be individually regulated for the proper functioning of the antenna. To solve 

this problem corporate feed networks are used in antenna arrays. They help provide equal 

amplitude, in-phase excitation to each element of the antenna utilizing only one input or 

output source. The excitation amplitudes can be controlled using various tapering 

techniques. Phase variations can be also introduced to steer the mainlobe and create a 

phased array antenna. The phases can be controlled using phase shift lines which 

basically involve changing the path lengths of the signals. Alternatively MMIC phase 

shifters can also be utilized. This chapter presents the design of an equal amplitude and 

in-phase corporate feed network for a 4X4 planar antenna array. 
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4.2 The Corporate Feed Network 

 Corporate feed networks have been extensively used because of their simple 

geometry, compactness and ease of fabrication [17]. But the corporate feed will also 

introduce resistive loss which causes degradation in the input signal. Surface waves and 

radiation bleeding from the lines at high frequencies is also a matter of concern. In 

closely packed designs they also tend to cause mutual coupling between adjacent lines. 

All of these combined do put limitations on the practical design and have to be 

considered while design the feed network for an antenna array. Many of these effects 

have been studied and characterized in numerous studies [18-19] over the years. The 

design of the corporate feed network used for the 4X4 antenna array is shown below in 

Fig. 4.1. The coordinate axis used is been shown in the bottom right corner of Fig.4.1. In 

HFSS the input is modelled as a lumped port. The power is split equally at each junction 

so that every patch receives one sixteenth of the initial input power. The line lengths to 

each patch is also equal which is evident from Fig. 4.1, this ensures that each element 

receives an in-phase input signal with the same amplitude. Quarter wave transmission 

line sections are used to match the feed network. For quarter wave matching we need to 

match every junction where the impedance changes with a line with impedance [20], 

 𝑍𝜆/4 = √𝑍𝑖𝑛. 𝑍0   … (4.1) 

Here, 

𝑍𝑖𝑛 = 25 Ω and 𝑍0 = 50 Ω 

Therefore, 
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𝑍𝜆/4 = 35.36 Ω 

The line widths that will give us these required impedances are found using [20], and 

they come out to be, 

𝑤1 = 3.5 𝑚𝑚 (𝑍0 = 50 Ω)  

𝑤2 = 5.8 𝑚𝑚 (𝑍𝜆/4 = 35.36 Ω) 

The length of the quarter wave transmission line section was found at 𝑓𝑐=2.45 GHz, for a 

RO4003c medium with thickness, 𝑡𝑓=1.52 mm. Again from [20] the guided wavelength 

in the medium is given by, 

𝜆𝑔 =
𝐶

𝑓𝑐.√𝜀𝑒𝑓𝑓
  … (4.2) 

 

휀𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2

1

√1+12𝑑/𝑊
  … (4.3) 

Where, 

c= Speed of light in vacuum  

휀𝑒𝑓𝑓= Effective relative permittivity of the medium 

d=𝑡𝑓 

W=𝑤2 

If we evaluate the above expression, we find that the length of the required quarter wave 

transformer is, 
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𝜆𝑔/4 = 18.26  𝑚𝑚 

 One other parameter that needed tuning was the length of the transmission line 

sections that feed the aperture, i.e. the section which is marked as 𝑙𝑓 in Fig.4.1. This 

length 𝑙𝑓 influences the vertical position (position along the x-axis) of the corporate feed 

with respect to the patches and the slots. We do not want this section to be very long as 

this will cause the corporate feed to get too close to the apertures in rows 2 and 4 and the 

line being too short will move the feed network closer to rows 1 and 4. Perfect symmetry 

is not possible in this case because of positioning and feeding constraints so a 

compromise must be sought to find the best possible configuration. A parametric sweep 

revealed the best performance for a length of 𝑙𝑓=19.25 mm.       

 

Fig. 4.1: Top view of array with corporate feed network. 
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 The current inter-element spacing is d=62.5 mm, which is the same “d” we used 

in simulations in the previous chapter for the individually fed 4X4 linear array antenna. 

The simulated  𝑆11 data for the antenna shown in Fig. 4.1 has been plotted in Fig. 4.2. 

The 𝑆11 data obtained in this simulation does not match what is expected and the antenna 

has lost most of its bandwidth which it previously had. Previously the antenna displayed 

an operating frequency band of 2.3 to 3.1 GHz. But with the current corporate feed 

network the antenna has an operating band of 2.77 to 2.96 GHz. This new bandwidth is 

significantly narrower. The radiation pattern of this antenna has also been presented in 

Fig. 4.3. As expected, the realized gain is considerably lower than the individually fed 

array. The realized gain at 2.45 GHz is 15.6 dBi, with a SLL of 13.4 dB. 

 

Fig. 4.2: 𝑆11 plot for planar array antenna with d=62.5 mm. 
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(a) (b) 

 

Fig. 4.3: Radiation pattern plot at 2.45 GHz. 

 It was found that the electric fields reaching the aperture was very low and 

through running simulations we were able to establish the cause of this decrease in 

bandwidth and the consequential deterioration of bandwidth to coupling between the 

feedlines which are relatively closely spaced to each other. Fig. 4.4 shows the E-field 

magnitude profile for the ground plane and the corporate feed network.  

 

Fig. 4.4: (a) Magnitude of E-field on feedline (b) Magnitude of E-field on ground plane. 
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(a) 
(b) 

 To solve this problem, we increased the inter-element separation, “d” to 83.3mm 

(2λ/3) while keeping everything else the same. The only structural difference that was 

caused due to increasing the inter-element separation was that it increased the overall size 

of the antenna array and the new size of the array is, 416.3mm X 407.6mm X 12.52mm. 

For this new configuration, the E-field magnitude seen on the corporate feedline and on 

the ground plane are shown below in Fig. 4.5. 

 

  

Fig. 4.5: (a) Magnitude of E-field on feedline (b) Magnitude of E-field on ground plane. 

 It is evident from Fig. 4.5 that the E-fields are uniformly distributed across the 

feedline and aperture when the inter-element separation is increased to, d=83.3mm. The 

performance of an individually excited 4X4 antenna array with an inter-element 

separation of 83.3mm are presented before showing the performance of the corporate 

feed network with this new, increased separation. Figs. 4.6 shows the 𝑆𝑛𝑛 performance of 

the antenna. The 𝑆𝑛𝑛s have been divided into two plots, the first plot Fig. 4.6(a) depicts 

the performance of antennas from port 1 to port 8, whereas Fig. 4.6(b) shows the 

reflection coefficient performances seen at ports 9 through 16. The same port labelling 
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convention has been used as described in Fig. 3.4(b). The reflection coefficient 

performances seen for this configuration with an increased inter-element separation is 

better than our previous design across each port. The operating frequency range is still 

almost the same, lying between 2.3 to 3.1 GHz, but the 𝑆𝑛𝑛 levels are lower near our 

design frequency. In the previous design, the 𝑆𝑛𝑛s had a region between 2.6GHz to 

2.7GHz where they briefly touched or even went past -10dB. This problem has also been 

resolved by increasing the inter-element separation. 

 The mutual coupling between the elements lying on the diagonal of the array and 

their four nearest neighbors have been plotted in Fig. 4.7. These four plots basically 

represent the worst mutual coupling performances seen among the worse elements in the 

antenna. Even so, the 𝑆𝑚𝑛 performance lies below -20dB for most of the region across 

the impedance bandwidth and the overall mutual coupling performance is much better 

than the previous design, which is mainly due to the increased separation between the 

elements. 

 

(a) 
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(b) 

Fig 4.6: (a) 𝑆1,1 to 𝑆8,8, (b) 𝑆9,9 to 𝑆16,16. 

(a)
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(b)

 

(c) 
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(a) (b) 

(a) (b) 

 

(d) 

Fig 4.7: Mutual Coupling (a) at Port 1,(b) at Port 6, (c) at Port 11, (d) at Port 16. 

 The radiation patterns for this new array are plotted below in Figs. 4.8 and the 

results are summarized in Table 4.1. 
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(c) (d) 

  

 

Fig. 4.8: Radiation patterns at (a) 2.45 GHz, (b) 2.65 GHz, (c) 2.85 GHz, and (d) 3.05 

GHz. 

Table 4.1: Summary of simulation results for individually fed planar array antenna with 

increased separation. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 19.4 13 18.4 19.5 

2.65 20.6 13.3 12.8 20.5 

2.85 21.3 13.7 16.2 21.3 

3.05 21.8 14.5 14.4 21.9 

 

 We see a 2dB or more improvement in the realized gain of the antenna across the 

operating spectrum when the inter-element separation is increased. Another positive 

effect seen is the decrease in the backlobe, which along with the increased gain has 

caused a very significant increase in the F/B ratio. At 2.45GHz the F/B ratio has 

improved by as much as 10dB. There is also a slight improvement in the total measured 

directivity. The only characteristic of the radation pattern that has suffered is the SLL 
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which has not only incresed in intensity, we now see 4 minor lobes in the front region of 

the antenna as opposed to the previous two. The SLL has risen by a dB to as much as 3 

dB at some frequencies and it seems to have moved closer to the mainlobe 

4.3 4X4 Array with Increased Separation and Corporate Feed Network 

 So, after determining that the bandwidth performance problem and the radiation 

pattern of the antenna indeed improves by increasing the inter-element separation, we 

design the corporate feed network for the antenna, which looks exactly the same and has 

all the same parameters as shown in Fig. 4.1, but is just placed on a larger substrate now. 

The 𝑆11 plot for this corporate fed antenna array is shown below in Fig. 4.9.   

 

Fig. 4.9: 𝑆11 plot for planar array antenna with d=83.3mm. 
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(a) (b) 

 The 4X4 planar array has a bandwidth of 0.85 GHz. The array has an operating 

frequency which spans 2.3 to 3.15 GHz. The radiation patterns for the four frequencies, 

2.45, 2.65, 2.85 and 3.05 GHz are plotted below. If we compare the radiation patterns 

obtained from the simulations for the corporate feed array and the individually fed 

antenna array, the radiation patterns and results are a very close match. The realized gain 

is slightly lower because of the losses caused due to the transmission lines and the 

mismatch at the multiple junctions. Even though we have used quarter wave sections to 

match the circuit, we have designed our quarter wave transformer at 2.45 GHz and the 

reflections are bound to increase with an increase in frequency. The SLLs are almost 

same or a little lower at some frequencies which is exactly the case with the total 

directivity too. There is an increase in backlobe radiation though, which is due to the 

added sections of transmission lines in the bottom of the substrate which would 

inadvertently lead to an increase in spurious radiations in the backward direction. This 

increased backlobe radiation and decreased gain result in a lower F/B ratio compared to 

the individually fed antenna array. All of these radiation pattern characteristics have been 

summarized in Table 4.2. 
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(c) 
(d) 

 

 

 

 

Fig. 4.10: Radiation patterns at (a) 2.45 GHz, (b) 2.65 GHz, (c) 2.85 GHz, and (d) 3.05 

GHz. 

Table 4.2: Summary of simulation results for planar array antenna fed using a corporate 

feed. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 19 12.9 9.3 19.4 

2.65 19.5 15.1 15.3 20.3 

2.85 20.6 12.7 17.6 21.1 

3.05 19.2 15 12.3 21.3 
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Chapter 5: Reducing Sidelobe and Backlobe Levels in Planar Arrays 

5.1 Introduction 

 Amplitude tapering is the most commonly used method for controlling the 

sidelobe radiation produced by an antenna array. The central elements usually receive the 

maximum illumination and this excitation amplitude tapers off as we go farther away 

from the central element or elements. There are numerous ways of determining the taper 

profile of an antenna. It mainly depends on our requirements like the maximum tolerable 

SLL, minimum directivity, gain and Half Power Beamwidth required, the maximum to 

minimum illumination that would be practically realizable, etc. and each technique comes 

with its pros and cons. There is usually a trade-off between all the aforementioned 

parameters and we must choose the best case scenario that fits our design requirements. 

In this chapter we will first look at the performance of some of these commonly used 

amplitude taper profiles, namely the binomial array, Dolph-Chebyshev array and a 

custom designed taper coefficient profile which will be discussed later in the text. We 

shall look at the taper coefficient profiles and their resulting radiation pattern 

characteristics using an individually fed antenna array and after we determine the best 

performing antenna array, we will see how to generate a corporate feed network so as 

obtain our required illumination ratios. 

 Just like the SLL the F/B ratio is an important characteristic of any antenna. It 

tells us how much radiation is being emitted in the backlobe as compared to the main 
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beam. We can improve this ratio by increasing the main beam directivity and/or 

decreasing the backlobe radiation. But in the case of our aperture coupled patch antenna, 

the gain is increased by adding more radiating elements but that also means more number 

of apertures and these apertures are mainly responsible for the high level of backlobe 

radiation seen in aperture fed antennas. Many techniques have been explored for 

controlling the backlobe radiation, some of them include altering the shape of the 

aperture, many different aperture patterns like E, H, U and dumbbell shaped apertures 

have been shown to successfully reduce the back radiation [21-22]. Another way around 

this problem is by using reflectors placed behind the antenna array at an appropriate 

distance. The reflectors can be a dielectric, an EBG or a simple metal reflector plate [23] 

which will act as a shield that blocks out the E-fields. For this array a metal reflector plate 

has been used to suppress the backlobe radiation because of its effectiveness and 

simplicity of design. 

5.2 Binomial Antenna Arrays  

 Binomial arrays are one of the simpler amplitude tapered arrays. It was first 

proposed by J. S. Stone as a technique to achieve antennas with no side lobes [24-25]. 

The taper coefficients follow a binomial series expansion which for an N element linear 

array can be expressed as [26], 

𝐴𝑛 =
(𝑁−1)!

(𝑁−𝑛)! (𝑛−1)!
  … (5.1) 

And the corresponding array factor is given by, 

𝐴𝐹(𝜃) = (1 + 𝑒𝑗𝜓)𝑁−1 = ∑ [
𝑁−1

𝑛
]𝑁−1

𝑛=0 𝑒𝑗𝜓𝑛  … (5.2) 
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So, for a four element linear binomial array the coefficients will be, [1 3 3 1] which when 

normalized is approximately [0.3 1 1 0.3]. As defined earlier in Chapter 3, the array 

factor of a planar array is basically the product of array factors of two linear arrays lying 

orthogonal to each other, therefore, 

𝐴𝐹 = 𝐴𝐹𝑥𝑀. 𝐴𝐹𝑦𝑁  … (5.3) 

And, 

𝐴𝐹𝑥𝑀 = ∑ 𝑤𝑚1𝑒𝑗(𝑚−1)𝜓𝑥𝑀
𝑚=1   … (5.4) 

 

𝐴𝐹𝑦𝑁 = ∑ 𝑤1𝑛𝑒𝑗(𝑛−1)𝜓𝑦𝑁
𝑛=1   … (5.5) 

Thus from the two equations above we can conclude that the amplitude coefficient for a 

planar array antenna would be given as, 

𝑤𝑚𝑛 = 𝑤𝑚. 𝑤𝑛  … (5.6) 

Using this result, the excitation profile for a 4X4 planar binomial array antenna is 

calculated and the taper coefficients are as shown below in Fig. 5.1. 

 
Fig. 5.1: Binomial taper excitation coefficient. 
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(a) (b) 

 The radiation patterns observed for a binomial planar array are shown below in 

Fig. 5.2. The SLLs seen for the binomial array are much lower than the uniformly excited 

array but we see that the directivity of the binomial array is also lower than the uniformly 

fed array. The mainlobe also becomes broader due to the binomial tapering. The realized 

gain and directivity are lower by 0.5 to 0.8 dB. The F/B at 2.45GHz is seen to be much 

lower than that of the uniformly excited array but the response at other frequencies is in 

line with the loss in gain. The main improvement can be seen in the SLL. The SLL for 

the binomial array lies between 23 to 25 dB as compared to the 13.5 dB SLL maximum 

for the uniformly fed antenna array which is a major performance boost. The radiation 

pattern parameters for the binomial array are summarized in Table 5.1. 
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(c) (d) 
   

 

Fig. 5.2: Simulated radiation patterns of binomial array at (a) 2.45 GHz, (b) 2.65 GHz. (c) 

2.85 GHz, (d) 3.05 GHz. 

Table 5.1: Summary of radiation pattern data for binomial array. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 18.7 23.4 8.1 21.2 

2.65 20 23.8 12.1 20 

2.85 20.7 24.9 15.6 20.8 

3.05 21.2 24.9 14.3 21.2 

 

5.3 Dolph-Chebyshev Antenna Arrays  

 Designing amplitude taper coefficients for an antenna array is similar to selecting 

filter design coefficients while designing a filter [27]. In 1946 Dolph proposed a method 

for obtaining weights for a uniformly spaced linear array directed towards the broadside. 

This approach allowed the user to specify the SLL, gives sidelobes having equal 

magnitudes and also has minimum null to null beamwidth. This technique works by using 
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the Chebyshev polynomials which are defined using a recursive relation shown below 

[27], 

𝑇0(𝑧) = 1 

𝑇1(𝑧) = 1 

𝑇𝑚(𝑧) = 2𝑧𝑇𝑚−1(𝑧) − 𝑇𝑚−2(𝑧) 

For m= 2, 3, 4… 

This polynomial when plotted shows an equal-ripple response which ensures the SLLs 

are uniform throughout the E-plane and H-plane. Now, for a Dolph-Chebyshev array the 

array factor is given as [26-27], 

𝐴𝐹 = ∑ 𝑤𝑛Cos[(2𝑛 − 1)𝑢]𝑀
𝑛=1 , (even array) 

𝐴𝐹 = ∑ 𝑤𝑛Cos[2𝑛𝑢]𝑀
𝑛=1 , (odd array) 

𝑢 = 𝑘𝑑cos(
𝜃

2
) 

We can find the taper weights by using this substitution on the trigonometric expansion 

of the above expression [27], 

Cos(𝑢)𝑡0 = 𝑡 

𝑡0 = Cosh [
Cosh−1(𝑆)

𝑁 − 1
] 

 Here S represents the SLL in linear units. Using the above equation to determine 

the taper coefficients for a 4 element linear array with a SLL of 25 dB we find the 

normalized weights comes out to be [0.42 1 1 0.42]. Converting these coefficients from a 
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1D space to 2D space results in a taper profile as shown in Fig. 5.3. This is then followed 

by radiation patterns observed for the Dolph-Chebyshev array. The realized gain and 

directivity for the Dolph-Chebyshev array lies somewhere between the uniformly excited 

array and the binomial array. Same can be said for the beamwidths, SLLs and the F/B. 

The min to max illumination seen here is also better compared to the binomial array, 

which means the line widths required to realize the corporate feed for this array will not 

have large variations, which in turn means a better match. The radiation pattern 

characteristics for the Dolph-Chebyshev array are summarized in Table 5.2. 

 

Fig. 5.3: Dolph-Chebyshev taper excitation coefficient. 
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(c) (d) 

(a) (b) 
  

  

 

Fig. 5.4: Simulated radiation patterns of Dolph-Chebyshev array at (a) 2.45 GHz, (b) 2.65 

GHz. (c) 2.85 GHz, (d) 3.05 GHz. 

Table 5.2: Summary of radiation pattern data for Dolph-Chebyshev array. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 19 19.7 8.2 19.2 

2.65 20.3 20.16 12.3 20.2 

2.85 20.9 20.6 15.7 21 

3.05 21.4 21.1 14.2 21.5 
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5.4 Synthesizing Array Factors to Meet User Requirements 

 Our design goal is to design an antenna array with a SLL of at least 25 dB at 2.45 

GHz. A great deal of research has been done on how to do this [28-31] by engineers from 

various fields including microwave engineers to computer science experts. There are 

multiple algorithms developed using Fourier, Inverse Fourier transform techniques, 

genetic search algorithms [28] and other advanced mathematical techniques which help 

us determine an array factor that would perfectly fit our design constraints if they are 

achievable and physically realizable. A method developed by Dr. W. Keizer [32-33], 

which involves taking successive inverse Fourier transforms of the array factor and using 

curve fitting to find the required array factor has been utilized hear to find the taper 

weights for a linear array. This is an iterative technique which updates the array factor till 

it fits all the design parameters that need to be met. The design parameters at our disposal 

are, the frequency of operation, number of elements, minimum required SLL and 

maximum allowable max to min illumination ratio. The frequency was chosen to be 2.45 

GHz, the number of elements is 4, the SLL is 25 dB and the max to min illumination ratio 

was chosen so that the minimum required line widths should not fall below 0.3 mm, as it 

would be difficult for us to fabricate printed circuit boards with traces thinner than 0.3 

mm with a high degree of precision and reliability. The normalized taper profile, [0.23 1 

1 0.23] satisfies all of the above mentioned requirements. Converting the obtained linear 

taper profile for a planar array would lead to an amplitude distribution as shown in Fig. 

5.5. 
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Fig. 5.5: Synthesized taper excitation coefficient for SLL of 25 dB. 

 The main drawback of the taper profile shown above is the huge difference in 

power being delivered to the four elements in the center versus the power being delivered 

to the patches in the four corners, the max to min illumination for this antenna is 18.5:1. 

Even though the gradient is very steep, this antenna array is still physically realizable. 

Fig. 5.6 represents the simulated radiation pattern data for an amplitude tapered 

individually fed planar antenna array. The realized gain and directivity of this array is 

slightly lower than the two arrays previously discussed, the beamwidths are almost the 

same and the backlobe radiation levels are also comparable. The most redeeming quality 
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(a) 

(c) (d) 

(b) 

of this antenna though is its superior SLL performance. The SLL at 2.45 GHz is 28.3 dB, 

which exceeds expectations by more than 3 dB. The SLL is seen to decrease as the 

frequency increases but the antenna has a SLL of 20 dB or higher throughout the 

operating frequency band. At higher frequencies more sidelobes start appearing, these 

lobes also have a higher amplitude and this phenomenon is seen more pronounced in the 

Φ=0𝑜 plane rather than the Φ=90𝑜plane. The results for the radiation pattern of this 

antenna have been tabulated in Table 5.3.   

  

  

 

Fig. 5.6: Radiation patterns of array at (a) 2.45 GHz, (b) 2.65 GHz. (c) 2.85 GHz, (d) 3.05 

GHz. 
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Table 5.3: Summary of radiation pattern data for synthesized array. 

Frequency 

(GHz) 

Realized Gain 

(dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity  

(dBi) 

2.45 18.4 28.3 8 18.6 

2.65 19.7 28.6 11.9 19.7 

2.85 20.3 25.2 15.3 20.5 

3.05 20.9 21.6 14.4 20.9 

 

5.5 Amplitude Tapered Corporate Feed  

 To obtain the radiation patterns shown in Fig. 5.6 we need the taper coefficients to 

be as shown in Fig. 5.5. This means we need to develop a corporate feed network which 

splits the input power in the ratio shown in Fig. 5.5. There are many ways to achieve this, 

we can use MMIC attenuators and control them so as to attenuate the signal at each input 

arm such that it matches our taper profile. Another simpler approach would be to use 

power division networks as part of the corporate feed network. Many different power 

division networks have been successfully used to do this including but not limited to 

Wilkinson power dividers, rat race hybrids and T-junctions. For our design we utilize a 

series of cascaded T-junction power dividers so as to obtain the desired unequal power 

split. The T-junction was chosen for its simplicity of design, implementation and ease of 

matching. The rest of the corporate feed network is matched using quarter-wave 

transformer sections exactly like that described in Section 4.2. Fig. 5.7 below shows the 

design of the amplitude tapered corporate feed section used to feed the array. 

Even with the tapering, the feed network still maintains its symmetry. How the various 

line widths required for the power division and match are obtained is discussed in this 
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section. The line with width 𝑤1=3.5 mm has a characteristic impedance of 50 Ω and the 

line with width 𝑤2=5.8 mm has an impedance of 35.36 Ω as mentioned in the previous 

chapter. Now, let us say 𝑃𝐼𝑁 is the power entering the node lying between the arms 

labelled 𝑤3 and 𝑤4. If 𝑃3 and 𝑃4 are the powers flowing in the respective arms, then we 

can say that, 

𝑃𝐼𝑁 = 𝑃3 + 𝑃4  … (5.7) 

Therefore for an unequal power distribution [15],  

𝑃3 = 𝑘𝑃𝐼𝑁  … (5.8) 

𝑃4 = (1 − 𝑘)𝑃𝐼𝑁  … (5.9) 

So to obtain a match at the terminal the impedances have to be as follows, 

𝑍3 =
𝑍1

𝑘
  … (5.10)      

     𝑍4 =
𝑍1

(1−𝑘)
  … (5.11) 

So basically 𝑍3 and 𝑍4 are the required equivalent impedances seen looking in from arms 

3 and 4 respectively to obtain a matched network with the desired power division ratio. 

Therefore, the impedance of the quarter wave transformer sections needed to match the 

network will be given by [20], 

𝑍𝑤3 = √𝑍3𝑍1     

𝑍𝑤4 = √𝑍4𝑍1 
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Solving the above equations we find,  

𝑍𝑤3 = 54.76 Ω 

𝑍𝑤4 = 113.8 Ω 

So to obtain the above mentioned required impedances, we will need lines with widths 

[20],  

𝑤3 = 2.94 mm 

𝑤4 = 0.6 mm 

 

Fig. 5.7: Tapered corporate feed network. 
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 To maximize the bandwidth of the array, further parametric simulations were run 

after designing the tapered corporate feed network. It was observed that a wider 

bandwidth was achievable by decreasing the thickness of the antenna substrate. Fig. 5.8 

shows the 𝑆11 response of the antenna array as the antenna substrate thickness is varied 

from 0.2 mm to 1.2 mm in steps of 0.2 mm. Maximum bandwidth is obtained when the 

antenna substrate is 0.2 mm. The 𝑆11 plot for the antenna array consisting of the tapered 

corporate feed network with the new antenna substrate thickness is shown in Fig. 5.9 

below. From this plot we can see that the antenna has an operating bandwidth of 2.32 to 

3.2 GHz barring a very small region between 3 GHz to 3.12 GHz where the 𝑆11 briefly 

increases to about -8.7 dB. 

 

 Fig. 5.8: 𝑆11 plot for 4X4 array with tapered corporate feed network when the 

antenna substrate thickness is varied. 
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Fig. 5.9: 𝑆11 plot for 4X4 array with tapered corporate feed network. 

 The radiation pattern plots have been presented in the Figs. 5.10 below. One small 

change that has been made while presenting the radiation pattern plots for this array and 

all subsequent radiation pattern plots is that plots have been presented for the frequencies, 

2.45 GHz, 2.65 GHz, 3 GHz and 3.1 GHz. The last two frequency reference points were 

moved from 2.85 GHz and 3.05 GHz to 3 GHz and 3.1 GHz respectively because the 

practical measurements of the radiation patterns were made at these frequencies thus 

having simulation data at the same frequencies help us compare the results better. The 

reason why the antennas were measured at these frequencies will be discussed in the next 

Chapter. The Half Power Beamwidth (HPBW) of the array has also been mentioned 

while evaluating the radiation characteristics of this array. The HPBW of an array is 
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(b) (a) 

basically the angle formed by the two points where the mainlobe radiation falls by 3dB or 

half its original value with the center of the plot [9]. This allows us to determine how 

spatially selective an antenna is i.e., how narrow the mainlobe is. Depending on the 

application the HPBW can be a very important determining factor. Phased array antennas 

having a very narrow HPBW allows the antenna to very precisely transmit and receive 

power in a given direction and gives the antenna a much higher resolution in applications 

such as radar antennas and in modern day mobile systems narrow beamwidths are very 

desirable as they help  minimize co-channel interference [34]. The HPBW for our 

antenna varies from 22𝑜 to 17𝑜 depending on the frequency of observation. All the 

results obtained in this radiation pattern plot simulations have been summarized in Table 

5.4. 
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(c) (d) 

  

 

Fig. 5.10: Radiation patterns of tapered corporate-fed array at (a) 2.45 GHz, (b) 2.65 

GHz. (c) 3 GHz, (d) 3.1 GHz. 

Table 5.4: Summary of radiation pattern data for array with tapered corporate feed. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 17.2 25.5 9.3 17.7 22.2 

2.65 18.6 27.2 15.2 19.3 20 

3 18.6 18.5 11.7 19.7 17 

3.1 18.6 18.6 11.3 20 17.5 

 

5.6 Reducing Backlobe Radiation  

 Backlobe radiation is a significant point of concern while designing most antenna 

systems. Apart from the waste of radiated energy and reduced antenna efficiency most 

commercial, defense and space research antennas have limits on the tolerable backlobe 

radiation levels. In commercial applications such as mobile devices there is a maximum 

allowable Specific Absorption Rate (SAR) which must be met by an antenna system for it 
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to be considered safe for human use [35]. Similarly for space antennas and radar antennas 

that are placed close to the surface of the earth a high level of backlobe radiation causes 

the radiation to get reflected off the ground and interfere with the incoming signal which 

deteriorates performance. 

 For this array, a metal reflector has been used to block the backlobe radiation. 

This metal reflector acts as a secondary ground plane. The feed substrate is separated 

from the reflector by a layer of ROHACELL 71HF foam with thickness ℎ𝑟. The reflector 

being used is made of aluminum and overshoots the array by an inch at each edge. The 

cross-sectional view of the antenna with the reflector can be seen in Fig. 5.11. 

 

Fig. 5.11: Cross-sectional view of array with the reflector. 
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 A parametric simulation was run to determine the optimum distance at which the 

metal plate must be placed so as to obtain maximum backlobe suppression while 

minimizing any deleterious effect on the desired front lobe radiation pattern. The results 

of the parametric sweep have been shown in Fig. 5.12. From the 𝑆11 plot below it can be 

clearly seen that the best bandwidth performance is seen when the reflector is placed at a 

distance of ℎ𝑟=25 mm from the corporate feed network at the bottom. The radiation 

pattern plots seen when the reflector distance is varied is shown in Figs. 5.13 - 5.16.  It 

was also observed that the closer the reflector was placed to the array higher the impact it 

had on the main lobe radiation. When the reflector was placed too close to the antenna 

the main lobe was seen to get wider with higher levels of SLLs. The impedance 

bandwidth obtained when ℎ𝑟=25 mm is 0.86 GHz, it spans from 2.35 GHz to 3.21 GHz. 

The 𝑆11 at 2.45 GHz is seen to be -23.86 dB which is very favorable.  

 

Fig. 5.12: 𝑆11 response when position of reflector is changed. 
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(c) (d) 

(a) (b) 

 

  

  

 

Fig. 5.13: Radiation pattern plots when ℎ𝑟=10 mm at (a) 2.45 GHz, (b) 2.65 GHz. (c) 

2.85 GHz, (d) 3.05 GHz. 
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(a) (b) 

(d) (c) 

 

 

  

  

    

Fig. 5.14: Radiation pattern plots when ℎ𝑟=15 mm at (a) 2.45 GHz, (b) 2.65 GHz. (c) 

2.85 GHz, (d) 3.05 GHz. 
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(a) (b) 

(c) (d) 

 

 

  

  

 

Fig. 5.15: Radiation pattern plots when ℎ𝑟=20 mm at (a) 2.45 GHz, (b) 2.65 GHz. (c) 

2.85 GHz, (d) 3.05 GHz. 
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(a) 

(c) (d) 

(b) 
    

    

 

Fig. 5.16: Radiation pattern plots when ℎ𝑟=25 mm at (a) 2.45 GHz, (b) 2.65 GHz. (c) 3 

GHz, (d) 3.1 GHz. 

 The radiation pattern plots at the four frequencies of interest are plotted in Fig. 

5.16 above. In the final design the reflector was placed 25 mm below the feed substrate 

because of its better performance around the 2.45 GHz range. The other shown reflector 

heights can be chosen as well as they too exhibit very acceptable performance 

parameters. In fact, for applications which require a more compact design one of the 

closer reflector spacing might be more preferable. The reflector is seen to marginally 

boost the realized gain of the antenna throughout the operating frequency band. But the 
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biggest drawback which can be seen is the increased SLLs. The addition of the reflector 

plate increases the SLL by about 5 to 6 dB across the frequency band. This increased 

SLL and increased number of sidelobes is greater at higher frequencies as the taper was 

designed with a central frequency of 2.45 GHz. There is a very minor drop-off in the 

directivity which can be attributed to the increased radiation in the sidelobes. The HPBW 

is almost the same or even better at some frequencies. The HPBWs mentioned are the 

average of the HPBWs in the Φ=0𝑜 and Φ=90𝑜 planes. As we can see from Fig. 5.16, the 

main beam radiation has a narrower lobe in the Φ=0𝑜 plane when compared to the 

Φ=90𝑜 plane, but we also observe a greater number of sidelobes and higher overall level 

of SLL in this Φ=0𝑜 plane. The reflector however helps decrease the backlobe radiation 

by as much as 12.3dB, which is very significant improvement. The F/B ratio thus 

obtained after utilizing the reflector is seen to be much higher. The values obtained via 

simulation for the realized gain, SLL, F/B, directivity and HPBW of the antenna with the 

reflector are summarized in Table 5.5.   

Table 5.5. Simulation data for the 4X4 array with metal reflector. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 17.4 20.4 21.8 17.4 22 

2.65 18.7 18.9 19.8 18.7 20 

3 19.6 12.9 14.4 19.6 14 

3.1 18.9 12.3 14.8 18.9 15 
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Chapter 6: Fabrication and Measurements of Array 

6.1 Introduction 

 This chapter goes over the step by step fabrication of the array, the constraints 

faced during developing the printed circuit boards and the compromises that had to be 

made in order to circumvent these obstacles. This is then followed by the test setup and 

measurement data obtained for the various antenna configurations already discussed in 

the previous chapters. Measurements were made for the 4X4 antenna array without the 

reflector, the 4X4 array with the reflector and two more additional cases were also 

measured where the performance of the antenna with and without the reflector were 

measured when a superstrate was placed on top of the antenna. The superstrate used was 

a FR4 (휀𝑟=4.4, tan𝛿=0.018) sheet the size of the array with a thickness of 1.6 mm. The 

main purpose behind using the superstrate was to tune the designed antenna array so as to 

obtain a better 𝑆11 response and the effects of doing so have been discussed in this 

chapter. So, a total of four cases have been implemented and their performance measured. 

The 𝑆11 performance of each of these arrays were measured in our lab using a Vector 

Network Analyzer (Agilent E5071C) and the radiation pattern measurements were done 

in a Satimo SG-64 Anechoic Chamber located at the Wireless Research Center in North 

Carolina. The radiation patterns were measured at 2.45, 2.65, 3 and 3.1 GHz so as to 

assess the radiation performance of the antenna throughout its operating bandwidth. All 
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of this data has been plotted, summarized and compared with the simulation data 

presented in the former chapters. 

6.2 Fabrication 

 Chemical photo-etching was used to build the feed substrate and the antenna 

substrate. Both these substrates were first coated with a negative photo-resistive coating 

and then exposed to light in a UV box after the appropriate masks were placed on top of 

them. The negative photo-resist bonds with the substrate when it is exposed to ultra violet 

light, which is achieved in the UV box. Once this is done we treat the boards with a 

diluted solution of a negative photo-developer which is usually a strong base so as to 

remove the photo-resist coating from regions which are of no interest to us i.e., the 

regions which were kept in the dark, thus exposing the copper coating below and leaving 

a layer of photo-resist in the pattern of the required trace. The board is then placed in an 

etching tank which consists of a temperature controlled tank filled with ammonium 

persulfate. The ammonium persulfate reacts with the exposed copper on the board 

stripping it off and leaving only the substrate behind which in our case is RO4003c. The 

trace is protected because it is still covered with a layer of photo-resistive coating. When 

all the unnecessary copper has been stripped from the board we remove the substrate 

from the tank and then treat it with a very strong solution of the previously used 

developer in order to remove the photo-resist coating thus obtaining the required trace. 

To obtain a well etched board many factors need to be taken into consideration. Some of 

the important factors are the exposure time in the UV box, the strength of the developer 

solution being used and the temperature and time that the boards are allowed to sit in the 

etching tank have to be monitored closely or else the boards might get over etched. If the 
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board is exposed to light for too long then the regions that are supposed to be in the dark 

under the mask also get exposed and may not properly wash off when treated with the 

developing solution and similarly when the exposure time is too little the photo-resist 

might not bond strongly enough to the board which will cause it to come off when placed 

in the developer solution or the etching tank. Through multiple trial and error attempts it 

was found that an exposure time of 150 seconds gave the best results. The developer 

solution was diluted in the ratio of 1:12 for the pre-etching stage and a raw solution was 

used post etching to remove the photo-resist. The ammonium persulfate solution used 

was created by dissolving a kilogram of persulfate per 4 liters of water and the 

temperature was controlled as per the progress of the etching. 

 The major problem that was encountered while trying to etch the boards was the 

large size of the array. The array has a length of approximately 354 mm and a width of 

345.6 mm but the size of the UV box is only 25 mm X 40 mm and the etching tank is also 

not large enough to fit the entire array. So because of this, the array was divided into four 

rectangular sub-arrays with 4 elements each. Each sub-array, i.e., the four patches and its 

respective feed boards and corresponding ground planes with the apertures were etched 

separately. The sub-arrays are not all the same size because if divided symmetrically the 

feedline running through the center of the array would get cut along its width and 

aligning it would not be easy and it would not be very accurate. Fig. 6.1 shows the top 

layer or the patch layer of the antenna array.     
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Fig. 6.1: Top view of array. 

 The four sub sections of the array can be clearly seen from the above figure. 

These four separate sections were joined together using scotch tape. Some of the patches 

developed small holes in them due to over etching, these holes were filled using solder. 

The top layer was placed on top of the foam and was taped together with the bottom layer 

to hold them in place. The bottom layer, which is the feedline substrate was also etched in 

four parts as mentioned earlier. Figs. 6.2 shows the four different sections separately. 
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Fig. 6.2: Feedline sections. 

 These four sections were put together and aligned properly. Small sections of 

copper tapes with widths of 3.5 mm were used to bridge the feedlines running across the 
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sub-parts and these copper tapes were soldered on both ends. The other face of these 

boards contain the ground plane and the apertures. The same procedure was followed 

here too, copper tape was used to establish connectivity and then it was soldered. Some 

scotch tape was applied on both sides to make sure it was sturdy. Fig. 6.3 shows the 

completed corporate feedline. The feed sections on the second and fourth quadrant of the 

feedline substrate did not align exactly due to minor displacements while placing the 

masks, but were then corrected keeping the displacement as low as possible. Fig. 6.4 

shows the ground plane with the apertures. 

 

Fig. 6.3: Corporate feed network. 
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Fig. 6.4: Ground plane with apertures. 

6.3 Measurement Results for 4X4 Array 

 The feedline substrate lies at the bottom of the array with the ground plane 

facing upward. This is then followed by a layer of foam which is placed on top of it. The 

substrate containing the patch array is placed on top of the foam. All layers are aligned as 

precisely as possible and they have been taped together at all four ends. The side view of 
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this 4X4 array has been shown in Fig. 6.5. The bottom substrate sits on top of a 25 mm 

thick foam pedestal, which acts as the foam spacer used at the bottom to position the 

reflector below the array. Measurements were made with and without the foam legs 

placed under the array and no difference was observed. The array is fed using a SMA 

soldered to its edge. 

 

Fig. 6.5: Side view of 4X4 array. 

 The measured reflection coefficient for this 4X4 array has been plotted in Fig. 6.6 

below. It can be seen from the measured 𝑆11 plot that the antenna has a reflection coefficient 

greater than -10 dB for a small frequency band between 2.82 to 2.96 GHz. The 𝑆11 
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deteriorates to as much as -8 dB somewhere around 2.9 GHz. This can be mainly 

attributed to the minor differences in the widths of the line, 𝑤4=0.6 mm and the 

alignment challenges faced because of the antenna being made from 4 separate boards. It 

was observed that there were small sections of 𝑤4 which were over-etched to as much as 

0.5 mm in some places. This can be attributed to uneven exposure to UV light due to 

inconsistencies in the UV mask and possibly uneven exposure to the photo-developer. 

These minor changes in line widths are responsible for the aberrations seen in the 𝑆11 

performance as that would cause a change in impedance which will cause the feed 

network to be mismatched at the various T-junctions. Even so, the radiation patterns 

measured are quite consistent with the simulation data. The antenna setup inside the 

anechoic chamber can be seen in Fig. 6.7. 

 

Fig. 6.6: Measured 𝑆11 data.  
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(a) 

 

(b) 

(b) 

 

Fig. 6.7: Antenna setup inside the anechoic chamber. 

 The measured radiation patterns have been plotted in Fig. 6.8 and the Realized 

Gain, SLL, F/B, Directivity and HPBW data is summarized in Table 6.1.  
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(c) (d) 

  

 

Fig. 6.8: Radiation patterns measured at (a) 2.45 GHz, (b) 2.65 GHz, (c) 3 GHz, (d) 3.1 

GHz. 

Table 6.1: Measured data for 4X4 array. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 15.4 15.3 14.7 17.4 < 21 

2.65 16.9 20.7 19.5 19 < 24 

3 15.7 16.5 22.9 18.9 < 21 

3.1 16.8 17.6 25.4 19.6 < 21 

 

 The maximum realized gain observed in the measured data is seen to be about 

1.7 to 2.8 dB lower than what the simulations suggest, whereas the measured directivity 

matches the simulation results very closely. Surprisingly though, the F/B ratio realized is 

much better than expected due to significantly lower levels of back-lobe radiation. The 

measured back-lobe radiation was lower than the expected results by about 7 to 16 dB 

and this effect was more pronounced at the higher end of the operating band. The 

measurement setup in the anechoic chamber is such that the region right under the 
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pedestal cannot be measured. To be precise a total angle of 23.6𝑜 lies in this blind spot. 

The software uses a predictive algorithm to estimate the radiation pattern in this region 

based on various factors like the magnitude of the radiation pattern right before the blind 

spot, the rate of change, etc. and extrapolates on the basis of this data. This could also be 

a possible source of discrepancies seen in the backlobe radiation. The measured 

maximum SLLs seem to be lower than what the simulations suggest. But this is due to 

the presence of very narrow singular lobes being generated at and around θ=60𝑜 and 

θ=300𝑜. The changes in the line width also contribute to increasing the SLLs. The 

measured HPBWs are in very close agreement with the simulation data putting the 

average beamwidth of the antenna close to 21𝑜. The beamwidths could not be very 

precisely calculated as the measurement setup had a resolution of 3𝑜, hence the actual 

beamwidth of the antenna could be lower by as much as 6𝑜.   

6.4 Measurement Results for 4X4 Array with Reflector 

 An aluminum plate which is an inch larger than the array is placed below the 

antenna. The legs help position the array accurately over the reflector. 𝑆11 and radiation 

pattern measurements were made as described in the previous sections. The measurement 

setup for the 4X4 array with the metal reflector can be seen in Fig. 6.9 and the 𝑆11 plot is 

presented in Fig. 6.10 below. The 𝑆11 response seen on the Vector Network Analyzer 

shows that the reflection coefficient of the antenna briefly increases from -10 dB to a 

maximum of -8.2 dB between 2.7 to 2.98 GHz. This again can be attributed to the minor 

inconsistencies in the line widths of the various elements in the corporate feed which tend 

to cause the antenna not be matched as well as desired.  The radiation patterns measured 

are depicted below in Fig. 6.11.  
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Fig. 6.9: Radiation pattern measurement setup for array with reflector. 

 

Fig. 6.10: Measured 𝑆11 performance of 4X4 array with reflector. 
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(a) 

(c) (d) 

(b) 

  

  

Fig. 6.11: Measured radiation pattern plots for array with reflector at (a) 2.45 GHz, (b) 

2.65 GHz, (c) 3 GHz, (d) 3.1 GHz. 

Table 6.2: Measured data for 4X4 array with reflector. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 16.2 15.2 37.1 17.9 < 21 

2.65 17.5 19.2 43.3 19.4 < 18 

3 17.2 15.3 38.7 20 < 18 

3.1 16.4 13.4 37.2 19.3 < 18 
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6.5 Measurement Results for 4X4 Array with Superstrate 

 Dielectric superstrates have been used to improve the directivity and reflection 

coefficient response of antennas and arrays from decades now.  It was initially studied by 

Trentini and Sasser [36-37], and they attributed this performance boost to the multiple 

reflections occurring at the air-superstrate and superstrate-air interfaces causing images of 

the source being generated. So, if the permittivity and separation are controlled it is 

possible to enhance the array performance at certain frequencies. A great deal of research 

has been dedicated to quantify and establish the effects of various parameters like 

permittivity, separation, superstrate size, etc. [38-39] and the gain enhancement has been 

attributed to “leaky waves” [40-41]. The antenna array with the superstrate has been 

shown in Fig. 6.12. The superstrate used was FR4 with a thickness of 1.6 mm and the 

reason for using it was its ease of availability. The superstrate is lightly placed on top of 

the array, which means there is extremely thin air film between the superstrate and the 

antenna. The 𝑆11 response has been plotted in Fig. 6.13. There is a very noticeable 

improvement in the 𝑆11 response of the antenna. The antenna is now perfectly tuned in 

the frequency range of 2.35 GHz to 3.18 GHz. The minor region around 2.9 GHz where 

the 𝑆11 response jumped above -10 dB has been eliminated and overall the reflection 

coefficient is much lower compared to the array without the superstrate. 
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Fig. 6.12: 𝑆11 and radiation pattern measurement setup for array with superstrate. 

 The radiation patterns for the 4X4 array with the superstrate at the four 

frequencies has been plotted in Fig. 6.14. The realized gain and the directivity are higher 

as would be expected but the improvement is in the range of half a dB which is lower 

than what should be expected after seeing the improvement in the 𝑆11. The high dielectric 

loss tangent of FR4 is responsible for reducing the gain. The F/B ratio is better due to 

improved gain and lower backlobe radiation. The HPBW of the array is also slightly 

improved at certain frequencies. But the main advantage of using the superstrate can be 

seen looking at the SLL performance. The SLLs at the lower end of the band is 

significantly improved (as much as 5 dB) but this enhancement in SLL seems to vanish at 
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(a) (b) 

the higher frequencies in the operating band. All the measured data has been summarized 

in Table 6.3.       

 

Fig. 6.13: Measured 𝑆11 performance of 4X4 array with superstrate. 
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(c) (d) 
  

 

Fig. 6.14: Measured radiation pattern plots for array with superstrate at (a) 2.45 GHz, (b) 

2.65 GHz, (c) 3 GHz, (d) 3.1 GHz. 

Table 6.3: Measured data for 4X4 array with superstrate. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 16.1 21.4 17.2 17.8 < 21 

2.65 17.4 23.9 22.9 19.3 < 21 

3 16.7 16.1 23.6 19.4 < 21 

3.1 17.3 14.5 25.1 19.7 < 18 

 

6.6 Measurement Results for 4X4 Array with Reflector and Superstrate 

 Just like the previous case, the effect of the superstrate on the antenna array with 

the reflector was studied. The 𝑆11 measurement and radiation pattern measurement setup 

for this array is shown in Fig. 6.15. The 𝑆11 response for this antenna is represented in 

Fig. 6.16. The superstrate significantly improves the 𝑆11 response of the array with the 

reflector and improves the operating bandwidth to a little over 3.2 GHz which is even 
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better than the case with no reflector. The radiation patterns have been plotted in Fig. 

6.17 and all the parameters being studied has been summarized in Table 6.4. The 

improvement in the radiation characteristics is exactly as seen in the previous section. 

Gain and directivity improvement of about 0.5 dB is seen. SLLs at the lower end of the 

frequency are higher by 5 dB and the beam is slightly narrower at some frequencies.  

 

 

Fig. 6.15: 𝑆11 and radiation pattern measurement setup for array with superstrate and 

reflector. 
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(a) (b) 

 

Fig. 6.16: Measured 𝑆11 performance of 4X4 array with superstrate and reflector. 
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(c) (d) 
  

 

Fig. 6.17: Measured radiation pattern plots for array with superstrate and reflector at (a) 

2.45 GHz, (b) 2.65 GHz, (c) 3 GHz, (d) 3.1 GHz. 

Table 6.4: Measured data for 4X4 array with superstrate and reflector. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 16.6 20.4 37.8 18.1 < 21 

2.65 17.8 20.9 44 19.5 < 21 

3 17.3 16.7 36.7 19.8 < 15 

3.1 17.6 13.8 37.7 19.9 < 18 
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Chapter 7: Phased Array 

7.1 Introduction  

 The simulation results for a 4X4 planar phased array antenna have been presented 

in this chapter. It also goes over the requirements that need to be met in order to achieve 

beam steering, the maximum angle that an array can be electronically steered without 

creating significant sidelobes and the phase difference required to achieve this. Possible 

solutions to practically implementing this design was looked into, mainly by using a 

Monolithic Microwave Integrated Circuit. After surveying the various available options 

in the market, the analog phase shifter IC HMC928LP5E [42] seemed like a good fit for 

the 4X4 planar array considering its wideband response, ease of integration, low insertion 

loss and linear phase response. Implementation has been left for future work. 

7.2 Beam Steering 

 Beam steering in antenna arrays is achieved by adjusting the phase difference 

between successive antenna elements. By controlling the progressive phase shift along 

the x-axis we can move the main beam maximum along the x-axis and similarly by 

controlling the progressive phase shifts along the elements lying on the y-axis we can 

control where along the y-axis the beam ends up radiating and by simultaneously 

controlling the phase excitations we can move the beam to any position we desire. This is 
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how we control the azimuth (Φ) and elevation (θ) angles of a phased array antenna. The 

required phase difference can be found by examining the array factor of a planar array 

antenna. As described in Chapter 3 the array factor for a planar array can be written as 

[9], 

𝐴𝐹(𝜃, 𝜑) = {
Sin((𝜓𝑥

𝑀

2
)

𝑀Sin((
𝜓𝑥

2
)
} {

Sin((𝜓𝑦
𝑁

2
)

𝑁Sin((
𝜓𝑦

2
)
}  … (7.1) 

 

Here, 𝜓
𝑥
 and 𝜓

𝑦
 are defined as follows, 

𝜓
𝑥

= 𝑘𝑑𝑥sinθcosϕ + 𝛽
𝑥
  … (7.2) 

𝜓𝑦 = 𝑘𝑑𝑦sinθsinϕ + 𝛽𝑦 … (7.3) 

 

 The phases 𝛽𝑥 and 𝛽𝑦 are independent and can be controlled separately as mentioned 

earlier. To determine the phase shifts we equate 𝜓
𝑥
=0 and 𝜓

𝑦
=0 to obtain, 

𝛽𝑥 = −𝑘𝑑𝑥sinθcosϕ  … (7.4) 

𝛽𝑦 = −𝑘𝑑𝑦sinθsinϕ  … (7.5) 

Where, 

𝑘 =
2𝜋

𝜆
 

𝑑𝑥 = 𝑑𝑦 = 83.3 𝑚𝑚 
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 The above set of equations help us determine the phase progressions needed in 

order to steer the antenna beam. Before proceeding to find this phase difference, one 

main concern regarding phased array antennas must be discussed, and that is grating 

lobes. Usually for linear broadside and standard planar array grating lobes appear when 

the inter-element spacing is a multiple of the wavelength. But in the case of phased array 

antennas grating lobes can appear when the “look angle” i.e. the angle the main beam 

points to is increased beyond a certain point. This look angle can be determined by the 

relation given below, 

𝑑 =
𝜆

1+Sinθ
  … (7.6) 

So when, 

𝑑 = 83.3 𝑚𝑚 

θ = {

30𝑜  , at 2.45GHz
21𝑜 , at 2.65GHz

15.3𝑜 , at 2.85GHz
10.4𝑜 , at 3.05GHz

  … (7.7) 

 Due to the wideband nature of the antenna, the look angle, i.e. the angle within 

which the antenna mainlobe can be steered varies from 30𝑜 at 2.45 GHz to a very narrow 

10.4𝑜 at 3.05 GHz. The only way to improve the scanning range for these kinds of planar 

array antennas is to decrease the inter-element separation and in the current array design a 

smaller distance between array elements causes a higher level of mutual coupling as was 

demonstrated in Chapter 4. The phase difference required between elements to achieve 

beam steering will also be a function of frequency. So the progressive phase shifts 

between the successive antenna elements has to be adjusted accordingly. Say the antenna 
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main beam needs to be steered to θ = +30𝑜 , Φ = 90𝑜, then this will only be possible for 

frequencies below 2.45 GHz and the required phase difference can be found by 

calculating 𝛽𝑥 and 𝛽𝑦 from the aforementioned equations. To move the main beam to θ =

+30𝑜,Φ = 90𝑜 a successive phase difference of  𝛽𝑦 = −122.6𝑜
 and 𝛽𝑥 = 0𝑜

 must been 

maintained between the antenna elements.  

 Simulations were performed by assigning the required phases to the respective 

antenna elements in the 16 element planar array. The radiation pattern at 2.45 GHz has 

been shown below in Fig. 7.1. The realized gain at this position is seen to 17.6 dBi and 

the backlobe radiation is at -12 dB. This puts the F/B at 29.6 dB and the SLL is measured 

to be 7.6 dB which is considerable high. This is due to the fact that the antenna is being 

steered at the maximum possible look angle for this frequency which causes the grating 

lobe to be significant. As we decrease the look angle, this lobe which is seen between 

310𝑜 to 320𝑜 also decreases. This becomes evident in Fig. 7.2. In Fig. 7.2 the antenna 

main beam is steered to θ = +10𝑜 , Φ = 90𝑜. All four frequencies within the bandwidth 

can be steered to at least 10𝑜.  

 

Fig. 7.1: Radiation pattern with main beam at θ = +30𝑜 , Φ = 90𝑜 and 2.45 GHz. 
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(a) 

(c) (d) 

(b) 

 

   

 

 

 

 

 

   

Figs. 7.2: Radiation pattern with main beam at θ = +10𝑜 , Φ = 90𝑜 (a) 2.45 GHz, (b) 

2.65 GHz, (c) 2.85 GHz, (d) 3.05 GHz. 

The realized gain, SLL, F/B and HPBW data for the radiation pattern plots presented in 

Fig. 7.2 are summarized in Table 7.1.  

Table 7.1: Summary of radiation pattern data with main beam at θ = +10𝑜 , Φ = 90𝑜. 

Frequency 

(GHz) 

Realized 

Gain (dBi) 

SLL  

(dB) 

F/B  

(dB) 

Directivity 

(dBi) 

HPBW 

(Degrees) 

2.45 18.6 23 35.4 18.7 22 
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2.65 19.6 19.9 34.4 19.8 22 

2.85 19.9 15.5 33.9 20.5 20 

3.05 19.7 13.9 29 17.6 20 

 

 All of the above radiation pattern plots are steered towards the Φ = 90𝑜 plane 

which is the H-plane. The radiation characteristics are better, i.e. more directive and have 

lower HPBWs in the H-plane when compared to the radiation pattern characteristics 

observed in the E-plane. Figs. 7.3, 7.4 and 7.5 show the 3D radiation patterns at 2.45 

GHz in a linear scale when the main beam is directed towards, θ = +20𝑜 , Φ = 0𝑜; θ =

+20𝑜 , Φ = 45𝑜 and θ = +20𝑜 , Φ = 90𝑜 respectively.  The 3D patterns represent the 

axis and help visualize the radiation patterns and the beam steering. The radiation 

patterns seen at θ = −20𝑜 for the various values of  Φ are almost identical due to the 

symmetry of the array. 

 

Fig. 7.3: 3D radiation pattern at, θ = +20𝑜 , Φ = 0𝑜 and 2.45 GHz. 
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Fig. 7.4: 3D radiation pattern at, θ = +20𝑜 , Φ = 45𝑜 and 2.45 GHz. 

 

Fig. 7.5: 3D radiation pattern at, θ = +20𝑜 , Φ = 90𝑜 and 2.45 GHz. 
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(a) (b) 

(a) (b) 

 The radiation pattern plots at these three positions have been shown in the figures 

below. Only frequencies below 2.65 GHz can be steered to θ = +20𝑜, hence radiation 

patterns are plotted for only 2.45 GHz and 2.65 GHz. Fig. 7.5 shows the radiation 

patterns when the main beam is directed towards θ = +20𝑜 , Φ = 0𝑜. 

              

Figs. 7.6: Radiation pattern with main beam at θ = +20𝑜 , Φ = 0𝑜 (a) 2.45 GHz, (b) 2.65 

GHz. 

Similarly, the plots for Φ = 45𝑜 and Φ = 90𝑜 have been shown in Figs. 7.7 and 7.8 

below. 

                 

Figs. 7.7: Radiation pattern with main beam at θ = +20𝑜 , Φ = 45𝑜 (a) 2.45 GHz, (b) 

2.65 GHz. 
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(a) (b) 

                 

Figs. 7.8: Radiation pattern with main beam at θ = +20𝑜 , Φ = 90𝑜 (a) 2.45 GHz, (b) 

2.65 GHz. 

 The trend seen from the six plots shown above is that the realized gain steadily 

improves as we move the main beam towards Φ = 90𝑜 i.e. away from the E-plane and 

toward the H-plane. For the array at 2.45GHz the realized gains are 17.4, 17.8 and 18.6 

dBi at Φ = 0𝑜, Φ = 45𝑜 and Φ = 90𝑜 respectively. And at 2.65 GHz, the realized gains 

are seen to be 16, 18.2 and 18.9 dBi at Φ = 0𝑜, Φ = 45𝑜 and Φ = 90𝑜 respectively and 

the directivity and backlobe radiation follows the same trend. But the SLL is least when 

the beam is pointing towards Φ = 45𝑜 and has value of 19.8 and 32.1 dB at 2.45 and 

2.65 GHz.  
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Chapter 8: Conclusion and Future Work 

8.1 Conclusion 

 A 4X4 aperture coupled planar antenna array was designed, implemented and 

tested for operation in the 2.3 to 3.1 GHz frequency range. The array offers high gain, 

low SLL and high F/B all of which are greatly desired in many communication and radar 

systems. Starting from the design of a single element aperture coupled patch the design 

focused on (1) a separately fed 4 element linear patch array design and their mutual 

coupling calculation, (2)  a 4 by 4 separately fed planar array design, (3) a corporate-fed 4 

by 4 planar array design, (4) an amplitude tapered low SLL corporate fed array design, 

(5) an experimental prototype build and test of the array, and finally the simulation 

studies of (6) a separately fed phased array of the antenna. The prototype array fabricated 

was measured in four different configurations: no reflector, with reflector, no superstrate 

but with reflector, and with superstrate and with reflector. Measured realized gain 

observed in the tests were between 16 to 20 dBi depending on the frequency of operation. 

The measured F/B was in fact better than what was expected from simulation for the 

reason that the Satimo near-field measurement system lacks the capability to probe the 

fields within a narrow cone of angle. Simulated F/B was nearly 22 dB in the presence of a 

reflector nearby. Sidelobe reduction was achieved using an amplitude tapered corporate 

feed network. Although the theoretical SLL expected was 25 dB measured SLL was in 



 

106 

the vicinity of 20 dB. The deterioration in the SLL can be mainly attributed to 

manufacturing difficulties which led to the thinner microstrip line sections to be non-

uniform due to over-etching in certain sections, hence affecting the power division and 

match at the T-junctions, which are  essential for the required SLLs to be achieved. 

Another source of error is the misalignment of the four boards while piecing them 

together to form the array and minor misalignments between the feedlines and apertures. 

Finally, the proposed array was simulated in a phased array setting which showed that the 

array beam could be steered at  o30  in the lower end of the operating band, while still 

keeping the grating lobes in check. 

8.2 Future Work 

 Future work should include the integration of phase shifters with the proposed 

array. A phase shifter called HMC298LP5E could be used for that purpose. This phase 

shifter has wideband performance which makes it compatible to the proposed wideband 

array. The main problem one may encounter while trying to develop a PCB for the 

corporate feed network with the MMIC included would be the small size of the phase 

shifter. The input, output and control lines that the component requires is only 0.3 mm 

wide due to its small pad size which is too thin for in house etching. However, such a 

design can easily be sent to a board house and fabricated.  Also, more work can be done 

to improve the bandwidth of the array by using other substrate and by optimizing the 

array dimensions. This thesis very briefly goes over the effect of a superstrate/radome 

structure on antenna radiation and bandwidth. Further research can be done regarding the 

superstrate materials and the effects of their size, relative permittivity and loss can be 
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investigated.    Finally, the beam scanning at wider scanning angles and throughout the 

frequency range can be attempted.  
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